
• c
-a)::>
:;::ic::J-C
0---C
C") !::
:;::ic::J~

)::>~
3:-:s:o -:z: :z:
C")

II

>

APPLICATION
PROGRAMMING

Nick Grattan
Marshall Brain

• Windows CE 3.0 Programming
for Pocket PC®, Handheld PC,
and embedded devices

• Enterprise computing
including COM, DCOM,
database access using
ADOCE, and Microsofl®
Message Queue

• Communications, including
Web access with HTIP, TCP /IP
sockets, serial communications,
and desktop synchronization
with ActiveSync® 3

• Build and run applications in
Visual C++® using Microsoft
Foundation Classes

• CD-ROM with eMbedded
Visual C++ 3.0 and Pocket
PC SDK

• MICROSOFT9 TECHNOLOGIES SERIES

PRENTICE HALL PTR MICROSOFT® TECHNOLOGIES SERIES

NETWORKING

• Microsoft Technology: Networking, Concepts, Tools

Woodard, Galluccio, Brain

• NT Network Programming Toolkit

Murphy

• Building COM Applications with Internet Explorer

Loveman

• Understanding DCOM

Rubin, Brain

• Web Database Development for Windows Platforms

Gutierrez

PROGRAMMING

• The Windows 2000 Device Driver Book, Second Edition

Boker, Lozano

• WIN32 System Services: The Heart of Windows 98
and Windows 2000, Third Edition

Brain, Reeves

• Programming the WIN32 API and UNIX System Services

Merusi

• Windows CE 3.0: Application Programming

Gratton, Brain

• The Visual Basic Style Guide

Patrick

• Windows Shell Programming

Seely

• Windows Installer Complete

Easter

• Windows 2000 Web Applications Developer's Guide

Yager

• Developing Windows Solutions with Office 2000
Components and VBA

Aitken

• Multithreaded Programming with Win32

Pham, Garg

• Developing Professional Applications
for Windows 98 and NT Using MFC, Third Edition

Brain, Lovette

• Introduction to Windows 98 Programming
Murray, Poppas

• The COM and COM+ Programming Primer

Gordon

• Understanding and Programming COM+:
A Practical Guide to Windows 2000 DNA

Oberg

• Distributed COM Application Development Using
Visual C++ 6.0

Moloney

• Distributed COM Application Development Using
Visual Basic 6.0

Moloney

• The Essence of COM, Third Edition

Plott
• COM-CORBA Interoperability

Geraghty, Joyce, Moriarty, Noone

• MFC Programming in C++ with the Standard Template
Libraries

Murray, Poppas
• Introduction to MFC Programming with Visual C++

Jones

• Visual C++ Templates
Murray, Poppas

• Visual Basic Object and Component Handbook

Vogel

• Visual Basic 6: Error Coding and Layering

Gill
• ADO Programming in Visual Basic 6

Holzner

• Visual Basic 6: Design, Specification, and Objects

Hollis

• ASP/MTS/ADS! Web Security
Harrison

BACK OFFICE

• Designing Enterprise Solutions with Microsoft
Technologies

Kemp, Kemp, Goncalves

• Microsoft Site Server 3.0 Commerce Edition

Libertone, Scoppo

• Building Microsoft SQL Server 7 Web Sites

Byrne
• Optimizing SQL Server 7

Schneider, Goncalves

ADMINISTRATION

• Microsoft SQL Server 2000
Fields

• Windows 2000 Cluster Server Guidebook

Liberlone

• Windows 2000 Hardware and Disk Management

Simmons

• Windows 2000 Server: Management and Control,
Third Edition
Spencer, Goncalves

• Creating Active Directory Infrastructures
Simmons

• Windows 2000 Registry
Sanna

• Configuring Windows 2000 Server
Simmons

• Supporting Windows NT and 2000 Workstation
and Server
Mohr

• Zero Administration Kit for Windows
Mcinerney

• Tuning and Sizing NT Server
Auhley

• Windows NT 4.0 Server Security Guide
Goncalves

• Windows NT Security
Mcinerney

CERTIFICATION

• Core MCSE: Windows 2000 Edition
Dell

• Core MCSE: Designing a Windows 2000 Directory
Services Infrastructure
Simmons

• CoreMCSE
Dell

• Core MCSE: Networking Essentials
Keogh

• MCSE: Administering Microsoft SQL Server 7
Byrne

• MCSE: Implementing and Supporting Microsoft
Exchange Server 5.5

Goncalves

• MCSE: Internetworking with Microsoft TCP/IP

Ryvkin, Houde, Hoffman

• MCSE: Implementing and Supporting Microsoft Proxy
Server 2.0

Ryvkin, Hoffman

• MCSE: Implementing and Supporting Microsoft SNA
Server 4.0

Mariscal

• MCSE: Implementing and Supporting Microsoft Internet
Information Server 4

Dell

• MCSE: Implementing and Supporting Web Sites Using
Microsoft Site Server 3

Goncalves

• MCSE: Microsoft System Management Server 2

Jewett

• MCSE: Implementing and Supporting Internet Explorer 5

Dell
• Core MCSD: Designing and Implementing Desktop

Applications with Microsoft Visual Basic 6

Holzner

• Core MCSD: Designing and Implementing Distributed
Applications with Microsoft Visual Basic 6

Houlette, Klunder

• MCSD: Planning and Implementing SQL Server 7

Vacca

• MCSD: Designing and Implementing Web Sites with
Microsoft FrontPage 98

Karlins

Lt1>rary of Congress Cataloging-in-Publication Data

Grattan, Nick.
Windows CE 3.0 : application programming/ Nick Grattan, Marshall Brain.

p. cm.' - (Prentice Hall series on Microsoft technologies)
ISBN 0-13-025592-0
1. Application software-Development. 2. Microsoft Windows (Computer file)

I. Brain, Marshall. IT. Title. III. Series.

QA76.76.D47 G76 2001
005.4' 469-dc21

Editorial/Production Supervision: G&S Typesetters
Acquisitions Editor: Mike Meehan
Editorial Assistant: Linda Ramagnano
Cover Design Director: jerry Votta
Cover Designer: Anthony Gemmellaro
Manufacturing Manager: Alexis R. Heydt
Series Design: Gail Cocker-Bogusz
Marketing Manager: Debby van Dijk
Art Director: Gail Cocker-Bogusz
Buyer: Maura Zaldivar
Project Coordinator: Anne Trowbridge

•
© 2001 by Prentice Hall PTR
Prentice-Hall, Inc.
Upper Saddle River, New Jersey 07458

00-063708

Prentice Hall books are widely used by corporations and government agencies for
training, marketing, and resale. The publisher offers discounts on this book when
ordered in bulk quantities. For more information, contact:

Corporate Sales Department,
Prentice Hall PTR
One Lake Street
Upper Saddle River, NJ 07458
Phone: 800-382-3419; FAX: 201-236-7141
E-mail (Internet): corpsales@prenhall.com

All rights reserved. No part of this book may be reproduced, in any form
or by any means, without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-025592-0

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Pearson Education Asia P.T.E., Ltd.
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

To my parents, Bob and Mildred Grattan.
Thanks for everything.
NG.

Preface xxi

Acknowledgments xxiii

.,,. ONE Introduction
About Microsoft Windows CE 3

Microsoft Pocket PC 4

Handheld PC 4

Palm Size PC 5

About This Book s
About You 6

About MFC (Microsoft Foundation Classes) and ATL (ActiveX Template Libraries) 6

eMbedded Visual C ++ 3. 0 6

Common Executable Format (CEF) 9

Emulation Environments 9

The Code Samples 9

Unicode Text and Strings 11

Generic String and Character Data Types 12

String Constants 13

Calculating String Buffer Lengths 14

Standard String Library Functions 14

Converting Between ANSI and Unicode Strings 14

Error Checking 16

Exception Handling and Page Faults 16

Conclusion 1s

"' TWO Files 19
Overview 20

Opening and Reading from a File 20

ix

X Contents

Getting and Setting File Information 25
Getting the File Times 25

Getting File Size 26

Getting File Attributes 28

Getting All File Information 30

File Operations 32

File Reading and Writing 33

File Mapping 38

Conclusion 44

T THREE Object Store, Directory, and Network Operations 45
Getting Object Store Free Space 46

Creating and Deleting Directories 4 7

Traversing Directory Trees 49

Compact Flash and Other Storage Devices 52

Auto-Run Applications on Compact Flash Cards 53

Enumerating Compact Flash Cards 54

l/VNetFuncffons 55
Enumerating Network Resources 56

Adding and Canceling Connections 61

Adding and Canceling Connections With Dialogs 63

Using Network Printers 65

Getting User Names 66

Listing Current Connections 67

Conclusion 69

T FOUR Property Databases and the Registry 70
Database Volumes 71

Creating and Mounting Database Volumes 71

Unmounting a Volume 73

Flushing a Database Volume 73
Listing Mounted Database Volumes 74

Properties 75

.
Contents XI

Sort Orders 76

Creating a Property Database 77

Opening and Closing Property Databases 79

Deleting Property Databases 81

Writing Records 82

Reading Records 84

Using the CEVT_BLOB Property Data Type 87

Searching for Records 88

Deleting Properties and Records 91

Updating Database Records 92

Database Notifications 94

Listing Database Information 96

Changing Database Attributes 99

Using MFC Classes with Property Databases 101

Opening and Creating Databases 101

Reading and Writing Records 102

Seeking to Records 104

Deleting Records and Properties 104

Serialization and BLOBs 104

Accessing the Registry 107

Adding and Updating Registry Keys and Values 108

Querying a Registry Value 11 O

Deleting a Registry Value 112

Deleting a Registry Key 113

Enumerating a Registry Key 113

Implementing a Record Counter using the Registry 117

Conclusion 119

,,. FIVE Processes and Threads 120
Creating a Process with CreateProcess 121

Process Kernel Obiect Handles and Identifiers 123

Creating a Process with Shel/Executefx 124

..
XII Contents

Waiting for a Process to Terminate 125

Process Exit Code 127

Listing Running Processes 121

Modules Used by a Process 129

Terminating a Process 131

Determining If a Previous Instance of a Process Is Running 132

Threads 133

User-Interface and Worker Threads 133

Accessing Global and Local Variables In Threads 134

Using Correct Thread Processing 134

Creating a Thread 136

Terminating a Thread and Thread Exit Codes 13 7

Thread States 139

Thread Scheduling 140

Thread Priorities 141

Enumerating Threads 143

Determine Thread Execution Times 144

Creating Threads with MFC 144

Conclusion 145

,.. Thread Synchronization 146
The Need for Synchronization 146

Critical Sections 151

The Interlocked Functions 154

WaitForSingleObject and WaitForMultipleObjects 154

Using Mutex Objects 156

Using Event Objects 15s

Using Semaphores 163

Selecting the Correct Synchronization Technique 165

Thread Local Storage and Dynamic Link Libraries 165

Conclusion 169

...
Contents XIII

v SEVEN Notifications 170
Running an Application at a Specified Time 1 71

Using Mini-Applications with Notification 1 71

Starting an Application on an Event 175

Manually Controlling the LED 111

User Notification 119

CeSetUserNotificationEx 182

Conclusion 184

v Communications Using TCP /IP: HTTP and Sockets 185
Overview of TCP/ IP Communications 186

Programming the HTTP Protocol 187

Simple HTTP Requests 187

Initializing the Internet Function Library-IntemetOpen 188

Making the HTTP Request-IntemetOpenUrl 190

Retrieving the Data-IntemetReadFile 190

Tidying Up-IntemetCloseHandle 191

More Complex HTTP Requests Using a Session 193

Cracking the URL-IntemetCrackUrl 193

Connecting to a Server-IntemetConnect 195

Obtaining a Request Handle-HttpOpenRequest 196

Making the Request-HttpSendRequest 197

Using a Proxy Server 200

Connecting to Secure Sites 201

Authentication with InternetErrorDlg 202

Authentication with IntemetSetOption 204

Sending Data to a Server 205

Sending Data with the URL 206

Posting Data to the Server 208

HTTP in Summary 210

Socket Programming 210

Socket Clients and Servers 211

Initializing the Winsock Library 213

.
XIV Contents

Manipulating IP Addresses 214

Determining a Device's IP Address and Host Name 215

Implementing a Ping Function 217

Simple Socket Sample Application 220

The Socket Client Application 220

Integer Byte Ordering 225

The Socket Server Application 226

Lingering and Timeouts 231

Infrared Data Association (IrDA) Socket Communications 232

Enumerating IrDA Devices 232

Opening an IrDA Socket Port 234

Conclusion 235

.., NINE Serial Communications 236
Basic Serial Communications 236

Opening and Configuring a Serial Communications Port 23 7

Reading Data from the Communications Port 243

Closing a Communications Port 245

Writing to a Communications Port 246

Testing Communications 247

GPS and NMEA 241

The NMEA 0183 Standard 248

Connecting Windows CE and GPS Devices 250

Reading Data from a GPS Device 250

Infrared and Other Devices 255

Conclusion 256

.., TEN The Remote API (RAPI) 257
Initializing and Un-initializing RAP/ 258

Handling Errors 259

A Simple RAP/ Application-Creating a Process 260

Overview of RAP/ Functions 263

File and Folder Manipulation 263

Property Database RAPI Functions 266

Registry RAPI Functions 267

System Information RAPI Functions 269

Miscellaneous RAPI Functions 270

Write Your Own RAP/ Functions with CeRapilnvoke 271

A CeRapilnvoke Blocking Function 271

RAPI Stream Functions 276

Conclusion 283

Contents XV

"' ELEVEN Telephone API (TAPI) and Remote Access
Services (RAS) 284

Introduction to Telephone AP/ (TAP!) 285

Line Initialization and Shutdown 286

Enumerating TAP/ Devices 288

Negotiating TAPI Version 288

Getting Line Device Capabilities 289

Making a Call with TAP/ 292

Opening a Line 293

Translating a Telephone Number 294

Making the Call 296

Line Callback Function 298

Shutting Down a Call 300

Communicating Through an Open Call 300

Obtaining a Communications Port Handle 301

Sending and Receiving Data 303

Remote Access Services (RAS) 304

Listing RAS Phone Book Entries 305

Making a RAS Connection 307

Monitoring a RAS Connection 309

Dropping a RAS Connection 310

Testing for an Existing RAS Connection 310

Conclusion 312

"'TWELVE Memory Management 313
The Virtual Address Space 313

Allocating Memory for Data Storage 314

XVI Contents

Obtaining System Processor and Memory Information 315

Obtaining the Current Memory Status 317

Application Memory Allocation 318
Global and Static Memory Allocation 318

Heap-Based Allocation 319

Stack-Based Allocation 320

Creating Your Own Heaps 320
Using Heaps with C++ Classes 322

Handling Low-Memory Situations 324
Responding to a WM_ CLOSE Message 324

Responding to a WM_HIBERNATE Message 325

Conclusion 325

System Information and Power Management 326
Operating System Version Information 326

The SystemParameterslnfo Function 327

Power Management 328
Power Management States 328

Changing from On to Idle State 329

Changing from Idle to Suspend State 330

Monitoring Battery Status 330

Powering Off a Device 334

Conclusion 334

COM and ActiveX 335
Introduction to the Component Object Model (COM) 335

COM Components 336

COM Interfaces 336

The !Unknown Interface 337

Globally Unique Identifiers (GUIDs) 338

Programmatic Identifiers (ProgIDs) 339

COM Components and the Registry 339

The HRESULT Data Type and Handling Errors 340

..
Contents XVII

Interface Definition Language and Type Library
Information 340

POOM-The Pocket Office Obiect Model 341

Using COM Components 343
Initializing and Uninitializing COM 343

Creating a COM Object 344

Calling COM Functions 346

The BSTR Data Type 346

Releasing COM Interfaces 347

Finding a Contact's Email Address 348

Calling Querylnterface 350

Adding a Contact 3 52

Using Smart Pointers 353

Creating a Recurring Appointment 356

ActiveX and Automation 359
_bstr_t and _variant_t Classes 359

Automation Displnterfaces 359

The !Dispatch Interface 360

Obtaining an !Dispatch Interface Pointer 360

Obtaining Dispatch Identifiers 361

The VARIANT Data Type 362

Using an Automation Property 364

Calling Automation Methods 365

Using Automation Obiects with MFC 368

Creating a COleDispatchDriver-Derived Class 369

Using the IPOutlookApp Class 371

Conclusion 3 73

Microsoft Message Queue (MSMQ) 3 7 4
Overview of Microsoft Message Queue 3 75

Installation 3 76
Installing MSMQ on Windows CE 377

Installing MSMQ on Windows 2000 378

Managing DNS Entries 378

IP Network, RAS, and ActiveSync 379

...
XVIII Contents

Managing Queues on Windows 2000 380

Creating a Private Queue 380

Reading Messages from a Queue in Windows 2000 381

Sending Messages from Windows CE 384

Creating a New Queue 389

Reading Messages from a Queue 392

Reading Other Message Properties 397

Peeking Messages and Cursors 398

Callback Function and Asynchronous Message Reading 401

Message Timeouts, Acknowledgements, and Administration Queues 405

Message Transactions 41 o

Conclusion 411

ADOCE and SQL Server for Windows CE 412
Installing SQL Server for Windows CE 413

ADOCE and ADOXCE 413

Using Smart Pointers with ADOCE 413

Using _bstr_t and _variant_t Classes 416

Creating a Catalog (Database) 416

Opening a Database (Catalog) 418

Creating a Table 418

Enumerating Tables in a Catalog 421

Dropping a Table 422

Adding Records to a Table 422

Retrieving Records from a Table 428

Connection Object 431

Deleting Records 432

SQL Data Definition Language (DDL) 433

Using CREATE TABLE 433

Using DROP TABLE 435

Using Identities and Primary Keys 435

Indexes 436

.
Contents XIX

INSERT Statement 43 7

Error Handling 440

Transactions 442

Conclusion 443

,.. SEVENTEEN Active Sync. 44 5
ActiveSync Items, Folders, and Store 446

Item 446

Folder 446

Store 447

Steps to Implement Device Synchronization 447

Steps to Implement Desktop Synchronization 448

Additional Steps for Continuous Synchronization 449

The Sample Application 449

Installation and Registration 450

Data Organization 453

Important Note 453

Implementing the Windows CE Device Provider 453

InitObjType Exported Function 454

ObjectNotify Exported Function 454

GetObjTypeinfo Exported Function 456

Implementing the Device IReplObjHandler COM Interface 457

Serialization Format 458

IReplObjHandler::Setup 459

IReplObjHandler::Reset 460

IReplObjHandler: :GetPacket 460

IReplObjHandler: :SetPacket 461

IReplObjHandler: :DeleteObj 462

Implementing the Desktop Provider 462

Representing HREPLITEM and HREPLFLD 462

Storing Data on the Desktop 463

Implementing IReplStore 463

IReplStore Initialization 464

Store Information and Manipulation 465

XX Contents

Folder Information and Manipulation 467

Iterate Items in a Folder 468

Manipulating HREPLITEM and HREPLFLD Objects 469

HREPLITEM Synchronization 4 72

Implementing the Desktop IReplObjHandler COM
Interface 474

IReplObjHandler:: Setup 474

IReplObjHandler:: Reset 475

IReplObjHandler: :GetPacket 4 75

IReplObjHandler: :SetPacket 4 76

IReplObjHandler: :DeleteObj 4 77

Conclusion 478

Index 479

This book, in concept and design, grew out of the book Win32 System Services,
written by Marshall Brain (1995, Prentice Hall PTR). There are many similarities
between Win32 programming on Windows NT/98/2000 and Windows CE pro
gramming, such as file 1/0, processes, and threads. There are many differences,
too-Windows CE uses a smaller API (Application Programming Interface) and
has fewer security functions and no services. Also, each type of programming
emphasizes different issues. Windows CE devices, such as Pocket PC, need to
communicate using a wide variety of techniques. These devices also must store
data locally so that users can manipulate data when not connected to enterprise
networks. This data (or more specifically, changes to this data) then has to be
communicated back to the databases located on enterprise servers. The impor
tance of this process is reflected in this book's content, and draws on my ex
periences in writing enterprise solutions using Windows CE.

Like Brain's original book, this book, for three main reasons, does not
cover user interface programming. First, Windows CE user interface program
ming is very similar to Win32, albeit with some differences in the shell and the
form factor (the size of the screen). Second, many embedded devices using
Windows CE do not have a display, making user interface development irrele
vant to a significant number of programmers. Third, in more and more cases
Pocket Internet Explorer is used to present the user interface, with some amount
of Windows CE code to allow disconnected access to data.

I hope this book helps you to overcome the challenges in writing appli
cations for mobile, wireless, and embedded devices using Windows CE, and to
gain from the tremendous opportunities in this area.

xxi

This book owes its existence to Mike Meehan, Senior Acquisitions Editor at
Prentice Hall PTR. Mike has always been there to answer queries, provide sug
gestions, and move the project toward completion. Thanks.

I would like to thank Microsoft Corporation for a constant supply of timely
information and software. In particular, Dilip Mistry, Chris Stirrat, and Megan
Stuhlberg always came up with the goods.

My special thanks to my family-Therese, Hannah, and Tim-for their
great patience throughout another writing project. The next one will be easier!

The staff at G&S Typesetters in Austin, Texas, did a really great job in tak
ing my words and making them understandable and well presented. Those who
helped included Alison Rainey, Joshua Goodman, and Carolyn S. Russ.

Finally, I would like to thank in advance you, the readers, who provide
very valuable feedback, criticism, and encouragement. Please feel free to email
me at the address below. I will try to answer as many of the emails as possible.

xx iii

Nick Grattan
Dublin, Ireland
August 2000
development@softwarepaths.com

Introduction

Around twenty years ago a computer revolution started when the IBM PC was
released. The IBM PC took computing away from the air-conditioned environ
ment of the mainframe and minicomputer and put it onto the desk of poten
tially everyone. Nowadays most workers have a PC on their desk, and many
have a PC at home, too. Laptop computers allow users to have one computer
that can be used both at home and at work, as well as on the road. PCs are ge
neric computing devices providing tremendous computing power and flexibil
ity, and all PCs in the world from laptops to desktop PCs and through to servers
have fundamentally the same architecture. Living through the PC era has been
fun, frustrating, and exciting. However, there is an even bigger revolution on
the way with more potential and even more challenges-the move to truly
mobile-device-based computing.

In the last few years computing devices have been coming onto the mar
ket that provide unparalleled portability and accessibility. Microsoft Windows
CE devices, such as the palm-size device and handheld PC, provide cutdown
desktop PC capabilities in a really small footprint, and Palm Pilot has been a very
successful PDA (Personal Digital Assistant). Microsoft Pocket PC has tremen
dous features for enterprise computing, games, and entertainment. The Win
dows CE operating system has been embedded into many appliances (such as
gas pumps and productions systems) for monitoring and control. Unlike the
generic PC, these computing devices are not all the same and are designed for
specific purposes.

We think of laptop PCs as being mobile devices, but really they are a
convenient way of moving a PC from desktop to desktop. Think of a situation
where I go to a client's offices, and as I walk through the door I want to check
the names of the people I will be meeting. With a laptop computer, I have to
power-on (assuming I haven't let the battery run down), wait for the operating

2 Chapter l • Introduction

system to boot, login, run my calendar application, and look up the informa
tion. This whole operation could take five minutes during which I have to suf
fer quizzical looks from the receptionist. The same scenario with a true mobile
device is entirely different-with instant power-on and one-click access to my
calendar, I can have the information within 30 seconds.

Most people tend to think of a mobile worker as the typical road war
rior, out of the office taking orders from customers and flying or driving from
here to there and never visiting the office from one week to the next. Sales
force automation (SFA) and field engineer support are classic applications for
this type of activity. The reality, though, is that we are all mobile workers
start thinking of a mobile worker as someone away from his or her desk. If I
am at a project statu~ meeting, I may be expected to take decisions or provide
comments on a project's progress. I need to have the information in front of me,
but chances are it is on my desktop PC back in the office. With a mobile device,
I can bring the information with me.

The mobile devices are designed to fill in the gaps in our lives where we
haven't had convenient access to computing. The desktop PC provides comput
ing capability at the desk at work and at home. Mobile devices allow access to
computing while commuting and traveling, at client meetings, on holidays, and
anywhere else we may be. Computing is not just about work, so these devices
can also entertain. I can listen to my favorite music, play a game, or read a book.

To date, most devices have worked their way into organizations through
personal purchases. The devices arrive in the office on Monday morning and are
hooked up to the desktop PC; information such as contacts and tasks are then
downloaded onto the device. Of course, this doesn't always work the first time,
so IT support staff are called in to try to support a device that may be new to
them. Consequently, many organizations are now starting to produce strategies
for adopting and supporting mobile devices. It soon becomes apparent that these
devices should be enterprise players and have the capability of downloading,
uploading, and manipulating data from databases, the Internet, and the intranet.

Mobile devices are not just about mobility. For example, desktop Win
dows CE devices are available that provide thin-client computing. They have
Windows Terminal Server client installed, allowing them to effectively run Win
dows NT and 2000 applications. Being thin clients, they are easy to set up, con
figure, and maintain. Windows CE has successfully been embedded into many
different custom devices by developers around the world.

As devices are produced which combine technologies, the possibilities
become even more exciting. Combining a computing device with a GSM phone
allows mobile computing with access to data even when a telephone connec
tion is not present. Enterprise servers can push data down onto the devices
without user intervention-the device will even wake itself up to receive the
data. By incorporating GPS (Global Positioning System) support, a device's lo
cation may be determined very accurately, and this can be used to direct the

About Microsoft Windows CE 3

user to a local service, such as a coffee shop or gas station. Harnessing these
possibilities requires applications, and this book shows how to do just that us
ing the Windows CE operating system.

About Microsoft Windows CE
First, let's start by describing some of the Windows CE operating system char
acteristics and capabilities:

G1 Compatible API with Windows NT and 2000
G1 Multiprocessing, multithreaded support with synchronization
• Virtual memory architecture
® File system and property database support
e TCP/IP stack with functions allowing HTTP and socket communication
,. Access to Windows NT and 2000 network resources
e Serial port communications
e Database access through ADOCE (ActiveX Data Objects for Windows CE)
• COM (Component Object Model) support for building componentized

software
o DCOM (Distributed Component Object Model) support for building Win

dows DNA client software
o Synchronization of data with desktop PCs using ActiveSync

Windows CE is a modular operating system designed to build computing de
vices. Its modularity means that engineers can select which parts of the oper
ating system are required-for example, a device may not need a keyboard or
a display, but perhaps it needs networking capability. By selecting only those
modules a device requires, the size and cost of the device can be controlled.
Device manufacturers can use the Microsoft Platform Builder product to pro
duce their own customized devices, or use one of the standard configurations
such as the Pocket PC or Handheld PC. These standard configurations come
with utilities and tools, such as Pocket Word or Pocket Internet Explorer, that
can be incorporated into the devices.

This flexibility also produces problems for the application developer.
While the Windows CE operating system may support some functionality, such
as a TCP/IP stack, the device being targeted may not. Therefore, the applica
tion developer should first determine if the feature is present before program
ming for it!

There is currently much confusion around Windows CE versions and nam
ing conventions. In particular, recent devices such as the Pocket PC are labeled
"Powered by Windows" and don't actually mention Windows CE at all. The
truth is that Pocket PC does use Windows CE. Here are some of the more re
cent releases of Windows CE:

4 Chapler I '* Introduction

c Windows CE 3.0. This version of the operating system is designed to pro
vide hard, real time operating system characteristics and other improve
ments. Pocket PC uses this version of Windows CE.

'* Windows CE 2.12. Used primarily by embedded device manufacturers us
ing the Microsoft Platform Builder product. This version did not make its
way into many consumer devices.

c Windows CE 2.21. The version of Windows CE used in Windows Hand
held and Palm size devices.

To add to the confusion, each of the standard configurations such as
palm-size and handheld devices has its own version number. For example, the
Handheld PC Edition Version 3.01 actually runs on Windows CE 2.11. To sim
plify matters, the descriptions of devices will apply to the following operating
systems:

c Pocket PC-Running on Windows CE 3.0
* Handheld PC-Running on Windows CE 2.11

Palm size PC-Running on Windows CE 2.11

Microsoft Pocket PC
The Pocket PC does not have a keyboard and supports written character in
put using SIP (Supplementary Input Panel) with either character recognition or
a virtual keyboard. Pocket PC can also use Microsoft Transcriber, a program
that uses neural network programming techniques for handwriting recognition.
Pocket PC provides multimedia playback (for music using MP3 and video),
Microsoft Reader for reading books, Microsoft Pocket Word and Pocket Excel,
and Microsoft Pocket Internet Explorer for web access.

Pocket PC marks the start of a new era in mobile devices. Not only does
it offer unparalleled consumer functionality; it also provides tools for the enter
prise developer for accessing databases, the Internet and intranet, and server
side components.

Most Pocket PC devices support either a type-1 or type-2 Compact Flash
slot which can be used for expanding storage (using either solid-state memory
devices or Winchester disk drives), or adding peripheral support such as bar
code readers, cameras, modems, or connections to GSM mobile phones.

Handheld PC
The Handheld PC differs from Pocket PC primarily in its keyboard support. It
also has a larger screen. Sub-notebook size devices with larger screens and key
boards are also available.

Handheld devices often support a full-size PCMCIA card and a Compact
Flash card slot and may have an inbuilt modem. This device configuration is
best suited to job functions that require large amounts of data entry and bet-

About This Book 5

ter display capabilities, such as customer-facing situations. Either the screens
are touch sensitive, or some form of mouse support is provided. The sub
notebooks running Windows CE are generally the same size as some of the
smaller Windows 98 laptop computers, and there is less cost differential.

Palm Size PC
The Palm size PC has been largely replaced with the Pocket PC. It provides a
user interface that is more similar to Windows, as opposed to Pocket PC, which
is more like a browser interface. The Palm size PC suffered from poor battery
life and insufficient capability.

About This Book
First, let me state what this book is not! This book does not look at user inter
face programming. Why not? I wanted to concentrate on the behind-the-scenes
operating system facilities that are used to make really great applications. There
are many good books on programming the user interface, and many of the prin
ciples and techniques are the same on Windows CE as for Windows NT/98/
2000. The major difference is the smaller size of display, and knowing which
user interface features are supported.

While many of these operating system features are similar to counterparts
on Windows NT/98/2000 and often use the same API (Application Program
ming Interface) functions, the emphasis is different. Windows CE applications
need to communicate. They need to communicate with other devices, to com
municate with the Internet, to communicate with databases, and to communi
cate with server-side components. These are the areas on which I concentrate.

Also, these devices are smaller and have less memory in which to execute
applications and to store data. Writing memory-efficient applications that can
degrade gracefully in low-memory situations is essential. Data storage can be
in files or in databases, and Windows CE provides unique techniques for both.
These issues are covered in this book.

The techniques here can be used in nearly all Windows CE devices, in
cluding standard devices such as Pocket PC and Handheld PC, and customized
embedded Windows CE devices produced by embedded developers. Probably
90 percent of the techniques here work in Windows CE 2.11 or 2.12. I have
pointed out code that is specific to Windows CE 3.0 and Pocket PC in particular.

I have tried to provide plenty of code samples showing how to use the
features being discussed. There is little or no user-interface code to get in the
way of seeing the really important code. Feel free to take the code (it is on
the CDROM) and incorporate it into your own applications. However, please,
please, please add error-checking code. For the sake of brevity it is omitted
from the source code samples, but it is essential in any production code.

6 Chapter I * Introduction

About You
I expect that you are a developer about to start a serious Windows CE applica
tion development project for Pocket PC, or an embedded Windows CE devel
oper who needs to write applications to run on a custom device, or perhaps
someone who wants to find out more about the innards of Windows CE, or
perhaps just plain inquisitive-it really doesn't matter. However, to get the most
out of the book you will probably need the following experience:

e C and C++ knowledge. Most of the code samples are written using C; a
few require C++ specific knowledge.

e Some Windows API programming experience. You should have already
written some Windows applications, perhaps on Windows NT, 98, or 2000.

@ Experience using a Windows CE device. You should try using a Windows
CE device for a while before attempting to write or design applications
for a device. You will need to become accustomed to the capabilities, limi
tations, and different way of doing things.

I hope that after reading this book you will know a lot more about Win
dows CE programming in particular, and more about programming in general.

About MFC (Microsoft Foundation Classes)
and ATL (ActiveX Template Libraries)
This book is primarily about using the Windows CE API functions, so most of
the code is standard C code calling these functions. If you are writing an ap
plication using MFC, you will be able to call these functions in exactly the same
way. However, there are times when MFC provides classes that make calling
these functions easier and more efficient. For example, the Windows CE prop
erty databases can be programmed through direct API calls, but the MFC
classes make writing database applications much easier. This book will show
how to use MFC classes when appropriate.

Many developers are now writing components using ATL. This can be a
difficult learning process, but the benefits are great. ATL is mainly based around
writing and using COM components, although ATL can also be used to write
applications. This book does not use ATL to any great extent, but as with MFC,
the API calls and techniques can be incorporated into ATL applications and
components.

eMbedded Visual C + + 3.0
In the past, Microsoft has provided add-ins for Visual C++ to provide a Win
dows CE development environment. The main problem with the add-ins was

eMbedded Visual (++ 3.0 7

that all the facilities used for developing Windows NT/98/2000 applications
were still present. Also, tools like the dialog editor were not tailored to writ
ing Windows CE applications. The documentation was difficult to follow
Windows CE-specific comments were embedded in the full MSDN documen
tation set.

eMbedded Visual C++ 3.0 (Figure 1.1) is a new tool specifically designed
to write Windows CE applications. It is based on Visual C++ and shares the
same user interface, but only those tools and facilities necessary for writing
Windows CE applications are present. The 'WCE Configuration' toolbar pro
vides drop-down combo boxes that allow selection of the target platform (for
example, Pocket PC, Palm size PC 2.11, or H/PC Pro 2.11); the target CPU (such
as ARM and MIPS); whether the build is debug or release; and the type of de
vice to be run on (for example, emulation or a target device).

,,- Workspace 'e:-iamples': 1 project(s]
8- ~Examples files

B-·-·SJ Source Files
, Ji) Chapter12.cpp

[!J Chapter13.cpp
, -~ _thapter2.cpp

[;!) Chapter3.cpp
[fill Chapter4.cpp I
Li] Chapte6cpp
f.:El Chapter7.cpp
[2 Chapte18.cpp
Gt] Exarnples.cpp
]'.] Ei-:amples.rc
~ lnp1,JtOutpul.cpp

. LTu1 St~f:.t.cpp
E-J- .. @N Header Files

~ Example:s.h
~ newres.h

: · -~ resource.h
@) SOdl>.fx,h

r.+.!-·{2J Resource Files
--~ ReadMe.txt

;±1- -CJ External Dependencies

LONG dwCoun ter;
HKEY hKey;
DWORD dwDisp;
HANDLE hMutex;

hMutex "' Create}futex(NULL, FALSE, _T("CounterMutex"));
if (hMutex == NULL)
{

)

cout « _T("Could not create mutex");
retu'rn -1;

else
Wai tForSingleObject (hMutex, INFINITE);

if (RegCreatel<eyEx(HKEY_LOCAL_MACHINE,

)

_ T ("Software' '-MyCompany'. '.My.Application") ,
0, NULL, 0, 0, NULL,
&4Key, &dwDisp) ! = 0)

cout « _T("Could not open registry key");
Rel.easeMutex.(hMutex);
CloseHandle(bMutex);
return -1;

DTJORD cbData, cbType;

8 Chapter l ® Introduction

Sleep
This function suspends the execution of the current thread for a specified interval.

Parameters

dwMilliseconds
Specifies thetime, in milliseconds, for which to suspend execution. A. value of zero causes the thread to relinquish the
remaini;ler of its time slice to any other thread of equal priority that is ready to run. If there. are no other threads of
equal priorityready to run, the function returns immediately, and the. thread continues execution. A value of INFINITE
causes an infihite delay,

Return Yalu.es:

None.

Remarks

A threa.d can relinquish the remainder of its. time slice by calling .this function with. a sleep time of zero· milliseconds,

You have to be careful when using Sleep and code that directly or indirectly creates windows. If a thread creates any
windows, it must process messages. Message broadcasts are sent to all windows in the system. If you have a thread that
uses Sleep with infinite delay, the system will deadlock. Two examples of code that indirectly creates windows a.re. DDE
and COM Colnitialize. Therefore, if you have a thread that creates windows, use MsgWaitfoi'MultipleObiects or
MuWaitfprMultjpleObjectsE1<, rather than Sleep,

Requirements

The documentation is specific to writing for Windows CE and details
carefully how the various functions are implemented in the various operating
system and platform versions. Figure 1.2 shows a typical example for the Sleep
function.

eMbedded Visual C++ allows you to write Windows CE application for
any target device for which you have an SDK (Software Development Kit). As
well as producing a customized Windows CE operating system, the Microsoft
Platform Builder can also produce an SDK for that device. The SDK can then
be installed in eMbedded Visual C++ and applications can be developed for
the device.

All the sample projects covered in this book and distributed on the CD
ROM are eMbedded Visual C++ projects, and should not be compiled using the
standard Visual C++. Workspaces in eMbedded Visual C++ use the . vcw ex
tension, and projects the . vcp extension. In Visual C++ . dsw and . dsp are
used. eMbedded Visual C++ can import Windows CE projects created using Vi
sual C++. However, in my experience it is sometimes better to rebuild the proj
ect and import the files.

The Code Samples 9

Common Executable Format (CEF)
One of the downsides to writing Windows CE applications in the past was the
number of different microprocessors that needed to be supported, such as
MIPS and SH3. Starting with Pocket PC, Windows CE devices now support a
processor-neutral machine code set called Common Executable Format, or CEF
(pronounced 'keff'). You can compile into CEF using eMbedded Visual C++
and then run that single executable on any platform that supports CEF, such as
Pocket PC.

CEF-enabled platforms have a translator that takes the CEF code and trans
lates it into the native code, such as MIPS or SH3. Translation can take place
every time the application is run, or the converted code can be saved. There
is an overhead in performance-CEF applications run at around 80 percent the
speed of native applications.

Emulation Environments
Many Windows CE SDKs, such as Pocket PC, support an emulation environ
ment that runs on the desktop PC. This can be used to test and debug your ap
plications and is generally quicker to use than downloading applications onto
a real device. However, you should not solely rely on emulation for testing for
the following reasons:

11 Emulation is not perfect, and applications that run under emulation may
not work correctly on a proper device. Facilities such as networking and
RAS dialup connections may behave differently.

11 User interfaces may appear differently under emulation, since there are
differences in how standard controls and fonts are implemented.

®> Desktop performance is generally much better than on a real device. Ap
plications may perform adequately under emulation, but run too slowly
on a Windows CE device.

Using emulation does save large amounts of development time, particu
larly when you are debugging non-user-interface code.

The Code Samples
Throughout the book you will find code samples showing how to use the fa
cilities being discussed. All the code is on the CDROM, so it can be copied di
rectly into your application. Unless otherwise stated, all the code is in a single
project called examples. vcp in the directory \examples. The source code
is arranged by chapter, and each chapter has its own source file, for example
Chapter2. cpp, Chapter3. cpp, and so on.

The examples. exe application can be run on a real device, or under
emulation. The user interface has been optimized to run under Pocket PC, but

l 0 Chapter 1 e Introduction

Examples application
used to run sample code

can easily be adapted to run on other platforms. The menu contains drop downs
for each of the chapters arranged into groups, and the drop downs contain
menu items allowing each code sample to be run. Figure 1.3 shows how the ap
plication looks, with sample output. No prizes for best user interface here! Note
that not all the sample code will run on all platforms. In particular, some samples
will not nm under emulation.

The code samples are designed to remove all irrelevant code so you can
concentrate on what is really important. In the Examples project, all output is
displayed to a read-only edit window (which, in Figure 1.3, contains the text
"Mounted vol: SystemHeap" and so on). AC++ class object called 'cout' has
been created to emulate the basic behaviors of the standard C++ 'cout' ob
ject used in command line, character mode applications. The 'cout' object is
an instance of the class COutput which is declared in Examples.hand imple
mented in InputOutput. cpp. The'<<' operator has overloads for most com
mon data types, including strings, integers, and characters. Calling the COut
put 'CLS' method removes all the text from the text edit window. You will find
statements like the following to display data to the edit window:

cout << _T("Unicode File") << endl;

Input is obtained from the user in a dialog using the function Get Text
Response. The function is passed the string to prompt the user with, a string
in which the data will be returned as well as the maximum number of charac
ters of data that can be placed in the string. The function returns TRUE if a
string is returned, or FALSE if the user pressed Cancel.

Unicode Text and Strings

if(!GetTextResponse(_T("Enter URL to Display: "),
szURL, MAX_PATH))

return;

11

The function GetFileName will display a File Open command dialog box
allowing the user to select a file. This function takes the same arguments as
GetTextResponse:

if (! GetFilename (_T ("Enter filename:") ,
szFilename, MAX_PATH))

return;

Some of the sample code is in separate projects, and because some of
these projects run on a desktop PC, the projects should be compiled using Vi
sual C++ 6.0.

Unicode Text and Strings
Before starting out there are a couple of topics that need to be covered, and
the first of these is Unicode. Windows 98 API functions have partial support
for Unicode strings, and Windows 2000 and NT allow applications to call either
Unicode or ANSI versions of the API functions. Windows CE, on the other hand,
only supports Unicode, so you will need to write your applications using Uni
code strings and text.

Most of us grew up safe in the knowledge that a character was stored in
a single byte using eight bits. Character strings are stored in 'char' arrays and
are terminated with a NULL, ANSI 0 character. Strangely enough, the 'char' data
type is signed, but we get used to that. The problem is that there are many more
than the 255 characters that fit in a 'char' used by different languages around
the world, so tricks need to be employed to support all these characters. Two
such tricks are:

® Use multi-byte character strings (MBCS), where special characters act as
lead-ins indicating that the next character should be treated as an entirely
different character.

e Use Code Pages, in which the same ANSI character number is used to
display completely different characters depending on which code page is
loaded.

Neither of these tricks is satisfactory. Parsing MBCS strings is difficult; for
example, the length of a string can only be determined by traversing the entire
string and inspecting each character. With code pages, you can display com
pletely incorrect text by having the wrong code page loaded for the text being
displayed. The Unicode solution uses two bytes to store a single character. This
allows up to 65536 different characters to be displayed-more than enough for
all the languages around the world. With Unicode, a character is stored as an

12 Chapter l • Introduction

unsigned two-byte integer value. They are also known as 'wide byte characters'.
The Unicode characters in the range OxOO to Ox7F are reserved for ANSI char
acters, so ANSI characters always have the high byte set to zero when repre
sented in Unicode.

Compilers do not provide native support for Unicode-that is, there is
no magic compiler switch that changes a char from one byte to two bytes. In
stead, support for Unicode is achieved through defines and typedef statements
in header files. The data type wchar_t is used to represent a Unicode charac
ter, and an array of wchar_t is used to store strings. As with ANSI strings, a
NULL terminates a string, but this is a two-byte rather than a one-byte value.
ANSI strings and characters can be used alongside Unicode strings and charac
ters-you can continue to use the 'char' data type. This is important because
data coming from the outside world (through the Internet or as a file) may use
ANSI characters, and these need to be converted before being used.

Unicode characters obviously take twice as much space as ANSI to store
strings. In many applications the majority of strings stored using Unicode ac
tually store ANSI characters, so every other byte is a NULL. In Windows CE, the
compression algorithms used to store data in the object store (that is, data stored
in files or databases) are optimized to recognize this sequence.

Generic String and Character Data Types
You can use the standard Unicode data type wchar_t, but it is more usual to
use generic string data types, and then use compiler defines to specify which
character type should be used for the compilation. You can write code that can
be compiled for ANSI and Unicode and is portable. The define _UNICODE is
defined either as a compiler switch or using #define to indicate that the Uni
code version of API functions should be used. Some header files expect the
UNICODE define to be used, so both often end up being defined. The compiler
defines _MBCS, and multi-byte character strings (MBCS) are used in Windows
NT/98/2000 to compile for ANSI characters but are not supported under Win
dows CE. If neither _MBCS nor _UNICODE is defined, the header files default
to single-byte character strings (SECS). SCBS don't use lead-in characters to ex
tend the supported range of characters.

To use generic string and character data types, include the file tchar. h
and ensure that _UNICODE or _MBCS is defined as appropriate. To declare
a character, use the data type TCHAR, and this will be compiled to wchar_t

or char depending on the define in operation. The following code declares a
character variable and a character string that can store up to ten characters in
cluding the terminating NULL:

TCHAR cChar;
TCHAR szArray[lO];

Rather than using the LPSTR data type for specifying a pointer to a char
acter string, you should use LPTSTR. This will be compiled to either a 'char*'
or a 'wchar_t*'.

Unicode Text and Strings 13

String Constants
In the following code fragment, the string constant "my string" will always
be compiled as an ANSI character string constant using one byte per character.

LPTSTR lpszStr = "my string";

You will get a compiler type mismatch error if you try to compile this code
with _UNICODE. The header file tchar.h declares two macros '_T' and '_TEXT'
that are used to specify Unicode character string constants when _UNICODE is
declared, and ANSI character string constants when _MBCS is declared. So, the
previous line of code should be written as

LPTSTR lpszStr = _T ("my string");

or

LPTSTR lpszStr = _TEXT("my string");

The L macro can be used to force a Unicode string constant. In this next
line of code, the LPWSTR data type declares a Unicode string pointer and points
it to a Unicode string constant.

LPWSTR lpszStr = L ("my string");

With Windows CE programming you will need to use the _T or _TEXT
macro around just about every string constant. My preference is for _T, only
because it is shorter. I like to set up an eMbedded Visual C++ macro and as
sign it to the Ctrl+T key sequence to generate the _T (" ") sequence in the
source file. To do this:

11 Select the Tools+Macro menu command.
11 Enter the name of the macro, say 'T', and click the Record button.
11 Enter the text _T (" ") into a source file, followed by two left arrow key

presses to locate the cursor between the two double quotes.
11 Turn off recording by pressing the Macro toolbar icon with a square box.
11 Select the Tools+Macro menu command again, this time to assign the

macro to a keystroke.
11 Select your macro from the list and click the Options button.
11 Select the Keystrokes button, and assign the macro to the required key

stroke, for example Ctrl+T.

Macros in eMbedded Visual C++ are recorded using VB Script. Here is the
source for the T macro:

Sub T ()
'DESCRIPTION: A macro to enter _T(" ") into a source file.
'Begin Recording

ActiveDocument.Selection = "_T("""")"
ActiveDocument.Selection.CharLeft dsMove, 2

'End Recording
End Sub

14 Chapter 1 "' Introduction

Calculating String Buffer Lengths
One of the most common bugs introduced when moving to Unicode pro
gramming concerns calculating buffer lengths-all too often, code assumes that
characters are stored in one byte. For example:

TCHAR szBuffer[200];
DWORD dwLen;
dwLen = sizeof(szBuffer);

We might expect dwLen to contain the value 200, but it will actually con
tain 400, which is the number of bytes occupied by szBuffer. If dwLen were
passed to a function indicating how many characters can be placed in s z -
Buffer, the application might fail, as the function could exceed the bounds of
the array szBuffer. The following code should be used instead, and this will
work for both ANSI and Unicode compilation.

dwLen = sizeof(szBuffer) I sizeof(TCHAR);

When passing the length of a string buffer to a function, check whether
the function expects the size of the buffer in bytes or characters.

Standard String Library Functions
We are all accustomed to the standard C run-time functions for string manipu
lation-st r l en, strcpy, and so on. These functions work with the 'char'
data type and cannot be used for Unicode strings. Unicode equivalent func
tions are provided, such as wcslen and wcscpy (standing for 'wide character
string length,' and 'wide character string copy').

Generic string functions are also available which will be compiled to the
ANSI or Unicode function equivalents. For example, the function _tcslen will
compile to strlen if _MBCS is defined, or wcslen if _UNICODE is defined.
The header file tchar. h should be included to enable this behavior. Using the
_tc functions makes code portable between ANSI and Unicode. The samples
in this book tend to use the wcs functions rather than _tc, since I never in
tend to port this code away from Unicode. Table 1.1 shows some of the C com
mon run-time string functions and their generic and Unicode equivalents.

Converting Between ANSI and Unicode Strings
There are times when you will need to convert ANSI strings or characters to
Unicode and vice versa. Examples include:

w Reading an ANSI text file into a Windows CE application
w Reading and writing characters from a serial device that supplies data in

ANSI
w Reading and writing data from Internet servers, such as web or email serv

ers, most of which expect text in ANSI

Unicode Text and Strings 15

C common run-time string functions with generic and Unicode equivalents

Generic
String ANSI Unicode

Purpose Function Function Function

Return length of string in characters tcslen strlen wcslen

Concatenate strings tcscat strcat we scat

Search for character in string tcschr strchr wcschr

Compare two strings _tcscmp strcmp wcscmp

Copy a string _tcscpy strcpy wcscpy

Find one string in another tcssLr strstr wcsstr

Reverse a string tcsrev strrev _wcsrev

Converting an ANSI character to Unicode is easy-all you need to do is
set the high byte in the Unicode character to zero and copy the ANSI character
into the low byte. In this next code fragment, the MAKEWORD macro combines
a low byte and high byte into a single two-byte word, and the result is assigned
to a Unicode character.

WCHAR wC;
char c = 'C';

wC = MAKEWORD(c, 0);

You can convert string using one of the C run-time functions:

® mbstowcs-Convert a multi-byte (ANSI) string to wide character string
(Unicode)

® wcstombs-Convert a wide character string to multi-byte string

Both of these functions take three arguments that are the buffer in which
to place the converted string, the string to convert, and the maximum number
of characters that can be placed in the string. Both functions return the num
ber of converted characters placed in the string. The following code converts
an ANSI string to Unicode and a Unicode string to ANSI.

WCHAR szwcBuffer[lOO];
char szBuffer[lOOJ;

char* lpszConvert = "ANSI String to convert";
WCHAR* lpszwcConvert = _T("Unicode string to convert");
int nChars;

nChars = mbstowcs(szwcBuffer, lpszConvert, 100);
nChars = wcstombs(szBuffer, lpszwcConvert, 100);

If you are using code pages, the Windows API functions MultiByteTo
WideChar and WideCharToMultiByte should be used since you can specify
the target or destination code page to be used for the conversion.

16 Chapter 1 11i Introduction

Error Checking
As with any operating system, it is imperative to check the return results when
calling Windows CE API functions-never assume that the function works.
Many of the code samples in this book do not have sufficient error-checking
code for use as production code, so you will need to add it if you take code
from this book for use in your own applications.

Nearly all Windows CE API functions return a value indicating success or
failure, but little information detailing the nature of the error. You should call
the function GetLastError to determine the actual error number encountered.
You can look up the error numbers in the header file winerror. h, where you
will find a short description of the error. This file is located in the "\Windows
CE Tools\wce300\MS Pocket PC\include", or another folder appropri
ate to the SDK version you are using. The on-line documentation often lists the
common errors encountered when calling specific Windows CE functions.

Windows CE devices, unlike Windows NT/98/2000, do not support the
FormatMessage function for producing textual descriptions of error numbers,
but the function does work under emulation-watch out for this one.

Adding comprehensive error-checking code can increase significantly the
size of your application's code. With memory-tight Windows CE devices, this
can be a problem. You should therefore place debug-specific error-checking
code in #ifdef I #endif compiler directives with the _DEBUG define so that
the code will not be included in your released application.

#ifdef _DEBUG
II perform error checking that does not need to be in
II the production version

#endif

Exception Handling and Page Faults
A page fault occurs when an application attempts to read or write data fro~ or
to a page that does not have memory associated with it, or to a memory ad
dress that is illegal. If you try to execute the following code on a desktop PC,
you will get an unhandled page fault error box, and your application will ter
minate.

char* lpC = O;
*lpC = 'A';

The code declares a character pointer and sets it to point at address 0. In
most operating systems, including Windows CE, address 0 is protected and
cannot be used. The second line attempts to place a character into the address
pointed to by lpC, and since the address is protected, a page fault is generated
and the application will fail.

Exception Handling and Page Faults 17

Surprisingly, if you attempt to run these two lines of code in Windows CE
you will not get a page protection fault-the application will continue to exe
cute, although it may not function correctly. This can be a real problem in ap
plication development. To ensure that your page faults are correctly reported
you will need to use exception handling.

Exception handling allows you to execute code and to trap any errors that
would normally be reported by the operating system. Exception handling is a
long and complex topic, especially with regard to the rules of how exceptions
are handled with C++ object creation and destruction and to nested function
calls. To confuse the issue, three types of exception handling exist in Windows
programming: MFC (Microsoft Foundation Class), C++ language, and Windows
structured exception handling (SEH).

I use Windows structured exception handling (SEH) to trap address and
memory exceptions in my applications, and I try to keep it as simple as pos
sible. With SEH the code needed to trap errors is placed in a _try block (that
is try with two leading underscores). Errors generated in any function called
from this block of code will be trapped. The error-trapping code to be exe
cuted in event of an error is placed in an _except block. The EXCEPTION_
EXECUTE_HANDLER constant in the _except block indicates that errors will
be handled by the block and not passed to other handlers.

_try
{

char* lpC = 0;
*lpC. = 'A';

_except(EXCEPTION_EXECUTE_HANDLER)
{

MessageBox(hWnd,
_T("Page Fault Caught in exception handling!"),
szTitle, MB_OK I MB_ICONEXCLAMATION);

Now, even in Windows CE, the assignment to a NULL pointer will be
trapped and reported. When writing a Windows API function with a message
handling function for a main window, I generally place a _try I _except
block around all the code in the message-handling function. Nearly all the code
in the application will be called from this function, so any page fault in any
function called from the message handler will be trapped.

LRESULT CALLBACK WndProc(HWND hWnd,
UINT message, WPARAM wParam, LPARAM lParam)

_try
{

switch (message)

case WM_CREATE:
break;

18 Chapter l e Introduction

II ... standard message handling code here
default:

return DefWindowProc(hWnd,
message, wParam, lParam);

~except(EXCEPTION_EXECUTE_HANDLER)

{

MessageBox(hWnd,
_T("Page Fault in exception handling!"),
szTitle, MB_OK I MB_ICONEXCLAMATION);

return O;

Conclusion
Now that the preliminaries-what the book is about, the sample code, and gen
eral programming techniques such as error trapping-have been dealt with,
you are ready to find out about the great features provided by Windows CE
programming, such as communications, databases, and components. You can
read the book chapter by chapter or, if you like, dip into those chapters that are
important for you and the applications you are building. Before you start, one
last thought: Remember that nearly all errors in an application are your errors,
and just a very few may be due to bugs in the Windows CE operating system.

Files

File access is one of the most basic services provided by any operating system.
Files in Windows CE are used in much the same way as files in other operating
systems. They are generally used to store unstructured data such as text files.
Windows CE also provides property databases (see Chapter 4) for storing struc
tured data, and the registry for storing application-specific data such as settings
or preferences. Files, databases, and the registry are stored, by default, in the
Object Store (see Chapter 3).

This chapter discusses file access. It shows you how to open and close
files, how to read and write from them, and how to gather information about
files using the Windows CE API function. You can access files using either the
Windows CE API functions, or the CFile class in MFC (as long as MFC is sup
ported on the Windows CE platform you are targeting). You can use standard
C or C++ functions (such as f open and fwr it e) for file input and output in
Windows CE 3.0, however, the Windows CE functions provide much better con
trol and more features.

Files are important in Windows because you access many different objects
using the file routines. Certain techniques are used in the Windows CE API to
open a file, read from it and write to it, and close the file. The Windows CE API ·
uses identical techniques to work with communications ports (see Chapter 9).
Therefore, understanding how to work with files is central to understanding se
rial communications tasks in Window CE.

Files are quite interesting in Windows because of all the different capa
bilities built into the Windows CE for working with them. For example:

l!ii As you would expect, you can open, read, and write files.
l!ii You can open ANSI or Unicode text files and determine which character

set is used to store text.

19

20 Chapter 2 * Files

® You can access a great deal of status information about files through the
32-bit APL

You can map files into the virtual memory system to significantly improve
their performance and to manipulate large files. This technique is also used for
high-speed inter-process communication

The Object Store and network resource access, closely related to files, are
discussed in detail in the next chapter.

Overview
In Windows CE, you can think of a file as a collection of bytes stored under a
unique name in the Object Store. You can seek to any byte offset and read or
write a block of bytes of any size.

Figure 2.1 shows two ways that you will access files in Windows. Files
typically contain either text or binary data in the form of structures stored di
rectly onto the disk. You can use the ReadFile and WriteFile functions
to access these characters or structures. If you have ever used the fread and
fwri te functions in <stdio. h>, you will find the use of these API functions
very similar.

These same ReadFile and WriteFile functions appear throughout the
Windows CE API in a variety of roles. You will use them, for example, to read
from and write to communications ports and the network. In these applica
tions you will also be able to think of the data in terms of single characters or
structures.

A number of functions in the Windows CE API allow you to gather infor
mation about a file once you open it. For example, given an open file you can
determine its size, type, creation times, and so on. You can also use the Win
dows CE API functions to move, copy, and delete files.

Opening and Reading from a File
Let's say that you want to write a program that performs the simplest possible
file operation: you want to open a file, read from it, and write its contents to
the screen. First, however, you need to determine what type of text file you
have. The file could contain single-byte characters using the ANSI character set.
Alternatively, the file could contain text using Unicode characters, where two
bytes are used to store each character. Further, Unicode characters can be stored
with the most significant byte either first or last. It is important to determine
which byte-ordering scheme is being used before the file is read.

Opening and Reading from a File 21

offset
Read or

offset
Read or

write one write one - character at - structure at
a time, or a time, or
Blocks of Blocks of

characters structures

Text Files Structure Files

Text files and files of structures

In Unicode text files, the first two characters have the value Oxfeff if the
file is a Unicode file, or Oxfffe if the file is Unicode with reversed byte order.
In ANSI files, the first two bytes store regular characters.

Listing 2.1 shows code that opens a text file and determines the character
set being used.

M@fij• Determines the content type of a text file {ANSI or Unicode)

void Listing2_1()
{

HANDLE hFile;
WORD wLeadin;
DWORD dwNumRead;

22 Chapter 2 e Files

TCHAR szFilename[MAX_PATH + 1];

if (! GetFilename (_T ("Enter filename:"),
szFilename, MAX_PATH))

return;
hFile = CreateFile(szFilename,

GENERIC_READ, 0, 0, OPEN_EXISTING, 0, 0);
if(hFile == INVALID_HANDLE_VALUE)
{

cout << _T("Could not open file. Error:") <<
GetLastError();

return;

if(ReadFile(hFile, &wLeadin, 2, &dwNumRead, 0))
{

II Is this a Unicode file?
II Determine byte order sequence
if(wLeadin == OxFEFF)

cout << _T("Unicode File") << endl;
else if(wLeadin == OxFFFE)

cout << _T("Byte reversed Unicode file")
<< endl;

else
cout << _T("Text file") << endl;

else
{

cout << _T("Could not read file. Error: ")
<< GetLastError();

CloseHandle(hFile);

In this program, the code requests a file name from the user, opens the
file using CreateFile, reads the first two characters from the file using Read
File, and then closes the file using CloseHandle. Listing 2.2 modifies the
code in Listing 2.1 so that the contents of the file are listed if the file contains
Unicode text.

Displays the contents of a Unicode text file

void Listing2_2()
{

HANDLE hFile;
WORD wLeadin;
DWORD dwNumRead;
TCHAR szFilename[MAX_PATH + 1], szChar[2];

if (! GetFilename (_T ("Enter filename:"),
szFilename, MAX_PATH))

return;

Opening and Reading from a File

hFile = CreateFile(szFilename, GENERIC_READ,
0, 0, OPEN_EXISTING, 0, 0);

if(hFile == INVALID_HANDLE_VALUE)
{

cout << _T("Could not open file. Error:")
<< GetLastError();

return;

if(ReadFile(hFile, &wLeadin, 2, &dwNumRead, 0))
{

if(wLeadin == OxFEFF)
II read file character by character
while(ReadFile(hFile, szChar,

sizeof(TCHAR), &dwNumRead, 0)
&& dwNumRead > 0)

szChar[l] = '\0';
cout << szChar;

else
cout << _T("File is not Unicode!") << endl;

else
cout << _T("Could not read file. Error: ")

<< GetLastError();
CloseHandle(hFile);

23

The CreateFile function opens a file for read and/or write access. We
will see in Chapter 9 that this same function also opens serial communications
ports. It is also dealt with in more detail later in this chapter.

CreateFi/e-Opens or creates a file

CreateFile

LPCTSTR name

DWORD accessMode

DWORD shareMode

LPSECURITY_ATTRIBUTES securityAttributes

DWORD create

DWORD attributes

HANDLE templateFile

HANDLE Return Value

Name of the file to open

How the file should be accessed

The way the file should be shared

Address of a security structure (not supported,
should be NULL)

The way the file should be created

Settings for file attribute bits and flags

File containing extended attributes (not sup
ported, should be NULL)

Returns a handle on success, or INVALID_
HANDLE_ VALUE

24 Chapter 2 * Files

In Listing 2.2, the CreateFile function accepts the name of the file, a
GENERIC_READ access mode that stipulates that the file will be used in a read
only mode, a share mode that prevents any other process from opening the
file, and an OPEN_EXISTING creation mode that specifies that the file already
exists. Windows CE does not support security attributes or a template file. The
function returns either a handle to the file object that it opened, or returns IN -

VALID_HANDLE_ VALUE if an error is detected. If an error occurs, you can use
the GetLastError function to retrieve an error code. A very common mistake
is to test the returned handle for NULL rather than INVALID_HANDLE_ VALUE,

and so failures in CreateFile remain undetected.
Once the file is open, the ReadFile function reads two bytes of data that

are used to determine the text file type. Then, ReadFile is used to read data
from the file one character at a time. ReadFile is a generic block-reading
function. You pass it a buffer and the number of bytes for it to read, and the
function retrieves the specified number of bytes from the file starting at the cur
rent offset.

Mff II ReadFile-Reads bytes from the specified file

ReadFile

HANDLE file

LPVOID buffer

DWORD requestedBytes

LPDWORD actualBytes

LPOVERLAPPED overlapped

BOOL Return Value

File handle created with CreateFile

Buffer to hold the read bytes

The number of bytes desired

The number of bytes actually placed in the buffer

Overlapped pointer to overlapped structure (not
supported)

TRUE on success, otherwise FALSE

In Listing 2.2 the code reads the file one character at a time until Read

File indicates end-of-file. The CloseHandle function closes the file once the
operations on it are complete.

CloseHandle-Closes an open handle

CloseHandle

HANDLE object The handle to close

BOOL Return Value TRUE on success, otherwise FALSE

In this section the goal has been to show that file access using the Win
dows CE API functions is not much different from normal file access techniques
that you already understand.

Getting and Setting File Information 25

Getting and Setting File Information
The Windows CE API contains several functions that are useful for retrieving
file information. For example, you can find out when a file was last modified,
how its attribute bits are currently set, and the size of the file. The following
sections detail the different capabilities that are available. Several of these func
tions require an open file handle rather than the file's name.

Getting the File Times
The GetFileTime function retrieves three different pieces of time informa
tion from an open file: the Creation time, the Last Access time, and the Last
Write time.

GetFileTime-Gets file time information

GetFileTime

HANDLE file

LPFILETIME creationTime

LPFILETIME lastAccessTime

LPFILETIME lastWriteTime

BOOL Return Value

Handle to a file from CreateFile

Time of file creation

Time of last file access

Time of last file write

Returns TRUE on success, otherwise FALSE

In Listing 2.3, the CreateFile function opens the requested file name.
GetFileTime uses the handle that it returns to access the file times, and then
passes the last write time up to the ShowTime function to dump the time to
cout.

Displays the file times associated with the given file

void ShowTime(FILETIME t)

FILETIME ft;
SYSTEMTIME st;

FileTimeToLocalFileTime(&t, &ft);
FileTimeToSystemTime(&ft, &st);
cout << st.wMonth << _T("/") << st.wDay

<< _T("/") << st.wYear << _T(" ") << st.wHour
<< _T(":") << st.wMinute << endl;

void Listing2_3()
{

HANDLE hFile;

26 Chapter 2 e Files

TCHAR szFilename[MAX_PATH + l];
FILETIME ftCreate, ftLastWrite, ftLastAccess;

if (! GetFilename (_T ("Enter filename:") ,
szFilename, MAX_PATH))

return;
hFile = CreateFile(szFilename,

GENERIC_READ, 0, 0, OPEN_EXISTING, 0, 0);
if(hFile == INVALID_HANDLE_VALUE)
{

cout << _T("Could not open file. Error:")
<< GetLastError();

return;

if(GetFileTime(hFile, &ftCreate,
&ftLastWrite, &ftLastAccess))

cout << _T ("Create time: ");
ShowTime(ftCreate);
cout << _T("Last write time: ");
ShowTime(ftLastWrite);
cout << _T ("Last Access time: ");
ShowTime(ftLastAccess);

else
cout << _T("Could not file times. Error: ")

<< GetLastError();
CloseHandle(hFile);

FILETIME is a structure that contains two 32-bit values. The 64 bits to
gether represent the number of 100-nanosecond time increments that have
passed since January 1, 1601. The FileTimeToLocal Time and FileTime
ToSysternTirne functions convert the 64-bit value to local time and then to a
form suitable for output. The times returned by GetFileTirne are in UTC (Uni
versal Coordinated Time, otherwise known as Greenwich Mean Time or GMT),
and so should be converted to local time when displayed to users.

The function SetFileTirne can be used to set one or all of the three file
times. Note that when changing just one of the times on an object store file, the
other two file times are updated by default. This behavior does not occur with
FAT files.

Getting File Size
The GetFileSize function returns the size of the file in bytes, or OxFFFFFFFF
on error. The file size returned is the uncompressed file size-files in the ob
ject store are automatically compressed. In the Object Store the largest file size
possible can be represented in less than 32 bits, but NTFS (which you may con-

Getting and Setting File Information 27

nect to through the network) is a 64-bit file system. GetFileSize therefore
returns 64 bits of size information if you request it. There is currently no easy
way to deal with integers larger than 32 bits.

GetFileSize-Returns a 64-bit size value for the file

GetFileSize

HANDLE file

LPDWORD fileSizeHigh

Return Value

Handle to a file from CreateFile

Pointer to a DWORD that returns the high-order 32 bits
of size

Returns the low-order 32 bits of the file size, or
OxFFFFFFFF on failure

The low-order 32 bits of size information comes from the return value,
while the high-order 32 bits come from the fileSizeHigh parameter when
you pass in a pointer to a DWORD. You can also pass in NULL for this parame
ter if you are not interested in receiving the high-order 32 bits of information.
Listing 2.4 shows how to access the information.

M!MjM Reports size of file in bytes

void Listing2_4()
{

HANDLE hFile;
TCHAR szFilename[MAX_PATH + 1];
DWORD dwSizeLo, dwSizeHi;

if(!GetFilename(_T("Enter filename:"),
szFilename, MAX_PATH))

return;
hFile = CreateFile(szFilename, GENERIC_READ,

0, 0, OPEN_EXISTING, 0, 0);
if(hFile == INVALID_HANDLE_VALUE)
{

cout << _T("Could not open file. Error:")
<< GetLastError();

return;

dwSizeLo = GetFileSize (hFile, &dwSizeHi);
if(dwSizeLo == OxFFFFFFFF && GetLastError()

!= NO_ERROR)
cout << _T("Error getting file size: ")

<< GetLastError();

28 Chapter 2 * Files

else
cout << _T("Filesize (Low, High) : ")

<< dwSizeLo << _T(", ") << dwSizeHi;
CloseHandle(hFile);

Getting File Attributes
Files have associated with them attribute bits that hold special information about
the file. You can view most of the attributes from the Explorer by selecting a file
and then choosing the Properties option in the File menu. Inside a program you
can examine attribute bits with the GetFileAttributes function.

GetFileAttributes-Gets the attribute bits for a file

GetFileAttributes

LPTSTR fileName

Return Value

The name of the file

Returns the attribute bit5 as a DWORD, or OxFFFFFFFF on
error

Listing 2.5 demonstrates how to acquire and examine the attribute bits.
The system returns not only the four standard bits seen in the Explorer (ar
chive, read only, system, and hidden}, but also bits indicating that the file name
is actually a directory, as well as In-ROM and related attributes. Note that not
all the available attributes are listed in the code sample.

Reports file attributes

void ShowAttributes(DWORD dwAttributes)
{

if(dwAttributes & FILE_ATTRIBUTE_READONLY)
cout << _T("Read only") << endl;

if(dwAttributes & FILE_ATTRIBUTE_HIDDEN)
cout << _T("Hidden") << endl;

if(dwAttributes & FILE_ATTRIBUTE_SYSTEM)
cout << _T("System") << endl;

if(dwAttributes & FILE_ATTRIBUTE_DIRECTORY)
cout << _T("Directory") << endl;

if(dwAttributes & FILE_ATTRIBUTE_ARCHIVE)
cout << _T ("Archive") << endl;

if(dwAttributes & FILE_ATTRIBUTE_INROM)
cout << _T("In ROM") << endl;

if(dwAttributes & FILE_ATTRIBUTE_NORMAL)
cout << _T ("Normal") << endl;

Getting and Selling File Information

if(dwAttributes & FILE_ATTRIBUTE_TEMPORARY)
cout << _T("Temporary") << endl;

if(dwAttributes & FILE_ATTRIBUTE_COMPRESSED)
cout << _T("Compressed") << endl;

if(dwAttributes & FILE_ATTRIBUTE_ROMSTATICREF)
cout << _T("ROM Static Ref") << endl;

if(dwAttributes & FILE_ATTRIBUTE_ROMMODULE)
cout << _T("ROM Module") << endl;

void Listing2_5()
{

TCHAR szFilename[MAX_PATH + l];
DWORD dwAttributes;

if(!GetFilename(_T("Enter filename:"),
szFilename, MAX_PATH))

return;
dwAttributes = GetFileAttributes(szFilename);
ShowAttributes(dwAttributes);

29

It is also possible to set some file attributes using the SetFileAttri
butes function. This function accepts a file name and one or more attribute
constants, and returns a Boolean value indicating success or failure.

SetFileAttributes -Sets file attributes

SetFileAttributes

LPTSTR filename The name of the file

DWORD attributes Attributes as for GetFileAttributes

Return Value Returns TRUE on success, otherwise FALSE

The same attribute constants seen in the ShowAt tributes function of
Listing 2.5 are available. For example, you might set a file as hidden and read
only with the following statement:

success= SetFileAttributes(_T("xxx"),
FILE_ATTRIBUTE_HIDDEN I
FILE_ATTRIBUTE_READONLY);

Generally those are the only two attributes you will want to set. The other
bits, for example the directory bit, are set automatically by system calls when
they are appropriate and should not be altered. File attributes can be set when
the file is created using CreateFile. Table 2.8 shows the Windows CE file at
tributes; indicates whether they can be accessed using GetFileAttributes,
SetFileAttributes, and CreateFile; and gives a brief definition.

30 Chapter 2 * Files

File Attributes and Their Purposes

Attribute

FILE ATTRIBUTE_ARCHIVE

FILE_ATTRIBUTE_COMPRESSED

FILE_ATTRIBUTE_DIRECTORY

FILE_ATTRIBUTE_ENCRYPTED

FILE_ATTRIBUTE_HIDDEN

FILE_ATTRIBUTE_INROM

FILE_ATTRIBUTE_NORMAL

FILE_ATTRIBUTE_OFFLINE

FILE_ATTRIBUTE_READONLY

FILE_ATTRIBUTE_REPARSE POINT

FILE_ATTRIBUTE_ROMMODULE

FILE_ATTRIBUTE_SPARSE_FILE

FILE_ATTRIBUTE_SYSTEM

FILE_ATTRIBUTE_TEMPORARY

FILE_FLAG_WRITE_THROUGH

FILE_FLAG_RANDOM_ACCESS

FILE_FLAG_SEQUENTIAL_SCAN

FILE_ATTRIBUTE_ROMSTATICREF

Purpose

File has been archived or backed up.

File is stored in compressed format.

File is a directory.

File is encrypted.

File is hidden and not included in normal
directory listings.

File is located in ROM. It is read-only and
cannot be modified.

Normal file, has no other attributes.

File contents not currently available.

File is read-only.

The file has an associated reparse point.

DLL or EXE in ROM. CreateFile cannot be
used to access these files.

Empty spaces in a file are not stored.

File is part of the system file set.

Temporary file, will be deleted.

No buffering for file I/0.

Open optimized for random access.

Open optimized for sequential option.

Module is in ROM and contains static ref-
erences to other modules. It cannot be
replaced (shadowed) with a file in RAM.

All files in the object store are compressed, and will have the FILE_AT

TRIBUTE_COMPRESSED attribute. You cannot set this attribute to compress a
file as you can with Windows NT and 2000.

Getting All File Information
The function GetFileinformationByHandle returns all of the information
described in the previous three sections in one call. It is useful when you want
to access or display all information about a file in one call.

Getting and Setting File Information

GetFilelnformationByHandle-Retrieves all file information

GetFileinformationByHandle

HANDLE file

LPBY HANDLE_FILE_INFORMATION

Handle to an open file from CreateFile

Information about the file

31

Return Value Returns TRUE on success, otheiwise FALSE

The information comes back in a structure that contains the attributes,
size, and time data discussed in the previous sections, along with volume, in
dex, and link information not available anywhere else. The volume serial num
ber is a unique number assigned to the volume when it was formatted. The file
index is a unique identifier attached to the file while it is open. Listing 2.6 dem
onstrates the process.

M®fiJM Lists all information for a given file

void Listing2_6()
{

HANDLE hFile;
TCHAR szFilename[MAX_PATH + 1];
BY_HANDLE_FILE_INFORMATION fiinfo;

if(!GetFilename(_T("Enter filename:"),
szFilename, MAX_PATH))

return;
hFile = CreateFile(szFilename, GENERIC_READ,

0, 0, OPEN_EXISTING, 0, 0);
if(hFile == INVALID_HANDLE_VALUE)
{

cout << _T("Could not open file. Error:")
<< GetLastError();

return;

if(GetFileinformationByHandle(hFile, &fiinfo))
{

ShowAttributes(fiinfo.dwFileAttributes);
cout << _T("Create time: ");
ShowTime(fiinfo.ftCreationTime);
cout << _T("Last write time: ");
ShowTime(fiinfo.ftLastWriteTime);
cout << _T("Last Access time: ");
ShowTime(fiinfo.ftLastAccessTime);
cout << _T("Volume serial number: ")

<< fiinfo.dwVolumeSerialNumber << endl;
cout << _T("File size: ")

<< fiinfo.nFileSizeLow << endl;

32 Chapter 2 11 Files

cout << _T ("High index: ")

<< fiinfo.nFileindexHigh << endl;
cout << _T("Low index: ")

<< fiinfo.nFileindexLow << endl;
cout << _T("Object ID: ") << fiinfo.dwOID

<< endl;

CloseHandle(hFile);

File Operations
The API provides three functions for the common file operations of moving,
copying, and deleting files. You can use these functions in your programs to
duplicate the functionality of the command line equivalents.

The CopyF i 1 e function copies the source file to the destination file name.
If an error occurs during the copy, GetLastError contains the error code.

M@ijfjl1W CopyFile-Copies a file

CopyFile

LPTSTR sourceFile

LPTSTR destFile

BOOL existFail

BOOL Return Value

File name for the source file.

File name for the destination.

Passing TRUE causes the call to fail if the file exists. FALSE
allows existing files to be overwritten.

TRUE on success, otherwise FALSE.

The existFail parameter controls the behavior of the function when
the destination file name already exists. If you set it to TRUE, then the function
fails when the destination file name already exists. When set to FALSE, the func
tion overwrites an existing file. This code fragment demonstrates the use of this
function.

success = CopyFile(sourceFilename,
destFilename, TRUE) ;

if (!success)
cout << _T("Error code

else
cout << _T ("success \n") ;

") << GetLastError();

Files can be deleted using the DeleteFile function, which is passed the
filename to be deleted (Table 2.11).

If the return value is FALSE, use the GetLastError function to retrieve
the error code, as shown in this code fragment.

Getting and Setting File Information

Mrn,lfjlM DeleteFile-Deletes a file

DeleteFile

LPTSTR fileName Filename to delete

Return Value Returns TRUE on success, FALSE on failure.

success = DeleteFile(filename);
if (success)

cout << _T("success\n");
else

cout << _T("Error number: ") " << GetLastError();

File Reading and Writing

33

The section "Opening and Reading from a File" in this chapter briefly intro
duced simple file reading using CreateFile, ReadFile, and CloseHandle.
In this section we will examine file seeking, reading, and writing in more de
tail, and look at the CreateFile function more carefully. The operations here
are all synchronous, so they block (that is, do not return) until complete. Asyn
chronous file operations are not supported in Windows CE. Listing 2.7 demon
strates a file-write operation that writes structures to a new file.

@@ft@ Writes structures to a file

typedef struct
{

int a, b, c;
DATA;

void Listing2_7()
{

HANDLE hFile;
TCHAR szFilename[MAX_PATH + 1];
BOOL bSuccess;
DATA dataRec;
int x;
DWORD numWrite;

if(!GetFilename(_T("Enter filename to create:"),
szFilename, MAX_PATH, TRUE))

return;
cout << szFilename;
hFile = CreateFile(szFilename,

GENERIC_WRITE, 0, 0, CREATE_NEW, 0, 0);
if(hFile == INVALID_HANDLE_VALUE)
{

34 Chapter 2 e Files

cout << _T("Could not open file. Error:")
<< GetLastError();

return;

x O;
do
{

dataRec.a = dataRec.b = dataRec.c = x;
bSuccess = WriteFile(hFile, &dataRec,

sizeof(dataRec), &numWrite, 0);

while(bSuccess && x++ < 10);

CloseHandle(hFile);

The WriteFile function is similar to the ReadFile function, writing the
specified number of bytes to disk. The function does not care what the bytes
represent, so you can use it to write text or structures. In Listing 2.7, the pro
gram writes one structure's set of bytes in a single operation and repeats the
operation ten times.

MMfjfM WriteFile-Writes data to a file

WriteFile

HANDLE fileHandle

CONST VOID *buffer

DWORD bytesToWrite

LPDWORD byteswritten

LPOVERLAPPED overlapped

BOOL Return Value

Handle to a file created by CreateFile

Data to write

The number of bytes to write

Pointer to a DWORD that returns the number of
bytes actually written

Overlapped structure (not supported, pass as NULL)

TRUE for success, FALSE for failure

Listing 2.7 uses the CreateFile function in its simplest configuration. For
example, in Listing 2.7 the GENERIC_WRITE constant indicates that we need
write access to the file, and the CREATE_NEW constant indicates that' the sys
tem should create a new file rather than overwrite an existing one (if the file
name already exists, the function fails). However, CreateFile has many other
capabilities.

When using the CreateFile function, you have control over several dif-
ferent properties:

® The read and write mode
® The way the file will be shared
® A variety of attributes and performance hints

Getting and Setting File Information 35

CreateFile-Creates a new file or opens an existing file

CreateFile

LPCTSTR name

DWORD accessMode

Name of the file to open

Read/Write mode

DWORD shareMode The way the file should be shared

LPSECURITY_ATTRIBUTES
securityAttributes

Address of a security structure (not supported, pass as NULL)

DWORD create

DWORD attributes

The way the file should be created

Settings for normal file attribute bits

HANDLE templateFile File containing extended attributes (not supported, pass as NULL)

HANDLE Return Value Returns a handle to the file, or INVALID_HANDLE_VALUE on failure

The first parameter contains the name of the file to be opened. The func
tion GetTempFileName can be used to obtain a valid temporary filename from
the operating system. The second parameter passed to CreateFile controls
read and write access. You can pass in any of the following three combinations:

M®''''M Read/write access control

Constant Purpose

GENERIC READ Read only

GENERIC_WRITE Write only

GENERIC_READ GENERIC_WRITE Read/write

Generally you use the third option when you plan to open a file of struc
tures that you will read and modify simultaneously. You use GENERIC_READ

when you want read-only access, and GENERIC_WRITE when you need write
only access.

The third parameter passed to CreateFile controls the share mode of
the file. You control access to the entire file using this parameter. Four varia
tions are possible (Table 2.15).

Md,ljlW Share mode options

Constant Purpose

O Exclusive use of the file

FILE SHARE_READ

FILE_SHARE_WRITE

FILE SHARE_READ FILE_SHARE_WRITE

Read-sharing of the file

Write-sharing of the file

Read/Write sharing

36 Chapter 2 Files

If you pass 0 to the shareMode parameter, then the entire file is locked
while you have it open. Any other process attempting to open the file will re
ceive a share violation. The remaining options grant increasing levels of access
to other processes.

The Create parameter controls the failure behavior of CreateFile dur
ing creation. Any of the options in Table 2.16 may be used. If you create a new
file with the same name as a file in ROM, the ROM file will be "shadowed."
Your new file will replace the ROM file. If your file is deleted, the ROM file
comes back into use.

@@,fjM Create Parameters

Constant Purpose

CREATE_NEW Create a new file. Fails if file name exists.

CREATE_ALWAYS Create a new file. Destroys any existing file.

OPEN_EXISTING Opens an existing file. Fails if file not found.

OPEN_ALWAYS Creates a file if one does not exist, or opens the exist-

TRUNCATE_EXISTING

ing file.

Deletes the contents of the file if it exists. Fails if it
does not exist.

The Attributes parameter lets you set the file attributes, and it also lets
you tell the system your intended use of the file so that you can improve over
all system performance. Table 2.17 shows all the available attributes and indi
cates which ones can be used in CreateFile, GetFileAttributes, and
SetFileAttributes. Table 2.8 provides a description of the attributes. You
can OR together nonconflicting combinations shown in Table 2.17 as needed
in an application.

Many of the flag options are hints that you give to help the operating sys
tem improve its overall performance. For example, if you know you are open
ing a 1-MB file that you will read from beginning to end and never use again,
then it is a waste for the operating system to cache any of it. You should there
fore use the FILE_FLAG_SEQUENTIAL_SCAN option.

It is possible to read from or write to a file either sequentially or at random
byte offsets in the file. You typically use random offsets when the file contains
a set of structures. The SetFilePointer function moves the file pointer to
the indicated position.

The new file position can move a distance that is relative to the beginning
of the file, the end of the file, or the current position. Positive values move for
ward, and negative values move backward. Listing 2.8 demonstrates a program
that sets the file pointer to the fifth structure in the file written by Listing 2.7.

Getting and Setting File Information 37

MmijfjfM File Attributes

Create- GetFile- SetFile-
Attribute File Attributes Attributes

FILE ATTRIBUTE_ARCHIVE x x x
FILE_ATTRIBUTE_COMPRESSED x
FILE_ATTRIBUTE_DIRECTORY x
FILE_ATTRIBUTE_ENCRYPTED x
FILE_ATTRIBUTE_HIDDEN x x x
FILE_ATTRIBUTE INROM x
FILE_ATTRIBUTE_NORMAL x x x
FILE_ATTRIBUTE_OFFLINE x x
FILE_ATTRIBUTE READONLY x x x
FILE_ATTRIBUTE REPARSE_POINT x
FILE_ATTRIBUTE_ROMMODULE x
FILE_ATTRIBUTE_SPARSE FILE x
FILE_ATTRIBUTE SYSTEM x x x
FILE_ATTRIBUTE TEMPORARY x x x
FILE_FLAG_WRITE_THROUGH x
FILE FLAG_RANDOM_ACCESS x
FILE_FLAG_SEQUENTIAL_SCAN x
FILE_ATTRIBUTE_ROMSTATICREF x

SetFilePointer-Moves the file pointer

SetFilePointer

HANDLE fileHandle

LONG distance

PLONG distanceHigh

DWORD method

DWORD Return Value

Handle created by CreateFile.

Distance to move pointer (low 32 bits).

Pointer to distance to move pointer (high 32 bits),
or NULL.

FILE BEGIN-move from start of file.

FILE_CURRENT-move from current postion.

FILE_END-move from end of file.

Returns the new location of the file pointer, or
OxFFFFFFFF on error.

38 Chapter 2 • Files

Gets 5th record from file created in Listing 2.7 and displays it

void Listing2_8()
{

HANDLE hFile;
DWORD dwNumRead;
TCHAR szFilename[MAX_PATH + 1];
DATA dataRec;

if (!Get Filename (_T ("Enter filename:"),
szFilename, MAX_PATH))

return;
hFile = CreateFile(szFilename, GENERIC_READ,

0, 0, OPEN_EXISTING, 0, 0);
if(hFile == INVALID_HANDLE_VALUE)
{

cout << _T("Could not open file. Error:")
<< GetLastError();

return;

SetFilePointer(hFile, 5 * sizeof (DATA), 0, FILE_BEGIN);
if(GetLastError() != NO_ERROR)
{

cout << _T("Could not seek to file. Error:")
<< GetLastError();

else
{

if(ReadFile(hFile, &dataRec,
sizeof(DATA), &dwNumRead, 0))

cout

else
{

<<
<<
<<
<<

_T ("Record
_T(" ")

dataRec.b
dataRec.c

5: ") << dataRec.a

<< _T(" ")

<< endl;

cout << _T("Could not read file. Error: ")
<< GetLastError();

CloseHandle(hFile);

File Mapping
The Win32 API provides a feature called file mapping that allows you to map a
file directly into the Windows CE virtual memory space. This capability is often

Gelling and Selling File Information 39

used to implement interprocess communication schemes and is also useful for
simplifying or speeding file access.

You can map a file either for read-only or read-write access. Once
mapped, you access the file by address (using array or pointer syntax) rather
than using file access functions such as ReadFile or Wri teFile.

For example, say that you need to access data in a file and you know that
you will make a large number of writes to the file in rapid succession. Also imag
ine that, for performance reasons, you cannot afford the time it takes to perform
all of those writes. Typically you would solve this problem by reading the file
to an array, accessing the array, and then writing the array back to disk. File map
ping does this automatically-it maps the file into memory for you. In addition,
you can share the memory image among multiple processes, and the image will
remain coherent to all viewers on a single machine. If several processes all use
the same file-mapping object, all changes to the mapped file will be reflected
in the data read by all processes.

Listing 2.9 shows how to use file mapping in read-only mode.

M!MfiJM Displays Unicode text file using file mapping

void Listing2_9()
{

HANDLE hFile;
TCHAR szFilename[MAX_PATH + l];
HANDLE hFileMap;
LPTSTR lpFile;

if(!GetFilename(_T("Enter filename:"),
szFilename, MAX_PATH))

return;
hFile = CreateFileForMapping(szFilename,

GENERIC_READ, 0, 0, OPEN_EXISTING, 0, 0);
if(hFile == INVALID_HANDLE_VALUE)
{

cout << _T("Could not open file. Error:")
<< GetLastError();

return;

hFileMap = CreateFileMapping(hFile, 0,
PAGE_READONLY, 0, 0, NULL);

if(hFileMap ==NULL)
{

cout << _T("Could not create file mapping:")
<< GetLastError();

CloseHandle(hFile);
return;

40 Chapter 2 e Files

lpFile = (LPTSTR) MapViewOfFile(hFileMap,
FILE_MAP_READ, 0, 0, 0);

if(lpFile ==NULL)
cout << _T ("Could not create view of map:")

<< GetLastError();
else
{

if((DWORD)*lpFile != OxFEFF)
cout << _T ("Not a Unicode file");

else
{

lpFile++; II skip over first two bytes.
II DANGEROUS! Assumes '\0' terminated file
cout << lpFile;

UnmapViewOfFile(lpFile);

CloseHandle(hFileMap);
CloseHandle(hFile);

The program in Listing 2.9 begins by asking the user for a filename and
opening the file with CreateFileForMapping. In Windows CE, Create
FileForMapping should be used to open a file ready for file mapping, instead
of CreateFile. As Table 2.19 shows, this function takes the same arguments
as CreateFile.

MMfj@W CreateForFileMapping-Opens a file for mapping

CreateForFileMapping

LPCTSTR lpFileName

DWORD dwDesiredAccess

DWORD dwShareMode

LPSECURITY_ATTRIBUTES
lpSecurityAttributes

DWORD dwCreationDisposition

DWORD dwFlagsAndAttributes

HANDLE hTemplateFile

HANDLE Return Value

File for which a mapping is to be created.

Type of access. 0, GENERIC_READ or GENERIC_WRITE.

How the file can be shared. 0, FILE_SHARE_READ, FILE_
SHARE_WRITE.

Not supported, pass as NULL.

How the file will be created. See CreateFile for options.

Attributes and flags for file. See CreateFile for options.

Not supported, pass as NULL.

Handle to a file object that can be mapped, or INVALID_
HANDLE_ VALUE on failure.

Listing 2.9 then calls the CreateFileMapping function to create the
mapping. This step determines the size of the mapping as well as its data. The

Getting and Setting File Information 41

protection is set to read-only, and setting sizeLow and sizeHigh to zero sets
the size to the current file size.

M@nfjl1M CreateFileMapping-Creates and names a mapping

CreateFileMapping

HANDLE fileHandle Handle to the file, or OxFFFFFFFF for a memory block

LPSECURITY_ATTRIBUTES Security attributes (not supported, pass as NULL)
security

DWORD protect

DWORD sizeHigh

DWORD sizeLow

LPTSTR mapName

HANDLE Return Value

Access protection (read-only vs. read-write)

Maximum size of the mapping, high 32 bits

Maximum size of the mapping, low 32 bits

Name of the mapping

Returns a handle to the mapping, or NULL on error

The MapViewOfFile function reserves data into an address range set
aside for memory-mapped files, and returns the new address of the data. The
address range for memory-mapped files is above the address range used for
processes. The data from the file will be paged into this memory space as you
access it. In Listing 2.9, lpFile is declared as a pointer to a character so that
the data can be treated text. You can declare lpFile to be of any type. For ex
ample, if the file contains a set of structures, let lpFile be a pointer to that type
of structure.

MrnnfjiM MapViewOfFi/e-Loads a file mapping into memory

MapViewOfFile

HANDLE mapHandle

DWORD access

DWORD offsetHigh

DWORD off setLow

DWORD number

LPVOID Return Value

Handle to the mapping

Type of access (read-only, read-write, etc.)

Offset into the file, high 32 bits

Offset into the file, low 32 bits

Number of bytes to map

Returns the starting address of the view, or O on error

In Listing 2.9, the code maps the entire file with read-only access. Once
mapped, lpFile points to the address of the mapping, and you use it just like
any other pointer or array. If you load a text file with this program, the cout
statement displays the entire file, as shown. This is dangerous, since cout will
assume that whatever lpFile points at is null-character terminated, but this is

42 Chapter 2 • Files

not generally the case for text files. The code will work until you try to open
a file that contains an exact number of memory pages. In this situation, cout
will look beyond the last page for the null character, and this will often cause
a page fault.

Once you have finished with the file, use UnmapViewOfFile to unload
the memory and write any changes back to the original file. No changes were
made here, but the next example makes use of this feature.

UnmapViewOfFile-Releases the view and writes changes back to the file

UnmapViewOfFile

LPVOID address Address ofthe mapping that was returned from MapViewOfFile

BOOL Return Value Returns· TRUE on success, or FALSE on failure

Listing 2.10 shows a second example of file mapping. Here the program
opens the mapped file for read-write access and then writes to the file. The
changes are flushed to disk only when the program calls UnmapViewOfFile.

MftiMji1M Displays Unicode text file using writable file mapping

void Listing2_10()
{

HANDLE hFile;
TCHAR szFilename[MAX_PATH + l];
HANDLE hFileMap;
LPTSTR lpFile;
DWORD dwSizeLo;

if (! GetFilename (_T ("Enter filename:"),
szFilename, MAX_PATH))

return;
hFile = CreateFileForMapping(szFilename,

GENERIC_READ I GENERIC_WRITE,
0, 0, OPEN_EXISTING, 0, 0);

if(hFile == INVALID_HANDLE_VALUE)
{

cout << _T("Could not open file. Error:")
<< GetLastError();

return;

II assume< 4 gigabytes
dwSizeLo = GetFileSize (hFile, NULL);
hFileMap = CreateFileMapping(hFile, 0,

PAGE_READWRITE, 0, dwSizeLo + 1, NULL);
if(hFileMap ==NULL)
{

}

Getting and Setting File Information

cout << _T ("Could not create file mapping:")
<< GetLastError();

CloseHandle(hFile);
return;

lpFile = (LPTSTR) MapViewOfFile(hFileMap,
FILE_MAP_WRITE, 0, 0, 0);

if(lpFile ==NULL)
cout << _T ("Could not create view of map:")

<< GetLastError();
else
{

if((DWORD)*lpFile != OxFEFF)
cout << _T ("Not a Unicode file");

else
{

II add terminating NULL character
lpFile[dwSizeLo] = '\0';
II skip over first two bytes.
lpFile++;
cout << lpFile;

UnmapViewOfFile(lpFile);

CloseHandle(hFileMap);
II remove NULL character at end of file
SetFilePointer(hFile, -2, NULL, FILE_END);
SetEndOfFile(hFile);
CloseHandle(hFile);

43

Listing 2.10 opens the mapping for reading and writing. A null character
is appended to the end of the file, and this makes writing the contents of the
file to cout safe. The null character needs to be removed once the mapping
is closed. This can be done by moving the file pointer to the byte before the
null character and then calling SetEndOfFile to set the end of file to the cur
rent file position.

SetEndOfFile-Sets end of file to current file position

SetEndOfFile

HANDLE hFile Handle of file to set end of file for

BOOL Return Value Returns TRUE on success, or FALSE on failure

The function FlushViewOfFile can be used to write any changed data
out to the Object Store. This function is also useful when using a read-only
mapped file. As you read through a file, pages of memory are used to store the

44 Chapter 2 • Files

data. If you are reading a large file, significant amounts of the device's scarce
memory can be used up. Calling FlushViewOfFile will release these pages
of memory.

Mrnijf!IM FlushViewOfFile-Flushes changes in the view to Obiect Store

FlushViewOfFile

LPVOID address

DWORD number

BOOL Return Value

The base address of the bytes to flush

The number of bytes to flush

Returns TRUE on success, FALSE on failure

When using FlushViewOfFile, you generally flush the entire file. The
system is smart enough to write back to disk only those memory pages that ac
tually contain modified data.

Conclusion
This chapter presents many of the individual concepts involved in handling
and manipulating files. As you can see, in Windows CE file access is quite in
teresting because of all of the different techniques available in the API: normal
file I/0, file mapping, and so on.

The CreateFile, ReadFile, and WriteFile concepts discussed in
this chapter apply not only to files, but also to several other I/0 channels.
For example, these same functions appear in Chapter 9, which looks at serial
communications.

Memory-mapped files are a convenient way to access data in files and can
also be used for sharing data between applications.

Object Store, Directory,
and Network Operations

Windows CE uses the Object Store for storing files, databases, and the registry
(see Chapter 4). The Object Store uses RAM. This is limited to 256 MB in Win
dows CE 3.0, and 16 MB in earlier versions. Other devices can be used to store
files and database, including storage cards (such as Compact Flash memory
cards) and disk drives. Windows CE can also connect to resources on the net
work, either through a dialup/serial communications Remote Access Services
(RAS) connection or a network device such as a NE2000 PCMCIA network card.

Unlike Windows NT/98/2000, Windows CE does not use drive letters (for
example, " F : ") for network connections or devices. Directories in the Object
Store (for example, "\Storage Card") represent storage devices. Network
connections can be accessed directly through UNCs (Universal Naming Con
ventions) such as "\ \myserver\myshare\myfile. txt ". Alternatively, a
connection can be made using the remote name (the UNC) and a local name.
The local name is added to the directory "\network", which can then be used
to access the network. So, for example, if a connection is made using the lo
cal name "myresource", and the network resource contains the file "myfile
. txt ",the file can be accessed through the name "\network\myresource \
myfile. txt". Windows CE does not support the concept of "current direc
tory," so functions like GetCurrentDirectory arc not implemented.

The object store is maintained in RAM, and so needs to be reliable in the
event of system crashes and invalid memory pointers from devices and appli
cations. The object store uses transactions to ensure that the contents of the
store can be returned to a known, integral state when a device is restarted. Files
and directories are just two kinds of objects that can be stored. Registry items
and property database records are also objects. Each object (including files and
directories) has a unique identifier called an "Object ID," or OID. While you
can find the OID for a file or directory, it is not particularly useful. However,
the OIDs are essential when dealing with property databases.

45

46 Chapter 3 * Object Store, Directory, and Network Operations

Windows CE gives you several functions that you can use to access in
formation about the object store, individual directories (folders), and network
resources. For example, you use these functions:

* To find the maximum size and free space in the Object Store and storage
devices

* To create and remove directories
® To find files in directories

Windows CE contains a set of WNet functions that lets you find and con
nect to network drives and printers shared by other machines. With these func
tions you can:

"' Enumerate all the domains on the network
* Enumerate all the machines in each domain
* Enumerate all the drives and printers on each machine
* Connect to any drive on the network
* Disconnect from any drive

All the connection options seen by a user in the Explorer are implemented
using the WNet and related functions.

Getting Object Store Free Space
Determining the available free space in the Object Store or storage device is
important before attempting to save large amounts of data, or for providing
feedback to the user. Listing 3.1 shows how .to obtain this information by call
ing GetDiskFreeSpaceEx.

Displays free space in the obiect store

void Listing3_1()
{

ULARGE_INTEGER ulFree, ulTotalBytes, ulTotalFree;
II specify root directory in Object Store
if(GetDiskFreeSpaceEx(_T("\\"),

&ulFree, &ulTotalBytes, &ulTotalFree))

cout << _T ("Bytes available to caller: ")

<< tab << ulFree.LowPart << tab
<< ulFree.HighPart << endl;

cout << _T ("Total number bytes: ")

<< tab << ulTotalBytes.LowPart << tab
<< ulTotalBytes.HighPart << endl;

Creating and Deleting Directories

cout << _T ("Total num. free bytes: ") << tab
<< ulTotalFree.LowPart << tab
<< ulTotalFree.HighPart << endl;

else
cout << _T ("Could not get free space: ")

<< GetLastError();

GetDiskFreeSpaceEx-Gets information on available storage space

GetDiskFreeSpaceEx

LPCWSTR lpDirectoryName Storage device for which to obtain
information

47

PULARGE INTEGER lpFreeBytesAvailableToCaller Number of bytes of storage available to
this user

PULARGE_INTEGER lpTotalNumberOfBytes

PULARGE INTEGER lpTotalNumberOfFreeBytes

BOOL Return Value

Total number of bytes of storage

Total number of free bytes of storage

Nonzero indicates success. Zero
indicates failure

The same function can be used to determine the free space in storage de
vices or network devices by passing the name of the directory entry represent
ing the storage device (for example, "Storage Card") or network connection
(" \Network\myresource "). Because of security restrictions the free bytes
available to the caller may be less than the total free bytes.

GetDiskFreeSpaceEx returns information in ULARGE structures. This
structure contains a single member that is a ULONGLONG structure. You can get
the low long and high long values using the LowPart and HighPart members.

Windows CE also provides the GetStoreinformation for determining
the size and free space in the Object Store. However, GetDiskFreeSpaceEx
is more useful, as it can be used for any storage medium.

Creating and Deleting Directories
Typically a user creates a directory with the Explorer. There are many reasons
why you might need to do the same thing inside of an application. For ex
ample, if you are writing an application that installs another application or a
set of data files, you will need to create directories to hold the files that you
are installing. Listing 3.2 uses the CreateDirectory function to create a new
directory.

48 Chapter 3 * Object Store, Directory, and Network Operations

Creates the specified directory

void Listing3_2()
{

TCHAR szPath[MAX_PATH + l];

if (! GetTextResponse (_T ("Enter Directory to Create:") ,
szPath, MAX_PATH))

return;

if(!CreateDirectory(szPath, 0))
cout << _T("Could not create directory:")

<< GetLastError();

CreateDirectory-Creates a new directory

CreateDirectory

LPTSTR dirName

LPSECURITY_ATTRIBUTES
security

BOOL Return Value

Name/path of the directory to create.

Security attributes (not supported, use NULL)

Returns TRUE on success, otherwise FALSE

The dirName parameter accepts either a name or a path. If it receives
just a name, it forms the new directory as a child of the root directory in the
Object Store. If it receives a path (for example, "\mydir\ temp \new"), it trav
erses the path(" \mydir\ temp") and creates the new directory(" new") there.
If the path is invalid, it fails. The GetLastError function contains a detailed
error code following any failure.

It is just as easy to delete a directory using the RemoveDirectory func
tion, as shown in Listing 3.3.

Deletes the specified directory

void Listing3_3()
{

TCHAR szPath[MAX_PATH + 1];

if(!GetTextResponse(_T("Enter Directory to Remove:"),
szPath, MAX_PATH))

return;

if(!RemoveDirectory(szPath))
cout << _T ("Could not remove directory: ")

<< GetLastError();

Creating and Deleting Directories 49

RemoveDirectory-Removes an empty directory

RemoveDirectory

LPTSTR dirName Name/path of the directory to remove

BOOL Return Value Returns TRUE on success, or FALSE on failure

The RemoveDirectory function can remove a directory only if it is
empty. It accepts the same name and/or path information described for
CreateDirectory above.

Traversing Directory Trees
The Windows CE API provides a set of three functions that let you easily tra
verse a directory. Using these same functions recursively you can traverse en
tire directory trees. Listing 3.4 demonstrates the use of the directory walking
functions in their simplest form. This code lists all the file and directory names
found in a single directory.

M!MfijM Lists directory contents

void PrintFindData(WIN32_FIND_DATA *fdData)
{

II Directory and temporary means removable media
if ((fdData->dwFileAttributes

& FILE_ATTRIBUTE_TEMPORARY)
&& (fdData->dwFileAttributes
& FILE_ATTRIBUTE_DIRECTORY))

cout << _T("Removable Media: ")
<< fdData->cFileName << endl;

}

II If it's a directory, print the name
else if(fdData->dwFileAttributes

& FILE_ATTRIBUTE_DIRECTORY)

cout << _T("Directory: ")
<< fdData->cFileName << endl;

else// it's a file, print name and size
{

cout << fdData->cFileName;
cout <<tab<< _T(" (")

<< fdData->nFileSizeLow << _T(") ") << endl;

50 Chapter 3 * Object Store, Directory, and Network Operations

void ListDirectoryContents(LPTSTR lpFileMask)
{

HANDLE hFindFile;
WIN32_FIND_DATA fdData;
II get first file
hFindFile = FindFirstFile(lpFileMask, &fdData);
if(hFindFile != INVALID_HANDLE_VALUE)
{

PrintFindData(&fdData);
while(FindNextFile(hFindFile, &fdData))
{

PrintFindData(&fdData);

FindClose(hFindFile);

else
cout << _T("Call to FindFirstFile failed: ")

<< GetLastError();

void Listing3_4()

ListDirectoryContents(_T("*.*"));

In Listing 3.4, the ListDirectoryContents function starts by calling
the API's FindFirstFile function.

FindFirstFile-Finds the specified file in the current directory

FindFirstFile

LPTSTR searchFile

LPWIN32_FIND_DATA findData

HANDLE Return Value

The file to search for (wild cards are OK)

Information about the file it finds

Returns a search handle to the first matching file
found, or INVALID_HANDLE_VALUE on failure

The FindFirstFile function accepts the name of the file to find and re
turns a HANDLE to the file if it is found, as well as a structure describing the file.
The file handle is neit a normal file handle like the ones produced by Create
File (see Chapter 2). It is specific to the Find functions described in this sec
tion. The WIN32_FIND_DATA structure returns the following information:

typedef struct _WIN32_FIND_DATA
DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftLastAccessTime;

Creating and Deleting Directories 51

FILETIME ftLastWriteTime;
DWORD nFileSizeHigh;
DWORD nFileSizeLow;
DWORD dwReservedO;
DWORD dwReservedl;
TCHAR cFileName[MAX_PATH l;
TCHAR cAlternateFileName[14 J;

WIN32_FIND_DATA;

A great deal of this information duplicates the information returned by
the GetFileinformationByHandle function (see Chapter 2), as well as the
fully qualified file name. Windows CE does not use the 8.3 DOS file notation,
so cAl ternateFilename is not used.

You can pass to the FindFirstFile function a specific file name, a file
name containing wild cards, or a path with or without a file name. If it finds a
file that matches the file name you have passed, it returns the handle and in
formation about the file. If it cannot find the file, it returns INVALID_FILE_

HANDLE for the handle.
In Listing 3.4, the program is searching for every file in the root directory.

It passes the structure returned by FindFileFirst to PrintFindData, which
decides whether or not it is a directory name and prints out some of the infor
mation. The program then continues looking for other files in the directory us
ing the FindNextFile function.

Storage devices are represented as directories in the Object Store. Such di
rectories have the attributes "directory" and "temporary." PrintFindData uses
these attributes to determine if a directory represents a storage device.

FindNextFile-Finds the next file following a FindFileFirst

FindNextFile

HANDLE findFile

LPWIN32_FIND_DATA finData

BOOL Return Value

File handle returned by FindFileFirst

Information about the file it finds

Returns TRUE on success, othetwise FALSE

FindNextFile accepts a handle produced by either FindFirstFile

or a previous call to FindNextFile. It finds the next file in the directory that
matches the file name description first passed to FindFirstFile. If no
match is found, the returned Boolean value will be false, and the GetLast
Error function will contain the error code. Once no match is found, it means
that the code has reached the end of the directory. At this point, the pro
gram calls FindClose to clean up the file handle used by the previous Find

functions.

52 Chapter 3 o Object Store, Directory, and Network Operations

FindClose-Closes the search handle

FindClose

HANDLE File handle returned by FindFileFirst

BOOL Return Value Returns TRUE on success, otherwise FALSE

Compact Flash and Other Storage Devices
Storage devices extend the amount of data stored in a Windows CE device from
the maximum allowed in the Object Store. The most common type of storage
device is Compact Flash (CF) and ATA cards, although CDROM, DVD, FAT, and
other storage devices are becoming more widespread.

Most storage devices are removable, so knowing when the user puts in
or takes out a device can be important. In Windows CE a WM_DEVICECHANGE
message is sent to the main application window when a removable storage de
vice is added or removed. You need to include the file dbt. h when using this
message. You can respond to this message using the following code in the win
dow's message-processing function.

case WM_DEVICECHANGE:
switch (wParam)
{

case DBT_DEVICEARRIVAL:
case DBT_DEVICEREMOVECOMPLETE:

Listing3_5(wParam,
(DEV_BROADCAST_HDR*)lParam); break;

The wParam parameter has the value DBT_DEVICEARRIVAL when a de
vice is inserted, and DBT_DEVICEREMOVECOMPLETE when the device is re
moved (Listing 3.5). You should note that the WM_DEVICECHANGE message is
also sent when any PCMCIA (such as modem or network card) or other remov
able device is inserted or removed. Your application will determine whether a
storage device caused the message to be sent using the techniques shown in
Listing 3.6.

Response to insertion or removal of a storage card (called in response
to WM_DEVICECHANGE message}

void Listing3_5(WORD wParam, DEV BROADCAST_HDR* dbt)
{

II Must include dbt.h
if(wParam == DBT_DEVICEARRIVAL)

cout << _T("Device inserted") << endl;
else if(wParam == DBT_DEVICEREMOVECOMPLETE)

cout << _T("Device removed") << endl;

Compact Flash and Other Storage Devices 53

A special situation occurs when the Windows CE device is turned on. Win
dows CE simulates a removal and insertion of the device before applications
are allowed to access the device. This means your application will receive two
WM_DEVICECHANGE messages (a DBT_DEVICEREMOVECOMPLETE and DBT_

DEVICEARRIVAL) for each removable device when the Windows CE device is
turned on.

Auto-Run Applications on Compact Flash Cards
Starting with Windows CE 3.0 it is possible to have an application run from a
Compact Flash memory card when it is inserted into a device. This allows an
application to auto-install from a Compact Flash card.

To set an application to be auto-run, you must place the application in
a specific folder for the CPU targeted by your application. The folder name
is based on the CPU number returned in the dwProcessorType member of
the SYSTEM_INFO structure returned from calling GetSysteminfo. Table 3.7
shows the possible values and their associated constants.

Processor values and associated constants

Constant Value

PROCESSOR_MIPS_R4000 4000

PROCESSOR_HITACHI SH3 10003

PROCESSOR_HITACHI SH3E 10004

PROCESSOR_HITACHI_SH4 10005

PROCESSOR_MOTOROLA_821 821

PROCESSOR_SHx_SH3 103

PROCESSOR_SHx_SH4 104

PROCESSOR_STRONGARM 2577

PROCESSOR_ARM720 1824

PROCESSOR_ARM820 2080

PROCESSOR_ARM920 2336

PROCESSOR_ARM_7TDMI 70001

Thus, if you want your application to auto-run and the application is com
piled for MIPS, you should rename your application to autorun. exe and place
it in a folder called \4000, for example, \4000\autorun. exe.

If your application is compiled for CEF (Common Executable Format),
you should place the autorun. exe file in a folder called \ 0, for example,
\0\autorun. exe.

54 Chapter 3 e Object Store, Directory, and Network Operations

The application autorun. exe is passed the command line parameter
'install' when a Compact Flash card is inserted, and with the command line
parameter 'uninstall' when the card is removed. This allows your auto
run. exe application to uninstall itself when the card is removed. The auto
run. exe application typically has a simple WinMain that tests for the two valid
command line values:

int WINAPI WinMain(HINSTANCE hinst,
HINSTANCE hinstPrev, LPTSTR lpszCmdLine,
int nCmdShow)

if (lstrcmpi(lpszCmdLine, _T("install") == 0)
{

OnCardinsert();

else
{

OnCardEject();

return 0;

II function installs

II function uninstalls

Enumerating Compact Flash Cards
The code in Listing 3.4 in the section "Traversing Directory Trees" showed how
to search for files and how to recognize a Compact Flash card from the related
directory's attributes. In Windows CE 3.0 the FindFirstFlashCard and
FindNextFlashCard functions can be used to enumerate all flash cards in
stalled on a device, and this is much easier. The functions operate in very much
the same way as FindFirstFile and FindNextFile. Listing 3.6 lists all the
Compact Flash cards present on the device. You need to include projects. h
into your source files and Note_Prj . Lib into the project.

Enumerates all Compact Flash cards

#include <projects.h>
II link with NOTE_PRJ.LIB

void Listing3_6()
{

HANDLE hCF;
WIN32_FIND_DATA fndMountable;

hCF = FindFirstFlashCard(&fndMountable);
if(hCF INVALID_HANDLE_VALUE)

cout << _T("No CF Cards") << endl;
else
{

do

WNet Functions

cout << _T("CF Card: ")
<< fndMountable.cFileName << endl;

while(FindNextFlashCard(&fndMountable,
&fndMountable));

FindClose(hCF);

55

The function FindFirstFlashCard takes a single argument, a pointer
to a WIN32_FIND_DATA structure, and returns a search handle, stored in hCF.
The search handle has a value of INVALID_HANDLE_VALUE if the search fails
(for example, if there are no Compact Flash cards). The code in Listing 3.6 lists
the folder name associated with the Compact Flash card (for example, 'Stor
age Card'), and then calls FindNextFlashCard. The function is passed the
search handle, hCF, and a pointer to a WIN32_FIND_DATA structure. The func
tion returns FALSE when all Compact Flash cards have been listed. The search
handle should be passed to FindClose when the list is complete.

WNet Functions
Windows CE is designed to work with networks. When several Windows ma
chines exist on a net, they can easily share disk drives and printers with one
another. The Explorer provides an easy way for users to connect to these shared
devices. The Windows CE API also gives you mechanisms to connect to these
devices from within your applications.

Windows sees the network as a tree. Any Windows network is divided into
a series of domains, each of which contains a set of machines. Each machine
can share zero or more drives, directories, or printers on the network.

Windows CE supports a subset of the Win32 API WNet functions that
can be used to maintain connections to network resources (such as folder and
printer shares). Before using the WNet functions you must have a valid network
connection through a Remote Access Services (RAS) or direct network connec
tion using a network adapter (such as PCMCIA compatible NE2000). WNet func
tions cannot be used through an ActiveSync connection to a desktop PC.

The Win32 API contains a set of functions that allow you to enumerate
all the shares available throughout the network and then connect to any one
of these shares. The network itself, its domains, and the machines in the do
mains are called containers. You open containers with the WNetOpenEnum
function. A container can contain other containers (for example, domains con
tain machines), or it can contain actual drive and printer resources, called ob
jects. You enumerate all the items in a container-that is, you request a list of
everything that a container holds-using the WNetEnumResources function.

56 Chapter 3 "' Object Store, Directory, and Network Operations

Once you get down to the share level, you can connect to a drive with the
WNetAddConnection2 function.

This section shows you how to walk through the resource tree and also
how to gather information about connected resources. Note you will need to
include winnetwk. h to call the WNet functions.

Enumerating Network Resources
The code shown in Listing 3.7 demonstrates how to walk recursively through
all the resources available on your network. It starts with the network itself and
opens every container it finds until it reaches actual drives and printers that each
machine shares on the network. It is these drive and printer objects that receive
connections.

@@WM Lists all ob;ects {shares and printers) on a network

II NB: include winnetwk.h

II This function handles WNet errors

void ErrorHandler(DWORD dwErrorNum, LPTSTR s)
{

cout << _T("Failure in: ") << s << _T(" ")
<< GetLastError() << endl;

II This function displays the information in a
II NETRESOURCE structure

void DisplayStruct(LPNETRESOURCE nr)
{

cout << _T("Type: ");
switch(nr->dwType)
{

case RESOURCETYPE_DISK:
cout << _T("Disk") << endl;
break;

case RESOURCETYPE_PRINT:
cout << _T("Printer") << endl;
break;

case RESOURCETYPE_ANY:
cout << _T ("Any") << endl;

cout << _T ("Display Type: ");
switch(nr->dwDisplayType)
{

case RESOURCEDISPLAYTYPE_DOMAIN:
cout << _T("Domain") << endl;
break;

case RESOURCEDISPLAYTYPE_GENERIC:
cout << _T("Generic") << endl;
break;

case RESOURCEDISPLAYTYPE_SERVER:
cout << _T("Server") << endl;
break;

case RESOURCEDISPLAYTYPE SHARE:
cout << _T("Share") << endl;

if(nr->lpLocalName)

WNet Functions

cout << _T("Local Name: ") << nr->lpLocalName
<< endl;

if(nr->lpRemoteName)
cout << _T("Remote Name: ") << nr->lpRemoteName

<< endl;
if(nr->lpComment)

cout << _T("Comment: ") << nr->lpComment << endl;
if(nr->lpProvider)

cout << _T("Provider: ") << nr->lpProvider
<< endl;

cout << endl;

II Recursive function to enumerate resources
BOOL EnumerateResources(LPNETRESOURCE nrStartingPoint)
{

DWORD dwResult, dwResultEnum, i;
LPNETRESOURCE lpNRBuffer;
DWORD dwBufferSize 16384;
DWORD dwNumEntries = OxFFFFFFFF;
HANDLE hEnum;

dwResult = WNetOpenEnum(RESOURCE_GLOBALNET,
RESOURCETYPE_ANY,
0, nrStartingPoint, &hEnum);

if(dwResult != NO_ERROR)
{

ErrorHandler (dwResul t, _T ("WNetOpenEnum")) ;
return FALSE;

II allocate a buffer to hold resources
lpNRBuffer = (LPNETRESOURCE)

LocalAlloc(LPTR, dwBufferSize);
II loop through all the elements in the container
do
{

dwBufferSize = 16384;
dwNumEntries = OxFFFFFFFF;
II Get resources
dwResultEnum = WNetEnumResource(hEnum,

&dwNumEntries, lpNRBuffer, &dwBufferSize);

57

58 Chapter 3 a Object Store, Directory, and Network Operations

if(dwResultEnum == NO_ERROR)
{

II loop through each of the entries
for(i = O; i < dwNumEntries; i++)
{

DisplayStruct(&lpNRBuffer[i]);
II if container, recursively open it
if(lpNRBuffer[i] .dwUsage &

RESOURCEUSAGE_CONTAINER)

if(!EnumerateResources(
&lpNRBuffer[i]))

cout <<
_T("Enumeration Failed.")
<< endl;

else if(dwResultEnum != ERROR_NO_MORE_ITEMS)
{

ErrorHandler(dwResultEnum,
_T ("WNetEnumResource")) ;

break;

while(dwResultEnum != ERROR_NO_MORE_ITEMS);
II Clean up
LocalFree(lpNRBuffer);
dwResult = WNetCloseEnum(hEnum);
if(dwResult != NO_ERROR)
{

ErrorHandler(dwResult, _T("WNetCloseEnum"));
return FALSE;

return TRUE;

void Listing3_7()
{

II Start the recursion at the net level
NETRESOURCE nr;
TCHAR szContainer[MAX_PATH + l];
if(!GetTextResponse(

_T("Enter Container to list:"), szContainer,
MAX_PATH))

return;
memset(&nr, 0, sizeof(nr));
nr.lpRemoteName = szContainer;
nr.dwUsage = RESOURCEUSAGE_CONTAINER;
EnumerateResources(&nr);

WNetOpenEnum

DWORD scope

DWORD type

DWORD usage

WNet Functions 59

The program in Listing 3.7 starts in its Listing3_7 function by prompt
ing the user for the container (either a domain or a server). It passes this con
tainer to the EnumerateResources function, which recursively traverses the
container. The EnumerateResources function calls WNetOpenEnum.

