
Powe red by Powered by

CD-ROM
Included

~
Microsoft" Programming Series

Programming

Includes
Windows CE

Platfonn
SDKs

~t

I ·CE
"DOUG'S CODE
DEMONSTRATES
A PERFECT GRASP
OF WINDOWS CE
CRAFTY AND ELEGANT."

-Charles Petzold, author,
Programming Windows

The
definitive
guide to
programming
the Windows CE
API

Douglas Boling

· Microsott·Press
. ---~--"Iii

OG I
· ICROS ®

Douglas Boling

Microsoft· Press

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1998 by Douglas Mcconnaughey Boling

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Boling, Douglas Mcconnaughey, 1960-

Programming Microsoft Windows CE I Douglas Mcconnaughey Boling.
p. cm.

Includes index.
ISBN 1-57231-856-2
1. Microsoft Windows (Computer file)

(Computers) I. Title.
QA76.76.063B623 1998
005.4'469--dc21

2. Operating Systems

Printed and bound in the United States of America.

123456789 QMQM 321098

98-39279
CIP

Distributed in Canada by ITP Nelson, a division of Thomson Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at
mspress.microsoft.com.

Active Desktop, Developer Studio, Microsoft, Microsoft Press, MS-DOS, Visual C++, Win32, Win
dows, the Windows CE logo, and \\7indows NT are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. Other product and company
names mentioned herein may be the trademarks of their respective owners.

Acquisitions Editor: Eric Stroo
Project Editor: Kathleen Atkins
Technical Editor: Jim Fuchs

To Nancy Jane

I

Part I Windows
Chapter 1 Hello Windows CE 3
Chapter2 Drawing on the Screen 35
Chapter 3 Input: Keyboard, Stylus, and Menus 87
Chapter4 Windows, Controls, and Dialog Boxes 149

Part II

Chapter 5 Common Controls and Windows CE 265
Chapter6 Memory Management 349
Chapter 7 Files, Databases, and the Registry 379
Chapter8 Processes and Threads 493

Part Ill

Chapter 9 Serial Communications 539
Chapter 10 Windows Networking and lrSock 579
Chapter 11 Connecting to the Desktop 633

Part IV

chapter 12 Shell Programming-Part 1 709

Chapter 13 Shell Programming-Part 2 749

Chapter 14 System Programming 793

Appendix COM Basics 811

Acknowledgments
Introduction

Contents

Part 1 Windows Programming
chapter 1 Hello Windows CE

WHAT IS DIFFERENT ABOUT WINDOWS CE?

IT'S STILL WINDOWS PROGRAMMING

YOUR FIRST PROGRAM

chapter 2 Drawing on the Screen
PAINTING BASICS

WRITING TEXT

BITMAPS

LINES AND SHAPES

chapter 3 Input: Keyboard, Stylus, and Menus
THE KEYBOARD

THE STYLUS AND THE TOUCH SCREEN

MENUS

RESOURCES

chapter 4 Windows, Controls, and Dialog Boxes
CHILD WINDOWS

WINDOWS CONTROLS

DIALOG BOXES

CONCLUSION

xi
xiii

3
3

6

8

35
36

39

63

71

87
87

105

125

127

149
150

169

208

262

Contents

Part II

Chapter 5 Common Controls and Windows CE
PROGRAMMING COMMON CONTROLS

THE COMMON CONTROLS

OTHER COMMON CONTROLS

UNSUPPORTED COMMON CONTROLS

chapter 6 Memory Management
MEMORY BASICS

THE DIFFERENT KINDS OF MEMORY ALLOCATION

chapter 7 Files, Databases, and the Registry
THE WINDOWS CE FILE SYSTEM

DATABASES

THE REGISTRY

CONCLUSION

chapters Processes and Threads
PROCESSES

THREADS

SYNCHRONIZATION

INTERPROCESS COMMUNICATION

EXCEPTION HANDLING

Part Ill

viii

chapter 9 Serial Communications
BASIC DRIVERS

BASIC SERIAL COMMUNICATION

THE INFRARED PORT

THE CECHAT EXAMPLE PROGRAM

265
266

267

346

348

349
350

358

379
380

417

467

491

493
493

499

507

516

531

539
539

545

557

560

chapter 1 o Windows Networking and lrSock

WINDOWS NETWORKING SUPPORT

BASIC SOCKETS

TCP/IP PINGING

chapter 11 Connecting to the Desktop

THE WINDOWS CE REMOTE API

THE CEUTIL FUNCTIONS

CONNECTION NOTIFICATION

FILE FILTERS

Part IV

Chapter 12 Shell Programming-Part 1

WORKING WITH THE SHELL

THE TASKBAR

THE OUT OF MEMORY DIALOG Box

NOTIFICATIONS

CONSOLE APPLICATIONS

chapter 13 Shell Programming-Part 2

THE SUPPLEMENTARY INPUT PANEL

WRITING AN INPUT METHOD

HARDWARE KEYS

chapter 14 System Programming

THE BOOT PROCESS

SYSTEM CONFIGURATION

WRITING CROSS-PLATFORM WINDOWS CE APPLICATIONS

Appendix COM Basics

USING COM INTERFACES

COM CLIENTS

COM SERVERS

Index

Contents

579
580

599

626

633
634

662

667

680

709
710

716

725

726

742

749
750

758

787

793
794

802

802

811

812

812

813

815

ix

Acknowledgments

I'd heard stories from authors about the travails of writing a book. Still I was unpre
pared for the task. While I wrote, I learned just how much of a team effort is neces
sary to make a book. My name appears on the cover, but countless others were
involved in its creation.

First, there is the talented team at Microsoft Press. Kathleen Atkins, the project
leader and editor of this book, took my gnarled syntax and confused text and made
it readable. Kathleen, thanks for your words of encouragement, your guidance, and
for making this book as good as it is. The book's technical editor, Jim Fuchs, was my
voice in the initial editing process. His judgement was so good that I rarely had to
correct an edit for technical reasons. Many thanks also go to Cheryl Penner, the copy
editor and proofreader; Elizabeth Hansford, the principal compositor; and Michael
Victor, who translated my stick drawings into professional illustrations. Finally, thanks
to Eric Stroo, who took a chance and signed me to write this book. Eric, the sun seems
to be out now.

For technical help, I was privileged to be able to mine the golden knowledge
of the Microsoft Windows CE development team. Special thanks go to Mike Thomson,
who put up with endless inquiries about the technical details of Windows CE. On
the rare occasions that Mike didn't have the answer, he guided me to the folks who
did. Among those folks who helped were Dave Campbell, Carlos Alaya, Scott Holden,
Omar Maabreh, Jeff Kelley, and Jeff Blum. While these guys did the best they could,
I am, of course, responsible for any mistakes introduced into the text as I interpreted
their answers.

You can't write a book of this type without hardware. My thanks go to Cheryl
Balbach, Scott Nelson, and the Casio Corporation for their assistance. When other
companies turned me down, Casio stepped up to the plate and provided prerelease
and hard-to-find hardware necessary to test my code. Thanks, Cheryl. Call me if you
need any more drop testing performed.

I also owe a debt of gratitude to the folks at Vadem Ltd. It was while working at
Vadem that I was initially introduced to Windows CE and, amazingly enough, allowed
to contribute to the creation of one of the machines you'll see in the introduction.
Thanks to Craig Colvin, who talked me into working at Vadem and is now busy de
signing new and innovative Windows CE products; John Zhao, the president; and
Henry Fung, CTO; as well as the managers down the line, Jim Stair and Norm Farquhar.

xi

Acknowledgments

xii

To all of you, thanks for allowing me to disappear as the book ran behind schedule.
I'd also like to thank Edmond Ku, Scott Chastain, Ron Butterworth, Anthony Armenta,
and the rest of the Clio team.

One good friend deserves special mention. Jeff Prosise started me down this
path when he talked me into writing my first article in 1985. When you get past his
honesty, good nature, and modesty, you're left with one incredibly smart guy, de
voted to his family and friends. Thanks, Jeff, for everything.

My career as a writer started at the top, PC Magazine. There, I'd like to thank
Michael Miller, Jake Kirchner, Bill Howard, and Gail Shaffer. Other folks no longer
directly tied to the magazine but whom I still regard as part of the PC Magazine fam
ily are Bill Machrone, Trudy Neuhaus, and Dale Lewallen.

In addition, I thank two of the masters--Charles Petzold and Ray Duncan. These
guys, along with Jeff Prosise, write the best technical books on the planet.

Thanks also to the folks at Microsoft Systems journal and Microsoft Interactive
Developer, Eric Maffei, Josh Trupin, and Gretchen Bilson. A special thanks goes to
Joe Flanigan, who introduced me to some of the folks on the Windows CE team at
Microsoft.

I'd also like to thank a number of musical groups that helped me through long
hours in front of the PC. These include but aren't limited to the Beach Boys, the Cran
berries, Alan Parson's Project, Toad the Wet Sprocket, the Eagles, and Dire Straits.
Thanks also to the Southland Corporation, owners of the 7-Eleven franchise, for in
venting the Big Gulp and its more potent cousins, the Super Big Gulp and the Double
Gulp. Thanks also to the Coca-Cola Corporation for providing the caffeine.

On a more serious note, if there's any one person whose name also deserves to
be on the cover of this book, it's Nancy Jane Hendricks Boling, my wife. Nancy en
dured a year of being a single parent because I spent every spare moment in front of
my PC and an array of Windows CE devices writing this book. Thank you, Nancy.
I'm sure I didn't say it enough over the past year. I love you. Your name isn't on the
cover, but the book is dedicated to you. I must also mention two other family mem
bers--our sons Andy, 2 Vz years old, and Sam, born during the writing of Chapter 9.
Andy is well on his way to becoming the best big brother a boy can be. Sam, well, he
has the cutest giggle. Thanks also to Amy Sekeras for taking such good care of Andy
and Sam.

Finally, I lack the words to adequately say thanks to my parents, Ronald and
Jane Boling. Mom and Dad, you are simply the best parents I know, have met, or
ever read about. It is my goal in life to attempt to be as good a parent to my children
as you are to Rob, Chris, Jay, and me. I am truly blessed to have you as parents.

Introduction

I was introduced to Microsoft Windows CE right before it was released in the fall of
1996. A Windows programmer for many years, I was intrigued by an operating sys
tem that applied the well-known Windows API to a smaller, more power-conserving
operating system. The distillation of the API for smaller machines enables tens of
thousands of Windows programmers to write applications for an entirely new class
of systems. The subtle differences, however, make writing Windows CE code some
what different from writing for Windows 98 or Windows NT. It's those differences
that I'll address in this book.

JUST WHAT IS WINDOWS CE?
Windows CE is the newest, smallest, and arguably the most interesting of the Micro
soft Windows operating systems. Windows CE was designed from the ground up to
be a small, ROM-based operating system with a Win32 subset APL Windows CE ex
tends the Windows API into the markets and machines that can't support the larger
footprints of Windows 98 and Windows NT.

Windows 98 is a great operating system for users who need backward compati
bility with DOS and Windows 2.x and 3.x programs. While it has shortcomings, Win
dows 98 succeeds amazingly well at this difficult task. Windows NT, on the other hand,
is written for the enterprise. It sacrifices compatibility and size to achieve its high level
of reliability and robustness.

Windows CE isn't backward compatible with MS-DOS or Windows. Nor is it
an all-powerful operating system designed for enterprise computing. Instead, Win
dows CE is a lightweight, multithreaded operating system with an optional graphi
cal user interface. Its strength lies in its small size, its Win32 subset API, and its
multiplatform support.

PRODUCTS BASED ON WINDOWS CE
The first products designed for Windows CE were handheld "organ&er" type devices
with 480-by-240 or 640-by-240 screens and chiclets keyboards. These devices, dubbed
Handheld PCs, were first introduced at Fall Comdex 96. Fall Comdex 97 saw the re
lease of a dramatically upgraded version of the operating system, Windows CE 2.0,

xiii

Introduction

xiv

with newer hardware in a familiar form-this time the box came with a 640-by-240
landscape screen and a somewhat larger keyboard.

In January 1998 at the Consumer Electronics Show, Microsoft announced two
new platforms, the Palm-size PC and the Auto PC. The Palm-size PC was aimed di
rectly at the pen-based organizer market currently dominated by the Palm Pilot. The
Palm-size PC sports a portrait mode, 240-by-320 screen and uses stylus-based input.
A number of Palm-size PCs are on the market today.

Figure I-1 shows both a Palm-size PC, in this case a Casio E-10, and a Handheld
PC, in this case a Casio A-20.

Figure 1-1. The Casio E-10 Palm-size PC and the Casio A-20 Handheld PC.

Just as this book is being released, Microsoft has introduced the Handheld PC
Profes ional, which is a greatly enhanced H/ PC with new applications and which uses
the latest version of the operating system, Windows CE 2.11.1 This device brings the
compact nature of Windows CE to devices of laptop size. The advantages of apply
ing Windows CE to a laptop device are many. First, tl1e battery life of a Handheld PC
Pro is at least 10 hours, far better than the 2-to 3-hour average of a PC-compatible
laptop. Second, the size and weight of the Windows CE devices are far more user
friendly , with ystems as thin as 1 inch weighing less than 3 pounds. Even with the
dinlinutive size, a Handheld PC Pro still sports a large VGA screen and a keyboard
that a normal human can use. The Vadem Clio Handheld PC Pro, shown in Figure 1-2,
is an example of how Windows CE is being used in newer platforms. The system

1. Windows CE 2.11 is Windows CE 2.10 with a few minor changes.

Introduction

can be used as a standard laptop or "flipped " into a tablet-mode device. This de
vice i just one example of how Windows CE is expanding into new system types.

Figure 1-2. The Vadem Clio Handheld PC Pro.

I refer to the Handheld PC Pro throughout this book under its operating system
ver ion, Windows CE 2.1, because the platform name, Handheld PC Pro, was deter
mined very late in the process. I knew of, and in fact, had a hand in the development
of a Handheld PC Pro under its code name Jupiter. However, you can't use code names
in a book, so its operating system version had to suffice.

Other platforms-Auto PC, Web TV set-top boxes, and embedded platforms
designed for specific tasks-are also appearing or will appear in the coming months.
What's amazing about Windows CE is that the flexibility of the operating system al
lows it to be used in all these diverse designs while all the time retaining the same
basic, well-known Win32 APL

WHY YOU SHOULD READ THIS BOOK
Programming Microsoft Windows CE is written for anyone who will be writing appli
cations for Windows CE. Both the embedded ystems programmer using Windows CE
for a specific application and the Windows programmer interested in porting an ex
isting Windows application or writing an entirely new one can use the information
in this book to make their tasks easier.

The embedded system programmer, who might not be as familiar with the
Win32 API as the Windows programmer, can read the first section of the book to

xv

Introduction

become familiar with Windows programming. While this section isn't the compre
hensive tutorial that can be found in books such as Programming Windows by Charles
Petzold, it does provide a base that will cany the reader through the other chapters
in the book. It also can help the embedded systems programmer develop fairly com
plex and quite useful Windows CE programs.

The experienced Windows programmer can use the book to learn about the
differences among the Win32 APis used by Windows CE, Windows NT, and Windows
98. Programmers who are familiar with Win32 programming recognize subtle differ
ences between the Windows 98 and Windows NT APis. The differences between
Windows CE and its two cousins are even greater. The small footprint of Windows CE
means that many of the overlapping APis in the Win32 model aren't supported. Some
sections of the Win32 API aren't supported at all. On the other hand, because of its
unique setting, Windows CE extends the Win32 API in a number of areas that are
covered in this text.

The method used by Programming Windows CE is to teach by example. I wrote
numerous Windows CE example programs specifically for this book. The source for
each of these examples is printed in the text. Both the source and the final compiled
programs for a number of the processors supported by Windows CE. are also pro
vided on the accompanying CD.

The examples in this book are all written directly to the API, the so-called
"Petzold" method of programming. Since the goal of this book is to teach you how to
write programs for Windows CE, the examples avoid using a class library such as MFC,
which obfuscates the unique nature of writing applications for Windows CE. Some
people would say that the availability of MFC on Windows CE eliminates the need for
direct knowledge of the Windows CE APL I believe the opposite is true. Knowledge
of the Windows CE API enables more efficient use of MFC. I also believe that truly know
ing the operating system also dramatically simplifies the debugging of applications.

WHAT ABOUT MFC?

xvi

The simple fact is that Windows CE systems aren't the best platform for a general
purpose class library like MFC. The slower processors and the significantly lower
memory capacity of Windows CE devices make using MFC problematic. Most Win
dows CE systems don't include the MFC library in their ROM. This means that the
MFC and OLE32 DLLs required by MFC applications must be downloaded into the
systems. The first versions of the Palm-size PCs don't even support MFC.

That said, there's a place for MFC on Windows CE devices. One such place might
be if you're designing a custom application for a system you know will have the MFC
and OLE32 DLLs in ROM. For those specific applications, you might want to use MFC,
but only if you know the target environment and have configured the system with
the proper amount of RAM to do the job.

Introduction

WINDOWS CE DEVELOPMENT TOOLS
This book is written with the assumption that the reader knows Candis at least fa
miliar with Microsoft Windows. All code development was done with Microsoft Vi
sual C++ 5.0 and Windows CE Visual C++ for Windows CE under Windows NT 4.0.

To compile the example programs in this book, you need Microsoft Visual C++ 5.0,
which is part of the integrated development environment (IDE), DevStudio, run
ning on a standard IBM-compatible PC. You also need Microsoft Visual C++ for
Windows CE, which isn't a stand-alone product. It's an add-in to Visual C++ 5.0 that
incorporates components to the compiler that produce code for the different CPUs
supported by Windows CE. Visual C ++ for Windows CE isn't currently available through
standard retail channels, but information on ordering it directly from Microsoft can
be found on the Microsoft Web site. Finally, you need one of the platform SDKs for
Windows CE. These SDKs provide the custom include files for each of the Windows
CE platforms. These platform SDKs are available for free on the Microsoft Web site.
As a convenience, I've also included the platform SDKs available at the time of the
writing of this book on the accompanying CD.

While not absolutely required for developing applications for Windows CE,
Windows NT 4.0 is strongly recommended for the development environment. It's
possible to compile and download Windows CE programs under Windows 98, but
many of the features of the integrated development environment (IDE), such as Win
dows CE emulation and remote debugging, aren't supported.

Visual C++ for Windows CE won't change the outward appearance of Visual C++,
with the exception of a few new tools listed under the tools menu. Nor will the in
stallation of Visual C++ for Windows CE prevent you from developing applications
for other Windows operating systems. The installation of Visual C++ for Windows CE
will result in new Windows CE targets such as WCE MIPS and WCE SH and WCE x86Em
being added to the platforms listing when you're creating a new Win32 application.
Also, a Windows CE MFC App Wizard will be added to the new projects listing to assist
in creating MFC programs for Windows CE.

TARGET SYSTEMS
You don't need to have a Windows CE target device to experience the sample pro
grams provided by this book. The various platform SDKs come with a Windows CE
emulator that lets you perform basic testing of a Windows CE program under Win
dows NT. This emulator comes in handy when you want to perform initial debugging
to ensure that the program starts, creates the proper windows, reacts to menu selec
tions, and so on. However, the emulator has some limitations and there simply is no
replacement for having a target Windows CE system to perform final debugging and
testing for applications.

xvii

Introduction

You should consider a number of factors when deciding what Windows CE
hardware to use for testing. First, if the application is to be a commercial product,
you should buy at least one system for each type of target CPU. You need to test against
all of the target CPUs because, while the source code will probably be identical, the
resulting executable will be different in size and so will the memory allocation foot
print for each target CPU.

Most applications will also be written specifically for the Handheld PC or Palm
size PC, not both. Although the base operating system for both the Handheld PC and
Palm-size PC is Windows CE, the hardware underneath is vastly different. The strict
memory constraints of the Palm-size PC, as well as its much smaller screen, its differ
ent orientation, and its lack of a keyboard, force compromises that aren't acceptable
on a Handheld PC or its larger relative, the Handheld PC Pro. Other constraints on
Palm-size PC systems, such as the lack of printing and TrueType support, differenti
ate its environment from the Handheld PC's.

In this book, I demonstrate programs that can run on the Handheld PC,
Handheld PC Pro, or Palm-size PC. The goal is to allow the lessons to be applied to
all platforms. For some examples, however, the different screen dimensions mean
that the example will run better on one particular system. I point out the differences
and the reasons they exist. For example, some controls might exist on only one plat
form or the other. The shells for the two platforms-Handheld or Palm-size--are also
different and need separate coverage. Finally, a small set of features in Windows CE
are simply not supported on the smaller Palm-size PC platform.

WHAT'S ON THE CD

xviii

The accompanying CD contains the source code for all the examples in the book.
I've also provided project files for Microsoft DevStudio so that you can open
preconfigured projects. Unless otherwise noted, the examples are Windows CE 2.0
compatible so that they can run on most Windows CE systems available today. Chap
ter 13, "Shell Programming-Part 2" contains examples that are compiled for
Windows CE 2.01, so they won't run on current Handheld PCs. There are some ex
amples, such as the console applications in Chapter 12, that are specific to the
Handheld PC Pro and other devices running Windows CE 2.10.

When you build for a specific platform, remember that it might not be back
ward compatible with earlier versions of Windows CE. For example, Microsoft moved
some of the C library support from statically linked libraries in Windows CE 2.0 into
the operating system for Windows CE 2.01, the Palm-size PC release. This reduces
the size of an executable, but prevents code built for the Palm-size PC from running
on a Handheld PC running Windows CE 2.0. You can, however, compile code for a
Handheld PC running Windows CE 2.0 and have it run on a Palm-size PC.

Introduction

In addition to the examples, the CD contains a number of folders of interest to
the Windows CE programmer. I've included the platform SDKs for the Handheld PC
as well as for the Palm-size PC. Unfortunately, the Handheld PC Pro SDK wasn't avail
able in time for this release. Like the other platform SDKs, that one is available for
free on the Microsoft Web site. Check out the readme file on the CD for late-breaking
information about what else is included on the CD.

OTHER SOURCES
While I have attempted to make Programming Microsoft Windows CE a one-stop shop
for Windows CE programming, no one book can cover everything. A nice comple
ment to this book is Inside Windows CE by John Murray. It documents the "oral his
tory" of Windows CE. Knowing this kind of information is crucial to understanding
just why Windows CE is designed the way it is. Once you know the why, it's easy to
extrapolate the what, when trying to solve problems. Murray's book is great, not just
because of the information you'll learn about Windows CE but also because it's an
entertaining read.

For learning more about Windows programming in general, I suggest the clas
sic text Programming Windows by Charles Petzold. This is, by far, the best book for
learning Windows programming. Charles presents examples that show how to tackle
difficult but common Windows problems. For learning more about the Win32 kernel
API, I suggest Jeff Richter's Advanced Windows. Jeff covers the techniques of pro
cess, thread, and memory management down to the most minute detail. For learning
more about MFC programming, there's no better text thanJeff Prosise's Programming
Windows 95 with MFG. This book is the "Petzold" of MFC programming and simply
a required read for MFC programmers.

FEEDBACK
While I have striven to make the information in this book as accurate as possible,
you'll undoubtedly find errors. If you find a problem with the text or just have ideas
about how to make the next version of the book better, please drop me a note at
CEBook@DelValle.com. I can't promise you that I'll answer all your notes, but I will
read every one.

Doug Boling

Tahoe City, California

August 1998

xix

Part/

WINDOWS
PROGRAMMING BASICS

Chapter 1

Hello Windows CE

From Kernighan and Ritchie to Petzold and on to Prosise, programming books tradition
ally start with a "hello, world" program. It's a logical place to begin. Every program has
a basic underlying structure that, when not obscured by some complex task it was de
signed to perform, can be analyzed to reveal the foundation shared by all programs
running on its operating system.

In this programming book, the "hello, world" chapter covers the details of set
ting up and using the programming environment. The environment for developing
Microsoft Windows CE applications is somewhat different from that for developing
standard Microsoft Windows applications because Windows CE programs are writ
ten on PCs running Microsoft Windows NT and debugged mainly on separate, Win
dows CE-based target devices.

While experienced Windows programmers might be tempted to skip this chap
ter and move on to meatier subjects, I suggest that they-you-at least skim the chapter
to note the differences between a standard Windows program and a Windows CE
program. A number of subtle and significant differences in both the development
process and the basic program skeleton for Windows CE applications are covered in
this first chapter.

WHAT IS DIFFERENT ABOUT WINDOWS CE?
Windows CE has a number of unique characteristics that make it different from other
Windows platforms. First of all, the systems running Windows CE are most likely not
using an Intel x86 compatible microprocessor. Instead, a short list of supported CPUs
run Windows CE. Fortunately, the development environment isolates the program
mer from almost all of the differences among the various CPUs.

3

Part I Windows

Nor can a Windows CE program be assured of a screen or a keyboard. Some Win
dows CE devices have a 240-by-320-pixel portrait-style screen while others might have
screens with more traditional landscape orientations in 480-by-240, 640-by-240, or 640-
by-480-pbcel resolution. An embedded device might not have a display at all. The tar
get devices might not support color. And, instead of a mouse, most Windows CE
devices have a touch screen. On a touch-screen device, left mouse button clicks are
achieved by means of a tap on the screen, but no obvious method exists for delivering
right mouse button clicks. To give you some method of delivering a right click, the
Windows CE convention is to hold down the Alt key while tapping. It's up to the Win
dows CE application to interpret this sequence as a right mouse click.

Fewer Resources in Windows CE Devices
The resources of the target devices vary radically across systems that run Windows CE.
When writing a standard Windows program, the programmer can make a number of
assumptions about the target device, almost always an IBM-compatible PC. The tar
get device will have a hard disk for mass storage and a virtual memory system that
uses the hard disk as a swap device to emulate an almost unlimited amount of (vir
tual) RAM. The programmer knows that the user has a keyboard, a two-button mouse,
and a monitor that these days almost assuredly supports 256 colors and a screen reso
lution of at least 640 by 480 pixels.

Windows CE programs run on devices that almost never have hard disks for
mass storage. The absence of a hard disk means more than just not having a place to
store large files. Without a hard disk, virtual RAM can't be created by swapping data
to the disk. So Windows CE programs are almost always run in a low-memory envi
ronment. Memory allocations can, and often do, fail because of the lack of resources.
Windows CE might terminate a program automatically when free memory reaches a
critically low level. This RAM limitation has a surprisingly large impact on Windows CE
programs and is one of the main difficulties involved in porting existing Windows
applications to Windows CE.

Unicode

4

One characteristic that a programmer can count on when writing Windows CE applica
tions is Unicode. Unicode is a standard.for representing a character as a 16-bit value as
opposed to the ASCII standard of encoding a character into a single 8-bit value. Unicode
allows for fairly simple porting of programs to different international markets because
all the world's known characters can be represented in one of the 65,536 available
Unicode values. Dealing with Unicode is relatively painless as long as you avoid the
dual assumptions made by most programmers that strings are represented in ASCII
and that characters are stored in single bytes.

Chapter 1 Hello Windows CE

A consequence of a program using Unicode is that with each character taking up
two bytes instead of one, strings are now twice as long. A programmer must be careful
making assumptions about buffer length and string length. No longer should you as
sume that a 260-byte buffer can hold 259 characters and a terminating zero. Instead of
the standard char data type, you should use the TCHAR data type. TCHAR is defined to
be char for Microsoft Windows 95 and Microsoft Windows 98 development and unsigned
short for Unicode-enabled applications for Microsoft Windows NT and Windows CE
development. These types of definitions allow source-level compatibility across ASCII
and Unicode-based operating systems.

New Controls
Windows CE includes a number of new Windows controls designed for specific envi
ronments. New controls include the command bar that provides menu- and toolbar
like functions all on one space-saving line, critical on the smaller screens of Windows CE
devices. The date and time picker control and calendar control assist calendar and or
ganizer applications suitable for handheld devices, such as the Handheld PC CWPC)
and the Palm-size PC. Other standard Windows controls have reduced function,
reflecting the compact nature of Windows CE hardware-specific OS configurations.

Another aspect of Windows CE programming to be aware of is that Windows CE
can be broken up and reconfigured by Microsoft or by OEMs so that it can be better
adapted to a target market or device. Windows programmers usually just check the
version of Windows to see whether it is from the Microsoft Windows 3.1, 95, or 98
line or Windows NT line; by knowing the version they can determine what API func
tions are available to them. Windows CE, however, has had four variations already in
its first two years of existence: the Handheld PC, the Palm-size PC, the Handheld PC
Pro, and the Auto PC. A number of new platforms are on their way, with much in
common but also with many differences among them. Programmers need to under
stand the target platform and to have their programs check what functions are avail
able on that particular platform before trying to use a set of functions that might not
be supported on that device.

Finally, because Windows CE is so much smaller than Windows 98 or Win
dows NT, it simply can't support all the function calls that its larger cousins do. While
you'd expect an operating system that didn't support printing, such as Windows CE on
the original Palm-size PC, not to have any calls to printing functions, Windows CE also
removes some redundant functions supported by its larger cousins. If Windows CE
doesn't support your favorite function, a different function or set of functions will
probably work just as well. Sometimes Windows CE programming seems to consist
mainly of figuring out ways to implement a feature using the sparse API of Windows CE.
If 2000 functions can be called sparse.

5

Basics

IT'S STILL WINDOWS PROGRAMMING
While differences between Windows CE and the other versions of Windows do exist,
they shouldn't be overstated. Programming a Windows CE application is program
ming a Windows application. It has the same message loop, the same windows, and
for the most part, the same resources and the same controls. The differences don't
hide the similarities. For those who aren't familiar with Windows programming, here's
a short introduction.

Windows programming is far different from MS-DOS-based or Unix-based pro
gramming. An MS-DOS or Unix program uses getc- and putc-style functions to read
characters from the keyboard and write them to the screen whenever the program
needs to do so. This is the classic "pull" style used by MS-DOS and Unix programs,
which are procedural. A Windows program, on the other hand, uses a "push" model,
in which the program must be written to react to notifications from the operating system
that a key has been pressed or a command has been received to repaint the screen.

Windows applications don't ask for input from the operating system; the oper
ating system notifies the application that input has occurred. The operating system
achieves these notifications by sending messages to an application window. All win
dows are specific instances of a window class. Before we go any further, let's be sure
we understand these terms.

The Window Class

6

A window is a region on the screen, rectangular in all but the most contrived of cases,
that has a few basic parameters, such as position-x, y, and z (a window is over or
under other windows on the screen)-visibility, and hierarchy-the window fits into
a parent/child window relationship on the system desktop, which also happens to be
a window.

Every window created is a specific instance of a window class. A window class
is a template that defines a number of attributes common to all the windows of that
class. In other words, windows of the same class have the same attributes. The most
important of the shared attributes is the window procedure.

The window procedure
The behavior of all windows belonging to a class is defined by the code in its win
dow procedure for that class. The window procedure handles all notifications and
requests sent to the window. These notifications are sent either by the operating sys
tem, indicating that an event has occurred to which the window must respond, or by
other windows querying the window for information.

These notifications are sent in the form of messages. A message is nothing more
than a call being made to a window procedure, with a parameter indicating the nature
of the notification or request. Messages are sent for events such as a window being moved

Chapter 1 Hello Windows CE

or resized or to indicate a key press. The values used to indicate messages are defined
by Windows. Applications use predefined constants, such as WM_ CREATE orWM_MOVE,
when referring to messages. Since hundreds of messages can be sent, Windows conve
niently provides a default processing function to which a message can be passed when
no special processing is necessary by the window class for that message.

The life of a message
Stepping back for a moment, let's look at how Windows coordinates all of the mes
sages going to all of the windows in a system. Windows monitors all the sources of
input to the system, such as the keyboard, mouse, touch screen, and any other hard
ware that could produce an event that might interest a window. As an event occurs,
a message is composed and directed to a specific window. Instead of Windows di
rectly calling the window procedure, the system imposes an intermediate step. The
message is placed in a message queue for the application that owns the window. When
the application is prepared to receive the message, it pulls it out of the queue and
tells Windows to dispatch that message to the proper window in the application.

If it seems to you that a number of indirections are involved in that process,
you're right. Let's break it down.

1. An event occurs, so a message is composed by Windows and placed in a
message queue for the application that owns the destination window. In
Windows CE, as in Windows 95 and Windows NT, each application has
its own unique message queue1 . (This is a break from Windows 3.1 and
earlier versions of Windows, where there was only one, systemwide mes
sage queue.) Events can occur, and therefore messages can be composed,
faster than an application can process them. The queue allows an appli
cation to process messages at its own rate, although the application had
better be responsive or the user will see a jerkiness in the application. The
message queue also allows Windows to set a notification in motion and
continue with other tasks without having to be limited by the responsive
ness of the application to which the message is being sent.

2. The application removes the message from its message queue and calls
Windows back to dispatch the message. While it may seem strange that
the application gets a message from the queue and then simply calls Win
dows back to process the message, there's a method to this madness.
Having the application pull the message from the queue allows it to pre
process the message before it asks Windows to dispatch the message to

1. Technically, each thread in a Windows CE application can have a message queue. I'll talk about
threads later in the book.

7

Part I Windows Programming Basics

the appropriate window. In a numb r of ca e , the application might call
different functions in Windows to process specific kinds of messages.

3. Window di patche the me sage; that i , it call the appropriate window
procedure. Instead of having the application directly call the window pro
cedure, another level of indirection occurs, allowing Window to coordi
nate the call to the window procedure with other event in the y tern.
The me age doe n't stand in another queue at thi point, but Windows
might need to make some preparation before calling the window proce
dure. In any ca e, the cheme relieves the application of the obligation to
determine the proper destination window-Windows doe this instead.

4. The window procedure proce es the me age. All window procedures
have the ame calling parameter : the handle of the specific window in-
tance being called, the message, and two generic parameter that con

tain data pecific to each me age type. The window handle differentiates
each in tance of a window for tl1e window procedure. The me age pa
rameter, of cour e , indicates the event that the window mu t react to. The
two generic parameter contain data pecific to the me age being ent.
For example, in a WM_MOVE message indicating that the window is about
to be moved, one of the generic parameter points to a tructure contain
ing the new coordinates of the window.

Your First Program

Enough small talk. It 's time to jump into the first example, Hello Windows CE. While
the entire program files for this and all examples in the book are available on the
companion CD-ROM, I suggest that, at least in this one ase, you avoid imply load
ing the proj ct file from the CD and in read type in the entire exampl by hand. By
performing this somewhat tedious task, you'll ee the differences in the d velopment
process a well a the ubtle program differences between tandard Win32 programs
and Windows CE program . Figure 1-1 contains the complete source for HelloCE, my
version of a hello, world program.

HelloCE.h

II==
II Header file
II
II Written for t he book Programming Windows CE
II Copyr i ght CC) 1998 Douglas Bo li ng
II

Figure 1-1. 7be He/loCE program.

8

Chapter 1 Hello Windows CE

II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11 -- ---------- --------------
11 Generic defines and data types
II
struct decodeUINT

UINT Code:

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);
} :
struct decodeCMD {

UINT Code;
LRESULT (*FXn)(HWND, WORD, HWND, WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function

11 ------------------------ -------- --------------- ----- ------------------
11 Generic defines used by application
#define IDC_CMDBAR 1 II Command bar ID

11-- ------------ ------ -- ------------- -----------------------------------
11 Function prototypes
II
int InitApp (HINSTANCE);
HWND Initinstance (HINSTANCE, LPWSTR, int);
int Terminstance (HINSTANCE, int);

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

II Message handlers
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoPaintMain (HWND , UINT , WPARAM, LPARAM);
LRESULT DoHibernateMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoActivateMain CHWND . UINT, WPARAM. LPARAM):
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

HelloCE.c

II==
II HelloCE - A simple application for Windows CE
II
II Written for the book Programming Windows CE
II Copyright <Cl 1998 Douglas Boling

(continued)

9

Part 1 Windows Programming Basics

Figure 1-1. continued

II
II==
#include <windows.h> II For all that Windows stuff
#include <commctrl.h> II command bar includes
#include "helloce.h" II Program-specific stuff

11 - -- --- - - - ---
11 Global data
II
const TCHAR szAppName[] TEXT("HelloCE"l;
HINSTANCE hinst; II Program instance handle

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = (

WM_CREATE. OoCreateMain,

} ;

WM_PAINT, OoPaintMain,
WM_HIBERNATE, OoHibernateMain,
WM_ACTIVATE, OoActivateMain,
WM_OESTROY, OoOestroyMain,

II==
II
II Program entry point
II
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) {

10

MSG msg;
int re = 0;
HWNO hwndMain;

II Initialize application.
re= InitApp ChinstanceJ;
if (rel return re;

II Initialize this instance.
hwndMain = Initinstance (hinstance, lpCmdLine, nCmdShow);
if ChwndMain == 0)

return 0x10;

II Application message loop
while CGetMessage C&msg. NULL, 0, 011 (

TranslateMessage C&msgl;
DispatchMessage C&msgJ;

)

II Instance cleanup
return Terminstance Chinstance, msg.wParam);

Chapter 1 Hello Windows CE

)

11 - ---- -- - ------ - ---- - --------------- - --- -- ----------------------
11 InitApp - Application initialization
II
int InitApp CHINSTANCE hlnstancel (

WNDCLASS we;

II Register application main window
we.style = 0;
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hlnstance = hlnstance;
wc.hlcon = NULL,

class.
II Window style
II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon
II Default cursor wc.hCursor = NULL;

wc.hbrBackground = (HBRUSH) GetStockObject CWHITE_BRUSH);
II Menu name wc.lpszMenuName = NULL;

wc.lpszClassName = szAppName; II Window class name

if (RegisterClass C&wc) == 0) return l;

return 0;
)

11 -------- - - -- --- ----- - --- -- - ---------------------------------------
11 Initlnstance - Instance initialization
II
HWND Initinstance CHINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShowl (

HWND hWnd;

II Save program instance handle in global variable.
hlnst = hlnstance;

II Create main window.
hWnd = CreateWindow (szAppName,

TEXT("He 11 o"),
WS_VISIBLE,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT.
CW_USEDEFAULT,
NULL,
NULL,
hlnstance ,
NULL);

II Window class
II Window title
II Style flag s
II x position
II y position
II Initial width
II Initial height
II Pa rent
II Menu, must be null
II Application instance
II Pointer to create
II parameters

(co11tin.11ed)

11

Part 1 Windows Programming Basics

Figure 1-1 . continued

)

II Return fail code if window not created.
if (!lsWindow (hWnd)) return 0:

II Standard show and update calls
ShowWindow (hWnd, nCmdShow>:
UpdateWindow (hWnd):
return hWnd:

11--
11 Termlnstance - Program cleanup
II
int Termlnstance (HINSTANCE hlnstance, int nDefRC) (

return nDefRC:

II==
II Message handling procedures for main window
II

11--
11 HainWndProc - Callback function for application window
II
LRESULT CALLBACK HainWndProc (HWND hWnd, UINT wHsg, WPARAH wParam,

LPARAH l Pa ram) (

)

INT i:
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0: i < dim(HainHessages): i++) (

if (wHsg == HainHessages[iJ.Code)
return C•HainHessages[iJ.Fxn)(hWnd , wHsg, wParam, lParam):

return DefWindowProc (hWnd, wHsg, wParam, lParam):

11 --
11 DoCreateHain - Process WH_CREATE message for window.
II
LRESULT DoCreateHain CHWND hWnd, UINT wHsg, WPARAH wParam,

LPARAH lParam) (
HWND hwndCB:

II Create a command bar.
hwndCB = CommandBar_Create (hlnst, hWnd, IDC_CHDBAR):

12

Chapter 1 Hello Windows CE

}

II Add exit button to command bar.
CommandBar_AddAdornments ChwndCB, 0, 0):
return 0;

11---- -------- -- -- --- ------- -- ------- ----- --- -- ---- ---------------------
11 OoPaintMain - Process WM_PAINT message for window.
II
LRESULT OoPaintMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

}

PAINTSTRUCT ps;
RECT rect;
HOC hdc;

II Adjust the size of the client rectangle to take into account
II the command bar height.
GetClientRect ChWnd, &rect);
rect.top += CommandBar_Height CGetDlgltem ChWnd, IOC_CMDBAR));

hdc = BeginPaint ChWnd, &ps);
DrawText Chdc, TEXT ("Hello Windows CE!"), -1. &rect,

OT_CENTER I OT_VCENTER I OT_SINGLELINE);

EndPaint (hWnd, &ps);
return 0;

11 --------------- ---
11 DoHibernateMain - Process WM_HIBERNATE message for window.
II
LRESULT DoHibernateMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {

}

II If not the active window, nuke the command bar to save memory.
if CGetActiveWindow<> ! = hWnd)

CommandBar_Oestroy CGetOlgltem ChWnd , IOC_CMDBAR));

return 0;

11 --
11 DoActivateMain - Process WM_ACTIVATE message for window.
II
LRESULT DoActivateMain CHWND hWnd, UINT wMsg, WPARAM wParam.

LPARAM lParam) {
HWND hwndCB;

(continued)

13

Part 1 Windows Programming Basics

Figure 1-1. continued

}

II If activating and no command bar. create it.
ff ((LOWORO CwParam) != WA_INACTIVE) &&

(GetOlgltem (hWnd, IDC_CMDBAR) == 0)) {

II Create a command bar.
hwndCB = CommandBar_Create (hlnst, hWnd, IDC_CMDBAR):

II Add exit button to command bar.
CommandBar...AddAdornments ChwndCB, 0, 0l:

return 0:

11------- ---
,, DoDestroyMafn - Process WM_DESTROY message for window.
If
LRESULT DoDestroyMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

14

PostQuitMessage (0):
return 0:

If you look over the source code for HelloCE, you 'll ee the standard boilerplate
for all programs in this book. I'll talk at greater length about a few of the characteris
tics, such as Hungarian notation and the somewhat different method I use to con
struct my window procedures later, in their own sections, but at this point I'll make
just a few observations about them.

Just after the comments, you ee the include of windows.h. You can find this
file in all Windows programs; it lists the definitions for the special variable types and
function defines needed for a typical program. Windows.h and the include files it
contains make an interesting read because the basics for all windows programs come
from the functions , typedefs, and structures defined there. The include of commctrl.h
provides, among other things, the definitions for the command bar functions that are
part of almost all Window CE programs. Finally, the include of HelloCE.h give you
the boilerplate definitions and function prototypes for this specific program.

A few variables defined globally follow the defines and includes. I know plenty
of good arguments why no global variables should appear in a program, but I use
them as a convenience that shortens and clarifies the example programs in the book.
Each program defines an szAppName Unicode string to be u ed in various places in
that program. I also use the hlnst variable a number of places and I'll mention it when
I cover the lnitApp procedure. The final global tructure is a list of messages along

Chapter 1 Hello Windows CE

with associated procedures to process the messages. This structure is used by the win
dow procedure to associate messages with the procedure that handles them. Now,
on to a few other characteristics common to all the programs in this book.

Hungarian Notation
A tradition, and a good one, of almost all Windows programs since Charles Petzold wrote
Programming Windows is Hungarian notation. This programming style, developed years
ago by Charles Simonyi at Microsoft, prefixes all variables in the program usually with
one or two letters indicating the variable type. For example, a string array called Name
would instead be called szName, with the sz prefix indicating that the variable type
is a zero-terminated string. The value of Hungarian notation is the dramatic improvement
in readability of the source code. Another programmer, or you after not looking at a
piece of code for a while, won't have to look repeatedly at a variable's declaration to
determine its type. The following are typical Hungarian prefixes for variables:

Variable Type

Integer

Word (16-bit)

Double word (32-bit unsigned)

Long (32-bit signed)

Char

String

Pointer

Long pointer

Handle

Window handle

Struct size

Hungarian Prefix

i or n

wors

dw

c

sz

p

lp

h

hwnd

ch

You can see a few vestiges of the early days of Windows. The Ip, or long pointer,
designation refers to the days when, in the Intel 16-bit programming model, pointers
were either short (a 16-bit offset) or long (a segment plus an offset). Other prefixes
are formed from the abbreviation of the type. For example, a handle to a brush is
typically specified as hbr. Prefixes can be combined, as in lpsz, which designates a
long pointer to a zero-terminated string. Most of the structures defined in the Windows
API use Hungarian notation in their field names. I use this notation as well throughout
the book, and I encourage you to use this notation in your programs.

15

Part I Windows Programming Basics

My Programming Style

One criticism of the typical SDK style of Windows programming has always been the
huge switch statement in the window procedure. The switch statement parses the
message to the window procedure so that each message can be handled indepen
dently. This standard structure has the one great advantage of enforcing a similar struc
ture across almost all Windows applications, making it much easier for one programmer
to understand the workings of another programmer's code. The disadvantage is that
all the variables for the entire window procedure typically appear jumbled at the top
of the procedure.

Over the years, I've developed a different style for my Windows programs. The
idea is to break up the WinMain and WinProc procedures into manageable units that
can be easily understood and easily transferred to other Windows programs. WinMain

is broken up into procedures that perform application initialization, instance initial
ization, and instance termination. Also in WinMain is the ubiquitous message loop
that's the core of all Windows programs.

I break the window procedure into individual procedures, with each handling
a specific message. What remains of the window procedure itself is a fragment of
code that simply looks up the message that's being passed to see whether a proce
dure has been written to handle that message. If so, that procedure is called. If not,
the message is passed to the default window procedure.

This structure divides the handling of messages into individual blocks that can
be more easily understood. Also, with greater isolation of one message-handling code
fragment from another, you can more easily transfer the code that handles a specific
message from one program to the next. I first saw this structure described a number
of years ago by Ray Duncan in one of his old "Power Programming" columns in PC

Magazine. Ray is one of the legends in the field of MS-DOS and OS/2 programming.
I've since modified the design a bit to fit my needs, but Ray should get the credit for
this program structure.

Building HelloCE

16

To create HelloCE from scratch on your system, start Microsoft Visual C++ and create a
new Win32 application. The first change from standard Win32 programming becomes
evident when you create the new project. You'll have the opportunity to select a new
platform specific to Windows CE, as shown in Figure 1-2. These platforms have a WCE
prefix followed by the target CPU. For example, selecting Win32 (WCE MIPS) enables
compiling to a Windows CE platform with a MIPS CPU. No matter what target device
you have, be sure to check the WCE x86em target. This allows you to run the sample
program in the emulator under Windows NT.

Chapter 1 Hello Windows CE

An. COMAppWlzerd
cu.tam AppWizerd
DevStudio Ad«Hn Wizerd
ISAPI E>clenaion Wizerd

, Mllkefile
MFCACIMIX ContolW!zerd
MFC AppWizllfd (dll)
MFCAppWlzerd (Ull)
WCE All. COMAppWizllfd

MFCArfNe>'. CoMo!Wizerd
WCE MFCAppWizerd (dff)

MFC AppWlzerd (11X11)
.. Win32App11Cllllon

Win32 Console Apphcelion
'Win32 ~Library
. · Win32 Sllltic Library

01har Documents }

==== :Ji)
flallonna:

32
., n32 (WCE MIPS)

32(WCESH)
32 (WCE x86em)
3,.,..!,!!=~ ...

OK

Figure 1-2. The Plaiforms list box allows Visual C++ 5 .0 lo target Windows CE
plaiforms.

After you have created the proper source files for HelloCE or copied them from
the CD, select the target Win32 (WCE x86em) Debug and then build the program.
This step compiles the source and, assuming you have no compile errors, automati
cally launches the emulator and inserts the EXE into the emulator file system; you
can then launch HelloCE. If you 're running Windows 95 or Windows 98, the system
displays an error message because the emulator runs only under Windows NT.

If you have a Windows CE ystem available, such as an H/ PC, attach the H/ PC
to the PC the same way you would to sync the contents of the H/PC with the PC.
Open the Mobile Devices folder and establish a connection between the H/PC and
the PC. While it's not strictly necessary to have the Mobile Devices connection to your
Windows CE device running because the SDK tools inside Visual C++ are supposed
to make this connection automatically, I've found that having it running makes for
a more stable connection between the development e nvironment and the
Windows CE system.

Once the link between the PC and the Windows CE device is up and running,
switch back to Vi ual C++, select the compile target appropriate for the target device
(for example, Win32 [WCE SH) Debug for an HP 360 HPC), and rebuild. As in the

17

Part 1 Windows Programming Basics

18

ca e of building for the emulator, if there are no errors Visual C++ automatically down
loads the compiled program to the remote device. The program is placed in the root
directory of the object store.

Running the program
To run HelloCE on an H/ PC, simply click on the My Handheld PC icon to bring up the
files in the root directory. At that point, a double-tap on the application's icon launche
the program.

Running the program on a Palm-size PC is somewhat more complex. Because
the Palm-size PC doesn't come with an Explorer program that allows users to browse
through the files on the system, you can't launch HelloCE without a bit of prepara
tory work. You can launch the program from Visual C++ by selecting Execute from
the Build menu. Or you can have Visual C++ automatically copy the executable file
into the \ windows\ start menu\ programs directory of the Palm-size PC. This auto
matically places the program in the Programs submenu under the Start menu . You
can tell Visual C++ to automatically copy the file by setting the remote target path in
the Debug tab of the Project Settings dialog box. Figure 1-3 shows this dialog box. When
you've set this path, you can easily tart the program by electing it in the Start menu.

Prow1 1 ~.P ttmq ·. n

jE:\cebOak\ 1. Helo CE\H911oCE\WMIPSRltl\HelloCE.- j !!J
lilCoddll9 dll9doly:

fiwindoM\.at,._~\HelloCE-
===--"'

Figure 1-3. The Project Settings dialog box in Visual C++ with the Debug tab selected.

One "gotcha" to look out for here. If you 're debugging and recompiling the
program, it can 't be downloaded again if an earlier version of the program is still
running on the target system. That is, make sure HelloCE isn't running on the re
mote ystem when you start a new build in Vi ual C++ or the auto download part
of the compile process will fail. If this happens, close the application and choose

Chapter 1 Hello Windows CE

the Update Remote File menu command in Visual C++ to download the newly com
piled file.

Palm-size PC users will notice that unlike almost all Palm-size PC programs, HelloCE
has a Close button in the upper right corner of the window. By convention, the user
doesn't close Palm-size PC applications; they're closed only when the system needs
more memory space. The lack of a Close button in Palm-size PC applications is only
a user interface guideline, not a lack of function of the version of Windows CE in the
Palm-size PC. For development, you might want to keep a Close button in your appli
cation because you'll need to close the program to download a new version. You can
then remove the Close button before you ship your application.

If you don't have access to an H/PC or if you want to check out Windows CE
programming without the hassle of connecting to a remote device, the emulation
environment is a great place to start. It's the perfect place for stepping though the
code just as you would were you debugging a standard PC-based Windows program.
You can set breakpoints and step though code running on a remote system, but the
slow nature of the serial link as well as the difficulty in single-stepping a program on
the remote system make debugging on the emulator much less painful. On the other
hand, debugging on the remote system is the only way to truly test your program. While
the emulator is a good first step in the debug process, nothing replaces testing on the
target system.

The code
Now that you have the program up and running either in the emulator or on a Win
dows CE device, it's time to look at the code itself. The program entry point, WinMain,
is the same place any Windows program begins. Under Windows CE, however, some
of the parameters for WinMain have limits to the allowable values. WinMain is de
fined as the following:

int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,
LPWSTR lpCmdline, int nCmdShow);

The first of the four parameters passed, hlnstance, identifies the specific instance
of the program to other applications and to Windows API functions that need to identify
the EXE. The hPrevlnstance parameter is left over from the old Win16 API (Win
dows 3.1 and earlier). In those versions of Windows, the hPrevlnstance parameter
was nonzero if there were any other instances of the program currently running. In
all Win32 operating systems, including Windows CE, the hPrevlnstance is always 0
and can be ignored.

The lCmdline parameter points to a Unicode string that contains the text of
the command line. Applications launched from Microsoft Windows Explorer usu
ally have no command line parameters. But in some instances, such as when the
system automatically launches a program, the system includes a command line

19

Part 1 Windows Programming Basics

20

parameter to indicate why the program was started. The lCmdLine parameter provides
us with one of the first instances in which Windows CE differs from Windows NT or
Windows 98. Under Windows CE, the command line string is a Unicode string. In Win
dows NT and Windows 98, the string is always ASCII.

The final parameter, nShowCmd, specifies the initial state of the program's main
window. In a standard Win32 program, this parameter might specify that the window
be initially displayed as an icon (SW _SHOWMINIMIZE), maximized (SW _SHOW
MAXIMIZED) to cover the entire desktop, or normal (SW _RESTORE), indicating that
the window is placed on the screen in the standard resizable state. Other values
specify that the initial state of the window should be invisible to the user or that the
window be visible but incapable of becoming the active window. Under Windows
CE, the values for this parameter are limited to only three allowable states: normal
(SW _SHOW), hidden (SW _HIDE), or show without activate (SW _SHOWNO
ACTIVATE). Unless an application needs to force its window to a predefined state, this
parameter is simply passed without modification to the Show Window function after the
program's main window has been created.

On entry into WinMain, a call is made to lnitApp, where the window class for the
main window is registered. After that, a call to lnitlnstance is made; the main window
is created in this function. I'll talk about how these two routines operate shortly, but for
now I'll continue with WinMain, proceeding on the assumption that at the return from
lnitlnstance the program's main window has been created.

The message loop
After the main window has been created, WinMain enters the message loop, which
is the heart of every Windows application. HelloCE's message loop is shown here:

while (GetMessage C&msg, NULL, 0, 0)) {

}

TranslateMessage (&msg);
DispatchMessage C&msg);

The loop is simple: GetMessage is called to get the next message in the ap
plication's message queue. If no message is available, the call waits, blocking that
application's thread until one is available. When a message is available, the call re
turns with the message data contained in a MSG structure. The MSG structure itself
contains fields that identify the message, provide any message-specific parameters,
and identify the last point on the screen touched by the pen before the message was
sent. This location information is different from the standard Win32 message point
data in that in Windows 9x or Windows NT the point returned is the current mouse
position instead of the last point clicked (or tapped, as in Windows CE).

The TranslateMessage function translates appropriate keyboard messages into
a character message. (I'll talk about others of these filter type messages, such as

Chapter 1 Hello Windows CE

IsDialogMsg, later.) The DispatchMessage function then tells Windows to forward the
message to the appropriate window in the application.

This GetMessage, TranslateMessage, Di::,patchMessage loop continues until Get
Message receives a WM_QUIT message which, unlike all other messages causes
GetMessage to return 0. As can be seen from the while clause, a return value of 0
by GetMessage causes the loop to terminate.

After the message loop terminates, the program can do little else but clean up
and exit. In the case of HelloCE, the program calls Termlnstance to perform any
necessary cleanup. HelloCE is a simple program and no cleanup is required. In more
complex programs, Termlnstance would free any system resources that aren't auto
matically freed when the program terminates.

The value returned by lVinMain becomes the return code of the program. Tra
ditionally, the return value is the value in the wParam parameter of the last message
(WM_ QUIT). The wParam value of WM_ QUIT is set when that message is sent in
response to a PostQuitMessage call made by the application.

lnitApp

The goal of InitApp is to perform global initialization for all instances of the applica
tion that might run. In practice, InitApp is a holdover from Win16 days when win
dow classes were registered on an application wide basis instead of for every instance,
as is done under Win32. Still, having a place for global initialization can have its uses
in some applications. For a program as simple as HelloCE, the entire task of InitApp
can be reduced to registering the application's main window class. The entire proce
dure is listed below:

int InitApp (HINSTANCE hlnstance) {
WNDCLASS we;

}

II Register App Main Window class.
we.style= 0; II Class style flags
wc.lpfnWndProc = MainWndProc; II Callback function
wc.cbClsExtra = 0; II Extra class data
wc.cbWndExtra = 0;
wc.hlnstance = hlnstance;
wc.hlcon = NULL;
wc.hCursor = NULL;
wc.hbrBackground = (HBRUSH) =
wc.lpszMenuName = NULL;
we. lpszClassName = szAppName;

II Extra window data
II Owner handle
II Application icon
II Default cursor

GetStockObject (WHITE_BRUSH);
II Must be NULL
II Class name

if (RegisterClass (&we) == 0) return l;

return 0;

21

Part I Windows Basics

22

Registering a window class is simply a matter of filling out a rather extensive struc
ture describing the class and calling the RegisterC!ass function. The parameters assigned
to the fields of the WNDCLASS structure define how all instances of the main window
for HelloCE will behave. The initial field, style, sets the class style for the window. In
Windows CE the class styles are limited to the following:

• CS_GLOBALCLASS indicates that the class is global. This flag is provided only
for compatibility because all window classes in Windows CE are process
global.

• CS_HREDRA W tells the system to force a repaint of the window if the win
dow is sized horizontally.

• CS_ VREDRA W tells the system to force a repaint of the window if the win-
dow is sized vertically.

• CS_NOCLOSE disables the Close button if one is present on the title bar.

• CS_PARENTDC causes a window to use its parent's device context.

• CS_DBLCLKS enables notification of double-dicks (double-taps under Win
dows CE) to be passed to the parent window.

The lpfnWndProc field should be loaded with the address of the window's win
dow procedure. Because this field is typed as a pointer to a window procedure, the
declaration to the procedure must be defined in the source code before the field is set.
Otherwise, the compiler's type-checker will flag this line with a warning.

The cbC!sExtra field allows the programmer to add extra space in the class struc
ture to store class-specific data known only to the application. The cbWndExtra field
is much handier. This field adds space to the Windows internal structure responsible
for maintaining the state of each instance of a window. Instead of storing large amounts
of data in the window structure itself, an application should store a pointer to an
application-specific structure that contains the data unique to each instance of the
window. Under Windows CE, both the cbClsExtra and cbWndExtra fields must be
multiples of 4 bytes.

The hlnstance field must be filled with the program's instance handle, which
specifies the owning process of the window. The blcon field is set to the handle of
the window's default icon. The blcon field isn't supported under Windows CE and
should be set to NULL. (In Windows CE, the icon for the class is set after the first
window of this class is created. For HelloCE, however, no icon is supplied and un
like other versions of Windows, Windows CE doesn't have any predefined icons that
can be loaded.)

Chapter I Hello Windows CE

Unless the application being developed is designed for a Windows CE system
with a mouse, the next field, hCursor, must be set to NULL. Almost all Windows CE
systems use a touch panel instead of a mouse, so you find no cursor support in those
systems. For those special systems that do have cursor support, the Windows CE doesn't
support animated cursors or colored cursors.

The hhrBackground field specifies how Windows CE draws the background of
the window. Windows uses the brush, a small predefined array of pixels, specified
in this field to draw the background of the window. Windows CE provides a number
of predefined brushes that you can load using the GetStockObject function. If the
hbrBackground field is NULL, the window must handle the WM_ERASEBKGND
message sent to the window telling it to redraw the background of the window.

The lpszMenuName field must be set to NULL because Windows CE doesn't
support windows directly having a menu. In Windows CE, menus are provided by
command bar or command band controls that can be created by the main window.

Finally the lpszClassName parameter is set to a programmer-defined string that
identifies the class name to Windows. HelloCE uses the szAppName string, which is
defined globally.

After the entire WNDCLASS structure has been filled out, the RegisterClass func
tion is called with a pointer to the WNDCLASS structure as its only parameter. If the
function is successful, a value identifying the window class is returned. If the func
tion fails, the function returns 0.

lnitlnstance
The main task of Initlnstance is to create the application's main window and display
it in the form specified in the nShowCmd parameter passed to WinMain. The code
for Initlnstance is shown below:

HWND Initlnstance (HINSTANCE hlnstance, LPWSTR lpCmdline, int nCmdShow) {
HWND hWnd;
HICON hlcon;

II Save program instance handle in global variable.
hlnst = hlnstance;

II Create main window.
hWnd = CreateWindow (szAppName,

TEXTC"Hello"),
WS_VISIBLE,
0. 0.
CW_USEDEFAULT,

II Window class
II Window title
II Style flags
II x, y position
II Initial width

(continued)

23

24

}

Basics

CW_USEDEFAUL T,
NULL,
NULL,
hinstance.
NULL) ;

II Return fail code if window not created.
if (!IsWindow (hWnd)) return 0;

II Standard show and update calls
ShowWindow (hWnd, nCmdShow);
UpdateWindow (hWnd);

return hWnd;

II Initial height
II Parent
II Menu, must be null
II App instance
II Ptr to create pa rams

The first task performed by Initlnstance is to save the program's instance handle
hlnstance in a global variable named hlnst. The instance handle for a program is useful
at a number of points in a Windows application. I save the value here because the
instance handle is known, and this is a convenient place in the program to store it.

All Windows programmers learn early in their Windows programming lives the
Create Window function call. Although the number of parameters looks daunting, the
parameters are fairly logical once you learn them. The first parameter is the name of
the window class of which our window will be an instance. In the case of HelloCE,
the class name is a string constant, szAppName, which was also used in the WNDCLASS
structure.

The next field is referred to as the window text. In other versions of Windows,
this is the text that would appear on the title bar of a standard window. However, since
Windows CE main windows rarely have title bars, this text is used only on the taskbar
button for the window. The text is couched in a TEXT macro, which insures that the
string will be converted to Unicode under Windows CE.

The style flags specify the initial styles for the window. The style flags are used
both for general styles that are relevant to all windows in the system and for class
specific styles, such as those that specify the style of a button or a list box. In this
case, all we need to specify is that the window be created initially visible with the
WS_ VISIBLE flag. Experienced Win32 programmers should refer to the documenta
tion for Create Window because there are a number of window style flags that aren't
supported under Windows CE.

The next four fields specify the initial position and size of the window. Since
most applications under Windows CE are maximized (that is, they take up the entire
screen above the taskbar), the size and position fields are set to default values, which
are indicated by the CW _USEDEFAULT flag in each of the fields. The default value
settings create a window that's maximized under the current versions of Windows CE
but also compatible with future versions of the operating system, which might not

Chapter 1 Hello Windows CE

maximize every window. Be careful not to assume any particular screen size for a Win
dows CE device because different implementations have different screen sizes.

The next field is set to the handle of the parent window. Because this is the
top-level window, the parent window field is set to NULL. The menu field is also set
to NULL because Windows CE supports menus through the command bar and com
mand bands controls.

The hlnstance parameter is the same instance handle that was passed to the
program. Creating windows is one place where that instance handle, saved at the
start of the routine, comes in handy. The final parameter is a pointer that can be
used to pass data from the Create Window call to the window procedure during the
WM_CREATE message. In this example, no additional data needs to be passed, so
the parameter is set to NULL.

If successful, the Create Window call returns the handle to the window just cre
ated, or it returns 0 if an error occurred during the function. That window handle is then
used in the two statements (ShowWindow and UpdateWindow) just after the error
checking {/statement. The ShowWindou• function modifies the state of the window to
conform with the state given in the nCmdShow parameter passed to Winivlain. The
UpdateWindow function forces Windows to send a WM_PAINT message to the win
dow that has just been created.

That completes the lnitApp function. At this point, the application's main win
dow has been created and updated. So even before we have entered the message
loop, messages have been sent to the main window's window procedure. It's about
time to look at this part of the program.

MainWndProc
You spend most of your programming time with the window procedure when you're
writing a Windows program. WinMain contains mainly initialization and cleanup code
that, for the most part, is boilerplate. The window procedure, on the other hand, is
the core of the program, the place where the actions of the program's windows cre
ate the personality of the program.

LRESULT CALLBACK MainWndProc(HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM lParam) {

}

INT i;
II
II Search message list to see if we need to handle this
II message. If in list. call procedure.
II
for (i = 0; i < dim(MainMessages); i++) {

if CwMsg == MainMessages[iJ.Code)
return (*MainMessages[iJ.Fxn)ChWnd, wMsg, wParam. lParam);

return DefWindowProc(hWnd. wMsg, wParam. lParam);

25

26

Basics

All window procedures, regardless of their window class, are declared with the
same parameters. The LRESULT return type is actually just a long (a long is a 32-bit
value under Windows) but is typed this way to provide a level of indirection between
the source code and the machine. While you can easily look into the include files to
determine the real type of variables that are used in Windows programming, this can
cause problems when you're attempting to move your code across platforms. Though
it can be useful to know the size of a variable type for memory-use calculations, there
is no good reason, and there are plenty of bad ones, not to use the type definitions
provided by windows.h.

The CALLBACK type definition specifies that this function is an external entry
point into the EXE, necessary because Windows calls this procedure directly, and that
the parameters will be put in a Pascal-like right-to-left push onto the program stack,
which is the reverse of the standard C-language method. The reason for using the
Pascal language stack frame for external entry points goes back to the very earliest
days of Windows development. The use of a fixed-size, Pascal stack frame meant that
the called procedure cleaned up the stack instead of leaving it for the caller to do.
This reduced the code size of Windows and its bundled accessory programs suffi
ciently so that the early Microsoft developers thought it was a good move.

The first of the parameters passed to the window procedure is the window handle,
which is useful when you need to define the specific instance of the window. The wMsg

parameter indicates the message being sent to the window. This isn't the MSG struc
ture used in the message loop in WinMain, but a simple, unsigned integer containing
the message value. The remaining two parameters, wParam and lParam, are used to
pass message-specific data to the window procedure. The names wParam and lParam

come to us from the Win16 days, when the wParam was a 16-bit value and lParam

was a 32-bit value. In Windows CE, as in other Win32 operating systems, both the
wParam and lParam parameters are 32 bits wide.

It's in the window procedure that my programming style differs significantly from
most Windows programs written without the help of a class library such as MFC. For
almost all of my programs, the window procedure is identical to the one shown above.
Before continuing, I repeat: this program structure isn't specific to Windows CE. I use
this style for all my Windows applications, whether they are for Windows 3.1, Win
dows 95, Windows NT, or Windows CE.

This style reduces the window procedure to a simple table look-up function.
The idea is to scan the MainMessages table defined early in the C file for the mes
sage value in one of the entries. If the message is found, the associated procedure
is then called, passing the original parameters to the procedure processing the
message. If no match is found for the message, the DejWindowProc function is called.
D<:;/WindowProc is a Windows function that provides a default action for all messages
in the system, which frees a Windows program from having to process every mes
sage being passed to a window.

Chapter 1 Hello Windows CE

The message table associates message values with a procedure to process it. The
table is listed below:

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[J = {

WM_CREATE, DoCreateMain,

} ;

WM_PAINT, DoPaintMain,
WM_HIBERNATE, DoHibernateMain,
WM_DESTROY, DoDestroyMain,

The table is defined as a constant, not just as good programming practice but
also because it's helpful for memory conservation. Since Windows CE programs can
be executed in place in ROM, data that doesn't change should be marked constant.
This allows the Windows CE program loader to leave such constant data in ROM
instead of loading a copy into RAM so that it can be modified later by the program.

The table itself is an array of a simple two-element structure. The first entry is
the message value, followed by a pointer to the function that processes the message.
While the functions could be named anything, I'm using a consistent structure through
out the book to help you keep track of them. The names are composed of a Do pre
fix (as a bow to object-oriented practice), followed by the message name and a suffix
indicating the window class associated with the table. So, DoCreateMain is the name
of the function that processes WM_CREATE messages for the main window of the
program.

DoCreateMain
The WM_CREATE message is the first message sent to a window. WM_CREATE is
unique among messages in that Windows sends it while processing the Create Window
function, and therefore the window has yet to be completely created. This is a good
place in the code to perform any data initialization for the window. But since the
window is still being created, some Windows functions, such as GetWindowRect, used
to query the size and position of the window, return inaccurate values. For our pur
poses, the procedure shown in the following code performs only one function: it
creates a command bar for the window.

LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM lParam) {

}

HWND hwndCB;

II Create a command bar.
hwndCB = CommandBar_Create (hinst, hWnd, IDC_CMDBAR);

II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 0);
return 0;

27

Part I

28

Because Windows CE windows don't support standard menus attached to win
dows, a command bar is necessary for menus. While HelloCE doesn't have a menu,
it does require a Close button, also provided by the command bar, so the program
can be terminated by the user. For this reason, the simplest form of command bar,
one with only a Close button, is created. You create the command bar by calling
CommandBar_Create and passing the program's instance handle, the handle to the
window, and a constant that will be used to identify this specific command bar. (This
constant can be any integer value as long as it is unique among the other child win
dows in the window.) Once you've created the command bar, you add a Close but
ton by calling CommandBar _AddAdornments. Since all we want to do is perform
the default action for this function, the parameters passed are basic: the command
bar handle and two zeros. That completes the processing of the WM_ CREATE mes
sage. I'll examine the command bar in depth in Chapter 5.

DoPaintMain
Painting the window, and therefore processing the WM_PAINT message, is one of
the critical functions of any Windows program. As a program processes the WM_PAINT
message, the look of the window is achieved. Aside from painting the default back
ground with the brush you specified when you registered the window class, Win
dows provides no help for processing this message. In HelloCE, the task of the
DoPaintMain procedure is to display one line of text in the center of the window.

LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,

}

PAINTSTRUCT ps;
RECT rect;
HOC hdc;

LPARAM lParam) {

II Adjust the size of the client rect to take into account
II the command bar height.
GetClientRect (hWnd, &rect);
rect.top += CommandBar_Height (GetDlgitem (hWnd, IDC_CMDBAR));

hdc = BeginPaint (hWnd, &ps);
DrawText (hdc, TEXT ("Hello Windows CE!"), -1, &rect,

DT_CENTER I DT_VCENTER I DT_SINGLELINE);

EndPaint (hWnd, &psl;
return 0;

Chapter 1 Hello Windows CE

Before the drawing can be performed, the routine must determine the size of the
window. In a Windows program, a standard window is divided into two areas, the
nonclient area and the client area. A window's title bar and its sizing border commonly
comprise the nonclient area of a window, and Windows is responsible for drawing it.
The client area is the interior part of the window, and the application is responsible for
drawing that. An application determines the size and location of the client area by call
ing the GetClientRect function. The function returns a RECT structure that contains left,
top, right, and bottom elements that delineate the boundaries of the client rectangle.
The advantage of the client vs. nonclient area concept is that an application doesn't
have to account for drawing such standard elements of a window as the title bar.

When you're computing the size of the client area, you must remember that
the command bar resides in the client area of the window. So, even though the
GetC!ientRect function works identically in Windows CE as in other versions of Win
dows, the application needs to compensate for the height of the command bar, which
is always placed across the top of the window. Windows CE gives you a convenient
function, CommandBar _Height, which returns the height of the command bar and
can be used in conjunction with the GetClientRect call to get the true client area of
the window that needs to be drawn by the application.

Other versions of Windows supply a series of WM_NCxxx messages that en
able your applications to take over the drawing of the nonclient area. In Windows
CE, windows seldom have title bars and at the present time, none of them have a
sizing border. Because there's so little nonclient area, the Windows CE developers
decided not to expose the nonclient messages.

All drawing performed in a WM_PAINT message must be enclosed by two func
tions, BeginPaint and EndPaint. The BeginPaint function returns an HDC, or handle
to a device context. A device context is a logical representation of a physical display
device such as a video screen or a printer. Windows programs never modify the dis
play hardware directly. Instead, Windows isolates the program from the specifics of
the hardware with, among other tools, device contexts.

BeginPaint also fills in a PAINTSTRUCT structure that contains a number of useful
parameters.

typedef struct tagPAINTSTRUCT {
HOC hdc:
BOOL fErase;
RECT rcPaint:
BOOL fRestore:
BOOL fincUpdate:
BYTE rgbReserved[32]:

} PAINTSTRUCT;

29

Part I

30

The hdc field is the same handle that's returned by the BeginPaint function. The
jErase field indicates whether the background of the window needs to be redrawn by
the window procedure. The rcPaint field is a RECT structure that defines the client
area that needs repainting. HelloCE ignores this field and assumes that the entire client
window needs repainting for every WM_PAINT message, but this field is quite handy
when performance is an issue because only a part of the window might need repaint
ing. Windows actually prevents repainting outside of the rcPaint rectangle even when
a program attempts to do so. The other fields in the structure,.fRestore,ftncUpdate, and
rgbReserved, are used internally by Windows and can be ignored by the application.

The only painting that takes place in HelloCE occurs in one line of text in the
.window. To do the painting, HelloCE calls the DrawText function. I cover the details
of DrawText in the next chapter, but if you look at the function it's probably obvious
to you that this call draws the string "Hello Windows CE'' on the window. After
DrawText returns, EndPaint is called to inform Windows that the program has
completed its update of the window.

Calling EndPaint also validates any area of the window you didn't paint. Win
dows keeps a list of areas of a window that are invalid (areas that need to be re
drawn) and valid (areas that are up to date). By calling the BeginPaint and EndPaint
pair, you tell Windows that you've taken care of any invalid areas in your window,
whether or not you've actually drawn anything in the window. In fact, you must call
BeginPaint and EndPaint, or validate the invalid areas of the window by other means,
or Windows will simply continue to send WM_PAINT messages to the window until
those invalid areas are validated.

DoHibernateMain
You need DoHibernateMain because the WM_HIBERNATE message, unique to Win
dows CE, should be handled by every Windows CE program. A WM_HIBERNATE
message is sent to a window to instruct it to reduce its memory use to the absolute
minimum.

LRESULT DoHibernateMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM lParam) {

II If not the active window, destroy the cmd bar to save memory.
if (GetActiveWindow () != hWnd)

CommandBar_Destroy (GetDlgltem (hWnd, IDC_CMDBAR));

return 0;

In the case of HelloCE, the only real way to reduce memory use is to destroy
the command bar control. This is done by means of a call to CommandBar_Destroy.

Chapter 1 Hello Windows CE

The only case in which one should not destroy the command bar is when the window
is the active window, the window through which the user is interacting with the pro
gram at the current time.

More complex Windows CE applications have a much more elaborate procedure
for handling the WM_HIBERNATE messages. Applications should free up as much
memory and system resources as possible without losing currently unsaved data. In
a choice between performance and lower memory use, an application is better reac
tivating slowly after a WM_HIBERNATE message than it is consuming more memory.

DoActivateMain
While the WM_ACTIVATE message is common to all Windows platforms, it takes on
new significance for Windows CE applications because among its duties is to indi
cate that the window should restore any data strnctures or window controls that were
freed by a WM_HIBERNATE message.

LRESULT DoActivateMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM lParam) {

}

HWND hwndCB;

II If activating and no command bar, create it.
if ((LOWORD (wParam) != WA_INACTIVEl &&

(GetDlgltem (hWnd, IDC_CMDBAR) == 0)) {

II Create a command bar.
hwndCB = CommandBar_Create (hlnst. hWnd, IDC_CMDBAR);

II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 0);

return 0;

The lower word of the wParam parameter is a flag that tells why the
WM_ACTIVATE message was sent to the window. The flag can be one of three val
ues: WA_INACTIVE, indicating that the window is being deactivated after being the
active window; WA_ACTIVE, indicating that the window is about to become the ac
tive window; and WA_CLICKACTIVE, indicating that the window is about to become
the active window after having been clicked on by the user.

HelloCE processes this message by checking to see whether the window remains
active and whether the command bar no longer exists. If both conditions are true, the
command bar is re-created using the same calls used for the WM_CREATE message.
The GetDlgltem function is convenient because it returns the handle of a child window
of another window using its window ID. Remember that when the command bar, a

31

32

Basics

child of HelloCE's main window, was created, I used an ID of IDC_CMDBAR (defined
in HelloCE.h). That ID value is passed to GetD!gltem to get the command bar window
handle. However, if the command bar window doesn't exist, the value returned is 0,
indicating that HelloCE needs to re-create the command bar.

DoDestroyMain
The final message that HelloCE must process is the WM_DESTROY message sent when
a window is about to be destroyed. Because this window is the main window of the
application, the application should terminate when the window is destroyed. To make
this happen, the DoDestroyMain function calls PostQuitMessage. This function places
a WM_ QUIT message in the message queue. The one parameter of this function is
the return code value that will be passed back to the application in the wParam pa
rameter of the WM_ QUIT message.

LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM lParam) {

PostQuitMessage (0);
return 0;

}

Notice that the DoDestroyMain function doesn't destroy the command bar con
trol created in DoCreateMain. Since the command bar is a child window of the main
window, it's automatically destroyed when its parent window is destroyed.

As I've mentioned, when the message loop sees a WM_QUIT message, it exits
the loop. The WinMain function then calls Termlnstance, which in the case of HelloCE,
does nothing but return. WinMain then returns, terminating the program.

Running HelloCE
After you've entered the program into Visual C++ and built it, it can be executed by
a double-tap on the HelloCE icon. The program displays the Hello Windows CE text in
the middle of an empty window, as shown in Figure 1-4. Figure 1-5 shows HelloCE
rnnning on a Palm-size PC. The command bar is placed by Windows CE across the
top of the window. Tapping on the Close button on the command bar causes Win
dows CE to send a WM_CLOSE message to the window. Although HelloCE doesn't
explicitly process the WM_CLOSE message, the DefWindowProc procedure enables
default processing by destroying the main window. As the window is being destroyed,
a WM_DESTROY message is sent, which causes PostQuitMessage to be called.

Chapter 1 Hello Windows CE

Hello Windows CE!

~Jt 5:23PM

Figure 1-4. The HelloCE window on an HIPC.

Hello Windows CE!

Figure 1-5. The Hel/oCE window on a Palm-size PC.

As I aid , Hello E i a very ba ic Windows CE program but it doe gives you a
skeleton of a Window CE application upon which you can build. If you look at
HelloCE.EXE using Explorer, the program is represented by a gen ric icon . Wh n
HelloCE i nmning, the bunon on the task bar repre nting HelloCE has no icon di -
played next to the text. How to add a program's icon a well a how the DrawText
function works are a couple of the topic I'll addre in the next few chapter .

33

Chapter 2

Drawing
on the Screen

In Chapter 1, the example program HelloCE had one task: to display a line of text on
the screen. Displaying that line took only one call to DrawText with Windows CE
taking care of such details as the font and its color, the positioning of the line of text
inside the window, and so forth. Given the power of a graphical user interface (GUI),
however, an application can do much more than simply print a line of text on the
screen. It can craft the look of the display down to the most minute of details.

Over the life of the Microsoft Windows operating system, the number of func
tions available for crafting these displays has expanded dramatically. With each suc
cessive version of Windows, functions have been added that extend the tools available
to the programmer. As functions were added, the old ones remained so that even if
a function had been superseded by a new function old programs would continue to
run on the newer versions of Windows. The approach in which function after func
tion is piled on while the old functions are retained for backward compatibility was
discontinued with the initial version of Windows CE. Because of the requirement to
produce a smaller version of Windows, the CE team took a hard look at the Win32
API and replicated only the functions absolutely required by applications written for
the Windows CE target market.

One of the areas of the Win32 API hardest hit by this reduction was graphical
functions. Not that you now lack the functions to do the job--it's just that the high
degree of redundancy led to some major pruning of the Win32 graphical functions.

35

An added challenge for the programmer is that different Windows CE platforms have
subtly different sets of supported APis. One of the ways in which Windows CE graphics
support differs from that of its desktop cousins is that Windows CE doesn't support
the different mapping modes available under other implementations of Windows.
Instead, the Windows CE device contexts are always set to the MM_TEXT mapping
mode. Coordinate transformations are also not supported under Windows CE. While
these features can be quite useful for some types of applications, such as desktop
publishing, their necessity in the Windows CE environment of small portable devices
isn't as clear. Fortunately, as Windows CE matures we can expect more and more of
the basic Win32 API to be supported.

So when you're reading about the functions and techniques used in this chap
ter, remember that some might not be supported on all platforms. So that a pro
gram can determine what functions are supported, Windows has always had the
GetDeviceCaps function, which returns the capabilities of the current graphic device.
Throughout this chapter, I'll refer to GetDeviceCaps when determining what functions
are supported on a given device.

This chapter, like the other chapters in Part I of this book, reviews the drawing
features supported by Windows CE. One of the most important facts to remember is
that while Windows CE doesn't support the full Win32 graphics API, its rapid evolu
tion has resulted in it supporting some of the newest functions in Win32-some so
new that you might not be familiar with them. This chapter shows you the functions
you can use and how to work around the areas where certain functions aren't sup
ported under Windows CE.

PAINTING BASICS

36

Historically, Windows has been subdivided into three main components: the ker
nel, which handles the process and memory management; User, which handles the
windowing interface and controls; and the Graphics Device Interface, or GDI, which
performs the low-level drawing. In Windows CE, User and GDI are combined into
the Graphics Windowing and Event handler, or GWE. At times, you might hear a
Windows CE programmer talk about the GWE. The GWE is nothing really new-just
a different packaging of standard Windows parts. In this book, I usually refer to the
graphics portion of the GWE under its old name, GDI, to be consistent with standard
Windows programming terminology.

But whether you're programming for Windows CE or Windows 98 or Windows NT,
there is more to drawing than simply handling the WM_PAINT message. It's helpful
to understand just when and why a WM_PAINT message is sent to a window.

Chapter 2 Drawing on the Screen

Valid and Invalid Regions

When for some reason an area of a window is exposed to the user, that area, or re
gion, as it's referred to in Windows, is marked invalid. When no other messages are
waiting in an application's message queue and the application's window contains an
invalid region, Windows sends a WM_PAINT message to the window. As mentioned
in Chapter 1, any drawing performed in response to a WM_PAINT message is couched
in calls to BeginPaint and EndPaint. BeginPaint actually performs a number of ac
tions. It marks the invalid region as valid, and it computes the clipping region. The
clipping region is the area to which the painting action will be limited. BeginPaint
then sends a WM_ERASEBACKGROUND message, if needed, to redraw the back
ground, and it hides the caret-the text entry cursor-if it's displayed. Finally
BeginPaint retrieves the handle to the display device context so that it can be used
by the application. The EndPaint function releases the device context and redisplays
the caret if necessary. If no other action is performed by a WM_PAINT procedure, you
must at least call BeginPaint and EndPaint if only to mark the invalid region as valid.

Alternatively, you can call to ValidateRect to blindly validate the region. But no
drawing can take place in that case because an application must have a handle to the
device context before it can draw anything in the window.

Often an application needs to force a repaint of its window. An application should
never post or send a WM_PAINT message to itself or to another window. Instead,
you do the following:

BOOL InvalidateRect (HWND hWnd, const RECT *lpRect, BOOL bErase);

Notice that lnvalidateRect doesn't require a handle to the window's device context,
only to the window handle itself. The lpRect parameter is the area of the window to
be invalidated. This value can be NULL if the entire window is to be invalidated. The
bErase parameter indicates whether the background of the window should be redrawn
during the BeginPaint call as mentioned above. Note that unlike other versions of
Windows, Windows CE requires that the h Wnd parameter be a valid window handle.

Device Contexts

A device context, often referred to simply as a DC, is a tool that Windows uses to
manage access to the display and printer, although for the purposes of this chapter
I'll be talking only about the display. Also, unless otherwise mentioned, the explana
tion that follows applies to Windows in general and isn't specific to Windows CE.

Windows applications never write directly to the screen. Instead, they request
a handle to a display device context for the appropriate window, and then using the
handle, draw to the device context. Windows then arbitrates and manages getting
the pixels from the DC to the screen.

37

38

BeginPaint, which should only be called in a WM_PAINT message, returns a
handle to the display DC for the window. An application usually performs its draw
ing to the screen during the \VM_PAINT messages. Windows treats painting as a low
priority task, which is appropriate since having painting at a higher priority would
result in a flood of paint messages for every little change to the display. Allowing an
application to complete all its pending business by processing all waiting messages
results in all the invalid regions being painted efficiently at once. Users don't notice
the minor delays caused by the low priority of the WM_PAINT messages.

Of course, there are times when painting must be immediate. An example of
such a time might be when a word processor needs to display a character immedi
ately after its key is pressed. To draw outside a WM_PAINT message, the handle to
the DC can be obtained using this:

HOC GetOC (HWNO hWnd):

GetDC returns a handle to the DC for the client portion of the window. Drawing can
then be performed anywhere within the client area of the window because this pro
cess isn't like processing inside a WM_PAINT message; there's no clipping to restrict
you from drawing in an invalid region.

Windows CE 2.1 supports another function that can be used to receive the
DC. It is

HOC GetOCEx (HWNO hWnd, HRGN hrgnClip, OWORO flags):

GetDCEx allows you to have more control over the device context returned. The new
parameter, hrgnClip lets you define the clipping region, which limits drawing to
that region of the DC. The flags parameter lets you specify how the DC acts as you
draw on it. Windows CE doesn't support the following flags: DCX_PARENTCLIP,
DCX_NORESETATTRS, DCX_LOCKWINDOWUPDATE, and DCX_ VALIDATE.

After the drawing has been completed, a call must be made to release the de
vice context:

int ReleaseOC (HWNO hWnd, HOC hOC):

Device contexts are a shared resource, and therefore an application must not hold
the DC for any longer than necessary.

While GetDC is used to draw inside the client area, sometimes an application
needs access to the nonclient areas of a window, such as the title bar. To retrieve a
DC for the entire window, make the following call:

HOC GetWindowOC (HWNO hWnd);

As before, the matching call after drawing has been completed for GetWindowDC
is ReleaseDC.

Chapter 2 Drawing on the Screen

The DC functions under Windows CE are identical to the device context func
tions under Windows 98 and Windows NT. This should be expected because DCs
are the core of the Windows drawing philosophy. Changes to this area of the API
would result in major incompatibilities between Windows CE applications and their
desktop counterparts.

WRITING TEXT
In Chapter 1, the HelloCE example displayed a line of text using a call to DrawText.
That line from the example is shown here:

DrawText Chdc, TEXT ("Hello Windows CE!"), -1, &rect,
DT_CENTER I DT_VCENTER I DT_SINGLELINE);

DrawText is a fairly high-level function that allows a program to display text
while having Windows deal with most of the details. The first few parameters of
DrawTexl are almost self-explanatory. The handle of the device context being used
is passed, along with the text to display couched in a TEXT macro, which declares
the string as a Unicode string necessary for Windows CE. The third parameter is the
number of characters to print, or as is the case here, a -1 indicating that the string
being passed is null terminated and Windows should compute the length.

The fourth parameter is a pointer to a rect structure that specifies the formatting
rectangle for the text. DrawText uses this rectangle as a basis for formatting the text to
be printed. How the text is formatted depends on the function's last parameter, the
formatting flags. These flags specify how the text is to be placed within the formatting
rectangle, or in the case of the DT_CALCRECT flag, the flags have DrawText compute
the dimensions of the text that is to be printed. DrawText even formats multiple lines
with line breaks automatically computed. In the case of HelloCE, the flags specify that
the text should be centered horizontally (DT_CENTER), and centered vertically
(DT_ VCENTER). The DT_ VCENTERflagworks only on single lines of text, so the final
parameter, DT_SINGLELINE, specifies that the text shouldn't be flowed across multiple
lines if the rectangle isn't wide enough to display the entire string.

Device Context Attributes
What I haven't mentioned yet about HelloCE's use of DrawText is the large number of
assumptions the program makes about the DC configuration when displaying the text.
Drawing in a Windows device context takes a large number of parameters, such as fore
ground and background color and how the text should be drawn over the background
as well as the font of the text. Instead of specifying all these parameters for each draw
ing call, the device context keeps track of the current settings, referred to as attributes,
and uses them as appropriate for each call to draw to the device context.

39

Part I Windows Programming Basics

Foreground and background colors
The most obvious of the text attributes are the foreground and background color. Two
functions, SetTextColor and GetTextColor, allow a program to set and retrieve the
current color. These functions work well with both four-color gray-scale screens as
well as the color screens supported by Windows CE devices.

To determine how many colors a device supports, use GetDeviceCaps as men
tioned previously. The prototype for this function is the following:

int GetDeviceCaps (HDC hdc, int nlndex);

You need the handle to the DC being queried because different DCs have dif
ferent capabilities. For example, a printer DC differs from a display DC. The second
parameter indicates the capability being queried. In the case of returning the colors
available on the device, the NUMCOLORS value returns the number of colors as long
as the device supports 256 colors or fewer. Beyond that, the returned value for
NUMCOLORS is -1 and the colors can be returned using the BITSPIXEL value, which
returns the number of bits used to represent each pixel. This value can be converted
to the number of colors by raising 2 to the power of the BITSPIXEL returned value,
as in the following code sample:

nNumColors = GetDeviceCaps (hdc, NUMCOLORS);
if (nNumColors == -1)

nNumColors = 1 << GetDeviceCaps (hdc, BITSPIXEL);

Drawing mode
Another attribute that affects text output is the background mode. When letters are
drawn on the device context, the system draws the letters themselves in the foreground
color. The space between the letters is another matter. If the background mode is set
to opaque, the space is drawn with the current background color. But if the back
ground mode is set to transparent, the space between the letters is left in whatever
state it was in before the text was drawn. While this might not seem like a big differ
ence, imagine a window background filled with a drawing or graph. If text is written
over the top of the graph and the background mode is set to opaque, the area around
the text will be filled, and the background color will overwrite the graph. If the back
ground mode is transparent, the text will appear as if it had been placed on the graph,
and the graph will show through between the letters of the text.

The TextDemo Example Program

40

The TextDemo program, shown in Figure 2-1, demonstrates the relationships among
the text color, the background color, and the background mode.

Chapter 2 Drawing on the Screen

TextDemo.h

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeofCx[0J))

11- --------- ------------------ --
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*fXn)(HWND , UINT, WPARAM, LPARAM);
} ;

struct decodeCMD {
UINT Code;
LRESULT (*fxn)(HWND, WORD, HWND, WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs wi th a
II function.