WNetOpenEnum-Opens a container

Scope of the search. This can be:
RESOURCE_CONNECTED for all currently connected resources.
RESOURCE_GLOBALNET for all resources on the network.
RESOURCE_REMEMBERED for all persistent connections.

Type of items to enumerate. This can be:
RESOURCETYPE_ANY for all resources.
RESOURCETYPE_DISK for disk resources.
RESOURCETYPE_PRINT for print resources.

Type of objects to open. This can be:
0 for all resources.
RESOURCEUSAGE_CONNECTABLE for resources that can be connected to.
RESOURCEUSAGE_CONTAINER for container objects.

LPNETRESOURCE resource Specifies container (server or domain) to open. NULL for network.

Returned handle to the opened container. LPHANDLE enumHandle

DWORD Return Value NO_ERROR on success, or an error code.

The WNetOpenEnum function opens a container, returning a handle to
that container so that you can enumerate its contents. The Resource parameter
specifies the container that you want to open. The Scope, Type, and Usage pa
rameters specify the type of objects that will be enumerated by the WNetEnum
Resources function.

Initially, the WNetOpenEnum function receives the container specified by
the user for its resource. Once the container is open, Listing 3.7 enters a loop
that calls WNetEnumResources to get all the objects inside the container.

WNetEnumResources-Enumerates resources in an open container

WNetEnumResources

HANDLE enumHandle

LPDWORD numEntries

LPVOID buffer

LPDWORD bufferSize

DWORD Return Value

Handle to an open container

Number of entries desired/returned

Buffer to hold returned entries

Original/returned size of buffer

NO_ERROR or ERROR_NO_MORE_ITEMS on success, or
an error code

60 Chapter 3 " Object Store, Directory, and Network Operations

The WNetEnumResources function accepts the handle returned by
WNetOpenEnum, the number of entries desired (or OxFFFFFFFF if you want
them all), a buffer to place the entries into (allocated by LocalAlloc; see Chap
ter 12 for details), and the size of the buffer (the documentation specifies that
16K is a reasonable value). In the buffer the function returns an array of NETRE
SOURCE structures that contains information about each entry in the container.

typedef struct _NETRESOURCE
DWORD dwScope;
DWORD dwType;
DWORD dwDisplayType;
DWORD dwUsage;
LPTSTR lpLocalName;
LPTSTR lpRemoteName;
LPTSTR lpComment;
LPTSTR lpProvider;

NETRESOURCE;

Much useful information is contained in a NETRESOURCE structure. The
DisplayStruct function near the top of Listing 3.7 displays most of this in
formation. The Scope field tells the status of an enumeration.

® RESOURCE_CONNECTED The device is already connected.
c RESOURCE_GLOBALNET The enumeration is not connected.
c RESOURCE_REMEMBERED There is a persistent connection to the device.

If connected or remembered, the enumeration must be a device, either a
printer or a drive, and the LocalName field contains the local name of the de
vice. An enumeration marked as USAGE_GLOBALNET gives more information
about itself in the Usage field, which can have one of the following values:

® RESOURCEUSAGE_CONNECTABLE The enumeration is a connectable
device.

0 RESOURCEUSAGE_CONTAINER The enumeration is a container (a
domain or a machine).

In either case, the RemoteName field contains the name used to connect
to or open the enumeration. The Type field tells whether a connectable object
is a disk or a printer.

m RESOURCETYPE_ANY
m RESOURCETYPE_DISK
m RESOURCETYPE_PRINT

The DisplayType field tells how to display the object. This field is used
in Windows' connection dialogs to determine the icon placed next to each item.

m RESOURCEDISPLAYTYPE_DOMAIN
m RESOURCEDISPLAYTYPE GENERIC
® RESOURCEDISPLAYTYPE_SERVER
® RESOURCEDISPLAYTYPE_SHARE

Adding and Canceling Connections 61

The NETRESOURCE structure also contains the comment and the name of
the provider.

Following the call to WNetEnumResources, Listing 3.7 loops through all
the NETRESOURCE structures in the buffer. First it displays each record's con
tents. Then it inspects each record to decide whether or not it is a container. If
it is a container, the EnumerateResources function recursively calls itself so
that it can open and display the container. If it is not a container, it is a drive or
a printer and a connection can be formed to it. Once the code has examined
all the entries in the buffer, it cleans up and returns.

The first time that you call WNetEnumResources for any container it
should return the error code NO_ERROR, as well as a buffer full of entries. How
ever, there is no guarantee that the function was able to place all the entries
for a given container into the buffer on the first call. Therefore, you should call
it repeatedly until it returns ERROR_NO_MORE_ITEMS. This is the reason for the
do . . . while loop in the code.

If something goes wrong, the ErrorHandler function seen in Listing 3.7
handles any WNet error. In cases where the network provider reports an error,
the ErrorHandler function calls the GetLastError function to obtain error
information.

Adding and Canceling Connections
Once you know how to determine the resources on a network, the next stage
is to make a connection. Once a connection is made, the resource can be ac
cessed through the entry in the \network directory in the Object Store. When
making a connection you must specify the resource's UNC (such as "\\my
server\myresource ") and a local name (such as "my local"). Once the
connection is made, the local name can be used to access resources (such as
"\network\mylocal \myfile. txt ").

Unlike Windows 98/NT/2000, remembered connections are not reestab
lished automatically in Windows CE when the device is next powered-on. You
can, however, find out about remembered connections by accessing the
"\HKEY_Local_Machine\Comm\redir\connections" key in the registry
(see Chapter 4 for information on accessing the registry).

Listing 3.8 shows how to call WNetAddConnection3 to make a connec
tion by specifying the UNC and local name.

Adds a network connection

void Listing3_8()

TCHAR szUNCPath[MAX_PATH + 1];
TCHAR szLocalName[MAX_PATH + 1];
NETRESOURCE nr;

62 Chapter 3 Object Store, Directory, and Network Operations

if(!GetTextResponse(_T("Enter UNC to Connect to:"),
szUNCPath, MAX_PATH))

return;
if(!GetTextResponse(_T("Enter Local Name:"),

szLocalName,· MAX_PATH))
return;

nr.dwType = RESOURCETYPE_DISK;
nr.lpRemoteName = szUNCPath;
nr.lpLocalName = szLocalName;
II Microsoft Network is only provider
nr.lpProvider = NULL;
if(WNetAddConnection3(hWnd, &nr, NULL,

NULL, CONNECT_UPDATE_PROFILE) != NO_ERROR)
cout << _T ("Error adding connection: ")

<< GetLastError() << endl;

The WNetAddConnection3 function is passed a NETRESOURCE structure
initialized with the type of resource to connect (RESOURCETYPE_DISK), and
strings containing the UNC and the local name. The provider name must be set
to NULL, since only Microsoft networks are supported. WNetAddConnection3
ignores the other NETRESOURCE members.

WNetAddConnection3-Adds a connection to a shared resource

WNetAddConnection3

HWND hWnd

LPNETRESOURCE
netResource

LPTSTR password

LPTSTR userName

DWORD flags

DWORD Return Value

Handle to a window used as a parent when displaying
dialog boxes (may be NULL).

Pointer to a NETRESOURCE structure holding information
about the resource with which to connect.

Password.

User name.

Use CONNECT_UPDATE_PROFILE to remember this
connection, otherwise O.

ERROR_SUCCESS indicates success.

In Listing 3.8 the Password and Username parameters in WNetAddCon
nection3 are passed NULL values, indicating that the default user name and
password will be used. The last parameter is passed CONNECT_UPDATE_PRO
FILE, which causes the registry to be updated to store the UNC and local name
for the connection.

Listing 3.9 shows how to disconnect from a network connection. The
function prompts the user for the local or UNC name of the connection to be
broken, and a call is made to WNetCancelConnection2.

Adding and Canceling Connections

MMftlJM Disconnects a network connection

void Listing3_9()
{

TCHAR szPath[MAX_PATH + l];
if(!GetTextResponse(

_T("Enter UNC or Local Name to disconnect:"),
szPath, MAX_PATH))

return;
if(WNetCancelConnection2(szPath,

CONNECT_UPDATE_PROFILE, TRUE)
!= ERROR_SUCCESS)

cout << _T("Error disconnecting: ")
<< GetLastError();

63

WNetConce!Connection2-Concels a connection to a shored resource

WNetCancelConnection2

LPTSTR name

DWORD flag

BOOL force

DWORD Return Value

Local name of the resource.

CONNECT_UPDATE PROFILE removes connection infor
mation from the registry, otherwise O.

TRUE to force disconnection even if resources are in use.

NO_ERROR on success.

Adding and Canceling Connections With Dialogs
The WNetConnectionDialogl function can be used to prompt the user with
a dialog for the UNC and local name, and then to make a connection using the
supplied information. The dialog displayed by Windows CE is not particularly
friendly, since it does not allow browsing. Listing 3.10 shows how the dialog
can be displayed and a connection made.

Adds a network connection using a dialog box

void Listing3_10()
{

CONNECTDLGSTRUCT cs;
DWORD dwResult;
NETRESOURCE nr;

nr.dwType = RESOURCETYPE_DISK;
nr.lpRemoteName = NULL;
nr.lpLocalName = NULL;
nr.lpProvider = NULL;

64 Chapter 3 '* Object Store, Directory, and Network Operations

cs.cbStructure = sizeof(cs);
cs.hwndOwner hWnd;
cs.lpConnRes
cs.dwFlags

&nr;
0;

dwResult = WNetConnectionDialogl(&cs);
if(dwResult == OxFFFFFFFF)

cout << _T("User cancelled") << endl;
else if(dwResult != WN_SUCCESS)

cout << _T("Error connecting: ") << dwResult
<< endl;

Two structures must be initialized. The NETRESOURCE structure specifies
the type of connection to make. The CONNECTDLGSTRUCT structure points to
the NETRESOURCE structure, and also specifies the handle of the window that
will own the connection dialog.

WNetConnectionDialog I-Displays a network connection dialog

WNetConnectionDialogl

LPCONNECTDLGSTRUCT
ConnectStruct

DWORD Return

Pointer to the CONNECTDLGSTRUCT structure, which
establishes the dialog parameters.

ERROR_SUCCESS indicates success. OxFFFFFFFF

indicates that the user canceled the dialog box.

The WNetDi$connectDialog function displays a list of all connections
and allows the user to select one for disconnection. Listing 3.11 shows a call
to this function.

1@581M Disconnects a network connection using a dialog box

void Listing3_11()
{

DWORD dwResult;

dwResult = WNetDisconnectDialog(hWnd, 0);
if(dwResult == OxFFFFFFFF)

cout << _T("User cancelled dialog") << endl;
else if(dwResult != NO_ERROR)

cout << _T ("Error disconnecting: ")
<< GetLastError();

Adding and Canceling Connections

WNetDisconnectDialog-Displays a network disconnection dialog

WNetDisconnectDialog

HWND hwnd

DWORD dwType

DWORD Return Value

Parent window for disconnect dialog.

Ignored, pass as zero.

ERROR_SUCCESS indicates success. OxFFFFFFFF

indicates that the user canceled the dialog box.

65

The WNetDisconnectDialogl function gives you more control over the
disconnection, such as allowing the disconnection even if resources are being
used. This function is passed a DISCDLGSTRUCT structure, and is described in
the next section.

Using Network Printers
Windows CE provides default support for PCL (Printer Control Language) print
ers. This support includes using printers located on a network. Connections
can be made to network printers using the WNetAddConnection3 function.
The local name results in an entry being made in the \network directory in
the Object Store. Listing 3.12 shows how to map a printer to a local name.

MfflidlfM Maps a printer to a local name

void Listing3_12()
{

TCHAR szUNCPath[MAX_PATH + 1], szLocal[MAX_PATH + 1];
NETRESOURCE nr;

if(!GetTextResponse(
_T("Enter Printer UNC to Connect to:"),

szUNCPath, MAX_PATH))
return;

if(!GetTextResponse(
_T("Enter Local name for printer:"),

szLocal, MAX_PATH))
return;

nr.dwType = RESOURCETYPE_PRINT;
nr.lpRemoteName = szUNCPath;
nr.lpLocalName = szLocal;
II Microsoft Network is only provider
nr.lpProvider =NULL;
if(WNetAddConnection3(hWnd, &nr, NULL,

NULL, CONNECT_UPDATE_PROFILE) != NO_ERROR)
cout << _T ("Error adding Printer connection: ")

<< GetLastError() << endl;

66 Chapter 3 • Object Store, Directory, and Network Operations

Once mapped, the local name can be used to specify a network printer.
For example, if the shared printer 11 \ \myserver\myprinter 11 is mapped
to the local name 11 PCLPrint 11 , the printer can be referenced by the name

11 \network\PCLPrint 11 •

Listing 3.13 shows how to disconnect from a network printer resource
using the function WNetDisconnectDialogl.

l!MlifM Disconnects from network printer

void Listing3_13()
{

DWORD dwResult;
DISCDLGSTRUCT ds;

TCHAR szUNCPath[MAX_PATH + l];

if(!GetTextResponse(
_T("Enter Printer UNC to disconnect from: 11),

szUNCPath, MAX_PATH))
return;

ds.cbStructure = sizeof(ds);
ds.hwndOwner = hWnd;
ds.lpLocalName = NULL;
ds.lpRemoteName = szUNCPath;
ds.dwFlags = DISC_NO_FORCE ;
dwResult = WNetDisconnectDialogl(&ds);
if(dwResult != NO_ERROR)

cout << _T ("Error disconnecting: ")
<< GetLastError();

The DISCDLGSTRUCT is initialized to specify the UNC of the printer from
which to disconnect. A dialog will only be displayed if an error occurs, and the
owner window handle is provided. The connection will not be broken if the
printer is currently in use since the DISC_NO_FORCE flag is used.

WNetDisconnectDialog I-Disconnects from a network resource

WNetDisconnectDialogl

LPDISCDLGSTRUCT
DiscDlgStruc

DWORD Return Value

Getting User Names

Long pointer to the DISCDLGSTRUCT data structure,
which specifies the behavior for the disconnect attempt.

ERROR_SUCCESS indicates success.

You can retrieve the current user's name or the name used to connect to any
network resource using the WNetGetUser function as shown in Listing 3.14.

Adding and Canceling Connections

M@fi8(M Lists security details for network connection

void Listing3_14()
{

DWORD dwLen = 50;

TCHAR szConnection[MAX_PATH + 1];
TCHAR szUser[Sl];

if(!GetTextResponse(_T("Enter connection to list:"),
szConnection, MAX_PATH))

return;

if(WNetGetUser(szConnection, szUser, &dwLen)
!= ERROR_SUCCESS)

cout << _T("Error getting user information: ")
<< GetLastError() << endl;

else
cout << szConnection

<< _T(" connected as user ")
<< szUser << endl;

67

WNetGetUser-Get the name of the current user or a resource's owner

WNetGetUser

LPTSTR localName

LPTSTR userName

LPDWORD bufferSize

DWORD Return Value

Name of the local resource, or NULL for default username

Buffer to hold the username

The size of the userName buffer

Returns ERROR_SUCCESS on success

If you pass zero or NULL in for the localName parameter, the function
returns the name of the current user. If you pass in a device name, the function
returns the name used to attach to the device when WNetAddConnection3
was called. The function returns an error code, or you can retrieve the error
code with GetLastError.

Listing Current Connections
Listing 3.15 uses FindFirstFile and FindNextFile to iterate through the
local connection names in the \network directory. These entries represent the
active connections, and WNetGetConnection is used to determine the UNC
to which the local name refers. This code will only show the active connections,
since Windows CE will not automatically reestablish the remembered connec
tions. You can write code to list the remembered connections by listing the

68 Chapter 3 • Object Store, Directory, and Network Operations

registry entries under the key "\HKEY_Local_Machine\Corrun\redir\con
nections" (see Chapter 4).

MM1WIJW Lists current connections

void PrintConnectionData(WIN32_FIND_DATA* lpFD)
{

TCHAR szRemoteName[MAX_PATH + 1];
DWORD dwSize = MAX_PATH;

cout << _T ("Connection: ")
<< lpFD->cFileName;

if(WNetGetConnection(lpFD->cFileName,
szRemoteName, &dwSize) == NO_ERROR)

cout << _T(" to ") << szRemoteName << endl;
else if(GetLastError() == ERROR_CONNECTION_UNAVAIL)

cout << _T(" not currently connected.");
else

cout << _T(" Error calling WNetGetConnection ")
<< GetLastError() << endl;

void Listing3_15()
{

HANDLE hFindFile;
WIN32_FIND_DATA fdData;
II get first file
hFindFile = FindFirstFile(

_T("\\network*.*"), &fdData);
if(hFindFile != INVALID_HANDLE_VALUE)
{

PrintConnectionData(&fdData);
while(FindNextFile(hFindFile, &fdData))
{

PrintFindData(&fdData);

FindClose(hFindFile);

else if(GetLastError() == ERROR_NO_MORE_FILES)
cout << _T ("No shares") ;

else
cout << _T ("Call to FindFirstFile failed: ")

<< GetLastError();

The function WNetGetConnection is passed the local file name (in
lpFD->cFilename), and returns the UNC name in a character buffer.

Conclusion 69

WNetGetConnection-Gets the UNC for a connection given the local name owner

WNetGetConnection

LPCTSTR LocalName Long pointer to a null-terminated string that specifies the local name of the
network resource. Set up this resource with the WNetAddConnection3
function.

LPTSTR RemoteName Long pointer to a buffer that receives the UNC.

LPDWORD Length Long pointer to a variable that specifies the size, in characters, of the buffer
pointed to by the lpRemoteName parameter. If the function fails because
the buffer is not big enough, this parameter returns the required buffer size.

DWORD Return Value ERROR_SUCCESS on success.

Conclusion
There are many different and interesting ways to use the Object Store, Direc
tory, and WNet functions described in this chapter. For example, you might want
to make a program that automatically copies files from your company network
into the Object Store, or onto a storage card. Or you might want to create a Find
program that searches every directory on every share on every machine on the
network. You might also want to create specialized applications that connect to
specific drives during a run and then disconnect from them automatically to
prevent users from accessing the drives randomly. You can create any of these
capabilities using the functions described in this chapter.

Property Databases and the Registry

Property databases in Windows CE allow your applications to store structured
data in records. The data is stored in properties, which are also called "fields"
or "items." Each property has a defined data type, such as 'two-byte integer',
'character string', and so on. The major difference between Windows CE prop
erty databases and more traditional databases on desktop or server PCs is that
records in a database can have varying numbers of properties.

Property databases are located in the Object Store in the "database" folder.
You will find standard databases in this directory, such as "Appointments Data
base," "Contacts Database," and "Tasks Database," together with databases cre
ated by your own applications. Since Windows CE 2.10, databases can also be
placed in storage cards using database volumes. Database volumes are files with
a CDB extension.

Each property database has a unique Object ID (OID) (just like files and
directories) in the object store. Records in property databases also have OIDs,
since they are object store items in their own right. Each property in a record
is given an integer identifier by the programmer that is unique within the rec
ord but may also be used by properties in other records to indicate instances of
the same property. Data stored in property databases is, by default, compressed.

The Win32 API allows you complete control over property databases, in
cluding creating, opening, and accessing of data, and creation of up to four sort
orders (indexes) to speed up searching and retrieval. Analogous Remote API
(RAPI) functions allow you to access a device's property databases from a desk
top PC (see Chapter 10).

Property databases are available on most implementations of Windows CE
and are generally the first choice for storing structured data that can be organ
ized into properties and records. Property databases can be as large as the avail
able free space. Each property can be up to CEDB_MAXPROPDATASIZE (65,471)

70

Da!abase Volumes 71

bytes. The maximum record size is only limited by the amount of space used
by the property database for logging (which implements transactions to allow
roll-back in the event of failure). This value, CEDB_MAXRECORDSIZE, is set at
131,072 bytes.

Data is central to most applications. The data should be placed in a data
base whenever it can be sensibly structured into fields and records. The possi
bilities are:

• Creating a simple property database to store data locally on a Windows CE
device

* Opening and reading standard databases, such as the contacts database
* Sharing data between desktop databases and CE property/CDB databases,

perhaps with automatic synchronization of data
111 Manipulating property databases on a Windows CE device directly from

a desktop PC using the Remote API (RAPI, see Chapter 10)

While property databases are used to store structured, or semi-structured,
data, the registry is used to store small amounts of application-specific data,
such as settings or preferences. This chapter looks at accessing data items in the
registry. The registry is included in this chapter since, just like property data
bases, it is an integral part of the object store. The registry is not stored in a file,
as is the case with Windows NT/98/2000.

Database Volumes
Database volumes allow property databases to be created outside the Object
Store on devices such as storage cards. A property database is an integrated
part of the object store-each record has its own OID. To replicate this behav
ior in other storage devices, a file (a "database volume") needs to be created,
and one or more property databases will be created in that file. Database vol
umes usually have a CDB extension.

Since database volumes are simply files, the user cannot use Explorer to
view the databases in the volume. CDB files are not necessarily hidden and can
be deleted by a user. Microsoft Pocket Access can be used to open a CDB file
and view the contents.

Database volumes need to be "mounted" before the databases in the vol
ume can be accessed. Finally, when all the databases are closed, the database
volume should be unmounted.

Creating and Mounting Database Volumes
The function CEMountDBVol is used both to create new volumes and to open
existing volumes. Listing 4.1 shows how to create a new database volume and
mount the volume on a storage device called "Storage Card."

72 Chapter 4 s Property Databases and the Registry

Creates a database volume

void Listing4_1()
{

CEGUID pceguid;

if(!CeMountDBVol(&pceguid,
_T ("\\Storage Card\ \MyVol ume. CDB") ,
CREATE_NEW))

cout << _T("Could not create database volume")
<< endl;

else
cout << _T("Database volume created") << endl;

CEMountDBVol-Creates and/or opens a database volume

CEMountDBVol

PCEGUID pceguid

LPWSTR lpszDBVol

DWORD dwFlags

BOOL Return Value

Pointer to a CEGUID that uniquely identifies the open
database volume

String containing the path and CDB filename for the
database volume

Flags specifying how the volume will be created/opened

Returns TRUE on success

The first argument, pceguid, is used to return a CEGUID value that is used
to reference the newly created and mounted database volume. The CEGUID
data type is a structure that contains four DWORD values, and although superfi
cially similar to the GUID (Globally Unique Identifier) used in COM and ActiveX
(see Chapter 14), its use is restricted to Windows CE databases.

The constant values and semantics for dwFlags are the same as the dw
CreationDisposition parameter used when opening and creating files us
ing CreateFile (see Chapter 2). You need to take care when using CREATE_
ALWAYS and TRUNCATE_EXISTING since all databases in an existing volume
can be deleted.

* CREATE_NEW-Create a new volume, fail if the volume already exists.
* CREATE_ALWAYS-Create a new volume, overwriting the volume if it al

ready exists.
* OPEN_EXISTING-Open an existing volume, and fail ifthe volume does

not exist.
w OPEN_ALWAYS-Open an existing volume, and if it does not exist, create

the volume.
* TRUNCATE_EXISTING-Open an existing volume and empty the con

tents. Fail if the volume does not exist.

Flushing a Database Volume 73

You can call GetLastError to determine the error code if the call to CE
MountDBVol fails. If the function fails, pceguid will contain an invalid value.
This can be tested using the CHECK_INVALIDGUID macro, which takes a pointer
to the CEGUID.

if (CHECK_INVALIDGUID(&pceguid))
cout << _T("Invalid CEGUID");

else
cout << _T ("Valid CEGUID");

Mounting an existing volume simply requires changing the dwFlags value:

CeMountDBVol(&pceguid,
_T ("\\Storage Card\ \MyVolume. CDB''),
OPEN_EXISTING);

Unmounting a Volume
You will need to unmount the database volume by calling CeUnmountDBVol
once you have finished accessing databases in the volume.

if(!CeUnmountDBVol(&peceguid))
cout << _T ("Volume unmounted");

else
cout << _T ("Volume could not be unmounted");

CeUnmountDBVol-Unmounts a mounted database

CeUnmountDBVol

PCEGUID pceguid Pointer to the CEGUID for an open database volume

BOOL Return Value Returns TRUE if database volume is unmounted

A reference count is maintained for each volume, and this is incremented
whenever an application mounts the volume. The volume is only unmounted
when the reference count returns to zero, which happens when the last appli
cation unmounts the volume.

Flushing a Database Volume
All writes to a database volume are cached to improve performance. Changes
to databases held in the cache will be lost if the device is reset, unless the cache
is written out to the object store or storage device. Flushing occurs when the
database volume is unmounted, or when the CeFlushDBVol function is called.

74 Chapter 4 e Property Databases and the Registry

if(CeFlushDBVol(&pceguid))
cout << _T("Flushed!");

else
cout << _T("Could not flush database volume");

Mlf II CeFlushDBVol-Flushes cached writes

CeFlushDBVol

PCEGUID pceguid

BOOL Return Value

Pointer to the CEGUID for the open database volume to
be flushed

Returns TRUE if database volume is flushed

You should not call CeFlushDBVol too frequently since the performance of
your application will degrade. Call it after making significant changes to data
bases, especially if you are keeping the database volume mounted for a long
period of time.

Listing Mounted Database Volumes
The CeEnumDBVolumes function can be used to list the database volumes
mounted by all applications running on a Windows CE device (Listing 4.2).

Lists Mounted Database Volumes

void Listing4_2()
{

CEGUID ceguid;
TCHAR szVolumeName[MAX_PATH + l];

CREATE_INVALIDGUID(&ceguid);
while(CeEnumDBVolumes(&ceguid, szVolumeName, MAX_PATH))
{

cout << _T ("Mounted vol: •)
<< szVolumeName << endl;

CeEnumDBVolumes-Lists all mounted volumes

CeEnumDBVolumes

PCEGUID pceguid

LPWSTR lpBuf

DWORD dwNumChars

BOOL Return Result

Pointer to a CEGUID value, which is set to invalid for the
first call

Pointer to a string buffer that receives the CDB file and
path name

Size of lpBuf in characters

Returns TRUE if enumeration was successful

Properties 75

The pceguid argument must be set to an invalid value for the first call,
and calling the CREATE_INVALIDGUID macro does this by putting "-1" values
in each byte of the CEGUID. The function returns the CEGUID of an open data
base volume, and this CEGUID value is passed into the next CeEnumDBVolumes
call to get information on the next mounted database volume.

The enumeration will generally return "SystemHeap" as the first mounted
database volume-this represents the default database volume contained in
the object store and has a special CEGUID with "O" values in each byte. The
pceguid returned from calling CeEnumDBVolumes can be tested for being the
system heap by using the CHECK_SYSTEMGUID macro.

if(CHECK_SYSTEMGUID(&ceguid))
cout << _T("Object Store database volume!")

<< endl;

Properties
Properties are used to store data, and are defined by two characteristics:

e A unique numeric property identifier for the field. This is equivalent to
field names in standard databases, and the same value is used for the
same property in all records.

oo Data type, a constant defining the type of data held in the property. The
allowed values are shown in Table 4.5.

Property types and constants

Constant C data type Description

CEVT_I2 short Two-byte integer

CEVT_UI2 USHORT Unsigned two-byte integer

CEVT_I4 long Four-byte integer

CEVT_UI4 UL ONG Unsigned four-byte integer

CEVT_FILETIME FILETIME Structure containing date/time

CEVT LPWSTR LPWSTR Pointer to Unicode string

CEVT_BLOB CEBLOB Bina1y large-object structure

CEVT_BOOL BOOL True/False value

CEVT_R8 double Eight-byte floating point

The property identifier and data type are combined together in a ULONG
value to define the CEPROPID for the property. For example,

const CEPROPID propCompany = MAKELONG(CEVT_LPWSTR, 100);

7 6 Chapter 4 e Property Databases and the Registry

You can choose any value for the property identifier, as long as it is unique
for the properties in the database.

A property in a database is accessed through the CEPROPVAL structure:

typedef struct _CEPROPVAL
CEPROPID propid;
WORD wLenData;
WORD wFlags;
CEVALUNION val;
CEPROPVAL;

typedef CEPROPVAL *PCEPROPVAL;

The propid member is assigned the CEPROPID value created for the
field, as shown above. The val member is a union used to store the value as
sociated with the property. The member wLenData is not used, and wFlags
is used when property values are retrieved or deleted.

So, you might write the following code to create a CEPROPVAL structure
ready for writing to the database.

CEPROPVAL propValCompany;

propValCompany. val. lpwstr = _T ("My Company");
propValCompany.propid propCompany;
propValCompany.wFlags = O;

Sort Orders
Property databases can have sort orders (which are really indexes) associated
with up to CEDB_MAXSORTORDER properties to speed up retrieval-this con
stant is currently defined as 4. Since the number of sort orders is limited, you
need to choose carefully which properties ta index-properties that are used
to filter or select records are the best candidates.

Sort orders are specified when the database is created using an array of
SORTORDERSPEC structures:

typedef struct _SORTORDERSPEC
PEGPROPID propid;
DWORD dwFlags;
SORTORDERSPEC;

The prop id member specifies the property to be indexed, and dwFlags
specify how to index. Four values can be used to specify sort orders (Table 4.6).

These flags can be combined, for example CEDB_SORT_DESCENDING I
CEDB_SORT_CASEINSENSITIVE.

Creating a Property Database 77

Constants for index flags

Constant Purpose

CEDB SORT_DESCENDING

CEDB_SORT_CASEINSENSITIVE

CEDB_SORT_UNKNOWNFIRST

Sort order is descending. Default is ascending.

The sort order is case-insensitive. Only valid for strings.

Records that don't have the property value are ordered at the start
of the record list.

CEDB SORT_GENERICORDER Sort order is ascending, and case-sensitive, with records that don't
contain the property value ordered at the end of the record list.

(Default sorting) Use the value 0 to specify default sorting.

For example, if you wanted to create two sort orders for a database on
company name and company number, you would write:

const CEPROPID propCompany = MAKELONG(CEVT_LPWSTR, 100);
const CEPROPID propCompanyID = MAKELONG(CEVT_I4, 101);
SORTORDERSPEC sorder[2];

sorder[OJ .propid = propCompany;
sorder[O] .dwFlags = O; II default sort order
sorder[l] .propid = propCompanyID;
sorder[l] .dwFlags = O; II default sort order

Creating a Property Database
Property databases are created using the CeCreateDatabaseEx function. The
database can be created in the Object Store, or in a mounted database volume.
Listing 4.3 creates a database in the Object Store. The CREATE_SYSTEMGUID
macro is used to retrieve the database GUID for the Object Store. Databases can
be created in mounted database volumes by passing the CEGUID returned when
calling CEMountDBVol.

M!fflMfM Creates a database

const CEPROPID propCompany MAKELONG(CEVT_LPWSTR, 100);
const CEPROPID propCompanyID = MAKELONG(CEVT_I4, 101);

void Listing4_3()
{

CEOID ceDB;
CEGUID ceObjStore;
CEDBASEINFO ceDBinfo;

78 Chapter 4 "' Property Databases and the Registry

II initialize structure
ceDBinfo.dwFlags =

CEDB_VALIDNAME I
CEDB_VALIDSORTSPEC
CEDB_VALIDTYPE;

wcscpy(ceDBinfo.szDbaseName, _T("Company"));
II arbitary database type identifier
ceDBinfo.dwDbaseType = 19500;
II number of sort orders
ceDBinfo.wNumSortOrder = 2;
II setup two sort orders
ceDBinfo.rgSortSpecs[OJ .propid = propCompany;
ceDBinfo.rgSortSpecs[OJ .dwFlags = O;
ceDBinfo.rgSortSpecs[l] .propid = propCompanyID;
ceDBinfo.rgSortSpecs[l] .dwFlags = O;

CREATE_SYSTEMGUID(&ceObjStore);
ceDB = CeCreateDatabaseEx(&ceObjStore, &ceDBinfo);
if(ceDB ==NULL)

cout << _T("Could not create database");
else

cout << _T("Database created");

CeCreateDatabaseEx-Creates a property database

CeCreateDatabaseEx

PCEGUID pceguid

CEDBASEINFO * lpCEDBinfo

CEOID Return Value

Pointer to a CEGUID specifying the database
volume

Pointer to the CEDBASEINFO structure defining
the database

Returns NULL for failure, or a CEOID represent
ing the new database

The CEDBASEINFO structure contains members that define the charac
teristics of the database:

typedef struct _CEDBASEINFO
DWORD dwFlags;
WCHAR szDbaseName[CEDB_MAXDBASENAMELEN];
DWORD dwDbaseType;
WORD wNumRecords;
WORD wNumSortOrder;
DWORD dwSize;
FILETIME ftLastModified;
SORTORDERSPEC rgSortSpecs[CEDB_MAXSORTORDER];
CEDBASEINFO;

Member

dwFlags

szDBaseName

dwDbaseType

wNumRecords

wNumSortOrder

dwSize

ftLast Modified

rgSortSpecs

Opening and Closing Property Databases 79

The structure is also used when opening databases and changing the
database using CeSetDatabaseinfoEx. The members are shown in Table 4.8.

CEDBASEINFO structure members

Description

Flags indicating which members have valid values:
CEDB_VALIDMODTIME
The ftLastModified member is valid.
CEDB_VALIDNAME
The szDbaseName member is valid.
CEDB_VALIDTYPE
The dwDbaseType member is valid.
CEDB_VALIDSORTSPEC
The rgSortSpecs member is valid.

Name of the database to create. Maximum length is CEDB_MAXDBASENAMELEN,
currently 32.

Type identifier for database. Each type of database you create should have
a different identifier.

Returns the number of records in the database. Not used when creating the
database.

Number of sort orders to be created.

Size, in bytes, of the database. Not used when creating the database.

Time when database was last modified.

Array of sort order specifications.

In Listing 4.3 three flags (CEDB_VALIDNAME, CEDB_VALIDSORTSPEC, and
CEDB_ VALIDTYPE) are used to specify the members being used to define the
new database. Since you do not need to specify sort orders when the database
is created, you could omit CEDB_ VALIDSORTSPEC. However, it is best to create
sort orders at the time the database is created.

The new database will be called "Company", and will have the database
type identifier "19 5 0 0 ". This value is arbitrary, and is used to indicate the pur
pose of the database. In effect, this states that all databases with the type iden
tifier " 19 5 0 0 " will contain Company information and will contain the same
properties. You are not guaranteed uniqueness, since another programmer may
choose the same value. Note that the database is created, but not opened.

Opening and Closing Property Databases
Property databases are opened using the function CeOpenDatabaseEx. This
function returns a HANDLE to the open database, which must eventually be

80 Chapter 4 e Property Databases and the Registry

closed by calling CloseHandle. Listing 4.4 shows how to open the "Company"
database created in the previous section.

Opens a database

HANDLE Listing4_4()
{

CEGUID ceObjStore;
HANDLE hDB;
CEOID ceOidDB = O;

CREATE_SYSTEMGUID(&ceObjStore);
hDB = CeOpenDatabaseEx(&ceObjStore,

&ceOidDB,
_T ("Company") ,
propCompany, II prop.id. of sort order
CEDB_AUTOINCREMENT,
NULL); II no notifications

if(hDB INVALID_HANDLE_VALUE)
cout << _T("Could not open database") << endl;

else
cout << _T("Database Opened") << endl;

return hDB;

The ceObj Store variable is initialized to reference the Obj ectStore
using the CREATE_SYSTEMGUID macro, and this is passed to CeOpenData
baseEx function. You can specify the database to open either through its ob
ject id (in ceOidDB in Listing 4.4), or by name. You should initialize the ob
ject id variable to zero if the database's name is used.

You should specify which sort order to use when opening the database
you cannot change the sort order being used without first closing and then re
opening the database. In this case, propCompany is used.

The CEDB_AUTOINCREMENT flag specifies that the current record pointer
will be updated to refer to the next record after the current record has been read.
The final parameter (passed as NULL in Listing 4.4) is used to allow the appli
cation to receive notifications through Windows messages when other applica
tions modify records in the database. The function returns a HANDLE to the open
database (which in this case is returned to the caller), or INVALID_HANDLE_
VALUE on failure.

An open database should be closed by passing the HANDLE returned from
CeOpenDatabaseEx to the CloseHandle function, Listing 4.5.

Deleting Property Databases

CeOpenDatabaseEx-Opens an existing database

CeOpenDatabaseEx

PCEGUID pceguid

PCEOID poid

LPWSTR lpszName

CEPROPID propid

DWORD dwFlags

CENOTIFYREQUEST
*pRequest hwndNotify

Mounted Database Volume or Object Store CEGUID.

Pointer to the database's Object ID. O if lpszName is specified.

Name of database to open. NULL if po id is specified.

Property ID of sort order to use on opened index.

0, or CEDB_AUTOINCREMENT for automatic moving to next record.

Pointer to CENOTIFICATION structure, or NULL for no notification.

81

HANDLE Return Value Returns HANDLE to open database, or INVALID_HANDLE_ VALUE on failure.

MffliMIM Closes a database

II ***Listing 4.5
II
II Closes database specified by object identifier

void Listing4_5(HANDLE hDB)
{

if(!CloseHandle(hDB))
cout << _T("Could not close database");

else
cout << _T("Database closed");

You will need to reopen the database if you want to select another sort
order. When you open a database, store the object id of the database, and use
this value to reopen the database. Using the object id is more efficient than
using the database's name.

hDB = CeOpenDatabaseEx(&ceObjStore,
&ceOidDB, II returned from prev. database open
NULL, II NULL database name
propCompany,
CEDB_AUTOINCREMENT,
NULL);

Deleting Property Databases
A property database can be deleted by calling CeDeleteDatabaseEx. This
function requires the CEGUID of the mounted database volume and the object

82 Chapter 4 e Property Databases and the Registry

identifier of the database to delete. The easiest way to obtain the object iden
tifier is to call CeOpenDatabaseEx passing in the name of the database, and
the object identifier is returned in ceOidDB, as illustrated in Listing 4.6.

Deletes a database

void Listing4_6()
{

CEGUID ceObjStore;
CEOID ceOidDB = 0;
HANDLE hDB;

CREATE_SYSTEMGUID(&ceObjStore);

hDB = CeOpenDatabaseEx(&ceObjStore,
&ceOidDB, _T ("Company") ,
0, 0, NULL);

if(hDB INVALID_HANDLE_VALUE)
cout << _T("Could not open database") << endl;

else
{

CloseHandle(hDB);
if(CeDeleteDatabaseEx(&ceObjStore, ceOidDB))

cout << _T("Database deleted") << endl;
else

cout << _T("Database not deleted") << endl;

Remember, it is important to initialize ceOidDB to zero, otherwise
CeOpenDatabaseEx will attempt to use the value as a valid database object
identifier. You cannot delete a database that is open, so ensure that you close
the database before attempting to delete it.

M@nlil1W CeDeleteDatabaseEx-Deletes a property database

CeDeleteDatabaseEx

PCEGUID pceguid

PCEOID oidDbase

BOOL Return Value

Writing Records

CEGUID of a mounted database volume

Object identifier of database to delete

Returns TRUE if database is deleted

Writing a record to a property database consists of specifying the data types,
property identifiers, and data values for each of the properties in the record,

Writing Records 83

and then calling CeWri teRecordProps to write the record. Records can have
varying numbers of properties, and new properties can be added to existing rec
ords. Listing 4.7 opens the database created in the previous sections and writes
three records.

MffftMfM Writes a record

void WriteDBRecord(HANDLE hDB, LPTSTR lpCompanyName,
long lpCompanyID, LPTSTR lpCompanyTel)

CEPROPVAL propval[4];
CEOID ceoidRec;

propval[OJ .propid = propCompany;
propval[OJ .val.lpwstr = lpCompanyName;
propval[l] .propid = propCompanyID;
propval[l] .val.lVal = lpCompanyID;
propval[2] .propid = propCompanyTel;
propval[2] .val.lpwstr = lpCompanyTel;
ceoidRec = CeWriteRecordProps(hDB,

0, II write new record
3, II number of properties
propval);

if(ceoidRec == 0)
cout << _T("Record write failed") << endl;

else
cout << _T("Record written") << endl;

void Listing4_7()
{

HANDLE hDB = Listing4_4(); II open database
if (hDB ! = INVALID_HANDLE_VALUE)
{

WriteDBRecord(hDB, _T("Company 1"),
1, _T("998-12311"));

WriteDBRecord (hDB, _T ("Company 2"),
2, _T("998 12312"));

WriteDBRecord(hDB, _T("Company 3"),
3, _T("998-12313"));

Listing4_5(hDB); II close database

Just like files, folders, and databases, each record has a unique object iden
tifier, and the object identifier is returned for the new record when CeWrite
RecordProps is called.

84 Chapter 4 e Property Databases and the Registry

CeWriteRecordProps-Writes a record's properties

CeWriteRecordProps

HANDLE hDbase Database handle to write properties to

CEOID oidRecord Record object identifier to update, or 0 to create new record

Number of properties to write WORD cPropID

CEPROPVAL * rgPropVal

CEOID Return Value

CPROPVAL array specifying the property identifier, data types, and
values for the properties

Returns object identifier for record, or O for failure

Reading Records
Property values can be read from a record using the CeReadRecordPropsEx
function. You can choose to read all or some of the properties associated with
a record. Listing 4.8 shows how to read all properties from all the records writ
ten in the previous section.

Reads a record

void ReadNextDBRecord(HANDLE hDB)
{

CEOID ceoidRec;
DWORD dwBuf;
CEPROPVAL *props = NULL;
unsigned short lProps;

ceoidRec = CeReadRecordPropsEx(hDB,
CEDB_ALLOWREALLOC,
&lProps,
NULL,
(LPBYTE*)&props,
&dwBuf,
NULL);

if(ceoidRec == 0)
cout << _T("Could not read record") << endl;

else
{

for (int i =0; i < lProps; i++)
{

switch (props[i] .propid)
{

case propCompany:
cout << _T (" Company: ")

<< props[i] .val.lpwstr;
break;

case propCompanyID:
cout << _T (" Company ID: ")

<< props[i] .val.lVal;
break;

case propCompanyTel:
cout << _T (" Company Tel: ")

<< props[i] .val.lpwstr;
break;

cout << endl;
LocalFree(props);

void Listing4_8()
{

Reading Records

HANDLE hDB = Listing4_4(); II open database
if(hDB != INVALID_HANDLE_VALUE)
{

ReadNextDBRecord(hDB);
ReadNextDBRecord(hDB);
ReadNextDBRecord(hDB);
Listing4_5(hDB); II close database

85

CeReadRecordPropsEx reads properties from the current database rec
ord. Each call to CeReadRecordpropsEx moves the current record pointer
to the next record, since the flag CEDB_AUTOINCREMENT was used when the
database was opened. Without this flag the code would continuously read the
first record in the database.

CeReadRecordPropsEx-Reads properties from records in a database

CeReadRecordPropsEx

HANDLE hDbase Database handle to read from.

DWORD dwFlags CEDB_ALLOWREALLOC if memory allocation is allowed, or 0.

LPWORD lpcPropID Pointer to the number of property identifiers in the array specified by
the rgPropID parameter.

CEGPROPID * rgPropID Array of property identifiers to read, or NULL for all.

LPBYTE * lplpBuffer Pointer to buffer to receive property data. Can be NULL if CEDB_ALLOW-

REALLOC is specified.

LPDWORD lpcbBuffer Specifies the size of the buffer pointed to by lplpBuffer. Returns the
actual number of bytes copied to buffer.

HANDLE hHeap Heap from which lplpBuffer was allocated. Chapter 12 describes heaps.

CEOID Return Value Returns record's object identifier, or 0 on failure.

86 Chapler 4 • Property Databases and the Registry

The major complexity in calling CeReadRecordPropsEx is deciding how
to allocate the buffer in which the property data will be returned. The easiest
way is to get CeReadRecordPropsEx to do the work: Specify the CEDE_
ALLOWREALLOC flag and pass in a NULL pointer for lplpBuffer, and Ce
ReadRecordPropsEx will do the allocation. However, in this case you must
ensure you call LocalFree to free the memory when you have finished.

In Listing 4.8 all properties are being read from the record since lpc
PropID is passed as NULL. Note that the order of properties in the returned
buffer is not necessarily the same as the order in which they were written. In
Listing 4.8 a loop is used to examine each property, matching the property iden
tifiers to the known property identifiers. Once the property identifier has been
matched, its data type is known.

You should try to reduce the number of calls you make to CeReadRec
ordPropsEx. It is much more efficient to read all the properties you need in
a single call.

Listing 4.9 shows a call to CeReadRecordPropsEx where a single prop
erty identifier is specified and the function returns a buffer containing the prop
erty data for that one property. The variable lProps is initialized with the
number of properties to read (which is one), and propsToRead is set to the
property identifier of the property to read (the company's name). The proper
ties are returned in the buffer pointed to by props in the same order in which
they are specified in propsToRead.

Reads a single property

void ReadOneProp(HANDLE hDB)
{

CEOID ceoidRec;
DWORD dwBuf;
CEPROPVAL *props = NULL;
unsigned short lProps = 1; II #properties to read
CEPROPID propsToRead;

propsToRead = propCompany; II only read company name

ceoidRec = CeReadRecordPropsEx(hDB,
CEDB_ALLOWREALLOC,
&lProps,
&propsToRead,
(LPBYTE*)&props,
&dwBuf,
NULL);

if(ceoidRec == 0)
cout << _T("Could not read record") << endl;

else
{

cout << _T (" Company: ")
<< props[OJ .val.lpwstr << endl;

Using the CEVT_BLOB Property Doto Type 87

LocalFree(props);

Using the CEVT_BLOB Property Data Type
The CEVT_BLOB data type allows binary data to be stored in a single property
value in a database record up to a maximum length of 64 KB. The CEPROP
VAL structure's val union member for BLOBs is 'blob', and this is a CEBLOB
structure:

typedef struct _CEBLOB {
DWORD dwCount;
LPBYTE lpb;

CEBLOB;

The dwCount member contains the number of bytes to store in the prop
erty, and lpb points to the data to be written. The following code fragments
show code that has been added to Listings 4.7 and 4.8 to write and read a time
stamp that records the time when the record was written. First, a new property
identifier is declared.

const CEPROPID propTimeStamp = MAKELONG(CEVT_BLOB, 103);

The property value specifies the property identifier (propTimeStamp),
and a CEBLOB structure. The CEBLOB members contain the number of bytes of
data to write (which is the size of the structure), and a pointer to the data to
be written.

propval[3] .propid = propTimeStamp;
propval[3] .val.blob.dwCount = sizeof(sysTime);
propval[3] .val.blob.lpb = (LPBYTE)&sysTime;

Reading the BLOB data is straightforward-the property returned from
calling CeReadRecordPropsEx contains the CEBLOB structure.

case propTimeStamp:
LPSYSTEMTIME lpSysTime =

(LPSYSTEMTIME)props[i] .val.blob.lpb;
cout << _T(" Record written at:")

<< lpSysTime->>wHour << _T(":")
<< lpSysTime->>wMinute << _T(":")
<< lpSysTime->>wSecond << _T(":")
<< lpSysTime->>wMilliseconds;

LocalFree(lpSysTime);
break;

It is important to note that you are responsible for the data pointed to by
the CEBLOB lpb pointer. When calling CeWri teRecordProps you should
free the data pointed to by lpb-in the sample above, the structure sysTime
is an auto variable that is deleted automatically when the function returns. Note

88 Chapter 4 * Property Databases and the Registry

CeSeekDatabase

that LocalFree is called on lpSysTime after the data returned from CeRead

RecordPropsEx has been used.

Searching for Records
The function CeSeekDatabase can be used to:

® Move to the first or last record in a property database
® Move a given number of records forward or backward from the current

record
* Move to a record with the given record object id
* Move to records based on the current sort order

Once the desired record has been located, CeReadRecordPropsEx can
be used to read properties from the record.

CeSeekDatabase -Moves to a different record in the property database

HANDLE hDatabase HANDLE to open database

DWORD dwSeekType

DWORD dwValue

LPDWORD lpdwindex

CEOID Return Value

Constant specifying how to seek (see below)

Value used when seeking using sort order or relative record position

Record number to which seek moved

Returns object identifier of database record, or O if record not found

The key to using this function is the constant value specified in dwSeek

Type. The following constants can be used to seek to absolute or relative
record positions (Table 4.14).

MMIHM Seek constants

Constant Purpose

CEDB_SEEK_BEGINNING

CEDB_SEEK_END

CEDB_SEEK_CURRENT

CEDB_SEEK_CEOID

Seek dwValue records from the start of the database.

Seek dwValue records from the end of the database.

Seek dwValue records from the current record. dwValue can be positive
or negative, but the value should be cast to a DWORD.

Seek the record whose object identifier is specified in dwValue. This is
very efficient.

Searching for Records 89

Listing 4.10 shows a call to CeReadRecordPropsEx to locate the last
record in the database.

l@fii11i Locates last record in database

void Listing4_10()
{

HANDLE hDB = Listing4_4(); II open database
DWORD dwindex;
if(hDB != INVALID_HANDLE_VALUE)
{

if(CeSeekDatabase(hDB, CEDB_SEEK_END,
0, &dwindex))

cout << _T ("Record index: ") << dwindex
<< endl;

ReadOneProp(hDB);

Listing4_5(hDB); II close database

CeSeekDatabase returns the record number of the located record, and
Listing 4.10 displays this value. The following code fragment locates the last
but one record in the database-the code seeks -1 records from the end of
the database.

CeSeekDatabase(hDB, CEDB_SEEK_END, -1, &dwindex);

Seeking by the record's object identifier (CEDB_SEEK_CEOID) is very effi
cient, so it is a good idea to store the object identifiers of records you need to
revisit, and then use CeSeekDatabase to seek using these object identifiers.

The remaining constants for dwSeekType use the sort order to locate rec
ords. When using these constants, dwVal ue is a pointer to a CEPROPVAL struc
ture that contains the value to search for. The current record pointer is left at
the end of the database if the search fails to locate a record and the function
returns 0. The constant values are shown in Table 4.15.

Mrn,llfM SeekType Constants

Constant Purpose

CEDB_SEEK_VALUEFIRSTEQUAL

CEDB_SEEK_VALUENEXTEQUAL

CEDB_SEEK_VALUESMALLER

CEDB_SEEK_VALUEGREATER

Locates the first record with the specified value

Locates the next record with the specified value
from the current record

Finds the next record with the largest value that
is smaller than the specified value

Finds the next record with a value greater than
or equal to the specified value

90 Chapter 4 * Property Databases and the Registry

Of these, CEDB_SEEK_ VALUEFIRSTEQUAL is used most frequently to lo
cate records with a specific value, and CEDB_SEEK_ VALUEFIRSTEQUAL with
CEDB_SEEK_VALUENEXTEQUAL to locate all records with a specific value.

Listing 4.11 shows how to list all records with a particular value ("Com
pany 2 ").You can run Listing 4.7 a number of times to add extra "Company 2"
records to the database.

Lists all records with the given value

void Listing4_11()
{

HANDLE hDB;
CEGUID ceObjStore;
DWORD dwindex;
CEOID ceOidDB = 0;

CREATE_SYSTEMGUID(&ceObjStore);

hDB = CeOpenDatabaseEx(&ceObjStore,
&ceOidDB,
_T ("Company"),
propCompany, II prop.id. of sort order

II no auto-increment
II no notifications

INVALID_HANDLE_VALUE)

0,
NULL);

if(hDB !=
{

CEPROPVAL propSeek;

propSeek.propid = propCompany;
propSeek.val.lpwstr = _T("Company 2");
if(CeSeekDatabase(hDB, CEDB_SEEK_VALUEFIRSTEQUAL,

do
{

(DWORD)&propSeek, &dwindex))

cout << _T ("Record index: ")
<< dwindex << endl;

ReadOneProp(hDB);
while (CeSeekDatabase(hDB,

CEDB_SEEK_VALUENEXTEQUAL,
(DWORD)&propSeek, &dwindex));

CloseHandle(hDB);

else
cout << _T("Could not open database") << endl;

The success of the do/while loop depends on how the database is first
opened.

Deleting Properties and Records 91

111 It is essential that you open the database specifying the same sort order
as you use in CeSeekDatabase (propCompany in this case).

111 Do not use CEDB_AUTOINCREMENT when opening the database, since
reading records with CeReadRecordPropsEx will skip over records that
CeSeekDatabase would otherwise locate.

Once the database is open, Listing 4.11 initializes propSeek with the
property id (propCompany) and the value to search for ("Company 2 ").The
first call to CeSeekDatabase locates the first record that matches, then Ce
SeekDatabase is called in a do/while loop to locate the remaining records.

Deleting Properties and Records
You can delete individual properties from a record using CeWri teRecord
Props, or delete all properties in the record using the function CeDelete
Record.

Listing 4.12 shows how to delete the "propCompanyTel" property from
the first database record (which is the current record when the database is
opened). The propDelete CEPROPVAL is initialized with the property id of
the property to delete. CEDB_PROPDELETE is used for wFlags, and this indi
cates that the property is to be deleted. Next, the record's object identifier must
be obtained, since this is required by CeWri teRecordProps when manipulat
ing an existing record. The easiest way to do this is to call CeSeekDatabase
to seek the current record, and this returns the current record's object identifier.

CeWri teRecordProps can then be called, passing in the record's object
identifier, the number of properties to delete (1 in this case), and a pointer to
the CEPROPVAL structure describing the properties to delete.

Deletes a property value

void Listing4_12()

HANDLE hDB = Listing4_4(); //open database

if(hDB != INVALID_HANDLE_VALUE)
{

CEPROPVAL propDelete;
CEOID oidRec;
DWORD dwindex;

propDelete.propid = propCompanyTel;
propDelete.wFlags = CEDB_PROPDELETE;
propDelete.val.lpwstr = NULL;

oidRec = CeSeekDatabase(hDB,
CEDB_SEEK_CURRENT, 0, &dwindex);

92 Chapter 4 '* Property Databases and the Registry

if(CeWriteRecordProps(hDB,
oidRec,

1, II number of properties to delete
&propDelete))

cout << _T("Property deleted") << endl;
else

cout << _T ("Could not delete property")
<< endl;

Listing4_S(hDB); II close database

An entire record can be deleted by calling CeDeleteRecord. This too
needs the record's object identifier. Listing 4.13 obtains the object identifier for
the first record in the database (which is the current record when the database
is opened), and passes this to CeDeleteRecord.

Deletes entire record

void Listing4_13()
{

HANDLE hDB = Listing4_4(); II open database

if(hDB != INVALID_HANDLE_VALUE)
{

CEOID oidRec;
DWORD dwindex;

oidRec = CeSeekDatabase(hDB,
CEDB_SEEK_CURRENT, 0, &dwindex);

if(CeDeleteRecord(hDB, oidRec))
cout << _T ("Record deleted") << endl;

else
cout << _T("Could not delete record")

<< endl;
Listing4_S(hDB); II close database

Updating Database Records
Database records are updated using the CeWri teRecordProps function. You
need to provide the record's object identifier, and this is generally obtained by
calling CeSeekDatabase. Listing 4.14 opens the company database using the
CornpanyID as the sort order. It then locates the first record with a CornpanyID
of 2, and then updates the telephone number for that record.

Updating Database Records

M@MHjM Locates and updates a record

void Listing4_14()
{

HANDLE hDB;
CEGUID ceObjStore;
DWORD dwindex;
CEOID ceOidDB = O;

CREATE_SYSTEMGUID(&ceObjStore);

hDB = CeOpenDatabaseEx(&ceObjStore,
&ceOidDB,
_T ("Company") ,
propCompanyID, II prop.id. of sort order
0, II no auto-increment
NULL); II no notifications

if(hDB != INVALID_HANDLE_VALUE)
{

CEPROPVAL propSeek, propUpdate;
CEOID ceOidRec = O;

propSeek.propid = propCompanyID;
propSeek.val.lVal = 2; II company id to seek
ceOidRec = CeSeekDatabase(hDB,

CEDB_SEEK_VALUEFIRSTEQUAL,
(DWORD)&propSeek, &dwindex);

if(ceOidRec != 0)
{

propUpdate.propid = propCompanyTel;
propUpdate.wFlags = O;
propUpdate.val.lpwstr = _T("444-99988");
if(CeWriteRecordProps(hDB,

ceOidRec, II object id to update
1, II number of properties
&propUpdate))

cout << _T("Record updated") << endl;
else

cout << _T ("Record not updated")
<< endl;

else
cout << _T("Could not locate company id 2")

<< endl;
CloseHandle(hDB);

else
cout << _T("Could not open database") << endl;

93

94 Chapter 4 '* Property Databases and the Registry

In this case a single property is updated in the record. You can pass in
an array of CEPROPVAL structures if more than one property is to be updated.
This is more efficient than calling CeWri teRecordProps many times.

Database Notifications
When opening a database you can elect to receive notifications whenever the
database or mounted database volume is changed. The last argument in Ce
OpenDatabaseEx is NULL if no notification is required, or a pointer to a CE
NOTIFYREQUEST structure specifying information on how notifications are to
be received. Notifications are normally received as a h'M_DBNOTIFICATION
message sent to a specific application window, with lParam pointing to a CE
NOTIFICATION structure. The CENOTIFIYREQUEST members are shown in
Table 4.16.

M@'ld'M CENOTIFYREQUEST structure members

Member Purpose

DWORD dwSize Size of the CENOTIFYREQUEST structure.

HWND hWnd Window handle to receive WM_DBNOTIFICATION message.

DWORD dwFlags Use CEDB_EXNOTIFICATION, 0 uses old-style notifications.

HANDLE hHeap Heap from which to allocate CENOTIFICATION structures. Use
NULL for default heap.

DWORD dwParam Programmer-supplied value passed into CENOTIFICATION

structure.

Listing 4.15 shows the setting up of notification on the Company database.
In this case, the value "9 9 9" has been selected as the value to be passed to the
CENOTIFICATION routine. You can choose any value you like, or you can ig
nore it. If you are setting up notifications on different databases and using the
same window to receive routines, you might choose different dwParam values
so you can determine which database the notifications originated from.

l!Mb8EM Sets up a notification

HANDLE g_hDBNotification = INVALID_HANDLE_VALUE;
CENOTIFYREQUEST g_cNotifyRequest;

void Listing4_15()
{

CEOID ceOidDB = O;
CEGUID ceObjStore;

Database Notifications

g_cNotifyRequest.dwSize = sizeof(CENOTIFYREQUEST);
g_cNotifyRequest.hwnd = hWnd;
g_cNotifyRequest.dwFlags = CEDB_EXNOTIFICATION;
g_cNotifyRequest.hHeap =NULL; II use default heap
II value passed to notification
g_cNotifyRequest.dwParam = 999;
CREATE_SYSTEMGUID(&ceObjStore);
g_hDBNotification = CeOpenDatabaseEx(&ceObjStore,

&ceOidDB,
_T ("Company"),
0, 0, &g_cNotifyRequest);

if(g_hDBNotification != INVALID_HANDLE_VALUE)
cout << _T("Notification set!") << endl;

else
cout << _T("Could not open database") << endl;

95

The database needs to be kept open while the application needs to re
ceive notifications. Therefore, g_hDBNotification is a global variable. The
structure g_cNotifyRequest is required in the message handle so that the
CENOTIFICATION structure can be deleted. It too must be a global variable.

The next stage is to write a message handler for WM_DBNOTIFICATION.
The lParam for this message is a pointer to a CENOTIFICATION structure con
taining information on the type of notification. The members of the CENOTI
FICATION structure are listed in Table 4.17.

MO,llM CENOTIFICATION structure members

Member Purpose

DWORD dwSize Size of the structure in bytes.

DWORD dwParam dwParam value specified in CENOTIFYREQUEST. "999" in
the above example.

UINT uType Type of notification:

CEGUID guid

CEOID oid

CEOID oidParent

DB_CEOID_CREATED
DB_CEOID_DATABASE_DELETED
DB_CEOID_RECORD_DELETED
DB CEOID_CHANGED

CEGUID of the mounted database volume.

Object Identifier of the object (e.g. record or database) that
generated the notification.

Parent Object Identifier of the object generating the notifica
tion. If the object is a record, the parent is the database.

Listing 4.16 shows a notification handler that reports the type of notification.

96 Chapter 4 a Property Databases and the Registry

l@ltfid'W Notification handler

case WM_DBNOTIFICATION:
{

CENOTIFICATION* cNote = (CENOTIFICATION*)lParam;
cout << endl << _T ("Database Notification: ");
cout << (DWORD) cNote->>dwParam << endl;
switch(cNote->>uType)
{

case DB_CEOID_CREATED:
cout << _T ("New OID object was created. ")

<< endl;
break;

case DB CEOID_DATABASE_DELETED:
cout << _T ("Database was deleted.")

<< endl;
break;

case DB_CEOID_RECORD_DELETED:
cout << _T("Record was deleted.") << endl;
break;

case DB_CEOID_CHANGED:
cout << _T("Object was modified.") << endl;
break;

CeFreeNotification(&g_cNotifyRequest, cNote);
break;
}

The function CeFreeNotification must be called each time a WM_DB
NOTIFICATION message is received. You must pass a pointer to the original
CENOTIFYREQUEST structure (which was passed to CeOpenDatabaseEx) and
the pointer to the CENOTIFICATION structure.

Notifications will stop when the database is closed by calling Close
Handle.

Listing Database Information
The functions CeFindFirstDatabaseEx and CeFindNextDatabaseEx can
be used to list all databases in a mounted database volume. You can filter for
particular database types based on the dwDbaseType values specified when
the database is created.

CeFindFirstDatabaseEx sets up the database enumeration and is
passed the handle to the mounted database volume to be enumerated, and the
dwDbaseType value specifying the type of database to filter. This value can be

Listing Database Information 97

zero to enumerate all databases. The function returns a handle which is used
when calling CeFindNextDatabaseEx, and this handle must be closed when
finished by calling CloseHandle.

Listing 4.17 shows calls to CeFindFirstDatabaseEx and CeFindNext
DatabaseEx to list all databases in the object store. The function List ing4_18
lists database information and is described later in this section.

MltttfiHM Lists databases

void Listing4_17()
{

HANDLE hDBFind;
CEGUID ceObjStore;
CEOID ceDBOid;
CREATE_SYSTEMGUID(&ceObjStore);
hDBFind = CeFindFirstDatabaseEx(&ceObjStore, 0);

if(hDBFind != INVALID_HANDLE_VALUE)
{

while((ceDBOid = CeFindNextDatabaseEx(
hDBFind, &ceObjStore)) != 0)

Listing4_18(&ceObjStore, ceDBOid);

CloseHandle(hDBFind);

else
cout << _T("Could not enumerate databases")

<< endl;

CeFindFirstDatabaseEx-/nitializes database enumeration

CeFindFirstDatabaseEx

PCEGUID pceguid

DWORD dwDbaseType

HANDLE Return Value

CEGUID of mounted database volume

Database type to filter, or O for all databases

Returns HANDLE to the enumeration or INVALID_
HANDLE_ VALUE on failure

CeFindNextDatabaseEx is called repeatedly to get information on the
first and subsequent databases. This function is passed the handle returned by
CeFindFirstDatabaseEx, and the handle to the mounted database volume.
CeFindNextDatabaseEx returns the database's object identifier.

98 Chapter 4 e Property Databases and the Registry

CeFindNextDatabaseEx-Finds next database in enumeration

CeFindNextDatabaseEx

HANDLE hEnum

PCEGUID pceguid

Handle returned by CeFindFirstDatabaseEx

Handle to mounted database volume

CEOID Return Value Returns Object Identifier of database, or O if no more
databases

CeFindNextDatabaseEx returns the object identifier for the database,
which can then be passed to CeOidGetinfoEx to get information (such as the
database name, number of records, and size) about the database. CeOidGet
InfoEx can return information on any object type in the object store including
files, directories, databases, and records. Listing 4.18 shows database informa
tion given a database object identifier.

Lists database information

void Listing4_18(CEGUID* pceObjStore, CEOID ceDBOid)
{

CEOIDINFO cdbinfo;

if(CeOidGetinfoEx(pceObjStore, ceDBOid, &cdbinfo))
{

if(cdbinfo.wObjType
{

OBJTYPE_DATABASE)

else

cout << _T("DB: ")
<< cdbinfo.infDatabase.szDbaseName;

cout << _T (" Size: ")
<< cdbinfo.infDatabase.dwSize;

cout << _T (" Recs: ")
<< cdbinfo.infDatabase.wNumRecords
<< endl;

cout << _T ("Not a database! ") << endl;

else
cout << _T("Could not get database information")

<< endl;

The CEOIDINFO structure contains the wObj Type member containing a
constant value indicating what type of object information has been returned
on, and can be one of the following values shown in Table 4.21.

Changing Database Attributes 99

CeOidGet!nfoEx-Returns information on an obiect identifer

CeOidGetinfoEx

PCEGUID pceguid

CEOID oid

CEOIDINFO * poidinf o

BOOL Return Value

CEGUID of a mounted database volume

Object identifier, such as a database object identifier
returned from CeFindNextDatabaseEx

Pointer to CEOIDINFO structure in which object
information is returned

Returns TRUE on success

MdijifjM wObiType constant value meanings

Constant Meaning

OBJTYPE INVALID

OBJTYPE FILE

OBJTYPE_DIRECTORY

OBJTYPE_DATABASE

OBJTYPE_RECORD

Invalid object identifier.

Object is a file.

Object is a directory.

Object is a database.

Object is a record.

The CEO ID INFO also contains a union of structures, with one union mem
ber for each object type. The members are CEFILEINFO, CEDIRINFO, CED
BASEINFO, and CERECORDINFO. In Listing 4.18 the CEDBASEINFO structure is
used to list the database's name, size in bytes, and number of records. The same
structure also contains information on the sort orders, the date of last modifica
tion, whether the database is compressed, and the database type.

Changing Database Attributes
When creating a database using the CeCreateDatabaseEx you take certain
decisions on how the database will be created. For example, you can specify
up to four sort orders, and whether the database will be compressed or not. The
CeSetDatabaseinfoEx function allows these attributes to be changed on ex
isting databases. The function is passed a CEDBASEINFO structure that is used
to specify the attributes that are to be changed. You should avoid changing data
bases from compressed to uncompressed, or changing the sort orders, as this
can be time-consuming.

Listing 4.19 shows using CeSetDatabaseinfoEx to rename an existing
database. First, the database is opened using CeOpenDatabaseEx to find the

l 00 Chapter 4 e Property Databases and the Registry

database's object identifier, and then is closed (a database cannot be renamed
while it is opened). Then, the CEDBASEINFO structure is initialized, setting the
dwFlags member to CEDB_ VALIDNAME to indicate that the s zDbaseName con
tains a new database name. Finally, CeSetDatabaseinfoEx is called to per
form the rename.

M@fil@M Changes database attributes

void Listing4_19()
{

CEOID ceOidDB = O;
CEGUID ceObjStore;
HANDLE hDB;
CEDBASEINFO cdbinfo;

II find oid of database
CREATE_SYSTEMGUID(&ceObjStore);
hDB = CeOpenDatabaseEx(&ceObjStore, &ceOidDB,

_T ("Company"), 0, 0, NULL);
if(hDB != INVALID_HANDLE_VALUE)
{

CloseHandle(hDB);
cdbinfo.dwSize = sizeof(CEDBASEINFO);
cdbinfo.dwFlags = CEDB_VALIDNAME;
wcscpy(cdbinfo.szDbaseName, _T("Company_new"));
if(CeSetDatabaseinfoEx(&ceObjStore,

ceOidDB, &cdbinfo))
cout << _T("Database renamed") << endl;

else
cout << _T("Could not rename database")

<< endl;

else
cout << _T("Could not open database") << endl;

MfflijiifW CeSetDatabaselnfoEx-Changes database attributes

CeSetDatabaseinfoEx

PCEGUID pceguid

CEOID oidDbase

CEDBASEINFO * pNewinfo

BOOL Return Value

CEGUID of mounted database volume

Object identifier of database to change

CEDBASEINFO structure containing details of
changes to be made

Returns TRUE on success

Using MFC Classes with Property Databases l 0 l

Using MFC Classes with Property Databases
MFC provides a set of classes that make accessing property databases easier
than calling the API function directly. Table 4.23 lists the classes and their
purpose.

M¢11fJW MFC property database classes

Class Purpose

CCeDBDatabase Encapsulates a database in the object store. Includes methods
for opening, closing, creating, and deleting a database, seeking
to records, and reading, writing, and deleting records

CCeDBEnum Enumerates the databases in the object store

CCeDBProp Encapsulates a database property

CCeDBRecord Encapsulates a database record

Since the CCeDBDatabase class does not at present support data vol
umes, you are limited to creating databases in the object store with these classes.

The best way of using the MFC property database classes is to derive a
class from CCeDBDatabase and add methods to your class that reflect how
the database will be used. For example, you may create methods such as 'Add
Cus tomer', and this in turn calls the CCeDBDatabase method 'AddRecord'.

Opening and Creating Databases
If you created a new class called CCustomer derived from CCeDBDatabase,
you might create a method called Initialize that creates the database if it
does not exist, and then opens the database.

BOOL CCustomer::Initialize()
{

CString sDBName(_T("CustomerDB"));
CCeDBProp cePropindex(CCeDBProp::Type_Long,

enPropCustomerID,
CCeDBProp: :Sort_Ascending);

if(!CCeDBDatabase::Exists(sDBName))
{

if(Create(sDBName,
45234, II database identifier
l, II number of sort properties
&cePropindex) == NULL)

return FALSE;

102 Chapter 4 e Property Databases and the Registry

II open the database
return Open(sDBName, &cePropindex, NULL);

This code uses a CCeDBProp object called cePropindex to define the
single property to be used as a sort order. The CCeDBProp constructor is passed

® The data type (using CCeDBProp: : Type_Long; which is an enum)
® The property id (another enum declared in CCustomer defining the

properties used for this database)
* The sort order, CCeDBProp: : Sort_Ascending

The CCeDBDatabase method Exists tests whether the database exists,
and if it does not, calls CCeDBDatabase: : Create to create it. This method is
passed

"' The database name
"' The database identifier
"' The number of sort properties
* A pointer to a CCeDBProp object(s) defining the sort indexes

Finally, the CCeDBDatabase: : Open method is called to open the data-
base, and this is passed

* The name of the database
"' The sort order to be used when opening the database
"' A CWnd pointer for a window that will receive notification messages, or

NULL for none

The CCeDBDatabase:: Close method can be used to close the database
at any time. However, the CCeDBDatabase will close the database automati
cally. This method takes no parameters.

Reading and Writing Records
Records are added through the CCeDBDatabase: :AddRecord method. This
is passed a CCeDBRecord object that contains one or more CCeDBProp ob
jects containing the data to be added. The following listing shows a function
that will add a single record with two data items, a customer identifier and cus
tomer name.

BOOL CCustomer::AddCustomer(LONG lCustomerID,
CString* sCustomerName)

CCeDBRecord rec;
CCeDBProp props[2];
props[OJ = CCeDBProp(lCustomerID, enPropCustomerID);
props[l] = CCeDBProp((LPWSTR) (LPCTSTR)*sCustomerName,

enPropCustomerName);

Using MFC Classes with Property Databases l 03

if(!rec.AddProps(props, 2))
{

AfxMessageBox(_T("Could not add properties "));
return FALSE;

if(!AddRecord(&rec))
{

AfxMessageBox(_T("Could not add record to DB"));
return FALSE;

return TRUE;

The array of CCeDBProp objects is initialized by constructing a CCeDBProp ob
ject for each data item to be written out to the record. The class CCeDBProp
has overloaded constructors for each data type supported by property data
bases, and is passed the data as the first parameter and the property identi
fier as the second. Note that since CCeDBProp does not have an operator for
CString, two casts are necessary. The first cast, to LPCTSTR, accesses the
CString's internal string buffer, and then this is cast to LPWSTR to select the
correct CCeDBProp constructor. The class CCeDBProp also contains methods
for setting values and property identifiers, such as SetLong and SetString.

The properties in the property array 'props' are then added to the CCe
DBRecord object through the CCeDBRecord: : AddProps method. Finally,
the record is added to the database using the CCeDBDatabase: : AddRecord
method.

The CCeDBDatabase class maintains a current record pointer, and the
following method reads the current record, returning the customer identifier
and name.

BOOL CCustomer: :ReadCurrCustomer(LONG* lCustomerID,
CString* sCustomerName)

CCeDBRecord rec;
CCeDBProp* pPropRecordset;

if(!ReadCurrRecord(&rec))
{

AfxMessageBox(_T("Could not read record"));
return FALSE;

pPropRecordset =
rec.GetPropFromident(enPropCustomerID);

ASSERT(pPropRecordset !=NULL);
*lCustomerID = pPropRecordset->>GetLong();

pPropRecordset =
rec.GetPropFromident(enPropCustomerName);

l 04 Chapter 4 e Property Databases and the Registry

ASSERT(pPropRecordset !=NULL);
*sCustomerName = pPropRecordset->>GetString();

return TRUE;

The current record is read into a CCeDBRecord object using the CCeDB
Database: : ReadCurrRecord method. The CCeDBRecord: : GetProp
Fromident returns a pointer to a CCeDBProp object containing data for the
given property identifier. Note that ASSERT is used to test that a non-NULL
pointer is actually returned. The data value can be returned from the CCeDB
Prop object using the appropriate 'Get' method for the data type contained in
the property. In these two cases GetLong and Get String are used. Note that
GetString returns LPWSTR and not a CString.

Seeking to Records
The CCeDBDatabase class supports 'Seek' methods to move the current
record, including SeekFirst, SeekFirstEqual, SeekLast, SeekNext,
SeekNextEqual, SeekPrev, SeekToindex, SeekToRecord, SeekValue
Greater, and SeekValueSmaller. The variable CCeDBDatabase: :m_bEOF
is used to check for end-of-database. However, the variable is only updated
when using SeekNext, or when reading records sequentially with m_bAuto
SeekNext set to true (which automatically moves to the next record for each
ReadCurrRecord).

Deleting Records and Properties
The CCeDBDatabase: : DeleteCurrRecord method deletes the current rec
ord, including all the property values associated with the record. This method
takes no arguments. The method CCeDBDatabase: : DeleteCurrRecord
Props deletes one or more properties from the current record. The number of
properties to be deleted is passed as the first parameter, and the second pa
rameter contains an array of CCeDBProp properties. These property objects
need only contain the property identifiers, not the values themselves.

Serialization and BLOBs
When using MFC you probably use your own C++ class objects to store data,
or perhaps the MFC collection classes. If this data needs to be made persistent
(that is, stored permanently when your application terminates) you can serial
ize a C++ class out to a BLOB in a property database. Then, when your appli
cation is run again sometime later, the BLOB can be de-serialized, and the C++
classes recreated with the original data. This saves you from having to create a
property for each and every piece of data that needs to be saved.

Using MFC Classes with Property Databases l 05

The technique described here will also work if your class contains mem
bers that are themselves class objects so long as these class objects also imple
ment serialization. Most of the MFC classes, including the collection classes,
support serialization, and so the data associated with these classes will be se
rialized when your class is serialized. You need to take care that the amount of
data in the classes being serialized is no larger than the maximum size of a BLOB
in the property database, which is currently 64 KBs.

First, you will need to ensure that your C++ class derives from CObj ect
(the base MFC class), and has serialization enabled. The class declaration should
look like the following.

class CMySerialClass
{

public:

public CObject

DECLARE_SERIAL(CMySerialClass)

CMySerialClass ();
virtual -CMySerialClass ();
II implement standard serialization function
void Serialize(CArchive& archive) ;
II sample class data
UINT nDatal, nData2;
II other class methods ...

} ;

In this case, the class uses the DECLARE_SERIAL macro to implement the
necessary class members to support serialization, and declares an override to
the Serialize method.

In the implementation file the class will need to implement the Serial
ize method and also use the IMPLEMENT_SERIAL macro to implement the
class members declared in the DECLARE SERIAL macro.

IMPLEMENT_SERIAL(CMySerialClass, CObject, 1)

void CMySerialClass::Serialize(CArchive& archive

II serialise base clase and class members
CObject::Serialize(archive);
if(archive.IsStoring())
{

archive << nDatal;
archive<< nData2;

else
{

archive >> nDatal;
archive >> nData2;

l 06 Chapter 4 '* Property Databases and the Registry

Serialization of a class operates through a CArchi ve class object that is
normally associated with a file in the file system, or a memory-based file. When
serializing to a BLOB you should associate the CArchi ve with a memory-based
file, which is implemented in the MFC class CMemFile. In the following code
fragment, a CMemFile class object is declared, followed by a declaration for a
CArchive object. The CArchive constructor is passed the CMemFile object
(onto which the data will be serialized), followed by a constant, CArchi ve: :
store, that specifies the direction of the archive.

CMySerialClass* pSerialit;
II created and initialized pSerialit somewhere
pSerialit =new CMySerialClass();

CMemFile cMemFile;
CArchive cArch(&cMemFile, CArchive::store);
CEBLOB cBlob;

cArch.WriteObject(pSerialit);
cArch.Flush();
cBlob.dwCount = cMemFile.GetLength();
cBlob.lpb = cMemFile.Detach();
props[O] = CCeDBProp(cBlob, PROP_IDENTIFIER);

The call to CArchive: :WriteObject requests the object pointed to
by pSerialit to archive itself onto the archive object. This results in the
CMySerialClass: : Serialize method shown above being called. The
CArchi ve: : Flush method is called to ensure that all outstanding input/
output requests have been completed.

The CMemFile. Get Length method returns the number of bytes that
have been serialized, and this is copied into the CEBLOB dwCount member.
The CMemFile. Detach method returns a memory pointer which is copied into
the CEBLOB lpb member. A database property can then be created using the
CCeDBProp constructor, which is described earlier in the section "Reading and
Writing Records."

In conclusion, this code will result in all the data associated with the class
CMySerialClass being saved to a property in a record in a property database.

The reverse process must be performed to deserialize the data back into
a CMySerialClass object. In the next code fragement, the CEBLOB is ob
tained from a CCeDBRecord object in the usual way. A CMemFile object is de
clared, and the Attach method is used to attach the data pointed to by the
CEBLOB lpb member. Once this is done, an CArchi ve object is created, pass
ing the CMemFile object as the first parameter (which is the source data for
the archive) and the direction (loading data in this case) using the constant
CArchi ve: : load. The CArchi ve method ReadObj ect will deserialize the
object, creating a new CMySerialClass object, calling the CMySerial
Class:: Serialize method described above, and returning the CMySerial
Class object pointer.

CMySerialClass* pSerialit;
CEBLOB rsBlob;
rsBlob = pPropRecordset->>GetBlob();

Accessing the Registry 107

CMemFile cMemFile;
cMemFile.Attach(rsBlob.lpb, rsBlob.dwCount);

CArchive cArch(&cMemFile, CArchive: :load);
pSerialit = (CDBQueueError*) cArch.ReadObject(pClass);

Accessing the Registry
The registry is used for storing application settings and preferences, together
with device and other system settings. The registry is organized as a hierarchy
of keys, and each key can contain zero, one or more values, and zero, one
or more keys. Each key can have one un-named (or default) value, and many
named values. Each value has a data type, such as DWORD or Unicode string.

The Windows CE registry is accessed using the same functions as Win
dows NT/98/2000. However, unlike Windows 2000 and NT, the Windows CE
registry does not support security on keys, and so security-related parameters
in the registry access functions are ignored. You can use the Remote Registry
Editor to view a device or emulator's registry from your desktop PC, or use one
of the many third-party Windows CE registry editors that run on the Windows
CE device itself.

The Windows CE registry has three primary, or root keys:

e HKEY_CLASSES_ROOT-Contains information on COM components and
file extension associations. Known colloquially as 'HCR'.

e HKEY_LOCAL_MACHINE-Contains information about the configuration
of the Windows CE device. Known colloquially as 'HLM'.

"' HKEY_CURRENT_USER-Contains information about the user currently
logged-on. Known colloquially as 'HCU'.

Generally, you should place your own data in a key under the "Software"
key either in HKEY_CLASSES_MACHINE or HKEY_CURRENT_USER, depending
on whether the data applies generally to the application or to a specific user
running the application. The distinction between HKEY_CLASSES_MACHINE
and HKEY_CURRENT_USER is not as significant as on Windows 2000 or NT,
since Windows CE does not support the concept of different logged-on users.

In Windows CE the registry key names are limited to 255 characters and
cannot be nested more than 16 keys deep. Further, deeply nested keys in Win
dows CE can affect performance.

The following sections show how to perform basic operations on registry
keys, including adding keys and values, reading key values, deleting keys and
values, and finally, enumerating all sub-keys and values for a particular key.

l 08 Chapter 4 e Property Databases and the Registry

Adding and Updating Registry Keys and Values
First, let's look at creating a key in the registry, and then adding values to the
key. Each key can have a default string value; zero, one, or more sub-keys; and
zero, one, or more named values. Named values are typed and can be any one
of the types listed in Table 4.24. Note that other data types are available but are
not commonly used by applications.

Common Registry value data types used by applications

Value Data type

REG_BINARY

REG_DWORD

REG_EXPAND_SZ

REG_MULTI SZ

REG_NONE

REG_SZ

Description

Binary data in any form

A 32-bit number

A null-terminated string that contains unexpanded references
to environment variables (for example, "%PATH%")

An array of null-terminated strings, terminated by two null
characters

No defined value type

A null-terminated string

The registry access code in Listing 4.20 does the following:

e Creates or Opens a key using the function RegCreateKeyEx called
HKEY_CLASSES_MACHINE\MyCompany\MyApplication

® Calls the function RegSetValueEx to add values to the key
@ Calls the function RegCloseKey to close the key

Adds or updates registry values

void Listing4_20()
{

HKEY hKey;
DWORD dwDisp;
TCHAR szStr[200];
DWORD dwVal;

if(RegCreateKeyEx(HKEY_LOCAL_MACHINE,
_T ("Software\ \MyCompany\ \MyApplication"),
0, NULL, 0, 0, NULL,
&hKey, &dwDisp) != ERROR_SUCCESS)

II Warning! Key could have been created,
II but not opened.

Accessing the Registry l 09

cout << _T("Could not open/create key:");
return;

if(dwDisp == REG_CREATED_NEW_KEY)
cout << _T("Created new key") << endl;

else if(dwDisp == REG_OPENED_EXISTING_KEY)
cout << _T("Opened existing key") << endl;

wcscpy (szStr, _T ("Contents of Key 'String' ")) ;
if(RegSetValueEx(hKey, _T("StringTest"), NULL,

REG_SZ, (LPBYTE)szStr,
(wcslen(szStr) + 1) * sizeof(TCHAR))

!= ERROR_SUCCESS)
cout << _T("Could not save key");

dwVal = 456;
if(RegSetValueEx(hKey, _T("DWORDTest"), NULL,

REG_DWORD, (LPBYTE)&dwVal,
sizeof(DWORD)) != ERROR_SUCCESS)

cout << _T ("Could not save key");

wcscpy(szStr, _T("Default Value"));
if(RegSetValueEx(hKey, NULL, NULL, // default value

REG_SZ, (LPBYTE)szStr,
(wcslen(szStr) + 1) * sizeof(TCHAR))

!= ERROR_SUCCESS)
cout << _T ("Could not save key") ;

RegCloseKey(hKey);
return;

RegCreateKeyEx (Table 4.25) creates a new named key or opens an exist
ing key. The advantage of using RegCreateKeyEx is that the function will cre
ate the key if it does not exist, or open the key if it does exist. Thus the same
code can be used when the application first runs and the key does not exist,
and for subsequent calls after the key has been created. Note that keys can be
created under HKEY_CLASSES_MACHINE\MyCompany\MyApplication by
calling RegCreateKeyEx again, passing hKey as the first parameter rather than
HKEY_CLASSES_MACHINE. Don't include leading or trailing backslash charac
ters in the key name. If you do, the key may be created but the call to Reg
CreateKeyEx will fail.

The function RegSetValueEx is used to add a new value to a key or, if
the value already exists, to update the value. A key can have a default value
which always has the REG_sz data type. Any number of named values can be
added, and these can have any of the data types described in Table 4.24.

In Listing 4.20, RegSetValueEx is called three times.

111 The first call adds or updates a REG_SZ value called "StringTest ".
Note that the number of bytes in the data includes the " \ 0 " terminating
character.

110 Chapter 4 * Property Databases and the Registry

RegCreoteKeyEx-Creotes or opens a registry key

RegCreateKeyEx

HKEY hKey

LPCWSTR lpszSubKey

DWORD Reserved

LPWSTR lpszClass

DWORD dwOptions

REGSAM samDesired

LPSECURITY_ATTRIBUTES
lpSecurityAttributes

PHKEY phkResult

Handle to the parent key, or one of HKEY_CLASSES_ROOT, HKEY_
CURRENT_USER,orHKEY_LOCAL_MACHINE.

Pointer to the sub-key to open or create. The sub-key must not start
with a'\' and this parameter cannot be NULL.

Set to 0.

Pointer to a string that specifies the class (object) type of this key. This
can be NULL. You are unlikely to use this feature in Windows CE.

Ignored, pass as O.

Ignored, pass as O.

Ignored, pass as NULL.

LPDWORD lpdwDisposition

Pointer to an HKEY variable to receive the handle to the key.

Pointer to a DWORD that returns:
REG_CREATED_NEW_KEY-Key did not exist, and the key was created.
REG_OPENED_EXISTING_KEY-Existing key was opened.

LONG Return Result ERROR_SUCCESS on success, or error code.

RegSetVolueEx-Adds a new value or updates an existing value

RegSetValueEx

HKEY hKey

LPCWSTR lpValueName

DWORD Reserved

Handle to the open key where the value is to be added or updated

Name of the value, or NULL to set the default value

Reserved, pass as O

DWORD dwType Data type of value, from Table 4.24

canst BYTE *lpData

DWORD cbData

Pointer to the data to be used for the value

Length of the data pointed to by lpData in bytes

LONG Return Value ERROR_SUCCESS on success, or an error value

<1> The second call adds or updates a REG_DWORD value called DWORDTest.
<1> The third call sets or updates the default string value.

Finally, the code calls RegCloseKey to close the key. This function is passed
a single parameter, the handle of the key to close.

Querying a Registry Value
When querying registry values, the key must first be opened using, for example,
RegCreateKeyEx, and then the function RegQueryValueEx, called to read a

Accessing the Registry 111

specified key value. This is illustrated in Listing 4.21. The call to RegCreate
KeyEx is identical to that made when creating the values in Listing 4.20.

i@MfJM Queries a registry value

void Listing4_21()
{

HKEY hKey;
DWORD dwDisp, dwcbData, dwType;
TCHAR szStr[200];
DWORD dwVal;
if(RegCreateKeyEx(HKEY_LOCAL_MACHINE,

_T ("Software\ \MyCompany\ \MyApplication"),
0, NULL, 0, 0, NULL,
&hKey, &dwDisp) != ERROR_SUCCESS)

cout << _T ("Could not open/create key:");
return;

dwcbData = sizeof(szStr) * sizeof(TCHAR);
if(RegQueryValueEx(hKey, _T("StringTest"),

NULL, &dwType,
(LPBYTE)szStr, &dwcbData) != 0)

cout << _T("Could not open key") << endl;
else

cout << _T("StringTest:") << szStr << endl;

dwcbData = sizeof(DWORD);
if(RegQueryValueEx(hKey, _T("DWORDTest"),

NULL, &dwType,
(LPBYTE)&dwVal, &dwcbData) != 0)

cout << _T("Could not open key") << endl;
else

cout << _T("DWORDTest:") << dwVal << endl;

dwcbData = sizeof(szStr) * sizeof (TCHAR);
if(RegQueryValueEx(hKey, NULL, // default value

NULL, &dwType,
(LPBYTE)szStr, &dwcbData) != 0)

cout << _T("Could not open key") << endl;
else

cout << _T(" (default):") << szStr << endl;

RegCloseKey(hKey);

The function RegQueryValueEx (Table 4.27) is passed a pointer to a
buffer and the length of the buffer. The value is copied into this buffer, and the
data type of the value is returned. Further, the actual number of bytes of data
read from the value is returned.

112 Chapter 4 * Property Databases and the Registry

RegOueryValueEx-Retrieves the type and data for a specified value

RegQueryValueEx

HKEY hKey

LPCWSTR lpValueName

LPDWORD lpReserved

LPDWORD lpType

Handle to the open key for the value to be queried.

Name of the value, or NULL to get the default value.

Reserved, pass as NULL.

Pointer to a DWORD that receives the data type of the value, as one of the
values in Table 4-24.

LPBYTE lpData

LPDWORD lpcbData

Pointer to a buffer to receive the data.

DWORD pointer that, on entry, contains the size of the buffer pointed to by
lpData. On return, contains the number of bytes copied into the buffer.

LONG Return Value ERROR_SUCCESS on success, or an error value.

Obviously, you need to know the names of the values to read before call
ing RegQueryVal ueEx. If you need to enumerate all the values in a key, you
can RegQueryinfoKey, which is described later in the section "Enumerating
a Registry Key." As with any open key, in Listing 4.21 RegCloseKey is called
to close the key.

Deleting a Registry Value
The function RegDeleteValue can be used to delete individual values in a
key, or the RegDeleteKey (described in the next section) can delete a key and
all the values in that key. The code in Listing 4.22 deletes the keys created in
Listing 4.20. The function RegDeleteValue is passed a handle to an open key
and the name of the value to delete. If this second parameter is NULL, the de
fault value is deleted. Note that the key itself is not deleted if all the values
themselves are deleted.

Deletes a registry value

void Listing4_22()
{

HKEY hKey;
DWORD dwDisp;
if(RegCreateKeyEx(HKEY_LOCAL_MACHINE,

_T ("Software\ \MyCornpany\ \MyApplication"),
0, NULL, 0, 0, NULL,
&hKey, &dwDisp) != ERROR_SUCCESS)

cout << _T("Could not open/create key:");
return;

Accessing the Registry 113

if(RegDeleteValue(hKey, _T("StringTest"))
!= ERROR_SUCCESS)

cout << _T("Could not delete key") << endl;
if (RegDeleteValue (hKey, _T ("DWORDTest"))

!= ERROR_SUCCESS)
cout << _T("Could not delete key") << endl;

if(RegDeleteValue(hKey, NULL) != ERROR_SUCCESS)
cout << _T ("Could not delete key") << endl;

RegCloseKey(hKey);

Deleting a Registry Key
Listing 4.23 calls the function RegDeleteKey to delete a key, and all the values
and sub-keys associated with the key. The function takes the parent key handle
(or one of the standard root key values, such as HKEY_LOCAL_MACHINE), and
the name of the key. Note that the key being deleted is not opened first. The
second parameter cannot be NULL, so the standard root keys (such as HKEY_
LOCAL_MACHINE) cannot be deleted.

Deletes a registry key

void Listing4_23()
{

if(RegDeleteKey(HKEY_LOCAL_MACHINE,
_T("Software\\MyCompany")) != ERROR_SUCCESS)
cout << _T("Could not delete key");

else
cout << _T ("Key deleted");

Enumerating a Registry Key
The function RegQueryinfoKey can be used to determine information about
a key, such as the number of sub-keys and values. Once this information has
been determined, the function RegEnumValue can be used to enumerate the
values associated with a particular key. Additionally, the function RegEnum
KeyEx (not shown here) can be used to enumerate the keys associated with a
key. The code in Listing 4.24 enumerates the values in the key HKEY_LOCAL_
MACHINE\Platform-This contains information on the manufacturer and
other device information. This key has no sub-keys. As you would expect, call
ing RegOpenKeyEx first opens the key being enumerated.

Enumerates a registry key

void Listing4_24()
{

114 Chapter 4 @ Property Databases and the Registry

HKEY hKey;
DWORD dwSubKeys, dwValues, dwindex, dwValueNameLen;
DWORD dwValueType, dwValueLen;
TCHAR szValueName[255];
TCHAR szValue[255];
DWORD dwValue;

cout << _T("Opening key HKEY_LOCAL_MACHINE\\Platform")
<< endl;

if(RegOpenKeyEx(HKEY_LOCAL_MACHINE,
_T("Platform"), 0, 0,
&hKey) != ERROR_SUCCESS)

cout << _T("Could not open key") << endl;
else if (RegQueryinfoKey(hKey, NULL, NULL, NULL,

&dwSubKeys, NULL, NULL, &dwValues,
NULL, NULL, NULL, NULL) != ERROR_SUCCESS)

cout << _T("Could not query info") << endl;
RegCloseKey(hKey);

else
{

cout << _T("Key has ")
<< dwSubKeys << _T(" subkeys and ")
<< dwValues << _T(" values") <<endl;

II now read each value
for(dwindex = O; dwindex < dwValues; dwindex++)
{

II First determine name and data type.
dwValueNameLen = sizeof(szValueName);
RegEnumValue(hKey, dwindex,

szValueName, &dwValueNameLen,
NULL, &dwValueType, NULL, NULL);

cout << _T("Value Name: ") << szValueName;
switch (dwValueType)
{

case REG_SZ:
cout << _T(" String:");
dwValueLen = sizeof(szValue);
dwValueNameLen = sizeof(szValueName);
RegEnumValue(hKey, dwindex,

szValueName, &dwValueNameLen,
NULL, &dwValueType,
(LPBYTE)szValue, &dwValueLen);

cout << szValue;
break;

case REG_DWORD:
cout << _T(" DWORD:");
dwValueLen = sizeof(DWORD);
dwValueNameLen = sizeof(szValueName);
RegEnumValue(hKey, dwindex,

Accessing the Registry 115

szValueName, &dwValueNameLen,
NULL, &dwValueType,
(LPBYTE)&dwValue, &dwValueLen);

cout << dwValue;
break;

default:
cout << _T(" Other");
break;

cout << endl;

RegCloseKey(hKey);

In Listing 4.24, the function RegQueryinfoKey (Table 4.28) is used to
determine the number of sub-keys and values contained in the open key. Then,
a 'for' loop is executed, calling the function RegEnumValue for each value to

RegOuerylnfoKey-Returns information about a registry key

RegQueryinf oKey

HKEY hKey

LPWSTR lpClass

LPDWORD lpcbClass

LPDWORD lpReserved

LPDWORDlpcSubKeys

LPDWORD
lpcbMaxSubKeyLen

LPDWORD lpcbMaxClassLen

LPDWORD lpcValues

LPDWORD
lpcbMaxValueNameLen

LPDWORD lpcbMaxValueLen

LPDWORD
lpcbSecurityDescriptor

PFILETIME
lpftLastWriteTime

LONG Return Value

Handle to the open key where the value is to be added or updated.

Pointer to a buffer to receive the class name, or NULL if the data is
not to be returned.

Length of the buffer pointed to by lpClass, or 0 if lpClass is NULL.

Reserved, pass as NULL.

Pointer to a DWORD variable that will receive the number of sub-keys
in the key. Can be NULL if this information is not to be returned.

Pointer to a DWORD variable that will receive the length in characters
of the longest key name. This parameter can be NULL.

Pointer to a DWORD variable that will receive the length in characters
of the longest class name. This parameter can be NULL.

Pointer to a DWORD variable that will receive the number of values in
the key. Can be NULL if this information is not to be returned.

Pointer to a DWORD variable that will receive the length in characters
of the longest value name. This parameter can be NULL.

Pointer to a DWORD variable that will receive the length in characters
of the longest piece of data in the values. This parameter can be NULL.

Not used, pass as NULL.

Not used, pass as NULL.

ERROR_SUCCESS, or an error code.

116 Chapter 4 0 Property Databases and the Registry

determine the name of the value and its data type. This name is then passed
again to RegEnumValue to obtain the data associated with the· value. Two calls
to RegEnumValue are made, so that the second call can pass the correct data
pointer for the value's data type. The code contains a switch that makes a call
to RegEnumVal ue passing a pointer to the appropriate data type. It is possible
to do this with a single call to RegEnumVal ue with suitable casting of the lp
Da ta parameter.

The first call to RegEnumVal ue (Table 4.29) passes in the handle to the
key and the index number. The name of the value is returned in szValueName.

Re9EnumValue-Enumerates values in a Key

RegEnwnValue

HKEY hKey

DWORD dwindex

LPWSTR
lpszValueName

LPDWORD
lpcchValueName

LPDWORD lpReserved

LPDWORD lpType

LPBYTE lpData

LPDWORD lpcbData

LONG Return Value

Handle to an open key being enumerated.

Index value for value. Use O for the first value.

Pointer to a buffer to receive the value's name.

A DWORD pointer that, on calling the function, contains
the size of the buffer, in characters, pointed to be
lpszValueName. Function returns the number of
characters copied into lpszValueName.

Reserved, pass as NULL.

Pointer to a DWORD that returns the data type of the value.
See Table 4.24.

Pointer to a buffer to receive the value's data.

A DWORD pointer that, on calling the function, contains
the size of the buffer, in bytes, pointed to be lpData.
Function returns the number of bytes of data copied
into lpData.

ERROR_SUCCESS on success, or an error code.

Note how dwValueNameLen is initialized with the length of the szValueName
buffer for each iteration, since the function RegEnumVal ue overwrites the value
in dwValueNameLen with the number of bytes copied into szValueNci.me. The
value type constant (such as REG_SZ) is returned in the variable dwVci.lueType.
Note that you should not add or otherwise change values during an enumera
tion of values. Values have no particular order in the registry, so the index
value used when calling RegEnumVal ue has no particular significance.

II First determine name and data type.
dwValueNameLen = sizeof(szValueName);

Accessing the Registry 117

RegEnumValue(hKey, dwindex,
szValueName, &dwValueNameLen,
NULL, &dwValueType, NULL, NULL);

cout << _T("Value Name: ") << szValueName;

Implementing a Record Counter using the Registry
Many database designs rely on the database providing a counter field type, the
value of which is set by the database when records are added and is auto
incremented. Windows CE property databases do not provide such a field type,
but the same functionality can be implemented using the registry.

The registry needs a value in a key for each table in the database that re
quires a counter field. The code in Listing 4.25 maintains a single counter in the
registry key Software\MyCompany\MyApplication\ with the value name
'Counter'. The data is stored as a DWORD. The registry access code is very
straightforward:

e Open the Key
e Read the current value
e Increment the value
e Save the new value back into the registry
e Return the value to the caller

However, in a multitasking or multithreading environment, we need to
protect against two applications or threads attempting to increment the counter
value at the same time. For this reason, a mutex is used to ensure that only one
application or thread increments the counter at a time. In Listing 4.25, a named
mutex is created by calling CreateMutex. This function will open an existing
mutex with the name 'CounterMutex' if another application has already cre
ated the mutex (which will occur when two applications attempt to execute
this code simultaneously). The mutex is initially not owned and is therefore
signaled.

The code then calls Wai tForSingleObj ect on the mutex. On return
from Wai tForSingleObj ect the thread will own the mutex, and the mutex
will be nonsignaled. This means that any other threads calling CreateMutex
will block in the Wai tForSingleObj ect function call. The function Re
leaseMutex relinquishes the ownership on the mutex and changes it to sig
naled. You can find out more information about mutexes and thread synchro
nization in Chapter 6.

Creates a counter value using the registry

LONG GetNextCounterValue()
{

LONG dwCounter;
HKEY hKey;

118 Chapter 4 e Property Databases and the Registry

DWORD dwDisp;
HANDLE hMutex;

hMutex = CreateMutex(NULL, FALSE, _T("CounterMutex"));
if(hMutex ==NULL)
{

cout << _T ("Could not create mutex");
return -1;

else
WaitForSingleObject(hMutex, INFINITE);

if(RegCreateKeyEx(HKEY_LOCAL_MACHINE,
_T ("Software\ \MyCompany\ \MyApplication"),
0,---NULL, 0, 0, NULL,
&hKey, &dwDisp) != 0)

cout << _T("Could not open registry key");
ReleaseMutex(hMutex);
CloseHandle(hMutex);
return -1;

DWORD cbData, cbType;

cbData = sizeof(DWORD);
if(RegQueryValueEx(hKey, _T("Counter"), NULL, &cbType,

(LPBYTE)&dwCounter, &cbData) != 0)

dwCounter = O;

dwCounter++;
if(RegSetValueEx(hKey, _T("Counter"), NULL, REG_DWORD,

(LPBYTE)&dwCounter,
sizeof(DWORD)) != 0)

cout << _T("Could not save Server key");
ReleaseMutex(hMutex);
CloseHandle(hMutex);
return O;

RegCloseKey(hKey);
ReleaseMutex(hMutex);
CloseHandle(hMutex);
return dwCounter-1;

void Listing4_25()
{

cout << _T ("Next counter value:")
<< GetNextCounterValue() << endl;

Conclusion 119

Conclusion
This chapter describes how to use property databases to store structured in
formation in the object store or in storage cards. The manipulation of data in
property databases is carried out through API calls and not Structured Query
Language (SQL) statements. Chapter 16 shows how databases can be accessed
using ADOCE (Active Data Objects for Windows CE) with SQL. The chapter
also shows how to add, query, and delete registry keys and data values stored
in those keys.

Processes and Threads

An application can be thought of as the . exe in the object store. When the ap
plication is run, a process is created. Therefore, a process is an instance of the
application. There can be multiple instances of an application running at any
one time; however, in devices such as the Pocket PC, it is considered best prac
tice to have only a single instance running at any one time.

Each process starts off with a single, or primary thread. This thread starts
executing code at the entry point, which is typically WinMain or main in most
applications. An application can create additional threads to perform back
ground tasks or to wait for some operation to complete. Using additional
threads means that the primary thread is always available to deal with user in
teraction and to repaint the application windows. Multiple threads can be used
for tasks such as:

"' Waiting for data to arrive through a serial port, socket, or other communi
cation medium

"' Performing background operations, such as calculations

Using multiple threads provides many advantages but also carries re
sponsibilities. Unless threads are coordinated (or 'synchronized') to ensure that
no two threads attempt to use the same resource at the same time, they may
both end up waiting for the other to complete a task. The techniques available
in Windows CE to synchronize threads are covered in Chapter 6.

Not all threads are equal-they can be assigned different priorities. Win
dows CE supports 255 different thread priorities. Of these thread priorities, 248
are used for real-time applications and the remainder for ordinary applica
tions. It is important to use thread priorities responsibly so that threads are nei
ther starved of processor time nor use the processor to the exclusion of other
threads.

120

Creating a Process with CreateProcess 121

A process will terminate when the primary thread in that process ter
minates and the resources used by that application are freed up. Unlike some
other operating systems such as UNIX, there is no parent/child relationship.
So, when a process terminates, processes created by that process are not auto
matically terminated.

Windows CE processes share many characteristics with desktop processes
running on Windows NT/98/2000, but there are some significant differences.
The virtual memory address space is arranged differently. In Windows NT/98/
2000, each process has its own 4-GB virtual address space that is protected from
being accessed by other applications. Remember, these address spaces are vir
tual, which means that the memory addresses may or may not be backed by
real, physical memory.

In Windows CE, the operating system creates a single 4-GB address space.
Each process is allocated a 32-MB address space called a 'slot'. The process uses
this address space to map all the Dynamic Link Libraries (DLLs) that it needs
to run, as well as data, heap, and stack. Certain larger allocations, such as mem
ory-mapped files, may use address space outside the slot. Chapter 12 describes
memory management in more detail. You will see the term 'module' used to
refer to both applications and Dynamic Link Libraries.

Creating a Process with CreateProcess
The function CreateProcess is the standard way of creating processes. The
code in Listing 5.1 prompts the user for the filename of an application (for ex
ample, 'pword. exe' for Pocket Word) and then calls CreateProcess to run
the application.

Creates a process with CreateProcess

void Listing5_1()

TCHAR szApplication[MAX_PATH];
PROCESS_INFORMATION pi;
if (! GetTextResponse (_T ("Enter Application to Run:") ,

szApplication, MAX_PATH))
return;

if(CreateProcess(szApplication,
NULL, NULL, NULL, FALSE, 0,
NULL, NULL, NULL, &pi) == 0)

cout << _T("Cannot create process") << endl;
else
{

CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);

122 Chapter 5 * Processes and Threads

CreateProcess

The CreateProcess function (Table 5.1) takes ten parameters, of which
only two are essential in Windows CE for creating a process.

CreateProcess-Creates a new process

LPCWSTR pszimageName,

LPCWSTR pszCmdLine

Name of application to run.

Command line arguments for application.

Not supported, pass as NULL. LPSECURITY_ATTRIBUTES
psaProcess

LPSECURITY_ATTRIBUTES
psaThread

Not supported, pass as NULL.

BOOL finheritHandles Not supported, pass as FALSE.

DWORD fdwCreate Flags specifying how to launch the application. Only the following are
commonly used in Windows CE:

CREATE_NEW_CONSOLE-Create a new console (only supported on
platforms supporting cmd. exe)

CREATE_SUSPENDED-Create process, but do not start executing thread.

PVOID pvEnvironment

LPWSTR pszCurDir

Not supported, pass as NULL.

Not supported, pass as NULL.

LPSTARTUPINFO
psiStartinfo

Not supported, pass as NULL.

LPPROCESS_INFORMATION Pointer to a PROCESS_INFORMATION structure.
pProcinf o

HANDLE Return Value Kernel object handle, or zero on error.

It is possible to pass a NULL for pszimageName, in which case pszCmd
Line should point at a string containing the application filename followed by
the command line arguments. If the application file name is not fully qualified,
Windows CE will search in the '\Windows' folder followed by the root '\'
folder. Platform builders can add an additional OEM-dependent folder and a
'\ceshell' directory to the search.

The last argument to CreateProcess is a PROCESS_INFORMATION
structure in which four pieces of information about the new process are
returned:

., hProcess-A kernel object handle for the new process
«> hThread-A kernel object handle for the primary thread for the new

process
«> dwProcessid-The process's system-wide unique identifier
& dwThreadid-The thread's system-wide unique identifier

Process Kernel Object Handles and Identifiers 123

Kernel object handles and identifiers are described in the next section.
For now, note that the handles returned in the PROCESS_INFORMATION struc
ture mi1st be closed by calling CloseHandle.

Process Kernel Object Handles and Identifiers
The kernel object handles for the thread and process refer to data managed by
the operating system relating to the thread or process. The operating system
manages a reference count on the data-whenever a handle is returned to an
application (as is the case with CreateProcess) or the handle is copied, the
reference count is incremented. When an application is finished with the
handle, it must call CloseHandle for that handle. The reference count is dec
remented when the handle is closed.

The lifetime of the kernel object is not necessarily the same as the lifetime
of the process that it represents. If the reference count is greater than 0 when
the process terminates, the kernel object will not be deleted. This means that
information about the process can still be obtained even after the process has
terminated. It is important that an application does call CloseHandle on the
kernel object handle when the application is finished with the handle, to ensure
that the operating system can free resources associated with the kernel object.

Process and thread kernel object handles are process-relative, that is, they
can only be used reliably in the process that obtained them. Unlike Windows
NT/98/2000, the function DuplicateHandle is not implemented in Windows
CE, and so handles cannot be duplicated to allow them to be passed to other
processes.

Some functions require a process or thread identifier rather than a kernel
object handle. These identifiers are DWORD values that are unique for the pro
cess or thread across the entire operating system and can therefore be safely
passed from process to process. The function OpenProcess may be used to
obtain a process handle from a process identifier:

HANDLE hProcess;
hProcess = OpenProcess(O, FALSE, dwProcessid);

In Windows CE the first two parameters to OpenProcess are not sup
ported and should be passed as 0 and 'FALSE'. As usual, the handle returned
from OpenProcess should be closed by passing it to CloseHandle.

A process can determine its own process identifier by calling the func
tion GetCurrentProcessid-the function takes no arguments and returns a
DWORD.

DWORD dwProcessid;
dwProcessid = GetCurrentProcessid();

124 Chapter 5 " Processes and Threads

The function GetCurrentProcess can be called to return a kernel ob
ject handle for the current process. You need to be careful when using this
handle, as it is actually a 'pseudohandle'. The returned handle always refers to
the current process, so if you pass the handle to another process, the handle
refers to that second process. Note that you do not need to call CloseHandle
on pseudohandles.

Creating a Process with ShellExecuteEx
On Windows CE, CreateProcess has limited functionality since most of the
parameters are not supported. In particular, a STARTUPINFO structure cannot
be passed to the function, so you do not have much control on how the pro
cess is created. However, you can use the shell function ShellExecuteEx to
start a process, as long as your Windows CE platform supports the standard
shell. The function can be used to open documents. For example, you may
specify that 'mydocument. pwd' should be started, and ShellExecuteEx will
automatically launch Pocket Word and open the document. Further, different
verbs can be applied to the document, such as 'open', 'print', and so on so
that different operations can be performed on the document. Finally, you can
specify how the application will be displayed using any of the constants sup
ported by the ShowWindow function.

The ShellExecuteEx is passed a pointer to a SHELLEXECUTEINFO
structure which is initialized to contain the required options for launching the
application. In Listing 5.2 the user is prompted for an application or document
to open, and the SHELLEXECUTEINFO structure is initialized and passed to
ShellExecuteEx.

Creates a process with Shel/ExecuteEx

void Listing5_2(HWND hWnd)
{

SHELLEXECUTEINFO sei;
TCHAR szApplication[MAX_PATH];

if (! GetTextResponse (_T ("Enter Application to Run:"),
szApplication, MAX_PATH))

return;

memset(&sei, 0, sizeof(sei));
sei.cbSize = sizeof(sei);
sei.hwnd = hWnd;
sei. lpVerb = _T ("open") ;
sei.lpFile = szApplication;
sei.lpParameters =NULL;

Waiting for a Process to Terminate 125

sei.nShow = SW_SHOWNORMAL;
if(ShellExecuteEx(&sei) == 0)

cout << _T("Error calling ShellExecuteEx:")
<< GetLastError() << endl;

Many of the members in the SHELLEXECUTEINFO structure are unused
in Windows CE. Further, an instance handle to the new application should be
returned, but this is not the case on all platforms. Table 5.2 lists the relevant
members.

SHELLEXECUTEINFO-Relevant structure members

Structure Member

DWORD cbSize

HWND hwnd

LPCSTR lpVerb

LPCSTR lpFile

LPCSTR lpParameters

int nShow

Purpose

Size of the structure in bytes.

Handle of a window to act as a parent for any dialogs
shown by ShellExecuteEx.

Verb to use, for example, 'open', 'print', 'edit'.

Executable file or document name.

Parameters to be passed to an application.

How to display the application. Constants such as
SW_HIDE and SW_SHOWNORMAL from the ShowWindow
function can be used.

Waiting for a Process to Terminate
In many situations an application will start another application to perform some
task (such as processing a file or connecting to a network), and will need to
wait until the second application has completed the task. Further, the applica
tion will need to determine if the second application completed the task suc
cessfully or not. This can be achieved by calling the Wai tForSingleObj ect
function and using the process's exit code.

Process kernel objects can be in one of two states-signaled and non
signaled. A process kernel object that represents a running process is non
signaled. The process kernel object becomes signaled when the process ter
minates. The WaitForSingleObject (Table 5.3) can be passed a process
kernel object, and the function call will block (that is, not return) until the pro
cess kernel object becomes signaled (which happens when the process itself
terminates).

The code in Listing 5.3 creates a process and then calls WaitForSingle
Obj ect, passing in the process kernel object handle and the amount of time

126 Chapter 5 ® Processes and Threads

WaitForSingleObiect-Waits for a kernel obiect to be signaled

WaitForSingleObject

HANDLE hHandle Kernel Object Handle to wait to become signaled.

DWORD dwMilliseconds Number of milliseconds to wait before timing out, or INFINITE for no
timeout.

DWORD Return Value Return value:
WAIT_TIMEOUT-Timeout value was exceeded.
WAIT_OBJECT_O-Kernel object became signaled.
WAIT_FAILED-Failure in function call, for example, handle is invalid.

to wait. (In this case, INFINITE causes Wai tForSingleObj ect to block until
the process terminates, regardless of how long this may be.) The call to Wait
ForS ingl eObj ect will not return until the process started by CreatePro
cess terminates. It is important that CloseHandle is called after WaitFor
SingleObj ect, otherwise the call will fail since the kernel object handle is
invalid.

Waits for a process to terminate

void Listing5_3()
{

TCHAR szApplication[MAX_PATH];
PROCESS_INFORMATION pi;

if(!GetTextResponse(_T("Enter Application to Run:"),
szApplication, MAX_PATH))

return;
if(CreateProcess(szApplication,

NULL, NULL, NULL, FALSE, 0,
NULL, NULL, NULL, &pi) == 0)

cout << _T("Cannot create process") << endl;
else
{

if(WaitForSingleObject(pi.hProcess,
INFINITE) == WAIT_FAILED)

cout << _T("Could not wait on object");
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);

Calling Wai tForSingleObj ect is the most efficient way of waiting for
a process to terminate. The call does not consume processor time while it is
waiting, and does not stop the power management functions of the operating

Listing Running Processes 127

system. Wai tForSingleObj ect is one of the synchronization functions sup
ported by Windows CE and is described in more detail in Chapter 6.

Process Exit Code
Each process has an exit code that can be accessed by other processes and can
be used to indicate success or failure. A process sets an exit code in the value
returned from either WinMain or the 'C' main function. A process could, for ex
ample, return 0 to indicate success or a non-zero value indicating an error code.

An application can call the function GetExitCodeProcess to obtain
the exit code for another application. This function is passed the process ker
nel object handle to the other process and a pointer to a DWORD to receive the
exit code:

DWORD dwExitCode;
GetExitCodeProcess(hProcess, &dwExitCode);

On return, dwExi tCode will contain the exit code set by the applica
tion, or the value STILL_ACTIVE if the application has not yet terminated. So,
you could call GetExi tCodeProcess after Wai tForSingleObj ect returns
in Listing 5.3.

In Windows NT/98/2000 the ExitProcess function can be called at any
time to terminate the application, and this function is passed the exit code for
the application. However, this function is not available in Windows CE. You can
call PostQuitMessage instead, but this will eventually terminate the message
loop and then exit WinMain, and in doing so, set an exit code.

An application can terminate another application through calling the func
tion TerminateProcess, and can pass a value to be used as the exit code for
the application being terminated. However, as described in the section "Ter
minating a Process,'' it is best not to terminate applications using this function.

Listing Running Processes
Windows CE provides a subset of the 'toolhelp' functions that provide informa
tion on, among other things:

e The processes running on the device
e The threads owned by each process
e The modules (for example, Dynamic Link Libraries) loaded by an

application

These functions work by first creating a snapshot of the required infor
mation (for example, the list of processes). Calling the function CreateTool-

128 Chapter 5 &1 Processes and Threads

help32Snapshot does this. Then, the appropriate enumeration functions are
called to obtain information about each object in turn. For processes, the func
tions are Process32First and Process32Next. Listing 5.4 shows code for
listing all processes running on a device, together with the number of threads
and process identifier. You need to include the file 'tlhelp32 .h' and add
toolhelp. 1 ib when using these functions.

••JM Lists running processes

#include <Tlhelp32.h>
II Add toolhelp.lib to the project

void Listing5_4()
{

HANDLE hProcessSnap;
PROCESSENTRY32 pe32;

II Take a snapshot of all processes currently running.
hProcessSnap =

CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
if (hProcessSnap == (HANDLE)-1)
{

cout << _T("Could not take Toolhelp snapshot")
<< endl;

return ;

pe32.dwSize = sizeof(PROCESSENTRY32);

if (Process32First(hProcessSnap, &pe32))
{

do
{

cout << pe32.szExeFile
<< _T(" Threads: ") << pe32.cntThreads
<< _T(" ProcID: ") << pe32.th32ProcessID
<< endl;

while (Process32Next(hProcessSnap, &pe32));

CloseToolhelp32Snapshot(hProcessSnap);
return ;

The function CreateToolhelp32Snapshot is passed a constant for the
first parameter that defines the information to be included in the snapshot.
In this case TH32CS_SNAPPROCESS specifies that a snapshot of processes be
produced. This function can also be used to create snapshots of the heap list
(TH32CS_SNAPHEAPLIST), the modules being used by a process (TH32CS_

Modules Used by a Process 129

SNAPMODULE), and the threads for a process (TH32CS_SNAPTHREAD). These
constants can be combined to create a snapshot that contains several different
objects, or TH32CS_SNAPALL can be used to specify that all objects should be
included. The second argument in CreateToolhelp32Snapshot specifies
the process identifier of the process to be included in the snapshot-in this
case 'O' indicates all processes.

A handle is returned from CreateToolhelp32Snapshot that is used
when enumerating the objects.

The function Process32First returns information about the first pro
cess in the snapshot. The function is passed the handle returned from Cre
ateToolhelp32 Snapshot, and a pointer to a PROCESSENTRY32 structure
into which the information is placed. Note that the dwsize member of PRO
CESSENTRY32 must first be initialized with the size of the structure. The func
tion Process32Next is called to obtain information about the next process
A return of TRUE indicates that another process's information was copied into
the structure, and FALSE indicates the enumeration is complete.

PROCESSENTRY32 members returned in Windows CE

Member

DWORD dwSize

DWORD th32ProcessID

DWORD cntThreads

TCHAR szExeFile[MAX_PATH]

DWORD th32MemoryBase

Purpose

Size of the structure in bytes. Set before passing
to functions.

Process Identifier. May be passed to other process
functions such as TerminateProcess.

Number of threads owned by the process.

Null terminated string containing the path and
name of the executable.

Memory address of where the executable is
loaded in the address space.

Table 5.4 shows the PROCESSENTRY32 members used in Windows CE

and their purpose.

Modules Used by a Process
The toolhelp functions can also return a list of modules (normally DLLs) used
by the application. To obtain the snapshot, CreateToolhelp32Snapshot is
passed the TH32CS_SNAPMODULE constant, and the second parameter contains
the process identifier whose module list is to be returned. In Listing 5.5 the pro
cess identifier for the current process is returned from calling GetCurrent
Processid. The functions Module32First and Module32Next are used to

130 Chapter 5 "' Processes and Threads

enumerate the modules, and information about the modules is returned in a
MODULEENTRY3 2 structure.

Lists modules being used by a process

void Listing5_5()
{

HANDLE hModuleSnap;
MODULEENTRY32 me32;
DWORD dwProcessID;

dwProcessID = GetCurrentProcessid();

hModuleSnap =
CreateToolhelp32Snapshot(TH32CS_SNAPMODULE,

dwProcessID) ;

if (hModuleSnap == (HANDLE)-1)
{

cout << _T("Could not take Toolhelp snapshot")
<< endl;

return ;

me32.dwSize = sizeof(MODULEENTRY32);

if (Module32First(hModuleSnap, &me32))
{

do
{

cout << me32.szModule
<< _T(" Base addr: ")
<< (DWORD)me32.modBaseAddr
<< _T (" Size (KB) : ")
<< me32.modBaseSize I 1024 << endl;

while (Module32Next(hModuleSnap, &me32));
}

CloseToolhelp32Snapshot (hModuleSnap);
return;

In Listing 5.5 the name of the module (szModule) is displayed together
with the base address (modBaseAddr) at which the module is mapped, and
the size of the address space (modBaseSize) used by the module. DLLs are
loaded at the top of the process's 32-MB slot. The value returned in modBase
s i z e is the size of the virtual address space used by the module and is not the
amount of RAM used by the module. For example, a DLL could be mapped
from ROM with the code being executed in place.

Terminating a Process 131

@'''II MODULEENTRY32 members returned in Windows CE

Member Purpose

DWORD dwSize; Size of the structure in bytes. Set before passing to functions.

DWORD th32ProcessID

DWORD GlblcntUsage

DWORD ProccntUsage

BYTE *modBaseAddr

DWORD modBaseSize

HMODULE hModule;

TCHAR szModule
[MAX_MODULE_
NAME32 + 1]

Process identified for the process being inspected.

Number of times this module has been loaded in all applications running
on the device.

Number of times this module has been loaded in the context of this process.

Memory address where the module is loaded in the process's address space.

Number of bytes of address space used in the mapping.

Handle to the module.

Name of the module, not qualified with a path name.

The Glblcntusage member contains the number of times this module
has been loaded in all processes running on the device. The Proccntusage
value is the number of times the module has been loaded in the process being
inspected. This can be larger than 1 since the application as well as other mod
ules may reference the module in question.

Windows CE does not return szExePath member-in Windows NT/98/
2000 this contains the fully qualified pathname of the module. The hModule
member ofMODULEENTRY32 can be passed to the GetModuleFileName func
tion, and this returns a fully qualified filename.

TCHAR szPathname[MAX_PATH];
GetModuleFileName(me32.hModule, szPathname, MAX_PATH);

The function GetModuleFileName is passed the handle to the module,
a pointer to a character buffer to receive the fully qualified filename, and the
maximum number of characters that can be placed in the buffer.

Terminating a Process
There are rare occasions when you will need to terminate another process from
your application. Calling TerminateProcess does this.

DWORD dwExitCode = 1;
if(TerminateProcess(hProcess, dwExitCode))

cout << _T("Process Terminated");

The function TerminateProcess is passed the handle of the process to
terminate as the first parameter and a DWORD containing the exit code to use

132 Chapter 5 w Processes and Threads

for the process. The process being terminated does not have the opportunity
to set an exit code, so one must be provided.

You should avoid calling TerminateProcess, since DLLs being used by
the process do not have DllMain called with the reason code DLL_PROCESS_
DETACH. Therefore, the DLLs cannot free resources they are using and resource
or memory leaks can result.

Determining If a Previous Instance of a Process Is Running
Makers of certain target devices, such as Pocket PC, recommend that only a
single instance of your application run at any time. In the event the user at
tempts to start a second instance, the second instance should terminate and
bring the first instance to the foreground. The code in Listing 5.6 shows how
to use F indWindow to locate the main application window of the first instance.
The function F indWindow is passed the class name of the window. The sec
ond parameter is the window title, which is passed as NULL so that any win
dow title will result in a match.

If F indWindow returns NULL, then this is the first instance of the applica
tion, and the application can continue executing. A non-NULL value means that
another instance is running, so the current instance calls Showwindow (to en
sure the main application window of the first instance is not hidden) and Set
ForegroundWindow (to bring the main application window of the first instance
to the foreground). This activates the thread and gives the window the input
focus. Finally, the current instance terminates itself by calling Pos tQui tMes
sage. This code would be executed as soon as the application starts, and be
fore any windows have been created.

Handles second instances of an application

BOOL Listing5_6()
{

HWND hWnd;

hWnd = FindWindow(_T("EXAMPLES"), NULL);
if (hWnd == NULL)

return FALSE; II this is the first instance
ShowWindow(hWnd, SW_SHOWNORMAL);
SetForegroundWindow(hWnd);
PostQuitMessage(O); II terminate this instance
return TRUE;

The second instance may need to pass information to the first instance, for ex
ample, specifying a document to open. This requires some form of interprocess
communication. The simplest approach is for the second instance to send a
message containing the data to the first instance. Alternatively, more sophisti-

Threads 133

cated interprocess communication techniques can be used, such as memory
mapped files. This requires that access to the shared memory be synchronized,
which is covered in the next chapter.

Threads
Threads execute code. Each process starts out with a single primary thread that
executes the entry point function (usually WinMain or the 'C' main function).
This thread can create secondary threads by calling the CreateThread func
tion. Through thread scheduling, multiple threads appear to execute simultane
ously. Only one thread can actually be running at a time, so the operating sys
tem gives each thread a small amount of processor time (called a quantum)
based on a scheduling algorithm based on thread priorities.

Threads are created by applications to

e Wait for some event to occur, such as termination of a process or receipt
of information through a communications channel

e Perform background processing, such as calculations or database querying

Additional threads are usually created to wait for an event to occur so the
primary thread is not blocked (that is, waiting for an event to occur). If the pri
mary thread is blocked, the application will not be able to redraw the user in
terface or respond to user input. In Listing 5.3 the primary thread was blocked
through calling WaitForSingleObject, and the application would be un
responsive until the application started with CreateProcess terminates. This
code could be improved by creating a secondary thread, and calling Wai tFor
SingleObj ect on that thread. Techniques for doing this are described in the
next sections of this chapter.

As it happens, most secondary threads are blocked waiting for an event
to occur. They arc not, therefore, consuming processor time. There are a few
occasions when secondary threads are used to perform background processing.
In this situation, a thread will be using processor time. Windows CE will not en
ter a power-saving state when a thread is executing, so care needs to be taken
to ensure that such threads do not execute for too long.

Thread synchronization becomes an issue whenever you have more than
two threads in an application. Synchronization techniques ensure that threads
access shared resources in an ordered way and allow threads to communicate
information to each other. Chapter 6 looks at synchronization techniques.

User-Interface and Worker Threads
There are two types of threads:

e User-interface threads
e Worker threads

134 Chapter 5 • Processes and Threads

A user-interface thread is capable of handling messages, so a user-interface
thread can create windows. Each user-interface thread must have its own mes
sage loop to handle messages for windows created by that thread. An appli
cation's primary thread is a user-interface thread, and it will typically have a
message loop.

A worker thread does not have a message loop and therefore cannot
create windows. The thread can, however, send messages to a window handle
created by a user-interface thread, and can display a message box using the
MessageBox function.

While it is possible to have multiple user-interface threads in an applica
tion, it is rarely absolutely necessary. To keep application design simple, you
should execute all user-interface code with the primary thread, and create sec
ondary worker threads for any task that would, if executed on the primary
thread, make the application unresponsive.

Threads do require memory and other resources and do take time to cre
ate. Therefore, you want to limit the number of threads that your application
creates. Further, many threads can make your application design much more
complex and introduce synchronization problems.

Accessing Global and Local Variables In Threads
Global or static variables are accessible by all threads in an application. Auto,
or function-local variables, are placed on the thread's stack, and are therefore
only accessible by the thread that calls the function. Synchronization tech
niques must be applied whenever more than one thread accesses a global vari
able. Synchronization techniques are not generally required when accessing
auto variables on the stack.

Each thread has its own stack on which variables local to a function are
placed. The maximum stack size in Windows CE is 58 KB. When a thread is
created, Windows CE reserves a 60-KB region in the process's virtual address
space and commits memory as the stack grows. If the stack cannot be grown
(because of lack of physical memory), the thread will be suspended until the
request can be granted. The number of threads that can be created is limited
by the amount of free virtual memory address space iri the process and the
available physical memory.

Using Correct Thread Processing
You should be sure to write code that does not interfere with the Windows CE
thread schedule. If you do write such code, you can

® Take up valuable processor time
® Stop Windows CE from using power-saving techniques

Threads 135

A common mistake is to write a 'while' loop to wait until some event
(such as termination of a process) has completed, as shown in this pseudocode:

while(ProcessHasNotFinished())
{

II do nothing

In fact, this while loop does lots! It repeatedly calls the function Pro
cessHasNotFinished, and has scheduled processor time to do this. While a
thread is executing code Windows CE cannot enter into one of its power-saving
states, and so battery power will be wasted. You can improve this code some
what by putting the thread to sleep for a short while on each loop. This will
reduce the amount of processor time taken up.

while(ProcessHasNotFinished())
{

Sleep(lOO); II suspend thread for 100 milliseconds

However, the best solution is to use a function like WaitForSingle
Obj ect to block the thread until the process terminates. Then, the thread takes
up no processor time and does not interfere with battery-saving routines.

Some desktop applications make use of idle time to do background pro
cessing using the primary thread. Modifying the standard message loop to use
PeekMessage, as shown in the following pseudocode, does this.

while(TRUE)
{

if(PeekMessage(...))
{

II Call GetMessage, translate and
II dispatch message.
GetMessage(...) ;
DispatchMessage(...) ;
if(message is WM_QUIT)

else
{

break;

II do we have background processing?
if(bHaveBackgroundProcessing)

DoBackgroundProcessing();

This code, unfortunately, is not much better than the 'while' loop, and
it will take up processing time. The background processing should be carried
out in a thread.

136 Chapter 5 e Processes and Threads

Creating a Thread
Threads are created by calling the function CreateThread. The function is
passed an address of a function (the 'thread function') that the new thread will
start executing, in much the same way the primary thread starts executing Win -
Main as an entry point into the application. The thread function always has the
following prototype:

DWORD WINAPI ThreadProc(LPVOID lpParameter);

The function is passed an LPVOID pointer that can be used for passing in
formation into the thread from the thread that calls CreateThread. The func
tion returns a DWORD which is the thread exit code. The thread exit code is used
in much the same way as the process exit code described earlier in this chapter.

In Listing 5.7 CreateThread is called to create a new thread that starts
executing the code in the thread function MyThreadProcl. The thread func
tion displays a message and then returns. The thread terminates automatically
on returning from the thread function in much the same way a process termi
nates when a return is made from WinMain.

Creates a thread

DWORD WINAPI MyThreadProcl(LPVOID lpParameter)
{

cout << _T("Message from the thread") << endl;
return 0;

void Listing5_7()
{

HANDLE hThread;
DWORD dwThreadid;

hThread = CreateThread(NULL, 0, MyThreadProcl,
NULL, 0, &dwThreadid);

if(hThread ==NULL)
cout << _T("Could not create thread") << endl;

else
{

CloseHandle(hThread);
cout << _T("Thread Created") << endl;

Table 5.6 shows the parameters for the CreateThread function. A thread
has an identifier that is used when calling certain thread functions and is like

CreateThread

Terminating a Thread and Thread Exit Codes 137

a process identifier. The function returns a kernel object handle that should be
closed by calling CloseHandle.

Create Thread-Creates a new thread

LPSECURITY_ATTRIBUTES
lpThreadAttributes

DWORD dwStackSize

Ignored, pass as NULL

Ignored, pass as O

LPTHREAD_START_ROUTINE
lpStartAddress

LPVOID lpParameter

DWORD dwCreationFlags

LPDWORD lpThreadid

HANDLE Return Value

Pointer to the thread function

Pointer to data that is passed in to the LPVOID lpParameter
parameter in the thread function

CREATE_SUSPENDED to create the thread in a suspended state,
or O to create a thread that is running

DWORD pointer that receives the thread's identifier

Thread's kernel object handle, or NULL on failure

Unlike the Windows NT/98/2000 operating systems, in Windows CE a
thread is always created with a default stack size of 58 KB. Note this is 58 KB
of virtual address space, and physical memory is only allocated as the stack
grows.

Terminating a Thread and Thread Exit Codes
A thread terminates when the thread function exits. The return value from the
thread function is the thread's exit code. The exit code can be used to commu
nicate success or failure to other threads. A thread function, or any function it
calls, can terminate prematurely by calling Exit Thread. This function is passed
a single DWORD parameter that is used as the thread's exit code:

ExitThread(lO); //set thread exit code to 10

The code in Listing 5.8 creates a thread, and then calls WaitForSingle

Obj ect to block the primary thread until this thread terminates, or until 5000
milliseconds have elapsed. It is a good idea to set a timeout on waiting for a
thread just in case the thread function fails. The thread function calls Exit

Thread to prematurely terminate the thread and set the exit code to 10. Note
that the output message and the return statement will never be executed.
Once WaitForSingleObject unblocks the function, GetExitCodeThread

138 Chapter 5 * Processes and Threads

is called to retrieve the exit code (which should be 10). This function takes the
thread handle and a pointer to a DWORD to receive the exit code.

Thread exit codes

DWORD WINAPI MyThreadProc2(LPVOID lpParameter)
{

Exit Thread (10);
cout << _T("This message is not displayed") << endl;
return O;

void Listing5_8()
{

HANDLE hThread;
DWORD dwExitCode;

hThread = CreateThread(NULL, 0, MyThreadProc2,
NULL, 0, NULL);

if(hThread == NULL)
cout << _T("Could not create thread") << endl;

else
{

if(WaitForSingleObject(hThread, 5000)
WAIT_FAILED)

cout << _T("Could not wait on thread")
<< endl;

GetExitCodeThread(hThread, &dwExitCode);
CloseHandle(hThread);
cout << _T ("Thread Exit code: ")

<< dwExitCode << endl;

A thread can be terminated by another thread through calling Termi -
nateThread. This function is passed the kernel object handle of the thread to
terminate, and a DWORD specifying the exit code to set for the thread.

DWORD dwExitCode = 20;
if(!TerminateThread(hThread, dwExitCode))

cout << _T("Could not terminate thread.") << endl;

As with TerminateProcess, you should only use TerminateThread
as a last resort. Dynamic Link Libraries may have allocated thread local storage
(TLS, described later in the chapter), and the DLLs will not have the opportu
nity to free this resource.

Terminating a Thread and Thread Exit Codes 139

Thread States
A thread can exist in one of the following states:

"' Suspended-Thread is not executing and will be suspended indefinitely.
"' Running-Thread is executing code.
"' Sleeping-Thread is sleeping for a specified period of time.
"' Blocked-Thread is waiting for an event to occur, usually when calling

WaitForSingleObject.
"' Terminated-Thread has terminated, but the thread exit code is still

available.

The functions SuspendThread and ResumeThread are used to change
a thread from running to suspended, and vice versa. A thread can suspend itself
but cannot resume itself since it is not executing, and so cannot call Resume
Thread.

In Windows CE versions prior to 3.0, the minimum time a thread could
be put to sleep was around 25 milliseconds. In version 3.0 the Sleep function
can sleep a thread for a period of 1 millisecond or greater. This is due to changes
to thread scheduling described later in this chapter. Further, the GetTick
Count function (which returns the number of milliseconds elapsed since the
device was powered-on) provides a resolution down to a millisecond. In List
ing 5.9 the primary thread is put to sleep for a single millisecond, and the
amount of time spent sleeping is recorded. In Windows CE 3.0, the program
will record that the thread was asleep for around two milliseconds (the sleep
time, plus overhead of calling GetTickCount), whereas in Windows CE ver
sions prior to 3.0, a value of around 25 milliseconds or more will be recorded.

M!tfi!HjM Sleeps a thread

void Listing5_9()
{

DWORD dwTickCount = GetTickCount();
Sleep(l);
dwTickCount = GetTickCount()- dwTickCount;
cout << _T("Sleep for: ") << dwTickCount << endl;

You can pass the value 'O' to the Sleep function, and this yields con
trol back to the thread scheduler regardless of whether the thread's time quan
tum was up. This can be used to allow other threads with the same priority an
opportunity to execute immediately. This can be useful when synchronizing
threads.

140 Chapter 5 Processes and Threads

Thread Scheduling
The Windows CE thread scheduler is responsible for ensuring that threads get
the proper amount of time to execute their code. Each thread is given a 'quan
tum' of time in which to execute code. Once the quantum of time has elapsed,
the thread scheduler allows another thread to execute for its quantum. In Win
dows CE versions prior to 3.0, the quantum was set at 25 milliseconds. In Win
dows CE 3.0 it is set to 100 milliseconds (although this figure can be changed
by an OEM). This means that in Windows CE 3.0 a thread can execute for up
to 100 milliseconds without interruption.

A thread can change its quantum to make it longer or shorter. The code
in Listing 5.10 displays the current quantum time for the thread using CeGet
ThreadQuantum. This function is passed the thread's handle that is obtained
through calling GetCurrentThread. The CeSetThreadQuantum function is
then called to set the quantum time for the current thread to 20 milliseconds.

Thread quantums

void Listing5_10()

cout << CeGetThreadQuantum(GetCurrentThread()) << endl;
CeSetThreadQuantum(GetCurrentThread(), 20);

The function GetCurrentThread used in Listing 5.10 returns a pseudohandle
for the current thread. This handle does not have to be closed through a call to
CloseHandle since it is a pseudohandle.

You might want to increase the thread quantum time if, for example, you
are sending data to an instrument that needs to receive the data without inter
ruption. You would set the quantum time to the period of time you expected
the transmission to take. Then, once the transmission is complete, you would
call return the quantum value back to its previous value, and then call s 1 eep (0)
to end your quantum. Of course, you do not want to set the quantum period
to be too long, otherwise operating system and other processes won't get an
opportunity to execute. Finally, thread scheduling is dependent on the thread's
priority, and this is discussed in the next section.

When the scheduler swaps out a thread, it saves a 'thread context'. This
context contains the current state of the processor (including all the registers,
program counter, stack frames, and so on). Then, when the thread is to receive
its next quantum, the thread context is restored back into the processor and the
thread set to running again. A thread can get another thread's context by calling
the GetThreadContext function, passing the handle to the thread and a CON
TEXT structure pointer. This is typically a debugging operation. The function
SetThreadContext allows the current context for a thread to be changed.

Thread Priorities 141

The modified context will be used the next time the thread is scheduled for a
quantum. The CONTEXT structure is highly dependent on the device's proces
sor, since it contains members for CPU registers and so on. It is declared in the
header file winnt. h.

Thread Priorities
The previous section described how threads are scheduled for execution using
the quantum time period. The thread scheduler uses a round-robin algorithm
for scheduling threads. However, this ignores the fact that threads can have dif
ferent priorities, and this affects how frequently a thread is scheduled.

In Windows CE 3.0 a thread can be assigned any one of 255 different pri
orities, with 0 being the highest priority and 255 the lowest. The seven lowest
priorities (255 to 249) are application thread priorities, while the remainder are
real-time priorities. In Windows NT/98/2000 a thread has a priority relative to
the process's priority class. Windows CE does not use priority classes, and each
thread has a priority in its own right.

The scheduler first schedules threads at the highest priority level in a
round-robin manner. Only when all threads at the highest level have blocked
does the scheduler then schedule threads at the next highest level. This pro
cess is repeated down all the different priority levels. If, while a lower-priority
thread is executing, a higher-level thread unblocks, the lower-priority thread is
stopped executing (even if it has not finished its quantum), and the higher
priority thread is scheduled. A real time priority thread cannot be preempted
(that is, swapped out) except by an interrupt-service routine even if its time
quantum period has elapsed.

All threads are initially created at the 'normal' priority. The application
then changes the thread's priority appropriately. A thread's priority can be set
by either calling SetThreadPriority (to set an application priority) or Ce
SetThreadPriority (to set an application or real-time priority). The Set
ThreadPriori ty function is passed the handle to a thread and a constant
specifying which priority to use (Table 5.7). Note that THREAD_PRIORITY_
TIME_CRITICAL is a real-time priority. The constants in Table 5.7 have the
values 0 for THREAD_PRIORITY_TIME_CRITICAL to 7 for THREAD_PRIOR
ITY_TIME_CRITICAL. You can see that these constants do not map to the
priority values of 0 to 255 used by CeSetThreadPriority. For this reason,
you should only use these constants with SetThreadPriority.

There is only one situation where a thread's priority is automatically
changed by the operating system, and that is priority inversion. If a low-priority
thread is using a resource that a high-priority thread is waiting on, the operat
ing system temporarily boosts the lower-priority thread until it releases the re
source required by the higher-priority thread. Unlike Windows NT/98/2000,

142 Chapter 5 e Processes and Threads

CeSetThreadPriority priority constants

Constant

THREAD PRIORITY_TIME_CRITICAL

THREAD_PRIORITY_HIGHEST

THREAD_PRIORITY_ABOVE_NORMAL

THREAD_PRIORITY_NORMAL

THREAD_PRIORITY_BELOW_NORMAL

THREAD_PRIORITY_LOWEST

THREAD_PRIORITY_ABOVE_IDLE

THREAD_PRIORITY_IDLE

Purpose

Indicates 3 points above normal priority

Indicates 2 points above normal priority

Indicates 1 point above normal priority

Indicates normal priority

Indicates 1 point below normal priority

Indicates 2 points below normal priority

Indicates 3 points below normal priority

Indicates 4 points below normal priority

Windows CE does not provide 'foreground boosting' whereby the applica
tion in the foreground has its thread priorities set to a value greater than other
applications.

In Listing 5.11 the code obtains the current thread priority by calling Ce
GetThreadPriority. This will generally return the value '251'. This corre
sponds to THREAD_PRIORITY_NORMAL in Table 5.7. A call is then made to Ce
SetThreadPriority to set the thread's priority to 140. This is a real time
priority, so subsequent code will be executed without interruption. After dis
playing the new thread priority, the thread's priority is set back to its original
value.

Sets real time thread priorities

void Listing5_11()
{

int nPri = CeGetThreadPriority(GetCurrentThread());

cout << _T("Pri: ") << nPri << endl;
CeSetThreadPriority(GetCurrentThread(), 140);
cout << _T("New Pri: ")

<< CeGetThreadPriority(GetCurrentThread())
<< endl;

CeSetThreadPriority(GetCurrentThread(), nPri);

You should take care when using real time priorities. An application can
easily take over the processor and not let other applications, or essential parts
of the operating system, run correctly. If you do need to create real time threads,
ensure that they remain real time for the minimum required time or remain
blocked for the majority of time.

Enumerating Threads 143

Enumerating Threads
The toolhelp functions can be used to list all the threads running on a device.
The code in Listing 5.12 takes a snapshot of all threads by calling Create
Toolhelp32Snapshot and passing the TH32CS_SNAPTHREAD constant. The
second parameter is a process identifier, and 0 specifies that threads for all pro
cesses should be enumerated. The functions Thread32First and Thread-
32Next are used to enumerate the threads in the snapshot, and data on each
thread is placed in a THREADENTRY32 structure. As usual, CloseToolhelp-
3 2 Snapshot should be called to close the snapshot.

lfMjM Lists running threads

void Listing5_12()
{

HANDLE hThreadSnap;
THREADENTRY32 th32;

hThreadSnap =
CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, 0);

if (hThreadSnap == (HANDLE)-1)
{

cout << _T("Could not take Toolhelp snapshot")
<< endl;

return ;

th32.dwSize = sizeof(THREADENTRY32);

if (Thread32First(hThreadSnap, &th32))
{

do
{

cout << _T("ThreadID: ")
<< th32.th32ThreadID
<< _T (" Process ID: ")
<< th32.th320wnerProcessID
<< _T (" Priority: ")
<< th32.tpBasePri << endl;

while (Thread32Next(hThreadSnap, &th32));

CloseToolhelp32Snapshot(hThreadSnap);
return;

There are really only three members of THREADENTRY3 2 that provide useful
information:

144 Chapter 5 * Processes and Threads

e th32ThreadID-The thread identifier for the thread
e th320wnerProcessID-The identifier for the process in which the

thread runs
e tpBasePri-The thread's priority as a value between 0 and 255

Running Listing5_12 on a Pocket PC shows that most threads run at pri
ority 251 (THREAD_PRIORITY_NORMAL), others at 255 (THREAD_PRIORITY_
IDLE) and 249 (THREAD_PRIORITY_HIGHEST), and around 10 running at real
time priorities such as 109, 132, 118 120 and 126.

Determine Thread Execution Times
The ThreadTimes function can be used to determine the amount of time in
milliseconds that a thread has been executing. This can be useful when mon
itoring an application's performance. Listing 10.6 in Chapter 10 ("The Remote
API") shows an example of using this function. In this case, ThreadTimes is
called from a DLL running on a Windows CE device, with the data being re
turned through a RAPI call to a desktop application.

Creating Threads with MFC
MFC provides the CWinThread class to provide support for creating threads,
and is similar in many respects to CWinApp in the methods it supports. This class
can be used to manage worker and user interface threads because, like CW in -
App, it implements a message loop.

Although MFC provides a class to manage threads, you still need to cre
ate a global thread function that has the following prototype:

UINT MFCThreadProc(LPVOID lpParameter);

The MFC function AfxBeginThread can be called to create a worker
thread using the thread function:

'I

CWinThread* pThread =
AfxBeginThread(MFCThreadProc, NULL);

The function AfxBeginThread is passed a pointer to the thread function
and a pointer to data to pass to the LPVOID parameter (which is, in this case,
NULL). AfxBeginThread returns a pointer to a CWinThread object through
which the newly created thread can be managed. For example, you can sus
pend and resume the thread by calling CWinThread: : SuspendThread and
CWinThread: : ResumeThread. You can ignore the return result from Afx
BeginThread if you do not need to manage the thread, and you do not have
to delete the CWinThread object.

Conclusion 145

Conclusion
In this chapter you have found out about processes and how they are created
and terminated. The chapter also covered creating additional threads in your
application. However, this is only half of the story. As soon as your application
creates additional threads, you need to make your application 'thread safe'.
This means that all access to global variables and resources must be protected
by using synchronization techniques. This is the subject of the next chapter.

Thread Synchronization

The last chapter showed how processes could create additional threads to carry
out background tasks or to wait for some event to occur. However, using threads
is not as simple as creating a new thread and leaving it to execute. Since all
threads running in an application share the same global resources and variables,
there is always the chance that two threads will attempt to access the same re
source at the same time. Such simultaneous access of a global resource may
cause the program to fail. Because of the way the threads are scheduled, the
problems caused by simultaneous access of a global resource will not occur
every time the program is run. Typically such synchronization problems occur
rarely enough to make tracking them down difficult but frequently enough to
be annoying for the user.

There is only one sure way to avoid synchronization problems: build
in and test thread synchronization techniques whenever you create additional
threads. If you have difficulties in writing synchronization code, you are better
off staying with a single-threaded application. You can then use other methods,
such as timers or sending messages, in place of additional threads.

The Need for Synchronization
Thread synchronization is required when

an application is multithreaded and these threads attempt to use global variables
and resources, or the threads need to wait until some event has completed be
fore continuing execution.

146

The Need for Synchronization 147

First, let's look at why synchronization is required when multiple threads
access a global variable. In the following code, a global floating-point variable
is declared, and two threads try to perform different actions on that variable.

float g_fValue = 10.0;

void fl ()
{

g_fValue

void f2 ()
{

g_fValue

II called by thread 1

g_fValue * g_fValue;

II called by thread 2

3.0 + g_fValue;

It is easy to see that the value in 'g_fVal ue' can be either (10*10) +
3 = 103 or (10+3) * (10+3) = 169 after the two threads have finished ex
ecuting, depending on whether function 'f 1' or function 'f 2' completes first.
The order in which the two functions execute depends on how the threads
were started and scheduled.

However, there is a much more worrisome potential outcome-the vari
able 'g_fValue' may contain a completely different value after the functions
have completed. While we think of a statement like 'g_fvalue += 10;' as
being atomic (that is, it will execute in its entirety all in one go without inter
ruption), the statement is actually compiled into a number of machine code
operations.

g_fValue
fld
fmul
fst

g_fValue
fadd

fstp

g_fValue * g_fValue;
dword ptr [g_fValue (0041060c)J
dword ptr [g_fValue (0041060c)J
dword ptr [g_fValue (0041060c)]
3.0 + g_fValue;
qword ptr

[~real@8@4000c000000000000000 (0040c020)]
dword ptr [g_fValue (0041060c)J

From this listing it becomes obvious that the first statement 'g_fValue =
g_fValue * g_fValue' is compiled into three different op codes. The thread
quantum could finish after the first op code has completed, and the second
thread may then be scheduled to execute the statement 'g_fValue = 3. 0 +
g_fValue'. Therefore, the resulting computation would be 10 * (10+3) = 13 0.
This scenario would be a very rare event, but it could happen. Thread synchro
nization techniques should be employed to prevent it from ever happening.

A related problem arises when a thread must complete a number of re
lated steps as an atomic unit without interruption from other threads. For ex
ample, if you write an application to create and maintain a linked list, a thread
that inserts a new item in the linked list must create the new item, link the new

148 Chapter 6 * Thread Synchronization

Existing Linked list

Item 1 ltem2 ~ Item 3

Step 1: Create new item

Item 1 Item 2

Step 2: Link item to previous item

Item 1 ~-1-re_m_2~~~1~~-lte_m_3~~
Item 2

Step 3: Link item to next item

Item 1 I-- ~ Item 2 ~ Item 3

L_.. New item

Adding a new item to a linked list

item to the previous item in the list, and link the new item to the next item in
the list without other threads accessing the linked list (Figure 6.1).

If a second thread attempts to access the linked list before the new item
has been linked to the next item in the list, the second thread will prematurely
reach the end of the list when the new item is traversed (Figure 6.2).

The Need for Synchronization 149

Item l
H•m2 H ™'

---&
If second thread starts accessing the list ot
Item 1, it will stop when the 'new item' is
accessed. Item 2 and 3 will be ignored.

Threads add
and access
items at the
some time

Worse still, if two threads attempt to insert new items at the same point
in the linked list, the list itself can be broken (Figure 6.3). This is because each
thread is unaware of the links being created by the other thread. These are
known as race conditions and require synchronization.

The second need for synchronization occurs when threads need to coor
dinate their executions based on some event being completed. In this situa
tion one or more threads are typically blocked and are waiting for the event to
occur. When two or more threads are waiting for two or more events to com
plete, there is a real chance that a 'deadlock' or 'deadly embrace' will occur.
This should be avoided at all costs. Here is a typical situation that leads to a
deadlock:

e Thread 1 has resource 1 locked and is blocked waiting on resource 2 to
be freed.

e Thread 2 has resource 2 locked and is blocked waiting on resource 1 to
be freed.

In this situation neither thread 1 nor thread 2 can continue executing be
cause they are both blocked. Because the threads are blocked, the threads can
not execute code to free the resource they have locked (Figure 6.4). They there
fore remain blocked forever. A deadlock between two worker threads is serious,
but a deadlock between a worker thread and the primary thread is critical. The
application will be not be responsive to the user, and the application will have
to be closed down.

Synchronization techniques should be employed to ensure that threads
block correctly, and perhaps provide timeouts to occur in the event of a dead
lock. Deadlocks may occur infrequently in an application when a particular train
of events occurs in a particular order. This makes them difficult to track down.

Deadlocks can be avoided by following this simple rule:

Always lock or block on a resource in the same order. All threads blocking or
locking resource l and resource 2 should block or lock resource l before
attempting to block or lock resource 2. Resources should be unlocked in the
reverse order they were locked in.

Step 1: Two threads create new items at the same time for
insertion between Item 1 and Item 2.

Item 1 Item 2 Item 3

Item 1

New item
Thread l

New item
Thread 2

Step 2: Thread 1 starts to link its item

I l>m, M=: I
New item
Thread l

Newitem
Thread 2

Item 1

Item 1

Step 3: Thread 2 links its item alter new Item l

Item 2 Item 3

Newitem
Thread l

Newitem
Thread 2

Step 4: Both threads complete their linking

Newitem
Thread 1

New item
Thread 2

Item 2

Race conditions when two threads manipulate the linked list at the same time

Item 3

Waiting to lock
Resource 2

Resource l
locked by
Thread l

Resource 2
locked by
Thread 2

DEADLOCK! Waiting to lock
Resource 1

Critical Sections 151

Deadlock
between two
threads

The scenario outlined above with thread 1 and thread 2 blocking on re
source 1 and resource 2 leads to a deadlock because the resources were not
locked in the same order. Applying this rule leads to the following:

® Thread 1 locks resource 1 and attempts to use resource 2. If resource 2 is
not in use, thread 1 locks resource 2, uses the resources, and then unlocks
resource 2 followed by resource 1.

® Thread 2 attempts to lock resource 1. If it is in use, thread 2 blocks. If it is
not in use, thread 2 locks resource 1 and then attempts to lock resource 2.
It will wait until resource 2 is available, use the resources, and then unlock
resource 2 and then resource 1.

While this rule is quite simple, it can be difficult to implement if the code
used to lock and block on the resources is scattered throughout the applica
tion. Therefore, you should write functions or classes that manage the locking
or blocking.

One of the more difficult design issues is deciding which of the synchro
nization techniques available in Windows CE should be applied to your prob
lem. After describing each of the techniques, the section "Selecting the Correct
Synchronization Technique" later in the chapter provides a summary and a set
of selection criteria.

Critical Sections
A critical section identifies code that must be executed to completion before
another piece of code can be executed. In the example presented in the pre
vious section, the statements 'g_fVal ue = g_fVal ue * g_fVal ue;' and
'g_fVal ue = 3. 0 + g_fVal ue;' should be marked as critical sections to en
sure that both statements can be executed to completion before the other starts
executing. If this is done, the only two possible results in g_fVal ue are 103
and 169. The spurious value of 130 will never occur.

152 Chapter 6 "' Thread Synchronization

To create and use a critical section you should:

e Declare a CRITICAL_SECTION structure as a global variable, or a mem
ber variable of a class

e Call the InitializeCriticalSection function to initialize this struc
ture

111 Call EnterCriticalSection before the lines of code that form the criti
cal sections

e Call LeaveCriticalSection after the lines of code that form the criti
cal sections

e Call the DeleteCriticalSection function when the CRITICAL_SEC
TION is no longer required

All the critical section functions take a single argument that is a pointer
to the CRITICAL_SECTION structure. You should treat this structure as a black
box and not use the members contained in it. The code in Listing 6.1 declares
a critical section structure g_cs, and creates two threads using thread functions
fl and f2. Each thread function performs an operation on a global float value
'g_fValue'. Because each thread is accessing a global function, the critical sec
tion structure g_cs is used to synchronize access to the global variable.

MMJM Using critical sections

float g_fValue = 10.0;
CRITICAL_SECTION g_cs;
DWORD WINAPI fl(LPVOID);
DWORD WINAPI f2(LPVOID);

void Listing6_1()
{

HANDLE hThreadl, hThread2;
DWORD dwThreadID;

g_fValue = 10.0;
InitializeCriticalSection(&g_cs);
hThreadl = CreateThread(NULL, 0,

fl, NULL, 0, &dwThreadID);
hThread2 = CreateThread(NULL, 0,

f2, NULL, 0, &dwThreadID);
II Wait until thread 1 and thread 2 completes
WaitForSingleObject(hThreadl, INFINITE);
WaitForSingleObject(hThread2, INFINITE);
DeleteCriticalSection(&g_cs);
CloseHandle(hThreadl);
CloseHandle(hThread2);
cout << _T("Finished:") << g_fValue << endl;

DWORD WINAPI fl(LPVOID)
{

EnterCriticalSection(&g_cs);
g_fValue = g_fValue * g_fValue;
LeaveCriticalSection(&g_cs);
return O;

DWORD WINAPI f2(LPVOID)
{

EnterCriticalSection(&g_cs);
g_fValue = (float)3.0 + g_fValue;
LeaveCriticalSection(&g_cs);
return O;

Critical Sections 153

In Listing 6.1 you will notice that Wai tForSingleObj ect is called twice,
once for each of the two threads. This causes the function Listing6_1 to block
until both threads have terminated. This is important, since the call to Delete
Cri ticalSection cannot be made until both threads have finished using the
critical section. Wai tForMul tipleObj ect s cannot be used for this purpose,
since in Windows CE WaitForMultipleObjects only blocks until one of the
threads terminates. This is described in more detail later.

Once one thread calls EnterCri ticalSection, any other thread call
ing EnterCriticalSection using the same CRITICAL_SECTION structure
will block until the first thread calls LeaveCriticalSection. When this hap
pens, a thread blocked in EnterCriticalSection will unblock and can then
execute the code in its critical section. Multiple threads can be blocked on calls
to EnterCri ticalSection, and you cannot predict which of these blocked
threads will unblock. Note that creating a critical section does not ensure that
the code in the critical section will execute to completion without interruption
-the normal thread-scheduling rules apply.

The following rules should be applied when using critical sections:

111 Always ensure that the LeaveCriticalSection call is made. For ex
ample, do not have 'return' statements in the critical section code.

111 Do not introduce user interactions, such as a message box, in a critical sec
tion. Other threads will block until the user dismisses the message box.

* Do not have code that takes a long time to execute in a critical section.
You will end up blocking other threads, and they won't be able to execute
their code.

You can declare multiple CRITICAL_SECTION structures to protect, for
example, the access to different global variables. While this can improve the
multithreading processing (since threads will not unnecessarily be blocked), it
introduces the potential of deadlocks. For example, a thread could enter criti
cal section 1 and then attempt to enter critical section 2. Another thread could

154 Chapter 6 0 Thread Synchronization

enter critical section 2 and then attempt to enter critical section 1. If this hap
pens simultaneously, a deadlock can occur. Using the rule described earlier,
you can avoid this by always entering critical sections in the same order.

The Interlocked Functions
Ensuring protected access to global integer values turns out to be a common
requirement in many applications, so the Windows CE API provides the 'inter
locked' functions to allow safe incrementing, decrementing, and swapping of
values in global integer variables. The functions are

® Interlockedincrement-Increment an integer variable. The function
takes a single parameter, which is a pointer to the integer to increment.

® InterlockedDecrement-Decrement an integer variable. The function
takes a single parameter, which is a pointer to the integer to increment.

® InterlockedExchange-Places a new value into an integer variable.
The first parameter is a pointer to an integer to receive the new value,
and the second parameter is the new integer value.

For example, the following code declares a global integer value and uses
Interlockedincrement to increment the value in that variable. Using this
function ensures that other functions using the interlocked functions will block
until this call is completed.

LONG g_lMyVar;
Interlockedincrement(&g_lMyVar);

Note that all changes to the variable g_lMyVar should be through the
interlocked functions to ensure that correct synchronization occurs. If you need
to perform a more complex calculation (for example, one that involves multi
plication that does not have an interlocked function), you should perform the
calculation using local variables, and then copy the value into the global inte
ger variable using the InterlockedExchange function.

WaitForSingleObject and WaitForMultipleObjects
Synchronization relies on one thread blocking until another thread has com
pleted a task that uses some sort of shared resource. In Windows CE two block
ing functions are commonly used:

® WaitForSingleObj ect: Waits until a single kernel object becomes sig
naled, or a timeout occurs

® WaitForMultipleObjects: Waits until one of several kernel objects
becomes signaled, or a timeout occurs

WaitforSingleObject and WailforMultipleObjects 155

Chapter 5 ("Processes and Threads") showed how WaitForSingleOb
j ect could be used to block until a thread or process terminates. However,
Wai tForSingleObj ect can also be used to block on a wide range of syn
chronization objects, such as mutexes, events, and semaphores.

____ Wi_a_i_tF_o_rS_in_.g._l_eO_b ... ie_c_t_B_l_oc_k_s_u_n_ti_I o_b ... i_ec_t_b_e_c_o_m_e_s_s ... ig ... n_a_le_d ___ _

WaitForSingleObject

HANDLE hHandle Handle of kernel object to block on, for example,
thread, process, mutex, event, or semaphore.

DWORD dwMilliseconds Timeout value in milliseconds. The constant
INFINITE specifies no timeout.

DWORD Return Value WAIT_OBJECT_O if the object is signaled.
WAIT_TIMEOUT if the wait timed out.
WAIT_ABANDONED if a mutex object became

abandoned (see section on mutex objects for
abandoned mutex objects).

WAIT_FAILED indicates failure, call GetLastError
for detailed error information.

WaitForSingleObject can be called with a 'O' value for dwMilli
seconds. In this case,' the function does not block but returns WAIT_OB
JECT_O if the object is signaled, or WAIT~TIMEOUT if the object is not signaled.
Calling the function in this way is used to determine if an object is signaled or
non-signaled without blocking.

WaitForMultipleObiects-Blocks until first obiect becomes signaled

WaitForMultipleObjects

DWORD nCount

HANDLE *lpHandles

BOOL fWai tAll

DWORD dwMilliseconds

DWORD Return Value

Number of kernel objects to wait on.

Array of kernel object handles to wait on.

Must be FALSE. Windows CE does not support waiting on all object
handles.

Timeout value in milliseconds. The constant INFINITE specifies no
timeout.

WAIT_OBJECT_O to (WAIT_OBJECT_O + nCount -1) indicating which
object in the lpHandles array became signaled.

WAIT_ABANDONED_O to (WAIT_ABANDONED_O + nCount -1) indicating
which event object was abandoned.

WAIT_ TIMEOUT if the wait timed out.
WAIT_FAILED indicates failure, call GetLastError for detailed error
information.

156 Chapter 6 • Thread Synchronization

CreateMutex

In Windows CE Wai tForMultipleObj ects will always return when
the first kernel object becomes signaled, whereas in Windows NT/98/2000
WaitForMultipleObj ects can be used to block until all the objects become
signaled.

The array of object handles passed to Wai tForMultipleObj ects can
include a mixture of different kernel objects, such as threads, processes, and
so on. However, the same kernel object handle cannot appear more than once
in the array.

Using Mutex Objects
Mutex (or 'Mutual Exclusion') kernel objects are used to ensure that global vari
ables or resources are accessed exclusively by a piece of code. In this respect,
they provide the same functionality as critical sections. However, they are more
flexible. For example, critical sections can only be used to ensure exclusivity
within a single process, whereas mutex objects can be used across processes.

The following steps are required when using mutex kernel objects:

• Create a new mutex or open an existing mutex by calling the function
CreateMutex.

• Call Wai tForSingleObj ect when entering critical code.
lit Call ReleaseMutex when the critical code execution is complete.
lit Call CloseHandle on the mutex when the mutex is no longer required.

Like all kernel objects, a mutex can either be signaled (in which case
Wai tForSingleObj ect will not block), or non-signaled (in which case Wait
ForSingleObj ect will block until the object becomes signaled). The function
ReleaseMutex changes the mutex state from signaled to non-signaled.

CreateMutex-Creates a new mutex or opens an existing mutex

LPSECURITY_ATTRIBUTES Not supported, pass as NULL.
lpMutexAttributes

BOOL binitialOwner

LPCTSTR lpName

HANDLE Return Value

TRUE if the object is created signaled, and will be owned by the thread
creating the mutex. FALSE if the object is to be created non-signaled.
The value is ignored if an existing mutex is being opened.

String containing name of mutex, or NULL if an unnamed mutex is being
created. If this parameter is NULL a new mutex is always created.

Handle to new or existing mutex, or NULL on failure. GetLastError
returns ERROR_ALREADY_EXISTS if an existing mutex was opened.

Using Mutex Objects 157

A thread owns a mutex from the time the thread's call to Wai tFor
SingleObj ect returns until the thread calls ReleaseMutex. In other words,
the thread owns the mutex while the mutex is signaled. A mutex can be initially
created:

w Signaled. In this case, the thread that creates the mutex owns the mutex.
All other threads calling WaitForSingleObject will block until the
thread that owns the mutex calls ReleaseMutex.

w Non-signaled. The thread that creates the mutex does not own the mu
tex-in fact, no thread owns the mutex. The first thread that calls wait -
ForSingleObj ect will not block and will take ownership of the mutex.

A thread that owns a mutex can terminate before calling ReleaseMutex.
In this case, the next thread to call Wai tForSingleObj ect will take own
ership of the mutex. However, WaitForSingleObject will return WAIT_
ABANDONED rather than WAIT_OBJECT_O.

Release!\!lutex-Changes a mutex's state to non-signaled

ReleaseMutex

HANDLE hMutex Handle of the mutex to change to non-signaled

BOOL Return Value TRUE on success, otherwise FALSE

Listing 6.2 shows how to use a mutex to control access to a global vari
able. The code performs the same function as Listing 6.1 but uses a mutex in
stead of a critical section. The mutex is created by calling CreateMutex, and
the second parameter ('TRUE') specifies that that mutex is owned by the thread
that creates it. Any other thread that calls WaitForSingleObject will block
until the thread that created the mutex calls ReleaseMutex. In Listing 6.2, each
thread calls Wai tForSingleObj ect before accessing the global variable g_
fValueMutex. One of the thread functions fcl or fc2 will unblock when the
function Listing 6_2 calls ReleaseMutex. The other function will unblock
when ReleaseMutex is called by the other unblocked thread function.

Using a mutex

float g_fValueMutex = 10.0;
DWORD WINAPI fcl(LPVOID);
DWORD WINAPI fc2(LPVOID);
HANDLE hMutex;

void Listing6_2()
{

HANDLE hThreadl, hThread2;
DWORD dwThreadID;

15 8 (hap I er 6 * Thread Synchronization

g_fValueMutex = 10.0;
II Create mutex that's initially owned by this thread
hMutex = CreateMutex(NULL, TRUE, NULL);
hThreadl = CreateThread(NULL, 0,

fcl, NULL, 0, &dwThreadID);
hThread2 = CreateThread(NULL, 0,

fc2, NULL, 0, &dwThreadID);
II Release Mutex to allow both threads to
II execute their code.
ReleaseMutex(hMutex);
II Wait until thread 1 and thread 2 completes
WaitForSingleObject(hThreadl, INFINITE);
WaitForSingleObject(hThread2, INFINITE);
II Close handle for the mutex and threads
CloseHandle(hMutex);
CloseHandle(hThreadl);
CloseHandle(hThread2);
cout << _T("Finished:") << g_fValueMutex << endl;

DWORD WINAPI fcl(LPVOID)
{

WaitForSingleObject(hMutex, INFINITE);
g_fValueMutex = g_fValueMutex * g_fValueMutex;
ReleaseMutex(hMutex);
return O;

DWORD WINAPI fc2(LPVOID)
{

WaitForSingleObject(hMutex, INFINITE);
g_fValueMutex = (float)3.0 + g_fValueMutex;
ReleaseMutex(hMutex);
return 0;

The function CreateMutex allows the mutex to be named-the last pa
rameter is a string pointer to the mutex's name. If CreateMutex is called with
the name of an existing mutex, the existing mutex will be opened rather than
creating a new mutex. In this case, CreateMutex returns success, but Get
LastError will return ERROR_ALREADY_EXISTS. Many processes can use a
named mutex, so this allows mutual exclusion between processes. Windows CE
does not support the Win32 function OpenMutex; however, all the functional
ity of OpenMutex is available through CreateMutex. Listing 4.25 in Chapter 4
("Property Databases and the Registry") shows how to use a named mutex.

Using Event Objects
Event kernel objects are used to allow a thread to block until another thread
has completed a task. For example, one thread may be reading data from the

Using Event Objects 159

Internet, and other threads can use an event to block until all the data has been
read. Events can either be 'manual-reset' or 'auto-reset', and the type of event
affects how threads blocking on the event behave.

oo Manual-Reset Events: When the event becomes signaled through a thread
calling SetEvent, all threads blocking on the event will be unblocked.
The event remains signaled until any thread calls ResetEvent at which
point the event becomes non-signaled.

oo Auto-Reset Events: When the event becomes signaled through a thread
calling SetEvent, only one thread blocking on the event will be un
blocked, at which point the event will automatically become non-signaled.

Events are created through a call to CreateEvent (Table 6.5). This func-
tion allows both manual-reset and auto-reset events to be created with either
a signaled or non-signaled state. Unlike mutex objects, events are not owned
by a thread, so any thread can change the signaled state once it has a handle
to the event. As with all kernel objects, CloseHandle should be called on the
event handle when it is finished with.

CreateEvent-Creates a new event or opens an existing event

CreateEvent

LPSECURITY_ATTRIBUTES
lpMutexAttributes

BOOL bManualReset

BOOL binitialState

LPTSTR lpName

HANDLE Return Value

Not supported, pass as NULL.

TRUE to create a manual-reset event, or FALSE for an
auto-reset event.

TRUE if the event is to be initially signaled, or FALSE
if the event is to be initially non-signaled.

String containing name of event, or NULL if an
unnamed event is being created. If this parameter
is NULL a new event is always created.

Handle to new or existing event, or NULL on failure.
GetLastError returns ERROR_ALREADY_EXISTS
if an existing mutex was opened.

The only way to change an event's state to signaled is to call Set Event.
This function takes a single argument that is the handle to the event, and re
turns TRUE on success, or FALSE for failure. Threads don't need to explicitly
change an event's state to non-signaled since this happens automatically when
the first thread unblocks. Manual events can be set to non-signaled through
calling the ResetEvent function. This function takes a single argument that is
the handle to the event and returns a Boolean indicating success or failure.

A third function, PulseEvent, is used primarily with manual events. This
function sets an event's state to signaled, and then immediately sets it to non
signaled. All threads that are blocked on the event are unblocked. However,

160 Chapter 6 111 Thread Synchronization

any threads that subsequently call Wai tForSingleObj ect will block on the
event until either PulseEvent or SetEvent are called.

As an example of when an event may be used, consider the code in List
ing 6.3. The function Listing6_3 declares a local variable structure 'thread
Info', initializes the structure, and passes a pointer to a new thread through
the Crea t eThread function. The thread function takes a copy of the structure
pointed to by lpThreadinfo into a local structure variable called tinfo. Sur
prisingly, this thread function fails most of the time, since the thread function
receives garbage in the structure that is passed to it. This is a classic synchro
nization problem-the function that creates the threads returns and the stack
space occupied structure is reused when the thread goes on to call other func
tions. By the time the thread does execute, its pointer refers to a structure that
is long gone (Figure 6.5).

M@fM Thread creation that requires an event for synchronization

typedef struct tagTHREADINFO
DWORD dwVall, dwVal2;

} THREADINFO, *LPTHREADINFO;

DWORD WINAPI ThreadFunc(LPVOID lpThreadinfo);

void Listing6_3()
{

THREADINFO threadinfo;
HANDLE hThread;
DWORD dwThreadid;

threadinfo.dwVall = 20;
threadinfo.dwVal2 = 40;

hThread = CreateThread(NULL, 0, ThreadFunc,
(LPVOID)&threadinfo, 0, &dwThreadid);

CloseHandle(hThread);

DWORD ThreadFunc(LPVOID lpThreadinfo)
{

LONG lResult;
THREADINFO tinfo = *((LPTHREADINFO)lpThreadinfo);
lResult = tinfo.dwVall * tinfo.dwVal2;
cout << _T("Result: ") << lResult << endl;
return O;

This problem can be fixed by creating a non-signaled event in the func
tion Listing3_4, and having the Listing3_4 function block after creating
the thread. The thread function ThreadFunc can then signal the event once it
has taken a copy of the structure. This is shown in Listing 6.4, with the lines of

Function StartThread

Thread Info
structure
created

Destroyed

Thread created

Returns

Pointer to Threadlnfo now invalid

Using Event Objects 161

ThreadFunc starts executing

Attempts to copy structure
pointed to be Ip Threadinlo

FAILS

Problem passing structure pointer to thread function

code added for synchronization shown in bold. The event has its signal state
changed just once with only a single thread waiting on it. Therefore, it does not
matter if an auto-reset or manual-reset event is created. Figure 6.6 shows the
program flow with this corrected code.

MMJM Thread creation requiring an event for synchronization

typedef struct tagTHREADINFO
DWORD dwVall, dwVal2;

}THREADINFO, *LPTHREADINFO;

DWORD WINAPI ThreadFunc2(LPVOID lpThreadinfo);
HANDLE hEvent;

162 Chapter 6 e Thread Synchronization

Function StartThread

Threadlnfo
structure
created

Thread created

Blocks on
event

Pointer to Threadlnlo is valid

Destroyed

Unblocks

Function
returns

Synchronized code for creating thread

void Listing6_4()
{

THREADINFO threadinfo;
HANDLE hThread;
DWORD dwThreadid;

threadinfo.dwVall 20;
threadinfo.dwVal2 40;

hEvent = CreateEvent(NULL,
TRUE, //manual event
FALSE,// initially non-signaled
NULL);// no name

Threadfunc starts executing

Copies structure

!
Signals event

Using Semaphores 163

hThread = CreateThread(NULL, 0, ThreadFunc2,
(LPVOID)&threadinfo, 0, &dwThreadid);

WaitForSingleObject(hEvent, INFINITE);
CloseHandle(hEvent);
CloseHandle(hThread);

DWORD ThreadFunc2(LPVOID lpThreadinfo)
{

LONG lResult;
THREADINFO tinfo = *((LPTHREADINFO)lpThreadinfo);
II Unblock Listing6_4 now the structure has been copied
SetEvent(hEvent);
lResult = tinfo.dwVall * tinfo.dwVal2;
cout << _T("Result: ") << lResult << endl;
return O;

Events can be named through the last parameter to CreateEvent. This
allows an event to synchronize threads in different processes. Windows CE
does not support the OpenEvent function, but CreateEvent can be passed
the name of an existing event and it will be opened. GetLastError will return
ERROR_ALREADY_EXISTS.

Using Semaphores
Semaphores are an integer variable used to count in a synchronized way. Sem
aphores are often used to control access to a limited resource. For example, if
your Windows CE device had two serial communications ports, you might use
a semaphore to ensure that an application blocks if all communications ports
are in use, and then un-blocks when one is freed. A semaphore object is sig
naled when less than the maximum number of resources is in use, and non
signaled when all the resources are in use. Semaphores were introduced in
Windows CE 3.0. The following steps are used when using a semaphore:

e The semaphore is created or opened using the CreateSemaphore func
tion (Table 6.6). This function is passed the maximum number of available
resources and the initial number of resources in use.

e A thread calls WaitForSingleObj ect on the semaphore handle when it
needs a resource. The resource count is automatically incremented when
Wai tForSingleObj ect returns.

e A thread calls ReleaseSemaphore when it has finished with the re
source. The resource count is decremented.

e The function CloseHandle is called when the thread has finished with
the semaphore.

164 Chapter 6 e Thread Synchronization

CreateSemaphore-Creates a new semaphore or opens an existing semaphore

CreateSernaphore

LPSECURITY_ATTRIBUTES
lpMutexAttributes

Not supported, pass as NULL.

LONG linitialCount Initial count (usually 0).

LONG lMaximumCount Maximum count, for example, maximum number of available resources.

String containing name of semaphore, or NULL if an unnamed semaphore LPTSTR lpName
is being created. If this parameter is NULL a new semaphore is always
created.

HANDLE Return Value Handle to new or existing semaphore, or NULL on failure.
GetLastError returns ERROR_ALREADY_EXISTS if an existing sema
phore was opened.

A thread should call Wai tForSingleObj ect to increment a semaphore's
count, and this call will block if the semaphore has reached its maximum count.
The function ReleaseSemaphore (Table 6.7) is used to decrement the sema
phore's count. As a side effect, this function also returns the semaphore's count
before the call to ReleaseSemaphore is made.

ReleaseSemaphore-Decrements a semaphore's count

ReleaseSemaphore

HANDLE hSemaphore

LONG lReleaseCount

BOOL Return Value

Semaphore's handle to decrement

Pointer to a LONG that contains the previous count before
ReleaseSemaphore decremented the count

TRUE for success, otherwise FALSE

Interestingly, Windows does not have a function for determining the num
ber of resources in use. The only way to determine this value is to call Wait
ForSing leObj ect with a zero timeout. If Wai tForSingleObj ect returns
WAIT_TIMEOUT, the semaphore is non-signaled, and the maximum number of
resources is in use. For any other return value, ReleaseSemaphore is called,
and the number of resources in use is returned in the lReleaseCount vari
able. Note that the release count is one greater than the actual number of re
sources in use-the call to Wai tForSingleObj ect incremented the count.

Semaphores can be named through the last parameter to CreateSema
phore. This allows a semaphore count to be used by threads in different pro
cesses. Windows CE does not support the OpenSemaphore function, but Cre
ateSemaphore can be passed the name of an existing semaphore and it will
be opened. In this situation, GetLastError will return ERROR_ALREADY_
EXISTS.

Thread Local Storage and Dynamic Link Libraries 165

Selecting the Correct Synchronization Technique
The following describes the typical situations in which the various synchroniza
tion techniques are used.

o Mutex objects are used to stop two threads from attempting to access some
shared resource at the same time. Critical sections can be used within a
process.

e Event objects are used to allow one or more threads to block until another
thread has completed a task.

o Semaphore objects are used when synchronized counting is required with
some given maximum value.

Thread Local Storage and Dynamic Link Libraries
When writing a multithreaded application you not only need to ensure that
your code is correctly synchronized, but also that any libraries you call are also
written to be multithreaded. If your code calls functions in a Dynamic Link Li
brary that are designed only for single-threaded calls, you can run into dead
lock, race conditions, and other synchronization problems.

If you know that a library is single-threaded, you need to ensure that you
always call functions in that library on the same thread. That way, two threads
will not be actively calling functions in the library at the same time-this is
called serialization.

When writing a library yourself you need to decide whether you want it
to be single- or multithreaded. A library written to be multithreaded must use
the synchronization techniques described in previous sections-this makes it
thread-safe. If you are writing a thread-safe library, you may have to use Thread
Local Storage (TLS) to manage global variables. Consider the situation of the
errno variable in the C run-time library. This variable contains the last error
number encountered when calling a C run-time function such as fopen. In a
multithreaded application, two threads may call fopen at much the same time,
and if there is only a single errno variable, one thread could end up using the
return result from the other thread's fopen call (Figure 6.7). This can happen
if a multithreaded application calls the single-threaded C run-time library. The
solution is for each thread to have its own copy of errno. This means that
when the thread is created, the errno variable must be created, and when the
thread terminates, the errno variable must be destroyed. Windows CE pro
vides Thread Local Storage (TLS) to solve this problem. TLS is most often used
in Dynamic Link Libraries, but it can also be used in EXEs.

When an application starts up, Windows CE creates 64 slots into which a
DWORD value can be stored for each thread in that application. A DLL can re
serve one of these slots for its own use by calling TlsAlloc. This function then

166 Chapter 6 0 Thread Synchronization

Thread 1 Thread 2

Errno

Call !open, fails Non-value

Zero value Call !open, succeeds

Tests errno, appears OK

Tests errno, appears OK

Single-threaded C run-time calls from a multithreaded application

returns the next available slot number. The function TlsSetValue can be
used to store a DWORD value into a slot for the thread on which TlsSetValue
is called, and the function is passed the slot number that was returned from
TlsAlloc. Note that separate DWORD values can be stored for each thread in
an application using this technique. At some later stage, the thread can call
TlsGetValue to retrieve the value held in the given slot for that thread. Fi
nally, when the slot is finished with, TlsFree is called and is passed the slot
number returned from calling TlsAlloc.

Slots are in quite short supply, so a DLL will typically only request a single
slot by calling T 1sAl1 oc. If the thread needs to store more than a single
DWORD, it will generally use dynamic memory allocation (see Chapter 12), and
store a pointer to this memory using TlsSetValue. DLLs receive notification
of when a thread is created in the application the DLL is mapped into-Win
dows CE calls the DLL's DllMain function, passing the DLL_THREAD_ATTACH
value in the fdwReason parameter. Likewise, a DLL is notified when a thread
terminates with the fdwReason parameter set to DLL_THREAD_DETACH.

The code in Listing 6.5 shows how to use TLS for a DLL that needs to
maintain a string buffer for each thread calling into the library. The code shows
an implementation of DllMain, and this function is called when

Thread Local Storage and Dynamic Link Libraries 167

& fdwReason DLL_PROCESS_ATTACH: The DLL is first loaded by the
process.

& fdwReason DLL_THREAD_ATTACH: A thread is created by any code
in the process, not just threads created by the DLL.

0 fdwReason = DLL_THREAD_DETACH: A thread in the process terminates.
0 fdwReason = DLL_PROCESS_DETACH: The process terminates.

A global variable g_dwTlsindex is declared, and this will contain the
slot number for this DLL obtained from calling TlsAlloc when the DLL is first
loaded. The function TlsAlloc returns the value TLS_OUT_OF _INDEXES if
no more slots are available. Returning FALSE from DllMain when the reason
code is DLL_PROCESS_ATTACH causes the loading of the DLL to fail.

Using TLS data in a Dynamic Link Library

DWORD g_dwTlsindex = TLS_OUT_OF_INDEXES;

BOOL WINAPI DllMain(HINSTANCE hinstDLL,
DWORD fdwReason, LPVOID fimpLoad)

LPTSTR lpszStr;

switch(fdwReason)
case DLL PROCESS_ATTACH:

g_dwTlsindex = TlsAlloc();
if(g_dwTlsindex == TLS_OUT_OF_INDEXES)

return (FALSE);
break;

case DLL_THREAD_ATTACH:
break;

case DLL_THREAD_DETACH:
if(g_dwTlsindex != TLS_OUT_OF_INDEXES)
{

lpszStr =
(LPTSTR)TlsGetValue(g_dwTlsindex);

if(lpszStr !=NULL)
HeapFree(GetProcessHeap(),

0, lpszStr);

break;
case DLL_PROCESS_DETACH:

if(g_dwTlsindex != TLS_OUT_OF_INDEXES)
{

lpszStr =
(LPTSTR)TlsGetValue(g_dwTlsindex);

if(lpszStr !=NULL)
HeapFree(GetProcessHeap(),

0, lpszStr) ;

168 Chapter 6 w Thread Synchronization

TlsFree(g_dwTlsindex);

break;

return TRUE;

The code in Listing 6.5 does not allocate memory when the reason code
is DLL_THREAD_ATTACH. It is more efficient to only allocate the memory asso
ciated with TLS the first time it is needed. The code in Listing 6.6 shows how a
function can determine if memory for this thread has already been allocated.
The TlsGetValue function is called and is passed the slot number returned
from TlsAlloc. If this value is NULL, the memory has not yet been allocated,
so HeapAlloc is called to allocate a buffer of 40 bytes in the default heap. The
pointer to this newly allocated memory is stored as TLS using the TlsSetValue
function. Remember that this allocation will occur for each thread that calls
FunctionX.

Allocating TLS data for a thread

LPTSTR FunctionX()
{

LPTSTR lpszStr = (LPTSTR)TlsGetValue(g_dwTlsindex);
if(lpszStr ==NULL)
{

lpszStr = (LPTSTR)HeapAlloc(GetProcessHeap(),
0' 40);

TlsSetValue(g_dwTlsindex, lpszStr);

II Now use lpszStr in some way ...

The memory allocated and stored in TLS must be freed when the thread
terminates. This is done when DllMain is called with the reason code DLL_
THREAD_DETACH. Since DllMain is called using the thread that is being ter
minated, calling TlsGetValue will return the DWORD associated with the ter
minating thread. This code (from Listing 6.5) gets data associated with the slot
and thread, and if this is non-null, frees the data.

case DLL_THREAD_DETACH:
if(g_dwTlsindex != TLS_OUT_OF_INDEXES)
{

lpszStr =
(LPTSTR)TlsGetValue(g_dwTlsindex);

if(lpszStr !=NULL)
HeapFree(GetProcessHeap(),

0, lpszStr);

break;

Conclusion 169

When the process unloads the DLL, the slot number has to be freed. In
Listing 6.5 a check is also made to see if the data associated with the thread be
ing used to unload the library has been freed, then a call is made to TlsFree
to free the slot.

case DLL_PROCESS_DETACH:
if(g_dwTlsindex != TLS_OUT_OF_INDEXES)
{

lpszStr =
(LPTSTR)TlsGetValue(g_dwTlsindex);

if(lpszStr !=NULL)
HeapFree(GetProcessHeap(),

0, lpszStr) ;
TlsFree(g_dwTlsindex);

break;

The technique described above for TLS is called 'dynamic TLS', since
memory is allocated and de-allocated dynamically for each thread. In Windows
NT/98/2000, 'static TLS' is also supported through the #pragma data_seg
compiler directive. Any variable declarations placed between #pragma data_
seg compiler directives will be duplicated for each thread. Static TLS is not
supported in Windows CE.

As an aside, Windows CE 3.0 now supports the DisableThread
LibraryCalls function. Calling this function disables DllMain being called
with the reason codes DLL_THREAD_ATTACH and DLL_THREAD_DETACH. The
function takes a single argument which is the DLL's module or instance handle.
This can reduce code size and, for processes that create large number of threads,
improve performance. Of course, you don't want to call DisableThread
LibraryCalls for a DLL that implements TLS using the techniques described
here. The best place to DisableThreadLibraryCalls is in DLLMain when
the reason code is DLL_PROCESS_ATTACH.

case DLL_PROCESS_ATTACH:
DisableThreadLibraryCalls(hinstDLL);
break;

Conclusion
This chapter has shown various illustrations of why thread synchronization is
so important, and described how critical sections, mutex, event, and semaphore
objects can be used for synchronization. Any multithreaded application will
need to employ such techniques. Further, single- or multithreaded applications
that need to synchronize with other applications require synchronization. Fi
nally, if you are developing multithreaded DLLs, you may need to use Thread
Local Storage (TLS) for global or dynamic data.

Notifications

The notification functions described in this chapter can be used to run an ap
plication at a particular time, or in response to an event such as completion of
synchronization or a serial connection being made. Alternatively, the functions
can be used to notify the user of such events through, for example, a flashing
LED. The notification functions will operate even if the Windows CE device is
suspended. The events for which a notification can be given include:

• When data synchronization finishes
• When a PC Card device is changed
e When an RS232 connection is made
e When the system time is changed
• When a full device data restore completes

Users can be notified in a variety of ways, and should be allowed to spec-
ify their preference. Notification can occur by:

• Flashing the LED
• Vibrating the device
• Displaying the user notification dialog box
• Playing a sound

Windows CE operating system versions prior to 2.12 should use the noti
fication functions CeRunAppAtTime, CeRunAppAtEvent, and CeSetUser
Notification. These are described in the first part of this chapter. In Win
dows CE 2.12, 3.0, and later, these functions are replaced with the single
function CeSetUserNotificationEx. This function can be used when you
don't need compatibility with earlier operating system versions, or when you
need the additional functionality it provides. It is described in the section "Ce
SetUserNotificationEx".

170

Using Mini-Applications with Notification 171

Running an Application at a Specified Time
The function CeRunAppAtTime sets an application to be run at a time speci
fied in a SYSTEMTIME structure. Listing 7.1 shows how this function can be
called to run Pocket Word at 7.20AM on the current day. Note that the file no
tify. h must be included when using notification functions. The code gets the
current local time through calling GetLocal Time, and sets the hour to 7 and
minute to 20. The call to CeRunAppAtTime is passed the name of the appli
cation to run and the time to run it.

MM!lttfiM Runs an application at a specified time

#include <notify.h>

void Listing7_1()
{

SYSTEMTIME sysTime;

GetLocalTime(&sysTime);
sysTime.wHour = 7;
sysTime.wMinute = 20;
if(!CeRunAppAtTime(

_T("\\Windows\\Pword.exe"), &sysTime))
cout << _T("Cannot set application to run")

<< endl;
else

cout << _T("App set t.o run at specified time")
<< endl;

Windows CE will run the application at the specified time and pass the
command line parameter 'AppRunAtTime'. For this reason, Pocket Word will
prompt you to create a new file called 'AppRunAtTime. Pwd' when it runs. If
the time specified in the SYSTEMTIME structure is in the past the application
will run immediately.

An application can only have a single CeRunAppAtTime request associ
ated with it. If another call is made to CeRunAppAtTime for the same applica
tion, the previous request is overwritten with the new time. A CeRunAppAt
Time request for an application can be removed by passing NULL pointer for
the SYSTEMTIME pointer.

Using Mini-Applications with Notification
In general it is best not to run large applications using CeRunAppAtTime, since
the user may be confused by a new application suddenly appearing and may

172 Chapter 7 • Notifications

cause an out-of-memory error. Instead, you should create a 'mini-application'
with no user interface and have this application run at the specified time. The
'mini-application' can then notify the main application through a private mes
sage of the event, or perhaps perform some scheduled task.

Listing 7.2 shows the code for a 'mini-application' called Notify. exe.
This is a Windows CE application with a WinMain function that registers a new
windows message using the RegisterWindowMessage function. The Reg
isterWindowMessage function is passed a string and returns a message num
ber. Any application that calls RegisterWindowMessage with the same string
will always receive back the same message number, and so the message can
be used for communication between applications. Next, the WinMain function
calls SendMessage using the special window handle HWND_BROADCAST. This
sends the message number in nNotifyMsg to all top-level windows. WinMain
returns and the mini-application ends. The code for Notify. exe is located on
the CDROM in the folder \Notify.

MMfilM Notify.exe-'Mini-application' used for notification

#include <windows.h>

int WINAPI WinMain(HINSTANCE hinstance,
HINSTANCE hPrevinstance,
LPWSTR lpCmdLine, int nShowCmd)

UINT nNotifyMsg =
RegisterWindowMessage(_T("MSG_NOTIFY"));

SendMessage(HWND_BROADCAST, nNotifyMsg, 0, 0);
return O;

An application can use the CeRunAppAtTime function to run Notify
. exe at a specified time:

CeRunAppAtTime(_T("\\Notify.exe"), &sysTime))

To respond to the broadcast SendMessage from Notify. exe an appli
cation must use RegisterWindowMessage when it first starts, using the same
string as used in Notify. exe.

nNotifyMsg = RegisterWindowMessage(_T("MSG_NOTIFY"));

Next, the application must add code to the window message procedure
for its top-level, main application window to handle the message number held
in nNotifyMsg.

if(message == nNotifyMsg)
{

cout << "Notification: Application has run"
<< endl;

Using Mini-Applications with Notification 173

The technique described here only responds to Notify_ exe if the ap
plication in question is running, otherwise the broadcast message will be ig
nored. The mini-application can check if the application is running, and if not,
call CreateProcess to run it.

HWND hWnd = FindWindow(_T("Examples"), NULL);
PROCESS_INFORMATION pi;
if (hWnd == NULL)

CreateProcess(_T("\\Examples.exe"), NULL,
NULL, NULL, FALSE,0, NULL,
NULL, NULL, &pi);

SendMessage(HWND_BROADCAST, nNotifyMsg, 0, 0);

The function FindWindow is passed the class name 'Examples' of the
main application window in 'Examples. exe'. A returned NULL handle indi
cates that the window could not be found, and therefore the application is not
running. In this case, CreateProcess is called to run Examples. exe. (See
Chapter 5 for more information on CreateProcess.) Unfortunately, the ap
plication Examples. exe will not receive the notification message! This is be
cause CreateProcess returns before the application has initialized and cre
ated the main window. This is a classic synchronization problem. A simple
solution would be to add a 'while' loop after CreateProcess but before
SendMessage.

if(hWnd ==NULL)
{

CreateProcess(_T("\\Examples.exe"), NULL,
NULL, NULL, FALSE,0, NULL,
NULL, NULL, &pi);

while (FindWindow(_T ("Examples"), NULL) NULL)
Sleep(lOO);

SendMessage(HWND_BROADCAST, nNotifyMsg, 0, 0);

In this case, the program loops until FindWindow returns a non-NULL
handle, and sleeps the thread for 100 milliseconds on each loop iteration to
avoid hogging the CPU. However, this solution is not ideal because:

® The loop will continue forever if the main application window in Ex
amples. exe could not be created.

® The call to the Sleep function introduces unnecessary delays.
® Although the window will have been created when SendMessage is

called, the WM_CREATE message may not have been processed. There
fore, the window may not be properly initialized when the notification is
received.

The correct solution is to use a synchronization event, which is shown in
Listing 7.3. An event is created which is manually signaled (the FALSE parame
ter) that will be initially non-signaled (the 0 parameter). The event is given a
name so that the same event can be used in the Example. exe application.

17 4 Chapter 7 © Notifications

The WaitForSingleObject function is used to wait on the event to be sig
naled, with a timeout of 5000 milliseconds. The Example application will sig
nal this event when initialization is complete and the application is ready to re
ceive a notification. Events are described in more detail in Chapter 6.

M@!tlfiM Notify.exe with synchronization

#include <windows.h>
int WINAPI WinMain(HINSTANCE hinstance,

HINSTANCE hPrevinstance,
LPWSTR lpCmdLine, int nShowCmd)

UINT nNotifyMsg =
RegisterWindowMessage(_T("MSG_NOTIFY"));

HWND hWnd = FindWindow(_T("Examples"), NULL);
PROCESS_INFORMATION pi;
HANDLE hEvent;

if(hWnd ==NULL)
{

II create non-signaled event
hEvent = CreateEvent(NULL, TRUE,

0, _T("Examples_Event"));
if(CreateProcess(_T("\\Examples.exe"),

NULL, NULL, NULL,
FALSE,0, NULL, NULL, NULL, &pi))

CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);
if(WaitForSingleObject(hEvent, 5000)

== WAIT_FAILED)
MessageBox(NULL,

_T("Example start failed "),
NULL, MB_OK);

CloseHandle(hEvent);

else
MessageBox(NULL,

_T("Could not start Example.exe"),
NULL, MB_OK) ;

SendMessage(HWND_BROADCAST, nNotifyMsg, 0, 0);
return 0;

The Example. exe application will signal the event when initialization is
completed, which could be, for example, when WM_CREATE has been handled.

Starting an Application on an Event 17 5

case WM_CREATE:
HANDLE hEvent;
hEvent = CreateEvent(NULL,

TRUE, 0, _T ("Examples_Event"));
ResetEvent(hEvent);
CloseHandle(hEvent);
break;

The CreateEvent function is called, which will open the event created
in Notify.exe as it is passed the same name. The ResetEvent function is
called to signal the event, and this will unblock Notify. exe's call to Wait
ForSingleObj ect.

An alternative approach would be for Example. exe to run itself from
CeRunAppAtTime. Then, when the Example. exe is run at the specified time,
it would need to determine if it is the first instance running by calling Find
Window. If it were the first instance, Example. exe would go ahead and do
the necessary processing and then quit. If it is the second instance, it should
notify the first instance using SendMessage, and then quit. The first instance
can then perform the necessary processing. This approach has several disad
vantages:

e Loading the application may be slow if it is large.
e The application may take significant amounts of memory, and for a brief

time, there may be two instances requiring up to twice as much memory.
e The application will need to work out whether the user interface should

be displayed depending on how the application was started.

Starting an Application on an Event
The function CeRunAppAtEvent allows a program to be run when one of the
following events occur:

'® NOTIFICATION_EVENT_SYNC_END. When data synchronization finishes.
'® NOTIFICATION_EVENT DEVICE CHANGE. When a PC Card device is

changed.
'® NOTIFICATION_EVENT_RS232_DETECTED. When an RS232 connection

is made.
'® NOTIFICATION_EVENT TIME_CHANGE. When the system time is

changed.
'® NOTIFICATION_EVENT_RESTORE END. When a full device restore

completes.

Listing 7.4 shows a call to CeRunAppAtEvent that sets Notify. exe to
run when Act i veSync synchronization completes.

17 6 Cha pier 7 * Notifications

Runs application on an event

void Listing7_4()
{ ' 1~

if (! CeRunAppAtEvent (_T ("\\Notify. exe"),
NOTIFICATION_EVENT_SYNC_END))

cout << _T("Cannot set application to run")
<< endl;

else
cout

<< _T("Notify.exe will run when sync finishes")
<< endl;

The application will be run with a command line string whose value de
pends on the event being used, and these strings as shown in Table 7 .1.

Command line strings used with CeRunAppAtEvent

Constant

APP_RUN_AFTER_SYNC

APP_RUN_AT_DEVICE CHANGE

APP_RUN_AT_RS232_DETECT

APP_RUN_AFTER_RESTORE

Value

"AppRunAfterSync"

"AppRunDeviceChange"

"AppRunAtRs232Detect"

"AppRunAfterRestore"

The application specified in CeRunAppAtEvent will be run each time
the specified event occurs. All events associated with an application can be
removed by calling the function CeRunAppAtEvent with NOTIFICATION_
EVENT_NONE as the last parameter (Listing 7.5).

Removes an application event

void Listing7_5()
{

if (! CeRunAppAtEvent (_T ("\\Notify. exe"),
NOTIFICATION_EVENT_NONE))

cout << _T("Cannot stop application event.")
<< endl;

else
cout << _T("Application event removed.") << endl;

Manually Controlling the LED 177

Manually Controlling the LED
The notification functions use the LED a~ne way to notify the user of an
event, but sometimes it is necessary to collifol the LED yourself. For example,
you might want to notify the user of an event not supported by the notification
functions. The NLedGetDeviceinfo function is used to determine the num
ber of LEDs on the device-It is conceivable that a special device may have
more than one LED, and some devices may not have any at all. The NLedSet
Device function is used to turn the LED on and off. Both these functions inter
act with the LED driver written by the device's manufacturer.

There are various options that an LED driver can support beyond the
simple default blinking behavior. The NLedSetDevice function allows the fol
lowing options to be set:

• Total Cycle Time: The total time the LED will blink before turning itself off
• The time for which the LED will be on
• The time for which the LED will be off
• The on meta-cycle time
• The off meta-cycle time

A LED can simply blink on and off using the on and off times, or it can
perform a more complex sequence using the meta-cycle times. With a meta
cycle, the LED will blink for the meta-cycle time, and then turn off completely
for the meta-cycle off time. It will then blink the LED for the on meta-cycle
time, and so on for the total cycle time. Before you start implementing Morse
code for the LED, you should note that most devices only support simple on
off blinking.

The functions NLedGetDeviceinfo and NLedSetDevice are imple
mented in coredll. dll, but are not generally declared in SDK header files.
Therefore, you will need to add function prototypes. Also, the functions use
structures that are declared in the header file NLed. H:

#include <NLed.h>
extern "C"

BOOL NLedGetDeviceinfo (INT nra;· PVOID pOutput);
BOOL NLedSetDevice(INT nid, PVOID pOutput);

First, you will need to determine the number of LEDs present on the de
vice, and then get the capabilities of the LED, using the function NLedGetDe
viceinfo. The function takes an identifier as the first argument that specifies
what information is being requested, and a pointer to an appropriate structure
to receive the information in the second parameter. Table 7.2 shows the identi
fiers and the corresponding structures.

178 Chapter 7 • Notifications

Identifiers and structures for NLedGetDevicelnfo

Constant Structure Purpose

NLED_COUNT_INFO ID

NLED_SUPPORTS_INFO_ID

NLED_SETTINGS_INFO_ID

NLED COUNT_INFO Return the number of LEDs

NLED_SUPPORTS_INFO Determine LED capabilities

NLED_SETTINGS_INFO Return current LED settings

Listing 7.6 shows calling NLedGetDeviceinfo first to determine the
number of LEDs, which is returned in the cLeds member of NLED_COUNT_
INFO. Assuming there is one, the next call to NLedGetDeviceinfo will get
the characteristics associated with LED number zero (the first). To do this, the
NLED_SUPPORTS_INFO structure member LedNum is initialized with the LED
number, and then the call is made.

M@MM Determines LED capabilites

void Listing7_6()
{

NLED_COUNT_INFO nci;
NLED_SUPPORTS_INFO nsup;

if(!NLedGetDeviceinfo(NLED_COUNT_INFO_ID,
(PVOID) &nci))

cout << _T("Could not get LED information")
<< endl;

return;

cout << _T("Number of LEDs: ") << (int)nci.cLeds
<< endl;

memset(&nsup, 0, sizeof(nsup));
nsup.LedNum = O; II get information on first LED
if(!NLedGetDeviceinfo(NLED_SUPPORTS_INFO_ID,

(PVOID) &nsup))

cout << _T("Could not get LED support options")
<< endl;

return;

cout << _T("Cycle Adjust:") 110 =off 1 on 2
<< nsup.lCycleAdjust << endl;

cout << _T ("Adj . Total Cycle Time:")
<< nsup.fAdjustTotalCycleTime << endl;

cout << _T ("Separate On Time: ")
<< nsup.fAdjustOnTime << endl;

cout << _T("Separate Off Time:"
<< nsup.fAdjustOffTime << endl;

blink

cout << _T("Can Meta Cycle On:"
<< nsup.fMetaCycleOn << endl;

cout << _T("Can Meta Cycle Off:")
<< nsup.fMetaCycleOff << endl;

User Notification 179

The lCycleAdjust member indicates whether the LED can be turned
on and off, or be made to blink. The remaining members are BOOL values in
dicating which timings, if any, can be changed.

The code in Listing 7.7 is used to toggle the LED between blinking and
not blinking. The NLED_SETTINGS_INFO structure member LedNum is initial
ized with the LED number set, and OffOnBlink will be set to 2 to start blink
ing or 0 to stop blinking. This structure has other members to change cycle
times and so on, but they are not used in this example.

M@MIM Toggles LED blinking status

void Listing7_7()
{

NLED_SETTINGS INFO nsi;
static int nLastSetting = O;

if(nLastSetting == 0)
nLastSetting 2; II blink

else
nLastSetting O; II off
nsi.LedNum = O;

II initially off

nsi.OffOnBlink = nLastSetting;
if(!NLedSetDevice(NLED_SETTINGS_INFO_ID, &nsi))

cout << _T("Could not set LED settings") << endl;

User Notification
You can use the function CeSetUserNotification to notify at a given time
using a flashing LED, dialog box, or other technique supported by the Win
dows CE device. This function will place an icon (the 'annunciator icon') in the
tool box at the bottom left of the screen. When this icon is double-clicked by
the user, an application specified in CeSetUserNotification will be run.
This annunciator icon should be removed by calling CeHandleAppNotifi
cations-it cannot be removed by the user.

The code in Listing 7.8 used CeSetUserNotification to notify the
user at 7: 15 on the current day by playing the WAV file Alarm2. wav repeat
edly. The function returns a handle that can be used to further manipulate the
notification. Table 7.3 describes the CeSetUserNotification parameters.

180 Chapter 7 e Notifications

Setting user notification

void Listing7_8()

HANDLE hNotify;
SYSTEMTIME sysTime;
CE_USER_NOTIFICATION ceNot;

GetLocalTime(&sysTime);
sysTime.wHour = 7;
sysTime.wMinute= 15;

ceNot.ActionFlags = PUN_SOUND I PUN_REPEAT;
ceNot.pwszSound = _T("\\Windows\\Alarm2.wav");
hNotify = CeSetUserNotification(

NULL,
_T ("\\Notify. exe"),
&sysTime,
&ceNot);

if(hNotify ==NULL)
cout << _T("Could not set user notification")

<< endl;
else

cout << _T("User notification set") << endl;

The application specified in pws zAppName will be run when the annun
ciator icon is clicked by the user. The application (Notify. exe in Listing 7 .8)
will be passed the command line string APP _RUN_TO_HANDLE_NOTIFICATION
and the notification handle (converted to a string).

M'QH CeSetUserNotificotion

CeSetUserNotification

HANDLE hNotification

TCHAR *pwszAppName

SYSTEMTIME *lpTime

PCE_USER_NOTIFICATION
lpUserNotification

HANDLE Return Value

Handle of the notification to modify, or NULL for
a new notification.

Name of the associated application. This does not
have to be the application setting the notification.

SYSTEMTIME structure specifying the time for the
notification to occur.

CE_USER_NOTIFICATION structure containing
information on how to notify the user.

Returns a HANDLE to the event.

The CE_USER_NOTIFICATION structure specifies how the user will be
notified by setting the ActionFlags member with one or more of the follow
ing flags shown in Table 7.4.

Value

PUN_ LED

PUN_ VIBRATE

PUN_DIALOG

PUN_ SOUND

PUN_REPEAT

User Notification 181

CE_USER_NOTIFICATION ActionFlags values

Description

Flash the LED.

Vibrate the device.

Display a dialog to the user. The CE_USER_NOTIFICATION
members pwszDialogTitle and pwszDialogText specify
the dialog's caption text and body text.

Plays a WAV file specified in the CE_USER_NOTIFICATION
member pwszSound.

Repeats playing the WAV file for around 10 to 15 seconds.

The application associated with the notification will be run when the user
clicks the annunciator icon, and this application should remove the icon. This
is done by calling the CeHandleAppNotifications function, passing in the
name of the application associated with the notification (Listing 7.9).

Removes the annunciator icon

void Listing7_9()

if(CeHandleAppNotifications(_T("\\Notify.exe")))
cout << _T ("Annunciator cleared") << endl;

else
cout << _T ("Annunciator could not be cleared")

<< endl;

The handle returned from CeSetUserNotification can be used to
modify or remove the notification as long as the notification time has not passed.
A notification can be modified by passing the notification handle as the first ar
gument, and passing in new values for the time or CE_USER_NOTIFICATION
structure. A notification can be removed entirely by passing the handle to the
CeClearUserNotification function.

if(CeClearUserNotification (hNotify)))
cout << _T("Notification cleared") << endl;

else
cout << _T("Notification could not be cleared")

<< endl;

Users can specify their preference on how they wish to be notified, and
these preferences should be honored by your application. The function CeGet
UserNot if icat ionPref erences can be used to display a dialog prompting
the user for his or her preferred notification options. The dialog will then popu
late a CE_USER_NOTIFICATION structure with these preferences, and this
structure can be passed to CeSetUserNotification to set the notification.

182 Chapter 7 e Notifications

Note that the CE_USER_NOTIFICATION structure can be initialized before call
ing CeGetUserNotificationPreferences to set default values in the dia
log box.

Getting user preferences for notifications

void Listing7_10(HWND hWnd)

CE_USER_NOTIFICATION ceNot;
TCHAR szSound[MAX_PATH + 1];

ceNot.ActionFlags = PUN_SOUND I PUN_REPEAT;
ceNot.pwszSound = szSound;
ceNot.nMaxSound = MAX_PATH;

if(!CeGetUserNotificationPreferences(hWnd, &ceNot))
cout << _T("Could not get settings") << endl;

else

if(ceNot.ActionFlags & PUN_SOUND)
{

cout << _T("SOUND:") << endl;
if(ceNot.ActionFlags & PUN_REPEAT)

cout << _T("Repeat") << endl;
else

cout << _T("Don't repeat") << endl;
cout << _T("Sound: ") << ceNot.pwszSound

<< endl;

if(ceNot.ActionFlags & PUN_LED)
cout << _T("FLASH") << endl;

if(ceNot.ActionFlags & PUN_VIBRATE)
cout << _T ("VIBRATE") << endl;

if(ceNot.ActionFlags & PUN_DIALOG)
cout << _T ("DIALOG") << endl;

CeSetUserNotificationEx
So far, all the functions described in this chapter are available in the Windows
CE operating system versions 2.0 and later. However, in Windows CE 2.12 and
later, many of the notification functions (such as CeSetUserNotification,
CeRunAppAtTime, and CeRunAppAtEvent) have been replaced with the
single function CeSetUserNotificationEx. You should use this function if
you do not require backwards compatibility with earlier Windows CE versions.
CeSetUserNotificationEx provides additional capabilities not present in
earlier operations systems, such as:

CeSetUserNotilicationEx 183

e Specifying a time period (start time and end time) during which a notifi
cation is active. With CeSetUserNotification a notification is active
from the start time until it is removed.

e Specifying the command line arguments passed to an application
launched by a notification rather than the standard arguments listed in
Table 7.1.

Table 7.5 lists the CeSetUserNotificationEx arguments and return type.
The function can be used to modify an existing notification by passing a valid
notification handle as the first argument, or 0 to create a new notification.

CeSetUserNotificationEx notification function

CeSetUserNotification

HANDLE hNotification, Handle of the notification to modify, or 0 for a new
notification.

CE_NOTIFICATION_TRIGGER *pent

CE_USER_NOT.IFICATION *pceun

Structure defining the type of notification.

Pointer to a user notification structure. This is the same
structure used with CeSetUserNotification.

HANDLE Return Value Returns a HANDLE to the event.

The CE_NOTIFICATION_TRIGGER structure defines what type of notification
is being created and what the notification will do. Table 7.6 lists the structure
members.

CE_NOTIFICAT!ON_ TRIGGER structure

Member

DWORD dwSize

DWORD dwType

DWORD dwEvent

WCHAR *lpszApplication

WCHAR *lpszArguments

SYSTEMTIME stStartTime

SYSTEMTIME stEndTime

Purpose

Size of the structure in bytes.

Type of notification:
CNT_EVENT-System event notification.
CNT TIME-Time-based notification.
CNT_PERIOD-Period-based notification using stStartTime and

stEndTime.
CNT_CLASSICTIME-Same behavior as calling the CeSetUser
Notif ication with standard command line values.

If dwType == CNT_EVENT this member is initialized with a standard
event constant, see Table 7.1.

Name of application to run.

Arguments to be passed to application. Must be N.ULL if dwType
CNT_CLASSICTIME.

Specifies the start time of the notification period.

Specifies the end time of the notification period.

184 Chapter 7 e Notifications

The code in Listing 7.11 shows how CeSetUserNotification can be
called to run Pocket Word at a specified time (10.15PM on the current day) with
no command line argument being passed. No user notifications are required,
so the CE_USER_NOTIFICATION structure pointer is passed as NULL.

Runs an application at a specified time using CeSetUserNotification

void Listing7_11()
{

CE_NOTIFICATION_TRIGGER unt;
CE_USER_NOTIFICATION cen;

SYSTEMTIME sysTime;

GetLocalTime(&sysTime);
sysTime.wHour = 22;
sysTime.wMinute = 15;

memset(&unt, 0, sizeof(unt));
unt.dwSize = sizeof(unt);
unt.dwType = CNT_TIME;
unt.lpszApplication = _T("\\windows\\pword.exe");
unt.lpszArguments =NULL; //no command line argument
unt.stStartTime = sysTime;
unt.stEndTime = sysTime;

HANDLE hNotify = CeSetUserNotificationEx(O,
&unt, NULL);

if(hNotify ==NULL)
cout << _T("Could not set notification") << endl;

else
cout << _T("Notification set") << endl;

Conclusion
This chapter has shown how the notification functions can be used to inform
the user or to run an application when a standard event occurs. Standard events
include ActiveSync completing or an RS232 serial connection being made. The
notify functions also allow an application to be run in response to a standard
event or at a given time.

Communications Using TCP /IP:
HTTP and Sockets

Windows CE provides a rich variety of communications techniques for trans
ferring data between a Windows CE device and desktop PCs or servers. Select
ing the most appropriate communications technique is important. If you are de
veloping a 'companion' application (that is, an application that shares data with
a desktop application, in the same way that Pocket Word and Word for Win
dows share data), you should use either ActiveSync (see Chapter 17), or per
haps RAPI (the Remote Application Programming Interface, see Chapter 10). If
your application needs to communicate directly with another application run
ning on a desktop PC or server, you should consider using TCP/IP (Transmis
sion Control Protocol/Internet Protocol) sockets. Sockets can also be used for
communicating with other compatible devices using infrared. Finally, if you
need to transfer data to and from a server (for example, data from a server
based database), HTTP (HyperText Transfer Protocol) can be used. TCP/IP
sockets and HTTP are the subject of this chapter.

TCP /IP is now the most widely used network protocol and is the only pro
tocol supported as standard with Windows CE. TCP/IP communications tech
niques provide the widest possible connection options, including the following:

.i1 LAN (Local Area Network) or WAN (Wide Area Network) connections us
ing PCMCIA or Compact Flash network cards

<11 Dialup connections to servers or the Internet via modems (either landline
based or wireless) using PPP (Point to Point Protocol)

<11 Infrared connections with compatible devices
e Serial connections to a desktop PC, again using PPP

The solutions possible with TCP/IP communications are endless, includ
ing the following:

185

186 Chapter 8 w Communications Using TCP/IP: HTTP and Sockets

" Dialing into an enterprise server from a remote location and transferring
data from a database. The data can then be stored locally (for example, in
a property database, see Chapter 4) for later use.

® Connecting to the Internet and downloading pages from a web site. Your
application could process the data, or simply display it in a browser.

® Moving data between Windows CE devices.
® Transferring data captured on a Windows CE device to a remote server.

One of the most difficult issues to address is keeping data on a Windows
CE device synchronized with data on a remote server or PC. Windows CE de
vices are typically connected for brief periods of time and are, for the most part,
disconnected from the network. ActiveSync (see Chapter 17) deals with this is
sue elegantly, but can only be used effectively with a desktop PC, and this
desktop PC can only be used to synchronize a limited number of Windows CE
devices. If you are downloading data from, say, an enterprise database, you will
need to factor into your designs how to store the data locally and how to syn
chronize data changes.

Overview of TCP /IP Communications
The whole area of TCP/IP communications is large and complex. This chapter
will cover essential TCP/IP topics relevant to Windows CE devices.

TCP/IP provides reliable communication of data. IP (Internet Protocol)
defines how data is broken into packets and delivered. TCP (Transmission Con
trol Protocol) provides the mechanism to ensure that the packets are organized
into the correct order.

Nearly all communications a programmer is likely to come across are car
ried out through sockets. A socket on a client device can connect to a socket
on a server device, and, once connected, reliable two-way transfer of data can
be made. Writing code to communicate through sockets is discussed later in
this chapter.

Two important pieces of information must be provided when communi
cating through sockets:

® IP Address. This address is provided either as the actual address (for
example, "192 .168. 0. 2") or as a domain name (for example, "www
.microsoft. com"). For the latter, you need to ensure that a Domain
Name Server (DNS) is accessible on the network.

a Port Number. Each service type on a server that uses sockets has a
unique integer number assigned for each service. This is the port number.
Standard protocols (such as HTTP) have standard port numbers (80). You
can assign port numbers above 1024 for your own applications.

When communicating using sockets, the programmer defines how the
data will be packaged. The data, for example a serialized C++ class or a struc-

Simple HTTP Requests 187

ture, can be sent as text or binary. Standard protocols (such as HTTP) define
how the data will be packaged and specify a protocol to be used between the
client and server for communicating requests and data.

Programming the HTTP Protocol
Everyone uses the HTTP protocol when browsing the web. The protocol al
lows the browser to connect to a server and then make requests for resources
(HTML, graphic files) to be downloaded. HTTP uses sockets for communica
tions, and specifies the format and content of data being transferred. The proto
col also allows data to be sent (or "posted") from the client to the server. How
ever, the usefulness of HTTP is not limited to browsers. Applications you write
for Windows CE can use HTTP to communicate data, with the following advan
tages over using sockets:

., The Windows CE Internet functions provide a high-level API interface to
program against.

., The server-side socket code is already available in the Internet server
(such as Microsoft Internet Information Server), and so multithreading
code to support simultaneous access by many Windows CE devices does
not need to be written.

111 The client can access any server-based data through the Internet server
by running server-side code through Active Server Pages (ASP), web
classes (written using Microsoft Visual Basic), or CGI (Common Gateway
Interface).

® Data can be received or sent using a standard file format (such as HTML
or Text), or as binary data.

While it may at first seem strange to propose HTTP for communicating
data, it is actually very versatile and convenient. You can use ASP pages with
scripting code (written using Microsoft Visual Interdev) to access data directly
through ADO (ActiveX Data Objects) or to use middle-tier COM components
written using Microsoft Visual C++ or Visual Basic. The data does not have to
be returned using HTML-you can decide to return the data using a text file
format (for example, XML or CSV) or a binary format (Figure 8.1).

Simple HTTP Requests
First, let's look at writing code to make simple HTTP requests such as request
ing an HTML page from an Internet server. To do this the following calls should
be made:

188 Chapter 8 " Communications Using TCP/IP: HTTP and Sockets

Internet
Information

Server w~h ASP

CE Device

D

Using HTTP to access enterprise data from Windows CE devices

1. InternetOpen to initialize the Windows CE Internet functions and re
turn a handle to access other Internet functions

2. InternetOpenUrl to send a request to open a resource on a server and
return a request handle

3. InternetReadFile repeatedly until all the data has been read from the
server

4. InternetCloseHandle on each handle returned from steps 1 and 2

Internet Open need only be called once, typically when the application
is started or the first HTTP request is made. The handle returned by Internet
Open should eventually be closed, for example when the application terminates.

The Windows CE Internet functions are declared in wininet . h and
wininet . 1 ib, so you will need to include and add these files to your project.

Initializing the Internet Function Library-lnternetOpen
Before calling the Internet functions you should initialize the library by calling
InternetOpen (Table 8.1) and store the handle returned. InternetClose-

Simple HTTP Requests 189

lnternetOpen-lnitializes the Internet functions

Internet Open

LPCTSTR lpszAgent

DWORD dwAccessType

String used to identify the application.

INTERNET_OPEN_TYPE_DIRECT to specify direct (no proxy server)
access.

INTERNET_OPEN_TYPE_PROXY to specify name of a proxy server.

INTERNET_OPEN_TYPE_PRECONFIG to use proxy server information
from the registry.

LPCTSTR lpszProxy Name of the proxy server, or NULL for none.

LPCTSTR lpszProxyBypass Sites that bypass the proxy server. Not supported on Windows CE, so

DWORD dwFlags

pass NULL.

INTERNET_FLAG_ASYNC is the only supported flag. Resource caching
is not supported. Typically pass 0.

HANDLE Return Value Open handle, or NULL on failure.

Handle should be called when your application has finished with the library.
When initializing the library you will supply an agent name that is used by the
server to identify your application, and information about whether a direct con
nection is to be made to the server or if a proxy server is to be used. Proxy serv
ers are described later in this chapter.

The following code fragment shows a simple call to InternetOpen us
ing a direct connection (that is, with no proxy server).

HINTERNET hHttpOpen = NULL;
hHttpOpen = InternetOpen(_T("Example Agent"),

INTERNET_OPEN_TYPE_DIRECT,
NULL, II no proxy
NULL, II no bypass addresses
O); II no flags

When you have finished using the Internet functions, the handle returned
by InternetOpen should be closed by calling InternetCloseHandle
(Table 8.2) This might be, for example, when the application terminates.

if(hHttpOpen !=NULL)
InternetCloseHandle(hHttpOpen);

lnternetC!oseHand/e-lnitializes the Internet functions

InternetCloseHandle

HINTERNET hinternet Handle to close

BOOL Return Value TRUE if successful, otherwise FALSE

190 Chapter 8 "' Communications Using TCP/IP: HTTP and Sockets

Making the HTTP Request-lnternetOpenUrl
Once the Internet function library has been initialized, calls can be made to
InternetOpenUrl to request resources. The function, at a minimum, should
be passed the open handle returned from Internet Open and the URL of the
resource to be opened.

hHttpRequest = InternetOpenUrl(hHttpOpen,
szURL, NULL, 0, 0, 0);

InternetOpenUrl extracts the protocol, server name, and resource path
from the supplied URL. Windows CE does not support most of the flags sup
ported by Windows NT /98/2000. This includes all the options for managing the
resource cache.

lnternetOpenUrl-Requests a resource from the server

InternetOpenUrl

HINTERNET hinternetSession

LPCTSTR lpszUrl

LPCTSTR lpszHeaders

DWORD dwHeadersLength

DWORD dwFlags

DWORD dwContext

HANDLE Return Result

Handle returned from InternetOpen.

URL to request, e.g., "http: I /www. micro
soft. com/default. asp"

Additional HTTP headers, or NULL for none.

Length of additional HTTP headers, or o
for none.

Flags. Only INTERNET_FLAG_SECURE is
supported with HTTP, and this is used
when using secure sockets.

Context used for callback functions.

Valid handle on success, otherwise NULL.

Retrieving the Data-lnternetReadFile
Once a request has successfully been made, InternetReadFile (Table 8.4)
can be used to retrieve the data. This function is typically called repeatedly,
reading the data a chunk at a time, until the number of bytes read is zero.

Notice that lpBuffer is a LPVOID pointer-the data retrieved from the
server can be text or binary. In most cases text is returned as ANSI characters
rather than Unicode. Therefore, in Windows CE text retrieved from Internet
ReadFile is converted to Unicode.

The following code fragment shows how to read the returned data in
chunks. Note that the text returned from InternetReadFile is not NULL
terminated.

Simple HTTP Requests 191

lnternetReadFi/e-Reads data returned from an HTTP server

InternetReadFile

HINTERNET hFile

LPVOID lpBuffer

DWORD dwNumberOfBytesToRead

LPDWORD
lpdwNumberOfBytesRead

BOOL Return Value

#define CHUNKSIZE 500

Handle returned from InternetOpenUrl.

Pointer to buffer into which the data is placed.

Size of the buffer pointed to by lpBuffer in
bytes.

Pointer to a DWORD into which the actual
number of bytes read is placed. The value
is zero when all bytes have been read.

TRUE on success, otherwise FALSE.

char charBuffer[CHUNKSIZE + 1];
TCHAR szBuffer[CHUNKSIZE + 1];
DWORD dwRead;
do
{

II read from Internet HTTP server
if(!InternetReadFile(hHttpRequest, charBuffer,

CHUNKSIZE, &dwRead))

cout << _T("Could not read data")
<< GetLastError();

break;

II convert to Unicode and display
charBuffer[dwRead] = '\0';
mbstowcs(szBuffer, charBuffer, dwRead);
szBuffer[dwReadJ = '\0';
cout << szBuffer;
while(dwRead > 0);

Tidying Up-lnternetCloseHandle
The function InternetCloseHandle must be called for all handles returned
from calling Internet functions. Do not call CloseHandle, because Internet
handles are not kernel objects. Remember that you can call InternetOpenUrl
multiple times to retrieve resources from a server using the handle returned from
InternetConnect without closing it each time. This improves performance.

if(hHttpRequest !=NULL)
InternetCloseHandle(hHttpRequest);

if(hHttpOpen != NULL)
InternetCloseHandle(hHttpOpen);

192 Chapter 8 * Communications Using TCP/IP: HTTP and Sockets

Listing 8.1 shows the entire code used to prompt the user for a URL and
display the HTML code returned from the server.

MM:IM Making an HTTP request using a session

void Listing8_1()
{

HINTERNET hHttpOpen = NULL;
HINTERNET hHttpRequest = NULL;
TCHAR szURL[MAX_PATH + 1);
TCHAR szBuffer[CHUNKSIZE + 1);
DWORD dwRead;
char charBuffer[CHUNKSIZE + 1);

if(!GetTextResponse(
_T ("Simple Request: Enter URL to Display: ") ,
szURL, 1'1.1\X PATH))

retur~~, -

hHttpOpen = InternetOpen(_T("Example Agent"),
INTERNET_OPEN_TYPE_DIRECT,
NULL, II no proxy
NULL, II no bypass addresses
0); II no flags

hHttpRequest = InternetOpenUrl(hHttpOpen,
szURL, NULL, 0, 0, 0);

do
{

II read from Internet HTTP server
if(linternetReadFile(hHttpRequest,

charBuffer, CHUNKSIZE, &dwRead))

cout << _T ("Could not read data")
<< GetLastError();

goto cleanup;

II convert to Unicode and display
charBuffer[dwRead) = '\0';
mbstowcs(szBuffer, charBuffer, dwRead);
szBuffer[dwRead) = '\0';
cout << szBuffer;
while(dwRead > 0);

cleanup:
if(hHttpRequest l= NULL)

InternetCloseHandle(hHttpRequest);
if(hHttpOpen !=NULL)

InternetCloseHandle(hHttpOpen);

More Complex HTTP Requests Using a Session 193

More Complex HTTP Requests Using a Session
The simple HTTP request described in previous sections allows resources to be
downloaded. However, you will need more control when sending data to the
server or making more complex requests. For example, you may want to spec
ify usernames and passwords. This section describes how to open a request, to
send headers, and to send data to the server.

The following calls are required in order to make HTTP requests:

1. InternetOpen to initialize the Windows CE Internet functions and re
turn a handle to access other Internet functions

2. InternetConnect to make a connection to the Internet server and re
turn a connection, or session, handle

3. HttpOpenRequest to specify the URL (Universal Resource Locator) of
the resource to be acquired (for example, the HTML page) and return a
request handle

4. HttpSendRequest to send the request specified in HttpOpenRequest
to the server

5. InternetReadFile repeatedly until all the data has been read from the
server

6. InternetCloseHandle on each handle returned from steps 1-3

Certain steps in the above list can be repeated. For example, if you want
to request multiple HTML files from the same server, you can repeat steps 3
and 4 as required. You need only call step 1 once when the application starts,
and step 6 for the handle returned from InternetOpen when the application ter
minates (Figure 8.2).

Cracking the URL-lnternet(rackUrl
Each resource on the Internet or on an intranet has a unique name called a
Universal Resource Locator, or URL. The URL contains information such as the
following:

1. The protocol used to access the URL (such as HTTP).

2. The server the resource is located on, either as a named server (for ex
ample,www.microsoft.com) or an IP address (192 .168. 0. 2).

3. The resource name's location on the server. This is typically a folder
or directory specification including the name of the file.

4. The port number used on the server for the protocol being specified.
Most protocols usually have a default port number (HTTP is 80), but this
may be different on some servers.

194 Chapter 8 e Communications Using TCP/IP: HTTP and Sockets

Application
intialization/
finalization

Once per
Server

_.,

__.,

lnternetOpen - returns Access Handle

lnternetConnect - returns Session Handle

HttpOpenRequest - returns Request Handle

HttpSendRequest

lnternetReadFile

lnternetCloseHandle - Request Handle

lnternetCloseHandle Session Handle

lnternetCloseHandle - Access Handle

I

I

Function-calling sequence for Internet and HTTP functions

Repeat until resource
is read

Once per URL
request

A fully qualified URL, including a port number and fully qualified resource
name, looks like "http://www.microsoft.com: 80/windowsce/default
.asp," which can be shortened using defaults to http: //www.microsoft
. com/windowsce/, since 80 is the default port number and default. asp is
the default resource name for this site.

When you receive a URL from the user, you need to be able to parse out
the server name and resource name, and this can become quite complex. For
tunately, Windows CE provides the InternetCrackUrl function for doing this
(Table 8.5).

More Complex HTTP Requests Using a Session 19 5

/nternetCrockURL -Breaks a URL into components

InternetCrackURL

LPCTSTR lpszUrl

DWORD dwUrlLength

DWORD dwFlags

LPURL COMPONENTS
lpUrlComponents

BOOL Return Value

Pointer to the URL to be parsed

Length of the URL, or zero if NULL-terminated

Set to O to parse URL without encoding or decoding
characters

URL_COMPONENTS structure into which the parsed
URL elements are returned

TRUE for success, FALSE for failure

The trick to using this function successfully is the initialization of the URL_
COMPONENTS structure. This structure contains pointers to the various possible
elements of the URL. These pointers must either be initialized to NULL if the
element is not to be returned, or point at a string buffer if it is to be returned.
In the following code fragment a URL_COMPONENT structure is initialized to re
turn the server name and the path to the resource. Further, the dwStructSize
member must be initialized to the size of the structure.

URL_COMPONENTS crackedURL;
TCHAR szServer[l024];
TCHAR szPath[1024];

memset(&crackedURL, 0, sizeof(crackedURL));
crackedURL.dwStructSize = sizeof(crackedURL);
crackedURL.lpszHostName = szServer;
crackedURL.dwHostNameLength = 1024;
crackedURL.lpszUrlPath = szPath;
crackedURL.dwUrlPathLength = 1024;

InternetCrackUrl(szURL, 0, 0, &crackedURL);

In this code fragment, the string szURL contains the full URL (for example,
http:I/www.microsoft.com/windowsce/default. asp. On return lpsz
HostName would contain www.microsoft.com and lpszURLPath would
contain "/windowsce/ default. asp''.

Connecting to a Server-lnternetConnect
The function InternetConnect (Table 8.6) is used to make a connection to
a specified server, and is passed access information (for example, the user
name and password to connect with) and the port number and protocol to use.
Once a connection has been made, multiple requests can be made to retrieve
resources.

196 Chapter 8 e Communications Using TCP/IP: HTTP and Sockets

lnternetConnect-Connects to a server

InternetConnect

HINTERNET hinternet

LPCTSTR lpszServerName

INTERNET PORT nServerPort

LPCTSTR lpszUserName

LPCTSTR lpszPassword

DWORD dwService

DWORD dwFlags

DWORD dwContext

HANDLE Return Value

Handle returned from InternetOpen

Server name, e.g. "www. microsoft. com"

Port number, e.g. INTERNET_DEFAULT_HTTP_PORT for HTTP

Pointer to the user name used to validate access to the server,
or NULL for anonymous login

Pointer to the password, or NULL for anonymous login

Service or protocol to use, e.g. INTERNET_SERVICE_HTTP

Flags specifying options, or O for no options

Context value used in callback functions

Session handle, or NULL if function call fails

Most servers on the Internet do not require valid usernames and pass
words-they use anonymous login. In this situation, the call to Internet
Connect is straightforward. In the following code fragment, a connection is
made to the server name returned from cracking a fully qualified URL using the
HTTP protocol.

HINTERNET hHttpSession = NULL;
hHttpSession = InternetConnect(hHttpOpen,

crackedURL.lpszHostName, II server name
INTERNET_DEFAULT_HTTP_PORT,
NULL II username
NULL, I I password
INTERNET_SERVICE_HTTP,
0, II no flags
0); II no context

There are a number of issues to consider when connecting to a secure
Internet site, and these are covered later in the chapter.

Obtaining a Request Handle-HttpOpenRequest
All the functions used so far are generic Internet functions-they are used for
HTTP, FTP, and any other supported protocols. The function HttpOpenRe
quest (Table 8.7) is, as its name implies, specific to the HTTP protocol and is
used to open a handle through which a request to download a resource (such
as a file or image) is made.

Simple requests generally use the GET verb. Small amounts of information
can be sent to the server in the URL. The POST verb is used for sending larger
amounts of data (such as files) to the server. These topics are covered later in
this chapter.

More Complex HTTP Requests Using a Session 197

HttpOpenRequest-Opens a request handle

HttpOpenRequest

HINTERNET hHttpSession

LPCTSTR lpszVerb

Handle returned from InternetConnect.

HTTP verb, usually either 'GET' or 'POST'. NULL
specifies 'GET'.

LPCTSTR lpszObjectName Resource path and name obtained from Internet
CrackUrl.

LPCTSTR lpszVersion HTTP version to use, or NULL for the default
"HTTP/1. O".

LPCTSTR lpszReferrer URL of the document from which a hypertext jump
was made to this resource. NULL for no referrer.

LPCTSTR *lplpszAcceptTypes Types of documents that the client can accept. NULL
implies only "text/*" documents.

DWORD dwFlags Options for connection semantics, etc. O for no
options. Most Windows NT options are not sup
ported in Windows CE.

DWORD dwContext Context value used in callback functions.

HANDLE Return Value Request handle, or NULL on failure.

The next code fragment shows how to make a simple request to an HTTP
server using the resource path obtained through calling InternetCrackUrl.

hHttpRequest = HttpOpenRequest(hHttpSession,
NULL, //verb is 'GET'
crackedURL.lpszUrlPath,
NULL, //default version
NULL, //no referrer
NULL, // only accept text/* files
0, I I no flags
0); //no context for call backs

Making the Request-HttpSendRequest
After opening a request using HttpOpenRequest, the function HttpSend
Request (Table 8.8) is called to send the request off to the server:

HttpSendRequest(hHttpRequest,
NULL, 0,
0' 0));

II no headers
II no optional data

Additional HTTP headers can be specified when the request is sent by
calling HttpSendRequest. Alternatively, additional headers can be added us
ing the function Ht tpAddReques tHeaders before the request is sent. This is
illustrated later in the chapter.

198 Chapter 8 o Communications Using TCP/IP: HTTP and Sockets

HttpSendRequest-Sends a request to the server

HttpSendRequest

HINTERNET hRequest

LPCTSTR lpszHeaders

DWORD dwHeadersLength

LPVOID lpOptional

DWORD dwOptionalLength

Request handle obtained from HttpOpenRequest

Additional headers, or NULL for none

Length of additional headers, or 0 for none

Optional data, or NULL for none

Length of optional data, or O for none

BOOL Return Value TRUE on success, otherwise FALSE

Listing 8.2 shows the entire code used to prompt the user for a URL and
display the HTML code returned from the server.

Making an HTTP request using a session

#define CHUNKSIZE 500

void Listing8_2()
{

TCHAR szURL[MAX_PATH + 1];
HINTERNET hHttpOpen = NULL;
HINTERNET hHttpSession = NULL;
HINTERNET hHttpRequest = NULL;
char charBuffer[CHUNKSIZE + l];
TCHAR szBuffer[CHUNKSIZE + l];
DWORD dwRead;
URL_COMPONENTS crackedURL;
TCHAR szServer[1024];
TCHAR szPath[1024];

if(!GetTextResponse(_T("Enter URL to Display:"),
szURL, MAX_PATH))

return;

hHttpOpen = InternetOpen(
_T ("Example Agent") ,
INTERNET_OPEN_TYPE_DIRECT,
NULL, II no proxy
NULL, II no bypass addresses
0); II no flags

if(hHttpOpen ==NULL)
{

cout << _T("Could not open internet session ")
<< GetLastError();

goto cleanup;

More Complex HTTP Requests Using o Session 199

·II Crack the URL to get the server name
memset(&crackedURL, 0, sizeof(crackedURL));
crackedURL.dwStructSize = sizeof(crackedURL);
crackedURL.lpszHostName = szServer;
crackedURL.dwHostNameLength = 1024;
crackedURL.lpszUrlPath = szPath;
crackedURL.dwUrlPathLength = 1024;

if(!InternetCrackUrl(szURL, 0, 0, &crackedURL))
{

cout << _T("Cannot crack URL") << GetLastError();
goto cleanup;

hHttpSession = InternetConnect(hHttpOpen,
crackedURL.lpszHostName, // server name
INTERNET_DEFAULT_HTTP_PORT,
NULL, // username
NULL, //password
INTERNET_SERVICE_HTTP,
0, 11 no flags
0); II no context

if(hHttpSession ==NULL)
{

cout << _T("Could not open Internet connection")
<< GetLastError();

goto cleanup;

hHttpRequest = HttpOpenRequest(hHttpSession,
NULL, //verb is 'GET'
crackedURL.lpszUrlPath,
NULL, // default version
NULL, /I no referrer
NULL, // only accept text/* files
0, II no flags
0); //no context for call backs

if(hHttpRequest ==NULL)
{

cout << _T("Could not get HTTP request ")
<< GetLastError();

goto cleanup;

if(!HttpSendRequest(hHttpRequest,
NULL, 0, II no headers
0, 0)) / / no optional data

cout << _T ("Could not read data ")
<< GetLastError();

goto cleanup;

200 Chapter 8 • Communications Using TCP/IP: HTTP and Sockets

do
{

II read from Internet HTTP server
if(!InternetReadFile(hHttpRequest, charBuffer,

CHUNKSIZE, &dwRead))

cout << _T ("Could not send request")
<< GetLastError();

goto cleanup;

II convert to Unicode and display
charBuffer[dwRead] = '\0';
mbstowcs(szBuffer, charBuffer, dwRead);
szBuffer[dwRead] = '\0';
cout << szBuffer;
while(dwRead > 0);

cleanup:
if(hHttpRequest !=NULL)

InternetCloseHandle(hHttpRequest);
if(hHttpSession !=NULL)

InternetCloseHandle(hHttpSession);
if(hHttpOpen !=NULL)

InternetCloseHandle(hHttpOpen);

Using a Proxy Server
Many organizations install proxy servers to filter IP packets to control access
to internal systems from other users on the Internet, and perhaps to control
the type of protocols or servers that users in the organization can access. In
this situation users actually communicate with the proxy server, and the proxy
server connects to the requested server on the user's behalf. Thus, when writing
code, you need to instruct the Internet functions to use the proxy server. This
is done when calling InternetOpen. For example, the following code frag
ment specifies that a proxy server with the name "SPPROXY" should be used.

hHttpOpen = InternetOpen(_T("Example Agent"),
INTERNET_OPEN_TYPE_PROXY,
_T("SPPROXY"), II proxy server
NULL, II no bypass addresses
0); II no flags

The proxy is specified by passing (see Table 8.1):

1. INTERNET_OPEN_TYPE_PROXY in the dwAccessType parameter speci
fying the use of a proxy server.

2. The proxy name (for example, "SPPROXY") in the lpszProxy parame
ter. This could be an IP address, such as " 19 2 . 16 8 . 0 . 2 " .

Connecting to Secure Sites 20 l

Note that bypass addresses are not supported in Windows CE. In Win
dows NT/98/2000, bypass addresses can be used to specify servers that should
be accessed directly and not through the proxy server.