11--- -- -- - -- --- - - ------ ---------------- - - - - ---- - -- - - -- -- ---- -- ------ - ---
11 Generic defines used by application
#define IDC_CMDBAR 1 II Command bar ID

11 --
11 Function prototypes
II
int InitApp (HINSTANCE) ;
int Initlnstance (HINSTANCE , LPWSTR, int);
i nt Termlnstance CHINSTANCE, int);

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

II Message handlers
LRESULT DoCreateMain CHWND, UINT, WPARAM. LPARAM);
LRESULT DoPaintMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain CHWND, UINT, WPARAM, LPARAM);

Figure 2-1. The TextDemo program. (continued)

41

Part I Windows Programming Basics

Figure 2-1. continued

TextDemo.c

II==
II TextDemo - Text output demo
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II
II==
#include <windows.h> II For all that Windows stuff
#include <commctrl .h> II Command bar includes
#include "TextDemo.h" II Program-specific stuff

11- -------------- --------- ----- ------- --- ---- --- ---- -- ----------------- -
11 Global data
II
const TCHAR szAppName[]
HINSTANCE hinst;

TEXT C"TextDemo");
II Program instance handle

II Message dispatch table for HainWindowProc
const struct decodeUINT HainHessages[] = {

WH_CREATE, DoCreateHain,
WH_PAINT, DoPaintHain,
WH_DESTROY. DoDestroyHain,

) ;

II==
II
II Program Entry Point
II
int WINAPI WinHain CHINSTANCE hinstance. HINSTANCE hPrevinstance,

LPWSTR lpCmdline, int nCmdShow) {

42

MSG msg:
int re = 0:

II Initialize application.
re= InitApp Chinstance);
if (re) return re:

II Initialize this instance.
if CCrc = Initlnstance Chinstance. lpCmdline. nCmdShow)) != 0)

return re;

Chapter 2 Drawing on the Screen

II Application message loop
while (GetMessage C&msg, NULL. 0, 0)) (

TranslateMessage C&msg);
DispatchMessage C&msg);

}

II Instance cleanup
return Terminstance (hinstance, msg.wParam);

}

11---- --- --- ---- ---- --- ----------------- --------------------------------
11 InitApp - Application initialization
II
int InitApp (HINSTANCE hinstance) (

WNDCLASS we;

II Register application main window
we.style = 0;

class.
II
II
II
II
II

Window style
Callback function
Extra class data
Extra window data
Owner handle

wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc . cbWndExtra = 0;
wc.hinstance = hinstance;
wc . hicon = NULL, II Application icon

II Default cursor
GetStockObject (WHITE_BRUSH);

wc.hCursor = NULL;
wc.hbrBackground = (HBRUSH)
wc.lpszMenuName = NULL;
wc.lpszClassName = szAppName;

II Menu name
II Window class name

if (RegisterClass C&wc) == 0) return l;

return 0;
)
11 --
11 Initlnstance - Instance i nitialization
II
int Initinstance (HINSTANCE hlnstance, LPWSTR lpCmdLine, int nCmdShow){

HWND hWnd;

II Save program instance handle in global variable .
hinst = hinstance;

II Create main window.
hWnd = CreateWindow (szAppName,

TEXTC "TextDemo"),
WS_VISIBLE ,
CW_USEDEFAULT,
CW_USEDEFAULT.

II
II
II
II
II

Window class
Window title
Style flags
x position
y position

(co11ti1111ed)

43

Part 1 Windows Programming Basics

Figure 2-1 . contin.u.ed

CW_USEDEFAUL T, II Initial width
CW_USEDEFAUL T, II Initial height
NULL, II Parent
NULL, II Menu, must be null

)

hinstance, II Appl i cation instance
NULL); II Pointer to create

II Parameters
II Return fail code if window not created.
if ((!hWndl II C!IsWindow (hWndlll return 0xl0;

II Standard show and update calls
ShowWindow (hWnd, nCmdShow);
UpdateWindow (hWndl:
return 0;

11- --- -------- ----
11 Terminstance - Program cleanup
II
int Terminstance (HINSTANCE hinstance, int nDefRCl (

return nDefRC;
)

II==
II Message handling procedures for MainWindow
II
11 --
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc CHWND hWnd, UINT wMsg , WPARAM wParam,

LPARAM lParam) (

)

INT i;
II
II Search message li st to see if we need to handle this
II message. If in list. call procedure.
II
for (i = 0; i < dimCMainMessages); i++) (

if CwMsg == MainMessages[iJ.Code)
return (*MainMessages[iJ.Fxn)(hWnd, wMsg, wParam, lParaml:

return DefWindowProc ChWnd, wMsg , wParam, lParam) ;

11- ------------- ---- ----- -- ---
11 DoCreateMain - Process WM_CREATE message for window.
II

44

Chapter 2 Drawing on the Screen

LRESULT DoCreateMain CHWND hWnd. UINT wMsg , WPARAM wParam,
LPARAM lParam) {

)

HWND hwndCB;

II Create a command bar.
hwndCB = CommandBar_Create Chlnst. hWnd, IOC_CMDBAR);

II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB. 0, 0);
return 0;

I 1- - - - - -- - - - - - -- -- -- - - - - - - - - - ----------- - - - - - -------------- - - - -- - ---- -- -
II DoPaintMain - Process WM_PAINT message for window.
II
LRESULT DoPaintMain (HWND hWnd. UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PAINTSTRUCT ps;
RECT rect. rectCli;
HBRUSH hbrOld;
HOC hdc;
I NT i • cy;
DWORD dwColorTable[] (0x00000000. 0x00808080,

0x00cccccc. 0x00ffffff);

II Adjust the size of the client rect to take into account
II the command bar height.
GetClientRect ChWnd, &rectCli);
rectCli.top += CommandBar_Height CGetOlgltem ChWnd, IOC_CMDBAR));

hdc = BeginPaint (hWnd, &ps);

II Get the height and length of the string.
DrawText (hdc, TEXT ("Hello Windows CE"). -1. &rect ,

OT_CALCRECT I OT_CENTER I OT_SINGLELINE);

cy rect.bottom - rect.top + 5;

II Draw black rectangle on right half of window.
hbrOld = SelectObject (hdc. GetStockObject CBLACK__BRUSH)) ;
Rectangle Chdc . rectCli.left + (rectCli.right - rectCli.left) I 2.

rectCli .top, rectCli.right, rectCli.bottom);
SelectObject Chdc. hbrOld);

rectCli.bottom = rectCli.top + cy;

(continued)

45

Part 1 Windows Programming Basics

Figure 2-1. continued

}

SetBkHode Chdc, TRANSPARENT);
for Ci = 0: i < 4: 1++) {

SetTextColor (hdc , dwColorTable[iJ):
SetBkColor Chdc, dwColorTable[3 - iJ);

OrawText Chdc, TEXT ("Hello Windows CE"), - 1, &rectCli,
DT_CENTER I OT_SINGLELINE):

rectCli.top += cy:
rectCli.bottom += cy;

SetBkHode Chdc, OPAQUE):
for Ci = 0; i < 4; i ++ > {

}

SetTextColor Chdc, dwColorTable[i]);
SetBkColor (hdc, dwColorTable[3 - i]);

OrawText (hdc , TEXT ("Hello Windows CE"), - 1, &rectCli,
DT_CENTER I OT_SINGLELINE);

rectCli.top += cy;
rectCli.bottom += cy:

EndPaint ChWnd, &ps>:
return 0;

//-- --------- - --
// DoDestroyMain - Process WH_OESTROY message for window.
II
LRESULT OoOestroyHain CHWND hWnd , UINT wMsg, WPARAH wParam,

LPARAM l Pa rain) {

46

PostOuitMessage (0);
return 0;

The meat ofTextDemo is in the OnPaintMain function . The fir t call to DrawTe:x:t

doesn 't draw anything in the device context. Instead, the DT_CALCRECT flag instructs
Windows to store the dimensions of the rectangle for the text string in rect. This in
formation i used to compute the height of the tring, which is stored in cy. Next, a
black rectangle is drawn on the right side of the window. I'll talk about how a rect
angle is drawn later in the chapter; it's used in this program to produce two different
backgrounds before the text is written. The function then prints out the same string
using different foreground and background colors and both the transparent and
opaque drawing modes. The result of this combination is shown in Figure 2-2.

Chapter 2 Drawing on the Screen

Figure 2-2. TextDemo shows how the text color, background color, and background
mode relate.

The first four lines are drawn using the transparent mode. The second four are
drawn using the opaque mode. The text color is set from black to white, so that each
line drawn uses a different color, while at the same time the background color is set
from white to black. In transparent mode, the background color is irrelevant be
cause it isn't used; but in opaque mode, the background color is readily apparent
on each line.

Fonts
If the ability to set the foreground and background colors were all the flexibility that
Windows provided, we might as well be back in the days of MS-DOS and character
attributes. Arguably, the most dramatic change from MS-DOS is Windows' ability to
change the font used to display text. All Windows operating systems are built around
the concept of WYSIWYG-what you see is what you get-and changeable fonts are
a major tool used to achieve that goal.

Two types of fonts appear in all Windows operating systems-raster and
TrueType. Raster fonts are stored as bitmaps, small pixel by pixel images, one for each
character in the font. Raster fonts are easy to store and use but have one major prob
lem: they don't scale well. Just as a small picture looks grainy when blown up to a
much larger size, raster fonts begin to look blocky as they are scaled to larger and
larger font sizes.

47

48

Basics

TrueType fonts solve the scaling problem. Instead of being stored as images, each
TrueType character is stored as a description of how to draw the character. The font
engine, which is the part of Windows that draws characters on the screen, then takes
the description and draws it on the screen in any size needed. TrueType font support
was introduced with Windows 3.1 but was only added to the Windows CE line in Win
dows CE 2.0. Even under Windows CE 2.0, though, some devices such as the origi
nal Palm-size PC, don't support TrueType fonts. A Windows CE system can support
either TrueType or raster fonts, but not both. Fortunately, the programming interface
is the same for both raster and TrueType fonts, relieving Windows developers from
worrying about the font technology in all but the most exacting of applications.

The font functions under Windows CE closely track the same functions under
other versions of Windows. Let's look at the functions used in the life of a font, from
creation through selection in a DC and finally to deletion of the font. How to query
the current font as well as enumerate the available fonts is also covered in the fol
lowing sections.

Creating a font
Before an application is able to use a font other than the default font, the font must
be created and then selected into the device context. Any text drawn in a DC after
the new font has been selected into the DC will then use the new font.

Creating a font in Windows CE can be accomplished this way:

HFONT CreateFontindirect (const LOGFONT *lplf);

This function is passed a pointer to a LOGFONT structure that must be filled
with the description of the font you want.

typedef struct tagLOGFONT
LONG 1 fHei ght;
LONG lfWidth;
LONG lfEscapement:
LONG lfOrientation:
LONG lfWeight;
BYTE lfitalic;
BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision:
BYTE lfQua 1 ity;
BYTE lfPitchAndFamily;
TCHAR lfFaceName[LF_FACESIZE];

LOGFONT;

Chapter 2 Drawing on the Screen

The ljHeight field specifies the height of the font in device units. If this field
is 0, the font manager returns the default font size for the font family requested. For
most applications, however, you want to create a font of a particular point size. The
following equation can be used to convert point size to the ljHeight field:

lftieight = -1 * (PointSize * GetDeviceCaps (hdc, LOGPIXELSY) I 72);

Here, GetDeviceCaps is passed a LOGPIXELSY field instructing it to return the
number of logical pixels per inch in the vertical direction. The 72 is the number of
points (a typesetting unit of measure) per inch.

The ljWidth field specifies the average character width. Since the height of a
font is more important than its width, most programs set this value to 0. This tells
the font manager to compute the proper width based on the height of the font. The
ljEscapement and If Orientation fields specify the angle in tenths of degrees of the base
line of the text and the x-axis. The ljWeight field specifies the boldness of the font
from 0 through 1000, with 400 being a normal font and 700 being bold. The next three
fields specify whether the font is to be italic, underline, or strikeout.

The lpCharSet field specifies the character set you have chosen. This field is more
important in international releases of software, where it can be used to request a
specific language's character set. The lfOutPrecision field can be used to specify
how closely Windows matches your requested font. Among a number of flags avail
able, a OUT_TT_ONLY_PRECIS flag specifies that the font created must be a
TrueType font. The lfClipPrecision field specifies how Windows should clip char
acters that are partially outside the region being displayed. The lfQuality field is set
to either DEFAULT_QUALITY or DRAFT_QUALITY, which gives Windows permis
sion to synthesize a font that, while more closely matching the other requested fields,
might look less polished.

The lfPitcbAndFamily field specifies the family of the font you want. This field
is handy when you're requesting a family such as Swiss, that features proportional
fonts without serifs, or a family such as Roman, that features proportional fonts with
serifs, but you don't have a specific font in mind. You can also use this field to specify
simply a proportional or a monospaced font and allow Windows to determine which
font matches the other specified characteristics passed into the LOGFONT struc
ture. Finally, the lfFaceName field can be used to specify the typeface name of a
specific font.

When CreateFontlndirect is called with a filled LOGFONT structure, Windows
creates a logical font that best matches the characteristics provided. To use the font
however, the final step of selecting the font into a device context must be made.

49

Part I Windows Programming Basics

50

Selecting a font into a device context
You select a font into a DC by using the following function:

HGDIOBJ SelectObject (HDC hdc, HGDIOBJ hgdiobj):

This function is used for more than just setting the default font; you use this func
tion to select other GDI objects, as we shall soon see. The function returns the previ
ously selected object (in our case the previously selected font), which should be saved
so that it can be selected back into the DC when we're finished with the new font. The
line of code looks like the following:

hOldFont = SelectObject (hdc, hFont):

When the logical font is selected, the system determines the closest match to the
logical font from the fonts available in the system. For devices without TrueType fonts,
this match could be a fair amount off from the specified parameters. Because of this,
never assume that just because you've requested a particular font, the font returned
exactly matches the one you requested. For example, the height of the font you
asked for might not be the height of the font that's selected into the device context.

Querying a font's characteristics
To determine the characteristics of the font that is selected into a device context, a
call to

BOOL GetTextMetrics (HOC hdc, LPTEXTMETRIC lptm):

returns the characteristics of that font. A TEXTMETRIC structure is returned with the
information and is defined as

typedef struct tagTEXTMETRIC {
LONG tmHeight;
LONG tmAscent;
LONG tmDescent:
LONG tmlnternalLeading:
LONG tmExternalLeading:
LONG tmAveCharWidth:
LONG tmMaxCharWidth;
LONG tmWeight:
LONG tmOverhang:
LONG tmDigitizedAspectX:
LONG tmDigitizedAspectY:
char tmFirstChar:
char tmLastChar:
char tmDefaultChar:

Chapter 2 Drawing on the Screen

char tmBreakChar:
BYTE tmitalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmPitchAndFamily;
BYTE tmCharSet;

} TEXTMETRIC;

The TEXTMETRIC structure contains a number of the fields we saw in the
LOGFONT structure but this time the values listed in TEXTMETRIC are the values of
the font that's selected into the device context. Figure 2-3 shows the relationship of
some of the fields to actual characters.

tmHeight

tmDescent

Figure 2-3. Fields from the TEXTMETRIC structure and how they relate to a font.

Aside from determining whether you really got the font you wanted, the
GetTextmetrics call has another valuable purpose-determining the height of the font.
Recall that in TextDemo, the height of the line was computed using a call to DrawText.
While that method is convenient, it tends to be slow. You can use the TEXTMETRIC
data to compute this height in a much more straightforward manner. By adding the
tmHeight field, which is the height of the characters, to the tmExternalLeading field,
which is the distance between the bottom pixel of one row and the top pixel of the
next row of characters, you can determine the vertical distance between the baselines
of two lines of text.

51

52

Destroying a font
Like other GDI resources, fonts must he destroyed after the program has finished using
them. Failure to delete fonts before terminating a program causes what's known as a
resource leak-an orphaned graphic resource that's taking up valuahle memory but
that's no longer owned by an application.

To destroy a font, first deselect it from any device contexts it has been selected
into. You do this by calling SelectObject; the font passed is the font that was returned
by the original SelectObject call made to select the font. After the font has been dese
lected, a call to

BOOL DeleteObject (HGDIOBJ hObject);

(with hObject containing the font handle) deletes the font from the system.
As you can see from this process, font management is no small matter in Win

dows. The many parameters of the LOG FONT structure might look daunting, but they
give an application tremendous power to specify a font exactly.

One problem when dealing with fonts is determining just what types of fonts
are available on a specific device. Windows CE devices come with a set of standard
fonts, but a specific system might have been loaded with additional fonts by either
the manufacturer or the user. Fortunately, Windows provides a method for enumer
ating all the available fonts in a system.

Enumerating fonts
To determine what fonts are available on a system, Windows provides this function:

int EnumFontFamilies (HDC hdc, LPCTSTR lpszFamily,
FONTENUMPROC lpEnumFontFamProc, LPARAM lParam);

This function lets you list all the font families as well as each font within a fam
ily. The first parameter is the obligatory handle to the device context. The second
parameter is a string to the name of the family to enumerate. If this parameter is null,
the function enumerates each of the available families.

The third parameter is something different-a pointer to a function provided
by the application. The function is a callback function that Windows calls once for
each font being enumerated. The final parameter, lParam, is a generic parameter that
can be used by the application. This value is passed unmodified to the application's
callback procedure.

While the name of the callback function can be anything, the prototype of the
callback must match the declaration:

int CALLBACK EnumFontFamProc (LOGFONT *lpelf, TEXTMETRIC *lpntm,
DWORD FontType, LPARAM lParam);

Chapter 2 Drawing on the Screen

The firs t parameter passed back to the callback function is a pointer to a
LOGFONT tructure describing the font being enumerated. The second parameter, a
pointer to a textmetric structure, further describes the font. The font type parameter
indicates whether the font is a raster or TrueType font.

The FontList Example Program

The FontList program, shown in Figure 2-4, uses the EnumFontFamilies function in
two ways to enu merate all fonts in the system.

FontList.h

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11 --
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);
) ;

struct decodeCMD {
UINT Code;
LRESULT (*FXn)CHWND , WORD, HWND, WORD);

) ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

11-- - - - ---- --- -- - - -- - -
11 Generic defines used by application
#define IDC_CMDBAR 1 II Command bar ID

11 --- -
11 Program specific structures
II
#define FAMILYMAX 24

Figure 2-4. 7be Fon/List program enumerates all f onts in the system. (continued)

53

Part I Windows Programming Basics

Figure 2·4. continued

typedef struct {
int nNumFonts;
TCHAR szFontFamily[LF_FACESIZE];

FONTFAHSTRUCT;
typedef FONTFAHSTRUCT *PFONTFAHSTRU CT ;

typedef struct {
INT yCurrent;
HOC hdc;

PAINTFONTINFO;
typedef PAINTFONTINFO • PPAINTFONTINFO;

11-------- --
11 Function prototypes
II
int InitApp CHINSTANCE);
HWNO Initlnstance (HINSTANCE, LPWSTR, int);
int Termlnstance (HINSTANCE, int);

II Window procedures
LRESULT CALLBACK HainWndProc (HWNO, UINT, WPARAH, LPARAH);

II Message handlers
LRESULT OoCreateHain (HWNO, UINT, WPARAH, LPARAH);
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyHain (HWND, UINT, WPARAH, LPARAH);

FontLlst.c

II==
II FontList - Lists the available fonts in the system
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II
II==
#include <windows.h> II For all that Windows stuff
#include <commctrl.h> II Command bar includes
#include "FontList.h" II Program-specific stuff

11 --
11 Gl oba 1 data
II

54

Chapter 2 Drawing on the Screen

const TCHAR szAppName[] =TEXT C"FontList"):
HINSTANCE hlnst; II Program instance handle

FONTFAMSTRUCT ffs[FAMILYMAX]:
INT sFamilyCnt = 0;

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = (

WM_CREATE, DoCreateMain,
WM_PAINT, DoPaintMain,
WM_DESTROY, DoDestroyMain,

} :

II==
II
II Program entry point
II
int WINAPI WinMain (HINSTANCE hlnstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) (

}

MSG msg;
int re = 0;
HWND hwndMain;

II Initialize application.
re= InitApp Chlnstance);
if (re) return re:

II Initialize this instance.
hwndMain = Initinstance Chinstance, lpCmdLine. nCmdShowl;
if (hwndMain == 0)

return 0xl0:

II Application message loop
while CGetMessage C&msg, NULL, 0, 0)) (

TranslateMessage (&msg);
DispatchMessage C&msg);

}

II Instance cleanup
return Termlnstance Chlnstance, msg.wParaml:

11 ------- ------- --- ------- --- ------ ------------- ----------------------- -
11 InitApp - Application initialization
II

(continued)

55

Part 1 Windows Programming Basics

Figure 2-4. continued

int InitApp (HINSTANCE hinstance) {
WNDCLASS we:

}

II Register application main window
we.style = 0:
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0:
wc.cbWndExtra = 0;
wc.hinstance = hinstance;
wc.hicon = NULL,
wc.hCursor = NULL;

class.
II Window style
II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon
II Default cursor

wc.hbrBackground =
wc.lpszMenuName =
wc . lpszClassName =

(HBRUSHl
NULL;

GetStockObject(WHITE_BRUSHl;
II Menu name

szAppName : II Window class name

if (RegisterClass (&we) == 0) return l;

return 0:

11 ---------------------- -- ------------------- --------------------- ----- -
11 Initinstance - Instance initialization
II
HWND Initlnstance (HINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow) {

HWND hWnd;

56

II Save program instance handle in global variable.
hinst = hinstance;

II Create main window.
hWnd = CreateWindow CszAppName, II Window class

TEXTC " Font Listing"),// Window title
WS_VISIBLE , II Style flags
CW_USEDEFAULT, // x position
CW_USEDEFAULT, // y position
CW_USEDEFAULT, II In i tial width
CW_USEDEFAULT, II Initial height
NULL, // Parent
NULL. // Menu, must be null
hinstance, // Application instance
NULL); II Pointer to create

II parameters
II Return fail code if window not created .
if (!IsWindow (hWndll return 0;

Chapter 2 Drawing on the Screen

}

II Standard show and update calls
ShowWindow ChWnd, nCmdShow);
UpdateWindow ChWnd):
return hWnd;

11-------------------- ------------- -------- ------- ----------------------
11 Termlnstance - Program cleanup
II
int Termlnstance CHINSTANCE hlnstance, int nDefRC) {

return nDefRC;

II==
II Font callback functions
II
11 ---- -- - - - - - - - - - -- - -- - -------- -- - --- -- - -- - - - - - -- - -- - -- -- - -- - - --------- -
II FontFamilyCallback - Callback function that enumerates the font
II families
II
int CALLBACK FontFamilyCallback (CONST LOGFONT *lplf,

CONST TEXTMETRIC *lpntm,

}

DWORD nFontType, LPARAM lParam)
int re = l;

II Stop enumeration if array filled.
if CsFamilyCnt >= FAMILYMAX)

return 0;
II Copy face name of font.
lstrcpy Cffs[sFamilyCnt++J.szFontFamily, lplf->lfFaceName);

return re;

11- -- -----
11 EnumSingleFontFamily - Callback function that enumerates fonts
II
int CALLBACK EnumSingleFontFamily (CONST LOGFONT *lplf,

CONST TEXTMETRIC *lpntm,
DWORD nFontType, LPARAM lParam)

PFONTFAMSTRUCT pffs;

pffs = CPFONTFAMSTRUCT) lParam;
pffs ->nNumFonts++; II Increment count of fonts in family
return l;

(cont inued)

57

Part I Windows Programming Basics

Figure 2-4. continued

11- - - ---- -- -- -- ------ - - - - - --- - - --- - -- - -- -- - - --- -- -- ------ -- -- -- -- -
II PaintSingleFontFamily - Callback function that draws a font
II
int CALLBACK PaintSingleFontFamily (CONST LOGFONT •lplf ,

CONST TEXTMETRIC •lpntm ,

}

PPAINTFONTINFO ppfi;
TCHAR sz0ut[256];

DWORD nFontType, LPARAM lParam)

INT nFontHeight, nPointSize;
HFONT hFont, hOldFont;

ppfi = CPPAINTFONTINFO) lParam: II Translate lParam into struct
II pointer.

II Create the font from the LOGFONT structure passed.
hFont = CreateFontlndirect Clplf);

II Select the font into the device context.
hOldFont = SelectObject Cppfi->hdc, hFont);

II Compute font size.
nPointSize Clplf ->l fHeight * 72) I

GetDeviceCapsCppfi ->hdc,LOGPIXELSY);

II Format string and paint
wsprintf CszOut, TEXT ("%s

nPoi ntSi ze) ;
ExtTextOut (ppfi->hdc , 25,

szOut, lstrlen

on display.
Point:%d"), lplf->lfFaceName,

ppfi->yCurrent, 0, NULL,
(szOut) , NULL);

II Compute the height of the default font.
nFontHeight = lpntm->tmHeight + lpntm -> tmExternalLeading;
II Update new draw point.
ppfi ->yCurrent += nFontHeight;

II Deselect font and delete.
SelectObject Cppfi->hdc, hOldFont);
DeleteObject (hFont);
return 1;

II==
II Message handling procedures for HainWindow
II

58

Chapter 2 Drawing on the Screen

//---- --- ------- --------------------------- ------------- ---- --- ---
// MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) (

}

INT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0; i < dim(MainMessages); i++) (

if (wMsg == MainMessages[i].Code)
return (•MainMessages[i].Fxn)(hWnd, wMsg, wParam, lParam):

return DefWindowProc (hWnd, wMsg, wParam, lParam):

//---- --
// DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) (
HWND hwndCB;
HOC hdc;
I NT i , re;

II Create a command bar.
hwndCB = CommandBar_Create Chinst, hWnd, IDC_CMDBAR);

II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB. 0, 0):

//Enumerate the available fonts.
hdc = GetDC ChWnd):
re = EnumFontFamilies ((HDC)hdc, (LPTSTR)NULL,

FontFamilyCallback, 0):

for Ci = 0: i < sFamilyCnt: i++) (
ffs[i].nNumFonts = 0:

}

re= EnumFontFamilies ((HOC)hdc, ffs[i].szFontFamily,
EnumSingleFontFamily,
(LPARAM)(PFONTFAMSTRUCT)&ffs[i]):

ReleaseDC ChWnd, hdc):
return 0;

(continued)

59

Part I Windows Programming Basics

Figure 2-4. continued

11 ---
11 DoPa1ntHa1n - Process WH_PAINT message for window.
II
LRESULT DoPaintHain (HWND hWnd, UINT wHsg, WPARAH wParam,

LPARAH 1 Pa ram) (

60

PAINTSTRUCT ps;
RECT rect;
HOC hdc:
TEXTHETRIC tm;
INT nFontHeight, i;
TCHAR sz0ut[256];
PAINTFONTINFO pfi;

II Adjust the size of the client rect to take into account
II the command bar height.
GetClientRect (hWnd, &rect);
rect.top += CommandBar_Height (GetDlgltem (hWnd, IDC_CHDBAR));

hdc = BeginPaint (hWnd, &ps);

II Get the height of the default font.
GetTextHetrics (hdc, &tm):
nFontHeight = tm.tmHeight + tm.tmExternalLeading;

II Initialize struct that is passed to enumerate function.
pfi.yCurrent = rect.top;
pfi.hdc = hdc:
for (i = 0: i < sFamilyCnt: i++) (

II Format output string and paint font fami ly name.
wsprintf (szOut, TEXT("Family: Xs "),

ffs[i].szFontFamily);
ExtTextOut (hdc, 5, pfi.yCurrent, 0, NULL,

szOut, lstrlen (szOut), NULL):
pfi.yCurrent += nFontHeight;

II Enumerate each family to draw a sample of that font.
EnumFontFamilies ((HDC)hdc, ffs[i].szFontFamily,

PaintSingleFontFamily,

EndPaint ChWnd, &ps);
return 0:

(LPARAH)&pfi):

Chapter 2 Drawing on the Screen

// -- ------------------------ ------------------------------ --- -- ---
// OoOestroyMain - Process WM_OESTROY mes sage for window.
II
LRESULT OoOestroyMain CHWNO hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {
PostQuitMessage (0):
return 0:

Enumerating the different fonts begins when the application is processing the
WM_CREATE message in OnCreateMain. Here, EnumFontFamil ies is ca lled with the
FontFamily field set to NULL so that each fa mily will be enumerated . The call back
function is FontFamilyCallback, where the name of the font fa mily is copied into an
array of strings.

The remainder of the work is pe rfo rmed during the process ing of the
WM_PAI T me sage. The OnPaintMain function begins with the standard litany
of getting the size of the area below the command bar and calling BeginPaint, which
returns the handle to the device context of the window. GetTextMetrics is then ca lled
to compute the row he ight of the default font. A loop i then entered in which
EnumerateFontFamil ies is ca lled for each fa mily name that had been stored during
the enumeration proces in OnCreateMain. The ca llback process for this ca llback
sequence is somewhat more complex than the code we've seen so far.

The PaintSingleFontFamily callback procedure , used in the enumeration of
the individual fonts, employs the lParam parameter to retrieve a pointer to a
PAINTFONTINFO structure defined in FontList.h. This structure conta ins the current
vertical drawing position as well as the handle to the device context. By u ing the
/Param pointer, FontList avoids having to decla re global variables to communicate
with the ca llback procedure .

The callback procedure next creates the font using the pointer to LOGFONT
that was pas ed to the ca llback procedure. The new font is then elected into the device
context, while the handle to the previou ly elected font is reta ined in bOldFont. The
point size of the enumerated fo nt is computed using the inverse of the equation
mentioned earlier in the chapter on page 49. The callback procedure then produces
a line of text showing the name of the fo nt fa mily along with the point ize of this
particular font. Instead of using DrawText, the callback u es a d ifferent text output
function:

BOOL ExtTextOut (HO C hd c, i nt X, i nt Y, UINT fuOpt ions,
co nst RE CT *l prc , LP CTSTR l pString ,
UINT cbCo un t , const i nt *l pDx) ;

61

Chapter 2 Drawing on the Screen

________________ o_.;..,., ____ ,.;; ____________ - -----:.---------

:<,1;:::>>'.,'i<<:',';',,'/<<~,~:> ::,,."~·<, < ,'· :;,>:\·~
DoDestroyMain - Protes.s.WM...:QESTROY message f()r wi

.LRESULT DoDestroyMa~n CHWN.D hWlld, UINT wMsg, WPARAM wParam,
LPARAM lParam) {

PostQuitMessage (0);

Enumerating the different fonts begins when the application is processing the
WM_ CREATE message in OnCreateMain. Here, EnumFontFamilies is called with the
FontFamily field set to NULL so that each family will be enumerated. The callback
function is FcmtFamilyCallback, where the name of the font family is copied into an
array of strings.

The remainder of the work is performed during the processing of the
WM_PAINT message. The OnPaintMain function begins with the standard licrny
of getting the size of the area below the command bar and calling BeginPaint, which
returns the handle to the device context of the window. GetTextMetrics is then called
to compute the row height of the default font. A loop is then entered in which
EnumerateFontFamilies is called for each family name that had been stored during
the enumeration process in OnCreateMain. The callback process for this callback
sequence is somewhat more complex than the code we've seen so far.

The PaintSingleFontFamily callback procedure, used in the enumeration of
the individual fonts, employs the lParam parameter to retrieve a pointer to a
PAINTFONTINFO structure defined in FontList.h. This structure contains the current
vertical drawing position as well as the handle to the device context. By using the
lParam pointer, FontList avoids having to declare global variables to communicate
with the callback procedure.

The callback procedure next creates the font using the pointer to LOGFONT
that was passed to the callback procedure. The new font is then selected into the device
context, while the handle to the previously selected font is retained in hOldFont. The
point size of the enumerated font is computed using the inverse of the equation
mentioned earlier in the chapter on page 49. The callback procedure then produces
a line of text showing the name of the font family along with the point size of this
particular font. Instead of using DrawText, the callback uses a different text output
function:

BOOL ExtTextOut CHDC hdc, int X, int Y, UINT fuOptions,
const RECT z.lprc, LPCTSTR lpString,
UINT cbCount, canst int *lpDx);

61

Part 1 Windows Programming Basics

62

The ExtTextOut function has a few advantages over DrawText in this situation.
First, ExtTextOut rends to be faster for drawing single lines of text. Second, instead of
formatting the text inside a rectangle , x and y starting coordinates are pas ed, speci
fying the upper left corner of the rectangle where the text will be drawn. The rect
parameter that' passed is used as a clipping rectangle, or if the background mode is
opaque, the area where the background color is drawn. Thi rectangle parameter can
be NULL if you don 't want any clipping or opaquing. The next two parameters are
the text and the character count. The la t parameter, ExtTextOut, allows an applica
tion to specify the horizontal distance between adjacent character cells. In our case,
this parameter is set to NULL also, which results in the default separation between
character .

Window CE differ from other versions of Windows in having only the e two
text drawing functions for displaying text. Most of what you can do with the other
text functions typically used in other versions of Windows, such as TextOut and
TabbedTextOut, can be emulated using either DrawText or ExtTextOut. This is one
of the areas in which Window CE ha broken with earlier versions of Windows,
sacrificing backward compatibility to achieve a smaller operating sy tern.

After di playing the text, the function compute the height of the line of text
just drawn using the combination of tmHeight and tmE:xternalLeading that wa pro
vided in the passed TEXTMETRIC structure. The new font is then deselected using a
second call to SelectObject, this rime passing the handle to the font that was the origi
nal selected font. The new font is then deleted using DeleteObject. Finally, the call
back function returns a nonzero value to indicate to Windows that it is okay to make
another ca ll to the enumerate callback.

Figure 2-5 shows the FontListing window. Notice that the font names are dis
played in that font and that each font ha a pecific er of available sizes.

Family: MS Sans S eril
MS Sans Serif Point: 9
MS Sens Serif Point:l 2

Family: Courier New
Poinc : lO

Point: 12

)(

lil":Jjt 4:13PM

Figure 2-5. The Font Li t window shows some of the available fonts
for a Handhe/d PC.

Chapter 2 Drawing on the Screen

Unfinished business
If you look closely at Figure 2-5, you 'll notice a problem with the display. The list of
fonts just runs off the bottom edge of the FontList window. At this point in a book
covering the desktop versions of Windows, the author might add a window style flag
for a vertical scroll bar and a small amount of code, and magically, the program would
have a scrollable window. But if you do that to a Windows CE main window, you
end up with the look shown in Figure 2-6.

Family: MS Sans Serif
MS Sans Serif Point: 9
MS Sans Serif Point:12

Family: Courier New
Point : lO

Point:12

1:1 Font Listing • ::i.J 4:15 PM

Figure 2-6. Tbe Fontlist window with a scrollbar attached to the main window.

otice how the scroll bar extends past the right side of the command bar up to
the top of the window. The scroll bar should stop below the command bar and the
command bar hould extend to the right edge of the window. The problem is that
the command bar lies in the client area of the window, and the default croll bar style
provided by all Windows operating systems places the scroll bar outside the client
area, in the noncUent space along the edge of the window. The solution to this prob
lem involves creating a child window inside our main window and letting it do the
scrolling. But since I'll provide a complete explanation of child windows in Chap
ter 4, I'll hold off describing how to properly implement a scroll bar until then.

BITMAPS
Bitmaps are graphical objects that can be used to create, draw, manipulate , and re
trieve images in a device context. Bitmaps are everywhere within Windows, from the
little Windows logo on the Start button to the Close button on the command bar. Think
of a bitmap as a picture compo ed of an array of pixels that can be painted onto the
screen. Like any picture, a bitmap ha height and width. It also has a method for
determining what color or colors it use . Finally, a bitmap has an array of bits that
de cribe each pixel in the bitmap.

63

Part I

Historically, bitmaps under Windows have been divided into two types; device
dependent bitmaps (DDBs) and device independent bitmaps (DIBs). DDBs are bitmaps
that are tied to the characteristics of a specific DC and can't easily be rendered on
DCs with different characteristics. DIBs, on the other hand, are independent of any
device and therefore must carry around enough information so that they can be ren
dered accurately on any device.

Windows CE contains many of the bitmap functions available in other versions
of Windows. The differences include a new four-color bitmap format not supported
anywhere but on Windows CE and a different method for manipulating DIBs.

Device Dependent Bitmaps

64

A device dependent bitmap can be created with this function:

HBITMAP CreateBitmap (int nWidth, int nHeight, UINT cPlanes,
UINT cBitsPerPel, CONST VOID *lpvBits);

The nWidth and nHeight parameters indicate the dimensions of the bitmap. The
cPlanes parameter is an historical artifact from the days when display hardware imple
mented each color within a pixel in a different hardware plane. For Windmvs CE,
this parameter must be set to 1. The cHitspPerPel parameter indicates the number of
bits used to describe each pixel. The number of colors is 2 to the power of the
cBitspPerPel parameter. Under Windows CE, the allowable values are 1, 2, 4, 8, 16,
and 24. As I said, the four-color bitmap is unique to Windows CE and isn't supported
under other Windows platforms, including the Windows CE emulator that runs on
top of Windows NT.

The final parameter is a pointer to the bits of the bitmap. Under Windows CE,
the bits are always arranged in a packed pixel format; that is, each pixel is stored as
a series of bits within a byte, with the next pixel starting immediately after the first.
The first pixel in the array of bits is the pixel located in the upper left corner of the
bitmap. The bits continue across the top row of the bitmap, then across the second
row, and so on. Each row of the bitmap must be double-word (4-byte) aligned. If
any pad bytes are required at the end of a row to align the start of the next row, they
should be set to 0. Figure 2-7 illustrates this scheme, showing a 126-by-64 pixel bitmap
with 8 bits per pixel.

The function

HBITMAP CreateCompatibleBitmap (HOC hdc, int nWidth, int nHeight);

creates a bitmap whose format is compatible with the device context passed to the
function. So, if the device context is a four-color DC, the resulting bitmap is a four-

Chapter 2 Drawing on the Screen

color bitmap as well. This function comes in handy when you're manipulating im
ages on the screen because it makes it easy to produce a blank bitmap that's directly
color compatible with the screen.

Byte
Offset Row

0 0
128 1
256 2

7936 63

Figure 2-7. J,ayout of bytes within a bitmap.

Device Independent Bitmaps
The fundamental difference between DIBs and their device dependent cousins is that
the image stored in a DIB comes with its own color information. Almost every bitmap
file since Windows 3.0, which used the files with the BMP extension, contains infor
mation that can be directly matched with the information needed to create a DIB in
Windows.

In the early days of Windows, it was a rite of passage for a programmer to write
a routine that manually read a DIB file and converted the data to a bitmap. These
days, the same arduous task can be accomplished with the following function, unique
to Windows CE:

HBITMAP SHLoadDIBitmap (LPCTSTR szFileName);

It loads a bitmap directly from a bitmap file and provides a handle to the bitmap. In
Windows NT and Windows 98, the same process can be accomplished with Loadlmage
using the LR_LOADFROMFILE flag, but this flag isn't supported under the Windows CE
implementation of Loadlmage.

65

Part I

DIB Sections

66

While Windows CE makes it easy to load a bitmap file, sometimes you must read what
is on the screen, manipuiate it, and redraw the image back to the screen. This is an
other case in which DIBs are better than DDBs. While the bits of a device dependent
bitmap are obtainable, the format of the buffer is directly dependent on the screen
format. By using a DIB, or more precisely, something called a DIB section, your pro
gram can read the bitmap into a buffer that has a predefined format without worry
ing about the format of the display device.

While Windows has a number of DIB creation functions that have been added
over the years since Windows 3.0, Windows CE carries over only one DIB section
function from Windows NT and Windows 98. Here it is:

HBITMAP CreateDIBSection (HOC hdc, canst BITMAPINFO *pbmi,
UINT iUsage, void *ppvBits,
HANDLE hSection, DWORD dwOffset);

Because it's a rather late addition to the Win32 API, DIB sections might be new to
Windows programmers. DIB Sections were invented to improve the performance of
applications on Windows NT that directly manipulated bitmaps. In short, a DIB sec
tion allows a programmer to select a DIB in a device context while still maintaining
direct access to the bits that compose the bitmap. To achieve this, a DIB section as
sociates a memory DC with a buffer that also contains the bits of that DC. Because
the image is mapped to a DC, other graphics calls can be made to modify the image.
At the same time, the raw bits of the DC, in DIB format, are available for direct ma
nipulation. While the improved performance is all well and good on NT, the relevance
to the Windows CE programmer is the ease in which an application can work with
bitmaps and manipulate their contents.

The parameters of this call lead off with the pointer to a BITMAPINFO struc
ture. This structure describes the layout and color composition of a device indepen
dent bitmap and is a combination of a BIT.!VlAPINFOHEADER structure and an array
of RGBQUAD values that represent the palette of colors used by the bitmap.

The BITMAPINFOHEADER structure is defined as the following:

typedef struct tagBITMAPINFOHEADER{
DWORD biSize;
LONG biWidth;
LONG biHeight;
WORD biPlanes;
WORD biBitCount;
DWORD biCompression:
DWORD biSizeimage;

LONG biXPelsPerMeter;
LOG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrimportant;

} BITMAPINFOHEADER;

Chapter 2 Drawing on the Screen

As you can see, this structure contains much more information than just the pa
rameters passed to CreateBitmap. The first field is the size of the structure and must
be filled in by the calling program to differentiate this structure from the similar
BITMAPCOREINFOHEADER structure that's a holdover from the OS/2 presentation
manager. The biWidth, biHeight, biPlanes, and biBitCount fields are similar to their
like-named parameters to the CreateBitmap call-with one exception. The sign of
the biHeight field specifies the organization of the bit array. If biHeight is negative,
the bit array is organized in a top-down format, as is CreateBitmap. If biHeight is
positive, the array is organized in a bottom-up format, in which the bottom row of
the bitmap is defined by the first bits in the array. As with the CreateBitmap call, the
biPlanes field must he set to 1.

The biCompression field specifies the compression method used in the bit ar
ray. Under Windows CE, the only allowable setting for this field is BI_RGB, indicat
ing that the buffer isn't compressed. The biSizelmage parameter is used to indicate
the size of the bit array; when used with BI_RGB, however, the biSizelmage field can
be set to 0, meaning the array size is computed using the dimensions and bits per
pixel information provided in the BITMAPINFOHEADER structure.

The biXPelsPerMeter and biYPelsPerMeter fields provide information to accu
rately scale the image. For CreateDJBSection, however, these parameters can be set
to 0. The biClrUsed parameter specifies the number of colors in the palette that are
actually used. In a 256-color image, the palette will have 256 entries, but the bitmap
itself might need only 100 or so distinct colors. This field helps the palette manager,
the part of the Windows that manages color matching, to match the colors in the system
palette with the colors required by the bitmap. The hiClrlmpo11ant field further de
fines the colors that are really required as opposed to those that are used. For most
color bitmaps, these two fields are set to 0, indicating that all colors are used and that
all colors are important.

As I mentioned above, an array of RGBQUAD structures immediately follows
the BITMAPINFOHEADER structure. The RGBQUAD structure is defined as follows:

typedef struct tagRGBQUAD { /* rgbq */
BYTE rgbBlue;
BYTE rgbGreen;
BYTE rgbRed;
BYTE rgbReserved;

RGBQUAD;

67

This structure allows for 256 shades of red, green, and blue. While almost any
shade of color can be created using this structure, the color that's actually rendered
on the device will, of course, be limited by what th.e device can display.

The array of RGBQUAD structures, taken as a whole, describe the palette of
the DIB. The palette is the list of colors in the bitmap. If a bitmap has a palette, each
entry in the bitmap array contains not colors, but an index into the palette that con
tains the color for that pixel. While redundant on a monochrome bitmap, the palette
is quite important when rendering color bitmaps on color devices. For example a 256
color bitmap has one byte for each pixel, but that byte points to a 24 bit value that
represents equal parts red, green, and blue colors. So, while a 256-color bitmap can
only contain 256 distinct colors, each of those colors can be one of 16 million colors
rendered using the 24-bit palette entry. For convenience in a 32-bit world, each pal
ette entry, while containing only 24 bits of color information, is padded out to a 32-
bit wide entry-hence the name of the data type: RGBQUAD.

Of the remaining four CreateDJBSection parameters, only two are used under
Windows CE. The iUsage parameter indicates how the colors in the palette are repre
sented. For Windows CE, this field must be set to DIB_RGB_COLORS. The ppvBits
parameter is a pointer to a variable that receives the pointer to the bitmap bits that
compose the bitmap image. The final two parameters, hSection and dwOffset, aren't
supported under Windows CE and must be set to 0. In other versions of Windows,
they allow the bitmap bits to be specified by a memory mapped file. While Windows
CE does support memory mapped files, they aren't supported by CreateDJBSection.

Drawing Bitmaps

68

Creating and loading bitmaps is all well and good, but there's not much point to it
unless the bitmaps you create can be rendered on the screen. Drawing a bitmap isn't
as straightforward as you might think. Before a bitmap can be drawn in a screen DC,
it must be selected into a DC and then copied over to the screen device context. While
this process sounds convoluted, there is rhyme to this reason.

The process of selecting a bitmap into a device context is similar to selecting a
logical font into a device context; it converts the ideal to the actual. Just as Windows
finds the best possible match to a requested font, the bitmap selection process must
match the available colors of the device to the colors requested by a bitmap. Only
after this is done can the bitmap be rendered on the screen. To help with this inter
mediate step, Windows provides a shadow type of DC, a memory device context.

To create a memory device context, use this function:

HDC CreateCompatibleDC (HDC hdc);

Chapter 2 Drawing on the Screen

This function creates a memory DC that's compatible with the current screen DC. Once
created, the source bitmap is selected into this memory DC using the same SelectObject
function you used to select in a logical font. Finally, the bitmap is copied from the
memory DC to the screen DC using one of the blit functions, BitBlt or StretchBlt.

The workhorse of bitmap functions is the following:

BOOL BitBlt (HOC hdcDest, int nXDest, int nYDest, int nWidth,
int nHeight, HOC hdcSrc, int nXSrc, int nYSrc,
DWORD dwRop);

Fundamentally, the BitBlt function, pronounced bit hlit, is just a fancy memcopy
function, but since it operates on device contexts, not memory, it's something far more
special. The first parameter is a handle to the destination device context-the DC to
which the bitmap is to be copied. The next four parameters specify the location and
size of the destination rectangle where the bitmap is to end up. The next three pa
rameters specify the handle to the source device context and the location within that
DC of the upper left corner of the source image.

The final parameter, dwRop, specifies how the image is to be copied from the
source to the destination device contexts. The ROP code defines how the source bitmap
and the current destination are combined to produce the final image. The ROP code
for a simple copy of the source image is SRCCOPY. The ROP code for combining the
source image with the current destination is SRCPAINT. Copying a logically inverted
image, essentially a negative of the source image, is accomplished using SRCINVERT.
Some ROP codes also combine the currently selected brush into the equation to
compute the resulting image. A large number of ROP codes are available, too many
for me to cover here. For a complete list, check out the Windows CE programming
documentation.

The following code fragment sums up how to paint a bitmap:

II Create a DC that matches the device.
hdcMem = CreateCompatibleDC (hdc);

II Select the bitmap into the compatible device context.
hOldSel = SelectObject (hdcMem, hBitmap);

II Get the bitmap dimensions from the bitmap.
GetObject (hBitmap, sizeof (BITMAP), &bmp);
II Copy the bitmap image from the memory DC to the screen DC.
BitBlt (hdc, rect.left, rect.top, bmp.bmWidth, bmp.bmHeight,

hdcMem, 0, 0, SRCCOPY);
(continuecO

69

70

II Restore original bitmap selection and destroy the memory DC.
SelectObject (hdcMem, hOldSel);
DeleteDC (hdcMem);

The memory device context is created and the bitmap to be painted is seiected
into that DC. Since you might not have stored the dimensions of the bitmap to be
painted, the routine makes a call to GetObject. GetObject returns information about a
graphics object, in this case, a bitmap. Information about fonts and other graphic
objects can be queried using this useful function. Next, BitBlt is used to copy the bitmap
into the screen DC. To clean up, the bitmap is deselected from the memory device
context and the memory DC is deleted using DeleteDC. Don't confuse DeleteDC with
ReleaseDC, which is used to free a display DC. DeleteDC should be paired only with
CreateCompatibleDC and ReleaseDC should be paired only with GetDC or
GetWindowDC.

Instead of merely copying the bitmap, stretch or shrink it using this function:

BOOL StretchBlt (HOC hdcDest, int nXOriginDest, int nYOriginDest,
int nWidthDest, int nHeightDest, HOC hdcSrc.
int nXOriginSrc, int nYOriginSrc, int nWidthSrc,
int nHeightSrc, DWORD dwRop);

The parameters in StretcbBlt are the same as those used in BitBlt, with the ex
ception that now the width and height of the source image can be specified. Here
again, the ROP codes specify how the source and destination are combined to pro
duce the final image.

Windows CE 2.0 added a new, and quite handy, bitmap function. It is

BOOL Transparentlmage (HOC hdcDest, LONG DstX, LONG DstY, LONG DstCx,
LONG DstCy, HANDLE hSrc. LONG Srcx. LONG SrcY,
LONG SrcCx, LONG SrcCy, COLORREF TransparentColor);

This function is similar to StretcbB!t with two very important exceptions. First, you
can specify a color in the bitmap to be the transparent color. When the bitmap is copied
to the destination, the pixels in the bitmap that are the transparent color are not cop
ied. The second difference is that the bSrc parameter can either be a device context
or a handle to a bitmap, which allows you to bypass the requirement to select the
source image into a device context before rendering it on the screen.

As in other versions of Windows, Windows CE supports two other blit func
tions: PatBlt and MaskB!t. The PatB!t function combines the currently selected brush
with the current image in the destination DC to produce the resulting image. I cover
brushes later in this chapter. The MaskBlt function is similar to BitBlt but encompasses
a masking image that provides the ability to draw only a portion of the source image
onto the destination DC.

Chapter 2 Drawing on the Screen

LINES AND SHAPES
One of the areas in which Windows CE provides substantially less functionality than
other versions of Windows is in the primitive line-drawing and shape-drawing func
tions. Gone are the Chord, Arc, and Pie functions that created complex circular shapes.
Gone too is the concept of current point. Other versions of Windows track a current
point, which is then used as the starting point for the next drawing command. So
drawing a series of connected lines and curves by calling MoveTo to move the cur
rent point followed by calls to LineTo, ArcTo, PozyBezierTo and so forth is no longer
possible. But even with the loss of a number of graphic functions, Windows CE still
provides the essential functions necessary to draw lines and shapes.

Lines
Drawing one or more lines is as simple as a call to

BOOL Polyline (HOC hdc, const POINT *lppt, int cPoints);

The second parameter is a pointer to an array of POINT structures that are defined as
the following:

typedef struct tagPOINT {
LONG x;
LONG y;

POINT;

Each x and y combination describes a pixel from the upper left corner of the
screen. The third parameter is the number of point structures in the array. So to draw
a line from (0, 0) to (50, 100), the code would look like this:

POINTS pts[2];

pts[0].x 0;
pts[0].y 0;
pts[l] .x 50;
pts[l].y 100;
Polyline (hdc, &pts, 2);

Just as in the early text examples, this code fragment makes a number of as
sumptions about the default state of the device context. For example, just what does
the line drawn between (0,0) and (50, 100) look like? What is its width and its color,
and is it a solid line? All versions of Windows, including Windows CE, allow these
parameters to be specified.

71

Part I

72

The tool for specifying the appearance of lines and the outline of shapes is called,
appropriately enough, a pen. A pen is another GDI object and, like the others de
scribed in this chapter, is created, selected into a device context, used, deselected,
and then destroyed. Among other stock GDI objects, stock pens can be retrieved using
the following code:

HGDIOBJ GetStockObject (int fnObject);

All versions of Windows provide three stock pens, each 1 pixel wide. The stock
pens come in 3 colors: white, black, and null. Using GetStockO~ject, the call to re
trieve one of those pens employs the parameters WHITE_PEN, BLACK_PEN, and
NULL_PEN respectively. Unlike standard graphic objects created by applications, stock
objects should never be deleted by the application. Instead, the application should
simply deselect the pen from the device context when it's no longer needed.

To create a custom pen under Windows, two functions are available. The first
is this:

HPEN CreatePen (int fnPenStyle, int nWidth. COLORREF crColor);

The fnPenStyle parameter specifies the appearance of the line to be drawn. For ex
ample, the PS_DASH flag can be used to create a dashed line. The n Width parameter
specifies the width of the pen. Finally, the crColor parameter specifies the color of
the pen. The crColor parameter is typed as COLORREF, which under Windows CE
2.0 is an RGB value. The RGB macro is as follows:

COLORREF RGB (BYTE bRed, BYTE bGreen, BYTE bBlue);

So to create a solid red pen, the code would look like this:

hPen = CreatePen (PS_SOLID, 1. RGB (0xff, 0, 0));

The other pen creation function is the following:

HPEN CreatePenindirect (canst LOGPEN *lplgpn);

where the logical pen structure LOGPEN is defined as

typedef struct tagLOGPEN {
UINT lopnStyle;
POINT 1 opnWidth;
COLORREF lopnColor;

} LOG PEN;

CreatePenlndirect provides the same parameters to Windows, in a different form. To
create the same 1-pixel-wide red pen with CreatePenlndirect, the code would look
like this:

Chapter 2 Drawing on the Screen

LOGPEN lp;
HPEN hPen;

lp.lopnStyle PS_SOLID;
lp.lopnWidth.x = 1;
lp.lopnWidth.y = 1;
lp.lopnColor = RGB C0xff, 0, 0);

hPen = CreatePenindirect (&lp);

Windows CE devices don't support complex pens such as wide (more than
one pixel wide), dashed lines. To determine what's supported, our old friend
GetDeviceCaps comes into play, taking LINECAPS as the second parameter. Refer to
the Windows CE documentation for the different flags returned hy this call.

Shapes

Lines are useful but Windows also provides functions to draw shapes, both filled and
unfilled. Here, Windows CE does a good job supporting most of the functions famil
iar to Windows programmers. The Rectangle, RoundRect, Ellipse, and Polygon func
tions are all supported.

Brushes
Before I can talk about shapes such as rectangles and ellipses I need to describe another
GDI object that I've only mentioned briefly before now, called a brush. A brush is a
small 8-by-8 bitmap used to fill shapes. It's also used by Windows to fill the back
ground of a client window. Windmvs CE provides a number of stock brushes and
also the ability to create a brush from an application-defined pattern. A number of
stock brushes, each a solid color, can be retrieved using GetStockOhject. Among the
brushes available is one for each of the grays of a four grayscale display: white, light
gray, dark gray, and black.

To create solid color brushes, the function to call is the following:

HBRUSH CreateSolidBrush (COLORREF crColor);

This function isn't really necessary when you're writing an application for a four-color
Windows CE device because those four solid brushes can be retrieved with the
GetStockOhject call. For higher color devices however, the crColor parameter can be
generated using the RGR macro.

To create custom pattern brushes, Windows CE supports the Win32 function:

HBRUSH CreateDIBPatternBrushPt (canst void *lpPackedDIB,
UINT iUsage);

73

Part I

74

The first parameter to this function is a pointer to a DIB in packed format. This means
that the pointer points to a buffer that contains a BITMAPINFO structure immediately
followed by the bits in the bitmap. Remember that a BITMAPINFO structure is ac
tually a BITMAPINFOHEADER structure followed by a palette in RGBQUAD for
mat, so the buffer contains everything necessary to create a DIE-that is, bitmap
information, a palette, and the bits to the bitmap. The second parameter must be
set to DIB_RGB_COLORS for Windows CE applications. This setting indicates that
the palette specified contains RGBQUAD values in each entry. The complimentary
flag, DIB_PAL_COLORS, used in other versions of Windows isn't supported in
Windows CE.

The CreateDJBPatternBrushPt function is more important under Windows CE
because the hatched brushes, supplied under other versions of Windows by the
CreateHachBrush function, aren't supported under Windows CE. Hatched brushes
are brushes composed of any combination of horizontal, vertical, or diagonal lines.
Ironically, they're particularly useful with grayscale displays because you can use them
to accentuate different areas of a chart with different hatch patterns. These brushes,
however, can be reproduced by using CreateDJBPatternBrushPt and the proper
bitmap patterns. The Shapes code example, later in the chapter, demonstrates a method
for creating hatched brushes under Windows CE.

By default, the brush origin will be in the upper left corner of the window. This
isn't always what you want. Take, for example, a bar graph where the bar filled with
a hatched brush fills a rectangle from (100, 100) to (125, 220). Since this rectangle
isn't divisible by 8 (brushes being 8 by 8 pixels square), the upper left corner of the
bar will be filled with a partial brush that might not look pleasing to the eye.

To avoid this situation, you can move the origin of the brush so that each shape
can be drawn with the brush aligned correctly in the corner of the shape to be filled.
The function available for this remedy is the following:

BOOL SetBrushOrgEx (HOC hdc, int nXOrg, int nYOrg, LPPOINT lppt);

The nXOrg and n YOrg parameters allow the origin to be set between 0 and 7 so that
you can position the origin anywhere in the 8-by-8 space of the brush. The lppt pa
rameter is filled with the previous origin of the brush so that you can restore the pre
vious origin if necessary.

Rectangles
The rectangle function draws either a filled or a hollow rectangle; the function is de
fined as the following:

BOOL Rectangle (HOC hdc, int nleftRect, int nTopRect.
int nRightRect, int nBottomRect);

Chapter 2 Drawing on the Screen

The function uses the currently selected pen to draw the outline of the rectangle and
the current brush to fill the interior. To draw a hollow rectangle, select the null brush
into the device context before calling Rectangle.

The actual pixels drawn for the border are important to understand. Say we're
drawing a 5-by-7 rectangle at 0, 0. The function call would look like this:

Rectangle (0, 0, 5, 7);

Assuming that the selected pen was 1 pixel wide, the resulting rectangle would look
like the one shown in Figure 2-8.

0
1

2
3

4

5

6
7

8

0 1 2 3 4 5 6

Figure 2-8. Expanded view of a rectangle drawn with the Rectangle function.

Notice how the right edge of the drawn rectangle is actually drawn in column
4 and that the bottom edge is drawn on row 6. This is standard Windows practice.
The rectangle is drawn inside the right and bottom boundary specified for the Rect
angle function. If the selected pen is wider than one pixel, the right and bottom edges
are drawn with the pen centered on the bounding rectangle. (Other versions of Win
dows support the PS_INSIDEFRAME pen style that forces the rectangle to be drawn
inside the frame regardless of the pen width.)

Circles and ellipses
Circles and ellipses can be drawn with this function:

BOOL Ellipse (HOC hdc, int nLeftRect, int nTopRect,
int nRightRect, int nBottomRect);

The ellipse is drawn using the rectangle passed as a bounding rectangle, as shown in
Figure 2-9. As with the Rectangle function, while the interior of the ellipse is filled
with the current brush, the outline is drawn with the current pen.

75

76

Basics

(nlettRect, nTopRect) (nRightRect-1, nTopRect)

(nlettRect, nBottomRect-1) (nRightRect-1, nBottomRect-1)

Figure 2-9. The ellipse is drawn within the bounding rectangle passed to the Ellipse
function.

Round rectangles
The RoundRect function,

BOOL RoundRect (HOC hdc, int nleftRect, int nTopRect,
int nRightRect, int nBottomRect,
int nWidth, int nHeightl;

draws a rectangle with rounded corners. The roundedness of the corners is defined
by the last two parameters that specify the width and height of the ellipse used to
round the corners, as shown in Figure 2-10. Specifying the ellipse height and width
enables your program to draw identically symmetrical rounded corners. Shortening
the ellipse height flattens out the sides of the rectangle, while shortening the width
of the ellipse flattens the top and bottom of the rectangle.

(nleftRect, nTopRect)

1

,, ,,

nHeight

(nRightRect, nBottomRect)

Figure 2-10. Ibe height and width of the ellipse define the round corners of the
rectangle drawn by RoundRect.

Polygons
Finally, the Polygon function,

BOOL Polygon (HOC hdc, const POINT *lpPoints, int nCount);

Chapter 2 Drawing on the Screen

draws a many-sided shape. The second parameter is a pointer to an array of point
structures defining the points that delineate the polygon. The resulting shape has one
more side than the number of points because the function automatica lly completes
the last line of the polygon by connecting the last point with the fir t. Under Win
dows CE 1.0, th is fu nction is limited to producing convex polygons.

The Shapes Example Program

The Shapes program, shown in Figure 2-11 , demonstrates a number of these hmc
tions. In Shapes, five figures are drawn, each fil led with a different brush.

Shapes.h

II==
11 Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11 -------- - --- - ----- - ---
11 Generic defines and data types
II
struct decodeUINT {

UINT Code;

LRESULT (• Fxn)(HWND. UINT. WPARAM. LPARAM);
} ;

struct decodeCMD {
UINT Code;
LRESULT (• Fxn)CHWNO, WORD. HWND. WORD);

} ;

II Structure assoc i ates
II messages
II with a function .

II Structure as sociates
II menu IDs with a
II function.

11 --
11 Generic defines used by applicat i on
#define IOC_CMOBAR 1 II Command bar IO
11 - --- -- ---- ---- - - -- -- - ------------------------------------- - ----- - -----
11 Defines used by MyCreateHatchedBrush
II

Figure 2-11 . 7be Shapes program. (continued)

77

Part I Windows Programming Basics

Figure 2-11. continued

typedef struct {
BITMAPINFOHEADER bmi;
COLORREF dwPal[2];
BYTE bBits[64];

} BRUSHBMP:

#define HS_HORIZONTAL 0
#define HS_VERTICAL 1
#define HS_FDIAGONAL 2
#define HS_BDIAGONAL 3
#define HS_CROSS 4
#define HS_DIAGCROSS 5

I•
I•
I*
I•
I•
I•

• I
11111 • I
\ \\ \\ • I
111/ I • I
+++++ • I
xxxxx *I

11--- ---
11 Function prototypes
II
int InitApp CHINSTANCE):
HWND Initlnstance CHINSTANCE, LPWSTR, int):
int Termlnstance CHINSTANCE, int):

II Window procedures
LRESULT CALLBACK MainWndProc CHWND, UINT, WPARAM, LPARAM);

II Message handler s
LRESULT DoCreateMain CHWND. UINT, WPARAM, LPARAM):
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM):
LRESULT DoDestroyMain CHWND, UINT, WPARAM, LPARAM);

Shapea.c

II==
II Shapes- Brush and shapes demo for Windows CE
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II
II==
#include <windows.h> II For all that Windows stuff
#include <commctrl.h> II Command bar includes
#include "shapes.h" II Program-specific stuff

78

Chapter 2 Drawing on the Screen

11-- ---- ---- --
11 Global data
II
const TCHAR szAppName[J
HI NSTANCE hlnst ;

TE XT ("Shapes");
II Program instance handle

II Message dispatch tab l e for MainWindowProc
const struct decodeUINT MainMes sages[J = (

WM_CREATE, DoCreateMain,
WM_PAINT, DoPaintMain,
WM_DESTROY, DoDestroyMain,

) ;

II==
II
II Program entry point
II
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevin stance,

LPWSTR lpCmdLine, int nCmdShow) (

}

MSG msg;
int re = 0;
HWND hwndMain ;

II Initialize application .
re = InitApp (hinstance);
if (re) return re;

II Initialize this instance.
hwndMain = Initinstance(hinsta nce, lpCmdLine , nCmdShowJ;
if (hwndMain == 0)

return 0x10;

II Application message loop
while (GetMessage (&msg, NULL. 0, 0)) (

TranslateMessage C&msg);
DispatchMessage C&msg);

}

II Instance cleanup
return Terminstance Chinstance, msg.wParamJ;

11 ------------------------------------- -------------- -------------------
11 InitApp - Application initialization
II

(continued)

79

Part 1 Windows Programming Basics

Figure 2-11. continued

int InitApp CHINSTANCE hlnstance) {
WNDCLASS we;

II Register application
we.style = 0;

main window class.

wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hlnstance = hlnstance;
wc.hlcon = NULL.

II Window style
II Callback function
II Extra cla ss data
II Extra window data
II Owner handle
II Appli cation icon
II Default cursor wc.hCursor = NULL;

wc . hbrBackground = CHBRUSH) GetStockObject CWHITE_BRUSH) ;

)

wc.lpszMenuName = NULL;
wc.lpszClassName = szAppName;

if CRegisterClass C&wc) == 0) return l;

return 0;

II Menu name
II Window clas s name

11--- ---- --------------------- --- ---------------------------------------
11 Initlnstance - Instance initialization
II
HWND Initlnstance CHINSTANCE hlnstance, LPWSTR lpCmdLine, int nCmdShow) {

HWND hWnd;

80

II Save program instance handle in global variable.
hlnst = hlnstance;

II Create main window.
hWnd = CreateWindow CszAppName,

TEXTC"Shapes").
WS_VISIBLE,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hlnstance.
NULL);

II Return fail code if window not created.
if C!IsWindow ChWnd)) return 0;

II Standard show and update ca l l s

II
II
II
II
II
II
II
II
II
II
II
II

Window class
Window title
Style flags
x position
y posit i on
Initial width
Initial height
Parent
Menu, must be null
Application instance
Pointer to create
parameters

Chapter 2 Drawing on the Screen

}

ShowWindow ChWnd, nCmdShow);
UpdateWindow ChWnd):
return hWnd:

11 -- ------ ---------------------------------- -------- -- --- ---- -----------
11 Termlnstance - Program cleanup
II
int Terminstance CHINSTANCE hinstance, int nDefRC) {

return nDefRC:
}

II==
II Message handl i ng procedures for Ma i nWindow
II

11- --- ----- --- --- -----------
11 Ma i nWndPro c - Callback func ti on for application window
II
LRESULT CA LL BACK MainWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {

}

INT i:
II
II Search message list to see if we need to handle this
II message. If in list. call procedure.
II
for (i = 0: i < dim(MainMessages): i++) {

if CwMsg == MainMessages[i].Code)
return (•MainMessages[iJ.Fxn) ChWnd, wMsg, wParam, lParam):

return DefWindowProc (hWnd, wMsg. wParam. lParam):

11 --
11 DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam.

LP A RAM l Pa ram) (
HWND hwndCB :

II Create a command bar.
hwndCB = CommandBar_Create Chinst , hWnd, IDC_CMDBAR):

II Add exit button to command bar.
CommandBar_AddAdornments ChwndCB, 0, 0);
return 0:

(continued)

81

Part I Windows Programming Basics

Figure 2-11. continued

11 - ---- -- - - ---- - ----- - - -- -- -- ---- --- ----- - - - - -- - - - - -------- ----- - -
II MyCreateHachBrush - Creates hatched brushes
II
HBRUSH MyCreateHachBrush (INT fnStyle, COLORREF clrref) {

BRUSHBMP brbmp;
BYTE *pBytes;
int i;
DWORD dwBits[6][2] = {

{0x000000ff,0x00000000}, {0xl0101010,0xl0101010},
{0x0102040B,0xl0204080}, {0x80402010,0x08040201} ,
{0xl01010ff ,0xl0101010}, {0x81422418,0xl8244281},

} ;

if ((fnStyle < 0) I I (f~Style > dim(dwBits)))
return 0;

memset C&brbmp, 0, sizeof Cbrbmp));

brbmp.bmi.biSize = sizeof (BITMAPINFOHEADER);
brbmp.bmi.biWidth = 8;
brbmp.bmi.biHeight = 8;
brbmp.bmi.biPlanes = l;
brbmp.bmi .biBi tCount = l;
brbmp.bmi.biClrUsed = 2;
brbmp.bmi.biClrlmportant = 2;

II Initialize the palette of the bitmap.
brbmp.dwPal[0] PALETTERGBC0xff,0xff,0xff);
brbmp.dwPal[l] = PALETTERGBCCBYTE)((clrref >> 16) & 0xff),

CBYTE)((clrref >> 8) & 0xff),
CBYTE)(clrref & 0xff));

II Write the hatch data to the bitmap.
pBytes = (BYTE *)&dwBits[fnStyle];
for (i = 0; i < 8; i++)

brbmp.b8its [i *4] = *pBytes++;

II Return the handle of the brush created.
return CreateDIBPatternBrushPt (&brbmp, DIB_RGB_COLORS);

11 --- -- -- ------ ---------- ---------- -------------------------------------
11 DoPaintMain - Process WM_PAINT message for window.
II
/ /#define ENDPOINTS 32
#define ENDPOINTS 64

82

Chapter 2 Drawing on the Screen

LRESULT OoPaintMain CHWNO hWnd, UINT wMsg, WPARAM wParam,
LP A RAM l Pa ram) (

PAINTSTRUCT ps;
RECT rect;
HOC hdc:
POINT ptArray[ENOPOINTS];
HBRUSH hBr, hOldBr:
TCHAR szText[l28];

II Adjust the size of the client rect to take into account
II the command bar height.
GetClientRect (hWnd, &rect);
rect.top += CommandBar_Height (GetOlgltem (hWnd, IOC_CMOBAR));

hdc = BeginPaint ChWnd, &ps);

II Draw rectangle.
hBr = GetStockObject CBLACK_BRUSH);
hOldBr = SelectObject (hdc, hBr);
Rectangle (hdc, 50, 50, 125, 150);
SelectObject Chdc, hOldBr);

II Draw ellipse.
hBr = GetStockObject COKGRAY_BRUSH);
hOldBr = SelectObject Chdc. hBr);
Ellipse (hdc, 150, 50, 225, 150);
SelectObject Chdc, hOldBr):

II Draw round rectangle.
hBr = GetStockObject (LTGRAY_BRUSH);
hOldBr = SelectObject Chdc, hBrl:
RoundRect Chdc, 250, 50. 325, 150. 30, 30);
SelectObject (hdc. hOldBr);

II Draw hexagon using Polygon.
hBr = GetStockObject CWHITE_BRUSH);
hOldBr = SelectObject (hdc , hBr);
ptArray[0].x = 387;
ptArray[0].y = 50:
ptArray[lJ.x = 350:
ptArray[l].y = 75;
ptArray[2].x = 350:
ptArray[2].y = 125:

(continued)

83

Part I Windows Programming Basics

Figure 2-11 . continued

}

ptArray[3].x = 387;
ptArray[3].y = 150;
ptArray[4].x = 425;
ptArray[4].y = 125;
ptArray[5].x = 425;
ptArray[5].y = 75;

Polygon Chdc. ptArray, 6);
SelectObject Chdc. hOldBr);

hBr = MyCreateHachBrush CHS_DIAGCROSS. RGB (0, 0, 0));
hOldBr = SelectObject (hdc . hBr);
Rectangle Chdc, 50. 165, 425. 210);
SelectObject Chdc. hOldBr);
DeleteObject ChBr);

SetBkMode Chdc, OPAQUE);
lstrcpy CszText. TEXT ("Opaque background"));
ExtTextOut Chdc, 60, 175, 0. NULL.

szText. lstrlen CszText). NULL);

SetBkMode (hdc, TRANSPARENT);
lstrcpy CszText, TEXT ("Transparent background"));
ExtTextOut Chdc, 250. 175 . 0, NULL.

szText, lstrlen (szText) . NULL);

EndPaint (hWnd. &ps);
return 0;

11- - - -- -- --- -- - ---------- - - - - - ------- - - - - ----------- - -- ------ --- --- -- ---
11 DoDestroyMain - Process WM_DESTROY message for wi ndow.
II
LRESULT DoDestroyMain CHWND hWnd. UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) (

84

PostQuitMessage (0) ;
return 0:

In Shapes, OnPaintMain draws the five figures using the different functions
discu sed earlier. For each of the shape , a different brush i created, selected into
the device context, and, after the shape has been drawn, deselected from the DC.
The first four shape are filled with solid grayscale hades, ranging from black to white.
These solid brushe are loaded with the GetStockObject function. The final shape is

Chapter 2 Drawing on the Screen

filled with a bru h created with the CreateDIBPatternBrushPt. The creation of this
brush is segregated into a function called MyCreateHatchBrush that mimics the Create
HatchBrush function not available under Windows CE. To create the hatched brushes,
a black and white bitmap is built by filling in a bitmap tructure and setting the bits
to form the hatch patterns. The bitmap itself is the 8-by-8 bitmap specified by Create
DIBPatternBrushPt. Since the bitmap is monochrome, its total size, including the
palette and header, is only around 100 bytes. otice, however, that since each scan
line of a bitmap must be double-word aligned, the last three bytes of each one-byte
scan line are left unused.

Finally the program completes the painting by writing two lines of text into the
lower rectangle. The text further demonstrate the difference between the opaque and
transparent drawing modes of the system. In this case, the opaque mode of drawing
the text might be a better match for the situation because the hatched lines tend to
obscure letters drawn in transparent mode. A view of the Shapes window is shown
in Figure 2-12.

x

llf:J..t' 6:41 AM

Figure 2-12. The Shapes example demonstrates drawing different filled shapes.

To keep things simple, the hapes example assumes that it's running on at least
a 480-pixel-wide display. To properly di play the same shapes on a Palm-size PC
requires a few minor changes to the coordinates used to position the shapes displayed.

I have barely scratched the surface of the abilities of the Windows CE GDI por
tion of GWE. The goal of this chapter wasn't to provide total presentation of all as
pects of GDI programming. Instead, I wanted to demonstrate the methods available
for basic drawing and text support under Windows CE. In other chapters in the book,
I extend some of the techniques touched on in this chapter. I talk about these new

85

Part 1 Windows Programming Basics

86

technique and newly introduced function at the point, generally, where I demonstrate
how to u e them in code. To funher your knowledge, I recommend Programming
Windows 95, by Charles Petzold (Microsoft Pre 1996), as the be t source for learning
about the Windows GDI.

ow that we've looked at output, it' time to turn our attention to the input side
of the y tern, the keyboard and touch panel.

Chapter 3

Input: Keyboard,
Stylus, and Menus

Traditionally, Microsoft Windows platforms have allowed users two methods of in
put: the keyboard and the mouse. Windows CE continues this tradition, but replaces
the mouse with a stylus and touch screen. Programmatically, the change is minor
because the messages from the stylus are mapped to the mouse messages used in
other versions of Windows. A more subtle but also more important change from ver
sions of Windows that run on PCs is that a system nmning Windows CE might have
either a tiny keyboard or no keyboard at all. This makes the stylus input that much
more important for Windows CE systems.

THE KEYBOARD
While keyboards play a lesser role in Windows CE, they're still the best means of
entering large volumes of information. Even on systems without a physical keyboard
such as the Palm-size PC, so.ft keyboards-controls that simulate keyboards on a touch
screen-will most likely be available to the user. Given this, proper handling of key
board input is critical to all but the most specialized of Windows CE applications. While
I'll talk at length about soft keyboards later in the book, one point should be made
here. To the application, input from a soft keyboard is no different from input from a
traditional "hard" keyboard.

87

Part I

Input Focus

Under Windows operating systems, only one window at a time has the input focus.
The focus window receives all keyboard input untii it loses focus to another window.
The system assigns the keyboard focus using a number of rules but most often the
focus window is the current active window. The active window, you'll recall, is the
top-level window, the one with which the user is currently interacting. With rare
exceptions, the active window also sits at the top of the Z-order; that is, it's drawn on
top of all other windows in the system. The user can change the active window by
pressing Alt-Esc to switch between programs or by tapping on another top-level
window's button on the task bar. The focus window is either the active window or
one of its child windows.

Under Windows, a program can determine which window has the input focus
by calling

HWND GetFocus <void);

The focus can be changed to another window by calling

HWND SetFocus (HWND hWnd);

Under Windows CE, the target window of Set1'ocus is limited. The window being given
the focus by SetFocus must have been created by the thread calling SetFocus. An
exception to this rule occurs if the window losing focus is related to the window gaining
focus by a parent/ child or sibling relationship; in this case, the focus can be changed
even if the windows were created by different threads.

When a window loses focus, Windows sends a WM_KILLFOCUS message to
that window informing it of its new state. The wParam parameter contains the handle
of the window that will be gaining the focus. The window gaining focus receives a
WM_SETFOCUS message. The wParam parameter of the WM_SETFOCUS message
contains the handle of the window losing focus.

Now for a bit of motherhood. Programs shouldn't change the focus window
without some input from the user. Otherwise, the user can easily become confused.
A proper use of SetFocus is to set the input focus to a child window (more than likely
a control) contained in the active window. In this case, a window would respond to
the WM_SETFOCUS message by calling SetFocus with the handle of a child window
contained in the window to which the program wants to direct keyboard messages.

Keyboard Messages

88

Windows CE practices the same keyboard message processing as its larger desktop
relations with a few small exceptions, which I cover shortly. When a key is pressed,
Windows sends a series of messages to the focus window, typically beginning with a
WM_KEYDOWN message. If the key pressed represents a character such as letter or

Chapter 3 Input: Keyboard, Stylus, and Menus

number, Windows follows the WM_KEYDOWN with a WM_CHAR message. (Some
keys, such as function keys and cursor keys don't represent characters, so WM_ CHAR
messages aren't sent in response to those keys. For those keys, a program must
interpret the WM_KEYDOWN message to know when the keys are pressed.) When
the key is released, Windows sends a WM_KEYUP message. If a key is held down
long enough for the auto-repeat feature to kick in, multiple WM_KEYDOWN and
WM_CHAR messages are sent for each auto-repeat until the key is released when
the final WM_KEYUP message is sent. I used the word typicalZy to qualify this
process because if the Alt key is being held when another key is pressed, the mes
sages I've just described are replaced by WM_SYSKEYDOWN, WM_SYSCHAR, and
WM_SYSKEYUP messages.

For all of these messages, the generic parameters wParam and lParam are used
in mostly the same manner. For WM_KEYxx and WM_SYSKEYxx messages, the
wParam value contains the virtual key value, indicating the key being pressed. All
versions of Windows provide a level of indirection between the keyboard hardware
and applications by translating the scan codes returned by the keyboard into virtual
key values. You see a list of the VK_xx values and their associated keys in Figure 3-1.
While the table of virtual keys is extensive, not all keys listed in the table are present
on Windows CE de\'ices. For example, function keys, a mainstay on PC keyboards
and listed in the virtual key table, aren't present on most Windows CE keyboards. In
fact, a number of keys on a PC keyboard are left off the space-constrained Windows CE
keyboards. A short list of the keys not typically used on Windows CE devices is pre
sented in Figure 3-2 on page 92. This list is meant to inform you that these keys might
not exist, not to indicate that the keys never exist on Windows CE keyboards.

VIRTUAL·KEY CODES

Constant Value Keyboard Equivalent

VK_LBUTTON 01 Stylus tap

VK_RRUTTON 02 Mouse right button§

VK_CANCEL 03 Control-break processing

VK_RBUTTON 04 Mouse middle button§

05-07 Undefined

VK_BACK 08 Backspace key

VK_TAB 09 Tab key

OA-OB Undefined

VK_CLEAR oc Clear key

Figure 3-1. Virtual key values in relation to the keys on the keyboard.
Not all keys will be on all keyboards.

(continued)

89

Part I

Figure 3-1. continued

Constant Value Keyboard Equivalent

VK_RETURN OD Enter key

OE-OF Undefined

VK_SHIFT 10 Shift key

VK_CONTROL 11 Ctr! key

VK_MENU 12 Alt key

VK_CAPITAL 14 Caps Lock key

15-19 Reserved for Kanji systems

lA Undefined

VK_ESCAPE 1B Escape key

lC-lF Reserved for Kanji systems

VK_SPACE 20 Space bar

VK_PRlOR 21 Page Up key

VK_NEXT 22 Page Down key

VK_END 23 End key

VK_HOME 24 Home key

VK_LEFT 25 Left Arrow key

VK_UP 26 Up Arrow key

VK_RlGHT 27 Right Arrow key

VK_DOWN 28 Down Arrow key

VK_SELECT 29 Select key

2A Original equipment manufacturer (OEM)-
specific

VK_EXECUTE 2B Execute key

VK_SNAPSHOT 2C Print Screen key for Windows 3.0 and later

VK_INSERT 2D Insert •

VK_DELETE 2E Delete"t

VK_HELP 2F Help key

VK_O-VK_9 30-39 0-9 keys

3A-40 Undefined

VK_A-VK_Z 41-5A A through Z keys

VK_LWlN 5B Windows key

VK_RWlN 5C Windows key *

90

Chapter 3 Input: Keyboard, Stylus, and Menus

Constant Value Keyboard Equivalent

VK_APPS 5D

5E-5F Undefined

VK_NUMPAD0-9 60-69 Numeric keypad 0-9 keys

VK_MUL TIPL Y <iA Numeric keypad Asterisk (*) key

VK_ADD 6B Numeric keypad Plus sign (+) key

VK_SEP ARA TOR 6C Separator key

VK_SUBTRACT 6D Numeric keypad Minus sign (-) key

VK_DECIMAL 6E Numeric keypad Period (.) key

VK_DIVTDE 6F Numeric keypad Slash mark (/) key

VK_Fl-VK_F24 70-87 Fl-F24 *

88-SF Unassigned

VK_NUMLOCK 90 Num Lock•

VK_SCROLL 91 Scroll Lock •

92-9F Unassigned

VK_LSHIFT AO Left Shift*

VK_RSHIFT Al Right Shift*

VK_LCONTROL A2 Left Control*

VK_RCONTROL A3 Right Control*

VK_LMENU A4 Left Alt*

VK_RMENU A5 Right Alt*

A6-B9 Unassigned

VK_SEMICOLON BA ; key

VK_EQUAL BB =key

VK_COMMA BC , key

VK_HYPHEN BD - key

VK_PERIOD BE . key

VK_SLASH BF I key

VK_BACKQUOTE co 'key

Cl-DA Unassigned

VK_LBRACKET DB [key

VK_BACKSLASH DC \key

VK_RBRACKET DD] key

VK_APOSTROPHE DE 'key

(continued)

91

Part I

92

Figure 3·1. continued

Constant

VK_OFF

VK_A1TN

Value

DF

ES

E6
E7-E8

E9-F5

F6
VK_CRSEL F7

VK_EXSEL F8

VK_EREOF F9

VK_PLAY FA

VK_ZOOM FB

VK_NONAME FC

VK_PAl FD

VK_OEM_CLEAR FE

* Many Windows CE Systems don't have this key.

Keyboard Equivalent

Power button

Unassigned

OEM-specific

Unassigned

OEM-specific

t On some Windows CE systems, Delete is simulated with Shift-Backspace

f These constants can be used only with GetKeyState and GetAsyncKeyState.

Mouse right and middle buttons are defined but are relevant only on a Windows CE system
equipped with a mouse.

For the WM_CHAR and WM_SYSCHAR messages, the wParam value contains
the Unicode character represented by the key. Most often an application can simply
look for WM_CHAR messages and ignore WM_KEYDOWN and WM_KEYUP. The
WM_CHAR message allows for a second level of abstraction so that the application
doesn't have to worry about the up or down state of the keys and can concentrate on
the characters being entered by means of the keyboard.

The /Param value of any of these keyboard messages contains further informa
tion about the pressed key. The format of the lParam parameter is shown in Figure 3-3
on the following page.

InsertDelete (Many Windows CE keyboards use Shift-Backspace for this function.)

Num LockPause

Print Screen

Scroll Lock

Function Keys

Windows Context Menu key

Figure 3-2. Keys on a PC keyboard that are rarely on a Windou's CE keyboard.

Chapter 3 Input: Keyboard, Stylus, and Menus

The low word, bits 0 through 15, contains the repeat count of the key. Often,
keys on a Windows CE device can be pressed faster than Windows CE can send
messages to the focus application. In these cases, the repeat count contains the num
ber of times the key has been pressed. Bit 29 contains the context flag. If the Alt key
was being held down when the key was pressed, this bit will be set. Bit 30 contains
the previous key state. If the key was previously down, this bit is set; otherwise it's 0.

Bit 30 can be used to determine whether the key message is the result of an auto
repeat sequence. Bit 31 indicates the transition state. If the key is in transition from
down to up, Bit 31 is set. The Reserved field, bits 16 through 28, is used in the desk
top versions of Windows to indicate the key scan code. In almost all cases, Windows
CE doesn't support this field. However, on some of the newer Windows CE platforms
where scan codes are necessary, this field does contain the scan code. You shouldn't
plan on the scan code field being available unless you know it's :supported on your
specific platform.

j31j3oj2glz~f27rz~[25J!~J?~12?J1t!l~~l~5b~I1m:~~!ol g J 11I1L6JiEliLililiJ :l t Reserved Repeat count

, Com"tll•g, "' '° 1H Altkey down

Previous key state, set to 1 if key previously down

Transition state, set to 1 if key is being released

Figure 3-3. The layout of the !Param value for key messages.

One additional keyboard message, WM_DEADCHAR, can sometimes come into
play. You send it when the pressed key represents a dead character, such as an um
laut, that you want to combine with a character to create a different character. In this
case the WM_DEADCHAR message can be used to prevent the text entry point (the
caret) from advancing to the next space until the second key is pressed so that you
can complete the combined character.

The WM_DEADCHAR message has always been present under Windows, but
under Windows CE it takes on a somewhat larger role. With the internationalization
of small consumer devices that run Windows CE, programmers should plan for, and
if necessary use, the WM_DEADCHAR message that is so often necessary in foreign
language systems.

Keyboard Functions
You will find useful a few other keyboard-state-determining functions for Windows
applications. Among the keyboard functions, two are closely related but often con
fused: GetKeyState and GetAsyncKeyState.

93

94

GetKeyState, prototyped as

SHORT GetKeyState (int nVirtKey);

returns the up/ down state of the shift keys, Ctrl, Alt, and Shift, and indicates whether
any of these keys is in a toggled state. If the keyboard has two keys with the same
function-for example, two Shift keys, one on each side of the keyboard-this
function can also be used to differentiate which of them is being pressed. (Most key
boards have left and right Shift keys, and some include left and right Ctrl and Alt keys.)

You pass to the function the virtual key code for the key being queried. If the
high bit of the return value is set, the key is down. If the least significant hit of the
return value is set, the key is in a toggled state; that is, it has been pressed an odd
number of times since the system was started. The state returned is the state at the
time the most recent message was read from the message queue, which isn't neces
sarily the real-time state of the key. An interesting aside: notice that the virtual key
label for the Alt key is VK_MENU, which relates to the windows convention that the
Alt-shift key combination works in concert with other keys to access various menus
from the keyboard.

Note that the GetKeyState function is limited under Windows CE to querying
the state of the shift keys. Under other versions of Windows, GetKeyState can deter
mine the state of every key on the keyboard.

To determine the real-time state of a key, use

SHORT GetAsyncKeyState (int vKey);

As with GetKeyState, you pass to this function the virtual key code for the key being
queried. The GetAsyncKeyState function returns a value subtly different from the one
returned by GetKeyState. As with the GetKeyState function, the high bit of the return
value is set while the key is being pressed. However, the least significant bit is then
set if the key was pressed after a previous call to GetAsyncKeyState. Like GetKeyState,
the GetAsyncKeyState function can distinguish the left and right Shift, Ctrl, and Alt
keys. In addition, by passing the VK_LBUTTON virtual key value, GetAsyncKeyState
determines whether the stylus is currently touching the screen.

An application can simulate a keystroke using the keyhd_event function:

VOID keybd_event (BYTE bVk, BYTE bScan, DWORD dwFlags,
DWORD dwExtrainfo);

The first parameter is the virtual key code of the key to simulate. The bScan code
should be set to NULL under Windows CE. The dwFlags parameter can have two
possible flags: KEYEVENTF _KEYUP indicates that the call is to emulate a key up
event while KEYEVENTF _SILENT indicates that the simulated key press won't cause
the standard keyboard click that you normally hear when you press a key. So, to
fully simulate a key press, keybd_event should be called twice, once without

Chapter 3 Input: Keyboard, Stylus, and Menus

KEYEVE TF _KEYUP to simulate a key down, then once again, this time with
KEYEVENTF _KEYUP to simulate the key release.

One final keyboard function , Map Virtua/Key, translates virtual key codes to
characters. MapVirtua!Key in Windows CE doesn't translate keyboard scan codes to
and from virtual key codes, although it does so in other versions of Windows. The
prototype of the function is the following:

UINT MapVirtualKey CUINT uCode, UINT uMapType);

Under Windows CE, the first parameter is the virtual key code to be translated while
the second parameter, uMapType, must be set to 2.

Testing for the keyboard
To determine whether a keyboard is even present in the system, first call GetVersionE:x
to find out which version of Windows CE is running. All systems that run Windows
CE 1.0 have a keyboard. When running under Windows CE 2.0 or later, call

DWORD GetKeyboardStatus (VOID);

This function returns the KBDI_KEYBOARD_PRESENT flag if a hardware keyboard
is present in the system. Thi function also returns a KBDI_KEYBOARD_ENABLED
flag if the keyboard is enabled. To disable the keyboard, a call can be made to

BOOL EnableHardwareKeyboard CBOOL bEnable);

with the bEnable flag et to FALSE. You might want to disable the keyboard in a sys
tem for which the keyboard folds around behind the screen; in such a system, a user
could accidentally hit keys while using the stylus. This function is also new to Win
dows CE 2.0.

If you build an application to run under Windows CE 1.0, you 'll need to explic
itly load both GetKeyboardStatus and EnableHardwareKeyboard using Loadlibrary
and GetProcAddress to determine the address of these 2.0-specific functions. If a call
is made directly to a 2.0 function from an application, that application is incompat
ible with Windows CE 1.0 and won't load.

The KeyTrac Example Program

The following example program, KeyTrac, di plays the sequence of keyboard mes
sages. Programmatically, KeyTrac isn't much of a departure from the earlier programs
in the book. The difference is that the keyboard messages I've been describing are
all trapped and recorded in an array that's then displayed during the WM_PAINT
message. For each keyboard message, the message name is recorded along with the
wParam and lParam values and a set of flags indicating the state of the shift keys.
The key messages are recorded in an array because these messages can occur faster
than the redraw can occur. Figure 3-4 shows the KeyTrac window after a few keys
have been pres ed.

95

Part 1 Windows Programming Basics

WM_KEYUP
WM_CHAR
WM_KEYDOWN
WM_KEYUP
WM_KEYUP
WM_ CHAR
WM_KEYDOWN
WM_KEYDOWN

wP:00000041 IP:cOOOOOOl shift:
wP:00000061 IP:OOOOOOOl shift:
wP:00000041 IP:OOOOOOOl shift:
wP:00000041 IP:cOOOOOOl shift:
wP:OOOOOOlO IP:cOOOOOOl shift:
wP:00000041 IP :OOOOOOOl shift: IS
wP:00000041 IP:OOOOOOOl shift: IS
wP:OOOOOOlO IP:OOOOOOOl shift: IS

~KeyTrac

Figure 3-4. 711e KeyTrac window after a
lowercase a key press.

)(

Th best way to learn about the sequen e f the k yboa rd me ag i to rnn
K yTrac, pre s a few k y , and watch th m ag s croll down the er en. Pre sing
a character k y such a the a r ult in three me sages: WM_KEYDOWN, \1 M_CHAR,
and WM_KE P. Holding d wn the hift k y while pr ing the a and th n r I a -
ing the hift k y produc a k y-down m sag for the hift k y fo llowed by the thre
me ages for the a key fo llowed by a k y-up me age for the hift key. B au e th

hift key it If i n't a hara ter key, no WM_CI-IAR me age i enc in re pon to it.
Howe er, the WM_CHAR m ag fo r the a key now conta ins a Ox41 in the wParam

va lue, indica ting that an upp r a A was ent r d in tead of a low rca a.
Figur 3-5 how th source code for the K yTra pr gram.

KeyTrac.h

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (Cl 1998 Douglas Boling
II
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0Jl l

11--- ---------------- ---
11 Generic defines and data types
II

Figure 3-5. 7be KeyTrac program.

96

Chapter 3 Input: Keyboard, Stylus, and Menus

struct decodeUINT
UINT Code;

LRESULT (*Fxn)(HWND. UINT, WPARAM, LPARAM);
} ;

struct decodeCMD {
UINT Code;
LRESULT (* Fxn)(HWND, WORD, HWND, WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

11 · ----- - --- - - -- - - -- - · - --- -- -- ---- -- - - - - - - - - - - -- --- - -- - - - -- - - - -- --- -----
11 Generic defines used by application
#define IDC_CMDBAR 1 II Command bar ID

11 -- - --- - ----- - -- - ---- ---- -- - -- -
11 Program-specific defines and structures
II
#define FLAG_LMENU
#define FLAG_RMENU
#define FLAG_LCONTROL
#define FLAG_RCONTROL
#define FLAG_LSHIFT
#define FLAG_RSHIFT

typedef struct {
UINT wKeyMsg;
INT wParam;
INT lParam:
UINT wFlags;
TCHAR szMsgTxt[64];

KEYARRAY. *PKEYARRAY;

0x0001
0x0002
0x0004
0x0008
0x0010
0x0020

11 --
11 Function prototypes
II
int lnitApp CHINSTANCE) ;
HWND Initinstance CHINSTANCE, LPWSTR. int);
int Terminstance CHINSTANCE, int);

II Window procedures
LRESULT CALLBACK MainWndProc CHWND, UINT, WPARAM, LPARAM);

II Message handlers
LRESULT DoCreateMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoKeysMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

(continued)

97

Part I Windows Programming Basics

Figure 3-5. continued

KeyTrac.c

II==
II KeyTrac - displays keyboard messages
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II
II==
#include <windows .h> II For all that Windows stuff
#include <commctrl .h> II Command bar includes
#include "keytrac.h" II Program-specific stuff

11 - - - -- -- - - - - -- -- ------- - - - - - - --- ------------- ------- ----- ------- ---- - - -
II Global data
II
const TCHAR szAppName[J
HINSTANCE hlnst;

TEXT C"KeyTrac");

II Program-specific global data
KEYARRAY ka[16];
UINT wKeyMsg = 0;
INT nKeyCnt = 0, nFontHeight;
TCHAR szMsgTxt[64] ;

II Program instance handle

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[J = {

WM_CREATE, OoCreateMain,

} ;

WM_PAINT, OoPaintMain,
WM_KEYUP, DoKeysMain,
WM_KEYDOWN, OoKeysMain,
WM_CHAR, DoKeysMain,
WM_DEADCHAR, DoKeysMain,
WM_SYSCHAR, OoKeysMain,
WM_SYSDEADCHAR, DoKeysMain,
WM_SYSKEYDOWN, DoKeysMain,
WM_SYSKEYUP, DoKeysMain.
WM_OESTROY, DoDestroyMain,

II==
II
II Program entry point
II

98

Chapter 3 Input: Keyboard, Stylus, and Menus

int WINAPI WinMain CHINSTANCE hinstance. HINSTANCE hPrevinstance,
LPWSTR lpCmdLine. int nCmdShow} (

MSG msg;
int re = 0;
HWNO hwndMain;

II Initialize application.
re= InitApp {hinstance};
if (re} return re;

II Initialize this instance.
hwndMain = Initinstance Chinstance. lpCmdLine, nCmdShow};
if ChwndMain == 0)

return 0x10;

II Application message loop
while CGetMessage C&msg, NULL. 0. 0}} {

TranslateMessage C&msg};
OispatchMessage C&msg};

}

II Instance cleanup
return Terminstance Chinstance, msg.wParam};

11 --
11 InitApp - Application initialization
II
int lnitApp CHINSTANCE hinstance} (

WNOCLASS we;

II Register application
we.style = 0;

main window class.

wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hlnstance = hinstance;
wc.hicon = NULL.

II Window style
II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon
II Default cursor wc.hCursor = NULL;

wc.hbrBackground =
wc.lpszMenuName =
wc.lpszClassName =

CHBRUSH} GetStockObject (WHITE_BRUSH};
NULL; II Menu name
szAppName; II Window class name

if CRegisterClassC&wc} == 0) return l;

return 0;

(continued)

99

Part 1 Windows Programming Basics

Figure 3·5. continued

11------------------ - ------------- - --- --- - - - - -------------------- -- -- ---
11 Initinstance - Instance initialization
II
HWND Initinstance CHINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow) {

HWND hWnd:

II Save program instance handle in global variable.
hinst = hinstan ce:

}

II Create main window.
hWnd = CreateWindow CszAppName,

TEXT C"KeyTrac"),
ws_v I SIBLE.
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hinstance,
NULL):

II Return fail code if window not created.
if (!IsWindow ChWnd)) return 0:

II Standard show and update calls
ShowWindow ChWnd, nCmdShow>:
UpdateWindow ChWnd):
return hWnd:

II
II
II
II
II
II
II
II
II
II
II
II

Window class
Window title
Style flags
x position
y position
Initial Width
Initial Height
Parent
Menu, must be null
App instance
Pointer to create
parameters

11--
11 Terminstance - Program cleanup
II
int Terminstance CHINSTANCE hlnstance, int nDefRC) {

return nDefRC:
}

II==
II Message handling procedures for MainWindow
II

11--- - ------
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {

100

Chapter 3 Input: Keyboard, Stylus, and Menus

)

INT i:
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for Ci = 0; i < dim(MainMessages); i++) {

if CwMsg == MainMessages[i].Code)
return (•MainMessages[i].Fxn)(hWnd , wMsg, wParam, lParam);

}

return OefWindowProc ChWnd, wMsg, wParam, lParam);

11-- - -- -- ----------- - --- - - - - ---- - -------- - ---------- - -------------------
11 OoCreateMain - Process WM_CREATE message for window.
II
LRESULT OoCreateMain (HWNO hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

}

HWNO hwndCB:
HOC hdc;
TEXTMETRIC tm;

II Create a command bar.
hwndCB = CommandBar_Create Chlnst, hWnd, IOC_CMOBAR) ;

II Add exit button to command bar.
CommandBar_AddAdornments ChwndCB, 0, 0);

II Get the height of the default font.
hdc = GetOC ChWndl;
GetTextMetrics Chdc, &tml;
nFontHeight = tm.tmHeight + tm.tmExternalLeading;
ReleaseOC ChWnd, hdc);

return 0;

11 --
11 OoPaintMain - Proces s WM_PAINT mes sage for wi ndow.
II
LRESULT OoPaintMain CHWNO hWnd, UINT wM sg, WPARAM wParam,

LPARAM lParam) {
PAINTSTRUCT ps;
RECT rect, rectOut;
TCHAR sz0ut[256];
HOC hdc;
INT i;

II Adjust the size of the client rect to take into account
II the command bar height.

(continued)

101

Part 1 Windows Programming Basics

Figure 3-5. conlinued

}

GetClientRect (hWnd, &rectl:
rect.top += CommandBar_Height CGetOlgltem (hWnd, IOC_CMDBARll:

II Create a drawing rectangle for the bottom line of the window.
rectOut = rect:
rectOut.top = rectOut.bottom · nFontHeight:

hdc = BeginPaint (hWnd, &psl:

if (nKeyCnt) {

}

for (i = 0; i < nKeyCnt: i++) {
II Scroll window up by one line.
ScrollDC (hdc, 0, ·nFontHeight. &rect. &rect, NULL, NULL):
II Write key name, use opaque mode to erase background.
ExtTextOut (hdc, 5, rect.bottom - nFontHeight, ETO_OPAQUE,

&rectOut, ka[i].szMsgTxt,
lstrlen Cka[i].szMsgTxt), NULL);

II Wr i te key variables.
wsprintf (szOut, TEXT ("wParam:S08x 1Param:S08x shift: "),

ka[i].wParam, ka[i].lParam);

if (ka[i]. wFlags & FLAG_LMENU)
lstrcat (szOut, TEXT ("lA "));

if (ka[i]. wFlags & FLAG_RMENU)
l st rcat (szOut, TEXT ("rA "));

if (ka[i].wFlags & FLAG_LCONTROL)
lstrcat (szOut, TEXT ("lC "));

if (ka[i].wFlags & FLAG_RCONTROL)
lstrcat (szOut, TEXT ("rC "));

if (ka[i].wFlags & FLAG_LSHIFT)
lstrcat (szOut, TEXT ("lS "));

if (ka[i].wFlags & FLAG_RSHIFT)
lstrcat (szOut, TEXT ("rS "));

ExtTextOut (hdc, 125, rect.bottom - nFontHeight, 0, NULL,
szOut, lstrlen (szOut), NULL);

nKeyCnt = 0;

EndPaint ChWnd, &ps);
return 0;

11------- -------------- --- ----------- ---------------- -------------------

102

Chapter 3 Input: Keyboard, Stylus, and Menus

II DoKeysMain - Process all keyboard messages for window.
II
LRESULT DoKeysMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) (

if (nKeyCnt >= 16)
return 0:

switch (wMsg)
case WM_KEYUP:

l strcpy (ka [nKeyCnt]. szMsgTxt. TEXT ("WM_KEYUP")):
break;

case WM_KEYDOWN:
lstrcpy (ka[nKeyCnt].szMsgTxt, TEXT ("WM_KEYDOWN"));
break;

case WM_CHAR:
lstrcpy (ka[nKeyCnt].szMsgTxt. TEXT ("WM_CHAR"));
break;

case WM_DEADCHAR:
lstrcpy (ka[nKeyCnt].szMsgTxt, TEXT ("WM_DEADCHAR"));
break;

case WM_SYSCHAR:
lstrcpy (ka[nKeyCnt].szMsgTxt, TEXT ("WM_SYSCHAR"));
break:

case WM_SYSDEADCHAR:
lstrcpy (ka[nKeyCnt].szMsgTxt. TEXT ("WM_SYSDEADCHAR")) ;
break:

case WM_SYSKEYDOWN:
lstrcpy Cka[nKeyCnt].szMsgTxt, TEXT C"WM_SYSKEYDOWN")) ;
break;

case WM_SYSKEYUP:
lstrcpy (ka[nKeyCnt].szMsgTxt, TEXT C"WM_SYSKEYUP"));
break:

default:
lstrcpy Cka[nKeyCnt].szMsgTxt. TEXT ("unknown")):
break;

(co 11ti1111ed)

103

Part 1 Windows Programming Basics

Figure 3-5. continued

}

ka[nKeyCnt].wKeyMsg = wMsg;
ka[nKeyCnt].wParam = wParam;
ka[nKeyCnt].lParam = lParam;

II Capture the state of the shift flags.
ka[nKeyCnt].wFlags = 0:
if (GetKeyState (VK_LMENU))

ka[nKeyCntJ.wFlags I= FLAG_LMENU;
if (GetKeyState CVK_RMENU))

ka[nKeyCnt] .w Flags I= FLAG_RMENU;

if (GetKeyState (VK_LCONTROL))
ka[nKeyCnt].wFlags I= FLAG_LCONTROL;

if (GetKeyState (VK_RCONTROL))
ka[nKeyCnt].wFlags I= FLAG_RCONTROL;

if (GetKeyState (VK_LSHIFT))
ka[nKeyCnt].wFlags I= FLAG_LSHIFT;

if (GetKeyState (VK_RSHIFT))
ka[nKeyCnt].wFlags I= FLAG_RSHIFT;

nKeyCnt++;
InvalidateRect ChWnd, NULL, FALSE);
return 0;

11 --
11 DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram) (

104

PostQuitMessage (0);
return 0;

Here are a few more characteristic of KeyTrac to notice. After each keyboard
message is recorded , an InvalidateRect function is ca lled to force a redraw of the
window and therefore also a WM_PAI T me sage. As I mentioned in Chapter 2, a
program should never attempt to send or post a WM_PAJNT message to a window
because Windows needs to perform some setup before it calls a window with a
WM_PAI T message.

Another device context function u ed in KeyTrac is

BOOL Scroll DC (HOC hDC, int dx, int dy, const RECT *l prcScroll,
const RECT *lprcClip, HRGN hrgnUpdate.
LPRECT lprcUpdate);

Chapter 3 Input: Keyboard, Stylus, and Menus

which scrolls an area of the device context either horizontally or vertically, but under
Windows CE, not both directions at the same time. The three rectangle parameters
define the area to be scrolled, the area \l\dthin the scrolling area to be clipped, and
the area to be painted after the scrolling ends. Alternatively, a handle to a region can
be passed to ScrollDC. That region is defined hy Scrnl!DC to encompass the region
that needs painting after the scroll.

Finally, if the KeyTrac window is covered up for ;my reason and then re
exposed, the message information on the display is lost. This is because a device
context doesn't store the bit information of the dispby. The application is respon
sible for saving any information necessary to completely restore the client area of
the screen. Since Keytrac doesn't save this information, it's lost when the ·window
is covered up.

THE STYLUS AND THE TOUCH SCREEN
The stylus/touch screen combination is new to Windows pbtforms, hut fortunately,
its integration into Windows CE applications is relatively painless. The best way to
deal with the stylus is to treat it as a single-button mouse. The stylus creates the same
mouse messages that are provided by the mouse in other versions of Window~ and
by Windows CE systems that use a mouse. The differences that do appear between a
mouse and a stylus are due to the different physical realities of the two input devices.

Unlike a mouse, a stylus doesn't have a cursor to indicate the current position
of the mouse. Therefore a stylus can't hover over a point on the screen in the way
that the mouse cursor does. A cursor hovers when a user moves it over a window
without pressing a mouse button. This concept can't be applied to programming for
a stylus because the touch screen can't detect the position of the stylus when it isn't
in contact with the screen.

Another consequence of the difference bet,veen a stylus and a mouse is that
without a mouse cursor, an application can't provide feedback to the user by means
of changes in appearance of a hovering cursor. Windows CE does support setting
the cursor for one classic Windows method of user feedback. The busy hourglass
cursor, indicating that the user must wait for the system to complete processing, is
supported under Windows CE so that applications can display the busy hourglass in
the same manner as applications running under other versions of Windows, using
the SetCursor function.

Stylus Messages

When the user presses the stylus on the screen, the topmost window under that
point receives the input focus if it didn't have it before and then receives a
WM_LBUTTONDOWN message. When the user lifts the stylus, the window receives

105

106

a WM_LBUTIONUP message. Moving the stylus within the same window while it's
down causes WM_MOUSEMOVE messages to be sent to the window. For all of these
messages; the wParam and /Param parameters are loaded with the same values. The
wParam parameter contains a set of bit flags indicating whether the Ctrl or Shift keys
on the keyboard are currently held down. As in other versions of Windows, the Alt
key state isn't provided in these messages. To get the state of the Alt key when the
message was sent, use the GetKeyState function.

The /Param parameter contains two 16-bit values that indicate the position on
the screen of the tap. The low-order 16 bits contains the x (horizontal) location rela
tive to the upper left corner of the client area of the window while the high-order 16
bits contains the y (vertical) position.

If the user double-taps, that is, taps twice on the screen at the same location
and within a predefined time, Windows sends a WM_LBUTIONDBLCLK message to
the double-tapped window, but only if that window's class was registered with the
CS_DBLCLKS style. The class style is set when the window class is registered with
RegisterClass.

You can differentiate between a tap and a double-tap by comparing the mes
sages sent to the window. When a double-tap occurs, a window first receives the
WM_LBUTTONDOWN and WM_LBUTIONUP messages from the original tap. Then
a WM_LBUTTONDBLCLK is sent followed by another WM_LBUTTONUP. The trick
is to refrain from acting on a WM_LBUTIONDOWN message in any way that pre
cludes action on a subsequent WM_LBUTIONDBLCLK. This is usually not a prob
lem because taps usually select an object while double-tapping launches the default
action for the object.

Inking
A typical application for a handheld device is capturing the user's writing on the screen
and storing the result as ink. This isn't handwriting recognition-simply ink storage.
At first pass, the best way to accomplish this would be to store the stylus points passed
in each WM_MOUSEMOVE message. The problem is that sometimes small CE-type
devices can't send these messages fast enough to achieve a satisfactory resolution.
Under Windows CE 2.0, a new function call has been added to assist programmers in
tracking the stylus.

BOOL GetMouseMovePoints (PPOINT pptBuf, UINT nBufPoints,
UINT *pnPointsRetrieved);

GetMouseMovePoints returns a number of stylus points that didn't result in
WM_MOUSEMOVE messages. The function is passed an array of points, the size of
the array (in points), and a pointer to an integer that will receive the number of points

Chapter 3 Input: Keyboard, Stylus, and Menus

passed back to the application. Once received, the e additional points can be used
to fill in the blank between the la t WM_MOUSEMOVE message and the current one.

GetMouseMovePoints does throw one curve at you. It returns points in the reso
lution of the touch panel, not the screen. This i generally set at four times the screen
resolution, so you need to divide the coordinate returned by GetMouseMovePoints
by four to convert them to screen coordinates. The extra resolution helps programs
such as handwriting recognizers.

A hort example program, PenTrac, illustrates the difference that GetMouseMove
Points can make. Figure 3-6 show the PenTrac window. otice the two lines of dots
across the window. The top line was drawn using points from WM_MOUSEMOVE
only. The second line included point that were queried with GetMouseMovePoints.
The black dots were queried from WM_MOUSEMOVE while the red (lighter) dots
were locations queried with GetMouseMovePoints.

)(

~- . ..

.... - - - ...

M)IHa'llhld ... i::!PenTrac 111::iJ' 10:50 AM

Figure 3-6. The Pen Trac window showing two lines dmwn.

The source code for PenTrac is shown in Figure 3-7. The program places a dot
on the creen for each WM_MOUSEMOVE or WM_LBUTTONDOWN message it re
ceives. If the hift key i held down during the mouse move message , PenTrac also
calls GetMouseMovePoints and marks those points in the window in red to distinguish
them from the points returned by the mouse messages alone.

PenTrac cheats a little to enhance the effect of GetMouseMovePoints. In the
DoMouseMain routine called to handle WM_MOUSEMOVE and WM_LBUTTON
DOWN messages, the routine calls the function sleep to kill a few milliseconds. This
simulates a slow-responding application that might not have time to process every
mouse move me sage in a timely manner.

107

Part 1 Windows Programming Basics

PenTrac.h

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (Cl 1998 Douglas Boling
II
II==
II Returns number of elements.
#define dim(x) (sizeof(x) I sizeof(x[0]))

11------------- --- - - - - - - -- --------- ------ --- -- -- - -- - - - - - ------ ----------
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*Fxnl(HWND, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD (
UINT Code;
LRESULT (•Fxn)(HWND, WORD, HWND. WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

11--------- -------------- ------- ------------------- ---------------------
11 Generic defines used by application
#define IDC_CMDBAR 1 II Command bar ID

11 - - - -- - - ------ -- - -- - - -------- - ------- --- - - -- ------- --- ---- -- --- --- - - - --
11 Function prototypes
II
int InitApp (HI NSTANCE);
HWND Initinstance (HINSTANCE, LPWSTR, int);
int Terminstance (HINSTANCE. int);

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT. WPARAM, LPARAMl;

II Message handlers
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAMl:
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAMl;
LRESULT DoMouseMain (HWND, UINT, WPARAM, LPARAMl;
LRESULT DoDestroyMain (HWND. UINT, WPARAM, LPARAM);

Figure 3-7. 7be Pen Trac program.

108

Chapter 3 Input: Keyboard, Stylus, and Menus

PenTrac.c

II==
II PenTrac - Tracks stylus movement
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II
II==
#include <windows.h> II For all that Windows stuff
#include <commctrl.h> II Command bar includes
finclude "pentrac.h" II Program-specific stuff

11 --
11 Global data
II
const TCHAR szAppName[J TEXT ("PenTrac");
HINSTANCE hlnst; II Program instance handle

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[J = (

WM_CREATE, DoCreateMain,

} ;

WM_LBUTTONDOWN, DoMouseMain,
WM_MOUSEMOVE. DoMouseMain,
WM_DESTROY, DoDestroyMain,

II==
II
II Program entry point
II
int WINAPI WinMain CHINSTANCE hlnstance, HINSTANCE hPrevinstan ce ,

LPWSTR lpCmdline, int nCmdShow) (
MSG msg;
int re = 0;
HWND hwndMain;

II Initialize application.
re = InitApp (hlnstance);
if (re) return re;

II Initialize this instance .
hwndMain = Initlnstance (hlnstance, lpCmdline. nCmdShowl :
if ChwndMain == 0)

return 0xl0;

(continued)

109

Part I Windows Programming Basics

Figure 3-7. continued

}

II Application message loop
while (GetMessage (&msg, NULL, 0, 0)) {

TranslateMessage (&msg);
DispatchMessage (&msg);

}

II Instance cleanup
return Termlnstance (hlnstance, msg.wParam);

11- ---
11 InitApp - Application initialization
II
int InitApp (HINSTANCE hlnstance) {

WNDCLASS we;

}

II Register application main window class.
we.style = 0: II Window style
wc.lpfnWndProc = MainWndProc: II Callback function
wc.cbClsExtra = 0; II Extra class data
wc.cbWndExtra = 0; II Extra window data
wc.hlnstance = hlnstance;
wc.hlcon = NULL,
wc.hCursor = NULL;

II Owner handle
II Application icon
II Default cursor

GetStockObject (WHITE_BRUSH);
II Menu name

wc.hbrBackground = (HBRUSH)
wc.lpszMenuName = NULL;
wc.lpszClassName = szAppName: II Window class name

if (RegisterCl ass (&we) == 0) return 1:

return 0:

11 --
11 Initlnstance - In stance initialization
II
HWND Initlnstance (HINSTANCE hlnstance, LPWSTR lpCmdLine, int nCmdShow) {

HWND hWnd:

110

II Save program instance handle in global variable.
hlnst = hlnstance:

II Create main window.
hWnd = CreateWindow (szAppName,

TEXT ("PenTrac"),
WS_VISIBLE,
CW_USEDEFAULT,
CW_USEDEFAULT,

II Wi ndow class
II Window title
11 Style flags
II x position
II y position

Chapter 3 Input: Keyboard, Stylus, and Menus

CW_USEDEFAULT,
CW_USEDEFAULT ,
NULL,

II Initial width
II Initial height
II Parent

NULL,
hlnstance,
NULL);

II Menu, must be null
II App instance

)

II Return fail code if window not created.
if (!lsWindow ChWnd)) return 0;

II Standard show and update calls
ShowWindow ChWnd, nCmdShow);
UpdateWindow (hWnd);
return hWnd;

II Pointer to create
II parameters

11- ---
11 Termlnstance - Program cleanup
II
int Termlnstance (HINSTANCE hlnstance, int nDefRC) {

return nDefRC;
)

II==
II Message handling procedures for MainWindow
II

11 --
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) (

)

INT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for Ci = 0; i < dim(MainMessages); i++) (

if CwMsg == MainMessages[i].Code)
return (•MainMessages[i].Fxn)(hWnd, wMsg, wParam, lParam);

return DefWindowProc ChWnd, wMsg, wParam, lParam);

11------ --
11 DoCreateMain - Process WM_CREATE message for window.
II

(continued)

11 1

Part I Windows Programming Basics

Figure 3-7. continued

LRESULT DoCreateMain CHWND hWnd, UINT wMsg, WPARAM wParam,
LP A RAM 1 Pa ram l (

}

HWND hwndCB:

II Create a command bar .
hwndCB = CommandBar_Create (hlnst, hWnd, IDC_CMDBARJ;

II Add exit button to command bar.
CommandBar_AddAdornments ChwndCB, 0, 0);
return 0;

11--- ---
11 DoMouseMain - Process WM_LBUTTONDOWN and WM_MOUSEMOV E messages
II for window.
II
LRESULT DoMouseMain CHWNO hWnd, UINT wMsg. WPARAM wParam,

LPARAM 1 Pa ram) (

112

POINT pt[64];
POINT ptM;
UINT i, uPoints 0;
HOC hdc;

ptM.x = LOWORD (lParam);
ptM.y = HIWORD (lParam) ;

hdc = GetDC ChWnd);
II If shift and mouse move, see if any lost points .
if (wMsg == WM_MOUSE MOVEJ (

if (wParam & MK_SHIFT)
GetMouseMovePoints (pt, 64, &uPoints);

}

for (i = 0; i < uPoints; i++) (
SetPixel (hdc. pt[i].xl4,
SetPixel (hdc, pt[i].xl4+1,
SetPixel (hdc, pt[i J .xl4 .
SetPixel Chdc, pt[i).xl4+1.

pt[i].yl4, RGB (255, 0, 0));
pt[i].yl4, RGB (255, 0, 0)):
pt[i].yl4+1, RGB (255, 0, 0));
pt[i].yl4+1. RGB (255 , 0, 0));

II The original point is drawn last in case one of the points
II returned by GetMouseMovePoints overlaps it.
SetPixel (hdc, ptM.x. ptM.y, RGB (0. 0, 0));
SetPixel (hdc, ptM.x+l. ptM.y, RGB (0, 0, 0));
SetPixel (hdc, ptM.x, ptM.y+l, RGB (0, 0, 0));
SetPixel Chdc, ptM.x+l. ptM.y+l, RGB (0, 0. 0)) ;
ReleaseDC ChWnd. hdc);

}

Chapter 3 Input: Keyboard, Stylus, and Menus

II Kill time to make believe we are busy.
Sleep(25);
return 0;

1/ ---------------------------------- --------------------------- ---------
11 DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram) {
PostQuitMessage (0);
return 0;

Input focus and mouse messages
Here are some subtleties to note about circumstances that ru le how and when mouse
messages initiated by stylus input are sent to different windows. As I mentioned pre
viously, the input focus of the system changes when the stylus is pressed against a
window. However, dragging the stylus from one window to the next won't cause the
new window to receive the input focus . The down tap sets the focus , not the process
of dragging the stylus across a window. When the stylus is dragged outside the win
dow, that window stops receiving WM_MOUSEMOVE message but retain input
focus. Because the tip of the stylus is still down , no other window will receive the
WM_MOUSEMOVE messages. This is akin to using a mouse and dragging the mouse
out ide a window with a bunon held down.

To continue to receive mouse messages even if the stylus moves off its win
dow, an application can call

HWN D SetCapture CHWN D hW nd);

passing the handle of the window to receive the mouse messages. The function re
turn the handle of the window that previously had captured the mouse or NULL if
the mouse wasn't previously captured. To stop receiving the mouse messages initi
ated by stylus input, the window calls

BOOL ReleaseCapture (void);

Only one window can capture the stylus input at any one time. To determine
whether the stylus has been captured, an application can call

HWND GetCa pt ure (void);

which returns the handle of the window that has captured the stylu input or 0 if no
window ha captured the stylus input-although please note one caveat. The window

113

.Part 1 Windows Programming Basics

that has captured the stylus must be in the same thread context as the window calling
the function . This means that if the stylus has been captured by a window in another
application, GetCapture still returns 0.

If a window has captured the stylus input and another window calls GetCapture,
the window that had originally captured the stylus receives a WM_CAPTURECHANGED
message. The lParam parameter of the message contains the handle of the window
that has gained the capture. You shouldn't attempt to take back the capture by call
ing GetCapture in response to this message. In general , since the stylus is a shared
resource, applications should be wary of capturing the stylus for any length of time
and they should be able to handle gracefully any loss of capture.

Another interesting tidbit: Just because a window has captured the mouse, that
doesn't prevent a tap on another window gaining the input focus for that window.
You can use other methods for preventing the change of input focu , but in almost
all cases, it's better to let the user, not the applications, decide what top-level win
dow should have the input focus .

Right-button clicks
When you click the right mouse button on an object in Windows systems, the action
typically calls up a context menu, which is a stand-alone menu displaying a set of
choices for what you can do with that particular object. On a system with a mouse,
Windows sends WM_RBUITONDOWN and WM_RBUTTONUP messages indicating
a right-button click. When you use a stylus however, you don't have a right button.
The Windows CE guidelines, however, allow you to simulate a right button click using
a tylus. The guidelines specify that if a user holds down the Alt key while tapping
the screen with the stylus, a program should act as if a right mouse button were be
ing clicked and display any appropriate context menu. Because there's no MK_ALT
flag in the wParam value of WM_LBUITONDOWN, the best way to determine whether
the Alt key is pressed is to use GetKeyState with VK_MENU as the parameter and test
for the most significant bit of the return value to be set. GetKeyState is more appro
priate in this ca e because the value returned will be the state of the key at the time
the mouse message was pulled from the message queue.

The TicTac1 Example Program

114

To demonstrate stylus programming, I have written a trivial tic-tac-toe game. The
TicTacl window is shown in Figure 3-8. The source code for the program is shown
in Figure 3-9. This program doesn't allow you to play the game again t the computer,
nor does it determine the end of the game-it simply draws the board and keeps track
of the Xs and Os. Nevertheless, it demonstrates basic stylus interaction.

Chapter 3 Input: Keyboard, Stylus, and Menus

xox
0

x
Figure 3-8. The TicTacl window.

TlcTac1.h

)(

O's turn

ll":JJ' 10:50 AM

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11 --------------- - ---------- - -------------------------------- - ----------
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD (
UINT Code;
LRESULT (*Fxn)(HWND, WORD, HWND, WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

11- - -- - -- -- - - - - - -- - - - - - - - -- ----- -- - - --- - - -- - - - - -- -------- -- - - ------ - --- -
II Generic defines used by application
#define IDC_CMDBAR 1 II Command bar ID

Figure 3-9. The TicTacl program. (continued)

115

Part 1 Windows Programming Basics

Figure 3-9. continued

11-- -------- -------- ----
11 Function prototypes
II
int lnitApp (HINSTANCE);
HWND lnitlnstance (HINSTANCE, LPWSTR, int);
int Termlnstance (HINSTANCE, int);

II Window procedures
LRESULT CALLBACK MainWndProc CHWND . UINT, WPARAM, LPARAM);

II Message handlers
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoSizeMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoPaintMain (HWND , UINT, WPARAM, LPARAM);
LRESULT DoLButtonDownMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoLButtonUpMain (HWND, UINT, WPARAM, LPARAMl;
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

II Game function prototypes
void DrawXO (HOC hdc, HPEN hPen, RECT *prect, INT nCell. INT nType);
void DrawBoard (HOC hdc, RECT *prect);

TlcTac1.c

II==
II TicTacl - Simple tic - tac-toe game
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II
II==
#include <windows.h> II For all that Windows stuff
#include <commctrl .h> II Command bar includes
#include "tictacl.h" II Program-s pecific stuff

11---------------- -- --
11 Global data
II
canst TCHAR szAppName[]
HINSTANCE hlnst;

TEXT ("TicTacl");

II State data for game
RECT rectBoard = {0 , 0, 0, 0};
RECT rectPrompt;
BYTE bBoard[9];
BYTE bTurn = 0;

116

II Program instance handle

II Used to place game board .
II Used to place prompt.
II Keeps track of Xs and Os .
II Keeps track of the turn.

Chapter 3 Input: Keyboard, Stylus, and Menus

II Message dispatch table for MainWindowProc
canst struct decodeUINT MainMessages[J = {

WM_CREATE, DoCreateMain,

} ;

WM_SIZE, DoSizeMain,
WM_PAINT, DoPaintMain,
WM_LBUTTONUP, DoLButtonUpMain,
WM_DESTROY, DoDestroyMain,

II==
II
II Program entry point
II
int WINAPI WinMain CHINSTANCE hinstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdline, int nCmdShow) (
MSG msg;
int re = 0;
HWND hwndMain;

II Initialize application.
re= InitApp (hinstance);
if (re) return re;

II Initialize this instance.
hwndMain = Initlnstance (hinstance, lpCmdline, nCmdShow);
if (hwndMain == 0)

}

return 0x10;

II Application message loop
while (GetMessage C&msg, NULL, 0, 0)) (

TranslateMessage (&msg);
DispatchMessage C&msg);

}

II Instance cleanup
return Termlnstance Chinstance, msg.wParam);

11- ---
11 InitApp - Application initialization
II
int InitApp (HINSTANCE hinstance) (

WNDCLASS we;

II Register application main window
we.style = 0;
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;

class.
II
II
II

Window style
Callback function
Extra class data

(continued)

117

Part 1 Windows Programming Basics

Figure 3-9. continued

wc.cbWndExtra = 0;
wc.hlnstance = hlnstance;
wc.hlcon = NULL,
wc.hCursor = NULL;

II Extra window data
II Owner handle
II Appli cation icon
II Default cursor

GetStockObject (WHITE_BRUSH);
II Menu name

wc.hbrBackground = (HBRUSH)
wc.lpszMenuName = NULL;
wc.lpszClassName = szAppName; II Window class name

if (RegisterClass <&we) == 0) return 1;

return 0;
}

11--- --- ------- --------------- ---------- --- -- ------------- -------- -- ----
11 Initlnstance - Instance initialization
II
HWND Initlnstance (HINSTANCE hlnstance, LPWSTR lpCmdLine, int nCmdShow) {

HWND hWnd;

II Save program instance handle in global variable.
hlnst = hlnstance;

}

II Create main window.
hWnd = CreateWindow (szAppName,

TEXT ("TicTacl"),
WS_VISIBLE.
CW_USEDEFAUL T,
CW_USEDEFAU LT,
CW_USEDEFAULT,
CW_USEDEFAUL T,
NULL,
NULL,
hlnstance,
NULL);

II Return fail code if window not created.
if (llsWindow (hWnd)) return 0;

II Standard show and update ca l ls
ShowWindow (hWnd, nCmdShow);
UpdateWindow (hWnd);
return hWnd;

II
II
II
II
II
II
II
II
II
II
II
II

Window class
Window title
Style flags
x position
y position
Initial width
Initial height
Parent
Menu, must be null
App instance
Pointer to create
parameters

11 -------------------------------------- -------------- -- ----------- -- ---
11 Termlnstance - Program cleanup
II

118

Chapter 3 Input: Keyboard, Stylus, and Menus

int Termlnstance CHINSTANCE hlnstance, int nDefRC) {

return nDefRC:
}

II==
II Message handling procedures for HainWindow
II

11 ---- --- -- ------- --- ------- ---- -------- ---- -- -- ---- ------- -------------
11 HainWndProc - Callback function for application window
II
LRESULT CALLBACK HainWndProc CHWND hWnd, UINT wHsg, WPARAH wParam.

}

LPARAH lParam) {
INT i:
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for Ci = 0: i < dimCHainHessages): i++) {

if CwHsg == HainHessages[i].Code)
return C•HainHessages[i].Fxn)ChWnd. wHsg. wParam. lParam >:

}

return DefWindowProcChWnd, wHsg, wParam. lParam):

11 - - - - --- -- -----~------------- --

ll DoCreateHain - Process WH_CREATE message for window.
II
LRESULT DoCreateHain CHWND hWnd, UINT wHsg. WPARAH wParam,

LPARAH l Pa ram) {

}

HWND hwndCB;

II Create a command bar .
hwndCB = CommandBar_Create Chlnst. hWnd, IDLCHDBAR'l :

II Add exit button to command bar.
CommandBar_AddAdornments ChwndCB. 0. 0):
return 0:

11 ------------ -- --------------
11 DoSizeHain - Process WH_SIZE message for window .
II
LRESULT DoSizeHain CHWND hWnd, UINT wHsg, WPARAH wParam,

LPARAH l Pa ram) {
RECT rect:
INT i:

(continued)

119

Part I Windows Programming Basics

Figure 3-9. continued

}

II Adjust the size of the client rect to take into account
II the command bar height.
GetClientRect (hWnd, &rect);
rect.top += CommandBar_Height (GetDlgltem (hWnd, IDC_CMDBAR));

II Init the board rectangle if not yet initialized.
if (rectBoard.right == 0) {

II Init the board.
for (i = 0; i < dim(bBoard); i++)

bBoard[i] = 0:

II Define the playing board rect.
rectBoard = rect;
rectPrompt = rect:
II Layout depends on portrait or landscape screen.
if erect.right - rect.left > rect.bottom - rect.top)

rectBoard . left += 20;
rectBoard.top += 10;
rectBoard.bottom -= 10;
rectBoard.right rectBoard.bottom - rectBoard.top + 10;

rectPrompt. 1 eft rectBoard.right + 10:

else {
rectBoard.left += 20;
rectBoard.right -= 20;
rectBoard.top += 10;
rectBoard.bottom = rectBoard.right - rectBoard.left + 10:

rectPrompt.top rectBoard.bottom + 10:

return 0;

11 ------- --- --
11 DoPaintMain - Process WM_PAI NT message for window.
II
LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) (

120

PAINTSTRUCT ps;
RECT rect;
HFONT hFont, hOldFont;
HOC hdc:

II Adjust the size of the client rect to take into account
II the command bar height.

Chapter 3 Input: Keyboard, Stylus, and Menus

)

GetClientRect ChWnd, &rect);
rect.top += CommandBar_Height (GetDlgitem ChWnd, IDC_CMDBAR));

hdc = BeginPaint ChWnd, &ps);

II Draw the board.
DrawBoard Chdc, &rectBoard);

II Write the prompt to the screen.
hFont = GetStockObject CSYSTEM_FONT);
hOldFont = SelectObject (hdc, hFont);
if (bTurn == 0)

else

DrawText (hdc, TEXT(" X' s turn"), -1, &rectPrompt,
DT_CENTER I DT_VCENTER I DT_SINGLELINE);

DrawText Chdc, TEXT(" O's turn"), -1, &rectPrompt,
DT_CENTER I DT_VCENTER DT_SINGLELINE);

SelectObject (hdc. hOldFont);
EndPaint ChWnd. &ps);
return 0;

11 ------------------ -------------------- ---------- ---- -- ---------- ---- --
11 DoLButtonUpMain - Process WM_LBUTTONUP message for window.
II
LRESULT DoLButtonUpMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LP A RAM l Pa ram) (
POINT pt;
INT ex, cy, nCell = 0;

pt. x LOWORD (lParamJ;
pt.y HIWORD (lParam);

II See if pen on board . If so, determine which cell.
if CPtlnRect C&rectBoard, pt))(

II Normalize point to upper left corner of board.
pt.x rectBoard.left;
pt.y -= rectBoard.top;

II Compute size of each cell .
ex CrectBoard.right - rectBoard . leftJl3;
cy = CrectBoard.bottom - rectBoard.topJl3;

II Find column.
nCell = Cpt.x I ex) ;

(co111i1111ed)

121

Part 1 Windows Programming Basics

Figure 3-9. continued

II Find row.
nCell += (pt.y I cy) • 3;

II If cell empty, fill it wi th mark.
if (bBoard[nCell] == 0) {

if (bTurn) {
bBoard[nCellJ 2;
bTurn = 0;

el se {
bBoard[nCell] l;
bTurn = 1:

InvalidateRect (hWnd, NULL, FALSE);
else {

II Inform the user of the filled cell.
MessageBeep (0):
return 0;

return 0;

11 ------------------------------- - -------- -- - - ----- ------------------ - - -
11 DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMa i n (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram) (
PostOuitMessage (0);
return 0;

}

II==
II Game -s pecifi c rout i nes
II
/ /--------------------------- ------------- --- ---- --- ------ --- -- --- -- -- --
/ / DrawXO - Draw a single X or 0 in a square.
II
void DrawXO (HOC hdc, HPEN hPen, RECT •prect, INT nCell, INT nType) {

POINT pt[2];

122

INT ex, cy;
RECT rect;

ex - (prect ->right - prect->left)/3;
cy <prect ->bottom - prect ->top)/3;

II Compute the dimensions of the target cell.
rect.left = (ex • (nCell S 3) + prect->left) + 10;
rect.right = rect.right = rect.left +ex - 20;
rect.top = cy * (nCell I 3) + prect ->top + 10;

Chapter 3 Input: Keyboard, Stylus, and Menus

}

rect.bottom = rect.top + cy - 20;

II Draw an X ?
if CnType == 1) {

pt[0J.x = rect.left;
pt[0].y = rect.top;
pt[l].x = rect.right;
pt[l].y = rect.bottom;
Polyline (hdc, pt, 2);

pt[0].x = rect.right;
pt[l].x = rect.left;
Polyline (hdc, pt, 2);

II How about an 0 ?
} else if (nType == 2)

Ellipse (hdc, rect.left, rect.top, rect.right, rect.bottom);

return;

11 --
11 DrawBoard - Draw the tic - tac - toe board .
11 VK_MENU
void DrawBoard (HOC hdc, RECT *prect) (

HPEN hPen. hOldPen;
POINT pt[2];
LOGPEN l p;
I NT i , ex. cy ;

II Create a nice thick pen.
lp.lopnStyle = PS_SOLID;
lp.lopnWidth.x = 5;
lp.lopnWidth.y = 5;
lp.lopnColor = RGB (0, 0, 0);
hPen = CreatePenlndirect C&lp);

hOldPen = SelectObject (hdc, hPen);

ex = (prect->right - prect ->l eft)l3;
cy (prect -> bottom - prect ->topll3;

II Draw lines down.
pt[0].x ex+ prect -> left;
pt[l].x ex+ prect ->left;
pt[0].y prect->top;
pt[l].y prect ->bottom;
Polyline (hdc, pt, 2);

(continued)

123

Part 1 Windows Programming Basics

Figure 3-9. continued

124

pt[0].x +=ex;
pt[l].x +=ex;
Polyline Chdc, pt, 2);

II Draw lines across.
pt[0].x = prect -> left;
pt[l].x prect ->right;
pt[0].y = cy + prect ->top;
pt[l].y = cy + prect -> top;
Polyline (hdc, pt, 2);

pt[0].y += cy ;
pt[l].y += cy;
Polyline (hdc, pt, 2) ;

II Fill in Xs and Os.
for Ci = 0; i < dim CbBoard); i++)

DrawXO Chdc, hPen, &rectBoard, i, bBoard[i]);

SelectObject Chdc, hOldPen);
DeleteObject ChPen);
return;

The action in TicTacl is centered around three routines: DrawBoard, DrawXO,
and OnLButtonUpMain. The first two perform the tasks of d rawing the playing board .
The routine that determines the location of a tap on the board (a nd therefore is more
relevant to our current train of thought) is OnLButtonUpMain. A the name sugg sts,
this routine is ca lled in respon e to a WM_LBUTTONUP message. The first action to
take is to ca ll

BOOL PtlnRect (const RECT *lprc , POINT pt);

which determines whether the tap is even on the game boa rd. The program knows
the location of the tap because it 's passed in th !Param value of the message. The
board rectangle is computed when the program starts in OnSizeMain. Once the tap
is localized to the board , the program determines the locati n of the relevant cell within
the playing board by dividing the coordinates of the tap point within the board by
the number of cells across and down .

I mentioned that the board rectangle was computed during the OnSizeMain

routine , which is ca lled in response to a WM_SIZE me sage. While it might seem
strange that Window CE supports the WM_ IZE message common to other ver ion
of Window , it needs to support this message because a window i sized frequently:
first right after it's crea ted , and then each time it's minimized and resto red. You might

Chapter 3 Input: Keyboard, Stylus, and Menus

think that another possibility for determining the size of the window would be dur
ing the WM_CREATE message. The !Param parameter points to a CREATESTl{lJCT
structure that contains, among other things, the initial size and position of the win
dow. The problem with using those number::; is that the size obtained is the total size
of the window, not the size of client area, which i::; what we need. Under Windows
CE, most windows have no title bar and no border, but some have both and many
have scroll hars, so using these values can cause trouble. So now, with the TicTacl
example, we have a simple program that uses the stylus effectively but isn't complete.
To restart the game, we must exit and restart TicTacl. We can't take back a move nor
have 0 start first. We need a method for sending these commands to the program.
Sure, using keys would work Another solution would be to create hot spots on the
screen that when tapped, provided the input necessa1y. However, the standard method
of exercising these types of commands in a program is through menus.

MENUS
Menus are a mainstay of Windows input. While each application might have a differ
ent keyboard and stylus interface, almost all have sets of menus that are organized in
a structure familiar to the Windows user.

\X'indows CE programs use menus a little differently from other Windows pro
grams, the most obvious difference being that in Windows CE, menus aren't part of
the standard window. Instead, menus are attached to the command bar control that
has been created for the window. Other than this change, the functions of the menu
and the way menu selections are processed by the application match the other ver
sions of \Vindows, for the most part. Because of this general similarity, I give you
only a basic introduction to Windows menu management in this section.

Creating a menu is as simple as calling

HMENU CreateMenu (void);

The function returns a handle to an empty menu. To add an item to a menu, two
calls can be used. The first,

BOOL AppendMenu (HMENU hMenu, UINT fuFlags, UINT idNewitem,
LPCTSTR lpszNewitem);

appends a single item to the end of a menu. ThefuFlags parameter is set with a series
of flags indicating the initial condition of the item. For example, the item might be
initially disabled (thanks to the MF _GRAYED flag) or have a check mark next to it (cour
tesy of the MF _CHECKED flag). Almost all calls specify the MF_STRING flag, indicat
ing that the lpszNewltem parameter contains a string that will be the text for the item.
The idNewltem parameter contains an ID value that will be used to identify the item
when it's selected by the user or that the state of the menu item needs to be changed.

125

Part I

126

Basi(:;;

Another call that can be used to add a menu item is this one:

BOOL InsertMenu (HMENU hMenu, UINT uPosition, UINT uFlags,
UINT uIDNewltem, LPCTSTR lpNewiteml:

This call is similar to AppendMenu with the added flexibility that the item can be in
serted anywhere within a menu structure. For this call, the uFlags parameter can be
passed one of two additional flags: MF _BYCOMMAND or MF _BYPOSITION, which
specify how to locate where the menu item is to be inserted into the menu.

Under Windows CE 2.0, menus can be nested to provide a cascading effect. This
feature brings Windows CE up to the level of other versions of Windows, which have
always allowed cascading menus. To add a cascading menu, or submenu, create the
menu you want to attach using CreateMenu and InsertMenu. Then insert or append
the submenu to the main menu using either InsertMenu or AppendMenu with the
MF _PO PUP flag in the flags parameter. In this case, the uIDNewltem parameter con
tains the handle to the submenu while the lpNewltem contains the string that will be
on the menu item.

You can query and manipulate a menu item to add or remove check marks or
to enable or disable it by means of a number of functions. This function,

BOOL EnableMenuitem (HMENU hMenu, UINT uIDEnableitem, UINT uEnable);

can be used to enable or disable an item. The flags used in the uEnable parameter
are similar to the flags used with other menu functions. Under Windows CE, the flag
you use to disable a menu item is MF_GRAYED, not MF_DISABLED. The function

DWORD CheckMenuitem (HMENU hmenu, UINT uIDCheckitem, UINT uCheck);

can be used to check and uncheck a menu item. Many other functions are available
to que1y and manipulate menu items. Check the SDK documentation for more details.

The following code fragment creates a simple menu structure:

hMainMenu = CreatePopupMenu ();

hMenu = CreateMenu ();

AppendMenu (hMenu, MF_STRING MF_ENABLED, 100, TEXT ("&New"));
AppendMenu (hMenu, MF_STRING MF _ENABLED. 101. TEXT ("&Open"));
AppendMenu (hMenu, MF_STRING MF _ENABLED. 101. TEXT ("&Save"));
AppendMenu (hMenu, MF _STRING MF _ENABLED. 101. TEXT ("E&xit"l);

AppendMenu (hMainMenu, MF_STRING I MF_ENABLED I MF_POPUP, (UINT)hMenu,
TEXT ("&File"));

hMenu = CreateMenu ();
AppendMenu (hMenu, MF_STRING
AppendMenu (hMenu, MF_STRING
AppendMenu (hMenu, MF_STRING

MF_ENABLED, 100, TEXT ("C&ut"));
MF_ENABLED, 101, TEXT ("&Copy"));
MF_ENABLED, 101, TEXT ("&Paste"));

Chapter 3 Input: Keyboard, Stylus, and Menus

AppendMenu (hMainMenu. MF_STRING I MF_ENABLED I MF_POPUP. hMenu,
TEXT ("&Edit"));

hMenu = CreateMenu ();
AppendMenu (hMenu. MF_STRING I MF_HlABLED, 100, TEXT ("&About"));

AppendMenu (hMainMenu, MF_STRING I MF_ENABLED I MF_POPUP, hMenu,
TEXT ("&Help"));

Once a menu has been created, it can be attached to a command bar using this
function:

BOOL CommandBar_InsertMenubarEx (HWND hwndCB, HINSTANCE hlnst,
LPTSTR pszMenu. int iButton);

The menu handle is passed in the third parameter while the second parameter, hlnst,
must be 0. The final parameter, iButton, indicates the button that will be to the im
mediate right of the menu. The Windows CE user interface guidelines recommend
that the menu be on the far left of the command bar, so this value is almost always 0.

Handling Menu Commands

When a user selects a menu item, Windows sends a WM_ COMMAND message to the
window that owns the menu. The low word of the wParam parameter contains the
ID of the menu item that was selected. The high word of wParam contains the noti
fication code. For a menu selection, this value is always 0. The lParam parameter is
0 for \VM_COMMAND messages sent due to a menu selection. Those familiar with
Windows 3.x programming might notice that the layout of wParam and !Pa ram match
the standard Win32 assignments and are different from Win16 programs. So, to act
on a menu selection, a window needs to field the WM_ COMMAND message, decode
the ID passed, and act according to the menu item that was selected.

Now that I've covered the basics of menu creation, you might wonder where
all this menu creation code sits in a Windows program. The answer is, it doesn't. Instead
of dynamically creating menus on the fly, most Windows programs simply load a menu
template from a resource. To learn more about this, let's take a detour from the de
scription of input methods and look at resources.

RESOURCES
Resources are read-only data segments of an application or a DLL that are linked to
the file after it has been compiled. The point of a resource is to give a developer a
compiler-independent place for storing content data such as dialog boxes, strings,
bitmaps, icons, and yes, menus. Since resources aren't compiled into a program, they
can be changed without having to recompile the application.

127

Part I

You create a resource by building an ASCII file-called a resource script
describing the resources. Your ASCII file has an extension of RC. You compile this
file with ::i resource compiler, which is provided by every maker of Windows devel
opment tools, and then you link them into the compiled executable again using the
linker. These days, these steps are masked by a heavy layer of visual tools, but the
fundamentals remain the same. For example, Visual C++ 5.0 creates and maintains
an ASCII resource (RC) file even though few programmers directly look at the resource
file text any more.

It's always a struggle for the author of a programming book to decide how to
approach tools. Some lay out a very high level of instruction, talking about menu
selections and describing dialog boxes for specific programming tools. Others show
the reader how to build all the components of a program from the ground up, using
ASCII files and command line compilers. Resources can be approached the same way:
I could describe how to use the visual tools or how to create the ASCII files that are
the basis for the resources. In this book, I stay primarily at the ASCII resource script
level since the goal is to teach Windows CE programming, not how to use a particu
lar set of tools. I'll show how to create and use the ASCII RC file for adding menus
and the like, but later in the book in places where the resource file isn't relevant, I
won't always include the RC file in the listings. The files are, of course, on the CD
included with this book.

Resource Scripts

128

Creating a resource script is as simple as using Notepad to create a text file. The lan
guage used is simple, with C-like tendencies. Comment lines are prefixed by a double
slash (/ /) and files can be included using a #include statement.

An example menu template would be the following:

II
II A menu template
II
ID_MENU MENU DISCARDABLE
BEGIN

END

POPUP "&File"
BEGIN

END

MENUITEM "&Open ... ",
MENUITEM "&Save ... ",
MENUITEM SEPARATOR
MENUITEM "E&xit",

POPUP "&Help"
BEGIN

MENUITEM "&About",
END

100
101

120

200

Chapter 3 Input: Keyboard, Stylus, and Menus

The initial ID_MENU is the ID value for the resource. Alternatively, this ID value
can be replaced by a string identifying the resource. The ID value method provides
more compact code while using a string may provide more readable code when
the application loads the resource in the source file. The next word, MENU, identi
fies the type of resource. The menu starts with POPUP, indicating that the menu item
File is actually a pop-up (cascade) menu attached to the main menu. Because it's a
menu within a menu, it too has BEGIN and END keywords surrounding the descrip
tion of the File menu. The ampersand (&) character tells Windows that the next char
acter should be the key assignment for that menu item. The character following the
ampersand is automatically underlined by Windows when the menu item is displayed,
and if the user presses the Alt key along with the character, that menu item is selected.
Each item in a menu is then specified by the MENUITEM keyword followed by the
string used on the menu. The ellipsis following the Open and Save strings is a Win
dows UI custom indicating to the user that selecting that item displays a dialog box.
The numbers following the Open, Save, Exit, and About menu items are the menu
identifiers. These values identify the menu items in the WM_COMMAND message.
It's good programming practice to replace these values with equates that are defined
in a common include file so that they match the WM_COMMAND handler code.

Figure 3-10 lists other resource types that you might find in a resource file. The
DISCARDABLE keyword is optional and tells Windows that the resource can be dis
carded from memory if it's not in use. The remainder of the menu is couched in BEGIN

and END keywords, although bracket characters { and } are recognized as well.

Resource Type

MENU

ACCELERATORS

DIALOG

BITMAP

ICON

FONT

RCDATA

STRING TABLE

VERSIOi\"INFO

Explanation

Defines a menu

Defines a keyboard accelerator table

Defines a dialog box template

Includes a bitmap file as a resource

Includes an icon file as a resource

Includes a font file as a resource

Defines application-defined binary data block

Defines a list of strings

Includes file version information

Figure 3-10. The resource i)pes allowed by the resource compiler.

129

Part I

Icons

130

Now that we're working with resource files, it's a trivial matter to·modify the icon
that the Windows CE shell uses to display a program. Simply create an icon with your
favorite icon editor and add to the resource file an icon statement such as

IO_ICON ICON "tictac2.ico"

When Windows displays a program in Windows Explorer, it looks inside the EXE file
for the first icon in the resource list and uses it to represent the program.

Having that icon represent an application's window is somewhat more of a chore.
Windows CE uses a small 16-by-16-pixel icon on the taskbar to represent windows
on the desktop. Under other versions of Windows, the RegisterClassEx function could
be used to associate a small icon with a window, but Windows CE doesn't support
this function. Instead, the icon must be explicitly loaded and assigned to the win
dow. The following code fragment assigns a small icon to a window.

hicon =CHICON) SendMessage (hWnd, WM_GETICON, FALSE, 0);
if (hicon == 0) {

}

hicon = Loadimage (hinst, MAKEINTRESOURCE (ID_ICONl), IMAGE_ICON,
16, 16, 0);

SendMessage (hWnd, WM_SETICON, FALSE, (LPARAM)hicon);

The first SendMessage call gets the currently assigned icon for the window. The
FALSE value in wParam indicates that we're querying the small icon for the window.
If this returns 0, indicating that no icon has been assigned, a call to Loadlmage is made
to load the icon from the application resources. The Loadlmage function can take
either a text string or an ID value to identify the resource being loaded. In this case,
the MAKEINTRESOURCE macro is used to label an ID value to the function. The icon
being loaded must be a 16-by-16 icon because under Windows CE, Loadlmage won't
resize the icon to fit the requested size. Also under Windows CE, Loadlmage is lim
ited to loading icons and bitmaps from resources. Windows CE provides the function
ShLoadDIBitmap to load a bitmap from a file.

Unlike other versions of Windows, Windows CE stores window icons on a per
class basis. This means if two windows in an application have the same class, they
share the same window icon. A subtle caveat here-window classes are specific to a
particular instance of an application. So, if you have two different instances of the
application FOOBAR, they each have different window classes, so they may have
different window icons even though they were registered with the same class infor
mation. If the second instance of FOO BAR had two windows of the same class open,
those two windows would share the same icon, independent of the window icon in
the first instance of FOOBAR.

Chapter 3 Input: Keyboard, Stylus, and Menus

Accelerators
Another resource that can be loaded is a keyboard accelerator table. This table is used
by Windows to enable developers to designate shortcut keys for specific menus or
controls in your application. Specifically, accelerators provide a direct method for a
key combination to result in a WM_COMMAND message being sent to a window.
These accelerators are different from the Alt-F key combination that, for example,
can be used to access a File menu. File menu key combinations are handled auto
matically as long as the File menu item string was defined with the & character, as in
&File. The keyboard accelerators are independent of menus or any other controls,
although their assignments typically mimic menu operations, as in using Ctrl-0 to
open a file.

Below is a short resource script that defines a couple of accelerator keys.

ID_ACCEL ACCELERATORS DISCARDABLE
BEGIN

"N", IDM_NEWGAME, VIRTKEY, CONTROL
"Z", IOM_UNOO, VIRTKEY, CONTROL

END

As with the menu resource, the stnicture starts with an ID value. The ID value
is followed by the type of resource and, again optionally, the discardable keyword.
The entries in the table consist of the letter identifying the key, followed by the ID
value of the command, VIRTKEY, which indicates that the letter is actually a virtual
key value, followed finally by the CON1ROL keyword, indicating that the control shift
must be pressed with the key.

Simply having the accelerator table in the resource doesn't accomplish much.
The application must load the accelerator table and, for each message it pulls from
the message queue, see whether an accelerator has been entered. Fortunately, this is
accomplished with a few simple modifications to the main message loop of a pro
gram. Here's a modified main message loop that handles keyboard accelerators.

II Load accelerator table.
hAccel = LoadAccelerators (hinst, MAKEINTRESOURCE (IO_ACCEL));

II Application message loop
while (GetMessage (&msg, NULL, 0, 0)) {

II Translate accelerators
if (!TranslateAccelerator (hwndMain, hAccel, &msg)) {

TranslateMessage (&msg);
DispatchMessage (&msg);

131

Basics

The first difference in this main message loop is the loading of the accelerator
tahle using the LoadAccelerators function. Then after each message is pulled from
the message queue, a call is made to TranslateAccelerator. If this function trans
lates the message, it returns TRUE, which skips the standard TranslateMessage and
DispatcbMessage loop body. If no translation was performed, the loop body ex
ecutes normally.

Bitmaps
Bitmaps can also be stored as resources. Windows CE works with bitmap resources
somewhat differently from other versions of Windows. With Windows CE, the call

HBITMAP LoadBitmap(HINSTANCE hlnstance, LPCTSTR lpBitmapName);

loads a read-only version of the bitmap. This means that after the bitmap is selected
into a device context, the image can't be modified by other drawing actions in that
DC. To load a read/write version of a bitmap resource, use the Loadlmage function.

Strings

132

String resources are a good method for reducing the memory footprint of an appli
cation while keeping language-specific information out of t~e code to be compiled.
An application can call

int LoadString(HINSTANCE hlnstance, UINT uID, LPTSTR lpBuffer,
int nBufferMax):

to load a string from a resource. The ID of the string resource is u!D, the lpBuffer
parameter points to a buffer to receive the string, and nBuffer"lYJax is the size of the
buffer. To conserve memory, LoadString has a new feature under Windows CE. If
lpBuffer is NULL, LoadString returns a read-only pointer to the string as the return
value. Simply cast the return value as a pointer to a constant Unicode string (LPCTSTR)
and use the string as needed. The length of the string, not including any null termi
nator, will be located in the word immediately preceding the start of the string.

While I will be covering memory management and strategies for memory con
servation in Chapter 6, one quick note here. It's not a good idea to load a number of
strings from a resource into memory. This just uses memory both in the resource and
in RAM. If you need a number of strings at the same time, it might be a better strategy
to use the new feature of LoadString to return a pointer directly to the resource itself.
As an alternative, you can have the strings in a read-only segment compiled with the
program. You lose the advantage of a separate string table, but you reduce your
memory footprint.

Chapter 3 Input: Keyboard, Stylus, and Menus

The TicTac2 Example Program

The final program in this chapter encompasses all of the information pre ented up to
th is point as well as a few new items. The TicTac2 program is an extension ofTicTacl;
the additions are a menu , a window icon, and keyboard accelerators. The TicTac2
window, complete with menu , is hown in Figure 3-11, while the source is shown in
Figure 3-12.

Maw game C1rl-N
!,J.roo last move Ctr! z

Stall t;)My Hanchld ... # TicTac2

X's turn

)(

l!iil4l:J"' 5:03 PM

Figure 3-11. The TicTac2 window wlnsertDelete (Many Windows CE keyboards use
Shift-Backspace for· this function.)

TlcTac2.rc

II==
II TicTac 2 - Resource f i le
II
II Written for t he book Programm i ng Windows CE
II Copyright (Cl 1998 Dougla s Boling
II
II==

#include "tictac2.h"

11 ------------------------- ---
11
II Icon
II
ID_ICON I CON "ti ctac2. i co"

11 --
11

Figure 3-12. The Tictac2 program. (continued)

133

Part 1 Windows Programming Basics

Figure 3-12. continued

II Menu
II
ID_MENU MENU DISCARDABLE
BEGIN

END

POPUP "&File"
BEGIN

END

MENUITEM "&New game\tCtrl -N",
MENUITEM "&Undo last move\tCtrl -Z",
MENUITEM SEPARATOR
MENUITEM "E&xit",

IOM_NEWGAME
IDM_UNDO

IDM_EXIT

11--
11
II Accelerator table
II
ID_ACCEL ACCELERATORS DISCARDABLE
BEGIN

END

"N", IDM_NEWGAME . VIRTKEY, CONTROL
"Z", IDM_UNDO, VIRTKEY, CONTROL

11------- ---
11
II String table
II
STRINGTABLE DISCARDABLE
BEGIN

END

IDS_XTURN, " Xs turn"
IDS_OTURN, " Os turn"

TlcTac2.h

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright {C) 1998 Douglas Bol ing
II
II==
II Returns number of elements
#define dim{x) {sizeof{x) I sizeof(x[0]))

11 ----------- -- ------------------------------- ---- ---------- -- ----- -- ---
11 Generic defines and data types

134

Chapter 3 Input: Keyboard, Stylus, and Menus

II
struct decodeUINT

UINT Code;
II Structure associates
II mes sages
I I wi th a fun ction.

LRESULT (• Fxn)(HWND, UINT, WPARAM, LPARAM) ;
} ;

struct decodeCMD {
UINT Code;

II Structure associates
II men u IDs wi t h a

LRESULT (• Fxn)(HWND, WORD, HWND, WORD) ; II fun cti on .
) ;

11- --- -- --- ------- ------ --
II Generic defines used by application
#define JDc_CMDBAR 1 II Command bar ID

#define ID_ICON 10 I I Ic on resource ID
#define ID_MENU 11 II Ma i n menu resource ID
#define ID_ACCEL 12 II Ma i n menu resource ID

#define IDM_NEWGAME 100 I I Menu item ID
#define IDM_UNDO 101 I I Men u item ID
#define IDM_EXIT 102 II Menu i t em ID

#define ID$_XTURN 201 II St ring ID
#define ID$_0TURN 202 II St r ing ID

11 ------------------------------------ -- ------- -------- ------- ----------
11 Function prototypes
II
int InitApp CHINSTANCE);
HWND Initlnstance CHINSTANCE, LPWSTR, i nt) ;
int Termlnstance CHINSTANCE, int);

II Window procedures
LRESULT CALLBACK Ma1nWndProc CHWND, UINT, WPARAM, LPARAM) ;

II Message handlers
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM) ;
LRESULT DoSizeMain (HWND, UINT, WPARAM, LPARAM) ;
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM) ;
LRESULT DolnitMenuPopMa1n CHWND, UINT, WPARAM , LPARAM>;
LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAM) ;
LRESULT DoLButtonUpMain (HWND, UINT , WPARAM, LPARAM);
LRESULT DoDestroyMa1n (HWND, UINT, WPARAM, LPARAM) ;

(co lllinued)

135

Part I Windows Programming Basics

Figure 3-12. cont inued

II Command functions
LPARAM DoMainCommandNewGame CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandUndo CHWND , WORD, HWND, WORD);
LPARAM DoMainCommandExit CHWND, WORD. HWND, WORD);

II Game functon prototypes
void ResetGame (void);
void DrawXO (HOC hdc, HPEN hPen, RECT *prect, INT nCell, INT nType);
void DrawBoard (HOC hdc, RECT *prect);

TicTac2.c

II==
II TicTac2 - Simple tic - tac -toe game with menus
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II
II==
#include <windows . h>
#include <commctrl.h>
#include "ti ctac2.h"

II For all that Windows stuff
II Command bar includes
II Program -s pecific stuff

11--- - ----------
11 Global data
II
const TCHAR szAppName[]
HINSTANCE hlnst;

TEXT C"TicTac2");

II State data for game
RECT rectBoard = (0, 0, 0, 0);
RECT rectPrompt;
BYTE bBoard[9];
BYTE bTurn;
char blastMove;

II Program instance handle

II Used to place game board.
II Used to place prompt.
II Keeps track of Xs and Os.
II Keeps track of the turn.
II Last cell changed

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = (

WM_CREATE, DoCreateMain,

) ;

136

WM_SIZE, DoSizeMain,
WM_PAI NT, DoPaintMain,
WM_INITMENUPOPUP, DolnitMenuPopMain,
WM_COMMAND, DoCommandMain,
WM_LBUTTO NUP , DoLButtonUpMain,
WM_DESTROY , DoDestroyMain,

Chapter 3 Input: Keyboard, Stylus, and Menus

II Command Message dispatch for MainWindowProc
canst struct decodeCMD MainCommandltems[] = {

IDM_NEWGAME, DoMainCommandNewGame,
IDM_UNDO, DoMainCommandUndo,
IDM_EXIT, DoMainCommandExit,

} :

II==
II
II Program entry point
II
int WINAPI Wi nMain CHINSTANCE hinstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) {

}

MSG msg;
int re = 0;
HWND hwndMain;
HACCEL hAccel:

II Initialize application .
re = InitApp Chlnstance):
if (re) return re:

II Initialize this instance.
hwndMain = Initinstance (hlnstance, lpCmdLine, nCmdShow):
if (hwndMain == 0)

return 0xl0:

II Load accelerator table.
hAccel = LoadAccelerators (hlnst, MAKEINTRESOURCE CID_ACCEL));

II Appli cation message loop
while (GetMessage (&msg, NULL, 0, 0)) {

II Translate accelerators

}

if (!TranslateAccelerator ChwndMain. hAccel. &msg)) {
TranslateMessage C&msg);
DispatchMessage C&msg);

I I In stance cleanup
return Terminstance (hlnstance, msg.wParaml:

11 - - - - -------- - - - ------------------------ - ------------ - --------- - -- - ----
11 InitApp - Application initialization
II
int InitApp (HINSTANCE hlnstance) {

WNDCLASS we;

(contin ued)

137

Part 1 Windows Programming Basics

Figure 3-12. continued

II Register application main wi ndow
we.style = 0;
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hlnstance = hlnstance;
wc.hlcon = NULL,
wc.hCursor = NULL;

class.
II Window style
II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon
II Oefault cursor

GetStockObject (WHITE_BRUSH);
II Menu name

wc.hbrBackground = (HBRUSH)
wc.lpszMenuName = NULL;
wc.lpszClassName = szAppName; II Window class name

if (RegisterClass(&wc) == 0) return l;

return 0;
}

11- - - -- - - --- ---------------- - - -- --------- - ---- - ------------------- - -----
11 lnitlnstance - Instance initialization
II
HWNO lnitlnstance (HINSTANCE hlnstance. LPWSTR lpCmdLine, int nCmdShow) {

HWND hWnd;

138

II Save program instance handle in global variable.
hlnst = hlnstance;

II Create main window.
hWnd = CreateWindow (szAppName,

TEXT ("Ti cTac2"),
WS_VISIBLE.
CW_USEDEFAULT,
CW_USEDEFAUL T.
CW_USEDEFAUL T,
CW_USEDEFAULT,
NULL,
NULL,
hlnstance,
NULL);

II Return fail code if window not created.
if (!lsWindow (hWnd)) return 0;

II Standard show and update calls
ShowWindow (hWnd, nCmdShow);
UpdateWindow (hWnd):
return hWnd;

II
II
II
II
II
II
II
II
II
II
II
II

Window class
Window title
Style flags
x position
y position
Initial width
Initial height
Parent
Menu, must be null
Application instance
Pointer to create
parameters

Chapter 3 Input: Keyboard, Stylus, and Menus

11 ----- ------- -------- -------------- ------------------------------------
11 Termlnstance - Program cleanup
II
int Termlnstance CHINSTANCE hlnstance, in t nDefRC) (

return nDefRC;
}

II==
II Message handling procedures for MainWindow
II

11 - -- - - - -- -- ---- -- -- -- -- -- - - ---- --- - -- - - -- - - -- - -- -
II MainWndProc - Callback fun ct ion for app licati on window
II
LRESULT CALLBACK MainWndProc CHWND hWnd, UINT wMsg, WPARAM wPar am,

LPARAM lParam) (

}

INT i;
II
II Search message list to see i f we need t o handle thi s
II message. If in list, call procedure.
II
for Ci = 0: i < dim(MainMes sage s); i++) (

if (wMsg == MainMessages[iJ.Code)
return C•MainMessages[i].Fxn)(hWnd, wM sg, wParam, lParam) :

return DefWindowProc ChWnd, wMsg, wParam, lParam>:

11 ------------------------------- ------------------------------------ ---
11 DoCreateMain - Proces s WM_CREATE message fo r window.
II
LRESULT DoCreateMain CHWND hWnd, UINT wM sg, WPA RAM wParam,

LPARAM lParam) (
HWND hwndCB;
HICON hlcon;

II Create a command bar.
hwndCB = CommandBar_Create Chin st. hWnd, IDC_CMDBAR);
II Add the menu.
CommandBar_lnsertMenubar ChwndCB, hinst, ID_MENU, 0) :
II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 0) ;

hlcon = CHICON) SendMessage (hWnd, WM_GET ICON , 0, 0);
if Chicon == 0) (

hlcon = Loadlmage Chlnst, MAKEINTRESOURCE CI D_I CON) ,
IMAGE_ICON , 16 , 16, 0) ;

(continued)

139

Part 1 Windows Programming Basics

Figure 3-12. continued

SendMessage ChWnd, WM_SETICON, FALSE, (LPARAMlhlcon):

II Initialize game.
ResetGame Cl:
return 0:

11 ---------------- --- -- ----- --
11 DoSizeMain - Process WM_SIZE message for window.
II
LRESULT DoSizeMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {

}

RECT rect:

II Adjust the s ize of the client rect to take into account
II the command bar height.
GetClientRect ChWnd, &rectl:
rect.top += CommandBar_Height CGetDlgltem ChWnd, IDC_CMDBAR)):

II Define the playing board rect.
rectBoard = rect;
rectPrompt = rect :
II Layout depends on portrait or landscape screen.
if (rect.right - rect.left > rect.bottom - rect .top)

rectBoard.left += 20:
rectBoard.top += 10:
rectBoard.bottom - = 10;
rectBoard.right rectBoard.bottom - rectBoard.top + 10:

rectPrompt. left rectBoard.right + 10:

else {
rectBoard.left += 20:
rectBoard.right -= 20:
rectBoard . top += 10:
rectBoard . bottom = rectBoard.right - rectBoard.left + 10:

rectPrompt.top rectBoard.bottom + 10:

return 0:

11 --- ------- --
11 DoPaintMain - Process WM_PAINT message for window.
II
LRESULT DoPaintMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LP A RAM l Pa ram) (
PAINTSTRUCT ps;

140

Chapter 3 Input: Keyboard, Stylus, and Menus

)

RECT rect;
HFONT hFont, hOldFont;
TCHAR szPrompt[32];
HOC hdc;

II Adjust the size of the client rect to take into account
II the command bar height .
GetClientRect (hWnd, &rect);
rect.top += CommandBar_Height (GetDlgltem (hWnd, IDC_CMDBARll;

hdc = BeginPaint (hWnd, &ps);

II Draw the board.
DrawBoard (hdc, &rectBoard);

II Write the prompt to the screen .
hFont = GetStockObject (SYSTEM_FONT);
hOldFont = SelectObject (hdc, hFont);

if (bTurn == 0)
LoadString (hlnst. IDS_XTURN, szPrompt, sizeof (szPrompt));

else
LoadString (hlnst. IDS_OTURN, szPrompt, sizeof (szPrompt));

DrawText (hdc , szPrompt, -1. &rectPrompt,
DT_CENTER I DT_VCENTER I DT_SINGLELINE);

SelectObject (hdc, hOldFont);
EndPaint (hWnd, &ps);
return 0;

11 --
11 Doln i tMenuPopMain - Process WM_ INITMENUPOPUP mes sage for window.
II
LRESULT DolnitMenuPopMain (HW ND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
HMENU hMenu;

hMenu = CommandBar_GetMenu (GetDlgltem (hWnd, IDC_C MDBARl . 0);

if (bLastMove == -1)
EnableMenultem ChMenu, IDM_UNDO, MF_BYCOMMAND I MF_GRAYED);

else
EnableMenultem (hMenu, IDM_UNDO, MF_BYCOMMAND I MF_ENABLED):

return 0;

(continued)

141

Part 1 Windows Programming Basics

Figure 3-12. continued

11 --- - ------ - -------- - --
11 DoCommandMain - Process WM_COMMAND message for window.
II
II
LRESULT DoCommandMain CHWND hWnd, UINT wMsg, WPARAM wParam,

}

LPARAM lParam) {
WORD iditem, wNotifyCode;
HWND hwndCtl;
INT i;

II Parse the parameters.
idltem = {WORD) LOWORD (wParam l ;
wNotifyCode = {WORD) HIWORD{wParam);
hwndCtl = {HWND) lParam;

II Call routine to handle control message.
for {i = 0; i < dim{MainCommandltems) ; i++)

if {iditem == MainCommandltems[iJ.Code)
return {*MainCommanditems[iJ.Fxn){hWnd, iditem, hwndCt l ,

wNot i fyCode l ;

return 0;

11- ------------- - --------- - ------------------ - ------ -- ------------------
11 DoLButtonUpMa i n - Process WM_LBUTTONUP message for wi ndow.
II
LRESULT DoLButtonUpMain {HWND hWnd, UINT wM sg, WPARAM wParam ,

LPARAM lParaml {

142

POINT pt;
INT ex, cy, nCell = 0;

pt.x = LOWORD ClParam);
pt.y = HIWORD {lParam);

II See if pen on board. If so, determine which cell.
if {PtinRect C&rectBoard, pt)){

II Normal i ze point to upper left corner of board.
pt.x rectBoard.left;
pt .y -= rectBoard . top;

II Compute size of each cell.
ex= {rect Board.right - rect8oard.left)l3;
cy = (rect Board.bottom - rectBoard . top)/3;

II Find column.
nCell = {pt.x I ex);

Chapter 3 Input: Keyboard, Stylus, and Menus

II Find row.
nCell += (pt.y I cy) • 3;

II
if

If cell empty, fill it with mark.
CbBoard[nCell] == 0) {
if CbTurn) {

bBoard[nCell] = 2;
bTurn = 0;

} else {
bBoard[nCell] 1;
bTurn = l;

}

II Save the cell for the undo command.
bLastMove = nCell;
II Force the screen to be repainted.
InvalidateRect (hWnd, NULL, FALSE);

else {
II Inform the user of the filled cell.
MessageBeep < 0 >;
return 0;

return 0;

11 ------------------------ --
11 DoDestroyMain - Process WM_DESTROY message for wi ndow.
II
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram) {
PostQuitMessage (0):
return 0;

)

II==
II Command handler routines
II
11 --
11 DoMainCommandNewGame - Process New Game command .
II
LPARAM DoMainCommandNewGame CHWND hWnd, WORD idltem, HWND hwndCt l.

WORD wNoti fyCode) {
I NT i , j = 0, re ;

II Count the number of used spaces.
for Ci 0; i < 9; i++)

if (bBoard[iJ)
j++;

(co11tin ued)

143

Part 1 Windows Programming Basics

Figure 3-12. continued

)

II If not new game or complete game, ask user before clear i ng.
if (j && (j ! = 9)) (

re = MessageBox ChWnd,

if (re == IDNO I
return 0:

ResetGame () ;

TEXT ("Are you sure you want t o clea r the board?") ,
TEXT ("New Game"), MB_YESNO I MB_IC ONQU ESTION J;

InvalidateRect (hWnd, NU LL, TRU E) :
return 0:

11------ --
11 DoMainCommandUndo - Process Undo Last Mov e command .
II
LPARAM DoMainCommandUndo CHWND hWnd, WORD iditem, HWN D hwndCtl,

WORD wNotifyCode) (

}

if CbLastMove != -11
bBoard[bLastMov e] 0:
if (bTurn) (

bTurn 0:
else (

bTurn 1·
}

II Only one level of undo
bLastMove = -1:
InvalidateRect (hWnd, NU LL, TRUE);

return 0:

11 ---- -- ------- - ---- - - -- -- -- - - - - - - - - - - - -- - - -- - - -- - -- - - - - --- - -- - - - - -- - -- -
II DoMainCommandExit - Process Program Exit command.
II
LPARAM DoMainCommandExit CHWND hWnd , WORD iditem, HWND hwndCtl,

WORD wNot ifyCodeJ (

)

SendMessage ChWnd, WM_CLOSE, 0, 01:
return 0:

II==
II Game -specifi c routines
II
11-- --
11 ResetGame - Initialize the structures for a game.
II

144

Chapter 3 Input: Keyboard, Stylus, and Menus

void ResetGame (void) {
INT i;

}

II Initialize the board.
for Ci = 0; i < dimCbBoard): i++)

bBoard[iJ = 0;

bTurn = 0;
blastMove -1;
return:

11 ------------- -- - - - - - --- - ------ --------------- - ------------ - - -- ----- ---
11 DrawXO - Draw a single X or 0 in a square.
II
void DrawXO (HOC hdc, HPEN hPen, RECT •prect, INT nCell, INT nType) {

POINT pt[2];

}

INT ex, cy;
RECT rect;

ex Cprect ->right - prect ->left)l3;
cy Cprect ->bottom - prect ->top)l3;

II Compute the dimensions of the target cell.
rect.left = (ex * (nCell % 3) + prect ->left) + 10;
rect.right = rect.left +ex - 20,
rect.top = cy * (nCell I 3) + prect ->top + 10,
rect.bottom = rect.top + cy - 20;

II Draw an X?
if CnType == 1)

pt[0J.x rect . left;
pt[0].y rect.top;
pt[l].x rect.right;
pt[l].y rect . bottom:
Polyline (hdc, pt, 2);

pt[0].x = rect.right;
pt[l].x = rect.left;
Polyline (hdc, pt, 2);

II How about an O?
} else if CnType == 2)

Ellipse Chdc, rect.left, rect.top, rect.right, rect.bottom);

return;

11 --- - --------------------------------- - ---------- - ---------------------

(continued)

145

Part I Windows Programming Basics

Figure 3-12. continued

II OrawBoard - Draw the tic -tac-toe board.
II
void DrawBoard CHDC hdc, RECT •prect) {

HPEN hPen, hOldPen:

146

POINT pt[2]:
LOG PEN 1 p:
INT i, ex, cy:

II Create a nice thick pen.
lp.lopnStyle = PS_SOLID:
lp.lopnWidth.x = 5:
lp.lopnWidth.y = 5:
lp.lopnColor = RGB (0, 0, 0):
hPen = CreatePenlndirect C&lp):

hOldPen = SelectObject Chdc. hPen>:

ex = Cprect ->right - prect ->left)l3:
cy = Cprect ->bottom - prect->top)l3:

II Draw lines down.
pt[0].x = ex+ prect ->left:
pt[l].x = ex+ prect->left:
pt[0].y = prect->top:
pt[l].y = prect ->bottom:
Polyline Chdc, pt, 2):

pt[0].x +=ex:
pt[l].x +=ex:
Polyline Chdc, pt, 2):

II Draw lines across.
pt[0].x = prect -> left:
pt[l].x = prect->right:
pt[0].y = cy + prect ->top:
pt[l].y = cy + prect->top:
Polyline Chdc, pt, 2):

pt[0].y += cy:
pt[l].y += cy:
Polyline Chdc. pt. 2);

II Fill in Xs and Os.
for Ci = 0: i < dim CbBoard); i++)

DrawXO Chdc, hPen, &rectBoard. 1, bBoard[i]):

Chapter 3 Input: Keyboard, Stylus, and Menus

SelectObject (hdc, hOldPen);
DeleteObject (hPen);
return ;

The biggest change in TicTac2 is the addition of a WM_ COMMAND handler in
the form of the routine OnCommandMain. Because a program might end up han
dling a large number of different menu items and other controls, I extend the table
lookup design of the window procedure to another table lookup for command IDs
from menus and accelerators. For TicTac2, I use three command handlers, one for
each of the menu items. This results in another table of IDs and procedure pointers
that associates menu IDs with handler procedures. Again, this way of using a table
lookup instead of the standard switch statement i n't necessary or specific to Win
dows CE. It's simply my programming tyle.

The first menu handler, OnCommandNewGame, simply calls the re et game
routine to clear the game structures. The routine itself returns 0, which is the default
value for a WM_COMMAND handler.

The OnCommandUndo command handler i interesting in that it isn't always
enabled. TicTac2 handles an additional message WM_INITMENUPOPUP, which is sent
to a window immediately before the window menu is displayed. This gives the win
dow a chance to initialize any of the menu items. In this ca e , the routine
OnlnitMenuPopMain looks to see whether the blastMove field contains a valid cell
va lue (O through 8). If not, the routine disables the Undo menu item using
EnableMenultem. This action also disables the keyboard accelerator for that menu
item as well.

The final command handler, OnCommandExit, sends a WM_CLOSE message
to the main window. Closing the window eventually results in Windows sending a
WM_DESTROY message, which results in a PostQuitMessage call that terminates the
program. Sending a WM_CLOSE message is, by the way, the same action that results
from clicking on the Close button on the command bar.

Other changes from the first TicTac example include modification of the mes
sage loop to provide for keyboard accelerators and the addition of code in the
OnCreateMain routine to load and assign a window icon. Also, the string prompts
for whose turn it is are loaded from the resource file.

Looking at the OnCommandNewGame handler introduces one last new func
tion. If the game isn't complete, the program asks the players whether they really want
to clear the game board . This query i accompli hed by calling

int MessageBox CHWND hWnd, LPCTSTR lpText, LPCTSTR lpCaption,
UINT uType);

147

Part I

148

This function displays a message box, a simple dialog box, with definable text and
buttons. A message box can display a message along with a limited series of buttons.
Message hoxes are often used to query users for a simple response or to notify them
of some event. The uType parameter allows the programmer to select different but
ton configurations, such as Yes/No, OK/Cancel, Yes/No/Cancel, and simply OK. You
can also select an icon to appear in the message box that signals the level of impor
tance of the answer.

A message box is essentially a poor man's dialog box. It offers a simple method
of que1ying the user but little flexibility in how the dialog box is configured. Now
that we've introduced the subject of dialog boxes, it's time to take a closer look at
them and other types of secondary and child windows.

Chapter4

Windows, Controls,
and Dialog Boxes

Understanding how windows work and relate to each other is the key to understanding
the user interface of the Microsoft Windows operating system, whether it be Microsoft
Windows 98, Microsoft Windows NT, or Microsoft Windows CE. Everything you see
on a Windows display is a window. The desktop is a window, the taskbar is a win
dow, even the Start button on the taskbar is a window. Windows are related to one
another according to one relationship model or another; they may be in parent/child,
sibling, or owner/owned relationships. Windows supports a number of predefined
window classes, called controls. These controls simplify the work of programmers
by providing a range of predefined user interface elements as simple as a button or
as complex as a multiline text editor. Windows CE supports the same standard set of
built-in controls as the other versions of Windows. These built-in controls shouldn't
be confused with the complex controls provided by the common control library. I'll
talk about those controls in Chapter 5.

Controls are usually contained in dialog boxes (sometimes simply referred to
as dialogs). These dialog boxes constitute a method for a program to query users for
information the program needs. A specialized form of dialog, named a property sheet,
allows a program to display multiple but related dialog boxes in an overlapping style;
each box or property sheet is equipped with an identifying tab. Property sheets are
particularly valuable given the tiny screens associated with Windows CE devices.

149

Basics

Finally, Windows CE supports a subset of the common dialog library available
under Windows NT and Windows 98. Specifically, Windows CE supports versions of
the common dialog boxes File Open, File Save, Color, and Print. These dialogs are
somewhat different on Windows CE. They're reformatted for the smaller screens and
aren't as extensible as their desktop counterparts.

CHILD WINDOWS

150

Each window is connected via a parent/child relationship scheme. Applications cre
ate a main window with no parent, called a top-level window. That window might
(or might not) contain windows, called child windows. A child window is clipped to
its parent. That is, no part of a child window is visible beyond the edge of it<> parent.
Child windows are automatically destroyed when their parent windows are destroyed.
Also, when a parent window moves, its child windows move with it.

Child windows are programmatically identical to top-level windows. You use
the Create Window or CreateWindowEx function to create them, each has a window
procedure that handles the same messages as its top-level window, and each can, in
turn, contain its own child windows. To create a child window, use the WS_CHILD
window style in the dwStyle parameter of CreateWindow or CreateWindowEx. In
addition, the hMenu parameter, unused in top-level Windows CE windows, passes
an ID value that you can use to reference the window.

Under Windows CE, there's one other major difference between top-level win
dows and child windows. Windows sends WM_HIBERNATE messages only to top
level windows that have the WS_OVERLAPPED and WS_ VISIBLE styles. (Window
visibility in this case has nothing to do with what a user sees. A window can be "vis
ible" to the system and still not be seen by the user if other windows are above it in
the Z-order.) This means that child windows and most dialog boxes aren't sent
WM_HIBERNATE messages. Top-level windows must either manually send a
WM_HIBERNATE message to their child windows as necessary or perform all the
necessary tasks themselves to reduce the application's memory footprint. On Win
dows CE systems, such as the H/PC that support application buttons on the taskbar,
the rules for determining the target of WM_HIBERNATE messages are also used to
determine what windows get buttons on the taskbar.

In addition to the parent/child relationship, windows also have an owner/owned
relationship. Owned windows aren't clipped to their owners. However, they always
appear "above" (in Z-order) the window that owns them. If the owner window is
minimized, all windows it owns are hidden. Likewise, if a window is destroyed, all
windows it owns are destroyed. Windows CE 1.0 supports window ownership only
for dialog boxes, but from version 2.0 on, Windows CE provides full support for owned
windows.

Chapter 4 Windows, Controls, and Dialog Boxes

Window Management Functions
Given the windows-centric nature of Windows, it's not surprising that you can choose
from a number of functions that enable a window to interrogate its environment so
that it might determine its location in the window family tree. To find its parent, a
window can call

HWND GetParent (HWND hWnd);

This function is passed a window handle and returns the handle of the calling window's
parent window. If the window has no parent, the function returns NULL.

Enumerating windows
GetWindow, prototyped as

HWND GetWindow (HWND hWnd, UINT uCmd);

is an omnibus function that allows a window to query its children, owner, and sib
lings. The first parameter is the window's handle while the second is a constant that
indicates the requested relationship. The GW _CHILD constant returns a handle to the
first child window of a window. Get Window returns windows in Z-order, so the first
window in this case is the child window highest in the Z-order. If the window has no
child windows, this function returns NULL. The two constants, GW _HWNDFIRST and
GW _HWNDLAST, return the first and last windows in the Z-order. If the window handle
passed is a top-level window, these constants return the first and last topmost win
dows in the Z-order. If the window passed is a child window, the Get Window function
returns the first and last sibling window. The GW _HWNDNEXT and GW _HWNDPREV
constants return the next lower and next higher windows in the Z-order. These con
stants allow a window to iterate through all the sibling windows by getting the next
window, then using that window handle with another call to GetWindow to get the
next, and so on. Finally, the GW_OWNER constant returns the handle of the owner
ofa window.

Another way to iterate through a series of windows is

BOOL EnumWindows (WNDENUMPROC lpEnumFunc, LPARAM lParam);

This function calls the callback function pointed to by lpEnumFunc once for each
top-level window on the desktop, passing the the handle of each window in turn.
The lParam value is an application-defined value, which is also passed to the enu
meration function. This function is better than iterating through a GetWindow loop
to find the top-level windows because it always returns valid window handles; it's
possible that a GetWindow iteration loop will get a window handle whose window
is destroyed before the next call to GetWindow can occur. However, since
En um Windows works only with top-level windows, Get Window still has a place when
iterating through a series of child windows.