In Windows CE proxy server information can be stored in the registry,
and Internet Open can read the registry keys directly. This is done by specify
ing the INTERNET_OPEN_TYPE_PRECONFIG dwAccessType constant:

hHttpOpen = InternetOpen(_T("Example Agent"),
INTERNET_OPEN_TYPE_PRECONFIG,
NULL, //default proxy
NULL, //no bypass addresses
0); II no flags

The registry key HKEY_CURRENT_USER \Comm\ Wininet \Proxy Server
stores the proxy information. The value specifies the name of the server and
port number in the form "protocol=scheme: I /server: port". Windows CE
only supports accessing servers through a single proxy server. For example,
the proxy server "spproxy" would be specified by:

Key:
Value:

HKEY_CURRENT_USER\Comm\Wininet\ProxyServer
HTTP=http://spproxy:80

If INTERNET_OPEN_TYPE_PRECONFIG is specified but the correct reg
istry information cannot be located, InternetOpen reverts to INTERNET_
OPEN_TYPE_DIRECT, that is, it attempts to connect to the server directly.

Connecting to Secure Sites
Having a secure website is essential if you are using HTTP to connect to, say, a
corporate database. Windows NT and 2000 websites can be secured using the
following:

1. Clear Text Authentication. The username and password are sent down as
an HTTP header, visible to others unless secure sockets are used.

2. NTLM (NT LAN Manager) Authentication. A challenge-response scheme
that bases the challenge on the username.

If an HTTP request fails authentication, an error 401 will be returned if
the error originates in a web server, or 407 for a proxy server authentication
failure. These errors are returned in HTTP headers from the server. If your ap
plication receives a 401 or 407 error, a valid username and password should
be supplied.

The type of authentication can be configured in Microsoft Internet Infor
mation Server (IIS) for each website or virtual directory on a server. Further,
an anonymous login can be specified, so that an unrecognized user can login
using the specified login. This login name is usually based on the server name,
for example, IUSR_MYSERVER, where MY SERVER is the name of the server IIS

202 Chapter 8 e Communications Using TCP/IP: HTTP and Sockets

is installed on. With IIS, once the type of authentication has been configured,
NTFS security is applied to the files in the website, and this controls who has
what type of access to the files or directories.

The following two methods can be used to handle authentication errors:

e Using the function InternetErrorDlg to prompt the user to supply a
username and password

e Using Ht tpQueryinfo to interrogate the HTTP headers returned from
the request and calling InternetSetOption to set the username and
password

You will need to specify the INTERNET_FLAG_KEEP _CONNECTION op
tion when calling HttpOpenRequest so that the security options can be main
tained between HTTP requests.

hHttpRequest = HttpOpenRequest(hHttpSession,
NULL, //verb is 'GET'
crackedURL.lpszUrlPath,
NULL, //default version
NULL, //no referrer
NULL, //only accept text/* files
INTERNET_FLAG_KEEP_CONNECTION,
0); //no context for call backs

One of the problems with using authentication with IIS is finding out
which user is making the HTTP requests. Therefore, when testing your authen
tication code you should turn on logging, and look for the requests in the IIS
logs. In the following examples, the first request was made with no username
specified(-), and the second used 'Administrator.'

192.168.0.221, -, 28/02/00, 14: 52 :41, W3SVC1, SPL_WEB,
192.168.0.2, 71, 363, 761, 401, 5, GET, I site, -,
192.168.0.221, administrator, 28/02/00, 14: 52: 49, W3SVC1,
SPL_WEB, 192.168.0.2, 1502, 414, 300, 302, 0, GET, /site/,

Authentication with lnternetErrorDlg
The function InternetErrorDlg can be used in a variety of ways to correct
errors with HTTP requests. For example, the function can be used to prompt
the user for a username and password in the event of an authentication error.

The code fragment in Listing 8.3 calls HttpSendRequest, and then calls
InternetErrorDlg with the following options:

$ FLAGS_ERROR_UI_FILTER_FOR_ERRORS-Scans the returned headers
for errors

® FLAGS_ERROR_UI_FLAGS_CHANGE_OPTIONS-Saves changes (such as
the supplied username and password) in the HTTP headers associated
with the hHttpRequest handle

"' FLAGS_ERROR_UI_FLAGS_GENERATE_DATA-Generates data to correct
the errors, such as prompting the user for the username and password

Connecting to Secure Sites 203

lnternetErrorD/g-Oisplays error dialog for specified error code or corrects errors returned
in HTTP headers

InternetErrorDlg

HWND hWnd

HINTERNET hRequest

DWORD dwError

Window handle used as the parent for any dialogs that are displayed.

Request handle from HttpSendRequest.

Error code for the problem to be rectified.

DWORD dwFlags

LPVOID *lppvData

Flags specifying type of action to take.

Data structure pointer specific for type of error being handled, or NULL
for none.

DWORD Return Value ERROR_SUCCESS for success.

ERROR_CANCELLED if user cancelled dialog box.

ERROR_INTERNET_FORCE_RETRY if HttpRequest should be resent.

MM:IM Correcting authentication errors with lnternetErrorD/g

resend:
if(!HttpSendRequest(hHttpRequest,

NULL, 0, II no headers
0, 0)) II no optional data

cout << _T("Could not send request ")
<< GetLastError();

goto cleanup;

DWORD dwErrorCode, dwError;

dwErrorCode = hHttpRequest ? ERROR_SUCCESS
GetLastError();

dwError = InternetErrorDlg(GetFocus(),
hHttpRequest,
dwErrorCode,
FLAGS_ERROR_UI_FILTER_FOR_ERRORS I
FLAGS_ERROR_UI_FLAGS_CHANGE_OPTIONS
FLAGS_ERROR_UI_FLAGS_GENERATE_DATA,
NULL);

if (dwError == ERROR_INTERNET_FORCE_RETRY)
goto resend;

II now read the data from the request
II using InternetReadFile.

Notice that when an authentication error is detected, the call to Http
SendRequest still succeeds. If corrective action is not taken the Internet server
will return an error message that will be read by InternetReadFile.

204 Chapter 8 • Communications Using TCP/IP: HTTP and Sockets

Authentication with lnternetSetOption
Authentication with InternetErrorDlg will display a dialog prompting for
a username and password. In many situations, your application may already
know the username and password to use and therefore should not prompt the
user. In this situation, Ht tpQueryinfo is used to determine if the HTTP head
ers sent from the server contain authentication error information, and Inter
netSetOption sets the username and password for the request (Listing 8.4).

M@:jM Correcting authentication errors with lnternetSetOption

DWORD dwStatus, dwStatusSize;

dwStatusSize = sizeof(DWORD);
if(!HttpQueryinfo(hHttpRequest,

HTTP_QUERY_FLAG_NUMBER I
HTTP_QUERY_STATUS_CODE,
&dwStatus, &dwStatusSize, NULL))

cout << _T ("Could not query info")
<< GetLastError();

}

II Server Authentication Required
if(dwStatus == HTTP_STATUS_DENIED)
{

II Set strUsername and strPassword
InternetSetOption(hHttpRequest,

INTERNET_OPTION_USERNAME,
szUser, wcslen(szUser) + 1);

InternetSetOption(hHttpRequest,
INTERNET_OPTION_PASSWORD,
szPassword, wcslen(szUser) + 1);

HttpQueryinfo is passed the following flags:

• HTTP _QUERY_FLAG_NUMBER-Return the requested data as a DWORD
111 HTTP _QUERY_STATUS_CODE-Return the status (error) code associated

with the request

A pointer to the DWORD dwStatus is passed, and this variable will contain
the status number on return. Notice that dwStatusSize is initialized with the
size of a DWORD. The variable dwStatus will contain the value HTTP _STATUS_
DENIED (which is the value 401) if a server authentication error occurred.

HttpQueryinfo can be used to return all sorts of HTTP header informa
tion such as the length of the content to be returned (HTTP _QUERY_CONTENT_
LENGTH) or its language (HTTP _QUERY_CONTENT_LANGUAGE), date when the
content is deemed to have expired (HTTP_QUERY_EXPIRES), or the host and
port number of the server (HTTP_QUERY_HOST).

Sending Data to a Server 205

HttpOuery/nFo-Extracts information From HTTP headers

HttpQueryinfo

HINTERNET hRequest

DWORD dwinf oLevel

LPVOID lpBuf fer

LPDWORD
lpdwBufferLength

LPDWORD lpdwindex

BOOL Return Value

Request handle to get headers for

Constant indicating what type of header information
to obtain

Pointer to a buffer in which data will be returned

Length of lpBuffer on entry, number of bytes
placed in lpBuffer on return

Header index to return when dwinfoLevel may have
more than one header

TRUE on success, FALSE for failure

The function InternetSetOption is used to set the username and pass
word into the HTTP headers for the request (Table 8.11).

lnternetSetOption-Sets value into HTTP header

InternetSetOption

HINTERNET hinternet

DWORD dwOption

LPVOID lpBuf fer

DWORD dwBuf f erLength

BOOL Return Value

Request handle

Constant indicating value to be set, e.g. INTERNET_
OPTION_USERNAME

Pointer to buffer containing value

Number of bytes of data to set

TRUE on success, FALSE for failure

The function can be used to set other options, such as the following:

0 The timeout value (INTERNET_OPTION_CONNECT_TIMEOUT)
0 The proxy name (INTERNET_OPTION_PROXY)
0 The user agent name (INTERNET_OPTION_USER_AGENT)

If you do not have access to a secure Internet site using NTLM, try connect
ing to www.softwarepaths.com/WinCEPrograrruning/Secure/Default
. htm. This resource can be accessed with the user name 'wince' and password
'device.'

Sending Data to a Server
So far, all the HTTP calls covered in this chapter have been used to obtain data
from an Internet server. Obviously, if you intend to use HTTP to access, for

206 Chapter 8 e Communications Using TCP/IP: HTTP and Sockets

example, enterprise databases, you will need to send data back to the server.
This can be done by doing the following:

® Appending data onto the URL. This technique is used when small amounts
of data are to be sent. Special characters, such as spaces, need to be en
coded to ensure that the URL only contains legal characters.

® Using the 'POST' HTTP verb. You can send large amounts of data, includ
ing whole files.

The first technique is the easier to use, but the second is more flexible.

Sending Data with the URL
Data is appended onto a URL following a '?' character. The data must follow
the standard rules regarding legal characters. For example, spaces must be sent
as '%2 O'. This requires the data to be encoded by the client application and de
coded by the server. You can only append limited amounts of data to a URL
since the overall length of the URL is limited, and the limit varies from Internet
server to Internet server.

The function InternetCanonicalizeUrl can be used to encode data.
This function, through the Flags parameter, allows control over how the encod
ing takes place. The function will fail if the buffer is not large enough to contain
the encoded characters. Because of the nature of the encoding, the returned
string can be significantly longer than the string passed for encoding.

lnternetCanonicalizeUrl-Encodes data

InternetCanonicalizeUrl

LPCTSTR lpszUrl Pointer to the string to encode.

LPTSTR lpszBuffer Pointer to a buffer to receive the encoded data.

LPDWORD On entry, the length of the buffer pointed to by lpszBuffer.
lpdwBufferLength

DWORD dwFlags Flags refining how the encoding takes place. O indicates de-
fault encoding. For example, ICU_ENCODE_SPACES_ONLY
requests that only spaces are encoded to %2 0.

BOOL Return Value TRUE indicates success, FALSE failure. GetLastError
returns ERROR_INSUFFICIENT_BUFFER if the buffer is
not sufficiently large.

Listing 8.5 shows a code fragment that prompts the user for a URL and
data to append onto the URL. The HTTP connection is opened using Inter
netOpen. Next, InternetCanonicalizeUrl is called to encode the data,
and this data is appended onto the URL. Finally, InternetOpenUrl is called

Sending Data to a Server 207

to request the data back from the server. The data can be read using the code
shown in Listing 8.1 using InternetReadFile.

M@:JW Sending data with the URL

if(!GetTextResponse(_T("Enter URL to Display: "),
szURL, MAX_PATH))

return;
if(!GetTextResponse(_T("Data To Send: "),

szData, MAX_PATH))
return;

hHttpOpen = InternetOpen(_T("Example Agent"),
INTERNET_OPEN_TYPE_DIRECT,
NULL, //no proxy
NULL, //no bypass addresses
0) ; I I no flags

dwBuffLen = MAX_PATH;
if(!InternetCanonicalizeUrl(szData,

szDataCan, &dwBuffLen, 0))

cout << _T("Could not encode request %d")
<< GetLastError();

return;

wcscpy(szURLRequest, szURL);
wcscat(szURLRequest, szDataCan);
cout << _T ("URL Request: ") << szURLRequest << endl;
hHttpRequest = InternetOpenUrl(hHttpOpen,

szURLRequest, NULL, 0, 0, 0);

The nature of the URL depends on how the server application is written.
The following example shows a URL with data being sent to a Microsoft Visual
Basic WebClass application that is called through an Active Server Page (ASP):

http://MyServer/WinCETest/WinCETest.ASP?WCI=Bounce&WCE=Test
%20Data

In this case, the server is called 'MyServer,' the path is 'WinCETest,' and
the resource to be opened is WinCETest .ASP. The data follows the"?''. In the
case of Visual Basic web classes, the data following WCE= is an entry point into
the Visual Basic DLL, and the data following WCE= is passed to the Visual Basic
code. Notice how the data 'Test Data' has been encoded into 'Test%20Data.'

If you do not have a suitable site to test against, you can enter the fol
lowing for the URL:

http://www.softwarepaths.com/WinCEProgramming/WinCETest.AS
P?WCI=Bounce&WCE=

208 Chapter 8 0 Communications Using TCP/IP: HTTP and Sockets

You can enter anything you like for the data, and the ASP page will send
back the data to you as the resource.

Posting Data to the Server
So far, all the HTTP requests sent from the Windows CE device have used the
HTTP 'GET' verb. This verb simply requests that the given resource is returned
to the client. The 'POST' verb can be used to send information to the server,
and this data can be read by a server application. You can send any type of data
(both text and binary), and there is no effective limit to the amount of data that
can be sent.

Using 'POST' is much the same as using 'GET', except that you should do
the following:

111 Specify the 'POST' verb in HttpOpenRequest.
111 Specify the data to be sent in HttpSendRequest. Note this should be

ANSI in the case of text data.
111 Add a Content-Type header to specify the type of data being sent to the

server (required when sending data to an ASP or Microsoft Webclass ap
plication under IIS).

Listing 8.6 shows code used to send a 'POST' HTTP request in the Http
OpenRequest and the sending of data using HttpSendRequest.

Using the 'POST' verb

LPCTSTR lpHeader =
_T("Content-Type: application/x-www-form-urlencoded\r\n");

LPCTSTR lpData =
_T("The data to be sent to the Internet Server");

hHttpRequest = HttpOpenRequest(hHttpSession,
_T ("POST"), I I verb
crackedURL.lpszUrlPath,
NULL, //default version
NULL, //no referrer
NULL, //only accept text/* files
0, II no flags
0); II no context for call-backs

if(hHttpRequest ==NULL)
{

cout << _T("Could not get HTTP request ")
<< GetLastError();

goto cleanup;

if(!HttpAddRequestHeaders(hHttpRequest,
lpHeader,

Sending Data lo a Server 209

wcslen(lpHeader),
HTTP_ADDREQ_FLAG_REPLACE

HTTP_ADDREQ_FLAG_ADD))

cout << _T("Could not add HTTP header ")
<< GetLastError();

goto cleanup;

II convert the data to ANSI
char szAnsi[1024];
wcstombs(szAnsi, lpData, wcslen(lpData));
szAnsi[wcslen(lpData)J = '\0';

if(!HttpSendRequest(hHttpRequest,
NULL, 0, II no extra headers
(LPVOID)szAnsi, II data to be sent
strlen(szAnsi))) 11 length of data

cout << _T ("Could not send request ")
<< GetLastError();

goto cleanup;

The 'Content-Type' header pointed to by lpHeader must be added to the
request using HttpAddRequestHeaders before HttpSendRequest is called.
Note that this header string should be Unicode. Once this is done, HttpSend
Request is called. The last two parameters of the call specify the pointer to the
data (s zAns i) and its length to be sent to the server. Note that this data should
be sent as ANSI unless the server application is specifically written to accept
Unicode. The usual code can be used to read a response from the server fol
lowing the call to HttpSendRequest.

Mrn,tj:lfW HttpAddRequestHeaders-Adds headers to a request

HttpAddRequestHeaders

HINTERNET hHttpRequest

LPCTSTR lpszHeaders

DWORD dwHeadersLength

DWORD dwModifiers

BOOL Return Value

Request handle to add headers to.

Pointer to the header strings.

Length of the header strings.

How to add or change the headers:
HTTP_ADDREQ_FLAG_ADD adds the header if it
does not exist, and HTTP _ADDREQ_FLAG_REPLACE
replaces the header if it does exist.

TRUE on success, otherwise FALSE.

210 Chapter 8 Communications Using TCP/IP: HTTP and Sockets

You can use the following URL if you do not have an Internet site to test
against. This Microsoft Visual Basic WebClass application will send back the
posted data converted to upper case.

http://www.softwarepaths.com/WinCEProgramming/WinCETest.ASP?
WCI=PostData&WCE=

HTTP in Summary
The previous sections have shown you how to do the following:

® Make simple requests for resources from an Internet server
® Access an Internet server through a proxy
® Respond to NTLM authentication
® Send data appended to the URL
® Post larger amounts of data to the server

Using this information, and with suitable ASP or CGI applications on the
server, you can write Windows CE applications that receive and send data to an
Internet server, and then through to enterprise databases or other data stores.
You can decide on the format for the data transfer-you might choose a simple
text format, or something more complex like a comma-separated variable (CSV)
file or XML (Extensible Markup Language).

These Internet server requests can be made across either the Internet or
your own intranet, with the Windows CE device connected through a modem,
wireless, or direct network connection. Your solutions can support multiple
Windows CE devices being connected at any one time, and you don't have to
worry about writing multithreaded applications on the server.

The Windows CE application can receive information from the server and
then save the data in a property database (see Chapter 4) for display when dis
connected from the network. With these techniques you can simply and quickly
integrate Windows CE devices into the enterprise.

Socket Programming
HTTP represents a high-level protocol for communicating over TCP/IP net
works, whereas socket programming is at a much lower level. In fact, HTTP it
self uses sockets to communicate. Wherever feasible, you should use a high
level protocol such as HTTP or File Transfer Protocol (FTP), but there are times
when socket programming is necessary. Examples include the following:

Socket Programming 211

o When communicating using infrared ports to other Windows CE devices,
desktop operating systems such as Windows 98 and 2000, and digital
cameras.

o When communicating with a server application where HTTP does not suf
fice. Note that you may need to write a multithreaded server application
to handle requests from multiple Windows CE devices.

ActiveSync versions 3.0 and later provide Windows CE device to desktop
PC connectivity without using Remote Access Services (RAS) on Windows NT/
2000 or Dialup Network (DUN) on Windows 98 in the default setup. This means
that sockets cannot be used to communicate between a Windows CE device
connected to a desktop PC. Instead, you should use the Remote API (RAPI, see
Chapter 10) to provide communications.

Windows CE implements a subset of the Winsock 1.1 library found on
desktop Windows, and Winsock itself is based around the Berkeley socket li
brary. The major feature not supported by Windows CE is asynchronous mode.
In Windows CE calls to Winsock functions will block (that is, not return), until
the operation is complete. Therefore, it is usual to create a thread (see Chap
ters 5 and 6) and call Winsock functions on the thread. Then, if the call blocks,
your primary thread will not be blocked and the user interface will still be re
sponsive to the user.

MFC supports class libraries that provide wrappers around Winsock func
tions such as csocket and CSocketFile. These classes implement asynchro
nous calls to Winsock functions by using Windows messages. However, this
means that the calls to the socket functions do not block if they are called on
a worker thread (that is, a thread that does not have a message queue). The
solution is to call the functions on the primary thread in asynchronous mode,
or have the primary thread block (which will make the user interface unre
sponsive). Alternatively, you should create a secondary user interface thread
that has a message queue. For these reasons it is often easier to call Winsock
functions directly rather than use the MFC classes.

Sockets can be used for UDP Datagram or Stream communications.
UDP is an unreliable, connectionless protocol used for broadcasting messages.
Stream sockets use two-way, reliable communications, and are the focus of the
remainder of this chapter.

Socket Clients and Servers
Sockets are programmed so that one application acts as a client (and therefore
initiates the communication) and another application acts as a server (and there
fore waits for a client to connect). Once connected, communication between
client and server is two-way. Data sent between sockets can be binary or text.
You need to take care when sending data to applications running on different
operating systems such as Windows 98 or 2000, or UNIX.

212 Chapter 8 e Communications Using TCP/IP: HTTP and Sockets

"" With binary data, the byte order of integer values is reversed on UNIX but
is the same on Windows CE, 98, and 2000.

"" Decide whether text will be transmitted as ANSI or Unicode. The appli
cation your Windows CE application is communicating with will need to
handle data using the same encoding.

The Winsock functions used for socket stream communications are shown
in Figure 8.3. The server application creates a listening socket and waits for a
client to connect. The client creates a socket and connects to the server lis
tening socket. At this point, the listening socket creates another socket to which
the client's socket connects, and the server's listening socket goes back to wait
ing for another connection. Either the client or the server can terminate the
connection.

Server Application

Open a listening socket
socket()

Name the socket
bind()

Listen for incoming connection
listen()

Wait for next
connection

Accept incoming connection
accept()

Close connection
close()

Client Application

Open a socket
socket()

Connect lo listening socket
connect()

Close connection
close()

Socket function-calling sequence for client and server applications

Socket Programming 213

A listening socket is associated with an IP address and a port number. The
client application will supply the IP address and the port number when con
necting to the server socket. Only one listening socket can be associated with
a particular IP address and port number.

Initializing the Winsock Library
The Winsock library must be initialized before any Winsock function can be
called. This is done by calling WSAStartup.

WSADATA wsaData;
if(WSAStartup(MAKEWORD(l,l), &wsaData) != 0)
{

cout << _T("Could not initialize sockets");
return;

The function is passed the required Winsock library version number (1.1)
and a pointer to a WSADATA structure, into which information about Winsock
is placed.

WSAStortup-lnitializes the Winsock library

WSAStartup

WORD wVersionRequested

LPWSADATA lpWSAData

int Return Value

Word containing the major version number in the
high byte and minor version in the low byte.

Pointer to a WSADATA that contains information
about the socket library on return.

0 for success, non-zero for an error.

The function WSACleanup should be called when you have finished with
the Winsock library.

if(WSACleanup() == SOCKET_ERROR)
{

cout << _T ("Could not cleanup sockets:•)
<< WSAGetLastError() << endl;

return;

This function returns the value SOCKET_ERROR if an error is detected. Fur
ther information about the error can be obtained by calling WSAGetLastError.
It is important not to call GetLastError when handling Winsock errors. WSA
GetLas tError can be called for determining errors from all Winsock functions
except WSAStartup.

214 Chapter 8 e Communications Using TCP/IP: HTTP and Sockets

Manipulating IP Addresses
There are several different ways to store IP address in Winsock. First, the IP ad
dress may be stored as a string using the 'dot' notation, such as '192~168. 0. l'.
Each of the four elements of the IP address is known as an octet. The Winsock
functions in Windows CE expect this to be an ANSI rather than a Unicode string.

The Winsock function inet_addr can be used to convert the 'dot' string
notation into a binary form. An IP address is typically stored using an unsigned
long or DWORD. Each byte in this long represents one of the octets.

inet_addr-Converts IP address from 'dot' to binary form

inet_addr

const char *cp Null-terminated string containing IP address in 'dot' notation

unsigned long
Return Value

IP address as a four-byte integer value, or INADDR_NONE if
the IP address is illegal

The structure in_addr can be used to represent an IP address in its bi
nary form. This structure has union/structure members and defines that allow
the four bytes, or two words, of the address to be conveniently referenced.

For example, with the IP address '19 2 . 16 8 . 0 . l' stored in an in_addr
structure called Myaddr, the following members can be used:

Myaddr.S_un.S_un_b.s_bl;
Myaddr.S_un.S_un_b.s_b2;
Myaddr.S_un.S_un_b.s_b3;
Myaddr.S_un.S_un_b.s_b4;
Myaddr.S_un.S_addr;

II 192
II 168
II 0
II 1
II Return all 4 bytes

Defines are also provided in the in_addr structure to provide easier
member access using names often associated with the octets:

Myaddr. s_net;
Myaddr.s_host;
Myaddr. s_lh;
Myaddr.s_impno;
Myaddr. s_addr;

II 192, network number
II 16.8, host number
II 0, logical host number
II l, imp number
II Return all 4 bytes

The Winsock function inet_ntoa is used to convert an IP address from
its binary form (either an in_addr structure or from a DWORD by casting) to a
string using the dot notation.

The string pointer returned by inet_ntoa should not be deleted-it
is owned by the Winsock library. You should copy the contents immediately
since the buffer may be reused at a later time.

Socket Programming 215

inet_ntoa-Converts an IP address in binary form to string form

inet_ntoa

struct in_addr in

char * Return Value

An in_addr structure passed by value

Pointer to a string containing the IP address in dot
notation

You should note that the bytes are stored in reverse order. So, for the
IP address '192 .168. 0 .1', the following code will display '192' and not the
expected '1 ':

LONG l;
memcpy(&l, &address, sizeof(address));
cout << LOBYTE(LOWORD(l)) << endl;

Determining a Device's IP Address and Host Name
There are times when you need to determine the IP addresses in use on a de
vice and the device's host name. The first stage is to determine the Windows
CE device's host name. This is typically the name "Device Name" configured
through the Control Panel's "Communication" icon. This function is passed
a character buffer into which the name is placed. Note that a Unicode string is
not returned. In Listing 8.7 the contents of the returned string in szHostName
is displayed-the cout object has an operator overload on<< which converts
ANSI character strings to Unicode for display. The host name is also available
through the HKEY_LOCAL_MACHINE\Ident \Name registry key.

Next, the host name in szHostName is passed to gethostbyname,
which returns a pointer to a HOSTENT structure. It is this structure that contains,
among other information, the IP address.

Determining the host name and IP address

void Listing8_7()
{

WSADATA wsaData;
char szHostName[1024];
HOSTENT* lphostent;
in_addr address;

if(WSAStartup(MAKEWORD(l,l), &wsaData) != 0)
{

cout << _T ("Could not initialize socket's")
<< endl;

return;

216 Chapter 8 * Communications Using TCP/IP: HTTP and Sockets

if(gethostname (szHostName, 1024) == SOCKET_ERROR)
{

cout << _T("Could not get host name")
<< WSAGetLastError() << endl;

return;

cout << _T("Host Name:") << szHostName << endl;
lphostent = gethostbyname(szHostName);
if(lphostent ==NULL)
{

cout << _T("Could not get host information:")
<< WSAGetLastError() << endl;

return;

for(int i = O; lphostent->h_addr_list[i] != NULL; i++)
{

}

memcpy(&address, lphostent->h_addr_list[i],
sizeof(address));

cout << _T ("IP Address: ")
cout << _T("IP Address: ")

<< address.S - un.S _un - b. s _bl << _T(". ")
<< address.S _un.S _un _b.s _b2 << _T(". ")
<< address.S _un.S - un _b.s _b3 << _T(". ")
<< address.S _un.S - un _b.s _b4 << endl;

if(WSACleanup() == SOCKET_ERROR)
{

cout << _T("Could not cleanup sockets:")
<< WSAGetLastError() << endl;

return;

The HOSTENT pointer returned from gethostbyname points at a struc
ture owned by the Winsock library. You should not modify the contents of this
structure or delete it. The h_addr_list member contains an array of IP ad
dresses. You can, for example, have one IP address for a PPP (Point to Point
Protocol) connection through a serial or dialup connection, and another IP ad
dress for a network connection through a network adapter card.

The h_addr_list member is a char* pointer, although it actually points
at an unsigned long integer value containing the IP address in this case. In List
ing 8.7 this unsigned long integer is copied into an in_addr structure that is
used to store IP addresses. The contents of this address are displayed. The IP
address '127. 0. 0 .1' indicates that no connections exist, and this special IP ad
dress refers to the device itself.

The function gethostbyname can be used to resolve any host name on
the network. If you want to find the IP address or addresses associated with a

Socket Programming 217

host, simply pass the host name to gethostbyname and use code like that in
Listing 8.7 to obtain the IP addresses.

Implementing a Ping Function
Before attempting to communicate between two computers using sockets, you
should check that you can perform the simplest of communications-this is a
'ping.' A ping is simply sending a specific type of IP packet to the other com
puter, and then waiting for a response. ICMP, or the Internet Control Message
Protocol, defines the format of a ping packet.

On most socket implementations a ping ICMP packet is sent by first open
ing a raw socket. A raw socket allows IP packets to be sent without using TCP
to order and control the sending and arrival of the packets. However, raw sock
ets are not supported in Windows CE. Instead, three ICMP API functions are
used for pinging:

• IcmpCreateFile, which returns a handle through which other ICMP
functions can be called

• IcmpSendEcho, which sends the ping packet
11> IcmpCloseHandle, which closes the ICMP handle

You will need to include ipexport. hand icmpapi. h when using these
functions, and include icmplib. lib in the project. Some versions of ipex
port. h and icmpapi. h are not written correctly for inclusion in a C++ proj
ect, as they generate decorated (mangled) C++ names rather than C function
names. Therefore, it might be necessary to wrap the #include statements with
an extern "c" block, as shown in Listing 8.8. These functions cannot currently
be called from emulation.

Calling IcmpCreateFile is straightforward-the function takes no pa
rameters and returns a handle on success, or INVALID_HANDLE_VALUE on re
turn. Calling IcmpCloseHandle is equally simple-just pass the handle re
turned from IcmpCreateFile.

Listing 8.8 shows a complete ping function. The user is prompted for an
IP address to ping. The function could be extended to take an IP address or host
name, and if a host name was supplied, convert it to an IP address using get
hos tbyname. The string containing the IP address is converted from Unicode
to ANSI, and passed to inet_addr to convert the IP address in dot notation to
a DWORD value.

M@fi;j:M A ping function

II *** Listing 8.8
II
II Pings an IP address

218 Chapter 8 e Communications Using TCP/IP: HTTP and Sockets

II
extern "C"

#include <ipexport.h>
#include <icmpapi.h>
}

II NOTE: include icmplib.lib into the project.

void Listing8_8()
{

TCHAR szIPAddr[30];
char szchrIPAddr[30];
HANDLE hicmp;
char* lpToSend = "Ping information";
BYTE bin[1024];
int re;
in_addr ipFromAddress;
PICMP_ECHO_REPLY lpEchoReply;
DWORD dwToPing;

if(!GetTextResponse(
_T("IP Address (e.g. 192.168.0.2) to Ping:"),
s z I PAddr, 3 0))
return;

II Convert to ANSI char string
wcstombs(szchrIPAddr, szIPAddr, wcslen(szIPAddr) + 1);
dwToPing = inet_addr(szchrIPAddr);
if(dwToPing == -1)
{

cout << _T("Invalid IP address") << endl;
return;

hicmp = IcmpCreateFile();
if(hicmp == INVALID_HANDLE_VALUE)
{

cout << _T("Cannot open Icmp") << endl;
return;

re = IcmpSendEcho(hicmp, dwToPing,
lpToSend, strlen(lpToSend),
NULL, bin, sizeof(bin), 2000);

if(rc == 0)
cout << _T ("Ping failed:")

else
{

<< GetLastError() << endl;

lpEchoReply = (PICMP_ECHO_REPLY)bin;
for(int i = O; i < re; i++)
{

memcpy(&ipFromAddress,
&lpEchoReply->Address,
sizeof(in_addr));

cout << _T("Reply from: ")

Socket Programming 219

<< inet_ntoa(ipFromAddress)
<< _T (" Number bytes: ")
<< lpEchoReply->DataSize
<< _T(" Round Trip: ")
<< lpEchoReply->RoundTripTime
<< _T (" Milliseconds.")
<< endl;

lpEchoReply++; II move to next reply

IcmpCloseHandle(hicmp);

In Listing 8.8 IcmpSendEcho is called with a timeout of 2000 millisec
onds and will return in bin one or more ICMP _ECHO_REPLY structures. A re
turn value of 0 indicates failure, the most likely reason for which is that the
server with the given IP address in dwToPing could not be found. In this case,
GetLastError will return "5".

lcmpSendEcho-Sends a 'ping' request

IcmpSendEcho

HANDLE IcmpHandle

IPAddr DestinationAddress

LPVOID RequestData

WORD RequestSize

PIP OPTION_INFORMATION
RequestOptions

LPVOID ReplyBuffer

DWORD ReplySize

DWORD Timeout

DWORD Return Value

Handle returned from IcmpCreateFile.

IP destination address as an unsigned long.

Pointer to data to be sent. The content of the data sent in a ping
is irrelevant.

Number of bytes of data pointed to by RequestData.

Pointer to an IP _OPTION_INFORMATION structure, or NULL if no
extra options. This structure is documented in ipexport . h. It
allows options like 'time to live' to be set.

Pointer to a buffer to receive a reply. The minimum size is 36,
which is the size of one ICMP_ECHO_REPLY structure plus 8 bytes
for an ICMP error. However, multiple ICMP_ECHO_REPLY structures
could be returned, so this buffer should be larger (say, 1 KB).

Size of the ReplyBuffer in bytes.

Number of milliseconds to wait before a timeout.

Zero on failure, or number of ICMP _ECHO_REPLY structures
returned on success. GetLastError should be called for further
error information. GetLastError returns '5' if the server with
the given IP address could not be found.

220 Chapter 8 Communications Using TCP/IP: HTTP and Sockets

The remainder of the code in Listing 8.8 walks through each of the ICMP _
ECHO_REPL Y structures and displays the IP address the reply was received from,
the number of bytes in the ping request, and the round-trip time in milliseconds.
The structure ICMP _ECHO_REPLY is documented in ipexport. h. You will
typically only receive back one ICMP_ECHO_REPLY (from the target server it
self) unless your request goes through a proxy server or router that itself gen
erates replies.

Simple Socket Sample Application
The next sections describe a simple socket client/server application. The
socket server is implemented on a Windows CE device as an API C++ appli
cation. The source code can be found in the directory \SockServer on the
CDROM accompanying this book. The socket client is implemented ori Win
dows NT/98/2000 as a command line application, and the source code is lo
cated in the directory \SockClient on the CDROM.

Use the following set of steps to run the sample application:

1. Ensure that you have a network or dialup connection operating between
the Windows CE device and desktop computer.

2. Run the SockServer. exe application on the Windows CE device.

3. Run the SockClient. exe application on the Windows NT/98/2000
desktop PC.

4. SockClient. exe will prompt for the IP address of the Windows CE ma
chine. This can be obtained through the code shown in Listing 8.7.

5. SockClient will then prompt for you to enter lines of text. Each line will
be sent to the socket server running on the Windows CE device and will
be displayed in the application's client area (which is a disabled edit box).

6. SockClient (on the desktop PC) will terminate the connection when the
text '<END>' is entered. The connection is also terminated when Sock
Server on the Windows CE device is closed.

As mentioned earlier in the chapter, socket communication will not op
erate between a desktop PC and a Windows CE device that are only connected
via ActiveSync 3.0 or later. This is because ActiveSync does not, by default, use
Remote Access Service (RAS), and therefore does not expose TCP/IP func
tionality to applications running on the Windows CE device or desktop PC. You
can configure ActiveSync to use RAS and hence provide TCP/IP support. This
is described in the document 'readras. doc' on the ActiveSync CD.

The Socket Client Application
The client application, which runs on the desktop PC, does the following:

1. Initializes the Winsock library.

2. Creates a socket using the socket function.

Socket Programming 221

3. Connects to the server (listening) socket on the Windows CE device us
ing the connect function.

4. Accepts lines of input from the user and sends them to the socket server
application using the send function.

5. Receives back from the server a character count using the recv func
tion. This is used to confirm that the correct number of characters were
received.

6. Terminates the connection when the user types '<END>' using the close
socket function.

SockClient implements a function called ConnectSocket that creates
a socket and connects to a server (Listing 8.9). This function is passed the IP
address to connect to in 'dot' notation. The port number used for the server and
client socket is defined. This value should be the same for the server and client
and should be greater than 1024.

Creates a socket and connects to server (SockC/ient.cpp)

#define SERVER_PORT 50000

SOCKET ConnectSocket(char* szIPAddress)
{

DWORD dwDestAddr;
SOCKADDR_IN sockAddrDest;
SOCKET sockDest;

II create socket
sockDest = socket(AF_INET, SOCK_STREAM, 0);
if(sockDest == SOCKET_ERROR)
{

cout << "Could not create socket:"
<< WSAGetLastError() << endl;

return INVALID_SOCKET;

II convert address to in_addr (binary) form
dwDestAddr = inet_addr(szIPAddress);
II Initialize SOCKADDR_IN with IP address,
II port number and address family
memcpy(&sockAddrDest.sin_addr,

&dwDestAddr, sizeof(DWORD));
sockAddrDest.sin_port = htons(SERVER_PORT);
sockAddrDest.sin_family = AF_INET;
II attempt to connect to server
if(connect(sockDest,

(LPSOCKADDR)&sockAddrDest,
sizeof(sockAddrDest)) == SOCKET_ERROR)

cout << "Could not connect to server socket:"
<< WSAGetLastError() << endl;

222 Chapter 8 & .Communications Using TCP/IP: HTTP and Sockets

closesocket(sockDest);
return INVALID_SOCKET;

return sockDest;

Calling the function socket to create a socket is straightforward
Table 8.18 describes the available parameters and their meanings. WSAGet
LastError should be called to obtain the error number if socket returns IN
VALID_SOCKET.

@¢ijtj:ll:W socket-Creates a socket

socket

int af

int type

int protocol

SOCKET Return Value

Address family, must be AF _INET

Type of socket, either SOCK_STREAM for a stream
(connection-based) socket, or SOCK_DGRAM for a
datagram

Protocol to use, 0 for IP

Valid SOCKET descriptor, or INVALID_SOCKET
on error

A SOCKADDR_IN structure must be initialized with the following values
for passing to the connect function:

* The IP address to connect to in binary form. In Listing 8.9 the IP ad
dress in 'dot' notation is converted to binary form using the inet_addr
function.

& The port number. The function htons is used to convert the byte order
of the port number from host to network form. Byte ordering is described
in the next section "Integer Byte Ordering."

" The address family, which can only ever be AF _INET.

The function connect (Table 8.19) will attempt to make a connection for
a socket with the server specified in the SOCKADDR_IN structure.

connect-Connects a socket to a server

connect

SOCKET s

const struct sockaddr
FAR* name

int namelen

int Return Value

Socket descriptor returned from the socket function

Pointer to a SOCKADDR_IN structure containing
details about the server to connect to

Length of the structure pointed to by 'name'

Zero on success, otherwise SOCKET_ERROR

Socket Programming 223

Listing 8.10 shows the main function in the socket client application. The
function prompts the user for the IP address to connect to, and initializes the
Winsock library by calling WSAStartup. Next, ConnectSocket is called to
make the connection (described above).

IM:!l1M Initiates connection and sends/receives data

int main(int argc, char* argv[J)
{

WSADATA wsaData;
char szIPAddress[lOO];
char szBuffer[lOOJ;
int nSent, nToSend, nRecv, nReceived;
SOCKET sock;

II Get Server IP address
cout << "Enter IP address of CE Device: ";
cin.getline(szIPAddress, 1024);
cout << "Connecting to:"<< szIPAddress << endl;
II Initialize WinSock
if(WSAStartup(MAKEWORD(l,l), &wsaData) != 0)
{

cout << "Could not initialize sockets" << endl;
return 1;

II Create socket and connect to server
sock= ConnectSocket(szIPAddress);
if(sock == INVALID_SOCKET)

return 1;
II Now send information to server
while(TRUE)
{

II read line of input from user
cout << "Line to send or <END> to finish:";
cin.getline(szBuffer, 1024);
II marks end of text from user
if(strcmp(szBuffer, "<END>") 0)

break;
strcat(szBuffer, "\r\n");
nToSend = strlen(szBuffer) + l;
II send this line to the server
nSent = send(sock, szBuffer, nToSend, 0);
if(nSent == SOCKET_ERROR)
{

cout << "Connection Broken:"
<< WSAGetLastError() << endl;

break;

II now read back the number of chars received.

224 Chapter 8 * Communications Using TCP/IP: HTTP and Sockets

nRecv = recv(sock, (char*)&nReceived,
sizeof(nReceived), 0);

if(nRecv != sizeof(nReceived))
{

cout << "Error reading acknowledgement:"
<< WSAGetLastError() << endl;

break;

if(nReceived != nToSend)
{

cout << "Error in number of bytes sent:"
<< WSAGetLastError() << endl;

break;

II close socket
closesocket(sock);
II Clean up Winsock
if(WSACleanup() == SOCKET_ERROR)
{

cout << "Could not cleanup sockets:"
<< WSAGetLastError() << endl;

return l;

return O;

The send function (Table 8.20) is used to send each line of text to the
server. This is read from the console using the cin console I/0 object. Any
type of data can be sent, including ANSI or Unicode strings and binary data.
However, you need to ensure that the server is expecting the same data for
mat. For example, a common mistake is to send Unicode text from a Windows
CE device to a Windows NT/98/2000 server that is programmed to expect ANSI
characters. Sending binary data to non-Windows CE or NT/98/2000 PCs can be
problematic, since these computers may use different binary representations or
have reversed byte ordering.

send~Sends data to a connected socket

send

SOCKET s

const char FAR * buf

int len

int flags

int Return Value

Socket descriptor returned from the socket function

Pointer to data to be sent

Number of bytes to be sent

Flags, O for default values

Returns number of bytes sent, or SOCKET_ERROR if
an error is detected

Socket Programming 225

The server will receive the data from the send function, and returns the
number of bytes of data received. This implements a simple protocol of send
and acknowledge, which is essential for any form of communications through
sockets (or any other communications medium, for that matter). This data is sent
as a 2-byte binary value and is read using the recv function (Table 8.21).

recv

SOCKET

char FAR*

int len

int flags

int Return

recv-Receives data from a connected socket

buf

Value

Socket descriptor returned from the socket function

Pointer to a buffer into which received data will be placed

The size of 'buf' in bytes

Flags, O for default values

Number of bytes read, or SOCKET_ERROR for an error,
or O if the socket has been closed

The function recv will block until the requested number of bytes of data
has been read. Therefore, it is often necessary to create a separate thread to
call this function to avoid blocking your primary user-interface thread. This, of
course, assumes that you know how many bytes of data to read, and this is not
always the case. Usually a socket is sent length information, which it reads us
ing recv, and then uses this information to call recv again to read the indi
cated number of bytes.

The main function continues sending the text entered by the user until
the server application breaks the connection or the user types '<END>'. In either
case, the function closesocket is used to close the socket, and then WSA

Cleanup is used to un-initialize the Winsock library.
The code described in this section is designed to work on Windows NT/

98/2000 PCs. However, the coding for creating a socket client application for
Windows CE is essentially identical.

Integer Byte Ordering
Socket programming evolved on Unix computers that are typically big-endian
(meaning that the most significant byte is byte 0 and the least significant byte
is byte 1 in a short integer value). Intel PCs and Windows CE devices are little
endian and store integer values in reverse byte order. This means that short in
tegers being passed to Winsock functions may need to be converted using the
htons function. Table 8.22 shows the available conversion functions.

Care must be taken when deciding whether to convert values or not. Port
numbers must always be converted. As it happens, if you forget to convert the
port number on both the client and server, and both are running on little-endian

226 Chapter 8 e Communications Using TCP/IP: HTTP and Sockets

Functions used for converting the byte order in integers

Function Data Type Conversion

htons

nstoh

htonl

ntohl

short integer

short integer

long integer

long integer

From host (Intel) to network order

From network to host order

From host to network order

From network to host order

(Intel) type computers, the error is transparent. However, the application will
be using a different port number than the one you specified, and this may con
flict with existing port numbers. An IP address returned from inet_addr will
already be in network byte order and does not have to be converted.

The Socket Server Application
The Windows CE application acts as the server. It therefore must create a lis
tening socket and call the accept function to wait for a client application to
connect. The call to the accept function will block. A thread therefore should
be created to call accept to avoid blocking the primary thread. The entire code
for this application is located in the \ SockServer directory on the CDROM.

In the sample application, the thread is created in response to the WM_
CREATE message being received.

hThread = CreateThread(NULL, 0,
SockThread, 0, 0, &dwThreadID);

if(hThread ==NULL)
MessageBox(hWnd, _T("Could not create thread"),

NULL, MB_OK);
else

CloseHandle(hThread);
break;

The function CreateListener is called from the SockThread thread
function, and this function creates a socket, binds it to an IP address, and then
calls the listen function to make it a listening socket (Listing 8.11). The call
to socket takes the same parameters as used in the client application. The anc
cillary function DisplaySocketError is implemented in SockServer. cpp,
and displays the error message together with the error returned from calling
WSAGetLas tError.

Creates a socket and binds and makes ii a listening socket

SOCKET CreateListener()
{

SOCKADDR_IN sockAddrListen;
SOCKET sockListen;

Socket Programming 227

DWORD address;
char szHostName[1024];
HOSTENT* lphostent;

II create a socket
sockListen = socket(AF_INET, SOCK_STREAM, 0);
if(sockListen == INVALID_SOCKET)
{

DisplaySocketError(
_T("Could not create socket: %d"));

return INVALID_SOCKET;

if(gethostname (szHostName, 1024)
{

DisplaySocketError(

SOCKET_ERROR)

_T ("Could not get host name: %d")) ;
return INVALID_SOCKET;

lphostent = gethostbyname(szHostName);
if(lphostent ==NULL)
{

DisplaySocketError(
_T("Could not get host information: %d"));

return INVALID_SOCKET;

memcpy(&address,
lphostent->h_addr_list[OJ,
sizeof(address));

memset(&sockAddrListen, 0, sizeof(SOCKADDR_IN));
II specify the port number
sockAddrListen.sin_port = htons(SERVER_PORT);
II specify address family as Internet
sockAddrListen.sin_family = AF_INET;
II specify address to bind to
sockAddrListen.sin_addr.s_addr = address;

II bind socket with the SOCKADDR_IN structure
if(bind(sockListen,

(LPSOCKADDR)&sockAddrListen,
sizeof(SOCKADDR)) == SOCKET_ERROR)

DisplaySocketError(
_T("Could not bind socket: %d"));

return INVALID_SOCKET;

II listen for a connection
if(listen(sockListen, 1) == SOCKET_ERROR)
{

DisplaySocketError(
_T("Could not listen on socket: %d"));

228 Chapter 8 e Communications Using TCP/IP: HTTP and Sockets

return INVALID_SOCKET;

return sockListen;

The listening socket needs to be bound to a particular IP address. It is
quite possible that a Windows CE device has more than one IP address, for ex
ample one for a network connection through a network adapter card and an
other for a RAS connection through a modem. Since the two connections may
be connected to a different network, it is important to specify which IP address
the listening socket will accept connections from. Say, for example, the network
adapter card may be assigned IP address '19 2 . 16 8 . 4 0 . 10 0' and the RAS con
nection '192.168.100.210'. Further, assume both have a sub-net mask of
'2 5 5 . 2 5 5 . 2 5 5 . 0 '. If the listening socket is bound to '19 2 . 16 8 . 4 0 . 10 0 ', cli
ents on the network connected to by the RAS connection will not be able to
connect to the listening socket.

In Listing 8.11, a call is made to gethostnarne to get the host name for
the Windows CE device, and gethostbynarne to get the IP addresses. These
calls are described in the section "Determining a Device's IP Address and Host
Name" earlier in this chapter. Next, a SOCKADDR_IN structure is initialized, us
ing the first IP address returned from gethostbynarne. In the case where mul
tiple IP addresses exist, you will need to work out which IP address to use. The
port and address family are initialized as with the client server, and a call to the
function bind is made.

Finally, a call is made to the function listen to make this a listening
socket. The function CreateListener returns the listener socket descriptor.

listen-Sets socket as a listening socket

listen

SOCKET s Socket to set as a listener.

int backlog Number of requests to connect to the server to queue.
This is limited to two in Windows CE.

int Return Value Zero for success, SOCKET_ERROR for an error.

The thread function, shown in Listing 8.12, calls CreateListener to ob
tain a listening socket, then calls the function accept and waits for a connec
tion. Once a connection is made, text is received from the client and displayed
in the edit box through a call to the ancillary function AppendToEdi tBox.
When the connection is broken, the SockThread function calls accept again
to wait for another connection.

Socket Programming 229

l!tfitftl:lfM Sock Thread-Accepts connections and communicates with client.

DWORD WINAPI SockThread(LPVOID)
{

WSADATA wsaData;
SOCKET sockConnected, sockListen;
int nReceive, nSent;
char szmbsBuffer[1024];
TCHAR szBuffer[l024];
int nindex;
SOCKADDR_IN sockAddrClient;
int nAddrLen = sizeof(SOCKADDR_IN);

AppendToEditBox (_T ("Thread started ... \r\n"));
II Initialize WinSock
if(WSAStartup(MAKEWORD(l,1), &wsaData) != 0)
{

MessageBox(GetFocus(),
_T("Could not initialize sockets"), NULL, MB_OK);

return 1;

sockListen = CreateListener();
while (TRUE)
{

AppendToEditBox(
_T ("Wai ting for connection \r\n")) ;

II block until a socket attempts to connect
sockConnected = accept(sockListen,

(LPSOCKADDR)&sockAddrClient,
&nAddrLen) ;

if(sockConnected == INVALID_SOCKET)
{

DisplaySocketError(
_T ("Could not accept a connection: %d"));

break;

if(sockConnected != INVALID_SOCKET)
{

II accept strings from client
while (TRUE)
{

nReceive = recv(sockConnected,
szmbsBuffer, 1024, 0);

if(nReceive == 0)
{

AppendToEditBox(
_T ("Connection broken\r\n"));

break;

230 Chapter 8 0 Communications Using TCP/IP: HTTP and Sockets

else if(nReceive == SOCKET_ERROR)
{

DisplaySocketError(
_T ("Error receiving: %d")) ;

break;

II convert to Unicode
szmbsBuffer [nReceive] '\0';
mbstowcs(szBuffer,

szmbsBuffer, nReceive + 1);
II append to edit box
AppendToEditBox(szBuffer);
II send acknowledgement
nSent = send(sockConnected,

(char*)&nReceive,
sizeof(nReceive), 0);

if(nSent == SOCKET_ERROR)
{

DisplaySocketError(
_T("Cannot send ack: %d"));

break;

II connection broken, clean up.
shutdown(sockConnected, SD_BOTH);
closesocket(sockConnected);

II Clean up Winsock
if(WSACleanup() == SOCKET_ERROR)
{

MessageBox(GetFocus(),
_T("Could not cleanup sockets"), NULL,
MB_OK);

return 1;

return O;

The call to accept (Table 8.24) will block until a client connects. Notice
that in this code, once a client connects, another call is not made to accept
until the current connection is broken. This means that multiple simultaneous
client connections are not supported by this implementation. If you need to
support multiple simultaneous connections, you will need to create a new
thread immediately after accept returns. This new thread will be responsible
for communicating with the client, and another call can be made to accept
immediately.

This code uses calls to send and recv in a way similar to the client ap
plication. Once the connection is broken, a call is made to shutdown followed

Socket Programming 231

accept-Waits for a client socket to connect

accept

SOCKET s

struct sockaddr
*addr

int *addrlen

SOCKET Return
Address

Descriptor of the listening socket

Pointer to SOCKADDR_IN structure in which information
such as the IP address of the client socket is placed

Length of the structure pointed to by addr

Socket descriptor which can be used to communicate with
the client

by closesocket. The function shutdown can be used to ensure an orderly
termination of socket communications and ensures that all pending sends and
receives have been completed (Table 8.25).

shutdown-Closes socket communications

shutdown

SOCKET s

int how

int Return Value

Lingering and Timeouts

Socket to shutdown

How to shutdown:
SD_RECEIVE-Subsequent calls to receive from a socket
will fail

SD_SEND-Subsequent calls to send to a socket will fail
SD_BOTH-Combines previous two flags

Zero for no error, otherwise SOCKET_ERROR

In some situations, you will need to send a final bit of information from a socket
and then close down the socket. However, closing a socket can result in the
sent information never being sent. To avoid this problem, a socket can be con
figured to "linger," so that pending data transfers will be completed. Lingering
is set on a socket using the setsockopt function through a LINGER structure.

LINGER linger;
linger.l_linger = 600; II timeout in seconds
linger.l_onoff = l;
if(setsockopt(sockConnected, SOL_SOCKET, SO_LINGER,

(const char*) &linger, sizeof(linger))
== SOCKET_ERROR)

II Report error

In this case, lingering is turned on through setting l_onoff to a non-zero
value, and the lingering timeout is set to 600 seconds. The SOL_SOCKET con
stant used when calling setsockopt specifies that a socket options is being

232 Chapter 8 * Communications Using TCP/IP: HTTP and Sockets

set at the socket level (as opposed to, for example, the TCP level), and so_
LINGER specifies that a pointer to a LINGER structure is being passed.

You may need to refine the default timeouts used when sending and re
ceiving data. For example, timeouts can be shorter when communicating across
a local area network (LAN), but may need to be longer on a dialup connection
to the Internet. Once again, the setsockopt function is used.

int timeout = 4000;

s =socket(...) ;
setsockopt(sockConnected, SOL_SOCKET, SO_SNDTIMEO,

(char *)&timeout,
sizeof(timeout));

The SO_SNDTIMEO constant sets the timeout for subsequent calls to the
send function for the specified socket-you can use the constant SO_RCV
TIMEO to specify a timeout for receiving data. The timeout period is specified
in milliseconds.

Infrared Data Association (lrDA) Socket Communications
Nearly all Windows CE devices and many laptops and desktop PCs have infra
red (IR) ports. Both Windows 98 and 2000 support IR ports. You can use sock
ets or serial communications to send and receive data between these devices.
Further, devices such as digital cameras and portable telephones also have IR
ports, and, depending on the level of support they provide, similar program
ming techniques can be used to send images from the camera or telephone to
the Windows CE device. ·

Winsock can be used to communicate through IR ports using the Infrared
Data Association (lrDA standard). Winsock does not use TCP/IP for commu
nications when communicating using IrDA. Therefore, the setting of an address
when creating sockets is different, but once the connection is made, functions
like send and recv work in the same way as described in the previous sec
tions of this chapter.

IR devices come into and go out of range in a much more unpredictable
way than TCP/IP network devices. There is no single arbitrator within a group
of devices capable of communicating using IR, so addressing is more difficult.
Each device has a unique device identifier that consists of four one-byte values,
just like an IP address.

Enumerating lrDA Devices
The first task is to identify the IrDA devices that are in range, and to determine
their device identifiers. The getsockopt function with the IRLMP_ENUM
DEVICES constant is used to obtain a list of devices. The function returns a
DEVICELIST structure containing the number of devices in the numDevice
member, and an IRDA_DEVICE_LIST structure for each device. The IRDA_

Socket Programming 233

DEVICE_LIST contains the device, and a device name (which is up to 22 bytes
long). Listing 8.13 shows code for enumerating the available IrDA devices.
Note you should include the file af_irda. h for IR declarations.

l@:lfM Sock Thread-Accepts connections and communicates with client.

II ***Listing 8.13
II
II Display list of IR devices in range
II

#include <af irda.h>

void Listing8_13()
{

SOCKET irSocket;
char chBuffer[l024];
int nSize;
ULONG ul;
TCHAR szDeviceName[23];

DEVICELIST *pDevList;

irSocket = socket(AF_IRDA, SOCK_STREAM, 0);
if(irSocket == INVALID_SOCKET)
{

cout << _T("Could not open IR socket") << endl;
return;

nSize = sizeof(chBuffer);
if(getsockopt(irSocket, SOL_IRLMP,

IRLMP_ENUMDEVICES, chBuffer, &nSize)
SOCKET_ERROR)

cout << _T("Could not get device list:")
<< WSAGetLastError() << endl;

closesocket(irSocket);
return;

pDevList = (DEVICELIST*) chBuffer;
if(pDevList->numDevice == 0)

cout << _T ("No devices found") << endl;
else
{

for(ul = O; ul < pDevList->numDevice; ul++)
{

cout << _T("Device ID:") <<
pDevList->Device[ul] .irdaDeviceID[OJ <<
pDevList->Device[ul] .irdaDeviceID[l] <<
pDevList >Device[ul] .irdaDeviceID[2] <<
pDevList->Device[ul] .irdaDeviceID[3];

234 Chapter 8 Communications Using TCP/IP: HTTP and Sockets

mbstowcs(szDeviceName,
pDevList->Device[ul] .irdaDeviceName,
sizeof(pDevList->

Device[ul] .irdaDeviceName));
cout << _T(" Name: ")

<< szDeviceName << endl;

closesocket(irSocket);

A socket must first be opened using the socket function. The constant
AF _IRDA is used to specify the IrDA address family rather than IP. Next get
sockopt is called with the IRLMP _ENUMDEVICES option and a pointer to a
character buffer. On return the character buffer will contain the DEVI CELI ST
structure, which itself contains zero, one, or more IRDA_DEVICE_LIST struc
tures. The code in Listing 8.13 displays the contents of each IRDA_DEVICE_
LIST structure. Note that the device name is an ANSI string, and this is con
verted to Unicode before it is displayed.

Note that the list may contain some IrDA devices that are no longer in
range-it takes a minute or so for the device to be removed from the list.

Opening an lrDA Socket Port
The only important difference between TCP/IP Winsock communications de
scribed earlier in this chapter and IrDA Winsock communications is how the
socket is opened in the first place, and how the address is bound using the
bind function.

IrDA still uses the socket function, but the options are a little different.

SOCKADDR_IRDA irAddr;
SOCKET irSocket;

irSocket = socket(AF_IRDA, SOCK_STREAM, 0);
memset(&irAddr, 0, sizeof(irAddr));
irAddr.irdaAddressFamily = AF_IRDA;
memcpy(irAddr.irdaDeviceID,

pDevList->Device[OJ .irdaDeviceID, 4);
connect (irSocket, (sockaddr*) &irAddr, sizeof (irAddr)) ;

AF _IRDA is used to specify the IrDA addressing family rather than AF_
INET. A SOCKADDR_IRDA structure is used to specify the IrDA address rather
than SOCKADDR_IN for IP addressing. The address family irdaAddressFam
ily member is assigned AF _IRDA, and the device identifier is copied into
irdaDeviceID. This device identifier is obtained through calling getsock
opt, as shown in Listing 8.13. A call to connect is made in the usual way.

A listening socket is created in much the same way-a SOCKADDR_IRDA
structure is initialized. The irdaDeviceID in this case is set to 0. The irda
ServiceName member contains a text string describing the service.

SOCKADDR_IRDA irAddr;
SOCKET irSocket;

Conclusion 235

irSocket = socket(AF_IRDA, SOCK_STREAM, 0);
memset(&irAddr, 0, sizeof(irAddr));
irAddr.irdaAddressFamily = AF_IRDA;
memcpy(irAddr.irdaServiceName, "MyService", 10);
bind(irSocket, (sockaddr*) &irAddr, sizeof(irAddr));

Conclusion
This chapter has taken a look at three different ways of communicating data:

® Using HTTP to communicate data to and from a server through an Inter
net server

* Using sockets to communicate across a network
e Using IrDA and sockets to communicate between Windows CE and other

devices supporting infrared ports

You should note that none of these techniques allows a Windows CE de
vice to communicate through a connection managed by ActiveSync. You should
look at the RAPI functions (see Chapter 10) if you need to do this.

Serial Communications

Serial communications can be used to communicate to many different types
of devices, from servers and minicomputers through to desktop PCs and GPS
devices. Most of the time serial communications uses an RS232 serial port, and
nearly all Windows CE devices have such a port. Other devices, such as some
PCMCIA cards, use serial communications to transfer data using a virtual com
munications port rather than an RS232 port. Serial communications can also be
used to transfer data between infrared ports.

Serial communications is being used less and less for communicating be
tween Windows CE devices and other computers, since Point to Point Protocol
(PPP) is used across an RS232 connection, and PPP allows TCP/IP communi
cations techniques (see Chapter 8) to be employed. This is advantageous, since
multiple applications using TCP /IP can communicate using a single connection,
whereas with ordinary serial communications only a single application can use
the port at any one time.

You can use RS232 communications techniques to initiate and manage a
call through a modem using standard AT-type modem commands. It is, how
ever, much easier to use TAPI (Telephone API) and RAS (Remote Access Ser
vices) to manage such connections, and this is described in Chapter 10.

Basic Serial Communications
Let's start out by writing routines to implement basic serial communications
through the standard COMl port. The basic functions that need to be imple
mented are the following:

236

Basic Serial Communications 237

t1 Open the communications port using CreateFile
m Create a thread to read from the communications port using ReadFile
m Write to the communications port using writ eF i 1 e
& Close the communications port using CloseHandle

The CreateFile function is used to open a communications port-this
is the same function described in Chapter 2 for opening and creating files. In
addition, the communications port will need to be configured for speed of
transmission, handshaking protocols, and timeout values. A thread is used to
read data from the communications port so that the process's primary thread is
not blocked waiting for data to arrive. Serial communications in Windows CE
provides the SetCommMask and WaitCommEvent to provide non-busy thread
blocking while waiting for data to arrive.

Opening and Configuring a Serial Communications Port
There are, in general, four steps in opening a serial communications port:

m Open the port using the CreateFile function.
t1 Set the read and write timeout values using the SetCommTimeouts

function.
t1 Call GetCommState to get the current port configuration values, update

the values as appropriate, and call SetCommState to reconfigure the
communications port.

e Create a thread to read data from the communications port.

OPENING A SERIAL COMMUNICATIONS PORT • Listing 9.la shows how Create
File is called to open a communications port (the CreateFile function is
described in detail in Chapter 2). When using this function to open a communi
cations port, you should specify the name of the port in the first argument (the
file name). With Windows CE it is essential that a trailing colon be used in nam
ing the port (such as "COMl: "),otherwise, the function will fail. The communi
cations port is opened using the following parameters passed to CreateFile:

* The name of the communications port (" COMl: " in this case).
@ Opened for reading and writing (GENERIC_READ and GENERIC_WRITE).
& A zero value for sharing (since the port cannot be shared).
t1 Security attributes are always NULL.
® OPEN_EXISTING, since the communications port must exist if it is to be

opened.
t1 Overlapped 1/0 is not supported, so 0 is passed.
® Templates are not supported, so the last parameter is always NULL.

CreateFile returns INVALID_HANDLE_VALUE if the port could not be
opened (note that a NULL handle is not returned), or a valid handle if success
ful. The most likely cause of a failure is that the communications port is already
opened, in which case GetLastError will return 55. This will happen if you

238 Chapter 9 * Serial Communications

are using the Windows CE device's serial port for ActiveSync and attempting
to open the port for communications. In this case, you will need to use Active
Sync to download the compiled executable using eMbedded Visual C++, then
disable ActiveSync's use of the communications port, run your application, and
open the communications port. The easiest way to disable ActiveSync's use of
the communications port is to do the following:

411 Download your application as normal
411 Open ActiveSync and select the File+Connection Settings dialog
"' Un-check the "Allow Serial Cable or Infrared connection to this COM Port"

check box

Doing this will automatically disconnect the Windows CE device, and the
port on the device will be closed. Your application can then open the port.
When you have finished testing your application, you will need to ensure that
your application has closed the communications port and then reestablish an
ActiveSync session. This is easily done by checking the "Allow Serial Cable or
Infrared connection to this COM Port" check box in the ActiveSync Connection
settings dialog. A new ActiveSync session will automatically be established.

Opening and configuring a serial communications port

void ReportCommError(LPTSTR lpszMessage);
DWORD WINAPI CommReadThreadFunc(LPVOID lpParam);
BOOL SendText(HWND hWnd);
HANDLE hCommPort = INVALID_HANDLE_VALUE;

void Listing9_1()
{

hCommPort = CreateFile (_T ("COMl: "),
GENERIC_READ I GENERIC_WRITE,
0, II COM port cannot be shared
NULL, II Always NULL for Windows CE
OPEN_EXISTING,

0'
NULL);

if(hCommPort
{

II Non-overlapped operation only
II Always NULL for Windows CE

== INVALID_HANDLE_VALUE)

ReportCommError(_T("Opening Comms Port."));
return;

II set the timeouts to specify the behavior of
II reads and writes.
COMMTIMEOUTS ct;
ct.ReadintervalTimeout = MAXDWORD;
ct.ReadTotalTimeoutMultiplier = O;
ct.ReadTotalTimeoutConstant = O;
ct.WriteTotalTimeoutMultiplier = 10;

Basic Serial Communications 239

ct.WriteTotalTimeoutConstant = 1000;
if(!SetCommTimeouts(hCommPort, &ct))
{

ReportCommError(_T("Setting comm. timeouts."));
Listing9_2(); II close comm port
return;

II Get the current communications parameters,
II and configure baud rate
DCB deb;
dcb.DCBlength = sizeof(DCB);
if(!GetCommState(hCommPort, &deb))
{

ReportCommError(_T("Getting Comms. State."));
Listing9_2(); II close comm port
return;

dcb.BaudRate = CBR_19200; II set baud rate to 19,200
dcb.fOutxCtsFlow TRUE;
dcb.fRtsControl
dcb.fDtrControl
dcb.fOutxDsrFlow
dcb.fOutX
deb. finX

RTS_CONTROL_HANDSHAKE;
DTR_CONTROL_ENABLE;
FALSE;
FALSE; II no XONIXOFF control
FALSE;

dcb.ByteSize 8;
deb.Parity = NOPARITY;
dcb.StopBits = ONESTOPBIT;
if(!SetCommState(hCommPort, &deb))
{

ReportCommError(_T("Setting Comms. State."));
Listing9_2(); II close comm port
return;

II now need to create the thread that will
II be reading the comms port
HANDLE hCommReadThread = CreateThread(NULL, 0,

CommReadThreadFunc, NULL, 0, NULL);
if(hCommReadThread ==NULL)
{

ReportCommError(_T("Creating Thread."));
Listing9_2(); II close comm port
return;

else
CloseHandle(hCommReadThread);

void ReportCommError(LPTSTR lpszMessage)
{

TCHAR szBuffer[200];

240 Chapter 9 * Serial Communications

wsprintf(szBuffer,
_T("Communications Error %d \r\n%s"),
GetLastError(),
lpszMessage);

cout << szBuffer << endl;

SETTING COMMUNICATIONS PORT TIMEOUTS • Once the communications port has
been opened, timeout values need to be configured using the SetCommTime

ou ts function that is passed the handle to an open communications port and
a pointer to a COMMTIMEOUTS structure. The primary purpose of setting time
outs is to ensure that your application does not block while attempting to read
data from a port. For example, if you use ReadFile to read 100 bytes of data,
the call will block until 100 characters are available to be read. If this never hap
pens the call to ReadFile will block forever. Using timeouts you can have
ReadFile return immediately from any ReadFile operation regardless of
the number of bytes found, or return after a specified number of milliseconds.
Table 9.1 shows the COMMTIMEOUTS structure members that can be used to
set various timeout parameters.

COMMTIMEOUTS structure members

Structure Member

DWORD ReadintervalTirneout

DWORD ReadTotalTirneoutMultiplier

DWORD ReadTotalTirneoutConstant

Purpose

The maximum amount of time in milliseconds to elapse
between characters arriving at the port.

Read timeout multiplier in milliseconds. This figure is
multiplied by the number of characters being read to
obtain the overall timeout period.

Timeout constant in milliseconds. This value is added to
the value calculated using the ReadTotalTirneout
Multiplier.

DWORD WriteTotalTirneoutMultiplier Write timeout multiplier in milliseconds. This figure is
multiplied by the number of characters being written
to obtain the overall timeout period.

DWORD WriteTotalTirneoutConstant Timeout constant in milliseconds. This value is added
to the value calculated using the WriteTotalTirneout
Multiplier.

The Readinterval Timeout value controls timeouts on the interval be
tween characters. For example, you might set it to 1000 to indicate that a Read

Fi le operation should return if two characters are spaced out by more than
one second. If you set the Readinterval Timeout value to 0, no interval time
outs will be used. A value of MAXDWORD is used, and ReadTotalTimeout-

Basic Serial Communications 241

Multiplier and ReadTotalTimeoutConstant are both set to zero. Read
File will return immediately with whatever the input buffer contains.

The ReadTotalTimeoutMultiplier and ReadTotalTimeoutCon
stant values let you set a timeout based on the number of bytes specified in
the ReadFile statement. If you ask to read 100 bytes, for example, the follow
ing calculation determines the timeout value:

Total timeout value = 100 * ReadTotalTimeoutMultiplier
+ ReadTotalTimeoutConstant

After the specified number of milliseconds have elapsed, the Read
F i le function returns regardless of how many bytes have actually been read.
The same process is used for the WriteTotalTimeoutMultiplier and
WriteTotalTimeoutConstant for data being written out to the communi
cations port.

The default timeout values used when a communications port is opened
are the values used by the last application that opened the port. Therefore it is
important to set the timeout values each time you open the port.

CONFIGURING A PORT •Windows CE uses the default port settings when you call
the function CreateFile. You generally need to set the port settings (such as
Baud rate and parity) to match the host with which you are communicating.
The DCB structure contains members for all the configurable port settings. The
functions GetCommState and SetCommState use the DCB structure to re
trieve or set the port settings. You should configure the port after opening it but
before reading or writing to it.

The DCB structure has about 30 different members that are used to con
figure the communications port. Luckily, only a few of the members are fre
quently used and the easiest way of configuring a port is to read the current
values using GetCommState, then modify the structure as required, and set the
new values using GetCommState as shown in this code from Listing 9.la.

DCB deb;
dcb.DCBlength = sizeof(DCB);
if(!GetCommState(hCommPort, &deb))
{

ReportCommError(_T("Getting Comms. State."));
Listing9_2(); II close comm port
return;

dcb.BaudRate = CBR_l9200; II set baud rate to 19,200
dcb.fOutxCtsFlow TRUE;
dcb.fRtsControl RTS_CONTROL_HANDSHAKE;
dcb.fDtrControl DTR_CONTROL_ENABLE;
dcb.fOutxDsrFlow FALSE;
dcb.fOutX FALSE; II no XONIXOFF control
dcb.finX FALSE;
dcb.ByteSize 8;

242 Chapter 9 e Serial Communications

deb.Parity = NOPARITY;
dcb.StopBits = ONESTOPBIT;
if(!SetComrnState(hComrnPort, &deb))
{

ReportComrnError(_T("Setting Comrns. State."));
Listing9_2(); II close comm port
return;

The members commonly used are:

111 DCBlength. This member should be set to the length of the DCB
structure.

ill BaudRate. The required Baud rate should be assigned to this member,
either as a numeric (for example, 9600) or as a constant (for example,
CBR_9600).

ill ByteSize, Parity, and StopBits. These members are used collectively
to specify the number of bits that are transmitted and their meaning. These
days, hardly anyone uses parity, so the code shown above nearly always
suffices.

ill fOutX and finX. These members are used to specify whether XONIXOFF
software flow control is to be used. Although you can specify XONIXOFF
in only one direction (for example, when sending), it is usual to configure
XONIXOFF for both sending and receiving. You can assign TRUE to fOutX
and finX to enable XONIXOFF flow control.

ill fRtsControl and fOutxCtsFlow. Ready to Send CRTS) and Clear to
Send (CTS) is the most common form of hardware handshaking and is
enabled by assigning RTS_CONTROL_HANDSHAKE to fRtsControl and
TRUE to fOutxCtsFlow.

ill fOutxDsrFlow and fDtrControl. Data Set Ready (DSR) and Data Ter
minal Ready (DTR) can be used for flow control, although that is much
less common than CTR/RTS. More commonly, hosts require that the DTR
line be turned on for the entire time the connection remains open, and
this is enabled by assigning DTR_CONTROL_ENABLE to fDtrControl.

You should always use either hardware flow control or software flow con-
trol, but not both at the same time. It is very dangerous not to use any flow con
trol, because this will result in data loss.

CREATING A THREAD FOR READING THE COMMUNICATIONS PORT • The last task in List
ing 9.la is the creation of a thread that will be responsible for reading incom
ing data from the communications port. The thread is created using a call to
CreateThread passing the usual parameters (described in Chapter 5).

HANDLE hComrnReadThread = CreateThread(NULL, 0,
ComrnReadThreadFunc, NULL, 0, NULL);

if(hComrnReadThread ==NULL)

Basic Serial Communications 243

ReportCornrnError(_T("Creating Thread."));
Listing9_2(); II close comm port
return;

else
CloseHandle(hCornrnReadThread);

Reading from the communications port is done through a thread so that
the primary thread is not blocked waiting for data. The thread function is de
scribed in the next section.

Reading Data from the Communications Port
The thread function CornrnReadThreadFunc is used to read data from the com
munications port using ReadFile. With Windows CE you cannot read and
write data to the port at the same time. If you call ReadF i 1 e with a long time
out, any calls to WriteFile wait until the ReadFile call completes or a time
out occurs. This can disrupt the transfer of data. Instead of calling ReadFile
and waiting for data to arrive, you should use communications events that will
block until data arrives. You can then call ReadFile to read this data without
blocking. Communications events enable non-busy blocking, so they are ide
ally suited for multithreaded applications. To use communication events, you
should do the following:

fr Call SetCornrnMask. The call to this function specifies the event or events
that you are interested in responding to. For example, the constant EV_
RXCHAR specifies that the application is interested in blocking until char
acters are received.

fr Call WaitCornrnEvent. The call to this function will block until the speci
fied event (for example EV _RXCHAR) has occurred. Since you can spec
ify several different events in a single call to SetCommMask, the function
Wai tCornrnEvent returns the event that caused Wai tCornrnEvent to un
block in the second argument.

fr Call SetCommMask. Once Wai tCornrnEvent returns, you will need to call
SetCornrnMask again with the same arguments before calling Wai tCornrn
Event again.

In Listing 9.lb the thread function calls SetCornrnMask specifying the EV_
RXCHAR event. Then it enters a while loop which does the following:

fr Calls Wai tCornrnEvent to block until characters arrive at the port. This
function is passed the communications handle, the DWORD variable to
receive the event constant, and a third parameter not supported in Win
dows CE.

fr Calls SetCommMask to reenable the event.

244 Chapter 9 e Serial Communications

'* Reads the characters into a buffer one by one using the ReadFile
function.

e Displays the data in the buffer when the buffer is nearly full.

The ReadFile function is used to read up to 999 characters from the
communications port-the actual number read is returned in dwBytesRead.
The function assumes that this data consists of ANSI characters (which is usually
the case for serial communications) and uses the mbstowcs function to con
vert to Unicode after appending a NULL character, which terminates the string
returned from ReadFile.

Thread function for reading from communications port

DWORD WINAPI CommReadThreadFunc(LPVOID lpParam)
{

DWORD dwBytesRead;
DWORD fdwCo:mmMask;
TCHAR szwcsBuffer[lOOO];
char szBuffer[lOOOJ;

SetCommMask (hCommPort, EV_RXCHAR);
szBuffer[O] = '\0';
while(hCommPort != INVALID_HANDLE_VALUE)
{

if(!WaitCommEvent (hCommPort, &fdwCommMask, 0))
{

II has the comms port been closed?
if(GetLastError() != ERROR_INVALID_HANDLE)

ReportCommError
(_T ("WaitCommEvent. "));

return 0;

SetCommMask (hCommPort, EV_RXCHAR);
II Read ANSI characters
if(!ReadFile(hCommPort,

szBuffer,
999,
&dwBytesRead,
NULL))

ReportCommError(_T("Reading comms port."));
return 0;

szBuffer[dwBytesRead] = '\0'; II NULL terminate
II now convert to Unicode
mbstowcs(szwcsBuffer, szBuffer, 1000);
cout << szwcsBuffer;

return O;

Basic Serial Communications 245

The function SetCommMask can be used to set any number of the avail
able values specified in Table 9.2. When multiple values are specified, the
function Wai tCommEvent returns the event mask that occurred and a program
should take appropriate action based on the event.

SetCommMask(hCommPort, EV_RXCHAR I EV_ERR);
WaitCommEvent(hCommPort, &fdwCommMask, 0);
if(fdwCommMask == EV_RXCHAR)
{

II read characters
else if(fdwCommMask == EV_ERR)

II deal with communications error

Mask

EV_BREAK

EV_CTS

EV_DSR

EV_ERR

EV_RING

EV_RLSD

EV_RXCHAR

EV_RXFLAG

EV_TXEMPTY

Events mask values for SetCommMask

Purpose

A break was detected on input.

The CTS (clear-to-send) signal changed state.

The DSR (data-set-ready) signal changed state.

A line-status error occurred. Line-status errors are CE_FRAME,
CE_OVERRUN, and CE_RXPARITY.

A ring indicator was detected.

The RLSD (receive-line-signal-detect) signal changed state.

A character was received and placed in the input buffer.

The event character was received and placed in the input
buffer. The event character is specified in the device's DCB
structure.

The last character in the output buffer was sent.

Closing a Communications Port
The CloseHandle function is used to close a communications port. The code
in Listing 9.2 closes the port and sets the hCommPort variable to NULL. If you
look back at Listing 9.lb, you will see that the 'while' loop used to read data
from the communications port terminates when hCommPort becomes NULL.
As it happens, the loop is most likely to be blocked in a call to Wai tComm
Event. When the communications port is closed by another thread, Wait
CommEvent returns FALSE, and GetLastError returns an error number 6
(ERROR_INVALID_HANDLE) indicating that the communications port handle is
no longer valid. The thread is then terminated when the function executes a
'return' statement.

246 Chapter 9 e Serial Communications

Closing a communications port

void Listing9_2()
{

if(hCommPort != INVALID_HANDLE_VALUE)
{

CloseHandle(hCommPort);
hCommPort = INVALID_HANDLE_VALUE;
cout << _T("Com. port closed") << endl;

else
cout << _T("Com. port was not open") << endl;

Writing to a Communications Port
Data can be written out to an open communications port using the Wri teFile
function. The parameters passed are the following:

* The handle to the open communications port
* A pointer to the buffer containing the data to be written
* The number of bytes to write
® A pointer to a DWORD that contains .the actual number of bytes written
* A NULL for an unsupported parameter

In Listing 9.3 the user is prompted to enter text in a dialog, and this text
will be sent to the communications port using WriteFile. The Unicode text
is first converted to ANSI using the wcstombs function.

Writing to a communications port

#define BUFF_SIZE 200

void Listing9_3()
{

DWORD dwBytesToWrite;
DWORD dwBytesWritten;

TCHAR szwcsBuffer[BUFF_SIZE];
char szBuffer[BUFF_SIZE];

if(!GetTextResponse(_T("Text to send:"),
szwcsBuffer, 200))

return;
II convert to ANSI character set
dwBytesToWrite = wcstombs(szBuffer,

szwcsBuffer, BUFF_SIZE);
II append a carriage return/line feed pair
szBuffer[dwBytesToWrite++] '\r';
szBuffer[dwBytesToWrite++] = '\n';

if(!WriteFile(hCommPort,
szBuffer,
dwBytesToWrite,
&dwBytesWritten,
NULL))

GPS and NMEA 247

ReportCommError(_T("Sending text."));
return;

Testing Communications
The communications code in Listings 9.la, 9.lb, and 9.2 can be tested using the
'examples' application supplied on the CDROM. You can hook up your Win
dows CE device to a Windows NT or 2000 desktop PC using a serial cable, and
then run Hyperterminal by selecting the Start + Programs + Accessories + Com
munications + Hyperterminal menu command on the desktop. Make sure that
you first disable ActiveSync if it is configured to use the same communications
port. You shouid create a new connection in Hyperterminal by selecting File+
New Connection-ignore any dialog boxes requesting dialup information, and
change the bits per second (Baud rate) to 19200 (to match the value used when
opening the communications port on the Windows CE device).

Once set up, any characters you type into Hyperterminal should appear
in the 'Examples' main window. Note that pressing the enter key on the desk
top PC will result in a box character appearing in the Examples window on the
Windows CE device. This is because Hyperterminal sends a new line character,
whereas the edit box expects a carriage return and a new line character to move
onto the next line.

You can test your serial communications applications under emulation.
With the Pocket PC emulation running under Windows 2000, your code should
work without any changes. Remember, though, you will need to check that no
other application has the desktop PC communications port open. On other plat
forms you may need to enable a serial port services emulator and disable the
default Windows NT serial service. You can do this by executing the following
two lines of code at a command prompt:

NET STOP SERIAL
NET START WCEEMULD

GPSandNMEA
GPS (Global Positioning System) devices, used to obtain location fixes to an ac
curacy of around 100 meters, can be connected to Windows CE devices using
a serial communications cable. GPS uses satellites that broadcast position and

248 Chapter 9 • Serial Communications

timing information, and' a GPS device calculates its position using satellites that
are visible at the time. GPS PCMCIA cards are also available, and these again
use a serial connection to the Windows CE device. As an added advantage, GPS
devices also provide a precise timing signal-some companies use GPS devices
with computers to coordinate activities in different locations throughout the ·
world.

GPS is capable of providing positional information to an accuracy of 1 to
5 meters, but the U.S. government reduces accuracy for nonmilitary users with
Selective Availability (SA). However, the general public can use DGPS (Differ
ential GPS) that uses a land station with a precisely known location to improve
accuracy. GPS devices send positional information using the NMEA (National
Marine Electronics Association) format. Other navigational devices, such as
autopilots, also use this same format.

The NMEA 0183 Standard
GPS devices usually produce positional information to the NMEA 0183 standard.
This is a text-based standard that outputs lines of data-each line is known as
a sentence. The device sends out these sentences continuously. The standard
specifies that data should be transmitted at 4800 Baud, but many devices can
select transmission speeds. You can find a sample output file from a Garmin
GPS 48 on the CDROM in the file \GPS\output. txt. Here is sample output
from a Garmin GPS 48 device:

$GPRMC,195531,A,5326.986 1N 100610.147 1W,000.0,360.0,170500 1007.2 1W*7F
$GPRMB,A1 II II 1111111V*7l
$GPGGA,195532 15326.986 1N100610.147,W,1,07,l.5,24.7,M154.0 1M, 1*6A
$GPGSA,A13 1,04,06 11 l0 1l3 11 l8 1l9 11 24 1,3.0 1l.S 12.6*37
$GPGSV,3,1 112,01 124 1065,30,04,44 1194,36,06 111,328 137 108,27,170,32*73
$GPGSV,3,2 112 110,35 1291,44,13,56 1238,46,16 124,110 100 1l8 163,073,41*70
$GPGSV,3,3 112 119,52 1096 135 122,10;037,31,24,58,261 147 127,41,158 130*79
$PGRME,5.5 1M19.1 1M110.7 1M*lO
$GPGLL,5326.986 1N 100610.147,W1195532,A*31
$PGRMZ 181,f,3*22
$PGRMM 1WGS 84*06
$GPBOD 1,T, 1M1,*47
$GPRTE 1l 1l 1c 10*07
$GPRMC,195533 1A15326.986 1N100610.147,W1000.0 1360.0 1170500 1007.2 1W*7D

Each sentence starts with a '$' sign followed by a sentence identifier. The
first two letters in the identifier are the 'talker id,' which identifies the device
producing the information. In the above example 'GP' indicates that the data is
from a GPS device, and 'PG' indicates a proprietary sentence from Garmin. Each
data item in a sentence is separated with a comma, and data items can be empty
(indicated by two adjacent commas). Some sentences finish with a'*' followed
by a number. This is a checksum which is an exclusive OR checksum on all
characters in the message between, but not including, the '$' and '* '. The check-

GPS and NMEA 249

sum is displayed in hexadecimal-it is optional for some sentences and man
datory for others.

The code presented in this chapter describes how to interpret the 'RMC'

sentence-the recommended minimum specific GPS/Transit data. You can
find out more about the NMEA standard and the structure of other sentences
at http://vancouver-webpages.com/peter, a website maintained by Peter Ben
nett. The 'RMC' sentence provides basic navigational and time information in
cluding the following:

11 Latitude and longitude
11 Time accurate to a second and a date
11 Speed in knots
e Course made good (in degrees)
e Magnetic variation (in degrees east or west)

The following is an RMC sentence recording in Dublin, Ireland:

$GPRMC,195531,A,5326.986,N,00610.147,W,000.0,360.0,l70500,007.2,W*7F

The fields in this sentence are described in Table 9.3.

$GPRMC

195531

A

5326.986

N

00610.147

w
000.0

360.0

170500

007.2

w
*7F

Structure of the RMC EMEA sentence

Purpose

Talker ID (GP) and sentence identifier (RMC).

Time when sentence was created in hhmmss format using 24-hour notation. This time
is 19:55:31.

Navigation receiver warning. A = OK, V = warning. A warning is usually given if
satellite reception is poor or insufficient satellites are visible.

Current latitude showing degrees between 0 and 90, minutes, and a fraction of a
minute. In this case the latitude is 53 degrees, 26 minutes, and 1/986 of a minute.

Indicates whether latitude is north or south of the equator.

Longitude showing degrees between 0 and 180, minutes, and a fraction of a minute.
In this case the longitude is 006 degrees, 10 minutes, and 1/147 of a minute.

Indicates whether the longitude is west or east of the Greenwich meridian.

Speed over the ground in knots. A knot is one nautical mile per hour, and a nautical
mile is one minute of latitude. In this case the speed was zero knots.

Course made good. Since the GPS unit was not moving, the course should be ignored
but is reported as 360 degrees.

Date in the form ddmmyy. This date is 17 May 2000.

Magnetic variation. This is the difference, expressed in degrees, between the magnetic
north pole and the true north pole. This varies around the world and over time. In
Dublin on this date the magnetic variation is 7.2 degrees.

Indicates whether the magnetic pole is to the west or east of the true pole.

Checksum expressed as a hexadecimal value.

250 Chapter 9 Serial Communications

Sample output from reading
on RMS sentence

Figure 9.1 shows sample output from the code described in this chapter
for an RMC sentence, including using the checksum. The checksum is impor
tant in navigational applications.

Connecting Windows CE and GPS Devices
You will need either to buy a custom cable suitable for both the GPS device and
the Windows CE device, or to make a cable yourself. Most GPS devices have
standard cables that terminate in a standard 9-pin female 'D' connector, and this
is the same for Windows CE devices. Therefore, you will need a female-to
female 'D' connector to connect the GPS device cable to a Windows CE device
cable. This connector will probably need to switch the Transmit Data (TD pin 3
on a 9-pin connector) with the Receive Data (RD pin 2 on a 9-pin connector).
This is because both the Windows CE and GPS devices are acting as data ter
minal computers (DCEs).

Reading Data from a GPS Device
The data from a GPS device will be read using standard serial communications
functions, regardless of whether you are communicating with a GPS device or
have a PCMCIA card. You will first need to determine the port name to connect
to-this will generally be COMl for an external GPS device, or a device name
for a PCMCIA card. The CreateFile function can then be called to open the
port, and the timeout and DCB port configuration values set. In the example
code the communications port is opened with a call identical to Listing 9. la.
The following timeout and DCB configurations values are used for connecting
to a Garmin GPS 48.

ct.ReadintervalTimeout = 1000;
ct.ReadTotalTimeoutMultiplier = O;
ct.ReadTotalTimeoutConstant = O;
ct.WriteTotalTimeoutMultiplier = 10;
ct.WriteTotalTimeoutConstant = 1000;

GPS and NMEA 251

dcb.BaudRate = CBR_9600; II set baud rate to 9600
dcb.fOutxCtsFlow =FALSE;
dcb.fRtsControl RTS_CONTROL_DISABLE;
dcb.fDtrControl
dcb.fOutxDsrFlow
dcb.fOutX
deb. finX
dcb.ByteSize
deb.Parity
dcb.StopBits

DTR_CONTROL_DISABLE;
FALSE;
TRUE; II XONIXOFF control
TRUE;
8;
NOPARITY;
ONESTOPBIT;

Using these values calls to ReadF i 1 e will timeout if there is more than a
second between characters received at the port. Timeout values are generally
not too important when reading from a GPS device since a constant stream of
data is being received. The port is then configured to receive data at 9600 Baud
without hardware flow control. The serial connector on a Garmin GPS 48 only
has transmit and receive pins (equating to pins 2 and 3 on the 9-pin D connec
tor), and so cannot use hardware flow control. Instead, XON IXOFF flow control
is enabled. Even with flow control, you will need to write code that expects er
rors in transmission.

A thread will be used for reading from the GPS device, and this is created
using the following code:

HANDLE hCommReadThread = CreateThread(NULL, 0,
GPSReadThreadFunc, NULL, 0, NULL);

The thread function, GPSReadThreadFunc (Listing 9.4a), is a little dif
ferent from CommReadThreadFunc in Listing 9.lb in that it does not block us
ing communications events. Instead, it blocks using ReadFile. This is accept
able in this case since a constant stream of data is being read and interpreted.
Notice that in Listing 9.4a the thread first makes a call to SetThreadPriori ty
to lower the thread's own priority-its thread handle is obtained through call
ing GetCurrentThread (see Chapter 5). This is to ensure that this thread does
not degrade performance for the user.

Thread for reading from GPS device

II Thread function reads NMEA output from GPS device

DWORD WINAPI GPSReadThreadFunc(LPVOID)
{

DWORD dwBytesRead;
char szSentence[lOOOJ, c;

252 Chapter 9 • Serial Communications

TCHAR szwcsSentence[lOOOJ;
int nc = O;

SetThreadPriority(GetCurrentThread(),
THREAD_PRIORITY_BELOW_NORMAL);

while(hGPSPort != INVALID_HANDLE_VALUE)
{

if(!ReadFile(hGPSPort, &c,
1, &dwBytesRead, NULL))

ReportCornrnError(_T("Reading cornrns port."));
return 0;

if(dwBytesRead == 1)
{

if(c == '\n') II LF marks end of sentence
{

II remove trailing CR
szSentence[nc-1] = '\0';
nc = O;
if(strlen(szSentence) < 6)

cout << _T ("Corrupt sentence")
<< endl;

else if(szSentence[O] != '$')
cout << _T ("No leading $")

<< endl;
else
{

else

II Read a sentence.
II Convert to Unicode
mbstowcs(szwcsSentence,

szSentence, 1000);
II find sentence ID
if(wcsncmp(&szwcsSentence[3],

_T("RMC"), 3) == 0)
ParseRMC(szwcsSentence);

szSentence[nc++] c;

return O;

Characters are read one at a time using ReadFile, and the characters are
added to an ANSI buffer, szSentence, to build up the sentence. A line feed
character marks the end of a sentence. When this is detected, the sentence in
szSentence is checked for starting with a'$' and being at least six characters

GPS and NMEA 253

long. It is then converted to Unicode and the three-letter sentence identifier is
inspected. If the sentence identifier is 'RMC' the function ParseRMC is called,
otherwise the sentence is ignored.

Listing 9.4b shows code for parsing the RMC sentence and displaying the
data using the format illustrated in Figure 9.1. An RMC sentence is typically sent
about every second, so the display is regularly updated. The function Get
Next Token is used to extract the next data item from the sentence. Given that
the sentence may be corrupt, the function needs to provide for all eventualities
of an empty sentence, a sentence that is prematurely terminated, or an empty
data item. Data items may be empty if the quality of GPS reception is poor. The
function copies the next data item in lpToken and then returns a pointer to the
start of the next token. The function ParseRMC calls GetNextToken repeat
edly, displaying the data from the sentence.

Mfflfij!M Code for parsing and displaying NMEA sentence

II returns the next token from the sentence.
LPTSTR GetNextToken(LPTSTR lpSentence, LPTSTR lpToken)
{

lpToken[OJ = '\0';
if(lpSentence ==NULL) // empty sentence

return NULL;
if(lpSentence[OJ

return NULL;
if(lpSentence[OJ

'\0') II end of sentence

', ') II empty token
return lpSentence + 1;

while(*lpSentence != ',' &&
*lpSentence != '\0' &&
lpSentence != '')

*lpToken = *lpSentence;
lpToken++;
lpSentence++;

II skip over comma that terminated the token.
lpSentence++;
*lpToken = '\0';
return lpSentence;

II Parses a RMC sentence which has the format:
II $GPRMC,195531,A,5326.986,N,00610.147,W,000.0,360.0,
II 170500,007.2,W*7F

void ParseRMC(LPTSTR szSentence)
{

TCHAR szToken[20];
DWORD dwCheckSum = 0, dwSentenceCheckSum;

254 Chapter 9 * Serial Communications

cout.CLS();
II Calculate the checksum. Exclude$ and work up to*
for(UINT i = 1; i < wcslen(szSentence) &&

szSentence [i] ! = '*' ; i++)
dwCheckSum A= szSentence[i];

II lpNextTok points at ID $GPRMS, ignore this
szSentence = GetNextToken(szSentence, szToken);
II Time of Fix, convert to Unicode
szSentence = GetNextToken(szSentence, szToken);
cout << _T("Time (UTC hhmmss) :") << szToken << endl;
II Navigation receiver (GPS) warning
szSentence = GetNextToken(szSentence, szToken);
if(szToken[O] == 'A')

cout << _T("Receiving OK") << endl;
else

cout << _T("Suspect signal") << endl;
II Latitude
szSentence = GetNextToken(szSentence, szToken);
cout << _T("Latitude (ddmm.ss): ") << szToken;
II Latitude Nor S
szSentence = GetNextToken(szSentence, szToken);
cout << szToken << endl;
II Longitude
szSentence = GetNextToken(szSentence, szToken);
cout << _T("Longitude dddmm.ss: ") << szToken;
II Longitude W or E
szSentence = GetNextToken(szSentence, szToken);
cout << szToken << endl;
II Speed in Knots
szSentence = GetNextToken(szSentence, szToken);
cout << _T("Speed (Knots): ") << szToken << endl;
II Course made good
szSentence = GetNextToken(szSentence, szToken);
cout << _T("Course made good: ") << szToken <<

_T(" deg")<< endl;
II Date
szSentence = GetNextToken(szSentence, szToken);
cout << _T ("Date (ddmmyyyy) : ") << szToken << endl;
II Magnetic Variation
szSentence = GetNextToken(szSentence, szToken);
cout << _T ("Mag. Var (Deg): ") << szToken;
II Magnetic Variation W or E
szSentence = GetNextToken(szSentence, szToken);
cout << szToken << endl;
II do the check sum
szSentence = GetNextToken(szSentence, szToken);
LPTSTR lpEnd;
dwSentenceCheckSum = wcstoul(szToken, &lpEnd, 16);
if(dwCheckSum != dwSentenceCheckSum)

cout << _T ("Error in checksum");

Infrared and Other Devices 255

else
cout << _T ("Checksum OK");

The function ParseRMC in Listing 9.4b calculates a checksum for the sen
tence. The checksum is obtained by starting with a zero integer value in dw
CheckSum and then performing an exclusive or (XOR) operation on dwCheck
Sum and each character in the sentence. All characters between the'$' marking
the start of the sentence and '*' marking the start of the checksum value are
used. Note that the'$' and'*' characters themselves are not included.

for(UINT i = 1; i < wcslen(szSentence) &&
szSentence[i] != '*'; i++)

dwCheckSum A= szSentence[i];

Once the data items have been displayed, the reported checksum value is
extracted from the sentence, and this is compared to the calculated checksum
value. The checksum value in the sentence is sent as a two-digit hexadecimal
value. The function wcstoul is used to convert the string representation of the
checksum value into a binary value that is stored in the variable dwSentence
CheckSum:

dwSentenceCheckSum = wcstoul(szToken, &lpEnd, 16);

The function wcstoul is passed the string value to convert (szToken),
a pointer to a string pointer that returns a pointer to the character in s zToken
that terminated the conversion (for example, a NULL character or non-numeric
value), and the base used to perform the conversion (16, which is hexadecimal).

Infrared and Other Devices
The serial communications techniques described here can be used to commu
nicate with any device that implements a suitable stream interface driver. The
drivers installed on a Windows CE device are listed in the registry key \HKEY_
LOCAL_MACHINE\Drivers\Active. This key contains a sub-key for each
driver, and each driver is given a number (such as 01, 02, 03, and so on). The
sub-key contains the name of the driver (the 'Name' value) and a 'key' value.
This 'key' value contains the name of a registry key in HKEY_LOCAL_MACHINE
that contains configuration data for the device. The key name for the serial
communications port is usually 'drivers\builtin\serial.' This key con
tains information about the driver, including a 'FriendlyName' value (for ex
ample, 'Serial Cable on COMl: ') and the DLL that implements the device
(for example, 'Serial. Dll'). From this information you can enumerate all the
serial devices present on a Windows CE device, and determine the name that
should be passed to CreateFile to open the device (for example, 'COMl: ').

256 Chapter 9 • Serial Communications

All serial devices are accessed through calls to CreateFile, ReadFile,
WriteFile, and CloseHandle. RS232 serial devices need timings and DCB
settings to be configured, but other devices do not. For example, you do not
need to set Baud rate or flow control settings since the driver handles transmis
sion speed internally. The GetConunProperties function returns a COMMPROP
structure for an open serial port, and this structure contains values such as the
maximum Baud rate and size of the transmit and receive queues.

All devices,allow parameters to be set through the DeviceioControl
function. This generic function allows data to be written to and obtained from
the device driver. The IO control function is specified using an IoCtl code spe
cific to a particular driver. Generally, you do not need to call DeviceioCon
trol directly, but you may find your device does publish IoCtr codes that need
to be called.

Information on the infrared port is contained in the registry key HKEY_
LOCAL_MACHINE\Drivers\Builtin\IrCOMM. The infrared port is normally
mapped to a virtual communications port, for example 'COM4'. The 'Index'
value in the Drivers\Builtin\IrCOMM key specifies the port number (for
example, 4). Once the communications port has been determined, the infrared
port can be opened using CreateFile for serial communications. Before the
WriteFile and ReadFile functions are called, a call to EscapeConunFunc
t ion must be made to enable serial communications for the infrared port. This
changes the infrared port from operating in 'raw' mode to 'IrConun' mode.

EscapeConunFunction(hIRPort, SETIR);

Once you have finished you should call EscapeConunFunction with
CLRIR to return the infrared port back to raw mode.

Conclusion
This chapter has shown how to perform serial communications through a stan
dard serial port, such as an RS232 connection. The code showed reading and
writing, and controlling flow control and other communications techniques.
The techniques were then applied to reading navigational information from a
GPS device.

The Remote API (RAPI)

The Remote API (RAPI) provides a set of functions for accessing Windows CE
functionality from desktop applications. These functions are available when a
Windows CE device is connected through ActiveSync. RAPI functions are avail
able for the following:

® Device system information, such as version, memory, and power status
® File and directory management
® Property database access
® Registry manipulation
® Shell and window management

Further, RAPI allows custom functions placed in DLLs on the device to be
called from the desktop, and this provides complete flexibility in managing a
Windows CE device from your desktop application. RAPI custom functions can
be used to allow a desktop application to communicate with a Windows CE ap
plication through ActiveSync, something that is not possible using TCP /IP sock
ets (see Chapter 8).

Most RAPI functions have Windows CE counterparts, and the RAPI func
tions generally have the same parameters and behaviors. For example, RAPI
has a function called CeGetVersionEx that provides the same functionality as
GetVersionEx when called directly from a Windows CE application. How
ever, there are a few things you need to do when calling RAPI functions:

® Call CeRapiinit or CeRapiinitEx to initialize the connection to the
Windows CE device.

® Call CeGetLastError on failure to determine if a RAPI error occurred.
® Call CeRapiUninit to close down the connection.

257

258 Chapter 10 e The Remote API (RAPI)

Remember, RAPI functions are called from Win32 applications running on
Windows NT/98/2000. Most RAPI functions expect Unicode strings, so you will
either have to compile your application for Unicode (by defining '_Unicode'
in the compiler settings), or convert strings to Unicode if you are compiling for
multi-byte character (ANSI) strings. Note that an application compiled for Uni
code will probably not run on Windows 98, as this operating system does not
provide complete Unicode support.

RAPI currently can only be used against a Windows CE device-it can
not be used under emulation. Further, ActiveSync does not support more than
one concurrently connected CE device, so RAPI function calls are always made
against that connected device; you don't have to specify which type of device
to direct the calls to.

Initializing and Un-initializing RAPI
RAPI can be initialized using either the CeRapiinit or CeRapiinitEx func
tions. CeRapi Ini t will block (that is, not return) until a connection is made to
the Windows CE device. This could result in your application being frozen for
a long period of time, so it is usual to create a thread and call CeRapi Ini t on
that thread. Note that the function will never return if a Windows CE device
never connects. A call to CeRapi Ini t is very simple since the function takes
no arguments and returns an HRESULT.

HRESULT hr;

hr= CeRapiinit();
if (FAILED (hr))

cout << "Could not initialize RAPI:"
<< GetLastError() << endl;

Remember that an HRESULT is not a handle but rather a 32-bit value that
contains error information. The SUCCEEDED macro should be used to test for
success, and FAILED to test for failure.

CeRapiinitEx is passed a RAPIINIT structure and returns an event
handle in the he Ra pi Ini t member of that structure. This event handle can be
passed to Wai tForSingleObj ect. The event will be signaled when a Win
dows CE device connects, and this will unblock the call to Wai tForSingle
Obj ect. You can pass a timeout value in milliseconds to Wai tForSingle
Obj ect to limit the amount of time to wait for a connection.

RAPIINIT rapiinit;
HRESULT hr;
DWORD dwWaitResult;

rapiinit.cbSize = sizeof (RAPIINIT);
hr= CeRapiinitEx(&rapiinit);

if (FAILED (hr))
{

cout << "Could not initialize RAPI:"
<< GetLastError() << endl;

return;

Handling Errors 259

dwWaitResult = WaitForSingleObject(rapiinit.heRapiinit,
10000);

if(dwWaitResult == WAIT_FAILED)
{

cout << "Could not wait on event:"
<< GetLastError() << endl;

return;

if(dwWaitResult == WAIT_TIMEOUT)
{

cout << "Could not connect to Windows CE Device"
<< endl;

return;

if(FAILED(rapiinit.hrRapiinit))
II Report RAPI error

In the above code the cbSize of the RAPIINIT structure is initialized
with the size of the structure and passed to CeRapi Ini tEx. The handle to the
event in the member heRapiini t is passed to Wai tForSingleObj ect with
a timeout of ten seconds. If Wai tForSingleObj ect returns WAIT_FAILED,
the actual error code is determined through a call to GetLastError. The re
turn value WAIT_TIMEOUT indicates that a device did not connect within ten
seconds. You can refer to Chapter 7 for more information on waiting for events.

On a successful return from WaitForSingleObject, it is important to
test the hrRapiinit member of the RAPIINIT structure to see whether the
connection to the Windows CE device succeeded or failed. The next section in
this chapter shows how to report RAPI errors.

The function CeRapiUninit is used to un-initialize RAPI. This function
takes no arguments and returns an HRESULT.

Handling Errors
Errors can occur either in the way the RAPI function is called on the desktop,
or on the execution of the function on the Windows CE device. If a RAPI func
tion call fails, the function CeRapiGetError returns an error from the device,
or 0 if the error was a Win32 error. Get Las tError can be called to determine
the actual desktop error in this case. The following code shows error handling
for a failed RAPI function.

260 Chapter 10 e The Remote API (RAPI)

int nErr = CeRapiGetError();
if(nErr == 0)

cout << "RAPI function failed, Win32 Error"
<< GetLastError() << endl;

else
cout << " RAPI function failed, RAPI Error"

<< nErr << endl;

A Simple RAPI Application- Creating a Process
This first RAPI sample application shows how to create a process using the Ce
CreateProcess RAPI function on a Windows CE application running from a
Win32 application on Windows NT/98/2000. The function CeCreateProcess
takes the same parameters as its desktop counterpart, CreateProcess, includ
ing those parameters that are not supported on Windows CE (Table 10.1).

CeCreoteProcess-Creotes a new process on the Windows CE device

CeCreateProcess

LPCWSTR lpApplicationName

LPCWSTR lpCommandLine

LPSECURITY_ATTRIBUTES
lpProcessAttributes

LPSECURITY_ATTRIBUTES
lpThreadAttributes

BOOL binheritHandles

DWORD dwCreationFlags

LPVOID lpEnvironment

LPWSTR lpCurrentDirectory

LPSTARTUPINFO lpStartupinf o

LPPROCESS_INFORMATION
lpProcessinformation

BOOL Return Value

The name of the application to run, including a path. Can be
NULL. Must be a Unicode string.

Command line to send to the application. If lpApplication
Name is NULL, lpCommandLine should contain the application's
name and command line. Must be a Unicode string.

Not supported, use NULL.

Not supported, use NULL.

Not supported, pass as FALSE.

Usually 0, can be CREATE_SUSPENDED to create a suspended
process.

Not supported, use NULL.

Not supported, use NULL.

Not supported, use NULL.

Pointer to a PROCESS INFORMATION structure in which the
handle to the process (hProcess), the handle to the primary
thread (hThread), process id (dwProcessid), and thread
identifier (dwThreadid) are returned.

TRUE for success, FALSE for failure.

A Simple RAPI Application-Creating a Process 261

CeCreateProcess returns a handle to the thread and process in the
PROCESS_INFORMATION structure. These handles should be closed through a
call to CeCloseHandle-don't call CloseHandle since the handles are Win
dows CE handles. Note that application name and command line must be
passed as Unicode strings regardless of how the Win32 application is compiled.
You can use the "L" macro to force a string constant to be compiled as a Uni
code string.

The code in Listing 10.1 shows the complete code used to initialize RAPI,
make the call to CeCreateProcess, close the handles by calling CeClose
Handle, and un-initialize RAPI by calling CeRapiUnini t. The application is a
standard console application created using the Visual C++ application wizard.
Note that you will need to include rapi .hand rapi. lib. Further, you may
need to remove the WIN32_LEAN_AND_MEAN define in stadafx. h, depend
ing on the options chosen when creating the project; otherwise, certain COM
interfaces used in rapi. h will not be found, The source code can be found
on the CDROM in the directory \RAPI\CreateProcess. You might need to
change the name of the application being run (cmd. exe) if your Windows CE
device does not support a command shell.

Creating a process on a Windows CE device using RAP/

#include "stdafx.h"
#include <iostream.h>
#include <rapi.h>

II Include rapi.lib into the project
II WARNING: Remove #define WIN32 LEAN_AND MEAN
II from stdafx.h!

void ShowRAPIError()
{

int nErr = CeRapiGetError();
if(nErr == 0)

cout << "Win32 Error•
<< GetLastError() <<

else
cout << "RAPI Error"

<< nErr << endl;

endl;

int main(int argc, char* argv[])
{

RAPIINIT rapiinit;
HRESULT hr;
DWORD dwWaitResult;

rapiinit.cbSize = sizeof(RAPIINIT);

262 Chapter 10 e The Remote API (RAPI)

hr= CeRapiinitEx(&rapiinit);
if (FAILED (hr))
{

cout << "Could not initialize RAPI:"
<< GetLastError() << endl;

return l;

dwWaitResult = WaitForSingleObject(rapiinit.heRapiinit,
10000);

if(dwWaitResult == WAIT_FAILED)
{

cout << "Could not wait on event:"
<< GetLastError() << endl;

return 1;

if(dwWaitResult == WAIT_TIMEOUT)
{

cout << "Could not connect to Windows CE Device"
<< endl;

return 1;

if(FAILED(rapiinit.hrRapiinit))
{

ShowRAPIError();
return 1;

PROCESS INFORMATION pi;

if(!CeCreateProcess(L"\\windows\\cmd.exe",
NULL, NULL, NULL, FALSE,
0, NULL, NULL, NULL,
&pi))

ShowRAPIError();
else
{

if(!CeCloseHandle(pi.hProcess))
ShowRAPIError();

if(!CeCloseHandle(pi.hThread))
ShowRAPIError();

hr= CeRapiUninit();
if (FAILED (hr))

cout << "Could hot un-initialize RAPI" << endl;
return O;

You should note that CeCreateProcess could fail and return FALSE,
and yet CeRapiGetError and GetLastError both return 0. This can hap
pen if the application name is invalid.

Overview of RAPI Functions 263

The handles returned in the PROCESS INFORMATION need to be used
with care. These handles exist on Windows CE device, and not on the desktop.
That is why CeCloseHandle is called rather than CloseHandle. For this rea
son, you cannot use synchronization techniques, such as calling Wai tFor
SingleObj ect, on them. The following call, which attempts to wait until the
process on the Windows CE device terminates, will fail.

if(WaitForSingleObject(pi.hProcess,
INFINITE) == WAIT_FAILED)

cout << "Wait Failed" << endl;

You can write your own RAPI functions and use CeRapiinvoke to cir
cumvent this problem, as described later in this chapter.

Overview of RAPI Functions
Many of the RAPI functions are directly equivalent to their Windows CE coun
terparts and therefore do not warrant a detailed description. There are, how
ever, some general points to remember when calling these functions:

e Use CeRapiGetError as described above to determine errors.
e Call CeCloseHandle to close handles returned from functions such as

CeCreateProcess and CeCreateFile.
e Use CeFindClose to close a handle returned from CeFindFirstFile.
e Call CeRapiFreeBuffer to free buffers returned from CeReadRecord

Props.

The following sections list the RAPI functions by group, together with a
brief description of their purpose.

File and Folder Manipulation
RAPI provides a complete set of functions for manipulating files and folders on
a connected Windows CE device. You can refer to Chapters 2 and 3 for infor
mation on the equivalent Windows CE functions.

Note that there is no equivalent Windows CE function for CeF indAl 1-
F i 1 es-this function is used to find matching files through a single function call
rather than the multiple calls that CeFindFirstFile and CeFindNextFile
require. This improves performance especially when using slow communica
tions connections. Listing 10.2 shows a call to CeFindAllFiles to return all
files in the root folder. The source code is located in \RAPI\FindAllFiles
on the CDROM.

264 Chapter 10 " The Remote API (RAPI)

@ij,,(,f# File and Folder manipulation RAP! functions

Function Purpose

CeOidGetinfoEx Returns information about an object in the object store. This function
can return information about database volumes.

CeOidGetinfo Returns information about any object in an object store except data-

CeFindFirstFile

CeFindNextFile

CeFindClose

CeGetFileAttributes

CeSetFileAttributes

CeCreateFile

CeReadFile

CeWriteFile

CeCloseHandle

CeFindAllFiles

CeSetFilePointer

CeSetEndOfFile

CeCreateDirectory

CeRemoveDirectory

CeMoveFile

CeCopyFile

CeDeleteFile

CeGetFileSize

CeGetFileTime

CeSetFileTime

CeGetTempPath

bases in a database volume.

Finds first file that matches a file specification.

Finds the next file.

Closes the handle returned from CeFindFirstFile.

Gets a file's attributes.

Sets a file's attributes.

Opens a file on a Windows CE device.

Reads from an open file.

Writes to an open file.

Closes a file given the handle returned from CeCr.eateFile.

Returns information on all files that match a file specification. This
function has no Windows CE or Win32 equivalent.

Moves current file pointer to specified location.

Sets the End of File to the position of the current file point.

Creates a new folder.

Removes specified folder.

Moves or renames a file.

Copies a file.

Deletes a file.

Gets the current size of a file.

Gets date and time for last access and read and create times for a file.

Sets date and time for last access and read and create times for a file.

Returns the directory where temporary files should be located.

l@ltffii(1fM CeFindAllFiles call to list files in root folder

int main(int argc, char* argv[J)
{

HRESULT hr;
DWORD dwFileCount;
LPCE_FIND_DATA pFindDataArray;
char szFilename[MAX_PATH];

Overview of RAPI Functions 265

II List files in root directory of connected CE Device
hr= CeRapiinit();
if (FAILED(hr))
{

cout << "Could not initialize RAPI:"
<< GetLastError() << endl;

return 1;

if (! CeFindAllFiles (L" \ \ *. *",
FAF_NAME I FAF_SIZE_LOW I FAF_ATTRIBUTES,
&dwFileCount,
&pFindDataArray))

ShowRAPIError();
else
{

cout << "Files in root of Windows Device:"
<< endl;

for(DWORD i = O; i < dwFileCount; i++)
{

wcstombs(szFilename,
pFindDataArray[i] .cFileName,
MAX_PATH);

cout << szFilename << " ";
if(pFindDataArray[i] .dwFileAttributes

& FILE_ATTRIBUTE_DIRECTORY)
cout << "<DIR>" << endl;

else
cout <<

pFindDataArray[i] .nFileSizeLow
<< endl;

CeRapiFreeBuffer(pFindDataArray);

hr= CeRapiUninit();
if (FAILED (hr))

cout << "Could not un-initialize RAPI" << endl;

return O;

The code in Listing 10.2 calls CeRapiini t, so the application will wait
until a device is connected. A call is then made to CeFindAllFiles with flags
requesting that the file name, size, and attributes be returned (Table 10.3). No
tice that only the low DWORD is returned for the file size (FAF _SIZE_LOW), and
this assumes that all files on the Windows CE device are less than 4 GB.

The following flags can be passed to dwFlags and combined where
applicable:

e FAF _ATTRIB_CHILDRED-Return only directories that have child items.
* FAF _ATTRIB_NO_HIDDEN-Do not return hidden files or directories.

266 Chapter 10 • The Remote API (RAPI)

CeFindAllFiles-Returns information on files matching a file specification

CeFindAllFiles

LPCWSTR szPath File specification, including path information.

DWORD dwFlags Flags specifying what to return and special search options.

LPDWORD lpdwFoundCount Pointer to a DWORD in which the number of files is returned.

LPLPCE_FIND_DATA Pointer to a pointer to a LPCE_FIND_DATA structure. The returned
ppFindDataArray pointer references the information on the files that matched the search.

BOOL Return Value TRUE for success, FALSE for failure.

@ FAF _FOLDERS_ONLY-Only return folders, not files.
@ FAF _NO_HIDDEN_SYS_ROMMODULES-Do not return files in ROM.
@ FAF _ATTRIBUTES-Return file attributes.
@ FAF _CREATION_ TIME-Return file creation time.
@ FAF LASTACCESS_TIME-Return file last access time.
@ FAF _LASTWRITE_TIME-Return the file last write time.
@ FAF _SIZE_HIGH-Return the high DWORD of the file size.
@ FAF SIZE_LOW-Return the low DWORD of the file size.
® FAF OID-Return the OID of the file.
* FAF _NAME-Return the file name.

The CeFindAllFiles function returns a pointer to a buffer that contains
a CE_FIND_DATA array for each file that matches the file specification. This
buffer is owned by Windows and must be freed by calling the function CeRapi
FreeBuf fer. The CE_FIND_DATA structure contains members for each data
item that can be returned for a file.

typedef struct _CE_FIND_DATA
DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftLastAccessTime;
FILETIME ftLastWriteTime;
DWORD nFileSizeHigh;
DWORD nFileSizeLow;
DWORD dwOID;
WCHAR cFileName[MAX_PATH];
CE_FIND_DATA, *LPCE_FIND_DATA;

Property Database RAPI Functions
The functions shown in Table 10.4 can be used to manipulate property data
bases on a connected Windows CE device. You can refer to Chapter 4 for details
on the Windows CE function equivalents. The function CeFindAllDatabases
does not have a Windows CE equivalent-it is used to return information on

Overview of RAPI Functions 267

all databases that match a specification. As with CeFindAllFiles, this func
tion is used to improve performance. Note that CeFindAllDatabases does
not return information on databases in volumes. The function CeFindFirst
DatabaseEx should be used to search database volumes. You should try to
limit the number of calls to CeWri teRecordProps and CeReadRecordProps
to improve performance by reading or writing as many properties at a time as
possible.

Property database RAP/ functions

Function

CeMountDBVol

CeUnmountDBVol

CeFlushDBVol

CeCreateDatabase

CeCreateDatabaseEx

CeDeleteDatabase

CeDeleteRecord

CeFindFirstDatabase

CeFindNextDatabase

Purpose

Mounts a database volume.

Unmounts a database volume.

Flushes database changes out to storage.

Creates a new database in the object store.

Creates a new database in a mounted database volume.

Deletes a database.

Deletes a record.

Finds first database that matches a specification.

Finds next database using handle returned from CeFind
FirstDatabase.

CeOpenDatabase Opens a database in the object store.

CeOpenDatabaseEx Opens a database in a mounted volume.

CeReadRecordProps Reads properties from a record. Use CeRapiFreeBuffer
to free the returned buffer.

CeSeekDatabase Locates a record in the database.

CeSetDatabaseinfo Sets database information, such as name or sort orders.

CeSetDatabaseinfoEx Sets database information for a database in a mounted
database volume.

CeWri teRecordProps Writes property values to a database.

CeFindAllDatabases Returns information on all databases that match a
specification.

Registry RAPI Functions
The functions in Table 10.5 can be used to manipulate keys in the Windows
CE device's registry. The Windows CE equivalent functions are described in
Chapter 4.

268 Chapter l 0 & The Remote API (RAPI)

M@Mll1fW Registry RAP/ functions

Function Purpose

CeRegOpenKeyEx Opens a key

CeRegEnumKeyEx Enumerates sub-keys of an open key

CeRegCreateKeyEx

CeRegCloseKey

CeRegDeleteKey

CeRegEnumValue

CeRegDeleteValue

CeRegQueryinf oKey

CeRegQueryValueEx

CeRegSetValueEx

Creates a new key, or opens an existing key

Closes an open key

Deletes a key

Enumerates values for a key

Deletes a value from a key

Returns information about an open key

Retrieves type and data for a value name for an open key

Sets data into a value for an open key

The code in Listing 10.3 shows how to use the RAPI registry functions to
obtain the device name for the connected Windows CE device. This is the name
that is configured through the Control Panel's Communication applet. This in
formation is located in HKEY_LOCAL_MACHINE\Ident \Name. You can also
find the Description ("Desc" value) and original device name ("OrigName"
value) from this registry key. Information about the type of device and manu
facturer can be found in the HKEY_LOCAL_'._MACHINE\Platform key. Registry
functions are described in more detail in Chapter 4.