151

Part I Windows

152

Finding a window
To get the handle of a specific window, use the function

HWND FindWindow (LPCTSTR lpClassName, LPCTSTR lpWindowName);

This function can find a window either by means of its window class name or by means
of a window's title text. This function is handy when an application is just starting
up; it can determine whether another copy of the application is already running. All
an application has to do is call FindWindow with the name of the window class for
the main window of the application. Because an application almost always has a main
window while it's running, a NULL returned by FindWindow indicates that the func
tion can't locate another window with the specified window class-therefore, it's
almost certain that another copy of the application isn't running.

Editing the window structure values
The pair of functions

LONG GetWindowLong (HWND hWnd, int nlndex);

and

LONG SetWindowlong (HWND hWnd, int nlndex, LONG dwNewLong);

allow an application to edit data in the window structure for a window. Remember
the WNDCLASS structure passed to the RegisterClass function has a field, cb WndExtra,
that controls the number of extra bytes that are to be allocated after the structure. If
you allocated extra space in the window structure when the window class was reg
istered, you can access those bytes using the GetWindowLong and SetWindowLong
functions. Under Windows CE, the data must be allocated and referenced in 4-byte
(integer sized and aligned) blocks. So, if a window class was registered with 12 in
the cbWndExtra field, an application can access those bytes by calling GetWindowLong
or SetWindowLong with the window handle and by setting values of 0, 4, and 8 in
the nlndex parameter.

GetWindowLong and SetWindowLong support a set of predefined index values
that allow an application access to some of the basic parameters of a window. Here
is a list of the supported values for Windows CE.

• GWL_STYLE The style flags for the window

• GWL_EXSTYLE The extended style flags for the window

• GWL_ WNDPROC The pointer to the window procedure for the window

• GWL_ID The ID value for the window

• GWL_USERDATA An application-usable 32-bit value

Cbapter 4 Windows, Controls, and Dialog Boxes

Dialog box windows support the following additional value :

• DWL_DLGPROC The pointer to the dialog procedure for the window

• DWL_M GRE ULT The value returned when the dialog box function
returns

• DWL_U ER An application-u able 32-bit value

Window CE doesn't support the GWL_HIN TANCE and GWL_HWNDPARENT
value upported by Windows T and Windows 98.

Scroll Bars and the Fontlist2 Example Program

To d mon trate a handy use for a child window, we return to the FontList program
from Chapter 2. As you might remember, the problem was that if a croll bar were
attached to the main window of the application, the scroll bar would extend upward,
pa t the right side of the command I ar. The rea on for this is that a scroll bar attached
to a window is actually placed in the nonclient area of that window. Becau e the com
mand bar lie in the client space, we have no ea y way to properly position the two
controls in the same window.

An easy way to solve this prob! mi to u ea child window. We place the child
window so that it fill all f the client area of the top-level window not covered by
the command bar. The croll bar can then b attached to th child window so that it
appears on the right ide of the window but stops just beneath the command bar.
Figure 4-1 how the Fontli t2 window. Notice that the scroll bar now fits properly
underneath t11e command bar. Al o notice that the child window is completely un
dete table by the user.

Times New Roman Point:24
Family: Symbol Number of fonts: 2

"Y.1/Jµ{3o'A nowr:12
z:. VJ µ.tJ o"A n oLvr: 14

Family: Arial Number of fonts:6
Arial Point:10
Arial Point11
Arial Point:12
Arial Point:13

Arial Point: 18
Start ~MyH..tll!ld ... ~Fontlist2

Figure 4-1. Tbe Fontlist2 window witb tbe scroll bar properly positioned just beneath
the command bar.

153

Part 1 Windows Programming Basics

The code for this fix, which isn't that much more complex than the original
FontList example, is shown in Figure 4-2. Instead of one window procedure, there
are now two, one for the top-level window, which I have labeled the Frame win
dow, and one for the child window. I separated the code for these two windows into
two different source files, FontList2.c and ClientWnd.c. ClientWnd.c also contains a
function , lnitClient, which registers the client window class.

Fontllst2.h

II==
I I Header file
II
I I Written for the book Programming Windows CE
II Copyright CC> 1998 Douglas Boling
II==
II Returns number of elements
#define dim<x> (sizeof(x) I sizeof(x[0]))

11 --
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (• Fxn)(HWND, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD {
UINT Code;
LRESULT (• Fxn) (HWND, WORD, HWND, WORD);

} ;

II Structure associates
II messages
II with a function.

I I Struct.ure associates
II menu IDs with a
II function.

1/ -- --- ----- ----
11 Generic defines used by application
#define IDC_CMDBAR 1
#define IDC_CLIENT 2

II Command bar ID
II Client window ID

11 -- --- ------ -----
11 Window prototypes and defines
II
#define FAMILYMAX 24
typedef struct {

int nNumFonts;
TCHAR szFontFamily[LF_FACESIZE];

FONTFAMSTRUCT;

Figure 4-2. 7be Fontlist2 program.

154

Chapter 4 Windows, Controls, and Dialog Boxes

typedef FONTFAMSTRUCT • PFONTFAMSTRUCT;

typedef struct {
INT yCurrent;
HOC hdc;

PAINTFONTINFO;
typedef PAINTFONTINFO • PPAINTFONTINFO;

#define CLIENTWINDOW TEXT C"ClientWnd")

int InitClient CHINSTANCE);
int TermClient CHINSTANCE, int);

11- - - - -- - - - --------------------------------- - --- - ------------------- - ---
11 Function prototypes
II
int InitApp CHINSTANCE);
HWND Initlnstance CHINSTANCE. LPWSTR, int);
int Termlnstance CHINSTANCE, int);

II Window procedures
LRESULT CALLBACK FrameWndProc CHWNO, UINT, WPARAM, LPARAM);
LRESULT CALLBACK ClientWndProc CHWNO, UINT, WPARAM, LPARAM);

II Message handlers
LRESULT OoCreateFrame CHWNO, UINT, WPARAM, LPARAM);
LRESULT OoSizeFrame CHWNO, UINT, WPARAM, LPARAM);
LRESULT OoDestroyFrame (HWNO, UINT , WPARAM, LPARAM);

LRESULT DoCreateClient CHWNO, UINT , WPARAM, LPARAM) :
LRESULT DoPaintClient CHWND , UINT , WPARAM, LPARAM);
LRESULT DoVScrollClient CHWND, UINT, WPARAM, LPARAM);

FontLlst2.c

II==
II FontList2 - Lists the available fonts in the system
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include <commctrl.h> II Command bar includes
#include "FontList2.h" II Program-specific stuff

(continued)

155

Part I Windows Programming Basics

Figure 4-2. continued

11 -- -- ------ -- - - - -- - - - ---- -- - - ---- ---- ------ --- - - - - - - - - - - - - - -- -- -- ---- --
II Gl oba 1 data
II
canst TCHAR szAppName[J TEXT C"FontLi st2"l:
HINSTANCE hinst; II Program instance handle

II Message dispatch table for FrameWindowProc
canst struct decodeUINT FrameMessages[J = {

WM_CREATE, DoCreateFrame,
WM_SIZE, DoSizeFrame,
WM_DESTROY. DoDestroyFrame,

) ;

II==
II Program entry point
II
int WINAPI WinMain CHINSTANCE hinstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) {

}

MSG msg;
int re = 0:
HWND hwndFrame :

II Initialize application.
re= InitApp (hlnstance);
if (rel return re;

II Initialize this instance.
hwndFrame = Initlnstance Chlnstance, lpCmdLine. nCmdShow);
if (hwndFrame == 0)

return 0x10;

II Application message loop
while (GetMessage C&msg, NULL. 0, 0)) {

TranslateMessage (&msg) ;
DispatchMessage (&msg);

}

II Instance cleanup
return Termlnstance (hlnstance, msg.wParaml:

11------ ------------- ------------ ---- ---- -- -- ---------------------------
11 InitApp - Application initialization
II
int InitApp CHINSTANCE hlnstance) (

WNDCLASS we;

II Register application frame window class.

156

Chapter 4 Windows, Controls, and Dialog Boxes

)

we.style = 0;
wc.lpfnWndProc = FrameWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hlnstance = hinstance;
wc.hlcon = NULL,

II Window style
II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon
II Default cursor wc.hCursor = NULL;

wc.hbrBackground = CHBRUSH) GetStockObject {WHITE_BRUSH);
II Menu name wc.lpszMenuName = NULL;

wc.lpszClassName = szAppName :

if {RegisterClass C&wc) == 0) return 1;

II Initialize client window class.
if {InitClient {hlnstance) != 0) return 2;
return 0;

II Window class name

11 ------- - - -- - - -- - --------
11 Initlnstance - Instance initialization
II
HWND Initinstance {HINSTANCE hlnstance, LPWSTR lpCmdLine, int nCmdShow) {

HWND hWnd;

II Save program instance handle in global variable.
hinst = hinstance;

II Create frame window.
hWnd = CreateWindow {szAppName,

TEXT {"Font List 2"),
W5_VISIBLE,
CW_USEDEFAULT,
CW_USEDEFAULT.
CW_USEDEFAUL T,
CW_USEDEFAULT.
NULL,
NULL,
hinstance,
NULL);

II Return fail code if window not created.
if {!IsWindow ChWnd)) return 0;

II Standard show and update calls
ShowWindow ChWnd, nCmdShow);
UpdateWindow {hWnd);
return hWnd;

II
II
II
II
II
II
II
II
II
II
II
II

Window class
Window title
Style flags
x position
y position
Initial width
Initial height
Parent
Menu, must be null
Application instance
Pointer to create
parameters

(continued)

157

Part 1 Windows Programming Basics

Figure 4-2. continued

11--
11 Terminstance - Program cleanup
II
int Terminstance CHINSTANCE hinstance, int nDefRC) {

return nDefRC:
)

II==
II Message handling procedures for FrameWindow
11--
11 FrameWndProc - Callback function for application window
II
LRESULT CALLBACK FrameWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

)

INT i:
II
II Search message list to see if we need to handle this
II message. If in list . call procedure.
II
for Ci = 0: i < dimCFrameMessages); i++)

if CwMsg == FrameMessages[i].Codel
return (*FrameMessages[i].Fxn)(hWnd, wMsg, wParam, lParam):

return DefWindowProc ChWnd, wMsg, wParam. lParam):

11--
11 DoCreateFrame - Process WM_CREATE message for window.
II
LRESULT DoCreateFrame CHWND hWnd, UINT wMsg, WPARAM wParam,

158

LPARAM 1 Pa ram) {
HWND hwndCB, hwndClient:
INT sHeight;
LPCREATESTRUCT lpcs:

II Convert lParam into pointer to create structure.
lpcs = CLPCREATESTRUCT) lParam:

II Create a command bar.
hwndCB = CommandBar_Create Chinst. hWnd, IDC_CMDBAR);
II Add exit button to command bar.
CommandBar_AddAdornments ChwndCB, 0, 0);
sHeight = CommandBar_Height CGetDlgitem ChWnd, IDC_CMDBAR));
II
II Create client window. Size it so that it fits under
II the command bar and fills the remaining client area.
II

Chapter 4 Windows, Controls, and Dialog Boxes

hwndClient CreateWindow CCLIENTWINDOW, TEXT {""),
WS_VISIBLE I WS_CHILD I WS_VSCROLL,
lpcs ->x. lpcs ->y + sHeight,
lpcs ->cx, lpcs->cy - sHeight,
hWnd, CHMENU)IDC_CLIENT,
lpcs ->hlnstance, NULL);

II Destroy frame if client window not created.
if (!IsWindow (hwndClient))

DestroyWindow (hWnd);
return 0;

11 --------------------------------- -- -----------------------------------
11 DoSizeFrame - Process WM_SIZE message for window.
II
LRESULT DoSizeFrame CHWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam) {

RECT rect;
I NT i:

GetClientRect (hWnd, &rect);
i = CommandBar_Height (GetDlgltem ChWnd, IDC_CMDBARJ);
rect.top += i;

SetWindowPos CGetDlgltem ChWnd, IDC_CLIENT), NULL, rect.left, rect.top,
rect.right - rect.left, rect.bottom - rect.top,
SWP _NOZORDER):

return 0;
)

11 - --- - -- - - - - -- ------ - ------- - ---- - - - - - - - -- - - - ----- - -- - ------------ - ----
11 DoDestroyFrame - Process WM_DESTROY message for window.
II
LRESULT DoDestroyFrame CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram) {
PostQuitMessage {0);
return 0:

}MM

CllentWnd.c

II==
II ClientWnd - Client window code for FontList2
II
II Written for the book Programming Windows CE
II Copyright (CJ 1998 Douglas Boling

(continued)

159

Part I Windows Programming Basics

Figure 4-2. continued

II==
#include <windows.h> II For all that Windows stuff
#include "FontList2.h " II Program-specific stuff

extern HINSTANCE hlnst:
BOOL fFirst =TRUE:

11---------- --------------------------------- ---- -----------------------
11 Global data
II
FONTFAMSTRUCT ffs[FAMILYMAX]:
INT sFamilyCnt = 0:
INT sVPos 0:
INT sVMax = 0:

II Message dispatch table for ClientWindowProc
const struct decodeUINT ClientMessages[J = (

WM_CREATE, DoCreateClient.
WM_PAINT. DoPaintClient.
WM_VSCROLL , DoVScrollClient.

} :
11-- --------------------------------------- - ----------- - ----------------
11 InitClient - Client window initialization
II
int InitClient (HINSTANCE hlnstance) {

WNDCLASS we:

II Register application client window
we.style = 0:

class.

wc.lpfnWndProc = ClientwndProc:
wc. cbClsExtra = 0:
wc.cbWndExtra = 0:
wc.hlnstance = hlnstance:
wc.hlcon = NULL.

II
II
II
II

Wi ndow style
Callback function
Extra class data
Extra window data

II Owner handle
II Application icon
II Default cursor wc.hCursor = NULL:

wc.hbrBackground = CHBRUSH) GetStockObject (WHITE_BRUSH):

}

wc.lpszMenuName = NULL:
wc.lpszCla ssName = CLIENTWINDOW:

if (RegisterClass <& we) == 0) return l;

return 0:

II Menu name
II Window class name

11 -- ------ ------------------ - -- - --
11 TermClient - Client window cleanup
II

160

Chapter 4 Windows, Controls, and Dialog Boxes

int TermClient CHINSTANCE hinstance, int nDefRC) {
return nDefRC;

II==
II Font callback functions
11 --
11 FontFamilyCallback - Callback function that enumerates the font
11 families.
II
int CALLBACK FontFamilyCallback (CONST LOGFONT • lplf,

CONST TEXTMETRIC • lpntm,

)

DWORD nFontType, LPARAM lParam)
int re = l;

II Stop enumeration if array filled.
if CsFamilyCnt >= FAMILYMAX)

return 0:
II Copy face name of font.
lstrcpy Cffs[sFamilyCnt++J.szFontFamily, lplf -> lfFaceName);

return re:

11 --
11 EnumSingleFontFamily - Callback function that enumerates the font
I I families
II
int CALLBACK EnumSingleFontFamily (CONST LOGFONT • lplf,

CONST TEXTMETRIC • lpntm,

)

DWORD nFontType, LPARAM lParam)
PFONTFAMSTRUCT pffs;

pffs = CPFONTFAMSTRUCT) lParam;
pffs ->nNumFonts++; II Increment count of fonts in family.
return 1:

11 --
11 PaintSingleFontFamily - Callback function that enumerates the font
I I families .
II
int CALLBACK PaintSingleFontFamily (CONST LOGFONT • lplf,

CONST TEXTMETRIC • lpntm,
DWORD nFontType, LPARAM lParam)

PPAINTFONTINFO ppfi:
TCHAR sz0ut[256];
INT nFontHeight, nPointSize:
TEXTMETRIC tm;
HFONT hFont , hOldFont;

(co ntinued)

161

Part 1 Windows Programming Basics

Figure 4-2. continued

}

ppfi = {PPAINTFONTINFO) lParam: II Translate lParam into
II structure pointer.

II Create the font from the LOGFONT structure passed.
hFont = CreateFontlndirect Clplf);

II Select the font into the device context.
hOldFont = SelectObject {ppfi->hdc, hFont):

II Get the height of the default font.
GetTextMetrics {ppfi->hdc, &tm>:
nFontHeight = tm.tmHeight + tm.tmExternalLeading:

II Compute font size.
nPointSize (l plf ->lfHeight * 72) I

GetDeviceCapsCppfi->hdc,LOGPIXELSY);

II Format string and paint
wsprintf CszOut, TEXT C"Ss

nPointSize);
ExtTextOut Cppfi->hdc, 25,

szOut. lstrlen

on display.
Point:Sd"), lplf->lfFaceName,

ppfi ->yCurrent, 0, NULL,
CszOut). NULL>:

II Update new draw point.
ppfi->yCurrent += nFontHeight:
II Deselect font and delete.
SelectObject (ppfi -> hdc, hOldFont);
DeleteObject (hFont);
return 1;

II==
II Message handling procedures for ClientWindow
11--
11 ClientWndProc - Callback function for application window
II
LRESULT CALLBACK ClientWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram) {

162

INT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for {i = 0; i < dim(ClientMessages): i++)

if CwMsg == ClientMessages[i].Code)
return (*ClientMessages[i].Fxn){hWnd, wMsg, wParam, lParam):

Chapter 4 Windows, Controls, and Dialog Boxes

return OefWindowProc (hWnd, wMsg, wParam, lParam);
}

//- -------- ---- ------ ---------------------------- ------ -----------------
// OoCreateClient - Process WM_CREATE message for window.
II
LRESULT OoCreateClient (HWNO hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) (

}

HOC hdc;
I NT i . re:

//Enumerate the available fonts.
hdc = GetOC (hWnd);
re= EnumFontFamilies ((HOC)hdc, CLPTSTR>NULL, FontFamilyCallba ck, 0):

for Ci = 0: i < sFamilyCnt: i++)
ffs[i].nNumFonts = 0;

}

re = EnumFontFamilies ((HOC)hdc, ffs[~].szFontFamily,
EnumSingleFontFamily,
(LPARAM){PFONTFAMSTRUCT)&ffs[i]);

ReleaseOC (hWnd, hdc);
return 0;

// --
// OoPaintClient - Process WM_PAINT message for window.
II
LRESULT OoPaintClient (HWNO hWnd , UINT wMsg, WPARAM wParam,

LPARAM lParam) (
PAINTSTRUCT ps;
RECT rect;
HOC hdc;
TEXTMETRIC tm;
INT nFontHeight, i;
TCHAR sz0ut[256];
PAINTFONTINFO pfi;
SCROLLINFO si:

hdc = BeginPaint ChWnd, &ps);

GetClientRect (hWnd, &rect);

II Get the height of the default font.
GetTextMetrics {hdc, &tm);
nFontHeight = tm.tmHeight + tm.tmExternalleading;

(continued)

163

Part 1 Windows Programming Basics

Figure 4-2. continued

)

II Initialize struct that is passed to enumerate function.
pfi.yCurrent = rect.top - sVPos:
pfi.hdc = hdc:
for (i = 0: i < sFamilyCnt: i++)

II Format output string and paint font family name.
wsprintf lszOut, TEXT ("Family: Ss Number of fonts:Sd "),

ffs[i].szFontFamfly, ffs[i].nNumFonts):
ExtTextOut (hdc, 5, pfi.yCurrent. 0, NULL,

szOut, lstrlen (szOut), NULL):
pfi.yCurrent += nFontHeight:

II Enumerate each family to draw a sample of that font.
EnumFontFamilies ((HOC)hdc, ffs[f].szFontFamily ,

PaintSingleFontFamily,
(LPARAMl&pff):

II Compute the total height of the text in the window.
if (fFi rst) {

sVPos = 0;
sVMax = (pfi.yCurrent - rect.top) - erect.bottom - rect . top);

sf.cbSize = sizeof (si):
si . nMin = 0:
si.nMax = pfi.yCurrent:
si.nPage = rect.bottom - rect . top:
si.nPos = sVPos:
si .fMask = SIF_ALL:
SetScrolllnfo (hWnd, SB_VERT, &si, TRUE):
fFi rst = FALSE;

EndPaint lhWnd, &ps);
return 0:

11- ---------------------------------- --------------------- ----- --- ------
11 DoVScrollClient - Process WM_VSCROLL message for window.
II
LRESULT DoVScrollClient (HWND hWnd , UINT wMsg, WPARAM wParam,

LP A RAM l Pa ram) (
RECT rect:
SCROLLINFO si:
INT sOldPos = sVPos:

GetClientRect (hWnd, &rect):

164

Chapter 4 Windows, Controls, and Dialog Boxes

switch CLOWORO CwParam))
case SB_LINEUP:

sVPos -= 10:
break;

case SB_LINEOOWN:
sVPos += 10;
brea k;

case SB_PAGEUP:
sVPos -= rect.bottom - rect.top;
break;

case SB_PAGEOOWN:
sVPos += rect.bottom - rect . top;
break;

case SB_THUMBPOSITION:

}

sVPos = HIWORD CwParam);
break;

II Check range.
if (sVPos < 0)

sVPos 0;
if (sVPos > sVMax)

sVPos sVMax;

II If scroll position changed. upda t e sc rollbar and
II force redraw of window.
if (sVPos != sOldPos) (

si . cbSize = sizeof (si) ;
si.nPos = sVPos;
si. fMask = SIF_POS:
SetScrolllnfo ChWnd, SB_VERT, &si , TRUE) ;

InvalidateRect ChWnd, NULL, TRUE) ;

return 0:

The window procedure for the frame w indow is quite simple . Just as in the
original Fo ntList program in Chapte r 2, the command bar is crea ted in the
WM_ CREATE message hand le r, DoCreateFrame. ow, however, this procedure also
calls Create Window to crea te the child window in the area underneath the command
bar. The child window is created with three style flags: WS_ VISIBLE, so that the win
dow is initially visible; WS_CHILD, required because it w ill be a child window of the
frame window; and WS_ VSCROLL to add the vertical scroll bar to the child window.

165

Part 1 Windows Programming Basics

166

The majority of the work for the program is handled in the client window pro
cedure. Here the ame font enumeration calls are made to query the fonts in the sys
tem. The WM_PAINT handler, DoPaintClient, has a new characteristic it now bases
what it paints on the new global variable sVPos, which provides vertical positioning.
That variable i initialized to 0 in DoCreateClient and is changed in the handler for a
new message, WM_ VSCROLL.

Scroll bar messages
A WM_ V CROLL message is sent to the owner of a vertical scroll bar any time the user
tap on the croll bar to change its position. A complementary me sage, WM_HSCROLL,
is identical to WM_ V CROLL but is sent when the user taps on a horizontal scroll bar.
For both these messages, the wParam and lParam assignments are the same. The
low word of the wParam parameter contains a code indicating why the message wa
sent. Figure 4-3 show a diagram of horizontal and vertical scroll bars and how tap
ping on different pans of the scroll bars results in different messages. The high word
of wParam is the position of the thumb, but this value is valid only while you 're pro
cessing the SB_THUMBPO ITIO and SB_THUMBTRACK codes, which I'll explain
sho1tly. If the scroll bar sending the message is a stand-alone control and not attached
to a window, the lParam parameter contain the window handle of the scroll bar.

SB_LINELEFT

SB_PAGELEFT

SB_THUMBPOSITION

SB_ THUMBTRACK

Figure 4-3. Scroll bars and their bot spots.

se_pAGERIGHT

SB_LINEUP
se_pAGEUP
SB_ THUMBPOSITION
SB_THUMBTRACK

SB_PAGEOOWN

SB_LINEOOWN

The croll bar message code sent by the scro!J bar allow the program to react
to all the different u er actions allowable by a scroll bar. The response required by
each code is listed in the following table, Figure 4-4.

The B_Ll Exx:x and SB_PAGExx:x codes are pretty straightforward. You move
the scroll position either a line or a page at a time. The SB_THUMBPOSITION and
B_THUMBTRACK codes can be proce sed in one of two way . When the user drags

the scroll bar thumb, the scroll bar sends SB_THUMBTRACK code so that a program
can interactively track the dragging of the thumb. If your application is fast enough,
you can simply process the B_THUMBTRACK code and interactively update the
display. If you field the SB_THUMBTRACK code, however, your application must be

Part I

166

The majority of the work for the program is handled in the client window pro
cedure. Here the same font enumeration calls are made to query the fonts in the sys
tem. The WM_PAINT handler, DoPaintClient, has a new characteristic: it now bases
what it paints on the new global variable sl!Pos, which provides vertical positioning.
That variable is initialized to 0 in DoCreateClient and is changed in the handler for a
new message, WM_ VSCROLL.

Scroll bar messages
A WM_ VSCROLL message is sent to the owner of a vertical scroll bar any time the user
taps on the scroll bar to change its position. A complementary message, WM_HSCROLL,
is identical to WM_ VSCROLL but is sent when the user taps on a horizontal scroll bar.
For both these messages, the wParam and lParam assignments are the same. The
low word of the wParam parameter contains a code indicating why the message was
sent. Figure 4-3 shows a diagram of horizontal and vertical scroll bars and how tap
ping on different parts of the scroll bars results in different messages. The high word
of wParam is the position of the thumb, but this value is valid only while you're pro
cessing the SB_THUMBPOSITION and SB_THUMBTRACK codes, which I'll explain
shortly. If the scroll bar sending the message is a stand-alone control and not attached
to a window, the lParam parameter contains the window handle of the scroll bar.

SB_LINELEFT

SB_PAGELEFT SB_THUMBTRACK

Figure 4-3. Scroll bars and their hot spots.

SB_PAGERIGHT

SB_LINEUP
SB_PAGEUP
SB_THUMBPOSITION
SB_ THUMBTRACK

SB_PAGEDOWN

SB_LINEOOWN

The scroll bar message codes sent by the scroll bar allow the program to react
to all the different user actions allowable by a scroll bar. The response required by
each code is listed in the following table, Figure 4-4.

The SB_LINExxx and SB_PAGExxx codes are pretty straightforward. You move
the scroll position either a line or a page at a time. The SB_THUMBPOSITION and
SB_THUMBTRACK codes can be processed in one of two ways. When the user drags
the scroll bar thumb, the scroll bar sends SB_THUMBTRACK code so that a program
can interactively track the dragging of the thumb. If your application is fast enough,
you can simply process the SB_THUMBTRACK code and interactively update the
display. If you field the SB_THUMBTRACK code, however, your application must be

Chapter 4 Windows, Controls, and Dialog Boxes

quick enough to redraw the display so that the thumb can be dragged without hesi
tation or jumping of the scroll bar. This is especially a problem on the slower devices
that run Windows CE.

Codes

For WS_ VSCROll

SB_LINEUP

SB_LINEDOWN

SB_PAGEUP

SB_PAGEDOWN

For WS_HSCROLL

SB_LINELEFT

SB_LINERIGHT

SB_PAGELEFT

SB_PAGERIGHT

Response

Program should scroll the screen up one line.

Program should scroll the screen down one line.

Program should scroll the screen up one screen's
worth of data.

Program should scroll the screen down one
screen's worth of data.

Program should scroll the screen left one character.

Program should scroll the screen right one character.

Program should scroll the screen left one screen's
worth of data.

Program should scroll the screen right one screen's
worth of data.

For both WS_ VSCROll and WS_HSCROLL

SB_THUMBTRACK

SB_THUMBPOSITION

SB_ENDSCROLL

SB_ TOP

SB_BOTTOM

Figure 4-4. Scroll codes.

Programs with enough speed to keep up should
update the display with the new scroll position.

Programs that can't update the display fast enough
to keep up with the SB_THUMBTRACK message
should update the display with the new scroll
position.

This code indicates that the scroll bar has com
pleted the scroll event. No action is required by the
program.

Program should set the display to the top or left end
of the data.

Program should set the display to the bottom or
right end of the data.

167

Part I

168

If your application (or the system it's running on) is too slow to quickly update
the display for every SB_THUMBTRACK code, you can ignore the SB_THUMBTRACK
and wait for the SB_THUMBPOSITION code that's sent when the user drops the scroll
bar thumb. Then you have to update the display only once, after the user has fin
ished moving the scroll bar thumb.

Configuring a scroll bar
To use a scroll bar, an application should first set the minimum and maximum val
ues-the· range of the scroll bar, along with the initial position. Windows CE scroll
bars, like their Win32 cousins, support proportional thumb sizes, which provide feed
back to the user about the size of the current visible page compared to the entire
scroll range. To set all these parameters, Windows CE applications should use the
SetScrollinfo function, prototyped as

int SetScrollinfo CHWND hwnd, int fnBar, LPSCROLLINFO lpsi, BOOL fRedraw);

The first parameter is either the handle of the window that contains the scroll
bar or the window handle of the scroll bar itself. The second parameter, fnBar, is a
flag that determines the use of the window handle. The scroll bar flag can be one of
three values: SB_HORZ for a window's standard horizontal scroll bar, SB_ VERT for a
window's standard vertical scroll bar, or SB_CTL if the scroll bar being set is a stand
alone control. Unless the scroll bar is a control, the window handle is the handle of
the window containing the scroll bar. With SB_CTL, however, the handle is the win
dow handle of the scroll bar control itself. The last parameter is jRedraw, a Bool
ean value that indicates whether the scroll bar should be redrawn after the call has
been completed.

The third parameter is a pointer to a SCROLLINFO structure, which is defined as

typedef struct tagSCROLLINFO {
UINT cbSize;
UINT fMask;
int nMin;
int nMax;
UINT nPage;
int nPos;
int nTrackPos;

SCROLLINFO;

This strncture allows you to completely specify the scroll bar parameters. The cbSize
field must be set to the size of the SCROLLINFO structure. The }Mask field contains
flags indicating what other fields in the structure contain valid data. The nMin and
nMax fields can contain the minimum and maximum scroll values the scroll bar can
report. Windows looks at the values in these fields if the }Mask parameter contains
the SIP _RANGE flag. Likewise, the nPos field sets the position of the scroll bar within
its predefined range if the }Mask field contains the SIF _POS flag.

Chapter 4 Windows, Controls, and Dialog Boxes

The nPage field allows a program to define the size of the currently viewable
area of the screen in relation to the entire scrollable area. This allows a user to have
a feel for how much of the entire scrolling range is currently visible. This field is used
only if the JM ask field contains the SIF _PAGE flag. The last member of the SCROLLINFO
structure, nTrackPos, isn't used by the SetScrolllnfo call and is ignored.

The jMask field can contain one last flag. Passing a SIF _DISABLENOSCROLL
flag causes the scroll bar to be disabled, but still visible. This is handy when the en
tire scrolling range is visible within the viewable area and no scrolling is necessary.
Disabling the scroll bar in this case is often preferable to simply removing the scroll
bar completely.

Those with a sharp eye for detail will notice a problem with the width of the
fields in the SCROLLINFO structure. The nMin, nMax, and nPos fields are integers
and therefore in the world of Windows CE, are 32 bits wide. On the other hand, the
WM_HSCROLL and WM_ VSCROLL messages can return only a 16-bit position in the
high word of the wParam parameter. If you're using scroll ranges greater than 65,535,
use this function:

BOOL GetScrollinfo (HWND hwnd, int fnBar, LPSCROLLINFO lpsi);

As with SetScrolllnjo, the flags in the fnBar field indicate the window handle
that should be passed to the function. The SCROLLINFO structure is identical to the
one used in SetScrolllnfo; however, before it can be passed to GetScrolllnfo, it must
be initialized with the size of the structure in cbSize. An application must also indi
cate what data it wants the function to return by setting the appropriate flags in the
./Mask field. The flags used in ./Mask are the same as the ones used in SetScrolllnfo
with a couple of additions. Now a SIF_TRACKPOS flag can be passed to have the
scroll bar return its current thumb position. When called during a WM_xSCROLL
message, the nTrackPos field contains the real time position while the nPos field
contains the scroll bar position at the start of the drag of the thumb.

The scroll bar is an unusual control in that it can be added easily to windows
simply by specifying a window style flag. It's also unusual in that the control is placed
outside the client area of the window. The reason for this assistance is that scroll bars
are commonly needed by applications, so the Windows developers made it easy to
attach scroll bars to windows. Now let's look at the other basic Windows controls.

WINDOWS CONTROLS
While scroll bars hold a special place because of their easy association with standard
windows, there are a large number of other controls that Windows applications often
use, including buttons, edit boxes, and list boxes. In short, controls are simply pre
defined window classes. Each has a custom window procedure supplied by Windows
that gives each of these controls a tightly defined user and programming interface.

169

Since a control is just another window, it can be created with a call to
Create Window or CreateWindowEx, or, as I will explain later in this chapter, auto
matically by the dialog manager during the creation of a dialog box. Like menus,
controls notify the parent window of events via WM_COMMAND messages encod
ing events and the ID and window handle of the control encoded in the parameters
of the message. Controls can also be configured and manipulated using predefined
messages sent to the control. Among other things, applications can set the state of
buttons, add or delete items to list boxes, and set the selection of text in edit boxes
all by sending messages to the controls.

There are six predefined window control classes. They are

• Button A wide variety of buttons.

• Edit A window that can be used to enter or display text.

• List A window that contains a list of strings.

• Combo A combination edit box and list box.

• Static A window that displays text or graphics that a user can't change.

• Scroll bar A scroll bar not attached to a specific window.

Each of these controls has a wide range of function, far too much for me to cover
completely in this chapter. But I'll quickly review these controls, mentioning at least
the highlights. Afterward, I'll show you an example program, Ct!View, to demonstrate
these controls and their interactions with their parent windows.

Button Controls

170

Button controls enable several forms of input to the program. Buttons come in many
styles, including push buttons, check boxes, and radio buttons. Each style is designed
for a specific use-for example, push buttons are designed for receiving momentary
input, check boxes are designed for on/ off input, and radio buttons allow a user to
select one of a number of choices.

Push buttons
In general, push buttons are used to ~nvoke some action. When a user presses a
push button using a stylus, the button sends a WM_COMMAND message with a
BN_CLICKED (for button notification clicked) notify code in the high word of the
wParam parameter.

Check boxes
Check boxes display a square box and a label that asks the user to specify a choice.
A check box retains its state, either checked or unchecked, until the user clicks
it again or the program forces the button to change state. In addition to the standard

Chapter 4 Windows, Controls, and Dialog Boxes

BS_CHECKBOX style, check boxes can come in a 3-state style, BS_3STATE, that al
lows the button to be disabled and shown grayed out. Two additional styles,
BS_AlffOCHECKBOX and I3S_AUT03STATE, automatically update the state and look
of the control to reflect the checked, unchecked, and in the case of the 3-state check
box, the disabled state.

As with push buttons, check boxes send a BN_CLICKED notification when the
button is clicked. Unless the check box has one of the automatic styles, it's the re
sponsibility of the application to manually change the state of the button. This can
be done by sending a BM_SETCHECK message to the button with the wParam set to
0 to uncheck the button or 1 to check the button. The 3-state check boxes have a
third, disabled state that can be set by means of the BM_SETCHECK message with
the wParam value set to 2. An application can determine the current state using the
BM_GETCHECK message.

Radio buttons
Radio buttons allow a user to select from a number of choices. Radio buttons are
grouped in a set, with only one of the set ever being checked at a time. If it's using
the standard BS_RADIOBUTTON style, the application is responsible for checking
and unchecking the radio buttons so that only one is checked at a time. However,
like check boxes, radio buttons have an alternative style, BS_AUTORADIOBUTTON,
that automatically maintains the group of buttons so that only one is checked.

Group boxes
Strangely, the group box is also a type of button. A group box appears to the user as
a hollow box with an integrated text label surrounding a set of controls that are natu
rally grouped together. Group boxes are merely an organizational device and have
no programming interface other than the text of the box, which is specified in the
window title text upon creation of the group box. Group boxes should be created
after the controls within the box are created. This ensures that the group box will be
"beneath'' the controls it contains in the window Z-order.

You should also be careful when using group boxes on Windows CE devices.
The problem isn't with the group box itself, but with the small size of the Windows
CE screen. Group boxes take up valuable screen real estate that can be better used
by functional controls. This is especially the case on the Palm-size PC with its very
small screen. In many cases, a line drawn between sets of controls can visually group
the controls as well as a group box can.

Customizing the appearance of a button
You can further customize the appearance of the buttons described so far by using a
number of additional styles. The styles, BS_RIGHT, BS_LEFT, BS_BOTTOM, and
BS_ TOP, allow you to position the button text in a place other than the default center
of the button. The BS_MUL TILINE style allows you to specify more than one line of

171

Part I

172

text in the button. The text is flowed to fit within the button. The newline character
(\n) in the button text can be used to specifically define where line breaks occur.
Windows CE doesn't support the BS_ ICON and BS_BITMAP button styles supported
by other versions of Windows.

Owner-draw buttons
You can totally control the look of a button by specifying the BS_OWNERDRAW style.
When a button is specified as owner-draw, its owner window is entirely responsible
for drawing the button for all the states in which it might occur. When a window
contains an owner-draw button, it's sent a WM_DRAWITEM message to inform it that
a button needs to be drawn. For this message, the wParam parameter contains the
ID value for the button and the !Param parameter points to a DRAWITEMSTRUCT
strncture defined as

typedef struct tagDRAWITEMSTRUCT
UINT CtlType;
UINT Ctl ID;
UINT itemID;
UINT itemAction;
UINT itemState;
HWND hwndltem;
HOC hDC;
RECT rcitem;
DWORD itemData;

DRAWITEMSTRUCT;

The Ct!Type field is set to ODT_BUTTON while the CtlJD field, like the wParam
parameter, contains the button's ID value. The itemAction field contains flags that
indicate what needs to be drawn and why. The most significant of these fields is
itemState, which contains the state (selected, disabled, and so forth) of the button.
The hDC field contains the device context handle for the button window while the
rcltem RECT contains the dimensions of the button. The itemData field is NULL for
owner-draw buttons.

As you might expect, the WM_DRAWITEM handler contains a number of GDI
calls to draw lines, rectangles, and whatever else is needed to render the button. An
important aspect of drawing a button is matching the standard colors of the other
windows in the system. Since these colors can change, they shouldn't be hard coded.
You can query to find out which are the proper colors by using the function

DWORD GetSysColor (int nindex);

This function returns an RGB color value for the colors defined for different
aspects of windows and controls in the system. Among a number of predefined in
dex values passed in the index parameter, an index of COLOR_BTNFACE returns the

Chapter 4 Windows, Controls, and Dialog Boxes

proper color for the face of a button while COLOR_BTNSHADOW returns the dark
color for creating the three-dimensional look of a button.

The Edit Control

The edit control is a window that allows the user to enter and edit text. As you might
imagine, the edit control is one of the handiest controls in the Windows control pan
theon. The edit control is equipped with full editing capability, including cut, copy,
and paste interaction with the system clipboard, all without assistance from the ap
plication. Edit controls display a single line, or by specifying the ES_MULTILINE style,
multiple lines of text. The Notepad accessory, provided with the desktop versions of
Windows, is simply a top-level window that contains a multiline edit control.

The edit control has a few other features that should be mentioned. An edit
control with the ES_PASSWORD style displays an asterisk (*) character by default
in the control for each character typed; the control saves the real character. The
ES_READONLY style protects the text contained in the control so that it can be read,
or copied into the clipboard, but not modified. The ES_LOWERCASE and ES_ UPPER
CASE styles force characters entered into the control to be changed to the speci
fied case.

You can add text to an edit control by using the WM_SETTEXT message and
retrieve text by using the WM_GETTEXT message. Selection can be controlled using
the EM_SETSEL message. This message specifies the starting and ending characters
in the selected area. Other messages allow the position of the caret (the marker that
indicates the current entry point in an edit field) to be queried and set. Multiline edit
controls contain a number of additional messages to control scrolling as well as to
access characters by line and column position.

The List Box Control

The list box control displays a list of text items so that the user might select one or
more of the items within the list. The list box stores the text, optionally sorts the items,
and manages the display of the items, including scrolling. List boxes can be config
ured to allow selection of a single item or multiple items or to prevent any selec
tion at all.

You add an item to a list box by sending an LB_ADDSTRING or LB_INSERTSTRING
message to the control, passing a pointer to the string to add in the lParam parame
ter. The LB_ADDSTRING message places the newly added string at the end of the list
of items while LB_INSERTSTRING can place the string anywhere within the list of
items in the list box. The list box can be searched for a particular item using the
LB_FIND message.

173

Selection status can be queried using the LB_GETCURSEL for single selection
list boxes. For multiple selection list boxes, the LB_GETSELCOUNT and LB_GET
SELITEMS can be used to retrieve the items currently selected. Items in the list box
can be selected programmatically using the LB_SETCURSEL and LB_SETSEL messages.

Windows CE supports most of the list box functionality available in other ver
sions of Windows with the exception of owner-draw list boxes, and the LB_DIR
family of messages. A new style, LBS_EX_CONSTSTRINGDATA, is supported un
der Windows CE. A list box with this style doesn't store strings passed to it. Instead,
the pointer to the string is stored and the application is responsible for maintaining
the string. For large arrays of strings that might be loaded from a resource, this pro
cedure can save RAM because the list box won't maintain a separate copy of the
list of strings.

The Combo Box Control

174

The combo box is (as the name implies) a combination of controls-in this case, a
single-line edit control and a list box. The combo box is a space-efficient control for
selecting one item from a list of many or for providing an edit field with a list of pre
defined, suggested entries. Under Windows CE, the combo box comes in two styles:
drop-down and drop-down list. (Simple combo boxes aren't supported.) The drop
down style combo box contains an edit field with a button at the right end. Clicking
on the button displays a list box that might contain more selections. Clicking on one
of the selections fills the edit field of the combo box with the selection. The drop
down list style replaces the edit box with a static text control. This allows the user to
select from an item in the list but prevents the user from entering an item that's not in
the list.

Since the combo box combines the edit and list controls, a list of the messages
used to control the combo box strongly resembles a merged list of the messages for
the two base controls. CB_ADDSTRING, CB_INSERTSTRING, and CB_FINDSTRING
act like their list box cousins. Likewise the CB_SETEDITSELECT and CB_GETEDIT
SELECT messages set and query the selected characters in the edit box of a drop
down or a drop-down list combo box. To control the drop-down state of a drop-down
or drop-down list combo box, the messages CB_SHOWDROPDOWN and CB_GET
DROPPEDSTATE can be used.

As in the case of the list box, Windows CE doesn't support owner-draw combo
boxes. However, the combo box supports the CBS_EX_CONSTSTRINGDATA extended
style, which instructs the combo box to store a pointer to the string for an item in
stead of the string itself. As with the list box LBS_EX_CONSTSTRINGDATA style, this
procedure can save RAM if an application has a large array of strings stored in ROM
because the combo box won't maintain a separate copy of the list of strings.

Chapter 4 Windows, Controls, and Dialog Boxes

Static Controls

Static controls are windows that display text, icons, or bitmap not intended for u er
interaction. You can use tatic text controls to label other controls in a window. What
a static control displays is defined by the text and the style for the control Under
Windows CE, static controls support the following style :

• SS_LEFT Displays a line of left-aligned text. The text is wrapped, if nec
essary, to fit inside the control.

• SS_CENTER Displays a line of text centered in the control. The text is
wrapped, if necessary, to fit in ide the control.

• SS_RIGHT Displays a line of text aligned with the right side of the con
trol. The text is wrapped, if nece ary, to fit inside the control.

• SS_I..EFTNOWORDWRAP Displays a line of left-aligned text. The text i n't
wrapped to multiple lines. Any text extending beyond the right ide of
the control is clipped.

• SS_BITMAP Displays a bitmap. Window text for the control specifies the
name of the resource containing the bitmap.

• SSJCON Displays an icon. Window text for the control pecifies the name
of the resource containing the icon.

tatic controls with the _ OTIFY style end a WM_COMMAND me age
when the control is clicked, enabled, or disabled, although the Window CE ver
sion of the static control doesn't send a notification when it's double-clicked . The
SS_CENTERIMAGE style, used in combination with the _BITMAP or _ICO tyle,
center the image within the control. The S _NOPREFIX style can be u ed in combi
nation with the text styles. It prevents the ampersand (&) character from being inter
preted as indicating the next character is an accelerator character.

Windows CE doesn't support static controls that di play filled or hollow rect
angles uch a those drawn with the SS_ WHITEFRAME or SS_BLACKRECT styles. Also,
Windows CE doe n't support owner-draw static controls.

The Scroll Bar Control
The scroll bar control operates identically to the window scroll bars described previously
with the exception that the fnBar field u ed in SetScrolllnfo and GetScro//Jnfo must be
set to SB_CfL. The hwnd field then must be et to the handle of the croll bar control,
not to the window that owns the scroll bar. Like window scroll bars, the owner of the
scroll bar is responsible for fielding the scroll messages WM_ V CROLL and WM_H CROLL
and etting the new position of the scroll bar in response to the e messages.

175

Chapter 4 Windows, Controls, and Dialog Boxes

Static Controls
Static controls are windows that display text, icons, or bitmaps not intended for user
interaction. You can use static text controls to label other controls in a window. What
a static control displays is defined by the text and the style for the control Under
Windows CE, static controls support the following styles:

• SS_LEFT Displays a line of left-aligned text. The text is wrapped, if nec
essary, to fit inside the control.

• SS_CENTER Displays a line of text centered in the control. The text is
wrapped, if necessary, to fit inside the control.

• SS_RIGHT Displays a line of text aligned with the right side of the con
trol. The text is wrapped, if necessary, to fit inside the control.

• SS_LEFTNOWORDWRAP Displays a line ofleft-aligned text. The text isn't
wrapped to multiple lines. Any text extending beyond the right side of
the control is clipped.

• SS_BITMAP Displays a bitmap. Window text for the control specifies the
name of the resource containing the bitmap.

• SS_ICON Displays an icon. Window text for the control specifies the name
of the resource containing the icon.

Static controls with the SS_NOTIFY style send a WM_COMMAND message
when the control is clicked, enabled, or disabled, although the Windows CE ver
sion of the static control doesn't send a notification when it's double-clicked. The
SS_CENTERIMAGE style, used in combination with the SS_BITMAP or SS_ICON style,
centers the image within the control. The SS_NOPREFIX style can be used in combi
nation with the text styles. It prevents the ampersand (&) character from being inter
preted as indicating the next character is an accelerator character.

Windows CE doesn't support static controls that display filled or hollow rect
angles such as those drawn with the SS_ WHITEFRAME or SS_BLACKRECT styles. Also,
Windows CE doesn't support owner-draw static controls.

The Scroll Bar Control
The scroll bar control operates identically to the window scroll bars described previously
with the exception that the fnBar field used in SetScrol!Info and GetScrolllnfo must be
set to SB_CTI.. The humd field then must be set to the handle of the scroll bar control,
not to the window that owns the scroll bar. Like window scroll bars, the owner of the
scroll bar is responsible for fielding the scroll messages WM_ VSCROll and WM_HSCROIL
and setting the new position of the scroll bar in response to these messages.

175

Part 1 Windows Programming Basics

The CtlView Example Program

The CtlView example program, shown in Figure 4-5, demonstrates all the controls
I've just described. The example makes use of several application-defined child win
dows that contain various controls. You switch between the different child windows
by clicking on one of five radio buttons displayed acros the top of the main win
dow. As each of the controls reports a notification through a WM_ COMMAND mes
sage, that notification is displayed in a list box on the right side of tl1e window. CtlView
is handy for observing ju t what mes ages a control sends to its parent window and
when they're sent. One problem with CtlView is that it's designed for an H/ PC screen,
not a Palm-size PC creen . If you run CtlView on a Palm-size PC, you 'll see that the
controls don't all fit onto the small Palm-size PC screen .

CtlVlew.rc

II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==

/#include "CtlView.h" II Program-s pecific stuff

ID_ICON ICON "Ct lView.ico" II Program icon
TEXTICON ICON "btnicon.ico" II Icon used in static window
STATICBMP BITMAP "statbmp.bmp" II Bitmap used in static window

CtlVlew.h

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright {C) 1998 Douglas Boling
II==
II Returns number of elements
#define dim(x) Csizeof{x) I sizeof(x[0]))
11- ---
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*Fxn){HWND, UINT, WPARAM, LPARAM);

Figure 4-5. Tbe CtlView program.

176

II Structure associates
II messages
II with a function.

Basics

The CtlView Example Program

The CtlView example program, shown in Figure 4-5, demonstrates all the controls
I've just described. The example makes use of several application-defined child win
dows that contain various controls. You switch between the different child windows
by clicking on one of five radio buttons displayed across the top of the main win
dow. As each of the controls reports a notification through a WM_ COMMAND mes
sage, that notification is displayed in a list box on the right side of the window. CtlView
is handy for observing just what messages a control sends to its parent window and
when they're sent. One problem with CtlView is that it's designed for an H/PC screen,
not a Palm-size PC screen. If you run CtlView on a Palm-size PC, you'll see that the
controls don't all fit onto the small Palm-size PC screen.

Figure 4-5. 1be Ct/View program.

176

Chapter 4 Windows, Controls, and Dialog Boxes

} ;

struct decodeCMD {
UINT Code;
LRESULT C• Fxn)(HWND, WORD, HWND, WORD);

J ;

II Structure associates
II menu IDs with a
II function.

11 -------------- ------ --- --- --- ----- ------ ----- ------------- ------------
II Generic defines used by application
//define IDLBTNICON 20

//define ID_ICON 1
//define IDc_cMDBAR 2
//define IDC_RPTLI ST 3

II Client window IDs go from 5 through 9.
//define IDc_WNDSEL

II Radio button IDs go from
//define IDc_RADIDBTNS

II Button window defines
#define IDC_PUSHBTN 100
#define IDC_CHKBOX 101
#define IDC_ACHKBOX 102
#define IDC_A3STBOX 103
#define IDC_RADIOl 104
#define IDC_RADI02 105
#define IDC_OWNRDRAW 106

II Edit window defines
#define IDC_SINGLELINE 100
#define IDC_MULTILINE 101
#define IDC_PASSBOX 102

II List box window defines
#define IDC_COMBOBOX 100
#define IDC_SNGLELIST 101
#define IDC_MULTILIST 102

5

10 through 14.
10

II Static control window defines
#define IDC_LEFTTEXT 100
#define IDC_RIGHTTEXT 101
#define IDC_CENTERTEXT 102
#define IDC_ICONCTL 103
#define IDC_BITMAPCTL 104

II Icon used on button

II Icon ID
II Command bar ID
II Re po rt window ID

II Starting client
II window IDs

II Sta rt i ng ID of
II radio buttons

(continued)

177

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

177

Part I Windows Programming Basics

Figure 4-5. continued

II Scroll bar window defines
#define IDC_LRSCROLL 100
#define IDC_UDSCROLL 101

II User defined message to add a l i ne to the window
#define MYMSG_ADDLINE CWM_USER + 10)

typedef struct (
TCHAR • szClass:
INT nlD:
TCHAR • szTitle:
INT x:
INT y:
INT ex:
INT cy:
DWORD lStyle:

CTLWNDSTRUCT, • PCTLWNDSTRUCT:

typedef struct {
WORD wMsg:
INT nID:
WPARAM wParam:
LPARAM lParam:

} CTLMSG, • PCTLMSG:

typedef struct {
TCHAR • pszLabel;
WORD wNotif i cation;

NOTELABELS, • PNOTELABELS;

11 -- --
11 Function prototypes
II
int InitApp CHINSTANCE>:
HWND Initlnstance CHINSTANCE, LPWSTR, int);
int Termlnstance CHINSTANCE, int>:

II Window procedures
LRESULT CALLBACK FrameWndProc CHWND, UINT, WPARAM, LPARAM):
LRESULT CALLBACK ClientWndProc CHWND, UINT, WPARAM, LPARAM):

II Message handlers
LRESULT DoCreateFrame CHWND, UINT, WPARAM, LPARAM);
LRESULT DoCommandFrame CHWND, UINT, WPARAM, LPARAM);
LRESULT DoAddLineFrame CHWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyFrame CHWND, UINT, WPARAM, LPARAM);

178

Part I Windows Programming Basics

Figure 4-5. continued

II Scroll b1r wtndow deftnes
ldeftne JOC_LRSCROLL 118
ldeftne JOC_UOSCROLL 111

II User deftned .. ss1ge to 1dd 1 ltne to the tndo
ldeftne MYMS6..AOOLI E (USER + 11)

typedef struct (
TCHAR •szChss:
I T nIO:
TCHAR szT1 tle:
I T x:
I T y:
I T ex:
I T cy:

ORO lStyle:
CTLN OSTRUCT. PCTL OSTRUCT:

typedef struct
ORO sg:

I T nlO:
NPARAM P1re•:
LPARAM lP1r1•:

CTLMS&. PCT S6:

typedef struct (
TCHAR •pszL1bel:

ORD ottftc1tton:
OTELABELS. •P OTELABELS:

ll ·· · -··--····-···--- -- --·· ·· · ·-·········- · -- · -------···· · ···- · · · ·---- --
11 Functton prototypes
II
tnt InttApp (HI STA CE>:
H 0 lnttlnst1nce <HI STA CE. LP STR. tnt):
tnt Termlnst1nce CHI STA CE. tnt>:

II Wtndow procedures
LRESULT CALLBAC Fr1 .. ndProc CH D. UI T. PARAM. LPARAM):
LRESULT CALLBAC CltentWndProc (H D. UI T. PARAM. LPARAM>:

II Mess1ge h1ndlers
LRESULT D0Cre1tefr111e (ND. UI T.
LRESULT DoCo andfra .. (H
LRESULT DoAddltnefra .. (
LRESULT D0Destroyfr111e CH

178

PARAM. LPARAM>:
PARAM. LPARAM):
PARAM. LPAIWO:
PARAM, LPARAM>:

Chapter 4 Windows, Controls, and Dialog Boxes

11--- --- ------------
11 Window prototypes and defines for BtnWnd
II
#define BTNWND TEXT ("ButtonWnd")
int InitBtnWnd CHINSTANCE);

II Window procedures
LRESULT CALLBACK BtnWndProc (HWND, UINT, WPARAM, LPARAM);

LRESULT DoCreateBtnWnd (HWND, UINT, WPARAM, LPARAM);
LRESULT DoCtlColorBtnWnd (HWND, UINT, WPARAM, LPARAM);
LRESULT DoCommandBtnWnd (HWND, UINT, WPARAM, LPARAM);
LRESULT DoDrawltemBtnWnd CHWND, UINT, WPARAM, LPARAM);
LRESULT DoMeasureltemBtnWnd CHWND. UINT, WPARAM, LPARAM);

11 -- --
11 Window prototypes and defines for EditWnd
II
#define EDITWND TEXT ("EditWnd")
int InitEditWnd (HINSTANCE);

II Window procedures
LRESULT CALLBACK EditWndProc CHWND, UINT, WPARAM, LPARAM);

LRESULT DoCreateEditWnd CHWND, UINT, WPARAM, LPARAM);
LRESULT DoCommandEditWnd CHWND, UINT, WPARAM, LPARAM);
LRESULT DoDrawltemEditWnd CHWND, UINT, WPARAM, LPARAM);
LRESULT DoMeasureltemEditWnd CHWND, UINT, WPARAM, LPARAM);

11 --
11 Window prototypes and defines for ListWnd
II
#define LISTWND TEXT ("ListWnd")
int InitListWnd CHINSTANCE);

II Window procedures
LRESULT CALLBACK ListWndProc (HWND, UINT, WPARAM, LPARAM);

LRESULT DoCreateListWnd CHWND, UINT, WPARAM, LPARAM);
LRESULT DoCommandListWnd (HWND, UINT, WPARAM. LPARAM);
LRESULT DoDrawltemListWnd CHWND, UINT, WPARAM, LPARAM);
LRESULT DoMeasureltemListWnd CHWND, UINT, WPARAM, LPARAM);

11-- --- -
11 Window prototypes and defines for StatWnd
II

(continued)

179

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

179

Part 1 Windows Programming Basics

Figure 4-5. continued

//define STATWND TEXT ("StaticWnd")
int InitStatWnd (HINSTANCE);

II Window procedures
LRESULT CALLBACK StatWndProc (HWND. UINT. WPARAM, LPARAM);

LRESULT DoCreateStatWnd (HWND, UINT, WPARAM. LPARAM);
LRESULT DoCommandStatWnd (HWND, UINT, WPARAM, LPARAM);
LRESULT DoDrawltemStatWnd CHWND, UINT, WPARAM, LPARAM);
LRESULT DoMeasure i temStatWnd (HWND. UINT, WPARAM. LPARAM);

11 -------- - - - -------- --- - -- ------- - ---------- - --------------··---·-·--·-
ll Window prototypes and defines ScrollWnd
II
#define SCRDLLWND TEXT ("ScrollWnd")
int InitScrollWnd (HINSTANCE);

II Window procedures
LRESULT CALLBACK ScrollWndProc CHWND. UINT. WPARAM, LPARAM);

LRESULT DoCreateScrollWnd (HWND, UINT. WPARAM. LPARAM);
LRESULT DoVScrollScrollWnd (HWND. UINT, WPARAM. LPARAM);
LRESULT DoHScrollScrollWnd CHWND. UINT, WPARAM. LPARAM);

CtlVlew.c

II==
II CtlView - Lists the available fonts in the system.
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include <commctrl.h> II Command bar includes
#include "CtlView.h" II Program-specific stuff

11 ------------------------- - -------------------- - ------------- -- - - ---- --
11 Global data
II
const TCHAR szAppName[] =TEXT C"CtlView");
HINSTANCE hinst; II Program instance handle

II Message dispatch table for FrameWindowProc
const struct decodeUINT FrameMessages[J = {

WM_CREATE. DoCreateFrame,

180

Part I Windows Programming Basics

Figure 4-5. continued

180

Chapter 4 Windows, Controls, and Dialog Boxes

} ;

WM_COMMAND, DoCommandFrame,
MYMSG_ADDLINE, DoAddLineFrame,
WM_DESTROY, DoDestroyFrame,

typedef struct (
TCHAR *SZTitle;
INT nID:
TCHAR *SZCtlWnds;
HWND hWndClient:

RBTNDATA;

II Text for main window radio buttons
TCHAR *SZBtnTitle[] =(TEXT ("Buttons"), TEXT ("Edit"), TEXT ("List"),

TEXT ("Static"), TEXT ("Scroll")};
II Class names for child windows containing controls
TCHAR *SZCtlWnds[] = (BTNWND, EDITWND, LISTWND, STATWND, SCROLLWND};

INT nWndSel = 0;

llHWND hwndVisClient = 0;
II==
II Program entry point
II
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) (
MSG msg;
int re = 0:
HWND hwndFrame:

II Initialize application.
re = InitApp ChinstanceJ:
if (rel return re;

II Initialize this instance.
hwndFrame = Initinstance Chinstance, lpCmdLine, nCmdShowJ;
if ChwndFrame == 01

return 0x10:

II Application message loop
while CGetMessage C&msg, NULL. 0, 011 (

TranslateMessage C&msg);
DispatchMessage (&msg);

}

II Instance cleanup
return Termlnstance Chinstance , msg.wParaml:

(continued)

181

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

181

Part 1 Windows Programming Basics

Figure 4-5. continued

11------------- ---
11 InitApp - Application initialization
II
int InitApp CHINSTANCE hlnstance) {

WNDCLASS we;

}

II Register application
we.style = 0;

frame window class.

wc.lpfnWndProc = FrameWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hlnstance = hlnstance;
wc.hlcon = NULL,
wc.hCursor = NULL;

II Window style
II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon
II Default cursor

GetSysColorBrush (COLOR_STATIC);
II Menu name

wc.hbrBackground = CHBRUSH)
wc.lpszMenuName = NULL;
wc .l pszClassName = szAppName; II Window class name

if CRegisterClass C&wc) == 0) return 1;

II Initialize client window classes
if CinitBtnWnd (hlnstance) != 0) return 2;
if ClnitEditWnd Chlnstance) != 0) return 2;
if ClnitListWnd Chinstance) != 0) return 2;
if ClnitStatWnd Chlnstance) != 0) return 2;
if ClnitScrollWnd Chlnstance) != 0) return 2:
return 0:

11-- ---- -- --
11 lnitlnstance - Instance initialization
II
HWND Initlnstance CHINSTANCE hinstance, LPWSTR lpCmdline, int nCmdShow) {

HWND hWnd;

182

II Save program instance handle in global variable.
hlnst = hlnstance;

II Create frame window.
hWnd = CreateWindow CszAppName,

TEXT ("Cont ro 1
WS_VISIBLE,
CW_USEDEFAUL T,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,

II Window class
View"), II Window title

11 Style flags
II x position
II y position
II Initial width
II Initial height
II Parent

Figure 4-5. continued

182

Chapter 4 Windows, Controls, and Dialog Boxes

}

NULL,
hinstance.
NULL);

II Return fail code if window not created.
if C!IsWindow ChWnd)) return 0;

II Standard show and update calls
ShowWindow ChWnd, nCmdShowl;
UpdateWindow ChWnd);

return hWnd;

II Menu, must be null
II Application instance
II Pointer to create
II parameters

11-- --
11 Terminstance - Program cleanup
II
int Terminstance CHINSTANCE hinstance, int nDefRCl {

return nDefRC;
}

II==
II Message handling procedures for FrameWindow
II
11---- --
11 FrameWndProc - Callback function for application window
II
LRESULT CALLBACK FrameWndProc (HWND hWnd, UINT wMsg, WPARAM wParam.

}

INT i;
II

LPARAM lParam) {

II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for Ci = 0; i < dimCFrameMessages); i++)

if CwMsg == FrameMessages[i].Code)
return C• FrameMessages[iJ.Fxn)ChWnd, wMsg, wParam. lParam);

return DefWindowProc ChWnd, wMsg, wParam, lParam);

11---- ------- --- --------------
11 DoCreateFrame - Process WM_CREATE message for window.
II
LRESULT DoCreateFrame CHWND hWnd, UINT wMsg, WPARAM wParam.

LP A RAM l Pa ram) (
LPCREATESTRUCT lpcs;
HWND hwndCB, hwndChild;
INT sHeight, 1, x, y, ex. cy;

(continued)

183

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

183

Part 1 Windows Programming Basics

Figure 4-5. continued

184

II Convert lParam into pointer to create struct.
lpcs = (LPCREATESTRUCT) lParam ;
x = lpcs->x;
y = lpcs ->y;
ex = lpcs ->cx;
cy = lpcs->cy;
nWndSel = 0;
II Create a command bar.
hwndCB = CommandBar_Create (hlnst, hWnd, IDC_CMDBAR);
II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 0);
sHeight = CommandBar_Height (GetDlgltem ChWnd, IDC_CMDBAR>>:

II Create the radio buttons.
for (i = 0; i < dim(szBtnTitle); i++) (

}

II

hwndChild = CreateWindow (TEXT ("BUTTON "),
szBtnTitle[i], BS_AUTORADIOBUTTON
WS_VISIBLE I WS_CHILD.
10 + Ci * 85), sHeight,
80, 23, hWnd, CHMENU) (IDC_RADIOBTNS+i),
hlnst, NULL);

II Destroy frame if window not created.
if (!lsWindow ChwndChild)) {

DestroyWindow (hWnd);
break;

}

II Create report window. Size it so that it fits under
II the command bar and fills the remain i ng client area.
II
hwndChild = CreateWindowEx CWS_ELCLIENTEDGE, TEXT ("listbox"),

TEXT (""), WS_VISIBLE I W5_CHILD I WS_VSCROLL
LBS_USETABSTOPS I LBS_NOINTEGRALHE IGHT.
cxl2 . y + sHeight + 25,
cxl2, cy - sHeight - 25,
hWnd, (HMENU)IDC_RPTLIST,
hlnst. NULL);

II Destroy frame if window not created.
if (!lsWindow ChwndChild)) {

DestroyWindow ChWnd);
return 0;

Figure 4-5. continued

184

Chapter 4 Windows, Controls, and Dialog Boxes

)

II Initialize tab stops for display list box.
i = 25;
SendMessage (hwndChild, LB_SETTABSTOPS. 1. (LPARAM)&i);

II
II Create the child windows. Size them so that they fit under
II the command bar and fill the left side of the child area.
II
for (i = 0; i < dim(szCtlWnds); i++)

)

hwndChild CreateWindowEx (WS_EX_CLIENTEDGE.
szCtlWnds[i].
TEXT(""), WS_CH ILD.
x. y + sHeight + 25,
cxl2, cy - sHeight - 25,
hWnd, (HMENU)(IDC_WNDSEL+i),
hlnst, NULL);

II Destroy frame if client window not created.
if (!ls Window (hwndChild)) (

DestroyWindow (hWndl:
return 0:

II Check one of the auto radio buttons.
SendDlgltemMessage (hWnd, IDC_RADIOBTNS+nWndSel, BM_S ETCHECK, 1, 0);
hwndChild = GetDlgltem (hWnd, IDC_WNDSEL+nWndSell;
ShowWindow (hwndChild, SW_SHOWJ;
return 0;

11----- --- --
11 DoCommandFrame - Process WM_COMMAND message for window.
II
LRESULT DoCommandFrame (HWND hWnd, UINT wMsg, WPARAM wParam,

LP A RAM l Pa ram l (
HWND hwndTemp;
int nBtn;
II Don't look at list box messages.
if (LOWORD (wParam) == IDC_RPTLIST)

return 0;
nBtn = LOWORD (wParam) - IDC_RADIOBTNS:
if (nWndSel != nBtnl (

II Hide the currently visible window.
hwndTemp = GetDlgltem (hWnd, IDC_WNDSEL+nWndSell;
ShowWindow (hwndTemp, SW_HIDEJ:

II Save the current selection.
nWndSel = nBtn:

(continued)

185

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

185

Part 1 Windows Programming Basics

Figure 4·5. continued

}

II Show the window selected via the radio button.
hwndTemp = GetDlgltem ChWnd, IOC_WNDSEL+nWndSel):
ShowWindow ChwndTemp, SW_SHOW):

return 0:

11------------- ----------- --
11 DoAddlineFrame - Process MYMSG..ADDLINE message for window.
II
LRESULT DoAddlineFrame CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

}

TCHAR sz0ut[128]:
INT i:

if CLOWORD CwParam) == 0xffff)

else
wsprintf CszOut, TEXT (" \t Ss"), CLPTSTR)lParam):

wsprintf CszOut, TEXT ("id:Sx \t Ss") , LOWORD CwParam),
C LPTSTR> 1 Pa ram):

SendDlgltemMessage ChWnd, IOC_RPTLIST, LB..ADDSTRING, 0,
CLPARAM>CLPCTSTR>szOut):

1f Ci I= LB_ERR)
SendOlgltemMessage (hWnd, IOC_RPTLIST, LB_SETTOPINDEX, i,

CLPARAM)(LPCTSTR)szOut):
return 0:

11------------------- ---- ---
11 DoDestroyFrame - Process WM_OESTROY message for window.
II
LRESULT OoOestroyFrame CHWND hWnd, UINT wMsg. WPARAM wParam,

LPARAM 1 Pa ram) {
PostQuitMessage (0):
return 0:

BtnWnd.c

II==--=======
II BtnWnd - Button window code
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling

186

Part I Windows Programming Basics

Figure 4-5. continued

II Sh the tnd sel cted vta the r1dto button.
wndTeap GetDlgltn Ch IDC OSEL-ttl ndSel):

Sh tnd < hwndTe11p. S) :

return I:
)

II·-··- --·-··-····----~------·---------- --·--··------····-···-·······-··
II DoAddltn Fra .. - Process 6..AOOLI E 11age for 1nd •
II
LRESULT DoAddltneFr111e (H D h d. UI 19 PARAH wPar1•.

}

LPARAM 1Par) (
TCHAR sz0ut[128]:
I T t:

tf CLO RO C Para•) .. 8xffff)
wsprtntf CszOut. TEXT c• \t 11•>. CLPTSTR>lPar1•>:

else
wsprtntf cszOut. TEXT c•td: x \t •>, L RO < P1r1•>.

(LPTSTR)l Para•>:

t • SendDlgJte

tf < t I• LB_ERR)
SendDlglte

return 8:

ssage (h nd. IDC_RPTLIST. LB...ADDSTRI 6 •••
(LPARAM)(LPCTSTR)1zOut):

ssage Ch nd. IDC...RPTLIST. Ll_SETTOPINDEX. t,
CLPARAM><LPCTSTR)szOut):

II·············-·····--· - -·- -----·-----~-------------------·--·---·-
II OoOestroyFra .. - Process IL.DESTROY .. 11a9e for tnd •
fl
LRESULT OoOestroyFr111e (H D h nd. UJNT

LPARAM lP ra•> (
PostOutt ssage <8>:
return 8:

11----------·----··---------------------------------------II Btn nd · Button tnd code
fl
II rttten for the boo Progra .. tng tnd 1 CE
II Copyrtght CC> 1998 Douglas Boltng

186

Chapter 4 Windows, Controls, and Dialog Boxes

II==
#include <windows.h>
#include "Ctlview.h"

II For all that Windows stuff
II Program-specific stuff

extern HINSTANCE hlnst:

LRESULT DrawButton CHWND hWnd, LPDRAWITEHSTRUCT pdi):
11---- ----- ------- --- ----- ---- -- -- -------- --- --- ------- ----- ---- --------
11 Gl oba 1 data
II

II Message dispatch table for BtnWndWindowProc
const struct decodeUINT BtnWndHessages[] = {

WH_CREATE, DoCreateBtnWnd,
WH_CTLCOLORSTATIC, DoCtlColorBtnWnd,
WH_COHHAND. DoCommandBtnWnd,
WH_DRAWITEH, DoDrawltemBtnWnd,

} ;

II Structure defining the controls in the window
CTLWNDSTRUCT Btns [] = {

{TEXT ("BUTTON"), rnc_PUSHBTN, TEXT ("Button").
10, 10. 120. 23. BS_PUSHBUTTON I BS_NOTIFY}.

{TEXT ("BUTTON"). I oc_cHKBOX, TEXT ("Check box").
10, 35, 120, 23, BS_CHECKBOX},

{TEXT ("BUTTON"), IDC_ACHKBOX, TEXT ("Auto check box"),
10, 60, 120, 23, BS_AUTOCHECKBOX},

{TEXT ("BUTTON"), IDC_A3STBOX. TEXT C "Auto 3- state box").
10. 85, 120. 23, BS_AUT03STATE},

{TEXT ("BUTTON"), IDC_RADIDl, TEXT ("Auto radio button l"),
10, 110, 120, 23. BS_AUTORADIOBUTTON},

{TEXT ("BUTTON"), IDC_RADI02, TEXT ("Auto radio button 2"),
10. 135, 120, 23, BS_AUTORADIOBUTTON},

{TEXT I "BUTTON"), I oc_OWNRDRAW, TEXT C "OwnerDraw"),
150. 10, 44, 44, BS_PUSHBUTTON I BS_OWNERDRAW}.

} :
II Structure labeling the button control WH_COHHAND notifications
NOTELABELS nlBtn[] = {{TEXT C"BN_CLICKED "), 0} .

{TEXT C"BN_PAINT "), l},
{TEXT C"BN_HILITE "). 2}.
{TEXT ("BN_UNHILITE"), 3}.
(TEXT ("BN_DISABLE "), 4},
(TEXT ("BN_DOUBLECLICKED"), 5},
(TEXT C"BN_SETFOCUS "). 6},
{TEXT C"BN_KILLFOCUS"), 7}

} :

(continued)

187

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

187

Part 1 Windows Programming Basics

Figure 4-5. continued

II Handle for icon used in owner -draw i con
HICON hlcon = 0;
11 ----- -- ---------------------------------- ---------------- --------- ----
11 InitBtnWnd - BtnWnd window initialization
II
int InitBtnWnd CHINSTANCE hlnstance) (

WNDCLASS we;

II Register application BtnWnd window
we.style = 0;
wc.lpfnWndProc = BtnWndProc ;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hlnstance = hlnstance;
wc.hlcon = NULL,

class.
II Window style
II Callback function
II Extra class data
II Extra window data
II Owner handle
II Appl i cation icon
II Default cursor wc.hCursor = NULL;

wc.hbrBackground = (HBRUSH)
wc.lpszMenuName = NULL;
wc.lpszClassName = BTNWNO;

GetStockObject (WHITE_BRUSH);
II Menu name
II Window class name

if (RegisterC l ass C&wc) == 0) return l;

return 0;

II==
II Message handling procedures for BtnWindow
11 ------------------------------ --- --------- ------------ ----------------
11 BtnWndWndProc - Ca ll back funct i on for application wi ndow
II
LRESULT CALLBACK BtnWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParaml (

}

INT i;
II
II Search message list to see i f we need to handle this
II message. If in list, call procedure .
II
for Ci = 0; i < dimCBtnWndMessages) ; i ++)

if CwMsg == BtnWndMessages[i].Code)
return (*BtnWndMessages[i].Fxn)(hWnd, wMsg, wParam, lParam);

return DefWindowProc ChWnd, wMsg, wParam, lParam>: .

11 -- ------------ -- ----- ---------
11 DoCreateBtnWnd - Process WM_CREATE message for window.
II

188

Part I Windows Programming Basics

Figure 4-5. continued

188

Chapter 4 Windows, Controls, and Dialog Boxes

LRESULT DoCreateBtnWnd CHWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1 Pa ram) {

}

INT i;

for (i = 0: i < dim(Btns); i++) {

}

CreateWindow CBtns[iJ.szClass, Btns[i] . szTitle.
Btns[i].lStyle I WS_VISIBLE I WS_CHILD,
Btns[i].x. Btns[i].y, Btns[i].cx, Btns[i].cy,
hWnd, CHMENU) Btns(i].nID, hlnst, NULL);

hlcon = Loadlcon Chlnst, TEXT C"TEXTICON"));

II We need to set the initial state of the radio buttons.
CheckRadioButton ChWnd, IDC_RADIOl, IDC_RADI02, IDC_RADIOl);
return 0;

11----------- --------- -- -- -- ------------------------------- ---- ---------
11 DoCtlColorBtnWnd - process WM_CTLCOLORxx messages for window.
II
LRESULT DoCtlColorBtnWnd CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
return GetStockObject CWHITE_BRUSH);

}

11---- ----- --- ----- -- -------------
11 DoCommandBtnWnd - Process WM_COMMAND message for window.
II
LRESULT DoCommandBtnWnd CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram) {
TCHAR sz0ut[l28];
INT i;

II Since the Check Box button is not an auto check box, it
II must be set manually.
if CCLOWORD CwParam) == IDC_CHKBOX) &&

CHIWORD CwParam) == BN_CLICKED)) {
II Get the current state, complement, and set .
i = SendDlgltemMessage ChWnd, IDC_CHKBOX, BM_GETCHECK, 0, 0);
if (i == 0)

SendDlgltemMessage ChWnd. IDC_CHKBOX. BM_SETCHECK, 1, 0) ;
else

SendDlgltemMessage ChWnd, IDC_CHKBOX, BM_SETCHECK, 0, 0) ;

II Report WM_COMMAND messages to main window .

(co11tinued)

189

chapter 4 Windows, Controls, and Dialog Boxes

(continued)

189

Part 1 Windows Programming Basics

Figure 4-5. continued

for (i = 0; i < dim(nlBtn); i ++) (
if (HIWORD (wParam) == nlBtn[i].wNotification)

lstrcpy (szOut, nlBtn[i].pszlabel);
break;

if Ci == dim(nlBtn))
wsprintf (s zOut, TEXT ("notification: Ix"), HIWORD (wParam>>:

SendMessage (GetParent (hWnd), MYMSG_ADDLINE, wParam,
(LP A RAM) szOut);

return 0;

11 -- - ---
11 DoDrawltemBtnWnd - Process WM_DRAWITEM message for window.
II
LRESULT DoDraw l temBtnWnd (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) (

return DrawButton (hWnd, (LPDRAWITEMSTRUCT)lParam) :

I 1---- ---- -- -- -- - -- - - - - - - - --- - - - -- -- -- ---- -- - ---- --- - - - - -- -- ----- -- ----
11 DrawButton - Draws an owner -draw button
II
LRESU LT DrawButton (HWND hWnd, LPDRAWITEMSTRUCT pdi) (

190

HPEN hPenShadow, hPenl i ght, hPenDkShadow, hOldPen;

HBRUSH hBr, hOldBr;
LOGPEN lpen;
TCHAR sz0ut[128] ;
POINT pt0ut[3], ptln[3];

II Reflect the me ssages to the report window.
ws pri ntf (s zOut, TEXT ("WM_DRAWITEM Action:%x State:lx") ,

pd i-> itemAct i on, pdi -> itemState);
SendMessage (GetParent (hWnd), MYMSG_ADDLINE, pdi - >CtlID ,

(LPARAM)szOut);

II Create pens for drawing.
lpen.lopnStyle = PS_SOLID;
lpen.lopnWidth .x = 3;
lpen.lopnWidth.y = 3;
lpen.lopnColor = GetSysColor CCOLOR_3DSHADOW);
hPenShadow = CreatePenlnd i rect (&lpen);

Part I

Figure 4-5. continued

190

Chapter 4 Windows, Controls, and Dialog Boxes

lpen.lopnWidth.x = 1;
lpen.lopnWidth.y = 1:
lpen.lopnColor = GetSysColor CCOLOR_3DLIGHT);
hPenLight = CreatePenlndirect C&lpen>:

lpen.lopnColor = GetSysColor (COLOR_3DDKSHADOW);
hPenDkShadow = CreatePenlndirect C&lpen);

II Create a brush for the face of the button.
hBr = CreateSolidBrush (GetSysColor CCOLOR_3DFACE));

II Draw a rectangle with a thick outside border to start the
II frame drawing.
hOldPen = SelectObject (pdi ->hDC, hPenShadow);
hOldBr = SelectObject Cpdi ->hDC, hBr);
Rectangle (pdi->hDC, pdi ->rcltem.left, pdi -> rcltem.top,

pdi ->rcltem . right, pdi ->rcltem.bottom);

II Draw the
ptln[0J.x
ptln[0J.y
ptln[l] .x
ptln[l].y
ptln[2J.x
ptln[2J.y

upper left inside line .
pdi -> rcltem.left + l;
pdi -> rcltem.bottom - 2;
pdi ->rcltem.left + 1;
pdi ->rcltem.top + 1;
pdi -> rcltem.right - 2;
pdi ->rcltem.top+l;

II Select a pen to draw shadow or light side of button.
if (pdi ->itemState & ODS_SELECTED) (

SelectObject (pdi -> hDC, hPenDkShadow);
else (
SelectObject Cpdi -> hDC, hPenLight);

Polyline Cpdi->hDC, ptln, 3);

II If selected, also draw a bright line inside the lower
II right corner.
if (pdi -> itemState & ODS_SELECTED)

SelectObject Cpdi -> hDC, hPenLight>:
ptln[l].x = pdi -> rcltem . right - 2;
ptln[l].y = pdi -> rcltem.bottom - 2;
Polyline (pdi -> hDC, ptln, 3);

II Now draw the black outside line on either the upper left or lower
II right corner.
pt0ut[0].x = pdi ->rcltem.left;
pt0ut[0].y = pdi -> rcltem.bottom -1;

(continued)

191

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

191

Part 1 Windows Programming Basics

Figure 4-5. co11/i11ued

192

pt0ut[2J.x pdi ->rc ltem.right -1;
pt0ut[2].y = pdi -> rcltem.top;

SelectObject (pdi->hDC, hPenDkShadow);
if (pdi->itemState & ODS_S ELECTED) (

ptOut[l].x pdi->rcltem . left;
ptOut[l].y pdi -> rcltem.top;

else {
ptOut[l].x pdi->rcltem.right -1;
ptOut[l] .y pdi->rcltem.bottom -1 ;

Polyline (pdi->hDC , ptOut, 3);

II Draw the icon .
if (hlconl (

ptln[0].x = (pdi->rcltem.right - pdi ->rcltem.left)l2 -
GetSystemMetrics (SM_CXICO NJl 2 - 2;

ptln[0] .y = (pdi->rcltem .bottom - pdi->rcltem . top)l2 -
GetSystemMetrics (SM_CYICO N)l2 - 2;

II If pressed, shift image down one pel to simulate depress .
if (pdi ->itemState & ODS_SELECTED) (

ptOut[lJ.x += 2;
ptOut[l] .y += 2;

Drawlcon (pdi->hDC, ptln[0J .x, ptln[0].y, hlcon) ;

II If button has the focus, draw the dotted rect inside the button.
if (pdi ->itemState & ODS_FOCUS) {

pdi -> rcltem.left += 3;
pdi -> rcltem .top += 3;
pdi -> rcltem.right -= 4;
pdi ->rcltem.bottom -= 4;
DrawFocusRect (pdi->hDC, &pdi -> rcltem);

II Clean up. First select the original brush and pen into the DC.
SelectObject (pdi->hDC , hOldBr);
SelectObject (pdi->hDC, hOldPen);

II Now delete the brushes and pens created.
DeleteObject (hBr) ;
DeleteObject (hPenShadow) ;
DeleteObject (hPenDkShadow);
DeleteObject (hPenLightl ;
return 0;

Part I Window~

Figure 4-5. continued

192

Chapter 4 Windows, Controls, and Dialog Boxes

EdltWnd.c

II==
II EditWnd - Edit control window code
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include <windows.h>
#include "Ctlview.h"

II For all that Windows stuff
II Program-specific stuff

extern HINSTANCE hlnst;
11 --- -- ---------------------------
11 Global data
II
II Message dispatch table for EditWndWindowProc
const struct decodeUINT EditWndMessages[J = {

} ;

WM_CREATE. DoCreateEditWnd,
WM_COMMAND, DoCommandEditWnd,

II Structure defining the controls in the window
CTLWNDSTRUCT Edits[] = {

} ;

{TEXT ("edit"), IDC_SINGLELINE, TEXT ("Single line edit control "),
10, 10, 130. 23. ES_AUTOHSCROLL},

{TEXT ("edit"), IOC_MULTILINE, TEXT ("Multi line edit control ") ,
10, 35, 130, 90, ES_MULTILINE I ES_AUTOVSCROLL}.

{TEXT ("edit"), IDC_PASSBOX, TEXT(""),
10, 127, 130. 23, ES_PASSWORD},

II Structure labeling the edit control WM_COMMAND notifications
NOTELABELS nlEdit[] = {{TEXT C"EN_SETFOCUS "), 0x0100},

} ;

{TEXT C"EN_KILLFOCUS"), 0x0200},
{TE XT ("EN_CHANGE "), 0x0300},
{TE XT ("EN_UPDATE "), 0x0400},
{TEXT C"EN_ERRSPACE "), 0x0500},
{TEXT C"EN_MAXTEXT "), 0x0501},
{TEXT C"EN_HSCROLL "), 0x0601},
{TE XT ("EN_VSCROLL "), 0x0602},

11 -- -- --
11 InitEditWnd - EditWnd window initialization
II

(continued)

193

Chapter 4 Windows, Controls, and Dialog Boxes

I !~'=i:==="':==========================':"':'==========,,;s;L.;°;,,=,,;==========;~:"=°=.===.===
II EditWnd Edit control wjndow code
)/ .. ::.,' .. / .. · ' ·.

l'I Written for the book Pr09ralii~ing Windows CE
'II Copyright.CC) 1998 Douglas.B.oling

#include <windows.h>
#incl~de "Ctlview.h"

H INSTANCE h Inst;
~"!21,/' --- .., - - "": ,..;":':-;;,. ,~~,"': ',;.'.".' ... --- -

G i ob.a ,·:·<l'~~·a :'.
II

II For all that Windows stuff
II Program-specific stuff

//Message dispatch table for EditWndWindowProc
const struct d,ecodeU I NT Edi tWndMessages [] = {

WM_CREAt;B.;.:uoCreateEditWnd,
WM_CO . . ·· · · oCommandfi;lftWnd.

"";;"'•o•,,,,>0';;,,

:~ :? · · ~~:;i~~~'.;K

defiJling the controls·
Edits[] ,,,; {

) • I DG_~LN~LE;lJNE. TEXT.. {'~·Single 1
• 23, fS...:.AU.TOHSCROLL}'~:' ' .

(continued)

193

Part 1 Windows Programming Basics

Figure 4-5. con.tinued

int InitEditWnd CHINSTANCE hinstance) {
WNDCLASS we;

}

II Register application EditWnd window
we.style = 0;
wc.lpfnWndProc = EditWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hinstance = hinstance;
wc.hicon = NULL,

class.
II Window style
II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon
II Default cursor wc.hCursor = NULL;

wc.hbrBackground = (HBRUSH)
wc.lpszMenuName = NULL;
wc.lpszClassName = EDITWND;

GetStockObject CWHITE_BRUSH);
II Menu name
II Window class name

if (RegisterClass C&wc) == 0) return 1:

return 0;

II==
II Message handling procedures for EditWindow
11 ------------------------------------- -- -- -------- --- ------------ -- ----
11 EditWndWndProc - Callback function for application window
II
LRESULT CALLBACK EditWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

}

INT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0: i < dimCEditWndMessages); i++)

if CwMsg == EditWndMessages[iJ.Code)
return (*EditWndMessages[iJ.Fxn)(hWnd, wMsg, wParam, lParam);

return DefWindowProc ChWnd, wMsg, wParam, lParam);

11 - --- -- --- - - - - --- - - - - - - - - - - --- - - ---- - - - - --- - -- - - - -- - - - - - - - - ------------
11 DoCreateEditWnd - Process WM_CREATE message for window.
II
LRESULT DoCreateEditWnd (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
INT i;

for Ci 0; < dim(Edits); i++) {

194

Part I

Figure 4-5. continued

194

Chapter 4 Windows, Controls, and Dialog Boxes

)

CreateWindow CEdits[iJ.szClass, Edits[iJ.szTitle,

return 0;

Edits[iJ.lStyle I WS_VISIBLE I WS_CHILD I WS_BORDER,
Edits[i].x, Edits[i].y, Edits[i].cx, Edits[i].cy,
hWnd, CHMENU) Edits[i].nID, hlnst, NULL);

11 ·
II DoCommandEditWnd · Process WM_COMMAND message for window.
II
LRESULT DoCommandEditWnd CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram) {
TCHAR sz0ut[128];
INT i;

for Ci = 0; i < dimCnlEdit); i++) {
if CHIWORD (wParam) == nlEdit[iJ.wNotification)

lstrcpy (szOut , nlEdit[i].pszLabell;
break;

if (i == dim(nlEdit))
wsprintf (szOut, TEXT ("notification: %x"), HIWORD (wParam));

SendMessage (GetParent ChWnd), MYMSG_ADDLINE, wParam,
CLPARAM)szOut);

return 0;

LlstWnd.c

II==
II ListWnd · List box control window code
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include <windows .h>
#include "Ctlview.h "

extern HINSTANCE hlnst;

II For all that Windows stuff
II Program -s pecific stuff

11 ·
II Global data
II

(co ntir111ecl)

195

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

195

Part 1 Windows Programming Basics

Figure 4-5. continued

II Message dispatch table for ListWndWindowProc
const struct decodeUINT ListWndMessages[] = {

WM_CREATE, DoCreatelistWnd,
WM_COMMAND, DoCommandlistWnd,

} ;

II Structure defining the controls in the window
CTLWNDSTRUCT Lists[] = {

{TEXT ("combobox"), IDC_COMBOBOX, TEXT (""), 10, 10, 170. 100,
WS_VSCROLL},

{TEXT ("Listbox"). rnc_sNGLELIST. TEXT (""). 10, 35, 100, 120,
WS_VSCROLL I LBS_NOTIFY}.

(TEXT ("Listbox"), IDC_MULTILIST, TEXT(""), 115, 35, 100, 120,
WS_VSCROLL I LBS_EXTENDEDSEL I LBS_NOTIFY}

} ;

II Structure labeling the list box control WM_COMMAND notifications
NOTELABELS nllist[] = ((TEXT ("LBN_ERRSPACE "), (-2)).

) ;

(TEXT ("LBN_SELCHANGE"), 1),
{TEXT ("LBN_OBLCLK "). 2),
{TEXT ("LBN_SELCANCEL"), 3).
(TEXT ("LBN_SETFOCUS "), 4}.
{TEXT ("LBN_KILLFOCUS"), 5}.

II Structure labeling the combo box control WM_COMMAND notifications
NOTELABELS nlCombo[] = ((TEXT ("CBN_ERRSPACE "), (- 1)).

(TEXT ("CBN_SELCHANGE "), 1).
(TEXT ("CBN_DBLCLK "), 2).

{TEXT ("CBN_SETFOCUS ..) ' 3).
{TEXT ("CBN_KILLFOCUS ..) . 4).

{TEXT ("CBN_EDITCHANGE ..) , 5).
(TEXT ("CBN_EDITUPDA TE "), 6).

{TEXT ("CBN_DROPDOWN "), 7).
{TEXT ("CBN_CLOSEUP "), 8).

{TEXT ("CBN_SELENDOK "), 9).

{TEXT ("CBN_SELENDCANCEL"), 10).
} ;

11 ------ - - - --- - - - -- -- --- - -- - ----- -
11 InitlistWnd - ListWnd window initialization
II
int InitlistWnd (HINSTANCE hlnstance) (

WNDCLASS we;

II Register application ListWnd window class.
we.style = 0; II Window style

196

Part I

Figure 4-5. continued

196

Chapter 4 Windows, Controls, and Dialog Boxes

)

wc.lpfnWndProc = ListWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hinstance = hinstance;
wc.hicon = NULL,

II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon
II Default cursor wc.hCursor = NULL;

wc.hbrBackground = CHBRUSH)
wc.lpszMenuName = NULL:
wc.lpszClassName = LISTWND;

GetStockObject (WHITE_BRUSH);
II Menu name
II Window class name

if (RegisterClass (&we) == 0) return l;

return 0;

II==
II Message handling procedures for ListWindow
11 --------- - --
11 ListWndProc - Callback function for application window
II
LRESULT CALLBACK ListWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

}

INT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0; i < dim(ListWndMessages); i++)

if CwMsg == ListWndMessages[i].Code)
return (• ListWndMessages[i] . Fxn) (hWnd, wMsg , wParam, lParam);

return DefWindowProc ChWnd, wMsg, wParam, lParam l ;

11 --- - - --- -- - ----- - -- - --
11 DoCreateListWnd - Process WM_CREATE message for wi ndow.
II
LRESULT DoCreateListWnd CHWND hWnd, UINT wM sg, WPARAM wParam,

LPARAM l Pa ram) {
INT i;
TCHAR sz0ut[64];

for (i = 0; i < dim(Lists); i++) {

CreateWindow (Lists[i].szClass. Lists[i].szTitle,
Lists[iJ . lStyle I WS_VISIBLE I WS_CHILD I WS_BORDER.
Lists[i].x. Lists[i].y, Li sts[i].cx, Lists[i].cy,
hWnd, CHMENU) Lists[i].nID, hlnst, NULL);

(co11Jin.ued)

197

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

197

Part 1 Windows Programming Basics

Figure 4-5. continued

)

for Ci = 0; i < 20; i++) {

)

wsprintf (szOut, TEXT ("Item %d"), i);
SendDlgltemMessage (hWnd, IDC_SNGLELIST, LB_ADDSTRING, 0,

(LP A RAM) szOut);

SendDlgltemMessage (hWnd, IDC_MULTILIST, LB_ADDSTRING, 0,
(LPARAM) szOut);

SendDlgltemMessage (hWnd, IDC_COMBOBOX, CB_ADDSTRING, 0,
(LPARAM)szOut);

II Set initial selection.
SendDlgltemMessage (hWnd, IDC_COMBOBOX, CB_SETCURSEL, 0, 0);
return 0;

11----------- -- ·
II DoCommandlistWnd - Process WM_COMMAND message for window.
II
LRESULT DoCommandlistWnd (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

198

TCHAR sz0ut[l28];
INT i;

if (LOWORD (wParam) == IDC_COMBOBOX) {
for (i = 0; i < dim(nlCombo); i++)

if CHIWORD CwParam) == nlCombo[iJ .wNotification)
lstrcpy (szOut, nlCombo[i].pszlabel);
break;

if (i == dim(nllist))
wsprintf (szOut, TEXT ("notification: %x"), HIWORD (wParam));

else {
for (i = 0; i < dim(nllist); i++) {

if CHIWORD CwParam) == nllist[iJ.wNotification)
lstrcpy (szOut, nllist[i].pszlabel);
break;

if (i == dim(nllist))
wsprintf (szOut, TEXT ("notification: %x"). HIWORD (wParam>>:

SendMessage (GetParent ChWnd), MYMSG_ADDLINE. wParam,
(LPARAM) szOut);

return 0;

Part I Windows Programming Basics

Figure 4-5. continued

198

Chapter 4 Windows, Controls, and Dialog Boxes

StatWnd.c

II==
II StatWnd - Statfc control window code
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include "Ctlview.h" II Program -specific stuff

extern HINSTANCE hlnst;
11 --
11 Global data
II
II Message dispatch table for StatWndWindowProc
const struct decodeUINT StatWndMessages[J = (

} ;

WM_CREATE, DoCreateStatWnd,
WM_CDMMAND, DoCommandStatWnd.

II Structure defining the controls in the window
CTLWNDSTRUCT Stats [] = {

) ;

(TEXT ("static"), IDC_LEFTTEXT. TEXT ("Left text").
10, 10, 120. 23. SS_LEFT I SS_NOTIFY}.

(TEXT ("static") , IDC_RIGHTTEXT. TEXT ("Right text"),
10, 35. 120, 23, SS_RIGHT},

{TEXT ("static"), IDC_CENTERTEXT. TEXT ("Center text"),
10, 60, 120. 23, SS_CENTER I WS_BORDER}.

{TEXT ("static"), IDC_ICONCTL, TEXT ("TEXTICON"),
10 , 85, 120, 23, SS_ICON},

{TEXT ("static") . IDC_BITMAPCTL, TEXT ("STATICBMP"),
170, 10. 44, 44. SS_BITMAP I SS_NOTIFY},

II Structure labeling
NOTELABELS nlStatic[J

the static control WM_COMMAND
((TEXT ("STN_CLICKED"), 0),

(TEXT ("STN_ENABLE "), 2},
(TEXT ("STN_OISABLE"), 3),

notifications

) ;

11 --
11 InitStatWnd - StatWnd window initialization

(continued)

199

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

199

Part 1 Windows Programming Basics

Figure 4-5. continued

II
int InitStatWnd CHINSTANCE hinstance) {

WNDCLASS we;

}

II Register application
we.style = 0;

StatWnd window class .

wc.lpfnWndProc = StatWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hinstan ce = hinstance;
wc.hicon = NULL.
wc.hCursor = NULL;

II Window style
II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon
II Default cursor

wc.hbrBackground = CHBRUSH) GetStockObject CWHITE_BRUSH);
wc.lpszMenuName = NULL;
wc.lpszCla ssName = STATWND;

if (RegisterClass (&we) == 0) return l;

return 0;

II Menu name
II Window class name

II==
II Message handling procedures for StatWindow
11 - -- - -- - - --- -- - ---- - - - - - - - - - - - - - -- -- -- - - - - --- -- --- - - - - - - - - - - -- -------- -
II StatWndProc - Callback function for application window
II
LRESULT CALLBACK StatWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram) {

}

INT i;
II
II Search message list to see if we need to handle this
II message. If in list . call procedure.
II
for Ci = 0; i < dim(StatWndMessages); i++)

if (wMsg == StatWndMessages[i].Code)
return (*StatWndMessages[i].Fxn)(hWnd. wMsg, wParam, lParam) ;

return DefWindowProc ChWnd, wMsg, wParam, lParam);

11-- -- - -- - - -- --- -- -- --- --- - - --- ------- -- -- -- - - - ----- -- -- - ---- - - - - --- ----
11 DoCreateStatWnd - Process WM_CREATE message for window.
II
LRESULT DoCreateStatWnd CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram) {
INT i;

200

Figure 4-5. continued

200

Chapter 4 Windows, Controls, and Dialog Boxes

}

for (i = 0; i < dim(Stats); i++) {

CreateWindow (Stats[iJ.szClass, Stats[iJ.szTitle,
Stats[iJ.lStyle I WS_VISIBLE I WS_CHILD.
Stats[i].x. Stats[i] .y, Stats[i].cx, Stats[i].cy,
hWnd , CHMENU) Stats[i].nID. hinst, NULL);

return 0;

11 --- --- --- - - - - - - - - - - -- - - -- -- ------ - -- - - -- ---- -- -- - --- -- - - - ------- - -- - - -
II DoCommandStatWnd - Process WM_COMMAND message for window.
II
LRESULT DoCommandStatWnd CHWND hWnd, UINT wM sg, WPARAM wParam.

TCHAR sz0ut[l28];
INT i;

LPARAM l Pa ram) (

for Ci = 0; i < dim(nlStatic); i++) (
if CHIWORD (wParam) == nlStatic[iJ.wNot ification)

lstrcpy (szOut, nlStatic[iJ . psz Label);
break;

if Ci == dim(nlStatic))
wsprintf (szOut, TEXT ("notification : %x ") , HIWORD CwParam)) ;

SendMessage CGetParent ChWnd), MYMSG_ADDLIN E, wParam,
(LPARAM)szOut) ;

return 0;

ScrollWnd.c

II==
II ScrollWnd - Scroll bar control window code
II
II Written for the book Programming Windows CE
II Copyrig ht (C) 1998 Douglas Boling
II==
#include <windows .h> II For all that Windows stuff
#include "Ctlview.h" II Program -spec i fi c stuff

extern HINSTANCE hinst;
11 ---- - ---
11 Global data
II

(co11li11ued)

201

Chapter 4 Windows, Controls, and Dialog Boxes

.:i:;~:f!,:;:~ll~ :.0; i < cl1m(Stats)

CreateWi ndow (Stats'[·11.szc1 ass, Stats [i] .. szTit1e,
Stats[iJ,fStyle I WS_VISIBLE I ws_CHlLD,
Stats[iJ-~. Stats[i].y, Stats[i].cx. Stats[i].cy,
hWnd, <HMENUl Stats[i].nlD, hlns.t, NULL}.;

.retttfl'l'.:0; ·

~I Tu("be"- ··-:-,:Tt• - - - - - - -- - -- - -- -r:£:;?~fc:c··:- -~~"-- ------------· ·-~
11 •.~9C:~111111andStatWnd - Process Wt-LQl7~AND message for window.
11.:;:·,·: ,,o, ·),__· ;,,,,}, :j;);;<- '

CHWND hW~if;~%~~ffi?'.WMsg.~ WPARAM wParam.
LPA.RA.M i;l~~~ri/i'J!t~· {;;fF•i~\'~

for Ci = 0; i < dflJl(.n.lStatic); i++l {
if (HIWORD (wPar:al!ll :::= nlStatic[i].wNotificati

1 strcpy. (~zauti~:~~1~tati c[i J. pszlabel);
:;, :·i "_,',', ', 0 , , • L0,,<,:: -,~{~,"~

,'i'(•',

(continued)

201

Part I Windows Programming Basics

Figure 4-5. continued

II Message dispatch table for ScrollWndWindowProc
const struct decodeUINT ScrollWndHessages(J = {

WH_CREATE, DoCreateScrollWnd,
WH_HSCRDLL, DoVScrollScrollWnd,
WH_VSCRDLL, DoVScrollScrollWnd,

} ;

II Structure defining the controls in the window
CTLWNDSTRUCT Scrolls [] = {

} ;

{TEXT ("Scrollbar"), IDC_LRSCROL L, TEXT (""),
10. 10, 150. 23, SBS_HORZ}.

{TEXT ("Scrollbar"), IOG_UDSCROLL, TEXT ('"'),
180, 10, 23, 150, SBS_VERT}.

II Structure labeling the scroll bar control scroll codes for WH_VSCROLL
NOTELABELS nlVScroll(] = {{TEXT ("SB_LINEUP "), 0},

} ;

II

{TEXT ("SB_LINEDOWN "), l},
{TEXT C"SB_PAGEUP "), 2},
(TEXT ("SB_PAGEDOWN "), 3),
(TEXT ("SB_THUHBPOSITION"), 4),
{TEXT ("SB_THUHBTRACK "), 5},
{TEXT ("SB_TOP "). 6).
{TEXT ("SB_BOTTOH "l, 7) ,
(TEXT ("SB_ENDSCROLL "), 8),

Structure labeling the scroll bar control scroll codes
NOTELABELS nlHScroll[] ={{TEXT ("SB_LINELEFT ..) . 0).

{TEXT ("SB_LINERIGHT .. } . 1).

{TEXT ("SB_PAGELEFT "). 2).

{TEXT ("SB_PAGERIGHT ..) . 3).

{TEXT C"SB_THUHBPOSITION"), 4).

{TEXT ("SB_ THUHBTRACK ")' 5).

{TEXT ("SB_LEFT ")' 6).

{TEXT ("SB_RIGHT ")' 7).

{TEXT ("SB_ENDSCROLL "). 8).

) ;

for WH_HSCROLL

11 --- - - - --
11 InitScrollWnd - ScrollWnd window initialization
II
int InitScrollWnd (HINSTANCE hlnstance) {

WNDCLASS we;

II Register application ScrollWnd window class.
we.style = 0; II Window style
wc.lpfnWndProc = ScrollWndProc; II Callback function

202

Figure 4-5. continued

202

Chapter 4 Windows, Controls, and Dialog Boxes

}

wc . cbClsExtra = 0;
wc . cbWndExtra = 0;
wc . hlnstance = hinstance;
wc.hicon = NULL,
wc.hCursor = NULL;

II Extra class data
II Extra window data
II Owner handle
II Application icon
II Default cursor

GetStockObject CWHITE_BRUSH);
II Menu name

wc . hb rBackground = CHBRUSH)
wc . lpszMenuName = NULL;
wc.lpszClassName = SCROLLWND; II Window class name

if CRegisterClass C&wc) == 0) return l;

return 0;

II==
II Message handling procedures for ScrollWindow
11- --- --- - - - - - --- - -- - - -- -- - - -- -- - - - - - - - - - - - - ---- -- ---- -- - -- - -- - -- - -- ----
11 ScrollWndProc - Callback function for application window
II
LRESULT CALLBACK ScrollWndProc (HWND hWnd, UINT wMsg, WPARAM wParam ,

LP A RAM l Pa ram) {
INT i;
II
II Search message list to see if we need to handle this
II message . If in list. call procedure .
II
for (i = 0; i < dim(ScrollWndMessages); i++)

if CwMsg == ScrollWndMessages[iJ.Code)
return (*ScrollWndMessages[iJ.Fxn)(hWnd. wMsg, wParam. lParam);

return DefWindowProc (hWnd, wMsg, wParam, lParam);
}

11------------------ --
11 DoCreateScrollWnd - Process WM_CREATE message for window.
I I
LRESULT DoCreateScrollWnd CHWND hWnd, UINT wMsg, WPARAM wParam.

}

LP A RAM 1 Pa ram) {
INT i;

for (i = 0; i < dim(Scrollsl; i++) {
CreateWindow CScrolls[iJ.szClass. Scrolls[iJ.szTitle,

Scrolls[iJ . lStyle I WS_VISIBLE I WS_CHILD,
Scrolls[i].x, Scrolls[i].y, Scrolls[i].cx.
Scroll s[i] .cy,
hWnd, (HMENU) Scrolls[i].nlD, hlnst, NULL);

return 0;

(con.tin.ued)

203

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

203

Part 1 Windows Programming Basics

Figure 4-5. continued

11 ----------- ---- -------------- ------------ ------ ------ --- ---- ----------
11 DoVScrollScrollWnd - Process WM_VSCROLL message for window .
II
LRESULT DoVScrollScrollWnd (HWND hWnd, UINT wMsg, WPARAM wParam ,

LP A RAM 1 Pa ram) (

204

TCHAR sz0ut[128]:
SCROLLINFO si:
INT i, sPos:

II Update the report window.
if (GetDlgltem ChWnd, 101) == CHWNDllParam)

for Ci= 0: i < dim(nlVScrolll: i++) {
if {LOWORD CwParaml == nlVScroll[iJ.wNotification)

lstrcpy CszOut. nlVScroll[iJ.pszlabell:
break:

if Ci == dimCnlVScrollll
wsprintf (szOut, TEXT ("notification: %x"), HIWORD {wParamll:

else (
for {i = 0; i < dim(nlHScrolll: i++) (

if (LOWORD CwParam) == nlHScroll[i].wNotification)
lstrcpy (szOut, nlHScroll[i].pszlabell:
break:

if Ci == dim(nlHScroll))
wsprintf CszOut, TEXT ("notification: %x"), HI WORD CwParamll :

SendMessage (GetParent ChWnd) , MYMSG_ADDLINE , -1, (LPARAMlszOutl :

II Get scroll bar position .
si.cbSize = sizeof (si);
si.fMask = SIF_POS;
GetScrolllnfo {(HWNDllParam, SB_CTL, &si);
sPos = si.nPos:

II Act on the scroll code.
switch (LOWORD CwParam)) {
case SB_LINEUP: II Also SB_LINELEFT

sPos -= 2:
break:

Figure 4-5. continued

204

}

Chapter 4 Windows, Controls, and Dialog Boxes

case SB_LINEDOWN:
sPos += 2:
break:

case SB_PAGEUP:
sPos -= 10:
break:

case SB_PAGEDOWN:
sPos += 10:
break:

I I Al so SB_LINERIGHT

II Al so SB_PAGELEFT

II Al so SB_PAGERIGHT

case SB_THUMBPOSITION:

}

II
if

if

sPos = HIWORD CwParam) :
break:

Check range.
(sPos < 0)
sPos 0:

CsPos > 100)
sPos 100:

II Update scrollbar position .
s i.cbSize = sizeof Csi):
si.nPos = sPos:
s i.fMask = SIF_POS:
SetScrolllnfo CCHWND)lParam. SB_CTL, &si, TRUE):
return 0:

When the CtlView program starts, the WM_ CREATE handler of the main win
dow, DoCreateFrame, creates a row of radio buttons across the top of the window,
a list box on the right side of the window, and five different chiJd windows on the left
side of the window. (The five child window are ail created without the WS_ VI IBLE
style, so they're initially hidden .) Each of the child windows in turn creates a number
of controls. Before returning from the DoCreateFrame, Ct!View checks one of the auto
radio buttons and makes the BtnWnd child window (the window that contains the
example button controls) visible using SbowWindow.

As each of the controls on the child windows are tapped, clicked, or selected, the
control sends WM_COMMAND messages to its parem window. That window in turn
sends the information from the WM_COMMAND message to its parent, the frame win
dow, using the application-defined message MYMSG_ADDLINE. There the notification
data is formatted and displayed in the list box on the right side of the frame window.

205

Chapter 4 Windows, Controls, and Dialog Boxes

When the CtlView program starts, the WM_ CREATE handler of the main win
dow, DoCreateFrame, creates a row of radio buttons across the top of the window,
a list box on the right side of the window, and five different child windows on the left
side of the window. (The five child windows are all created without the WS_ VISIBLE
style, so they're initially hidden.) Each of the child windows in turn creates a number
of controls. Before returning from the DoCreateFrame, CtlView checks one of the auto
radio buttons and makes the BtnWnd child window (the window that contains the
example button controls) visible using ShowWindow.

As each of the controls on the child windows are tapped, clicked, or selected, the
control sends WM_ COMMAND messages to its parent window. That window in turn
sends the information from the WM_ COMMAND message to its parent, the frame win
dow, using the application-defined message MYMSG_ADDLINE. There the notification
data is formatted and displayed in the list box on the right side of the frame window.

205

Part 1 Windows Programming Basics

206

The other function of the frame window i to switch between the different child
windows. The application accomplishes this by displaying only the child window that
matches the selection of the radio buttons across the top of the frame window. The
processing for this is done in the WM_COMMAND handler, DoCommandFrame in
CtlView.c.

The best way to discover how and when these controls send notifications is to
run the example program and use each of the controls. Figure 4-6 show the CtlView
window with the button controls displayed . As each of the buttons i clicked, a
BN_CLICKED notification is sent to the parent window of the control. The parent
window simply labels the notification and forwards it to the display list box. Be
cause the Check Box button isn't an auto check box, CtlView must manually change
the state of the check box when a user clicks it. The other check boxes and radio
buttons, however, do automatically change state because they were created with
the BS_AUTOCHECKBOX, B _AUT03STATE, and BS_AUTORADIOBUTTON styles.
The square button with the exclamation mark inside a triangular icon is an owner
draw button.

. . : ~ . . . l .. '.' '. ':;r:·~·~ '.' . . . , .. -~
__) N ... • '~ ,.~*:,.;· • . ~ ~~~'tl. • \~.IL ~ :;-~M&l.i'~~ .:::ru ~ ,~,. . -~ <~

D Check box

~~to chedc bo~

0 Auto 3-stall! box

@J Auto radio button

0 Auto radio button

-- - "'~ ~ ,,,.~~.

I • ,J. ," Control View

ld:64 EN_l.JlOATE
ld:64 EN_a-tANGE
ld:6a WM_DRAWJlEM Actbl:l Stall! :O
ld:64 BN_SETFOCUS
ld:64 BN_QJO<ED
ld:64 BNJ<IU FOCUS
ld:66 BN_QJO<ED

Figure 4-6. 7be Ct/View window with the button child window displayed in
the left pane.

The source code for each child window is contained in a separate file . The source
for the window containing the button controls is contained in BtnWnd.c. The file
contains an initialization routine (/nitBtn Wnrf) that registers the window and a win
dow procedure (Btn WndProc) for the window itself. The button controls themselves
are created during the WM_ CREATE message using Create Window. The position, style,
and other aspects of each control are contained in an array of structures named Btns.

The DoCreateBtnWnd function cycles through each of the entries in the array, call
ing CreateWindow for each one. Each child window in CtlView uses a similar pro
cess to create its controls.

To support the owner-draw button, BtnWndProc must handle the WM_DRAW
ITEM me sage. The WM_DRAWITEM message is sent when the button needs to be

206

The other function of the frame window is to switch between the different child
windows. The application accomplishes this by displaying only the child window that
matches the selection of the radio buttons across the top of the frame window. The
processing for this is done in the WM_COMMAND handler, DoCommandFrame in
CtlView.c.

The best way to discover how and when these controls send notifications is to
run the example program and use each of the controls. Figure 4-6 shows the CtlView
window with the button controls displayed. As each of the buttons is clicked, a
BN_CLICKED notification is sent to the parent window of the control. The parent
window simply labels the notification and forwards it to the display list box. Be
cause the Check Box button isn't an auto check box, CtlView must manually change
the state of the check box when a user clicks it. The other check boxes and radio
buttons, however, do automatically change state because they were created with
the BS_AUTOCHECKBOX, BS_AUT03STATE, and BS_AUTORADIOBUTTON styles.
The square button with the exclamation mark inside a triangular icon is an owner
draw button.

0 Check box

~ ~~~~6~~~~~~!
0 Auto 3-stal:B box

@ Auto radio button

0 Au1D radio button

EN_UPDATE
EN CHANGE
WM_DRAWITEM Action: 1 State:O
BN_SETFOCUS
BN CLICKED
BN - KILLFOCUS
BN=CLICKED

Figure 4-6. Tbe Ct/View window with the button child window di~played in
the left pane.

The source code for each child window is contained in a separate file. The source
for the window containing the button controls is contained in BtnWnd.c. The file
contains an initialization routine (InitBtn Wnd) that registers the window and a win
dow procedure (BtnWndProc) for the window itself. The button controls themselves
are created during the WM_ CREATE message using Create Window. The position, style,
and other aspects of each control are contained in an array of structures named Btns.
The DoCreateBtnWnd function cycles through each of the entries in the array, call
ing CreateWindow for each one. Each child window in CtlView uses a similar pro
cess to create its controls.

To support the owner-draw button, BtnWndProc must handle the WM_DRAW
ITEM message. The WM_DRAWITEM message is sent when the button needs to be

Chapter 4 Windows, Controls, and Dialog Boxes

available under other versions of Windows aren't supported under Windows CE.
Applications developed for Windows CE 1.0 or for the first release of the Palm-size
PC must also do without the Print and Color common dialogs, but this isn't much of
a sacrifice because neither color screens nor printing is supported on those systems.

The other advantage of the common dialogs is that they have a customized look
for each platform while retaining the same programming interface. This makes it easy
to use, say, the File Open dialog on both the H/ PC and the Palm-size PC because
the dialog box has the same interface on both systems even though the look of the
dialog box is vastly different on the two platforms. Figure 4-7 shows the File Open
dialog on the H/PC; Figure 4-8 shows the File Open dialog box on the Palm-size PC.

Elle Hall>

Ownoows JD!gDerro

~CmclBand ~Fontl.lst
~CmclBar ~Font1.lst2
.\lDCtJVlew Edltscl ~KeyTrac

1-........;.----'''-c_w_1e_w __ _, ~LVlewl

M<rne: :IP: lAll Docunents (•. +)

illstat . !::JMV Hardield PC IDlabJ oemo

Figure 4-7. 7be File Open dialog on a Handheld PC.

Blank Note
Frys List
Meeting ...
Memo
Phone M ...

Note Taker note
Note Taker note
Note Taker note
Note Taker note
Note Taker note

lfB!''Wf!!®e;l:,JJ£!Ji;' "I Q carnr'rl inn

Figure 4-8. 7be Hle Open dialog on a Palm-size PC.

)(

225

Chapter 4 Windows, Controls, and Dialog Boxes

drawn because it has changed state, gained or lost the focus, or because it has been
uncovered. Although the DrawButton function (called each time a WM_DRAWITEM
message is received) expends a great deal of effort to make the button look like a
standard button, there's no reason a button can't have any look you want.

The other window procedures provide only basic support for their controls. The
WM_ COMMAND handlers simply reflect the notifications back to the main window.
The ScrollWnd child window procedure, ScrollWndProc, handles WM_ VSCROLL and
WM_HSCROLL messages because that's how scroll bar controls communicate with
their parent windows.

Controls and colors
Finally, a word about colors. A large number of Windows CE devices use a gray-scale
display instead of a color display, including all of the first generation H/PC and Palm
size PC systems. This has made many Windows CE developers, including me, some
what lazy in managing color in our Windows CE programs. Now that newer Windows
CE systems sport color displays, we have to think a bit more.

In Ct!View, the frame window class is registered in a subtly different way from
the way I've registered it in previous programs. In the CtlView example, I set the
background brush for the frame window using the line

wc.hbrBackground = (HBRUSH)GetSysColorBrush (COLOR_STATIC);

This sets the background color of the frame window to the same background color I
used to draw the radio buttons. The function GetSysColorBrush returns a brush that
matches the color used by the system to draw various objects in the system. In this
case, the constant COLOR_STATIC is passed to GetSysColorBrush, which then returns
the background color Windows uses when drawing static text and the text for check
box and radio buttons. This makes the frame window background match the static
text background.

In the window that contains the button controls, the check box and radio but
ton background is changed to match the white background of the button window,
by fielding the WM_CTLCOLORSTATIC message. This message is sent to the parent
of a static control or a button control when the button is a check box or radio button
to ask the parent which colors to use when drawing the control. In CtlView, the but
ton window returns the handle to a white brush so that the control background will
match the white background of the window. Modifying the color of a push button is
done by fielding the WM_CTLCOLORBUTTON message. Other controls send differ
ent WM_CTLCOLORxxx messages so that the colors used to draw them can be modi
fied by the parent window.

207

Basics

DIALOG BOXES
The CtlView example program demonstrates a complex use of controls. While CtlView
creates these controls for demonstration purposes, controls are generally used to query
user input. As CtlView demonstrates, a fair amount of code is necessary for creating
and placing the controls in the windows. Fortunately, you don't need this code be
cause Windows provides a service for exactly this purpose: dialog boxes. Dialog boxes
query data from the user or present data to the user, hence the term dialog box.

Dialog boxes are windows created by Windows using a template provided by
an application. The template describes the type and placement of the controls in the
window. The Dialog Manager-the part of Windows that creates and manages dialog
boxes--also provides default functionality for switching focus between the controls
using the Tab key as well as default actions for the Enter and Escape keys. In addition,
Windows provides a default dialog box window class, freeing applications from the
necessity of registering a window class for each of the dialog boxes it might create.

Dialog boxes come in two types: modal and modeless. A modal dialog prevents
the user from using the application until the dialog box has been dismissed. For ex
ample, the File Open and the Print dialog boxes are modal. A modeless dialog box
can be used interactively with the remainder of the application. The Find dialog box
in Microsoft Pocket Word is modeless; the user doesn't need to dismiss it before typ
ing in the main window.

Like other windows, dialog boxes have a window procedure, although the dia
log box window procedure is constructed somewhat differently from standard win
dows procedures. Instead of passing unprocessed messages to DejWindowProc for
default processing, a dialog box procedure returns TRUE if it processed the message
and FALSE if it didn't process the message. Windows supplies a default procedure,
DejDialogProc, for use in specific cases-that is, for specialized modeless dialog boxes
that have their own window classes.

Dialog Box Resource Templates

208

Most of the time, the description for the size and placement of the dialog box and for
the controls is provided via a resource called a dialog template. You can create a dia
log template in memory, but unless a program has an overriding need to format the
size and 'shape of the dialog box on the fly, loading a dialog template directly from a
resource is a much better choice. As is the case for other resources such as menus,
dialog templates are contained in the resource (RC) file. The template is referenced
by the application using either its name or its resource ID. Here is a dialog template
for a simple dialog box:

Chapter 4 Windows, Controls, and Dialog Boxes

GetVal DIALOG discardable 10, 10, 75, 60
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER
EXSTYLE WS_EX_CAPTIONOKBTN
CAPTION "Enter line number"
BEGIN

LTEXT "Enter &value:" IDD_VALLABEL. 5. 10. 40. 12
EDI TT EXT IDD_VALUE, 50, 10, 20. 12, WS_TABSTOP
AUTORADIOBUTTON "&Decimal", IDD_DEC, 5. 25. 60. 12,

WS_TABSTOP I WS_GROUP
AUTORADIOBUTTON "&Hex", IDD_HEX. 5. 40, 60, 12

END

The syntax for a dialog template follows a simple pattern similar to that for a
menu resource. First is the name or ID of the resource followed by the keyword DIA
LOG identifying that what follows is a dialog template. The optional discardable
keyword is followed by the position and size of the dialog box. The position speci
fied is, by default, relative to the owner window of the dialog box.

The units of measurement in a dialog box aren't pixels but dialog units. A clia
log unit is defined as one quarter of the average width of the characters in the system
font for horizontal units and one eighth of the height of one character from the same
font for vertical units. The goal is to create a unit of measurement independent of the
display technology; in practice, dialog boxes still need to be tested in all display reso
lutions in which the box might be displayed. You can compute a pixel vs. dialog unit
conversion using the GetDialogBaseUnits function but you'll rarely find it necessary.
The visual tools that come with most compilers these days isolate a programmer from
terms like dialog units but it's still a good idea to know just how dialog boxes are
described in an RC file.

The STYLE line of code specifies the style flags for the dialog box. The styles
include the standard window (WS_xx) style flags used for windows as well as a se
ries of dialog (DS_xx) style flags specific to dialog boxes. Windows CE supports the
following dialog box styles:

• DS_ABSALIGN Places the dialog box relative to the upper left corner of
the screen instead of basing the position on the owner window.

• DS_CENTER Centers the dialog box vertically and horizontally on the
screen.

• DS_MODALFRAME Creates a dialog box with a modal dialog box frame
that can be combined with a title bar and System menu by specifying the
WS_CAPTION and WS_SYSMENU styles.

209

Part 1 Windows Programming Basics

210

• DS_SETFONT Tells Windows to use a nondefault font that is specified
in the dialog template.

• DS_SETFOREGROUND Brings the dialog box to the foreground after it's
created. If an application not in the foreground displays a dialog box,
this style forces the dialog box to the top of the Z-order so that the user
will see it.

Most dialog boxes are created with at least some combination of the WS_POPUP,
WS_CAPTION, and WS_SYSMENU style flags. The WS_POPUP flag indicates the dia
log box is a top-level window. The WS_CAPTION style gives the dialog box a title
bar. A title bar allows the user to drag the dialog box around as well as serving as a
site for title text for the dialog box. The WS_SYSMENU style causes the dialog box to
have a Close button on .the right end of the title bar, thus eliminating the need for a
command bar control to provide the _Close button. Note that Windows CE uses this
flag differently from other versions of Windows, in which the flag indicates that a system
menu is to be placed on the end of the title bar.

The EXSTYLE line of code specifies the extended style flags for the dialog box.
For Windows CE, these flags are particularly important. The WS_EX_CAPTIONOKBTN
flag tells the dialog manager to place an OK button on the title bar to the immediate
left of the Close button. Having both OK and Close (or Cancel) buttons on the title
bar saves precious space in dialog boxes that are displayed on the small screens typical
of Windows CE devices. The WS_EX_CONTEXTHELP extended style places a Help
button on the title bar to the immediate left of the OK button. Clicking on this but
ton results in a WM_HELP message being sent to the dialog box procedure.

The CAPTION line of code specifies the title bar text of the dialog, providing
that the WS_CAPTION style was specified so that the dialog box will have a title bar.

The lines describing the type and placement of the controls in the dialog box
are enclosed in BEGIN and END keywords. Each control is specified either by a par
ticular keyword, in the case of commonly used controls, or by the keyword CON
TROL, which is a generic placeholder that can specify any window class to be placed
in the dialog box. The LTEXTline of code on page 209 specifies a static left-justified
text control. The keyword is followed by the default text for the control in quotes.
The next parameter is the ID of the control, which must be unique for the dialog box.
In this template, the ID is a constant defined in an include file that is included by
both the resource script and the C or C++ file containing the dialog box procedure.

Chapter 4 Windows, Controls, and Dialog Boxes

The next four values are the location and size of the control, in dialog units,
relative to the upper left corner of the dialog box, Following that, any explicit style
flags can be specified for the control. In the case of the L1EXTline, no style flags are
necessary, but as you can see the EDnTEXT and first AUTORADJOBUITON entries
each have style flags specified. Each of the control keywords have subtly different
syntax. For example, the EDnTEXTline doesn't have a field for default text. The style
flags for the individual controls deserve notice. The edit control and the first of the
two radio buttons have a WS_TABSTOP style. The dialog manager looks for controls
with the WS_TABSTOP style to determine which control gets focus when the user
presses the Tab. In this example, pressing the Tab key results in focus being switched
between the edit control and the first radio button.

The WS_GROUP style on the first radio button starts a new group of controls.
All the controls following the radio button are grouped together, up to the next con
trol that has the WS_GROUP style. Grouping auto radio buttons allow only one radio
button at a time to be selected.

Another benefit of grouping is that focus can be changed among the controls
within a group by exploiting the cursor keys as well as the Tab key. The first mem
ber of a group should have a WS_TABSTOP style; this allows the user to tab to the
group of controls and then use the cursor keys to switch the focus among the con
trols in the group.

The CONTROL statement isn't used in this example, but it's important and merits
some explanation. It's a generic statement that allows inclusion of any window class
in a dialog box. It has the following syntax:

CONTROL "text", id, class, style, x, y, width, height
[, extended-style]

For this entry, the default text and control ID are similar to the other statements
but the next field, class, is new. It specifies the window class of the control you want
to place in the dialog box. The class field is followed by the style flags, then the loca
tion and size of your control. Finally, the CONTROL statement has a field for extended
style flags. If you use Microsoft Developer Studio to create a dialog box and look at
the resulting RC file using a text editor, you'll see that Developer Studio uses CON
TROL statements instead of the more readable LTEXT, EDITTEXT, and BUTTON state
ments. There's no functional difference between an edit control created with a
CONTROL statement and one created with an EDITTEXT statement. The CONTROL
statement is a generic version of the more specific keywords. The CONTROL state
ment also allows inclusion of controls that don't have a special keyword associated
with them.

211

Part I Windows Programming Basics

Creating a Dialog Box

212

Creating and displaying a dialog box is simple; just use one of the many dialog box
creation functions. The first two are these:

int DialogBox (HANDLE hlnstance, LPCTSTR lpTemplate, HWND hWndOwner,
DLGPROC lpDialogFunc);

int DialogBoxParam (HINSTANCE hlnstance, LPCTSTR lpTemplate,
HWND hWndOwner, DLGPROC lpDialogFunc,
LPARAM dwlnitParam);

These two functions differ only in DialogBoxParam's additional LPARAM pa
rameter, so I'll talk about them at the same time. The first parameter to these func
tions is the instance handle of the program. The second parameter specifies the name
or ID of the resource containing the dialog template. As with other resources, to specify
a resource ID instead of a name requires the use of the MAKEINTRESOURCE macro.

The third parameter is the handle of the window that will own the dialog box.
The owning window isn't the parent of the dialog box because, were that true, the
dialog box would be clipped to fit inside the parent. Ownership means instead that
the dialog box will be hidden when the owner window is minimized and will always
appear above the owner window in the Z-order.

The fourth parameter is a pointer to the dialog box procedure for the dialog
box. I'll describe the dialog box procedure shortly. The DialogBoxParam function
has a fifth parameter, which is a user-defined value that's passed to the dialog box
procedure when the dialog box is to be initialized. This helpful value can be used to
pass a pointer to a structure of data that can be referenced when your application is
initializing the dialog box controls.

Two other dialog box creation functions create modal dialogs. They are the
following:

int DialogBoxlndirect (HANDLE hlnstance, LPDLGTEMPLATE lpTemplate,
HWND hWndParent, DLGPROC lpDialogFunc);

int DialogBoxlndirectParam (HINSTANCE hlnstance,
LPCDLGTEMPLATE DialogTemplate, HWND hWndParent,
DLGPROC lpDialogFunc, LPARAM dwlnitParam);

The difference between these two functions and the two previously described
is that these two use a dialog box template in memory to define the dialog box rather
than using a resource. This allows a program to dynamically create a dialog box tem
plate on the fly. The second parameter to these functions points to a DLGTEMPLATE
structure, which describes the overall dialog box window, followed by an array of
DLGITEMTEMPLATE structures defining the individual controls.

Chapter 4 Windows, Controls, and Dialog Boxes

When any of these four functions are called, the dialog manager creates a modal
dialog box using the template passed. The window that owns the dialog is disabled
and the dialog manager then enters its own internal GetMessage/ DispatchMessage
message processing loop; this loop doesn't exit until the dialog box is destroyed.
Because of this, these functions don't return to the caller until the dialog box has been
destroyed. The WM_ENTERIDLE message that's sent to owner windows in other ver
sions of Windows while the dialog box is displayed isn't supported under Windows CE.

If an application wanted to create a modal dialog box with the template shown
above and pass a value to the dialog box procedure it might call this:

DialogBoxParam (hlnstance, TEXT ("GetVal"), hWnd, GetValDlgProc,
0x1234);

The hlnstance and hWnd parameters would be the instance handle of the applica
tion and the handle of the owner window. The GetVal string is the name of the dia
log box template while GetValDlgProc is the name of the dialog box procedure. Finally,
Ox1234 is an application-defined value. In this case, it might be used to provide a
default value in the dialog box.

Dialog Box Procedures
The final component necessary for a dialog box is the dialog box procedure. As in
the case of a window procedure, the purpose of the dialog box procedure is to field
messages sent to the window-in this case, a dialog box window-and perform the
appropriate processing. In fact, a dialog box procedure is simply a special case of a
window procedure, although we should pay attention to a few differences between
the two.

The first difference, as mentioned in the previous section, is that a dialog box
procedure doesn't pass unprocessed messages to DejWindowProc. Instead, the pro
cedure returns TRUE for messages it processes and FALSE for messages that it doesn't
process. The dialog manager uses this return value to determine whether the mes
sage needs to be passed to the default dialog box procedure.

The second difference from standard window procedures is the addition of a
new message, WM_INITDIALOG. Dialog box procedures perform any initialization
of the controls during the processing of this message. Also, if the dialog box was created
with DialogBoxParam or DialogBoxlndirectParam, the !Param value is the generic
parameter passed during the call that created the dialog box. While it might seem
that the controls could be initialized during the WM_CREATE message, that doesn't
work. The problem is that during the WM_ CREATE message, the controls on the dia
log box haven't yet been created, so they can't be initialized. The WM_INITDIALOG
message is sent after the controls have been created and before the dialog box is made
visible, which is the perfect time to initialize the controls.

213

214

Here are a few other minor differences between a window procedure and a
dialog box procedure. Most dialog box procedures don't need to process the
WM_PAINT message because any necessary painting is done by the controls or, in
the case of owner-draw controls, in response to control requests. Most of the code in
a dialog box procedure is responding to WM_COMMAND messages from the con
trols. As with menus, the WM_COMMAND messages are parsed by the control ID
values. Two special predefined ID values that a dialog box has to deal with are IDOK
and IDCANCEL. IDOK is assigned to the OK button on the title bar of the dialog box
while IDCANCEL is assigned to the Close button. In response to a click of either button,
a dialog box procedure should call

BOOL EndDialog (HWND hDlg, int nResult);

EndDialog closes the dialog box and returns control to the caller of whatever func
tion created the dialog box. The hDlg parameter is the handle of the dialog box while
the nResult parameter is the value that's passed back as the return value of the func
tion that created the dialog box.

The difference, of course, between handling the IDOK and IDCANCEL buttons
is that if the OK button is clicked, the dialog box procedure should collect any rele
vant data from the dialog box controls to return to the calling procedure before it
calls EndDialog.

A dialog box procedure to handle the GetVal template previously described is
shown here:

II==
II GetVal Dialog procedure
II
BOOL CALLBACK GetValDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
TCHAR szText[64];
INT nVal, nBase;

switch (wMsg) {
case WM_INITDIALOG:

SetDlgitemint (hWnd, IDD_VALUE, 0, TRUE);
SendDlgitemMessage ChWnd, IDD_VALUE, EM_LIMITTEXT,

sizeof (szText)-1, 0);
CheckRadioButton (hWnd, IDD_DEC, IDD_HEX, IDD_DEC);
return TRUE;

case WM_COMMAND:
switch (LOWORD (wParam)) {

case IDD_HEX:
II See if Hex already checked.

Chapter 4 Windows, Controls, and Dialog Boxes

if (SendDlgltemMessage ChWnd, IDD_HEX,
BM_GETSTATE, 0, 0) == BST_CHECKED)

return TRUE:

II Get text from edit control.
GetDlgltemText (hWnd, IDD_VALUE, szText,

sizeof (szText)):
II Convert value from decimal, then set as hex.
if (ConvertValue (szText, 10, &nVal)) {

}

II If conversion successful, set new value.
wsprintf (szText, TEXT ("%X"), nVal):
SetDlgltemText (hWnd, IDD_VALUE, szText);
II Set radio button.
CheckRadioButton (hWnd, IDD_DEC, IDD_HEX,

IDD_HEX):
else {

MessageBox (hWnd,
TEXT ("Value not valid"),
TEXT ("Error"), MB_OK):

return TRUE:

case IDD_DEC:
II See if Dec already checked.
if (SendDlgltemMessage ChWnd, IDD_DEC,

BM_GETSTATE, 0, 0) == BST_CHECKED)
return TRUE:

II Get text from edit control.
GetDlgltemText (hWnd, IDD_VALUE, szText,

sizeof (szText)):
II Convert value from hex, then set as decimal.
if (ConvertValue (szText, 16, &nVal)) {

.}

II If conversion successful, set new value.
wsprintf (szText, TEXT ("%d"), nVall:.
SetDlgltemText (hWnd, IDD_VALUE, szText):
II Set radio button.
CheckRadioButton (hWnd, IDD_DEC, IDD_HEX,

IDD_DEC):
else {

II If bad conversion, tell user.
MessageBox (hWnd,

TEXT ["Value not valid"),
TEXT ("Error"), MB_OK):

return TRUE;
(continued)

215

Part I Windows

}

}

}

break;

case IDOK:
II Get the current text.
GetDlgitemText (hWnd, IDD_VALUE, szText,

sizeof (szText)J;
II See which radio button checked.
if (SendDlgitemMessage ChWnd, IDD_DEC,

BM_GETSTATE, 0, 0) == BST_CHECKED)
nBase = 10;

else
nBase = 16;

II Convert the string to a number.
if (ConvertValue (szText, nBase, &nVal))

EndDialog (hWnd, nVal);
else

MessageBox ChWnd,

break;

case IDCANCEL:

TEXT ("Value not valid"),
TEXT ("Error"), MB_OK);

EndDialog {hWnd, 0);
return TRUE;

return FALSE;

This is a typical example of a dialog box procedure for a simple dialog box.
The only messages that are processed are the WM_INITDIALOG and WM_ COMMAND
messages. The WM_INITDIALOG message is used to initialize the edit control using
a number passed, via DialogBoxParam, through to the lParam value. The radio but
ton controls aren't auto radio buttons because the dialog box procedure needs to
prevent the buttons from changing if the value in the entry field is invalid. The
WM_ COMMAND message is parsed by the control ID where the appropriate processing
takes place. The IDOK and IDCANCEL buttons aren't in the dialog box template; as
mentioned earlier, those buttons are placed by the dialog manager in the title bar of
the dialog box.

Modeless Dialog Boxes

216

I've talked so far about modal dialog boxes that prevent the user from using other
parts of the application before the dialog box is dismissed. Modeless dialog boxes,
on the other hand, allow the user to work with other parts of the application while
the dialog box is still open. Creating and using modeless dialog boxes requires a bit

Chapter 4 Windows, Controls, and Dialog Boxes

more work. For example, you create modeless dialog boxes using different functions
than those for modal dialog boxes:

HWND CreateDialog (HINSTANCE hinstance, LPCTSTR lpTemplate.
HWND hWndOwner, DLGPROC lpDialogFunc);

HWND CreateDialogindirect (HINSTANCE hinstance, LPCDLGTEMPLATE lpTemplate,
HWND hWndOwner, DLGPROC lpDialogFunc);

HWND CreateDialogindirect (HINSTANCE hlnstance,

or

LPCDLGTEMPLATE lpTemplate, HWND hWndOwner,
DLGPROC lpDialogFunc);

HWND CreateDialogindirectParam (HINSTANCE hlnstance,
LPCDLGTEMPLATE lpTemplate, HWND hWndOwner,
DLGPROC lpDialogFunc, LPARAM lParaminit);

The parameters in these functions mirror the creation functions for the modal dialog
boxes with similar parameters. The difference is that these functions return immedi
ately after creating the dialog boxes. Each function returns 0 if the create failed or
returns the handle to the dialog box window if the create succeeded.

The handle returned after a successful creation is important because applica
tions that use modeless dialog boxes must modify their message loop code to accom
modate the dialog box. The new message loop should look similar to the following:

while (GetMessage (&msg, NULL, 0, 0)) (
if ((hMlDlg == 0) II (!IsDialogMessage (hMlDlg, &msg))) {

TranslateMessage (&msg);
DispatchMessage (&msg);

The difference from a modal dialog box message loop is that if the modeless
dialog box is being displayed, messages should be checked to see whether they're
dialog messages. If they're not dialog messages, your application forwards them to
TranslateMessage and DispatchMessage. The code shown above simply checks to see
whether the dialog box exists by checking a global variable containing the handle to
the modeless dialog box and, if it's not 0, calls lsDialogMessage. If lsDialogMessage
doesn't translate and dispatch the message itself, the message is sent to the standard
TranslateMessage/DispatchMessage body of the message loop. Of course, this code
assumes that the handle returned by CreateDialog (or whatever function creates
the dialog box) is saved in hM!Dlg and that hM!Dlg is set to 0 when the dialog box
is closed.

217

Basics

Another difference between modal and modeless dialog boxes is in the dialog
box procedure. Instead of using EndDialog to close the dialog box, you must call
DestroyWindow instead. This is because EndDialog is designed to work only with
the internal message loop processing that's performed with a modal dialog box. Fi
nally, an application usually won't want more than one instance of a modeless dia
log box displayed at a time. An easy way to prevent this is to check the global copy
of the window handle to see whether it's nonzero before calling CreateDialog. To
do this, the dialog box procedure must set the global handle to 0 after it calls
Destroy Window.

Property Sheets

218

To the user, a property sheet is a dialog box with one or more tabs across the top that
allow the user to switch among different "pages" of the dialog box. To the program
mer, a property sheet is a series of stacked dialog boxes. Only the top dialog box is
visible; the dialog manager is responsible for displaying the dialog box associated
with the tab on which the user clicks. However you approach property sheets, they're
invaluable given the limited screen size of Windows CE devices.

Each page of the property sheet, named appropriately enough a property page,
is a dialog box template, either loaded from a resource or created dynamically in
memory. Each property page has its own dialog box procedure. The frame around
the property sheets is maintained by the dialog manager, so the advantages of prop
erty sheets come with little overhead to the programmer. Unlike the property sheets
supported in other versions of Windows, the property sheets in Windows CE don't
support the Apply button. Also, the OK and Cancel buttons for the property sheet
are contained in the title bar, not positioned below the pages.

Creating a property sheet
Instead of using the dialog box creation functions to create a property sheet, a new
function is used:

int PropertySheet (LPCPROPSHEETHEADER lppsph);

The PropertySheet function creates the property sheet according to the information
contained in the PROPSHEETHEADER structure which is defined as the following:

typedef struct _PROPSHEETHEADER {
DWORD dwSize;
DWORD dwFlags;
HWND hwndOwner;
HINSTANCE hlnstance;

Chapter 4 Windows, Controls, and Dialog Boxes

union {

} ;

HICON hlcon;
LPCWSTR pszlcon;

LPCWSTR pszCaption;
UINT nPages;
union {

UINT nStartPage;
LPCWSTR pStartPage;

} ;

union {

} :

LPCPROPSHEETPAGE ppsp;
HPROPSHEETPAGE FAR *phpage;

PFNPROPSHEETCALLBACK pfnCallback;
PROP SH EETH EADER;

Filling in this convoluted structure isn't as imposing a task as it might look. The
dwSize field is the standard size field that must be initialized with the size of the struc
ture. The dwFlags field contains the creation flags that define how the property sheet
is created, which fields of the structure are valid, and how the property sheet behaves.
Some of the flags indicate which fields in the structure are used. (I'll talk about those
flags when I describe the other fields.) Two other flags set the behavior of the prop
erty sheet. The PSH_PROPTITLE flag appends the string "Properties" to the end of
the caption specified in the pszCaption field. The PSH_MODELESS flag causes the
PropertySheet function to create a modeless property sheet and immediately return.
A modeless property sheet is like a modeless dialog box; it allows the user to switch
back to the original window while the property sheet is still being displayed.

The next two fields are the handle of the owner window and the instance handle
of the application. Neither the h!con or pszlcon fields are used in Windows CE so
they should be set to 0. The pszCaption field should point to the title bar text for the
property sheet. The nStartPage/pStartPage union should be set to indicate the page
that should be initially displayed. This can be selected either by number or by title if
the PSH_USEPSTARTPAGE flag is set in the dwFlags field.

The ppsp/phpage union points to either an array of PROPSHEETPAGE structures
describing each of the property pages or handles to previously created property pages.
For either of these, the nPages field must be set to the number of entries of the array
of structures or page handles. To indicate that the pointer points to an array of
PROPSHEETPAGE structures, set the PSH_PROPSHEETPAGE flag in the dwFlags field.
I'll describe both the structure and how to create individual pages shortly.

219

220

The pfnCallBack field is an optional pointer to a procedure that's called twice
when the property sheet is about to be created and again when it's about to be ini
tialized. The callback function allows applications to fine-tune the appearance of the
property sheet for the rare times when it's necessary. This field is ignored unless the
PSP _USECALLBACK flag is set in the dwFlags field.

Creating a property page
As I mentioned earlier, individual property pages can be specified by an array of
PROPSHEETPAGE structures or an array of handles to existing property pages. Cre
ating a property page is accomplished with a call to the following:

HPROPSHEETPAGE CreatePropertySheetPage (LPCPROPSHEETPAGE lppsp);

This function is passed a pointer to the same PROPSHEETPAGE structure and returns
a handle to a property page. PROPSHEETPAGE is defined as this:

typedef struct _PROPSHEETPAGE
DWORD dwSize;
DWORD dwFlags;
HINSTANCE hinstance;
union {

LPCSTR pszTemplate;
LPCDLGTEMPLATE pResource;

} ;

union {

} ;

HICON hicon;
LPCSTR pszicon;

LPCSTR pszTitle;
DLGPROC pfnDlgProc;
LPARAM lParam;
LPFNPSPCALLBACK pfnCallback;
UINT FAR* pcRefParent;

PROPSHEETPAGE;

The structure looks similar to the PROPSHEETHEADER structure, leading with
a dwSize and dwFlags field followed by an hlnstance field. In this structure, hlnstance
is the handle of the module from which the resources will be loaded. The dwFlags
field again specifies which fields of the structure are used and how they're used, as
well as a few flags specifying the characteristics of the page itself.

The pszTemplate/pResource union specifies the dialog box template used to
define the page. If the PSP _DLGINDIRECT flag is set in the dwFlags field, the union
points to a dialog box template in memory. Otherwise, the field specifies the name
of a dialog box resource. The hlcon/pszlcon union isn't used in Windows CE and

Chapter 4 Windows, Controls, and Dialog Boxes

should be set to 0. If the dwFlags field contains a PSP _USETITLE flag, the pszTitle
field points to the text used on the tab for the page. Otherwise, the tab text is taken
from the caption field in the dialog box template. The pfnDlgProc field points to the
dialog box procedure for this specific page and the !Param field is an application
defined parameter that can be used to pass data to the dialog box procedure. The
pfnCallback field can point to a callback procedure that's called twice- when the
page is about to be created and when it's about to be destroyed. Again, like the call
back for the property sheet, the property page callback allows applications to fine
tune the page characteristics. This field is ignored unless the dwFlags field contains
the PSP _USECALLBACK flag. Finally, the pcRefCount field can contain a pointer to
an integer that will store a reference count for the page. This field is ignored unless
the flags field contains the PSP _USEREFPARENT flag.

Windows CE supports a new flag for property pages, PSP _PREMATURE. This
flag causes a property page to be created when the property sheet that owns it is
created. Normally, a property page isn't created until the first time it's shown. This
has an impact on property pages that communicate and cooperate with each other.
Without the PSP _PREMATURE flag, the only property page that's automatically cre
ated when the property sheet is created is the page that is displayed first. So, at that
moment, that first page has no sibling pages to communicate with. Using the
PSP _PREMATURE flag, you can ensure that a page is created when the property sheet
is created even though it isn't the first page in the sheet. While it's easy to get over
whelmed with all these structures, simply using the default values and not using the
optional fields results in a powerful and easily maintainable property sheet that's also
as easy to construct as a set of individual dialog boxes.

Once a property sheet has been created, the application can add and delete
pages. The application adds a page by sending a PSM_ADDPAGE message to the
property sheet window. The message must contain the handle of a previously cre
ated property page in !Param; wParam isn't used. Likewise, the application can re
move a page by sending a PSM_REMOVEPAGE message to the property sheet window.
The application specifies a page for deletion either by setting wParam to the zero
based index of the page selected for removal or by passing the handle to that page in
!Param.

The code below creates a simple property sheet with three pages. Each of the
pages references a dialog box template resource. As you can see. most of the initiali
zation of the structures can be performed in a fairly mechanical fashion.

PROPSHEETHEADER psh;
PROPSHEETPAGE psp[3];
INT i;

(continued)

221

Part I

222

II Init page structures with generic information.
memset (&psp, 0, sizeof (psp)); II Zero out all unused values.
for Ci = 0; i < dim(psp); i++) {

psp[i].dwSize = sizeuf (PROPSHEETPAGE);
psp[i].dwFlags = PSP_DEFAULT: II No special processing needed
psp[i].hinstance = hinst; II Instance handle where the

} II dialog templates are located
II Now do the page specific stuff.
psp[0].pszTemplate =TEXT ("Pagel");
psp[0J.pfnDlgProc = PagelDlgProc;

II Name of dialog resource for page 1
II Pointer to dialog proc for page 1

psp[l].pszTemplate =TEXT C"Page2"); II
psp[l].pfnDlgProc = Page2DlgProc; II

psp[2J.pszTemplate =TEXT ("Page3"); II
psp[2].pfnDlgProc = Page3DlgProc; II

II Init property sheet header structure.
psh.dwSize = sizeof (PROPSHEETHEADER);

Name of dialog resource for page 2
Pointer to dialog proc for page 2

Name of dialog resource for page 3
Pointer to dialog proc for page 3

psh.dwFlags = PSH_PROPSHEETPAGE; II We are using templates not handles.
psh.hwndParent = hWnd: II Handle of the owner window
psh.hinstance = hinst; II Instance handle of the application
psh.pszCaption =TEXT ("Property sheet title");
psh.nPages = dim(psp); //Number of pages
psh.nStartPage = 0; II Index of page to be shown first
psh.ppsp = psp; II Pointer to page structures
psh.pfnCallback = 0; II We don't need a callback procedure.

II Create property sheet. This returns when the user dismisses the sheet
II by tapping OK or the Close button.
i = PropertySheet C&psh);

While this fragment has a fair amount of structure filling, it's boilerplate code.
Everything not defined, such as the page dialog box resource templates and the page
dialog box procedures, are required for dialog boxes as well as property sheets. So,
aside from the boilerplate stuff, property sheets require little, if any, work beyond
simple dialog boxes.

Property page procedures
The procedures that back up each of the property pages have only a few differences
from standard dialog box procedures. First, as I mentioned previously, unless the
PSP _PREMATURE flag is used, pages aren't created immediately when the property
sheet is created. Instead, each page is created and WM_INITDIALOG messages are
sent only when the page is initially shown. Also, the lParam parameter doesn't point
to a user-defined parameter; instead, it points to the PROPSHEETPAGE structure that

Chapter 4 Windows, Controls, and Dialog Boxes

defined the page. Of course, that structure contains a user-definable value that can
be used to pass data to the dialog box procedure.

Also, a property sheet procedure doesn't field the IDOK and IDCANCEL con
trol IDs for the OK and Close buttons on a standard dialog box. These buttons in
stead are handled by the system-provided property sheet procedure that coordinates
the display and management of each page. When the OK or Close button is tapped,
the property sheet sends a WM_NOTIFY message to each sheet notifying them that
one of the two buttons has been tapped and that they should acknowledge that it's
okay to close the property sheet.

WM_NOTIFY
While this is the first time I've mentioned the WM_NOTIFY message, it has become
a mainstay of the new common controls added to Windows over the last few years.
The WM_NOTIFY message is essentially a redefined WM_ COMMAND message. which
instead of encoding the reason for the message in one of the parameters passes a
pointer to an extensible structure instead. This has allowed the WM_NOTIFY mes
sage to be extended and adapted for each of the controls that use it. In the case of
property sheets, the WM_NOTIFY message is sent under a number of conditions; when
the user taps the OK button, when the user taps the Close button, when the page
gains or loses focus from or to another page, or when the user requests help.

At a minimum, the WM_NOTIFY message is sent with !Param pointing to an
NMHDR structure defined as the following:

typedef struct tagNMHDR {
HWND hwndFrom:
UINT idFrom:
UINT code:

NMHDR;

The hwndFrom field contains the handle of the window that sent the notify message.
For property sheets, this is the property sheet window. The idFrom field contains the
ID of the control if a control is sending the notification. Finally, the code field con
tains the notification code. While this basic structure doesn't contain any more infor
mation than the WM_COMMAND message, often this structure is extended with
additional fields appended to the structure. The notification code then indicates what,
if any, additional fields are appended to the notification structure.

Switching pages
When a user switches from one page to the next, the Dialog Manager sends a
WM_NOTIFY message with the code PSN_KILLACTIVE to the page currently being
displayed. The dialog box procedure should then validate the data on the page. If it's
permissible for the user to change the page, the dialog box procedure should then

223

Part I

set the return value of the window structure of the page to PSNRET_NOERROR and
return TRUE. You set the PSNRET_NOERROR return field by calling SetWindowLong
with DWL_MSGRESULT as in the following line of code:

SetWindowlong (hwndPage, DWL_MSGRESULT, PSNRET_NOERROR);

where hwndPage is the handle of the property sheet page. A page can keep focus by
returning PSNRET_INVALID_NOCHANGEPAGE in the return field. Assuming a page
has indicated that it's okay to lose focus, the page being switched to receives a
PSN_SETACTIVE notification via a WM_NOTIFY message. The page can then accept
the focus or specify another page that should receive the focus.

Closing a property sheet
When the user taps on the OK button, the property sheet procedure sends a
WM_NOTIFY with the notification code PSN_KILLACTIVE to the page currently be
ing displayed followed by a WM_NOTIFY with the notification code PSN_APPLY to
each of the pages that has been created. Each page procedure should save any data
from the page controls when it receives the PSN_APPLY notification code.

When the user clicks the Close button, a PSN_QUERYCANCEL notification is
sent to the page procedure of the page currently being displayed. All this notification
requires is that the page procedure return TRUE to prevent the close or FALSE to al
low the close. A further notification, PSN_RESET, is then sent to all the pages that
have been created, indicating that the property sheet is about to be destroyed.

Common Dialogs

224

In the early days of Windows, it was a rite of passage for a Windows developer to
write his or her own File Open dialog box. A File Open dialog box is complex-it
must display a list of the possible files from a specific directory, allow file navigation,
and return a fully justified filename back to the application. While it was great for
programmers to swap stories about how they struggled with their unique implemen
tation of a File Open dialog, it was hard on the users. Users had to learn a different
file open interface for every Windows application.

Windows now provides a set of common dialog boxes that perform typical func
tions, such as selecting a filename to open or save or picking a color. These standard
dialog boxes (called common dialogs) serve two purposes. First, common dialogs lift
from developers the burden of having to create these dialog boxes from scratch.
Second, and just as important, common dialogs provide a common interface to the
user across different applications. (These days, Windows programmers swap horror
stories about learning COM.)

Windows CE 2.0 provides four common dialogs: File Open, Save As, Print, and
Choose Color. Common dialogs, such as Find, Choose Font, and Page Setup, that are

Chapter 4 Windows, Controls, and Dialog Boxes

available under other versions of Windows aren't supported under Windows CE.
Applications developed for Windows CE 1.0 or for the first release of the Palm-size
PC must also do without the Print and Color common dialogs, but this isn't much of
a sacrifice because neither color screens nor printing is supported on those systems.

The other advantage of the common dialogs is that they have a customized look
for each platform while retaining the same programming interface. This makes it easy
to use, say, the File Open dialog on both the H/PC and the Palm-size PC because
the dialog box has the same interface on both systems even though the look of the
dialog box is vastly different on the two platforms. Figure 4-7 shows the File Open
dialog on the H/PC; Figure 4-8 shows the File Open dialog box on the Palm-size PC.

Figure 4-7. The File Open dialog on a Handheld PC.

Figure 4-8. The File Open dialog on a Palm-size PC.

225

Part 1 Windows Programming Basics

Instead of showing you how to use the common dialogs here, I'll let the next
example program, DlgDemo, show you. That program demonstrates all four supported
common dialog boxes.

The DlgDemo Example Program

226

The DlgDemo program demonstrates basic dia log boxes, modeless dialog boxes,
property sheets, and common dialogs. When you start DlgDemo, it displays a win
dow that shows the WM_COMMAND and WM_ OTIFY messages sent by the vari
ous controls in the dialogs, irnilar to the right side of d1e CdView window. The different
dialogs can be opened using the various menu items. Figure 4-9 shows the Dialog
Demo window with the property sheet dialog displayed.

Jd:t8 WM_COMMA/ID: BN_SETFOCUS
Jd:ce WM_DRAWITEM Action:l State:O
Jd:t8 WM_COMMA/ID: BN_KILLFOCUS
Jd:ce WM_DRAWITEM Actkln:4 State:lO
Jd:ce WM_DRAWITEM Actkln:2 State: 11
Jd:ce WM_DRAWITEM Action:2 State: 10
Jd:ce WM_C
Jd:ce WM_DRA
Jd:cb WM_C
Jd:cb WM_C
Jd:cc WM_cn...Nl~==.c~=~~~~-1
Jd:ce WM_c
Jd:ce WM_c
Jd:c9 WM_C
Jd:c9 WM_C
Jd:cb WM_C
Jd:cb WM_C

PSN_
PSN_SET

id:d2 WM_C
id:d2 WM_C
id:d2 WM_C':'""'1i,c....._,,._,......,......,_,._,._,._,.__,
id:d2 WM_COMMA/ID: EN_KILLFOCUS
Jd:d3 WM_COMMA/ID: EN_SETFOCUS
Jd:d3 WM_COMMMD: EN_KILLFOCUS
id:d4 WM_COMMA/ID: EN_SETFOCUS
id:d4 WM_COMMMD: EN_KILLFOCUS

PSN_KILLACTIVE
PSN_SETACT!VE

id:ce WM_DRAWITEM Actkln: 1 State:O

Figure 4-9. Tbe DlgDemo window.

The basic dialog box is a simple "about box" launched by selecting the Help
About menu . The property sheet is launched by selecting the File Property Sheet menu.
The property sheet dialog contains five pages corresponding to the different windows
in the CdView example. The common dialog boxes are launched from the File Open,
File Save, File Color, and File Print menu items. These last two menu items are dis
abled when the program is run on a Palm-size PC since those common dialog boxes
aren't supported on that platform. The DlgDemo source code is shown in Figure 4-10.

Part 1 Windows Programming Basics

Instead of showing you how to use the common dialogs here, I'll let the next
example program, DlgDemo, show you. That program demonstrates all four supported
common dialog boxes.

The DlgDemo Example Program

226

The DlgDemo program demonstrates basic dialog boxes, modeless dialog boxes,
property sheets , and common dialogs. When you start DlgDemo, it displays a win
dow that shows the WM_COMMAND and WM_NOTIFY messages sent by the vari
ous controls in the dialogs, similar to the right side of the CtlView window. 'l'he different
dialogs can be opened using the various menu items. Figure 4-9 shows the Dialog
Demo window with the property sheet dialog displayed.

Button
Button
Button
Button
Button
Sutton
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Edit
Edit
Edit
Edit
Edit
Edt
Ec!t
Edit
Edit
Edit
Button
Button

id:cB
id:ce
id:c8
id:ce
id:ce
id:ce
id:ce
id:ce
id:cb
id:cb
id: cc
id:cB
id:c8
id:c9
id:c9
id:cb
id:cb

id :d2
id:d2
id:d2
id:d2
id:d3
id:d3
id:d4
id:d4

id:ce

Dia<ig Demo

WM_COMMAND: BN_SETFOCUS
WM_DRAWITEM Action:l State:O
WM_COMMAND: BN_KILLFOCUS
WM_DRAWITEM Action:4 State:lO
WM_DRAWITEM Action:2 State: 11

2 ID

PSN_SET ACTIVE
WM_DRAWITEM Acljon:l State:O

Figure 4-9. The DlgDemo window.

The basic dialog box is a simple "about box" launched by selecting the Help
About menu. The property sheet is launched by selecting the File Property Sheet menu.
The property sheet dialog contains five pages corresponding to the different windows
in the CtlView example. The common dialog boxes are launched from the File Open,
File Save, File Color, and File Print menu items. These last two menu items are dis
abled when the program is run on a Palm-size PC since those common dialog boxes
aren't supported on that platform. The DlgDemo source code is shown in Figure 4-10.

Chapter 4 Windows, Controls, and Dialog Boxes

DlgDemo.rc

II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright (C) 199B Douglas Boling
II==

#include "windows . h"
#include "DlgDemo.h"

II
II Program-s pecific stuff

11- ---
II Icons and bitmaps
II
ID_ICON ICON "DlgDemo.ico" II Program icon
IDLBTNICON ICON "btnicon . tco" II Bitmap used in owner -draw button
statbmp BITMAP "statbmp.bmp" II Bitmap used in static window

11 --
11 Menu
II
ID_MENU MENU DISCARDABLE
BEGIN

END

POPUP "&File"
BEGIN

END

MENUITEM "Open .. . " ,
MENUITEM "Save .. . ",
MENUITEM SEPARATOR
MENUITEM "Color ... ",
MENUITEM "Print ... " ,
MENUITEM SEPARATOR
MENUITEM "Property Sheet" ,
MENUITEM "Modeless Dialog",
MENUITEM SEPARATOR
MENUITEM "E&xit",

POPUP "&Help"
BEGIN

MENUITEM "&About ... " ,
END

IDM_OPEN
IDM_SAVE

IDM_C DLOR
IDM_PRINT

IDM_SHOWPROPSHEET
IDM_SHOWMODELESS

IDM_E XIT

IDM_ABOUT

11 --
11 Property page templates
II

Figure 4-10. 7be DlgDemo program. (co ntinued)

227

Chapter 4 Windows, Controls, and Dialog Boxes

Figure 4-10. The DlgDemo program. (continued)

227

Part I Windows Programming Basics

Figure 4-10. continued

ID_BTNPAGE DIALOG discardable 0, 0, 125, 90
CAPTION "Buttons"
BEGIN

PUSHBUTTON "Button l", IDC_PUSHBTN,
WS_TABSTOP

CHECKBOX "Check Box", IDCCHKBOX,
WS_TABSTOP

AUTOCHECKBOX "Auto check box" IDCACHKBOX,
WS_TABSTOP

AUT03STATE "Auto 3-state box", IDCA3STBOX,
WS_TABSTOP

AUTORADIOBUTTON "Auto radio button l",
IDCRADIDl,

WS_TABSTOP
AUTORADIOBUTTON "Auto radio button 2",

IDCRADI02,
PUSHBUTTON IDCOWNRDRAW,

5. 5, 80, 12,
BS_NOTIFY

5. 20, 80, 12.
BS_NOTIFY

5. 35, 80, 12,

5. 50, 80, 12,

5. 65, 80, 12.
I WS_GROUP

5. 75, 80, 12
95, 5, 30, 30,

BS_OWNERDRAW
END

ID_EDITPAGE DIALOG discardable 0, 0, 80, 80
CAPTION "Edit"
BEGIN

EDITTEXT IDC_SINGLELINE, 5, 5, 70, 12,

EDI TT EXT

ED ITT EXT

END

WS_TABSTOP
IDCMUL TI LINE,

WS_TABSTOP
IDCPASSBOX,

WS_TABSTOP

5, 20. 70, 40,
I ES_MULTILINE
5, 65, 70, 12,
I [$_PASSWORD

ID_LISTPAGE DIALOG discardable 0, 0,
CAPTION "List"

125. 80

BEGIN
COMBOBOX

LISTBOX

LISTBOX

END

IDC_COMBOBOX, 5, 5,
WS_TABSTOP I

IDCSNGLELIST, 5, 20,
WS_TABSTOP

IDC_MULTILIST, 60, 20,
WS_TABSTOP I

70, 60,
CBS_DROPDOWN
50, 60,

50, 60,
LBS_EXTENDEDSEL

ID_STATPAGE DIALOG discardable 0, 0, 130, 80
CAPTION "Static"
BEGIN

228

LTEXT "Left text",
RTEXT "Right text",

IDCLEFTTEXT,
IDCRIGHTTEXT,

5, 5, 70, 20
5, 30, 70, 20

Part I

Figure 4-10. continued

228

Chapter 4 Windows, Controls, and Dialog Boxes

CTEXT "Center text", IDC_CENTERTEXT, 5, 55, 70, 20,
WS_BORDER

ICON IDl_BTNICON
CONTROL "stltbmp",

IOC_I CONCH, 95, 5. 32. 32
IOC_BITMAPCTL, "static", SS_BITMAP.

95, 40, 32, 32
END

ID_SCROLLPAGE DIALOG discardable 0, 0, 60, 80
CAPTION "Scroll"
BEGIN

SCROLLBAR

SCROLLBAR

END

IDC_LRSCROLL, 5,
WS_TABSTOP

IDC_UDSCROLL, 80,
WS_TABSTOP I

5, 70,

5, 12,
SBS_VERT

12,

70,

11----- -------------------------------------- - --------------------------
11 Clear list modeless dialog box template.
II
Clearbox DIALOG discardable 60, 10, 70, 30
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYS MENU I DS_MODALFRAME
CAPTION "Clear"
BEGIN

DEFPUSHBUTTON "Clear Listbox"
IDD_CLEAR, 5, 5, 60, 20

END
11 -- ----------- -- ----------- --------------------------------------- - -- - -
11 About box dialog box template
II
aboutbox DIALOG discardable 10. 10, 132, 40
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER I

DS_MODALFRAME
CAP TI ON "About"
BEGIN

ICON ID_ICON -1 , 5. 5, 0. 0

LTEXT "DlgDemo - Written for the book Programming Windows \
CE Copyright 1998 Douglas Boling"

-1 . 28, 5, 100, 30
END

DlgDemo.h

II==
II Header file
II
II Written for the book Programming Windows CE

(con l inued)

229

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

229

Part 1 Windows Programming Basics

Figure 4-10. continued

II Copyright (Cl 1998 Douglas Boling
II==
II Returns number of elements
#define dim(xl (sizeof(x) I sizeof(x[0]ll

11 -------------------- ------------------------- --------- -- --- ---- ---- ---
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*Fxnl(HWND, UINT, WPARAM, LPARAMl;
} ;

struct decodeCMD {
UINT Code;
LRESULT (*FXn)(HWND, WORD, HWND, WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

I I- - - -- ---- ----------- - ----- -- - - - - - - - -- - -- - - - ---- --- ----- - --- -- -- --- - - --
II Generic defines used by application
/tdefi ne IDCCMDBAR 1 II Command bar ID
/tdefi ne IDC_RPTLIST 2 II ID for report list box

/tdefi ne ID_ICON 10 II Icon resource ID
/tdefi ne ID_MENU 11 II Main menu resource ID

II Menu item IDs
/fdefi ne IDM_OPEN 100
/fdefi ne IDM_SAVE 101
/fdefi ne IDM_COLOR 102
/ldefine IDM_PRINT 103
/fdefi ne IDM_SHOWPROPSHEET 104
/tdefi ne IDM_SHOWMODELESS 105
/fdefi ne IDM_EXIT 106

/tdefi ne IDM_ABOUT 110

#define IDLBTNICON 120

II Identifiers for the property page resources
/tdefi ne ID_BTNPAGE 50
/tdefi ne ID_EDITPAGE 51
/tdefi ne ID_Ll STPAGE 52
/tdefi ne ID_STATPAGE 53
/fdefi ne ID_SCROLLPAGE 54

230

Basics

Figure 4-10. continued

230

Chapter 4 Windows, Controls, and Dialog Boxes

II Button window defines
//define 1oc_PUSHBTN 200
//define rnc_cHKBOX 201
//define rnc_ACHKBOX 202
//define rnc_A3STBOX 203
//define IDC_RADIDl 204
//define rnc_RADI02 205
//define 1oc_owNRDRAW 206

II Edit window defines
#define rnc_srNGLELINE 210
//define IDC_MUL TI LI NE 211
//define rnc_PASSBOX 212

II List box window defines
//define roc_coMBOBOX 220
//define rnc_sNGLELIST 221
#define IDC_MULTILIST 222

II Static control window defines
#define IDC_LEFTTEXT 230
#define IDC_RIGHTTEXT 231
#define IDC_CENTERTEXT 232
#define IDC_ICONCTL 233
#define IDC_BITMAPCTL 234

II Scroll bar window defines
#define IDC_LRSCROLL 240
#define IDC_UDSCROLL 241

II Control IDs for modeless dialog box
#define IDD_CLEAR 500

II User-defined message to add a line to the window
#define MYMSG_ADDLINE CWM_USER + 10)

11----- ---
11 Program-specific structures
II
typedef struct {

TCHAR •pszlabel:
DWORD wNotification:

NOTELABELS, • PNOTELABELS;

(continued)

231

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

231

Part I Windows Programming Basics

Figure 4-10. contin11ed

11- - ------ -- - --- --- --- - - - - --- ------------------- - --- - ---- - - - - - - - - - -- ----

11 Function prototypes
II
int InitApp (HINSTANCE);
HWND Initlnstance (HINSTANCE, LPWSTR, int);
int Termlnstance (HINSTANCE. int);

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM. LPARAM);

II Message handlers
LRESULT DoCreateMain CHWND, UINT. WPARAM. LPARAM);
LRESULT DoCommandMain (HWND. UINT. WPARAM. LPARAM);
LRESULT DoAddLineMain CHWND, UINT, WPARAM. LPARAM);
LRESULT DoDestroyMain CHWND. UINT, WPARAM. LPARAM);

II Command functions
LPARAM DoMainCommandOpen CHWND. WORD, HWND, WORD);
LPARAM DoMainCommandSave (HWND, WORD. HWND, WORD);
LPARAM DoMainCommandColor CHWND, WORD, HWND. WORD);
LPARAM DoMainCommandPrint (HWND, WORD. HWND, WORD);
LPARAM DoMainCommandShowProp (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandModeless (HWND, WORD, HWND, WORD) ;
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandAbout (HWND, WORD, HWND. WORD);

II Dialog box procedures
BOOL CALLBACK BtnDlgProc (HWND , UINT, WPARAM, LPARAM);
BOOL CALLBACK EditDlgProc (HWND, UINT, WPARAM, LPARAM);
BOOL CALLBACK ListDlgProc CHWND, UINT, WPARAM. LPARAM);
BOOL CALLBACK StaticDlgProc CHWND, UINT, WPARAM, LPARAM);
BOOL CALLBACK ScrollDlgProc CHWND, UINT, WPARAM, LPARAM);
BOOL CALLBACK AboutDlgProc CHWND, UINT. WPARAM, LPARAM);
BOOL CALLBACK ModelessDlgProc (HWND . UINT. WPARAM, LPARAM);

DlgDemo.c

II==
II DlgDemo - Dia l og box demonstration
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include <commctrl .h> II Command bar includes

232

Part I Basics

Figure 4-10. continued

232

Chapter 4 Windows, Controls, and Dialog Boxes

#include <commdlg.h>
#include <prsht.h>

#include "DlgDemo.h"

II Common dialog box includes
II Property sheet includes

II Program -specific stuff

11 --
11 Global data
II

TEXT ("DlgDemo"); const TCHAR szAppName[J
HINSTANCE hlnst; II Program instance handle
HWND g_hwndMlDlg = 0; II Handle to modeless dialog box

HINSTANCE hlib = 0; II Handle to CommDlg lib
FARPROC lpfnChooseColor 0;
FARPROC lpfnPrintDlg = 0;

II Ptr to color common dialog fn
II Ptr to print common dialog fn

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = (

WM_CREATE. DoCreateMain,

} ;

WM_COMMAND, DoCommandMain,
MYMSG_ADDLINE, DoAddlineMain,
WM_DESTROY, DoDestroyMain,

II Command message dispatch for MainWindowPro c
const struct decodeCMD MainCommandltems[J = {

IDM_OPEN, DoMainCommandOpen,

} ;

II

IDM_SAVE. DoMainCommandSave,
IDM_SHOWPROPSHEET, DoMainCommandShowProp,
IDM_SHOWMODELESS, DoMainCommandModeless.
IDM_COLOR, DoMainCommandColor,
IDM_PRINT, DoMainCommandPrint,
IDM_EXIT, DoMainCommandExit,
IDM_ABOUT. DoMainCommandAbout,

II Labels for WM_NOTIFY notifications
II
NOTELABELS nlPropPage[] ((TEXT ("PSN_SETACTIVE

(TEXT ("PSN_KI LLACTIVE
(TEXT ("PSN_APP LY
(TEXT ("PSN_RESET
(TEXT ("PSN_HASHELP
[TEXT ("PSN_HELP
(TEXT ("PSN_WIZBACK
{TEXT ("PSN_WIZNEXT

") ' (PSN_FIRST -0)},
") ' (PSN_FI RST -1)} .
..) . CPSN_FIRST -2)},
"), (PSN_FIRST -3)},
") ' CPSN_FIRST -4)},
"), (PSN_FIRST-5)},
"), (PSN_FIRST -6)},
") , (PSN_FIRST -7) },

(continued)

233

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

233

Part 1 Windows Programming Basics

Figure 4-10. continued

} ;

{TEXT ("PSN_WIZFINISH "l, CPSN_FIRST-8l},
{TEXT ("PSN_QUERVCANCEL"l, (PS N_FIRST-9)) ,

int nPropPageSize dim(nlPropPage);

II Labels for the property pages
TCHAR *SZPages[] = (TEXT ("Button"),

TEXT ("Edit ") ,
TEXT ("List "),
TEXT ("Static"),
TEXT ("Scroll"),

} ;

II==
II Program entry point
II
HWND hwndMain;

int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,
LPWSTR lpCmdLine, int nCmdShowl (

}

MSG msg;
int re = 0;

II Initialize application.
re= InitApp (hinstance);
if (rel return re:

II Initialize this instance.
hwndMain = Initinstance Chinstance, lpCmdLine, nCmdShow);
if (hwndMain == 0)

return 0x10;

II Application message loop
while (GetMessage C&msg, NULL, 0, 0)) {

}

II If modeless dialog box is created, let it have
II the first crack at the message.
if ((g_hwndMlDlg == 0) I I

(!IsDialogMessage (g_hwndMlDlg, &msg))) (
TranslateMessage C&msg);
DispatchMessage <&msg);

II Instance cleanup
return Terminstance Chinstance, msg.wParam);

11--------- --------------- ---------- ----- -------------------- -----------

234

Part I

Figure 4-10. continued

234

Chapter 4 Windows, Controls, and Dialog Boxes

II InitApp - Application initialization
II
int InitApp (HINSTANCE hinstance) {

WNDCLASS we:

}

II Register application
we.style = 0:

main window class.

wc.lpfnWndProc = MainWndProc:
wc.cbClsExt ra = 0:

II Window style
II Callback function
II Extra class data

wc.cbWndExtra = 0: II Extra window data
wc.hlnstance = hinstance: II Owner handle
wc.hi con =NULL, II Application icon
wc.hCursor = NULL: II Default cursor
wc.hbrBackground = CHBRUSH) GetStockObject CWHITE_BRUSH):
wc.lpszMenuName = NULL: II Menu name
wc.lpszClassName = szAppName: II Window class name

if CRegisterClass (&we) == 0) return 1:

II Get the Color and print dialog function pointers.
hLib = LoadLibrary (TEXT ("COMMDLG.DLL")):
if (hLib) {

}

lpfnChooseColor = GetProcAddress (hLib, TEXT ("ChooseColor"));
lpfnPrintDlg = GetProcAddress ChLib, TEXT ("PrintDlg")):

return 0:

11------------- - ------- - - -- -- -------- - ---------------------- - - - ---------
11 Initinstance - Instance initialization
II
HWND lnitinstance (HINSTANCE hlnstance, LPWSTR lpCmdLine,

int nCmdShow) (
HWND hWnd:

II Save program instance handle in global variable.
hinst = hlnstance:

II Create main window.
hWnd = CreateWindow (szAppName, II Window class

TEXT ("Dialog Demo"). II Window title
W5_VISIBLE, II Style flags
CW_USEDEFAULT, II x position
CW_USEDEFAULT, II y position
CW_USEDEFAULT, II Initial width
CW_USEDEFAUL T, II Initial height
NULL, II Parent

(continued)

235

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

235

Part 1 Windows Programming Basics

Figure 4-10. continued

)

NULL,
hlnstance,
NULL);

II Return fail code if window not created.
if (llsWindow (hWnd)) return 0;

II Standard show and update calls
ShowWindow (hWnd, nCmdShow);
UpdateWindow (hWnd);
return hWnd;

II Menu, must be null
II Application instance
II Pointer to create
II parameters

11------------ ------------------- ---------------------------------------
11 Termlnstance - Program cleanup
II
int Termlnstance (HINSTANCE hlnstance. int nDefRC) {

if (hLib)

}

FreeLibrary (hLib);
return nDefRC;

II==
II Message-handling procedures for MainWindow
II
//---- - -- - - - - - - - ------- - - - - - - ---------------- --- ---- ----- ----- ------- ---
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {

}

INT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[iJ.Code)
return (•MainMessages[i].Fxn)(hWnd, wMsg, wParam, lParam);

return DefWindowProc (hWnd, wMsg, wParam, lParam);

11 --- -
11 DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
HWND hwndCB. hwndChild;

236

Basics

Figure 4-10. continued

236

Chapter 4 Windows, Controls, and Dialog Boxes

}

INT i, nHeight:
LPCREATESTRUCT lpcs;
HMENU hMenu;

II Convert lParam into pointer to create structure.
lpcs = CLPCREATESTRUCT) lParam;

II Create a command bar.
hwndCB = CommandBar_Create (hlnst, hWnd, IDC_CMDBAR);
II Add the menu.
CommandBar_InsertMenubar (hwndCB, hlnst, ID_MENU, 0);
II Add exit button to command bar.
CommandBar_AddAdornments ChwndCB, 0, 0);

II See color and print functions not found, disable menus.
hMenu = CommandBar_GetMenu (hwndCB, 0);
if C!lpfnChooseColor)

EnableMenultem (hMenu, IDM_COLOR, MF_BYCOMMAND MF_GRAYED);
if (!lpfnPrintDlg)

EnableMenultem (hMenu, IDM_PRINT, MF_BYCOMMAND MF_GRAYED);

nHeight = CommandBar_Height (hwndCBl;
II
II Create report window. Size it so that it fits under
II the command bar and fills the remaining client area.
II
hwndChild = CreateWindowEx (0, TEXT ("listbox"),

TEXT(""), WS_VISIBLE I WS_CHILD I WS_VSCROLL
LBS_USETABSTOPS I LBS_NOINTEGRALHEIGHT, 0,
nHeight, lpcs -> cx, lpcs ->cy - nHeight,
hWnd, CHMENU)IDC_RPTLIST,
lpcs -> hlnstance, NULL);

II Destroy frame if window not created .
if (!IsWindow (hwndChild)) {

DestroyWindow ChWnd):
return 0:

}

II Initialize tab stops for display list box.
i = 40;
SendMessage (hwndChild, LB_SETTABSTOPS, 1, (LPARAM)&i);
return 0;

11 --- --- ----------
11 DoCommandMain - Process WM_COMMAND message for window.

(continued)

237

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

237

Part 1 Windows Programming Basics

Figure 4-10. continued

II
LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAH wParam,

}

LPARAM lParam) (
WORD iditem, wNotifyCode;
HWND hwndCtl;
INT i;

II Parse the parameters.
iditem =(WORD) LOWORD (wParam);
wNotifyCode = (WORD) HIWORD (wParam);
hwndCtl = (HWND) lParam;

II Call routine to handle control message.
for (i = 0; i < dim(MainCommanditems); i++)

if (idltem == MainCommanditems[i].Code)
return (*MainCommanditems[iJ.Fxnl(hWnd, idltem, hwndCtl,

wNot i fyCode) ;

return 0;

11-- --- - - - - - -- - -----------
11 DoAddlineMain - Process MYMSG_ADDLINE message for window.
II
LRESULT DoAddlineMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) (

238

TCHAR sz0ut[l28];
INT i;

II If nothing in wParam, just fill in spaces.
if (wParam == -1) {

II Print message only.
lstrcpy (szOut, (LPTSTRllParaml;

else (
II If no ID val. ignore that field.
if (LOWORD (wParam) == 0xffff)

else

II Print prop page and message.
wsprintf (szOut, TEXT ("%s \t \t %s"),

szPages[HIWDRD (wParam) - ID_BTNPAGE],
(LPTSTR)l Pa ram);

II Print property page, control ID, and message.
wspr intf (szOut, TEXT ("%s \t id:%x \t %s"),

szPages[HIWORD (wParam) - ID_BTNPAGE],
LOWORD (wParam), (LPTSTR)lParam);

Figure 4-10. continued

238

Chapter 4 Windows, Controls, and Dialog Boxes

}

SendDlgitemHessage (hWnd, IDC_RPTLIST, LB_ADDSTRING, 0,
(LPARAH)(LPCTSTR)szOut);

if (i != LB_ERR)
SendDlgitemHessage (hWnd, IDC_RPTLIST, LB_SETTOPINDEX, i,

(LPARAH)(LPCTSTR)szOut);
return 0;

11 ----------------- --- ---- --
11 DoDestroyHain - Process WH_DESTROY message for window.
II
LRESULT DoDestroyHain CHWND hWnd, UINT wHsg, WPARAH wParam,

LPARAH 1 Pa ram) {
PostQuitHessage (0);
return 0;

}

II==
II Command handler routines
11 ----------------- -------- --- ----- -- ------ -- --------- --- -------- ------ -
11 DoHainCommandOpen - Process File Open command
II
LPARAH DoHainCommandOpen (HWND hWnd . WORD iditem, HWND hwndCtl,

WORD wNotifyCode) (
OPENFILENAHE of;
TCHAR szFileName [HAX_PATH] = (0};
canst LPTSTR pszOpenFilter =TEXT ("All Documents (*. *)\0*. *\0\0");
TCHAR sz0ut[128];
INT re;

II Initialize filename.
szFileName[0] = ' \0 ':

II Initialize File Open structure.
memset (&of, 0, sizeof (of));

of.lStructSize = sizeof (of);
of.hwndOwner = hWnd;
of.lpstrFile = szFileName;
of.nHaxFile = dim(szFileName);
of.lpstrFilter = pszOpenFilter;
of.Flags = 0;

re = GetOpenFileName C&of);

(contin ued)

239

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

239

Part 1 Windows Programming Basics

Figure 4-10. conlinued

wsprintf CszOut,
TEXT ("GetOpenFileName returned: %x. filename: %s"J,
re. szFileNameJ;

SendMessage (hWnd. MYMSG_ADDLINE, -1, (LPARAMJszOut);
return 0;

11 --
11 DoMainCommandSave - Process File Save command .
II
LPARAM DoMainCommandSave CHWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCodeJ (

}

OPENFILENAME of;
TCHAR szFileName [MAX_PATH] = (0} ;
const LPTSTR pszOpenFilter =TEXT ("All Documents (*.*)\0*.*\0\0");
TCHAR sz0ut[128];
INT re;

II Initialize filename.
szFileName[0J = '\0';

II Initialize File Open structure.
memset (&of, 0, sizeof (of));

of.lStructSize = sizeof (of);
of.hwndOwner = hWnd;
of.lpstrFile = szFileName;
of.nMaxFile = dim(szFileName);
of.lpstrFilter = pszOpenFilter;
of.Flags = 0:

re= GetSaveFileName C&ofJ;

wsprintf (szOut,
TEXT ("GetSaveFileName returned: %x, filename: %s "),
re, szFileName);

SendMessage ChWnd, MYMSG_ADDLINE, -1, CLPARAM)szOutJ;
return 0;

11 --
11 DoMainCommandColor - Process File Color command.
II
LPARAM DoMainCommandColor CHWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) (

240

CHOOSECOLOR cc;
static COLORREF cr[16];
TCHAR sz0ut[128];
INT re;

Figure 4-10. continued

240

Chapter 4 Windows, Controls, and Dialog Boxes

}

II Initialize color structure.
memset C&cc, 0, sizeof (cell:
memset C&cr, 0, si zeof (er)) ;

cc.lStructSize = sizeof (cc);
cc.hwndOwner = hWnd;
cc.hinstance = hinst;
cc.rgbResult = RGB (0, 0, 0);
cc.lpCustColors = er;
cc.Flags = CC_ANYCOLOR;

re = ClpfnChooseColorl C&cc);

wspr i ntf (szOut, TEXT ("Choose Color returned: %x, color: %x"),
re. cc.rgbResult) ;

SendMessage ChWnd, MYMSG_ADDLINE, -1 . CLPARAM)szOut);
return 0;

11 ---- - ----------- - -- - -- --
11 DoMainCommandPrint - Process File Print command.
II
LPARAM DoMainCommandPrint CHWND hWnd, WORD iditem , HWND hwndCtl,

WORD wNotifyCode) {

}

PRINTDLG pd;
INT re;

II Init i alize print structure.
memset C&pd, 0, sizeof Cpd)) ;

pd.cbStruct = sizeof Cpd) ;
pd.hwndOwner = hWnd;
pd.dwFlags = PD_SELECTALLPAGES;

re = ClpfnPrintDlg) C&pd) ;

return 0:

11 --
11 DoMainCommandShowProp - Process show property sheet command.
II
LPARAM DoMainCommandShowPropCHWND hWnd, WORD iditem, HWND hwndCtl.