Determining device name of connected device

#include "stdafx.h"
#include <rapi.h>
#include <iostream.h>

BOOL CeGetPlatformName(LPTSTR pszPlatformName)
{

BOOL fSuccess FALSE;
LONG nRetVal 0;
HKEY hkey NULL;
DWORD dwType O;
DWORD cbSize 0;
WC HAR szPlatformNameW[MAX_PATH];

nRetVal = CeRegOpenKeyEx(HKEY_LOCAL_MACHINE,
L"Ident", 0, KEY_ALL_ACCESS, &hkey);

if (ERROR_SUCCESS == nRetVal && hkey)
{

II get the registry value
cbSize = sizeof(szPlatformNameW);

Overview of RAPI Functions 269

}

nRetVal = CeRegQueryValueEx(hkey,
"NAME"' 0' &dwType'
LPBYTE)szPlatformNameW, &cbSize);

if (ERROR_SUCCESS == nRetVal)
{

szPlatformNameW[cbSize I sizeof(WCHAR)]
if (wcstombs(pszPlatformName,

szPlatformNameW, MAX_PATH))
fSuccess = TRUE;

if (hkey)
CeRegCloseKey(hkey) ;

return fSuccess;

int main(int argc, char* argv[J)
{

HRESULT hr;
char szDeviceName[MAX_PATH];

'\ 0' ;

II List files in root directory of connected CE Device
hr= CeRapiinit();
if (FAILED (hr))
{

cout << "Could not initialize RAPI:"
<< GetLastError() << endl;

return 1;

if(CeGetPlatformName(szDeviceName))
cout << "Device Name: " << szDeviceName << endl;

else
cout << "Could not retrieve device name" << endl;

hr= CeRapiUninit();
if(FAILED(hr))

cout << "Could not un-initialize RAPI" << endl;

return O;

The code in the CeGetPlatformName function is straightforward regis
try code. However, it is important to remember that all key and value names
must be specified as Unicode strings. Further, the returned strings (for example,
the device name) will be Unicode, and may need to be converted to ANSI char
acter strings.

System Information RAPI Functions
Table 10.6 lists RAPI functions used to obtain information about the Windows
CE devices.

270 Chapter I 0 ® The Remote API (RAPI)

System Information RAP/ functions

Function Purpose

CeGetStoreinformation Returns information about the state of the object store in a
STORE INFORMATION structure

CeGetSystemMetrics Gets information about the Windows CE device, such as size of
user interface elements like scrollbars

CeGetDesktopDeviceCaps Returns information about the capabilities of the display, such as
the number of display colors

CeGetSysteminfo Fills a SYSTEM_INFO structure with information about the device,
such as the type of processor, page file size, and address space

CeCheckPassword Allows a string to be compared with the current password on the
Windows CE device

CeGetVersionEx Fills a CEOSVERSIONINFO structure with details about the operat
ing system version and platform identifier

CeGlobalMemoryStatus Returns information about the physical and virtual memory status

Fills a SYSTEM_POWER_STATUS EX structure with data about
battery and other power information

CeGetSystemPowerStatusEx

Miscellaneous RAPI Functions
Finally, Table 10.7 lists RAPI functions that allow access to errors, create pro
cesses, obtain information about windows, and interact with the shell.

M¢,.(1fM Miscellaneous RAP/ functions

Function Purpose

CeGetLastError Returns error value from last RAPI function call

CeCreateProcess

CeGetWindow

CeGetWindowLong

CeGetWindowText

CeGetClassName

CeGetSpecialFolderPath

CeSHCreateShortcut

CeSHGetShortcutTarget

Creates a new process on a connected device

Obtains a window handle

Returns information about the specified window,
returned as a long value

Gets window text associated with a window
handle

Gets the class name associated with a window
handle

Gets pathname for the location of special fold
ers, such as desktop, "My Documents," and
favorites

Creates a shortcut file

Gets information about a shortcut file

Write Your Own RAPI Functions with CeRapilnvoke 271

Write Your Own RAPI Functions with CeRapilnvoke
Earlier in this chapter CeCreateProcess was used to create a process on a
Windows CE device. However, because the handles returned in the desktop
application actually reside on the Windows CE device, you cannot use these
handles to block until the application is terminated. This may be important if
you need your desktop application to wait until the CE application has termi
nated. You can circumvent this problem by writing your own RAPI functions
on the Windows CE device and calling them from the desktop using CeRapi
Invoke.

To do this you must do the following:

* Write a dynamic link library (DLL) for the Windows CE device, and im
plement your own RAPI function. This function must be exported.

* Call the CeRapiinvoke function in your desktop application and spec-
ify the name of the Windows CE DLL and function name.

Using CeRapiinvoke provides complete freedom for calling almost any Win
dows CE functions from a desktop application. There are actually two types of
functions that can be called from CeRapiinvoke:

* Blocking functions. The call CeRapiinvoke does not return until the
Windows CE device function has returned.

* Stream functions. The call to CeRapiinvoke returns immediately and the
IRAPIStream COM interface is used to allow the desktop and Windows CE
DLL to communicate over an extended period of time.

The first example will show how to write a blocking function that solves
the problem with CreateProcess described above.

A CeRapilnvoke Blocking Function
To write a CeRapiinvoke function, you will need to implement code both on
the desktop (where the call to CeRapiinvoke is made) and on the Windows
CE device (the implementation of your function, which is in a DLL). First, let's
look at building the DLL.

The DLL project can be built by selecting "WCE Dynamic-Link Library" in
the "Projects" list from App Wizard. At step 1 of the wizard select "A Simple
Windows CE DLL Project" to build the default files for you. Listing 10.4 shows
the complete code that is placed in the DLL. (You can find this code on the
CDROM in the directory \RAPI\CustomBlock\CEBlock.)

Windows CE DLL implementation of a CeRapilnvoke function

#include "stdafx.h"

II Function prototype to export function.
extern "C"

272 Chapter I 0 m The Remote API (RAPI)

_declspec(dllexport) int WaitCreateProcess(DWORD cbinput,
BYTE* pinput, DWORD *pcbOutput,
BYTE **ppOutput, PVOID reserved);

int WaitCreateProcess(DWORD cbinput,
BYTE* pinput, DWORD *pcbOutput,
BYTE **ppOutput, PVOID reserved)

LPTSTR lpAppName = (LPTSTR)pinput;
PROCESS_INFORMATION pi;
int nError = O;

if(!CreateProcess(lpAppName, NULL,
NULL, NULL, FALSE,0,
NULL, NULL, NULL, &pi))

nError = GetLastError();
else
{

if(WaitForSingleObject(pi.hProcess,
INFINITE) == WAIT_FAILED)

nError = GetLastError();

CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);
ppOutput = (BYTE)LocalAlloc(LPTR, sizeof(nError));
memcpy(*ppOutput, &nError, sizeof(nError));
*pcbOutput = sizeof(nError);
return 0;

All functions you write that will be called through CeRapiinvoke must
be exported. This is done in Listing 10.4 by writing a function prototype and
including the specification _declspec (dllexport). Note that there are two
underscores at the start of this specification. Further, if you are compiling the
source file using C++ (that is, it has a . cpp extension), you will need to include
the function prototype in an extern "c" block. This stops the function name
from being decorated (mangled), and uses the standard C function-naming
conventions.

Any function being called from CeRapiinvoke must have the same pa
rameters and return type as function WaitCreateProcess. Table 10.8 de
scribes these parameters. In the case ofwaitCreateProcess, pinput points
to the name of the application to be run as a Unicode string.

In Listing 10.4 the function CreateProcess is called to create a new
process on the Windows CE device. The arguments passed are identical to
CeCreateProcess described in Table 10.1 and shown in Listing 10.1. If the
call to CreateProcess succeeds, the process handle is passed to WaitFor-

Write Your Own RAPI Functions with CeRopilnvoke 273

WaitCreateProcess-Function parameters for a function to be called with CeRapilnvoke

WaitCreateProcess

DWORD cbinput

BYTE* pinput

DWORD *pcbOutput

Number of bytes of data being passed to function from CeRapiinvoke

Pointer to the data being passed from CeRapiinvoke

Pointer to a DWORD in which the function places the number of bytes
of data being returned to CeRapiinvoke

BYTE **ppOutput Pointer to a BYTE pointer in which a pointer to the data being returned
to CeRapiinvoke is placed

PVOID reserved Reserved value, ignore

int Return Value Function return value returned to CeRapiinvoke

SingleObj ect, and this will block until the process terminates. Remember
that a process handle is signaled when the process associated with the handle
terminates. CloseHandle is called on both the process and thread handles.
Refer to Chapter 5 for more details on CreateProcess.

If an error occurs the error number is obtained from GetLastError and
stored in the variable nError. The contents of this variable will be returned
through the ppOutput pointer. To do this, the following steps are carried out:

<b Allocate a memory block large enough to take an int (the size of the
nError variable), through calling LocalAlloc.

$ Copy the contents of nError into this new memory block, through call
ing memcpy.

$ Set the number of bytes being returned in the ppOutput pointer in the
parameter pcbOu t put.

The memory block returned through ppOutput is owned by the operating sys
tem and does not have to be freed in the Windows CE DLL.

Building the Windows CE DLL will automatically download the file to the
Windows CE device. The default location for this is the root of the object store.
Note that, by default, DLLs are not listed in an Explorer file listing-to change
this, select the View and Options menu commands in Explorer, and select
"Show all Files."

The next stage is to write code to use CeRapiinvoke to call the function
you have just written. The call to CeRapiinvoke is made, as you would expect,
in a desktop application. Listing 10.5 shows the complete code for a desktop
console application that calls the WaitCreateProcess function implemented
in Listing 10.4. The code can be found in the directory \RAPI\CustomBlock\
CustomBlock on the CDROM.

27 4 Chapter I 0 0 The Remote API (RAPI)

Calling CeRapilnvoke from the desktop application

#include "stdafx.h"
#include <rapi.h>
#include <iostream.h>

int main(int argc, char* argv[])
{

HRESULT hr;
DWORD dwOut;
BYTE* pout;
int nErr;

hr= CeRapiinit();
if (FAILED (hr))
{

cout << "Could not initialize RAPI:"
<< GetLastError() << endl;

return l;

LPWSTR lpAppname = L"\\windows\\cmd.exe";

hr= CeRapiinvoke(L"CEBlock", L"WaitCreateProcess",
(wcslen(lpAppname) + 1) * sizeof(WCHAR),
(BYTE*)lpAppname, &dwOut, &pOut, NULL, 0);

if (FAILED (hr))
{

nErr = CeGetLastError();
switch(nErr)
{

case ERROR FILE_NOT_FOUND :
cout << "Library not found" << endl;
break;

case ERROR_CALL_NOT_IMPLEMENTED:
cout << "Could not locate function in DLL"

<< endl;
break;

case ERROR_EXCEPTION_IN_SERVICE:
cout << "Exception caught in function"

<< endl;
break;

default:
cout << "Error in invoke: "

<< nErr << endl;

if (pOut ! = NULL)
{

nErr = (int)*pOut;
cout << "Error Return: " << nErr << endl;

Write Your Own RAPI Functions with CeRapilnvoke 27 5

CeRapiFreeBuffer(pOut);

else
cout << "Function failed to return error info"

<< endl;
hr= CeRapiUninit();
if (FAILED (hr))

cout << "Could not un-initialize RAPI" << endl;
return 0;

The call to CeRapiinvoke is passed the name of the DLL on the
Windows CE device and the name of the function to be called in that DLL

(Table 10.9). Misspecification of these two parameters is the most common rea
son why the function call fails. The pinput parameter is used to pass the name
of the application to execute, which is passed as a Unicode string. The cbinput
parameter is set to the number of bytes of data in the application name, includ
ing the terminating NULL characters.

CeRopilnvoke-Col!s a function in a Windows CE DLL from the desktop

CeRapiinvoke

LPCWSTR pDllPath

LPCWSTR pFunctionName

DWORD cbinput

BYTE *pinput

DWORD *pcbOutput

BYTE **ppOutput

IRAPIStream
**ppIRAPIStream

DWORD dwReserved

HRESULT Return Value

DLL name and path to be used. Unicode string.

Function name in DLL to be called. Unicode string.

Number of bytes of data to send to function.

Pointer to the data to send to function.

Receives number of bytes of data being returned
from function call.

Pointer to data being returned by function call.

Receives an IRAPIStream COM interface. This is
not used for blocking calls so pass NULL.

Pass as o.

HRESULT indicating success or failure.

If the CeRapiinvoke call fails, CeGetLastError is used to obtain the
error code. The switch case shows the three most common errors returned. If
the call succeeds, the pOu t pointer should point at an integer value containing
the error code returned from CreateProcess, or 0 if the call succeeded. The
contents of pOut are copied into nErr and displayed to the user.

Finally, CeRapiFreeBuffer must be called on the memory pointed to
by pOu t to ensure that the memory block is freed correctly.

27 6 Chapter 10 e The Remote API (RAPI)

RAPI Stream Functions
RAPI stream functions allow much more flexibility than blocking functions
you can use them to communicate between a desktop application and Windows
CE application over an extended period of time. Chapter 8 (TCP/IP communi
cations) noted that ActiveSync versions 3.0 and later do not allow TCP/IP rout
ing, so sockets cannot be used to communicate between a desktop and Win
dows CE application when ActiveSync is running. Instead, you can use RAPI
stream functions.

A RAPI stream function is simple to implement once you know how to
write a blocking function. In addition to the blocking function code you need
to do the following:

111 Declare a IRAPIStream COM interface pointer variable in the desktop
application.

® Pass this IRAPIStream pointer to CeRapiinvoke.
® Modify the RAPI function in the Windows CE DLL to receive an IRAPI

Stream pointer.
® Call the Read and Write IRAPIStream functions to transfer data be

tween the Windows CE DLL and desktop application.

IRAPIStream is actually a COM interface derived from the standard
I Stream interface. RAPI looks after the creation of the COM object and the in
terface, so you do not need to know about COM to use the interface.

You will need to design a simple communications protocol so that both
the Windows CE DLL and desktop application know what data to expect and
how to deal with it. Further, you will need to build into the protocol a mecha
nism to allow either the Windows CE DLL or desktop application to terminate
the communications.

The example shown here will take the blocking application and add code
to allow the Windows CE device to report back the amount of processor time
the primary thread in the launched application has consumed. This information
will be reported back every five seconds and will be displayed in the desktop
application's window. This application provides a simple way of monitoring
CPU usage by your application.

The Windows CE function GetThreadTimes returns the amount of pro
cessor time consumed by a thread in a FILETIME structure. In Windows CE 3.0
and later, the function returns the amount of time spent in user code (your code)
and in kernel (operating system) code. In earlier versions of Windows CE the
kernel time is always returned as zero, and all time spent executing is returned
as user code execution. This function is described in more detail in Chapter 5,
"Processes and Threads." The parameters passed to GetThreadTimes are the
following:

111 Handle to the thread to obtain thread times for
® FILETIME when the thread was created

Write Your Own RAPI Functions with CeRapilnvoke 277

w FILETIME when the thread was terminated
w FILETIME for the time spent in kernel functions
w FILETIME for the time spent in user code

The Windows CE DLL will return data back to the desktop application,
preceded by a DWORD code indicating the nature of the data being returned.
These codes are declared in both the desktop application and Windows CE DLL.

const DWORD dwCODE_ERROR = l;
Const DWORD dwCODE_USERTIME = 2;
const DWORD dwCODE_END = 3;

The code dwCode_ERROR indicates that a DWORD will follow containing
an error, dwCODE_USERTIME indicates that the FILETIME structures returned
by GetThreadTimes follow, and dwCODE_END indicates that the process has
terminated and the DLL will stop sending data.

The complete Windows CE DLL is shown in Listing 10.6. The code can
be found on the CDROM in the directory \RAPI\CustomStream\CEStream.
Note how the last parameter in the RAPI function has been changed to an
IRAPIStream pointer. The function will receive this pointer through which
the read and write functions can be called to communicate with the desktop
application.

i@fi(1!W Windows CE DLL code for RAP/ stream function

#include "stdafx.h"
#include "rapi.h"
II Function prototype to export function.
extern "C"

~declspec(dllexport) int ThreadTimes(DWORD cbinput,
BYTE* pinput, DWORD *pcbOutput,
BYTE **ppOutput, IRAPIStream *pStream);

const DWORD dwCODE_ERROR = l;
const DWORD dwCODE_USERTIME = 2;
const DWORD dwCODE_END = 3;

BOOL WriteResult(DWORD dwCode, void* pData,
DWORD dwBytesToWrite, IRAPIStream *pStream)

DWORD dwWritten, dwToWrite, dwError;
HRESULT hr;

dwToWrite = sizeof(DWORD);
hr= pStream->Write(&dwCode, dwToWrite, &dwWritten);
if(FAILED(hr) I I dwToWrite != dwWritten)

return FALSE;

278 Chapter 10 111 The Remote API (RAPI)

if(dwBytesToWrite > 0)
{

dwError = GetLastError();
hr = pStream->Write(pData,

dwBytesToWrite, &dwWritten);
if(FAILED(hr) I I dwBytesToWrite != dwWritten)

return FALSE;

return TRUE;

int ThreadTimes(DWORD cbinput, BYTE* pinput,
DWORD *pcbOutput,
BYTE **ppOutput, IRAPIStream *pStream)

LPTSTR lpAppName = (LPTSTR)pinput;
PROCESS_INFORMATION pi;
FILETIME ft [4] ;
DWORD dwError;
BOOL bContinue = TRUE;

if(!CreateProcess(lpAppName, NULL, NULL,
NULL, FALSE,0, NULL, NULL, NULL, &pi))

dwError = GetLastError();
WriteResult(dwCODE_ERROR,

else
{

&dwError, sizeof(dwError), pStream);

while(bContinue &&
WaitForSingleObject(pi.hProcess, 5000)
== WAIT_TIMEOUT)

if(!GetThreadTimes(pi.hThread,
ft[OJ, &ft[l],
&ft[2], &ft[3]))

dwError = GetLastError();
WriteResult(dwCODE_ERROR,

&dwError,
sizeof(dwError), pStream);

bContinue = FALSE;

else
{

if(!WriteResult(dwCODE_USERTIME,
ft, sizeof(ft), pStream))

bContinue = FALSE;

Write Your Own RAPI Functions with CeRapilnvoke 279

if(bContinue)
WriteResult(dwCODE_END, NULL, 0, pStream);

CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);
II no output data to send back
*ppOutput = NULL;
*pcbOutput = O;
return O;

The function WriteResult in Listing 10.6 is used to send the code indi
cating what type of data is being returned and to send the data itself back to the
desktop application. The function is passed the DWORD code (one of dwCODE_
ERROR, dwCODE_USERTIME, or dwCODE_END), a pointer pData to the data to
write (which could be NULL), the number of bytes in dwBytesToWri te pointed
to by pData, and the IRAPIStream pointer through which to write. Write
Result uses the IRAPIStream Write function to write the data to the desk
top application, and this is passed the following:

e A pointer to the data to send
e A DWORD containing the number of bytes to send
e A DWORD pointer in which the actual number of bytes sent is returned

The function ThreadTimes has a 'while' loop that calls WaitFor
SingleObj ect on the process handle with a timeout of 5000 milliseconds. The
loop continues while Wai tForSingleObj ect returns WAIT_TIMEOUT, indi
cating that the process is still running. The function GetThreadTimes is called
on each 'while' loop iteration, and all four FILETIME structures are written
out to the desktop application. Any errors terminate the 'while' loop, and these
errors are returned back to the desktop application. Finally, when the 'while'
loop terminates, a dwCODE_END code is sent to the desktop. Note that the func
tion ThreadTimes does use the ppOutput pointer to return data back to the
desktop application.

The code for the console desktop application is shown in Listing 10.7.
The main function declares an IRAPIStream pointer and passes a pointer to
this pointer in CeRapiinvoke. On return, a valid IRAPIStream COM interface
pointer is obtained.

Desktop code for RAP/ stream function

#include "stdafx.h"
#include <rapi.h>
#include <iostream.h>

const DWORD dwCODE ERROR = l;
Const DWORD dwCODE_USERTIME 2;
const DWORD dwCODE_END = 3;

280 Chopter I 0 • The Remote API (RAPI)

void ShowThreadTime(FILETIME ft[4])
{

_int64 ht;

ht = ft[3] .dwHighDateTime;
ht <<= 32;
ht I= ft(3] .dwLowDateTime;
ht /= 10000;
cout << "User Time: " << (DWORD)ht << endl;

int main(int argc, char* argv[])
{

HRESULT hr;
DWORD dwOut, dwCode, dwBytesRead, dwError;
BYTE* pOut;
int nErr;
BOOL bContinue = TRUE;
IRAPIStream *pStream;
FILETIME ft[4];
hr= CeRapiinit();
if (FAILED (hr))
{

cout << "Could not initialize RAPI:"
<< GetLastError() << endl;

return 1;

LPWSTR lpAppname = L"\\windows\\cmd.exe";

hr= CeRapiinvoke(L"CEStream", L"ThreadTimes",
(wcslen(lpAppname) + 1) * sizeof(WCHAR),
(BYTE*)lpAppname, &dwOut,
&pout, &pStream, 0);

if (FAILED (hr))
{

nErr = CeGetLastError();
switch(nErr)
{

case ERROR FILE_NOT_FOUND :
cout << "Library not found" << endl;
break;

case ERROR_CALL_NOT_IMPLEMENTED:
cout << "Could not locate function in DLL"

<< endl;
break;

case ERROR_EXCEPTION_IN_SERVICE:
cout << "Exception caught in function"

<< endl;
break;

default:
cout << "Error in invoke: " << nErr

<< endl;

else
{

Write Your Own RAPI Functions with CeRapilnvoke 281

while(bContinue)
{

II Read the DWORD code
hr = pStream->Read(&dwCode,

sizeof(DWORD), &dwBytesRead);
if(FAILED(hr) II

dwBytesRead != sizeof(DWORD))

cout << "Could not read result: •
<< CeGetLastError();

bContinue = FALSE;

else
{

switch (dwCode)
{

case dwCODE_ERROR:
hr = pStream->Read(&dwError,

sizeof (DWORD) ,
&dwBytesRead) ;

if(FAILED(hr) I I dwBytesRead
!= sizeof(DWORD))

cout << "Error in read"
<< endl;

else
cout << "Error from CE:"

<< dwError << endl;
bContinue = FALSE;
break;

case dwCODE_USERTIME:
hr = pStream->Read(ft,

sizeof(ft),
&dwBytesRead) ;

if(FAILED(hr) I I dwBytesRead
!= sizeof(ft))

cout <<
"Could not read filetime"
<< endl;

else
ShowThreadTime(ft);

break;
case dwCODE_END:

bContinue = FALSE;
break;

282 Chapter l 0 e The Remote API (RAPI)

hr= CeRapiUninit();
if (FAILED (hr))

cout << '"Could not un-initialize RAPI" << endl;
return O;

The main function creates a 'while' loop to read each code and associ
ated data sent from the Windows CE DLL. The 'while' loop uses the IRAPI
Stream interface's Read function, which takes the following parameters:

® A pointer to a buffer to receive the data
® A DWORD value containing the number of bytes to read
e A pointer to DWORD variable in which the actual number of bytes read will

be placed

The code is read and a switch statement used to determine the action to
be taken. In the case of a dwCODE_ERROR code, the DWORD error is read and
the loop terminated. No extra data is read for a dwCODE_END code; the loop is
simply terminated. For a dwCODE_USERTIME code the FILETIME structures
are read and passed to the function ShowThreadTime for display.

The ShowThreadTime function displays just the time spent in user code,
which is contained in the fourth element of the FILETIME structure. The FILE
TIME structure is usually used to contain an absolute time, but in the case of
GetThreadTimes it contains an elapsed time. The FILETIME structure con
tains two members, dwHighDateTime and dwLowDateTime, which combined
contain a number of 100 nanosecond intervals.

The code in ShowThreadTime moves the dwHighDateTime and dwLow
DataTime members into a _int64 variable called ht. The datatype _int64
stores 64-bit, or 8-byte, integer values. The function moves a FILETIME struc
ture to a _int64 variable by doing the following:

® Copying dwHighDateTime into ht, which is placed in the lowest 4 bytes
of ht.

e Shifting the 4 bytes just copied into ht into the top 4 bytes of ht (using
the bit shift operation '«').
Moving the dwLowDataTime bytes into the lowest 4 bytes of ht. The
bitwise OR operation (I) is used so as not to overwrite the data in the top
4 bytes of ht.

The value in ht is then divided by 10000 to convert the units from 100
nanosecond intervals to milliseconds. This value is then displayed to the user.
Note that only the lowest 4 bytes of ht are actually displayed, meaning that the
application will fail to display the correct thread times after about 49 days.

Conclusion 283

Conclusion
This chapter has shown a variety of different techniques for writing desktop ap
plications that can access Windows CE functionality. The standard RAPI func
tions expose most of the functionality you will need for accessing data stored
on a Windows CE device, including files, property databases, and the registry.
You can write your own functions to extend this functionality. Finally, the RAPI
stream functions can be used to allow communications between desktop and
Windows CE applications when ActiveSync 3.0 or later is used-a situation
where TCP /IP sockets cannot be used.

Telephone API (TAPI) and
Remote Access Services (RAS)

The Telephone API (TAPI) and Remote Access Service (RAS) are both used
to make, maintain, and terminate calls made through modems and other tele
phonic devices. RAS is used when making calls to a Windows NT or 2000 server
where a login to a server with authentication takes place, or to an Internet Ser
vices Provider (ISP) with automatic login. In both situations, a protocol like PPP
(Point to Point Protocol) is then used to allow TCP /IP connections to be made
through a serial connection.

TAPI is used to make telephone calls, but once the call is made, the pro
gram can then decide how the connection is to be used. For example, it may
hand over the call to the user for an ordinary voice call, or obtain a serial com
munications handle to perform data transfer, or send a fax. TAPI frees the pro
grammer from having to know how each telephonic device works and the
commands needed to control calls. Further, TAPI can be used to modify a simple
local telephone number to a form suitable for handling long distance or inter
national calls, depending on where the user is located.

RAS uses TAPI to make the telephone calls, and then manages the con
nection. You should use RAS to do the following:

"' Get a network connection to a Windows 2000 or NT server that is con
figured to accept RAS calls

"' Obtain an Internet connection through an ISP using Point to Point Proto
col (PPP)

TAPI can be used to control telephone calls, for example, by doing the
following:

"' Automatically dialing a telephone number and then handing the call over
to the user. This might be an auto-dial feature in a telephone book
application.

284

Introduction to Telephone API (TAPI) 285

e Sending a fax message, where TAPI is used to make the call and you
handle the necessary fax data transmission.

e Connecting to a computing device that does not support RAS or PPP,
where you will be sending data using serial communications techniques
(described in Chapter 9).

Introduction to Telephone API (TAPD
The Telephone API (TAPI) provides control over making, maintaining, and ter
minating calls over a wide range of telephonic devices. With Windows CE, the
most common telephonic devices are modems linked to an ordinary telephone
line or a modem connected to a GSM or other mobile telephone device. By
using TAPI you no longer have to work with the AT modem commands, or
whatever else your telephone device supports-TAP! provides API functions
to manage these functions and look after differences between various tele
phonic devices. TAPI is independent of the underlying telephone network and
equipment.

Applications using TAPI features make calls into tapi.dll, and this in turn
calls functions in the appropriate service provider DLLs using the Telephone
Service Provider Interface (TSPI). These service provider DLLs communicate
directly with the telephone equipment. As application developers you do not
need to worry about TSPI-you only call TAPI functions.

When using TAPI you will deal with line devices and phone devices:

e Line devices are device-independent representation of a physical phone
line. A line device can contain one or more communication channels be
tween the device and the network.

e Phone devices are the abstraction of the handset-this includes the ear
piece, the microphone, the ringer, and volume controls.

Generally, and in most cases with Windows CE, there is a single phone
device associated with a line device. However, this is not always the case. With
ISDN (Integrated Services Digital Network) a single line device can support sev
eral channels and therefore several phone devices (for example, a voice call and
a data call) at the same time. Most of the programming with TAPI deals with
managing the line device, and all the code presented in this chapter assumes
that there is a single phone device associated with the line device.

While TAPI can be used for any telephone device for which a service
provider DLL is provided, most of the devices used with Windows CE devices
use AT command-based modems. A Unimodem driver is included with Win
dows CE to support such devices. Registry entries are used to specify the pre
cise AT command sequences that are required by a specific modem device

286 Chapter I I e Telephone API (TAPI) and Remote Access Services (RAS)

lineinitialize

to carry out a particular function. These are stored in a sub-key under HKEY_

LOCAL_MACHINE \Drivers\ PCMC IA with a name representing the modem. In
general, applications that use TAPI do not need to be concerned about these
entries or the differences between individual modems.

The TAPI code samples in this chapter show how to do the following:

s Initialize and shut down a line device
s Enumerate the devices available to TAPI
s Open a line device
m Translate telephone numbers from their canonical to dialable form
m Make a call
m Close down a call
e Send and receive data using serial communications through a call setup

by TAPI

The capabilities of a particular device will depend very much on the facili
ties provided by the service provider DLL. Code in this chapter shows how to
determine these capabilities. As with most facilities in Windows CE, TAPI does
not provide all the functions that are available to desktop implementations.

Line Initialization and Shutdown
The TAPI function lineinitialize (Table 11.1) must be called before any
other TAPI function is called. All TAPI functions start with 'line,' but this func
tion doesn't initialize any one particular line device. The function returns a
HLINEAPP handle that is the application's usage handle for TAPI. The header
file 'tapi. h' must be included when using any of the TAPI functions.

linelnitiolize-lnitializes on applications use of TAPl.DLL

LPHLINEAPP lphLineApp Pointer to a HLINEAPP handle in which the application's usage
handle for TAPI is returned.

HINSTANCE hinstance

LINECALLBACK lpfnCallback

LPCTSTR lpszAppName

Instance handle of the application or DLL calling the function.

Callback function, through which notifications are returned for
asynchronous events.

Name of application using TAPI. This string is used in notifications
to indicate the name of the application making calls to TAPI.

LPDWORD lpdwNumDevs Pointer to a DWORD returning the number of line devices available
to the application.

LONG Return Value Zero for success, or a LINERR_ value indicating an error. These
errors are defined in tapi. h.

line Initialization and Shutdown 287

In Listing 11.la lineinitialize is called, and the usage handle is
stored in the global variable g_hLineApp. The function InitializeTAPI re
turns the number of available line devices to the caller. The callback function,
lineCallbackFunc, is described later in the chapter in the section 'Line Call
back Function.'

IMllM Initializing TAP/

II initializes TAPI and returns available number
II of line devices
HLINEAPP g_hLineApp;

DWORD InitializeTAPI()
{

DWORD dwReturn, dwNumLines;
dwReturn = lineinitialize (&g_hLineApp,

hinst,
(LINECALLBACK) lineCallbackFunc,

_T ("Examples Application") ,
&dwNumLines) ;

if(dwReturn == LINEERR_REINIT)
cout << _T("Cannot initialize TAPI at present.")

<< _T("Try again later") << endl;
else if (dwReturn != 0)

cout << _T("Error initializing TAPI: ")
<< dwReturn<< endl;

return dwNumLines;

When an application has finished using TAPI, a call should be made to
lineShutdown. This TAPI function is passed a single parameter, the applica
tion's usage handle stored in the variable g_hLineApp. Listing 11.lb shows a
call to lineShutdown.

Shutting down TAP/

void ShutdownTAPI()
{

if(g_hLineApp !=NULL)
{

lineShutdown(g_hLineApp);
g_hLineApp = NULL;

void Listingll_l()
{

DWORD dwNumLines;

288 Chapter 11 "' Telephone API (TAPI) and Remote Access Services (RAS)

dwNumLines = InitializeTAPI();
if(dwNumLines > 0)

cout << _T("Number of available line devices: ")
<< dwNumLines<< endl;

else
cout <<

_T("TAPI Error or no line devices present.")
<< endl;

ShutdownTAPI();

Enumerating TAPI Devices
The function lineinitialize returns the number of available line devices.
Next, an application typically needs to enumerate this list of devices to decide
which one will be used to make a call. Often, a list of devices will be presented
to the user from which one will be selected. This process of enumeration in
volves the following tasks for each line device:

lill Negotiating with the line device which TAPI version to use by calling the
function lineNegotiateAPIVersion.

1:11 Obtaining the line device's capabilities by calling the function 1 ineGet
DevCaps function. The information returned from this structure includes
a human-friendly description.

Negotiating TAPI Version
Version negotiation is used to ensure that all the parties-the application, TAPI,
and the service provider DLL-agree on the version to use. The TAPI function
lineNegotiateAPIVersion is used for this purpose.

lineNegotiateAP/Version-Negotiates TAP/ version for using a line device

lineNegotiateAPIVersion

HLINEAPP hLineApp

DWORD dwDeviceID

DWORD dwAPILowVersion

DWORD dwAPIHighVersion

LPDWORD lpdwAPIVersion

LPLINEEXTENSIONID
lpExtensionID

LONG Return Value

HLINEAPP handle returned from calling lineinitialize.

Line device identifier to negotiate version for. Between 0 and
dwNumLines-1 returned from lineinitialize.

Minimum version number acceptable to the application.

Maximum version number supported by the application.

DWORD pointer that contains the version number returned from TAPI.

Must be NULL for Windows CE.

Zero for success, or a LINERR_ value indicating an error. These
errors are defined in ta pi. h.

Enumerating TAPI Devices 289

The line device is designated by an integer number between 0 and the
value dwNumLines-1 returned from lineinitialize. In Listing 11.2a three
defines are used to specify the high and low versions that the application can
support. The agreed TAPI version number is returned in the variable dwRAPI
Version.

IMllN Negotiating TAP/ version

#define TAPI_VERSION_l_O
#define TAPI_VERSION_3_0
#define TAPI_CURRENT_VERSION

Ox00010003
Ox00030000
TAPI_VERSION_3 0

DWORD NegotiateTAPIVersion(DWORD dwLineid)
{

DWORD dwReturn, dwRAPIVersion;

if (dwReturn = lineNegotiateAPIVersion
g_hLineApp, // TAPI registration handle
dwLineid, //Line device to be queried
TAPI_VERSION_l_O, //Least recent API version
TAPI_CURRENT_VERSION, //Most recent API version
&dwRAPIVersion, //Negotiated API version
NULL)) I I Must be NULL

cout << _T ("Could not negotiate TAPI version")
<< dwLineid<< endl;

return O;

return dwRAPIVersion;

Getting Line Device Capabilities
The TAPI function lineGetDevCaps (Table 11.3) is used to return information
about a line device in a LINEDEVCAPS structure. This function needs to be
passed a negotiated TAPI version number and the device identifier represent
ing the line device whose capabilities are to be returned. The complexity in
calling this function results from the LINEDEVCAPS structure-the size of the
structure differs from line device to line device. Additional information is ap
pended onto the end of the LINEDEVCAPS structure, the size of which depends
on the line device. The LINEDEVCAPS structure member dwNeededSize con
tains, after a call to lineGetDevCaps, the required size of the LINEDEVCAPS
structure.

In Listing 11.2b, the negotiated TAPI version is obtained by calling the
NegotiateTAPIVersion function from Listing 11.2a. A 'do' loop is then exe
cuted that first calls lineGetDevCaps with a pointer to a LINEDEVCAPS struc
ture initially created with the size of LINEDEVCAPS defined in TAPI. H. The
LINEDEVCAPS structure is then reallocated using the size contained in the

290 Chapter 11 0 Telephone API (TAPI) and Remote Access Services (RAS)

lineGetDevCaps-Returns capabilities of a line device

lineGetDevCaps

HLINEAPP hLineApp

DWORD dwDeviceID

HLINEAPP handle returned from calling lineinitialize.

Line device identifier to negotiate version for. Between O and
dwNumLines-1 returned from lineinitialize.

DWORD dwAPIVersion Negotiated TAPI version number returned from lineNegotiate
APIVersion.

DWORD dwExtVersion Not supported, pass as zero.

LPLINEDEVCAPS
lpLineDevCaps

LINEDEVCAPS structure filled in with the line device's capabilities.

LONG Return Value Zero for success, or a LINERR_ value indicating an error. These
errors are defined in tapi. h.

dwNeededSize member, and another call to lineGetDevCaps is made. This
new structure should then be sufficiently large to return all the line device's
capabilities.

Getting line device capabilities

void DisplayLineinfo(DWORD dwLineid)
{

DWORD dwRAPIVersion, dwSize, dwReturn;
LPLINEDEVCAPS lpLineDevCaps = NULL;
LPTSTR lpszString;

II first negotiate TAPI version
dwRAPIVersion = NegotiateTAPIVersion(dwLineid);
if(dwRAPIVersion == 0)
{

cout << _T("Could not negotiate TAPI version")
<< dwLineid<< endl;

return;

dwSize = sizeof (LINEDEVCAPS);
II Allocate enough memory for lpLineDevCaps.
do
{

if (! (lpLineDevCaps = (LPLINEDEVCAPS)
LocalAlloc (LPTR, dwSize)))

cout << _T ("Out of memory") << endl;
return;

Enumerating TAPI Devices 291

lpLineDevCaps->dwTotalSize = dwSize;

if (dwReturn = lineGetDevCaps (g_hLineApp,
dwLineid,
dwRAPIVersion,
0,
lpLineDevCaps))

cout << _T("Could not get Dev Caps")
<< endl;

return;

II Stop if the allocated memory is equal to
II or greater than the needed memory.
if (lpLineDevCaps->dwNeededSize <=

lpLineDevCaps->dwTotalSize)
break;

dwSize = lpLineDevCaps->dwNeededSize;
LocalFree (lpLineDevCaps);
lpLineDevCaps = NULL;

while (TRUE);
lpszString = (LPTSTR) ((LPBYTE) lpLineDevCaps +

lpLineDevCaps->dwLineNameOffset);
II now display information
cout << _T ("Device: ") << dwLineid << _T (" ")

<< lpszString << endl;
LocalFree (lpLineDevCaps);

void Listing11_2()
{

DWORD dwNumLines, dw;

if(! (dwNumLines = InitializeTAPI()))
return;

for(dw = O; dw < dwNumLines; dw++)
DisplayLineinfo(dw);

ShutdownTAPI();

After the 'do' loop, Listing 11.2b shows how to extract data at the end of
the LINEDEVCAPS structure defined in Tapi. h. The device name is returned
as a Unicode string, the offset of which is contained in the dwLineNameOff
set member. The following code returns a pointer that uses this offset (as a
number of bytes) from the start of the LINEDEVCAPS structure:

lpszString = (LPTSTR) ((LPBYTE)lpLineDevCaps +
lpLineDevCaps->dwLineNameOffset);

292 Chapter 11 e Telephone API (TAPI) and Remote Access Services (RAS)

The LINEDEVCAPS structure contains a large number of members de
scribing the line device's capability. Table 11.4 describes some of the more im
portant members used in Windows CE.

MmijillM Important LINEDEVCAPS structure members

Member Purpose

DWORD dwTotalSize Actual size of the LINEDEVCAPS structure. Set before calling line
DevCaps.

DWORD dwNeededSize Size of the LINEDEVCAPS structure required for the line device. Set
after calling 1 ineDevCaps.

DWORD dwUsedSize

DWORD dwLineNameSize

Size of the LINEDEVCAPS returned for the line device.

Size in bytes of the line device's name.

DWORD dwLineNameOffset Offset, in bytes, from the start of the LINEDEVCAPS structure, for the
location of the line device's name.

DWORD dwBearerModes Flag array describing the type of calls that a line device can make.

DWORD dwMaxRate

DWORD dwMediaMode

Examples include LINEBEARERMODE_VOICE for voice call,
LINEBEARERMODE_DATA for data call.

The maximum possible transmission rate in bits per second.

A flag array indicating the media modes the line device can transmit
data in. Examples include LINEMEDIAMODE_DATAMODEM for data
transfer, LINEMEDIAMODE_G3FAX for group 3 fax, and LINEMEDIA
MODE_G4FAX for group 4 fax.

The dwMediaMode parameter is important, as this indicates how data can
be transmitted once the call is established. For example, if dwMediaMode in
cludes the flag LINEMEDIAMODE_DATAMODEM, the serial communications func
tions like ReadFile and WriteFile can be used by an application to receive
and send data.

Making a Call with TAPI
Once a device's capabilities have been determined, TAPI functions can be used
to make, maintain, and terminate a call. The steps required are the following:

111 Open a device line using the function 1 ineOpen.
111 Translate the telephone number from canonical form (including inter

national dial-in number and area code) to a dialable form (taking into ac
count the user's current location).

111 Call lineMakeCall to make the call that connects asynchronously.

lineOpen

Making a Call with TAPI 293

e Provide a lineCallbackFunc function to receive notifications.
e Close the call by calling lineDrop, lineDeallocateCall and line

Close.

Opening a Line
The TAPI lineOpen function opens a line device ready for making a call. The
line device identifier and the negotiated TAPI version are passed to the func
tion, which returns a line device handle (Table 11.5).

lineOpen-Opens a line device ready for making a coll

HLINEAPP hLineApp

DWORD dwDeviceID

HLINEAPP handle returned from calling lineinitialize.

Line device identifier to negotiate version for. Between 0 and dwNum
Lines-1 returned from lineinitialize.

LPHLINE lphLine

DWORD dwAPIVersion

DWORD dwExtVersion

DWORD
dwCallbackinstance

DWORD dwPrivileges

DWORD dwMediaModes

LPLINECALLPARAMS
const lpCallParams

LONG Return Value

Pointer to an HLINE variable that receives a handle to the open line device.

Negotiated TAPI version number returned from lineNegotiateAPI
Version.

Unsupported, pass as zero.

Application-defined value passed to the lineCallbackFunc function
with notification messages.

Incoming call privileges. Pass LINECALLPRIVILEGE_NONE if incoming
calls are not required or supported.

Media modes supported by application when receiving calls. Pass 0 if
incoming calls are not supported.

CALLPARAMS structure specifying how the call should be made. Passing
NULL specifies that a default call will be made.

Zero for success, or a LINERR_ value indicating an error. These errors
are defined in tapi. h.

Listing 11.3a shows the first part of the function MakeCall that negoti
ates the TAPI version number and calls lineOpen to obtain a HLINE handle
through which the call will be made.

Function MakeCa/1-0pening a line

HLINE g_hLine
HCALL g_hCall

NULL;
NULL;

void MakeCall(DWORD dwLineid, LPTSTR szPhoneNumber)
{

294 Chapter 11 ® Telephone API (TAPI) and Remote Access Services (RAS)

DWORD dwTAPIVersion, dwReturn;
LPLINETRANSLATEOUTPUT lpTransOutput = NULL;
DWORD dwSizeOfTransOut = sizeof (LINETRANSLATEOUTPUT);
TCHAR szDialablePhoneNum[TAPIMAXDESTADDRESSSIZE + 1];

cout << _T("Dialing: ") << szPhoneNumber<< endl;
dwTAPIVersion = NegotiateTAPIVersion(dwLineid);
if(dwTAPIVersion == 0)

return;

if (dwReturn = lineOpen(
g_hLineApp, II Usage handle for TAPI
dwLineid, II Cannot use the LINEMAPPER value
&g_hLine, II Line handle
dwTAPIVersion, II API version number
0, II Must set to zero for Windows CE
0, II No data passed back
II Can only make an outgoing call
LINECALLPRIVILEGE_NONE,
0, II Media mode
NULL)) II Must set to NULL for Windows CE

cout << _T("Could not open line: ") << dwReturn;
return;

II Remainder of program follows.

Translating a Telephone Number
Telephone numbers are usually stored in canonical format, and this may in
clude the international dial-in number and area code. Canonical format tele
phone numbers must first be translated to a dialable format before making the
call. This translation takes into account the configured current location of the
user and determines if a local, long distance, or international call needs to be
made. It is important to call lineTranslateAddress even if you have a cor
rectly formatted telephone number for the current location. Some line devices
place a 'P' or 'T' before the telephone number to indicate pulse or tone dial
ing when translating the number, and without this the call will fail. The func
tion lineTranslateAddress (Table 11.6) is passed the TAPI usage handle,
device line identifier, a negotiated TAPI version, and the phone number to be
translated.

The code in Listing 11.3b is a continuation of the MakeCall function
started in Listing ll.3a. The LINETRANSLATEOUTPUT is another structure that
has variable size depending on the amount of information appended after the
structure as defined in tapi. h. The LINETRANSLATEOUTPUT structure lp
TransOutput must be allocated to a sufficient size to receive the translated
telephone number. In the first iteration of the 'do' loop, the allocation is made
to the size of LINETRANSLATEOUTPUT, with the dwTotalSize member being

Making a Call with TAPI 29 5

lineTranslateAddress-Translates a phone number from canonical to dialable form

lineTranslateAddress

HLINEAPP hLineApp HLINEAPP handle returned from calling lineinitialize.

Line device identifier to negotiate version for. Between O and
dwNumLines-1 returned from lineinitialize.

DWORD dwDeviceID

DWORD dwAPIVersion Negotiated TAPI version number returned from lineNegotiate
APIVersion.

LPCTSTR lpszAddressin

DWORD dwCard

Telephone number to be translated.

Unsupported, pass as zero.

DWORD dwTranslateOptions Translate options constants. Examples are

LINETRANSLATEOPTION_CANCELCALLWAITING to cancel call
waiting.

LPLINETRANSLATEOUTPUT
lpTranslateOutput

LINETRANSLATEOPTION_FORCELOCAL to force a local call.

Pointer to a LINETRANSLATEOUTPUT structure to receive the
translated telephone number.

LONG Return Value Zero for success, or a LINERR_ value indicating an error. These
errors are defined in tapi. h.

set to this size. On returning from calling lineTranslateAddress the dw
NeededSize member will contain the actual required size of the LINETRANS
LATEOUPUT structure. If this is greater than the size provided, the structure is
reallocated and the function lineTranslateAddress called again.

Function MakeCall-Translating phone number

II Function MakeCall continued
II Call translate address before dialing.
do
{

II Allocate memory for lpTransOutput.
if (! (lpTransOutput = (LPLINETRANSLATEOUTPUT)

LocalAlloc(LPTR, dwSizeOfTransOut)))
return;

lpTransOutput->dwTotalSize = dwSizeOfTransOut;

lineTranslateAddress (if (dwReturn =
g_hLineApp,
dwLineid,
dwTAPIVersion,
szPhoneNumber,
0'

II Usage handle for TAPI
II Line device identifier
II Highest TAPI version
II Address to be translated
II Must be 0 for Windows CE

296 Chapter 11 e Telephone API (TAPI) and Remote Access Services (RAS)

0'
lpTransOutput))

II No associated operations
II Translated address

LocalFree(lpTransOutput);
return;

if (lpTransOutput->dwNeededSize <=
lpTransOutput->dwTotalSize)

break;
else
{

dwSizeOfTransOut
lpTransOutput->dwNeededSize;

LocalFree (lpTransOutput);
lpTransOutput = NULL;

while (TRUE) ;

II Save the translated phone number for dialing.
wcscpy(szDialablePhoneNum,

(LPTSTR) ((LPBYTE) lpTransOutput +
lpTransOutput->dwDialableStringOffset));

cout << _T ("Translated Number: ")
<< szDialablePhoneNum << endl;

II Remainder of program follows.

Once a successful call to lineTranslateAddress has been made, the
dwDialableStringOffset member is used to locate the translated telephone
number at the end of the lpTransOutput structure. The telephone number is
copied into the string buffer szDialablePhoneNum.

wcscpy(szDialablePhoneNum,
(LPTSTR) ((LPBYTE) lpTransOutput +

lpTransOutput->dwDialableStringOffset));

Now that a translated telephone number has been obtained, the call can
be made. Notice that a telephone number is translated using the line device
identifier and not a handle to an open line device. This means that the tele
phone numbers can be translated without first opening the line device.

Making the Call
The function lineMakeCall (Table 11.7) makes a call through a handle to an
opened line device using a translated telephone number. The function returns
a handle to the call in a HCALL variable. The call is made asynchronously
that is, 1ineMakeCal1 will return before the dialing has completed. An appli
cation can monitor the various stages of making the call (such as dialing and
then making the connection) through the callback function set when TAPI was

Making a Call with TAPI 297

lineMakeCall-Dials the specified number through an open line device

lineMakeCall

HLINE hLine

LPHCALL lphCall

Handle to an open line obtained by calling 1 ineOpen.

Pointer to an HCALL variable in which the call
handle is returned.

LPCTSTR lpszDestAddress Telephone number to be dialed.

DWORD dwCountryCode Country code to use, or O for the default.

LPLINECALLPARAMS LINECALLPARAMS structure specifying how the call
const lpCallParams is to be made. If NULL, a default call is made.

LONG Return Value Zero for success, or a LINERR_ value indicating an
error. These errors are defined in tapi. h.

initialized with a call to lineinitialize. The structure of this callback func
tion is described in the next section. You should note that the callback func
tion is called using the same thread that is used to initialize TAPI. If this is the
same thread used to call lineMakeCall, take care in blocking the thread
you might end up blocking the calls to the callback function as well.

Function MakeCall-Dialing the number

II Make the phone call.
dwReturn = lineMakeCall(

g_hLine,
&g_hCall,
szDialablePhoneNum,
0,
NULL);

if (dwReturn < 0)

II handle to open line
II return handle to call
II phone number to dial
II default country code
II call parameters

cout << _T("Could not make call") <<
dwReturn<< endl;

else if(dwReturn >= 0)
cout << _T("Dialing asynchronously") << endl;

void Listing11_3()
{

DWORD dwNumLines;

if(! (dwNumLines = InitializeTAPI()))
return;

II insert telephone number here in place of xxxxxx

MakeCall (6, _T ("xxxxxx ")) ;

298 Chapter 11 e Telephone API (TAPI) and Remote Access Services (RAS)

The code in Listing 11.3c completes the code in MakeCall. A function
call is made to 1 ineMakeCall to call the number and receive back a handle
to the new call in g_hCall.

Line Callback Function
An application initializing TAPI with lineinitialize should provide a call
back function like that shown in Listing 11.3d. The function is passed a device
handle and message type in dwMsg. When making a call, the dwMsg value will
contain the value LINE_CALLSTATE, and these are generally the only messages
an application making straightforward calls using TAPI will be interested in.

When the dwMsg variable has the value LINE_CALLSTATE, the dwParaml
parameter contains a reason code for the notification, such as LINECALL
STATE_DIALING. These constants are defined in tapi. h. The most important
reason code is LINECALLSTATE_CONNECTED-once this has been received an
application can start sending and receiving data through the connection.

lineCallbackFunc

VOID FAR PASCAL lineCallbackFunc(DWORD hDevice,
DWORD dwMsg, DWORD dwCallbackinstance,
DWORD dwParaml, DWORD dwParam2, DWORD dwParam3)

II only interested in LINE_CALLSTATE messages
if(dwMsg != LINE_CALLSTATE)

return;
cout << _T("LINE_CALLSTATE: ");
II dwParaml is the specific LINE_CALLSTATE
II change occurring
switch (dwParaml)

{

case LINECALLSTATE_IDLE:
cout << _T("Idle");
break;

case LINECALLSTATE_DIALTONE:
cout << _T("Dial tone");
break;

case LINECALLSTATE_DIALING:
cout << _T ("Dialing");
break;

case LINECALLSTATE_PROCEEDING:
cout << _T("Dialing has completed");
break;

case LINECALLSTATE_RINGBACK:
cout << _T ("Ring back") ;
break;

case LINECALLSTATE_CONNECTED:
cout << _T ("Connected");
break;

case LINECALLSTATE_BUSY:
cout << _T("Busy");
break;

Making a Coll with TAPI 299

case LINECALLSTATE_DISCONNECTED:
switch (dwParam2)
{

case LINEDISCONNECTMODE_NORMAL:
cout <<

_T("Normal disconnect");
break;

case LINEDISCONNECTMODE_UNKNOWN:
cout <<

_T ("Unknown reason") ;
break;

case LINEDISCONNECTMODE REJECT:
cout <<

_T ("Remote Party rejected") ;
break;

case LINEDISCONNECTMODE_BUSY:
cout <<

_T ("Remote busy");
break;

default:
cout <<

_T ("Disconnect: Other reason")
<< dwParam2;

break;
Listing11_4 ();
}

break;
default:

II close call and line

cout << _T("Other notification")
<< dwParaml;

cout<< endl;

The reason code LINECALLSTATE DISCONNECTED is sent when a call is
terminated, and ·the dwParam2 parameter contains a reason code for the dis
connection. A common disconnect code is LINEDISCONNECTMODE_BUSY, in
dicating that the telephone number being called is engaged. In the event of a
LINECALLSTATE_DISCONNECTED reason code being received, an application
should close the relevant TAPI handles associated with the call. In Listing 11.3d

300 Chapler 11 * Telephone API (TAPI) and Remote Access Services (RAS)

this is done by calling the function Listingl1_4, as described in the next
section.

Shutting Down a Call
Your application or the party being called can terminate a call. To drop a call,
your application should call the 1 ineDrop function to drop the call, and then
lineDeallocateCall to free any resources associated with the call and close
the HCALL handle (Listing 11.4). At this point, the open line device can be used
to make another call, or lineClose can be called to close the HLINE handle.

Shutting down a coll

void Listing11_4()
{

lineDrop(g_hCall, II call to drop
NULL, II no data to be sent on drop
0); II length of data to be sent

lineDeallocateCall(g_hCall);
g_hCall = NULL;
lineClose(g_hLine);
g_hLine = NULL;
ShutdownTAPI();

In the event of the call being terminated by the other party, the call
back function will receive a LINECALLSTATE_DISCONNECTED notification as
described in the previous section.

Communicating Through an Open Call
Once a call has been made, an application can hand over a voice call to the
user to complete, or for a data call it can start transferring data. The format of
the data depends on the media selected to transfer the data, and this dictates
the API functions used to send and receive data. For example, if you were writ
ing a Windows CE device to send recorded voice through a telephone call you
might use the Wave audio API functions. In the example presented in this chap
ter, a serial communications handle is obtained from TAPI to allow ReadFile
and WriteFile to be used to read and send digital data. This technique would
allow you to use TAPI to make a telephone call to a modem on a remote com
puter, and then once connected, use ReadFile and Wri teFile to commu
nicate with a computer.

lineGetID

HLINE hLine

Communicating Through an Open Call JQl

Obtaining a Communications Port Handle
In Chapter 9 ("Serial Communications"), the function CreateFile was called
to open a serial port and obtain a file handle, and then ReadFile and Write
File were used to transfer data. Finally, CloseHandle was called to close the
port. Instead of calling CreateFile directly, you can make a call using a mo
dem on a communications port using TAPI, and then call the lineGetID
(Table 11.8) function to obtain a file handle.

/ineGet/D-Obtains a handle for the given media format

DWORD dwAddressID

Handle to an open line obtained by calling lineOpen.

Address ID on open line, use 0.

HCALL hCall

DWORD dwSelect

Handle to a call.

Constant specifying which of hLine, dwAddressID, and hCall to use:

LINECALLSELECT_LINE use hLine

LINECALLSELECT_ADDRESS use dwAddressID

LINECALLSELECT_CALL use hCall

LPVARSTRING lpDeviceID Pointer to a DWORD in which the data associated with the request is
returned.

LPCTSTR lpszDeviceClass

LONG Return Value

String containing the media format for which the handle is to be re
turned. For example, "corrun/datamodem" for a serial communications
handle for a modem connection.

Zero for success, or a LINERR_ value indicating an error. These errors
are defined in tapi. h.

Data for a given media format can be obtained for an open line, an ad
dress on that line, or an open call handle. In the example given below in List
ing 11.Sa, a handle to an open line is passed and the file handle for the serial
communications device is returned in lpVarString, a pointer to a VAR
STRING structure. TAPI allows a communications handle to be returned for an
open line, not just a line with an open telephone call. This allows data to be
transferred between an application and a modem device before the call is made.

Getting a communications port handle

HANDLE GetCornmPort()
{

DWORD dwSize = sizeof(VARSTRING) + 1024;
DWORD dwReturn;

302 Cha pier 11 ® Telephone API (TAP!) and Remote Access Services (RAS)

LPVARSTRING lpVarString =
(LPVARSTRING)LocalAlloc(LPTR, dwSize);

if(lpVarString ==NULL)
return NULL;

lpVarString->dwTotalSize = dwSize;

dwReturn = lineGetID(g_hLine, //handle to open line
0, II address ID ignored
NULL, // call handle ignored
II we're only passing a line handle
LINECALLSELECT_LINE,
lpVarString,
_T ("comm/ da tamodem")) ;

if(dwReturn != 0)
{

cout << _T("Could not get line ID") << endl;
return NULL;

LPHANDLE lpHandle = (HANDLE*) ((LPBYTE)
lpVarString + lpVarString->dwStringOffset);

HANDLE hComm = *lpHandle;
cout << _T("Port handle: ") << (DWORD)hComm << endl;
cout << _T("Communications port: ")

<< (LPTSTR) ((LPBYTE)lpVarString +
lpVarString->dwStringOf f set +
sizeof (HANDLE))

<< endl;
return hComm;

The VARSTRING structure allows variable amounts of data to be returned from
1 ineGet ID; this data can either be binary or string. The format of the data de
pends on the media format that is requested, and the data is returned at the
end of the VARSTRING structure. The members in VARSTRING allow negotia
tion of the required size of the structure in the same way the structure LINE
TRANSLATEOUTPUT was used in Listing 11.3b. The VARSTRING member dw
TotalSize is set to the actual size of the structure on calling lineGetID, and
the dwNeededSize returns the actual number of bytes required to return all
the data. In Listing 11.Sa the application assumes that the size of the structure
passed in is sufficient for the data returned. In a production system the size
should be checked and negotiated.

The VARSTRING structure returns two pieces of information for the
"comm/modem" media data type:

e HANDLE-A file handle through which data can be transferred using
ReadFile and WriteFile

e LPTSTR-The name of the device associated with the call as a NULL
terminated string

Communicating Through an Open Call 303

The VARSTRING member dwStringOffset specifies where to start
looking for the returned data. The following lines of code obtain a pointer to
the first byte of data in the VARSTRING structure, cast this to a HANDLE*, and
assign it to lpHandle. Then, the contents of the pointer's destination is copied
into the hComm variable:

LPHANDLE lpHandle = (HANDLE*) ((LPBYTE)
lpVarString + lpVarString->dwStringOffset);

HANDLE hComm = *lpHandle;

The device's name follows the handle, and a pointer to this name is re
turned with the following code, which adds the size of a HANDLE to the dw
StringOffset:

cout << _T ("Communications port: ")
<< (LPTSTR) ((LPBYTE)lpVarString +

lpVarString->dwStringOf f set +
sizeof (HANDLE))

<< endl;

Sending and Receiving Data
Once the handle has been obtained from lineGetID, the functions ReadFile
and Wri teFile can be used. These are described in Chapter 9 ("Serial Commu
nications"). In Listing ll.5b the SendAndRecei ve function is passed a string
to the written to the communications port (in lpszSend) using WriteFile.
This is converted from Unicode to ANSI. The function then goes on to read re
turned data from the communications port using ReadFile. This is converted
into Unicode and returned in the szReceive parameter.

Sending and receiving data

BOOL SendAndReceive(HANDLE hComm, LPTSTR lpszSend,
LPTSTR lpszReceive)

DWORD dwBytesWritten, dwBytesRead;
DWORD dwBytesToWrite;
char szmbsSend[1024], szmbsReceive[1024];

dwBytesToWrite = wcstombs(szmbsSend, lpszSend, 1024);
if(!WriteFile(hComm, szmbsSend, dwBytesToWrite,

&dwBytesWritten, NULL))

cout << _T("Could not write file: ")
<< GetLastError() << endl;

return FALSE;

if(!ReadFile(hComm, szmbsReceive, 1024,
&dwBytesRead, NULL))

304 Chapter 11 Telephone API (TAPI) and Remote Access Services (RAS)

cout << _T("Could not read file:")
<< GetLastError() << endl;

return FALSE;

lpszReceive[dwBytesRead] = '\0';
mbstowcs(lpszReceive, szmbsReceive, 1024);
cout << _T("Bytes Read: ") << dwBytesRead << endl;
cout << lpszReceive<< endl;
return TRUE;

void Listing11_5()
{

HANDLE hComm;
TCHAR szReceive[1024];

if(g_hLine ==NULL)
{

cout << _T("No open line") << endl;
return;

hComm = GetCommPort();
SendAndReceive(hComm, _T("\n"), szReceive);

The function Listingll_S in Listing 11.Sb shows how the GetComm
Port function can be called to obtain a serial communications port handle.
Next, a call is made to SendAndRecei ve, which will send a new line charac
ter to the connected host and wait for data to come back. Notice that Close
Handle is not called-doing so will terminate the call, which may not be de
sirable. The handle will be closed by TAPI when a lineClose function call is
executed.

Remote Access Services (RAS)
The Remote Access Service (RAS) functions can be used to make a connection
using a pre-defined RAS phone book entry. RAS will make the call, logon to
the remote computer, handle authentication, and then negotiate network con
nections. You can use RAS connections to do the following:

* Dial into a Windows NT or 2000 RAS-enabled server, and then use TCP/IP
using Point to Point Protocol (PPP) to connect to file shares, printers, intra
net, email server, or other resources. The Windows NTLM (NT LAN Man
ager) authentication will be handled by RAS.

* Dial into an Internet Service Provider (ISP), and then use TCP/IP using
Point to Point Protocol (PPP) to connect to the Internet or email. RAS will
usually handle the logon and authentication required by the ISP.

RasEnwnEntries

Remote Access Services (RAS) 305

RAS maintains a phone book with entries for each available connection.
Users can manage this phone book using the Connections folder on the desk
top. Each phone book entry has an associated name and information on how
the connection should be made (such as the phone number, login credentials,
and protocols to use). Standard RAS phone book entries are preinstalled to sup
port the connection to desktop PCs, such as 'Serial Port @ 19200.'

Unlike TAPI, an application docs not directly use the connection itself.
Instead, it uses the TCP/IP network protocol through the connection managed
by RAS. You can use RAS in your own applications to make a connection to
a server, and then use network techniques such as HTTP and sockets to com
municate with the server (see Chapter 8). Alternatively, you can check whether
a RAS connection is already made, and then use the existing connection if it is
the server to which you require access. Note that RAS in Windows CE only sup
ports a single connection at any one time, and does not support incoming con
nections. This means that, if a Windows CE device is currently connected to a
desktop PC, RAS cannot be used to dial out through, for example, a modem.

In Windows CE the phone book is stored in the registry and not in files
as is the case with Windows NT/98/2000. The key HKEY_CURRENT_USER\
Comm\RasBook has a sub-key for each of the entries, such as '115200 De
fault.' These sub-keys have values specifying the connection parameters,
such as 'User,' 'Domain,' and 'Password' (which is encrypted).

listing RAS Phone Book Entries
The names of all the RAS phone book entries can be obtained through a call
to the function RasEnumEntries (Table 11.9). To call this and any other RAS
function, you should include ras. h for function prototypes and constants, and
raserror. h for error codes.

RasEnumEntries-Retrieves all RAS phone book entries

LPWSTR Reserved Pass as NULL.

LPWSTR lpszPhoneBookPath

LPRASENTRYNAME
lprasentryname

LPDWORD lpcb

LPDWORD lpcEntries

DWORD Return Value

In Windows CE the Phone Book is stored in the registry, so pass
as NULL.

Pointer to an array of RASENTRYNAME structures that will receive
information on the RAS phone book entries.

Size of the array pointed to by LPRASENTRYNAME in bytes.

Pointer to a DWORD that contains the number of returned phone
book entries.

0 for success, or an error code defined in the header file
raserror. h.

306 Chapter 11 e Telephone API (TAP!) and Remote Access Services (RAS)

An application calling RasEnumEntries should first allocate an array of
RASENTRYNAME structures with enough elements to hold the expected number
of phone book entries. The RASENTRYNAME structure has only two members:

111 dwS i z e-The size of the structure in bytes
s szEntryName-A buffer in which the phone book entry name (e.g.

'115200 Default') is placed

Before calling RasEnumEntries, the first element in the RASENTRYNAME
array should have the dwSize member set to the size of a single RASENTRY
NAME structure. In Listing 11.6, an array of 20 RASENTRYNAME structures is allo
cated, the first member is set to the size of the structure, and the dwSize vari
able is set to the overall size of the array in bytes. A call to RasEnumEntries
is then made. A 'for' loop is used to display the entry name for all the returned
phone book entries

Listing RAS phone book entries

#include <ras.h>
#include <raserror.h>

void Listing11_6()
{

LPRASENTRYNAME lpRasEntry = NULL;
DWORD dwRes, dwSize, dwEntries, dw;

lpRasEntry =new RASENTRYNAME[20];
if(lpRasEntry ==NULL)
{

cout << _T("Out of memory") << endl;
return;

lpRasEntry[O] .dwSize = sizeof(RASENTRYNAME);
dwSize = sizeof(RASENTRYNAME) * 20;
dwRes = RasEnumEntries(NULL, NULL, lpRasEntry,

&dwSize, &dwEntries);
if (dwRes != 0)

cout << _T("Error getting RAS entries")
<< dwRes<< endl;

else
{

for(dw = O; dw < dwEntries; dw++)
{

cout << lpRasEntry[dw] .szEntryName << endl;

delete[] lpRasEntry;

Remote Access Services (RAS) 307

It is possible that more RAS phone book entries exist than will fit in the
supplied array. RasEnumEntries is meant to return an ERROR_BUFFER_TOO_
SMALL error, and only return the number of entries that fit in the array. How
ever, in Windows CE RasEnumEntries returns a 'O' value for success even if
all the entries cannot be returned. So, if your array is completely full on a return
from RasEnumEntries, you should reallocate the array to make it larger and
call RasEnumEntries again to ensure that all the entries are returned.

Making a RAS Connection
Connecting using RAS involves two steps:

w Setting the connection parameters, such as the login name, telephone
number, and domain name

w Making the call using the RasDial function

The easiest way of setting the connection parameters is to call the Ras -
GetEntryDialParams (Table 11.10) function to retrieve settings from the reg
istry for the given phone book entry. You can then either use the default values
or change them appropriately. The RASDIALPARAMS structure can be passed
to RasDial to actually make the connection.

RosGetEntryOio/Poroms-Retrieves default connection settings for a phone book entry

RasGetEntryDialParams

LPWSTR lpszPhoneBook

LPRASDIALPARAMS
lpRasDialParams

LPBOOL lpf Password

DWORD Return Value

Name of the phone book entry, such as '115200 Default'

Pointer to a RASDIALPARAMS structure to receive the connection settings

TRUE if the password was returned, FALSE if it needs to be supplied

O for success, or an error code defined in the header file raserror. h

The RASDIALPARAMS structure contains members for the essential pa
rameters for making a connection. The most important ones are the following:

* dwSize-Size of the array in bytes. This should be initialized before call-
ing RasGetEntryDialParams.

e szEntryName-The phone book entry name, e.g. '115200 Default.'
® szUserName-Name used for logon.
* szPassword-Password used for logon. This will need to be set if lpf

Password is FALSE on return from RasGetEntryDialParams.
e szDomain-Domain used for authentication.

The RAS connection is made by calling the RasDial function (Table
11.11). This function is passed a RASDIALPARAMS structure and returns a

308 Chapler 11 Telephone API (TAPI) and Remote Access Services (RAS)

HRASCONN connection handle. The function makes the call asynchronously
it returns before the connection has been made. Usually, an application will re
quest that notifications through a WM_RASDIALEVENT message be sent to a
designated window, as described in the next section.

lfflijdllll RasOial-Makes a RAS connection

RasDial

LPRASDIALEXTENSIONS
dialExtensions

NULL for Windows CE.

LPTSTR phoneBookPath NULL for Windows CE. The Phone Book is in the registry.

RASDIALPARAMS structure returned through calling RasGetEntry
DialParams.

LPRASDIALPARAMS
rasDialParam

DWORD NotifierType How to notify application of dialing progress. 0 for no notification,
or OxFFFFFFFF to indicate that the 'notifier' parameter contains

LPVOID notifier

a window handle to receive a WM_RASDIALEVENT message.

Pointer to a hWnd to receive WM_RASDIALEVENT messages, or NULL
for no notification.

LPHRASCONN pRasConn Pointer to a HRASCONN variable to receive a RAS connection handle.

DWORD Return Value O for success, or an error code defined in the header file raserror. h.

In Listing 11.7a, the RasGetEntryDialParams and RasDial functions
are used to make a connection. Note that RasDial will fail with an error 602
if there is already a RAS connection. The function Listing11_7 is passed the
window handle of the main application window, and this is used for notification.

Making a connection using RAS

HRASCONN g_hRasConn NULL;

II NB: Assumes that a RAS connection (such as ActiveSync)
II is not already open. If this is the case, RasDial
II returns an error 602.

void Listing11_7(HWND hWnd)
{

RASDIALPARAMS rasDialParams;
DWORD dwRes;
BOOL bPassword;

rasDialParams.dwSize = sizeof(RASDIALPARAMS);
II change "SPL" to your RAS entry name
wcscpy(rasDialParams.szEntryName, _T("SPL"));
dwRes = RasGetEntryDialParams(NULL,

&rasDialParams, &bPassword);

if (dwRes ! = 0)
{

Remote Access Services (RAS) 309

cout << _T("Error getting Dial Params:")
<< dwRes << endl;

return;

if (!bPassword)
cout << _T("Password not returned") << endl;

dwRes = RasDial(NULL, NULL, &rasDialParams,
OxFFFFFFFF, hWnd, &g_hRasConn);

if (dwRes ! = 0)
cout << _T("Error dialing RAS: ")

<< dwRes << endl;

Monitoring a RAS Connection
An application can specify a window handle that will receive WM_RASDIAL
EVENT messages so that the progress of a connection can be monitored. The
code in Listing 11.7b lists the function RasDialEvent that is called from
the main window message procedure when a WM_RASDIALEVENT is called.
The wParam value contains a value defined in the RASCONNSTATE enumera
tion. The code in Listing 11. 7b shows some of the more important event num
bers, such as connection and disconnection. An application should wait until a
RASCS_Authenticated event has been received-this indicates that the con
nection has been made, the user has been authenticated, and a network con
nection is present.

Responding to WM_RASDIALEVENT

II This function is called from the message-processing
II function for the windows with the hWnd handle passed
II to RasDial. See code in Examples.cpp relating to the
II WM_RASDIALEVENT message

void RasDialEvent(HWND hWnd, WPARAM wParam, LPARAM lParam)
{

if(wParam == RASCS_OpenPort)
cout << _T ("Opening Port") << endl;

else if(wParam == RASCS_PortOpened)
cout << _T("Port Opened") << endl;

else if(wParam == RASCS_ConnectDevice)
cout << _T ("Connecting to device")<< endl;

else if(wParam == RASCS_DeviceConnected)
cout << _T("Connected") << endl;

else if(wParam == RASCS_Authenticated)
cout << _T ("Authenticated") << endl;

else if(wParam == RASCS_DeviceConnected)
cout << _T("Connected") << endl;

310 Chapter l l Telephone API (TAPI) and Remote Access Services (RAS)

else if(wParam == RASCS_AllDevicesConnected)
cout << _T ("All devices connected") << endl;

else if(wParam == RASCS_Authenticate)
cout << _T("Waiting for authentication") << endl;

else if(wParam == RASCS_AuthAck)
cout << _T("Authentication acknowledged") << endl;

else if(wParam == RASCS_Disconnected)
cout << _T("Disconnected") << endl;

Dropping a RAS Connection
An application can drop a RAS connection through calling the RasHangUp
function, and passing the HRASCONN returned from calling RasDial. A RAS
connection is not owned by any one particular application, so the RAS con
nection is not automatically dropped when the application that made the con
nection terminates. Also, as described in the next section, an application can
use a connection already made by another application.

Dropping a RAS connection

void Listingl1_8()
{

if(g_hRasConn !=NULL)
{

RasHangUp(g_hRasConn);
g_hRasConn = NULL;

else
cout << _T("Not connected") << endl;

Testing for an Existing RAS Connection
An application should test for an existing RAS connection before attempting
to make a new connection since Windows CE only supports a single connec
tion at any one time. If a connection already exists, the application should test
whether the connection is to the correct server for its requirements.

The RasEnumConnections (Table 11.12) function returns information
about a RAS connection, if one exists. On the desktop, this function can return
information about more than one connection, but on Windows CE it can only
ever return information about a single connection, as this is the maximum num
ber of supported connections.

In Listing 11.9 an array of RASCONN structures is passed into the function
RasEnumConnections. The dwSize member of the first RASCONN structure
must be initialized with the size of the array prior to calling the function. On

Remote Access Services (RAS) 311

IMdllfW RosEnumConnections

RasEnumConnections

LPRASCONN lprasconn Array of RASCONN structures into which information about the
connections is returned.

LPDWORD lpcb Pointer to a DWORD that contains, on calling the function, the size
of the array pointed to be lpcConnections. On return, it contains
the number of bytes returned in lpcConnections.

LPDWORD lpcConnections Pointer to a DWORD that returns the number of RASCONN structures
returned in lprasconn.

DWORD Return Value 0 for success, or an error code defined in the header file raserror. h.

return, the dwConnections variable contains the number of active RAS con
nections. The RASCONN structure contains the following members:

e dwS i z e-The size in bytes of the structure
e hrasconn-The RAS connection handle, as returned from RasDial
e szEntryName-The RAS phone book entry name

If a connection exists, the RasGetConnectStatus function is used to re
turn a RASCONNSTATUS structure for the hrasconn handle. The rasconn
state member contains the value from the RASCONNSTATE enumeration,
which is the same enumeration used with the WM_RASDIALEVENT message in
Listing 11. 7b.

Testing for existing RAS connection

void Listing11_9()

RASCONN rsconn[lO];
DWORD dwcb, dwConnections;
RASCONNSTATUS rasStatus;

dwcb = sizeof(rsconn);
rsconn[OJ .dwSize = sizeof(RASCONN);
if(RasEnumConnections(rsconn, &dwcb, &dwConnections)

== 0)

if(dwConnections == 0 I I
rsconn[OJ .hrasconn == NULL)

cout << _T("No current connections")
<< endl;

return;

312 Chapter 11 * Telephone API (TAPI) and Remote Access Services (RAS)

II Find the current status of the RAS connection
II Note there will only ever be one connection
rasStatus.dwSize = sizeof(rasStatus);
if(RasGetConnectStatus(rsconn[OJ .hrasconn,

&rasStatus) != 0)

cout << _T("Could not get status")
<< endl;

return;

if(rasStatus.rasconnstate != RASCS_Connected)
{

cout << _T("Not connected") << endl;
return;

cout << _T ("Current connection to: ")
<< rsconn[OJ .szEntryName;

else
cout << _T("Could not enumerate RAS connections")

<< endl;

Conclusion
This chapter has described two different but related techniques for connecting
to other computers, devices, and networks. TAPI, the Telephone API, can be
used to make and monitor connections to devices, and then the application can
obtain a suitable media handle for transferring data using data, voice, or other
protocols. RAS, the Remote Access Services, allows connections to be made to
Windows NT or 2000 servers, and for a Point to Point Protocol (PPP) session to
be created. Once the connection is established, an application can use TCP/IP
to communicate with the server.

Memory Management

While memory management may not rate as the most interesting subject for the
majority of developers, it is important that your application use memory care
fully. This is especially the case with Windows CE since devices have limited
amounts of memory available to applications. Your application should allocate
memory in the most appropriate way (that is from a heap, as static variables, or
local variables on a stack) and ensure that memory is freed when finished with.
In Windows CE, applications need also to respond to low-memory situations
by carefully checking that memory allocations succeed and also by freeing up
memory that is not currently essential. By doing this, an application becomes a
good citizen in the Windows CE world.

Windows CE provides similar memory architecture to Windows NT/98/
2000-it supports a virtual address space in which pages are mapped to physi
cal memory. However, there are significant differences, such as the lack of a
page file and the address space allocated to applications. These differences are
outlined in this chapter. Just as with Windows NT/98/2000, an application can
work directly with the virtual address space for memory allocations. However,
the vast majority of applications can use higher-level memory allocation tech
niques, such as the stack and the heap.

The Virtual Address Space
In Windows CE, all applications and application data use a single 2-GB virtual
address space. This is different from Windows NT/98/2000, where each appli
cation has its own 4-GB address space. The virtual address space defines the

313

314 Chapterl2 * MemoryManagement

addresses that a pointer can point at. Before data can be stored at an address,
it first must be backed by physical memory.

Within the Windows CE 2-GB address space, each application is allo
cated a 32-MB address space into which all its memory requirements, DLLs,
and code are mapped. There are 32 such address slots available, and this limi
tation defines the maximum number of processes that can be run in Windows
CE. These 32 slots occupy 1 GB of address space, and the remaining 1 GB is
used for shared memory (for example, memory-mapped files) and operating
system requirements.

When a thread in a process is scheduled for execution, Windows CE
moves the application down into slot 0, and effectively remaps all the addresses
in the process so they fall within the range 0 to 32 MB. When the thread's exe
cution quantum is complete, the process's addresses are remapped back into its
original slot. Therefore, all addresses in a process will appear to be in the range
0 to 32 MB regardless of which slot they are assigned to. The bottom 64 KB of
address space are protected and cannot be accessed by an application.

Allocating Memory for Data Storage
Before data is stored in a virtual address, data storage must be allocated to that
address. In Windows NT/98/2000, data storage is allocated from the paging file,
but in Windows CE data storage is allocated from the physical memory allo
cated to program execution. Data storage is always allocated in whole numbers
of pages, and in Windows CE pages are either 1 KB or 4 KB, depending on
the platform and the CPU architecture. Typically a number of pages are allo
cated at the same time, and these allocations must always start on an 'alloca
tion boundary,' which in Windows CE is typically a 64-KB boundary.

Applications can manage their memory allocations at the page level using
VirtualAlloc and VirtualFree. This can be a tricky business, since the
page size of devices may be different. For example, if you need to allocate 18 KB
of data storage, this would require 18 pages on a device with 1-KB pages and
5 pages on a device with 4-KB pages. Further, the allocation would need to
start at a 64-KB allocation boundary, so either 46 KB (for a 1-KB page size de
vice) or 44 KB (for a 4-KB page size device) of address space would remain
unusable. The page size issue can be a problem even when you are targeting
a single type of device-most Windows CE devices use a 1-KB page, but emu
lation on a desktop PC usually has a 4-KB page.

The only situation that requires direct page-level memory allocation using
VirtualAlloc and VirtualFree is when an application needs to allocate a
large amount of contiguous data storage. Otherwise, an application should use
the heap-based allocation techniques described later in this chapter, and so
avoid page size and allocation boundary issues.

Obtaining System Processor and Memory Information 315

Obtaining System Processor and Memory Information
The function GetSysteminfo returns information about the system processor
and memory characteristics of a device in a SYSTEM_INFO structure. This func
tion takes a single parameter that is a pointer to a SYSTEM_INFO structure. The
code in Listing 12.1 shows a call to GetSysteminfo, and then code to display
data relevant to Windows CE from the SYSTEM_INFO structure.

l@fjM Displaying system information using GetSystemlnfo

void Listing12_1()
{

SYSTEM_INFO si;

GetSysteminfo(&si);
switch (si.wProcessorArchitecture)
{

case PROCESSOR_ARCHITECTURE_INTEL:
cout << _T("Intel Processor");
if(si.wProcessorLevel == 4)

cout << _T(" 486") << endl;
else

cout << _T(" Pentium") << endl;
break;

case PROCESSOR_ARCHITECTURE_MIPS:
cout << _T ("Mips Processor") ;
if(si.wProcessorLevel == 3)

cout << _T(" R3000") << endl;
else

cout << _T(" R4000") << endl;
break;

case PROCESSOR_ARCHITECTURE_ALPHA:
cout << _T("Alpha Processor") << endl;
break;

case PROCESSOR_ARCHITECTURE_PPC:
cout << _T("PPC Processor") << endl;
break;

case PROCESSOR_ARCHITECTURE_SHX:
cout << _T("SHX Processor") << endl;
break;

case PROCESSOR_ARCHITECTURE_ARM:
cout << _T("ARM Processor") << endl;
break;

case PROCESSOR_ARCHITECTURE_IA64:
cout << _T("IA64 Processor") << endl;
break;

case PROCESSOR_ARCHITECTURE_ALPHA64:
cout << _T("Alpha 64 Processor") << endl;
break;

316 Chapter 12 '* Memory Management

case PROCESSOR_ARCHITECTURE_UNKNOWN:
cout << ~T("Unknown Processor") << endl;
break;

cout << _T("Processor revision: ")
<< si.wProcessorRevision << endl;

cout << _T("Page size: ")
<< si.dwPageSize << endl;

cout << _T("Alloc. Granularity: ")
<< si.dwAllocationGranularity << endl;

cout << _T("Min. Application Address: ") <<
(DWORD)si.lpMinimumApplicationAddress << endl;

cout << _T("Max. Application Address: ") <<
(DWORD)si.lpMaximumApplicationAddress << endl;

Typical output for a MIPS-based Windows CE device looks like the
following:

Mips Processor R4000
Processor revision: 3154
Page size: 1024
Alloc. Granularity: 65536
Min. Application Address: 65536
Max. Application Address: 2147483647

The members wProcessorArchitecture and wProcessorLevel to
gether define the type of processor the device is equipped with. The wProces
sorArchi tecture member defines the processor's architecture, such as Intel
or MIPS, and wProcessorLevel defines the processor's level, such as R3000
or R4000. Some processors have different revisions, and this information is
stored in wProcessorRevision. Windows CE only supports a single proces
sor, so the dwNumberOf Processors member always returns 1.

The output above shows that the page size for a MIPS device is 1 KB, and
page allocations must always start on a 64-KB boundary (that is the figure re
turned in the swAllocationGranularity member). The minimum address
that can be used is 64 KB, since any address below this is protected. The maxi
mum address space is 2 GB. Remember that all processes share the same ad
dress space, so the application that produced the output above can only use up
to 32 MB of address space allocated to the process.

The following output is obtained from running Listing 12.1 under emula
tion on a desktop PC. You can see that the address range is nearly the same
but the page size is quite different. The address range is actually the address
range for the process running under Windows NT, as each process is allocated
a 4-GB address space; however, the upper 2 GB are protected and are reserved
for the operating system. The maximum address range is actually 2 GB less the
64 KB reserved by Windows NT.

Obtaining the Current Memory Status 317

Intel Processor Pentium
Processor Revision 1537
Page Size: 4096
Min. Application Address: 65536
Max. Application Address: 2147418111

Obtaining the Current Memory Status
The function GlobalMemoryStatus can be used to return information about
the current memory usage for Windows CE-the information is returned in a
MEMORYSTATUS structure, as shown in Listing 12.2.

M@fjM Displaying memory usage with Globa/MemoryStatus

void Listing12_2()
{

MEMORYSTATUS ms;
ms.dwLength = sizeof (ms);
GlobalMemoryStatus(&ms);
cout << _T("Total Phys: ") << ms.dwTotalPhys << endl;
cout << _T("Avail Phys:") << ms.dwAvailPhys << endl;
cout << _T("Total Page: ")

<< ms.dwTotalPageFile << endl;
cout << _T ("Avail Page: ")

<< ms.dwAvailPageFile << endl;
cout << _T ("Total Virtual: ")

<< ms.dwTotalVirtual << endl;
cout << _T ("Avail Virtual: ")

<< ms.dwAvailVirtual << endl;

Typical output for a Windows CE device looks like the following:

Total Phys: 8301568
Avail Phys: 6810624
Total Page: 0
Avail Page: 0
Total Virtual: 33554432
Avail Virtual: 29949952

In this case, the device has 8 MB (8301568 bytes) of memory set aside for
program execution, of which around 6 MB (6810624 bytes) is available. Note
that this function does not take into account the amount of memory set aside
for the object store. The dwTotalPageFile and dwAvailPageFile always
return 0 under Windows CE, since the operating system does not use a paging
file, and data storage is allocated directly from memory. The dwTotal Virtual

318 Chapter 12 e Memory Management

member returns the total number of bytes of virtual address space available to
the process, which is 32 MB, or 33554432 bytes. Of this, 29949952 bytes of ad
dress space are still available for use. The information returned under emulation
is much the same except that the total physical and available physical memory
size is always returned as 16777216, or 16 MB.

Application Memory Allocation
Applications can allocate memory for variables in one of three ways:

w Global, or static memory allocation
w Heap-based allocation
w Stack-based allocation

These three techniques allocate variables with different scope and lifetime.
The variable's scope determines which part of an application can use the vari
able. The lifetime determines when the variable is created, and for how long.
The following sections describe the three allocation techniques, the lifetime
and scope of the variables, and the uses and abuses of each.

Global and Static Memory Allocation
Global variables are declared outside of functions, and static variables are de
clared inside functions with the 'static' modifier:

int g_nvar;

void f ()
{

static int n;

II global variable

II static variable

Global and static variables are created when the process starts running
and are destroyed when the process terminates. The lifetime of such variables
is the same as the process's lifetime. Therefore, they occupy memory for the
entire time the process is running. You should avoid using global and static
variables in Windows CE applications, as the program cannot free the mem
ory occupied by such variables. This is especially true for global or static arrays.

A static variable's scope is the function in which it is declared. Thus, only
code in the function after the static variable's declaration can access the vari
able. Global variables are accessible by any code in a source file that comes af
ter the global variable's declaration, or in other source files if the source files
declare the variable using the extern modifier.

Application Memory Allocation 319

Heap-Based Allocation
When a process is started Windows CE creates a default heap for the process.
Memory can be allocated from this heap using a variety of different functions
and techniques, including the following:

e The C run-time function alloc
e The C++ new operator
"' The API functions LocalAlloc or HeapAlloc

Each of these techniques allows an allocation of a specified size to be
made, and a pointer to the memory is returned. The memory can then be ac
cessed through the pointer. Using a heap simplifies memory management, since
you don't need to be concerned about the page allocation and de-allocation.

The heap is initially created with 384 KB of address space reserved for the
heap, but without any actual physical memory associated with the heap. As
memory allocations are made, physical memory is allocated to these pages. If
the size of the heap exceeds 384 KB, more address space is allocated to the
heap. Note that the heap may not be in contiguous memory.

Memory can be freed using one of these techniques:

"' The C nm-time function free
"' The C++ delete operator
,. The API functions LocalFree or HeapFree

The following code shows a typical allocation using LocalAlloc and
Local Free.

LPTSTR lpStr;
lpStr = (LPTSTR)LocalAlloc(LPTR, 100 * sizeof(TCHAR));
if(lpStr NULL)
{

II out of memory

else
{

II use the pointer lpStr ...
LocalFree(lpStr);

The code allocates memory for 100 TCHAR characters, which under Win
dows CE using Unicode will result in a memory allocation of 200 bytes. The
LPTR constant specifies that LocalAlloc will return a pointer and that the
memory block will be filled with NULL bytes.

The space occupied by the freed block is then available to another allo
cation. Over time, the heap can become fragmented, so more memory and ad
dress space is used than is actually required for allocations currently in use.

320 Chapter 12 e Memory Management

This is one of the major downsides to using a heap, especially for applications
that may be running over a long period of time. One solution to this problem
is to create additional heaps for specific allocation purposes. These heaps can
be deleted to free all the memory occupied by the heap. This technique is de
scribed later in this chapter. Note that the default heap cannot be deleted.

The scope and lifetime of data allocated from the heap is totally in the con
trol of the application. The pointer returned from an allocation can be passed
to any function, allowing the data to be accessed by those functions. However,
it is generally best to limit the access to the pointer, and hence the scope, by
encapsulating the pointer. This involves providing functions or a C++ class that
controls access to the pointer. An application can decide when to allocate and
free the memory, and therefore has control over the scope.

In general, the heap is the best place to allocate memory for variables that
need a variable lifetime and must be accessed by several different functions.

Stack-Based Allocation
When a process is created, Windows CE creates a stack for the primary thread.
The stack is used to store information about each function call, including any
parameters passed to the function, any local variables declared in the func
tion, and the address to where the function should return. All the information
about a function call is stored in a 'stack frame.' A stack in Windows CE can be
up to 60 KB, and initially a single page is allocated for the stack. Of the 60 KB,
58 KB can be used for the stack and the remaining 2 KB is used to detect stack
overflows.

Any variable declared in a function, or parameter passed to a function,
will use the stack for storage. When the function returns, the variables and pa
rameters will be destroyed. The scope of variables and parameters is always
the function in which they are declared. The lifetime of the variables and pa
rameters is from the time the function is called to the time the function returns.

Each new thread created in a process must have its own stack, and Win
dows CE creates this automatically. Any functions called in a DLL will use the
stack owned by the thread that is used to call the function.

In general, you should be careful not to declare local variables of exces
sive size-remember that the amount of stack used is the size of all the local
variables and parameters for all function calls in the call list. Your application
will fail if this exceeds 58 KB.

Creating Your Own Heaps
You should consider creating your own heap for memory allocation if you
want to do either of the following:

Creating Your Own Heaps 321

" Make lots of memory allocations that will all be deleted at the same time
., Make lots of memory allocations of the same size

As described earlier, the default heap cannot be deleted, and so fragmen
tation can cause memory problems if the process executes over a long period
of time. By using your own heaps, you can delete the heap periodically and
therefore effectively remove fragmentation and memory wastage.

A new heap can be created using the function HeapCreate. This func
tion is passed a serialization option, the initial size for the heap, and the maxi
mum size of heap. All heaps are serialized and the initial size and maximum
size are ignored. This code returns a handle to the new heap:

HANDLE hHeap;
hHeap = HeapCreate(O, 1024, 0);

Once a heap has been created, allocations can be made using the Heap
Alloc function. For example, the following code allocates space for 100 Uni
code characters and places NULLS in each byte.

LPTSTR lpStr;
lpStr = (LPTSTR) HeapAlloc(hHeap,

HEAP_ZERO_MEMORY,
100 * sizeof(TCHAR));

if(lpStr ==NULL)
cout << _T ("Out of memory");

The function returns a valid handle on success, or a NULL if an out-of
memory condition results. All the functions that manipulate heaps, except
HeapCreate, take a handle to the heap as the first argument. These functions
can be used on the default process heap by calling the GetProcessHeap
function to return a handle to the default process heap.

The function is passed the handle to the heap returned from HeapCre
ate, a flag (the only flag used in Windows CE is HEAP_ZERO_MEMORY), and
the number of bytes to allocate. The number of bytes allocated may be larger
than the number requested, and these extra bytes can be used by the applica
tion (although this would not be considered good practice). The HeapSize
function can be used to return the actual size of the allocation. It is passed
the handle to the heap, flags (which are always 0 with Windows CE), and the
pointer to the allocation:

DWORD dwSize;
dwSize = HeapSize(hHeap, 0, lpStr);

An allocation can be freed using the HeapFree function, which is passed
the handle to the heap, flags (O for Windows CE), and the pointer to the allo
cation to be freed:

if(!HeapFree(hHeap, 0, lpStr))
cout << _T ("Allocation could not be freed");

322 Chapter 12 e Memory Management

A memory allocation can be reallocated to a different size through calling
the HeapRealloc function. You need to be careful calling this function, since
the reallocation may result in the memory block being moved. This results in a
new pointer being returned. Finally, a heap can be deleted by calling the Heap
Destroy function. You do not have to delete each individual allocation before
calling this function. The HeapDestroy function is simply passed the handle
to the heap:

if(!HeapDestroy(hHeap))
cout << _T("Could not destroy heap");

Using Heaps with(++ Classes
You can use a separate heap for allocating objects for a given C++ class by over
loading the new and delete operators. This is particularly useful if you are go
ing to allocate large numbers of objects of one particular class. In the following
code a C++ class called 'cHeap' is declared that has a member variable called
szBuffer, and this is used to store a Unicode string. Whenever a new object
of the cHeap class is allocated, the allocation for the entire class object will be
made from a separate heap, and the allocation will be handled using the over
loaded new and delete operators declared in the class:

class cHeap
{

public:
cHeap ();
-cHeap();
void* operator new(size_t size);
void operator delete(void* p);
void putStr(LPTSTR) { wcscpy(szBuffer, pStr) ;}
LPTSTR getStr() {return szBuffer;}

private:

} ;

static HANDLE hHeap;
static int nCount;
TCHAR szBuffer[1024];

The static member 'hHeap' will be used to store the handle to the sepa
rate heap, and ncount records the number of instances of this heap in exis
tence. The implementation of cHeap declares the static variables hHeap and
nCount:

HANDLE cHeap: :hHeap;
int cHeap::nCount;

The constructor and destructor for this class increment and decrement
nCount:

cHeap: : cHeap ()
{

nCount++;

cHeap: : -cHeap ()
{

nCount--;

Creating Your Own Heaps 323

The overloaded new operator first checks whether the separate heap has
been allocated, and if not, creates it. The new operator then goes on to allocate
the space for the new class object using the HeapAlloc function. The delete
operator frees the given class object, and if the object count is zero, deletes the
heap as well.

void* cHeap: :operator new(size_t size)
{

if (hHeap == NULL)
{

hHeap = HeapCreate(O, 1024, 0);
if(hHeap ==NULL)

cout << _T("Cannot create heap!");

return HeapAlloc(hHeap, HEAP_ZERO_MEMORY, size);

void cHeap: :operator delete(void* p)
{

HeapFree(hHeap, 0, p);

if(nCount <= 0 && hHeap !=NULL)
{

HeapDestroy(hHeap);
hHeap = NULL;

Objects of this 'cHeap' class can now be allocated with the new opera
tor, and the memory allocation for the object will be made from the separate
heap rather than from the default process heap.

cHeap* theObj =new cHeap();
II Use theObj pointer
delete theObj;

Note that if the variable is declared rather than dynamically allocated, the
space used will be allocated from the stack if declared in a function:

cHeap myObj; II not allocated from separate heap

324 Chapter 12 @ MemoryManagement

Handling Low-Memory Situations
Applications running under Windows CE should always be prepared for low
or out-of-memory situations. Requests to allocate memory may fail (in which
case they return a NULL pointer). In Windows CE implementations with a shell
(such as Pocket PC or Handheld PC), applications should respond to WM_

HIBERNATE messages.
Windows CE recognizes three distinct low-memory threshold situations,

and these are activated by any application allocating new pages of memory.
With Pocket PC three low-memory situations are recognized, and the following
actions are taken by the operating system:

111 Hibernation. The shell sends a WM_HIBERNATE to the application that has
been inactive the longest.

@ Low Memory. The shell sends a WM_CLOSE message to the application that
has been inactive the longest. The shell continues to send WM_ CLOSE mes
sages to applications until the free memory climbs above the low-memory
threshold, or when only the foreground application remains open.

e Critical Memory. No new applications can be opened.

With Handheld PC applications are not automatically closed. Instead, an
out-of-memory dialog box is displayed and the user is requested to close down
applications.

The free memory values for these threshold situations depend on the
platform (such as Pocket PC and Handheld PC) and the page size (either 1 KB
or 4 KB). Table 12.1 shows the threshold values for Pocket PC and Handheld
PC for devices with 1-KB page size. Platforms without a shell do not receive
WM_HIBERNATE or WM_CLOSE messages.

M@MjfjM Low-memory threshold values

Threshold

Hibernation threshold

Low-memory threshold

Critical memory threshold

Pocket PC on
Windows 3.0

128 KB

64 KB

16 KB

Responding to a WM_ CLOSE Message

Handheld PC on
Windows 2.11

200 KB

128 KB

24 KB

A Windows CE application should be prepared to receive a WM_CLOSE mes
sage from the shell and not just from the application's own interface. In re
sponse to a WM_CLOSE message from the shell, the application should save any
documents without prompting the user, and free any resources prior to closing.

Conclusion 325

Responding to a WM_HIBERNATE Message
When an application receives a WM_HIBERNATE message, it should free up as
much memory as possible by doing the following:

«> De-allocating any memory structures that can be recreated
«> Closing any unnecessary windows
«> Deleting any fonts, menus, bitmaps, strings, or other resources

When the user or the operating system next activates the application, a
WM_ACTIVATE message will be received by the application. At this point the
application can reallocate memory or recreate windows as necessary.

Conclusion
Windows CE supports many of the same memory management techniques as
desktop PC operating systems. However, Windows CE provides additional sup
port for responding to low-memory systems that are more critical because the
operating system does not use a paging file. As ever, programmers should al
ways check for allocation failures and ensure that all allocated memory is even
tually freed.

System Information and
Power Management

There are many different versions of the Windows CE operating system and
platforms, so it is important that your application can determine the platform
and version it is running on. Perhaps your application needs to execute a func
tion that may or may not be present. Many of these Windows CE devices rely
on battery power, so an application must be written to conserve power and also
be able to monitor the current state of the battery. For example, if an applica
tion is going to initiate communications through a modem, it should determine
if sufficient battery power is available.

Operating System Version Information
The function GetVersionEx can be used to obtain the Windows CE operat
ing system version your application is running on. The function takes a single
argument that is a pointer to a OSVERSIONINFO structure in which the version
information is returned. The code in Listing 13.1 calls GetVersionEx and dis
plays the contents of the OSVERSIONINFO structure.

Obtaining operating system version information

void Listing13_1()

OSVERSIONINFO osVersion;

osVersion.dwOSVersioninfoSize
if(!GetVersionEx(&osVersion))

326

sizeof(OSVERSIONINFO);

Operating System Version Information 327

cout << _T ("Could not get version information")
<< endl;

else

cout << _T("Major Version:")
<< osVersion.dwMajorVersion << endl;

cout << _T ("Minor Version:")
<< osVersion.dwMinorVersion << endl;

cout << _T ("Build:")
<< osVersion.dwBuildNumber << endl;

cout << _T("Platform ID:")
<< osVersion.dwPlatformid << endl;

cout << _T ("Other Info:")
<< osVersion.szCSDVersion << endl;

Output for a Pocket PC device should look something like the following:

Major Version: 3
Minor Version: 0
Build:9348
Platform ID: 3
Other Info:

This Pocket PC device is running Windows CE 3.0, build number 9348.
Your devices are likely to be running a later build number. The value 3 for plat
form id indicates that this is Windows CE. Other values are used for Windows
NT/98/2000. The szCSDVersion member is usually blank.

The SystemParameterslnfo Function
The SystemParametersinfo function can be used to obtain and set many
different system parameters, such as the platform type string (indicating the
type of Windows CE device), OEM information (to determine the manufacturer
of the device), and the idle timeout (how long Windows will remain on before
suspending when there is no activity).

The SystemParametersinfo function is passed four parameters:

e A constant indicating the information to be returned or set.
e A UINT value, the nature of which depends on the information being re

turned or set.
e A PVOID pointer, the nature of which depends on the information being

returned or set.
e A Boolean value, which if TRUE causes a WM_SETTINGCHANGE message

to be sent to all top-level windows. This value should be 0 if information
is only being returned.

In Listing 13.2, the function SystemParametersinfo is called twice,
once to return the OEM information (SPI_GETOEMINFO) and again to return

328 Chapter 13 © System Information and Power Management

the platform information (SPI_GETPLATFORMTYPE). In both cases, the func
tion is passed a buffer length as the second parameter, and a pointer to a string
buffer into which the information will be placed as the third.

SystemParameterslnfo

void Listing13_2()
{

TCHAR szOEMinformation[200];
TCHAR szPlatformType[200];

SystemParametersinfo(SPI_GETOEMINFO,
200, szOEMinformation, 0);

cout << _T ("OEM Information: ") <<
szOEMinformation << endl;

SystemParametersinfo(SPI_GETPLATFORMTYPE,
200, szPlatformType, 0);

cout << _T ("Platform Type: ") <<
szPlatformType << endl;

The SPI_GETOEMINFO information will be something like 'Compaq Aero
1500,' and for a Pocket PC device, SPI_GETPLATFORMTYPE returns 'Palm
PC2.' For handheld devices, SPI_GETPLATFORMTYPE returns 'H/PC.'

Power Management
Windows CE carefully monitors and controls the power consumption of the
device to ensure maximum battery life. Windows CE makes the following as
sumptions about typical use when adopting a power management strategy:

,,. Typical use is less than two hours a day in bursts from five minutes to one
hour at a time.

,,. The display is on 100 percent of the time during use.
,,. The CPU is on less than 10 percent of the time during typical use.

Battery life can be severely impacted by PCMCIA and Compact Flash
modems and network cards. Serial communications can also drain the battery,
especially if the device being communicated with does not supply power for
the serial lines.

Power Management States
Windows CE automatically selects the appropriate power management state for
a device, depending on how the device is being used. Applications do not have

Power Management 329

much control over the change from one state to another. A Windows CE de
vice can be in one of four different states:

"' Dead. The Windows CE device has no batteries (either primary or
backup) and no data is maintained. Windows CE devices are typically de
livered in the dead state and, it is hoped, do not return to that state.

"' On. Windows CE and its applications are operating in the normal, full
speed state.

"' Idle. Windows CE decreases power consumption by reducing the pro
cessor speed. The change from On to Idle is transparent to the user and
to applications.

® Suspend. This is the minimum power mode in Windows CE. The display
is turned off, and everything except memory maintenance is suspended.

Your applications must allow Windows CE to change from On to Idle and
from Idle to Suspend as appropriate to minimize battery use. This is described
in the next two sections.

Changing from On to Idle State
Windows CE switches to Idle state when all applications are idle. An applica
tion is considered Idle when it has returned control to Windows CE (that is,
when it has finished processing a message) or when a thread is suspended,
blocked, or sleeping. The switch from On to Idle occurs very quickly, in about
10 microseconds.

Try to avoid using loops that do not relinquish control in your appli
cations. These loops stop Windows CE from entering Idle state and, hence,
do not allow good power management. The following code sample uses the
GetTickCount function (which returns the number of milliseconds that have
elapsed since Windows CE started) to pause the application for five seconds.
In doing so, your application uses valuable processing time and stops Win
dows CE from entering the Idle state.

DWORD dwTime = GetTickCount();
while(GetTickCount() - dwTime < 5000)
{

II do nothing

Instead of using the GetTickCount function, use the Sleep function
(described in Chapter 5). To pause the application for five seconds, use the fol
lowing code:

//Pause for 5 seconds
Sleep(5000);

330 Chapter 13 * System Information and Power Management

An application does not know when Windows CE changes from the On
state to the Idle state, or vice versa. However, if the application is executing
code, Windows CE must be in the On state.

Changing from Idle to Suspend State
Windows CE enters the Suspend state when one of these situations occurs:

® When the user turns off the device
® When the user suspends the device from the shell
® When the computer detects a critically low power condition
® When the activity timer times out

The activity timer monitors the time since the last key press or stylus tap
event. When Windows CE detects a key press or tap event, the timer is reset to
the value specified by the use in the Control Panel's Power section-this value
is typically two or three minutes.

The activity timer counts down the time since the last key press or tap
event occurred, and when the timer reaches 0, Windows CE enters the Suspend
state. Applications are not notified when Windows CE enters this state, but de
vice drivers are.

Applications are frozen and do not execute when Windows CE is in the
Suspend state. They resume execution when the state switches from Suspend
to On.

Most applications are not affected by entering the Suspend state. The ex
ceptions are those applications that use the Sleep function to pause the current
thread for a specified number of milliseconds. Note that the sleep counter does
not increment when Windows CE is in Suspend mode, so the thread does not
continue executing when Windows CE returns to the On mode.

Sometimes you will need to ensure that the device does not enter the Sus
pend state until some operation (such as serial communications) has completed.
You can do this by simulating a keystroke that is ignored by applications using
the keybd_event function:

keybd_event(VK_F24, 0,
KEYEVENTF_KEYUP I KEYEVENTF_SILENT, 0);

This function call should be made frequently (say, every 30 seconds) dur
ing your critical task. The KEYEVENTF _SILENT flag ensures that the device
does not click whenever this function is executed.

Monitoring Battery Status
The function GetSystemPowerStatusEx2 can be used to return battery and
power information in a SYSTEM_POWER_STATUS_EX2 structure. As you can see
from Listing 13.3, the SYSTEM_POWER_STATUS_EX2 structure contains copious

Power Management 331

amounts of battery information. However, many devices do not return all the
information, and many of the fields are empty or have default values.

l!ifiE!I Battery and power status information

void Listing13_3()
{

SYSTEM_POWER_STATUS_EX2 sps;

if(GetSystemPowerStatusEx2(&sps, sizeof(sps) ,TRUE)
== 0)

cout << _T("Could not get power status") << endl;
else
{

cout << _T("AC Line: ");
switch(sps.ACLineStatus)
{

case AC_LINE_OFFLINE:
cout << _T("Offline") << endl;
break;

case AC LINE ONLINE:
cout << _T("Online") << endl;
break;

case AC LINE_BACKUP_POWER:
cout << _T("Backup power") << endl;
break;

case AC_LINE_UNKNOWN:
cout << _T ("Unknown") << endl;
break;

cout << _T("Battery: ");
switch(sps.BatteryFlag)
{

case BATTERY_FLAG_HIGH:
cout << _T("High") << endl;
break;

case BATTERY_FLAG_LOW:
cout << _T ("Low") << endl;
break;

case BATTERY_FLAG_CRITICAL:
cout << _T("Critical") << endl;
break;

case BATTERY_FLAG_CHARGING:
cout << _T("Charging") << endl;
break;

case BATTERY_FLAG_NO_BATTERY:
cout << _T("No battery") << endl;
break;

332 Chapter 13 e System Information and Power Management

case BATTERY_FLAG_UNKNOWN:
cout << _T ("Unknown") << endl;
break;

cout << _T ("BatteryLifePercent: ")
<< sps.BatteryLifePercent << endl;

cout << _T ("BatteryLifeTime: ")
<< sps.BatteryLifeTime << endl;

cout << _T ("BatteryFullLifeTime : ")
<< sps.BatteryFullLifeTime << endl;

cout << _T ("BackupBat teryFlag: ") ;
switch(sps.BackupBatteryFlag)
{

case BATTERY_FLAG_HIGH:
cout << _T("High") << endl;
break;

case BATTERY_FLAG_LOW:
cout << _T("Low") << endl;
break;

case BATTERY_FLAG_CRITICAL:
cout << _T("Critical") << endl;
break;

case BATTERY_FLAG_CHARGING:
cout << _T("Charging") << endl;
break;

case BATTERY_FLAG_NO_BATTERY:
cout << _T("No battery") << endl;
break;

case BATTERY_FLAG_UNKNOWN:
cout << _T("Unknown") << endl;
break;

cout << _T("BackupBatteryLifePercent : ")

<< sps.BackupBatteryLifePercent << endl;
cout << _T("BackupBatteryLifeTime : ")

<< sps.BackupBatteryLifeTime << endl;
cout << _T("BackupBatteryFullLifeTime : ")

<< sps.BackupBatteryFullLifeTime << endl;
cout << _T("BatteryVoltage : ")

<< sps.BatteryVoltage << endl;
cout << _T("BatteryCurrent : ")

<< sps.BatteryCurrent << endl;
cout << _T("BatteryAverageCurrent : ")

<< sps.BatteryAverageCurrent << endl;
cout << _T("BatteryAverageinterval : ")

<< sps.BatteryAveragelnterval << endl;
cout << _T("BatterymAHourConsumed : ")

<< sps.BatterymAHourConsumed << endl;
cout << _T("BatteryTemperature : ")

<< sps.BatteryTemperature << endl;

Power Management 333

cout << _T ("BackupBatteryVoltage : ")
<< sps.BackupBatteryVoltage << endl;

cout << _T ("BatteryChemistry: ");
switch(sps.BatteryChemistry)
{

case BATTERY_CHEMISTRY_ALKALINE:
cout << _T("Alkaline") << endl;
break;

case BATTERY_CHEMISTRY_NICD:
cout << _T ("NICD") << endl;
break;

case BATTERY_CHEMISTRY_NIMH:
cout << _T ("NIMH") << endl;
break;

case BATTERY_CHEMISTRY_LION:
cout << _T("LION") << endl;
break;

case BATTERY_CHEMISTRY_LIPOLY:
cout << _T("LIPOLY") << endl;
break;

case BATTERY_CHEMISTRY_UNKNOWN:
cout << _T("Unknown") << endl;
break;

The most important values returned in the SYSTEM_POWER_STATUS_EX2
structure are the following:

* ACLineStatus-The value AC_LINE_OFFLINE indicates that the device
is operating using battery power, and the value AC_LINE_ONLINE is re
turned when the device is connected to AC power.

* BatteryLifePercent-A percentage value indicating how much
charge is left in the main battery (100 percent indicates the battery is fully
charged).

* BackupBatteryLifePercent-A percentage value indicating how
much charge is left in the backup or secondary battery (100 percent in
dicates the battery is fully charged).

* Bat teryChemistry-The type of battery technology used by the device
(if you are interested in that type of thing).

The third parameter passed to GetSystemPowerStatusEx2 should be
TRUE if the function should interrogate the battery status for the latest values,
or FALSE if cached information should be used. Cached information can be a
few seconds out of date.

334 Chapter 13 e System Information and Power Management

Powering Off a Device
If an application has been performing an unattended task, such as download
ing data, it may want to power down the device immediately without waiting
for the activity timer to power down the device. In this case, the keybd_event
function can be used to simulate the 'Off' key being pressed. The 'Off' key
has the virtual key code 'VK_OFF', and Listing 13.4 shows how keybd_event
can be called twice to simulate the key being pressed down and then released.

Powering off a device

void Listing13_4()

keybd_event(VK_OFF, 0, KEYEVENTF_SILENT, 0);
keybd_event(VK_OFF, 0,

KEYEVENTF_KEYUP I KEYEVENTF_SILENT, 0);

Conclusion
This chapter has shown how to obtain system version and platform informa
tion so your application can determine what facilities and functions are avail
able on the device. The chapter also describes the Windows CE power manage
ment facilities and strategies, and looks at the importance of writing applications
that are power-aware.

COM and Active!

The previous chapters in this book have all dealt with accessing Windows CE
features through API function calls. However, many Windows CE facilities
are only available through Component Object Model (COM) components. This
chapter shows how to use COM components, using the Pocket Office Object
Model (POOM) as an example. Windows CE applications should use POOM
components to access, add, and update information stored in Pocket Outlook
in order to avoid duplicating information stored there (such as contact informa
tion or calendar appointments).

Many programmers shy away from using COM components because they
look complex. This is partly because much of the literature on COM concen
trates on how to build COM components rather than how to use them. Once
a few rules and techniques are understood, using COM components is not very
difficult.

There is much confusion between COM and ActiveX, and in fact many
people use the terms interchangeably. COM is a technology that allows com
ponents to be written. ActiveX is a technology that uses COM. It allows script
ing languages (such as VBScript) to call methods in components without hav
ing to use complex compiler techniques like virtual tables.

Introduction to the Component Object Model (COM)
The Component Object Model (COM) is a specification that describes how to
write components. The main characteristics of COM are the following:

e Language neutral. Components may be written in any language and be
used by client applications written in any language.

335

336 Cho pier 14 0 COM and ActiveX

0 Dynamic linking. A component can be updated without the need to re
compile a client application that is using the component.

0 Encapsulation. A client application has no knowledge of how a compo
nent is implemented, the internal data structures it uses, and where it is
implemented or the language in which it is implemented. Any imple
mentation issues can change without a client application recognizing the
changes.

While COM is mainly a specification for how components are written, it
has a limited amount of implementation to provide support for COM compo
nents. The implementation consists of a small number of API functions, all start
ing with the prefix 'Co.'

You will see the term OLE (Object Linking and Embedding) used in con
junction with COM. For example, the COM implementation functions are con
tained in ole32. dll. This is unfortunate, as the two technologies are differ
ent. COM, as explained, is a standard that allows components to be created.
OLE is a different technology that allows documents or bits of documents and
other data to be shared between applications. OLE happens to use COM for its
implementation.

COM Components
With an API, functions are generally available for calling at any time. With COM,
though, an instance of component (an 'object') must be created before func
tionality can be accessed. In this respect, an API function is like a C function,
while a COM component is like a C++ class. In C++ you need to create an in
stance of a class before its functionality can be used. This, however, is where
the similarity ends.

In C++, a programmer is very much involved in creating the class in
stance-a decision is made whether to use new or, perhaps, declare the object
variable on the stack. A pointer or reference to this class instance is managed
and maintained. If new is used, the programmer decides when to delete the
object using a pointer to the class instance.

In COM the client application never has a r((ference to a component object.
The client application calls the function CoCreateinstance to create the com
ponent object and receives back a pointer to an inteif ace, not to the compo
nent itself. (See the next section for a description of interfaces.) When the client
application has finished with the interface, the component is automatically de
leted. The client application never directly deletes the component object.

COM Interfaces
A COM component implements one or more interfaces. An interface provides
a connection between two different objects: the component and the client. An
interface is a definition containing the list of functions and their parameters.

Introduction to the Component Object Model (COM) 337

A COM component will implement the interface by providing implementations
of each of the functions. Several different components can implement the same
interface, and their implementation details can be different. However, in imple
menting the same interface, the different components should honor the seman
tics of the interface as well as the functions and their parameters.

Using an interface pointer, a client application can call functions that are
contained in that component's implementation of the interface. These functions
are called in C and C++ just like ordinary functions-the same data types can
be passed either by reference or by value.

An interface is a specific memory structure containing an array of func
tion pointers. This specific memory structure is identical to the virtual function
table pointer structure used by C++ objects. However, this does not mean that
COM interface functions can only be produced by C++ applications-it is a little
easier with C++, but other languages can produce the same structures. C++ pure
abstract base classes are often used to describe COM interfaces since the classes
parallel two important characteristics of interfaces:

«> Objects of an abstract base class cannot be created.
«> Classes that inherit from an abstract base class must implement all the

functions in the abstract base class, although these classes are free to im
plement the functions in any way they choose.

A COM component can support one or more interfaces. When a compo
nent object is created using CoCreateinterface, a pointer to one of these in
terfaces is returned. COM does not provide a mechanism for obtaining the list
of all interfaces supported by a component, but such interrogation is possible
if 'type library information' (described later in this chapter) is supplied with the
component.

Once defined, an interface definition cannot be changed by, for example,
any of the following:

"' Adding new functions
e Changing the number or nature of the parameters the functions take
e Changing the order of functions in an interface's definition

A new interface will need to be created if such changes have to be made.
A component can then implement both the old interface definition (for back
wards compatibility) and the new interface. The implementation of interface
functions can change over time as long as the semantics of the implementation
do not change.

The !Unknown Interface
The IUnknown interface defines three functions that must be implemented by
all interfaces in a component:

338 Chapter I 4 11 COM and ActiveX

e AddRef-Used to increment the usage count on the interface
e Release-Used to decrement the usage count on the interface
e Queryinterface-Used to obtain another interface supported by the

component from an interface pointer

The AddRef and Release functions are used to maintain a usage count
on each interface in a component. A component object will delete itself when
the usage counts for all interfaces reach zero. A component object's client never
deletes the component-remember that a client does not have a reference to
the component object and so cannot directly delete it.

The Queryinterface function allows a client to obtain a pointer to an
other interface implemented by a component using a pointer to an interface.
Often an interface function will itself return an interface pointer, so Query
Interface may not need to be used. By returning interface pointers, a COM
component can create an 'object model' like the Pocket Office Object Model
described later in this chapter.

Each interface in a component implements IUnknown, and so provides
implementations for each of these three functions. Interface implementation is
similar in some respects to class inheritance; its primary difference is that there
are no assumptions about the interface being inherited, except for the number
and nature of the functions it defines. An interface does not inherit implemen
tation, only an interface's definition.

Globally Unique Identifiers (GUIDs}
It is essential that each interface definition be uniquely identified so that a com
ponent can specify precisely which interface definition is being implemented.
Each interface is given a 'Globally Unique Identifier' (a GUID) when it is cre
ated. GUIDs are stored in a 128-bit structure and can be generated using a tool
called UUIDGEN. EXE.

Interface GUIDs are stored in an IID (Interface Identifier) structure, and
this IID is used when referring to an interface. For example, the IID for the
IUnknown interface is IID_IUnknown.

COM components also need to be uniquely identified using a GUID.
These are known as 'class identifiers' and are stored in CLSID structures. When
CoCreateinstance is called, a client application uses a CLSID to specify from
which component an object is to be created. In fact, this is the only time a client
application refers to a component-all other references are to the interfaces
implemented by that component. Here is an example of the CLSID for the
POOM object:

DEFINE_GUID(CLSID_Application, Ox05058F23, Ox20BE, Oxlld2,
Ox8F, Oxl8, OxOO, OxOO, OxF8, Ox7A, Ox43, Ox35);

The macro DEFINE_GUID is used so that a variable containing this GUID
is created when INITGUID is #defined, or externed when it is not. This al
lows you to avoid having multiple definitions of GUIDs in your application.

Introduction to the Component Object Model (COM) 339

GUIDs are generally passed by reference (since they are structures), so
data types are defined for this purpose. For example, the data type REFCLSID
defines a class identifier passed by reference.

Programmatic Identifiers {ProglDs)
Each component has a globally unique identifier in the form of a GUID. These
GUIDs are not particularly memorable, so components can have 'human read
able' names called Programmatic Identifiers, or ProgIDs. These are not guar
anteed to be unique in the world but are easier to use than GUIDs. The ProgID
for POOM is PocketOutlook.Application. The naming convention is
'program. component', with the option of containing a version number, such
as 'program. component. 2'. COM provides functions for converting between
CLSIDs and ProgIDs: CLSIDFromProgID and ProgIDFromCLSID.