PROPSHEETPAGE psp[S];
PROPSHEETHEADER psh;
INT i;

WORD wNotifyCodel {

(contin ued)

241

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

241

Part 1 Windows Programming Basics

Figure 4-10. continued

)

II Zero all the property page structures.
memset C&psp, 0, sizeof (psp));
II Fill in default values in property page structures.
for Ci = 0; i < dim(psp); i++) {

psp[i].dwSize = sizeof (PROPSHEETPAGE);
psp[iJ.dwFlags = PSP_DEFAU LT;
psp[i].hlnstance = hlnst;
psp[i].lParam = (LPARAM)hWnd;

)

II Set the dialog box templates for each page .
psp[0].pszTemplate MAKEINTRESOURCE (ID_BTNPAGE);
psp[l).pszTemplate MAKEINTRESOURCE (ID_EDITPAGE);
psp[2].pszTemplate MAKEINTRESOURCE CID_LISTPAGE);
psp[3].pszTemplate MAKEINTRESOURCE CID_STATPAGE);
psp[4].pszTemplate MAKEINTRESOURCE CID_SCROLLPAGE);

II Set the dialog
psp[0J.pfnDlgProc
psp[lJ.pfnDlgProc
psp[2].pfnDlgProc
psp[3J.pfnDlgProc
psp[4].pfnDlgProc

box procedures for each page.
BtnDlgProc;
EditDlgProc;
ListDlgProc:
StaticDlgProc;
Scroll Dl gProc:

II Initialize property sheet structure.
psh.dwSize = sizeof CPROPSHEETHEADER);
psh .dwFlags = PSH_PROPSHEETPAGE;
psh.hwndParent = hWnd;
psh.hlnstance = hlnst;
psh.pszCaption =TEXT ("Property Sheet Demo");
psh.nPages = dim(psp);
psh.nStartPage = 0;
psh.ppsp = psp;
psh.pfnCallback = 0;

II Create and display property sheet.
i = PropertySheet C&psh);
return 0:

11 ----- -------- ------- -- ------ ----
11 DoMainCommandModelessDlg - Process the File Modeless menu command.
II
LPARAM DoMainCommandModeless(HWND hWnd , WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

242

Part I

Figure 4-10. continued

242

Chapter 4 Windows, Controls, and Dialog Boxes

}

II Only create dialog box if not already created.
if {g_hwndMlDlg == 0)

II Use CreateDialog to create modeless dialog box.
g_hwndMlDlg = CreateDialog {hlnst, TEXT {"Clearbox"), hWnd,

ModelessDlgProc);
return 0;

11 -- ------- ---- ----------------------------------- -- -- -- ---------- ------
11 DoMainCommandExit - Process Program Exit command.
II
LPARAM DoMainCommandExit {HWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

}

SendMessage {hWnd, WM_CLOSE, 0, 0);
return 0;

11 -------------------------------- --- --------------- --- --- -- ------- -- -- -
11 DoMainCommandAbout - Process the Help About menu command.
II
LPARAM DoMainCommandAbout{HWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

}

II Use DialogBox to create modal dialog box.
DialogBox {hlnst, TEXT ("aboutbox"), hWnd, AboutDlgProcJ:
return 0:

II==
II Modeless ClearList dialog box procedure.
II
BOOL CALLBACK ModelessDlgProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram) {

switch I wMsg J {
case WM_COMMAND:

switch CLOWORD CwParam JJ {
case IDD_CLEAR:

II Send message to list box to clear it.
SendDlgltemMessage CGetWindow ChWnd, GW_OWNERJ.

return TRUE;

case IDOK:
case IDCANCEL:

IDC_RPTLIST,
LB_RESETCONTENT, 0, 0);

II Modeless dialog boxes can't use EndDialog.
DestroyWindow ChWnd):

(continued)

243

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

243

Part 1 Windows Programming Basics

Figure 4-10. contin ued

break:

return FALSE;
}

II Set hwnd value to zero to indicate that
II the dialog box is destroyed.
g_hwndMlDlg = 0:
return TRUE:

II==
II About dialog box procedure
II
BOOL CALLBACK AboutDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

switch CwMsg) {
case WM_COMMAND:

switch (LOWORD CwParam))
case IDOK:
case IDCANCEL:

break:

return FALSE:

EndDialog (hWnd, 0):
return TRUE:

BtnDlg.c

II==
II BtnDlg - Button dialog box window code
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include <prsht.h> II Property sheet includes
#include "DlgDemo.h" II Program-specific stuff

extern HINSTANCE hlnst:

LRESULT DrawButton CHWND hWnd , LPDRAWITEMSTRUCT pdi) ;
11- - - -- -- -- - ---- -- --- -- --- ---- - - - -- - -- - - ---- - -- - -- --- -------- -- - - - -- - - --
// Global data

244

Part I Ylindows

Figure 4-10. continued

244

Chapter 4 Windows, Controls, and Dialog Boxes

II
II Identification strings for various WM_COMMAND
NOTELABELS nlBtn[] =((TEXT ("BN_CLICKED "),

notifications
0}.

} ;

(TEXT ("BN_PAINT "),
(TEXT ("BN_HILITE "),
(TEXT ("BN_UNHILITE"),
(TEXT ("BN_DISABLE ").
(TEXT ("BN_DOUBLECLICKED").
(TEXT ("BN_SETFOCUS "),
(TEXT C"BN_KILLFOCUS"J,

1}.

2}.

3}.

4}.

5}.

6}.

7)

extern NOTELABELS nlPropPage[];
extern int nPropPageSize;

II Handle for icon used in owner-draw icon
HICON hicon = 0;
II==
II BtnDlgProc - Button page dialog box procedure
II
BOOL CALLBACK BtnDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam.

LPARAM lParam) (
TCHAR sz0ut[128];
HWND hwndMain;
INT i;

switch (wMsgl (

case WM_INITDIALOG:

II

II The generic parameter contains the
II top -level window handle.
hwndMain = CHWNDJ(CLPPROPSHEETPAGEllParamJ ->lParam;
II Save the window handle in the window structure.
SetWindowLong (hWnd, DWL_USER. CLONGlhwndMainl;

II Load icon for owner -draw window.
hicon Loadicon (hinst, MAKEINTRESOURCE CIDI_BTNICONll:

II We need to set the initial state of the radio buttons.
CheckRadioButton ChWnd, IDC_RADIOl. IDC_RADI02. IDC_RADIOl);
return TRUE;

II Reflect WM_COMMAND messages to main window.
II
case WM_COMMAND:

II Since the check box is no t an auto check box, the button
II has to be set manually.

(continued)

245

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

245

Part I Windows Programming Basics

Figure 4-10. continued

246

II

if ((LOWORD (wParam) == IDC_CHKBOX) &&
(HIWORD (wParaml == BN_CLICKED)) {
II Get the current state, complement, and set.
i = SendDlgltemMessage (hWnd, IDC_CHKBOX, BM_GETCHECK ,

0. 0);
if (i)

else

SendDlgltemMessage (hWnd, IDC_CHKBOX. BM_SETCHECK,
0, 0);

SendDlgltemMessage ChWnd, IDC_CHKBOX, BM_SETCHECK,
1. 0);

II Get the handle of the main window from the user word.
hwndMain = CHWND) GetW1ndowLong ChWnd, DWL_USERl:

II Look up button notification.
1 strcpy (szOut, TEXT ("WM_COMMAND: "));
for Ci = 0; i < dim(nlBtn); i++) {

if (HIWORD CwParam) == nlBtn[i] .wNotification)
lstrcat (szOut, nlBtn[i] . pszLabel);
break:

if Ci == dim(nlBtn))
wsprintf CszOut, TEXT ("WM_COMMAND notification: %x"),

HIWORD (wParam));

SendMessage ChwndMain, MYMSG_ADDLINE,

return TRUE;

MAKEWPARAM CLOWORD CwParam),ID_BTNPAGEl.
CLPARAMlszOut);

II Reflect notify message.
II
case WM_NOTI FY:

II Get the handle of the main window from the user word.
hwndMain = (HWNDl GetWindowLong ChWnd. DWL_USERl;

II Look up notify message.
for Ci = 0; i < nPropPageSize; i++) {

Part I

Figure 4-10. continued

246

Chapter 4 Windows, Controls, and Dialog Boxes

if (((NMHOR *)lParam)->code ==
nlPropPage[i].wNotification)

lstrcpy CszOut. nlPropPage[i].pszLabel);
break;

if Ci == nPropPageSize)
wsprintf (szOut, TEXT ("Notify code:%d"),

((NMHOR *)lParam) ->code);

SendMessage ChwndMain, MYMSG_AOOLINE,
MAKEWPARAM (-1,IO_BTNPAGE), (LPARAM)szOut);

return FALSE; II Return false to force default processing.

case WM_ORAWITEM:
OrawButton (hWnd, CLPORAWITEMSTRUCT)lParam);
return TRUE;

return FALSE;

11 ------------ ----- --------- --- --
11 OrawButton - Draws an owner -draw button.
II
LRESULT OrawButton CHWNO hWnd, LPORAWITEMSTRUCT pdi) (

HPEN hPenShadow, hPenLight, hPenOkShadow, hOldPen;
POINT pt0ut[3], ptln[3];
HBRUSH hBr , hOldBr;
TCHAR sz0ut[128];
HWND hwndMain;
LOGPEN lpen;

II Get the handle of the main window from the user word.
hwndMain = CHWNO) GetWindowLong (hWnd, DWL_USER);

II Reflect the messages to the report window.
wsprintf (szOut, TEXT C"WM_ORAWITEM Action:%x State:%x"),

pdi->itemAction, pdi ->itemState);

SendMessage ChwndMain , MYMSG_AOOLINE,
MAKEWPARAM (pdi->CtllO, ID_BTNPAGE),
CLPARAM)szOut);

(continued)

247

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

247

Part I Windows Programming Basics

Figure 4-10. continued

248

II Create pens for drawing.
lpen.lopnStyle PS_SOLID;
lpen.lopnWidth.x = 3:
lpen.lopnWidth.y = 3:
lpen.lopnColor = GetSysColor CCOLOR_3DSHADOW);
hPenShadow = CreatePenlndirect C&lpen) ;

lpen.lopnWidth.x = 1;
lpen.lopnWidth.y = 1;
lpen.lopnColor = GetSysColor {COLOR_3DLIGHT);
hPenlight = CreatePenlndirect (&lpen) ;

lpen.lopnColor = GetSysColor {COLOR_3DDKSHADOW);
hPenDkShadow = CreatePenlndirect C&lpen);

II Create a brush for the face of the button.
hBr = CreateSolidBrush {GetSysColor CCOLOR_3DFACE));

II Draw a rectangle with a thick outside border to start the
II frame drawing.
hOldPen = SelectObject Cpdi->hDC, hPenShadow);
hOldBr = SelectObject Cpdi ->hDC, hBr);
Rectangle {pdi -> hDC, pdi -> rcltem.left, pdi ->rcltem.top,

pdi -> rcltem.right, pdi -> rcltem.bottom);

II Draw the
ptln[0].x =
ptln[0].y
ptln[l].x
ptln[l].y
ptln[2].x
ptln[2].y

upper left inside line.
pdi -> rcltem.left + 1;
pdi -> rcltem.bottom - 3;
pdi -> rcltem.left + 1;
pdi->rcltem.top + l;
pdi -> rcltem.right - 3;
pdi -> rcltem.top+l;

II Select a pen to draw shadow or light side of button.
if {pdi->itemState & ODS_SELECTED) {

SelectObject (pdi->hDC , hPenDkShadow);
else (

SelectObject Cpdi->hDC . hPenlight);

Polyline Cpdi -> hDC, ptln, 3);

II If selected, also draw a br i ght line inside the lower
II right corner.
if (pdi->itemState & ODS_SELECTED)

SelectObject Cpdi->hDC, hPenlight);
ptln[l].x = pdi -> rcltem.right - 3:

Basics

Figure 4-10. continued

248

Chapter 4 Windows, Controls, and Dialog Boxes

}

ptln[l].y = pdi->rcltem.bottom - 3;
Polyline (pdi->hDC, ptln, 3) ;

II Now draw the black outside line on either the upper left or lower
II right corner.
pt0ut[0] . x pdi->rcitem.left;
pt0ut[0].y pdi ->rcitem.bottom-1;
pt0ut[2].x pdi->rcitem.right-1;
pt0ut[2].y pdi->rcitem.top;

SelectObject (pdi->hDC, hPenDkShadow);
if (pdi->itemState & OOS_SELECTEO) {

ptOut[lJ.x pdi->rcitem.left;
ptOut[l].y pdi->rcltem.top;

else {
ptOut[l].x pdi->rcltem.right-1 ;
ptOut[l].y pdi ->rcltem . bottom-1;

Polyline (pdi->hDC. ptOut. 3);

II Draw the icon.
if Chicon) {

ptln[0J.x Cpdi->rcitem.right - pdi ->rcltem. left)l2 -
GetSystemMetrics (SM_CXICON)l2 - 2;

ptin[0].y Cpdi->rcltem.bottom - pdi->rcitem.top)l2 -
GetSystemMetrics CSM_CYICON)l2 - 2;

II If pressed, shift image down one pel to simulate the press .
if Cpdi ->itemState & OOS_SELECTED) {

ptOut[lJ.x += 2;
ptOut[l].y += 2;

Drawicon Cpdi->hDC, ptin[0J.x. ptin[0].y, hicon);

II If button has the focus , draw the dotted rect inside the button .
if Cpdi->itemState & OOS_FOCUS) {

pdi->rcltem . left += 3;
pdi -> rcltem.top += 3;
pdi->rcltem.right -= 4;
pdi->rcitem.bottom -= 4;
DrawFocusRect (pdi->hDC. &pdi ->rcltem);

II Clean up. First select the original brush and pen into the DC .
SelectObject Cpdi->hDC, hOldBr);
SelectObject Cpdi -> hDC. hOldPen);

(con.lin.ued)

249

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

249

Part I Windows Programming Basics

Figure 4-10. continued

II Now delete the brushes and pens created.
DeleteObject (hBr);
DeleteObject (hPenShadow);
DeleteObject (hPenDkShadow);
DeleteObject ChPenLight):
return 0;

EditDlg.c

II==
II EditDlg - Edit dialog box window code
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include <windows.h>
#include <prsht.h>
#include "DlgDemo.h"

extern HINSTANCE hlnst;

II For all that Windows stuff
II Property sheet includes
II Program-specific stuff

11 -- - ----- -- -- -- - - - - - - - - -- - - ------- - --- - - - - -- -- -- - - - - - -- - - -- - - - -- -------
11 Global data
II
II Identification strings for various WM_COMMAND notif ications
NOTELABELS nlEdit[] = {{TEXT ("EN_SETFOCUS "), 0x0100}.

} ;

{TEXT ("EN_KILLFOCUS"), 0x0200},
{TEXT ("EN_CHANGE "). 0x0300}.
{TEXT ("EN_UPDATE "). 0x0400},
{TEXT ("EN_ERRSPACE "), 0x0500}.
(TEXT ("EN_MAXTEXT "). 0x0501}.
(TEXT ("EN_HSCROLL "). 0x0601}.
{TEXT ("EN_VSCROLL "), 0x0602},

extern NOTELABELS nlPropPage[];
extern int nPropPageSize;
II==
II EditDlgProc - Button page dialog box procedure
II
BOOL CALLBACK EditDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

250

TCHAR sz0ut[l28];
HWND hwndMain;
I NT i;

Basics

Figure 4-10. continued

250

Chapter 4 Windows, Controls, and Dialog Boxes

switch (wMsg) (

case WM_INITDIALOG:

II

II The generic parameter contains the
II top-level window handle.
hwndMain = (HWND)((LPPROPSHEETPAGE)lParam) ->lParam:
II Save the window handle i n the window structure.
SetWindowLong (hWnd, DWL_USER , CLONG)hwndMain);
return TRUE:

II Reflect WM_COMMAND messages to main window.
II
case WM_COMMAND:

II

II Get the handle of the main window from the user word.
hwndMain = (HWND) GetWindowLong ChWnd, DWL_USER):

II Look up button notif i cation.
lstrcpy CszOut, TEXT ("WM_COMMAND: ")):
for (i = 0: i < dim(nl Edit): i++) (

if CHIWORD CwParam) == nlEdit[iJ.wNotification)
lstrcat (szOut, nlEdit[iJ.pszLabel):
break:

if Ci == dimCnlEdit))
wsprintf (szOut, TEXT ("WM_COMMAND notification: b"),

HIWORD (wParam));

SendMessage (hwndMain, MYMSG_ADDLINE,

return TRUE;

MAKEWPARAM (LOWORD (wParam),lO_EOITPAGE),
CLPARAM)szOut) ;

II Reflect notify message.
II
case WM_NOTIFY:

II Get the handle of the ma i n window from the user word.
hwndMain = CHWND) GetWindowLong ChWnd, DWL_USER):

II Look up notify message.
for (i = 0: i < nPropPageSize: i++) (

if (((NMHDR •)lParam) ->code ==
nlPropPage[iJ.wNotification)

lstrcpy (szOut, nlPropPage[i].pszLabel);
break;

(continued)

251

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

251

Part 1 Windows Programming Basics

Figure 4-10. continued

if (i == nPropPageSize)
wsprintf (szOut, TEXT ("Notify code:%d"),

((NMHDR *)lParam)->code):

SendMessage ChwndMain, MYMS~DDLINE,
MAKEWPARAM (-1,ID_EDITPAGE), (LPARAM)szOut):

return FALSE: II Return false to force default processing.

return FALSE:

LlstDlg.c

II==
II ListDlg - List box dialog window code
II
II Wr itten for the book Programming Windows CE
II Copyright IC) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include <prsht .h> II Property sheet includes
#include "DlgDemo.h" II Program -specific stuff

extern HINSTANCE hlnst;
11 --
II Global data
II
NOTELABELS nlList[] ((TEXT ("LBN_ERRSPACE "), (- 2)) •

(TEXT ("LBN_SELCHANGE"), 1).
(TEXT ("LBN_DBLCLK ") ' 2).

(TEXT ("LBN_SELCANCEL"), 3).

(TEXT ("LBN_SETFOCUS "), 4).

(TEXT ("LBN_KILLFOCUS"), 5).

) :

NOTE LABELS nlCombo[] ((TEXT ("CBN_ERRSPACE ") t (- 1)).

(TEXT ("CBN_SELCHANGE ") ' 1).
(TEXT ("CBN_DBLCLK ") . 2).

(TEXT ("CBN_SETFOCUS "). 3).

(TEXT ("CBN_KILLFOCUS ")' 4).

(TEXT I "CBN_EDITCHANGE ..) . 5).

(TEXT ("CBN_EDITUPDATE "), 6).

252

Basics

Figure 4-10. continued

252

Chapter 4 Windows, Controls, and Dialog Boxes

{TEXT ("CBN_DROPDOWN "). 7}.

{TEXT ("CBN_CLOSEUP ") ' 8}.
(TEXT ("CBN_SELENDOK ..) ' 9}.

(TEXT l"CBN_SELENDCANCEL"l, 10}.
) ;

extern NOTELABELS nlPropPage[];
extern int nPropPageSize;
II==
II ListDlgProc - Button page dialog box procedure
II
BOOL CALLBACK ListDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram) {
TCHAR sz0ut[l28];
HWND hwndMain;
I NT i;

switch CwMsg) {

case WM_INITDIALOG:

II

II The generic parameter contains the
II top-level window handle.
hwndMain = (HWND)((LPPROPSHEETPAGE)lParam)->lParam;
II Save the window handle in the window structure.
SetWindowLong lhWnd , DWL_USER, ILONGlhwndMain);

II Fill the list and combo boxes.
for (i = 0; i < 20; i++) (

wsprintf (szOut, TEXT ("Item %d"l, i);
SendDlgltemMessage ChWnd, IDC_SNGLELIST, LB_ADDSTRING,

0, CLPARAMJszOutl;

SendDlgltemMessage (hWnd, IDC_MULTILIST, LB_ADDSTRING,
0, (LPARAM)szOut) ;

SendDlgitemMessage (hWnd, IDC_COMBOBOX, CB_ADDSTRING.
0, (LPARAMJszOutJ;

)

II Provide default selection for the combo box.
SendDlgltemMessage (hWnd, IDC_COMBOBOX, CB_SETCURSEL, 0, 0);
return TRUE;

II Reflect WM_COMMAND messages to main window.
II

(continued)

253

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

253

Part I Windows Programming Basics

Figure 4-10. continued

254

case WM_COMMAND:

II

II Get the handle of the main window from the user word.
hwndMain = CHWND) GetWindowlong ChWnd, DWL_USER);

II Report the WM_COMMAND messages.
1 strcpy CszOut, TEXT C"WM_COMMAND: "));
if CLOWORD CwParam) == IDC_COMBOBOX) {

for Ci = 0; i < dimCnlCombo); i++) {
if CHIWORD CwParam) == nlCombo(i] .wNotification)

lstrcat CszOut, nlCombo[i] .pszlabel);
break;

if Ci == dimCnlCombo))
wspr i ntf CszOut,

else (

TEXT C"WM_COMMAND notification: 'Ix"),
HIWORD CwParam));

for Ci = 0; i < dimCnllist); i++)
if CHI WORD CwParam) == nllist[i].wNotification)

lstrcat CszOut, nllist(i].pszlabel);
break;

if (i == dim(nllist))
wsprintf (szOut,

TEXT C"WM_COMMAND notification: 'Ix"),
HIWORD CwParam));

SendMessage ChwndMain, MYMSG__ADDLINE,

return TRUE;

MAKEWPARAM (LOWORD CwParam),ID_LISTPAGE),
CLP A RAM) szOut);

II Reflect notify message.
II
case WM_NOTI FY:

II Get the handle of the main window from the user word.
hwndMain = CHWND) GetWindowlong ChWnd, DWL_USER);

II Look up notify message.
for Ci = 0; i < nPropPageSize; i++) (

if CCC NMHDR *)lParam)->code ==
nlPropPage [i]. wNotification)

Part I Windows Programming Basics

Figure 4-10. continued

254

Chapter 4 Windows, Controls, and Dialog Boxes

lstrcpy (szOut, nlPropPage[iJ.pszLabel):
break:

if Ci == nPropPageSize)
wsprintf (szOut , TEXT ("Notify code :%d "),

CCNMHDR •)lParam) ->code) :

SendMessage ChwndMain, MYMSG_ADDLINE,
MAKEWPARAM (-1,ID_LISTPAGE) ,
(LPARAM) szOut):

return FALSE: II Return false to force default processing .

return FALSE:

StatlcDlg.c

II==
II StaticDlg - Static control dialog box window code
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include <windows . h> II For all that Windows stuff
#include <prsht . h> II Property sheet includes
#include "DlgDemo.h" II Program-specific stuff

extern HINSTANCE hlnst;
11- -------------- - ---- - - - -- - - --- ---- ---------- - - - - -- - ----- ----- - --- -- - - -
11 Global data
II
II Identification strings for various WM_COMMAND notifications
NOTELABELS nlStatic[] ={{TEXT ("STN_CLICKED"), 0},

} :

(TEXT ("STN_ENABLE "), 2},
{TEXT ("STN_DISABLE"), 3},

extern NOTELABELS nlPropPage[]:
extern int nPropPageSize:
II==
II StaticDlgProc - Button page dialog box procedure
II
BOOL CALLBACK StaticDlgProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LP A RAM 1 Pa ram) {
TCHAR sz0ut[l28];

(co11ti 11 11ed)

255

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

255

Part 1 Windows Programming Basics

Figure 4-10. continued

256

HWND hwndMain;
INT i;

switch CwMsg l {

case WM_INITDIALOG:

II

II The generic parameter contains the
II top - level window handle.
hwndMain = (HWND)((LPPROPSHEETPAGE)lParam)->lParam;
II Save the window handle in the window structure.
SetWindowLong ChWnd, DWL_USER, CLONG)hwndMain);
return TRUE;

II Reflect WM_COMMAND messages to main window.
II
case WM_COMMAND:

II

II Get the handle of the main window from the user word.
hwndMain = (HWNDl GetWindowLong ChWnd, DWL_USERl;

II Look up button notification.
lstrcpy CszOut , TEXT C"WM_COMMAND: "));
for (i = 0; i < dim(nlStatic); i++) {

if (HIWORD <wParam) == nlStatic[iJ.wNotification)
lstrcat (szOut. nlStatic[i].pszLabel);
break:

if (i == dim(nlStatic))
wsprintf (szOut, TEXT ("WM_COMMAND notification: %x"),

HIWORD CwParaml);

SendMessage ChwndMain, MYMSG_ADDLINE,

return TRUE;

MAKEWPARAM (LOWORD CwParam),ID_STATPAGEl.
(LPARAMlszOut);

II Reflect notify message.
II
case WM_NOTIFY:

II Get the handle of the main window from the user word.
hwndMain = (HWND) GetWindowLong (hWnd, DWL_USER);

II Look up notify message.

Part I Windows Programming Basics

Figure 4-10. continued

256

Chapter 4 Windows, Controls, and Dialog Boxes

for Ci = 0: i < nPropPageSize: i++) {
if (((NMHDR *)lParam)->code ==

nlPropPage[i].wNotification) {
lstrcpy (szOut , nlPropPage[i].pszLabel);

break:

if Ci == nPropPageSize)
wsprintf (szOut, TEXT ("Notify code:%d"),

((NMHDR *)lParam) ->code);

SendMessage (hwndMain, MYMSG_ADDLINE,
MAKEWPARAM (-1,ID_STATPAGE) , CLPARAM)szOut);

return FALSE: II Return false to force default processing.

return FALSE:

ScrollDlg.c

II==
II ScrollDlg - Scroll bar dialog box window code
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include <windows .h> II For all that Windows stuff
#include <prsht.h> II Property sheet includes
#include "DlgDemo.h" II Program -specific stuff

extern HINSTANCE hlnst;
11--- - - --- - --- - ---- --- ---- - ----------------- - --- - --- - ------------- - -----
II Global data
II
II Identification strings for various WM_xSCROLL notifications
NOTELABELS nlVScroll[] = {{TEXT C"SB_LINEUP ") ' 0}.

{TEXT ("SB_LI NEDOWN ") ' l}.

{TEXT C"SB_PAGEUP ") ' 2}.

{TEXT ("SB_PAGEDOWN "), 3}.

{TEXT ("SB_THUMBPOSITION"), 4}.

{TEXT C"SB_THUMBTRACK ")' 5}.

{TEXT ("SB_ TOP "). 6}.

{TEXT C"SB_BOTTOM "). 7}.

{TEXT ("SB_ENDSCROLL "). 8}.
} :

(conti 1111ecl)

257

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

257

Part 1 Windows Programming Basics

Figure 4-10. continued

NOTELABELS nlHScroll[] {{TEXT C"SB_LINELEFT ..) ' 0}.

{TEXT C "SB_LI NERI GHT ..) ' 1}.
{TEXT ("SB_PAGELEFT ..) , 2}.
{TEXT C"SB_PAGERIGHT ..) ' 3}.

{TEXT ("SB_THUMBPOSITION"), 4).

{TEXT ("SB_THUMBTRACK ") ' 5).

{TEXT C"SB_LEFT "). 6}.

{TEXT ("SB_RIGHT "). 7}.

{TEXT ("SB_ENDSCROLL "). 8}.
} ;

extern NOTELABELS nlPropPage[];
extern int nPropPageSize;
II==
II EditDlgProc - Button ·page dialog box procedure
II
BOOL CALLBACK ScrollDlgProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {

258

TCHAR sz0ut[l28];
SCROLLINFO si;
HWND hwndMain;
INTi,sPos;

switch CwMsgJ

case WM_INITDIALOG:

II

II The generic parameter contains
II the top-level window handle.
hwndHain = CHWND)((LPPROPSHEETPAGEJlParamJ->lParam ;
II Save the window handle in the window structure.
SetWindowLong ChWnd, DWL_USER, CLONGJhwndMain);
return TRUE;

II Reflect WM_COMMAND messages to main window.
II
case WM_VSCROLL:
case WM_HSCROLL:

II Get the handle of the main window from the user word.
hwndMain = CHWND) GetWindowLong ChWnd, DWL_USER);

II Update the report window.
II Determine whether from horizontal or vertical scroll bar.
if CGetDlgitem ChWnd, 101) == (HWNDJlParam) {

for Ci= 0; i < dimCnlVScrolll; i++) {
if CLOWORD CwParam) == nlVScroll[i].wNotification)

lstrcpy CszOut, nlVScroll[i].pszLabel);
break;

Part I Windows Programming Basics

Figure 4-10. continued

258

Chapter 4 Windows, Controls, and Dialog Boxes

if Ci== dimCnlVScrollll
wsprintf (szOut, TEXT ("notification: %x"),

HIWORO CwParam));
else

for Ci= 0; i < dim(nlHScroll); i++) {
if (LOWORD CwParam) == nlHScroll[i].wNotification)

lstrcpy CszOut, nlHScroll[i].pszLabel);
break;

if Ci == dim(nlHScroll))
wsprintf (szOut, TEXT ("notification: %x"),

HIWORD CwParam));

SendMessage ChwndMain, MYMSG_ADDLINE,
MAKEWPARAM (· 1, ID_SCROLLPAGE), CLPARAM)szOut) ;

II Get scroll bar position.
si .cbSize = sizeof (si) ;
si .fMask = SIF_POS;
GetScrolllnfo ((HWNDllParam, SB_CTL, &si);
sPos = si.nPos;

II Act on the scroll code.
switch (LOWORD (wParam)) {
case SB_LINEUP: II Also SB_LINELEFT

sPos ·= 2;
break;

case SB_LINEDOWN:
sPos += 2;
break;

case SB_PAGEUP:
sPos ·= 10;
break;

case SB_PAGEDOWN:
sPos += 10;
break;

II Also SB_LINERIGHT

II Also SB_PAGELEFT

II Also SB_PAGERIGHT

case SB_THUMBPOSITION:
sPos = HIWORD CwParam);
break;

(cont inuecl)

259

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

259

Part I Windows Programming Basics

Figure 4-10. co11tl1111ed

260

II

II Check range.
if (sPos < 0)

sPos 0;
if CsPos > 100)

sPos 100;

II Update scrollbar position.
si .cbSize = sizeof (si);
si.nPos = sPos ;
si.fMask = SIF_POS;
SetScrolllnfo CCHWND)lParam, SB_CTL. &si, TRUE);

return TRUE;

II Reflect notify message.
II
case WM_NOTIFY:

II Get the handle of the main window from the user word.
hwndMain = (HWND) GetWindowlong (hWnd, OWL.USER);

II Look up notify message.
for (i = 0; i < nPropPageSize: i++) {

if (((NMHDR • llParaml->code ==
nlPropPage[i].wNotification)

lstrcpy (szOut, nlPropPage[i].pszLabel>:
break;

if (i == nPropPageSize)
wsprintf (szOut, TEXT ("Notify code:Sd"l.

CCNMHDR •)lParaml->codel:

SendMessage (hwndMain, MYMSG_ADDLINE,
MAKEWPARAM (-1. ID_SCROLLPAGE), (LPARAMlszOut);

return FALSE; II Return false to force default processing.

return FALSE;

The dialog box proc dure for each of the property pages report all
WM_ COMMAND and WM_ OTIFY me age ba k to the main window where they're
di played in a list box contained in the main window. The property page dialog box

Part I Windows Programming Basics

Figure 4-10. continued

260

The dialog box procedures for each of the property pages report all
WM_ COMMAND and WM_NOTIFY messages back to the main window where they're
displayed in a list box contained in the main window. The property page dialog box

Chapter 4 Windows, Controls, and Dialog Boxes

procedures mirror the child window procedures of the CtlView example, the differ
ences being that the page procedures don't have to create their controls, and they
field the WM_INITDIALOG message to initialize the controls. The page procedures
also use the technique of storing information in their window structures-in this case,
the window handle of the main window of the example. This is necessary because
the parent window of the pages is the property sheet, not the main window. The
window handle is conveniently accessible during the WM_INITDIALOG message
because it's loaded into the user-definable parameter in the PROPSHEETPAGE struc
ture by the main window when the property sheet is created. Each page procedure
copies the parameter from the PROPSHEETPAGE structure into the DWL_USER field
of the window structure available to all dialog box procedures. When other messages
are handled, the handle is then queried using GetWindowlong. The page procedures
also field the WM_NOTIFY message so that they, too, can be reflected hack to the
main window.

As with CtlView, the best way to learn from DlgDemo is to run the program
and watch the different WM_COMMAND and WM_NOTIFY messages that are sent
by the controls and the property sheet. Opening the property sheet and switching
between the pages results in a flood of WM_NOTIFY messages informing the indi
vidual pages of what's happening. It's also interesting to note that when the OK but
ton is pressed on the property sheet, the PSN_APPLY messages are sent only to
property pages that have been displayed.

The menu handlers that display the Print and Color common dialogs work with
a bit of a twist. Since the Palm-size PC doesn't support these dialogs, DlgDemo can't
call the functions directly. That would result in these two functions being implicitly
linked at run time. Since the Palm-size PC doesn't have these common dialogs and
therefore these functions, Windows CE wouldn't be able to resolve the implicit links
to all the functions in the program and therefore the program wouldn't be able to
load. So, instead of calling the functions directly, you explicitly link these functions
in lnitApp by loading the common dialog DLL using Loadlibrary and getting point
ers to the functions using GetProcAddress. If DlgDemo is running on a Palm-size PC,
the GetProcAddress function fails and returns 0 for the function pointer. In
OnCreateMain, a check is made to see whether these function pointers are 0, and if
so, the Print and Color menu items are disabled. In the menu handler functions
DoMainCommandColor and DoMainCommandPrint, the function pointers returned
by GetProcAddress are used to call the functions. This extra effort isn't necessary if
you know your program will run only on a system that supports a specific set of func
tions, but every once in a while, this technique comes in handy.

261

Part I

CONCLUSION

262

This chapter has covered a huge amount of ground, from basic child windows to
controls and on to dialog boxes and propeny sheets. My goal wasn't to reach every
thing there is to know about these topics. Instead, I've tried to introduce these pro
gram elements, provide a few examples, and point out the subtle differences between
the way they're handled by Windows CE and the desktop versions of Windows.

This chapter also marks the end of the introductory section, "Windows Program
ming Basics." In these first four chapters, I've talked about fundamental Windows
programming while also using a basic Windows CE application to introduce the con
cepts of the system message queue, windows, and messages. I've given you an over
view of how to paint text and graphics in a window and how to query the user for
input. Finally, I talked about the windows hierarchy, controls, and dialog boxes.
For the remainder of the book, I move from description of the elements common
to both Windows CE and the desktop versions of Windows to the unique nature of
Windows CE programming. I begin this process in Chapter 5 by talking about an
other set of controls, the common controls, this time with an emphasis on controls
unique to Windows CE.

Part II

WINDOWS CE BASICS

Chapter 5

Common Controls
and Windows CE

As Microsoft Windows matured as an operating system, it became apparent that the
basic controls provided by Windows were insufficient for the sophisticated user in
terfaces that users demanded. Microsoft developed a series of additional controls, called
common controls, for their internal applications and later made the dynamic link li
brary (DLL) containing the controls available to application developers. Starting with
Microsoft Windows 95 and Microsoft Windows NT 3.5, the common control library
was bundled with the operating system. (Although this hasn't stopped Microsoft from
making interim releases of the DLL as the common control library was enhanced.)
With each release of the common control DLL, new controls and new features are
added to old controls. As a group, the common controls are less mature than the stan
dard Windows controls and therefore show greater differences between implemen
tations across the various versions of Windows. These differences aren't just between
Microsoft Windows CE and other versions of Windows, but also between Windows NT,
Windows 95, and Microsoft Windows 98. The functionality of the common controls
in Windows CE tracks most closely with the common controls delivered with Win
dows 98, although not all of the Windows 98 features are supp01ted.

It isn't the goal of this chapter to cover in depth all the common controls. That
would take an entire book. Instead, I'll cover the controls and features of controls the
Windows CE programmer will most often need when writing Windows CE applications.
I'll start with the command bar and then look at the month calendar and time and date

265

Part 11 Windows CE Basics

picker controls. Finally, I'll finish up with the list view control. By the end of the chap
ter, you might not know every common control inside and out, but you will he able to
see how the common controls work in general. And you'll have the background to look
at the documentation and understand the common controis not covered.

PROGRAMMING COMMON CONTROLS

266

Since the common controls are separate from the core operating system, the DLL that
contains them must be initialized before any of the common controls can be used.
Under all versions of Windows, including Windows CE, you can call the function

void InitCommonControls (void);

to load the library and register all the common control classes.
Another function added recently to the common control library and supported

by Windows CE is this one:

BOOL InitCommonControlsEx (LPINITCOMMONCONTROLSEX lpinitCtrls);

This function allows an application to load and initialize only selected common con
trols. This function is handy under Windows CE because loading only the necessary
controls can reduce the memory impact. The only parameter to this function is a two
field structure that contains a size field and a field that contains a set of flags indicat
ing which common controls should be registered. Figure 5-1 shows the available flags
and their associated controls.

Flag

ICC_BAR_CLASSES

ICC_COOL_CLASSES

ICC_DA TE_ CLASSES

ICC_LISTVIEW _CLASSES

ICC_PROGRESS_CLASS

ICC_TAB_CLASSES

ICC_TREEVIEW _CLASSES

ICC_UPDOWN_CLASS

Control Classes Initialized

Toolbar

Status bar

Track bar

Command bar

Rebar

Date and time picker
Month calendar control

List view

Header control

Progress bar control

Tab control

Tree view control

Up-down control

Figure 5-1. 1'1ags for selected common controls.

Chapter 5 Common Controls and Windows CE

Once the common control DLL has been initialized, these controls can be treated
as any other control. But since the common controls aren't formally part of the Win
dows core functionality, an additional include file, commctrl.h, must be included.

The programming interface for the common controls is similar to standard Win
dows controls. Each of the controls has a set of custom style flags that configure the
look and behavior of the control. Messages specific to each control are sent to con
figure, manipulate, and cause the control to perform actions. One major difference
between the standard windows controls and common controls is that notifications
of events or requests for service are sent via WM_NOTIFY messages instead of
WM_COMMAND messages as in the standard controls. This technique allows the
notifications to contain much more information than would be allowed using
WM_COMMAND message notifications.

One additional difference when programming common controls is that most of
the control-specific messages that can be sent to the common controls have predefined
macros that make sending the message look as if your application is calling a func
tion. So, instead of using an LVM_INSERTITEM message to a list view control to insert
an item, as in

nlndex =(int) SendMessage (hwndLV, LVM_INSERTITEM, 0, (LPARAM)&lvi);

an application could just as easily have used the line:

nlndex = ListView_Insertltem (hwndLV, &lvi);

There's no functional difference between the two lines; the advantage of these mac
ros is clarity. The macros themselves are defined in commctrl.h along with the other
definitions required for programming the common controls. One problem with the
macros is that the compiler doesn't perform the type checking on the parameters that
would normally occur if the macro were an actual function. This is also true of the
SendMessage technique, in which the parameters must be typed as WPARAM and
LPARAM types, but at least with messages the lack of type checking is obvious. All in
all though, the macro route provides better readability. One exception to this system
of macros are the calls made to the command bar control and the command bands
control. Those controls actually have a number of true functions in addition to a large
set of macro-wrapped messages. As a rule, I'll talk about messages as messages, not
as their macro equivalents. That should help differentiate what is a message or macro
and what is a true function.

THE COMMON CONTROLS
Windows CE's special niche-small personal productivity devices-has driven the re
quirements for the common controls in Windows CE. The frequent need for time and
date references for schedule and task management applications has led to inclusion of

267

Part II

the date and time picker control and the month calendar control. The small screens
of personal productivity devices inspired the space-saving command bar. Mating the
command bar with the rebar control that was created for Internet Explorer 3.0 has
produced the command bands control. The command bands control provides even
more room for menus, buttons, and other controls across the top of a Windows CE
application. You've seen glimpses of the command bar control in Chapter 1 and again
in Chapters 3 and 4. It's time you were formally introduced.

The Command Bar

268

Briefly, a command bar control combines a menu and a toolbar. This combination is
valuable because, as I've pointed out before, the combination of a menu and toolbar
on one line saves screen real estate on space-constrained Windows CE displays. To
the programmer, the command bar looks like a toolbar with a number of helper func
tions that make programming the command bar a breeze. In addition to the com
mand bar functions, you can also use most toolbar messages when you're working
with command bars.

The command bands control was added to Windows CE in version 2.0. A com
mand bands control is a rebar control that, by default, contains a command bar in
each band of the control. The rebar control is a fairly new common control; it's a
container of controls that the user can drag around the application window. It was
previously known as a Coo/ Bar when it first appeared in the common control DLL
delivered with Internet Explorer 3.0. Given that command bands are nothing more
than command bars in a rebar control, knowing how to program a command bar is
most of the battle when learning how to program the command bands control.

Creating a command bar
You build a command bar in a number of steps, each defined by a particular func
tion. The command bar is created, the menu is added, buttons are added, other con
trols are added, tool tips are added, and finally, the Close and Help buttons are
appended to the right side of the command bar.

You begin the process of creating a command bar with a call to

HWND CommandBar_Create (HINSTANCE hlnst, HWND hwndParent,
int idCmdBar);

The function requires the program's instance handle, the handle of the parent win
dow, and an ID value for the control. If successful, the function returns the handle to
the newly created command bar control. But a bare command bar isn't much use to
the application. It takes a menu and a few buttons jazz it up.

Command bar menus
You can add a menu to a command bar by calling one of two functions. The first
function is this:

Chapter 5 Common Controls and Windows CE

BOOL CommandBar_InsertMenubar (HWND hwndCB, HINSTANCE hinst,
WORD idMenu, int iButton);

The first two parameters of this function are the handle of the command bar and the
instance handle of the application. The idMenu parameter is the resource ID of the
menu to be loaded into the command bar. The last parameter is the index of the button
to the immediate left of the menu. Because the Windows CE guidelines specify that
the menu should be at the left end of the command bar, this parameter should be set
to 0, which indicates that all the buttons are to the right of the menu.

A shortcoming of the CommandBar_InsertMenuhar function is that it requires
the menu to be loaded from a resource. You can't configure the menu on the fly. Of
course, it would be possible to load a dummy menu and manipulate the contents of
the menu with the various menu functions, but here's an easier method.

The function

BOOL CommandBar_InsertMenubarEx (HWND hwndCB, HINSTANCE hinst,
LPTSTR pszMenu, int iButton);

was added in Windows CE 2.0. The difference between CommandBar _Inse11Menu

harEx and CommandBar _lnsertMenuhar is the change in the third parameter,
pszMenu. This parameter can be either the name of a menu resource or the handle
to a menu previously created by the program. If the pszMenu parameter is a menu
handle, the h!nst parameter must be NULL.

Once a menu has been loaded into a command bar, the handle to the menu
can be retrieved at any time using

HMENU CommandBar_GetMenu (HWND hwndCB, int iButton);

The second parameter, iButton, is the index of the button to the immediate left of the
menu. This mechanism provides the ability to identify more than one menu on the
command bar. However, given the Windows CE design guidelines, you should see
only one menu on the bar. With the menu handle, you can manipulate the strncture
of the menu using the many menu functions available.

If an application modifies the menu on the command bar, the application must
call

BOOL CommandBar_DrawMenuBar (HWND hwndCB, int iButton);

which forces the menu on the command bar to be redrawn. Here again, the param
eters are the handle to the command bar and the index of the button to the left of the
menu. Under Windows CE, you must use CommandBar_DrawMenuBar instead of
DrawMenuBar, which is the standard function used to redraw the menu under other
versions of Windows.

269

Part II Windows CE Basics

270

Command bar buttons
Adding buttons to a command bar is a two-step process, and is similar to adding buttons
to a toolbar. First the bitmap images for the buttons must be added to the command
bar. Second the buttons are added, with each of the buttons referencing one of the
images in the bitmap Ii t that was previously added.

The command bar maintains its own list of bitmaps for the buttons in an inter
nal image list. Bitmap can be added to this image list one at a time or as a group of
image contained in a long and narrow bitmap. For example, for a bitmap to contain
four 16-by-15-bit images, the dimensions of the bitmap added to the command bar
would be 64 by 15 bits. Figure 5-2 shows chis bitmap image layout.

E

It f+

I lmageO
0

~ ± hli
F'.±

:····· '.'..)i t:·:· ... -~-' l! :·;:: I.ii~

I
16

Image 1 I
32

Image 2 I
48

lmage3 I
63

0

14

Figure 5-2. Layout of a bitmap that contains four 16-by-15-bit images.

Loading a image bitmap is accomplished using

int CommandBar_AddBitmap (HWND hwndCB, HINSTANCE hlnst, int idBitmap,
int i Numlmages, int i Reserved, int i Reserved);

This first two parameters are, as is usual with a command bar function , the handle to
the command bar and the instance handle of the executable. The third parameter,
idBitmap, is the re ource ID of the bitmap image. The fourth parameter, iNumlmages,
should contain the number of images in the bitmap being loaded . Multiple bitmap
images can be loaded into the same command bar by calling CommandBar_
AddBitmap as many times as is needed .

Two predefined bitmaps provide a number of images that are commonly used
in command bars and toolbars. You load these images by setting the hlnst parameter
in CommandBar_AddBitmap to HIN T_COMMCfRL and setting the idBitmap param
eter to either IDB_STD_SMALL_COLOR or IDB_ VIEW_ MALL_COLOR. The images
contained in these bitmaps are shown in Figure 5-3. The buttons on the top line con
tain the bitmap from the standard bitmap while the econd-line buttons contain the
bitmaps from the standard view bitmap.

Figure 5-3. Images in the two standard bitmaps provided by the common control DU.

Part 11 Windows CE Basics

270

Command bar buttons
Adding buttons to a command bar is a two-step process, and is similar to adding buttons
to a toolbar. First the bitmap images for the buttons must be added to the command
bar. Second the buttons are added, with each of the buttons referencing one of the
images in the bitmap list that was previously added.

The command bar maintains its own list of bitmaps for the buttons in an inter
nal image list. Bitmaps can be added to this image list one at a time or as a group of
images contained in a long and narrow bitmap. For example, for a bitmap to contain
four 16-by-15-bit images, the dimensions of the bitmap added to the command bar
would be 64 by 15 bits. Figure 5-2 shows this bitmap image layout.

I
I

I lmageO I
0 16

;.~--!.!!~

Image 1 I
32

lmage2 I
48

~.
- 0

:! lr. - 14
lmage3 I

63

Figure 5-2. Layout of a bitmap that contains/our 16-by-15-bit images.

Loading a image bitmap is accomplished using

int CommandBar_AddBitmap (HWND hwndCB, HINSTANCE hlnst, int idBitmap,
int iNumimages, int iReserved, int iReserved);

This first two parameters are, as is usual with a command bar function, the handle to
the command bar and the instance handle of the executable. The third parameter,
idBitmap, is the resource ID of the bitmap image. The fourth parameter, iNumlmages,
should contain the number of images in the bitmap being loaded. Multiple bitmap
images can be loaded into the same command bar by calling CommandBar _
AddBitmap as many times as is needed.

Two predefined bitmaps provide a number of images that are commonly used
in command bars and toolbars. You load these images by setting the hlnst parameter
in CommandBar_AddBitmap to HINST_COMMCTRL and setting the idBitmap param
eter to either IDB_STD_SMALL_COLOR or IDB_ VIEW _SMALL_ COLOR. The images
contained in these bitmaps are shown in Figure 5-3. The buttons on the top line con
tain the bitmaps from the standard bitmap while the second-line buttons contain the
bitmaps from the standard view bitmap.

Figure 5-3. Images in the two standard bitmaps provided by the common control DLL.

Chapter 5 Common Controls and Windows CE

The index values to these images are defined in commctrl.h, so you don't need
to know the exact order in the bitmaps. The constants are

Constants to access the standard bitmap
STD_CUT Edit/Cut button image
STD_COPY
STD_PASTE
STD_UNDO
STD_REDOW
STD_DELETE
STD_FILENEW
STD_FILEOPEN
STD_FILESAVE
STD_PRINTPRE
STD_P RO P ERTI ES
STD_HELP

STD_FIND
STD_REPLACE
STD_PRINT

Edit/Copy button image
Edit/Paste button image
Edit/Undo button image
Edit/Redo button image
Edit/Delete button image
File/New button image
File/Open button image
File/Save button image
Print preview button image
Properties button image
Help button (Use Commandbar_Addadornments
function to add a help button to the
command bar.)
Find button image
Replace button image
Print button image

Constants to access the standard view bitmap
VIEW_LARGEICONS View/Large Icons button image
VIEW_SMALLICONS View/Small Icons button image
VIEW_LIST
VIEW_DETAILS
VIEW_SORTNAME
VIEW SORTSIZE
VIEW_SORTDATE
VIEW_SORTTYPE
VIEW_PARENTFOLDER
VIEW_NETCONNECT
VIEW_NETDISCONNECT
VI EW_N EW FOLD ER

Referencing images

View/List button image
View/Details button image
Sort by name button image
Sort by size button image
Sort by date button image
Sort by type button image
Go to Parent folder button image
Connect network drive button image
Disconnect network drive button image
Create new folder button image

The images loaded into the command bar are referenced by their index into the list
of images. For example, if the bitmap loaded contained five images, and the image
to be referenced was the fourth image into the bitmap, the zero-based index value
would be 3.

If more than one set of bitmap images was added to the command bar using
multiple calls to CommandBar_AddBitmap, the images' subsequent lists are refer
enced according to the previous count of images plus the index into that list. For
example, if two calls were made to CommandBar_AddBitmap to add two sets of
images, with the first call adding five images and the second adding four images, the

271

Part 11 Windows CE Basics

272

third image of the second set would be referenced with the total number of images
added in the first bitmap (5) plus the index into the second bitmap (2) resulting in an
index value of 5 + 2 = 7.

Once the bitmaps have been loaded, the buttons can be added using one of
two functions. The first function is this one:

BOOL CommandBar_AddButtons (HWND hwndCB, UINT uNumButtons,
LPTBBUTTON lpButtons);

CommandBar_AddButtons adds a series of buttons to the command bar at one time.
The function is passed a count of buttons and a pointer to an array of TBBUTTON
structures. Each element of the array describes one button. The TBBUTTON structure
is defined as the following:

typedef struct {
int iBitmap;
int idCommand;
BYTE fsState;
BYTE fsStyle;
DWORD dwData;
int iString;

} TBBUTTON;

The iBitmap field specifies the bitmap image to be used by the button. This is, as I
just explained, the zero-based index into the list of images. The second parameter is
the command ID of the button. This ID value is sent via a WM_ COMMAND message
to the parent when a user clicks the button.

The fsState field specifies the initial state of the button. The allowable values in
this field are the following:

• TESTA TE_ENABLED The button is enabled. If this flag isn't specified, the
button is disabled and is grayed.

• TBSTATE_HIDDEN The button isn't visible on the command bar.

• TBSTATE_PRESSED This button is displayed in a depressed state.

• TBSTATE_CHECKED The button is initially checked. This state can be
used only if the button has the TBSTYLE_CHECKED style.

• TBSTATE_INDETERMINATE The button is grayed.

One last flag is specified in the documentation, TBSTATE_ WRAP, but it doesn't
have a valid use in a command bar. This flag is used by toolbars when a toolbar wraps
across more than one line.

Chapter 5 Common Controls and Windows CE

The fsStyle field specifies the initial style of the button, which defines how the
button acts. The button can be defined as a standard push button, a check button, a
drop-down button, or a check button that resembles a radio button but allows only
one button in a group to be checked. The possible flags for the fsStyle field are the
following:

• 1BS1YLE_J3UITON The button looks like a standard push button.

• TBS1YLE_CHECK The button is a check button that toggles between
checked and unchecked states each time the user clicks the button.

• 1BS1YLE_GROUP Defines the start of a group of buttons.

• TBSTYLE_CHECKGROUP The button is a member of a group of check
buttons that act like a radio buttons in that only one button in the group
is checked at any one time.

• TBSTYLE_DROPDOWN The button is a drop-down list button.

• TBSTYLE_AUTOSIZE The button's size is defined by the button text.

• 1BS1YLE_SEP Defines a separator (instead of a button) that inserts a small
space between buttons.

The dwData field of the TBBUTTON structure is an application-defined value.
This value can be set and queried by the application using the TB_SETBUTTONINFO
and TB_ GETBUTTONINFO messages. The iString field defines the index into the
command bar string array that contains the text for the button. The iString field can
also be filled with a pointer to a string that contains the text for the button.

The other function that adds buttons to a command bar is this one:

BOOL CommandBar_lnsertButton CHWND hwndCB, int iButton,
LPTBBUTTON lpButton);

This function inserts one button into the command bar to the left of the button refer
enced by the iButton parameter. The parameters in this function mimic the param
eters in CommandBar _AddButtons with the exception that the lpButton parameter
points to a single TBBUTTON structure. The iButton parameter specifies the posi
tion on the command bar of the new button.

Working with command bar buttons
When a user presses a command bar button other than a drop-down button, the
command bar sends a WM_ COMMAND message to the parent window of the com
mand bar. So, handling button clicks on the command bar is just like handling menu

273

Part 11 Windows CE Basics

274

commands. In fact, since many of the buttons on the command bar have menu com
mand equivalents, it's customary to use the same command IDs for the buttons and
the like functioning menus, thus removing the need for any special processing for
the command bar buttons.

The command bar maintains the checked and unchecked state of check and
checkgroup buttons. After the buttons have been added to the command bar, their
states can be queried ·or set using two messages, TB_ISBUTTONCHECKED and
TB_CHECKBUTTON. (The TB_ prefix in these messages indicates the close relation
ship between the command bar and the toolbar controls.) The TB_ISBUTTON
CHECKED message is sent with the ID of the button to be queried passed in the
wParam parameter this way:

fChecked = SendMessage (hwndCB, TB_ISBUTTONCHECKED, wID, 0);

where hwndCB is the handle to the command bar containing the button. If the return
value from the TB_ISBUTTONCHECKED message is nonzero, the button is checked.
To place a button in the checked state, send a TB_CHECKBUTTON message to the
command bar, as in

SendMessage (hwndCB, TB_CHECKBUTTON, wID, TRUE);

To uncheck a checked button, replace the TRUE value in lParam with FALSE.

A new look for disabled buttons
Windows CE allows you to easily modify the way a command bar or toolbar button
looks when the button is disabled. Command bars and toolbars maintain two image
lists: the standard image list that I described previously and a disabled image list used
to store bitmaps that you can employ for disabled buttons.

To use this new feature, you need to create and load a second image list for
disabled buttons. The easiest way to do this is to create the image list for the nor
mal states of the buttons using the techniques I described when I talked about
CommandBar _AddBitmap. (Image lists in toolbars are loaded with the message
TB_LOADIMAGES.) Once that image list complete, simply copy the original image
list and modify the bitmaps of the images to create disabled counterparts to the origi
nal images. Then load the new image list back into the command bar or toolbar. A
short code fragment that accomplishes this chore is shown below.

HBITMAP hBmp, hMask;
HIMAGELIST hilDisabled, hilEnabled;

II Load the bitmap and mask to be used in the disabled image list.
hBmp = LoadBitmap (hinst, TEXT ("DisCross"ll:
hMask = LoadBitmap (hinst, TEXT ("DisMask"ll;

Chapter 5 Common Controls and Windows CE

II Get the std image list and copy it.
hilEnabled = (HIMAGELIST)SendMessage ChwndCB, TB_GETIMAGELIST, 0, 0);
hilDisabled = Imagelist_Ouplicate (hilEnabled);

II Replace one bitmap in the disabled list.
Imagelist_Replace (hilDisabled, VIEW_LIST, hBmp, hMask);

II Set the disabled image list.
SendMessage (hwndCB, TB_SETDISABLEDIMAGELIST, 0, (LPARAM) hilDisabledl;

The code fragment first loads a bitmap and a mask bitmap that will replace one
of the images in the disabled image list. You retrieve the current image list by send
ing a TB_GETIMAGELIST message to the command bar, and then you duplicate it
using ImageList_Duplicate. One image in the image list is then replaced by the bitmap
that was loaded earlier.

This example replaces only one image, but in a real-world example many im
ages might be replaced. If all the images were replaced, it might be easier to build
the disabled image list from scratch instead of copying the standard image list and
replacing a few bitmaps in it. Once the new image list is created, you load it into the
command bar by sending a TB_SETDISABLEDIMAGELIST message. The code that I
just showed you works just as well for toolbars under Windows CE as it does for
command bars.

Drop-down buttons
The drop-down list button is a more complex animal than the standard button on a
command bar. The button looks to the user like a button that, when pressed, dis
plays a list of items for the user to select from. To the programmer, a drop-down button
is actually a combination of a button and a menu that is displayed when the user clicks
on the button. Unfortunately, the command bar does little to support a drop-down
button except to modify the button appearance to indicate that the button is a drop
down button and to send a special notification when the button is clicked by the user.
It's up to the application to display the menu.

The notification of the user clicking a drop-down button is sent to the parent
window of the command bar by a WM_NOTIFY message with a notification value of
TBN_DROPDOWN. When the parent window receives the TBN_DROPDOWN noti
fication, it must create a pop-up menu immediately below the drop-down button
identified in the notification. The menu is filled by the parent window with what
ever selections are appropriate for the button. When one of the menu items is se
lected, the menu will send a WM_COMMAND message indicating the menu item
picked and the menu will be dismissed. The easiest way to understand how to handle
a drop-clown button notification is to look at the following procedure that handles a
TBN_D RO PD OWN notification.

275

Part II Windows CE Basics

276

LRESULT DoNotifyMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM l Pa ram) {

LPNMHDR pNotifyHeader;
LPNMTOOLBAR pNotifyToolBar;
RECT rect;
TPMPARAMS tpm;
HMENU hMenu;

II Get pointer to notify message header.
pNotifyHeader = (LPNMHDRllParam;

if (pNotifyHeader->code == TBN_DROPDOWN) {

}

II Get pointer to toolbar notify structure.
pNotifyToolBar = (LPNMTOOLBAR)lParam;

II Get the rectangle of the drop-down button.
SendMessage (pNotifyHeader->hwndFrom, TB_GETRECT,

pNotifyToolBar->iitem, (LPARAM)&rect);

II Convert rect into screen coordinates. The rect is
II considered here to be an array of 2 POINT structures.
MapWindowPoints (pNotifyHeader->hwndFrom, HWND_DESKTOP,

(LPPOINT)&rect, 2);

II Prevent the menu from covering the button.
tpm.cbSize = sizeof (tpm);
CopyRect (&tpm.rcExclude, &rect);

II Load the menu resource to display under the button.
hMenu = GetSubMenu (LoadMenu (hlnst, TEXT ("popmenu")),0);

II Display the menu. This function returns after the
II user makes a selection or dismisses the menu.
TrackPopupMenuEx (hMenu, TPM_LEFTALIGN I TPM_VERTICAL,

rect.left, rect.bottom, hWnd, &tpml;

return 0;

After the code determines that the message is a TBN_DROPDOWN notification, the
first task of the notification handler code is to get the rectangle of the drop-down
button. The rectangle is queried so that the drop-down menu can be positioned im
mediately below the button. To do this, the routine sends a TB_GETRECT message
to the command bar with the ID of the drop-down button passed in wParam and a
pointer to a rectangle structure in lParam.

Chapter 5 Common Controls and Windows CE

Since the rectangle returned is in the coordinate base of the parent window,
and pop-up menus are positioned in screen coordinates, the coordinates must be con
verted from one basis to the other. You accomplish this using the function

MapWindowPoints CHWND hwndFrom, HWND hwndTo,
LPPOINT lppoints, UINT cPoints):

The first parameter is the handle of the window in which the coordinates are origi
nally based. The second parameter is the handle of the window to which you want
to map the coordinates. The third parameter is a pointer to an array of points to be
translated; the last parameter is the number of points in the array. In the routine I just
showed you, the window handles are the command bar handle and the desktop
window handle, respectively.

Once the rectangle has been translated into desktop coordinates, the pop-up,
or context, menu can be created. You do this by first loading the menu from the re
source, then displaying the menu with a call to TrackPopupMenuEx. That function is
prototyped as

BOOL TrackPopupMenuEx CHMENU hmenu, UINT fuFlags, int x, int y,
HWND hwnd, LPTPMPARAMS lptpm):

The hMenu parameter is the handle of the menu to be displayed. The hwnd param
eter identifies the window to receive the WM_ COMMAND message if a menu item is
selected. The TPMPARAMS structure contains a rectangle that won't be covered up
by the menu when it is displayed. For our purposes, this rectangle is set to the di
mensions of the drop-down button so that the button won't be covered by the pop
up menu. The fuFlags field can contain a number of values that define the placement
of the menu. For drop-down buttons, the only flag needed is TPM_ VERTICAL. If
TMP _VERTICAL is set, the menu leaves uncovered as much of the horizontal area of
the exclude rectangle as possible. The TrackPopupMenuEx function doesn't return
until an item on the menu has been selected or the menu has been dismissed by the
user tapping on another part of the screen.

Combo boxes on the command bar
Combo boxes on a command bar are much easier to implement than drop-down
buttons. You add a combo box by calling

HWND CommandBar_InsertComboBox CHWND hwndCB, HINSTANCE hlnst,
int iWidth, UINT dwStyle,
WORD idComboBox,
int iButton):

This function inserts a combo box on the command bar to the left of the button indi
cated by the iButton parameter. The width of the combo box is specified, in pixels,
by the iWidth parameter. The dwStyle parameter specifies the style of the combo box.

277

Part 11 Windows CE Basics

278

The allowable style flags are any valid Windows CE combo box style and window
styles. The function automatically adds the WS_CHILD and WS_ VISIBLE flags when
creating the combo box. The idComboBox parameter is the ID for the combo box that
will be used when WM_COMMAND messages are sent notifying the parent window
of a combo box event. Experienced Windows programmers will be happy to know
that CommandBar _InsertComboBox takes care of all the "parenting" problems that
occur when a control is added to a standard Windows toolbar. That one function call
is all that is needed to create a properly functioning combo box on the command bar.

Once a combo box is created, you program it on the command bar the same
way you would a stand-alone combo box. Since the combo box is a child of the com
mand bar, you must query the window handle of the combo box by passing the handle
of the command bar to GetDlgltem with the ID value of the combo box, as in the
following code:

hwndCombobox = GetDlgitem (GetDlgitem (hWnd, IDC_CMDBAR),
I DG_COMBO)) :

However, the WM_COMMAND messages from the combo box are sent directly to the
parent of the command bar, so handling combo box events is identical to handling
them from a combo box created as a child of the application's top-level window.

Command bar tool tips
Tool tips are small windows that display descriptive text that labels a command bar
button when the stylus is held down over the control. Tool tips under Windows CE
are implemented in a completely different way from how they're implemented under
Windows 98 and Windows NT.

You add tool tips to a command bar by using this function:

BOOL CommandBar_AddToolTips (HWND hwndCB, UINT uNumToolTips,
LPTSTR lpToolTips);

The lpToolTips parameter must point to an array of pointers to strings. The uNumTool
Tips parameter should be set to the number of elements in the string pointer array.
The CommandBar _AddToolTips function doesn't copy the strings into its own storage.
Instead, the location of the string array is saved. This means that the block of memory
containing the string array must not be released until the command bar is destroyed.

Each string in the array becomes the tool tip text for a control or separator on
the command bar excluding the menu. The first string in the array becomes the tool
tip for the first control or separator, the second string is assigned to the second con
trol or separator, and so on. So, even though combo boxes and separators don't dis
play tool tips, they must have entries in the string array so that all the text lines up
with the proper buttons.

Chapter 5 Common Controls and Windows CE

Other command bar functions
A number of other functions assist in command bar management. The CommandBar_
Height function returns the height of the command bar and is used in all the example
programs that use the command bar. Likewise, the CommandBar _AddAdornments
function is also used whenever a command bar is used. This function, prototyped as

BOOL CommandBar_AddAdornments (HWND hwndCB, DWORD dwFlags,
DWORD dwReserved);

places a Close button and, if you want, a Help button and an OK button on the ex
treme right of the command bar. You pass a CMDBAR_HELP flag to the dwFlags pa
rameter to add a Help button, and you pass a CMDBAR_OK flag to add an OK button.

The Help button is treated differently from other buttons on the command bar.
When the Help button is pressed, the command bar sends a WM_HELP message to
the owner of the command bar instead of the standard WM_ COMMAND message.
The OK button's action is more traditional. When it is pressed, a WM_COMMAND
message is sent with a control ID of IDOK. CommandBar _AddAdornments must be
called after all other conrols of the command bar have been added.

A command bar can be hidden by calling

BOOL CommandBar_Show (HWND hwndCB, BOOL fShow);

The fShow parameter is set to TRUE to show the command bar and FALSE to hide a
command bar. The visibility of a command bar can be queried with this:

BOOL CommandBar_IsVisible (HWND hwndCB);

Finally, a command bar can be destroyed using this:

void CommandBar_Destroy (HWND hwndCB);

Although a command bar is automatically destroyed when its parent window is
destroyed, sometimes it's more convenient to destroy a command bar manually. This
is often done if a new command bar is needed for a different mode of the applica
tion. Of course, you can create multiple command bars, hiding all but one and switch
ing between them by showing only one at a time, but this isn't good programming
practice under Windows CE because all those hidden command bars take up valu
able RAM that could be used elsewhere. The proper method is to destroy and create
command bars on the fly. You can create a command bar fast enough so that a user
shouldn't notice any delay in the application when a new command bar is created.

Design guidelines for command bars
Because command bars are a major element of Windows CE applications, it's not
surprising that Microsoft has a rather strong set of rules for their use. Many of these
rules are similar to the design guidelines for other versions of Windows, such as the
recommendations for the ordering of main menu items and the use of tool tips. Most
of these guidelines are already second nature for Windows programmers.

279

Part II Windows CE Basics

The menu should be the left-most item on the command bar. The order of the
main menu items should be from left to right: File, Edit, View, Insert, Format, Tools,
and Window. Of cour e , most applications have all of tho e menu items but the or
der of the items used should follow the suggested order. For button , the order is
from left to right; New, Open, Save, and Print fo r file actions; and Bold, Italic, and
Underline for font style.

The CmdBar Example Program

The CmdBar example demonstrates the basics of command bar operation. On startup,
the example creates a bar with only a menu and a close button. Selecting the diffe r
ent items from the view menu creates various command bars showing the capabilities
of the command bar control. The source code for CmdBar is shown in Figure 5-4.

CmdBar.rc

II==
II Resource file
II
II Written for the book Programming Windows CE
I I Copyright (C) 1998 Douglas Bol i ng
II==
#in clude "wi ndows. h"
#in clude "CmdBar .h" II Program-s peci fic stuff

11 - ----- - - ----- -- - ------- - ----------------- --- ----- - -- - ----- - - - - - ---- - --
11 Icons and bitmaps
II
ID_ICON
DisCross
Di sMask
SortDropBtn

ICON "cmdbar.i co"
BITMAP "cross.bmp"
BITMAP "mask.bmp"
BITMAP "sortdrop.bmp"

II Program icon
II Disabled button i mage
II Disabled button image mask
II Sort drop -down button image

11 - ---- --- ------------------- --- ---- --- - - ---- - - ------------ -- -- ------- - -
11 Menu
II
ID_MENU MENU DISCARDABLE
BEGIN

POPUP "& File"
BEGIN

MENUI TEM "E&x i t",
END

Figure 5-4. The CmdBar program.

280

IDM_EXIT

Chapter 5 Common Controls and Windows CE

END

POPUP "&View"
BEGIN

END

MENUITEM "&Standard",
MENUITEM "&View",
MENUITEM "&Combination",

POPUP "&Help"
BEGIN

MENUITEM "&About ... ",
END

popmenu MENU DISCARDABLE
BEGIN

END

POPUP "&Sort"
BEGIN

END

MENUITEM "&Name",
MENUITEM "&Type",
MENUITEM "&Size",
MENUITEM "&Date",

IDM_STDBAR
IDM_VIEWBAR
IDM_COMBOBAR

IDM_ABOUT

IDC_SNAME
IDG_STYPE
IDG_SSIZE
IDG_SDATE

11 -- ------- ---- ------- ---- --- ---
11 About box dialog template
II
aboutbox DIALOG discardable 10, 10, 160, 40
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I

DS_CENTER I DS_MODALFRAME
CAPTION "About"
BEGIN

ICON ID_ICON, -1. s. s. 10, 10
LTEXT "CmdBar - Written for the book Programming Windows \

CE Copyright 1998 Douglas Boling"
-1. 40, s. 110, 30

END

CmdBar.h

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 199B Douglas Boling
II==
II Returns number of elements

(continued)

281

Part 11 Windows CE Basics

Figure 5-4. continued

#define dim(x) Csizeof(x) I s1zeofCx[0]))

11 --
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*FXn)CHWND, UINT, WPARAH, LPARAH);
} ;

struct decodeCHD (
UINT Code;
LRESULT (*Fxn>CHWND, WORD, HWND, WORD);

) ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

11------------------- -- ----- --
II Generic defines used by application
#define IDG_CHDBAR 1 II Command band ID
#define ID_ICON 10 II Icon resource ID
#define ID_HENU 11 II Hain menu resource ID
#define IDG_COHBO 12 II Combo box on cmd bar ID

II Menu item IDs
#define IDH_EXIT 101 II File menu
#define IDH_STDBAR 111 II View menu
#define IDH_VIEWBAR 112
#define IDH_COHBOBAR 113
#define IDH_ABOUT 120 II Help menu

II Command bar button IDs
#define IDG_NEW 201
/ldefine IDG_OPEN 202
ffdefi ne IDG_SAVE 203
ffdefi ne IDG_CUT 204
ffdefi ne IDG_COPY 205
ffdefi ne IDG_PASTE 206
ffdefi ne IDG_PROP 207

ffdefi ne IDG_LICON 301
ffdefi ne IDC_SICON 302
ffdefi ne IDC_LIST 303
ffdefi ne IDC_RPT 304
ffdefi ne IDG_SNAME 305
/fdefi ne IDG_STYPE 306
/fdefi ne IDG_SSIZE 307
ffdefi ne IDG_SDATE 308

282

Chapter 5 Common Controls and Windows CE

//define rnc_DPSORT 350

//define STD_BMPS CSTD_PRINT+l) II Number of bmps in
II std imglist

//define VIEW_BMPS CVIEW_NEWFOLDER+l) II Number of bmps in
II view imglist

11---------- --- ----- --- ---- ----- ---------- ------------ -- --- -------------
11 Function prototypes
II
int InitApp CHINSTANCE);
HWND Initlnstance CHINSTANCE, LPWSTR, int);
int Termlnstance CHINSTANCE. int);

II Window procedures
LRESULT CALLBACK MainWndProc CHWND, UINT, WPARAM, LPARAM);

II Message handlers
LRESULT DoCreateMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoCommandMain CHWND. UINT. WPARAM, LPARAM);
LRESULT DoNotifyMain CHWND, UINT. WPARAM, LPARAM);
LRESULT DoDestroyMain CHWND. UINT. WPARAM, LPARAM);

II Command functions
LPARAM DoMainCommandExit CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandVStd CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandVView CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandVCombo CHWND. WORD, HWND, WORD);
LPARAM DoMainCommandAbout CHWND, WORD, HWND, WORD);

II Dialog procedures
BOOL CALLBACK AboutDlgProc CHWND, UINT, WPARAM, LPARAM);

II==
II CmdBar - Command bar demonstration
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include <windows.h>
#include <commctrl.h>
#include "CmdBar.h"

II For all that Windows stuff
II Command bar includes
II Program-specific stuff

(continued)

283

Part II Windows CE Basics

Figure 5-4. continued

11-- - - - - - - - ----- -- --- - - - - --------------- --- - - - - --- - - - - -- - - ----------- - --
11 Global data
II
const TCHAR szAppName[] =TEXT ("CmdBar");
HINSTANCE hlnst: II Program instance handle

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[J = {

WM_CREATE, DoCreateMain,
WM_COMMAND. DoCommandMain,
WM_NOTIFY, DoNotifyMain,
WM_DESTROY, DoDestroyMain,

} :

II Command Message dispatch for MainWindowProc
const struct decodeCMD MainCommandltems[J = {

IDM_EXIT, DoMainCommandExit,

} :

IDM_STDBAR, DoMainCommandVStd,
IDM_VIEWBAR. DoMainCommandVView,
IDM_COMBOBAR, DoMainCommandVCombo,
IDM_ABOUT, DoMainCommandAbout,

II Standard file bar button structure
const TBBUTTON tbCBStdBtns[] = {
II Bitmaplndex Command State Style UserData String

{0, 0,
{STD_FILENEW, IDC_NEW.

{STD_FILEOPEN, 10c_OPEN,

{STD_FILESAVE. 10c_sAVE,

{0, 0,
{STD_CUT, 1oc_cuT.

{STD_COPY, 10c_c0Pv.

{STD_PASTE, 10c_PASTE,

{0, 0,
{STD_PROPERTIES, IDC_PROP.

TBSTYLE_BUTTON, 0,
} :

284

0, TBSTYLE_SEP, 0, 0},
TBSTATE_ENABLED,

TBSTYLE_BUTTON,
TBSTATE_ENABLED,

TBSTYLE_BUTTON,
TBSTATE_ENABLED,

TBSTYLE_BUTTON.
0, TBSTYLE_SEP,
TBSTATE_ENABLED.

TBSTYLE_BUTTON,
TBSTATE_ENABLED,

TBSTYLE_BUTTON,
TBSTATE_ENABLED,

TBSTYLE_BUTTON,
0, TBSTYLE_SEP.
TBSTATE_ENABLED,

0}

0.

0,

0.
0,

0,

0,

0.
0,

0}.

0}.

0}.

0}.

0}.

0}.

0}.

0}.

Chapter 5 Common Controls and Windows CE

II Standard view bar button structure
const TBBUTTON tbCBViewBtns[J = {
II Bitmap Index Command State Style UserData String

{0, 0, 0, TBSTYLE_SEP, 0, 0).
{VIEW_LARGEICONS, IDC_LICON. TBSTATE_ENABLED J TBSTATE_CHECKED.

TBSTYLE_CHECKGROUP, 0, 0}.
{VIEW_SMALLICONS, IDC_SICON, TBSTATE_ENABLED,

TBSTYLE_CHECKGROUP, 0, 0}.
{VI EW_LI ST, IDC_LIST, 0, TBSTYLE_CHECKGROUP, 0, 0).
{VIEW_DETAILS, IDCRPT, TBSTATE_ENABLED,

TBSTYLE_CHECKGROUP, 0, 0).
{0. 0, TBSTATE_ENABLED,

TBSTYLE_SEP. 0, 0}.
{VIEW_SORTNAME, IDC_SNAME, TBSTATE_ENABLED J TBSTATE_CHECKED,

TBSTYLE_CHECKGROUP, 0, 0}.
{VIEW_SORTTYPE, IDCSTYPE, TBSTATE_ENABLED,

TBSTYLE_CHECKGROUP,
{VI EW_SORTS IZE. IDCSSIZE, TBSTATE_ENABLED,

TBSTYLE_CHECKGROUP,
{VI EW_SORTDA TE, IDCSDATE, TBSTATE_ENABLED,

TBSTYLE_CHECKGROUP,
{0. 0, 0. TBSTYLLSEP,

} ;

II Tooltip string list for view bar
const TCHAR *pViewTips[] = {TEXT (""),

TEXT ("Large"),
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

} ;

("Sma 11 ").
("List"),
("Details "),
(" ") ,
("Sort by Name"),
("Sort by Type"),
("Sort by Size"),
("Sort by Date"),

II Combination standard and view bar button structure
const TBBUTTON tbCBCmboBtns[] = {

0, 0).

0. 0}.

0, 0}.
0, 0}.

II Bitmaplndex Command
{0 , 0.

State Style
0, TBSTYLE_SEP,

UserData String
0. 0}.

{STD_FILENEW, IDC_NEW, TBSTATE_ENABLED,
TBSTYLE_BUTTON, 0, 0}.

{STD_FILEDPEN, IDC_OPEN, TBSTATE_ENABLED.
TBSTYLE_BUTTON, 0, 0}.

{STD_PROPERTIES, IDC_PROP, TBSTATE_ENABLED,
TB STY LLBUTTON. 0. 0).

(continued)

285

Part II Windows CE Basics

Figure 5-4. continued

(0, 0, 0. TBSTYLE_SEP, 0, 0}.
(STD_CUT, IDLCUT, TBSTATE_ENABLED.

TBSTYLLBUTTON, 0, 0}.
(STD_COPY, 1oc_c0Pv. TBSTATE_ENABLED,

TBSTYLE_BUTTON, 0. 0}.
(STD_PASTE, rnc_PASTE. TBSTATE_ENABLED.

TBSTYLE_BUTTON, 0. 0}.
(0 . 0, 0. TBSTYLLSEP, 0, 0}.
(STD_BMPS + VIEW_LARGEICONS,

rnc_ucoN. TBSTATE_ENABLED I TBSTATE_CHECKED,
TBSTYLE_CHECKGROUP, 0, 0}.

(STD_BMPS + VIEW_SMALLICONS,
rnc_s1CON, TBSTATE_ENABLED,

TBSTYLE_CHECKGROUP, 0, 0}.
(STD_BMPS + VIEW_LIST,

rnc_usr. TBSTATE_ENABLED,
TBSTYLE_CHECKGROUP, 0, 0}.

(STD_BMPS + VIEW_DETAILS,
1oc_RPT, TBSTATE_ENABLED,

TBSTYLE_CHECKGROUP, 0. 0}.
{0 . 0. 0. TBSTYLE_SEP. 0. 0}.
{STD_BMPS + VIEW_BMPS,

IDC_DPSORT,TBSTATE_ENABLED,
TBSTYLE_DROPDOWN, 0. 0)

} ;

II==
II Program entry point
II
int WINAPI WinMain (HINSTANCE hlnstance, HINSTANCE hPrevlnstance,

LPWSTR lpCmdline, int nCmdShow) (

286

HWND hwndMain;
MSG msg;
int re = 0;

II Initialize application.
re= InitApp (hlnstance);
if (re) return re:

II Initialize this instance.
hwndMain = Initlnstance (hlnstance, lpCmdLine. nCmdShow):
if (hwndMain == 0)

return 0x10:

II Application message loop
while (GetMessage (&msg, NULL, 0, 0)) (

Chapter 5 Common Controls and Windows CE

}

}

TranslateHessage C&msg);
DispatchHessage C&msg);

II Instance cleanup
return Termlnstance (hlnstance. msg.wParam);

11- -------------------- --------------------------- ------------- ----- ----
11 InitApp - Application initialization
II
int lnitApp (HINSTANCE hlnstance)

WNDCLASS we;
INITCOHHONCONTROLSEX icex:

}

II Register application main window
we.style = 0;
wc.lpfnWndProc = HainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hlnstance = hlnstance;
wc.hlcon = NULL.
wc.hCursor = NULL:

class.
II
II
II
II

Window style
Callback function
Extra class data
Extra window data

II Owner handle
II Application icon
II Default cursor

GetStockObject (WHITE_BRUSH): wc . hbrBackground = (HBRUSH)
wc.lpszHenuName = NULL:
wc.lpszClassName = szAppName;

II Menu name
II Window class name

if (RegisterClass (&we) == 0) return 1;

II Load the command bar common control class.
icex.dwSize = sizeof (lNITCOHHONCONTROLSEX);
icex.dwICC = ICC_BAR_CLASSES;
InitCommonControlsEx (&icex);
return 0;

11 --
11 Initlnstance - Instance initialization
II
HWND Initlnstance (HINSTANCE hlnstance, LPWSTR lpCmdLine, int nCmdShow)(

HWND hWnd;

II Save program instance handle in global variable.
hlnst = hlnstance;

II Create main window.
hWnd = CreateWindow (szAppName,

TEXT ("CmdBar
WS_VISIBLE,

II Window class
Demo"), II Window title

II Style flags

(continued)

287

Part II Windows CE Basics

Figure 5-4. continued

)

CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hlnstance,
NULL):

II Return fail code if window not created.
if (!lsWindow Ch Wnd)) return 0;

II Standard show and update calls
ShowWindow (hWnd, nCmdShow);
UpdateWindow (hWnd);
return hWnd:

II x position
II y position
II Initial width
II Initial height
II Parent
II Menu, must be null
II Application instance
II Pointer to create
II parameters

11 -------------------------- ----- ---------------------------------------
11 Termlnstance - Program cleanup
II
int Termlnstance (HINSTANCE hlnstance, int nDefRC> {

return nDefRC;
}

II==
II Message handling procedures for MainW1ndow
11--- ---------------------- ---- ---- --------------------------------- ----
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

)

INT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for Ci = 0; i < dim(MainMessages); i++) {

if CwMsg == MainMessages[iJ .Code)
return (*MainMessages[iJ.Fxn)ChWnd, wMsg, wParam, lParam);

return DefWindowProc ChWnd, wMsg, wParam, lParam):

11 - - - - - - - - - - -- - --------- ----- - -- ---- -- -- -- --- - --------------- -- - - -- -----
11 DoCreateMain - Process WM_CREATE message for window.
II

288

Chapter 5 Common Controls and Windows CE

LRESULT DoCreateMain CHWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM lParam) {

)

HWND hwndCB;

II Create a minimal command bar that only has a menu and an
II exit button.
hwndCB = CommandBar_Create (hinst. hWnd, IDC_CMDBAR);

II Insert the menu.
CommandBar_InsertMenubar ChwndCB, hinst, ID_MENU. 0):

II Add exit button to command bar.
CommandBar_AddAdornments ChwndCB, 0, 0);
return 0;

11------- --------------------- ---- --------------------------------------
11 DoCommandMain - Process WM_COMMAND message for window.
II
LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam,

)

LPARAM 1 Pa ram) {
WORD iditem, wNotifyCode;
HWND hwndCtl:
INT i:

II Parse the parameters.
iditem = (WORD) LOWORD (wParam);
wNotifyCode = (WORD) HIWORD CwParam):
hwndCtl = CHWND) lParam:

II Call routine to handle control message.
for Ci = 0: i < dim(MainCommanditems>: i++)

if (iditem == MainCommanditems[iJ.Code)
return (*MainCommanditems[iJ.Fxn)(hWnd, iditem, hwndCtl.

wNot i fyCode) :

return 0:

11- - - - -- -- ----- - - -- -- -- -- --- -- - -- -- - - -- - - - - -- - - - - - - - - -- - - -- - - -- -- - - - -- - -
II DoNotifyMain - Process WM_NOTIFY message for window.
II
LRESULT DoNotifyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
LPNMHDR pNotifyHeader:
LPNMTOOLBAR pNotifyToolBar:

(con tin u eel)

289

Part 11 Windows CE Basics

Figure 5-4. continued

)

RECT rect;
TPMPARAMS tpm;
HMENU hMenu;

II Get pointer to notify message header.
pNotifyHeader = (LPNMHDR)lParam ;

if CpNotifyHeader->code == TBN_DROPDOWN) {

II Get pointer to toolbar notify structure.
pNotifyToolBar = CLPNMTOOLBAR)lParam;

if (pNotifyToolBar->iltem == IDC_DPSORT)

II Get the rectangle of the drop-down button.
SendMessage CpNotifyHeader->hwndFrom, TB_GETRECT,

pNotifyToolBar->iltem, CLPARAM)&rect);

II Convert rect into screen coordinates. The rect is
II considered here to be an array of 2 POINT structures.
MapWindowPoints CpNotifyHeader ->hwndFrom, HWND_DESKTOP,

(LPPOINT)&rect, 2);

II Prevent the menu from covering the button.
tpm.cbSize = sizeof (tpm);
CopyRect (&tpm.rcExclude, &rect);

hMenu = GetSubMenu (LoadMenu (hlnst, TEXT ("popmenu")),0);
TrackPopupMenuEx ChMenu. TPM_LEFTALIGN I TPM_VERTICAL.

rect.left, rect.bottom, hWnd, &tpm);

return 0;

11 -- ---- ------ ----------- -----
11 DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PostQuitMessage (0);
return 0;

)

II==
II Command handler routines
11 --------- --- - - --
11 DoMainCommandExit - Process Program Exit command.
II

290

Chapter 5 Common Controls and Windows CE

LPARAM DoMainCommandExit CHWND hWnd, WORD iditem. HWND hwndCtl,
WORD wNotifyCode) {

SendMessage ChWnd, WM_CLOSE, 0, 0);
return 0;

11 ------------- - -- -- --- - - ------ --------------- - - -- ------------- -- -------
11 DoMainCommandViewStd - Displays a standard edit-centric cmd bar
II
LPARAM DoMainCommandVStd CHWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) {
HWND hwndCB;

II If a command bar exists. kill it.
if (hwndCB = GetOlgitem (hWnd, IDC_CMDBAR))

CommandBar_Oestroy (hwndCB);

II Create a command bar.
hwndCB = CommandBar_Create Chinst, hWnd, IOC_CMDBAR);

II Insert a menu.
CommandBar_InsertMenubar (hwndCB, hinst, ID_MENU, 0);

II Insert buttons.
CommandBar_AddBitmap ChwndCB, HINST_COMMCTRL, IOB_STO_SMALL_COLOR,

STD_BMPS, 0, 0);

CommandBar_AddButtons (hwndCB, dim(tbCBStdBtns), tbCBStdBtns);

II Add exit button to command bar.
CommandBar__AddAdornments (hwndCB, 0, 0);
return 0;

11 --- - --- - ----------------------
11 DoMainCommandVView - Displays a standard edit -centric cmd bar
II
LPARAM DoMainCommandVView CHWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {
I NT i;
HWND hwndCB;
TCHAR szTmp[64];
HBITMAP hBmp, hMask;
HIMAGELIST hilDisabled, hilEnabled;

II If a command bar exists, kill it.
if ChwndCB = GetOlgltem ChWnd, IOC_CMOBAR))

CommandBar_Oestroy ChwndCB);

(continued)

291

Part 11 Windows CE Basics

Figure 5·4. continued

292

II Create a command bar.
hwndCB = CommandBar_Create (hinst. hWnd, IDC_CMDBAR);

II Insert a menu.
CommandBar_InsertMenubar ChwndCB, hinst, ID_MENU, 0);

II Insert buttons, first add a bitmap and then the buttons.
CommandBar__AddBitmap ChwndCB, HINST_CDMMCTRL, IDB_VIEW_SMALL.CDLDR,

VIEW_BMPS, 0, 0);

II Load bitmaps for disabled image.
hBmp = LoadBitmap (hlnst, TEXT C"DisCross"));
hMask = LoadBitmap (hlnst, TEXT ("DisMask"));

II Get the current image list and copy.
hilEnabled = (HIMAGELIST)SendMessage (hwndCB, TB_GETIMAGELIST, 0, 0):
hilDisabled = Imagelist_Duplicate (hilEnabled);

II Replace a button image with the disabled image.
Imagelist_Replace (hilDisabled , VIEW_LIST, hBmp, hMask):

II Set disabled image list.
SendMessage (hwndCB, TB_SETDISABLEDIMAGELIST, 0,

(LPARAMlhilDisabled);

II Add buttons to the command bar.
CommandBar_AddButtons ChwndCB, dim(tbCBViewBtns), tbCBViewBtnsl:

II Add tooltips to the command bar.
CommandBar_AddToolTips (hwndCB, dimCpViewTips), pViewTipsl:

II Add a combo box between the view icons and the sort icons.
CommandBar_lnsertComboBox (hwndCB, hlnst, 75,

CBS_DROPDOWNLIST I WS_VSCROLL.