COM Components and the Registry
The registry is used by COM to store information about all the components reg
istered on a particular Windows CE device. This includes the file (such as a DLL
or EXE) where a component is implemented. All COM information is stored
in the key HKEY_CLASSES_ROOT. The key HKEY_CLASSES_ROOT\CLSID con
tains a sub-key for each registered COM component, using the CLSID as the
key's name. Figure 14.1 shows the sub-keys for the POOM class object.

The InProcServer32 value key contains the name of the file, pim
store. dll that implements the COM component. The HKEY_CLASSES_ROOT
contains a sub-key for each PROGID, 1.Jsing the PROGID as the name of the
key. For POOM there is a key called 'PocketOutlook.Application'. This
has a single key with the name 'CLSID' that contains the GUID related to the
PROGID displayed in the following form:

{05058F23-20BE-11D2-8F18-0000F87A4335}

CL SID
{O 13E8274-DDB4-4t4d-8A53-7FB93D561 BD2}
{04318478-4378-lld2-9ADC-OOC04F8EE3Al}

Programmable

Registry entries for POOM class obiect

340 Chapter 14 e COM and ActiveX

The HRESULT Data Type and Handling Errors
Nearly all COM interface functions return an HRESULT value that contains error
information. An HRESULT is not a handle but rather a 32-bit value that contains
three discrete pieces of information:

0 Bit 31-The severity flag. If set (value 1), then the HRESULT represents an
error, otherwise success.

0 Bits 16-30-Facility. This defines what has generated the error. FACIL
ITY_ITF specifies an application-generated error; FACILITY_WINDOWS
specifies a Windows error message.

* Bits 0-16-Error Code. An error code unique to the facility.

The FAILED or SUCCESS macros should be used to determine whether
an HRESULT indicates failure or success, since HRESULTs can be used to re
turn different success or failure codes. Common HRESULT values include the
following:

* S_OK or NOERROR-The function succeeded.
* s FALSE-The function succeeded and returned a FALSE value.
* E_UNEXPECTED-An unexpected error.
111 E_NOIMPL-The requested functionality was not implemented.
111 E_NOINTERFACE-Queryinterface was used to request an interface

not implemented by the component.
® E_OUTOFMEMORY-The component encountered an out-of-memory er

ror. This is often a catchall error that has nothing to do with a memory
error.

* E_FAIL-Unspecified general error.

Interface Definition Language and Type Library Information
COM does not provide a mechanism by which an application can directly in
terrogate a component about the interfaces it supports, nor the functions im
plemented in those interfaces. For most applications this does not pose a prob
lem. If the programmer does not know about an interface when the application
is written, it is unlikely the program will need to call functions in the interface.
However, there are times when it is essential to do so, including the following:

® For interpreted languages that need to determine which functions and in
terfaces are available when the code is run

e When producing class wrappers (so-called 'smart pointer' classes) around
COM components

A COM component developer can use Interface Definition Language (IDL)
to define the interfaces and functions implemented by a component. IDL is a
language that looks like a C header file and can include structure, enumeration,
interface, and function definitions. In addition to C-type information, additional
information is provided on function parameters, such as whether they are 'in',
'out', or 'in/out' parameters and how the size of parameter arrays is determined.

POOM-The Pocket Office Object Model 341

This IDL code is sometimes hand-coded or, more often, is generated au
tomatically when components are written using MFC or ATL. The Microsoft IDL
compiler (MIDL) can be used to compile the IDL code and generate Type Li
brary (TLB) information. This TLB information is a binary representation of the
IDL code and can be included in DLL or EXE files. TLB information becomes
more important for Automation using the IDispatch interface described later
in this chapter.

POOM-The Pocket Office Object Model
This chapter looks at accessing the Pocket Outlook (such as Contact, Task, or
Calendar) information using the Pocket Office Object Model (POOM). In times
past, applications used Windows CE API functions or manipulated the Outlook
property databases directly. Now, though, POOM is the recommended mecha
nism to use.

POOM is implemented as a set of COM interfaces that are related together
to form an object model (Figure 14.2). Figure 14.2 expresses two types of re
lationships between interfaces.

IPOutlookApp

I City
!Recurrence Pattern

ITimeZone
I Recipients I POI Recipient

I Folder !Exceptions

IPOutlookltemCollection IPOltems

!Contact

!Appointment

ITask

The Pocket Office Obiecf Model

342 Chapter14 e COMandActiveX

Interface

IPOutlookApp

ICity

ITimeZone

I Folder

* The thin lines represent a 'returns interface' relationship. For example,
IPOutlookApp has a function GetDefaul tFolder that returns an
I Folder interface for one of the folder types (Contacts, Tasks, and so on).

* The bold, arrowed lines represent an 'implements' relationship. For ex
ample, the interface IPOitems implements the IPOutlookFolder

ItemCollection interface and adds a single new function called Set
Columns.

A brief description of the POOM interfaces is provided in Table 14.1. Each
interface has a number of functions that allow the data associated with the ob
ject to be modified and perhaps to return another interface. Examples of these
functions are provided throughout this chapter.

POOM interfaces

Purpose

Allows application to login to Outlook and obtain folder, city, and
time zone interfaces.

Represents a city in the World Clock application. Can be used to add
new cities or change the properties of existing cities.

View information about a time zone, such as name, daylight saving
information, and bias from Greenwich mean time (GMT, or univer
sal time).

Allows a standard folder to be opened, such as Calendar, Contacts,
or Tasks. Also allows an object to be sent via infrared or to obtain
a collection of cities.

IPOutlookitemCollection A collection of items from a standard folder such as Calendar,

I Contact

IAppointment

I Task

IPOitems

Contacts, or Tasks.

Interface representing an existing or new contact.

Interface representing an existing or new appointment.

Interface representing an existing or new task.

Interface derived from IPOutlookitemCollection optimized to
allow the properties for each contact to be defined. However, this
data is read only.

IRecurrencePattern Interface for managing recurring appointment information.

Interface for managing recipient lists for appointments. IRecipients

IPOlRecipient

IExceptions

Interface for resolving recipients against the contact list on the device.

Interface for managing list of exceptions generated for a recurring
appointment.

Each item (such as a task, appointment, or contact) has a unique object
identifier that is used to reference the item. Each class representing an item

Using COM Components 343

(such as ITask) has a get_Oid function that returns the item's OID. Once you
know the OID, the IPOutlookApp: :GetitemFromOid function can return
the item directly from its OID without having to open folders, etc. You might
choose to save this OID in your own database so that you can, for example,
store primary contact information in Pocket Outlook and additional data, to
gether with the OID, in your own database.

Using COM Components
This section shows how to use COM interfaces by means of the standard COM
functions and techniques. These techniques create COM objects and manage
interfaces using standard COM functions (such as CoCreateinstance) and
interface functions (such as IUnknown's AddRef, Release, and Queryin
terface functions). These techniques are the easiest to understand; however,
memory leaks can easily be introduced if, for example, calls to Release are
omitted. In the next section smart pointers are described that are initially more
complex but eventually lead to easier and safer programming.

Initializing and Uninitializing COM
The COM library should be initialized before any COM functions or objects
are used. In Windows CE COM initialization is not strictly required but should
be included for compatibility with desktop programming practices. COM is ini
tialized through a call to CoinitializeEx, and this function is passed two
parameters:

e NULL-The first parameter is ignored and should always be passed as
NULL.

* COINIT_MULTITHREADED-The threading model to be used by compo
nents created on this thread. In Windows CE the only supported thread
ing model is 'multi-threaded.'

CoinitializeEx returns an HRESULT indicating success or failure. List
ing 14.1 shows a call to CoinitializeEx, with a test of the returned HRESULT.
You need to include obj base. h when using COM functions and include the
libraries ole32. lib and oleaut32. lib in the project.

Initializing COM

#include <objbase.h>

void Listing14_1()
{

HRESULT hr;

344 Chapfer 14 '* COM andActiveX

hr = CoinitializeEx(NULL, COINIT_MULTITHREADED);
if (FAILED (hr))

cout << _T("Failed to initialize COM") << endl;
else

cout << _T("COM Initialized") << endl;

When an application has finished using COM, it should be uninitialized
through a call to CoUninitialize. This function takes no arguments and has
no return value (Listing 14.2).

M@MjfM Uninitializing COM

void Listingl4_2()
{

CoUninitialize();
cout << _T("COM Uninitialized") << endl;

Creating a COM Object
Once COM has been initialized, component objects can be created using calls
to CoCreateinstance (Table 14.2). A call to CoCreateinstance specifies
the following:

111 The CLSID of the component specifying the object to create
111 The IID of the interface to be returned
111 A pointer to an interface pointer in which the requested interface pointer

will be returned

You can decide which interface you want to start working with-any
other interface can be obtained at a later stage by calling Queryinterface.
The CLSID is the only reference an application makes to the component or an
object. Every subsequent COM call always uses the interface pointer returned
by CoCreateinstance.

The dwClsContext parameter allows an application to specify where
the component can be created. CLSCTX_INPROC_SERVER specifies that the
COM component must be implemented in a DLL and will be loaded into the
address space of the client application. If the COM component is implemented,
in an EXE, for example, the call to CoCreateinstance would fail since the
component would be out-of-process, being in another process.

Listing 14.3 shows a call to CoCreateinstance that creates a POOM ob
ject. The header pims tore. h must be included since this contains the inter
face definitions, the CLSID, and IID definitions. The call to CoCreateinstance
returns an interface pointer represented by the IID IID_IPOutlookApp. This
is the 'top-level' interface in POOM and is used to logon to Pocket Outlook.

Using COM Components 345

CoCreatefnstance-Creates a COM component object

CoCreateinstance

REFCLSID rclsid

LPUNKNOWN pUnkOuter

DWORD dwClsContext

REFIID riid

LPVOID * ppv

STDAPI Return Value

Reference to a CLSID-a GUID that identifies the class
of object to be created.

This parameter is used by COM component developers
and can generally be passed as NULL.

Pass as CLSCTX_INPROC SERVER for Windows CE.

Reference to a IID (Interface ID) that should be returned
in ppv. This can be any interface identifier supported by
the class of object defined by rclsid.

Pointer to an interface pointer in which the pointer
defined by rrid is returned.

STDAPI defines that the function returns an HRESULT.
S_OK indicates that the object was created successfully,
and REGDB_E_CLASSNOTREG indicates that the class
identifier could not be located.

l@llM Creating a COM object

#include <pimstore.h>
IPOutlookApp *g_poomApp;

void Listing14_3()
{

HRESULT hr;
hr = CoCreateinstance(CLSID_Application,

NULL,
CLSCTX_INPROC_SERVER,
IID_IPOutlookApp,
(LPVOID *)&g_poomApp);

if (FAILED (hr))
cout << _T ("Could not create POOM");

else
cout << _T("POOM Object created") << endl;

As described earlier, the CLSID and IIDs are structures, and your applica
tion needs variables declared to hold the CLSID and IIDs used by your appli
cation. This is not done by default in the header files such as pimstore. h,
since this would lead to duplicate variable declarations in the various source
files, including the header file. You can have these variables declared correctly
from the header file by using the following define:

#define INITGUID

346 Chapter 14 * COM andActiveX

This define should be placed before any of the standard header files (such
as windows. h or obj base. h) are included. As you will see later, you do not
need to explicitly delete the object created with CoCreateinstance-inter
face reference counting does this automatically.

Calling COM Functions
Each interface has functions that can be called through the interface pointer re
turned from CoCreateinstance. The IPOutlookApp interface has three im
portant functions:

0 Logon-To logon to Pocket Outlook
* Logo ff-To logout of Pocket Outlook
0 get_Version-To obtain the POOM version number

Calling these functions is quite straightforward-they are called through
the interface pointer returned from CoCreateinstance and stored in g_
poomApp. Listing 14.4 shows a call to the functions Logan (which is passed the
application's window handle) and to get_Version (which is passed a string
using the BSTR data type in which the version number is returned). The BSTR
data type represents a variable-length string suitable for passing between a
client application and a component, as described in the next section.

Calling COM methods

void Listing14_4(HWND hWnd)
{

HRESULT hr;
BSTR szVersion;

hr= g_poomApp->Logon((long) hWnd);
if (FAILED (hr))

cout << _T ("Could not ~ogin") << endl;
else
{

g_poomApp->get_Version(&szVersion);
cout << _T ("POOM Version: ")

<< szVersion << endl;
SysFreeString(szVersion);

The BSTR Daf a Type
The BSTR data type allows variable-length, dynamically created strings to be
passed between a client application and a COM component. A BSTR variable
points at the string it contains, so the string content can be accessed like a con
stant pointer to a string, that is, a LPCTSTR. The bytes preceding the BSTR

Using COM Components 347

pointer contain the character count. Only the standard BSTR functions should
be used to change the string's length to ensure that the character count is main
tained correctly. While the string may contain a NULL-terminating character, it is
not required. Therefore, do not rely on one being present. Also, a BSTR can con
tain embedded NULL characters, so wcslen may give the incorrect length. The
function SysStringLen can be used to obtain the current length of a BSTR.

The function SysAllocString is used to create a BSTR and initialize it
with a string:

BSTR bStr;
bStr = SysAllocString (_T ("My String"));

A string must eventually be de-allocated, and calling SysFreeString
does this:

SysFreeString(bStr);

Some of the commonly used BSTR functions include the following:

@ SysAllocString-Returns a BSTR created from a NULL-terminated
string

® SysAllocStringLen-Returns a BSTR allocated to the specified length
® SysFreeString-Frees the memory associated with the BSTR
© SysReAllocString-Changes the length of the BSTR by reallocation
© SysStringLen-Returns the length of the string in characters

Releasing COM Interfaces
COM component objects take up memory, and sooner or later this memory has
to be freed. COM components keep a reference count on each interface pointer
returned to a client application. When CoCreateinstance is called, an inter
face pointer is returned, so the reference count on that interface is incremented.
Calling the IUnknown interface's AddRef function does this. AddRef must be
implemented by every interface, since all interfaces inherit from IUnknown.

When a client application has finished with an interface, it must call the
IUnknown interface's Release function. This function decrements the inter
face's reference count, and when all reference counts for all interfaces imple
mented by a component reach zero, the component object deletes itself.

Listing 14.5 shows calling the IPOutlookApp interface's Logo ff function
to logout of Pocket Outlook, and then calling Release. Since this is the only
reference to the only interface in the component, the component object deletes
itself at this point.

Releasing COM interfaces

void Listing14_5()
{

II First log-off then release interface

348 Chapter 14 e COM and ActiveX

g__poomApp->Logoff();
g__poomApp->Release(); //Object deleted
cout << _T("POOM Object released") << endl;

If a client application passes an interface pointer to another function, it
should itself call AddRef, since there would now be another reference to the
interface. The function receiving the interface pointer should call Release
when it has finished with the interface. Failure to call AddRef and Release at
the correct times can have undesirable results such as the following:

® If Release is called without a corresponding AddRef, the component
object will delete itself prematurely, and other interface pointers to the
component will be invalid.

® If Release is not called, the interface reference count will never get to
zero, and the component object will never delete itself. This will result in
a memory leak.

Keeping track of AddRef and Release calls is tricky and can easily re
sult in bugs. Because of this, it is best to use smart pointers to automate the
reference count. These techniques are described later in this chapter.

The component determines how the reference count is implemented-it
can either have a single reference count for all interfaces or have a separate ref
erence count for each interface. From the client application's standpoint, this is
an implementation detail and is of no importance.

Finding a Contact's Email Address
So far, a single pointer to the interface IPOutlookApp has been used. To ac
cess data from Pocket Outlook you need to select the folder to use (Calendar,
Tasks, and Contacts) and then work with a collection of items in that folder.
This involves using POOM interfaces other than IPOutlookApp. The IUn
known interface function 'Queryinterface' can be used to obtain other inter
faces in a component object. However, when using object models, it is more
usual for an interface function to return a pointer to another interface that is set
up to refer to a data item, or whatever is appropriate.

As an example, Listing 14.6 shows how to locate the contact item for a
specified contact by performing the following steps:

® Call the IPOutlookApp interface's GetDefaultFolder function, pass
ing a constant indicating which folder to return (for example, olFolder
Contacts). This returns an IFolder interface pointer.

® Call the IFolder interface function get_Items to return an IPOut
lookitemCollection interface pointer. This interface allows access to
all items in the contacts folder.

® Use the IPOutlookit.emCollection interface function Find to locate
a single contact and return an IContact interface pointer to the specified
contact.

Using COM Components 349

"' Use IContact interface functions such as get_FirstName to access
contact information.

"' Call SysFreeString on each of the BSTR data items returned from
IContact functions.

"' Call Release on each of the interface pointers returned in this function.

The IPOutlookitemCollection interface is a collection class that al
lows access to a group of items. The interface allows a single item to be re
turned using the Find function (which supplies the search criteria) or the Item
method that returns an item given a 1-based index. The get_Count function
returns the number of items in the collection.

IMllM Finding a contact's email address

void Listing14_6()
{

IFolder *pFolder;
IPOutlookitemCollection *pitems;
IContact *pContact;
BSTR szFirstName, szLastName, szEmail;
int nitems;

g_poomApp->GetDefaultFolder(olFolderContacts,
&pFolder);

if(pFolder ==NULL)
{

cout << _T("Could not get contacts folder")
<< endl;

return;

pFolder->get_Items(&pitems);
pitems >get_Count(&nitems);
cout << _T("Number of contacts: ") << nitems << endl;
pitems->Find(

_T(" [LastName] = \"Grattan\" AND\
[FirstName] = \"Nick\""),

(IDispatch**)&pContact);
pContact->get_FirstName(&szFirstName);
pContact->get_LastName(&szLastName);
pContact->get_EmaillAddress(&szEmail);
cout << szFirstName << _T(" ")

<< szLastName << _T(" ")
<< szEmail << endl;

SysFreeString(szFirstName);
SysFreeString(szLastName);
SysFreeString(szEmail);

pContact->Release();
pitems->Release();
pFolder->Release();

350 Chapter 14 e COM and ActiveX

POOM functions that return an interface pointer require the pointer vari
able to be cast to the IDispatch** data type. The IDispatch interface is a
standard interface used to support Automation calls and is described later in
this chapter.

Calling Querylnterface
The IUnknown Queryinterface function allows an application to obtain a
pointer to another interface from a component object interface pointer. As
shown in the previous section, many interfaces support specialized functions
for getting interface pointers, but there are times when Queryinterface is
essential. For example, POOM supports the IPOlitems interface derived from
IPOutlookitemCollection and is optimized to provide fast, efficient, read
only access to a collection of items. A IPOlrtems interface pointer is obtained
by calling Queryinterface, as shown in Listing 14.7.

Calling Ouerylnterface

void Listing14_7()
{

IFolder *pFolder;
IPOutlookitemCollection *pitems;
IPOlitems *pitems2;

IContact *pContact;
BSTR szFirstName, szLastName;
int nitems;

g_poomApp->GetDefaultFolder(olFolderContacts,
&pFolder);

if(pFolder ==NULL)
{

cout << _T("Could not get contacts folder")
<< endl;

return;

pFolder->get_Items(&pitems);
pFolder->Release();
pitems->Queryinterface(IID_IPOlitems,

(LPVOID *) &pitems2);
pitems->Release();
if(pitems2 ==NULL)

cout << _T("Query Interface Failed") << endl;
else
{

pitems2->SetColumns(_T("LastName, FirstName"));
pitems2->get_Count(&nitems);
cout << _T("Contacts: ") << nitems << endl;
for(int i = l; i <= nitems; i++) //NB: 1 Based!

Using COM Components 351

pitems2->Item (i, (IDispatch * *) &pContact) ;
if(pContact == 0)
{

cout << _T("Could not get contact")
<< endl;

break;

else

pContact->get_FirstName
(&szFirstName);

pContact->get_LastName(&szLastName);
cout << szFirstName << _T(" ")

<< szLastName << endl;
SysFreeString(szFirstName);
SysFreeString(szLastName);

pitems2->Release();

Queryinterface (Table 14.3) is called through an existing interface
pointer. The function is passed the IID (Interface ID of the interface, for ex
ample, IID_IPOlitems) and a pointer to a pointer variable to receive the
interface pointer (pitems2).

Notice how the code in Listing 14.7 calls Release on an interface pointer
as soon as it has finished with the function and not at the end of the function.
So long as there is a single outstanding reference on the interfaces in a com
ponent, the component will continue to exist, and so this is safe. Some pro
grammers prefer to call Release when they have finished with the interface,
while others prefer to call Release at the end of the function where it may be
easier to check that all the interfaces have Release called on them.

Ouerylnterfoce-Returns a pointer to another interface

Queryinterface

REFIID iid,

void ** ppvObject

HRESULT Return Value

Reference to the interface identifier for the interface
to be returned

Pointer to a pointer variable in which the interface
pointer will be returned

Returns E_NOINTERFACE if the interface is not
supported, or S_OK on success

The IPOlitems implements a function called SetColumns that specifies
the column names to be retrieved. This is efficient because only the named

352 Chapter 14 * COM andActiveX

columns will be returned rather than all the columns, as is the case with IP
OutlookitemCollection. In Listing 14.7 a 'for' loop is used to retrieve each
contact (using the 'Item' function) in the collection. The first name (using
get_FirstName) and the last name (using get_LastName) are retrieved and
displayed. Note that Item returns the contact using a 1-based rather than a
0-based index.

Adding a Contact·
When an interface pointer is passed to a function, AddRef should be called on
the interface pointer by the caller function. The called function should call Re
lease when it has finished using the interface pointer. This is illustrated in List
ing 14.8, in which the function AddContact is called to add a new contact to
the Contacts folder. The pitems interface function calls AddRef before calling
AddContact, which itself calls Release before returning.

POOM allows new contacts to be added using the IContact interface.
The IPOutlookitemCollection has an Add function that returns an ICon
tact interface pointer, and the put_ functions are used to set the data for the
new contact. Finally, the IContact interface's Save function saves the data
into the Contacts folder.

Adding a contact

void AddContact(IPOutlookitemCollection *pitems,
LPTSTR szFirstName, LPTSTR szLastName)

IContact *pContact;
pitems->Add((IDispatch**)&pContact);
if(pContact ==NULL)
{

cout << _T("Could not get IContact interface")
<< endl;

return;

pContact->put_FirstName(szFirstName);
pContact->put_LastName(szLastName);
if(FAILED(pContact->Save()))

cout << _T("Could not save contact")<< endl;
pContact->Release();
pitems->Release();

void Listing14_8()
{

IPOutlookitemCollection *pitems;
IFolder *pFolder;

Using Smart Pointers 353

g_poomApp->GetDefaultFolder(olFolderContacts,
&pFolder);

if(pFolder ==NULL)
{

cout << _T("Could not get contacts folder")
<< endl;

return;

pFolder->get_Items(&pitems);
pitems->AddRef();
AddContact (pitems, _T ("XXXXX") , _T ("ZZZZZ")) ;
pitems->Release();
pFolder->Release();

The IPOutlookApp interface function Createitem can be used to cre
ate new contact, appointment, and other types of items without opening the
folder or obtaining an IPOutlookitemCollection. Listing 14.10, in the sec
tion "Creating a Recurring Appointment," shows an example of using the Cre
ateitem function.

Using Smart Pointers
While it is quite straightforward to create and manage COM component objects
using the techniques outlined in the preceding sections, bugs can easily be in
troduced if the AddRef and Release rules are not strictly followed. To allevi
ate this problem you can create 'smart pointer' classes for interfaces, and these
smart pointers automatically call AddRef and Release at the appropriate times.

Smart pointers are created using the _COM_SMARTPTR_TYPEDEF macro
that is declared in the header file comdef. h. The macro is passed the
following:

® The class name declaring the interface functions. For example, you may
use IPOutlookApp, and this interface is declared in pimstore. h.

® The result of using the _uuidof macro, which is passed the interface
function declaration. This passes the IID (Interface Identifier) to the _COM_
SMARTPTR_TYPEDEF macro.

The following statement will generate a smart interface pointer class called
'IPOutlookAppPtr':

_COM_SMARTPTR_TYPEDEF(IPOutlookApp,
_uuidof(IPOutlookApp));

The macro uses the com_ptr_t template class and creates wrapper func
tions in the new class for each of the interface functions. These wrapper func
tions perform error checking such as ensuring that the interface pointer is not

354 Chapter 14 * COM and ActiveX

NULL. For example, the IPOutlookApp interface function 'Logon' has the fol
lowing function generated in the smart pointer class:

inline HRESULT IPOutlookAppPtr: :Logon (long hWnd) {
HRESULT _hr = raw_Logon(hWnd);
if (FAILED(_hr)) _com_issue_errorex(_hr, this,

_uuidof(this));
return _hr;

These wrapper functions call the 'raw' interface functions through the in
terface's vtable. If the function returns a failure in the HRESULT, the function
com_issue_errorex is called, and this in turn calls _com_issue_error. In
Windows NT/98/2000, _com_issue_error is implemented in the run-time
library, and it generates a C++ exception. In Windows CE you must implement
the function-you can decide how you want to handle these errors, perhaps
by writing to an error log or by notifying the user.

The com_ptr_t template class provides a 'Createinstance' function
that allows a component class object to be created. The Createinstance
function is passed a class identifier (CLSID) or a program identifier (ProgID)
representing the class to be created. In the following code fragment the vari
able pOutlookApp is declared using the smart interface class created using
com_ptr_t, and Createinstance is called through that variable. On return
from Createinstance, the pOutlookApp smart pointer wraps an interface
pointer to the IPOutlookApp interface.

IPOutlookAppPtr pOutlookApp;
hr = pOutlookApp.Createinstance(CLSID_Application);

The code in Listing 14.9 creates a COM component object using Create
Instance, calls the Logon function, obtains the Pocket Output version num
ber, and then calls Logoff. When the function Listingl4_9 returns, the vari
able pOutlookApp's destructor is called, and this calls Release to decrement
the interface reference count. As you can see, using smart pointers is easier and
safer than coding COM directly.

Using smart pointers

#include <comdef.h>

_COM_SMARTPTR_TYPEDEF(IPOutlookApp,
_uuidof (IPOutlookApp));

II Assumes that CoinitializeEx has been called already
void Listing14_9(HWND hWnd)
{

IPOutlookAppPtr pOutlookApp;
HRESULT hr;
BSTR bstrVersion;

Using Smart Pointers 355

hr = pOutlookApp.Createinstance(CLSID_Application);
if (FAILED (hr))
{

cout << _T("Could not create object") << endl;
return;

hr= pOutlookApp->Logon((long) hWnd);
if (FAILED (hr))

cout << _T("Could not login") << endl;
else
{

pOutlookApp->get_Version(&bstrVersion);
cout << _T("POOM Version: ")

<< bstrVersion << endl;
pOutlookApp->Logoff();
SysFreeString(bstrVersion);

void _com_issue_error(HRESULT hr)

cout << _T("Error in Smart Pointer access") << endl;

Listing 14.9 provides an implementation of _com_issue_error that
simply displays an error message. You could raise an exception, write the er
ror to log, or handle the error in another way. Note that an application can only
provide a single _com_issue_error function to handle all errors encountered
when using com_ptr_t smart pointer classes.

The '#import' compiler directive can also be used to generate smart
pointer classes from type library (TLB) files, or from DLL files that contain TLB
information. When this technique is used, you do not need to use the _COM_
SMARTPTR_TYPEDEF macro yourself. For example, if your COM component is
implemented in MYDLL. DLL, and this DLL contains type library information,
you can add the following line to a CPP file to create the smart pointer classes:

#import "mydll.dll" no_namespace

The no_namespace attribute specifies that the generated classes will use
the global namespace. If this is not included, the classes created by the #im
port will be created in a namespace whose name is specified in the IDL code
used to create the type library information. Using #import is easier than creat
ing _COM_SMARTPTR_TYPEDEF declarations for each interface you intend to
use, but many COM objects used with Windows CE do not have suitable type
library files. Chapter 16 (ADOCE and SQL Server for Windows CE) shows us
ing #import with type libraries.

The _com_ptr_t template provides other functions for managing COM
interfaces, such as the following:

356 Chapter 14 "' COM andActiveX

* AddRef-Increments the reference count on an encapsulated COM inter
face pointer.

* Release-Decrements the reference count on an encapsulated COM in
terface pointer.

® Attach-This function is passed an interface pointer that the _com_
ptr_t template class then encapsulates.

* Detach-Returns the interface pointer encapsulated by the _com_ptr_t
template class. You are responsible for calling Release on the pointer.

111 GetinterfacePtr-Returns the encapsulated interface pointer, but the
_com_ptr_t template class still maintains responsibility for reference
counting.

® Queryinterface-Calls the IUnknown Queryinterface function
and returns a raw (non-encapsulated) COM interface pointer.

The Attach function is used quite frequently, since COM interface func
tions typically return raw, non-encapsulated interface pointers. An example of
using Attach is presented in the next section.

Creating a Recurring Appointment
The IPOutlookApp interface function Createitem can be used to create new
contact, appointment, task, or city items. The function takes a constant indi
cating which type of item to create (olAppointmentitem, olContactitem,
ol Taskitem, or olCi tyitem) and returns an interface pointer of the appro
priate type (for example, IAppointment, IContact, I Task, or ICity). When
using classes created with the _com_ptr_t template you will need to use the
Attach function to take the raw interface pointer returned from Createitem
and attach it to a class object.

The following code fragment calls Createitem to return an IAppoint
men t interface pointer representing a new appointment item. Notice how a raw
interface pointer variable is declared (pinterfaceAppt) and passed to the
Createitem function. The pAppt variable is a class object of type IAp
pointmentPtr created from the _com_ptr_t template class.

_COM_SMARTPTR_TYPEDEF(IAppointment,
~uuidof(IAppointment));

IAppointment *pinterfaceAppt;
IAppointmentPtr pAppt;

pOutlookApp->Createitem(olAppointmentitem,
(IDispatch **) &pinterfaceAppt);

pAppt.Attach(pinterfaceAppt, FALSE);

The Attach function takes the raw interface pointer and attaches it to
the pAppt class object, which then takes responsibility for calling Release on

Creating a Recurring Appointment 357

the interface pointer. The second argument to Attach specifies whether an
AddRef should be automatically called when the attach takes place. Passing
FALSE does not result in AddRef being called, and this is appropriate in this
case since the AddRef was called by Createitem.

The CreateAppointment function in Listing 14.10 creates a recurring ap
pointment starting on Monday, July 3, 2000. The appointment is for 10:00 A.M.

and uses the default appointment duration of one hour. The appointment will
recur indefinitely every Monday. The code creates smart interface classes for
the IAppointment and IRecurrencePattern interfaces.

IM§il1i Creating a recurring appointment

_COM_SMARTPTR_TYPEDEF(IAppointment,
~uuidof(IAppointment));

_COM_SMARTPTR_TYPEDEF(IRecurrencePattern,
~uuidof(IRecurrencePattern));

void CreateAppointment(IPOutlookAppPtr& pOutlookApp)
{

IAppointmentPtr pAppt;
IAppointment *pinterfaceAppt;
IRecurrencePattern *pinterfaceRecur;
IRecurrencePatternPtr pRecur;
DATE date;
SYSTEMTIME st;

pOutlookApp->Createitem(olAppointmentitem,
(IDispatch **) &pinterfaceAppt);

pAppt.Attach(pinterfaceAppt, FALSE);

II Convert Monday, Julyl312000 at 10: 00 AM to a date
memset(&st, 0, sizeof(SYSTEMTIME));
st.wMonth = 7;
st.wDay = 3;
st.wYear 2000;
st.wHour = 10;

II Convert to date format
pOutlookApp->SystemTimeToVariantTime(&st, &date);

II Set the subject and start date to 10:00 AM
pAppt->put_Subject(_T("Recurring Appointment"));
pAppt->put_Start(date);

II Set the recurrence pattern
pAppt->GetRecurrencePattern(&pinterfaceRecur);
pRecur.Attach(pinterfaceRecur, FALSE);
pRecur->put_RecurrenceType(olRecursWeekly);
pRecur->put_DayOfWeekMask(olMonday);
pRecur->put_NoEndDate(VARIANT_TRUE);

358 Chapter 14 0 COM and ActiveX

II Save the appointment
pAppt->Save();
cout << _T("Appointment added") << endl;

The CreateAppointment function initializes a SYSTEMTIME structure
with the start time for the appointment. The SystemTimeToVariantTime
function converts the date into a variant DATE data type. The variant data type
is discussed later in this chapter. The appointment subject is set with the put_
Subject function, and the start date with the put_Start function.

The IRecurrencePattern interface allows the parameters for a recur
ring appointment to be set. A IRecurrencePat tern interface pointer is ob
tained by calling the IAppointment interface function GetRecurrencePat
tern function. The following information is set for the recurrence parameters:

0 put_RecurrenceType-How frequently the appointment will recur.
Can be one of the following: olRecursDaily, olRecursWeekly, ol
RecursMonthly, olRecursMonthNth, olRecursYearly, olRecurs
YearNth

0 put_DayOfWeekMask-The days a pattern occurs: a combination of ol
Sunday, olMonday, and so on

0 put_NoEndDate-Passing true specifies that this recurrence pattern has
no end date

The appointment, together with the recurrence pattern, is saved by call
ing the IAppointment interface's Save function. The function CreateAp
pointment is passed a reference to an IPOutlookAppPtr smart pointer class,
created using code similar to that contained in Listing 14.9:

IPOutlookAppPtr pOutlookApp;
HRESULT hr;

hr = pOutlookApp.Createinstance(CLSID_Application);
if (FAILED (hr))
{

cout << _T("Could not create object") << endl;
return;

hr = pOutlookApp->Logon((long) hWnd);
if (FAILED (hr))

cout << _T("Could not login") << endl;
else

CreateAppointment(pOutlookApp);
pOutlookApp->Logoff();

ActiveX and Automation 359

ActiveX and Automation
So far, all the code in this chapter has accessed COM interfaces and their func
tions directly. This is relatively easy from C++, since the vtable structure used
by COM can be accessed from C++ code. However, other languages-in par
ticular, scripting languages like VBScript-may not be able to access the vtable.
This is because COM interface function calls would need to be resolved at run
time, and the vtable does not contain information about the names of the func
tions, the arguments they take, or the order of the functions. For this reason,
Automation was developed. Automation allows functionality in COM compo
nents to be called by creating and passing data structures detailing the nature
of the call, rather than direct function calls. Automation is implemented by a
single COM interface called IDispatch.

ActiveX controls generally use Automation rather than direct COM inter
face calls, although many ActiveX controls support both Automation and COM
interface calls by providing 'dual interfaces.' With dual interfaces, the client ap
plication can decide whether to use the IDispatch Automation interface or
call functions directly through the vtable. IDispatch Automation interfaces are
known as 'dispinterfaces' or 'dispatch interfaces'-note that they are not COM
interfaces although they are invoked through the IDispatch COM interface.
Automation does not use standard C++ data types for parameters and return
types. Instead, parameters are passed using the variant data type. While this
limits to a certain extent the type of data that can be passed, it allows data co
ercion and data casting to be performed at run time.

Some components do not support dual interfaces, so the dispinterface
must be used. Therefore, you may need to call Invoke through IDispatch,
passing the relevant parameter information.

bstr t and variant t Classes - -
In the same way that smart pointers make accessing COM interfaces easier, you
can use the classes _bstr_t and _variant_t to make accessing BSTR and
VARIANT variables easier and more reliable. These classes provide constructors
that create BSTR directly from strings without having to use SysAllocString,
and the BSTR variables are automatically de-allocated. These two classes are
described in Chapter 16 (ADOCE).

Automation Displnterfaces

An Automation Dispinterface provides access to a COM component's function
ality through the following:

360 Chapter 14 0 COM and ActiveX

"' Methods, which are similar to functions in that they are passed parame
ters and return values

"' Properties, which are values associated with a COM component

Each method and property has a 'dispid,' or dispatch identifier, that is
unique within the Automation object. A client application calls a method or ac
cesses a property through the dispid rather than using the method or property's
name directly. Note that dispids are not GUIDs but are simple integer numbers.
Although properties are used like variables, they are actually accessed through
method-like calls into the automation object.

Information on the Dispinterface is included in the type library in
formation associated with the COM component. If the type library information
is included in the COM component's DLL or EXE, the client application can in
terrogate this information at run time through the IDispatch interface.

The !Dispatch Interface
Automation is implemented using a single interface call, IDispatch, which
has four interface functions:

<ID Invoke-Called to execute a method or property. It is passed the dispid
of the method or property and the parameters and return value.

<ID GetIDsOfNames-Allows a client application to convert the name of the
method or property to a dispid.

"' GetTypeinfoCount-Used to determine if the Automation object can
return type library information at run time.

"' GetTypeinfo-Used to return type library information at run time for an
automation object.

Generally, Invoke and GetIDsOfNames are used to execute methods
and properties, and GetTypeinfoCount and GetTypeinfo are used to ob
tain information about the methods and properties. You will find code examples
showing how to call GetTypeinfoCount and GetTypeinfo at the end of
Chapter14. cpp in the Examples project on the CDROM.

Obtaining an !Dispatch Interface Pointer
Any COM component that provides an Automation interface must implement
the IDispatch interface. The following function returns an IDispatch smart
interface pointer for the Pocket Outlook Object Model:

#include <dispex.h> // for IID_IDispatch definition

_COM_SMARTPTR_TYPEDEF(IDispatch, IID_IDispatch);

BOOL GetIDispatch(IDispatchPtr& pDispatchPtr)
{

HRESULT hr;

ActiveX and Automation 361

hr = pDispatchPtr.Createinstance(CLSID_Application);
if (FAILED(hr))
{

cout << _T("Could not create object") << endl;
return FALSE;

return TRUE;

In previous uses of _COM_SMARTPTR_TYPEDEF, the _uuidof macro
was used to obtain the interface identifier (IID) from the interface definition.
This assumes that the interface is declared using the DECLSPEC_UUID attribute,
as follows:

interface DECLSPEC_UUID
("5B43F691-202C-lld2-8F18-0000F87A4335")

IAppointment : public IDispatch
{

Many interface declarations do not use DECLSPEC_UUID, so you will
need to use the IID directly (such as IID_IDispatch from the header file
dispex. h).

Obtaining Dispatch Identifiers
Before calling a property or method, you must first obtain its dispatch identi
fier (Dispid) using the IDispatch interface function GetIDsOfNames
(Table 14.4). GetIDsOfNames can convert several property and method
names in one call, which is more efficient than making single calls.

Get/DsOfNames-Returns Disp/Ds for method and property names

GetIDsOfNames

REFIID riid

OLECHAR FAR* FAR*
rgszNames

unsigned int cNames

LCID lcid

DISPID FAR* rgDispid

HRESULT Return Value

Not used, pass as IID_NULL. Using this constant
may require you to include coguid. h.

An array of null-terminated property and method
names. OLECHAR are Unicode NULL-terminated
strings.

Number of property and method names in
rgszNames.

Local used for conversion, generally pass return re
sult of calling the function GetUserDefaul tLCID.

Array of DISPID to receive the Dispids returned
by the function call.

HRESULT indicating success or failure.

362 Chapter 14 * COM and ActiveX

Potentially, an Automation interface could be localized so that method and
property names are translated into different languages. For this reason, Get
IDsOfNames requires that a locale be specified. Generally, the result of calling
GetUserDefaul tLCID (which obtains the locale of the current user) is passed
to GetIDsOfNames.

The following code shows how to get the DispID for the Version prop-
erty in IPOutlookApp:

LPTSTR names[] = {_T("Version")};
DISPID dispLogoff;
HRESULT hr;

II first get the dispatch ID for IPOutlookApp: :Version
hr= pDispatchPtr->GetIDsOfNames(IID_NULL,

names, 1,
GetUserDefaultLCID(), &dispVersion);

if (FAILED (hr))
{

cout << _T("Could not get dispid for Version")
<< endl;

return FALSE;

The VARIANT Data Type
All parameters and return values used when calling Automation methods and
properties are passed using the VARIANT structure. This structure is also re
ferred to a VARIANTARG. The vt member of this structure contains a constant
that describes the type of data contained in the structure and an unnamed
union with members for all the different data types that can be stored in a
VARIANT. The first few members of this structure are the following:

typedef struct tagVARIANT {
VARTYPE vt;
unsigned short wReservedl;
unsigned short wReserved2;
unsigned short wReserved3;
union {

unsigned char bVal;
short iVal;
long lVal;
float fl tVal;
double dblVal;

The basic data types that can be stored in a variant are shown in Table 14.5.
The VARIANT structure can store IUnknown and IDispatch pointers;

this allows Automation methods and properties to return COM pointers. This in
turn allows COM components to create object hierarchies and object models
like POOM.

ActiveX and Automation 363

•M"ll* Basic VARIANT data types

vt Constant Member Description

VT_Ull bVal Unsigned char

VT 12 iVal Two-byte signed integer

VT - I4 lVal Four-byte signed integer

VT_R4 fltVal Four-byte floating point

VT_R8 dbl Val Eight-byte floating point

VT_BOOL boolVal VARIANT_BOOL Boolean value

VT_ERROR scode SCODE error value

VT_CY cyVal Currency data type

VT DATE date DATE data type

VT_BSTR bstrVal BSTR variable-length string

VT_UNKNOWN punk Val IUnknown pointer

VT_DISPATCH pdispVal IDispatch pointer

The data types in Table 14.S are used for passing data by value. When a
property or method needs to return data, a 'by reference' data type must be
used. All the data types in Table 14.S can be combined with the vt constant
VT_BYREF. The union members for data passed by reference are all preceded
by 'p', so the VT_I2 member used when passing by reference is pi Val.

Two imp01tant VT values are used to signify that the VARIANT struc
ture does not contain data. VT_EMPTY means that no data is stored in the
VARIANT structure-the value is 0 for numeric data, and an empty string for
string data. VT_NULL signifies that the VARIANT structure intentionally does not
contain data.

The Variantinit function can be called to set the vt member to VT_
EMPTY, and VariantClear sets it to VT_NULL. Each of these functions takes
a pointer to a VARIANT structure and returns an HRESULT:

VARIANT varg;
!-!RESULT hr;
hr= Variantinit(&varg);

The VariantChangeTypeEx function can be used to coerce (or cast) a
VARIANT structure from one data type to another. The function determines
whether the coercion is legal and returns S_OK for success, or DISP _E_TYPE
MISMATCH if the coercion failed. The function is passed the following:

111 A pointer to the VARIANT structure in which the coerced VARIANT will
be returned

e A pointer to the VARIANT structure to be coerced
e The locale identifier used to determine date and currency formats

364 Chapter 14 s COM andActiveX

® A flags parameter that will normally be passed as zero
® The VT_data type to coerce to

The following code shows coercion for a VT_I2 to VT_R4 data type:

VARIANT varI2, varR4;
HRESULT hr;
varI2.vt = VT_I2;
varI2.iVal = VT_R4;
hr = VariantChangeTypeEx(&varR4, &varI2,

GetUserDefaultLCID(), 0, VT_R4);

There are also functions used for explicitly converting from one data type
to another (such as varR4FromUI2); however, the advantage of using Vari
antChangeTypeEx is that you do not need to determine the current data type
of a variant before attempting to coerce it to a different data type.

Using an Automation Property
An Automation property is accessed through calling the IDispatch Invoke
function, specifying whether the property value is to be retrieved or set. When
a property value is to be set, the new value for the property is passed as a pa
rameter to the invocation. A property value is retrieved through the return
value of the invocation.

In Listing 14.lla, the function DisplayVersion is passed a smart
pointer to the POOM object model and first obtains the dispid for the Version
property (which was described in the previous section, "Obtaining Dispatch
Identifiers").

Accessing the Version property

BOOL DisplayVersion(IDispatchPtr& pDispatchPtr)
{

DISPID dispVersion;
HRESULT hr;
VARIANTARG varResult;
DISPPARAMS disparms =

NULL, NULL,
0, II zero arguments
0 II zero named arguments
} ;

LPTSTR names [J = {_T ("Version")};
II first get the dispatch ID for IPOutlookApp::Version
hr= pDispatchPtr->GetIDsOfNames(IID_NULL, names,

1, GetUserDefaultLCID(), &dispVersion);
if (FAILED (hr))

ActiveX and Automation 365

cout << _T("Could not get dispid for Version")
<< endl;

return FALSE;

hr = pDispatchPtr->Invoke(dispVersion, IID_NULL,
GetUserDefaultLCID(),
DISPATCH_PROPERTYGET,
&disparms, &varResult, NULL, NULL);

if (FAILED (hr))
{

cout << _T("Could not invoke Version") << endl;
return FALSE;

cout << _T("Version invoked:") << varResult.bstrVal
<< endl;

SysFreeString(varResult.bstrVal);
return TRUE;

The Invoke function (Table 14.6) is called, passing the following
parameters:

* dispVersion-The dispid of the version property.
* IID_NULL-This is a reserved value.
* GetUserDefaul tLCID ()-The locale used for data formats and so on.

This function returns the locale for the current user.
e DISPATCH_PROPERTYGET-Invoke is used to retrieve a property's value.
e disparms-A pointer to a DISPPARAMS structure describing the param

eters being passed to the Automation call. This structure is initialized to
specify 'no parameters' when performing a DISPATCH_PROPERTYGET.

e varResul t-A pointer to a VARIANTARG structure that receives the re-
turn result that is, in this case, the property's value.

© NULL and NULL-No error information is requested.

The Automation object will interpret the data passed to the Invoke and
execute the necessary code to obtain the property's value and return the result.

On return from Invoke the 'varResul t' variable contains the property's
value, and the value is accessed through the statement varResul t. bstrVal.
Since this is a BSTR the function SysFreeString must be called to free the
memory associated with the string.

Calling Automation Methods
Calling Automation methods is very similar to accessing property values. How
ever, you will need to initialize a DISPPARAMS structure to specify the param
eters to be passed. The DISPPARAMS structure has four members:

366 Chapter 14 * COM and ActiveX

Invoke-Executes on Automation method or property

Invoke

DISPID dispidMember

REFIID riid

DISPID of the property or method to invoke.

Reserved, set to IID_NULL.

LCID lcid

WORD wFlags

Local used to interpret parameter value formats such as dates
and currencies.

Flag indicating how to interpret the invocation:
DISPATCH_METHOD-Method call.
DISPATCH_PROPERTYGET-Return property value.
DISPATCH_PROPERTYPUT-Set property value.
DISPATCH_PROPERTYPUTREF-Reference assignment rather
than a value assignment.

DISPPARAMS FAR* pDispParams Pointer to a DISPPARAMS structure describing the parameters
passed to the invocation.

VARIANT FAR* pVarResult

EXCEPINFO FAR* pExcepinfo

unsigned int FAR* puArgErr

HRESULT Return Value

Pointer to a VARIANT structure containing the return value
from the invocation.

Pointer to an EXCEPINFO structure describing an error raised
by the Automation object.

Pointer to an integer that contains, on return, an index to
array of parameters indicating the first parameters that caused
an error.

HRESULT containing a dispatch error, such as
DISP_E_BADPARAMCOUNT, indicating a wrong number of
arguments, or

DISP _E_TYPEMISMATCH if an argument is of the wrong type.
S_OK for success.

® rgvarg-Pointer to an array of VARIANTARG structures specifying the
values for the invocation

® rgdispidNamedArgs-Pointerto an array of DISPIDs specifying named
arguments

® cArgs-Number of arguments specified in rgvarg
® cNamedArgs-Number of arguments specified in rgdispidNamedArgs

Automation allows parameters to be passed by name rather than order.
This allows default parameters, since the call to Invoke does not have to sup
ply a VARIANT structure for each of the parameters, and the Automation object
can default those not supplied.

In the simplest case, a DISPPARAMS structure can be initialized to spec
ify 'no parameters', as is done in Listing 14.lla. In the following code VARIANT-

ActiveX and Automation 367

ARG and DISPPARAMS structures are initialized for a call to the 'Logan' method,
and this method is passed a single HWND argument. A VARIANTARG variable is
declared to hold the parameter value. Then, the DISPPARAMS structure is ini
tialized to have one parameter, and this parameter will be specified in the first
element of the varg array:

VARIANTARG varg;
DISPPARAMS disparms = {

&varg, NULL,
1, II one parameter
0 II zero named parameters
};

Next, calling Variantini t initializes the VARIANTARG structure, and the
data type is set to VT_I4. The hWnd value is assigned to the 1 Val union mem
ber in VARIANT:

Variantinit(&varg);
varg.vt = VT_I4;
varg.lVal = (LONG)hWnd;

Parameters are passed in reverse order in the VARIANTARG array. For ex
ample, the following Automation method takes two arguments:

AutomationFunction(VT_I4 argumentl, VT_RS argument2)

The VARIANTARG array should be declared and initialized in the follow
ing way:

VARIANTARG varg[2];
DISPPARAMS disparms = {

&varg, NULL,
2, II two parameters
0 II zero named parameters
} ;

Variantinit(&varg[OJ);
varg[O] .vt = VT_RS;
varg[OJ .lVal = 1.20; II initialize VT_RS
Variantinit(&varg[l]);
varg.vt[l] = VT_I4;
varg.lVal[l] = 42; II initialize VT_I4

The entire code for calling 'Logan' is shown in Listing 14.llb. There is
obviously much more code in calling Logan using the Automation interface
and IDispatch: : Invoke. C++ programmers should generally call COM inter
faces directly rather than using IDispatch:: Invoke, since it is easier, gener
ates less code, and provides faster execution. However, some components do
not provide a dual interface, leaving no option but to use Automation. MFC,
described later in the chapter, provide helper classes for making the calling of
Automation objects easier.

368 Chapter 14 "' COM and ActiveX

Passing parameters to a method

BOOL Logon(IDispatchPtr& pDispatchPtr, HWND hWnd)
{

DISPID dispLogon;
HRESULT hr;
VARIANTARG varg;
DISPPARAMS disparms = {

&varg, NULL,
1, II one parameter
0 II zero named parameters
} ;

LPTSTR names [] = {_T ("Logan") } ;
II first get the dispatch ID for IPOutlookApp::Logon
hr= pDispatchPtr->GetIDsOfNames(IID_NULL,

names, 1, GetUserDefaultLCID(), &dispLogon);
if (FAILED (hr))
{

cout << _T ("Could not get dispid for Logan")
<< endl;

return FALSE;

Variantinit(&varg);
varg.vt = VT_I4;
varg.lVal = (LONG)hWnd;
hr = pDispatchPtr->Invoke(dispLogon, IID_NULL,

GetUserDefaultLCID(), DISPATCH_METHOD,
&disparms, NULL, NULL, NULL);

if (FAILED (hr))
{

cout << _T("Could not invoke Logan") << endl;
return FALSE;

cout << _T("Logon invoked") << endl;
return TRUE;

Using Automation Objects with MFC
The MFC class COleDispatchDriver makes calling Automation objects much
easier. Further, the Class Wizard can be used to create classes from type library
files that derive from COleDispatchDri ver and provide C++ classes through
which the Automation properties and methods can be called. The Automation
parameter data types passed by the VARIANT structure are mapped onto stan
dard C++ data types. You can use these classes even if your application does
not otherwise use MFC.

Using Automation Objects with MFC 369

Generating these wrapper classes is very convenient, although for large
Automation models the wrapper classes may increase the size of your applica
tion substantially. For example, the POOM object model adds around 29 KB to
the application and also needs to dynamically link to the MFC libraries at run
time. Most Windows CE devices have MFC libraries in ROM, but if not, you may
consider statically linking to the MFC libraries. Doing so means your exe
cutable will only include that part of the MFC library required to support the
COleDispatchDriver class.

Creating a COleDispatchDriver-Derived Class
You can create a COleDispatchDriver-derived class from a type library us
ing the Class Wizard. To do this for POOM you should do the following:

11 Run Class Wizard by selecting the View+Class Wizard menu command. If
you are not using MFC in your application, you will be prompted to se
lect the files to build the class file from-select them all.

11 Select the 'Add Class' button, and choose 'From a Type Library.'

You now need to locate a type library for the object model. In the case
of POOM, you can select pimstore. dll, since this contains type library in
formation. You can find this DLL, by default, in C: \Windows CE Tools\
wce300\MS Pocket PC\emulation\palm300\ windows for Pocket PC. It
doesn't matter which target device pimstore. dll is built for, as long as it has
type library information. Once the type library file is selected, you will get a dia
log showing all the interfaces that are defined in the type library file (Figure 14.3).

11 You should select all the interfaces listed, and change the . h and . cpp
files names as required.

11 Click OK to build the files.

The . h file created by this process ('pims tore. h' in the example above)
will contain a class derived from COleDispatchDri ver for each interface se
lected in the 'Browse Classes' dialog. These classes will have member functions
for each property and method. The member functions for methods will use the
same name as the method. For a property, a Put function (for example, 'Put
MyProperty') and a Get function (for example, 'GetMyProperty') function
will be created.

Note that these classes will need to be regenerated if the Automation in
terface changes. In general, this does not happen, but it is possible for dispid
values to change for property and methods between versions. Take care when
regenerating the classes since the old classes are not overwritten-new classes
are appended to the end of the existing source files.

370 Chapter 14 COM and ActiveX

..... ~.\<.f<P.\!9.!'.L
!Appointment
IR ecurrenceP attern
I Exceptions
IPOutlooki!'.l.pp
I Folder
I PO ullookl temColleclion
I City
llimeZone

The following code shows some of the member functions declared in the
IPOutlookApp class:

class IPOutlookApp : public COleDispatchDriver
{

public:

void Logon(long hWnd);
void Logoff();
CString GetVersion();
LPDISPATCH GetDefaultFolder(long olFolder);
LPDISPATCH Createitem(long OlitemType);
LPDISPATCH GetitemFromOid(long oid);
LPDISPATCH GetHomeCity();

The name IPOutlookApp implies that this is a COM interface definition,
but it is actually a simple C++ class. The member functions, like Logon, call

Using Automation Objects with MFC 371

the IDispatch:: Invoke interface function, as the following implementation
of Logon illustrates:

void IPOutlookApp: :Logon(long hWnd)
{

static BYTE parms[J =
VTS_I4;

InvokeHelper(Ox60020000, DISPATCH_METHOD,
VT_EMPTY, NULL, parms,

hWnd);

InvokeHelper is declared in COleDispatchDriver and takes a vari
able number of arguments:

o Ox60020000-The dispid of the Automation function, which is Logon
in this case.

o DISPATCH_METHOD-What to invoke, in this case a method. This
could be DISPATCH PROPERTYGET or DISPATCH_PROPERTYPUT as
appropriate.

e VT_EMPTY-The return type, and in this case no return type is expected.
111 NULL-Pointer to a variable to receive the return type. In this case there

is none.
o parms-A byte array specifying the variant types for the parameters to

be passed. In this case there is a single parameter whose type is VTS_I4.
Note MFC uses slightly different constants than those described earlier in
the chapter.

111 hWnd-The value to be passed for the first parameter. If the method re
quired more parameters, they would follow hWnd.

You will need to ensure that the correct MFC header files and defines are
used. The following can be added to the header file generated by Class Wiz
ard (for example 'pimstore. h'), and this can help reduce conflicts with other
header files you may be using:

#define _AFXDLL
#include <afx.h>
#include <afxdisp.h>

The define '_AFXDLL' will link your application to the DLL versions of
the MFC run time, and this reduces the size of your application.

Using the IPOutlookApp Class
A simple example of using these classes is provided in Listing 14.12. This func
tion is located in the source file Chapter14MFC. CPP, since including the
'pimstore. h' MFC-created header file in Chapter14. cpp will cause class

372 Chapter 14 e COM and ActiveX

conflicts with the 'pimstore.h' standard header file included in Chapter14
. cpp. Both these header files will have IPOutlookApp classes defined.

Using the IPOutlookApp class

void Listing14_12(HWND hWnd)
{

IPOutlookApp pOutlookApp;
CString sVersion;

if(!pOutlookApp.CreateDispatch(
_T("PocketOutlook.Application")))

cout << _T("Could not create dispatch interface")
<< endl;

return;

pOutlookApp.Logon((LONG)hWnd);
sVersion = pOutlookApp.GetVersion();
cout << _T("Version: ") << sversion << endl;
pOutlookApp.Logoff();

Listing 14.12 declares a IPOutlookApp class object. Remember that this
class IPOutlookApp inherits from COleDispatchDriver and is not the in
terface definition used in earlier code examples. The COleDispatchDri ver
: : CreateDispatch member function is called to create the COM component
and to request an IDispatch interface pointer. This function is passed the
POOM Progid ('PocketOutlook.Application'), although the CLSID could
have been passed instead. Automation property methods and properties can
then be accessed through the class member functions. You will notice that Get
Vers ion, for example, returns an MFC CString, which makes the function
very easy to use. The MFC classes also look after all issues to do with reference
counting.

Many Automation methods or properties return IDISPATCH pointers, and
these can be used with the MFC classes. In Listing 14.13 the IPOutlookApp
member function Createitem is used to create a new item-the type of item
is specified using the constant ol Taskitem. The MFC Class Wizard does not
pick up constants defined in an Automation object, so these are defined in List
ing 14.13. You can find out the values assigned to constants from the on-line
help, or from the system header file pimstore. h (not pimstore. h created
by the Class Wizard).

Adding a task

#define olTaskitem
#define olimportanceHigh

3
2

void AddTask(IPOutlookApp& pOutlookApp)
{

ITask pTask;
LPDISPATCH lpDispatch;

Conclusion 373

lpDispatch = pOutlookApp.Createitem(olTaskitem);
pTask.AttachDispatch(lpDispatch, TRUE);
pTask. Set Subject (_T ("Task created from POOM")) ;
pTask. Set Body (_T ("The body text for task")) ;
pTask.Setimportance(olimportanceHigh);
pTask.Save();

The IDispatch pointer returned from Createitem is placed temporar
ily in the LPDISPATCH variable lpDispatch. An I Task class object is declared
called pTask, and the COleDispatchDri ver: : At tachDispatch function is
used to associate the IDispatch pointer with pTask. The second parameter
TRUE passed to AttachDispatch specifies that the MFC classes will be re
sponsible for reference counting.

Conclusion
This chapter has shown several mechanisms for using COM components from
your applications. First, COM interfaces were accessed directly using CoCre
ateins tance, AddRef, Release, and Queryinterface. Next, smart point
ers were used to alleviate the responsibility of managing reference counting.
Automation provides a structure-based calling mechanism that allows applica
tions a non-function-based mechanism for calling functionality in an Automa
tion object. Code for calling IDispatch: :Invoke directly was shown and
then the MFC COleDispatchDriver derived classes were used to make call
ing Automation objects easier.

Throughout this chapter, examples showing the accessing of Pocket Out
look functionality through COM and Automation interfaces were presented.
Wherever possible an application should place contact information in Pocket
Outlook rather than maintaining the data in separate databases.

Microsoft Message Oueue (MSMO)

Windows CE devices are typically disconnected most of the time, but many ap
plications still need to interact with enterprise data. Chapter 4 (Property Data
bases and the Registry) and Chapter 16 (ADOCE) show how data can be stored
and retrieved on the device. The data, though, somehow needs to be transferred
from the enterprise server onto the Windows CE device in the first place. Fur
ther, if data is updated on the Windows CE device, the changes need to be re
flected back at the enterprise server. For example, a Windows CE application
may allow orders to be taken, and these orders need to be transferred to a
server database when the device next connects. At the same time, changes in
product pricing or specification may need to be downloaded to the device.

Many desktop applications use Distributed COM (DCOM) to interact with
components running under Microsoft Transaction Server (MTS or COM+), and
these components implement business rule validation and access data stored in
databases. However, this architecture does not work when devices are discon
nected, so a different solution is required. Chapter 8 showed how HTTP and
other TCP/IP protocols can be used to transfer data; however, the details of
the updates need to be stored somewhere. Microsoft Message Queue (MSMQ)
solves this problem by allowing applications to store messages, which will be
transmitted to a server automatically upon connection. Applications running on
the server can then pick up these messages and process them. Each message
can contain data in any format-the application specifies the format and nature
of the data each message contains.

The problem of transferring and storing data does not exist only with
mobile Windows CE devices. Embedded devices may be connected to the
network most of the time, but in the event of a network failure, the applica
tions need to continue operating without the network connection. For ex
ample, consider the situation where a Windows CE embedded device is used

374

Overview of Microsoft Message Queue 37 5

in a production line for testing components, and the test information is stored
on a server database. If the network connection goes down, the testing appli
cation could fail and halt the entire production line. Instead, the testing results
need to be stored in a queue and transmitted to the database when a network
connection is present. When the network is down, the results remain in the
queue waiting for the connection to be reestablished.

Overview of Microsoft Message Queue
Microsoft Message Queue (MSMQ) is a service that allows queues to be created
on a computer, and for applications to write and read messages to and from
the queues. Applications can access queues that are located on other comput
ers. In the case of writing to a queue, an application can write messages to a
queue located on another computer, and if the other computer is not connected,
the messages are queued on the local computer. Once the computers are again
connected, MSMQ automatically transfers the messages. Messages can only be
read from queues on connected computers.

Any application, subject to permissions and security, can read or write
messages from or to a queue. This means that a queue can be used for two
way data transmission. A queue can service requests from applications running
on different computers, as each message has a sender identifier. Messages in a
queue can store data in different formats. It is up to the application to interpret
the format of the data. Messages have several imp01tant data items associated
with them, including the following:

@ Label-A textual description of the message. Useful for identifying the
type of data contained in the message.

m Body-The 'payload' of the data, which can be textual or binary data of
variable length.

m Time queued-A timestamp of when the message was queued.
m Time arrived-A timestamp indicating when the message was received

by the queue.
m Sender identifier-Indicates the computer that sent the message.

MSMQ provides several features that are essential in a disconnected
environment:

m Reliability. MSMQ provides all-or-nothing transmission of messages. Par
tially delivered messages will be deleted, and the original message will
be resent when the next connection is made.

m Once-only delivery. MSMQ ensures that messages are not duplicated.
m In-order delivery. MSMQ ensures that messages will be read from a queue

in the same order as they were written.

37 6 Chapter 15 e Microsoft Message Queue (MSMQ)

* Transactional support. Applications can use transactions to back out mes
sages associated with transactions that cannot be completed. This feature
is somewhat limited on Windows CE.

MSMQ uses TCP/IP sockets to provide communications and is available
on Windows CE, NT, 98, and 2000. Queues use names based on Domain Name
Service (DNS) names rather than IP addresses. This allows for dynamic alloca
tion of TCP/IP addresses. As with most services, Windows CE provides a lim
ited but useful subset of functionality found on the desktop.

There are two types of queues-public and private. Public queues are
given a computer-independent name (that is, not based on a DNS or IP ad
dress). The location of the queue is resolved using Active Directory when the
queue is accessed. Private queues use the DNS name of the computer and do
not require Active Directory for resolution. This is faster, but means that appli
cations need to know the physical location of a queue. Only private queues
are supported in Windows CE.

Installation
Installation of MSMQ on Windows CE and desktop computers is probably more
difficult than actually writing code to send and receive messages. Part of the
difficulty is that MSMQ on Windows NT and Windows 2000 has an enterprise
installation that configures one or more MSMQ sites. The following computers
are generally used:

* A PEC (Primary Enterprise Controller), which must be installed on a Win
dows NT or 2000 Server installation. This computer must also run Micro
soft SQL Server on Windows NT. This machine manages the MSMQ Infor
mation Store (MSMQI) used to locate message queues on other computers.

* Optional BSCs (Backup Site Controllers). These maintain backups of the
MSMQI for fault tolerance purposes.

111 Additional PSC (Primary Site Controllers) for managing other sites.
111 Optional MSMQ Routing Servers to route messages between sites.

Other computers on the network can be independent clients (which can
manage their own queues) or dependent clients (which can only access queues
on other computers). All in all, setting up and managing a MSMQ installation
is a job for a network administrator rather than a programmer. Most of us want
to write applications using MSMQ rather than spend our time setting up numer
ous computers.

Windows 2000 Workstation can make this all much easier for the de
veloper, since Windows 2000 Workstation allows a 'workgroup' installation of

Installation 377

MSMQ. This does not involve installing a PEC, MSC, or PSC. However, it does
have two limitations:

& You cannot use public queues, only private ones.
& You must address a queue directly using its DNS (computer) name.

Given that Windows CE can only use private queues, this does not affect
Windows CE MSMQ development. From personal experience, installing Win
dows 2000 just for MSMQ development is quicker than trying to set up a MSMQ
enterprise.

Installing MSMQ on Windows CE
First, before installing MSMQ on Windows CE, you will need to change the
computer name from the default the Windows CE device was shipped with (for
example, Pocket_PC). This is to ensure that no two Windows CE devices use
the same machine name for naming MSMQ queues. The name is stored in the
registry in the key HKEY_LOCAL_MACHINE\Ident \Name. The original name of
the device is stored in HKEY_LOCAL_MACHINE\Ident \OrigName.

Since MSMQ is not part of the standard Windows CE operating system, it
needs to be installed separately for many devices, such as Pocket PC. You can
do this as part of your application's installation process. In all installations, the
following files need to be copied into \windows:

& MSMQD. DLL-Main MSMQ engine implemented as a device driver
e MSMQRT. DLL-MSMQ run-time component that implements MSMQ API
e MSMQADM. EXE-MSMQ administration and configuration tool

If your Windows CE device does not have a statically assigned IP address,
you will also need to copy NETREGD. DLL into \windows. This library will reg
ister the assigned IP address and computer name with WINS (Windows Inter
net Naming Service). MSMQ only uses DNS (computer) names, not IP address,
to reference queues. Therefore, the Windows CE device must have access to a
WINS server unless the device has a statically assigned IP address. Jn addition,
it must also have the following:

& Access to DNS supporting reverse lookup (that is, a DNS server that can
convert an IP address to a DNS name)

& Or relevant DNS entries in the LMHOSTS file on the Windows 2000 com
puter and in the HKEY_LOCAL_MACHINE\Comm\ TCPIP\Hosts registry
key on the Windows CE device

Configuring DNS and IP addresses is covered later in this section. For initial de
velopment of MSMQ applications, I recommend that you use a statically as
signed IP address on your Windows CE device and add LMHOST registry en
tries to specify the IP address and names of the computers on which you are

378 Chapter 15 Microsoft Message Queue (MSMQ)

using queues. You will also need to add registry entries to enable MSMQ on
the device. There are three ways of doing this:

e Using VISADM. EXE. This utility can be copied into the directory \Pro

gramFiles \MSMQ. To install MSMQ using this utility, run VISADM, click
the Shortcuts button, and click 'Install.' You will then need to reboot the
Windows CE device.

w Using MSMQADM. This technique would generally be used as part of
your own application's installation. This application is run a number of
times with various command line arguments to configure MSMQ. The
section 'Installing MSMQ Using MSMQADM.EXE' in the on-line help de
scribes this.

w Writing registry entries. This technique would be used as part of your
own application's installation process and where you need to change
the default installation provided by MSMQADM. The section 'Installing
MSMQ Manually' in the on-line help describes the registry entries and
their meanings.

The tool VI SADM. EXE can be used to verify the installation. Run VI SADM

. EXE, click 'Shortcuts,' and click 'Verify.' This verifies that the installation is
complete and lists the registry entries.

Installing MSMQ on Windows 2000
MSMQ is not part of the standard Windows 2000 installation. To install MSMQ,
you will need to do the following:

* Run the Control Panel (Start menu, Settings, and Control Panel)
w Select 'Add/Remove' Programs
w Click 'Add/Remove Windows Components'
w Select 'Message Queuing Services' from the Component list and click 'Next'
* Follow through the Wizard steps

You can verify the installation using the Computer Manager application
described in the next section.

Managing DNS Entries
MSMQ does not allow a computer to be referenced by IP address; you must
use a computer name. For this reason DNS with reverse lookup or WINS must
be available. If this is not the case (perhaps your computer is not connected to
a network), you can specify entries in the Windows CE registry or in the
LMHOSTS file on Windows 2000 to create the mapping.

On Windows CE you will need to place entries in the key HKEY_LOCAL_

MACHINE\Comm\tcpip\hosts for each Windows 2000 computer that you
want to access an MSMQ queue on. You should create a key with the name of

Installation 379

the Windows 2000 computer, and this key will have a value with the name
'ipaddr' containing the IP address. For example, if your Windows CE device
needs to access a queue on a Windows 2000 computer called 'nickdell', you
will need to add the following registry keys and values to the registry on the
Windows CE device:

HKEY LOCAL_MACHINE
Comm

Tc pip
hosts

nickdell
(default)
ipaddr

(not set)
CO AS 37 64

You can see from this example that the IP address is stored as a 4-byte
binary value rather than a string. The binary value 'CO AS 37 64' represents the
IP address '192.168.55.100'. The Windows CE device will need to be reset be
fore new entries will be recognized.

If your Windows 2000 computer needs to access a queue on a Windows
CE device, you will need to ensure that the Windows 2000 computer can ac
cess the Windows CE device by name (for example, 'ncg_ppc') rather than IP
address. First, you can check whether the Windows CE device has registered
itself using NETREGD. DLL with an available WINS or DNS server. The follow
ing steps are required:

s Run CMD. EXE on the Windows 2000 machine.
s Type the following, replacing 'ncg_ppc' with the name of your Win

dows CE machine:

ping ncg_ppc

If you get a message that the host is unreachable, you will need to up
date the LMHOSTS file on your Windows 2000 machine. This file is located, by
default, in the directory \WinNT\system32\drivers\etc. Open LMHOSTS
and add a line like the following at the end:

192.168.0.124 NCG_PPC #PRE

In this case '192.168.0.124' is the fixed IP address for the Windows CE de
vice, and NCG_PPC is the Windows CE device name. You may need to restart
Windows 2000 for this change to take effect.

IP Network, RAS, and ActiveSync
MSMQ requires a full IP connection between the Windows CE device and Win
dows NT or 2000 server to which it is connected. If you use a serial connec
tion between a Windows CE device and desktop PC, and connect using Active
Sync, you may not be able to connect to MSMQ queues on other computers.

380 Chapter 15 * Microsoft Message Queue (MSMQ)

This is because ActiveSync does not implement a true TCP/IP connection. The
problem is that many developers use an ActiveSync connection for download
ing onto the device the applications they are building, and this may stop MSMQ
from working.

One way around this is to configure ActiveSync to accept Network con
nections rather than a connection through a COM port. Then, you can con
figure your desktop machine to accept inbound RAS connections through the
COM port. Your Windows CE device can connect using RAS (which provides
a full TCP/IP connection to your network), and then the device can connect to
Active Sync through this TCIP /IP network connection.

Managing Queues on Windows 2000
Computer Management can be used to inspect queues on Windows 2000, as
well as to create new queues and look at queued messages. To run Computer
Management the following steps are required:

e Select the Start+Settings+Control Panel menu command.
e Double-click the 'Administrative Tools' icon.
e Double-click the 'Computer Manager' icon.
e Expand the 'Services and Applications' and then the 'Message Queuing'

entries in the Tree.

Message queuing (Figure 15.1) allows four types of queue to be managed:

• Outgoing queues. This is where messages waiting to be delivered to
queues on other computers are stored.

e Public queues. The location of public message queues is resolved using
Active Directory. Windows CE or a Message Queue Workgroup installa
tion on Windows 2000 does not support public queues.

e Private queues. Private message queues are accessed using the DNS name
and are used by Windows CE. Figure 15.1 shows a queue that has been
created called wincequeue.

ill System queues. Journal queues are used for logging messages. The dead
letter queue receives messages that cannot be delivered.

Creating a Private Queue
Private queues can be created programmatically or, more easily, can be created
using Computer Management.

ill Right-click 'Private Queues' in Computer Management and select New+
Private Queue. This displays the 'Queue Name' dialog.

Storage
Services and Applications

i --:I WM! Control
: ... ,Services

l:fl Ill Indexing Service
i --'t Internet Information Services

1=i C Message Queuing
. b Outgoing Queues
ffl b Public Queues
Ei-0 Private Queues
· f±lll!J admin_queue$

ltlii!J mqis_queue$
1±1 ii!J notify _queue$
1±1 ii!J order _queue$

! 1±1 ii!J wincequeue
B·b System Queues

1±1. Journal messages
ffi ~ Dead-letter messages
3:J .. ,, Transactional dead-letter messages

Managing Queues on Windows 2000 381

l&system Tools

f!!istorage

~Services and Applications

® Enter the name of the new queue (such as 'wincequeue' from Fig
ure 15.1) and click OK. You have the option to create a transactional
queue, described later in this chapter.

Once a private queue has been created, it can be accessed by applica
tions running on any computer that has the appropriate security access.

The code in the next sections shows how to read messages from a queue
created on a Windows 2000 computer using Visual Basic and how to write
messages to the queue from a Windows CE device using C++ (Figure 15.2).

Reading Messages from a Queue in Windows 2000
The Computer Manager does not allow messages to be added to or read from
a queue-you must write code to do this. You will find a Visual Basic project
in the directory \QueueServer on the CDROM containing the code described

382 Chapter 15 * Microsoft Message Queue (MSMQ)

Windows 2000
Computer

'mycomputer'

Windows CE Device

Message
Queue:

WinCEQueue

Visual Basio
applioation reads

messages

Nelwotk,

Reading and writing a queue

Temporary
looal Ciueue

Visual C++
applioation writes

messages

in this chapter. On Windows 2000 Visual Basic can be used with the Microsoft
Message Queue object model:

e Run Visual Basic, and create a new project.
e Select the Project+References menu command. In the 'Available Refer

ences' list, add a check against 'Microsoft Message Queue 2.0 Object
Library.'

The code in the 'QueueServer' application opens a private queue when
the form is loaded. The form has a timer control that fires an event every two
seconds, and this checks to see if a new message has arrived in the queue. In
the next section you will find code that runs on a Windows CE device that adds
messages to this queue. Finally, the queue is closed when the form unloads:

Private qi As MSMQQueueinfo
Private q As MSMQQueuePrivate

Sub Form_Load ()
Set qi = New MSMQQueueinfo
qi.PathName = ".\Private$\WinCEQueue"
Set q = qi.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)

End Sub

Private Sub Form_Unload(Cancel As Integer)
q.Close

End Sub

Managing Queues on Windows 2000 383

Private Sub tmrMessage_Timer()
Dim msg As MSMQMessage
Dim s As String
Dim sTime As String
Dim sLabel As String
Dim sBody As String
Dim sSent As String

' check for message
Set msg = q.Receive(ReceiveTimeout:=O)
If (Not (msg Is Nothing)) Then

' have got a message
sTime = msg.ArrivedTime
sLabel = msg.Label
sBody msg.Body
sSent = msg.SentTime
s = s & "Sent: " & sSent &

" Arrived: " & sTime & "·" &
sLabel & vbCrLf & sBody & vbCrLf

txtMessageLog.Text = s + txtMessageLog.Text
End If

End Sub

Three Message Queue objects are used in this code:

® MSMQQueueinfo-Access information about an existing queue, create a
new queue, or open an existing queue.

® MSMQQueue-Represents an open queue and allows messages to be
added to the queue or read from the queue.

® MSMQMessage-Represents a single message to be added to the queue
or read from the queue.

The queue name is specified using the 'PathName' property. In this case
a private queue called 'WinCEQueue' on the local machine (indicated by '.') is
specified. The queue is opened using the 'Open' method. This then is passed
information about how the queue is to be accessed (MQ_RECEIVE_ACCESS in
dicates that messages are to be read from the queue) and queue-sharing op
tions (MQ_DENY_NONE means that other applications can open the queue for
reading and writing while this application has the queue open).

The Receive method is called on an open queue in the timer event and
checks to see if a message has arrived. This method is passed a single optional
Recei veTimeout parameter that specifies how long to wait before timing out.
In this case the value 0 specifies no timeout value, so the call will return im
mediately if no message is waiting. This, together with the use of a timer, en
sures that the Visual Basic application is not blocked waiting for messages. If
a message is waiting, a MSMQMessage object is returned.

The MSMQMessage object is used to access the message's label, body,
time sent, and time received, and this information is added to a text box. In the

384 Chapter 15 e Microsoft Message Queue (MSMQ)

next section some Windows CE code will be demonstrated that will write a
message to the queue used by this Visual Basic application.

Sending Messages from Windows CE
Windows CE does not provide an object model for accessing MSMQ, so API
calls need to be used. To use these API functions you will need to include mq. h
and add the library msmqrt . 1 ib to your project. A queue must first be opened,
and then messages can be added to the queue. Finally, you will need to close
the queue.

There are two ways in which a queue's name and location can be
specified:

@ Format name-A string that contains information about how the queue
is named, the DNS computer on which it is located, the type of queue
(for example, private or public), and the queue's name.

e Path name-A string that specifies the queue based only on the DNS, the
queue type (private or public), and the queue's name.

An example of a format name to be used with Windows CE would be the
following:

DIRECT=OS:mycomputer\Private$\WinCEQueue

This specifies a private queue on a computer with the DNS name 'my
computer', and with the queue name 'WinCEQueue'. The 'DIRECT=OS' speci
fication indicates that the computer should be resolved using DNS. Other 'DI
RECT' options allow the computer to be specified by IP address, but this is not
supported in Windows CE. The 'mycomputer' DNS name is the name of the
Windows 2000 computer used when creating the queue, as described in the
previous section, "Reading Messages from a Queue in Windows 2000."

An example of a path name to be used with Windows CE would be as
follows:

mycomputer\Private$\WinCEQueue

This specifies the same queue as the format name example above. The
MQOpenQueue function used to open a queue requires a format name, but it is
often easier to work with path names. Therefore, the MQPathNameToFormat
Name function can be used to provide a conversion:

TCHAR wszFormatName[256];
DWORD dwFormatNameLength = 256;

hr = MQPathNameToFormatName
(_T ("nickdell \\Private$\ \WinCEQueue"),
wszFormatName,
&dwFormatNameLength);

MQOpenQueue

Sending Messages from Windows CE 385

The function MQPathNameToFormatName is passed the path name to
convert (the computer 'nickdell' in this case is a Windows 2000 computer)
and a string buffer in which the format name will be returned. The third pa
rameter is a DWORD that contains the size of the buffer on calling the function
and the number of characters in the format name on return.

Once the format name for the queue is obtained, the function MQOpen
Queue (Table 15.1) can be called to open the queue. When opening a queue
you must specify the type of access you need. For example, if you are review
ing the messages but not removing them, you can use MQ_PEEK_ACCESS. Oth
erwise, you may use MQ_SEND_ACCESS or MQ_RECEIVE_ACCESS to send and
receive messages. A handle to the open queue is returned in a QUEUEHANDLE
variable. The following code opens a queue for send access and does not deny
other applications access to the queue:

HRESULT hr;
QUEUEHANDLE hq;

hr = MQOpenQueue(wszFormatName,
MQ_SEND_ACCESS,
MQ_DENY_NONE,
&hq);

MQOpenOueue-Opens queue on local or remote computer

LPCWSTR lpwcsFormatName

DWORD dwAccess

Format name of the queue.

Type of access required to queue:

DWORD dwShareMode

LPQUEUEHANDLE phQueue

HRESULT Return Value

MQ_PEEK_ACCESS-Messages will be read but not removed from
queue.

MQ_SEND_ACCESS-Messages will be sent to the queue.

MQ_RECEIVE_ACCESS-Messages will be read and removed from
the queue.

Access allowed to other applications using the queue:

MQ_DENY_NONE-Allow other applications full access to the queue.

MQ_DENY_RECEIVE_SHARE-Only allow other applications reading
messages to access the queue.

Pointer to a queue handle variable in which the queue handle will
be returned.

MQ_OK on success, otherwise an error code.

The function MQSendMessage is used to send messages to an open
queue. The function is passed a handle to an open queue, a pointer to a MQMS
GPROPS structure describing the message to be sent, and a constant describing

386 Chapter 15 * Microsoft Message Queue (MSMQ)

the transaction options to be used. NULL for the last parameter specifies that
no transactions will be used.

hr = MQSendMessage(hq,
&msgprops,
NULL);

Most of the work in sending messages involves forming the MQMSGPROPS
structure that describes the message options and data to be sent. To send a
message you will need to provide the following properties:

111 PROPID_M_LABEL-A textual description describing the message. You
are free to provide any textual label. This can be used by the recipient
application to decide how to process the message.

w PROPID_M_BODY_TYPE-A property describing the type of data con
tained in the message, for example, VT_BSTR for BSTR data.

w PROPID_M_BODY-A property describing the message's data and the data
itself.

To create and initialize a MQMSGPROPS, you will first need to declare a
MQMSGPROPS structure. You will then need to declare a MSGPROPID array to
store the property identifiers (such as PROPID_M_LABEL), a PROPVARIANT ar
ray that will contain the property data, and an optional HRESULT array used
for returning error information associated with a property. The PROPVARIANT
structure is used like the VARIANT structure described in Chapter 14 (COM and
ActiveX). The 'vt' member contains a constant that describes the data type
(such as VT_LPWSTR for a null-terminated string), and a union member that
refers to the data (such as pwszVal that points to a string). In the following
code, a MQMSGPROPS structure is initialized ready to store information on three
properties.

MQMSGPROPS msgprops;
MSGPROPID aMsgPropid[3];
MQPROPVARIANT aMsgPropVar[3];
HRESULT aMsgStatus[3];
msgprops.cProp = 3; II Number of properties
msgprops.aPropID = aMsgPropid; II Ids of properties
msgprops.aPropVar = aMsgPropVar;ll Values of properties
msgprops.aStatus = aMsgStatus; II Error reports

The PROPID_M_LABEL property contains a string for the message's label.
The data type for the data stored in the MQPROPVARIANT element is therefore
VT_LPWSTR, and the pwszVal member points to the string data.

aMsgPropid[O] = PROPID_M_LABEL;
aMsgPropVar[O] .vt = VT_LPWSTR;
aMsgPropVar[OJ .pwszVal = _T("Test Message");

The PROPID_M_BODY_TYPE property describes the data type for the mes
sage's body data. The data associated with this property is an unsigned 4-byte

Sending Messages from Windows CE 387

integer (VT_UI4), and the data in the ul Val member contains a constant de
scribing the data type. The following code describes a message where the body
data is a BSTR:

aMsgPropid[l] = PROPID_M_BODY_TYPE;
aMsgPropVar[l] .vt = VT_UI4;
aMsgPropVar[l] .ulVal = VT_BSTR;

Finally, the PROPID_M_BODY property describes the data for the message.
The initialization depends on the type of data to be sent. The following code
allocates a BS'l'R and sets the property to use this BSTR as the message's data:

BSTR bStr =
SysAllocString(_T("Body text for the message"));

aMsgPropid[2] = PROPID_M_BODY;
aMsgPropVar[2] .vt = VT_VECTORIVT_Uil;
aMsgPropVar[2] .caub.pElems = (LPBYTE)bStr;
aMsgPropVar[2] .caub.cElems =

SysStringByteLen(bStr);

The data type VT_VECTOR I VT_Uil specifies that the data is to be passed
as a counted array (that is, an array with a given size). The caub. pElems
member describes the length of the data, and caub. cElems points to the data
itself. The code in Listing 15.1 shows opening a queue, initializing the proper
ties, and sending the message using MQSendMessage. Finally, the queue is
closed through a call to MQCloseQueue-this function takes a single parame
ter that is the handle to the queue to close. This code will send a message to
a queue that can be read by the Visual Basic code described in the section
"Reading Messages from a Queue in Windows 2000."

Opening queue and sending a message

#include <mq.h>
II Add MSMQRT.LIB to project

void DisplayOpenError(HRESULT hr)
{

if(hr == MQ_ERROR_ACCESS_DENIED)
cout << _T("Don't have access rights") << endl;

else if(hr -- MQ_ERROR_ILLEGAL_FORMATNAME)
cout << _T("Illegal Format Name") << endl;

else if(hr MQ_ERROR_QUEUE_NOT_FOUND)
cout << _T("Queue not found") << endl;

else if(hr MQ_ERROR_SERVICE_NOT_AVAILABLE
cout << _T ("Cannot connect to queue mgr")

<< endl;
else if(hr MQ_ERROR_INVALID_PARAMETER

cout << _T("Invalid Parameter") << endl;
else if(hr MQ_ERROR_SHARING_VIOLATION)

cout << _T("Sharing violation") << endl;

388 Chapter 15 e Microsoft Message Queue (MSMQ)

else if(hr MQ_ERROR_UNSUPPORTED_ACCESS_MODE)
cout << _T("Invalid access mode") << endl;

else if(hr
MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION)
cout << _T("Invalid format name") << endl;

else
cout << _T("Unexpected Error")<< endl;

void Listing15_1()
{

HRESULT hr;
QUEUEHANDLE hq;

TCHAR wszFormatName[256];
DWORD dwFormatNameLength = 256;

hr = MQPathNameToFormatName
(_T("nickdell\\Private$\\WinCEQueue"),

wszFormatName,
&dwFormatNameLength) ;

cout << wszFormatName << endl;

hr = MQOpenQueue(wszFormatName,
MQ_SEND_ACCESS,
MQ_DENY_NONE,
&hq);

if (hr == MQ_OK)
cout << _T("Opened queue") << endl;

else
{

DisplayOpenError(hr);
return;

DWORD cPropid = 0;

MQMSGPROPS msgprops;
MSGPROPID aMsgPropid[4];
MQPROPVARIANT aMsgPropVar[4];
HRESULT aMsgStatus[4];

aMsgPropid[cPropid] = PROPID_M_LABEL;
aMsgPropVar[cPropid] .vt = VT_LPWSTR;
aMsgPropVar [cPropid] . pwszVal _T ("Test Message") ;
cPropid++;

aMsgPropid[cPropid] = PROPID_M_BODY_TYPE;
aMsgPropVar[cPropid] .vt = VT_UI4;
aMsgPropVar[cPropid] .bVal = VT_BSTR;
cPropid++;

BSTR bStr = SysAllocString(
_T ("Body text for the message"));

Creating a New Queue 389

aMsgPropid[cPropid] = PROPID_M_BODY;
aMsgPropVar[cPropid] .vt = VT_VECTORIVT_Uil;
aMsgPropVar[cPropid] .caub.pElems (LPBYTE)bStr;
aMsgPropVar[cPropid] .caub.cElems

SysStringByteLen(bStr);
cPropid++;

msgprops.cProp = cPropid;
msgprops.aPropID = aMsgPropid;
msgprops.aPropVar = aMsgPropVar;
msgprops.aStatus = aMsgStatus;

hr = MQSendMessage(hq,
&msgprops,
NULL);

if (FAILED (hr))
cout << _T("Could not send message") << endl;

else
cout << _T("Message queued") << endl;

MQCloseQueue(hq);

If the Windows CE device on which this code runs cannot access the
Windows 2000 machine where WinCEQueue is located, the messages will be
stored in a local temporary queue. When the queue can next be accessed (for
example, when the Windows CE device connects using RAS), MSMQ will au
tomatically transfer the messages to the queue.

Creating a New Oueue
New queues can be created on a Windows CE device by calling the MQCreate
Queue (Table 15.2) function and initializing a MQQUEUEPROPS structure with
the following properties:

® PROPID_Q_PATHNAME-Pathname for the new queue
® PROPID_Q_LABEL-Label (or description) for the new queue

The data for both these properties is VT_LPWSTR. The pwszVal member
for PROPID_Q_PATHNAME is a pointer to a string containing the pathname. In
the following code example, the '. ' refers to the local Windows CE device,
'PRIVATE$' specifies this is a private queue (remember, public queues are not
supported), and 'WinCEinQueue' is the name of the new queue.

LPWSTR wszPathName = _T(".\\PRIVATE$\\WinCEinQueue");
aQueuePropid[O] = PROPID_Q_PATHNAME;
aQueuePropVar[O] .vt = VT_LPWSTR;
aQueuePropVar[OJ .pwszVal = wszPathName;

390 Chapter 15 " Microsoft Message Queue (MSMQ)

MOCreateOueue-Creates a new queue

MQCreateQueue

PSECURITY_DESCRIPTOR
pSecurityDescriptor

MQQUEUEPROPS
*pQueueProps

LPWSTR lpwcsFormatName

LPDWORD
lpdwFormatNameLength

HRESULT Return Value

Not supported, pass as NULL.

Pointer to a MQQUEUEPROPS structure describing
the queue to create.

Pointer to a buffer to receive the format name of
the new queue. This can be NULL.

Length of the new buffer receiving the format name.

MQ_OK for success, otherwise error code.

The PROPID_Q_LABEL can be used to provide a more descriptive name
for the queue:

LPWSTR wszQueueLabel =
_T("Message to be received by Windows CE Device");

aQueuePropid[l] = PROPID_Q_LABEL;
aQueuePropVar[l] .vt = VT_LPWSTR;
aQueuePropVar[l] .pwszVal = wszQueueLabel;

The queue to be created is specified by a pathname, and the MQCreate
Queue function will return the format name if required. The code in Listing 15.2
shows how to initialize properties and call MQCreateQueue to create a new
queue on a Windows CE Device.

Creating a new queue

void Listing15_2()
{

DWORD cPropid = 0;

MQQUEUEPROPS QueueProps;
MQPROPVARIAN'T aQueuePropVar[2];
QUEUEPROPID aQueuePropid[2];
HRESULT aQueueStatus[2];

HRESULT hr
PSECURITY_DESCRIPTOR pSecurityDescriptor=NULL

II Queue pathname
LPWSTR wszPathNarne _T(".\\PRIVATE$\\WinCEinQueue");
II Queue label
LPWS'TR wszQueueLabel

_T("Message to be received by Windows CE Device");

Creating a New Queue 391

II Format name buffer for queue
DWORD dwFormatNameLength = 256
WCHAR wszFormatName[256];

aQueuePropid[cPropid] = PROPID_Q_PATHNAME;
aQueuePropVar[cPropid] .vt = VT_LPWSTR;
aQueuePropVar[cPropid] .pwszVal = wszPathName;
cPropid++;

aQueuePropid[cPropid] = PROPID_Q_LABEL;
aQueuePropVar[cPropid] .vt = VT_LPWSTR;
aQueuePropVar[cPropid] .pwszVal = wszQueueLabel;
cPropid++;

QueueProps.cProp = cPropid;
QueueProps.aPropID = aQueuePropid;
QueueProps.aPropVar = aQueuePropVar;
QueueProps.aStatus = aQueueStatus;

hr = MQCreateQueue(pSecurityDescriptor,
&QueueProps,
wszFormatName,
&dwFormatNameLength) ;

if(hr == MQ_OK)
cout << wszFormatName << _T(" created") << endl;

else if(hr MQ_ERROR_ACCESS_DENIED)
cout <<

else if(hr
cout <<

else if(hr
cout <<

else if (hr
cout <<

<<
else if(hr

cout <<
else if(hr

_T ("Access Denied") << endl;
MQ_ERROR_ILLEGAL_PROPERTY_VALUE
_T("Illegal Property Value") << endl;
MQ_ERROR_ILLEGAL_QUEUE_PATHNAME)
_T("Illegal pathname") << endl;
MQ_ERROR_ILLEGAL_SECURITY_DESCRIPTOR
_T("Illegal security descriptor")
endl;
MQ_ERROR_INSUFFICIENT_PROPERTIES
_T("Path name not specified") << endl;
MQ_ERROR_INVALID_OWNER)

cout << _T("Invalid owner") << endl;
else if(hr MQ_ERROR_PROPERTY)

cout << _T ("Error in property specification")
<< endl;

else if(hr MQ_ERROR_PROPERTY_NOTALLOWED)
cout <<
_T("Property not allowed when creating queue")

<< endl;
else if(hr MQ_ERROR_QUEUE_EXISTS

cout << _T ("Queue already exists") << endl;
else if(hr MQ_ERROR_SERVICE_NOT_AVAILABLE

cout << _T("Service not available") << endl;
else if(hr

MQ_INFORMATION_FORMATNAME_BUFFER_TOO_SMALL)

392 Chapter l S * Microsoft Message Queue (MSMQ)

cout << _T("Format name buffer too small")
<< endl;

else if(hr == MQ_INFORMATION_PROPERTY)
cout <<
_T("Succeeded, but property returned warning")

<< endl;

Once the queue has been created, you will need to open the queue be
fore messages can be sent or received from it. Queues can be deleted by call
ing the MQDeleteQueue function, and this is passed the format name of the
queue to be deleted.

Reading Messages from a Oueue
Messages can be read from a queue on the same Windows CE device or on an
other computer. You need to have a valid network connection to the other
computer to read from a remote queue. To read one or more messages from a
queue, you must do the following:

o11 Open the queue using MQOpenQueue
@ Initialize a MQMSGPROPS structure in which the message will be received
® Call MQRecei veMes sage (Table 15.3) to read a message, if one is present
.. Close the queue when finished reading messages by calling MQClose-

Queue

The minimum properties needed to pass to MQReceiveMessage are the
following:

.. PROPID_M_BODY_SIZE-Property receives the number of bytes in the
message body

o11 PROPID_M_BODY-Property receives the message body data

The PROPID_M_BODY_SIZE property is initialized as shown in the fol
lowing code fragment. After a successful call to MQRecei veMessage, the
aMsgPropVar [0 J • ul Val member will contain the number of bytes in the
message body.

aMsgPropid[O] = PROPID_M_BODY_SIZE;
aMsgPropVar[O] .vt = VT_UI4;

You will need to allocate a buffer in which the message body will be
received, and initialize the PROPID_M_BODY property with this pointer. In the
following code, a 1-KB buffer is allocated, and the pointer is assigned to the
pElems member. The size of the buffer is assigned to the cElems member.

Reading Messages from a Queue 393

MQReceiveMessage-Reads a message from the queue

MQReceiveMessage

QUEUEHANDLE hSource

DWORD dwTimeout

Handle to an open queue.

Timeout to wait for message, INFINITE to wait forever, or O to
return immediately if no message is present.

DWORD dwAction How to access the queue:
MQ_ACTION_RECEIVE-Read the next message and remove

message.
MQ_ACTION_PEEK_CURRENT-Read current message, but do not

remove it.
MQ_ACTION_PEEK_NEXT-Use a cursor to read the next message,
but do not remove it.

MQMSGPROPS pMessageProps

LPOVERLAPPED
lpOverlapped

Structure in which the message will be received.

Pointer to an OVERLAPPED structure for asynchronous message
reading. Use NULL for synchronous access.

PMQRECEIVECALLBACK
fnReceiveCallback

Pointer to callback function for asynchronous message reads. Use
NULL for synchronous access.

HANDLE hCursor

Transaction
*pTransaction

Handle to cursor for reading messages, or NULL for no cursor.

Not supported, pass as NULL.

HRESULT Return Value MQ_OK for success, or error message on failure.

DWORD dwBodyBufferSize = 1024;
LPTSTR lpszBodyBuffer =new TCHAR[dwBodyBufferSize];
aMsgPropid[l] = PROPID_M_BODY;
aMsgPropVar[l] .vt = VT_VECTORIVT_Uil;
aMsgPropVar[l] .caub.pElems =

(UCHAR*)lpszBodyBuffer;
aMsgPropVar[l] .caub.cElems = dwBodyBufferSize;

The code in Listing 15.3 shows opening the queue on the Windows CE
device created in Listing 15.2, and reading a message from the queue. The
timeout of 0 means that MQReceiveMessage will return immediately with a
message if one is present, or return a MQ_ERROR_IO_TIMEOUT error if none
is present. Since MQRecei veMessage is called on the primary thread, it is im
portant that the call to MQReceiveMessage does not block for any length of
time. The code displays the number of bytes in the message body and then dis
plays the contents of the body. Since the receive action is MQ_ACTION_RE
CEIVE, the message will be removed from the queue once it has been read.

394 Chopler 15 • Microsoft Message Queue (MSMQ)

M'MJjM Reading a message from a queue

void DisplayReadError(HRESULT hr)
{

if(hr == MQ_ERROR_ACCESS_DENIED)
cout <<

else if(hr
cout <<

else if(hr
cout <<

else if(hr

_T("Don't have access rights") << endl;
MQ_ERROR_BUFFER_OVERFLOW)
_T ("Buffer Overflow") << endl;
MQ_ERROR_SENDERID_BUFFER_TOO_SMALL
_T("Sender ID Buffer too small") << endl;
MQ_ERROR_SYMM_KEY_BUFFER_TOO_SMALL)

cout << _T("Symmetric key buffer too small")
<< endl;

else if(hr
cout <<

else if(hr

MQ_ERROR_SENDER_CERT_BUFFER_TOO_SMALL
_T("Cert buffer too small") << endl;
MQ_ERROR_SIGNATURE_BUFFER_TOO_SMALL)

cout
else if(hr

<< _T("Signature buffer too small") << endl;
MQ_ERROR_PROV_NAME_BUFFER_TOO_SMALL)

cout <<
else if(hr

cout <<
else if(hr

cout <<

_T("Provider name too small") << endl;
MQ_ERROR_LABEL_BUFFER_TOO_SMALL)
_T("Label buffer too small") << endl;
MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL)
_T("Format name buffer too small")

<< endl;
else if(hr

cout <<
else if(hr

cout <<
else if(hr

cout <<
else if(hr

MQ_ERROR_DTC_CONNECT)
_T("Cannot connect to DTC") << endl;
MQ_ERROR_INSUFFICIENT_PROPERTIES)
_T("Insufficient properties") << endl;
MQ_ERROR_INVALID_HANDLE)
_T("Invalid queue handle") << endl;
MQ_ERROR_IO_TIMEOUT)

cout << _T("Timeout") << endl;
else if(hr MQ_ERROR_MESSAGE_ALREADY_RECEIVED

cout << _T ("Message has been removed from queue")
<< endl;

else if(hr MQ_ERROR_OPERATION_CANCELLED
cout << _T("Operation cancelled") << endl;

else if(hr MQ_ERROR_PROPERTY)
cout <<

else if(hr
cout <<

else if(hr

_T("Property error") << endl;
MQ_ERROR_QUEUE_DELETED)
_T{"Queue deleted") << endl;
MQ_ERROR_ILLEGAL_CURSOR_ACTION

cout << _T("Illegal cursor action") << endl;
else if(hr MQ_ERROR_SERVICE_NOT_AVAILABLE)

cout << _T("Service not available") << endl;
else if(hr MQ_ERROR_STALE_HANDLE)

cout << _T("Stale handle") << endl;
else if(hr MQ_ERROR_TRANSACTION_USAGE)

cout << _T("Transaction Error") << endl;

Reading Messages from a Queue 39 5

else if(hr MQ_ INFORMATION - PROPERTY)

cout << _T ("Property returned information")
<< endl;

else
cout << _T ("Unknown

void Listingl5_3()

HRESULT hr;
QUEUEHANDLE hq;

TCHAR wszFormatName[256];

error")

DWORD dwFormatNameLength = 256;

hr = MQPathNameToFormatName

<<

(_T(".\\Private$\\WinCEinQueue"),
wszFormatName,
&dwFormatNameLength);

cout << wszFormatName << endl;

hr = MQOpenQueue(wszFormatName,
MQ_RECEIVE_ACCESS,
MQ_DENY_NONE,
&hq);

if(hr == MQ_OK)
cout << _T("Opened queue") << endl;

else
{

DisplayOpenError(hr);
return;

endl;

DWORD dwRecAction = MQ_ACTION_RECEIVE;

MQMSGPROPS msgprops;
MSGPROPID aMsgPropid[2];
MQPROPVARIANT aMsgPropVar[2];
HRESULT aMsgStatus[2];
II Message body buffer
DWORD dwBodyBufferSize = 1024;
LPTSTR lpszBodyBuffer =new TCHAR[dwBodyBufferSize];
DWORD cPropid = 0;

aMsgPropid[cPropid] = PROPID_M_BODY_SIZE
aMsgPropVar[cPropid] .vt = VT_UI4;
cPropid++;

aMsgPropid[cPropid] = PROPID_M_BODY;
aMsgPropVar[cPropid] .vt = VT_VECTORIVT_Uil;
aMsgPropVar[cPropid] .caub.pElems

(UCHAR*)lpszBodyBuffer;
aMsgPropVar[cPropid] .caub.cElems dwBodyBufferSize;

396 Cho pier 15 • Microsoft Message Queue (MSMQ)

cPropid++;
msgprops.cProp = cPropid;
msgprops.aPropID = aMsgPropid;
msgprops.aPropVar = aMsgPropVar;
msgprops.aStatus = aMsgStatus;

hr= MQReceiveMessage(hq, II Queue handle
0, II Max time (msec)
dwRecAction, II Receive action
&msgprops, II Msg property structure
NULL, NULL, NULL, NULL);

if (FAILED(hr))
{

DisplayReadError(hr);
MQCloseQueue(hq);
delete lpszBodyBuffer;
return;

if (aMsgPropVar[O] .ulVal == 0)
cout << _T ("No message body exists. ") << endl;

else
cout << _T ("The message body is")

<< lpszBodyBuffer << endl;
delete lpszBodyBuffer;

MQCloseQueue(hq);

Messages can be written to the queue on the Windows CE device from
a Windows 2000 application regardless of whether the Windows CE device is
connected or not. If not connected, the messages will be written to a tempo
rary queue (Figure 15.3), and then sent once a connection is made.

The Visual Basic code below shows how a queue can be opened by
supplying a FormatName that includes the name of the Windows CE device
('ncg_ppc') on which the queue resides. A message can be created and the
Label and Body properties initialized; the message is then sent to the open
queue. Finally, the queue can be closed. The message sent in this way can be
read by the code in Listing 15.3.

Dim qSendi As MSMQQueueinf o
Dim qSend As MSMQQueue
Dim msg As New MSMQMessage

Set qSendi = New MSMQQueueinf o
qSendi.FormatName = _

"DIRECT=OS:ncg_ppc\Private$\WinCEinQueue"

Set qSend qSendi.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
msg.Label = "Message from Win2000"

Device Manager
Local Users and Groups

. Storage
! ····liil Disk Management
! ···If Disk Defragmenter
: !···e Logical Drives
! ~··O Removable Storage
B··fjl Services and Applications

· WM! Control
Services
Indexing Service
Internet Information Services
Message Queuing

~···Iii! Outgoing Queues
! B··• DIRECT=OS:ncg_ppc\Private$\WinCE!nQueue

! Iii• 814ii!REll
Efl···ll Public Queues
$···Iii! Private Queues
EE-··liil System Queues

Reading Messages from a Queue 397

Messages waiting to be sent to a Windows CE queue

msg.Body = "Body contents of message"
msg.Send qSend
qSend.Close

Reading Other Message Properties
In Listing 15.3 only two message properties were read-the message label and
the message body. Other message properties can be retrieved by adding to the
MQMSGPROPS structure. In this section, the properties PROPID_M_SENTTIME
and PROPID_M_ARRIVEDTIME will be demonstrated. These can be used to re
trieve the time the message was sent and the time the message arrived in the
queue. The times are returned using a 32-bit time_t data value. The follow
ing code initializes message properties to return these times:

aMsgPropid[2] = PROPID_M_SENTTIME;
aMsgPropVar[2] .vt = VT_UI4;
aMsgPropid[3] = PROPID_M_ARRIVEDTIME;
aMsgPropVar[3] .vt = VT_UI4;

398 Chapter 15 • Microsoft Message Queue (MSMQ)

The times can be retrieved after a successful call to MQReceiveMessage
using the property's ul Val member, for example:

cout << aMsgPropVar[2] .ulVal << endl;

Both PROPID_M_SENTTIME and PROPID_M_ARRIVEDTIME return time
using the t ime_t UNIX time data type. This is the number of seconds since
midnight, January 1, 1970 (coordinated universal time). Most Windows CE time
functions use the 64-bit integer FILETIME data type (which is the number of
100-nanosecond intervals since January 1, 1601) or SYSTEMTIME structure. You
can easily work out how long the message took to arrive-the difference is the
number of seconds elapsed between the sending of the message and its a.rrival.
However, working out the time and date represented by the time_t value ne
cessitates it being converted to a more useful time format. The following func
tion converts a time_t 32-bit value to a SYSTEMTIME structure.

void TimeToSystemTime(time_t t, LPSYSTEMTIME pst)
{

II Note that LONGLONG is a 64-bit value
LONGLONG 11;
FILETIME ft;

11 = Int32x32To64(t, 10000000) + 116444736000000000;
ft.dwLowDateTime = (DWORD)ll;
ft.dwHighDateTime = 11 >> 32;
FileTimeToSystemTime(&ft, pst);

This function converts the time_t value from a 32-bit to a 64-bit value,
changes the interval from 1 second to 100 nanoseconds, and changes the base
time from January 1, 1970, to January 1, 1601. It then uses the FileTimeTo
SystemTime Windows CE function to convert from a FILETIME to a SYSTEM
TIME structure. The following code shows how to display the time and date
associated with the PROPID_M_SENTTIME property value:

TimeToSystemTime(aMsgPropVar[2] .ulVal, &st);
cout << _T ("Sent Time: ")

<< st.wMonth << _T("I") << st.wDay
<< _T ("I") << st. wYear << _T (" ")
<< st.wHour << _T(":") << st.wMinute
<< _T(":") << st.wSecond << endl;

Peeking Messages and Cursors
An application uses the action MQ_ACTION_PEEK_CURRENT with a MQRe
ceiveMessage call to peek at the first message in a queue. This allows the
message to be read but does not remove it from the queue. Messages other
than the first in the queue can only be peeked if a cursor is created. A message

Reading Messages from a Queue 399

cursor is created with the function MQCreateCursor, and this function is
passed two parameters:

e Handle to an open queue
e A pointer to a variable to receive a handle to the open cursor

A HRESULT is returned indicating success or failure:

HANDLE hCursor;
hr = MQCreateCursor(hq, &hCursor);
if (FAILED (hr))
{

cout << _T("Could not open cursor") << endl;

The cursor handle can be passed to a call to MQReceiveMessage using
the following actions:

e MQ_ACTION_RECEIVE-Read and remove the message at the current
cursor location.

e MQ_ACTION_PEEK_CURRENT-Peek the current message but do not re
move it, and keep the cursor pointing at the current message.

e MQ_ACTION_PEEK_NEXT-Peek the next message but do not remove it,
and move the cursor on to the next message.

The following code reads the current message and does not move the
cursor to the next message:

dwRecAction = MQ_ACTION_PEEK_CURRENT;
hr= MQReceiveMessage(hq, II Queue handle

0, II Max time (msec)
dwRecAction, II Receive action
&msgprops, II Property structure
NULL, II Not OVERLAPPED
NULL, II No callback function
hCursor, II Cursor
NULL II No transaction
) ;

A cursor must be closed when finished with. This is done by calling the
function MQCloseCursor, which is passed a handle to the open cursor. The
code in Listing 15.4 opens the same queue as Listing 15.3, but differs in the fol
lowing ways:

e It sets properties to read the message label rather than the body
e It opens a cursor and peeks all messages in the queue rather than read

ing the first message in the queue

Notice how the action used when calling MQReceiveMessage the first
time is MQ_ACTION_PEEK_CURRENT-this reads the first message in the cursor

400 Chapter 15 ® Microsoft Message Queue (MSMQ)

and does not move the current cursor to the next message. The next and sub
sequent calls to MQRecei veMessage use the action MQ_ACTION_PEEK_NEXT.
This moves the cursor to reference the next message in the queue, then returns
that message.

Peeking messages in a queue with a cursor

void Listing15_4()

HRESULT hr;
QUEUEHANDLE hq;

TCHAR wszForrnatNarne[256];
DWORD dwForrnatNarneLength = 256;

hr = MQPathNarneToForrnatNarne
(_T(".\\Private$\\WinCEinQueue"),

wszForrnatNarne,
&dwForrnatNarneLength) ;

cout << wszForrnatNarne << endl;

hr = MQOpenQueue(wszFormatName,
MQ_RECEIVE_ACCESS,
MQ_DENY_NONE,
&hq);

if(hr == MQ_OK)
cout << _T("Opened queue") << endl;

else
{

DisplayOpenError(hr);
return;

DWORD dwRecAction;

MQMSGPROPS msgprops;
MSGPROPID aMsgPropid[4];
MQPROPVARIANT aMsgPropVar[4];
HRESULT aMsgStatus[4];
II Message body buffer
DWORD dwBodyBufferSize = 1024;
TCHAR lpszBodyBuffer[1024];
DWORD cPropid = 0;

aMsgPropid[cPropid] = PROPID_M_LABEL_LEN;
aMsgPropVar[cPropid] .vt = VT_UI4;
aMsgPropVar[cPropid] .ulVal = 1024;
cPropid++;

aMsgPropid[cPropid] = PROPID_M_LABEL;
aMsgPropVar[cPropid] .vt = VT_LPWSTR;

Reading Messages from a Queue 40 l

aMsgPropVar[cPropid] .pwszVal
cPropid++;

lpszBodyBuffer;

msgprops.cProp = cPropid;
msgprops.aPropID = aMsgPropid;
msgprops.aPropVar = aMsgPropVar;
msgprops.aStatus = aMsgStatus;
HANDLE hCursor;
hr = MQCreateCursor(hq, &hCursor);
if (FAILED (hr))
{

cout << _T("Could not open cursor") << endl;
MQCloseQueue(hq);

dwRecAction = MQ_ACTION_PEEK_CURRENT;
while(TRUE)
{

hr = MQReceiveMessage(hq,
0,
dwRecAction,
&msgprops,
NULL,
NULL,
hCursor,
NULL);

dwRecAction = MQ_ACTION_PEEK_NEXT;
if (FAILED (hr))
{

DisplayReadError(hr);
MQCloseCursor(hCursor);
MQCloseQueue(hq);
return;

cout << _T("Label: ") << lpszBodyBuffer << endl;

Callback Function and Asynchronous Message Reading
The calls to MQReceiveMessage in previous sections have all been synchro
nous-the call blocks until the timeout value has passed or a message is avail
able for reading. In many situations applications need to read messages asyn
chronously to avoid blocking the thread while waiting. One solution is to create
a thread (Chapter 5) and call MQRecei veMessage on that thread with a long
timeout. Another solution is to call MQRecei veMessage and pass a pointer to
a callback function, avoiding the necessity to create threads. This code shows
a c;all to MQReceiveMessage to read a message from the queue with a time
out of 100 minutes, and the function Recei veCallbackRoutine will be

402 Chapter 15 s Microsoft Message Queue (MSMQ)

called when the message is received. The call MQRecei veMessage will return
immediately with an HRESULT indicating success if the asynchronous request
could be set up.

dwRecAction = MQ_ACTION_RECEIVE;
hr= MQReceiveMessage(hq, II handle to queue

1000 * 60 * 100, II Max time (msec)
dwRecAction, II Receive action
pMsgprops, II Msg property structure
NULL, II No OVERLAPPED structure
ReceiveCallbackRoutine, II Callback function
NULL, I I No Cursor
NULL II No transaction
) ;

The MQRecei veMessage callback function is called when a message is
available for reading. The parameters passed to this function give context to
the function, such as the timeout, the queue the message was read from, the
message properties, and the cursor handle.

void APIENTRY ReceiveCallbackRoutine(HRESULT hr,
QUEUEHANDLE hSource,
DWORD dwTimeout,
DWORD dwAction,
MQMSGPROPS* pMessageProps,
LPOVERLAPPED lpOverlapped,
HANDLE hCursor)

There are two programming considerations you will need to note:

s Property data should be dynamically allocated to allow the callback func
tion to have correct access to it.

"' The queue will need to be closed at some stage after the callback func
tion has been called.

In previous examples, property da.ta has been declared as auto variables
in the function that opens the queue and reads the message. This technique
cannot be used when using callback functions, as the auto variables will have
been destroyed by the time the callback function is called. Instead, you will
need to use dynamic memory allocation, as shown by the following:

MQMSGPROPS* pMsgprops = new MQMSGPROPS;
MSGPROPID* pMsgPropid =new MSGPROPID[4];
MQPROPVARIANT* pMsgPropVar = new MQPROPVARIANT[4];
HRESULT* pMsgStatus = new HRESULT[4];
LPTSTR lpszBodyBuffer =new TCHAR[1024];

Note that any data referenced by properties (such as lpszBodyBuffer)
will also need to be dynamically allocated. The data so allocated will need to

Reading Messages from a Queue 403

be freed by the callback function, or by the function that calls MQRecei ve
Message if the call fails. Listing 15.5 shows the entire code for opening a
queue, setting up a message read using a callback function, and declaring the
callback function that will be called when a message is received. Note where
the property data is allocated and de-allocated, and how the callback function
gains access to lpszLabelBuffer through the property structure using the
statement pMessageProps->aPropVar [1 J • pwszVal.

MMEJM Callback function to read a message

void APIENTRY ReceiveCallbackRoutine(HRESULT hr,
QUEUEHANDLE hSource, DWORD dwTimeout,
DWORD dwAction, MQMSGPROPS* pMessageProps,
LPOVERLAPPED lpOverlapped, HANDLE hCursor)

if (FAILED(hr))
{

DisplayReadError(hr);

else

cout << _T("Async Msg Read: ") <<
pMessageProps->aPropVar[l] .pwszVal << endl;

MQCloseQueue(hSource);

delete pMessageProps->aPropVar[l] .pwszVal;
delete pMessageProps->aPropID;
delete pMessageProps->aPropVar;
delete pMessageProps->aStatus;
delete pMessageProps;

void Listing15_5()
{

HRESULT hr;

TCHAR wszFormatName[256];
DWORD dwFormatNameLength = 256;
QUEUEHANDLE hq;

hr = MQPathNameToFormatName
(_T(".\\Private$\\WinCEinQueue"),

wszFormatName,
&dwFormatNameLength) ;

cout << wszFormatName << endl;

hr MQOpenQueue(wszFormatName,
MQ_RECEIVE_ACCESS,
MQ_DENY_NONE,
&hq);

404 Chapter 15 e Microsoft Message Queue (MSMQ)

if (hr == MQ_OK)
cout << _T("Opened queue") << endl;

else
{

DisplayOpenError(hr);
return;

DWORD dwRecAction;
LPTSTR lpszLabelBuffer =new TCHAR[1024];

MQMSGPROPS* pMsgprops = new MQMSGPROPS;
MSGPROPID* pMsgPropid =new MSGPROPID[4];
MQPROPVARIANT* pMsgPropVar = new MQPROPVARIANT[4];
HRESULT* pMsgStatus = new HRESULT[4];

DWORD cPropid = O;

pMsgPropid[cPropid] = PROPID_M_LABEL_LEN;
pMsgPropVar[cPropid] .vt = VT_UI4;
pMsgPropVar[cPropid] .ulVal = 1024;
cPropid++;

pMsgPropid[cPropid] = PROPID_M_LABEL;
pMsgPropVar[cPropid] .vt = VT_LPWSTR;
pMsgPropVar[cPropid] .pwszVal = lpszLabelBuffer;
cPropid++;

pMsgprops->cProp = cPropid;
pMsgprops->aPropID = pMsgPropid;
pMsgprops->aPropVar = pMsgPropVar;
pMsgprops->aStatus = pMsgStatus;
dwRecAction = MQ_ACTION_RECEIVE;

hr= MQReceiveMessage(hq, II
1000 * 60 * 100, II
dwRecAction,
pMsgprops,
NULL,
ReceiveCallbackRoutine,
NULL,
NULL

if (FAILED (hr))
{

delete pMsgPropid;
delete pMsgPropVar;
delete pMsgStatus;
delete pMsgprops;
delete lpszLabelBuffer;
DisplayReadError(hr);

II
II
II
II
II
II

Queue handle
Max time (msec)
Receive action
Msg property structure
No OVERLAPPED structure
Callback function
No Cursor
No transaction
) ;

Message Timeouts, Acknowledgements, and Administrative Queues 405

In this case a single message will be read, and the queue is then closed.
It is possible that ReceiveCallbackRoutine could make another MQRe
cei veMes sage call to set up an asynchronous read using the same callback
function.

Message Timeouts, Acknowledgements,
and Administration Queues
So far, the code used to send messages has only checked to see whether the
message could be added to a queue-there is no check that the message could
be sent to its final destination queue, possibly on a different computer. For re
liable message transfer, you can specify a timeout value which, if exceeded,
will result in an acknowledgement message being placed in an administration
queue. You can then read messages from this administration queue to deter
mine which messages failed to reach their destination. Administration queues
are ordinary private queues you create using MQCreateQueue.

Since you may be sending many different messages, it is important that
you can match up the messages in the administration queue to the original
message. MSMQ creates a 20-byte unique message identifier that you can use
for tracking.

First, you will need to create a message queue to be used as an adminis
tration queue. The code would be very similar to that presented in Listing 15.2.
The code samples in this section use an administration queue created with the
following pathname and label:

II Queue pathname
LPWSTR wszPathName =

_T(".\\PRIVATE$\\WinCEinQueueAdmin");
II Queue label
LPWSTR wszQueueLabel =

_T ("Admin Queue for WinCEinQueue") ;

To enable message timeouts and use message identifiers, you will need
to add the following properties to the messages you send:

® PROPID_M_ADMIN_QUEUE-This property specifies the name of the ad
ministration queue in which the message will be placed if it cannot be
delivered.

$ PROPID_M_TIME_TO_BE_RECEIVED-A property that specifies how
long MSMQ should attempt to send the message before placing it in the
administration message queue.

$ PROPID_M_ACKNOWLEDGE-A property that specifies the type of message
acknowledgement. An application can specify either positive and nega
tive acknowledgements, or just negative ones.

406 Chapter 15 ® Microsoft Message Queue (MSMQ)

The PROPID_M_ADMIN_QUEUE property's VT_LPWSTR data value is the
format name of the administration queue. The following code creates a format
name for the WinCEinQueueAdmin queue and initializes the property:

TCHAR wszAdminFormatName[1024);
DWORD dwAdminFormatNameLength = 1024;
hr = MQPathNameToFormatName

(_T(".\\PRIVATE$\\WinCEinQueueAdmin"),
wszAdminFormatName,
&dwAdminFormatNameLength) ;

if (FAILED (hr))
{

cout <<

_T("Failed to get format name for admin queue");
return;

aMsgPropid[cPropid) = PROPID_M_ADMIN_QUEUE;
aMsgPropVar[cPropid] .vt = VT_LPWSTR;
aMsgPropVar[cPropid] .pwszVal = wszAdminFormatName;
cPropid++;

The PROPID_M_TIME_TO_BE_RECEIVED property specifies the amount
of time to elapse before the message is considered undeliverable. The timeout
value is an unsigned 4-byte integer value expressed in seconds. This includes
the time it spends getting to the destination queue plus the time spent waiting
in the queue before it is retrieved by an application. The PROPID_M_TIME_
TO_REACH_QUEUE property can be used if you are interested in specifying
only the timeout for the message to reach the destination queue and are not
interested in how long the message remains in the destination queue waiting
to be read.

The PROPID_M_JOURNAL property can be used with a MQMSG_DEAD
LETTER value to specify that the message itself should be placed in the dead
letter queue. By default, undeliverable messages are deleted from the system
by MSMQ.

The following code specifies that the message should timeout if not de
livered and read within 30 seconds. In a production environment the timeout
period would probably be substantially longer, especially if you are working
with disconnected Windows CE devices.

aMsgPropid[cPropid] = PROPID_M_TIME_TO_BE_RECEIVED;
aMsgPropVar[cPropid] .vt = VT_UI4;
aMsgPropVar[cPropid] .ulVal = 30; II seconds
cPropid++;

The PROPID_M_ACKNOWLEDGE message specifies the situations in which
an acknowledgement message will be placed in the administration queue. The

Message Timeouts, Acknowledgements, and Administrative Queues 407

data value associated with this property can be a combination of the following
constants:

lit MQMSG_ACKNOWLEDGEMENT_FULL_REACH_QUEUE-Posts a positive or
negative acknowledgement depending on whether or not the message
reaches the queue. A negative acknowledgement is posted when the time
to-reach-queue timer of the message expires.

41 MQMSG_ACKNOWLEDGEMENT_NACK_REACH_QUEUE-Posts a negative ac
knowledgement when the message cannot reach the queue .

• MQMSG_ACKNOWLEDGEMENT_FULL_RECEIVE-Posts a positive or nega
tive acknowledgement depending on whether or not the message is re
trieved from the queue before its time-to-be-received timer expires .

• MQMSG_ACKNOWLEDGEMENT_NACK_RECEIVE-Posts a negative ac
knowledgement when an error occurs and the message cannot be re
trieved from the queue before its time-to-be-received timer expires.

411 MQMSG_ACKNOWLEDGEMENT_NONE-The default. No acknowledgement
messages (positive or negative) are posted.

The following code uses the PROPID_M_ACKNOWLEDGE to specify that an
acknowledgement message should be placed in the administration queue if the
message fails to be read within the timeout period:

aMsgPropid[cPropid) = PROPID_M_ACKNOWLEDGE;
aMsgPropVar[cPropid) .vt = VT_Uil;
aMsgPropVar[cPropid) .bVal =

MQMSG_ACKNOWLEDGEMENT_NACK_RECEIVE;
cPropid++;

The message identifier is a 20-byte value based on a unique machine
GUID and a unique message number. The PROPID_M_MSGID property can be
used to retrieve the identifier. You should supply a 20-byte buffer, and this
buffer will be initialized with the message identifier after calling MQSendMes
sage. The following code initializes the PROPID_M_MSGID property:

BYTE bMsgID[20);
memset(bMsgID, 0, 20);
aMsgPropid[cPropid) = PROPID_M_MSGID;
aMsgPropVar[cPropid) .vt = VT_VECTOR I VT_Uil;
aMsgPropVar[cPropid) .caub.pElems bMsgID;
aMsgPropVar[cPropid) .caub.cElems = 20;
cPropid++;

The code in Listing 15.6 shows writing a message to a queue with a re
quest for a negative acknowledgement if the receive timeout period is ex
ceeded using the properties described above. The acknowledgement messages
will be written to the WinCEinQueueAdmin queue.

408 Cho pier 15 • Microsoft Message Queue (MSMQ)

M!MfiliM Writing a message with acknowledgement request

void DisplayMsgid(BYTE bMsgid[])
{

for(int i = O; i < 20; i++)
cout << (int)bMsgid[i] <<_T(" ");

void Listing15_6()
{

HRESULT hr;
QUEUEHANDLE hq;

TCHAR wszFormatName[256];
DWORD dwFormatNameLength = 256;

hr = MQPathNameToFormatName
(_T ("nickdell \\Private$\ \WinCEQueue"),

wszFormatName,
&dwFormatNameLength);

hr = MQOpenQueue(wszFormatName,
MQ_SEND_ACCESS, MQ_DENY_NONE, &hq);

if (hr == MQ_OK)
cout << _T("Opened queue") << endl;

else
{

DisplayOpenError(hr);
return;

DWORD cPropid = 0;

MQMSGPROPS msgprops;
MSGPROPID aMsgPropid[7];
MQPROPVARIANT aMsgPropVar[7];
HRESULT aMsgStatus[7];

aMsgPropid[cPropid] = PROPID_M_LABEL;
aMsgPropVar[cPropid] .vt = VT_LPWSTR;
aMsgPropVar[cPropid] .pwszVal =

_T ("Test Acknowledge Message");
cPropid++;

aMsgPropid[cPropid] = PROPID_M_BODY_TYPE;
aMsgPropVar[cPropid] .vt = VT_UI4;
aMsgPropVar[cPropid] .ulVal = VT_BSTR;
cPropid++;

BSTR bStr = SysAllocString(
_T ("Body text for the message"));

aMsgPropid[cPropid] = PROPID_M_BODY;
aMsgPropVar[cPropid] .vt = VT_VECTORIVT_Uil;

Message Timeouts, Acknowledgements, and Administrative Queues 409

aMsgPropVar[cPropid] .caub.pElems
aMsgPropVar[cPropid] .caub.cElems

SysStringByteLen(bStr);
cPropid++;

TCHAR wszAdminFormatName[1024];

(LPBYTE)bStr;

DWORD dwAdminFormatNameLength = 1024;
hr = MQPathNameToFormatName

(_T(".\\Private$\\WinCEinQueueAdmin"),
wszAdminFormatName,
&dwAdminFormatNameLength);

aMsgPropid[cPropid] = PROPID_M_ADMIN_QUEUE;
aMsgPropVar[cPropid] .Vt = VT_LPWSTR;
aMsgPropVar[cPropid] .pwszVal = wszAdminFormatName;
cPropid++;

aMsgPropid[cPropid] = PROPID_M_ACKNOWLEDGE;
aMsgPropVar[cPropid] .vt = VT_Uil;
aMsgPropVar[cPropid] .bVal =

MQMSG_ACKNOWLEDGEMENT_NACK_RECEIVE;
cPropid++;

aMsgPropid[cPropid] = PROPID_M_TIME_TO_BE_RECEIVED;
aMsgPropVar[cPropid] .vt = VT_UI4;
aMsgPropVar[cPropid] .ulVal = 30; II seconds
cPropid++;

BYTE bMsgID[20];
memset(bMsgID, 0, 20);
aMsgPropid[cPropid] = PROPID_M_MSGID;
aMsgPropVar[cPropid] .vt = VT_VECTOR I VT_Uil;
aMsgPropVar[cPropid] .caub.pElems bMsgID;
aMsgPropVar[cPropid] .caub.cElems = 20;
cPropid++;

msgprops.cProp = cPropid;
msgprops.aPropID = aMsgPropid;
msgprops.aPropVar = aMsgPropVar;
msgprops.aStatus = aMsgStatus;

hr= MQSendMessage(hq, &msgprops, NULL);
if (FAILED (hr))

cout << _T("Could not send message") << endl;
else
{

DisplayMsgid(bMsgID);
cout << endl << _T("Message queued") << endl;

MQCloseQueue(hq);
II monitor administration queue
InitializeAdminQueueRead();

410 Chapter 15 Microsoft Message Queue (MSMQ)

Once the message has been added to the queue, the application will need
to monitor the administration queue to see if acknowledgement messages are
delivered. In the above case an acknowledgement message will only be re
ceived if the message times out. Depending on how your application operates,
you could open the administration queue and read messages using a callback
function, or periodically check the queue for messages. You will need to match
the acknowledgement messages to the original message identifier. The PROP
ID_M_CORRELATIONID property in the acknowledgment message will contain
the message identifier of the message that timed out. You can request that the
correlation identifier is returned when the acknowledgement message is read
from the administration queue by adding a property like the following:

LPBYTE lpbMsgID = new BYTE[20];
memset(lpbMsgID, 0, 20);
pMsgPropid[cPropid] = PROPID_M_CORRELATIONID;
pMsgPropVar[cPropid] .vt = VT_VECTOR I VT_Uil;
pMsgPropVar[cPropid] .caub.pElems lpbMsgID;
pMsgPropVar[cPropid] .caub.cElems = 20;
cPropid++;

All the source code for creating an administration queue, adding a mes
sage with properties for creating acknowledgement messages, and reading
these messages from the queue can be found on the CDROM in the source file
Chapter15. cpp under Listing 15.6.

Message Transactions
So far, all the messages and the message queues have been non-transacted.
You can create transacted message queues that offer the following advantages:

a Messages are guaranteed single delivery. Messages will not be duplicated.
a Messages will be placed in the queue in the order in which they were sent.

While transacted message queues are more reliable, they do require more
storage space and processing. In Windows CE transactions are limited to a
single message. You must decide when creating a message queue whether it
will be transactional or not. To do this you should add a PROPID_Q_TRANS
ACTION property when creating the message queue, using MQCreateQueue.
This property's data should contain the constant MQ_TRANSACTIONAL to spec
ify transaction support:

aQueuePropid[cPropid] = PROPID_Q_TRANSACTION;
aQueuePropVar[cPropid] .vt = VT_Uil ;
aQueuePropVar[cPropid] .bVal = MQ_TRANSACTIONAL
cPropid++;

Conclusion 411

Once a queue is created you cannot change its transactional properties.
You can use the MQGetQueuePrope;,.ties function to determine whether a
queue is transacted or not. A message can be sent to a transacted queue, and
you can specify whether that message should be transacted or not. The follow
ing code fragment specifies a transacted message:

hr= MQSendMessage(hq, II Handle to open queue
&msgprops, II Properties of message
MQ_SINGLE_MESSAGE); II Single msg transaction

For a non-transacted message MQ_SINGLE_MESSAGE is replaced by
NULL. There is another very important difference between transacted and non
transacted message queues. The messages in a non-transacted message queue
are lost when a Windows CE device is cold-booted-this is because MSMQ
is restarted. The contents of transacted message queues are maintained in this
situation. For this reason, queues that store important data for any length of
time should probably be created as transactional.

Conclusion
Because many Windows CE devices are often disconnected from the enterprise
network, it is essential that updates can be queued on the device ready to be
transferred to the enterprise when a connection is made. Microsoft Message
Queue provides a reliable and easy-to-use way of providing this functionality
and therefore can play an important part in many Windows CE applications.

This chapter has shown how to create queues, send and receive mes
sages, and track sending failures. Although all the sample code shows sending
simple text data in the message, it is easy to extend this to transfer binary data
or perhaps structured data using XML.

Finally, this chapter looked at creating transacted queues. While they pro
vide an additional overhead in processing and data storage, the reliability and
recoverability they provide is worthwhile.

ADOCE and SOL Server
for Windows CE

The use of databases is fundamental to writing most business applications.
Chapter 4 (Property Databases and the Registry) showed how to store and re
trieve data in the Windows CE property database. While this is very flexible, and
entirely adequate for small to medium amounts of data, it does not have the ro
bustness or flexibility of a true relational database such as SQL Server. Further,
the API functions and MFC classes are not particularly easy to use when re
trieving data from several property databases, as would be the case using a SQL
SELECT statement with a join between tables.

Windows CE supports a subset of OLEDB, and providers for the Win
dows CE property database are supplied. ActiveX Data Object (ADO) sits on
top of OLEDB and offers a more convenient object model for accessing data
bases. A subset of the desktop ADO object model, called ADOCE, provides
such an interface for Windows CE. Further, the ADOXCE object model allows
database objects (such as tables and indexes) to be manipulated.

Microsoft has produced a cut-down version of SQL Server 2000 to run on
Windows CE, called Microsoft SQL Server 2000 Windows CE edition. This pro
vides the most commonly used functionality in a footprint of around 800 KB.
Accessing data in a SQL Server for Windows CE database is significantly faster
than in property databases. This chapter shows how to create databases for
SQL Server for Windows CE and to manage data in tables using ADOCE and
ADOXCE. The same techniques can be applied to manipulate data in property
databases.

412

Using Smart Pointers with ADOCE 413

Installing SOL Server for Windows CE
When Setup. exe is run from the SQL Server for Windows CE installation disk,
a directory is created under '\Program Files' called 'Microsoft SQL Server
CE.' This contains all the binaries required to install on Windows CE devices.
The installation process goes on to install data access version 3.1 (which in
cludes ADOCE and ADOXCE) and the following two files on your Windows CE
device in the \Windows directory:

e SSCElO. DLL
® SSCECAl 0. DLL

Versions of these DLLs are available for emulation, so you can copy them
into the \Windows directory in the emulation object store. You do not have to
start Microsoft SQL Server for Windows CE like you do on a desktop-these
two DLLs are automatically loaded when you attempt to connect to a database.

ADOCE and ADOXCE
Windows CE supports OLEDB and OLEDB providers for different databases,
and these databases can be accessed through the OLEDB interface. However,
it is generally easier and more convenient to use ActiveX Data Objects (ADO)
to access data in databases, and ADOXCE to manipulate the database objects,
such as tables and columns. ADO and ADOCE are COM interfaces and com
ponents that can be accessed using smart pointers (Chapter 14).

A Connection interface is used by ADOCE to connect to the data source.
The Recordset interface is the cornerstone of ADOCE programming. A record
set is a virtual database table whose fields and rows correspond to a subset of
the fields (columns) and rows in an actual database table or tables. When you
change data in the recordset, the recordset stores the changes in memory, en
abling you to cancel the changes before the underlying database is updated.
While ADOCE is designed for single-user access, recordsets do manage con
currency to ensure correct data updating if two recordsets are created on the
same table. A Fields collection contains Field objects that represent the data
in a record in the recordset.

In ADOXCE a Catalog interface manages access to the objects in a data
base (which is also known as a catalog). The Catalog can return a Tables col
lection, and each Table interface in this collection represents a single table in
the database. New tables can be created, the fields defined, and indexes added.

Using Smart Pointers with ADOCE
As discussed in Chapter 14 (COM and ActiveX), COM components are accessed
most easily through smart pointer class templates. In Chapter 14 smart pointers

414 Chapter 16 "' ADOCE and SQL Server for Windows CE

were created using _COM_SMARTPTR_TYPEDEF after header (. h) files were
used that included the interface definitions. An alternate, and sometimes eas
ier, approach is to import a type library (TLB) file that includes all the interface
definitions. The #import will generate smart pointer class templates for each
interface contained in the TLB file.

You can create a TLB from the IDL files with the Microsoft Interface Defi
nition Language compiler (MIDL. EXE). This is distributed with Microsoft Visual
Studio and eMbedded Visual C++. You will need two TLB files for accessing
databases-ADOCE31. TLB and ADOXCE31. TLB. These TLB files may not be
distributed with your development tool, so for your convenience copies have
been placed on the CDROM in the directory \examples. If you need to build
them from IDL files, enter the command 'midl. exe adoce31. idl' in the
folder where the IDL files are located (typically the relevant 'include' folder).
You will need to ensure that the following IDL files are available for inclusion:
oaidl. idl, obj idl. idl, ocidl. idl, oleidl. idl, unknwn. idl, and
wtypes. idl.

Two #import statements are required, one for each of the TLB files.
Names in these TLB files may well clash with names used elsewhere, such as in
other header files. Therefore, the namespace for each #import is changed us
ing the rename_namespace attribute. In the code for this chapter, the name
space for ADOCE is 'AdoNS' and for ADOXCE is 'AdoXNS'. Even when using
these namespaces, the EOF name used in ADO still clashes, and so this is re
named to 'A_EOF'. This means that the ADOCE method called 'GetEOF' now
needs to be referred to as 'GetA_EOF'. You will also need to do the following:

* Include 'comdef. h' for all the usual declarations.
* Use _COM_SMARTPTR_TYPEDEF to create a smart pointer class for

IUnknown.
* Supply a default implementation of _com_issue_errorex, since this is

not provided in the run times for Windows CE.

Here, then, is the code you will need to include before using smart
pointer classes for ADOCE:

#include <comdef.h>

_COM_SMARTPTR_TYPEDEF (I Unknown, _uuidof (I Unknown)) .;
#import "adoce31. tlb" rename ("EOF", "A_EOF")

rename_namespace ("AdoNS")
#import "adoxce31.tlb" rename_namespace ("AdoXNS")

void _com_issue_errorex(HRESULT hr, IUnknown* pUnkn, REFIID riid)
{

cout << _T("COM Error: ") <<hr<< endl;

The #import statements will result in . tlh (header) and . tli (imple
mentation) files being created for ADOCE and ADOXCE. These files will be
placed in the output directory for the build (for example, 'sh3dbg'). It is well
worth looking at these files to determine the precise implementation of the

Using Smart Pointers with ADOCE 415

methods and properties, since smart pointers change the return types and pa
rameters for methods and properties.

The _com_issue_errorex function is called by the smart pointer func
tions that wrap the interface functions when an HRESULT returns a failure.
Many of the smart pointer functions that would usually return an HRESULT re
turn a value that would normally be returned as an out parameter. This makes
them easier to call, but means that the HRESULT cannot be tested. Therefore,
you should have _com_issue_errorex raise an exception or report the er
ror in some way. In the sample above the value in the offending HRESULT is
just displayed.

Table 16.1 shows the smart pointer interface classes created by these im
ports together with the namespace for each of the classes.

MtM!jljM Smart pointer classes for ADOCE and ADOXCE

Component Class

ADOCE AdoNS : : RecordsetPtr

ADO CE

ADO CE

ADO CE

ADO CE

ADO CE

ADO CE

ADO CE

ADO CE

ADOXCE

ADOXCE

ADOXCE

ADOXCE

ADOXCE

ADOXCE

ADOXCE

ADOXCE

ADOXCE

ADOXCE

AdoNS : :_CollectionPtr

AdoNS : :FieldsPtr

AdoNS : :FieldPtr

AdoNS : :PropertiesPtr

AdoNS : :PropertyPtr

AdoNS . . ConnectionPtr

AdoNS : :ErrorsPtr

AdoNS : :ErrorPtr

AdoXNS : :_CatalogPtr

AdoXNS : :TablesPtr

AdoXNS :: TablePtr

AdoXNS ::ColumnsPtr

AdoXNS : :_ColumnPtr

AdoXNS ::ADOXCEPropertiesPtr

AdoXNS ::ADOXCEPropertyPtr

AdoXNS : :IndexesPtr

AdoXNS : :KeysPtr

AdoXNS ::_KeyPtr

Purpose

Returns a virtual database table whose fields
contain data returned from the database

Generic collection class used, for example,
by field collections

Collection of fields, generally in a Recordset

Interface representing a single field

A collection of properties generally used to
describe a connection

Interface representing a single property

Interface representing a connection to a
data source

Collection of errors from a data source
provider returned when an error occurs

Interface representing a single error

Interface representing a catalog (database)

Collection of tables in a catalog

Interface representing a single table

Collection of columns in a table

Interface representing a single column

Properties collection, such as properties for
a column in a table

Interface representing a single property

Collection of indexes for a table

Collection of keys (primary, foreign, or
unique) for a table

Interface representing a single key for a table

416 Chapter 16 ADOCE and SQL Server for Windows CE

Using _bstr_t and _variant_t Classes
One of the more tedious jobs when using ADOCE is packaging data into
VARIANT structures to be passed to methods and properties. Much of this data
uses the BSTR data type. You will need to keep track of the creation of BSTR
variables and remember to destroy them. To make life easier, you can use the
_bstr_t and _variant_t classes, support for which is provided directly
by the C++ compiler. For example, if you need to create a VARIANT variable
that contains a BSTR initialized and allocated with a string, you can write the
following:

_bstr_t bstrVal(_T("Data Value"));
_variant_t varVal(bstrVal);

In this case, a BSTR is created, initialized with the string 'Data Value',
and managed by the _bstr_t. A VARIANT variable is created, and the _vari
ant_t class constructor initializes the VARIANT's vt member with VT_BSTR.
The BSTR union member pbstrVal can be used to access the value. The
_variant_t class has a number of different constructors and copy construc
tors that allow values to be set into the VARIANT and the vt member auto
matically set with the correct data type indicator. The BSTR will be de-allocated
correctly when the variables go out of scope. You will see examples of how to
use these two classes in subsequent code samples.

Creating a Catalog (Database)
The first task you will need to complete on a SQL Server for Windows CE in
stallation is creating a database, or catalog, as it is known by ADOXCE. You will
need to define a connection string that defines the OLEDB provider used to ac
cess SQL Server for Windows CE (for example, 'Provider=Microsoft. SQL
Server. OLEDB. CE. 1 . 0; ') and the name of the database to be created (for
example, 'DataSource=\eVCAdo. db'). Note that in this case the database
'eVCAdo. db' will be created in the root folder of the object store-you would
probably want to change its location to another folder in your applications.

A Catalog interface can be obtained by creating an 'ADOXCE. Catalog'
component through a 'AdoXNS: :_CatalogPtr' smart pointer with the Cre
ateinstance function:

hr= pCatalog.Createinstance(_T("ADOXCE.Catalog"));

The actual catalog (that is, database) is created with the 'Create'
method. This is passed a variant variable that contains a BSTR with the connec
tion string specifying the name of the database and the provider, as in the fol
lowing example:

varConnection = pCatalog->Create(bstrConnection);

Creating a Catalog (Database) 417

The function Create returns a VARIANT whose vt type should be VT_
DISPATCH. The ppdispVal union member points to a Connection interface,
described later. If the call fails, the _com_issue_errorex function shown
above will display the HRESULT error. The code in Listing 16.1 shows the com
plete code required to create a catalog.

MMHM Creating a catalog (database}

const LPTSTR lpConnection =
_T("Provider=Microsoft.SQLServer.OLEDB.CE.1.0;Data\

Source=\\eVCADO.db");

void Listing16_1()
{

AdoXNS::_CatalogPtr
HRESULT hr;

pCatalog;

hr= pCatalog.Createinstance(_T("ADOXCE.Catalog"));
if (FAILED (hr))
{

cout << _T("Could not create catalog object")
<< endl;

return;

_bstr_t bstrConnection(lpConnection);
_variant_t varConnection;
varConnection = pCatalog->Create(bstrConnection);
if(varConnection.vt != VT_DISPATCH)
{

cout << _T("Could not create catalog") << endl;
return;

cout << _T("Database (Catalog) created") << endl;

The _CatalogPtr template class provides the following functions with
error handling:

TablesPtr GetTables ();
_variant_t GetActiveConnection () ;
void PutActiveConnection (const _variant_t & pVal) ;
void PutRefActiveConnection (IDispatch * pVal);
_variant_t Create (_bstr_t ConnectString);

The tasks performed by these functions are the following:

® Get Tables returns a TablesPtr class object that is a collection of all
the tables in the catalog.

® GetActi veConnection returns a _ConnectionPtr that represents the
connection used to the catalog.

418 Chapter I 6 @ ADOCE and SQL Server for Windows CE

e PutAct i veConnection and PutRefAct i veConnect ion allow you to
set the connection used for the catalog object. PutActi veConnection
is passed a VARIANT containing the connection string, while PutRefAc
ti veConnection is passed the _ConnectionPtr object directly.

Opening a Database (Catalog)
A database can be opened so that objects (such as tables) can be manipulated.
To do this, a _CatalogPtr interface must be obtained by calling Create
Instance, using the ProgID 'ADOXCE. Catalog', and then PutActi veCon
nection function is passed the connection string representing the catalog to
use. The following code shows a function that is passed a connection string
(such as lpConnection in Listing 16.1), creates a _CatalogPtr interface, and
sets the connection string. The _CatalogPtr interface, after calling this func
tion, can be used to access the objects (such as tables) in the database.

BOOL OpenCatalog(LPTSTR lpConnection,
AdoXNS::_CatalogPtr &pCatalog)

HRESULT hr;

hr= pCatalog.Createinstance(_T("ADOXCE.Catalog"));
if (FAILED (hr))
{

cout << _T("Could not create catalog object")
<< endl;

return FALSE;

_bstr_t bstrConnection(lpConnection);
_variant_t varConnection(bstrConnection);
pCatalog->PutActiveConnection(varConnection);
return TRUE;

Creating a Table
The first stage to creating a table in a database is to obtain a _CatalogPtr
pointer using the OpenCatalog function described in the previous section.
Next, you will need to create a new _TablePtr object that represents the new
table:

AdoXNS::_CatalogPtr
AdoXNS::_TablePtr

pCatalog;
pTable;

if(!OpenCatalog(lpConnection, pCatalog))
return;

hr= pTable.Createinstance(_T("ADOXCE.Table"));

The table should be named using the 'Name' _TablePtr function. This
function takes a single BSTR parameter containing the name of the new table

Creating a Catalog (Database) 419

('Customers'). The GetColumns function can then be used to obtain a _Col
umnPtr interface representing the columns in this new table. The collection
will initially be empty.

AdoXNS: :_ColumnPtr pColumn;
_bstr_t bstrTableName(_T("Customers"));
pTable->Name = bstrTableName;
pColumns = pTable->GetC'olumns ();

New columns are added using the ColumnsPtr interface function 'Ap
pend', which requires three parameters:

,. The name of the column
,. The data type of the column (for example, adVarWChar for variable

length Unicode strings)
,. Maximum length of the column in bytes

The following code adds a new variable-length Unicode string column
called 'Coll' that can store up to 50 Unicode characters:

_bstr_t bstrColumn (_T ("Coll"));
_variant_t varColumn(bstrColumn);
hr = pColumns->Append(varColumn,

AdoXNS: :adVarWChar, 100);

Once the columns have been defined, a TablesPtr interface is obtained
from the _CatalogPtr interface using Get Tables, and the table is appended
to the TablesPtr collection using the Append function. The table is passed
to Append as a VARIANT, with the vt member being set to VT_DISPATCH and
the ppdispVal union member containing a pointer to the _TablePtr inter
face. Note that, in the following code, the pTable interface pointer is cast to
IDispatch to select the correct _variant_t constructor. By default _vari
ant_t would create a VT_IUNKNOWN variant, and this would cause Append
to fail.

AdoXNS: :TablesPtr pTables;
pTables = pCatalog->GetTables();
_variant_t varTable((IDispatch*)pTable);
hr = pTables->Append(varTable);

Listing 16.2 shows the complete code for opening a catalog and creating a
new table called 'Customers' with three new fields. The function AddColumn
extracts out the code to append new columns to the ColumnsPtr collection.

Creating a table

BOOL AddColumn(AdoXNS: :ColumnsPtr& pColumns,
LPTSTR lpColName,
AdoXNS::DataTypeEnum dt, LONG lSize)

4 20 Chapter 16 "' ADOCE and SQL Server for Windows CE

HRESULT hr;
_bstr_t bstrColumn(lpColName);
_variant_t varColumn(bstrColumn);

hr = pColumns->Append(varColumn, dt, lSize);
if (FAILED(hr))
{

cout << _T ("Could not append column:")
<< lpColName << endl;

return FALSE;

return TRUE;

void Listing16_2()
{

AdoXNS: :_CatalogPtr
AdoXNS: :_TablePtr
AdoXNS: :ColumnsPtr
AdoXNS: :_ColumnPtr
AdoXNS: :TablesPtr
HRESULT hr;

pCatalog;
pTable;
pColumns;
pColumn;
pTables;

if(!OpenCatalog(lpConnection, pCatalog))
return;

hr= pTable.Createinstance(_T("ADOXCE.Table"));
if (FAILED (hr))
{

cout << _T("Could not create table object")
<< endl;

return;

II Create the table
_bstr_t bstrTableName(_T("Customers"));
pTable->Name = bstrTableName;

II Retrieve the pointer to the column
II collection from the table object
pColumns = pTable->GetColumns();
II Append the columns
if (!AddColumn (pColumns, _T ("CustName"),

AdoXNS::adVarWChar, 50))
return;

if (!AddColumn(pColumns, _T("CustNum"),
AdoXNS::adinteger, 4))

return;
if (!AddColumn (pColumns, _T ("CustAddress"),

AdoXNS: :adVarWChar, 1000))
return;

II Get a pointer to the tables collection
pTables = pCatalog->GetTables();

Enumerating Tables in a Catalog 421

II Add the table to the DB. Need to ensure that
II the variant is VT_DISPATCH and not VT_IUNKNOWN
_variant_t varTable((IDispatch*)pTable);
hr= pTables->Append(varTable);
if (FAILED (hr))
{

cout << _T("Could not append table") << endl;
return;

cout << _T("Created") << endl;

Enumerating Tables in a Catalog
Any collection in ADOXCE can be enumerated (or iterated, as it is also known)
to obtain a list of all the objects in the collection. For example, you may want
to obtain a list of all the tables in a catalog. Each collection has a 'Count' prop
erty that contains the number of items in the collection, and an Item function
that returns an interface pointer to one of the items.

In Listing 16.3, a TablesPtr tables collection interface is obtained from
the _CatalogPtr interface using the Get Tables method. The code then dis
plays the number of tables and uses a 'for' loop to get a _TablePtr interface
for each of the tables in the collection. The Item function is passed the index
of the table whose _TablePtr is to be obtained. This is passed as a VARIANT.

M@iilfM Listing tables in a catalog

void Listing16_3()
{

AdoXNS::_CatalogPtr
AdoXNS: :TablesPtr
AdoXNS: :_TablePtr

pCatalog;
pTables;
pTable;

if(!OpenCatalog(lpConnection, pCatalog))
return;

II get collection of tables
pTables = pCatalog->GetTables();
II List tables
cout << _T ("Number of tables:")

<< pTables->Count << endl;
for(short i = O; i < pTables->Count; i++)
{

_variant_t vtindex(i);
pTable = pTables->Item[vtindex];
cout << _T("Table:") << (LPTSTR)pTable->Name

<< endl;

4 22 Cho pier 16 e ADOCE and SQL Server for Windows CE

Dropping a Table
Tables, including the data they contain, can be dropped through the Tables
Ptr collection. In Listing 16.4 a catalog is opened and a TablesPtr interface
pointer obtained. The name of the table to be dropped ('Customers') is set
into a VARIANT containing a BSTR, and the TablesPtr interface function
Delete is used to drop the table.

i@Mf.jM Dropping a table

void Listing16_4()
{

AdoXNS::_CatalogPtr
AdoXNS::TablesPtr
AdoXNS::_TablePtr

pCatalog;
pTables;
pTable;

HRESULT hr;

if(!OpenCatalog(lpConnection, pCatalog))
return;

II get collection of tables
pTables = pCatalog->GetTables();
II Specify table to drop
_bstr_t bstrTable(~T("Customers"));
_variant_t varTable(bstrTable);
hr = pTables->Delete(varTable);
if (FAILED (hr))
{

cout << _T("Could not drop table") << endl;
return;

cout << _T("Table dropped") << endl;

Adding Records to a Table
So far in this chapter ADOXCE interfaces have been used to manage tables in a
database. Now, ADOCE interfaces will be used to manipulate data in tables. Data
is most often manipulated using recordsets, which are object models that repre
sent an extraction of data from tables. They can also be used to add new rec
ords to tables. First, we will look at a simple case of adding new data to a table.

First, a recordset must be created and then associated with a connection
to the database the recordset will be opened on. For example, the following
code fragment creates an instance of a Recordset, creates a VARIANT with
the connection string, and then opens the recordset on the 'Customers' table.

Adding Records to a Table 4 23

The ProgID for the recordset specifies the version number '3.1'-there is no
version-independent ProgID for recordsets in ADOCE.

AdoNS::_RecordsetPtr pRecordset;

hr = pRecordset.Createinstance
(_T ("ADOCE. Records et. 3 . 1")) ;

_bstr_t bstrConnection(lpConnection);
_variant_t varConnection(bstrConnection);

_bstr_t bstrTable(_T("Customers"));
_variant_t varTable(bstrTable);

hr = pRecordset->Open(varTable,
varConnection,
AdoNS::adOpenDynamic,
AdoNS::adLockOptimistic,
AdoNS::adCmdTableDirect);

The call to 'Open' opens a recordset on the table 'Customers'. The con
stant AdoNS: : adCmdTableDirect specifies that the 'varTable' variant con
tain the name of a table and not a SELECT or other SQL statement. The record
set is opened with a dynamic cursor and optimistic locking-this will allow
records to be added.

The data to be added to a record in a table is defined in two SAFEARRAY
variables. A SAFEARRAY is an n-dimensional array whose elements are accessed
through functions, and these functions check that the elements being accessed
are valid. One SAFEARRAY will contain the data being added to the record, and
the other will define the columns in the table to which the data applies. The
columns can be specified by name or index.

_RecordsetPtr::Open-Opens a recordset

_RecordsetPtr::Open

VARIANT vtSource

VARIANT vtSource

CursorTypeEnumCursorType

LockTypeEnumLockType

CommandEnumCommandType

HRESULT Return Value

Source for the recordset, such as a SQL SELECT
statement or table name

Variant containing a connection string or active
_ConnectionPtr connection interface pointer

Constant indicating the type of access cursor
required (see Table 16.3)

Determines what type of locking, or concurrency,
should be used when updating records (see
Table 16.4)

Determines what type of source is specified in
vtSource (See Table 16.5)

HRESULT indicating success or failure

424 Chapter 16 • ADOCEandSQLServerforWindowsCE

Mfflnda CursorTypeEnum cursor constants

Constant Description

adOpenUnspecified

adOpenForwardOnly

adOpenKeyset 1

adOpenDynamic 2

adOpenStatic 3

-1

0

Default cursor will be used.

Can only move forward through records in the
recordset. In ADOCE the performance of this
recordset type is identical to adOpenStatic.

Additions, changes, and deletions by other users are
not visible in this recordset. All types of navigation
through the recordset are allowed.

Additions, changes, and deletions by other users
are visible in this recordset. All types of navigation
through the recordset are allowed.

This cursor creates a static copy of the records in
the recordset. Additions, changes, or deletions by
other users are not visible.

MlijdfjM LockTypeEnum-Locking constants

Constant Description

adLockUnspecified

adLockReadOnly = 1

-1

adLockPessimistic = 2

adLockOptimistic 3

Default locking will be applied.

Read-only locking-you cannot add, delete, or
change records.

Pessimistic locking, record by record. Records
are locked immediately when editing starts and
unlocked when the update is completed.

Optimistic locking, record by record. Records are
locked for the duration of the actual update, not
when editing starts.

CommandEnum-Source type constants

Constant

adCmdUnspecified

adCmdText = 1

adCmdTable = 2

adCmdStoredProc = 4

adCmdUnknown = 8

-1

Description

Default type will be assumed.

Source is a SQL statement, such as a SELECT.

Source refers to a table.

Stored procedure, not supported in SQL Server for
Windows CE.

Type of command is unknown; the provider will
attempt to determine the source type ..

Adding Records to a Table 425

The Customer table has three columns, so each of the two safe arrays
should have one dimension with three elements, one for each column. The di
mensions and bounds of the SafeArrays are specified using a SAFEARRAY
BOUND structure for each dimension. In the following code, the SAFEARRAY -
BOUND structure is initialized so that the lower bound (lLBound) is 0 (that is
the index for the first element in the array), and the number of elements is 3
(cElements). Two calls are then made to SafeArrayCreate to allocate mem
ory for the arrays:

SAFEARRAY * pColumns
SAFEARRAY * pData
SAFEARRAYBOUND bound[l];

bound[OJ .lLbound = O;
bound[OJ .cElements = 3;

NULL;
NULL;

pColumns = SafeArrayCreate(VT_VARIANT, l, bound);
pData = SafeArrayCreate(VT_VARIANT, l, bound);

The first safe array, pColumns, will be used to store the indexes or names
of the table columns, and pDa ta will store the actual data. The function Safe
Arr ayCrea t e is passed three arguments and returns a pointer to the new array:

e The data type of the elements in the array. In this case VT_VARIANT speci
fies that each element will be a variant.

e The number of dimensions in the new array, in this case 1.
• An array of SAFEARRAYBOUND structures, one for each dimension.

Elements can be placed in a safe array using the function SafeArray
PutElement. This function takes three parameters:

e Pointer to the safe array, for example, pColumns.
• Index into the array. This is a pointer to a LONG variable for a single di

mension array, or a LONG array for a multidimensional safe array.
• A 'void*' pointer to the data to place into the array.

The data for the columns and data safe array will always be a variant. For
the columns array, the data type can be an integer (for example, VT_I2) if the
column is referenced by an index, or a VT_BSTR if the column is referenced
by name. For the data safe array, the variant will contain data in the appropri
ate type for the column. The following code places the first column name into
the column's safe array:

LONG lindex = O;
_variant_t varColumn(_T("CustName"));
SafeArrayPutElement(pColumns, &lindex, &varColumn);

Once the columns and data safe arrays have been initialized, the AddNew
function can be called to add the record, passing the following two parameters:

• A variant referencing the safe arrays containing the column names or
indexes

426 Chapter 16 • ADOCEandSQLServerforWindowsCE

• A variant referencing the safe array containing the data values for the
columns

The data type for passing a safe array is VT_ARRAY I VT_ VARIANT, and
the data member parray points at the safe array:

_variant_t varColumns;
varColumns.vt = VT_ARRAY I VT_VARIANT;
varColumns.parray = pColumns;
_variant_t varDataValues;
varDataValues.vt = VT_ARRAY I VT_VARIANT;
varDataValues.parray = pData;

hr= pRecordset->AddNew(varColumns, varDataValues);

Safe arrays must be deleted using the function SafeArrayDestroy, pass
ing in a pointer to the safe array to delete:

SafeArrayDestroy(pColumns);

You should explicitly close an open recordset using the Close method,
as in this example:

pRecordset->Close();

The code in Listing 16.5 shows opening a recordset, setting up the
safe arrays, adding the record (in function AddRecord), and then closing the
recordset.

IMfjM Adding records to a table

BOOL AddRecord(AdoNS::_RecordsetPtr& pRecordset,
LPTSTR lpCustName, LONG lCustID,
LPTSTR lpCustAddr)

HRESULT hr;
SAFEARRAYBOUND bound[l];
SAFEARRAY * pColumns
SAFEARRAY * pData
LONG lindex = O;
BOOL bRet = TRUE;

bound[OJ .lLbound = O;
bound[O] .cElements = 3;

NULL;
NULL;

pColumns = SafeArrayCreate(VT_VARIANT, l, bound);
pData = SafeArrayCreate(VT_VARIANT, 1, bound);
if(pColumns ==NULL I I pData ==NULL)
{

cout << _T("Could not create arrays.") << endl;
return FALSE;

Adding Records to o Tobie 4 27

_variant_t varColumn(_T("CustName"));
SafeArrayPutElement(pColumns, &lindex, &varColumn);
lindex++;
varColumn = _T ("CustNum");
SafeArrayPutElement(pColumns, &lindex, &varColumn);
lindex++;
varColumn = _T("CustAddress");
SafeArrayPutElement(pColumns, &lindex, &varColumn);

lindex = O;
_variant_t varData(lpCustName);
SafeArrayPutElement(pData, &lindex, &varData);
lindex++;
varData = lCustID;
SafeArrayPutElement(pData, &lindex, &varData);
lindex++;
varData = lpCustAddr;
SafeArrayPutElement(pData, &lindex, &varData);

_variant_t varColumns;
varColumns.vt = VT_ARRAY I VT_VARIANT;
varColumns.parray = pColumns;
_variant_t varDataValues;
varDataValues.vt = VT_ARRAY I VT_VARIANT;
varDataValues.parray = pData;

hr = pRecordset->AddNew(varColumns, varDataValues);
if (FAILED (hr))
{

cout << _T("Could not add new record") << endl;
bRet = FALSE;

if(pColumns)
SafeArrayDestroy(pColumns);

if(pData)
SafeArrayDestroy(pData);

return bRet;

void Listing16_5()
{

HRESULT hr;
AdoNS:: RecordsetPtr pRecordset;
II Get the base table rowset
II
hr = pRecordset.Createinstance

(_T("ADOCE.Recordset.3.1")) ;.
if (FAILED(hr))
{

cout << _T("Could not create recordset:") <<hr
<< endl;

428 Chapter 16 m ADOCEandSQLServerforWindowsCE

return;

_bstr_t bstrConnection(lpConnection);
_variant_t varConnection(bstrConnection);
_bstr_t bstrTable(_T("Customers"));
_variant_t varTable(bstrTable);

cout << _T ("About to open records et") << endl;
hr = pRecordset->Open(varTable,

varConnection,
AdoNS: :adOpenDynamic,
AdoNS: :adLockOptimistic,
AdoNS: :adCmdTableDirect);

if (FAILED (hr))
{

cout << _T("Could not open recordset") << endl;
return;

AddRecord(pRecordset, _T("Customer 1"), 1,
_T("1500 Ocean View"));

pRecordset->Close();

cout << _T ("New record added") << endl;

Retrieving Records from a Table
Records can be retrieved from a table through a recordset. The recordset can
either be based directly on the table itself (as in Listing 16.5) or based on a SQL
SELECT statement (such as 'SELECT * FROM Customers'). In the following
code a recordset is opened based on a SQL SELECT statement using the con
stant Ado NS : : adCmdText. The recordset is opened read-only (Ado NS: : ad
LockReadOnly) since the data will not be updated and this is more efficient.
The connection string is specified in the same way as Listing 16.5.

_bstr_t bstrQuery(_T("Select * from Customers"));
_variant_t varQuery(bstrQuery);

hr = pRecordset->Open(varQuery,
varConnection,
AdoNS: :adOpenStatic,
AdoNS: :adLockReadOnly,
AdoNS: :adCmdText);

A recordset has a 'current record' reference or, if there is no current rec
ord, the recordset will be at End of File (EOF) or Beginning of File (BOF). The
function GetA_EOF will return true if the current record points beyond the end

Retrieving Records from o Tobie 429

of file or if there are no records in the recordset. Note that the function is called
GetA_EOF rather than GetEOF since EOF was renamed A_EOF in the type li
braty import statement. The function GetBOF returns true if the current record
is before the first record or if there are no records in the recordset.

The following functions can be used to navigate through the records in
the recordset:

• MoveFirst-Move to the first record in the recordset.
• MoveLast-Move to the last record in the recordset.
• MoveNext-Move to the next record in the recordset.
• MovePrevious-Move to the previous record in the recordset.

You can use code like the following to navigate through each record in
the recordset:

while(!pRecordset->GetA_EOF())
{

II Do something with the current record ...
pRecordset->MoveNext();

The _RecordsetPtr: : GetFields () function returns a pFields col
lection of field interfaces for the current record:

AdoNS: :FieldsPtr pFields;
pFields = pRecordset->GetFields();

The fields collection can be enumerated to retrieve data and other field
information associated with the columns in the recordset. The FieldsPtr: :
Get Item function returns a FieldPtr interface for a column specified either
by name or index. This function is passed a variant that contains a BSTR with
the name of the column, or an integer containing the index number of the col
umn. In the following code, a FieldPtr interface pointer is returned for the
column called 'CustName'.

AdoNS::FieldPtr pField;
_variant_t vValue;

_bstr_t bstrindex(_T("CustName"));
_variant_t varindex(bstrindex);
pField = pFields->Getitem(varindex);

The FieldPtr: : Get Value () function returns a variant containing the
data associated with the field. You can use the vt structure member to deter
mine the data type. However, in most cases you will know the data type of the
field and can access the appropriate variant data union member. This code dis
plays the value associated with the CustName column:

vValue = pField->GetValue();
cout << _T("Customer: ") << vValue.bstrVal;

430 Chapter 16 ® ADOCEandSQLServerforWindowsCE

The code in Listing 16.6 displays all the records in the Customer table
by opening a recordset based on the SQL statement 'SELECT * FROM
Customers'.

Retrieving records from a table

void DisplayFields(AdoNS: :FieldsPtr & pFields)
{

AdoNS::FieldPtr pField;
_variant_t vValue;

_bstr_t bstrindex(_T("CustName"));
_variant_t varindex(bstrindex);
pField pFields->Getitem(varindex);

vValue = pField->GetValue();
cout << _T("Customer: ") << vValue.bstrVal;

bstrindex = _T ("CustNum");
varindex = bstrindex;
pField = pFields->Getitem(varindex);
vValue = pField->GetValue();
cout << _T(" Num: ") << vValue.lVal;

bstrindex = _T ("CustAddress");
varindex = bstrindex;
pField = pFields->Getitem(varindex);
vValue = pField->GetValue();
cout << _T(" Addr: ") << vValue.bstrVal << endl;

void Listing16_6()
{

HRESULT hr;
AdoNS: :_RecordsetPtr pRecordset;

_bstr_t bstrConnection(lpConnection);
_variant_t varConnection(bstrConnection);
_bstr_t bstrQuery(_T("Select *from Customers"));
_variant_t varQuery(bstrQuery);

hr = pRecordset.Createinstance
(_T ("ADOCE. Records et. 3. 1")) ;

if (FAILED (hr))
{

}

cout << _T("Could not create recordset:")
<< hr << endl;

return;

II Open the base table and retrieve rows
II

Connection Object 431

cout << _T("About to open recordset") << endl;
hr = pRecordset->Open(varQuery,

varConnection,
AdoNS::adOpenStatic,
AdoNS::adLockReadOnly,
AdoNS::adCmdText);

if (FAILED(hr))
{

cout << _T("Could not open recordset") << endl;
return;

while(!pRecordset->GetA_EOF())
{

AdoNS::FieldsPtr pFields;
pFields = pRecordset->GetFields();
DisplayFields(pFields);
pRecordset->MoveNext();

pRecordset->Close();

Connection Object
In the previous ADO code samples a connection to the database has been speci
fied using a connection string, and this is passed to, for example, the _Rec -
ordsetPtr: : Open function. This may seem quite inefficient, since it appears
that a new connection to the database is made each time a recordset is opened.
As it happens, ADO caches connections and so re-uses an existing connection
rather than making a new connection each time. However, it can be conven
ient to create a connection using a _ConnectionPtr interface. For example,
the _ConnectionPtr interface allows SQL statements to be executed directly
whether they return a result set or not. A good example of this is the SQL
DELETE statement.

Once a _ConnectionPtr interface has been obtained through calling
Createinstance, the Open function can be called to make a connection to
the database. This function is passed the following:

• A standard connection string
o A user name (not required by SQL Server for Windows CE)
"' A password (not required by SQL Server for Windows CE)
• Options, which should be passed as 0

The following code shows a function called GetConnection that returns
a connection to the database used in previous code examples.

432 Chapter 16 • ADOCE and SQL Server for Windows CE

BOOL GetConnection(AdoNS::_ConnectionPtr & pConnection)
{

HRESULT hr;
_bstr_t bstrConnection(lpConnection);
_bstr_t bstrUserID(_T(""));
_bstr_t bstrPassword(_T(""));

hr = pConnection.Createinstance
(_T ("ADOCE. Connection. 3 .1")) ;

if (FAILED (hr))
{

cout << _T("Could not create connection:")
<< hr << endl;

return FALSE;

hr = pConnection->Open(bstrConnection,
bstrUserID, bstrPassword, 0);

if (FAILED(hr))
{

cout << _T("Could not create connection:")
<< hr << endl;

return FALSE;

return TRUE;

Deleting Records
Records can be deleted by opening a recordset, navigating to the record to be
deleted, and then calling the _RecordsetPtr: : Delete function to delete the
record. It is much more efficient, though, to execute a SQL DELETE statement
with a WHERE clause specifying the record or records to be deleted (for ex
ample, 'DELETE FROM customers WHERE CustID = 1'). You can execute
such code using the _ConnectionPtr:: Execute function.

The Execute function takes the following parameters:

• A BSTR containing the SQL Statement to execute.
• A VARIANT that contains, on return, the number of rows affected. For ex

ample, this would be the number of rows actually deleted.
• A constant, which is usually AdoNS: : adCmdText, indicating that a SQL

statement is being passed.

The code in Listing 16.7 obtains a connection from the function Get
Connection (described in the last section) and uses the Execute function to
delete all the rows in the Customer table. The actual number of rows deleted
is displayed. Note that the call to Execute succeeds even if there are no rec
ords to delete.

SOL Data Definition Language IDOL) 433

i@!l(f# The SQL DELETE statement

void Listing16_7()
{

AdoNS::_ConnectionPtr pConnection;
if(!GetConnection(pConnection))

return;

_variant_t varRowsAffected;
_bstr_t bstrSQL(_T("DELETE FROM Customers"));
pConnection->Execute(bstrSQL,

&varRowsAffected,
AdoNS: :adCmdText);

cout << _T("Rows Deleted: ") << varRowsAffected.lVal
<< endl;

pConnection->Close();

You can execute any appropriate SQL statement. For example, you can
execute an INSERT statement to add records to a table and thereby avoid using
recordsets and safe arrays.

SUL Data Definition Language (DDL)
The ADOXCE object model allows the objects in a database (such as tables and
columns) to be added, modified, and deleted. You can also use SQL statements
to do the same, which can often be more convenient and quicker. These SQL
statements are called 'Data Definition Language,' or DDL, statements. SQL state
ments that manipulate data are called 'Data Manipulate Language,' or DML, state
ments. The following DDL statements are supported:

® CREATE DATABASE
® CREATE TABLE
® CREATE INDEX
® ALTER TABLE
® DROP INDEX
® DROP TABLE
® DROP DATABASE

Using CREATE TABLE
The CREATE TABLE statement allows a table to be created by giving a name
for the new table and the list of columns (fields) and their data types. The
allowable data types for Microsoft SQL Server for Windows CE are shown in
Table 16.6. For example, the following SQL statement creates a new table called

434 Chapter 16 a ADOCE and SQL Server for Windows CE

Orders with four fields: CustNum (integer), OrderNum (integer), Descrip
tion (Unicode string up to 100 characters long), and DateAdded (DateTime).

CREATE TABLE Orders (CustNum INT, OrderNum INT,
Description NCHAR VARYING(100), DateAdded DATETIME);

@$,llrJW Creates table data types

Data Type Name Description

NCHAR (size) National Character (Unicode) fixed-length character string. The size is
the maximum number of characters that the field can store, up to
4,000 characters.

NCHAR VARYING(size) National Character (Unicode) variable-length character string. The size is
the maximum number of characters that the field can store.

BIT Bit field occupying a single bit in a byte field.

BINARY(size)

VARBINARY(size)

Fixed-length binary field with maximum 'size' bytes up to 8,000 bytes.

Variable-length binary field with maximum 'size' bytes.

IMAGE

DATETIME

FLOAT

REAL

INT

SMALL INT

TINY INT

BIG INT

NUMERIC(p,s)

MONEY

Binary field storing up to 2,147,483,647 bytes.

Date and time data from January 1, 1753, through December 31, 9999,
with an accuracy of three-hundredths of a second, or 3.33 milliseconds.

Eight-byte floating-point value.

Four-byte floating-point value.

Four-byte integer value.

Two-byte integer value.

One-byte integer value.

Eight-byte integer value.

Fixed precision and scale numeric data able to store 'p' decimal digits
and 's' decimal digits to the right of the decimal point.

Money value with up to three decimal points for cents/pennies, and so on.

The code in Listing 16.8 creates the table called Orders. The function
ExecuteSQL is passed a connection pointer and executes the SQL code.

The CREATE TABLE statement

void ExecuteSQL(AdoNS::_ConnectionPtr& pConnection,
_bstr_t& bstrSQL)

_variant_t varRowsAffected;
pConnection->Execute(bstrSQL,

&varRowsAffected,
AdoNS: :adCmdText);

void Listing16_8()

SOL Data Definition Language (DDL) 435

AdoNS:: ConnectionPtr pConnection;
if(!GetConnection(pConnection))

return;
_bstr_t bStrSQL(_T("CREATE TABLE Orders \

(CustNum INT, OrderNum INT, \
Description NCHAR VARYING(lOO), \
DateAdded DATETIME)"));

ExecuteSQL(pConnection, bStrSQL);
cout << _T("Table created") << endl;
pConnection->Close();

Using DROP TABLE
Listing 16.4 showed how to drop a table using ADOXCE and the tables con
nection. An alternative method is to use the DROP TABLE statement, which is
passed the name of the table to drop. Listing 16.9 shows code to drop the
'Orders' table.

The DROP TABLE statement

void Listing16_9()
{

AdoNS:: ConnectionPtr pConnection;
if(!GetConnection(pConnection))

return;
_bstr_t bStrSQL(_T("DROP TABLE Orders "));
ExecuteSQL(pConnection, bStrSQL);
pConnection->Close();

Using Identities and Primary Keys
Many tables require a unique integer identifier for each record in the database.
Chapter 4 showed how to do this for property databases using the registry. In
SQL Server for Windows CE you can use the IDENTITY key word when creat
ing a table to create an auto-increment field. The PRIMARY KEY modifier can
be used to specify that a field is the uniquely identifying field within the table.
Identifying the primary key in a table is important, since applications inspect
ing the database design can use this to optimize data access. For example, to

436 Chapter 16 e ADOCE and SQL Server for Windows CE

create a new table called 'OrderDetails' with an auto-incrementing field
called OrderDetailNum, you can execute the following DDL code:

CREATE TABLE OrderDetails
(OrderDetailNum INT IDENTITY PRIMARY KEY,
OrderNum INT,
Product NCHAR VARYING(lOO),
Quantity INT)

In almost all cases an IDENTITY field will also be the primary key. List
ing 16.10 shows how this DDL code can be executed through ADOCE.

i®fi(jt1i The CREATE TABLE with identity column

void Listing16_10()
{

AdoNS: :_ConnectionPtr pConnection;
if(!GetConnection(pConnection))

return;
_bstr_t bStrSQL(_T("CREATE TABLE OrderDetails \

(OrderDetailNum INT IDENTITY PRIMARY KEY, \
OrderNum INT, \
Product NCHAR VARYING(lOO), \
Quantity INT)"));

ExecuteSQL(pConnection, bStrSQL);
cout << _T("Table created") << endl;
pConnection->Close();

Indexes
Indexes are used to improve performance when accessing records in a table,
when joining tables together (using primary and foreign keys), and for ensuring
uniqueness. When the PRIMARY KEY modifier is used for a field, a unique in
dex is used to ensure uniqueness. Other indexes should be added to the 'Cus
tomers,' 'Orders,' and 'OrderDetails' tables to cater for the most frequent
ways the data will be accessed. Figure 16.1 shows the relationships between
these three tables, and this helps to identify where indexes should be placed.

CustName
CustAddress

Fk3 Cus!Num
Description
DateAdded

PK OrderDetailNum

Product
Quantity

FK1 OrderNum

Relationships between Customers, Orders, and OrderDetails

INSERT Statement 437

The following DDL code can be used to create a unique index on the
'Orders' table for the CustNum field (a foreign key used in the relationship
with the Customers database):

CREATE UNIQUE INDEX Ordersindl
ON Orders (CustNum)

Listing 16.11 shows code to create a number of additional indexes on the
three tables created in previous sections.

iMfjii The CREATE INDEX statement

void Listing16_11()
{

AdoNS: :_ConnectionPtr pConnection;
if(!GetConnection(pConnection))

return;
_bstr_t bStrSQL(_T("CREATE UNIQUE INDEX Ordersindl \

ON Orders (OrderNum) "));
ExecuteSQL(pConnection, bStrSQL);
bStrSQL = (_T("CREATE INDEX Ordersind2 \

ON Orders (CustNum) "));
ExecuteSQL(pConnection, bStrSQL);

bStrSQL = (_T("CREATE UNIQUE INDEX Customersl \
ON Customers (CustNum)"));

ExecuteSQL(pConnection, bStrSQL);
bStrSQL = (_T("CREATE UNIQUE INDEX Customers2 \

ON Customers (CustName) "));
ExecuteSQL(pConnection, bStrSQL);

cout << _T("Indexes created") << endl;
pConnection->Close();

INSERT Statement
The SQL INSERT statement can be used as a convenient way of adding records
to database tables. The general form of the INSERT statement is as follows:

INSERT INTO <tablename> (<Fieldl>, <Field2>)
VALUES (<Valuel>, <VALUE2>)

If you are adding values for each of the fields in the table, and the fields
are supplied in the same order as they occur in the table, you can use an al
ternate form of INSERT which does not require you to specify the field names:

INSERT INTO <tablename>
VALUES (<Valuel>, <VALUE2>)

438 Chapter 16 0 ADOCE and SQL Server for Windows CE

You need to be careful using this form of INSERT since the statement will
fail if the table structure is changed by, for example, adding new fields.

For the customer added earlier in the chapter, the following insert state
ments can be used to add an order with two OrderDetail records associated
with it.

INSERT INTO Orders (
OrderNum, CustNum, Description, DateAdded)
VALUES(2000, l, 'A First Order', '12-June-2000');

INSERT INTO OrderDetails(
OrderNum, Product, Quantity)
VALUES(2000, 'Chocolate Bars', 10);

INSERT INTO OrderDetails(
OrderNum, Product, Quantity)
VALUES(2000, 'Ice Creams', 20);

Note that a value is not supplied for OrderDetailNum in the table 'Or
derDetails.' This is because this field is auto-increment, and SQL Server for
Windows CE supplies the value. Listing 16.12 shows the ADO code for execut
ing these INSERT statements.

The INSERT statement

void Listingl6_12()
{

AdoNS: :_ConnectionPtr pConnection;
if(!GetConnection(pConnection))

return;
_bstr_t bStrSQL(_T("INSERT INTO Orders (\

OrderNum, CustNum, Description, DateAdded) \
VALUES(2000, 1, 'A First Order',\

'12-June-2000')"));
ExecuteSQL(pConnection, bStrSQL);

bStrSQL = _T("INSERT INTO OrderDetails(\
OrderNum, Product, Quantity) \
VALUES(2000, 'Chocolate Bars', 10)");

ExecuteSQL(pConnection, bStrSQL);

bStrSQL = _T("INSERT INTO OrderDetails(\
OrderNum, Product, Quantity) \
VALUES(2000, 'Ice Creams', 20) ");

ExecuteSQL(pConnection, bStrSQL);

cout << _T("Record Added") << endl;
pConnection->Close();

The records added in Listing 16.12 can be queried from the database us
ing a SELECT statement with a JOIN, such as the following:

INSERT Statement 439

SELECT * FROM Orders JOIN OrderDetails
ON (Orders.OrderNum = OrderDetails.OrderNum)

The code in Listing 16.13 opens a recordset on this SELECT statement to
return all the orders and related OrderDetails records. The opening of the
recordset is very similar to Listing 16.6. The code to display the contents of the
recordset is generic-it can list the field names and values for any fields collec
tion passed into it. A 'for' loop is used to iterate across all the fields in the fields
collection, using the Get Item and an integer index to obtain a pointer to each
field. The name of the field is obtained through the 'Name' property, and the
value from the GetValue function. GetValue will return a VARIANT with the
vt value containing an appropriate value for the underlying field in the table
(such as VT_I4, VT_DATE, and so on). Since the data is to be displayed, the
easiest thing to do is convert the VARIANT to a BSTR regardless of the origi
nal data type. The _variant_t class member 'ChangeType' can do this, as
follows:

varValue.ChangeType(VT_BSTR, NULL);

This function is passed the data type to convert the VARIANT to and a
second parameter specifying where the converted VARIANT should be placed.
Passing NULL specifies that the conversion should take place in situ, and the
original variant value is replaced by the newly converted value.

The SELECT with JOIN statement

void DisplayOrders(AdoNS: :FieldsPtr & pFields)
{

AdoNS: :FieldPtr pField;
_variant_t varValue, varindex, varStringValue;
_bstr_t bstrindex;

for(short i = O; i < pFields->Count; i++)
{

varindex = i;
pField = pFields->Getitem(varindex);
cout << (LPTSTR)pField->Name << _T(":");
varValue = pField->GetValue();
varValue.ChangeType(VT_BSTR, NULL);
cout << varValue.bstrVal << _T(" ");

cout << endl;

void Listingl6_13()
{

HRESULT hr;
AdoNS::_RecordsetPtr pRecordset;

440 Chapter 16 " ADOCE and SQL Server for Windows CE

_bstr_t bstrConnection(lpConnection);
_variant_t varConnection(bstrConnection);
_bstr_t bstrQuery(_T("SELECT * FROM Orders \

JOIN OrderDetails \
ON (Orders.OrderNum = OrderDetails.OrderNum) "));

_variant_t varQuery(bstrQuery);

hr = pRecordset.Createinstance
(_T("ADOCE.Recordset.3.1"));

if (FAILED (hr))
{

}

cout << _T("Could not create recordset:")
<< hr << endl;

return;

II Open the base table and retrieve rows
II
hr pRecordset->Open(varQuery,

varConnection,
AdoNS: :adOpenStatic,
AdoNS: :adLockReadOnly,
AdoNS::adCmdText);

if (FAILED (hr))
{

cout << _T("Could not open recordset") << endl;
return;

while(!pRecordset->GetA_EOF())
{

AdoNS::FieldsPtr pFields;
pFields = pRecordset->GetFields();
DisplayOrders(pFields);
pRecordset->MoveNext();

pRecordset->Close();

Error Handling
In the code shown so far in this chapter, errors trapped by the smart pointer
wrapper functions have resulted in _com_issue_errorex being called. This
has displayed the HRESULT generated by the offending call. The problem,
though, is that some of the smart pointer wrapper functions attempt to continue
execution and use invalid interface pointers. For example, here is the wrapper
function for Connection: : Execute:

Error Handling 441

inline _RecordsetPtr _Connection: :Execute (
bstr t CommandText,

VARIANT * RecordsAffected, long Options

struct _Recordset * _result;
HRESULT _hr= raw_Execute(CommandText,

RecordsAffected, Options, &_result);
if (FAILED(_hr))

_com_issue_errorex(_hr, this, _uuidof(this));
return _RecordsetPtr(_result, false);

You can see that a _RecordsetPtr is created from result even if an
error was detected and_com_issue_errorex is called. Any code you have af
ter calling Execute will probably not be executed, as this will generate a mem
ory exception fault. One solution is to call the raw_ versions of the functions
(like raw_Execute in the above code), since these will always return HRESULT
values to your code. You will then need to create the smart pointer class objects
(such as _RecordsetPtr) from the interface pointers (such as Recordset).

Another solution is to use exception handling. Unfortunately, you cannot
use C++ exception handling since it is not supported on Windows CE. Conse
quently, you will need to deal with Win32 Structured Exception Handling (SEH).
This is a large topic, and the examples shown here are simple and only show
rudimentary use of SEH.

First, you will need to raise an error in the function _com_issue_er
rorex. Calling the Windows CE function RaiseException does this. The first
argument is the error code, and in this case the HRESULT value that caused the
problem is used. The other parameters concern flags and passing additional ex
ception information, and these are not used here.

void _com_issue_errorex(HRESULT hr, IUnknown* pUnkn,
REFIID riid)

RaiseException(hr, 0, 0, NULL);

Next, you will need to trap the exception in your code using '_try' and
'_except' blocks. In Listing 16.14 a connection is made, and then an obvi
ously bad SQL statement is executed through that connection in a _try block.
This will result in _com_issue_errorex being executed and an exception
being generated. Execution will jump to the _except block. The error code
is obtained using the GetExceptionCode Windows CE function. This must be
executed in brackets following the _except statement. The HRESULT is then
displayed to the user. Note that the code following the _except statement (the
Close connection) will be executed, so the connection will be closed cleanly.
Without .the exception handling, the connection would be left open. This can
cause problems for subsequent database access calls.

44 2 Cho pier 16 • ADOCE and SQL Server for Windows CE

l@fjll Structured exception handling

void Listing16_14()
{

AdoNS::_ConnectionPtr pConnection;
HRESULT hr;
EXCEPTION_RECORD ExceptionRecord;

if(!GetConnection(pConnection))
return;

_bstr_t bStrSQL{_T("BAD SQL Command"));

_try
{

ExecuteSQL(pConnection, bStrSQL};

_except (hr = GetExceptionCode(),
EXCEPTION_EXECUTE_HANDLER)

cout << _T("Trapped Failure: ") <<hr<< endl;

pConnection->Close();
cout << _T("Finished") << endl;

During the course of your ADOCE and ADOXCE programming exploits,
you will encounter many different HRESULT errors. These can either be re
turned from ADO or ADOXCE, or from the OLEDB provider for the database
you are using. I suggest you search the MSDN Library that is shipped with
Microsoft Visual Studio (rather than Microsoft eMbedded Visual C++) for the
error number. You are likely to find a description of the error there.

Transactions
There are many situations where a number of SQL statements must be exe
cuted. It is imperative that all of these statements succeed or, if one fails, that
the changes made by other statements are removed from the database. This is
important to ensure data integrity. For example, in the case where the INSERT
statement was used to add a new order, consisting of several OrderDetails
records, all the records should be added to the database or, if one insertion
fails, the other records should be removed. This can be achieved by using
transactions.

Executing BeginTrans through a Connection interface starts a transac
tion. The SQL statements can then be executed through that same Connection
interface. Once complete, the application can call CommitTrans if all com-

Conclusion 443

pleted successfully, or RollbackTrans to backout any changes made from
the time the BeginTrans was executed.

For example, the following two SQL statements will delete all the Orders
and OrderDetail records. These statements should be in a transaction, since
all the information needs to be deleted, or none.

DELETE FROM Orders
DELETE FROM OrderDetails

Listing 16.15 shows a transaction placed around these two DELETE state
ments, together with exception handling. If an exception is detected, a ROLL
BACK is executed. If no exception occurs the changes are committed to the
database.

IMfJJI Transactions

void Listing16_15()
{

AdoNS: :_ConnectionPtr pConnection;
HRESULT hr;
EXCEPTION_RECORD ExceptionRecord;

if(!GetConnection(pConnection))
return;

_bstr_t bStrSQL;

_try
{

pConnection->BeginTrans();
bStrSQL = _T("DELETE FROM Orders");
ExecuteSQL(pConnection, bStrSQL);
bStrSQL = _T("DELETE FROM OrderDetails");
ExecuteSQL(pConnection, bStrSQL);
pConnection->CommitTrans();

_except (hr= GetExceptionCode(),
EXCEPTION_EXECUTE_HANDLER)

cout << _T("Trapped Failure: ") <<hr<< endl;
pConnection->RollbackTrans();

pConnection->Close();
cout << _T ("Finished") << endl;

Conclusion
This chapter has shown how to use ADOCE and ADOXCE to access databases
on Windows CE, specifically Microsoft SQL Server for Windows CE. Databases

444 Chapter 16 • ADOCE and SQL Server for Windows CE

can be created, and tables, fields (columns), and indexes can be added either
using the ADOXCE object model or through SQL DDL statements. Data can be
added to and extracted from the database through recordsets and SQL DML
statements. There is a lot more to ADOCE and ADOXCE than is shown in the
chapter. Take a look at the generated . tlh and . tli files for the smart pointer
classes. You can use the Microsoft Visual Studio documentation to help work
out what the functions do. Using Microsoft SQL Server for Windows CE is faster
than using a property database, especially for larger amounts of data, and makes
manipulating relational data much more efficient and reliable.

Active Sync

ActiveSync facilitates synchronization of data between a desktop and a com
panion application nmning on a Windows CE device. Users expect an applica
tion to automatically transfer data to and from the Windows CE device and to
synchronize changes, so wherever applicable you should implement Active
Sync functionality in your applications. However, this is one of the most diffi
cult tasks you are likely to encounter in Windows CE development.

You will need to know about Component Object Model (Chapter 14, COM
and ActiveX), CE property database programming (Chapter 4), writing Dynamic
Link Libraries, registry manipulation (Chapter 4), and process and thread syn
chronization (Chapter 6). Adding ActiveSync functionality is one of those an
noying programming tasks where you cannot see something working until you
have implemented lots of code both on the desktop and the Windows CE
device.

ActiveSync 3.1 replaces Windows CE Services 2 and improves reliability,
setup, and installation and improves performance. ActiveSync 3.1 does not re
quire configuration or installation changes on the Windows CE device. You can
write ActiveSync code that will also run with Windows CE Services. Windows
CE Services for Windows CE 2.11 and ActiveSync 3.1 provide support for data
base volumes that is not provided in earlier versions.

You will have experienced the benefits of ActiveSync with the Pocket Out
look Applications, such as automatic synchronization of appointments, contact
information, and tasks. If you are writing a companion application for Windows
CE that shares data with your desktop application, you will need to implement
ActiveSync. You implement an ActiveSync Service Provider, and ActiveSync
provides the service manager.

You can implement manual synchronization (which occurs when the de
vice connects or when the user clicks the "Synchronize" button in ActiveSync),

445

446 Chapter 17 * ActiveSync

or continuous synchronization (with automatic, instantaneous updates). The
latter takes more effort to implement, primarily on the desktop.

ActiveSync Items, Folders, and Store
First, you need to understand how ActiveSync organizes data in items, folders,
and the store.

Item
The basic unit of synchronization is the item. In Pocket Outlook, an appoint
ment or contact is an item. Each item has two important pieces of information
associated with it:

1. A unique field identifier. The identifier for an item should never change
and should be unique. Identifiers for deleted items should not be reused.
Further, the identifier should be ordered-that is, the identifier can be
used to determine if an item comes before or after another item. The iden
tifier could be the timestamp of when the object was created.

2. A value used to determine if the item has changed. This could be the time
stamp of when the object was last modified.

You can define these data items in any way you choose, but you should
keep them as small as possible. ActiveSync stores a copy of the data items in
the file repl. dat for each item being synchronized. There is a repl. dat file
for each profile on the desktop PC.

You are free to define the size and nature of these two pieces of data. You
communicate this data to ActiveSync through the generic pointer type HREPL

ITEM. Note that HREPLITEM structures are used and stored only on the desk
top PC, not on the Windows CE device.

Folder
Items are stored in folders. Folders group items of a similar type. For example,
you might have a folder for appointments and a folder for contacts. You can
use any data you like to identify the folder, and this data is passed to ActiveSync
through the generic pointer type HREPLFLD. These structures are used only on
the desktop PC and not on the Windows CE device.

Folders are a way to group items together logically. ActiveSync makes no
stipulations as to how or where folders are stored. If possible, use a single folder
since it makes programming simpler.

Steps to Implement Device Synchronization 447

Store
Folders are organized into a single store. Each store has a unique string identi
fier that is used to link the provider on the device to the provider on the desk
top. This identifier is a COM progid, such as "MS.WinCE.Outlook". You will im
plement a DLL for the device and another for the desktop PC that will support
synchronization for the store.

Any storage technique can be used for data in the store, but the following
will make for an easier implementation:

1. Use a single CE property database on the CE device. This will ensure
proper synchronization of updates and implement continuous synchro
nization automatically. Use a single record for each item.

2. Use a database (such as Microsoft SQL Server or Access) on the desktop.
You can use flat files, but take care to implement synchronization (such
as an event, see Chapter 6) to ensure that the user and ActiveSync do not
attempt to update the file simultaneously.

Steps to Implement Device Synchronization
Follow these steps to implement device synchronization:

1. Create a standard DLL project.

2. Write code to register the device ActiveSync provider in the registry.

3. Implement the ActiveSync IReplObj Handler COM interface. This inter
face implements functions to take your items and convert them to a stream
of bytes (serialization) and vice versa (deserialization).

4. Implement the following exported functions that will be called by
ActiveSync:

InitObjType--Called by ActiveSync when the service is loaded and
unloaded.

ObjectNotify-Called by ActiveSync when the item in the store is
added, deleted, or updated. The function returns TRUE if the item is to
be synchronized.

GetObjTypeinfo-Called by ActiveSync to obtain information about
the object store, which is typically a CE property database.

5. Write code to add, update, and delete items from the store. This code can
typically be shared with the application that will need to perform the
same tasks.

448 Chapter 17 e ActiveSync

The DLL will need to implement the IReplObj ectHandler COM inter
face but does not need to be a fully implemented COM component. This means
that a class factory and the standard exported functions (such as DllCan

UnloadNow) do not need to be implemented.

Steps to Implement Desktop Synchronization
Follow these steps to implement basic desktop synchronization:

1. Create a standard DLL project.

2. Write code to register the desktop ActiveSync provider in the registry.

3. Implement the ActiveSync IReplObj Handler COM interface. This inter
face is the same one as implemented in the device DLL.

4. Implement the ActiveSync IReplStore COM interface. This interface
implements functions to manage the store, folders, and items; manage
conflicts; remove duplicates; and present user-interface dialogs to set
options.

5. Decide on the data used for HREPLFLD (folder identifiers) and HREPL

ITEM (item identifiers). Fbr reasons that will become apparent later, it is
easiest to define a structure with a union defining the data for the folder
and field identifier.

6. Write code to add, update, and delete items from the store. This code
typically can be shared with the application that will need to perform the
same tasks.

Unlike the device DLL, the desktop DLL needs to implement a true COM
component. This means that a class factory and standard COM-exported func
tions are required. The DLL can be written from the ground up (as is done with
the sample application presented in this chapter), or you can choose to use MFC
or ATL to simplify the task.

The Windows CE DLL will obviously be implemented using Unicode
(wide) strings. The desktop PC DLL is best implemented to use ANSI (multi
byte) characters, since the structures passed from the ActiveSync service con
tain ANSI strings. The data transferred between the Windows CE and desktop
PC DLLs can be either Unicode or ANSI-it is your choice. However, you will
need to convert the strings from Unicode to ANSI (for data being transferred
from the Windows CE device to the desktop PC) or from ANSI to Unicode (for
data being transferred from the desktop PC to the Windows CE device). You
can perform this conversion either on the CE device or on the desktop PC.

The Sample Application 449

Additional Steps for Continuous Synchronization
You need to implement two extra bits of code if you want synchronization to
occur continuously while the Windows CE device remains connected:

1. Call appropriate functions in the IReplNot i fy interface provided by
ActiveSync to notify changes to items in the store.

2. Write synchronization codes to allow the desktop application to notify
your ActiveSync that item changes have occurred.

The Sample Application
The accompanying CDROM contains a sample application that illustrates the
implementation of a simple ActiveSync provider. The application synchronizes
items with a single string of up to 256 characters. The items are stored in a Win
dows CE property database on the device and a flat file on the desktop PC. The
source code is located in the directory \Ac ti veSync. The application consists
of the following projects:

1. CIDevice-A Windows CE MFC application that presents a simple user
interface to manipulate the records in the database, located in \Active
Sync\asdevice \cldesktop. This application is a straightforward MFC
application, not described here, that manipulates a Windows CE property
database. The user interface is similar to the desktop version shown in
Figure 17.1.

450 Chapter 17 ., ActiveSync

2. ASDevice-A standard Windows CE DLL that implements the Windows
CE side of the ActiveSync provider, located in \Ac ti veSync\ASDevice.

3. CIDesktop-A desktop PC MFC application, located in \ActiveSync\
ASDesktop \ CLDesktop, that presents a simple user interface to manipu
late the records stored in a flat file. Once again, the code is straightforward
and not described here. The user interface is illustrated in Figure 17.1.

4. ASDesktop-A desktop PC DLL that implements a COM component with
the IReplObjHandler and IReplStore interfaces.

The code in ASDevice and ASDesktop is organized to isolate the
application-specific data access code, and so can be used as a skeleton for im
plementing your own ActiveSync provider.

Installation and Registration
Installing an ActiveSync provider on a Windows CE device requires the fol
lowing steps:

1. Copy the DLL (for example, ASDevice.dll) into a suitable directory, such
as "\Windows."

2. Add an entry such as the following in the Synchronization registry key
for your ActiveSync provider:

HKEY_LOCAL_MACHINE
Windows CE Services

Synchronization
Objects

Appointment
Contact
Tasks
AsyncSample

3. Add a "Store" REG_SZ value to this key that contains the name of the
. DLL that implements the ActiveSync provider. This should contain the
fully qualified path if the . DLL is not in a standard location (such as
the root or \Windows directory).

AsyncSample
Store ASDevice.dll

Code to register the DLL is contained in an exported function called Reg
isterActi veSync in ASDevice. CPP. This function is called from the
CLDevice application when the "Register" button is pressed.

4. Copy the user interface application (for example, CLDevice. exe) into a
suitable directory, such as the root, and run the application. This creates

Installation and Registration 451

the database (ActiveSyncNotes) that will contain the synchronized
items. With the sample application you should click the "Register" button
to add the necessary registry items.

Installing the ActiveSync provider on the desktop PC requires more work,
since a COM component is being registered. Here are the steps:

1. Copy the application (CLDesktop. exe) into any suitable directory. Run
ning this application will create the file "\Acti veSynNotes. dat" used
to store the items. The user interface is almost identical to CLDevice. exe
except that the "Register" button is replaced by "Refresh." Note that the
list of items is not automatically updated, so you will need to click "Re
fresh" to ensure that the list is up to date.

2. Copy the DLL (for example, ASDesktop. dll) into any suitable direc
tory. You will need to register the COM component using the REGSVR3 2
application:

REGSVR32 ASDesktop.dll

As well as writing the standard registry entries for a COM component, en
tries specific to an ActiveSync provider are added. The code to add COM com
ponent entries is contained in the function DllRegisterServer in COMDLL
. CPP. This calls the function RegisterActi veSync in COMDLL. CPP to add
the ActiveSync provider registry entries.

A new key with the same name used on the Windows CE device (for ex
ample, "AsyncSample") is added in the following location:

HKEY_LOCAL_MACHINE
Software

Microsoft
Windows CE Services

Services
Synchronization

Objects
Appointment
Contact
Task
Asyncsample

It is important that the Windows CE device and desktop PC use the same
key names, since this forms the link between the two sides of the ActiveSync
provider. On the desktop PC the key contains the following values:

AsyncSample
[Default]
Display Name
Plural Name
Store
Disabled

"ActiveSync Example Provider"
"TestNote"
"TestNotes"
"Asdesktop.ActiveSyncEg"
0

452 Chapter 17 • ActiveSync

. Connected
Synchronized

The" [default]", "Display Name", and "Plural Name" REG_SZ
string entries are used by ActiveSync to display information about the pro
vider's status. The "Store" REG_SZ string contains the ProgID of the desktop
COM Component that implements the ActiveSync provider. This string is the
same value used when the DLL (for example, ASDesktop. DLL) registers its
COM component. ActiveSync uses this value to locate the COM component and
uses the COM registry entry "InProcServer" to find the fully qualified path
name for the DLL's location. The "Disabled" value (a REG_DWORD) has a value
of 0 if the provider is active, or 1 if it is temporarily disabled.

AsyncSample is actually a folder, or object type (the terms mean the same).
A store can implement multiple folders by having several object types (for ex
ample, Appointment, Contact, and Task) with the same store.

The desktop ActiveSync registry settings are copied into each desktop PC
profile under the HKEY_CURRENT_USER key, using the same key names as de
scribed above. Now, when you run the ActiveSync user interface, you will see
a new entry for this provider (Figure 17.2) .

•calendar
.. Contacts
•Notes
~Tasks

~· 0 Ill Favorite
0

Not Installed
Not Installed
Not Installed

li!llliijfJM ActiveSync with an additional service

Implementing the Windows CE Device Provider 453

Data Organization
Each item in the database consists of the following:

e The timestamp of when the item was created, using a FILETIME structure
e The note itself, up to 256 Unicode characters

The timestamp is the field's unique identifier and is never changed. The
user interfaces allow notes to be added, deleted, or updated, and the Active
Sync provider synchronizes these items.

Important Note
This ActiveSync example implements a simple provider. The description of the
function arguments, structure members, and interface functions only includes
those elements required to implement a fully functional yet simple provider.
You should refer to the Windows CE documentation for full descriptions of all
functions, structure members, and so on.

Implementing the Windows CE Device Provider
ActiveSync on a Windows CE device is based around store objects such as files,
directories, databases, and database records. As described in Chapter 4, each
object has a unique object identifier or CEO ID. Any object that has a CEO ID can
be an item synchronized by ActiveSync. Thus, you can synchronize files, direc
tories, databases, or database records. You can use these objects to hold more
than one item (for example a file might contain many records, each of which
is an item), but you will need to manage lists of these items, and this gets more
complex. The simplest approach is to represent an ActiveSync item by a single
database record.

Windows CE 2.1 and later versions allow databases to be created in vol
umes that can be located on, for example, storage cards. Additional functions
(FindObj ects and SyncData) are provided to synchronize databases in these
volumes. Note that some storage cards and other media do not use the CEOID

object identifiers for the file system, so they are more difficult to synchronize.
Remember, the Windows CE ActiveSync DLL is not a COM component.

However, the DLL does implement the interface IReplObjHandler. The DLL
itself is responsible for creating an instance of this interface (usually through
implementing the interface using a C++ class), and not any external applica
tion. Therefore, all the usual COM elements, such as class factories, DLLGet

Obj ect, and other exported functions, are not required.
First, let's look at the functions the ActiveSync provider must export.

454 Chapter 17 * ActiveSync

lnitObjType Exported Function
InitObjType, located in ASDevice. cpp, is called by ActiveSync when the pro
vider is started and terminated. This occurs when the Windows CE device
connects or disconnects. This function carries out any initialization/termina
tion required by the provider and returns a pointer to the IReplObj Handler
interface.

Implementation of lnitObiType

extern "C" BOOL _declspec(dllexport) InitObjType(
LPWSTR lpszObjType,
IReplObjHandler **ppObjHandler,
UINT uPartnerBit)

if lpszObjType == NULL
{

II Terminates the device provider module and
II frees all allocated resources.
return TRUE;

II Allocate a new IReplObjHandler.
*ppObjHandler = new CDataHandler;
II Save the uPartnerBit so that you can use it later on
g_uPartnerBit = uPartnerBit;
II Find Object Identifier of our database
g_oidDataBase = ASGetDBOID(DB_NAME);
return TRUE;

In Listing 17.1 the C++ class CDataHandler implements the IReplObj
Handler interface, so an instance of the class is created and a pointer returned
through the parameter ppObjHandler.

A Windows CE device can maintain synchronization with up to two desk
top PCs. The uPartnerBi t has a value 1 when synchronizing with the first
partnership and 2 with the second. Maintaining two partnerships is more com
plex; you can choose to support only one partnership, as is the case with the
EMail ActiveSync option. In this code the partnership bit is saved in the global
variable g_uPartnerBi t.

Lastly, the CEOID of our database is stored in the global variable g_oid
Database. The function ASGetDBOID is located in DB. CPP, together with the
other database access code for the provider.

ObjectNotify Exported Function
Windows CE constantly monitors changes in the object store. When a change
occurs (for example, a database record is updated), all loaded ActiveSync
providers are notified of the change through a call to ObjectNotify. This

Implementing the Windows CE Device Provider 455

function determines the nature of the change (whether it was a file, directory,
database, or record change) and returns TRUE if it is an item this provider can
synchronize.

The provider should ensure that the record is in its own database. There
is no point synchronizing someone else's database! This is done through the
function ASRecinDB to be found in DB. CPP, which determines the parent
CEOID for the database record by calling CEOidGetinfo, and checks that this
is the same as the CEOID for our database.

MMflM Implementation of ObiectNotify

extern "C" BOOL _declspec(dllexport) ObjectNotify(
POBJNOTIFY pNotify)

II Check to see if the structure size
II is the smaller (version control).
if (pNotify->cbStruct < sizeof(OBJNOTIFY))
{

MessageBox(NULL,
_T ("ObjectNotify-incorrect version"),
NULL, MB_OK);

return FALSE;

II We're only interested in database record
II changes or clear change notifications
if(! (pNotify->uFlags & (ONF_RECORD I

ONF_CLEAR_CHANGE)))
return FALSE;

II For non-deleted records, check that the
II record is in our database
if(! (pNotify->uFlags & ONF_DELETED))
{

}

if(! (pNotify->uFlags & ONF_RECORD))
II it's not actually a record, so ignore
return FALSE;

if(!ASRecinDB(g_oidDataBase, pNotify->oidObject))
II not in our database
return FALSE;

II sets the oid of the object to be replicated
pNotify->poid = (UINT*) &pNotify->oidObject;
II if object is to be deleted, set the
II number of objects to be deleted
if(pNotify->uFlags & ONF_DELETED)

pNotify->cOidDel l;
else

pNotify->cOidChg 1;
return TRUE;

4 56 Chapter I 7 ., ActiveSync

Obj ectNot i fy is passed a pointer to an OBJNOTIFY structure. The
members of this structure used in this sample are shown in Table 17 .1.

MmijtjfjM OBJNOTIFY structure members

Member Description

cbStruct The size of the structure being passed in. The provider should
check this against the size of structure it is using to ensure
version compatibility. This should be done for all structures
passed to provider functions.

uFlags Contains flags indicating the type of change. For example,
ONF _RECORD indicates a database record has changed, ONF _
CLEAR_CHANGE indicates that the change bit for the object
should be cleared, and ONF _DELETED indicates that a record
has been deleted.

oidObj ect CEO ID of the item being notified.

poid Set by the provider to be a pointer to the CEOID of the item to
be synchronized. In simple providers, this will generally be
the CEO ID of the item passed into Obj ectNot i fy through the
member oidObj ect. More complex providers can set an array
of CEO IDs to be synchronized.

cOidDel Number of items to be deleted. This will be one if uFlags is set
to ONF _DELETED for simple providers.

cOidChg Number of items to be changed. This will be one if uFlags is set
to ONF _RECORD for simple providers.

GetObjTypelnfo Exported Function
ActiveSync on the Windows CE device calls this exported function when it
needs information about the database being synchronized. The function fills in
members of the OBJTYPEINFO structure, such as the following:

"' szName-The name of the database.
"' cObjects-The number of items to be synchronized (which for simple

providers is the number of database records).
"' cbAllobj-The overall size of the items to be synchronized. This is

equal to the size of the database in bytes.
111 ftLastModified-A FILETIME structure containing the time and date

of when the database was last changed.

Listing 17.3 shows the implementation of Get Obj Type Info from the file
ASDevice. CPP.

Implementing the Windows CE Device Provider 457

i@fjl Implementation of GetObjTypelnfo

extern "C" BOOL _declspec(dllexport) GetObjTypeinfo
(POBJTYPEINFO pinfo)

CEOIDINFO oidinfo;
II Check versioning of the structure
if (pinfo->cbStruct < sizeof(OBJTYPEINFO))
{

MessageBox(NULL,
_T ("GetObjTypeinfo called-wrong version"),
NULL, MB_OK);

return FALSE;

II Clear the structure.
memset(&(oidinfo), 0, sizeof(oidinfo));
II Retrieves information about the object
II in the object store.
CeOidGetinfo(g_oidDataBase, &oidinfo) ;
II Store the database information into
II the OBJTYPEINFO structure.
wcscpy(pinfo->szName,

oidinfo.infDatabase.szDbaseName) ;
pinfo->cObjects = oidinfo.infDatabase.wNumRecords;
pinfo->cbAllObj = oidinfo.infDatabase.dwSize;
pinfo->ftLastModified =

oidinfo.infDatabase.ftLastModified;
return TRUE;

Note that the version of the OBJTYPEINFO structure is checked. Informa
tion about the database is obtained through a call to the Windows CE function
CeOidGetinfo, which fills in a CEOIDINFO structure.

Implementing the Device IReplObjHandler COM Interface
IReplObj Handler functions are responsible for converting your items (such
as database records) into a stream of bytes (serialization) or converting a stream
of bytes into an item (deserialization). Serialization and deserialization are re
quired so that items can be transferred between Windows CE devices and desk
top PCs.

The desktop PC ActiveSync provider also needs to implement the IRepl
Obj Handler and should serialize and deserialize items using the same data for
mat. However, the implementations are typically different (since the item stores
are not the same), so it is usually best to keep to separate code implementations.

In the example, IReplObjHandler is implemented by the C++ class
CDataHandler that is declared in ReplObj Handler. h and implemented in

458 Chapter 17 111 ActiveSync

ReplObjHandler. cpp. Since IReplObjHandler is declared as a COM inter
face, IUKnown must be implemented. However, since we are only implement
ing a COM interface and not an entire COM component, these implementations
are very straightforward. AddRef and Release simply increment and decre
ment a reference count. Queryinterfce always returns E_NOINTERFACE
this function will never actually be called.

An overview of the essential IReplObj Handler interface functions is
provided in Table 17.2.

MMMjffW !Rep/ObiHandler interface functions

Function Description

Setup Called when serialization or deserialization of an item is about to begin.

Reset Called when serialization or deserialization is completed.

Get Packet Serialization. This function is called to convert an item into a stream of bytes, which
occurs when an item is being sent from the Windows CE device to desktop PC.
Large items need to be split up into packets, and GetPacket will be called once
for each packet. Small items can be serialized in a single packet. The function re
turns NOERROR if more packets are required, or RWRN_LAST_PACKET if this is the
last or only packet.

Set Packet Deserialization. This function is called when an item needs to be converted from a
stream of bytes to an item. This occurs when an item is being sent from the desk
top PC to Windows CE device. Large items are divided into packets, and a call to
Set Packet is made for each packet. The item is written out to the database when
all packets are received. This could result in an existing record being updated, or a
new record added.

DeleteObj ect Called when ActiveSync detects that an item must be deleted from the Windows CE
device database.

Serialization Format
You will need to determine the format to be used for serialization and deseriali
zation. Get Packet and Set Packet provide LPBYTE pointers, but this can be
cast to any pointer you like. In the example, a typedef for a structure called
NOTE is used, and this contains the creation FILETIME (the unique identifier),
the last modify timestamp as a FILETIME, and a Unicode string (Listing 17.4).
It is declared in db. h.

Structure NOTE

typedef struct tagNOTE
{

FILETIME ftOriginal; //time when note was created
FILETIME ftLastUpdate; // time last updated
WCHAR szNote[STRLEN_NOTE];
NOTE;

Implementing the Windows CE Device Provider 459

Note that the last modify timestamp member is not used on the device,
and so is not strictly required in this stmcture. However, this same stmcture is
used on the desktop PC for storing data, so it is convenient to leave it here.

It is essential that exactly the same format is used by the ActiveSync pro
vider on the Windows CE device and the desktop PC. Note how the Unicode
string has been declared as WCHAR and not TCHAR. This ensures that it is de
fined as a Unicode string even if the code is compiled for ANSI (which is most
often the case on the desktop PC).

IReplObjHandler::Setup
This function is called by ActiveSync before any item is received or sent. This
provides an opportunity to perform any initialization. A pointer to a REPL
SETUP structure is passed in, and this provides information such as the direc
tion of the transfer.

The Setup function will normally save a pointer to the REPLSETUP stmc
ture for future use. Since ActiveSync is multithreaded, it is possible that a read
(outgoing transfer) occurs at the same time as a write (incoming transfer). There
fore, the IReplObj Handler class has two members, m_pReadSetup and m_p
Wri teSetup, to store separate pointers (Listing 17.5). The pointer will be used
later in GetPacket and SetPacket.

/Rep/Obi Handler:: Setup implementation

STDMETHODIMP CDataHandler::Setup(PREPLSETUP pSetup)
{

II Can be reading and writing at the same time, so need
II two setups
if(pSetup->fRead)

m_pReadSetup = pSetup;
else

m_pWriteSetup = pSetup;
return NOERROR;

Most REPLSETUP members are only used on a desktop implementation
of IReplObjHandler. Those listed below may be used on the Windows CE
device.

e fRead-TRUE if Setup is being called for reading an item, FALSE for a
write

e Oid-CEOID of the item, for example, an existing record in the database
that is being sent to the desktop

e oidNew~Set to the CEO ID of the item that has been added or updated
in the CE property database

e dwFlags-Contains the value RSF _NEW_OBJECT if this is a new record
to be added to the CE property database

460 Chapter 17 ActiveSync

I ReplObjHandler:: Reset
The Reset function provides an opportunity to free any resources created
during serialization or deserialization. In this case, there is nothing to do
(Listing 17.6).

/Rep/ObiHandler: :Reset implementation

STDMETHODIMP CDataHandler::Reset(PREPLSETUP pSetup)
{

return NOERROR; II no resources to be freed

IReplObjHandler::GetPacket
ActiveSync calls this function to request a packet for a particular item being
synchronized. Your implementation should produce a byte stream represent
ing the entire item (if it fits into a single packet) or the next packet in sequence.
The function passes in the recommended maximum size of the packet in cb
Recomrnend.

Listing 17.7 shows the implementation of GetPacket. The function calls
ASSerializeRecord (located in db.cpp) to read the record for the given
CEOID (m_pReadSetup->oid). The function serializes the record into a NOTE
structure, returns a pointer to the structure in lpByte, and returns the size of
the NOTE structure in dwLen. The pointer and size are returned to ActiveSync
through the parameters lppbData and pcbData.

/ReplObiHandler:: GetPacket implementation

STDMETHODIMP CDataHandler: :GetPacket(LPBYTE *lppbData,
DWORD *pcbData, DWORD cbRecomrnend)

HRESULT hr = RWRN_LAST_PACKET;
LPBYTE lpByte;
DWORD dwLen;

if(!ASSerialiseRecord(m_pReadSetup->oid,
&lpByte, &dwLen))

hr = RERR_BAD_OBJECT;
else
{

*lppbData = lpByte;
*pcbData = dwLen;

return hr;

Implementing the Windows CE Device Provider 461

GetPacket returns RWRN_LAST PACKET if the serialization was suc
cessful and this is the last or only packet. RERR_BAD_OBJECT is returned if the
object could not be serialized.

I ReplObjHandler::SetPacket
Set Packet does the opposite of Get Packet-it is passed a pointer to a stream
of bytes and writes the data to a new or existing record in the database. The
REPLSETUP structure member dwFlags contains the value RSF _NEW_OBJECT
if this item is a new record; otherwise, an existing record is to be updated.

In Listing 17.8, Set Packet casts the incoming lpbData pointer to a NOTE
pointer and calls ASDeserializeRecord (located in db. cpp) to perform the
update. The REPLSETUP structure member oid contains the CEO ID of the rec
ord to be updated, or 0 if this is a new record.

i@llttiij:M /Rep/ObiHandler:: SetPacket implementation

STDMETHODIMP CDataHandler: :SetPacket(LPBYTE lpbData,
DWORD cbData)

NOTE* aNote;

CEOID oidNewRec;
BOOL bNewRec;

aNote = (NOTE*)lpbData;

bNewRec = m_pWriteSetup->dwFlags & RSF_NEW_OBJECT;

if((oidNewRec = ASDeserializeRecord(&aNote->ftOriginal,
&aNote->ftLastUpdate,
aNote->szNote,
wcslen(aNote->szNote),
bNewRec, m_pWriteSetup->oid)) 0)

return RERR_SKIP_ALL;
else
{

m_pWriteSetup->oidNew
return NOERROR;

oidNewRec;

Set Packet returns RERR_SKIP _ALL if the update fails. This will cause
all subsequent packets to be discarded. If successful, the CEO ID of the new rec
ord is assigned to the oidNew member of REPLSETUP, and the function returns
NO ERROR.

462 Chapter 17 e ActiveSync

I ReplObjHandler:: DeleteObj
DeleteObj is called when an item needs to be deleted from the database. The
function is passed a REPLSETUP pointer as a parameter and calls ASDelete
Record (located in DB. CPP) to delete the record (Listing 17.9).

!Rep/Obi Handler:: DeleteObi implementation

STDMETHODIMP CDataHandler::DeleteObj (PREPLSETUP pSetup)
{

if(ASDeleteRecord(pSetup->oid))
return NOERROR;

else
return E_UNEXPECTED;

Implementing the Desktop Provider
Implementing the desktop provider takes more time and effort. This is, in the
main, because ActiveSync makes no assumptions about where items are stored
and when they are changed.

You need to create a full COM component with a class factory, registration,
and other features. The component will need to implement the COM compo
nent IReplStore, which is used to manage the store, folder, and item manipu
lation. The desktop provider also needs to implement the IReplObjHandler
interface.

Representing HREPLITEM and HREPLFLD
HREPLITEM and HREPLFLD are pointers used by ActiveSync to point at your
data associated with items and folders. In certain circumstances, ActiveSync
passes a HREPLOBJ that can point either to a HREPLITEM or HREPLFLD. You
therefore need a storage mechanism that can store either a HREPLITEM or
HREPLFLD and be able to determine which type is currently being stored. Per
haps the most straightforward technique is to use a structure containing a union
(Listing 17.10).

REPLOBJECT structure

II structure and define for HREPLITEM and
II HREPLFLD structures
#define RT_ITEM 1
#define RT FOLDER 2

Implementing the Desktop Provider 463

typedef struct tagREPLOBJECT
{

II uType indicates if a folder (RT_FOLDER)
II or item (RT_ITEM) is currently being stored
UINT uType;
II Create a union so folder and item information can be
II stored in the same structure
union

} ;

II for folder, has the contents been changed
BOOL fChanged;
II for item, creation time (unique identifier)
II and last modify time
struct

FILETIME ftCreated, ftModified;
} ;

REPLOBJECT, *LPREPLOBJECT;

The member uType can contain either RT_ITEM or RT_FOLDER; they in
dicate the current use of the structure. Folders use the member fChanged and
items use ftCreated or ftModified.

ActiveSync uses the data you place in this structure to track changes to
folders and items. There is generally a separate structure for each item and
folder in store, and ActiveSync stores these structures in repl. dat.

You can place any type of data in the structure that is applicable to your
application. However, you should attempt to limit the amount of data you store
in the structure. There will always be far more items than folders, so you should
focus on the amount of data stored in the item. If you use a structure with a
union (as shown in Listing 17.10), ensure that the amount of data associated
with the folder is less than that used for the item-the overall size of the struc
ture is determined by the largest members in the union.

Storing Data on the Desktop
ActiveSync makes no assumptions about where the data being synchronized is
being stored-you can use flat files, local databases, or server databases. In this
example a simple flat file is used, and each item is stored as a NOTE structure
(which has a fixed size). The code to access this file is located in ListDB.h,
and uses the standard file I/0 techniques outlined in Chapter 2.

Implementing IReplStore
The IReplStore COM interface declares functions that ActiveSync uses to
obtain information and manipulate the store, folder, and items being synchro
nized. Table 17 .3 shows the functions categorized by function.

464 Chapter 17 w ActiveSync

MroMjlfJW /Rep/Store interface functions

Category Functions

Initialization Initialize

Store information and manipulation

Folder information and manipulation

Iterate all items in a folder

Manipulate HREPLITEM or
HREPLFLD objects

HREPLITEM item synchronization

Configuration dialog, provider icon, and
name information and activity reporting

Conflict resolution and duplicate removal

GetStoreinf oCompareStoreIDs

GetFolderinfoisFolderChanged

FindFirstitemFind
NextitemFinditemClose

ObjectToBytes
BytesToObject
FreeObjectCopy
ObjectisValidObject

Compare Item
IsitemChanged
IsitemReplicated
Updateitem

ActivateDialog
GetObjTypeUIDataReportStatus

GetConflictinfoRemoveDuplicates

Because IReplStore is a COM interface, you must provide an implemen
tation of all these functions; otherwise, your provider will not compile. How
ever, only the functions shown in this chapter are essential in a simple provider.

In the example, IReplStore is implemented by the class CActive
SyncEg. The declaration of this class is in Component. h, and the implemen
tation of IReplStore is in the file IReplStore. cpp.

IReplStore Initialization
ActiveSync calls the IReplStore:: Initialize function when the provider
is first loaded (Listing 17.11). The function passes a pointer to a IReplNotify
interface provided by ActiveSync and used by the provider to notify ActiveSync
when item changes occur in the store. Since the example doesn't implement
continuous synchronization, this pointer is ignored. The uFlags parameter will
contain ISF _REMOTE_CONNECTED if synchronization is being carried out over
a dialup or other type of remote connection. In this case, you should avoid
anything that requires user intervention (such as showing a dialog).

/Rep/Store: :Initialize implementation

STDMETHODIMP CActiveSyncEg::Initialize(
IReplNotify*pNotify,UINT uFlags)

m_binitialized = TRUE;
return NOERROR;

Implementing the Desktop Provider 465

Some IReplStore functions can be called before Initialize is called,
so you should be careful not to rely on this initialization. The functions are
GetStoreinfo, GetObjTypeUIDate, GetFolderinfo, ActivateDialog,
BytesToObj ect, Obj ectToBytes, and ReportStatus.

Store Information and Manipulation
ActiveSync calls the function GetStoreinfo (Listing 17.12) and passes a
pointer to a STOREINFO structure that the provider populates with information
about its store.

IMijfl /Rep/Store:: GetStorelnfo implementation

STDMETHODIMP CActiveSyncEg: :GetStoreinfo(
PSTOREINFO pStoreinfo)

II Check correct version of Storeinfo structure
if(pStoreinfo->cbStruct < sizeof(*pStoreinfo))
{

MessageBox(NULL,
_T("GetStoreinfo-Invalid Arg"), NULL, 0);

return E_INVALIDARG;

II we only support single-threaded operation
pStoreinfo->uFlags = SCF_SINGLE_THREAD;
II Set store's progid and description
strcpy(pStoreinfo->szProgid, g_szVerindProgID);
strcpy(pStoreinfo->szStoreDesc, g_szFriendlyName);
II this is as far as we get if we're not Initialized
if(!m_binitialized)
{

return NOERROR;

II Create the store's unique identifier
// Set the length of the store identifier
pStoreinfo->cbStoreid =

(strlen(g_szStoreFile) + 1) * sizeof(TCHAR);
II ActiveSync calls GetStoreinfo twice. Once to
II get the size of the store id (when lpbStoreid is
II NULL), and a second time, providing a buffer pointed
II to by lpbStoreid where the store id can be placed.
if(pStoreinfo->lpbStoreid ==NULL)

return NOERROR;

466 Chapter 17 & ActiveSync

memcpy(pStoreinfo->lpbStoreid, g_szStoreFile,
(strlen(g_szStoreFile) + 1) * sizeof(TCHAR));

return NOERROR;

The function Get Store Info is called twice by ActiveSync, the first time
to determine the size of the buffer required to hold the store's unique id (cb
Storeid), and the second time to copy the store id into a buffer (lpb
Storeid). Table 17.4 describes the STOREINFO members used by this imple
mentation of GetStoreinfo.

Member

uFlags

szProgid

szStoreDesc

cbStoreid

lpbStoreid

Storelnfo members used in CActiveSyncEg.· :GetStorelnfo

Purpose

Use SCF _SINGLE_THREAD if your provider is single-threaded.

The store's ProgID, such as "Asdesktop. Ac ti veSyncEg".

Description of store displayed to user, such as "Act i veSync
Example".

Length of the store's id in bytes.

Store's unique id, for example, the name of the data file "\Active
SynNotes. dat.".

The function CompareStoreIDs is called by ActiveSync to determine if
two store ids are actually the same. Listing 17.13 compares cbIDl and cbID2
to determine whether the number of bytes in the store ids are the same and, if
they are, uses memcmp to perform a byte-wise comparison of the two strings.
The function returns 0 if the lpbIDl and lpbID2 are ids that refer to the same
store.

/Rep/Store: :CompareStore/Ds implementation

STDMETHODIMP_(int) CActiveSyncEg: :CompareStoreIDs
(LPBYTE lpbIDl, UINT cbIDl,
LPBYTE lpbID2, UINT cbID2)

if(cbIDl < cbID2)
II first store is smaller than the second store
return -1;

if(cbIDl > cbID2)
II first store is larger than the second store
return 1;

II now compare the store ids byte by byte.
return memcmp(lpbIDl, lpbID2, cbIDl);

Implementing the Desktop Provider 467

Folder Information and Manipulation
A store can contain one or more folders in which items are placed. ActiveSync
calls GetFolderinfo for each object type (for example, "AsyncSample") con
figured in the registry for the provider. The implementation of GetFolder
Info returns a pointer to the IReplObjHandler interface associated with this
folder (the m_DataHandler member is a CDataHandler class object that im
plements IReplObj Handler) and to a HREPLFLD object (Listing 17.14).

IMfl(I /Rep/Store:: GetFolderlnfo implementation

STDMETHODIMP CActiveSyncEg: :GetFolderinfo(LPSTR
lpszObjType,
HREPLFLD *phFld, IUnknown ** ppObjHandler)

LPREPLOBJECT pFolder
if(pFolder ==NULL)

(LPREPLOBJECT) *phFld;

{

pFolder = new REPLOBJECT;

pFolder->uType = RT_FOLDER;
pFolder->fChanged = TRUE;
*phFld = (HREPLFLD)pFolder;

II new folder required

II CDataHandler member m_DataHandler
II implements IReplObjHandler
*ppObjHandler = &m_DataHandler;
return NOERROR;

In the example, HREPLFLD is actually a pointer to a REPLOBJECT. The
HREPLFLD parameter can be NULL, in which case a new REPLOBJECT is cre
ated, or, if not NULL, the existing REPLOBJECT is used.

The function IsFolderChanged is called by ActiveSync to determine
whether items in a folder need to be synchronized. With continuous synchro
nization this function is called frequently, but with manual synchronization it
is only called when synchronization starts. In Listing 17.15 the function always
sets pf Changed to TRUE, indicating that the folder needs to be synchronized.

/Rep/Store:: lsFolderChanged implementation

STDMETHODIMP CActiveSyncEg: :IsFolderChanged(HREPLFLD hFld,
BOOL *pf Changed)

*pfChanged = TRUE;
return NOERROR;

468 Chapter 17 e ActiveSync

Iterate Items in a Folder
ActiveSync requests the provider to iterate through the items in a folder by
calling the functions FindFirstitem, FindNextitem, and FinditemClose.
The provider reads the first item (FindFirstitem) or the next item (Find
Nextitem) from the store and creates a HREPLITEM for each item. In the ex
ample, the functions GetFirstNote or GetNextNote (located in db. cpp)
read the items, and a HREPLITEM is created represented by the REPLOBJECT
structure (Listing 17.16). The three REPLOBJECT members are initialized with
appropriate values read from the store. The HREPLITEM item is returned
through the phI t em parameter.

/Rep/Store:: FindFirstltem and FindNextltem implementations

II Returns an HREPLITEM structure for the first item in
II the .DAT file. The data in HREPITEM is the OriginalTime
II (the unique identifier) and ModifyTime
II (to determine if the item has changed);

STDMETHODIMP CActiveSyncEg:: FindFirstitem(HREPLFLD hFld,
HREPLITEM *phitem, BOOL *pfExist)

WCHAR szNote[STRLEN_NOTE];
FILETIME ftCreateTime, ftModifyTime;
II attempt to get first record
*pfExist = m_ListDB.GetFirstNote(&ftCreateTime,

szNote, &ftModifyTime);
if (! *pfExist)

return NOERROR;
II now make up the HREPLFLD
LPREPLOBJECT lpRepl = new REPLOBJECT;
lpRepl->uType = RT_JTEM;
lpRepl->ftCreated = ftCreateTime;
lpRepl->ftModified = ftModifyTime;
II set our pointer into HREPLITEM
*phitem = (HREPLITEM)lpRepl;
return NOERROR;

II Find the next item from the .DAT file
STDMETHODIMP CActiveSyncEg::FindNextitem(HREPLFLD hFld,

HREPLITEM *phitem, BOOL *pfExist)

WCHAR szNote[STRLEN_NOTE];
FILETIME ftCreateTime, ftModifyTime;

II attempt to get first record
*pfExist = m_ListDB.GetNextNote(&ftCreateTime,

szNote, &ftModifyTime);

if (! *pfExist)
{

return NOERROR;

Implementing the Desktop Provider 469

II now make up the HREPLFLD
LPREPLOBJECT lpRepl = new REPLOBJECT;
lpRepl->uType = RT_ITEM;
lpRepl->ftCreated = ftCreateTime;
lpRepl->ftModified = ftModifyTime;
II set our pointer into HREPLITEM
*phitem = (HREPLITEM)lpRepl;
return NOERROR;

FindFirstitem and FindNextitem set the pfExist BOOL parameter
to TRUE if a HREPLITEM is returned, or FALSE if no more items exist. Find
ItemClose is called when pfExist is set to FALSE (Listing 17.17).

/Rep/Store:: FindltemC/ose implementation

II Finished going through all records.
II Nothing to do in this case.

STDMETHODIMP CActiveSyncEg: :FinditemClose(HREPLFLD hFld)
{

return NOERROR;

Manipulating HREPLITEM and HREPLFLD Objects
The provider must implement functions that allow ActiveSync to manipulate
HREPLITEM and HREPLFLD objects. Table 17.5 shows the functions that must
be implemented. Many of these functions operate on HREPLITEM or HREPL
FLD objects, and the functions may need to take different actions depending
on which is passed. Remember that the generic type HREPLOBJ is used to refer
to both HREPLITEM and HREPLFLD objects.

MM!jff W Functions to manipulate HREPLITEM and HREPLFLD obiects

Function Description

Obj ectToBytes Convert a HREPLITEM or HREPLFLD into a stream of bytes.

BytesToObj ect Convert a stream of bytes into a HREPLITEM or HREPLFLD.

FreeObj ect Free memory used by a HREPLITEM or HREPLFLD.

CopyObj ect Copy one HREPLITEM or HREPLFLD into another.

IsValidObj ect Determine whether a HREPLITEM or HREPLFLD still represents
a valid object.

470 Chapter 17 e ActiveSync

Using the structure/union REPLOBJECT to store both HREPLITEM and
HREPLFLD objects greatly simplifies the coding of these functions.

ActiveSync calls Obj ectToBytes and BytesToObj ect when writing
and reading objects to and from the file repl .dat. ObjectToBytes (List
ing 17.18) will be called twice for each conversion. In the first call, Obj ectTo
Bytes simply returns the number of bytes required to write the object. In the
second call ActiveSync provides a buffer of the correct length into which the
copy is made.

/Rep/Store:: ObiectToBytes implementation

STDMETHODIMP_(UINT) CActiveSyncEg: :ObjectToBytes
(HREPLOBJ hObject, LPBYTE lpb)

II buffer has been created to requested size

if (lpb ! = NULL)
memcpy(lpb, (LPREPLOBJECT)hObject,

sizeof(REPLOBJECT));
return sizeof(REPLOBJECT);

Both HREPLITEM and HREPLFLD objects are passed into Object To
Bytes, but because REPLOBJECT is used for both folders and items, the same
code can be used for both.

BytesToObj ect (Listing 17.19) creates a new REPLOBJECT, copies from
the stream of bytes into this new structure, and returns a pointer cast to a
HREPLOBJ.

/Rep/Store:: Bytes ToObiect implementation

STDMETHODIMP_(HREPLOBJ) CActiveSyncEg::BytesToObject
(LPBYTE lpb, UINT cb)

if(cb != sizeof(REPLOBJECT))
MessageBox(NULL,

_T ("Not correct size in Bytes to object") ,
NULL, 0);

LPREPLOBJECT lpReplObject = new REPLOBJECT;
II perform the copy
memcpy(lpReplObject, lpb, cb);
return (HREPLOBJ)lpReplObject;

ActiveSync calls FreeObj ect (Listing 17.20); the implementation should
free any memory associated with the HREPLOBJ object.

Implementing the Desktop Provider 471

MMflJ1i /Rep/Store:: FreeObiect implementation

STDMETHODIMP_(void) CActiveSyncEg: :FreeObject(
HREPLOBJ hObject)

LPREPLOBJECT pitem = (LPREPLOBJECT)hObject;
delete (LPREPLOBJECT) hObject;

From time to time, ActiveSync needs to copy HREPLOBJ objects. The func
tion CopyObj ect does this by copying a REPLOBJECT from one location to
another (Listing 17.21).

i@fifljl /Rep/Store:: CopyObiect implementation

STDMETHODIMP_(BOOL) CActiveSyncEg::CopyObject(
HREPLOBJ hObjSrc, HREPLOBJ hObjDest)

LPREPLOBJECT lpRepObjSrc = (LPREPLOBJECT)hObjSrc;
LPREPLOBJECT lpRepObjDest = (LPREPLOBJECT)hObjDest;
*lpRepObjDest = *lpRepObjSrc;
return TRUE;

Finally, IsValidObject is called when ActiveSync needs to determine
whether the HREPOBJ still refers to a valid item or folder. For folders, List
ing 17.22 simply checks that the REPLOBJECT uType is RT_FOLDER, return
ing NOERROR if it is, or RERR_CORRUPT to indicate the object is no longer valid.

MMfjfl /Rep/Store:: /sValidObiect implementation

STDMETHODIMP CActiveSyncEg: :IsValidObject(
HREPLFLD hFld, HREPLITEM hitem, DINT uFlags

LPREPLOBJECT lpRepObj;

if (hFld ! = NULL)
{

lpRepObj = (LPREPLOBJECT)hFld;
if(lpRepObj->uType == RT_FOLDER)

return NOERROR;
else

return RERR_CORRUPT;

if (hitem! = NULL)
{

lpRepObj = (LPREPLOBJECT)hitem;

472 Chapter 17 e ActiveSync

if(lpRepObj->uType != RT_ITEM)
return RERR_CORRUPT;

NOTE aNote;
II attempt to find the item
if(m_ListDB.FindNote(&lpRepObj->ftCreated,

&aNote))
return NOERROR;

else
return RERR_OBJECT_DELETED;

return NOERROR;

For items, a check needs to be made that uType is RT_ITEM. Additionally,
the function needs to check that the item referred to by the HREPLFLD is still
present in the store. Calling FindNote (implemented in db. cpp) does this.

HREPLITEM Synchronization
HREPLITEM objects are maintained to allow ActiveSync to track changes to ob
jects either on the desktop or the Windows CE device. The provider must im
plement the functions listed in Table 17.6.

Functions to Synchronize HREPLITEM items

Function

Compare Item

IsitemChanged

IsitemReplicated

Updateitem

Description

Do two HREPLITEMs refer to the same item?

Has the HREPLITEM changed?

Is the HREPLITEM to be replicated?

Update the information in the HREPLITEM based on what
is stored in the desktop database.

In general, at least two pieces of information are held in a HREPLITEM to
enable these functions:

1. The unique identifier, so items can be compared. In REPLOBJECT this is
ftCreated, the FILETIME timestamp of when the item was created.

2. The last modification identifier, so changes to items can be tracked. In
REPLOBJECT this is the ftModified FILETIME timestamp.

Compareitem is called when ActiveSync needs to know whether two
HREPLITEMs refer to the same item in the store. This would be called, for ex
ample, when an item from the Windows CE device is updated and ActiveSync
needs to find the corresponding item in the store. Compare Item (Listing 17.23)
simply passes the ftCreated members to CompareFileTime, which returns
0 if the FILETIMEs are the same, -1 if the first is earlier, or 1 if the first is later.

Implementing the Desktop Provider 473

lfMfiJI /Rep/Store:: Compare/tern implementation

STDMETHODIMP_(int) CActiveSyncEg: :Compareitem(
HREPLITEM hiteml, HREPLITEM hitem2)

LPREPLOBJECT lpRepObjl = (LPREPLOBJECT)hiteml;
LPREPLOBJECT lpRepObj2 = (LPREPLOBJECT)hitem2;

int nRet = CompareFileTime(&lpRepObjl->ftCreated,
&lpRepObj2->ftCreated);

return nRet;

f!REPLITEM maintains a modification timestamp that may be different
from the item in the database. For example, the database item may have changed
since the time the HREPLITEM was created. ActiveSync calls IsitemChanged
to determine if this is the case (Listing 17.24).

IsitemChanged passes in two HREPLITEM objects. If both are non
NULL, the function compares the two ftModified members in the REPLOB
JECT structures pointed to by hitem and hitemComp. If hitemComp is NULL,
IsitemChanged compares the ftModified for hitem with the modification
time of the item in the database. This is obtained by finding the item in the
database using FindNote (db. cpp).

/Rep/Store:: lsltemChanged implementation

STDMETHODIMP_(BOOL) CActiveSyncEg::IsitemChanged(
HREPLFLD hFld,
HREPLITEM hitem,
HREPLITEM hitemComp

LPREPLOBJECT lpRepObjl

if(hitemComp !=NULL)

(LPREPLOBJECT)hitem;

{

LPREPLOBJECT lpRepObj2 = (LPREPLOBJECT)hitemComp;
return CompareFileTime(

&lpRepObjl->ftModified,
&lpRepObj2->ftModified);

else
{

II need to compare this object with the
II one in the .DAT file
NOTE aNote;
if(m_ListDB.FindNote(

&lpRepObjl->ftCreated, &aNote))
return CompareFileTime(

47 4 Chapter 17 * ActiveSync

&lpRepObjl->ftModified,
&aNote.ftLastUpdate);

else
{

MessageBox(NULL,
_T("Could not find record for \

IsitemChanged"), NULL, 0);
return FALSE;

Generally, all items in the store are synchronized. However, there are
times when you may want to filter the items being synchronized-for ex
ample, you may only want to filter appointments from the last two weeks. The
function IsitemReplicated is passed a HREPLITEM, and returns TRUE if the
item is to be synchronized (listing 17.25).

/Rep/Store:: lsltemReplicated implementation

STDMETHODIMP_(BOOL) CActiveSyncEg: :IsitemReplicated(
HREPLFLD hFld, HREPLITEM hitern)

return TRUE;

Implementing the Desktop IReplObjHondler COM Interface
The desktop application must implement the same IReplObjHandler inter
face functions as the device, but the implementations will typically be different.
In the example the class CDataHandler in the file ReplObjHandler. cpp im
plements the IReplObj Handler interface.