II Fill in combo box.
for Ci = 0; i < 10; i++)

I DCCOMBO, 6 l ;

wsprintf (szTmp, TEXT ("Item %d"), i);
SendDlgltemMessage ChwndCB, IDC_COMBO. CB_INSERTSTRING, ·1,

(LPARAM)szTmp);

SendDlgltemMessage (hwndCB. IDC_COMBO, CB_SETCURSEL, 0, 0);

II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 0);
return 0;

Chapter 5 Common Controls and Windows CE

11----------------------- ---
11 DoMainCommandVCombo - Displays a combination of file and edit buttons
II
LPARAM DoMainCommandVCombo CHWND hWnd, WORD iditem. HWND hwndCtl,

WORD wNotifyCode) {

}

HWND hwndCB;

II If a command bar exists. kill it.
if (hwndCB = GetDlgitem (hWnd, IDC_CMDBAR))

CommandBar_Oestroy (hwndCB);

II Create a command bar.
hwndCB = CommandBar_Create Chinst, hWnd, IDC_CMDBAR);

II Insert a menu.
CommandBar_InsertMenubar (hwndCB, hinst, ID_MENU, 0);

II Add two bitmap lists plus custom bmp for drop -down button.
CommandBar_AddBitmap ChwndCB, HINST_COMMCTRL. IDB_STD_SMALL_COLOR,

STD_BMPS, 0, 0);
CommandBar_AddBitmap ChwndCB, HINST_COMMCTRL, IDB_VIEW_SMALL_COLOR,

VIEW_BMPS, 0, 0);
CommandBar_AddBitmap (hwndCB. NULL,

Cint)LoadBitmap Chinst, TEXT C"SortDropBtn")),
1. 0, 0);

CommandBar_AddButtons ChwndCB, dim(tbCBCmboBtns), tbCBCmboBtns);

II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 0);
return 0;

11-- --
11 DoMainCommandAbout - Process the Help I About menu command.
II
LPARAM DoMainCommandAboutCHWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) {

II Use DialogBox to create modal dialog box.
DialogBox Chinst. TEXT ("aboutbox"), hWnd, AboutDlgProc);
return 0;

II==
II About Dialog procedure
II

(contin ued)

293

Part II Windows CE Basics

Figure 5-4. co111i11ued

BOOL CALLBACK AboutDlgProc (HWND hWnd, UINT wHsg, WPARAH wParam,
LPARAH lParam) {

switch (wHsg) {
case WH_C OHHAND:

switch (LOWORD (wParam))
case IDOK:

break;

case IDCANCEL:
EndDialog (hWnd, 0);
return TRUE;

return FALSE;

Each of the three command bar created in CmdBar demon trate different ca
pabiliti s of the command bar control. The ftrst command bar, created in the routine
DoMainCommandV: td creates a vanilla command bar with a menu and a set of but
ton . Th button tructur for thi command bar is defined in the array tbCB tdBtns,

which i defined n ar the top of CmdBar.C.
The second comma nd bar, created in the routine DoMainCommandVView,

contain two group of checkgroup button separated by a combo box. Thi com
mand bar al o demonstrate the use of a eparate image for a di ab! d button. The
Ii t view button, the third button on the bar is di abled . The image for that button in
the image Ii t for di ab! d button i replaced with a bitmap that look like an X.

Th DoMainCommandVCombo routine create the third command bar. It u es
both the tandard and view bitmap imag as well a a cu tom bitmap for a drop
down button. Thi ommand bar demon trace the technique of referencing the im
ag in an image Ii t that contain multi pl bitmap . Th drop-down button i ervi d
by the On olifiyMain routine where a pop-up menu is loaded and di played w hen
a TB _DROPDOWN notification is received.

Command Bands

294

C mmand bands appeared in Windows CE 2.0 and are a va luable feature , e pecially
in their capacity to contain eparate bands that can be dragged around by a us r. Each
individual band can have a "gripper" that can be u d to drag the band to a new
po ition . A band can be in a minimized state , hewing only its gripper and , if you
want, an icon; in a maximized tare, covering up the other bands on the lin ; or re-
tored haring space with the other band on the ame line. You can even mov bands

to a new row, creating a multiple-row command band .

Chapter 5 Common Controls and Windows CE

The standard use of a command bands control is to break up the elements of a
command bar-menu, buttons, and other controls-into separate bands. This allows
users to rearrange these elements as they see fit. Users can also expose or overlap
separate bands as needed in order to provide a larger total area for menus, buttons,
and other controls.

Creating a command bands control
Creating a command bands control is straightfo1ward, if a bit more involved than
creating a command bar control. You create the control by calling

HWND CommandBands_Create (HINSTANCE hinst, HWND hwndParent, UINT wID,
DWORD dwStyles, HIMAGELIST himl);

The dwStyles parameter accepts a number of flags that define the look and operation
of the command bands control. These styles match the rebar styles; the command
bands control is, after all, closely related to the rebar control.

• RBS_AUTOSJZE Bands are automatically reformatted if the size or posi
tion of the control is changed.

• RBS_BANDBORDERS Each band is drawn with lines to separate adjacent
bands.

• RBS_FIXEDORDER Bands can be moved but always remain in the same
order.

• RBS_SMARIIABELS When minimized, a band is displayed with its icon.
When restored or maximized, the band's label text is displayed.

• RBS_ VARHEIGHT Each row in the control is vertically sized to the mini
mum required by the bands on that row. Without this flag, the height of
every row is defined by the height of the tallest band in the control.

• CCS_ VERT Creates a ve1tical command bands control.

• RBS_ VERTICALGRIPPhR Displays a gripper appropriate for a vertical
command bar. Thb flag is ignored unless CCS_ VERT is set.

Of these styles, the RBS_SMARTLABLES and RBS_ VARHEIGHT are the two most
frequently used flags. The RBS_SMARTLABLES flag lets you choose an attractive ap
pearance for the command bands control without requiring any effort from the ap
plication. The RBS_ VARHEIGHT flag is important if you use controls in a band other
than the default command bar. The CCS_ VERT style creates a vertical command bands
control, but because Windows CE doesn't support vertical menus, any band with a
menu won't be displayed correctly in a vertical band. As you'll see, however, you
can hide a particular band when the control is orientated ve1tically.

295

Part II

296

IMAGE LISTS FOR COMMAND BANDS CONTROLS

I touched on image lists earlier. Command bars and toolbars use image lists in
ternally to manage the images used on buttons. Image lists can be managed in
a stand-alone image list control. This control is basically a helper control that
assists applications in managing a series of like-size images. The image list control
in Windows CE is identical to the image list control under Windows NT and Win
dows 98, with the exception that the Windows CE version can't contain cursors
for systems built without mouse/cursor support. For the purposes of the com
mand bands control, the image list just needs to be created and a set of bitmaps
added that will represent the individual bands when they're minimized. An ex
ample of the minimal code required for this is shown here:

himl = Imagelist_Create (16, 16, ILC_COLOR, 2, 0);
hBmp = LoadBitmap (hlnst, TEXT C"CmdBarBmps"));
Imagelist_Add (himl, hBmp, NULL);
DeleteObject ChBmp);

The ImageList_Create function takes the dimensions of the images to be
loaded, the format of the images (ILC_COLOR is the default), the number of
images initially in the list, and the number to be added. The two images are
then added by loading a double-wide bitmap that contains two images and calling
ImageList_Add. After the bitmap has been loaded into the image list, it should
be deleted.

Adding bands
You can add bands to your application by passing an array ofREBARBANDINFO struc
tures that describe each band to the control. The function is

BOOL CommandBands_AddBands (HWND hwndCmdBands, HINSTANCE hinst,
UINT cBands, LPREBARBANDINFO prbbi);

Before you call this function, you must fill out a REBARBANDINFO structure for each
of the bands to be added to the control. The structure is defined as

typedef struct tagREBARBANDINFO{
UINT cbSize;
UINT fMask;
UINT fStyle;
COLORREF clrFore;
COLORREF clrBack;
LPTSTR lpText;
UINT cch;
int iimage;

Chapter 5 Common Controls and Windows CE

HWND hwndChil d;
UINT cxMinChild;
U INT cyMi nChil d;
UINT ex;
HB ITMAP hbmBack;
UINT wID;
UINT cyChild;
UINT cyMaxChild;
UINT cylntegral:
UINT cxideal;
LPARAM lParam;

} REBARBAN DIN FO;

Fortunately, although this structure looks imposing, many of the fields can be ignored
because there are default actions for uninitialized fields. As usual with a Windows
structure, the cbSize field must be filled with the size of the structure as a fail-safe
measure when the structure is passed to Windows. The JMask field is filled with a
number of flags that indicate which of the remaining fields in the structure are filled
with valid information. I'll describe the flags as I cover each of the fields.

The /Style field must be filled with the style flags for the band if the RBBIM_STYLE
flag is set in the ./Mask field. The allowable flags are the following:

• RBBS_BREAK The band will start on a new line.

• RBBS_FIXEDSJZE The band can't be sized. When this flag is specified,
the gripper for the band isn't displayed.

• RBBS_HJDDEN The band won't be visible when the command band is
created.

• RBBS_GRIPPERALWAYS The band will have a sizing grip, even if it's the
only band in the command band.

• RBBS_NOGRIPPER The band won't have a sizing grip. The band there
fore can't be moved by the user.

• RBBS_NOVERT The band won't be displayed if the command bands
control is displayed vertically due to the CCS_ VERT style.

• RBBS_CHIWEDGE The band will be drawn with an edge at the top and
bottom of the band.

• RBBS_FIXEDBMP The background bitmap of the band doesn't move
when the band is resized.

For the most part, these flags are self-explanatory. Although command bands
are usually displayed across the top of a window, they can be created as vertical bands
and displayed down the left side of a window. In that case, the RBBS_NOVERT style

297

Part II

298

allows the programmer to specify which bands won't be displayed when the com
mand band is in a vertical orientation. Bands containing menus or wide controls are
candidates for this flag because they won't be displayed correctly on vertical bands.

You can fill the clrFore and clrBack fields with a color that the command band
will use for the foreground and background color when your application draws the
band. These fields are used only if the RBBIM_COLORS flag is set in the mask field.
These fields, along with the hbmBack field, which specifies a background bitmap for
the band, are useful only if the band contains a transparent command bar. Otherwise,
the command bar covers most of the area of the band, obscuring any background
bitmap or special colors. I'll explain how to make a command bar transparent in the
section, "Configuring individual bands."

The lpText field specifies the optional text that labels the individual band. This
text is displayed at the left end of the bar immediately right of the gripper. The ilmage
field is used to specify a bitmap that will also be displayed on the left end of the bar.
The ilmage field is filled with an index to the list of images contained in the image
list control. The text and bitmap fields take added significance when paired with the
RBS_SMARTLABELS style of the command band control. When that style is specified,
the text is displayed when the band is restored or maximized and the bitmap is dis
played when the band is minimized. This technique is used by the H/PC Explorer on
its command band control.

The w!D field should be set to an ID value that you use to identify the band.
The band ID is important if you plan on configuring the bands after they have been
created or if you think you'll be querying their state. Even if you don't plan to use
band IDs in your program, it's important that each band ID be unique because the
control itself uses the IDs to manage the bands. This field is checked only if the
RBBIM_ID flag is set in the }Mask field.

The hwndChild field is used if the default command bar control in a band is
replaced by another control. To replace the command bar control, the new control
must first be created and the window handle of the control then placed in the
hwndChild field. The hwndChild field is checked only if the RBBIM_CHILD flag is set
in the }Mask field.

The cxMinChild and cyMinChild fields define the minimum dimensions to which
a band can shrink. When you're using a control other than the default command bar, these
fields are useful for defining the height and minimum width (the width when minimized)
of the band. These two fields are checked only if the RBBIM_CHILDSIZE flag is set.

The ex/deal field is used when a band is maximized by the user. If this field
isn't initialized, a maximized command band stretches across the entire width of the
control. By setting ex/deal, the application can limit the maximized width of a band,
which is handy if the controls on the band take up only part of the total width of the
control. This field is checked only if the RBBIM_IDEALSIZE flag is set in the }Mask field.

The lParam field gives you a space to store an application-defined value with
the band information. This field is checked only if the RBBIM_LPARAM flag is set in

Chapter 5 Common Controls and Windows CE

the }Mask field. The other fields in the REBARBANDINFO apply to the more flexible
rebar control, ncit the command band control. The code helow creates a command
bands control, initializes an array of three REBARI3ANDINFO structures, and adds the
bands to the control.

II Create a command bands ctl.
hwndCB = CommandBands_Create (hinst, hWnd, IDC_CMDBAND, RBS_SMARTLABELS I

RBS_VARHEIGHT, himl);

II Init common REBARBANDINFO structure fields.
for (i = 0; i < dim(rbi); i++) {

rbi[i].cbSize = sizeof (REBARBANDINFO);
rbi[i]. fMask = RBBIM_ID I RBBIM_IMAGE I RBBIM_SIZE I RBBIM_STYLE;
rbi[i].fStyle = RBBS_FIXEDBMP;
rbi[i].wID = IDB_CMDBAND+i;

II Init REBARBANDINFO structure for each band.
II l. Menu band.
rbi [0] .fStyle I= RBBS_NOGRIPPER;
rbi[0].cx = 130;
rbi[0J.iimage = 0;

II 2. Standard button band.
rbi[l].fMask I= RBBIM_TEXT;
rbi [lJ .ex = 200;
rbi[lJ.iimage 1·
rbi[l].lpText =TEXT ("Std Btns");

II 3. Edit control band.
hwndChild = CreateWindow (TEXT ("edit"), TEXT ("edit ctl"),

WS_VISIBLE I WS_CHILD I WS_BORDER,
0, 0, 10, 5, hWnd, (HMENU)IOC_EDITCTL,
hinst, NULL);

rbi[2].fMask I= RBBIM_TEXT I RBBIM_STYLE I RBBIM_CHILDSIZE I RBBIM_CHILD;
rbi[2J.fStyle I= RBBS_CHILDEDGE;
rbi[2].hwndChild = hwndChild;
rbi[2J.cxMinChild = 0;
rbi[2].cyMinChild = 25;
rbi[2].cyChild = 55;
rbi[2].cx = 130;
rbi[2J.iimage 2;
rbi[2].lpText =TEXT ("Edit field");

II Add bands.
CommandBands_AddBands (hwndCB, hinst, 3, rbi);

299

Part II

300

The command bands control created above has three bands, one contain
ing a menu, one containing a set of buttons, and one containing an edit control
instead of a command bar. The control is created with the RBS_SMARTLABELS
and RBS_ VARHEIGHT styles. The smart labels display an icon when the bar is mini
mized and a text label when the band isn't minimized. The RBS_ VARHEIGHT style
allows each line on the control to have a different height.

The common fields of the REBARBANDINFO structures are then initialized in a
loop. Then the remaining fields of the structures are customized for each band on
the control. The third band, containing the edit control, is the most complex to ini
tialize. This band needs more initialization since the edit control needs to be prop
erly sized to match the standard height of the command bar controls in the other bands.

The ilmage field for each band is initialized using an index into an image list that
was created and passed to the CommandBands_Create function. The text fields for
the second and third bands are filled with labels for those bands. The first band, which
contains a menu, doesn't contain a text label because there's no need to label the menu.
You also use the RBBS_NOGRIPPER style for the first band so that it can't be moved
around the control. This fixes the menu band at its proper place in the control.

Now that we've created the bands, it's time to see how to initialize them.

Configuring individual bands
At this point in the process, the command bands control has been created and the
individual bands have been added to the control. We have one more task, which is
to configure the individual command bar controls in each band. (Actually, there's little
more to configuring the command bar controls than what I've already described for
command bars.)

The handle to a command bar contained in a band is retrieved using

HWND CommandBands_GetCommandBar (HWND hwndCmdBands, UINT uBand);

The uBand parameter is the zero-based band index for the band containing the com
mand bar. If you call this function when the command bands control is being initial
ized, the index value correlates directly with the order in which the bands were added
to the control. However, once the user has a chance to drag the bands into a new
order, your application must obtain this index indirectly by sending a RB_IDTOINDEX
message to the command bands control, as in

nlndex = SendMessage (hwndCmdBands, RB_IDTOINDEX, ID_BAND, 0);

This message is critical for managing the bands because many of the functions and
messages for the control require the band index as the method to identify the band.
The problem is that the index values are fluid. As the user moves the bands around,
these index values change. You can't even count on the index values being consecu
tive. So, as a rule, never blindly use the index value without first querying the proper
value by translating an ID value to an index value with RB_IDTOINDEX.

Chapter 5 Common Controls and Windows CE

Once you have the window handle to the command bar, simply add the menu
or buttons to the bar using the standard command bar control functions and mes
sages. Most of the time, you'll specify only a menu in the first bar, only buttons in the
second bar, and other controls in the third and subsequent bars.

The following code completes the creation process shown in the earlier code
fragments. This code initializes the command bar controls in the first two bands. Since
the third band has an edit control, you don't need to initialize that band. The final act
necessary to complete the command band control initialization is to add the close
box to the control using a call to CommandBands_AddAdornments.

II Add menu to first band.
hwndBand = CommandBands_GetCommandBar (hwndCB, 0);
CommandBar_InsertMenubar (hwndBand, hlnst, ID_MENU, 0);

II Add std buttons to second band.
hwndBand = CommandBands_GetCommandBar (hwndCB, 1);
CommandBar_AddBitmap (hwndBand, HINST_COMMCTRL, IDB_STD_SMALL_COLOR,

15, 0, 0);
CommandBar_AddButtons (hwndBand, dim(tbCBStdBtns), tbCBStdBtns);

II Add exit button to command band.
CommandBands_AddAdornments (hwndCB, hinst, 0, NULL);

Saving the band layout
The configurability of the command bands control presents a problem to the pro
grammer. Users who rearrange the bands expect their customized layout to be re
stored the next time the application is started. This task is supposed to be made easy
using the following function.

BOOL CommandBands_GetRestoreinformation CHWND hwndCmdBands,
UINT uBand, LPCOMMANDBANDSRESTOREINFO pcbr);

This function saves the positioning information from an individual band into a
COMMANDBANDSRESTOREINFO structure. The function takes the handle of the
command bands control and an index value for the band to be queried. The follow
ing code fragment shows how to query the information from each of the bands in a
command band control.

II Get the handle of the command bands control.
hwndCB = GetDlgitem ChWnd, IDC_CMDBAND);

II Get information for each band.
for (i = 0; i < NUMBANDS; i++) {

(continued)

301

Part 11 Windows CE Basics

302

}

II Get band index from ID value.
nBand = SendMessage (hwndCB, RB_IDTOINDEX, IDB_CMDBAND+i, 0);

II Initialize the.size field and get the restore information.
cbr[i].cbSize = sizeof (COMMANDBANDSRESTOREINFO);
CommandBands_GetRestoreinformation (hwndCB, nBand, &cbr[i]);

The code above uses the RB_IDTOINDEX message to convert known band IDs
into the unknown band indexes required by CommandBands_GetRestorelnformation.
The data from the structure would normally be stored in the system registry. I'll talk
about how to read and write registry data in Chapter 7, "Files, Databases, and the
Registry."

The restore information should be read from the registry when the application
is restarted, and used when creating the command bands control.

II Restore configuration to a command band.
COMMANDBANDSRESTOREINFO cbr[NUMBANDS];
REBARBANDINFO rbi;

II Inittalize size field.
rbi.cbSize = sizeof (REBARBANDINFO);

II Set only style and size fields.
rbi.fMask = RBBIM_STYLE I RBBIM_SIZE;

II Set the size and style for all bands.
for (i = 0; i < NUMBANDS; i++) {

}

rbi.cx = cbr[i].cxRestored;
rbi.fStyle = cbr[i].fStyle;

nBand = SendMessage (hwndCB, RB_IDTOINDEX, cbr[i].wID, 0);
SendMessage (hwndCB, RB_SETBANDINFO, nBand, (LPARAM)&rbi);

II Only after the size is set for all bands can the bands
II needing maximizing be maximized.
for (i = 0; i < NUMBANDS; i++) {

}

if (cbr[i].fMaximized) {

}

nBand = SendMessage (hwndCB, RB_IDTOINDEX, cbr[i].wID, 0);
SendMessage (hwndCB, RB_MAXIMIZEBAND, nBand, TRUE);

This code assumes that the command bands control has already been created
in its default configuration. In a real-world application, the restore information for
the size and style could be used when first creating the control. In that case, all that
would remain would be to maximize the bands depending on the state of the

Chapter 5 Common Controls and Windows CE

./Maximized field in the COMMANDBANDSRESTOREINFO structure. 1his last step must
take place only after all bands have been created and properly resized.

One limitation of this system of saving and restoring the band layout is that you
have no method for determining the order of the bands in the control. The band in
dex isn't likely to provide reliable clues because after the user has rearranged the bands
a few times, the indexes are neither consecutive nor in any defined order. The only
way around this problem is to constrain the arrangement of the bands so that the user
can't reorder the bands. You do this by setting the RBS_FIXEDORDER style. This solves
your problem, but doesn't help users if they want a different order. In the example
program at the end of this section, I use the band index value to guess at the order.
But this method isn't guaranteed to work.

Handling command band messages
The command bands control needs a bit more maintenance than a command bar.
The difference is that the control can change height, and thus the window contain
ing the command bands control must monitor the control and redraw and perhaps
reformat its client area when the control is resized.

The command bands control sends a number of different WM_NOTIFY
messages when the user rearranges the control. To monitor the height of the
control, your application needs to check for a RBN_HEIGHTCHANGE notifica
tion and to react accordingly. The code below does just this:

II This code is inside a WM_NOTIFY message handler.
LPNMHDR pnmh:

pnmh = (LPNMHDR)lParam;
if Cpnmh->code == RBN_HEIGHTCHANGE)

InvalidateRect ChWnd, NULL, TRUE):

If a RBN_HEIGHTCHANGE notification is detected, the routine simply invali
dates the client area of the window forcing a WM_PAINT message. The code in the
paint message then calls

UINT CommandBands_Height CHWND hwndCmdBands):

to query the height of the command bands control and subtracts this height from the
client area rectangle.

As with the command bar, the command bands control can be hidden and shown
with a helper function:

BOOL CommandBands_Show CHWND hwndCmdBands, BOOL fShow):

The visibility state of the control can be queried using

BOOL CommandBands_lsVisible CHWND hwndCmdBands):

303

Part 11 Windows CE Basics

The CmdBand Example Program

The CmdBand program demonstrates a fa irly complete command bands contro l. The
example creates three bands: a fixed menu band, a band containing a number of
butto ns, and a band containing an edit control. Transparent command bar and a
background bitmap in each band are used to create a command band control with
a background image.

You can use the View menu to replace the command band control with a simple
command bar by choosing Command Bar from the View menu. You can then recre
ate and resto re the command bands control to its last configuration by choosing
Command Bands from the View menu . The code for the CmdBand program i shown
in Figure 5-5 .

CmdBand.rc

II==
II Resource file
II
II Wr i tten for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
#include "windows.h"
#include "CmdBand . h"

II
II Program-s pecifi c stuff

I I - - - - - - - - - - -- --- -- - -- -- - - - - - - - - - - -- -- - - - - - - - - -- - - ---- - - - - --- - - - - - - - - - --
II Icons and bi tmaps
II
ID_ICON ICON "cmdband.ico" II Program i con
CmdBarBmps BITMAP "cbarbmps.bmp" II Bmp used in cmdband image list
CmdBarEditBmp BITMAP "cbarbmp2.bmp" II Bmp used in cmdband image l is t
CmdBarBack BITMAP "backg2.bmp" II Bmp used for cmdband ba ckground

11 -- - - - - - - -- --- ------ - -- - - - - - - -- - ---- - - - - - - -- -- ---- --- - - - - - -- - -- ---- - - - -
11 Menu
II
ID_MENU MENU DISCARDABLE
BEGIN

POPUP "&File"
BEGIN

MENUITEM "E&xit",
END
POPUP "&View"

Figure 5-5. The CmdBand program.

304

IDM_EXIT

Chapter 5 Common Controls and Windows CE

END

BEGIN

END

MENUITEM "Command Bar",
MENUITEM "Command Band",

POPUP "&Help"

BEGIN
MEN~ITEM "&About ... ",

END

IDM_VIEWCMDBAR
IDM_VIEWCMDBAND

IDM_ABOUT

11 -- ------ ----
11 About box dialog template
II
aboutbox DIALOG discardable 10, 10, 160, 40
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER I

DS_MODALFRAME
CAPTION "About"
BEGIN

ICON IO_ICON, -1. 5, 5, 10, 10
LTEXT "CmdBand - Written for the book Programming Windows \

CE Copyright 1998 Douglas Boling"
-1. 40, 5, 110, 30

END

CmdBand.h

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11 --- ----- ------
11 Generic defines and data types
II
struct decodeUINT

UINT Code;
II Structure associates
II messages
II with a function.

(continued)

305

Part II Windows CE Basics

Figure 5-5. continued

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD (
UINT Code;

II Structure associates
II menu IDs with a

LRESULT C• Fxn)CHWND, WORD, HWND, WORD); II function.
} ;

11- ---------------- - --- - -------------------------------------- - ---------
II Defines used by application
II
/fdefi ne IDG_CMDBAND 1 II Command band ID
/fdefi ne IDG_CMDBAR 2 II Command bar ID

/fdefi ne ID_ICON 10 II Icon ID
ffdefi ne ID_MENU 11 II Main menu resource ID
ffdefi ne IDC_EDITCTL 12

ffdefi ne IDB_CMDBAND 50 II Base ID for bands
/fdefi ne IDB_CMDBANDMENU 50 II Menu band ID
/fdefi ne IDB_CMDBANDBTN 51 II Button band ID
/fdefi ne IDB_CMDBANDEDIT 52 II Edit control band ID

II Menu i tern IDs
fldefine IDM_EX IT 100

/fdefi ne IDM_VIEWCMDBAR 110
ffdefi ne IDM_VIEWCMDBAND 111

fldefine IDM_ABOUT 120
fldefine NUMBANDS 3
11 --
11 Function prototypes
II
int CreateCommandBand (HWND hWnd, BOOL fFirst);
int DestroyCommandBand (HWND hWnd);

int lnitApp (HINSTANCE);
HWND Initlnstance (HINSTANCE, LPWSTR, int);
int Termlnstance CHINSTANCE. int);

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

II Message handlers
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoPaintMain (HWND, UINT, WPARAM, LPARAM);
LRESULT DoNotifyMain (HWND, UINT, WPARAM, LPARAM);

306

Chapter 5 Common Controls and Windows CE

LRESULT DoCommandMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain CHWND, UINT, WPARAM, LPARAM) ;

II Command functions
LPARAM DoMainCommandViewCmdBar (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandVCmdBand (HWND, WORD. HWND, WORD);
LPARAM DoMainCommandExit CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandAbout (HWND, WORD, HWND, WORD);

II Dialog procedures
BOOL CALLBACK AboutDlgProc CHWND, UINT, WPARAM, LPARAM);

CmdBand.c

II==
II CmdBand - Dialog box demonstration
II
II Written for the book Programming Windows CE
II Copyright CC> 1998 Douglas Boling
II==
#include <windows . h> II For all that Windows stuff
#include <commctrl.h> II Command bar includes

#include "CmdBand.h" II Program-specific stuff

11 --
11 Global data
II
const TCHAR szAppName[] TEXT ("CmdBand");
HINSTANCE hlnst; II Program instance handle

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[J = (

WM_CREATE, DoCreateMain,
WM_PAINT, DoPaintMain,
WM_NOTIFY, DoNotifyMain ,
WM_COMMAND, DoCommandMain,
WM_DESTROY, DoDestroyMain,

} ;

II Command message dispatch for MainWindowProc
const struct decodeCMD MainCommandltems[J = (

} ;

IOM_VIEWCMOBAR, DoMainCommandViewCmdBar,
IOM_VIEWCMDBAND, DoMainCommandVCmdBand,
IDM_EXIT, DoMainCommandExit,
IDM_ABOUT, DoMainCommandAbout,

(continued)

307

Part 11 Windows CE Basics

Figure 5-5. continued

II Command band button initialization structure
const TBBUTTON tbCBStdBtns[] = {
II Bitmaplndex Command State Style UserData String

{STD_FI LENEW, 210, TBSTATE_ENABLEO, TBSTYLE_BUTTON, 0, 0}.
{STD_FI LEOPEN, 211. TBSTATE_ENABLED, TBS TY LE_BUTTON. 0, 0}.
{STO_FILESAVE, 212, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0}.
{0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0}.
{STO_CUT, 213, TBSTATE_ENABLEO, TBSTYLE_BUTTON, 0, 0}.
{STO_COPY, 214, TBSTATE_ENABLEO, TB STY LE_BUTTON, 0, 0}.
{STO_PASTE, 215, TBSTATE_ENABLEO, TBSTYLE_BUTTON, 0, 0}.
{0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0}.
{STD_PROPERTIES, 216, TBSTATE_ENABLED, TB STY LE_BUTTON, 0, 0}.

} ;

II Command bar initialization structure
const TBBUTTON tbCBViewBtns[] = {
II Bitmap Index Command State Style UserData String

{0, 0, 0,

{VIEW_LARGEICONS, 210, TBSTATE_ENABLED I

{VIEW_SMALLICONS, 211, TBSTATE_ENABLEO,

{VIEW_LIST, 212, TBSTATE_ENABLED,

{VIEW_DETAILS, 213, TBSTATE_ENABLED,

{0, 0, 0,
(VIEW_SORTNAME, 214, TBSTATE_ENABLED I

{VI EW_SORTTYPE. 215, TBSTATE_ENABLEO,

{VIEW_SORTSIZE, 216, TBSTATE_ENABLED,

(VIEW_SORTDATE, 217, TBSTATE_ENABLED,

} ;

II Array that stores the band configuration
COMMANDBANDSRESTOREINFO cbr[NUMBANDS];
INT nBandOrder[NUMBANDS];

TBSTYLE_SEP, 0, 0}.
TBSTATE_CHECKED,

TBSTYLE_CHECKGROUP, 0, 0}.

TBSTYLE_CHECKGROUP, 0. 0}.

TBSTYLE_CHECKGROUP, 0. 0}.

TBSTYLE_CHECKGROUP, 0, 0}.
TBS TY LE_SEP, 0, 0}.

TBSTATE_CHECKED,
TBSTYLE_CHECKGROUP, 0, 0}.

TBSTYLE_CHECKGROUP, 0. 0}.

TBSTYLE_CHECKGROUP, 0, 0}.

TBSTYLE_CHECKGROUP, 0. 0}

II==
II Program entry point
II
int WINAPI WinMain (HINSTANCE hlnstance, HINSTANCE hPrevlnstance,

LPWSTR lpCmdline, int nCmdShow) (

308

Chapter 5 Common Controls and Windows CE

}

HWND hwndMain;
MSG msg;
int re;

II Initialize application.
re= InitApp (hinstance);
if (rel return re;

II Initialize this instance.
hwndMain = Initinstance Chinstance, l pCmdLine. nCmdShow);
if (hwndMain == 0)

return 0x10;

II Application message loop
while (GetMessage (&msg , NULL, 0. 0)) (

TranslateMessage C&msg);
DispatchMessage C&msg);

}

II Instance cleanup
return Terminstance Chinstance. msg.wParam);

11- ---
11 InitApp - Application initialization
II
int InitApp (HINSTANCE hinstance)

WNDCLASS we;
INITCOMMONCONTROLSEX icex;

II Register application main
we .style = 0:
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0:
wc . cbWndExtra = 0;
wc . hinstance = hinstance;
wc.hicon = NULL.

window class.
II Window style
II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon
II Default cursor wc . hCursor = NULL:

wc.hbrBackground = (HBRUSH) GetStockObject CWHITE_BRUSH);
II Menu name wc.lpszMenuName = NULL;

wc.lpszClassName = szAppName; II Window class name

if (RegisterClass C&wc) == 0) return 1;

II Load the command bar common control class .
icex.dwSize = sizeof (INITCOMMONCONTROLSEX);
icex.dwICC = ICC_COOL_CLASSES:
InitCommonControlsEx C&icex);

(continued)

309

Part II Windows CE Basics

Figure 5-5. continued

return 0;
)

11 --
11 Initlnstance - Instance initialization
II
HWN D lnitlnstance (HINSTANCE hlnstance, LPWSTR lpCmdLine, int nCmdShow){

HWND hWnd;

II Save program instance handle in global variable.
hlnst = hlnstance ;

}

II Create main window .

hWnd CreateWindow (szAppName.
TEXT ("CmdBand Demo "),
WS_VISIBLE,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL.
hlnstance,
NULL);

II Return fail code if window not created.
if (!lsWindow (hWnd)) return 0;

II Standard show and update calls
ShowWindow (hWnd, nCmdShow);
UpdateWindow (hWnd);
return hWnd;

II Window class
II Window title
II Style flags
II x position
II y position
II Initial width
II Initial height
II Parent
II Menu. must be null
II Application instance
II Pointer to create
II parameters

11 --
11 Termlnstance - Program cleanup
II
i nt Termlnstance CHINSTANCE hlnstance, int nDefRC) {

return nDefRC;
}

II==
II Message handling procedures for MainWindow
II-- - - --- -- ----- ----- - - - - -- -------- - - - - - - --- ------ --- ------- -- - - - - - --- --
II MainWndProc - Callback function for application window

310

Chapter 5 Common Controls and Windows CE

II
LRESULT CALLBACK MainWndProc (HWND hWnd , UINT wMsg , WPARAM wParam,

LPARAM l Pa ram) (
INT i;
II
II Search message list to see if we need to handle this
II message . If in list, call procedure .
II
for (i = 0: i < dimCMainMessages); i++) (

if CwMsg == MainMessages[iJ.Code)
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, lParam):

return DefWindowProc ChWnd, wMsg , wParam, lParam);

11 --
11 DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) (

}

CreateCommandBand ChWnd, TRUE);
return 0:

11 --
11 DoPaintMain - Process WM_PAINT message for window.
II
LRESULT DoPaintMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram) (
PAINTSTRUCT ps:
HWND hwndCB;
RECT rect;
HOC hdc;
POINT ptArray[2];

II Adjust the size of the client rect to take into account
II the command bar or command bands height.
GetClientRect ChWnd, &rectl :
if (hwndCB = GetDl g Item. (hWnd. roc_CMDBAND))

rect . top += CommandBands_Height ChwndCB);
else

rect.top += CommandBar_Height (GetDlgitem ChWnd, IDC_CMDBAR));

hdc = BeginPaint ChWnd, &ps>:

(continued)

311

Part II Windows CE Basics

Figure 5-5. continued

ptArray[0J.x =
ptArray[0].y
ptArray[l].x =
ptArray[l].y =
Polyline (hdc,

rect. left;
rect . top;
rect.right;
rect.bottom;
ptArray, 2);

ptArray[0J.x = rect.right;
ptArray[lJ.x = rect.left;
Polyline (hdc, ptArray, 2);

EndPaint (hWnd, &psl;
return 0;

1/ --- - --------------------------
11 DoCommandMain - Process WM_COMMAND message for window.
II
LRESULT DoCommandMain CHWND hWnd, UINT wMsg, WPARAM wParam,

}

LPARAM l Pa ram) (
WORD idltem, wNotifyCode;
HWND hwndCtl ;
INT i;

II Parse the parameters.
idltem = (WORD) LOWORD (wParam);
wNotifyCode = (WORD) HIWORD (wParam);
hwndCtl = (HWNO) lParam;

II Call routine to handle control message.
for (i = 0; i < dim(MainCommandltems l ; i++)

if (idltem == MainCommandltems[iJ.Codel
return (*MainCommandltems[iJ.Fxn)(hWnd, idltem, hwndCtl,

wNotifyCode l;

return 0;

11 --
11 DoNotifyMain - Process WM_NOTIFY message for window.
II
LRESULT DoNotifyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) (

312

LPNMHDR pnmh;

II Parse the parameters.
pnmh = (LPNMHDR)lParam;

Chapter 5 Common Controls and Windows CE

}

if (pnmh->code == RBN_HEIGHTCHANGE) {
InvalidateRect ChWnd, NULL, TRUE);

return 0:

11- ------------------------------------- --------------------------- -----
11 DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LP A RAM l Pa ram) (
PostQuitMessage (0);
return 0:

}

II==
II Command handler routines
11 -------------------- ----- ---- --- --- ------ --- -------- ---- -- ------------
11 DoMainCommandExit - Process Program Exit command.
II
LPARAM DoMainCommandExit (HWND hWnd , WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

SendMessage ChWnd, WM_CLOSE, 0, 0);
return 0:

11--
11 DoMainCommandVCmdBarStd - Process View I Std Command bar command.
II
LPARAM DoMainCommandViewCmdBar CHWND hWnd , WORD idltem, HWND hwndCtl,

WORD wNotifyCodel (
HWND hwndCB;

hwndCB = GetDlgltem (hWnd, IDC_CMDBANDl:
if ChwndCBl

DestroyCommandBand ChWnd);
else

return 0;

II Create a minimal command bar that has only a menu and
II an exit button.
hwndCB = CommandBar_Create Chlnst, hWnd, IDC_CMDBARl:

II Insert the menu.
CommandBar_l nsertMenubar ChwndCB, hlnst, ID_MENU, 0):

(conlinued)

313

Part II Windows CE Basics

Figure 5-5. continued

}

II Add exit button to command bar.
CommandBar_AddAdornments ChwndCB. 0. 0);
InvalidateRect ChWnd, NULL. TRUE);
return 0;

11------- -------------------- ---
11 DoMainCommandVCmdBand - Process View I Command band command.
II
LPARAM DoMainCommandVCmdBand CHWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

}

HWND hwndCB;
hwndCB = GetDlgltem (hWnd, IDC_CMDBAR);
if ChwndCB)

CommandBar_Destroy ChwndCB);
else

return 0;

CreateCommandBand ChWnd, FALSE);
InvalidateRect ChWnd. NULL. TRUE);
return 0;

11---------- ------------- --------- ------ ---- ---- ---- --------------------
11 DoMainCommandAbout - Process the Help I About menu command .
II
LPARAM DoMainCommandAboutCHWND hWnd. WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

}

II Use DialogBox to create modal dialog box.
DialogBox (hlnst, TEXT C"aboutbox"), hWnd. AboutDlgProcl:
return 0;

II==
II About Dialog procedure
II
BOOL CALLBACK AboutDlgProc CHWND hWnd, UINT wMsg. WPARAM wParam,

LPARAM lParaml {

314

switch CwMsg) {
case WM_COMMAND:

switch CLOWORD CwParam))
case IDOK:

break;

case IDCANCEL:
EndD1alog ChWnd, 0);
return TRUE;

Chapter 5 Common Controls and Windows CE

return FALSE;
}

11 ---------- ------ -- -- ------ ------ ------------ ---------------- --- ----- --
11 DestroyCommandBand - Destroy command band control after saving
II the current configuration.
II
int DestroyCommandBand CHWND hWnd)

HWND hwndCB;

}

INT i, nBand, nMaxBand = 0;

hwndCB = GetDlgitem ChWnd, IDC_CMDBAND);
for Ci = 0; i < NUMBANDS; i++) {

II Get band index from ID value.
nBand = SendMessage ChwndCB, RB_IDTOINDEX, IDB_CMDBAND+i, 0);

II Save the band number to save order of bands.
nBandOrder[i] = nBand;

II Get the restore information.
cbr[i].cbSize = sizeof (COMMANDBANDSRESTOREINFO);
CommandBands_GetRestoreinformation (hwndCB, nBand, &cbr[i]);

DestroyWindow ChwndCB);
return 0;

11 --
11 CreateCommandBand - Create a formatted command band control .
II
int CreateCommandBand CHWND hWnd, BOOL fF i rst >

HWND hwndCB, hwndBand, hwndChild;
INT i, nBand, nBtnindex , nEditindex:
LONG lStyle;
HBITMAP hBmp;
HIMAGELIST himl:
REBARBANDINFO rbi[NUMBANDSJ;

II Create image list control for bitmaps for minimized bands.
himl = Imagelist_Create (16, 16, ILG_COLOR, 3, 0);
II Load first two images from one bitmap.
hBmp = LoadBitmap (hinst. TEXT ("CmdBarBmps")):
ImageList_Add (himl, hBmp, NULL);
DeleteObject (hBmp);
II Load third image as a single bitmap.
hBmp = LoadBitmap (hinst, TEXT ("CmdBarEditBmp"));
ImageList_Add (himl, hBmp, NULL);
DeleteObject (hBmp);

(continued)

315

Part 11 Windows CE Basics

Figure 5-5. continued

316

II Create a command band.
hwndCB = CommandBands_Create (hlnst, hWnd, IDC_CMDBAND,

RBS_SMARTLABELS I
RBS_AUTOSIZE I RBS_VARHEIGHT, himlJ;

II Load bitmap used as background for command bar.
hBmp = LoadBitmap (hlnst, TEXT C"CmdBarBack"JJ;
II Initialize common REBARBANDINFO structure fields.
for Ci = 0; i < dim(rbiJ; i++J (

rbi[i].cbSize = sizeof (REBARBANDINFO);
rbi[i].fMask = RBBIM_ID I RBBIM_IMAGE I RBBIM_SIZE

RBBIM_BACKGROUND I RBBIM_STYLE;
rbi[i].wlD = IDB_CMDBAND+i;
rbi[i].hbmBack = hBmp;

II If first time, initialize the restore structure since it is
II used to initialize the band size and style fields.
if (fFirst) (

}

nBtnlndex = 1;
nEditlndex = 2;
cbr[0].cxRestored = 130;
cbr[l].cxRestored = 210;
cbr[l].fStyle = RBBS_FIXEDBMP;
cbr[2].cxRestored = 130;
cbr[2].fStyle = RBBS_FIXEDBMP I RBBS_CHILDEDGE;

else {
II If not first time, set order of bands depending on
II the last order.
if CnBandOrder[l] < nBandOrder[2JJ

nBtnlndex = 1;
nEditlndex = 2;

else (
nBtnlndex = 2;
nEditlndex = 1;

II Initialize REBARBANDINFO structure for each band.
II 1. Menu band
rbi[0].fStyle = RBBS_FIXEDBMP I RBBS_NOGRIPPER;
rbi[0].cx = cbr[0].cxRestored;
rbi[0].ilmage = 0;

II 2. Standard button band
rbi[nBtnlndex].fMask I= RBBIM_TEXT;
rbi[nBtnlndex].ilmage = l;
rbi[nBtnlndex].lpText =TEXT ("Std Btns");

Chapter 5 Common Controls and Windows CE

II The next two parameters are initialized from saved data.
rbi[nBtnlndexJ.cx = cbr[lJ.cxRestored;
rbi[nBtnlndexJ.fStyle = cbr[lJ.fStyle;

II 3. Edit control band
hwndChild = CreateWindow (TEXT ("edit"), TEXT ("edit ctl"l.

WS_VISIBLE I WS_CHILD I ES_MULTILINE I WS_BORDER.
0, 0, 10, 5, hWnd, CHMENU)ID(_EDITCTL, hlnst, NULL):

rbi[nEditlndexJ . fMask I= RBBIM_TEXT I RBBIM_STYLE I
RBBIM_CHILDSIZE I RBBIM_CHILD;

rbi[nEditlndexJ.hwndChild = hwndChild;
rbi[nEditlndexJ.cxMinChild = 0:
rbi[nEditlndex].cyMinChild = 23;
rbi[nEditindex].cyChild = 55;
rbi[nEditindexJ.ilmage = 2;
rbi[nEditlndexJ.lpText =TEXT ("Edit field");
II The next two parameters are initialized from saved data.
rbi[nEditlndexJ.cx = cbr[2J.cxRestored:
rbi[nEditlndexJ.fStyle = cbr[2J.fStyle;

II Add bands.
CommandBands_AddBands ChwndCB, hlnst, 3, rbi);

II Add menu to first band.
hwndBand = CommandBands_GetCommandBar ChwndCB, 0);
CommandBar_lnsertMenubar (hwndBand, hlnst, ID_MENU, 0);

II Add standard buttons to second band.
hwndBand = CommandBands_GetCommandBar (hwndCB. nBtnlndex);
II Insert buttons
CommandBar_AddBitmap (hwndBand, HINST_COMMCTRL. IDB_STD_SMALL_COLOR,

16, 0, 0);
CommandBar_AddButtons (hwndBand, dim(tbCBStdBtns), tbCBStdBtns);

II Modify the style flags of each command bar to make transparent.
for (i = 0; i < NUMBANDS; i++) {

hwndBand = CommandBands_GetCommandBar (hwndCB, i);
lStyle = SendMessage (hwndBand, TB_GETSTYLE, 0, 0);
lStyle I= TBSTYLE_TRANSPARENT;
SendMessage ChwndBand, TB_SETSTYLE, 0, lStyle);

II If not the first time the command band has been created, restore
II the user's last configuration.

(continued)

317

Part II Windows CE Basics

Figure 5-5. co11tin.ued

318

if (!fFi rst)

}

for Ci 0: i < NUMBANDS: i++) (
i f Cc br[iJ.fMaximized) (

nBand = SendMessage ChwndCB, RB_ IOTOINOEX,
cbr[i].wIO, 0):

SendMessage (hwndCB, RB_MAXIMIZEBANO, nBand, TRUE):

II Add exit button to command band.
CommandBands_AddAdornments ChwndCB, hlnst. 0, NULL) :
return 0:

CmdBand crea tes the command band in the CreateCommandBand routine .
This routine is initially ca lled in OnCreateMain and later in the DoMainCommand
VCmdBand menu handler. The program create the command band control using
the RBS_SMARTLABELS style along with an image list and text labels to identify each
band when it' minimized and when it's restored or maximized . An image list is cre
ated and initialized with the bitmaps that are u ed when the bands are minimized.

The array of REBARBANDI FO structures i initialized to defi ne each of
the three ba nd . If the control had previously been de troyed , data fro m the
COMMANDBANDSRESTOREINFO structure is used to initialize the sty le and ex fields.
The CreateCommandBand routine also makes a gue at the order of the button
and edit bands by looking at the band indexes saved when the control was last de-
troyed . While this method isn't completely reliable for determining the previous

o rder of the ba nds, it gives you a good estimate .
When the command bands control is created , the command bar in each band

are al o modified to et the TBS_TRAN PARE T style . This process, along with a
background bitmap defined for each band, demonstrates how you can use a back
ground bitmap to make the command bands control have just the right look.

When CmdBand replaces the command bands control with a command bar, the
application first calls the DestroyCommandBand function to save the current con
figuration and then destroy the command band control. Thi function use the
CommandBands_CetRestore!nf ormation to query the size and style of each of the
bands. The function also saves the band index for each band to upply the data for
the guess on the current order of the button and edit bands. The first band, the menu
band, is fixed with the RBBS_ OGRIPPER style, o there 's no i sue a to its position.

Thi complete the discus ion of the command bar and command bands con
trols. I talk about these two controls at length because you'll need one or the other
for almost every Windows CE application.

Chapter 5 Common Controls and Windows CE

For the remainder of the chapter, I'll cover the highlights of some of the other
controls. These other controls aren't very different from their counterparts under
Windows 98 and Windows NT. I'll spend more time on the controls I think you'll need
when writing a Windows CE application. I'll start with the month calendar and the
time and date picker controls. These controls are rather new to the common control
set and have a direct application to the PIM-like applications that are appropriate for
many Windows CE systems. I'll also spend some time covering the list view control,
concentrating on features of use to Windows CE developers. The remainder of the
common controls, I'll cover just briefly.

The Month Calendar Control
The month calendar control gives you a handy month-view calendar that can be
manipulated by users to look up any month, week, or clay as far back as the adop
tion of the Gregorian calendar in September 1752. The control can display as many
months as will fit into the size of the control. The days of the month can be high
lighted to indicate appointments. The weeks can indicate the current week into the
year. Users can spin through the months by tapping on the name of the month or
change years by tapping on the year displayed.

Before using the month calendar control, you must initialize the common con
trol library either by calling InitCommonControls or by calling InitCommonControlsEx
with the ICC_DATE_CLASSES flag. You create the control by calling CreateWindow
with the MONTHCAL_CLASS flag. The style flags for the control are shown here:

• MCS_MULTISELECT The control allows multiple selection of days.

• MCS_NOTODAY The control won't display today's date under the
calendar.

• MCS_NOTODAYCIRCLE The control won't circle today's date.

• MCS_ WEEKNUMBERS The control displays the week number (1 through
52) to the left of each week in the calendar.

• MCS_DA YSTATE The control sends notification messages to the parent
requesting the days of the month that should be displayed in bold. You use
this style to indicate which days have appointments or events scheduled.

Initializing the control
In addition to the styles I just described, you can use a number of messages or their
corresponding wrapper macros to configure the month calendar control. You can use
an MCM_SETFIRSTDAYOFWEEK message to display a different starting day of the
week. You can also use the MCM_SETRANGE message to display dates within a given
range in the control You can configure date selection to allow the user to choose only

319

Part II

320

single dates or to set a limit to the range of dates that a user can select at any one
time. The single/multiple date selection ability is defined by the MCS_MULTISELECT
style. If you set this style, you use the MCM_SETl\1AXSELCOUNT message to set the
maximum number of days that can be selected at any one time.

You can set the background and text colors of the control by using the MCM_
SETCOLOR message. This message can individually set colors for the different regions
within the controls, including the calendar text and background, the header text and
background, and the color of the days that precede and follow the days of the month
being displayed. This message takes a flag indicating what part of the control to set
and a COLORREF value to specify the color.

The month calendar control is designed to display months on an integral basis.
That is, if the control is big enough for one and a half months, it displays only one
month, centered in the control. You can use the MCM_GETMINREQRECT message
to compute the minimum size necessary to display one month. Because the control
must first be created before the MCM_GETMINREQRECT can be sent, properly siz
ing the control is a round-about process. You must create the control, send the
MCM_GETMINREQRECT message, and then resize the control using the data returned
from the message.

Month calendar notifications
The month calendar control has only three notification messages to send to its par
ent. Of these, the MCN_GETDAYSTATE notification is the most important. This noti
fication is sent when the control needs to know what days of a month to display in
bold. This is done by querying the parent for a series of bit field values encoded in a
MONTHDAYSTATE variable. This value is nothing more than a 32-bit value with bits
1 through 31 representing the days 1 through 31 of the month.

When the control needs to display a month, it sends a MCN_GETDAYSTATE
notification with a pointer to an NMDAYSTATE structure defined as the following:

typedef struct {
NMHDR nmhdr;
SYSTEMTIME stStart;
int cDayState;
LPMONTHDAYSTATE prgDayState;

} NMDAYSTATE;

The nmhhdrfield is simply the NMHDR structure that's passed with every WM_NOTIFY
message. The stStart field contains the starting date for which the control is request
ing information. This date is encoded in a standard SYSTEMTIME structure used by
all versions of Windows. It's detailed on the facing page.

Chapter 5 Common Controls and Windows CE

typedef struct {
WORD wYear;
WORD wMonth;
WORD wDayOfWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;

SYSTEMTI ME;

For this notification, only the wMonth, wDay, and wYear fields are significant.
The cDayState field contains the number of entries in an array of MONTHDAY

STATE values. Even if a month calendar control is displaying only one month, it could
request information about the previous and following months if days of those months
are needed to fill in the top or bottom lines of the calendar.

The month calendar control sends an MCN_SELCHANGE notification when the
user changes the days that are selected in the control. The structure passed with this
notification, NMSELCHANGE, contains the newly highlighted starting and ending days.
The MCN_SELECT notification is sent when the user double-taps on a day. The same
NMSELCHANGE structure is passed with this notification to indicate the days that have
been selected.

The Date and Time Picker Control
The date and time picker control looks deceptively simple but is a great tool for any
application that needs to ask the user to specify a date. Any programmer that has had
to parse, validate, and translate a string into a valid system date or time will appreci
ate this control.

When used to select a date, the control resembles a combo box, which is an
edit field with a down arrow button on the right side. Clicking on the arrow, how
ever, displays a month calendar control showing the current month. Selecting a day
in the month dismisses the month calendar control and fills the date and time picker
control with that date. When you configure it to query for a time, the date and time
picker control resembles an edit field with a spin button on the right end of the
control.

The date and time picker control has three default formats: two for displaying
the date and one for displaying the time. The control also allows you to provide a
formatting string so that users can completely customize the fields in the control. The
control even lets you insert application-defined fields in the control.

Creating a date and time picker control
Before you can create the date and time picker control, the common control li
brary must be initialized. If InitCommonControlsEx is used, it must be passed a

321

Part II

322

ICC_DATE_CLASSES flag. The control is created by using Create Window with a class
of DATETIMEPICK_CLASS. The control defines the following styles:

• DTS_LONGDATEFORMAT The control displays a date in long format, as
in Saturday, September 19, 1998. The actual long date format is defined in
the system registry.

• DTS_SHORTDATEFORMAT The control displays a date in short format,
as in 9/19/98. The actual short date format is defined in the system registry.

• DTS_11MEFORMAT The control displays the time in a format such as
5:50:28 PM. The actual time format is defined in the system registry.

• DTS_SHOWNONE The control has a check box to indicate that the date
is valid.

• DTS_UPDOWN An up-down control replaces the drop-down button that
displays a month calendar control in date view.

• DTS_APPCANP ARSE Allows the user to directly enter text into the con
trol. The control sends a DTN_USERSTRING notification when the user is
finished.

The first three styles simply specify a default format string. These formats are
based on the regional settings in the registry. Since these formats can change if the
user picks different regional settings in the Control Panel, the date and time picker
control needs to know when these formats change. The system informs top-level
windows of these types of changes by sending a WM_SETTINGCHANGE message.
An application that uses the date and time picker control and uses one of these de
fault fonts should forward the WM_SETTINGCHANGE message to the control if one
is sent. This causes the control to reconfigure the default formats for the new regional
settings.

The DTS_APPCANPARSE style enables the user to directly edit the text in the
control. If this isn't set, the allowable keys are limited to the cursor keys and the
numbers. When a field, such as a month, is highlighted in the edit field and the user
presses the 6 key, the month changes to June. With the DTS_APPCANPARSE style,
the user can directly type any character into the edit field of the control. When the
user has finished, the control sends a DTN_USERSTRING notification to the parent
window so that the text can be verified.

Customizing the format
To customize the display format, all you need to do is create a format string and send
it to the control using a DTM_SETFORMAT message. The format string can be made
up of any of the following codes:

Chapter 5 Common Controls and Windows CE

String
fragment

Description

"d" One- or two-digit day.
"dd" Two-digit day. Single digits have a leading zero.
"ddd" The three-character weekday abbreviation. As in Sun, Mon ...
"dddd" The full weekday name.

"h"
"hh"
"H"
"HH"

"m"
"mm"

"M"
"MM"

"MMM"
"MMMM"

"t''
"tt"

One- or two-digit hour (12-hour format).
Two-digit hour (12-hour format) Single digits have a
One- or two-digit hour (24-hour format).
Two-digit hour (24-hour format) Single digits have a

One- or two-digit minute.
Two-digit minute. Single digits have a leading zero.

One- or two-digit month.
Two-digit month. Single digits have a leading zero.

Three-character month abbreviation.
Full month name.

The one-letter AM/PM abbreviation. As in A or P.
The two-letter AM/PM abbreviation. As in AM or PM.

leading

leading

zero.

zero.

"X" Specifies a callback field that must be parsed by the application.

"y"
"yy"
"yyy"

One-digit year. As in 8 for 1998.
Two-digit year. As in 98 for 1998.
Full four-digit year. As in 1998.

Literal strings can be included in the format string by enclosing them in single
quotes. For example, to display the string Today is: Saturday, December 5, 1998 the
format string would be

'Today is: 'dddd', 'MMMM' 'd', 'yyy

The single quotes enclose the strings that aren't parsed. That includes the Today is:
as well as all the separator characters, such as spaces and commas.

The callback field, designated by a series of X characters, provides for the ap
plication the greatest degree of flexibility for configuring the display of the date. When
the control detects an X field in the format string, it sends a series of notification
messages to its owner asking what to display in that field. A format string can have
any number of X fields. For example the following string has two X fields.

'Today ·xx· is: · dddd'. 'MMMM' 'd'. 'yyy' and is ·xxx· birthday'

The number of X characters is used by the application only to differentiate the
application-defined fields; it doesn't indicate the number of characters that should

323

Part 11 Windows CE Basics

be displayed in the fields. When the control sends a notification asking for informa
tion about an X field, it includes a pointer to the X string so that the application can
determine which field is being referenced.

When the date and time picker control needs to display an application-defined
X field, it sends two notifications: DTN_FORMATQUERY and DTN_FORMAT. The;
DTN_FORMATQUERY notification is sent to get the maximum size of the text to be
displayed. The DTN_FORMAT notification is then sent to get the actual text for the
field. A third notification, DTN_ WMKEYDOWN is sent when the user highlights an
application-defined field and presses a key. The application is responsible for deter
mining which keys are valid and modifying the date if an appropriate key is pressed.

The List View Control

324

The list view control is arguably the most complex of the common controls. It dis
plays a list of items in one of four modes: large icon, small icon, list, and report. The
Windows CE version of the list view control supports many, but not all, of the valu
able new features recently added for Internet Explorer 4.0. Some of these new func
tions are a great help in the memory-constrained environment of Windows CE. These
new features include the ability to manage virtual lists of almost any size, headers
that can have images and be rearranged using drag and drop, the ability to indent an
entry, and new styles for report mode. The list view control also supports the new
custom draw interface, which allows a fairly easy way of changing the appearance of
the control.

You register the list view control by calling either InitCommonControls or
InitCommonControls using a ICC_LISTVIEW _CLASSES flag. You create the control by
calling Create Window using the class filled with WC_LISTVIEW. Under Windows CE,
the list view control supports all the styles supported by other versions of Windows,
including the new LVS_OWNERDATA style that designates the control as a virtual list
view control.

New styles in report mode
In addition to the standard list view styles that you can use when creating the list view,
the list view control supports a number of extended styles. This rather unfortunate
term doesn't refer to the extended styles field in the CreateWindowsEx func
tion. Instead, two messages, LVM_GETEXTENDEDLISTVIEWSTYLE and LVM_
SETEXTENDEDLISTVIEWSTYLE, are used to get and set these extended list view styles.
The extended styles supported by Windows CE are listed below.

• LVS_EX_CHECKBOXES The control places check boxes next to each item
in the control.

• LVS_EX_HEADERDRAGDROP Allows headers to be rearranged by the
user using drag and drop.

Chapter 5 Common Controls and Windows CE

• LVS_EX_GRIDLINES The control draws grid lines around the items in
report mode.

• LVS_EX_SUBITEMIMAGES The control displays image in the subitem
columns in report mode.

• LVS_EX_FUUROWSELECT The control highlights the item' entire row
in report mode when that item is selected.

Aside from the LVS_EX_CHECKBOXES extended style, which works in all dis
play modes, these new styles all affect the actions of the list view when in report mode.
The effort here has clearly been to make the list view control an excellent control for
displaying large lists of data .

ate that the list view control under Windows CE doesn't support other extended
list view styles, such as LVS_EX_INFOTIP, LVS_EX_ONECLICKACTIVATE, LVS_
EX_TWOCLICKACTIVATE, LVS_EX_TRACKSELECT, LVS_EX_REGIO AL, or LVS_EX_
FLATSB, supported in some versions of the common control library.

Virtual list view
The virtual list view mode of the list view control is a huge help for Windows CE
devices. In thi mode, the Ii t view control tracks only the selection and focus state
of the items. The application maintains all the other data for the items in the control.
This mode is handy for two reasons. First, virtual list view controls are fast. The ini
tialization of the control is almost instantaneous because all that's required is that you
set the number of items in the control. The list view control also gives you hints about
what item it will be looking for in the near term. This allows applications to cache
necessary data in RAM and leave the remainder of the data in a database or file . Without
a virtual list view, an application would have to load an entire database or list of items
in the list view when it's initialized . With the virtual list view, the application loads
only what the control requires to display at any one time.

The second advantage of the virtual list view is RAM savings. Because the vir
tual list view control maintains little information on each item, the control doesn't keep
a huge data array in RAM to support the data. The application manage what data is
in RAM with some help from the virtual list view's cache hint mechanism.

The virtual list view has some limitations. The LVS_OWNERDATA style t11at desig
nates a vi.ttual list view can't be set or cleared after the control has been created. Also,
vi.ttual li t views don't support drag and drop in large icon or small icon mode. A virtual
list view defaults to LVS_AUfOARRANGE style and the LVM_SETITEMPO moN message
isn't supported. Al o, the sort styles LVS_SORTASCENDING and LVS_SORIDESCENDING
aren't supported. Even so, the ability to tore large lists of items is handy.

To i.tnplement a vi.ttual list view, an application needs to create a list view control
with an LVS_OWNERDATA tyle and handle three notifications--LVN_GEIDISPINFO,
LVN_ODCACHEHI T, and LVN_ODFINDITEM. The LVN_GEIDISPINFO notification

325

Part 11 Windows CE Basics

should be familiar to those of you who have programmed list view controls before. It
has alway been sent when the Ii t view control needed information to display an item.
In the virtual list view, it's used in a similar manner but the notification is sent to gather
all the information about every item in the control.

The virtual list view let you know what data items it needs using the L
ODCACHEHINT notification. This notification passes the starting and ending index
of items that the control expects to make u e of in the near term. An application can
take its cue from this set of number to load a cache of those items so that they can
be quickly accessed. The hints tend to be requests for the items about to be displayed
in the control. Because the number of items can change from view to view in the
control, it's helpful that the control tracks this instead of having the application guess
which items are going to be needed . Because the control often also needs informa
tion about the first and la t page of items, it also helps to cache them so that the
frequent requests for those items don't clear the main cache of items that will be needed
again soon.

The final notification necessary to manage a virtual Ii t view is the LYN_
ODFI DITEM notification. This is sent by the control when it needs to locate an item
in response to a key press or in respon e to an LVM_FINDITEM me age.

The LView Example Program

326

The LView program demonstrates a virtual list view control. The program creates a
list view control that displays the contents of a fictional databa e . A picture of the
LView window is shown in Figure 5-6 while the LView code is shown in Figure 5-7.

Figure 5-6. 7be L View window.

Chapter 5 Common Controls and Windows CE

LView.rc

II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include "windows.h"
finclude "LView.h" II Program-specific stuff

11- ---------------------------------- -- ---------------------------------
11 Icons and bitmaps
II
ID_ICON ICON "lview.ico" II Program icon
docicon ICON "docicon.ico" II Document icon
11- ---
11 Menu
II
ID_MENU MENU DISCARDABLE
BEGIN

END

POPUP "&File"
BEGIN

MENUITEM "E&xit" ,
END
POPUP "&View"
BEGIN

END

MENUITEM "&Lar&ge Icons" ,
MENUITEM "&S&mall Icons" .
MENUITEM "&List" ,
MENUITEM "&Details",

·POPUP "&Help"
BEGIN

MENUITEM "&About" ,
END

IDM_EXIT

IDC_LICON
IOC_SICON
IDC_LIST
IDC_RPT

IDM_ABOUT

11-- -- - -- -- - -- -- -- -- -- -- - -------- - - - - - - - - - - -- - - - - - - - - - - - - -- - - -- --- ----- -
II About box dialog template
II
aboutbox DIALOG discardable 10 , 10 , 160, 40
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER I

DS_MODALFRAME
CAPTION "About"
BEGIN

I CON ID_I CON, -1. s. 5, 10, 10

Figure 5-7. 7be LView program. (continued)

327

Part 11 Windows CE Basics

Figure 5-7. continued

LTEXT "LView - Written for the book Programming Windows \
CE Copyright 1998 Douglas Boling"

-1. 40. 5 . 110 • 30
ENO

LView.h

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
II Returns number of elements
#define di m(x) (sizeof(x) I sizeof(x[0]))

11 --
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*Fxn)(HWNO, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD {
UINT Code;
LRESULT (*Fxn)(HWNO, WORD, HWNO, WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

11 --- - ------------------------
II Generic defines used by application
/tdefi ne IOG_CMDBAR 1 II Command bar IO
/tdefi ne I OC_Ll STV I EW 2 II IO for report list box

/tdefi ne IO_ICON 10 II Icon resource ID
/tdefi ne IO_MENU 11 II Main menu resource IO

II Menu item and Command bar IDs
/tdefi ne IOM_EXIT 101

/tdefi ne IOC_LICON 111
#define IOG_SICON 112
/tdefi ne IOC_LIST 113
#define IOG_RPT 114

328

Chapter 5 Common Controls and Windows CE

120 #define IDM_ABOUT
#define VIEW_BMPS CVIEW_NEWFOLDER+l) II Number of BMPS in

II vi ew list
11 --
11 Program-specific structures
II

II Defines for simulated database
typedef struct {

TCHAR szName[32]:
TCHAR szType[32]:
INT nSize:
INT nimage;
INT nState;

LVDATAITEM;
typedef LVDATAITEM *PLVDATAITEM;

11--- - -- ------ ---- -- ---- - -- ------- -- - - ---- - ------ -- -- - - - - - - -- -- -- - -- ----
11 Function prototypes
II
II Cache functions
PLVDATAITEM GetitemData (INT nitem);
vo i d InitDatabase (void) ;
void FlushMainCache <void);
void FlushEndCaches (void);
INT LoadTopCache (void):
INT LoadBotCache (void):
INT LoadMainCache (INT nStart, INT nEnd);

II Database functions
void InitDatabase (void):
PLVDATAITEM GetDatabaseltem CINT nitem):
INT SetDatabaseltem (INT nitem, PLVDATAITEM pin):
PLVDATAITEM GetltemData (INT nitem);
INT Additem (HWND, INT, LPTSTR, LPTSTR, INT):

int InitApp (HINSTANCE);
HWND Initinstance (HINSTANCE. LPWSTR, int):
int Termlnstance (HINSTANCE, int):

II Listview compare callback
int CALLBACK CompareLV (LPARAM, LPARAM, LPARAM):

II Window procedures
LRESULT CALLBACK MainWndProc CHWND, UINT, WPARAM, LPARAM):

(continued)

329

Part II Windows CE Basics

Figure 5·7. continued

II Message handlers
LRESULT DoCreateHain (HWND, UINT, WPARAH, LPARAM);
LRESULT DoSizeHain (HWND, UINT, WPARAH, LPARAM);
LRESULT DoNotifyMain (HWND, UINT, WPARAH, LPARAM);
LRESULT DoCommandHain (HWND, UINT, WPARAM, LPARAH);
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

II Command functions
LPARAH DoMainCommandExit (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandChView (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandAbout (HWND, WORD, HWND, WORD);

II Dialog procedures
BOOL CALLBACK AboutDlgProc (HWND, UINT, WPARAM, LPARAH);

LVlew.c

II==
II LView - ListView control demonstration
II
II Written for the book Programming Windows CE
II Copyright (C) 199B Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include <commctrl.h> II Command bar includes
#include "LView.h" II Program-specific stuff
11 --
11 Global data
II
canst TCHAR szAppName[] TEXT ("LView");
HINSTANCE hlnst; II Program instance handle
HWND hMain;

II
II Data for simulated database
II
#define LVCNT 2000
LVDATAITEM lvdatabase[LVCNT];

II Defines and data for
#define CACHESIZE
#define TOPCACHESIZE
#define BOTCACHESIZE

330

list view control cache
100
100
100

Chapter 5 Common Controls and Windows CE

INT nCacheltemStart = 0, nCacheSize = 0;
LVDATAITEM lvdiCache[CACHESIZE];
LVDATAITEM lvdiTopCache[TOPCACHESIZE];
LVDATAITEM lvdiBotCache[BOTCACHESIZE];

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {

WM_CREATE, DoCreateMain,
WM_SIZE , DoSizeMain,
WM_NOTIFY , DoNotifyMain,
WM_COMMANO, DoCommandMain,
WM_OESTROY, DoDestroyMain,

} ;

II Command message dispatch for MainWindowProc
const struct decodeCMD MainCommandltems[] = {

} ;

IOM_EXIT, DoMainCommandExit,
IOC_LICON , DoMainCommandChView,
IOC_SICON, DoMainCommandChView,
IOC_LIST, DoMainCommandChView,
IOC_RPT, DoMainCommandChView,
IOM_ABOUT, DoMainCommandAbout,

II Standard file bar button structure
const TBBUTTON tbCBCmboBtns[] {
II Bitmaplndex Command State Style

{0, 0, 0, TBSTYLE_SEP,
UserData String

0. 0}.
{VIEW_LARGEICONS, IOC_LICON, TBSTATE_ENABLEO,

TBSTYLE_CHECKGROUP, 0, 0}.
{VIEW_SMALLICONS, 10c_s1CON, TBSTATE_ENABLED.

TBSTYLE_CHECKGROUP, 0, 0}.
(VI EW_LI ST, IDC_LIST, TBSTATE_ENABLED.

TBSTYLE_CHECKGROUP, 0, 0}.
(VIEW_DETAILS, IDC_RPT, TBSTATE_ENABLED I TBSTATE_CHECKED.

TBSTYLE_CHECKGROUP, 0, 0}
} ;

II==
II Program entry point
II
int WINAPI WinMain CHINSTANCE hlnstance, HINSTANCE hPrevlnstance,

LPWSTR lpCmdline, int nCmdShow) {
MSG msg;
HWND hwndMain;
int re = 0;

(conti1111ecl)

331

Part 11 Windows CE Basics

Figure 5-7. continued

}

II Initialize application.
re= InitApp Chinstance}:
if (re} return re:

II Initialize this instance.
hwndMain = In i tlnstance (hlnstance, lpCmdLine, nCmdShow}:
if (hwndMain == 0)

return 0x l 0;

hMain = hwndMain:
II Application message loop
while (GetHessage C&msg, NULL, 0, 0)) (

TranslateHessage C&msg};
DispatchHessage C&msg};

}

II Instance cleanup
return Termlnstance (hlnstance, msg.wParam}:

11-- --------------------------------------- ------------- ---- -- ----- ---- -
11 InitApp - Application initialization
II
int InitApp CHINSTANCE hlnstance}

332

WNDCLASS we:
INITCOHHDNCONTROLSEX icex:

II Register application main
we.style = 0:
wc.lpfnWndProc = HainWndProc:
wc.cbClsExtra = 0:
wc.cbWndExtra = 0:
wc.hlnstance = hlnstance:
wc.hlcon = NULL,

window class.
II Window style
II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon
II Default cursor

GetStockObject (WHITE_BRUSH}:
wc.hCursor = NULL:
wc.hbrBackground = (HBRUSH}
wc.lpszMenuName = NULL:
wc.lpszClassName = szAppName:

II Menu name
II Window class name

if (RegisterClass C&wc} == 0) return 1:

II Load the command bar common control class.
icex.dwSize = sizeof CINITCOMMONCONTROLSEX};
icex.dwICC = ICC_LISTVIEW_CLASSES:
InitCommonControlsEx C&icex};

Chapter 5 Common Controls and Windows CE

}

II Initialize the fictional database.
InitDatabase ();
return 0;

11- ---- - --- - ----- - - -- --------------------------- - --- - -------------- - ----
11 Initinstance - Instance initialization
II
HWND Initinstance CHINSTANCE hinstance, LPWSTR lpCmdLine, i nt nCmdShow){

HWND hWnd:

II Save program instance handle in global variable.
hinst = hinstance:

}

II Create main window.
hWnd = CreateWindow CszAppName,

TEXT ("LView"),
WS_VI SIBLE,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAUL T,
NULL,
NULL,
hinstance,
NULL);

II Return fail code if window not created.
if C!IsWindow ChWnd)) return 0:

II Standard show and update call s
ShowW1ndow ChWnd, nCmdShow) ;
UpdateWindow ChWnd);
return hWnd;

II
II
II
II
II
I I
II
II
II
I I
II
II

Window class
Window title
Style flag s
x position
y position
Initial width
Initial he i ght
Parent
Menu, must be null
Application instance
Pointer to create
parameters

11 --
11 Termlnstance - Program cleanup
II
int Termlnstance CHINSTANCE hinstance, int nDefRC) {

II Flush caches used with list view control.
FlushMainCache ();
FlushEndCaches <>:
return nDefRC:

(continued)

333

Part 11 Windows CE Basics

Figure 5-7. continued

}

II==
II Message-handling procedures for MainWindow
11 --
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProcCHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {

}

INT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for Ci = 0; i < dimCMainMessages); i++) {

if CwMsg == MainMessages[i].Codel
return (•MainMessages[i].FxnlChWnd, wMsg, wParam, lParam);

return DefWindowProc(hWnd, wMsg, wParam, lParam);

11--- ---
11 DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateHain CHWND hWnd, UINT wMsg , WPARAM wParam,

334

LPARAM l Pa ram) {
HWND hwndCB, hwndLV;
INT i, nHeight;
LPCREATESTRUCT lpcs;
HIMAGELIST himlLarge, himlSmall;
HICON hlcon;

II Convert lParam into pointer to create structure.
lpcs = CLPCREATESTRUCTl lParam;

II Create a command bar.
hwndCB = CommandBar_Create Chinst, hWnd, IDC_CMDBAR);

II Insert a menu.
CommandBar_lnsertMenubar (hwndCB. hinst, ID_MENU, 0);

II Add bitmap list followed by buttons.
CommandBar_AddBitmap (hwndCB, HINST_COMMCTRL, IDB_VIEW_SMALL_COLOR,

VIEW_BMPS, 0, 0);
CommandBar_AddButtons ChwndCB, dimCtbCBCmboBtns), tbCBCmboBtns);

Chapter 5 Common Controls and Windows CE

II Add exit button to command bar.
CommandBar_AddAdornments ChwndCB, 0, 0):
nHeight = CommandBar_Height ChwndCBl:
II
II Create the list view control.
II
hwndLV = CreateWindowEx (0, WC_LISTVIEW, TEXT(""),

LVS_REPORT I LVS_SINGLESEL
LVS_OWNERDATA I WS_VISIBLE I WS_CHILD
WS_VSCROLL, 0, nHeight , lpcs ->cx,
lpcs->cy - nHeight, hWnd,
(HHENU)IDC_LISTVIEW,
lpcs->hlnstance, NULL):

II Destroy frame if window not created.
if (!lsWindow (hwndLVll {

DestroyWindow (hWndl:
return 0:

}

II Add columns.
(

}

LVCOLUHN 1 vc:

lvc.mask = LVCF_TEXT J LVCF_WIDTH I LVCF_FHT I LVCF_SUBITEH:
lvc.fmt = LVCFHT_LEFT;
lvc.cx = 150:
lvc.pszText =TEXT ("Name"):
lvc.iSubltem = 0:
SendHessage (hwndLV, LVH_INSERTCOLUHN, 0, CLPARAHl&lvc);

lvc.mask J= LVCF_SUBITEH:
lvc.pszText =TEXT ("Type");
lvc.cx = 100:
lvc.iSubltem = 1:
SendHessage (hwndLV, LVH_INSERTCOLUHN, 1. CLPARAHl&lvc):

lvc.mask J= LVCF_SUBITEH:
lvc . pszText =TEXT ("Size"):
lvc.cx = 100:
lvc . iSubltem = 2:
SendHessage (hwndLV . LVH_INSERTCOLUHN, 2, (LPARAHl&lvcl:

II Add items .
ListView_SetltemCount ChwndLV, LVCNT) :
LoadTopCache Cl :
LoadBotCache Cl:

(cont inued)

335

Part 11 Windows CE Basics

Figure 5-7. continued

}

II Create image list control for bitmaps for minimized bands.
i = GetSystemHetrics CSH_CXICON);
himlLarge = ImageList_Create(i. i. ILC_COLOR, 2, 0);
i = GetSystemHetrics CSH_CXSHICON);
himlSmall = ImageList_Create(i. i. ILC_COLOR. 2, 0);

II Load large and small icons into their respective image lists.
hlcon = Loadlcon Chlnst, TEXT ("Doclcon "));
i = ImageList_Addlcon ChimlLarge, hlcon);

hlcon = Loadlmage Chlnst, TEXT C"Doclcon"), IHAGE_ICON, 16, 16,
LR...DEFAULTCOLOR);

ImageList_Add l con (himlSmall, hlcon);

ListView_SetlmageList ChwndLV, himlLarge, LVSIL_NORHAL):
ListView_SetlmageList ChwndLV, himlSmal l , LVSIL_SHALL);

II Set cool new styles.
ListView_SetExtendedlistViewStyle ChwndLV, LVS_EX_GRIDLINES

LVS_EX_HEADERDRAGDROP I
LVS_EX_FULLROWSELECT);

return 0:

I I - - -- -- - - - - -- ---- - -- ----- - - - - - - - - - - -- - - ---- -- -- - - ---- ------- -- - ---- -- --
11 DoSizeHain - Process WH_SIZE message for window.
II
LRESULT DoSizeHain CHWND hWnd, UINT wHsg, WPARAH wParam, LPARAH lParam){

HWND hwndLV;

}

RECT rect;

hwndLV = GetDlgltem ChWnd, IDC_LISTVIEW);

II Adjust the size of the client rect to take into account
II the command bar height.
GetClientRect ChWnd, &rect);
rect.top += CommandBar_Height (GetDlgltem (hWnd, IDC_CHDBAR));

SetWindowPos ChwndLV. NULL. rect.left, rect . top,

return 0;

rect.right - rect.left, rect.bottom - rect.top,
SWP _NOZORDER):

11 ------- - -------- -- ---------- - --- - -------------------------------------
11 DoNotifyHain - Process WH_NOTIFY message for window.
II

336

Chapter 5 Common Controls and Windows CE

LRESULT DoNotifyMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LP A RAM l Pa ram) (

int idltem;
LPNMHDR pnmh;
LPNMLISTVIEW pnmlv;
NMLVDISPINFO •pLVdi;
PLVDATAITEM pdi; II Pointer to data
LPNMLVCACHEHINT pLVch;
HWND hwndLV;

II Parse the parameters.
idltem = (int) wParam;
pnmh = (LPNMHDR)lParam;
hwndLV = pnmh ->hwndFrom;

if (idltem == IDC_LISTVIEW)
pnmlv = (LPNMLISTVIEW)lParam;

switch (pnmh ->code) (
case LVN_GETDISPINFO:

pLVdi = CNMLVDISPINFO •)lParam;

II Get a pointer to the data either from the cache
II or from the actual database.
pdi = GetltemData (pLVdi -> item.iltem);

if (pLVdi ->item.mask & LVIF_IMAGE)
pLVdi ->item.iimage = pdi ->nlmage;

if (pLVdi ->item.mask & LVIF_PARAM)
pLVdi ->item.lParam = 0;

if (pLVdi ->item.mask & LVIF_STATE)
pLVdi ->item.state = pdi ->nState;

if (pLVdi ->item.mask & LVIF_TEXT)
switch (pLVdi ->item.iSubltem)
case 0:

lstrcpy (pLVdi ->item.pszText, pdi ->szName);
break;

case 1:
lstrcpy (pLVdi ->item.pszText. pdi ->szType);
break;

case 2:
wsprintf (pLVdi ->item.pszText, TEXT ("Id").

pdi ->nSize);

(continued)

337

Part II Windows CE Basics

Figure 5-7. continued

}

}

break;

break:

case LVN_ODCACHEHINT:
pLVch = (LPNMLVCACHEHINTllParam;
LoadMainCache {pLVch ->iFrom, pLVch ->iTo) ;
break;

case LVN_ODFINDITEM:
II We should do a reverse look up here to see if
II an item exists for the text passed.
return -1;

return 0;

11 --
11 DoCommandMain - Process WM_COMMAND message for window.
II
LRESULT DoCommandMain CHWND hWnd, UINT wMsg, WPARAM wParam,

)

LPARAM l Pa ram) {
WORD idltem, wNotifyCode;
HWND hwndCtl;
INT i;

II Parse the parameters.
idltem = <WORD) LOWORD CwParaml:
wNotifyCode = CWORD) HIWORD CwParam);
hwndCtl = {HWND l lParam;

II Call routine to handle control message.
for Ci = 0: i < dim{MainCommandltems); i++)

if {idltem == MainCommandltems[i].Codel
return (•MainCommandltems[i].Fxnl(hWnd, idltem, hwndCtl,

wNot i fyCode);

return 0:

11- -- --- -- -- --- ----- --- ------ ------ --- --- ---- --- --- ------- ---------- ----
11 OoOestroyMain - Process WM_OESTROY message for window.
II
LRESULT DoOestroyMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {
PostQuitMessage (0);
return 0;

338

Chapter 5 Common Controls and Windows CE

}

II==
II Command handler routines
11 --
11 OoMainCommandExit - Process Program Exit command.
II
LPARAM DoMainCommandExit (HWND hWnd, WORD idltem, HWNO hwndCtl,

WORD wNotifyCodel {

}

SendMessage (hWnd, WM_CLDSE, 0, 0);
return 0;

11- ---
11 DoMainCommandChView - Process View xxx command.
II
LPARAM DoMainCommandChView CHWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

}

HWND hwndLV;
LONG lStyle;

hwndLV GetDlgltem (hWnd, IOC_LISTVIEW);

lStyle GetWindowlong (hwndLV, GWL_STYLE);
lStyle &= -LVS_TYPEMASK;

switch (idltem) {
case IOC_LICON:

lStyle I= LVS_ICON;
break;

case IOC_SICON:
lStyle I= LVS_SMALLICON;
break;

case IDCLIST:
lStyle I= LVS_LIST;
break;

case IDC_RPT:
lStyle I= LVS_REPORT;
break;

SetWindowlong (hwndLV. GWL_STYLE, lStyle);
return 0;

11 -- ----------
11 DoMainCommandAbout - Process the Help I About menu command.
II
LPARAM OoMainCommandAbout(HWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

(continued)

339

Part II Windows CE Basics

Figure 5-7. continued

}

II Use DialogBox to create modal dialog box.
DialogBox Chinst, TEXT ("aboutbox"), hWnd, AboutOlgProc);
return 0;

II==
II About Dialog procedure
II
BOOL CALLBACK AboutOlgProcCHWND hWnd, UINT wHsg, WPARAH wParam,

LPARAH lParam) {

}

switch CwHsg) {
case WH_COHHAND:

switch CLOWORD CwParam))
case IDOK:
case IDCANCEL:

break;

return FALSE;

EndDialog ChWnd. 0);
return TRUE;

II==
II Helper routines for list view control management
11 --
11 Addltem - Add an item to the l i st view control.
II
INT Addltem (HWND hwndCtl. INT nltem. LPTSTR pszName, LPTSTR pszType,

INT nSize) (

340

LVITEH l vi;
TCHAR szTmp[40];

lvi.mask = LVIF_TEXT I LVIF_IHAGE I LVIF_PARAH;
lvi.iitem = nltem;
lvi.iSubitem = 0;
lvi.pszText = pszName;
lvi.ilmage = 0;
lvi.lParam = nitem;
SendHessage (hwndCtl, LVH_INSERTITEH. 0, CLPARAH)&lvi);

lvi.mask = LVIF_TEXT;
lvi.iitem = nitem;
lvi.iSubitem = l;
lvi.pszText = pszType;
SendHessage (hwndCtl, LVH_SETITEH, 0. (LPARAHJ&lvi);

Chapter 5 Common Controls and Windows CE

)

wsprintf (szTmp, TEXT ("%d"J, nSizeJ:
lvi.mask = LVIF_TEXT:
lvi . iltem = nltem:
lvi.iSubltem = 2:
lvi.pszText = szTmp :
SendHessage (hwndCtl, LVH_SETITEH, 0, (LPARAHJ&lvi);

return 0:

11 ·
II GetltemData · This routine returns a pointer to the data. It
II first checks the caches before calling directly to the database.
II
PLVDATAITEH GetltemData (INT nlteml {

INT nCachelndex:
PLVDATAITEH pdi:

II See if it's in the top cache.
if (nltem < TOPCACHESIZEI {

nCachelndex = nltem:
pdi = &lvdiTopCache[nCachelndexJ:

II See if it's in the bottom cache.
else if (nltem > LVCNT · BOTCACHESIZEI {

}

nCachelndex = nltem · (LVCNT · BOTCACHESIZEI:
pdi = &lvdiBotCache[nCachelndexJ:

II See if item's in the main cache.
else if ((nltem >= nCacheltemStartl &&

(nltem < nCacheltemStart + nCacheSizeJ)

nCachelndex = nltem · nCacheltemStart:
pdi = &lvdiCache[nCachelndexJ:

II Otherwise it's not in any cache.
else

pdi = GetDatabaseltem (nltem);

return pdi:

(continued)

341

Part II Windows CE Basics

Figure 5-7. continued

11---- --
INT LoadACache (PLVDATAITEM pCache, INT nStart. INT nSizel (

PLVDATAITEM pdi:

}

INT i:

for (i = 0: i < nSize: i++) (
II Get a pointer to the data.
pdi = GetDatabaseitem (nStart+i):

II Save the data in the cache.
lstrcpy (pCache[i].szName, pdi ->szNamel:
lstrcpy (pCache[i] . szType, pdi ->szTypel:
pCache[i] . nSize = pdi ->nS i ze:
pCache[i].nimage pdi ->nimage ;
pCache[i] . nState = pdi ->nState:

return 0:

11-- --
11 LoadMainCache - This routine loads the hint cache. If the
II recommended range is already in the top or bottom caches, the range
I I is adjusted to grab items outs i de the end caches.
II
II The logic expects the total number of items to be greater than the
II size of the start and end caches.
II
INT LoadMainCache (INT nStart, INT nEnd)

INT nDverlap;

342

II Size the hint range to fit the cache .
if (nEnd - nStart > CACHESIZE)

nEnd = nStart + CACHESIZE;

II See if end of hint in bottom cache .
if (nEnd > LVCNT - BOTCACHESIZEl (

II If completely in bottom cache, keep old data .
if (nStart > LVCNT - BOTCACHESIZEl

return 0:

II If partial overlap, adjust end points to get data just
II above the bottom cache .
nOverlap = nEnd - (LVCNT - BOTCACHESIZE);
nEnd = LVCNT - BOTCACHESIZE - l;
if (nStart - nOverlap < TOPCACHESIZEl

nStart = TOPCACHESIZE;

Chapter 5 Common Controls and Windows CE

}

else
nStart -= nOverlap:

}

II See if start of hint in top cache.
if (nStart < TOPCACHESIZE) (

}

II If completely in top cache . keep old data.
if CnEnd < TOPCACHESIZE)

return 0:

II Adjust the starting value to just beyond top cache end.
nOverlap = TOPCACHESIZE - nStart:
nStart = TOPCACHESIZE:
if (nOverlap + nEnd > (LVCNT - BOTCACHESIZEll

nEnd = LVCNT - BOTCACHESIZE:
else

nEnd += nOverlap;

II If hint already completely contained in the cache. exit.
if ((nStart >= nCacheitemStartl &&

(nEnd < nCacheitemStart + nCacheSizell
return 0;

II Flush old data in cache. We should really be smart here to
II see whether part of the data is already in the cache.
FlushMainCache ();

II Load the new data .
nCacheSize = nEnd - nStart:
nCacheitemStart = nStart;
LoadACache ClvdiCache, nStart, nCacheSizel:
return 0;

11 --
INT LoadTopCache (void) (

LoadACache (lvdiTopCache, 0. TOPCACHESIZEl;
return 0;

1/ --------- - ----- - --------- - --- ----- -- ------------------------- ---------
INT LoadBotCache <void) (

LoadACache (lvdiBotCache, LVCNT - BOTCACHESIZE , BOTCACHESIZEl:
return 0:

(co1ltinu.ed)

343

Part 11 Windows CE Basics

Figure 5-7. continued

/1 ------- --- ------------------- -- --- -------- ---- -------------- --- ---- ---
void FlushHainCache (void) (

INT i:

}

II Send the data back to the database.
for Ci = 0: i < nCacheSize: i++) (

SetDatabaseitem CnCacheitemStart+i. &lvdiCache[i]);

return:

11 --- -
vo id FlushEndCaches (void) (

INT i:

}

II Flush the top cache.
for (i = 0; i < TOPCACHESIZE: i++) (

SetDatabaseitem Ci. &lvdiCache[i]):
}

II Flush the bottom cache.
for Ci = 0: i < BOTCACHESIZE: i++) (

SetDatabaseitem (LVCNT - BOTCACHESIZE + i, &lvdiBotCache[i]):

return:

II==
II Code for fictional database to be displayed in the list view control
II
11 ----------------- - --
11 InitDatabaseitem - Copy an item i nto the database.
II
INT InitDatabaseitem (INT nitem, LPTSTR pszName. LPTSTR pszType,

INT nSize) {

}

lstrcpy Clvdatabase[nitem].szName. pszName):
lstrcpy Clvdatabase[nitem].szType, pszType):
lvdatabase[nitem].nSize = nSize :
lvdatabase[nitem].nimage 0:
lvdatabase[nitem].nState = 0:
return 0;

11 --
11 InitDatabase - Create fictional data for fict i onal database.
II

344

Chapter 5 Common Controls and Windows CE

void InitDatabase (void)
TCHAR szName[64]:

)

TCHAR szType[64];
HCURSOR hOldCur:
INT i :

hOldCur = SetCursor CLoadCursor (NULL, IDC_WAIT));

for Ci = 0; i < LVCNT: i++) {
wsprintf (szName, TEXT ("File%d"), i);
wspri ntf (szType, TEXT ("Type%d"). 1000 - i):

InitDatabaseltem Ci, szName. szType, i+l000):

SetCursor ChOldCur);
return:

11 --
11 GetDatabaseltem - Return a pointer to data in the database.
II
PLVDATAITEM GetDatabaseltem (INT nltem) {

)

II Normally, this would be more work. But since
II we have only a simulated data store, the
II code is trivial.
return &lvdatabase[nltem]:

11 --
11 SetDatabaseltem - Copy data from list view control back into database.
II
INT SetDataba seitem (INT nltem. PLVDATAITEM pin) (

l strcpy (lvdatabase[nitemJ.szName, pin ->szName);
l strcpy Clvdatabase[nitem].szType, pin ->szType);
lvdatabase[nltem].nSize = pln ->nSize:
lvdatabase[nltemJ.nimage pln -> nlmage:
lvdatabase[nitemJ.nState = pin ->nState;
return 0;

Notice that the size for the database is set to 2000 items by default. Even with
thi large number, the performance of the list view control is qu ite acceptable. Most
of the brief application startup time is taken up not by initializing the list view con
trol, but just by filling in the dummy database. Support for the virtual list view is cen
tered on the OnNotifyMain routine.

345

Part 11 Windows CE Basics

Data for each item is supplied to the list view control through responses to the
LVN_GETDISPINFO notification. The flags in the mask field of the LVDISPINFO deter
mine exactly what element of the item is being requested. The code that handles the
notification simply requests the item data from the cache and fills in the requested fields.

The cache implemented by L View uses three separate buffers. Two of the buff
ers are initialized with the first and last 100 items from the database. The third 100-
item cache, referred to as the main cache, is loaded using the hints passed by the list
view control.

The routine that reads the data from the cache is located in the GetlternData rou
tine. That routine uses the index value of the requested item to see whether the data is
in the top or bottom caches, and if not, whether it's in the main cache. If the data
isn't in one of the caches, a call to GetDatabaseltem is made to read the data directly
from the dummy database.