IReplObjHondler:: Setup
ActiveSync calls this function before any item is received or sent. This provides
an. opportunity to perform initialization. A pointer to a REPLSETUP structure is
passed in; this provides information such as the direction of the transfer.

The Setup function will normally save a pointer to the REPLSETUP struc
ture for future use. Since ActiveSync is multithreaded, it is possible that a read
(outgoing transfer) occurs at the same time as a write (incoming transfer). There
fore, the IReplObj Handler class has two members, m_pReadSetup and rn_p
Wri teSetup to store separate pointers (Listing 17.26). The pointer will be used
later in GetPacket and SetPacket.

Implementing the Desktop Provider 47 5

IMf#Ji /Rep/Obi Handler:: Setup implementation

STDMETHODIMP CDataHandler: :Setup(PREPLSETUP pSetup)
{

II Can be reading and writing at the same time,
II so need two setups
if(pSetup->fRead)

m_pReadSetup = pSetup;
else

m_pWriteSetup = pSetup;
return NOERROR;

IReplObjHandler:: Reset
The Reset function provides an opportunity to free any resources created dur
ing the serialization or deserialization. In this case, there is nothing to do (List
ing 17.27).

/ReplObiHandler:: Reset implementation

STDMETHODIMP CDataHandler::Reset(PREPLSETUP pSetup)
{

return NOERROR; II no resources to be freed

I ReplObjHandler::GetPacket
ActiveSync calls the function IReplObjHandler: :GetPacket to request a
packet for a particular item being synchronized. Your implementation should
produce a byte stream representing the entire item (if it fits into a single packet)
or the next packet in sequence. The function passes in the recommended maxi
mum size of the packet in cbRecommend.

Listing 17.28 shows the implementation of GetPacket. The function
calls FindNote (located in ListDB. cpp) to read the record for the timestamp
of when the item was created (lpRepObj->ftCreated, which is the unique
identifier for the note). The function serializes the record into a NOTE struc
ture pointed to by pNote, returns a pointer to the structure in lpByte, and re
turns the size of the NOTE structure in dwLen. The pointer and size are returned
to ActiveSync through the parameters lppbData and pcbData. The function
returns RWRN_LAST_PACKET, indicating this is the one and only packet for
this item.

4] 6 Chapter 17 ® ActiveSync

/ReplObiHandler:: GetPacket implementation

STDMETHODIMP CDataHandler: :GetPacket(LPBYTE *lppbData,
DWORD *pcbData, DWORD cbRecornrnend)

NOTE * pNote = new NOTE;
LPREPLOBJECT lpRepObj =

(LPREPLOBJECT)m_pReadSetup->hitem;

if(m_pReadSetup->hitem ==NULL)
return E_UNEXPECTED;

II locate the note in the file
if(!m_pListDB->FindNote(&lpRepObj->ftCreated, pNote))
{

MessageBox(NULL,
_T("GetPacket: Could not find record"),

NULL, MB_OK) ;
return RERR_BAD_OBJECT;

else
{

*lppbData = (LPBYTE)pNote;
*pcbData = sizeof(NOTE);

return RWRN_LAST_PACKET;

IReplObjHandler::SetPacket
SetPacket does the opposite of GetPacket-it is passed a pointer to a
stream of bytes and writes the data to a new or existing record in the data file.
The REPLSETUP structure member dwFlags contains the value RSF _NEW_
OBJECT if this item is a new record; otherwise, an existing record is to be
updated.

In Listing 17.29, SetPacket casts the incoming lpbData pointer to a
NOTE pointer. IfHREPLITEM is non-NULL, the function FindNote (in ListDB.
CPP) is used to locate the item (since it already exists) and then calls Update
Note to update the new information for the item. For a new object (when
HREPLITEM is NULL), a new note is added to the desktop database using the
function AddNote.

/ReplObiHandler:: SetPacket implementation

STDMETHODIMP CDataHandler: :SetPacket(LPBYTE lpbData,
DWORD cbData)

NOTE* lpNote = (NOTE*)lpbData;

Implementing the Desktop Provider 477

LPREPLOBJECT lpRepl = new REPLOBJECT;

II Have a HREPLITEM-must be an existing record
if(m_pWriteSetup->hitem !=NULL)
{

if(!m_pListDB->FindNote(&lpNote->ftOriginal))
{

MessageBox(NULL,
_T("Could not find existing note"),
NULL, MB_OK) ;

return E_UNEXPECTED;

II update record
m_pListDB->UpdateNote(&lpNote->ftOriginal,

lpNote->szNote);

else

II add record
m_pListDB->AddNote(&lpNote->ftOriginal,

&lpNote->ftLastUpdate,
lpNote->szNote) ;

lpRepl->uType = RT_ITEM;
lpRepl->ftModified = lpNote->ftLastUpdate;
lpRepl->ftCreated = lpNote->ftOriginal;
m_pWriteSetup->hitem = (HREPLITEM)lpRepl;

return NOERROR;

IReplObjHandler::DeleteObj
DeleteObj is called when an item needs to be deleted from the database. The
function is passed a REPLSETUP pointer as a parameter and calls DeleteNote
(located in ListDB.CPP) to delete the record (Listing 17.30).

/Rep/Obi Handler:: DeleteObi implementation

STDMETHODIMP CDataHandler: :DeleteObj (PREPLSETUP pSetup)
{

LPREPLOBJECT lpRepObj = (LPREPLOBJECT)pSetup->hitem;

if(!m_pListDB->DeleteNote(&lpRepObj->ftCreated))
MessageBox(NULL,

_T ("Could not delete record") ,
NULL, 0);

return NOERROR;

478 Chapter 17 * ActiveSync

Conclusion
This chapter has reviewed the code required to implement ActiveSync capa
bility in your application. Not all of the code for the device or desktop imple
mentations is shown in this chapter. You will need to carefully review the code
supplied on the CDROM to see how it all fits together. Implementing Active
Sync is a long job that requires a broad range of skills and knowledge, includ
ing Windows CE Property Database and COM knowledge. It is also difficult to
debug. Therefore, implementing ActiveSync will require careful design, plan
ning, and implementation. Working with ActiveSync is, nevertheless, easier than
writing your own synchronization code.

w A

accept function, 231
Acknowledgements for MSMQ messages, 405-10
ACLineStatus, 333
ActionFlags, CE_USER_NOTIFICATION, 181
Active Server Pages (ASP), 187, 208, 210
ActiveSync

data organization, 453
disabling of ActiveSync's use of serial communica-

tions port, 238, 247
folders, 446
Hyperterminal and, 247
implementing desktop provider, 462-77
implementing Windows CE device provider, 453-

62
installation, 450-52
items, 446
MSMQ and, 379-80
overview, 445-46
registration, 450
Remote Access Services (RAS) not used with, 211,

220
sample application, 449-50
steps for continuous synchronization, 449
steps to implement desktop synchronization, 448
steps to implement device synchronization, 447-

48
stores, 447
TCP/IP routing not allowed by, 220, 276
WNET functions not used with, 55

ActiveSync on desktop device
HREPLITEM synchronization, 472-74
IReplObjHandler,474-77
IReplStore: :BytesToObject, 469, 470
IReplStore: :Compareitem, 472,473
IReplStore: :CompareStoreIDs, 466
IReplStore: :CopyObject, 469,471
IReplStore: :FindFirstitem,468-69
IReplStore::FinditemClose,469
IReplStore::FindNextitem, 468-69
IReplStore: :FreeObject, 469, 470-71
IReplStore: :GetFolderinfo, 467
IReplStore: :GetStoreinfo, 465-66
IReplStore: :Initialize, 464-65
IReplStore::IsFolderChanged, 467

IReplStore: :IsitemChanged, 472, 473-74
IReplStore: :IsitemReplicated, 472, 474
IReplStore: :IsValidObject, 469, 471-72
IReplStore: :ObjectToBytes, 469, 470
manipulating HREPLITEM and HREPLFLD objects,

469-72
ActiveSync on desktop provider

folder information and manipulation, 467
implementing desktop synchronization, 448
IReplObjHandler: :DeleteObj, 477
IReplObjHandler: :GetPacket, 475-76
IReplObjHandler: :Reset, 475
IReplObjHandler: :SetPacket, 476-77
IReplObjHandler: :Setup, 474-75
IReplObj Handler interface, 457
IReplStore, 463-74
IReplStore initialization, 464-65
iterating items in folder, 468
representing HREPLITEM and HREPLFLD, 462-63
serialization format, 459
store information and manipulation, 465-66
storing data, 463

ActiveSync on Windows CE device provider
GetObjTypeinfo, 456-57
InitObjType, 454
IReplObjHandler: :DeleteObj, 462
IReplObjHandler: :GetPacket, 460-61
IReplObjHandler: :Reset,460
IReplObjHandler: :SetPacket, 461
IReplObjHandler: :Setup, 459
IReplObj Handler COM interface, 448, 453, 454,

457-62
ObjectNotify, 454-56
serialization format, 458-59

ActiveSync Service Provider, 445
ActiveX and Automation, 359-73. See also COM (Com-

ponent Object Model)
Automation Dispinterface, 359-60
_bstr_t class, 359
calling Automation methods, 365-68
compared with COM (Component Object Model),

335
creating COleDispatchDri ver-derived class,

368-71
definition, 335
obtaining IDispatch interface pointer, 360-62

479

480 Index

overview, 359
using Automation objects with MFC, 368-73
using Automation property, 364-65
using IPOutlookApp class, 371-73
VARIANT data type, 359, 362-64
_variant_t class, 359

ActiveX Template Libraries. See ATL (ActiveX Template
Libraries)

ActiveXData Objects (ADO), 187, 412, 413, 431, 442
AddColurnn, 419-20
Adding

network connections, 61-62
network connections with dialogs, 63-64
new contact in COM, 352-53
records to ADOCE/ADOXCE table, 422-28
registry keys and values, 108-10

AddNew,425-26
AddRef, 338, 347-48, 353, 356, 357
Address family, 222
Address space for memory, 313-14
Addresses. See IP addresses
ADO (ActiveXData Objects), 187, 412, 413, 431, 442
ADOCE31.TLB, 414
ADOCE/ADOXCE and SQL Server, 412-44

adding records to table, 422-28
_bstr_t class, 416
Catalog interface, 413
Connection interface for ADOCE, 413
connection object, 431-32
CREATE TABLE statement, 433-35
creating catalog (database), 416-18
creating table, 418-21, 433-35, 436
deleting records, 432-33
description of ADOCE and ADOXCE, 412, 413
dropping table, 422, 435
enumerating tables in catalog, 421
error handling, 440-42
Fields collection and objects in ADOCE, 413
identities and primary keys, 435-36
indexes, 436-37
INSERT statement, 433, 437-40, 442
installing SQL Server for Windows CE, 413
MSMQ and SQL Server, 376
opening database (catalog), 418
overview, 412
Recordset interface for ADOCE, 413
retrieving records from table, 428-31
SELECT statement with JOIN, 438-40
smart pointers with ADOCE, 413-15
SQL Data Definition Language (DDL), 433-37
Tables collection and interface, 413
transactions with SQL statements, 442-43
_variant_t class, 416

ADOXCE31.TLB,414
ADOXCE. See ADOCE/ADOXCE and SQL Server
AF_INET, 222
AF _IRDA, 234
AfxBeginThread, 144
Alarrn2.wav, 179
Annunciator icon, removing, 181
ANSI

AP! functions, 11
C common run-time string functions with generic

and Unicode equivalents, 15
character string constant, 13
characters and character strings, 11-12
converting between Unicode strings and, 14-15
determining content type, 21-22
IP addresses, 214, 217
posting data to server, 208
reading data from serial communications port, 244
socket clients and servers, 212
TAP! sending and receiving data, 303
UNICODE for ANSI characters, 12

API (Application Programming Interface), 5, 6, 12, 187,
336

AppendToEditBox, 228
Application Programming Interface. See AP! (Applica

tion Programming Interface)
Applications

auto-run applications on Compact Flash cards,
53-54

mini-applications with notifications, 171-75
running application at specified time with

notification, 171, 184
simple socket sample application, 220
socket client application, 220-25
socket server application, 226-31
starting application on an event with notification,

175-76
APP_RUN_AFTER_RESTORE, 176
APP_RUN_AFTER_SYNC, 176
APP_RUN_AT_DEVICE_CHANGE, 176
APP_RUN_AT_RS232_DETECT, 176
AppRunAtTirne, 171
Archived files, setting, 30, 37
ASDesktop, 450
ASDevice, 450
ASGetDBOID, 454
ASP (Active Server Pages), 187, 208, 210
ASRecinDB, 455
Asynchronous message reading for MSMQ, 401-5
ATA cards, 52
ATL (ActiveX Template Libraries), 6, 341
Attach function, 356-58
Attributes of databases, changing, 99-100

Attributes of files
displaying all information about file, 30-32
getting, 28-29
list of, 30, 37
purposes of, 30
setting, 29

Authentication
with InternetErrorDlg, 202-3
with InternetSetOption, 204-5

Automation. See ActiveX and Automation
Automation Dispinterface, 359-60
Auto-reset events, 159
Auto-run applications on Compact Flash (CF) cards,

53-54
autorun.exe, 53-54

.,. B

Backup Site Controllers (BSCs), 376
BackupBatteryLifePercent, 333
Barcode readers for Pocket PC, 4
Battery status, monitoring, 330-33
BatteryChemistry, 333
BatteryLifePercent, 333
BaudRate, 242
BeginTrans, 442
Binary data, sending to server, 224
Binary form of IP addresses, 214
BLOBs

CEVT_BLOB property data type, 87-88
property databases using MFC classes, 104-7

Blocked state of thread, 139
Blocking function with CeRapiinvoke, 271-75
BOOL binheritHandles, 260
BOOL binitialOwner, 156
BOOl binitialState, 159
BOOL bManual Reset, 159
BOOL fWaitAll, 155
BOOL Return Value

changing database attributes, 100
creating process with RAPI, 260
HttpAddRequestHeaders, 209
HttpQueryinfo, 205
HttpSendRequest, 198
InternetCloseHandle, 189
InternetCrackUrl, 195
InternetSetOption, 205
mutex objects, 157
RAPI file and folder manipulation, 266
semaphores, 164

BSCs (Backup Site Controllers), 376
BSTR data type

ActiveX and Automation, 359, 365

Index

ADOCE/ADOXCE, 416, 418-19, 422, 429
COM (Component Object Model), 346-47
MSMQ, 387
SQL Statement, 432

_bstr_t class, 359, 416
Buffers

calculating buffer lengths, 14
CERapiFreeBuf fer, 263
MSMQ, 392-93
querying registry value, 111

481

reading data from GPS device, 252-53
reading records in property databases, 86-87
szSentence buffer, 252-53

Bugs
calculating buffer lengths for Unicode, 14
in Windows CE operating system, 18

BYTE *modBaseAddr, 131
BYTE *pinput, 273, 275
BYTE *ppOutput, 273, 275
Bytes

integer byte ordering, 225-26
reporting file size in, 27-28

ByteSize, 242
BytesToObject, 469,470

"IV c
C++ language

COM component compared with, 336
exception handling, 17
using heaps with, 322-23

C language, 15
Callback

MSMQ, 401-5
TAPI line callback function, 298-300

Cameras for Pocket PC, 4
Canceling. See also Disconnecting; Terminating

network connections, 62-63
network connections with dialogs, 64-65
network printer, 66

CArchi ve class object, 105-6
cArgs, 366
Catalog. See ADOCE/ADOXCE and SQL Server
cbStoreid,466
cbStruct, 456
CCeDBDatabase class, 102-4
CCeDBProp objects, 102-4
CDB files, 71
CDROM as storage device, 52
CDROM (with book)

ActiveSync application, 449-50
ChapterlS.cpp,410
code samples, 5, 9-11

482 Index

'examples' application, 247
GPS outpt.txt, 248
QueueServer directory, 381-84
\RAPI\CreateProcess directory, 261
\RAPI\CustomBlock\CEBlock, 271, 273
\RAPI\CustomStream\CEStream, 277
\RAPI\FindAllFiles, 263
SockC!ient directory, 220
SockServer directory, 220, 226

CE operating system. See Windows CE
CEBLOB, 87, 106
CeCheckPassword, 270
CeClearUserNotification, 181
CECloseHandle, 261, 263, 264
CeCopyFile, 264
CeCreateDatabase, 267
CeCreateDatabaseEx, 77-78,99, 267
CeCreateDirectory, 264
CeCreateFile, 263, 264
CeCreateProcess, 260-63, 270, 271, 272
CEDB_ALLOWREALLOC flag, 86
CEDBASEINFO, 78-79,99-100
CEDB_AUTOINCREMENTflag, 85, 91
CEDB_SEEK_BEGINNING, 88
CEDB_SEEK_CEOID,88,89
CEDB_SEEK_CURRENT,88
CEDB_SEEK_END,88
CEDB_SEEK_VALUEFIRSTEQUAL, 89-90
CEDB_SEEK_VALUEGREATER,89
CEDB_SEEK_VALUENEXTEQUAL,89-90
CEDB_SEEK_VALUESMALLER, 89
CEDB_SORT_CASEINSENSITIVEflag, 77
CEDB_SORT_DESCENDING flag, 77
CEDB_SORT_GENERICORDERflag, 77
CEDB_SORT_UNKNOWNFIRST flag, 77
CeDeleteDatabase, 267
CeDeleteDatabaseEx,81-82
CeDeleteFile,264
CeDeleteRecord,91-92, 267
CEDIRINF0,99
CeEnumDBVolumes, 74-75
CEF (Common Executable Format), 9, 53
CEFILEINF0,99
CeFindAllDatabases, 266-67
CeFindAllFiles, 263,264-66
CeFindClose, 263, 264
CE_FIND_DATA, 266
CeFindFirstDatabase,267
CeFindFirstDatabaseEx,96-97
CEFindFirstFile, 263, 264
CeFindNextDatabase, 267
CeFindNextDatabaseEx,96-98
CEFindNextFile, 263,264
CeFlushDBVol, 73-74, 267

CeFreeNotification,96
CeGetClassName, 270
CeGetDesktopDeviceCaps, 270
CeGetFileAttributes, 264
CeGetFileSize, 264
CeGetFileTime, 264
CeGetLastError, 257, 270, 275
CeGetPlatformName, 268-69
CeGetSpecialFolderPath, 270
CeGetStoreinformation,270
CeGetSysteminfo, 270
CeGetSystemMetrics, 270
CeGetSystemPowerStatusEx, 270
CeGetTempPath,264
CeGetThreadPriority, 142
CeGetThreadQuantum, 140
CeGetUserNotificationPreferences, 181, 182
CeGetVersionEx, 270
CeGetWindow, 270
CeGetWindowLong, 270
CeGetWindowText, 270
CeGlobalMemoryStatus, 270
CEGUID data type, 72, 73, 75, 77, 81
CeHandleAppNotifications, 179
CEMountDBVol, 71-73, 77, 267
CeMoveFile, 264
CENOTIFICATION, 95-96
CE_NOTIFICATION_TRIGGER, 183
CENOTIFY routine, 94
CENOTIFYREQUEST,94-95
CEOID, 453, 461
CEOID oidDbase, 100
CeOidGetinf o, 264, 455, 457
CeOidGetinfoEx,98-99, 264
CEOIDINF0,98-99,457
CeOpenDatabase, 267
CeOpenDatabaseEx

changing database attributes, 99-100
database notifications, 96
object ID (OID), 82
opening and closing property databases, 79-81
RAPI, 267

CEOSVERSIONINF0,270
CEPROPID, 75, 76
cePropindex, 102
CEPROPVAL, 76,87
CERapiFreeBuffer, 263, 275
CeRapiGetError, 262, 263
CeRapiinit, 257, 258, 265
CeRapiinitEx, 257,258-59
CeRapiinvoke

blocking function, 271-75
stream function, 271, 276-82
writing own RAPI functions with, 263, 271-82

CeRapiUninit, 257, 261
CeReadFile, 264
CeReadRecordProps, 263, 267
CeReadRecordPropsEx, 84-91
CERECORDINFO, 99
CeRegCloseKey, 268
CeRegCreateKeyEx, 268
CeRegDeleteKey, 268
CeRegDeleteValue, 268
CeRegEnumKeyEx, 268
CeRegEnumValue, 268
CeRegOpenKeyEx, 268
CeRegQueryinf oKey, 268
CeRegQueryValueEx, 268
CeRegSetValueEx, 268
CeRemoveDirectory, 264
CERunAppAtEvent, 170, 175-76
CERunAppAtTime, 170, 171-72, 175
CeSeRkDatabasR, 88, 91, 92, 267
CeSetDatabaseinf o, 267
CeSetDatabaseinfoEx, 79, 99-100, 267
CeSetEndOfFile, 264
CeSetFileAttributes, 264
CeSetFilePointer, 264
CeSetFileTime, 264
CeSetThreadPriority, 141, 142
CeSetThreadQuantum, 140
CESetUserNotification, 170, 179-82
CESetUserNotificationEx, 170, 182-84
CeSHCreateShortcut, 270
CeSHGetShortcutTarget, 270
CeUnmountDBVol, 73, 267
CE_USER_NOTIFICATION *pceun, 183
CEVT_BLOB property data type, 87-88
CeWriteFile, 264
CeWriteRecordProps

deleting properties, 91-92
freeing data pointed to by lpb, 87
RAP!, 267
updating database records, 92-94
writing records in property databases, 83-84

CF cards. See Compact Flash (CF) cards
CG! (Common Gateway Interface), 187, 210
char, 12
char data type

for ANSI characters, 11, 14
for Unicode characters, 12

char FAR* buf, 225
Characters and character strings

ANSI, 11-12, 14-15
C common run-time string functions with generic

and Unicode equivalents, 15
calculating string buffer lengths, 14
Code Pages, 11

Index 483

converting between ANSI and Unicode strings,
14-15

generic string and character data types, 12
multi-byte character strings (MBCS), 11
single-byte character strings (SDCS), 12
standard string library functions, 14, 15
string constants, 13
Unicode, 11-15
wide-byte characters, 12

CHECK_INVALIDGUILD macro, 73
Checksum, 248-50, 255
CHECK_SYSTEMGUID macro, 75
C!Desktop, 450
C!Device, 449
Class identifiers. See CLSIDs (class identifiers)
Class Wizard, 368, 369, 371, 372
CloseHandle

CeRapiinvoke blocking function, 273
closing serial communications port, 245-46,

301
database notifications, 96
infrared and other serial communications de-

vices, 256
not used with Internet handles, 191
not used with TAP!, 304
process kernel object handles, 123
property databases, 80-81
'pseudohandle', 124
semaphores, 163
text files, 22, 24

closesocket, 231
CloseToolhelp32Snapshot, 143
Closing

files, 22, 24
property databases, 81
search of directory for files, 51-52
serial communications port, 245-46

CLSIDFromProgid, 339
CLS!Ds (class identifiers), 338, 339, 345, 354
cmd.exe, 261
CMemFile, 106
CMySerialClass, 106-7
cNamedArgs, 366
CoCreateinstance, 336, 338, 344-46, 347
CoCreateinterface, 337
Code Pages, 11
Code samples

on CDROM, 5, 9-11
error checking, 5, 16

cOidChg, 456
cOidDel, 456
CoinitializeEx, 343-44
COleDispatchDriver, 368-71, 372
ColumnsPtr, 419

484 Index

COM (Component Object Model), 335-58. See also

ActiveX and Automation
adding a contact, 352-53
BSTR data type, 346-47
calling COM functions, 346
calling Querylnterface, 350-52
characteristics, 335-36
compared with ActiveX, 335
components, 336, 339, 343-53
creating COM object, 344-46
creating recurring appointment, 356-58
definition, 335
finding contact's email address, 348-50
Globally Unique Identifiers (GUIDs), 338-39
handling errors, 340
HRESULT data type, 340
initializing and uninitializing COM, 343-44
Interface Definition Language (IDL), 340-41
interfaces, 336-38, 347-48
introduction, 335-36
IUnknown interface, 337-38
POOM (Pocket Office Object Model), 335, 338,

341-43
programmatic identifiers (ProgIDs), 339
registry, 339
releasing COM interfaces, 347-48
smart pointers, 353-56
Type Library Information (TLB), 341, 355

_com_issue_errorex, 415
CommandEnum,424
CommandEnumCommandType, 423
Comma-separated variable (CSV), 210
CommitTrans,442-43
Common Executable Format (CEF), 9, 53
Common Gateway Interface (CGI), 187, 210
COMMPROP, 256
CommReadThreadFunc, 243-45
COMMTIMEOUTS, 240
Communications. See Serial communications; TCP/IP

communications
Compact Flash (CF) cards

auto-run applications on, 53-54
enumerating, 54-55
insertion and removal of, 52-53
power management with, 328
processor values and associated constants, 53
as storage device, 45, 52
TCP/IP with, 185

Compact Flash slot
for Handheld PC, 4
for Pocket PC, 4

Compareltem, 472,473
Compilers, 12

Component Object Model. See COM (Component
Object Model)

Compressing files, 30, 37
_COM_SMARTPTR_TYPEDEF macro, 353-54, 414
Configuring serial communications port, 241-42
connect function, 222
CONNECTDLGSTRUCT, 64
Connecting

to secure sites, 201-5
Windows CE and GPS devices, 250

Connection: :Execute, 440-41
Connection interface for ADOCE, 413
_ConnectionPtr interface, 431
ConnectSocket, 221-24
const char FAR * buf, 224
const struct sockaddr FAR* name, 222
Constants

ANSI character string constant, 13
index flags, 76-77
processor values and associated constants for

Compact Flash cards, 53
seek constants, 88
seek type constants, 89-90
Unicode string constant, 13
wObj Type constant value meanings, 98-99

CONTEXT structure, 140-41
Continuous synchronization, 449
CopyFile, 32
Copying files, 32
CopyObject, 469, 471
CoUninitialize, 344
Counter. See Record counter
CREATE INDEX statement, 436-37
CREATE TABLE, 433-35,436
CREATE_ALWAYS

files, 36
property databases, 72

CreateAppointment, 357-58
CreateDirectory, 48-49
CreateEvent

event objects, 159-63
mini-applications with notification, 75

CreateFile
capabilities, 34-35
infrared and other serial communications devices,

255-56
mistake in using, 24
opening and configuring serial communications

port, 237-40, 241, 301
parameters, 36
read/write access control, 35
reading data from GPS device, 250-51
setting file attributes, 29, 37

share mode options, 35-36
TAP!, 301
text files, 22-24
writing structures to file, 33-34

CreateFileMapping, 40-41
CreateForFileMapping, 40
Createinstance, 354
CREATE_INVALIDGUID macro, 75
Createitem, 353, 357
CreateListener, 226-28
CreateMutex, 117, 156-58
CREATE_NEW

files, 36
property databases, 72

CreateProcess
CeRapiinvoke blocking function, 272-73, 275
creating process, 121-23, 124
mini-applications with notification, 173
terminating applications started with, 133

CreateSemaphore, 163-64
CREATE_SYSTEMGUID macro, 77, 80
CreateThread

creating thread for reading serial communications
port, 242-43

creating threads, 136-37
creating threads with event objects, 160

CreateToolhelp32Snapshot
enumerating threads, 143
listing running processes, 127-29

Creating
ADOCE/ADOXCE catalog (database), 416-18
ADOCE/ADOXCE table, 418-21, 433-35, 436
COleDispatchDriver-derived class, 368-71
database volumes, 71-73
directories, 47-48
indexes, 436-37
MSMQ private queues, 380-81, 382
new queue in MSMQ, 389-92
processes with CreateProcess, 121-23, 124
processes with RAP!, 260-63
processes with ShellExecuteEx, 124-25
property databases, 77-79, 99
property databases using MFC classes, 101-2
recurring appointment in COM, 356-58
threads, 136-37
threads for reading serial communications port,

242-43
threads with event objects, 160-63
threads with MFC, 144

Creating file mapping, 41
Creating files, 23-24, 33-38

new files, 35, 36
parameters, 36

Index

read/write access control, 35
setting attributes, 29

485

share mode options, 35-36
Creation time of files, 25
Critical memory, 324
Critical sections and thread synchronization, 151-54
CRITICAL_SECTION, 152-54
csocket, 211
CSocketFile, 211
CSV (comma-separated variable), 210
Ctrl+T key sequence, to generate _T sequence, 13
Current directory, 45
Cursors

adding records to ADOCE/ADOXCE table, 424
and peeking messages in MSMQ, 398-401

CursorTypeEnum, 424
CursorTypeEnumCursorType, 423
CWinThread, 144

v D
Data

organization in ActiveSync, 453
reading data from communications port, 243-45
reading data from GPS device, 250-55
sending and receiving data via TAP!, 303-4
storage on desktop and ActiveSync, 463

Data Definition Language (DDL), 433-37
Data Manipulate Language (DML), 433
Database volumes

creating and mounting, 71-73
definition of, 71
flushing, 73-74
listing mounted database volumes, 74-75
unmounting, 73

Databases. See ADOCE/ADOXCE and SQL Server;
Property databases

DB.CPP, 454, 455
dbt . h file, 52
DBT_DEVICEARRIVAL message, 53
DBT_DEVICEREMOVECOMPLETE message, 53
DCB structure, 241, 250, 256
DCBlength, 242
DCOM (Distributed COM), 374
DDL (Data Definition Language)

CREATE INDEX statement, 436-37
CREATE TABLE, 433-35,436
desktop DDL, 448
DROP TABLE statement, 435
identities and primary keys, 435-36
statements supported, 433

Dead state of power, 329
Deadlocks, avoiding, 149, 151

486 Index

_DEBUG define, 16
DECLARE_SERIAL macro, 105
#define, 12
Define _DEBUG, 16
Define _MBCS, 12, 13
Define _UNICODE, 12, 13
DEFINE_GUID macro, 338
DELETE statement in SQL, 432
DeleteCriticalSectio~ 152, 153
DeleteFile, 32-33
DeleteObj, 477
DeleteObject, 458, 462
Deleting

ADOCE/ADOXCE records, 432-33
ADOCE/ADOXCE table, 422
directories, 48-49
files, 32-33
properties, 91-92
properties in property databases using MFC

classes, 104
property databases, 81-82
records .in property database, 92
records in property databases using MFC classes,

104
registry key, 113
registry value, 112-113

Desktop PC. See also ActiveSync on desktop provider
ActiveSync, 55, 448, 457, 459, 462-77
calling CeRapiinvoke from, 271, 274-75
code samples mnning on, 11
Distributed COM (DCOM), 374
Pocket PC emulation environment mnning on, 9
property database access from, 70
RAP! stream function, 279-82
RAP! used with, 211
Remote Access Services (RAS), 305
Remote Registry Editor, 107
serial communication, 236
socket programming not used with, 211
testing serial communications, 247

Detach function, 356
Device synchronization in ActiveSync, 447-48
DEVICELIST, 234
DGPS (Differential GPS), 248
Dialog box, 63-65
Dialup Network (DUN), 211
Differential GPS (DGPS), 248
Directories

closing search handle, 51-52
creating, 47-48
"current directory" concept, 45
deleting, 48-49
finding next file, 51

finding specified file in current directory, 50-51
listing contents, 49-50
in Object Store, 45
OID for, 45
setting file as directory, 30, 37
traversing directory trees, 49-52

DisableThreadLibraryCalls, 169
DISCDLGSTRUCT, 65, 66
Disconnecting

network connections, 62-63
network connections with dialogs, 64-65
network printer, 66

DISPID dispidMember, 366
Dispids, 360
Dispinterface, 359-60
DisplaySocketError, 226
DisplayVersion, 364-65
DISPPARAMS, 365-67
DISPPARAMS FAR# dDispParams, 366
Distributed COM (DCOM), 374
DLL_PROCESS_ATTACH, 167-68
DLL_PROCESS_DETACH, 167-69
DLLs (Dynamic Link Libraries)

ActiveSync, 450-51, 453
CeRapiinvoke, 271-73
processes, 121, 130, 132
RAP! stream functions, 276-79
TAP! and, 285
terminating threads, 138
Thread Local Storage (TLS), 138, 165-69
thread synchronization, 165-69
ThreadTimes, 144
TLS data in, 166-68
type library information, 355

DLL_THREAD_ATTACH, 166-69
DLL_THREAD_DETACH, 166-69
DML (Data Manipulate Language), 433
DNS (Domain Name Server), 186, 376-79
'do' loop, 291
Do/while loop, 90-91
Domain Name Server (DNS), 186, 376-79
Dot notation for IP addresses, 214
DROP TABLE statement, 435
Dropping. See also Deleting

ADOCE/ADOXCE table, 422, 435
RAS Connection, 310

. dsp extension, 8

. dsw extension, 8
DUN (Dialup Network), 211
DuplicateHandle, 123
DVD storage device, 52
dwCheckSum, 255
dwDbaseType values, 96-97

dwDialableStringOf f set, 296
dwLen, for calculating string buffer lengths, 14
DWORD cbinput, 273, 275
DWORD cbSize, 125
DWORD cntThreads, 129
DWORD dwAccess, 385
DWORD dwAccessType, 189
DWORD dwAction, 393
DWORD dwAddressID, 301
DWORD dwAPIHighVersion, 288
DWORD dwAPILowVersion, 288
DWORD dwAPIVersion, 290, 293, 295
DWORD dwBearerModes, 292
DWORD dwBuf f erLength, 205
DWORD dwCallbackinstance, 293
DWORD dwCard, 295
DWORD dwClsContext, 345
DWORD dwContext, 190, 196, 197
DWORD dwCountryCode, 297
DWORD dwCreationFlags, 137, 260
DWORD dwDeviceID, 288, 290, 293, 295
DWORD dwError, 203
DWORD dwEvent, 183
DWORD dwExtVersion, 290, 293
DWORD dwFlags

ActiveSync, 459
database volumes, 72, 73
HttpOpenRequest, 197
InternetCanonicalizeUrl, 206
InternetConnect, 196
InternetCrackURL, 195
InternetErrorDlg, 203
InternetOpen, 189
InternetOpenUrl, 190
RAP!, 266
sort orders, 76-77

DWORD dwHeadersLength, 190, 198, 209
DWORD dwinfoLevel, 205
DWORD dwLineNarneOffset, 291, 292
DWORD dwLineNarneSize, 292
DWORD dwMaxRate, 292
DWORD dwMediaMode, 292
DWORD dwMediaModes, 293
DWORD dwMilliseconds, 126, 155
DWORD dwModifiers, 209
DWORD dwNeededSize, 289-90, 292
DWORD dwNurnberOfBytesToRead, 191
DWORD dwOption, 205
DWORD dwOptionalLength, 198
DWORD dwPrivileges, 293
DWORD dwReserved, 275
DWORD dwSelect, 301
DWORD dwService, 196

DWORD dwShareMode, 385
DWORD dwSize, 129, 131, 183
DWORD dwStackSize, 137
DWORD dwTirneout, 393

Index

DWORD dwTotalSize, 292, 302
DWORD dwTranslateOptions, 295
DWORD dwType, 183
DWORD dwUrlLength, 195
DWORD dwUsedSize, 289-90, 292
DWORD gh32MernoryBase, 129
DWORD GlblcntUsage, 131
DWORD rnodBaseSize, 131
DWORD nCount, 155
DWORD NotifierType, 308
DWORD *pcbOutput, 273, 275
DWORD ProccntUsage, 131
DWORD ReadintervalTirneout, 240

487

DWORD ReadTotalTirneoutConstant, 240-41
DWORD ReadTotalTirneoutMultiplier, 240-41
DWORD ReplySize, 219
DWORD Return Value

InternetErrorDlg, 203
ping function, 219
Remote Access Services (RAS), 305, 307, 308, 311
WaitForMultipleObjects, 155
WaitForSingleObject, 126

DWORD th32ProcessID, 129, 131
DWORD Timeout, 219
DWORD values, 123, 127, 131-32, 166
DWORD WriteTotalTirneoutConstant, 240-41
DWORD WriteTotalTirneoutMultiplier, 240-41
dwProcessid, 122
dwSeekType, 88, 89
dwSentenceCheckSurn, 255
dwStringOffset, 303
dwThreadid, 122
Dynamic Link Libraries. See DLLs (Dynamic Link

Libraries)
Dynamic TLS, 168-69

v E

Email address, finding, 348-50
eMbedded Visual C++, 6-8, 442
Emulation environments

cautions about using, 9
FormatMessage function, 16
for testing and debugging applications, 9
testing serial communications under, 247

Encrypted files, setting, 30, 37
Ending. See Canceling; Disconnecting; Terminating
EnterCriticalSection, 152-53
EnurnerateResources, 59

488 Index

Enumerating. See also Listing
Compact Flash (CF) cards, 54-55
IrDA devices, 232-34
network resources, 56-61
RAS phone book entries, 305-6
registry key, 112, 113-17
tables in catalog, 421
TAPI devices, 288-92

Error checking, 5, 16
ERROR_CANCELLED, 203
ErrorHandler, WNet errors, 61
ERROR_INTERNET_FORCE_RETRY, 203
Errors

ADOCE/ADOXCE, 440-42
in applications, 18
COM (Component Object Model), 340, 354, 355
copying files, 32
correcting authentication errors with Internet

ErrorDlg, 203
correcting authentication errors with Internet-

SetOption, 204-5
CreateFile, 24
creating catalog (database) on SQL Server, 417
database volumes, 73
deleting files, 32
description, 16
exception handling, 17
finding files, 51
MSMQ, 393
network user names, 67
number, 16
page faults, 16-17
RAPI errors, 259-60, 262, 273, 275, 279
reading data from serial communications port, 245
Remote Access Services (RAS), 305
Winsock errors, 213

ERROR_SUCCESS, 203
EscapeCommFunction, 256
EV_BREAK, 245
EV_CTS, 245
EV_DSR, 245
Event objects, 158-63, 165
EV_ERR, 245
EV _RING, 245
EV_RLSD, 245
EV_RXCHAR, 243, 245
EV_RXFLAG, 245
EV_TXEMPTY, 245
examples directory, 9
examples.exe,9-10, 173-75
examples.vcp,9
EXCEPINFO FAR* pExcepinfo, 366
_except block, 17
Exception handling, 17

EXCEPTION_EXECUTE_HANDLER constant, 17
Exclusive use of file, 35
Execute function, 432-33
ExecuteSQL,434
Execution times, threads, 144
Exit codes

processes, 127
threads, 137-38

ExitProcess, 127
ExitThread, 137-38
Explorer

creating directories, 48
DLLs not listed in, 273

Extensible Markup Language (XML), 210

F
FAF_ATTRIB_CHILDRED, 265
FAF_ATTRIB_NO_HIDDEN, 265
FAF_CREATION_TIME, 266
FAF_FOLDERS_ONLY, 266
FAF_LASTACCESS_TIME, 266
FAF_LASTWRITE_TIME,266
FAF_NAME, 266
FAF_NO_HIDDEN_SYS_ROMMODULES, 266
FAF _OID, 266
FAF_SIZE_HIGH, 266
FAF_SIZE_LOW, 266
FAILED macro, 340
FAT files, time information, 26
FAT storage device, 52
fDtrControl, 242
Fields collection and objects in ADOCE, 413
FieldsPtr::Getitem,429
FieldsPtr: :GetValue, 429
File mapping, 38-44

creating and naming mapping, 41
flushing changes in view to Object Store, 44
loading into memory, 41
opening file for mapping, 40
in read-only mode, 39-40
releasing view and writing changes back to file, 42
setting end of file to current file position, 43-44
writable file mapping, 42-43

File pointer, moving, 36, 38
File Transfer Protocol (FTP), 210
FILE_ATTRIBUTE_ARCHIVE, 30, 37
FILE_ATTRIBUTE_COMPRESSED, 30, 37
FILE_ATTRIBUTE_DIRECTORY, 30, 37
FILE_ATTRIBUTE_ENCRYPTED, 30, 37
FILE_ATTRIBUTE_HIDDEN, 30, 37
FILE_ATTRIBUTE_INROM, 30, 37
FILE_ATTRIBUTE_NORMAL, 30, 37
FILE_ATTRIBUTE_OFFLINE, 30, 37

FILE_ATTRIBUTE_READONLY, 30, 37
FILE_ATTRIBUTE_REPARSE_POINT, 30, 37
FILE_ATTRIBUTE_ROMMODULE, 30, 37
FILE_ATTRIBUTE_ROMSTATICREF, 30, 37
FILE_ATTRIBUTE_SPARSE_FILE, 30, 37
FILE_ATTRIBUTE_SYSTEM, 30, 37
FILE_FLAG_RANDOM_ACCESS, 30, 37
FILE_FLAG_SEQUENTIAL_SCAN, 30, 36, 37
FILE_FLAG_WRITE_THROUGH, 30, 37
Files

all file information, 30-32
attributes, 28-30, 37
compressed, 30, 37
content type of text file, 20-22
copying, 32
creating, 23-24, 33-38
definition, 20
deleting, 32-33
file mapping, 38-44
finding specified file in current directory, 50-51
hidden files, 20, 30, 37
manipulation with RAPI, 263-66
moving, 32
in Object Store, 45
OID for, 45
opening and reading from, 20-24, 35
operations, 32-33
overview, 19-20
read/write access control, 35
reading and writing, 33-38
read-only files, 20, 30, 37
size, 26-28
of structures, 21
text files, 21
time information, 25-26
writing and reading, 33-38

FILE_SHARE_READ, 35
FILE_SHARE_READ I FILE_SHARE_WRITE, 35
FILE_SHARE_WRITE, 35
FILETIME, 26, 276-77, 279, 282, 458-59
FileTimeToLocalTime, 26
FileTimeToSystemTime, 26
FindClose, 51-52
FindFirstFile

finding files in directory, 50-51
network user names, 67

FindFirstFlashCar~ 54-55
FindFirstitem,468-69
Finding, files, 50-52
FinditemClose, 468, 469
FindNextFile

finding files in directory, 51
network user names, 67

FindNextFlashCard, 55

FindNextitem, 468-69
FindObjects, 453
FindWindow, 132-33
finX, 242
Flags

ActiveSync, 456, 459

Index 489

Automation properties, 366
CE_USER_NOTIFICATION ActionFlags values,

181
constants for index flags, 76-77
dwFlags and database volumes, 72, 73
dwFlags and sort orders, 76-77
files, 36
getting TAPI line device capabilities, 292
heap-based memory allocation, 321
HttpOpenRequest, 197
index flags, 76-77
InternetConnect, 196
InternetCrackUrl, 195
InternetErrorDlg, 203
InternetOpen, 189
InternetOpenUrl, 190
opening property databases, 85, 86
power management, 330
property database creation, 79
RAPI file and folder manipulation, 265-66, 266
recv function, 225
send function, 224

FLAGS_ERROR_UI_FILTER_FOR_ERRORS, 202
FLAGS_ERROR_UI_FLAGS_CHANGE_OPTIONS, 202
FLAGS_ERROR_UI_FLAGS_GENERATE_DATA, 202
Flushing, database volumes, 73-74
FlushViewOfFile, 43-44
Folders

ActiveSync, 446, 467-69
manipulation with RAPI, 263-66

'for' loop, 421, 439
Foreground boosting, 142
FormatMessage function, 16
fOutsCtsFlow, 242
fOutX, 242
fOutxDsrFlow, 242
FRead, 459
Free space, in Object Store, 46-47
FreeObject, 469, 470-71
fRtsControl, 242
FTP (File Transfer Protocol), 210

v G
Garmin GPS 48 device, 248, 250-51
Generic string data types, Unicode, 12
Generic string function, 15
GENERIC_READ, 35

490 Index

GENERIC_WRITE, 35
GET verb, 196, 208
GetActiveConnection, 417
GetA_EOF, 428-29
GetColumns, 419
GetCommPort, 304
GetCommProperties, 256
GetCommState, 237, 241-42
GetConnection, 431-33
GetCurrentProcessid, 123-24, 129-30
GetCurrentThread, 140, 142
GetDiskFreeSpaceEx, 46-47
GetEOF, 429
GetExceptionCode, 441
GetExitCodeProcess, 127
GetExitCodeThread, 137-38
GetFileAttributes, 28-29, 37
GetFileinformationByHandle, 30-32, 51
GetFileName, 11
GetFileSize, 26-28
GetFileTime, 25-26
GetFolderinfo, 467
gethostbyname, 215-17, 228
GetIDsofNames, 362
GetinterfacePtr, 356
GetLastError

dosing communications port, 245
copying files, 32
creating files, 24
database volumes, 73
deleting files, 32
event objects, 163
finding files, 51
mutex objects, 158
network user names, 67
not used with Winsock errors, 213
opening serial communications port, 237-38
purpose of, 16
RAPI errors, 259-60, 262, 273
semaphores, 164
WNet errors, 61

GetLocalTime, 171
GetModuleFileName, 131
GetNextCounterValue, 117-18
GetNextToken, 253-55
GetObjTypeinfo, 447, 456-57
GetPacket, 458, 460-61, 475-76
GetProcessHeap, 321
getsockopt, 232, 234
GetStoreinfo, 465-66
GetStoreinformation, 47
GetSysteminf o, 315-16
GetSystemPowerStatusEx2, 330-33

GetTables, 417
GetTempFileName, 35
GetTextResponse, 10-11
GetThreadContext, 140
GetThreadTimes, 276-77
GetTickCount, 139, 329
GetUserDefaultLCID, 362
GetValue, 439
GetVersionEx, 326-27
Global memory allocation, 318
Global Positioning System. See GPS (Global Positioning

System)
Globally Unique Identifiers (GUIDs), 72, 338-39
GlobalMemoryStatus, 317-18
GMT (Greenwich Mean Time), 26
GPS (Global Positioning System)

connecting Windows CE and GPS devices, 250
DGPS (Differential GPS), 248
Garmin GPS 48 device, 248, 250-51
with mobile devices, 2-3
NMEA (National Marine Electronics Association)

0183 standard, 248-50
overview, 247-48
parsing RMC sentence, 253-55
reading data from GPS device, 250-55
RMC sentence, 249-50, 253-55
serial communications and, 236, 247-55

GPSReadThreadFunc, 251-53
Greenwich Mean Time (GMT), 26
GSM mobile phone connections, for Pocket PC, 4
GSM phone, 2
GUIDs (Globally Unique Identifiers), 72, 338-39

v H
Handheld PC

description of, 1, 3, 4-5
memory management, 324
Windows CE versions for, 4

HANDLE #lpHandles, 155
HANDLE dHandle, 126
HANDLE hCursor, 393
HANDLE hHandle, 155
HANDLE hMutex, 157
HANDLE hNotif ication, 180, 183
HANDLE hSemaphore, 164
HANDLE IcmpHandle, 219
HANDLE Return Result, 190
HANDLE Return Value

event objects, 159
HttpOpenRequest, 197
InternetConnect, 196
mutex objects, 156

semaphores, 164
terminating threads, 137
user notification, 180, 183

HCALL hCall, 301
'HCR', 107
'HCU', 107
HeapAlloc, 323
Heap-based memory allocation

creating heaps, 320-22
description, 319-20
using heaps with C++ classes, 322-23

HeapCreate, 321
HeapDestroy, 322
HeapFree, 321
HeapRealloc, 322
HeapSize, 321
HEAP_ZERO_MEMORY, 321
Hibernation, 324, 325
Hidden files, setting, 20, 30, 37
HINSTANCE hinstance, 286
HINTERNET hFile, 191
HINTERNET hHttpRequest, 209
HINTERNET hHttpSession, 197
HINTERNET hinternet, 189, 196, 205
HINTERNET hinternetSession, 190
HINTERNET hRequest, 198, 203, 205
HKEY_CLASSES_MACHINE, 107, 109
HKEY_CLASSES_ROOT, 107, 339
HKEY_CURRENT_USER, 107, 452
HKEY_LOCAL_MACHINE

DNS entries in MSMQ, 378-79
infrared and other serial communications devices,

255, 256
RAPI, 268
registry, 107, 113
TAPI, 286

HLed.H, 177
BLINE handle, 293, 300
HLINE hLine, 297, 301
HLINEAPP handle, 286
HLINEAPP hLineApp, 288, 290, 293, 295
'HLM', 107
HMODULE hModule, 131
Host name, determining, 215-17
hProcess, 122
HRASCONN, 308, 310
HREPFLD, 446, 448
HREPLFLD

folder information and manipulation, 467
manipulation, 469-72
representing, 462-63

HREPLITEM
definition, 446

Index

implementing desktop synchronization, 448
iterating items in folder, 468
manipulation, 469-72
representing, 462-63
synchronization, 472-74

HRESULT data type, 340
HRESULT Return Value

ADOCE/ADOXCE, 423
Automation methods, 366
CERapiinvoke, 275
creating new queue for MSMQ, 390
Queryinterf ace, 351
reading MSMQ messages from queue, 393
sending MSMQ messages, 385

hThread, 122
HTML, 187
htonl, 226
htons, 226
HTTP protocol, 187-210

491

authentication with InternetErrorDlg, 202-3
authentication with InternetSetOption, 204-5
complex HTTP requests using a session, 193
connecting to secure sites, 201-5
connecting to server with InternetConnect,

195-96
function-calling sequence, 193, 194
initializing Internet Function Library with Inter

netOpen, 188-89
making HTTP request using a session, 192
making HTTP request with InternetOpenUrl,

190
making request with HttpSendRequest, 197-

200
obtaining request handle with Ht tpOpenReques t,

196-97
posting data to server, 208-10
with proxy server, 200-201
Remote Access Services (RAS) and, 305
retrieving data with InternetReadFile, 190-91
sending data to server, 205-6
sending data with URL, 206-8
simple HTTP requests, 187-88
summary, 210
tidying up with InternetCloseHandle, 191-92
URL with InternetCrackUrl, 193-95

HttpAddRequestHeaders, 209-10
HttpOpenRequest, 193, 196-97
HttpQueryinfo, 204-5
HttpSendRequest

making request with, 193, 197-200
with POST verb, 208-9

HWND hwnd, 125, 203
Hyperterminal, 247

492 Index

., I

IAppointment, 342, 356, 357
ICity, 342
ICMP (Internet Control Message Protocol), 217
IcmpCloseHandle, 217, 219
IcmpCreateFile, 217-18
ICMP_ECHO_REPLY, 219-20
IcmpSendEcho,217-20
IContact, 342, 349, 352
Identifiers

ActiveSync items, 446
CEOID, 453, 461
CLS!Ds (class identifiers), 338, 339, 345, 354
GU!Ds (Globally Unique Identifiers), 72, 338-39
IID (Interface Identifier), 338, 345
OID (Object ID) for Object Store, 45, 70, 81, 82,

83, 92
processes, 122-24, 144
programmatic identifiers (ProgIDs), 339, 423
threads, 144

IDENTITY KEY,435-36
IDispatch, 350,359
IDispatch interface pointer, 360-62, 372-73
TDL (Interface Definition Language), 340-41, 414
Idle state of power, 329-30
IExceptions, 342
#ifdef I #endif compiler directives, 16
IFolder, 342
IID (Interface Identifier), 338, 345
Implementing

ActiveSync desktop provider, 462-77
ActiveSync Windows CE device provider, 453-62
record counter using registry, 117-18

IMPLEMENT_SERIAL macro, 105
Index flags, 76-77
Indexes, 436-37
inet_addr, 214, 222, 226
inet_ntoa, 214-15
Infrared data association (IrDA) socket communications

enumerating IrDA devices, 232-34
opening IrDA socket port, 234-35
overview, 232

Infrared devices, for serial communications, 255-56
InitializeCriticalSection, 152
InitializeTAPI, 287
Initializing. See also Opening

COM, 343-44
Internet Function Library with InternetOpen,

188-89
IReplStore, 464-65
Remote AP! (RAP!), 258-59

TAP!, 286-87
Winsock library, 213

InitObjType, 447, 454
InProcServer32 value key, 339
INSERT statement, 433, 437-40, 442
Inserting, storage card, 52-53
Installing

int
int
int
int
int
int
int
int
int

ActiveSync, 450-52
MSMQ, 376-84
SQL Server, 413
*addrlen, 231
af, 222
flags, 224, 225
how, 231
len, 224, 225
namelen, 222
nShow, 125
protocol, 222
Return Value
connect function, 222
recv function, 225
send function, 224
shutdown function, 231
WaitCreateProcess, 273
WSAStartup, 213

int type, 222
Integer byte ordering, 225-26
Integrated Services Digital Network. See ISDN (Inte-

grated Services Digital Network)
Intel PCs and socket programming, 225-26
Interface Definition Language (IDL), 340-41, 414
Interface Identifier (IID), 338, 345
Interfaces

Automation Dispinterface, 359-60
Catalog interface for ADOXCE, 413
COM (Component Object Model), 336-38, 347-

48
Connection interface for ADOCE, 413
_ConnectionPtr interface, 431
definition, 336-37
IDispatch interface pointer, 360-62
IReplNot ify interface, 449
IReplObjectHandler COM interface, 448, 453,

454, 457-62
IReplObjHandler COM interface, 474-77
IReplStore COM interface, 448, 463-66
IUnknown interface, 337-38
POOM (Pocket Office Object Model), 341-43,

360-61
Recordset interface for ADOCE, 413
releasing COM interfaces, 347-48
Tables interface for ADOXCE, 413

Interlocked functions, thread synchronization, 154
InterlockedDecrement, 154
InterlockedExchange, 154
Interlockedincrement, 154
Internet access. See also other headings beginning with

Internet
Pocket Internet Explorer, 3, 4
with TCP/IP, 185

Internet Control Message Protocol (ICMP), 217
Internet Function Library

function-calling sequence, 193, 194
initializing, 188-89
InternetCloseHandle, 188-89, 191-92, 193
InternetConnect, 191, 193, 195-96
InternetCrackUrl, 193-95
InternetErrorDlg, 202-3
InternetOpen, 188-89, 193, 200-201
InternetOpenUrl, 188, 190
InternetReadFile, 188, 190-91, 193, 203
InternetSetOption, 204-5

Internet Information Server, 187
Internet Protocol. See IP (Internet Protocol)
Internet Service Provider (ISP), 284, 304
InternetCanonicalizeUrl, 206
InternetCloseHandle, 188-89, 191-92, 193
InternetConnect, 191, 193, 195-96
InternetCrackUrl, 193-95
InternetErrorDlg, 202-3
InternetOpen

complex HTTP requests using a session, 193
initializing Internet Function Library, 188-89
proxy server, 200-201
sending data with URL, 206

InternetOpenUrl
making HTTP request, 188, 190
sending data with URL, 206-7
using multiple times, 191

INTERNET_PORT nServerPort, 196
InternetReadFile

authentication with InternetErrorDlg, 203
complex HTTP requests using a session, 193
retrieving data with, 188, 190-91
sending data with URL, 207

InternetSetOption, 204-5
Invoke function, 365, 366
InvokeHelper, 371
IP (Internet Protocol), 186
IP addresses

binary form, 214
definition, 186
determining a device's IP address and host name,

215-17

dot notation, 214
manipulating, 214-15
MSMQ, 377-78, 379

Index

socket client application, 222
string form, 214-15

IP Network, and MSMQ, 379-80
IPADDr DestinationAddress, 219
IPOitems, 342
IPOlitems, 350, 351
IPOlRecipient, 342
IPOutlookApp, 346-48, 353-56, 362, 370-73
IPOutlookAppAllows, 342

493

IPOutlookAppPtr, 353-54, 358
IPOutlookitemCollection, 342, 348, 350, 352-53
IRAPIStream, 276, 279, 282
IRAPIStream **ppIRAPIStream, 275
IrDA (infrared data association) socket communica-

tions, 232-35
irdaDeviceID, 234
IRDA_DEVICE_LIST, 232-34
irdaServiceName, 234
IRecipients, 342
IRecurrencePattern, 342, 357, 358
IReplNotify interface, 449
IReplObj ectHandler COM interface, 448, 453, 454,

457-62, 467
IReplObjHandler COM interface, 474-77
IReplObjHandler: :DeleteObj, 462, 477
IReplObjHandler: :GetPacket, 460-61, 475-76
IReplObjHandler: :Reset, 460, 475
IReplObjHandler: :SetPacket, 461, 476-77
IReplObjHandler: :Setup, 459, 474-75
IReplStore COM interface, 448, 463-74
IReplStore: :BytesToObject, 469,470
IReplStore: :Compareitem, 472,473
IReplStore: :CompareStoreIDs, 466
IReplStore: :CopyObject, 469, 471
IReplStore: :FindFirstitem, 468-69
IReplStore: :FinditemClose, 469
IReplStore: :FindNextitem, 468-69
IReplStore: :FreeObject,469, 470-71
IReplStore: :GetFolderinfo, 467
IReplStore: :GetStoreinfo, 465-66
IReplStore: :Initialize, 464-65
IReplStore::IsFolderChanged, 467
IReplStore: :IsitemChanged, 472, 473-74
IReplStore: :IsitemReplicated, 472, 474
IReplStore: :IsValidObject, 469, 471-72
IReplStore::ObjectToBytes, 469, 470
IRLMP_ENUMDEVICES, 232, 234
ISDN (Integrated Services Digital Network), 285
IsFolderChanged, 467

494 Index

IsiternChanged, 472, 473-74
IsiternReplicated, 472,474
ISP (Internet Service Provider), 284, 304
IsValidObject,469,471-72
ITask, 342
ITirneZone, 342
IUnknown interface, 347, 348
IUnknown pointer, 362

w K

Kernel objects
event objects, 158-63, 165
handles for process, 122-24
mutex objects, 156-58, 165
signaled and nonsignaled states, 125

keybd_event, 330, 334
KEYEVENTF_SILENT, 330

v L

L macro, for Unicode string constant, 13, 261
LAN (Local Area Network)

TCP/IP with, 185
timeouts, 232

Last Access time, files, 25-26
Last Write time, files, 25-26
LCID lcid, 366
LeaveCritical Section, 152, 153
LEDs

determining capabilities, 178-79
manually controlling, for notifications, 177-79
toggles blinking status, 1 79

Length of string buffer, calculating, 14
Line callback function, 298-300
Line devices and TAP!, 285
Line initialization, TAP!, 286-88
LINECALLBACK lpfnCallBack, 286
lineCallBackFunc, 287, 293, 298-300
LINECALLSELECT, 301
LINECALLSTATE, 298-99, 300
JineClose, 293, 300, 304
lineDeallocateCall, 293, 300
LINEDEVCAPS, 289, 291-92
LINEDISCONNECTMODE_BUSY, 299
lineDrop, 293
lineGetDevCaps, 288, 289-91
lineGetID, 301, 302, 303
lineinitialize, 286-87, 288, 297, 298
lineMakeCall, 292, 296-98
lineNegotiateAPIVersion, 288-89
lineOpen, 292, 293
lineShutdown, 287-88

lineTranslateAddress, 294-96
LINETRANSLATEOUTPUT, 294-95
LINGER structure, 231-32
Lingering, socket programming, 231-32
ListDirectoryContents, 49-50
listen function, 228
Listing3_4, 160-63
Listing6_3, 160
Listing. See also Enumerating

all records in property databases with given
value, 90-91

Compact Flash (CF) cards, 54-55
database information, 96-99
files in root folder, 263, 264-66
mounted database volumes, 74-75
network connections, 67-69
network resources, 56-61
RAS phone book entries, 305-7
running processes, 127-29
running threads, 143
tables in catalog, 421
TAPI devices, 288-89

Local Area Network. See LAN (Local Area Network)
LocalAlloc, 319
LocalFree, 319
LockTypeEnurn,424
LockTypeEnumLockType, 423
Logoff function, 347-48
LONG linitialCount, 164
LONG lMaximumCount, 164
LONG lReleaseCount, 164
LONG Return Value

getting TAP! line device capabilities, 290
making TAP! call, 297
negotiating TAP! version, 288
obtaining TAP! communications port handle, 301
TAPI line initialization and shutdown, 286
translating telephone number, 295

Low memory, 324-25
LPBOOL lpf Password, 307
lpbStoreid, 466
LPCSTAR lpFile, 125
LPCSTAR lpParameters, 125
LPCSTAR lpVerb, 125
LPCTSTAR lpName, 156
LPCTSTR *lplpszAcceptTypes, 197
LPCTSTR lpszAddressin, 295
LPCTSTR lpszAgent, 189
LPCTSTR lpszAppName, 286
LPCTSTR lpszDestAddress, 297
LPCTSTR lpszDeviceClass, 301
LPCTSTR lpszHeaders, 190, 198, 209
LPCTSTR lpszObjectNarne, 197

LPCTSTR lpszPassword, 196
LPCTSTR lpszProxy, 189
LPCTSTR lpszProxyBypass, 189
LPCTSTR lpszReferrer, 197
LPCTSTR lpszServerName, 196
LPCTSTR lpszUrl, 190, 195, 206
LPCTSTR lpszUserName, 196
LPCTSTR lpszVerb, 197
LPCWSTR lpApplicationName, 260
LPCWSTR lpCommandLine, 260
LPCWSTR lpwcsFormatName, 385
LPCWSTR pDllPath, 275
LPCWSTR pFunctionName, 275
LPCWSTR szPath, 266
LPDWORD lpcb, 305, 311
LPDWORD lpcConnections, 311
LPDWORD lpcEntries, 305
LPDWORD lpdwAPIVersion, 288
[,PDWORD lpdwBufferLength, 205, 206
LPDWORD lpdwFormatNameLength, 390
LPDWORD lpdwFoundCount, 266
LPDWORD lpdwindex, 205
LPDWORD lpdwNumberOfBytesRead, 191
LPDWORD lpdwNumDevs, 286
LPDWORD lpThreadid, 137
LPHCALL lphCall, 297
LPHLINE lphLine, 293
LPHLINEAPP lphLineApp, 286
LPHRASCONN pRasConn, 308
LPLINECALLPARAMS const lpCallParams, 293, 297
LPLINEDEVCAPS lpLineDevCaps, 290
LPLINEEXTENSIONID lpExtensionID, 288
LPLINETRANSLATEOUTPUT lpTranslateOutput,

295
LPLPCE_FIND_DATA ppFindDataArray, 266
LPOVERLAPPED lpOverlapped, 393
LPPROCESS_INFORMATION lpProcessinformation,

260
LPQUEUEHANDLE phQueue, 385
LPRASCONN lprasconn, 311
LPRASDIALEXTENSIONS dialExtensions, 308
LPRASDIALPARAMS lpRasDialParams, 307
LPRASDIALPARAMS rasDialParam, 308
LPSECURITY_ATTRIBUTES lpMutexAttributes,

156, 159, 164
LPSECURITY_ATTRIBUTES lpProcessAttributes,

260
LPSECURITY_ATTRIBUTES lpThreadAttributes,

137, 260
LPSTARTUPINFO lpStartupinf o, 260
LPSTR data type, 12
lpThreadinf o, 160
LPTHREAD_START_ROUTINE lpStartAddress, 137

Index

LPTSTR data type, 12-13
LPTSTR lpName, 159, 164
LPTSTR lpszBuffer, 206
LPTSTR phoneBookPath, 308
LPUNKNOWN pUnkOuter, 345
LPURL_COMPONENTS lpUrlComponents, 195
LPVARSTRING lpDeviceID, 301
LPVOID lpBuffer, 190, 191, 205
LPVOID lpEnvironment, 260
LPVOID lpOptional, 198
LPVOID lpParameter, 137
LPVOID *lppvData, 203
LPVOID notifier, 308
LPVOID *ppv, 345
LPVOID ReplyBuffer, 219
LPVOID RequestData, 219
LPWSADATA lpWSAData, 213
LPWSTR data type, 13
LPWSTR lpCurrentDirectory, 260
LPWSTR lpszPhoneBook, 307
LPWSTR lpszPhoneBookPath, 305
LPWSTR lpwcsFormatName, 390
LPWSTR Reserved, 305

v M
Macros

CHECK_INVALIDGUILD, 73
CHECK_SYSTEMGUID, 75
_COM_SMARTPTR_TYPEDEF, 353-54
CREATE_INVALIDGUID, 75
CREATE_SYSTEMGUID, 77,80

495

Ctrl+T key sequence to generate _T sequence,

13
DECLARE_SERIAL, 105
DEFINE_GUID, 338
FAILED, 340
IMPLEMENT_SERIAL, 105
L macro for Unicode string constant, 13, 261
MAKEWORD, 15
SUCCEEDED, 258
SUCCESS, 340
_T macro for Unicode string constant, 13
VB Script for, 13

MakeCall, 293-98
MAKEWORD macro, 15
Manual-reset events, 159
Mapping. See File mapping

MapViewOfFile, 41-42
_MBCS define, 12, 13
MBCS (multi-byte character strings), 11
mbstowcs, 244
mbstowcs function, 15

496 Index

Memory management, 313-25. See also Object Store
allocating memory for data storage, 314
creating heaps, 320-22
critical memory, 324
global and static memory allocation, 318
heap-based allocation, 319-20
hibernation, 324, 325
loading file mapping into memory, 41
low-memory situations, 324-25
memory allocation, 318-23
obtaining current memory status, 317-18
obtaining system processor and memory informa-

tion, 315-17
overview, 313
responding to WM_CLOSE message, 324
responding to WM_HIBERNATE message, 325
stack-based allocation, 320
using heaps with C++ classes, 322-23
virtual address space, 313-14

Message handling. See also MSMQ (Microsoft Message
Queue)
exception handling and page faults, 17-18

MessageBox, 134
MFC (Microsoft Foundation Classes)

creating COleDispatchDriver-derived class,
368-71

creating threads, 144
deleting records and properties, 104
exception handling, 17
IDL code, 341
opening and creating databases, 101-2
property databases, 101-7
reading and writing records, 102-4
seeking to records, 104
serialization and BLOBs, 104-7
use of generally, 6
using Automation objects with, 368-73
using IPOutlookApp class, 371-73
Winsock function and, 211

Microsoft Foundation Classes. See MFC (Microsoft
Foundation Classes)

Microsoft IDL compiler (MIDL), 341
Microsoft Message Queue. See MSMQ (Microsoft Mes-

sage Queue)
Microsoft Transaction Server (MTS), 374
Microsoft Windows CE. See Windows CE
MIDL (Microsoft IDL compiler), 341
Mini-applications with notifications, 171-75
MIPS device, 316
Mobile devices, 1-3. See also Handheld PC; Palm size

PC; Pocket PC; Windows CE
Modems

for Handheld PC, 4
for Pocket PC, 4

Module32First, 129-30
Module32Next, 129-30
MODULEENTRY32, 130-31
Modules

Dynamic Link Libraries (DLLs), 121, 130, 132
used by process, 129-31

Monitoring
battery status, 330-33
RAS connection, 309-10

Mounting database volumes, 71-73
MoveFirst, 429
MoveLast,429
MoveNext, 429
MovePrevious,429
Moving files, 32
mq.h, 384
MQ_ACTION_PEEK_CURRENT, 398,399-400
MQ_ACTION_PEEK_NEXT, 399
MQ_ACTION_RECEIVE, 399
MQCloseCursor, 399
MQCloseQueue, 387, 389, 392, 396
MQCreateCursor, 399
MQCreateQueue, 389-92, 410
MQDeleteQueue, 392
MQGetQueueProperties, 411
MQMSGPROPS, 385-86, 392, 397
MQMSGPROPS pMessageProps, 393
MQOpenQueue, 392
MQPathNameToFormatName, 384-85
MQ_PEEK_ACCESS, 385
MQQUEUEPROPS, 389
MQQUEUEPROPS *pQueueProps, 390
MQ_RECEIVE_ACCESS, 385
MQReceiveMessage, 392-93, 398-403
MQ_SEND_ACCESS, 385
MQSendMessage, 385-89
MSDN Library, 442
MSMQ (Microsoft Message Queue), 374-411

ActiveSync and, 379-80
callback function and asynchronous message

reading, 401-5
creating new queue, 389-92
creating private queue, 380-81, 382
data items associated with messages, 375
features, 375-76
installation, 376-84
installing on Windows 2000, 378
installing on Windows CE, 377-78
IP Network, 379-80
managing DNS entries, 378-79
managing queues on Windows 2000, 380, 381
message timeouts, acknowledgements, and ad-

ministration queues, 405-10
message transactions, 410-11

overview, 374-76
peeking messages and cursors, 398-401
private queues, 376, 380-81, 382
public queues, 376
reading messages from queue, 392-97
reading messages from queue in Windows 2000,

381-84
reading other message properties, 397-98
Remote Access Services (RAS) and, 379-80
sending messages from Windows CE, 384-89

MSMQ Routing Servers, 376
MSMQADM, 378
msmqrt. lib, 384
MTS (Microsoft Transaction Server), 374
Multi-byte character strings (MBCS), 11
MultiByteToWideChar, 15
Mutex objects, 117, 156-58, 165
"my string", 13

v N
Naming in file mapping, 41
National Marine Electronics Association. See NMEA

heading
NE2000 PCMCIA network card, 45, 55
Negotiating TAP! version, 288-89
NETRESOURCE, 60-61, 62, 64
Network operations

adding and canceling connections, 61-63
adding and canceling connections with dialogs,

63-65
enumerating network resources, 56-61
listing current connections, 67-69
NE2000 PCMCIA network card, 45, 55
overview, 45, 46, 55-56
printers, 65-66
Remote Access Services (RAS) connections, 45
UNCs (Universal Naming Conventions), 45, 61,

66, 67, 68
of Windows CE generally, 45

Network operations functions, user names, 66-67
Network printers, 65-66
NLED_COUNT_INFO_ID, 178
NLedGetDeviceinfo, 177-78
NLedSetDevice, 177
NLED_SETTINGS_INFO_ID, 178
NLED_SUPPORTS_INFO_ID, 178
NMEA (National Marine Electronics Association) 0183

standard, 248-50
Nonsignaled kernel objects, 125
Nonsignaled mutex objects, 156-57
Normal files, setting, 30, 37
Note_Prj.Lib, 54
NOTIFICATION_EVENT_DEVICE_CHANGE, 175

Index

NOTIFICATION_EVENT_RESTORE_END, 175
NOTIFICATION_EVENT_RS232_DETECTED, 175
NOTIFICATION_EVENT_SYNC_END, 175
NOTIFICATION_EVENT_TIME_CHANGE, 175
Notifications

CENOTIFYREQUEST, 94-95
CESetUserNotification, 170, 179-82
CESetUserNotificationEx, 170, 182-84
getting user preferences for, 182
manually controlling LED, 177-79
mini-applications with, 171-75
property databases, 94-96
removing annunciator icon, 181

497

running application at specified time, 171, 184
setting up, 94-95
setting user notification, 180
starting application on an event, 175-76
types, 170
user notification, 179-84
uses, 170
in Windows CE 2.12, 3.0, and later, 170
in Windows CE operating system versions prior to

2.12, 170
Notify.exe

mini-applications with notifications, 172-75
starting application on an event, 175
with synchronization, 173-75

nstoh, 226
NTFS, file size, 26-27
ntohl, 226

'W 0

objbase.h, 346
object.h, 343
Object ID (O!D)

CeOidGetinfoEx, 98-99
directories, 45
files, 45
listing database information, 97-99
property databases, 45, 70, 81, 82, 97-99
records in property database, 83, 89, 92

Object Linking and Embedding (OLE), 336
Object Store

determining free space, 46-47
file mapping and flushing changes in view to, 44
files in, 20
largest possible file size in, 26
OID (Object ID) and, 45
overview, 45-46
property databases in, 70, 77
in RAM, 45
types of objects in, 45

ObjectNotify, 447, 454-56

498 Index

ObjectToBytes,469, 470
OBJTYPE_DATABASE, 99
OBJTYPE_DIRECTORY, 99
OBJTYPE_FILE,99
OBJTYPEINF0,456-57
OBJTYPE_INVALID,99
OBJTYPE_RECORD,99
Oid, 459
OID (Object ID)

CeOidGetinfoEx, 98-99
directory, 45
files, 45
listing database information, 97-99
property databases, 45, 70, 81, 82
records in property database, 83, 89, 92

oidNew, 459
oidObject, 456
ole32. lib, 343
OLE (Object Linking and Embedding), 336
oleaut32.lib, 343
OLEDB, 412, 413, 416, 442
olTaskitem, 372-73
On state of power, 329-30
OPEN_ALWAYS

files, 36
property databases, 72

Opencatalog,418
OpenEvent, 163
OPEN_EXISTING

files, 36
property databases, 72

Opening. See also Initializing
database (catalog) on SQL Server, 418
file for file mapping, 40
files, 20-24, 35, 36
property databases, 79-81, 99-100
property databases using MFC classes, 101-2
serial communications port, 237-40

OpenProcess, 123
OpenSemaphore, 164
OR combinations, file attributes, 36
OSVERSIONINFO, 326-27

v p

Page faults, 16-18
Palm Pilot, 1
Palm size PC, 4, 5
Parameters, creating, 36
Parity, 242
ParseRMC, 253-55
Parsing RMC sentence, 253-55
PCEGUID pceguid, 100

PCE_USER_NOTIFICATION lpUserNotification,
180

PCL (Printer Control Language), 65-66
PCMCIA card

GPS and, 248
for Handheld PC, 4
power management with, 328
reading data from GPS device, 250
serial communications and, 236
TCP/IP with, 185

PDA (Personal Digital Assistant), 1
PEC (Primary Enterprise Controller), 376
Peeking messages in MSMQ, 398-401
PeekMessage, 135
Peripherals for Pocket PC, 4
Personal Digital Assistant. See PDA (Personal Digital

Assistant)
Phone book entries for RAS, 305-7
Phone devices and TAP!, 285
Phone services. See Remote Access Services (RAS);

Telephone AP! (TAP!)
pimstore.dll, 369, 371-72
Ping function, 217-20
PIP_OPTION_INFORMATION RequestOptions, 219
Platform Builder, 3, 4
PMQRECEIVECALLBACK fnReceiveCallback, 393
Pocket Access, CDB files, 71
Pocket Excel, 4
Pocket Internet Explorer, 3, 4
Pocket Office Object Model (POOM), 335, 338, 341-

43, 360-61, 369-71. See also COM (Component
Object Model)

Pocket Outlook, 341-43, 344, 347, 445
Pocket PC

Compact Flash slot for, 4
emulation environment and, 9
enumerating threads, 144
examples. exe application for, 9
general description of, 4
memory management, 324
running applications, 132
SIP (Supplementary Input Panel) for, 4
Transcriber for, 4
uses of generally, 1, 3
Windows CE versions for, 3, 4

Pocket Word
description, 3, 4
notifications, 184
running applications at specified time, 171, 184
ShellExecuteEx, 124

PocketOutlook.Application, 339
poid, 456
Point to Point Protocol. See PPP (Point to Point Protocol)

POOM (Pocket Office Object Model), 335, 338, 341-
43, 360-61, 369-71. See aLm COM (Component
Object Model)

Port number, 186, 193, 222
POST verb, 196, 206, 208-9
Posting data to server, 208-10
PostQuitMessage, 132
Power management, 328-34

changing from on to idle state, 329-30
Dead state, 329
Idle state, 329-30
monitoring battery status, 330-33
On state, 329-30
powering off a device, 334
states of, 328-29
Suspend state, 329, 330

Powering off a device, 334
PPP (Point to Point Protocol), 185, 216, 236, 284, 304
#pragrna cfata_seg compiler directive, 169
Primary Enterprise Controller (PEC), 376
PRIMARY KEY, 435-36
Primary Site Controllers (PSC), 376
Printer Control Language (PCL), 65-66
Printers, 65-66
Priorities for threads, 120, 141-42, 144
Priority inversion of threads, 141
Private queues, 376, 380-81, 382
Process32First, 129
PROCESSENTRY32, 129
Processes

address space or slot, 121
creating with CreateProcess, 121-23, 124
creating with RAP!, 260-63
creating with ShellExecuteEx, 124-25
definition, 120
determining if previous instance of process is run-

ning, 132-33
Dynamic Link Libraries (DLLs), 121, 130, 132
exit code, 127
kernel object handles and identifiers, 122-24
listing running processes, 127-29
modules used by, 129-31
overview, 120-21
signaled and nonsignaled states of kernel objects,

125
terminating, 121, 131-32
waiting for process to terminate, 125-27

ProcessHasNotFinished, 135
PROCESS_INFORMATION, 122-23, 261, 263
Processor values and associated constants, 53
ProgIDFrornCLSID, 339
Prog!Ds (programmatic identifiers), 339, 354, 423
Programmatic identifiers (ProgIDs), 339, 354, 423

Index

projects.h, 54
Properties. See also Property databases

characteristics, 75
deleting, 91-92, 104
maximum size, 70-71
types and constants, 75-76

Property databases
CEVT_BLOB property data type, 87-88
changing database attributes, 99-100
closing, 81
creating, 77-79, 99

499

creating and mounting database volumes, 71-73
database volumes, 71-75
deleting, 81-82
deleting properties, 91-92
deleting records, 92
flushing database volume, 73-7 4
last record located, 89
listing all records with given value, 90-91
listing database information, 96-99
listing mounted database volumes, 74-75
maximum record size, 70-71
MFC classes with, 101-7
notifications, 94-96
in Object Store, 45, 70, 77
OID for, 45, 70, 81, 82
opening, 79-81, 99-100
overview, 70-71
property types and constants, 75-76
RAP! functions, 266-67
reading records, 84-86
records search by object ID, 89
searching for records, 88-91
sort orders, 76-77
in storage devices, 71
undating database records, 92-94
unmounting database volumes, 73
updating database records, 92-94
writing records, 82-84

Property databases using MFC classes
creating, 101-2
deleting records and properties, 101
opening, 101-2
reading records, 102-4
seeking records, 104
serialization and BLOBs, 104-7
writing records, 102-4

PROPID_M_ACKNOWLEDGE, 405, 406-7
PROPID_M_ADMIN_QUEUE, 405, 406
PROPID_M_ARRIVEDTIME, 397-98
PROPID_M_BODY, 392
PROPID_M_BODY_SIZE, 392
PROPTD_M_BODY_TYPE, 386-87

500 Index

PROPID_M_CORRELATIONID, 410
PROPID_M_JOURNAL, 406
PROPID_M_LABEL, 386
PROPID_M_MSGID, 407
PROPID_M_SENTTIME, 397-98
PROPID_M_TIME_TO_BE_RECEIVED,405,406
PROPID_Q_LABEL, 389-90
PROPID_Q_PATHNAME, 389
PROPID_Q_TRANSACTION, 410
PROPID_TIME_TO_REACH_QUEUE, 406
propSeek,91
PROPVARIANT, 386
Protocol, in URL, 193
Proxy server, 200-201
PSC (Primary Site Controllers), 376
PSECURI'TY_DESCRIPTOR pSecurityDescriptor,

390
'Pseudohandle', 124
Public queues, 376
PulseEvent, 159-60
PUN_DIALOG, 181
PUN_LED, 181
PUN_REPEAT, 181
PUN_SOUND, 181
PUN_VIBRATE, 181
PutActiveConnection,418
PutRefActiveConnection,418
PVOID pointer, 327
PVOID reserved, 273

" Q
Querying registry value, 110-12
Queryinterface, 338, 348, 350-52, 356
Queue. See MSMQ (Microsoft Message Queue)
QUEUEHANDLE hSource, 393
QueueServer directory, 381-84

R
Race conditions, and thread synchronization, 149, 150
RAM, Object Store in, 45
Random access, setting, 30, 37
\RAPI\CreateProcess directory, 261
\RAPI\CustomBlock\CEBlock, 271, 273
\RAPI\CustomStream\CEStream, 277
\RAPI\FindAllFiles, 263
RAP!. See Remote AP! (RAP!)
rapi.h, 261
rapi.lib, 261
RAPINIT, 258-59
RAS. See Remote Access Services (RAS)
ras .h, 305

RASCONN, 310-12
RASCONNSTATE, 309
RASCONNSTATUS, 311
RasDial, 307-9, 310
RASDIALPARAMS, 307-8
RASENTRYNAME, 305, 306
RasEnumConnections, 310-12
RasEnumEntries, 305-7
raserror.h, 305
RasGetConnectStatus, 311
RasGetEntryDialParams, 307, 308-9
RasHangUp, 310
Read/write access control, 35
Read/write sharing, 35
Reader, for Pocket PC, 4
ReadFile

infrared and other serial communications devices,
256

reading data from GPS device, 251-52
reading data from serial communications port,

243, 244
setting communications port timeouts, 240-41
TAP!, 300, 303
text files, 20, 22, 24
transferring data, 301
WriteFile and, 243

Reading
data from communications port, 243-45
data from GPS device, 250-55
files, 20-24, 33-38
MSMQ messages from queue, 392-97
MSMQ messages from queue in Windows 2000,

381-84
other MSMQ message properties, 397-98
records in property database, 84-86
records of property databases using MFC classes,

102-4
Read-only files

CreateFile controls, 35
setting attributes, 20, 30, 37

Read-only mode for file mapping, 39-40
Read-sharing of file, 35
ReceiveCallbackRoutine,401-2
Receiving data via TAP!, 303-4
Record counter, implementing using registry, 117-18
Records in property database

deleting, 92, 104
listing all records with given value, 90-91
locating last record, 89
object ID (OID), 83, 89
reading, 84-86
searching, 88-91, 104
searching by object ID, 89

updating, 92-94
writing, 82-84

Recordset interface for ADOCE, 413
_RecordsetPtr: :Delete, 432
_RecordsetPtr: :Open, 423
recv function, 225, 230
REFCLSID rclsid, 345
REFIID iid, 351
REFIID riid, 345, 366
RegCloseKey, 108-10
RegCreateKeyEx

adding and updating registry keys and values,
108-10

deleting registry value, 112-13
querying a registry value, 110-11

RegDeleteKey, 112, 113
RegEnumKeyEx, 113
RegEnumValue, 116-17
RegisterActiveSync,450
RegisterWindowMessage, 172
Registration of ActiveSync, 450
Registry

accessing, 107-18
adding and updating registry keys and values,

108-10
COM (Component Object Model), 339
deleting registry key, 113
deleting registry value, 112-113
enumerating registry key, 112, 113-17
implementing record counter using registry, 117-

18
items in Object Store, 45
key names, 107
MSMQ, 378
organization, 107
primary or root keys, 107
querying registry value, 110-12
RAPI functions, 267-69
Remote Registry Editor, 107
TAPI, 285-86
uses, 71, 107

RegQueryinfoKey, 112, 113-16
RegQueryValueEx, 110-12
RegSetValueEx, 108-10
Release function, 338, 347-49, 352, 353, 356-57
ReleaseMutex, 157, 158
ReleaseSemaphore, 163, 164
Remote Access Services (RAS), 304-12

ActiveSync and, 211, 220
dropping RAS connection, 310
listing RAS phone book entries, 305-7
making RAS connection, 307-9
monitoring RAS connection, 309-10

Index

MSMQ and, 379-80
network connections, 45, 55
overview, 284, 304-5
testing for existing RAS connection, 310-12
uses, 284, 304-5

Remote API (RAP!), 257-83

501

blocking function with CeRapiinvoke, 271-75
creating a process, 260-63
desktop coe for RAPI stream function, 279-82
with desktop PC, 211
error handling, 259-60
file and folder manipulation, 263-66
functions, 257, 263-70
initializing and uninitializing, 258-59
miscellaneous RAPI functions, 270
overview, 257-58
property database access from desktop PC, 70
property database RAP! functions, 266-67
registry RAP! functions, 267-69
stream function with CeRapiinvoke, 271, 275-

82
system information RAPI functions, 269-70
thread execution times, 144
Windows CE DLL code for RAPI stream function,

277-79
writing own RAP! function with CeRapiinvoke,

271-82
RemoveDirectory,49-50
Removing

annunciator icon, 181
application event, 176
storage card, 52-53

Reparse point, setting, 30, 37
repl.dat, 446, 463
REPLOBJECT,462-63, 467,468-70
REPLSETUP, 459, 461, 474-75
Reset function, 458, 460, 475
ResetEvent, 175
Resource name's location, in URL, 193
ResumeThread, 139
Retrieving

data with InternetReadFile, 188, 190-91
records from ADOCE/ADOXCE table, 428-31

rgdispidNamedArgs, 366
rgvarg, 366
RMC sentence

parsing, 253-55
structure, 249-50

RollbackTrans, 443
ROM

files in, 30, 36, 3 7
"shadowed" ROM files, 36

RS232 serial port/devices, 236, 256

502 Index

Running application at specified time, 171, 184
Running application on an event, 175-76
Running state of thread, 139

v s
SAFEARRAY, 423, 425
SAFEARRAYBOUND,425
SafeArrayCreate, 425, 426
SafeArrayDestroy, 426
SafeArrayPutElement, 425,427
Save function, 352
SBCS (single-byte character strings), 12
Scheduling, threads, 133, 140-41
SDK (Software Development Kit), 8, 9
Searching

for files in directory, 50-52
last record in property database, 89
records in property database, 88-91
records of property databases using MFC classes,

104
Secure sites

authentication with InternetErrorDlg, 202-3
authentication with InternetSetOption, 204-5
connecting to, 201-5

Seek constants, 88
Seek methods, 104
SEH (Structured Exception Handling), 17, 441
SELECT statement with JOIN, 438-40
Semaphores, 163-64, 165
send function, 224, 230
SendAndReceive, 303-4
Sending data

to server, 205-8
via TAP!, 303-4
with URL, 206-8

Sending messages from Windows CE, 384-89
SendMessage, 173, 175
Sentences

definition, 248
NMEA 0183 standard, 248-50

Sequential option, setting, 30
Serial communications

basic serial communications, 236-47
closing communications port, 245-46
compared with TCP/IP communications, 236
configuring port, 241-42
creating thread for reading communications port,

242-43
GPS and NMEA, 247-55
infrared and other devices, 255-56
opening serial communications port, 237-40
overview, 236

power management, 328
reading data from communications port, 243-

45
setting communications port timeouts, 240-241
testing, 247
writing to communications port, 246-47

Serialization
ActiveSync, 458-59
definition, 165
property databases using MFC classes, 104-7
thread synchronization, 165

Servers
posting data to, 208-10
proxy server, 200-201
sending binary data to, 224
sending data to, 205-6
sending data with URL, 206-8
socket clients and servers, 211-13
socket server application, 226-31
in URL, 193

SetColumns, 351-52
SetCommMask, 243, 245
SetCommState, 237, 241
SetCommTimeouts, 240
SetEndOfFile,43
SetEvent, 159-60
SetFileAttributes, 29, 37
SetFilePointer, 36, 38
SetFileTime, 26
SetPacket, 458, 461, 476-77
setsockopt, 231-32
SetThreadContext, 140-41
SetThreadPriority, 141, 251
Setting

communications port timeouts, 240-241
end of file to current file position, 43-44
file attributes, 29, 30, 37
user notification, 180

Setup function, 458, 459-60, 474-75
"Shadowed" ROM files, 36
Share mode options, 35-36
ShellExecuteEx, 124-25
SHELLEXECUTEINFO, 124-25
ShowAttributes, 28-29
ShowThreadTime, 282
ShowTime, 25-26
Shutdown. See also Terminating TAP!, 287-88
shutdown function, 230-31
Signaled kernel objects, 125
Signaled mutex objects, 156-57
Single-byte character strings (SBCS), 12
SIP (Supplementary Input Panel), for Pocket PC gener

ally, 4

Size
file mapping, 40-41
files, 26-28

Sleep function, 139, 329
Sleeping state of thread, 139
Smart pointers

ADOCE, 413-15
ADOXCE, 414-15
COM, 353-56

SOCKADDR_IN, 222, 228
SOCKADDR_IRDA, 234-35
SockClient directory, 220, 221
SockClient.exe, 220
SOCKET, 225
socket function, 222, 234
Socket programming, 186-87, 210-35

definition of sockets, 186-87
determining a device's IP address and host name,

215-17
enumerating IrDA devices, 232-34
implementing ping function, 217-20
infrared data association (IrDA) socket communi-

cations, 232-35
initializing Winsock library, 213
integer byte ordering, 225-26
lingering, 231-32
manipulating IP addresses, 214-15
opening IrDA socket port, 234-35
simple socket sample application, 220
socket client application, 220-25
socket clients and servers, 211-13
socket function-calling sequence for client and

server applications, 212-13
socket server application, 226-31
with TCP/IP communications, 186-87, 210-35
timeouts, 232
uses, 210-11

SOCKET Return Address, 231
SOCKET Return Value, 222
SOCKET s, 222, 224, 231
Socket server application, 226-31
SockServer.cpp, 226
SockServer directory, 220, 226
SockServer.exe, 220
SockThread, 226, 228-30, 233-34
Software Development Kit. See SDK (Software Devel-

opment Kit)
SOL_SOCKET, 231-32
SO_RCVTIMEO, 232
Sort orders, property databases, 76-77
SORTORDERSPEC, 76
SO_SNDTIMEO, 232
SPI_GETOEMINFO, 327-28

Index

SPI_GETPLATFORMTYPE, 328
SQL Data Definition Language (DDL), 433-37
SQL Data Manipulate Language (DML), 433

503

SQL Server. See ADOCE/ADOXCE and SQL Server
Stack-based memory allocation, 320
STARTUPINFO, 124
Static memory allocation, 318
Static TLS, 169
STDAPI Return Value, 345
StopBits, 242
Storage. See also Memory management; Object Store

ActiveSync, 463
Compact Flash cards, 45, 52-55
for Pocket PC, 4

Storage Card, 71-73
Storage devices

auto-run applications on Compact Flash cards,
53-54

database volumes, 71-73
determining free space, 47
enumerating Compact Flash (CF) cards, 54-55
insertion or removal, 52-53
list, 52
processor values and associated constants, 53
property databases, 71

STOREINFO, 466
STORE_INFORMATION, 270
Stores for ActiveSync, 447
Stream communications, 211
Stream function with CeRapiinvoke, 271, 276-82
String buffer lengths, calculating, 14
String constants, Unicode, 13
String form of IP addresses, 214-15
Strings. See Characters and character strings
strlen, 14, 15
struct sockaddr *addr, 231
Structured Exception Handling (SEH), 17, 441
SUCCEEDED macro, 258
SUCCESS macro, 340
Supplementary Input Panel. See SIP (Supplementary

Input Panel)
Suspend state of power, 329, 330
Suspended state of thread, 139
SuspendThread, 139
SyncData,453
Synchronization. See also ActiveSync

continuous synchronization, 449
desktop synchronization, 448
device synchronization in ActiveSync, 447-48
HREPLITEM synchronization, 472-74
with notify. exe, 173-75

SysAllocString, 347, 359
SysAllocStringLen, 347

504 Index

SysFreeString, 347, 349, 365
SysReAllocString, 347
SysStringLen, 347
System file set, 30, 37
System information

obtaining, 315-17
operating system version information, 326-28
RAPI functions, 269-70

SYSTEM_INFO, 270, 315
SystemParametersinfo,327-28
SYSTEM_POWER_STATUS_EX2, 330-33
SYSTEM_POWER_STATUS_EX, 270
SYSTEMTIME, 171, 358, 398
SYSTEMTIME *lpTime, 180
SYSTEMTIME stEndTime, 183
SYSTEMTIME stStartTime, 183
SystemTimeToVariantTime,358
szProgid, 466
szSentence buffer, 252-53
szStoreDesc, 466

v T
_T macro, for Unicode string constant, 13
Tables. See ADOCE/ADOXCE and SQL Server
TablesPtr, 419, 421, 422
TAPI. See Telephone AP! (TAP!)
ta pi . h file, 286, 291
TCHAR data type, 12
tchar. h file, 12, 14
TCHAR *pswzAppName, 180
TCHAR szExeFile [MAX_PATH], 129
TCHAR szModule [MAX_MODULE_NAME32 + l], 131
TCP (Transmission Control Protocol), 186
TCP/IP communications, 185-235

authentication with InternetErrorDlg, 202-3
authentication with InternetSetOption, 204-5
compared with serial communications, 236
complex HTTP requests using a session, 193
connecting to secure sites, 201-5
connecting to server with InternetConnect,

195-96
connection options, 185
determining a device's IP address and host name,

215-17
enumerating IrDA devices, 232-34
HTTP protocol, 187-210
implementing ping function, 217-20
infrared data association (IrDA) socket communi

cations, 232-35
initializing Internet Function Library with Inter

netOpen, 188-89
initializing Winsock library, 213

integer byte ordering, 225-26
IP (Internet Protocol), 186
IP address, 186
lingering, 231-32
making HTTP request using a session, 192
making HTTP request with InternetOpenUrl,

190
making request with Ht tpSendRequest, 197-

200
manipulating IP addresses, 214-15
obtaining request handle with Ht tpOpenReques t,

196-97
opening IrDA socket port, 234-35
overview, 185-87
port number, 186
posting data to server, 208-10
programming with HTTP protocol, 187-210
proxy server, 200-201
retrieving data with InternetReadFile, 190-91
sending data to server, 205-6
sending data with URL, 206-8
simple HTTP requests, 187-88
simple socket sample application, 220
socket client application, 220-25
socket clients and servers, 211-13
socket programming, 186-87, 210-35
socket server application, 226-31
solutions with, 185-86
TCP (Transmission Control Protocol), 186
tidying up with InternetCloseHandle, 191-92
timeouts, 232
URL with InternetCrackUrl, 193-95

_tcslen function, 14, 15
Telephone AP! (TAP!), 284-304

communicating through open call, 300-304
enumerating TAP! devices, 288-92
getting line device capabilities, 289-92
line callback function, 298-300
line devices, 285
line initialization and shutdown, 286-88
making call with, 292-300
negotiating TAPI version, 288-89
obtaining communications port handle, 301-3
opening a line, 293-94
overview, 284-86
phone devices, 285
sending and receiving data, 303-4
shutting down a call, 300
translating telephone number, 294-96
uses, 284-85

Telephone number, translating, 294-96
Temporary filename, 35
Terminated state of thread, 139

TerminateProcess, 12~ 131-32
TerminateThread, 138
Terminating. See also Canceling; Disconnecting

processes, 121, 131-32
TAPI call, 300
threads, 137-38
waiting for process to terminate, 125-27

Testing
for existing RAS connection, 310-12
serial communications, 247

Text files. See Files
_TEXT macro, for Unicode string constant, 13
TH32CS_SNAPTHREAD, 143
th320wnerProcessID, 144
th32ThreadID, 144
Thread32First, 143
Thread32Next, 143
Thread local storage (TLS), 138, 165-69
Thread synchronization, 146-69. See also Threads

allocating TLS data for thread, 168-69
avoiding deadlocks, 149, 151
critical sections, 151-54
Dynamic Link Libraries (DLLs), 165-69
event objects, 158-63, 165
interlocked functions, 154
mutex objects, 156-58, 165
need for, 120, 133, 146-51
race conditions, 149, 150
selecting correct technique, 165
semaphores, 163-64, 165
serialization and, 165
single-threaded C run-time calls from multi-

threaded application, 165, 166
Thread Local Storage (TLS), 165-69
WaitForMultipleObjects, 154-56
WaitForSingleObject, 154-55

THREADENTRY32, 143-44
ThreadFunc, 160-63
THREAD_PRIORITY_ABOVE_IDLE, 142
THREAD_PRIORITY_ABOVE_NORMAL, 142
THREAD_PRIORITY_BELOW_NORMAL, 142
THREAD_PRIORITY_HIGHEST, 142
THREAD_PRIORITY_IDLE, 142
THREAD_PRIORITY_LOWEST, 142
THREAD_PRIORITY_NORMAL, 142
THREAD_PRIORITY_TIME_CRITICAL, 141, 142
Threads. See also Thread synchronization

accessing global and local variables in, 134
allocating TLS data for, 168-69
blocked state, 139
context, 140-41
correct processing for, 134-35
creating, 136-37

Index 505

creating for reading serial communications port,
242-43

creating with event objects, 160-63
creating with MFC, 144
deadlocks, 149, 151
Dynamic Link Libraries (DLLs), 138
enumerating, 143-44
execution times, 144
exit codes, 137-38
mistake with 'while' loop, 135
overview, 120-21
priorities, 120, 141-42, 144
priority inversion, 141
quantum time, 140
running state, 139
scheduling, 133, 140-41
secondary threads, 133
single or primary thread, 120, 133
sleeping state, 139
states, 139
suspended state, 139
terminated state, 139
terminating, 137-38
termination of primary thread, 121
TLS (Thread Local Storage), 138, 165-69
user-interface threads, 133-34
uses of multiple threads, 120, 133
worker threads, 133-34

Thread-safe library, 165
ThreadTimes, 144, 279
Time, running application at specified time, 171, 184
Time information, files, 25-26
Timeouts

MSMQ messages, 405-10
setting communications port timeouts, 240-241
socket programming, 232

tinfo, 160
TLB (Type Library Information), 341, 355, 414
tlhelp32 .h, 128
TLS (thread local storage)

allocating TLS data for thread, 168-69
and DLLs (Dynamic Link Libraries), 138, 165-

69
dynamic TLS, 168-69
static TLS, 169

TlsAlloc, 165-66, 168
TlsGetValue, 168
TlsSetValue, 166, 168
toolhelp.lib, 128
tpBasePri, 144
Transaction *pTransaction, 393
Transcriber for Pocket PC, 4
Translating telephone number, 294-96

506 Index

Transmission Control Protocol. See TCP (Transmission
Control Protocol)

TRUNCATE_EXISTING
files, 36
property databases, 72

_try block, 17
Type Library Information (TLB), 341, 355, 414

., u
UDP Datagram, 211
uFlags, 456, 466
ULARGE, 47
ULONGLONG, 47, 75
UNCs (Universal Naming Conventions), 45, 61, 66, 67,

68
Undating database records, 92-94
Unicode

ANSI characters in, 12
C common run-time string functions with generic

and Unicode equivalents, 15
calculating string buffer lengths, 14
characters in, 11-12
compilers and, 12
converting between ANSI and Unicode strings,

14-15
generic string and character data types, 12
IP addresses, 214, 217
posting data to server, 208
reading data from serial communications port, 244
socket clients and servers, 212
standard string library functions, 14, 15
string constants, 13
TAPI sending and receiving data, 303
Windows NT/98/2000, 11

_UNICODE define, 12, 13
Unicode text files. See also Files

determining content type, 21-22
displaying contents of, 22-23

Uninitializing
COM, 343-44
Remote AP! (RAPI), 258-59

Universal Coordinated Time (UTC), 26
Universal Naming Conventions (UNCs), 45, 61, 66, 67,

68
Universal Resource Locator. See URL (Universal Re-

source Locator)
UNIX and data sent between sockets, 211-12
Unix computers and socket programming, 225
UnmapViewOfFile,42
Unmounting database volumes, 73
unsigned int FAR* puArgErr, 366

Updateitem, 472
Updating

database records, 92-94
registry keys and values, 108-10

URL (Universal Resource Locator)
components, 193, 195
format, 194
InternetCrackUrl, 193-95
InternetOpenUrl, 190
sending data with, 206-8
test URL for posting data to server, 210
test URL for sending data with URL, 207

User-interface threads, 133-34
User names, network operation, 66-67
User notification, 179-84
UTC (Universal Coordinated Time), 26
UUIDGEN.EXE, 338

., v
VARIANT

ActiveX and Automation, 359, 362-64, 368
ADOCE and ADOXCE, 416, 419, 421-26, 432,

439
VARIANT FAR* pVarResult, 366
VARIANT vtsource,423
VARIANTARG, 362, 366-68
VariantChangeTypeEx, 363-64
_variant_t class, 359, 416
VARSTRING, 301-3
VB Script, for macros, 13
VBScript, 359
. vcp extension, 8
Virtual address space for memory, 313-14
VirtualAlloc, 314
VirtualFree, 314
VISADM.EXE, 378
Visual Basic

DLL, 207
HTTP protocol, 187
MSMQ, 381-84, 396-97
WebClass application, 207

Visual C++
extensions for, 8
HTTP protocol, 187
importing projects using, into eMbedded Visual

C++,8
problems with, 6-7
Version 6.0, 11

Visual Interdev, 187
Visual Studio, 442
void** ppvObject,351

v w
WAIT_ABANDONED, 155
WaitCommEvent, 243, 245
WaitCreateProcess, 272-73
WAIT_FAILED, 155
WaitForMultipleObj ects, thread synchronization,

154-56
WaitForSingleObject

blocked state of thread, 139
CeRapiinvoke blocking function, 272-73
correct thread processing, 135
critical sections, 152, 153
event objects, 160
initializing and uninitializing RAPI, 258
mutex objects, 157-58
RAPI stream functions, 279
semaphores, 163-64
thread exit codes, 137
thread synchronization, 154-55
waiting for process to terminate, 125-27, 133

Waiting for process to terminate, 125-27
WAIT_Object_O, 155
WAIT_TIMEOUT, 155
WAN (Wide Area Network), TCP/IP with, 185
WCE Configuration toolbar, 7
WCHAR *lpszApplication, 183
WCHAR *lpszArguments, 183
wchar_t, for Unicode character, 12
we s cpy (wide character string copy), 14
wcslen (wide character string length), 14
wcstombs function, 15
'while' loop, 135, 173, 279, 282
Wide Area Network See WAN (Wide Area Network)
Wide character string copy (wcscpy), 14
Wide character string length (wcslen), 14
Wide-byte characters, 12, 14
WideCharToMultiByte function, 15
Win32

RAP! functions, 258, 260
Structured Exception Handling (SEH), 17, 441

Win32 API
property databases, 70
WNet functions, 55

WinCEinQueueAdmin,407
WinCEQueue, 389
Windows CE

ActiveSync, 445-78
ActiveX and automation, 359-73
ADOCE and SQL Server, 412-44
ATL (ActiveX Template Libraries), 6
bugs in, 18

Index 507

characteristics and capabilities of generally, 3
code samples, 5, 9-11
Common Executable Format (CEF), 9, 53
communications using TCP/IP with HTTP and

sockets, 185-235
Component Object Model (COM), 335-58
customization of, with Platform Builder, 3
directories, 47-52
eMbedded Visual C++ 3.0, 6-8
emulation environments, 9
error checking, 5, 16
exception handling, 17
files, 19-44
Handheld PC description, 4-5
memory management, 313-25
MFC (Microsoft Foundation Classes), 6
Microsoft Message Queue (MSMQ), 374-411
network operations, 45, 46, 55-69
notifications, 170-84
page faults, 16-17
Palm size PC description, 5
Pocket PC description, 4
power management, 328-34
processes, 120-33
property databases, 70-107
registry, 71, 107-18
releases of, 3-4
Remote Access Services (RAS), 304-12
Remote API (RAP!), 257-83
serial communications, 236-56
storage, 45, 46-47, 52-55
system informati_on, 326-28
telephone API (TAP!), 284-304
thread synchronization, 146-69
threads, 133-44
Unicode text and strings, 11-15

Windows CE 2.11, 5, 170
Windows CE 2.12, 4, 5, 170, 182
Windows CE 2.21, 4
Windows CE 3.0, 4, 5, 170
windows.h, 346
Windows NT/98/2000

accessing registry, 107
address space, 313
allocating memory for data storage, 314, 316
API functions, 5, 6, 11
COM errors, 354
compressing files, 30
creating threads, 137
and data sent between sockets, 211-12
DuplicateHandle, 123
ExitProcess function, 127

508 Index

flags, 190
foreground boosting, 142
memory architecture, 313
modules used by process, 131
MSMQ, 376-84
network operations, 45, 61
processes, 121
RAPI functions, 258, 260
registry, 71
socket client application, 225
socket client implementation, 220
socket programming and, 211
static TIS, 169
testing serial communications, 247
thread priorities, 141, 141-42
Unicode and, 11
WaitForMultipleObjects, 156

Windows NTLM (NT LAN Manager), 304
wineror, h header file, 16
winnt.h, 141
Winsock library

determining a device's IP address and host name,
215-17

errors, 213
initializing, 213
IrDA socket communications, 232-35
manipulating IP addresses, 214-15
MFC and, 211
socket function-calling sequence for client and

server applications, 212-13
thread for, 211
Windows CE and, 211

WM_ACTIVATE, 325
WM_CLOSE message, 324
WM_CREATE, 174-75, 226
WM_DBNOTIFICATION, 95, 96
WM_DEVICECHANGE message, 52-53
WM_HIBERNATE message, 324, 325
WM_RASDIALEVENT, 309-10, 311
WM_SETTINGCHANGE, 327
WNet functions

adding and canceling connections, 61-63
adding and canceling connections with dialogs,

63-65
enumerating network resources, 56-61
listing current connections, 67-69
overview, 55-56

printers, 65-66
user names, 66-67

WNetAddConnection2, 56, 62-63
WNetAddConnection3, 61-62,65, 67
WNetConnectionDialogl, 63-64
WNetDisconnectDialogl,64-65,66
WNetEnurnResources function, 55, 59-61
WNetGetConnection, 67-69
WNetGetUser, 66-67
WNetOpenEnurn, 55, 59
wObjType constant value meanings, 98-99
Word processing, Pocket Word, 3, 4
WORD RequestSize, 219
WORD wFlags, 366
WORD wVersionRequested, 213
Worker threads, 133-34
wProcessorArchitecture, 316
wProcessorLevel, 316
Writable file mapping, 42-43
WriteFile

file access, 20
infrared and other serial communications devices,

256
ReadFile and, 243
TAPI, 300, 303
transferring data, 301
writing data to file, 34
writing to serial communications port, 246-47

Write-only files, 35
WriteResult, 279
Write-sharing of file, 35
Writing

to communications port, 246-47
data to file, 34
files, 33-38
new file, 35
records of property databases using MFC classes,

102-4
records to property database, 82-84
structure to file, 33-34

WSACleanup, 213
WSAGetLastError, 213, 226
WSAStartup, 213, 223

v x
XML (Extensible Markup Language), 210

Keep Up-to-Date with

PH PTR Online!
We strive to stay on the cutting edge of what's happening in
professional computer science and engineering. Here's a bit of what
you'll find when you stop by www.phptr.com:

Spec:ial interest areas offering our latest books, book series, software,
features of the month, related links and other useful information to
help you get the job done.

Deals, deals, deals! Come to our promotions section for the latest
bargains offered to you exclusively from our retailers.

Ileed to find a bookstore? Chances are, there's a bookseller near you
that carries a broad selection of PTR titles. Locate a Magnet bookstore
near you at www.phptr.com.

illhat's nem at PH PTR? We don't just publish books for the professional
community, we're a part of it. Check out our convention schedule, join
an author chat, get the latest reviews and press releases on topics of
interest to you.

Subsc:ribe todaq! Join PH PTR's monthly email newsletter!

Want to be kept up-to-date on your area of interest? Choose a targeted
category on our website, and we'll keep you informed of the latest PH PTR
products, author events, reviews and conferences in your interest area.

Visit our mailroom to subscribe today! http://www.phptr.com/mail_lists

LICENSE AGREEMENT AND LIMITED WARRANTY

READ THE FOLLOWING TERMS AND CONDITIONS CAREFULLY BEFORE
OPENING THIS CD PACKAGE. THIS LEGAL DOCUMENT IS AN AGREEMENT
BETWEEN YOU AND PRENTICE-HALL, INC. (THE "COMPANY''). BY OPENING THIS
SEALED CD PACKAGE, YOU ARE AGREEING TO BE BOUND BY THESE TERMS AND
CONDITIONS. IF YOU DO NOT AGREE WITH THESE TERMS AND CONDITIONS, DO
NOT OPEN THE CD PACKAGE. PROMPTLY RETURN THE UNOPENED CD PACKAGE
AND ALL ACCOMPANYING ITEMS TO THE PLACE YOU OBTAINED THEM FORA FULL
REFUND OF ANY SUMS YOU HAVE PAID.

1. GRANT OF LICENSE: In consideration of your purchase of this book, and your agree
ment to abide by the terms and conditions of this Agreement, the Company grants to you a nonexclu
sive right to use and display the copy of the enclosed software program (hereinafter the
"SOFTWARE") on a single computer (i.e., with a single CPU) at a single location so long as you com
ply with the terms of this Agreement. The Company reserves all rights not expressly granted to you
under this Agreement.

2. OWNERSHIP OF SOFTWARE: You own only the magnetic or physical media (the
enclosed CD) on which the SOFTWARE is recorded or fixed, but the Company and the software
develope~s retain all the rights, title, and ownership to the SOFTWARE recorded on the original CD
copy(ies) and all subsequent copies of the SOFTWARE, regardless of the form or media on which the
original or other copies may exist. This license is not a sale of the original SOFTWARE or any copy to

you.

3. COPY RESTRICTIONS: This SOFTWARE and the accompanying printed materials
and user manual (the "Documentation") are the subject of copyright. You may not copy the Docu
mentation or the SOFTWARE, except that you may make a single copy of the SOFTWARE for
backup or archival purposes only. You may be held legally responsible for any copying or copyright
infringement which is caused or encouraged by your failure to abide by the terms of this restriction.

4. USE RESTRICTIONS: You may not network the SOFTWARE or otherwise use it on
more than one computer or computer terminal at the same time. You may physically transfer the
SOFTWARE from one computer to another provided that the SOFTWARE is used on only one com
puter at a time. You may not distribute copies of the SOFTWARE or Documentation to others. You
may not reverse engineer, disassemble, decompile, modify, adapt, translate, or create derivative works
based on the SOFTWARE or the Documentation without the prior written consent of the Company.

5. TRANSFER RESTRICTIONS: The enclosed SOFTWARE is licensed only to you and
may not be transferred to any one else without the prior written consent of the Company. Any unau
thorized transfer of the SOFTWARE shall result in the immediate termination of this Agreement.

6. TERMINATION: This license is effective until terminated. This license will terminate
automatically without notice from the Company and become null and void if you fail to comply with
any provisions or limitations of this license. Upon termination, you shall destroy the Documentation
and all copies of the SOFTWARE. All provisions of this Agreement as to warranties, limitation of lia
bility, remedies or damages, and our ownership rights shall survive termination.

7. MISCELLANEOUS: This Agreement shall be construed in accordance with the laws of
the United States of America and the State of New York and shall benefit the Company, its affiliates,
and assignees.

8. LIMITED WARRANTY AND DISCLAIMER OF WARRANTY: The Company war
rants that the SOFTWARE, when properly used in accordance with the Documentation, will operate
in substantial conformity with the description of the SOFTWARE set forth in the Documentation.
The Company does not warrant that the SOFTWARE will meet your requirements or that the opera
tion of the SOFTWARE will be uninterrupted or error-free. The Company warrants that the media
on which the SOFTWARE is delivered shall be free from defects in materials and workmanship under
normal use for a period of thirty (30) days from the date of your purchase. Your only remedy and the

Company's only obligation under these limited warranties is, at the Company's option, return of the
warranted item for a refund of any amounts paid by you or replacement of the item. Any replacement
of SOFTWARE or media under the warranties shall not extend the original warranty period. The lim
ited warranty set forth above shall not apply to any SOFTWARE which the Company determines in
good faith has been subject to misuse, neglect, improper installation, repair, alteration, or damage by
you. EXCEPT FOR THE EXPRESSED WARRANTIES SET FORTH ABOVE, THE COMPANY
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMI
TATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. EXCEPT FOR THE EXPRESS WARRANTY SET FORTH ABOVE,
THE COMPANY DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTA
TION REGARDING THE USE OR THE RESULTS OF THE USE OF THE SOFTWARE IN
TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR OTH
ERWISE.

IN NO EVENT, SHALL THE COMPANY OR ITS EMPLOYEES, AGENTS, SUP
PLIERS, OR CONTRACTORS BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL,
OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE
LICENSE GRANTED UNDER THIS AGREEMENT, OR FOR LOSS OF USE, LOSS OF DATA,
LOSS OF INCOME OR PROFIT, OR OTHER LOSSES, SUSTAINED AS A RESULT OF
INJURY TO ANY PERSON, OR LOSS OF OR DAMAGE TO PROPERTY, OR CLAIMS OF
THIRD PARTIES, EVEN IF THE COMPANY OR AN AUTHORIZED REPRESENTATIVE OF
THE COMPANY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN
NO EVENT SHALL LIABILI'IY OF THE COMPANY FOR DAMAGES WITH RESPECT TO
THE SOFTWARE EXCEED THE AMOUNTS ACTUALLY PAID BY YOU, IF ANY, FOR THE
SOFTWARE.

SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OF IMPLIED
WARRANTIES OR LIABILITY FOR INCIDENTAL, INDIRECT, SPECIAL, OR CONSE
QUENTIAL DAMAGES, SO THE ABOVE LIMITATIONS MAY NOT ALWAYS APPLY. THE
WARRANTIES IN THIS AGREEMENT GIVE YOU SPECIFIC LEGAL RIGHTS AND YOU
MAY ALSO HAVE OTHER RIGHTS WHICH VARY IN ACCORDANCE WITH LOCAL LAW

ACKNOWLEDGMENT

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDER
STAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU ALSO
AGREE THAT THIS AGREEMENT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF
THE AGREEMENT BETWEEN YOU AND THE COMPANY AND SUPERSEDES ALL PRO
POSALS OR PRIOR AGREEMENTS, ORAL, OR WRITTEN, AND ANY OTHER COMMU
NICATIONS BETWEEN YOU AND THE COMPANY OR ANY REPRESENTATIVE OF THE
COMPANY RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT.

Should you have any questions concerning this Agreement or if you wish to contact the
Company for any reason, please contact in writing at the address below.

Robin Short
Prentice Hall PTR
One Lake Street
Upper Saddle River, New Jersey 07458

About the CD-ROM
The CD-ROM included with Windows CE 3.0: Application Programming con-
tains the following: ___...

<11 Full working copy of Microsoft® eMbedded Visual C++ and Microsoft
eMbedded Visual Tools 3.0™

<11 Microsoft Pocket PC® SDK
* All the source code and worked examples listed in the book.

System Requirements
<11 PC with Pentium processor; Pentium 150MHz or higher recommended
<11 Microsoft Windows 98 Second Edition, Microsoft Windows NT Work

station operating system version 4.0 with Service Pack 5 or later (Service
Pack 5 included), or Microsoft Windows 2000 operating system

* 24 MB of RAM for Windows 98 Second Edition (48 MB recommended)
* Hard-disk space required: Minimum installation of 360 MB with complete

installation of 720 MB
* CD-ROM drive compatible with multimedia PC specification
<11 VGA or higher resolution monitor required; Super VGA recommended
<11 Microsoft mouse or compatible pointing device

You will need the following CD Key to install this software:
TRT7H-KD36T-FRHSD-6QHSP-VFJHQ

License Agreement
Use of the software accompanying Windows CE 3.0: Application Programming
is subject to the terms of the License Agreement and Limited Warranty, found
on the previous two pages.

Technical Support
Prentice Hall does not offer technical support for any of the programs on
the CD-ROM. However, if the CD-ROM is damaged, you may obtain a replace
ment copy by sending an email that describes the problem to: disc_exchange@
prenhall.com.

Microsoft® eMbedded Visual C++ and Microsoft eMbedded Visual Basic
version 3.0 has been reproduced by Prentice Hall PTR under a special arrange
ment with Microsoft Corporation. If your CD-ROM is defective, follow the
instructions above. PLEASE DO NOT RETURN IT TO MICROSOFT CORPORA
TION. PLEASE DO NOT CONTACT MICROSOFT CORPORATION FOR PROD
UCT SUPPORT. End users of this Microsoft program shall not be considered
"registered owners" of a Microsoft product and therefore shall not be eligible
for upgrades, promotions, or other benefits available to "registered owners" of
Microsoft products.

Windows· CE 3.0
APPLICATION PROGRAMMING

• Beyond the user interface to hard-core
programming

• Full-scale networking and enterprise
computing

• Global communications from
Pocket PC"s

• All the new features of Windows CE 3.0

MICROSOFT
0

TECHNOLOGIES SERIES

Networking

Programming

BackOff1ce

Certificat1on

L E V E L

Intermediate --------i~ Advpnced

Advanced techniques for serious Windows CE programmers

Get beyond user interface programming and discover the behind-the-scenes
operating system facilities that wi ll let you make the most of the new features
in Windows CE 3.0. This hot technology lets you control Pocket PCs, hand
held PCs, and the embedded devices in hundreds of commercial products.
Learn the lean and mean techniques that keep your programs humming on
portable devices with limited memory, and the key data storage methods that
make them possible. Master the communications protocols that keep
Windows CE devices in contact with desktop computers and the Internet.
In addition:

• Build and run applications in Visual C ++" 6.0 and eMbedded Visual C ++ 3.0

• Use the Windows CE API and Microsoft" Foundation Classes

• Communicate via HTTP, TCP/IP, sockets, remote access, and telephony

• Access standard Windows CE databases and Microsoft SQL Server
for Windows CE

• Interface between desktop systems and Windows CE devices

This book is for serious developers with real programming experience.
Besides familiarity with Windows CE devices and general Windows API
programming, a basic knowledge of C and C ++ is needed to understand
the code samples.

About the CD-ROM
The accompanying CD-ROM contains all the code examples
from the book, as well as a fully searchable index of all the
book's examples, programs, and tutorials. The CD-ROM also

•
••• contains a complete working copy of eMbedded

Visual C ++ 3.0 and Pocket PC" SDK.

About the Authors
NICK GRATTAN is co-founder and Technical Director at Software Paths Limited
(www.SoftwarePaths.com), a Dublin, Ireland, based mobile solutions specialist.

MARSHALL BRAIN is the founder and CEO of How Stuff War~ an educational
content company that explains complex subjects in simple te~s. He is the
author of 12 books, including Win32 AP! Programming. He holds degrees in
Engineering and Computer Science and has been recognized for his teaching
excellence by the prestigious Academy of Outstanding Teachers.

PRENTICE HALL
Upper Saddle River, NJ 07458
www.phptr.com

$49.99 U.S.
$75.00 Canada

ISBN 0-13-025592-0
9 0 00 0

9 780130 255921