The routine that handles the cache hints from the list view control is LoadMain
Cache. This routine is called when the program receives a LVN_ODCACHEHINT
notification. The routine takes two parameters, the starting and ending values of the
hint passed by the notificatioa The routine first checks to see if the range of items in
the hint lies in the two end caches that store data from the top and bottom of the
database. If the range does lie in one of the end caches, the hint is ignored and the
main cache is left unchanged. If the hint range isn't in either end cache and isn't al
ready in the current main cache, the main cache is flushed to send any updated in
formation back into the database. The cache is then loaded with data from the database
from the range of items indicated by the hint.

The cache hint notifications sent by the list view control aren't necessarily in
telligent. The control sends a request for a range of one item if that item is double
clicked by the user. The cache management code should always check to see whether
the requested data is already in the cache before flushing and reloading the cache
based on a single hint. The cache strategy you use, and the effort you must make to
optimize it, of course depends on the access speed of the real data.

OTHER COMMON CONTROLS

346

Windows CE supports a number of other common controls available under Windows
98 and Windows NT. Most of these controls are supported completely within the limits
of the capability of Windows CE. For example, while the tab control supports verti
cal tabs, Windows CE supports vertical text only on systems that support TrueType
fonts. For other systems, including the Palm-size PC, the text in the tabs must be
manually generated by the Windows CE application by rotating bitmap images of each
letter. Frankly, it's probably much easier to devise a dialog box that doesn't need ver
tical tabs. Short descriptions of the other supported common controls follow.

Chapter 5 Common Controls and Windows CE

The status bar control
The status bar is carried over unchanged from the desktop versions of Windows. The
only difference is that under Windows CE, the SBARS_SIZEGRIP style that created a
gripper area on the right end of the status bar has no meaning because users can't
size Windows CE windows.

The tab control
The tab control is fully supported, the above-mentioned vertical text limitation not
withstanding. But because the stylus can't hover over a tab, the TCS_HOTTRACK style
that highlighted tabs under the cursor isn't supported. The TCS_EX_REGISTERDROP
extended style is also not supported.

The trackbar control
The trackbar control gains the capacity for two "buddy" controls that are automati
cally updated with the trackbar value. The trackbar also supports the custom draw
service, providing separate item drawing indications for the channel, the thumb, and
the tic marks.

The progress bar control
The progress bar includes the latest support for vertical progress bars and 32-bit ranges.
This control also supports the new smooth progression instead of moving the progress
indicator in discrete chunks.

The up-down control
The up-down control under Windows CE only supports edit controls for its buddy
control.

The toolbar control
The Windows CE toolbar supports tooltips differently from the way tool tips are sup
ported by the desktop versions of this control. You add toolbar support for tool tips
in Windows CE the same way you do for the command bar, by passing a pointer to
a permanently allocated array of strings. The toolbar also supports the transparent
and flat styles that are supported by the command bar.

The tree view control
The tree view control supports two new styles recently added to the tree view com
mon control: TVS_CHECKBOXES and TVS_SINGLESEL. The TVS_CHECKBOXES style
places a check box adjacent to each item in the control. The TVS_SINGLESEL style
causes a previously expanded item to close up when a new item is selected. The tree
view control also supports the custom draw service. The tree view control doesn't
support the TVS_TRACKSELECT style, which allows you to highlight an item when
the cursor hovers over it.

347

Part II Windows CE Basics

UNSUPPORTED COMMON CONTROLS

348

Windows CE doesn't support four common controls seen under other versions of Win
dows. The animation control, the drag list control, the hot key control, and, sadly, the
rich edit control are all unsupported. Animation would be hard to support given the
slower processors often seen running Windows CE. The hot key control is problematic
in that keyboard layouts and key labels, standardized on the PC, vary dramatically on
the different hardware that runs Windows CE. And the drag list control isn't that big a
loss, given the improved power of the report style of the list view control.

The rich edit control is another story. The lack of an edit control that can con
tain multiple fonts and paragraph formatting is a noticeable gap in the Windows CE
shell. Applications needing this functionality are forced to implement independent,
and mutually incompatible, solutions. Let's hope the rich edit control is supported
under future versions of Windows CE.

Windows CE supports fairly completely the common control library seen un
der other versions of Windows. The date and time picker, month calendar, and com
mand bar are a great help given the target audience of Windows CE devices.

I've spent a fair amount of time in the past few chapters looking at the build
ing blocks of applications. Now it's time to turn to the operating system itself. Over
the next three chapters, I'll cover memory management, files and databases, and
processes and threads. These chapters are aimed at the core of the Windows CE
operating system.

Chapter 6

Memory
Management

If you have an overriding concern when you're writing a Microsoft Windows CE pro
gram, it should be dealing with memory. A Windows CE machine might have only 1
or 2 MB of RAM. This is a tiny amount compared to that of a standard personal com
puter, which can range somewhere between 16 and 64 MB of RAM. In fact, memory
on a Windows CE machine is so scarce that it's often necessary to write programs
that conserve memory even to the point of sacrificing the overall performance of
the application.

Fortunately, although the amount of memory is small in a Windows CE system,
the functions available for managing that memory are fairly complete. Windows CE
implements almost the full Win32 memory management API available under Microsoft
Windows NT and Microsoft Windows 98. Windows CE supports virtual memory allo
cations, local and separate heaps, and even memory-mapped files.

Like Windows NT, Windows CE supports a 32-bit flat address space with memory
protection between applications. But because Windows CE was designed for differ
ent environments, its underlying memory architecture is different from that for Win
dows NT. These differences can affect how you design a Windows CE application. In
this chapter, I'll cover the basic memory architecture of Windows CE. I'll also cover
the different types of memory allocation available to Windows CE programs and how
to use each memory type to minimize your application's memory footprint.

349

Part II Windows

MEMORY BASICS
As with all computers, systems running Windows CE have both ROM (read only
memory) and RAI\11 (random access memory). Under Windows CE, however, both
ROM and RAM are used somewhat differently than they are in a standard personal
computer.

About RAM

The RAM in a Windows CE system is divided into two areas: program memory and
object store. The object store can be considered something like a permanent virtual
RAM disk. Unlike the old virtual RAM disks on a PC, the object store retains the files
stored in it even if the system is turned off.1 This is the reason Windows CE systems
such as the Handheld PC and the Palm-size PC each have a battery and a backup
battery. When the user replaces the main batteries, the backup battery's job is to pro
vide power to the RAM to retain the files in the object store. Even when the user hits
the reset button, the Windows CE kernel starts up looking for a previously created
object store in RAM and uses that store if it finds one.

The other area of the RAJ.VI is devoted to the program memory. Program memory
is used like the RAM in personal computers. It stores the heaps and stacks for the
applications that are running. The boundary between the object store and the pro
gram RAM is movable. The user can move the dividing line between object store and
program RAM using the System control panel applet. Under low-memory conditions,
the system will ask the user for permission to take some object store RAM to use as
program RAM to satisfy an application's demand for more RAJ.VI.

About ROM

350

In a personal computer, the ROM is used to store the BIOS (basic input output sys
tem) and is typically 64-128 KB. In a Windows CE system, the ROM can range from
4 to 16 MB and stores the entire operating system, as well as the applications that are
bundled with the system. In this sense, the ROM in a Windows CE system is like a
small, read-only hard disk.

In a Windows CE system, ROM-based programs can be designated as Execute
in Place (XIP). That is, they're executed directly from the ROM instead of being loaded
into program RAM and then executed. This is a huge advantage for small systems in
two ways. The fact that the code is executed directly from ROM means that the pro
gram code doesn't take up valuable program RAM. Also, since the program doesn't

1. On mobile systems like the H/PC and the Palm-size PC, the system is never really off. When the
user presses the Off button, the system enters a very low power suspended state.

Chapter 6 Memory Management

have to be copied into RAM before it's launched, it takes less time to start an appli
cation. Programs that aren't in ROM but are contained in the object store or on a
Flash memory storage card aren't executed in place; they're copied into the RAM
and executed.

About Virtual Memory

Windows CE implements a virtual memory management system. In a virtual memory
system, applications deal with virtual memory. which is a separate, imaginary address
space that might not relate to the physical memory address space that's implemented
by the hardware. The operating system uses the memory management unit of the
microprocessor to translate virtual addresses to physical addresses in real time.

The key advantage of a virtual memory system can be seen in the complexity
of the MS-DOS address space. Once demand for RAM exceeded the 640-KB limit of
the original PC design, programmers had to deal with schemes such as expanded and
extended memory to increase the available RAM. OS/2 1.xand Windows 3.0 replaced
these schemes with a segment-based virtual memory system. Applications using vir
tual memory have no idea (nor should they care) where the actual physical memory
resides, only that the memory is available. In these systems, the virtual memory was
implemented in segments. resizable blocks of memory that ranged from 16 bytes to
64 KB in size. The 64-KB limit wasn't due to the segments themselves, but to the 16-
bit nature of the Intel 80286 that was the basis for the segmented virtual memory system
in Windows 3.x and OS/2 l.x.

Paged memory
The Intel 80386 supported segments larger than 64 KB, but when Microsoft and II3M
began the design for OS/2 2.0, they chose to use a different virtual memory system,
also supported by the 386, known as a paged virtual memory system. In a paged
memory system, the smallest unit of memory the microprocessor manages is the page.
For Windows NT and OS/2 2.0, the pages were set to 386's default page size of 4096
bytes. When an application accesses a page, the microprocessor translates the virtual
address of the page to a physical page in ROM or RAM. A page can also be tagged so
that accessing the page causes an exception. The operating system then determines
whether the virtual page is valid and, if so, maps a physical page of memory to the
virtual page.

Windows CE implements a paged virtual memory management system similar
to the other Win32 operating systems, Windows NT and Windows 98. Under Win
dows CE, a page is either 1024 or 4096 bytes, depending on the microprocessor, with
the 1-KB page size preferred by the Windows CE architects. This is a change from
Windows NT, where page sizes are 4096 bytes for Intel microprocessors and 8192

351

Part II Windows Basics

bytes for the DEC Alpha. For the CPUs currently supported by Windows CE, the NEC
4100 series and the Hitachi SH3 use 1024-byte pages and the 486, the Phillips 3910,
and Power PC 821 use 4096-byte pages.

Virtual pages can be in one of three states: free, reserved, or committed. A free
page is, as it sounds, free and available to he allocated. A reserved page is a page
that has been reserved so that its virtual address can't be allocated by the operating
system or another thread in the process. A reserved page can't be used elsewhere,
but it also can't be used by the application because it isn't mapped to physical memory.
To be mapped, a page must be committed. A committed page has been reserved by
an application and has been directly mapped to a physical address.

All that I've just explained is old hat to experienced Win32 programmers. The
important thing for the Windows CE programmer is to learn how Windows CE changes
the equation. While Windows CE implements most of the same memory API set of its
bigger Win32 cousins, the underlying architecture of Windows CE does impact pro
grams. To better understand how the API is affected, it helps to look at how Win
dows CE uses memory under the covers.

The Windows CE Address Space

352

In OS circles, much is made of the extent to which the operating system goes to pro
tect one application's memory from other applications. Microsoft Windows 95 used
a single address space that provided minimal protection between applications and
the Windows operating system code. Windows NT, on the other hand, implements
completely separate address spaces for each Win32 application, although old 16-bit
applications under Windows NT do share a single address space.

Windows CE implements a single, 2-GB virtual address space for all applica
tions, but the memory space of an application is protected so that it can't be accessed
by another application. A diagram of the Windows CE virtual address space is shown
in Figure 6-1. A little over half of the virtual address space is divided into thirty-three
32-MB slots. Each slot is assigned to a currently running process, with the lowest slot,
slot 0, assigned to the active process. As Windows CE switches between processes, it
remaps the address space to move the old process out of slot 0 and the new process
into slot 0. This task is quickly accomplished by the OS by manipulating the page
translation tables of the microprocessor.

The region of the address space above the 33 slots is reserved for the operating
system and for mapping memo1y-mapped files. Like Windows NT, Windows CE also
reserves the lowest 64-KB block of the address space from access by any process.

Chapter 6 Memory Management

Address

7FFF FFFF

4200 0000
4000 0000

3EOO 0000
3COO 0000

OAOO 0000
0800 0000

0600 0000

0100 0000

0200 0000

0000 0000

Comments

End of \'irtual address space

used for memory-mapped files

Process 1: Each slot from 1 to 32 contains one process.
When a process is active, it's also mapped into slot 0.

Slot for the currently active process.
First 64 KB reserved by the OS.

Figure 6-1. A diagram of the Windows CE memory map.

Slot

Slot 32
Slot 31
Slot 30

Slot 6
Slot 5
Slot 4

Slot 3
Slot 2

Slot 1

Slot 0

353

Part II

354

Querying the system memory
If an application knows the current mem01y state of the system, it can better manage
the available resources. Windows CE implements both the Win32 GetSystemlnfo and
Globa!MemoryStatus functions. The GetSystemlnfo function is prototyped below:

VOID GetSysteminfo (LPSYSTEM_INFO lpSysteminfol;

It's passed a pointer to a SYSTEM_INFO structure defined as

typedef struct {
WORD wProcessorArchitecture;
WORD wReserved;
DWORD dwPageSize;
LPVOID lpMinimumApplicationAddress;
LPVOID lpMaximumApplicationAddress;
DWORD dwActiveProcessorMask;
DWORD dwNumberOfProcessors;
DWORD dwProcessorType;
DWORD dwAllocationGranularity;
WORD wProcessorLevel ;
WORD wProcessorRevision;

} SYSTEM_INFO;

The wProcessorArchitecture field identifies the type of microprocessor in the
system. The value should be compared to the known constants defined in Winnt.h,
such as PROCESSOR_ARCHITECTURE_INTEL. Windows CE has extended these con
stants to include PROCESSOR_ARCHITECTURE_ARM, PROCESSOR_ARCHITECTURE_
SHx and others. Additional processor constants are added as net CPUs are supported
by any of the Win32 operating systems. Skipping a few fields, the dwProcessorType
field further narrows the microprocessor from a family to a specific microprocessor.
Constants for the Hitachi SHx architecture include PROCESSOR_HITACHI_SH3 and
PROCESSOR_HITACHI_SH4. The last two fields, wProcessorLevel and wProcessor
Revision, further refine the CPU type. The wProcessorLevel field is similar to the
dwProcessorType field in that it defines the specific microprocessor within a family.
The dwProcessorRevision field tells you the model and the stepping level of the chip.

The dwPageSize field specifies the page size, in bytes, of the microprocessor.
Knowing this value comes in handy when you're dealing directly with the virtual
memory API, which I talk about shortly. The lpMinimumApplicationAddress and
lpMaximumApplicationAddress fields specify the minimum and maximum virtual
address available to the application. The dwActiveProcessorMask and dwNumberO.f
Processors fields are used in Windows NT for systems that support more than one
microprocessor. Since Windows CE supports only one microprocessor, you can ig
nore these fields. The dwA!locationGranularity field specifies the boundaries to which
virtual memory regions are rounded. Like Windows NT, Windows CE rounds virtual
regions to 64-KB boundaries.

Chapter 6 Memory Management

A second handy function for determining the system memory state is this:

void GlobalMemoryStatus(LPMEMORYSTATUS lpmst);

which returns a MEMORYSTATUS structure defined as

typedef struct {
DWORD dwlength;
DWORD dwMemoryLoad;
DWORD dwTotalPhys;
DWORD dwAvailPhys;
DWORD dwTotalPageFile;
DWORD dwAvailPageFile;
DWORD dwTotalVirtual;
DWORD dwAvailVirtual;

MEMORYSTATUS;

The dwLength field must be initialized by the application before the call is made
to GlobaDvlem01yStatus. The dwMemoryLoad field is of dubious value; it makes avail
able a general loading parameter that's supposed to indicate the current memory use
in the system. The dwTotalPhys and dwAvailPhys fields indicate how many pages of
RAM are assigned to the program RAM and how many are available. These values
don't include RAM assigned to the object store.

The dwTotalPageFile and dwAvailPageFile fields are used under Windows NT
and Windows 98 to indicate the current status of the paging file. Because paging files
aren't supported under Windows CE, these fields are always 0. The dwTotalVirtual
and dwAvailVirtual fields indicate the total and available number of virtual memory
pages accessible to the application.

The information returned by GlobalMemoiyStatus provides confirmation of the
memory architecture of Windows CE. Making this call on an HP 360 H/PC with 8 MB
of RAM returned the following values:

dwMemoryload 0x18 (24)
dwTotalPhys 0x00555400 (5,592,064)
dwAvailPhys 0x00415C00 (4,283,392)
dwTotalPageFile 0
dwAvailPageFile 0
dwTotalVirtual 0x02000000 (33,554,432)
dwAvailVirtual 0x01EF0000 (32,440,320)

The dwTotalPhys field indicates that of the 8 MB of RAM in the system, I have
dedicated 5.5 MB to the program RAM, of which 4.2 MB is still free. Note that there's
no way for an application, using this call, to know that another 3 MB of RAM has
been dedicated to the object store. To determine the amount of RAM dedicated to
the object store, use the function GetStorelnformation.

The dwTotalPageFile and dwAvailPageFile fields are 0, indicating no support
for a paging file under Windows CE. The dwTotalVirtual field is interesting because
it shows the 32-MB limit on virtual memory that Windows CE enforces on an

355

Part II Wind01JlfS CE

application. Meanwhile, the dwAvailVirtual field indicates that in this application little
of that 32 MB of virtual memory is being used.

An Appiication's Address Space

Although it's always interesting to look at the global memory map for an operating
system, the fact is an application should be interested only in its own memory space,
not the global address space. Nevertheless, the design of the Windows CE address
space does have an impact on applications. Under Windows CE, an application is
limited to the virtual memory space available in its 32-MB slot. While 32 MB might
seem like a fair amount of space available to an application that might run on a sys
tem with only 4 MB of RAM, Win32 application programmers, used to a 2-GB virtual
address space, need to keep in mind the limited virtual address space available to a
Windows CE application.

Figure 6-2 shows the layout of an application's 32-MB virtual address space. Each
line of the figure represents a block of virtual memory made up of one or more pages.
The address of the blocks are offsets into the application's slot in the system address
space. The Page status is free, reserved, private, or image. While I've just explained
the terms free and reserved, private and image merit an explanation. Image indicates
pages that have been committed and mapped to the image of an executable file in
ROM or RAM. Private simply means the pages have been committed for use by the
application. The size field indicates the size of the block, which is always a multiple
of the page size. The access rights field displays the access rights for the block.

This memory map was captured on a Casio H/PC that has a SH3 processor with
a 1024-byte page size. The application used in this example was stored in the object
store and then launched. This allowed Windows CE to demand page only parts of
the EXE image into RAM, as they're needed. If the application had been launched
from an external storage device that didn't support demand paging, Windows CE would
have loaded the entire application into memory when it was launched.

Address Page Status Size Access Rights Comments

0000 0000 Reserved 65,536 EXE image

0001 0000 Reserved 4,096 Code

0001 1000 Image 2,048 Execute, Read only Code

0001 1800 Reserved 1,024 Code

0001 lCOO Image 1,024 Execute, Read only Code

0001 2000 Reserved 2,048 Code

0001 2800 Image 8,192 Execute, Read only Code

0001 4800 Reserved 2,048 Code

0001 5000 Image 1,024 Execute, Read only Code

Figure 6-2. Memory map of a Windows CE Application.

356

Chapter 6 Memory Management

Address Page Status Size Access Rights Comments

0001 5400 Reserved 11,264

0001 8000 Image 3,072 Read only Read only static data

0001 8COO Reserved 1,024

0001 9000 Image 1,024 Read/Write Read/Write static data

0001 9400 Reserved 1,024 Read/Write static data

0001 9800 Image 7,168 Read/Write Read/Write static data

0001 B400 Reserved 7,168

0001 DOOO Image 2,048 Read only Resource data segment

0001 D800 Reserved 2,048 Resource data segment

0001 EOOO Free 8,192

0002 0000 Reserved 54,272 Stack

0002 D400 Private 7,168 Read/Write

0002 FOOO Free 4,096

0003 0000 Private 1,024 Read/Write Local heap

0003 0400 Reserved 92,192

0009 0000 Free 30,408,704 Free

01D9 0000 Reserved 1,024 COMMCTRL image

01D9 0400 Image 237,568 Execute, Read only

omc A4oo Image 2,048 Read/Write

OlDC ACOO Reserved 7,168

OlDC C800 Image 7,168 Read only

OlDC E400 Reserved 13,312

OlDD 1800 Free 2,091,008 Free

OlFD 0000 Reserved 1,024 COREDLL image

OlFD 0400 Image 119,808 Execute, Read only

OlFE D800 Image 1,024 Read/Write

OlFE DCOO Reserved 8,192

OlFE FCOO Image 1,024 Read only

OlFF 0000 Reserved 5,120

OlFF 1400 Free 60,416

357

Part 11 Windows CE Basics

Notice that the application is mapped as a 64-KB region starting at OxlOOOO.
Remember, the lowest 64 KB of the address space for any application is reserved by
Windows CE. The image of the file contains the code along with the static data seg
ments and the resource segments. Although it appears that the program code is bro
ken into a number of disjointed pages from OxlOOOO to Oxl 5400, this is actually the
result of demand paging. What's happening is that only the pages containing executed
code are mapped into the address space. The reserved pages within the code seg
ment will be mapped into the space only when they're executed.

The read-only static data segment is mapped at Ox18000 and takes three pages.
The read/write static data is mapped from Ox19000 to Ox1B3FF. Like the code, the
read/write data segment is committed to RAM only as it's written to by the applica
tion. Any static data that was initialized by the loader is already committed, as is the
static variables written before this capture of the address space was made. The re
sources for the application are mapped starting at, OxlDOOO. The resources are read
only and are paged into the RAM only as they're accessed by the application.

Starting at Ox20000, the application's stack is mapped. The stack segment is easily
recognized because the committed pages are at the end of the reserved section, in
dicative of a stack that grows from higher addresses down. If this application had
more than one thread, more than one stack segment would be reserved in the
application's address space.

Following the stack is the local heap. The heap has only a few blocks currently
allocated, requiring only one page of RAM. The loader reserves another 392, 192 bytes,
or 383 pages, for the heap to grow. The over-30 MB of address space from the end of
the reserved pages for the local heap to the start of the DLLs mapped into the ad
dress space is free to be reserved and, if RAM permits, committed by the application.

This application accesses two dynamic-link libraries. Coredll.dll is the DLL that
contains the entry points to the Windows CE operating system. In Windows CE, the
function entry points are combined into one DLL, unlike in Windows NT or Win
dows 98, where the core functions are distributed across Kernel, User, and GDI. The
other DLL is the common control DLL, commctrl.dll. As with the executable image,
these DLLs are mapped into the address space as linear images. However, unlike the
EXE, these DLLs are in ROM and directly mapped into the virtual address space of
the application; therefore, they don't take up any RAM.

THE DIFFERENT KINDS
OF MEMORY ALLOCATION

358

A Windows CE application has a number of different methods for allocating memory.
At the bottom of the memory-management food chain are the Virtualxxx functions
that directly reserve, commit, and free virtual memory pages. Next comes the heap APL

Chapter 6 Memory Management

Heaps are regions of reserved memory space managed by the system for the applica
tion. Heaps come in two flavors: the default local heap automatically allocated when
an application is started, and separate heaps that can be manually created by the
application. After the heap API is static data-data blocks defined by the compiler
and that are allocated automatically by the loader. Finally, we come to the stack, where
an application stores variables local to a function.

The one area of the Win32 memory API that Windows CE doesn't support is
the global heap. The global heap API, which includes calls such as GlobalAlloc,
GlobalFree, and GlobalRealloc, are therefore not present in Windows CE. The global
heap is really just a holdover from the Win16 days of Windows 3.x. In Win32, the
global and local heaps are quite similar. One unique use of global memory, allocat
ing memory for data in the clipboard, is handled by using the local heap under Win
dows CE.

The key to minimizing memory use in Windows CE is choosing the proper
memory-allocation strategy that matches the memory-use patterns for a given block
of memory. I'll review each of these memory types and then describe strategies for
minimizing memory use in Windows CE applications.

Virtual Memory
Virtual memory is the most basic of the memory types. The system uses calls to the
virtual memory API to allocate memory for the other types of memory, including heaps
and stacks. The virtual memory API, including the Virtua!Alloc, VirtualFree, and
VirtualReSize functions directly manipulate virtual memory pages in the application's
virtual memory space. Pages can be reserved, committed to physical memory, and
freed using these functions.

Allocating virtual memory
Allocating and reserving virtual memory is accomplished using this function:

LPVOID VirtualAlloc (LPVOID lpAddress, DWORD dwSize,
DWORD flAllocationType,
DWORD flProtect);

The first parameter to Virtua!Alloc is the virtual address of the region of memory to
allocate. The lpAddress parameter is used to identify the previously reserved memory
block when you use VirtualAlloc to commit a block of memory previously reserved.
If this parameter is NULL, the system determines where to allocate the memory re
gion, rounded to a 64-KB boundary. The second parameter is dwSize, the size of the
region to allocate or reserve. While this parameter is specified in bytes, not pages,
the system rounds the requested size up to the next page boundary.

359

Part II Windows CE Basics

360

TheflAllocationType parameter specifies the type of allocation. You can specify
a combination of the following flags: MEM_COMMIT, MEM_AUTO_COMMIT, MEM_
RESERVE, and MEM_TOP _DOWN. The MEM_COMMIT flag allocates the memory to
be used by the program. MEM_RESERVE reserves the virtual address space to be later
committed. Reserved pages can't be accessed until another call is made to Virtua!Alloc
specifying the region and using the MEM_COMMIT flag. The third flag, MEM_TOP _
DOWN, tells the system to map the memo1y at the highest permissible virtual address
for the application.

The MEM_AUTO_COMMIT flag is unique to Windows CE and is quite handy.
When this flag is specified the block of memory is reserved immediately, but each
page in the block will automatically be committed by the system when it's accessed
for the first time. This allows you to allocate large blocks of virtual memory without
burdening the system with the actual RAM allocation until the instant each page is
first used. The drawback to auto-commit memory is that the physical RAM needed to
back up a page might not be available when the page is first accessed. In this case,
the system will generate an exception.

Virtua!Alloc can be used to reserve a large region of memory with subsequent
calls committing parts of the region or the entire region. Multiple calls to commit the
same region won't fail. This allows an application to reserve memory and then blindly
commit a page before it's written to. While this method isn't particularly efficient, it
does free the application from having to check the state of a reserved page to see
whether it's already committed before making the call to commit the page.

The flProtect parameter specifies the access protection for the region being al
located. The different flags available for this parameter are summarized in the fol
lowing list.

• PAGE_READONLY The region can be read. If an application attempts to
write to the pages in the region, an access violation will occur.

• PAGE_READWRITE The region can be read from or written to by the
application.

• PAGE_EXECUTE The region contains code that can be executed by the
system. Attempts to read from or write to the region will result in an ac
cess violation.

• PAGE_EXECUTE_READ The region can contain executable code and
applications can also read from the region.

• PAGEY,XECUTE_RFADWRITE The region can contain executable code
and applications can read from and write to the region.

Chapter 6 Memory Management

• PAGE_GUARD The first access to this region results in a STATUS_
GUARD_PAGE exception. This flag should be combined with the other
protection flags to indicate the access rights of the region after the first
access.

• PAGE_NOACCHSS Any access to the region results in an access violation.

• PAGE_NOCACHE The RAM pages mapped to this region won't be cached
by the microprocessor.

The PAGE_ GUARD and PAGE_NOCHACHE flags can be combined with the other
flags to further define the characteristics of a page. The PAGE_ GUARD flag specifies
a guard page, a page that generates a one-shot exception when it's first accessed and
then takes on the access rights that were specified when the page was committed.
The PAGE_NOCACHE flag prevents the memory that's mapped to the virtual page
from being cached by the microprocessor. This flag is handy for device drivers that
share memory blocks with devices using direct memory access CDMA).

Regions vs. pages
Before I go on to talk about the virtual memory API, I need to make a somewhat subtle
distinction. Virtual memory is reserved in regions that must align on 64-KB bound
aries. Pages within a region can then be committed page by page. You can directly
commit a page or a series of pages without first reserving a region of pages, but the
page, or series of pages, directly committed will be aligned on a 64-KB boundary.
For this reason, it's best to reserve blocks of virtual memory in 64-KB chunks and
then commit that page within the region as needed.

With the limit of a 32-MB virtual memory space per process, this leaves a maxi
mum of 32 MB I 64 KB - 1= 511 virtual memo1y regions that can be reserved before
the system reports that it's out of memory. Take, for example, the following code
fragment:

#define PAGESIZE 1024 // Assume we're on a 1-KB page machine
for (i = 0; i < 512; i++)

pMem[i] = VirtualAlloc (NULL, PAGESIZE, MEM_RESERVE I MEM_COMMIT,
PAGE_READWRITE);

This code attempts to allocate 512 one-page blocks of virtual memory. Even if you
have half a megabyte of RAM available in the system, Vi11ua/Alloc will fail before the
loop completes because it will run out of virtual address space for the application.
This happens because each 1-KB block is allocated on a 64-KB boundary. Since the
code, stack, and local heap for an application must also be mapped into the same,
32-MB virtual address space, available virtual allocation regions usually top out at
about 490.

361

362

A better way to make 512 distinct virtual allocations is to do something like this:

#define PAGESIZE 1024 //Assume we're on a 1-KB page machine.

II Reserve a region first.
pMemBase = VirtualAlloc (NULL, PAGESIZE * 512, MEM_RESERVE,

PAGE_NOACCESS);

for (i = 0; < 512; i++)
pMem[i] VirtualAlloc (pMemBase + (i*PAGESIZE), PAGESIZE,

MEM_COMMIT, PAGE_READWRITE);

This code first reserves a region; the pages are committed later. Because the region
was first reserved, the committed pages aren't rounded to 64-KB boundaries, and so,
if you have 512 KB of available memory in the system, the allocations will succeed.

Although the code I just showed you is a contrived example (there are better
ways to allocate 1-KB blocks than directly allocating virtual memory), it does dem
onstrate a major difference (from other Windows systems) in the way memory allo
cation works in Windows CE. In Windows NT, applications have a full 2-GB virtual
address space with which to work. In Windows CE however, a programmer should
remain aware of the relatively small 32-MB virtual address per application.

Freeing virtual memory
You can decommit or free virtual memory by calling Virtua!Free. Decommitting a page
unmaps the page from a physical page of RAM but keeps the page or pages reserved.
The function is prototyped as

BOOL Virtual Free (LPVOID lpAddress, DWORD dwSize,
DWORD dwFreeType);

The lpAddress parameter should contain a pointer to the virtual mem01y region that's
to be freed or decommitted. The dwSize parameter contains the size, in bytes, of the
region if the region is to be decommitted. If the region is to be freed, this value must
be 0. The dw1'reeType parameter contains the flags that specify the type of opera
tion. The MEM_DECOMMIT flag specifies that the region will be decommited but will
remain reserved. The MEM_RELEASE flag both decommits the region if the pages are
committed and also frees the region.

All the pages in a region being freed by means of VirtualFree must be in the
same state. That is, all the pages in the region to be freed must either be committed
or reserved. Vi11ua!Free fails if some of the pages in the region are reserved while
some are committed. To free a region with pages that are both reserved and commit
ted, the committed pages should be decommitted first, and then the entire region can
be freed.

Chapter 6 Memory Management

Changing and querying access rights
You can modify the access rights of a region of virtual memory, initially specified in
VirtualAlloc, by calling Virtua!Protect. This function can change the access rights only
on committed pages. The function is prototyped as

BOOL VirtualProtect (LPVOID lpAddress, DWORD dwSize,
DWORD flNewProtect, PDWORD lpflOldProtect);

The first two parameters, lpAddress and dwSize, specify the block and the size of the
region that the function acts on. The flNewProtect parameter contains the new pro
tection flags for the region. These flags are the same ones I mentioned when T ex
plained the VirtualAlloc function. The lpflOldProtect parameter should point to a
DWORD that will receive the old protection flags of the first page in the region.

The current protection rights of a region can be queried with a call to

DWORD VirtualQuery (LPCVOID lpAddress,
PMEMORY_BASIC_INFORMATION lpBuffer,
DWORD dwlength);

The lpAddress parameter contains the starting address of the region being queried.
The lpBuffer pointer points to a PMEMORY _BASIC_INFORlVIATION structure that
I'll talk about soon. The third parameter, dwLength, must contain the size of the
PMEMORY _BASIC_INFORMATION structure.

The PMEMORY _BASIC_INFORMATION structure is defined as

typedef struct _MEMORY_BASIC_INFORMATION {
PVOID BaseAddress;
PVOID AllocationBase;
DWORD AllocationProtect;
DWORD RegionSize;
DWORD State;
DWORD Protect;
DWORD Type;

} MEMORY_BASIC_INFORMATION;

The first field of MEMORY _BASIC_INFORMATION, BaseAddress, is the address
passed to the Virtua!Query function. The AllocationBase field contains the base
address of the region when it was allocated using a Virtua!Alloc function.
The AllocationProtect field contains the protection attributes for the region when it
was originally allocated. The RegionSize field contains the number of bytes from the
pointer passed to VirtualQuery to the end of series of pages that have the same
attributes. The State field contains the state-free, reserved, or committed-of the
pages in the region. The Protect field contains the current protection flags for the
region. Finally, the Type field contains the type of memory in the region. This field

363

Part II Windows CE Basics

364

can contain the flags MEM_PRIVATE, indicating that the region contains private data
for the application; MEM_MAPPED, indicating that the region is mapped to a memory
mapped file; or MEM_IMAGE, indicating that the region is mapped to an EXE or DLL
module.

The best way to understand the values returned by VirtualQuery is to look at
an example. Say an application uses VirtualAlloc to reserve 16,384 bytes (16 pages
on a 1-KB page-size machine). The system reserves this 16-KB block at address
OxAOOOO. Later, the application commits 9216 bytes (9 pages) starting 2048 bytes (2
pages) into the initial region. Figure 6-3 shows a diagram of this scenario.

A4000 -,.----------T""

A2COOn~-
1-,

j,-, Pages later

Pages orginally
reserved by
Virtua/Alloc

A1000 UIUed
lpAddress value passed --f> AOBOlf

1
to Virtua/Query t'

AOOOO -'-----------i...
Figure 6-3. A region of reserved virtual memory that has nine pages committed.

If a call is made to VirtualQuery with the lpAddress pointer pointing 4 pages
into the initial region (address OxAlOOO), the returned values would be the following:

BaseAddress
AllocationBase
AllocationProtect
RegionSize
State
Protect
Type

0xA1000
0xA0000
PAGE_NOACCESS
0xlC00 (7,168 bytes or 7 pages)
MEM_COMMIT
PAGE_READWRITE
MEM_PRIVATE

The BaseAddress field contains the address passed to VirtualQuery, OxAlOOO,
4096 bytes into the initial region. The AllocationBase field contains the base address of
the original region while AllocationProtect contains PAGE_NOACCESS, indicating that

Chapter 6 Memory Management

the region was originally reserved, not directly committed. The RegionSize field con
tains the number of bytes from the pointer passed to VirtualQuery, OxAlOOO to the
end of the committed pages at OxA2COO. The State and Protect fields contain the flags
indicating the current state of the pages. The Type field indicates that the region was
allocated by the application for its own use.

Heaps

Clearly, allocating memory on a page basis is inefficient for most applications. To
optimize memory use, an application needs to be able to allocate and free memory
on a per byte, or at least a per 4-byte, basis. The system enables allocations of this
size through heaps. Using heaps also protects an application from having to deal with
the differing page sizes of the microprocessors that support Windows CE. An appli
cation can simply allocate a block in a heap and the system deals with the number of
pages necessary for the allocation.

As I mentioned before, heaps are regions of reserved virtual memory space
managed by the system for the application. The system gives you a number of func
tions that allow you to allocate and free blocks within the heap with a granularity
much smaller than a page. As memory is allocated by the application within a heap,
the system automatically grows the size of the heap to fill the request. As blocks in
the heap are freed, the system looks to see if an entire page is freed. If so, that page
is decommitted.

Unlike Windows NT or Windows 98, Windows CE supports the allocation of
only fixed blocks in the heap. This simplifies the handling of blocks in the heap, but
it can lead to the heaps becoming fragmented over time as blocks are allocated and
freed. The result can be a heap being fairly empty but still requiring a large number
of virtual pages because the system can't reclaim a page from the heap unless it's
completely free.

Each application has a default, or local, heap created by the system when the
application is launched. Blocks of memory in the local heap can be allocated, freed,
and resized using the Loca!Alloc, Local.Free, and Loca!Realloc functions. An applica
tion can also create any number of separate heaps. These heaps have the same prop
erties as the local heap but are managed through a separate set of Heapxxxx functions.

The Local Heap

By default, Windows CE initially reserves 384 pages, or 393,216 bytes, for the local
heap but only commits the pages as they are allocated. If the application allocates
more than the 384 KB in the local heap, the system allocates more space for the local
heap. Growing the heap might require a separate, disjointed address space reserved

365

Part II

366

for the additional space on the heap. Applications shouldn't assume that the local
heap is contained in one block of virtual address space. Because Windows CE heaps
support only fixed blocks, Windows CE implements only the subset of the Win32 local
heap functions necessary to allocate, resize, and free fixed blocks on the local heap.

Allocating memory on the local heap
You allocate a block of memo1y on the local heap by calling

HLOCAL LocalAlloc (UINT uFlags, UINT uBytes);

The call returns a value cast as an HLOCAL, which is a handle to a local memory block,
but since the block allocated is always fixed, the return value can simply be recast as
a pointer to the block.

The uFlags parameter describes the characteristics of the block. The flags sup
ported under Windows CE are limited to those that apply to fixed allocations. They
are the following:

• IMEM_FIXED Allocates a fixed block in the local heap. Since all local
heap allocations are fixed, this flag is redundant.

• IMEM_ZEROINTI' Initializes memory contents to 0.

• LPTR Combines the LMEM_FIXED and LMEM_ZEROINIT flags.

The uBytes parameter specifies the size of the block to allocate in bytes. The
size of the block is rounded up, but only to the next DWORD (4 byte) boundary.

Freeing memory on the local heap
You can free a block by calling

HLOCAL LocalFree CHLOCAL hMem);

The function takes the handle to the local memory block and returns NULL if suc
cessful. If the function fails, it returns the original handle to the block.

Resizing and querying the size of local heap memory
You can resize blocks on the local heap by calling

HLOCAL LocalReAlloc (HLOCAL hMem, UINT uBytes, UINT uFlag);

The hMem parameter is the pointer (handle) returned by LocalAlloc. The uBytes pa
rameter is the new size of the block. The uFlag parameter contains the flags for the
new block. Under Windows CE, two flags are relevant, LMEM_ZEROINIT and LMEM_
MOVEABLE. LMEM_ZEROINIT causes the contents of the new area of the block to
be set to 0 if the block is grown as a result of this call. The LMEM_MOVEABLE flag

Chapter 6 Memory Management

tells Windows that it can move the block if the block is being grown and there's not
enough room immediately above the current block. Without this flag, if you don't
have enough space immediately above the block to satisfy the request, Loca!Realloc
will fail with an out-of-memory error. If you specify the LMEM_MOVEABLE flag, the
handle (really the pointer to the block of memory) might change as a result of the call.

The size of the block can be queried by calling

UINT LocalSize (HLOCAL hMem):

The size returned will be at least as great as the requested size for the block. As I
mentioned earlier, Windows CE rounds the size of a local heap allocation up to the
next 4-byte boundary.

Separate Heaps

To avoid fragmenting the local heap, it's better to create a separate heap if you need
a series of blocks of memory that will be used for a set amount of time. An example
of this would be a text editor that might manage a file by creating a separate heap for
each file it's editing. As files are opened and closed, the heaps would be created and
destroyed.

Heaps under Windows CE have the same API as those under Windows NT or
Windows 98. The only noticeable difference is the lack of support for the HEAP_
GENERATE_EXCEPTIONS flag. Under Windows NT, this flag causes the system to
generate an exception if an allocation request can't be accommodated.

A subtle, but more important difference to the programmer is how Windows CE
manages heaps. While the heap API looks like the standard Win32 heap API, Win
dows CE doesn't implement the functions as you might expect. For example, the
HeapCreate function has parameters that allow a program to specify how much
memory to allocate and reserve for a heap. Windows CE ignores these values. In fact,
simply creating a heap doesn't allocate or reserve any memory. Memory is reserved
and committed only when the first block of the heap is allocated.

Under most conditions, going through the details about when heap memory is
reserved and committed would seem like nitpicking. But if you've used up the 32-MB
virtual address space for other uses, a heap might not have the virtual address space
available for the allocation even if you thought you had reserved enough using the
HeapCreate call. On the other hand, Windows CE doesn't use the reserved param
eter in the HeapCreate call as a hard-coded limit on the size of the heap. Windows CE
accommodates almost any heap allocation request if the memory is available. Well,
enough editorializing: on to the heap APL

367

368

Creating a separate heap
You create heaps by calling

HANDLE HeapCreate (DWORD flOptions, DWORD dwinitialSize.
DWORD dwMaximumSize);

Under Windows CE, the first parameter,flOptions, can be NULL, or it can contain the
HEAP _NO_SERIALIZE flag. By default, Windows heap management routines prevent
two threads in a process from accessing the heap at the same time. This serialization
prevents the heap pointers that the system uses to track the allocated blocks in the
heap from being corrupted. In other versions of Windows the HEAP _NO_SERIALIZE
flag can be used if you don't want this type of protection. Under Windows CE how
ever, this flag is only provided for compatibility and all heap accesses are serialized.

The other two parameters, dwlnitia!Size and dwMaximumSize, specify the ini
tial size and expected maximum size of the heap. Windows NT and Windows 98 use
the dwMaximumSizevalue to determine how many pages in the virtual address space
to reserve for the heap. You can set this parameter to 0 if you want to defer to Win
dows' determination of how many pages to reserve. The dwlnitia!Size parameter is
then used to determine how many of those initially reserved pages will be immedi
ately committed. As I mentioned, while these two size parameters are documented
exactly the same way as their counterparts under Windows NT and 98, the current
version of Windows CE doesn't actually use them. You should, however, use valid
numbers to retain compatibility with future versions of Windows CE that might use
these parameters.

Allocating memory in a separate heap
You allocate memory on the heap using

LPVOID HeapAlloc (HANDLE hHeap, DWORD dwFlags, DWORD dwBytes);

Notice that the return value is a pointer, not a handle as in the Loca!Alloc function.
Separate heaps always allocate fixed blocks, even under Windows NT and Win
dows 98. The first parameter is the handle to the heap returned by the HeapCreate
call. The dwFlags parameter can be one of two self-explanatory values, HEAP _NO_
SERIALIZE and HEAP _ZERO_MEMORY. The final parameter, dwBytes, specifies the
number of bytes in the block to allocate. The size is rounded up to the next DWORD.

Freeing memory in a separate heap
You can free a block in a heap by calling

BOOL HeapFree (HANDLE hHeap, DWORD dwFlags, LPVOID lpMem);

The only flag allowable in the dwFlags parameter is HEAP _NO _SERIALIZE. The lpMem
parameter points to the block to free, while hHeap contains the handle to the heap.

Chapter 6 Memory Management

Resizing and querying the size of memory in a separate heap
You can resize heap allocations by calling

LPVOID HeapReAlloc (HANDLE hHeap, DWORD dwFlags, LPVOID lpMem,
DWORD dwBytes) ;

The dwF!ags parameter can be any combination of three flags: HEAP _NO_SERIALIZE,
HEAP _REALLOC_IN_PLACE_ONLY, and HEAP _ZERO_MEMORY. The only new flag
here is HEAP _REALLOC_IN_PLACE_ONLY, which tells the heap manager to fail the
reallocation if the space can't be found for the block without relocating it. This flag is
handy if you already have a number of pointers pointing to data in the block and
you aren't interested in updating them. The lpMem parameter is the pointer to the
block being resized, and the dwBytes parameter is the requested new size of the block.
Notice that the function of the HEAP _REALLOC_IN_PLACE_ ONLY flag in HeapReAlloc
provides the opposite function from the one that the LMEM_MOVEABLE flag pro
vides for LocalReAlloc. HEAP _REALLOC_IN_PLACE_ ONLY prevents a block that would
be moved by default in a separate heap while LMEM_MOVEABLE enables a block
to be moved that by default would not be moved in the local heap. HeapReA!loc re
turns a pointer to the block if the reallocation was successful, and returns NULL oth
erwise. Unless you specified that the block not be relocated, the returned pointer might
be different from the pointer passed in if the block had to be relocated to find enough
space in the heap.

To determine the actual size of a block, you can call

DWORD HeapSize (HANDLE hHeap, DWORD dwFlags, LPCVOID lpMem);

The parameters are as you expect: the handle of the heap, the single, optional flag,
HEAP _NO_SERIALIZE, and the pointer to the block of memory being checked.

Destroying a separate heap
You can completely free a heap by calling

BOOL HeapDestroy (HANDLE hHeap);

Individual blocks within the heap don't have to be freed before you destroy the heap.
One final heap function is valuable when writing Dils. The function

HANDLE GetProcessHeap (VOID);

returns the handle to the local heap of the process calling the DLL. This allows a
DLL to allocate memory within the calling process's local heap. All the other heap
calls, with the exception of HeapDestroy, can be used with the handle returned by
GetProcessHeap.

369

Part II

The Stack
The stack is the easiest to use (the most self-managing) of the different types of memory
under Windows CE. T_he stack under Windows CE, as in any operating system, is the
storage place for temporary variables that are referenced within a function. The op
erating system also uses the stack to store return addresses for functions and the state
of the microprocessor registers during exception handling.

Windows CE manages a separate stack for every thread in the system. Under
all versions of the operating system before Windows CE 2.1, each stack in the system
is limited to fewer than 58 KB. Separate threads within one process can each grow
its stack up to the 58-KB limit. This limit has to do with how Windows CE manages
the stack. When a thread is created, Windows CE reserves a 60-KB region for the
thread's stack. It then commits virtual pages from the top down as the stack grows.
As the stack shrinks, the system will, under low-memory conditions, reclaim the un
used but still committed pages below the stack. The limit of 58 KB comes from the
size of the 64-KB region dedicated to the stack minus the number of pages necessary
to guard the stack against overflow and underflow.

Starting with Windows CE 2 .1, the size of the stack can be specified by a linker
switch when an application is linked. The same guard pages are applied, but the stack
size can be specified up to 1 MB. Note that the size defined for the default stack is
also the size used for all the separate thread stacks. That is, if you specify the main
stack to be 128 KB, all other threads in the application have a stack size limit of 128 KB.

One other consideration must be made when you're planning how to use the
stack in an application. When an application calls a function that needs stack space,
Windows CE attempts to commit the pages immediately below the current stack pointer
to satisfy the request. If no physical RAM is available, the thread needing the stack
space is briefly suspended. If the request can't be granted within a short period of
time, an exception is raised. Windows CE goes to great lengths to free the required
pages, but if this can't happen the system raises an exception. I'll cover low-memory
situations shortly, but for now just remember that you shouldn't try to use large amounts
of stack space in low-memory situations.

Static Data

370

C and C++ applications have predefined blocks of memory that are automatically
allocated when the application is loaded. These blocks hold statically allocated strings,
buffers, and global variables as well as buffers necessary for the library functions that
were statically linked with the application. None of this is new to the C programmer,
but under Windows CE, these spaces are handy for squeezing the last useful bytes
out of RAM.

Chapter 6 Memory Management

Windows CE allocates two blocks of RAM for the static data of an application,
one for the read/write data and one for the read-only data. Because these areas are
allocated on a per-page basis, you can typically find some space left over from the
static data up to the next page boundary. The finely tuned Windows CE application
should be written to ensure that it has little or no extra space left over. If you have
space in the static data area, sometimes it's better to move a buffer or two into the
static data area instead of allocating those buffers dynamically.

Another consideration is that if you're writing a ROM-based application, you
should move as much data as possible to the read-only static data area. Windows CE
doesn't allocate RAM to the read-only area for ROM-based applications. Instead, the
ROM pages are mapped directly into the virtual address space. This essentially gives
you unlimited read-only space with no impact on the RAM requirements of the ap
plication.

The best place to determine the size of the static data areas is to look in the
map file that's optionally generated by the linker. The map file is chiefly used to deter
mine the locations of functions and data for debugging purposes, but it also shows
the size of the static data, if you know where to look. Figure 6-4 shows a portion of
an example map file generated by Visual C++.

memtest

Timestamp is 34ce4088 (Tue Jan 27 12:16:08 1998)

Preferred load address is 00010000

Start Length Name Class
0001:00000000 00006100H .text CODE
0002:00000000 00000310H .rdata DATA
0002:00000310 00000014H .xdata DATA
0002:00000324 00000028H .idata$2 DATA
0002:0000034c 00000014H . idata$3 DATA
0002:00000360 000000f4H .idata$4 DATA
0002:00000454 000003eeH . idata$6 DATA
0002:00000842 00000000H .edata DATA
0003:00000000 000000f4H . idata$5 DATA
0003:000000f4 00000004H .CRT$XCA DATA
0003:000000f8 00000004H . CRT$XCZ DATA
0003:000000fc 00000004H .CRT$XIA DATA
0003:00000100 00000004H .CRT$XIZ DATA
0003:00000104 00000004H .CRT$XPA DATA
0003:00000108 00000004H . CRT$XPZ DATA
0003:0000010c 00000004H . CRT$XTA DATA

(continued)

371

Part II WindOW\\iJ CE Ba\\iJiCS

372

0003: 00000110 00000004H . CRT$XTZ DATA
0003: 00000114 0000lle8H .data DATA
0003:000012fc 0000108cH .bss DATA
0004:00000000 000003e8H .pdata DATA
0005:00000000 000000f0H .rsrc$01 DATA
0005:000000f0 00000334H .rsrc$02 DATA

Address Publics by Value Rva+Base Lib:Object

0001:00000000 _WinMain 00011000 f memtest. obj
0001:0000007c _InitApp 0001107c f memtest.obj
0001:000000d4 _Initinstance 000110d4 f memtest.obj
0001:00000164 _Terminstance 00011164 f memtest.obj
0001:00000248 _MainWndProc 00011248 f memtest.obj
0001:000002b0 _GetFixedEquiv 000112b0 f memtest.obj
0001:00000350 DoCreateMain 00011350 f memtest.obj.

Figure 6-4. 1be top portion of a map file showing the size of the data segments in an
application.

The map file in Figure 6-4 indicates that the EXE has five sections. Section 0001
is the text segment containing the executable code of the program. Section 0002
contains the read-only static data. Section 0003 contains the read/write static data.
Section 0004 contains the fix-up table to support calls to other DLLs. Finally, section
0005 is the resource section containing the application's resources, such as menu and
dialog box templates.

Let's examine the .data, .bss, and .rdata lines. The .data section contains the
initialized read/write data. If you initialized a global variable as in

static HINST g_hLoadlib =NULL;

the g_loadlib variable would end up in the .data segment. The .bss segment contains
the uninitialized read/write data. A buffer defined as

static BYTE g_ucitems[256];

would end up in the .bss segment. The final segment, .rdata, contains the read-only
data. Static data that you've defined using the canst keyword ends up in the .rdata
segment. An example of this would be the structures I use for my message look-up
tables, as in the following:

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {

WM_CREATE, DoCreateMain,
WM_SIZE, DoSizeMain,
WM_COMMAND, DoCommandMain,
WM_DESTROY, DoDestroyMain,

} ;

Chapter 6 Memory Management

The .data and .bss blocks are folded into the 0003 section which, if you add
the size of all blocks in the third section, has a total size of Ox2274, or 8820, bytes.
Rounded up to the next page size, the read/write section ends up taking nine pages,
with 396 bytes not used. So, in this example, placing a buffer or two in the static data
section of the application would be essentially free. The read-only segment, section
0002, including .rdata, ends up being Ox0842, or 2114, bytes, which takes up three
pages with 958 bytes, almost an entire page, wasted. In this case, moving 75 bytes of
constant data from the read-only segment to the read /write segment saves a page of
RAM when the application is loaded.

String Resources

One often forgotten area for read-only data is the resource segment of your applica
tion. While I mentioned a new, Windows CE-specific feature of the loadString func
tion in Chapter 3, it's worth repeating here. If you call LoadString with 0 in place of
the pointer to the buffer, the function returns a pointer to the string in the resource
segment. An example would be

LPCTSTR pString;

pString = (LPCTSTR)LoadString (hinst, ID_STRING, NULL, 0)

The string returned is read only, but it does allow you to reference the string without
having to allocate a buffer to hold the string.

Selecting the Proper Memory Type

Now that we've looked at the different types of memory, it's time to consider the best
use of each. For large blocks of memory, directly allocating virtual memory is best.
An application can reserve as much address space (up to the 32-MB limit of the ap
plication) but can conm1it only the pages necessary at any one time. While directly
allocated virtual memory is the most flexible memory allocation type, it shifts to us
the burden of worrying about page granularity as well as keeping track of the reserved
versus committed pages.

The local heap is always handy. It doesn't need to be created and will grow as
necessary to satisfy a request. Fragmentation is the issue here. Consider that applica
tions on an H/PC might run for weeks or even months at a time. There's no Off but
ton on an H/PC or a Palm-size PC-just a Suspend command. So, when you're thinking
about memory fragmentation, don't assume that a user will open the application,
change one item, and then close it. A user is likely to start an application and keep it
running so that the application is just a quick click away.

The advantage of separate heaps is that you can destroy them when their time is
up, nipping the fragmentation problem in the bud. A minor disadvantage of separate
heaps is the need to manually create and destroy them. Another thing to remember

373

Part II

about separate heaps is that Windows CE doesn't reserve virtual address space when
a heap is created, which can become an issue if your application uses much of the
virtual address space available to the application.

The static data area is a great place to slip in a buffer or two essentially for free
because the page is going to be allocated anyway. The key to managing the static
data is to make the size of the static data segments close to, but over the page size of,
your target processor. For applications written for the H/PC or Palm-size PC, con
sider the 1024-byte page size of the NEC MIPS 4100 and Hitachi SH3 processors as
the default. Sometimes ifs better to move constant data from the read-only segment
to the read/write segment if it saves a page in the read-only segment. The only time
you wouldn't do this is if the application is to be burned into ROM. Then, the more
constant data, the better, because it doesn't take up RAM.

The stack is, well, the stack-simple to use and always around. The only con
siderations are the maximum size of the stack and the problems of enlarging the stack
in a low memory condition. Make sure your application doesn't require large amounts
of stack space to shut down. If the system suspends a thread in your application while
it's being shut down, the user will more than likely lose data. That won't help cus
tomer satisfaction.

Managing Low-Memory Conditions

374

Even for applications that have been fine-tuned to minimize their memory use, there
are going to be times when the system runs very low on RAM. Windows CE applica
tions operate in an almost perpetual low-memory environment. The Palm-size PC is
designed intentionally to run in a low-memory situation Applications on the Palm
size PC don't have a Close hutton-the shell automatically closes them when the system
needs additional memory. Because of this, Windows CE offers a number of methods
to distribute the scarce memory in the system among the running applications.

The WM_HIBERNATE message
The first and most obvious addition to Windows CE is the WM_HIBERNATE mes
sage. Windows CE sends this message to all top-level windows that have the WS_
OVERLAPPED style (that is, have neither the WS_POPUP nor the WS_CHILD style)
and have the WS_ VISIBLE style. These qualifications should allow most applications
to have at least one window that receives a WM_HIBERNATE message. An exception
to this would be an application that doesn't really terminate, but simply hides all its
windows. This arrangement allows an application a quick start because it only has to
show its window, but this situation also means that the application is taking up RAM
even when the user thinks it's closed. While this is exactly the kind of application
design that should not be used under Windows CE, those that are designed this way
must act is if they're always in hibernate mode when hidden because they'll never
receive a WM_HIBERNATE message.

Chapter 6 Memory Management

Windows CE sends WM_HIBERNATE messages to the top-level windows in
reverse Z-order until enough memory is freed to push the available memo1y above a
preset threshold. When an application receives a WM_HIDERNATE message, it should
reduce its memory footprint as much as possible. This can involve releasing cached
data; freeing any GDI objects such as fonts, bitmaps, and brushes; and destroying
any window controls. In essence, the application should reduce its memory use to
the smallest possible footprint that's necessary to retain its internal state.

If sending WM_HIBERNATE messages to the applications in the background
doesn't free enough memory to move the system out of a limited-memory state, a
WM_HIBERNATE message is sent to the application in the foreground. If part of your
hibernation routine is to destroy controls on your window, you should be sure that
you aren't the foreground application. Disappearing controls don't give the user a
warm and fuzzy feeling.

Memory thresholds
Windows CE monitors the free RAM in the system and responds differently as less
and less RAM is available. As less memory is available, Windows CE first sends
WM_HIDERNATE messages and then begins limiting the size of allocations possible.
The two figures below show the free-memo1y levels used by the Handheld PC and
the Palm-size PC to trigger low-memory events in the system. Windows CE defines
four memory states: normal, limited, low, and critical. The memory state of the sys
tem depends on how much free memory is available to the system as a whole. These
limits are higher for 4-KB page systems because those systems have less granularity
in allocations.

Event

Limited
memory state

Low
memory state

Critical
memory state

Free Memory
1024-Page Size

128 KB

64 KB

16 KB

Free Memory
4096-Page Size

160 KB

96KB

48KB

Figure 6-5. Memory thresholds for the Handheld PC.

Comments

Send MWM_HIBERNATE
messages to applications
in reverse Z-order.

Free stack space re
claimed as needed.

Limit virtual allocs to
16 KB.

Low-memory dialog
displayed.

Limit virtual allocs to
SKB.

375

Part II

376

Event

Hibernate
threshold

Limited-
memory state

Low-
memory state

Critical-
memory state

Free Memory
1024-Page Size

200 KB

128 KB

64 KB

16 KB

Free Memory
4096-Page Size

224 KB

160 KB

96 KB

48 KB

Figure 6-6. Memory thresholds for the Palm-size PC.

Comments

Send WM_HIBERNATE
messages to applications
in reverse Z-order.

Begin to close applica
tions in reverse Z-order.
Free stack space re
claimed as needed.

Limit virtual allocs to
16 KB.

Limit virtual allocs to
8 KB.

The effect of these memory states is to share the remaining wealth. First,
WM_HIBERNATE messages are sent to the applications to ask them to reduce their
memo1y footprint. After an application is sent a WM_HIBERNATE message, the sys
tem memory levels are checked to see whether the available memory is now above
the threshold that caused the WM_HIBERNATE messages to be sent. If not, a
WM_HIBERNATE message is sent to the next application. This continues until all
applications have been sent a WM_HIBERNATE message.

The low-memory strategies of the Handheld PC and the Palm-size PC diverge
at this point. If the memory level drops below the next threshold, limited for the Palm
size PC and Low for the H/PC, the system starts shutting down applications. On
the H/PC, the system displays the OOM, the out-of-memory dialog, and requests
that the user either select an application to close or reallocate some RAM dedicated
to the object store to the program memory. If, after the selected application has been
shut down or memory has been moved into program RAM, you still don't have enough
memory, the out-of-memo1y dialog is displayed again. This process is repeated until
there's enough memory to lift the H/PC above the threshold.

For the Palm-size PC, the actions are somewhat different. The Palm-size PC shell
automatically starts shutting down applications in least recently used order without
asking the user. If there still isn't enough memory after all applications except the
foreground application and the shell are closed, the system uses its other techniques
of scavenging free pages from stacks and limiting any allocations of virtual memory.

If, on either system, an application is requested to shut down and it doesn't,
the system will purge the application after waiting approximately 8 seconds. This is
the reason an application shouldn't allocate large amounts of stack space. If the ap
plication is shutting down due to low-memory conditions, it's quite possible that the

Chapter 6 Memory Management

stack space can't be allocated and the application will be suspended. If this happens
after the system has requested that the application close, it could be purged from
memory without properly saving its state.

In the low- and critical-memory states, applications are limited in the amount
of memory they can allocate. In these states, a request for virtual memory larger than
what's allowed is refused even if there's memory available to satisfy the request.
Remember that it isn't just virtual memory allocations that are limited; allocations on
the heap and stack are rejected if, to satisfy the request, those allocations require vir
tual memory allocations above the allowable limits.

I should point out that sending WM_HIBERNATE messages and automatically
closing down applications is performed by the shell of the H/PC and Palm-size PC.
The embedded version of Windows CE uses a much simpler shell that doesn't sup
port these memory management techniques. On these embedded systems, you'll have
to devise your own strategy for managing low-memory situations.

It should go without saying that applications should check the return codes of
any memory allocation call, but since some still don't, I'll say it. Check the return codes
from calls that allocate memory. There's a much better chance of a memory alloca
tion failing under Windows CE than under Windows NT or Windows 98. Applica
tions must be written to react gracefully to rejected memory allocations.

The Win32 memory management API isn't fully supported by Windows CE, but
there's clearly enough support for you to use the limited memory of a Windows CE
device to the fullest. A great source for learning about the intricacies of the Win32
memory management API is Jeff Richter's Advanced Windows (Microsoft Press, 1997).
Jeff spends five chapters on memory management while I have summarized the same
topic in one.

We've looked at the program RAM, the part of RAM that is available to applica
tions. Now it's time, in the next chapter, to look at the other part of the RAM, the
object store. The object store supports more than a file system. It also supports the
registry API as well as a database API unique to Windows CE.

377

Chapter 7

Files, Databases,
and the Registry

One of the areas where Windows CE diverges the farthest from its larger cousins, Win
dows NT and Windows 98, is in the area of file storage. Instead of relying on ferromag
netic storage media such as floppy disks or hard disk drives, Windows CE implements
a unique, RAM-based file system known as the object store. In implementation, the
object store more closely resembles a database than it does a file allocation system
for a disk. In the object store resides the files as well as the registry for the system
and any Windows CE databases. Fortunately for the programmer, most of the unique
implementation of the object store is hidden behind standard Win32 functions.

The Windows CE file API is taken directly from Win32. Aside from the lack of
functions that directly reference volumes, the API is fairly complete. Windows CE
implements the standard registry API, albeit without the vast levels of security found
in Windows NT. The database API, however, is unique to Windows CE. The database
functions provide a simple tool for managing and organizing data. They aren't to be
confused with the powerful, multilevel SQL databases found on other computers. Even
with its modest functionality, the database API is convenient for storing and organiz
ing simple groups of data, such as address lists or mail folders.

Some differences in the object store do expose themselves to the program
mer. Execute-in-place files, stored in ROM, appear as files in the object store but
these functions can't be opened and read as standard files. Some of the ROM-based
applications are also statically linked to other ROM-based dynamic-link libraries (DLLs).

379

Part II Wh1dOW;<£;

This means that some ROM-based DLLs can't be replaced by copying an identically
named file into the object store.

The concept of the current directory, so important in other versions of Win
dows, isn't present in Windows CE. Files are specified by their complete path. DLLs
must be in the Windows directory, the root directory of the object store, or in the
root directory of an attached file storage device, such as a PC Card.

As a general rule, Windows CE doesn't support the deep application-level
security available under Windows NT. However, because the generic Win32 API was
originally based on Windows NT, a number of the functions for file and registry opera
tions have one or more parameters that deal with security rights. Under Windows CE,
these values should be set to their default, not security state. This means you should
almost always pass NULL in the security parameters for functions that request security
information.

In this rather long chapter, I'll first explain the file system and the file APL Then
I'll give you an overview of the database APL Finally, we'll do a tour of the registry
APL The database API is one of the areas that has experienced a fair amount of change
as Windows CE has evolved. Essentially, functionality has been added to later versions
of Windows CE. Where appropriate, I'll cover the differences between the differ
ent versions and present workarounds, where possible, for maintaining a common
code base.

THE WINDOWS CE FILE SYSTEM

380

The default file system, supported on all Windows CE platforms, is the object store.
The object store is equivalent to the hard disk on a Windows CE device. It's a subtly
complex file storage system incorporating compressed RAM storage for read/write
files and seamless integration with ROM-based files. A user sees no difference be
tween a file in RAM in the object store and those files based in ROM. Files in RAM
and ROM can reside in the same directory, and document files in ROM can be opened
(although not modified) by the user. In short, the object store integrates the default
files provided in ROM with the user-generated files stored in RAM.

In addition to the object store, Windows CE supports multiple, installable file
systems that can support up to 256 different storage devices or partitions on storage
devices. (The limit is 10 storage devices for Windows CE 2.0 and earlier.) The interface
to these devices is the installable file system (IFS) APL Most Windows CE platforms
include an IFS driver for the FAT file system for files stored on ATA flash cards or hard
disks. In addition, under Windows CE 2.1 and later, third party manufacturers can
write an IFS driver to support other file systems.

Windows CE doesn't use drive letters as is the practice on PCs. Instead, every
storage device is simply a directory off the root directory. Under Windows CE 1.0, an

Chapter 7 Files, Databases, and the Registry

application can count on the name of the directory of the external drive being PC Card.

If more than one PC Card was inserted, the additional ones are numbered, as in PC

Card 1 and PC Card 2, up to PC Card 99 for the lOOth card.1 Under Windows CE 2.0,
the default name was changed from PC Card to Storage Card, but the numbering
concept stayed the same. For Windows CE 2.1, Windows CE doesn't assume a name.
Instead it asks the driver what it wants to call the directory.2 Later in this chapter, I'll
demonstrate a method for determining which directories in the root are directories
and which are actually storage devices.

As should be expected for a Win32-compatible operating system, the filename
format for Windows CE is the same as its larger counterparts. Windows CE supports
long filenames. Filenames and their complete path can be up to MAX_PATH in length,
which is currently defined at 260 bytes. Filenames have the same name.ext format
as they do in other \Vindows operating systems. The extension is the three charac
ters following the last period in the filename and defines the type of file. The file
type is used by the shell when determining the difference between executable files
and different documents. Allowable characters in filenames are the same as for
Windows NT and Windows 98.

Windows CE files support most of the same attribute flags as Windows 98 with
a few additions. Attribute flags include the standard read-only, system, hidden, com
pressed, and archive flags. A few additional flags have been included to support the
special RAM/ROM mix of files in the object store.

The Object Store vs. Other Storage Media

To the programmer, the difference between files in the RAM part of the object store
and the files based in ROM are subtle. The files in ROM can be detected by a special,
in-ROM file attribute flag. However, files in the RAM part of the object store that are
always compressed don't have the compressed file attribute as might be expected.
The reason is that the compressed attribute is used to indicate when a file or direc
tory is in a compressed state relative to the other files on the drive. In the object store,
all files are compressed, which makes the compressed attribute redundant.

The object store in Windows CE has some basic limitations. First. the size of the
object store is currently limited to 16 MB of RAM. Given the compression features of
the object store, this means that the amount of data that the object store can contain
is somewhere around 32 MB. Individual files in the object store are limited to 4 MB
under Windows CE 2.0 and earlier. Files under Windows CE 2.1 and later are limited
only by the size of the object store's 16-MB limit. These file size limits don't apply to
files on secondary storage such as hard disks, PC Cards, or Compact Flash Cards.

1. This limit is 10 cards for Windows CE 2.0 and earlier.

2. The Handheld PC Pro uses Storage Card as its default name.

381

Standard File 1/0
Windows CE suppo1ts the most of the same file I/0 functions found on Windows NT
and Windows 98. The same Win32 API calls, such as CreateFile, ReadFile, WriteFile
and CloseFile, are all supported. A Windows CE programmer must be aware of a few
differences, however. First of all, the standard C file I/0 functions, such asfopen,fread,
andfprintj; aren't supported under Windows CE. Likewise, the old Win16 standards,
_!read, _!write, and _I/seek, aren't supported. This isn't really a huge problem because
all of these functions can easily be implemented by wrapping the Windows CE file
functions with a small amount of code. Windows CE 2.1 does support basic console
library functions such as prinif for console applications.

Windows CE doesn't support the overlapped I/0 that's supported under Win
dows NT. Files or devices can't be opened with the FILE_FLAG_OVERI..APPED flag
nor can reads or writes use the overlapped mode of asynchronous calls and returns.

File operations in Windows CE follow the traditional handle-based methodol
ogy used since the days of MS-DOS. Files are opened by means of a function that
returns a handle. Read and write functions are passed the handle to indicate the file
to act on. Data is read from or written to the offset in the file indicated by a system
maintained file pointer. Finally, when the reading and writing have been completed,
the application indicates this by dosing the file handle. Now on to the specifics.

Creating and Opening Files

382

Creating a file or opening an existing file or device is accomplished by means of the
standard Win32 function:

HANDLE CreateFile (LPCTSTR lpFileName, DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes.
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes, HANDLE hTemplateFile);

The first parameter is the filename of the file to be opened or created. The name of
the file should have a fully specified path. Filenames with no path information are
assumed to be in the root directory of the object store.

The dwDesiredAccess parameter indicate the requested access rights. The allow
able flags are GENERIC_READ to request read access to the file and GENERIC_ WRITE
for write access. Both flags must be passed to get read/write access. You can open a
file with neither read nor write permissions. This is handy if you just want to get the
attributes of a device. The dwShareMode parameter specifies the access rights that
can be granted to other processes. This parameter can be FILE_SHARE_READ and/
or FILE_ SHARE_ WRITE. The lpSecurityAttributes parameter is ignored by Windows CE
and should be set to NULL.

Chapter 7 Files, Databases, and the Registry

The dwCreationDistribution parameter tells CreateFile how to open or create
the file. The following flags are allowed:

• CREATlT_NEW Creates a new file. If the file already exists, the function
fails.

• CREA'JE_ALWAYS Creates a new file or truncates an existing file.

• OPEN_EXL'iTING Opens a file only if it already exists.

• OPEN_ALWAYS Opens a file or creates a file if it doesn't exist. This dif
fers from CREATE_AL WAYS because it doesn't truncate the file to 0 bytes
if the file exists.

• TRUNCATE_EXISTING Opens a file and truncates it to 0 bytes. The func
tion fails if the file doesn't already exist.

The dwFlagsAndAttributes parameter defines the attribute flags for the file if it's
being created in addition to flags in order to tailor the operations on the file. The fol
lowing flags are allowed under Windows CE:

• FILB_ATTRIBU'JE_NORMAL This is the default attribute. It's overridden
by any of the other file attribute flags.

• FILE_ATTR1Bu7E_READONLY Sets the read-only attribute bit for the file.
Subsequent attempts to open the file with write access will fail.

• FILE_A TTRIBUTH_ARCHIVE Sets the archive bit for the file.

• FILE_ATTRIBU'JE_SYSTEM Sets the system bit for the file indicating that
the file is critical to the operation of the system.

• FILE_ATTRIBU'JE_HIDDEN Sets the hidden bit. The file will be visible
only to users who have the View All Files option set in the Explorer.

• FILE_FLAG_ WRI'JE_THROUGH Write operations to the file won't be la
zily cached in memory.

• FILE_FLAG_RANDOM_ACCESS Indicates to the system that the file will
be randomly accessed instead of sequentially accessed. This flag can help
the system determine the proper caching strategy for the file.

Windows CE doesn't support a number of file attributes and file flags that are
supported under Windows 98 and Windows NT. The unsupported flags include but
aren't limited to the following: FILE_ATTRIBUTE_OFFLINE, FILE_FLAG_OVERLAPPED,
FILE_FLAG_NO_BUFFERING, FILE_FLAG_SEQUENTIAL_SCAN, FILE_FLAG_DELETE_
ON_ CLOSE, FILE_FLAG_BACKUP _SEMANTICS, and FILE_FLAG_POSIX_SEMANTICS.

383

Part 11 Windows CE Basics

Under Windows NT and Windows 98, the flag FILE_ATIRIBUTE_TEMPORARY is used
to indicate a temporary file, but as we'll see below, it's used by Windows CE to indi
cate a directory that is in reality a separate drive or network share.

The final parameter in CreateFile, hTemplate, is ignored by Windows CE and
should be set to 0. CreateFile returns a handle to the opened file if the function was
successful. If the function fails, it returns INVALID_HANDLE_ VALUE. To determine
why the function failed, call GetlastError. If the dwCreationDistribution flags included
CREATE_ALWAYS or OPEN_ALWAYS, you can determine whether the file previously
existed by calling GetlastErrorto see if it returns ERROR_ALREADY_EXISTS. CreateFile
will set this error code even though the function succeeded.

Reading and Writing

384

Windows CE supports the standard Win32 functions ReadFile and WriteFile. Reading
a file is as simple as calling the following:

BOOL ReadFile (HANDLE hFile, LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPDWORD lpNumberOfBytesRead, LPOVERLAPPED lpOverlapped);

The parameters are fairly self-explanatory. The first parameter is the handle of the
opened file to read followed by a pointer to the buffer that will receive the data and
the number of bytes to read. The fourth parameter is a pointer to a DWORD that will
receive the number of bytes that was actually read. Finally, the lpOverlapped parameter
must be set to NULL because Windows CE doesn't support overlapped file opera
tions. As an aside, Windows CE does support multiple reads and writes pending on
a device; it just doesn't support the ability to return from the function before the
operation completes.

Data is read from the file starting at the file offset indicated by the file pointer.
After the read has completed, the file pointer is adjusted by the number of bytes read.

ReadFile won't read beyond the end of a file. If a call to ReadFile asks for more
bytes than remains in the file, the read will succeed, but only the number of bytes
remaining in the file will be returned. This is why you must check the variable pointed
to by lpNumberO.fBytesRead after a read completes to learn how many bytes were
actually read. A call to ReadFile with the file pointer pointing to the end of the file
results in the read being successful, but the number of read bytes is set to 0.

Writing to a file is accomplished with this:

BOOL WriteFile (HANDLE hFile, LPCVOID lpBuffer,
DWORD nNumberOfBytesToWrite,
LPDWORD lpNumberOfBytesWritten,
LPOVERLAPPED lpOverlapped);

Chapter 7 Files, Databases, and the Registry

The parameters are similar to ReadFile with the obvious exception that lpBujfer now
points to the data that will be written to the file. As in ReadFile, the lpOverlapped
parameter must be NULL. The data is written to the file offset indicated by the file
pointer, which is updated after the write so that it points to the byte immediately
beyond the data written.

Moving the file pointer
The file pointer can be adjusted manually with a call to the following:

DWORD SetFilePointer (HANDLE hFile, LONG lDistanceToMove,
PLONG lpDistanceToMoveHigh, DWORD dwMoveMethod);

The parameters for SetFilePointer are the handle of the file; a signed offset distance
to move the file pointer: a second, upper 32-bit offset parameter; and dwMoveMethod,
a parameter indicating how to interpret the offset. While lDistanceToMove is a signed
32-bit value, lpDistanceToMoveHigh is a pointer to a signed 32-bit value. For file pointer
moves of greater than 4 GB, lpDistanceToM01•eHigh should point to a LONG that
contains the upper 32-bit offset of the move. This variable will receive the high 32
bits of the resulting file pointer. For moves of less than 4 GB, simply set lpDistance
ToMoveHigh to NULL. Clearly, under Windows CE, the lpDistanceToMoveHigh pa
rameter is a bit excessive, but having the function the same format as its Windows NT
counterpart aids in portability across platforms.

The offset value is interpreted as being from the start of the file if dwMoveMethod
contains the flag FILE_BEGIN. To base the offset on the current position of the file
pointer, use FILE_ CURRENT. To base the offset from the end of the file, use FILE_END
in dwMoveMethod.

SetFilePointerreturns the file pointer at its new position after the move has been
accomplished. To query the current file position without changing the file pointer,
simply call SetFilePointer with a zero offset and relative to the current position in the
file, as shown here:

nCurrFilePtr = SetFilePointer (hFile, 0, NULL, FILE_CURRENT);

Closing a file
Closing a file handle is a simple as calling

BOOL CloseHandle (HANDLE hObjectl;

This generic call, used to close a number of handles, is also used to close file handles.
The function returns TRUE if it succeeds. If the function fails, a call to GetLastError
will return the reason for the failure.

385

Part II Wh1dows CE Basics

386

Truncating a file
When you have finished writing the data to a file, you can close it with a call to
C!osel-landle and you're done. Sometimes, however, you must truncate a file to make
it smaller than it currently is. In the days of MS-DOS, the way to set the end of a file
was to make a call to write zero bytes to a file. The file was then truncated at the
current file pointer. This won't work in Windows CE. To set the end of a file, move
the file pointer to the location in the file where you want the file to end and call:

BOOL SetEndOfFile (HANDLE hFile);

Of course, for this call to succeed, you need write access to the file. The function
returns TRUE if it succeeds.

To insure that all the data has been written to a storage device and isn't just
sitting around in a cache, you can call this function:

WINBASEAPI BOOL WINAPI FlushFileBuffers (HANDLE hFilel;

The only parameter is the handle to the file you want to flush to the disk, or more
likely in Windows CE a PC Card.

Getting file information
A number of calls allow you to query information about a file or directory. To quickly
get the attributes knowing only the file or directory name, you can use this function:

DWORD GetFileAttributes (LPCTSTR lpFileName);

In general, the attributes returned by this function are the same ones that I covered
for CreateFile, with the addition of the attributes listed below:

• FILE_ATTRIBUTh"'__COMPRE,"'SSED The file is compressed.

• F!Lh"'__ATTRIBUTE_I.lVROM The file is in ROM.

• FILE_ATTRIBUIE_ROMMODULE The file is an executable module in ROM
formatted for execute-in-place loading. These files can't be opened with
CreateFile.

• F!LE_ATTR!BlfTE_DIRECTORY The name specifies a directory, not a file.

• FILE_ATTRIBUTE_1EMPORARY When this flag is set in combination with
FILE_ATTRIBUTE_DIRECTORY, the directory is the root of a secondary
storage device, such as a PC Card or a hard disk.

The attribute FILE_ATTRIBUTE_COMPRESSED is somewhat misleading on a
Windows CE device. Files in the RAM-based object store are always compressed, but
this flag isn't set for those files. On the other hand, the flag does accurately reflect

Chapter 7 Files, Databases, and the Registry

whether a file in ROM is compressed. Compressed ROM files have the advantage of
taking up less space but the disadvantage of not being execute-in-place files.

An application can change the basic file attributes, such as read only, hidden,
system, and attribute by calling this function:

BOOL SetFileAttributes (LPCTSTR lpFileName, DWORD dwFileAttributes);

This function simply takes the name of the file and the new attributes. Note that you
can't compress a file by attempting to set its compressed attribute. Under other Win
dows systems that do support selective compression of files, the way to compress a
file is to make a call directly to the file system driver.

A number of other informational functions are supported by Windows CE. All
of these functions, however, require a file handle instead of a filename, so the file
must have been previously opened by means of a call to CreateFile.

File times
The standard Win32 API supports three file times: the time the file was created, the
time the file was last accessed (that is, the time it was last read, written, or executed),
and the last time the file was written to. That being said, the Windows CE object store
keeps track of only one time, the time the file was last written to. One of the ways to
query the file times for a file is to call this function:

BOOL GetFileTime (HANDLE hFile, LPFILETIME lpCreationTime,
LPFILETIME lplastAccessTime,
LPFILETIME lplastWriteTime);

The function takes a handle to the file being queried and pointers to three FILETIME
values that will receive the file times. If you're interested in only one of the three values,
the other pointers can be set to NULL.

When the file times are queried for a file in the object store, Windows CE cop
ies the last write time into all FILETIME structures. This goes against Win32 documen
tation, which states that any unsupported time fields should be set to 0. For the FAT
file system used on storage cards, two times are maintained: the file creation time
and the last write time. When GetFileTime is called on a file on a storage card, the file
creation and last write times are returned and the last access time is set to 0.

The FILETIME structures returned by GetFileTime and other functions can be
converted to something readable by calling

BOOL FileTimeToSystemTime (canst FILETIME •lpFileTime,
LPSYSTEMTIME lpSystemTime);

This function translates the FILETIME structure into a SYSTEMTlME structure that has
documented day, date, and time fields that can be used. One large caveat is that file
times are stored in coordinated universal time format (UTC), also known as Greenwich

387

Part 11 Windows CE Basics

388

Mean Time. This doesn't make much difference as long as you're using unreadable
FILETIME structures but when you're translating a file time into something readable,
a call to

BOOL FileTimeToLocalFileTime (const FILETIME *lpFileTime,
LPFILETIME lpLocalFileTime);

before translating the file time into system time provides the proper time zone trans
lation to the user.

You can manually set the file times of a file by calling

BOOL SetFileTime (HANDLE hFile, const FILETIME *lpCreationTime,
const FILETIME *lpLastAccessTime,
const FILETIME *lpLastWriteTime);

The function takes a handle to a file and three times each in FILETIME format. If you
want to set only one or two of the times, the remaining parameters can be set to NULL.
Remember that file times must be in UTC time, not local time.

For files in the Windows CE object store, setting any one of the time fields re
sults in all three being updated to that time. If you set multiple fields to different times
and attempt to set the times for' an object store file, the lpLastWriteTime takes prece
dence. Files on storage cards maintain separate creation and last-write times. You must
open the file with write access for SetFileTime to work.

File size and other information
You can query a file's size by calling

DWORD GetFileSize (HANDLE hFile, LPDWORD lpFileSizeHigh);

The function takes the handle to the file and an optional pointer to a DWORD that's
set to the high 32 bits of the file size. This second parameter can be set to NULL if
you don't expect to be dealing with files over 4 GB. GetFileSize returns the low 32
bits of the file size.

I've been talking about these last few functions separately, but an additional
function, GetFilelnformationByHandle, returns all this information and more. The
function prototyped as

BOOL GetFilelnformationByHandle (HANDLE hFile,
LPBY_HANDLE_FILE_INFORMATION lpFileinformation);

takes the handle of an opened file and a pointer to a BY _HANDLE_FILE_
INFORMATION structure. The function returns TRUE if it was successful.

The BY_HANDLE_FILE_INFORMATION structure is defined this way:

typedef struct _BY_HANDLE_FILE_INFORMATION {
DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftLastAccessTime;

Chapter 7 Files, Databases, and the Registry

FILETIME ftlastWriteTime;
DWORD dwVolumeSerialNumber;
DWORD nFileSizeHigh;
DWORD nFileSizelow;
DWORD nNumberOflinks;
DWORD nFilelndexHigh;
DWORD nFilelndexLow;
DWORD dwOID; /

BY_HANDLE_FILE_I NFORMATION;

As you can see, the strncture returns data in a number of fields that separate func
tions return. I'll talk about o nly the new fields here.

The dwVolumeSerialNumber field is filled with the erial number of the volume
in which the file resides. The volume is what's considered a disk or partition under
Windows 98 or Windows NT. Under Window CE, the volume refers to the object
store, a storage card , or a disk on a local area network. For files in the object store,
the volume serial number is 0.

The nNumberOflinks field is used by Windows T's TFS file system and can
be ignored under Windows CE. The nFile!ndexHigh and nFilelndexLow fields con
tain a systemwide unique identifier number for the file . This number can be checked
to see whether two different file handle point to the same file . The File Index value
is used under Windows NT and Windows 98, but Windows CE has a more useful value ,
the object ID of the file , which is returned in the dwOID field . I'll explain the object
ID late r in the chapte r; for now I'll just mention that it 's a universal identifier that
can be used to reference directories , files , databases, and individual database records.
Handy stuff.

The FileView Sample Program

FileView is an example program that display the contents of a file in a window. It
displays the data in hexadecimal format instead of text, which makes it different from
simply opening the file in Microsoft Pocket Word or another editor. FileView is sim
ply a file viewer; it doe n't alJow you to modify the file. The code for File View is shown
in Figure 7-1.

Fiie View.re

II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==

Figure 7-1. 7be Viewer program. (co ntinued)

389

Part II Windows CE Basics

Figure 7-1. continued

#include "windows.h"
#include "FileView.h" II Program-specific stuff

11----- ---
11 Icons and bitmaps
ID_ICON ICON "fileview.ico" II Program icon

11--
11 Menu
ID_MENU MENU DISCARDABLE
BEGIN

ENO

POPUP "&File"
BEGIN

END

MENUITEM "&Open ... ",
MENUITEM SEPARATOR
MENUITEM "E&xit",

POPUP "&Help"
BEGIN

MENUITEM "&About ... ",
ENO

IOM_OPEN

IOM_EXIT

IOM_ABOUT

11--
11 About box dialog template
aboutbox DIALOG discardable 10, 10 , 160, 40
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER I

DS_MOOALFRAME
CAP TI ON "About"
BEGIN

ICON IO_ICON, -1, 5, 5, 10, 10
LTEXT "FileView - Written for the book Programming Windows \

CE Copyright 1998 Douglas Boling"
-1. 40, 5, 110, 30

ENO

FlleView.h

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (Cl 1998 Douglas Boling
II==
II Returns number of elements.

390

Cbapter 7 Files, Databases, and the Registry

#define dim(x) (sizeof(x) I sizeof(x[0]))

11 ---------------- - - - -------------------------- -- --------- - -------------
11 Generic defines and data types
II
struct decodeUINT

UI NT Code;
II Structure associates
II messages
II with a function .

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM):
} ;

struct decodeCMD (
UINT Code;

II Structure associates
II menu IDs with a

LRESULT (*Fxn)(HWND, WORD, HWND, WORD); II function.
} ;

11 ------------------ - ---------- - ---------------------- - -- ---- -----------
II Generic defines used by application
/fdefi ne ID_ICON 1 II Application icon

II Resource ID
/fdefi ne IDc_cMDBAR 2 II Command band ID
ffdefi ne ID_MENU 3 II Main menu resource ID
ffdefi ne ID_VIEWER 4 II View control ID

II Menu item IDs
ffdefi ne IDM_OPEN 101 II File menu
#define IDM_EXIT 102
#define IDM_ABOUT 120 II Help menu

11- -- - -- - --- -- ---- - - -- - - -- -- -- --- - - - ----- - --------- - --- - --- - -- -- - --- - -- -
11 Function prototypes
II
INT MyGetFileName (HWND hWnd, LPTSTR szFileName, INT nMax);

int InitApp (HINSTANCEl;
HWND Initlnstance CHINSTANCE , LPWSTR, int);
int Termlnstance (HINSTANCE, int);

II Window procedures
LRESULT CALLBACK MainWndProc (H WND, UINT, WPARAM, LPARAM);

II Message handlers
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAMl;
LRESULT DoSizeMain (HWND, UINT, WPARAM, LPARAMl;
LRESULT DoCommandMain CHWND. UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain CHWND, UINT, WPARAM, LPARAMl;

(continued)

391

Part II Windows CE Basics

Figure 7-1. continued

II Command functions
LPARAM DoMainCommandOpen CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandExit CHWND. WORD, HWND, WORD);
LPARAM DoMainCommandAbout CHWND, WORD, HWND, WORD);

II Dialog procedures
BOOL CALLBACK AboutDlgProc CHWND, UINT, WPARAM, LPARAM);

FileView.c

II==
II FileView - A Windows CE file viewer
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include <commctrl.h> II Command bar includes
#include <commdlg.h> II Common dialog includes

#include "FileView.h" II Program-specific stuff
#include "Viewer.h" II Program-specific stuff
11 ----------------- ----- -------------- ---------- --- -------- -- --- --------
11 Global data
II
const TCHAR szAppName[] =TEXT ("FileView");
extern TCHAR szViewerCls[];
HINSTANCE hlnst; II Program instance handle

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {

WM_CREATE, DoCreateMain,
WM_SIZE, DoSizeMain,
WM_COMMAND, DoCommandMain,
WM_DESTROY, DoDestroyMain,

) ;

II Command message dispatch for MainWindowProc
const struct decodeCMD MainCommandltems[] = {

IDM_OPEN, DoMainCommandOpen,
IDM_EXIT, DoMainCommandExit,
IDM_ABOUT, DoMainCommandAbout,

) ;

392

Chapter 7 Files, Databases, and the Registry

===
II
II Program entry point
II
int WINAPI WinMain CHINSTANCE hinstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) {

}

HWND hwndMain:
MSG msg:
int re = 0:

II Initialize application.
re= InitApp (hinstancel:
if (re) return re:

II Initialize this instance.
hwndMain = Initinstance Chinstance, lpCmdLine, nCmdShow):
if ChwndMain == 0)

return 0xl0:

II Application message loop
while CGetMessage C&msg, NULL, 0, 0)) {

TranslateMessage C&msg):
DispatchMessage C&msg);

)

II Instance cleanup
return Terminstance Chinstance, msg.wParam):

11- - - - - - - - -- -- - - - ------------------ - - -- - - - - - -- - -- - - - - ---- - --- ------ - - -- -
II InitApp - Application initialization
II
int InitApp CHINSTANCE hinstance) {

WNDCLASS we:
INITCOMMONCONTROLSEX icex:

II Register application main
we.style = 0:
wc.lpfnWndProc = MainWndProc:
wc.cbClsExtra = 0:
wc.cbWndExtra = 0:
wc.hinstance = hinstance:
wc.hicon = NULL,
wc.hCursor = NULL:

window class.
II Window style
II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon
II Default cursor

wc.hbrBackground =
wc.lpszMenuName =
wc.lpszClassName =

(HBRUSH)
NULL:

GetStockDbject CWHITE_BRUSH):
II Menu name

szAppName: II Window class name

(continued)

393

Part II Windows CE Basics

Figure 7-1. continued

)

if (RegisterClass (&we) == 0) return 1:

RegisterCtl (hlnstance); II Register viewer window.

II Load the command bar common control class.
icex.dwSize = sizeof (INITCOMMONCONTROLSEX);
icex.dwICC = ICC_BAR_CLASSES;
InitCommonControlsEx C&icex):
return 0:

11 --
11 Initlnstance - Instance initialization
II
HWND Initlnstance (HINSTANCE hlnstance, LPWSTR lpCmdLine, int nCmdShow){

HWND hWnd;

)

II Save program instance handle in global variable.
hlnst = hlnstance:
II Create main window.
hWnd = CreateWindow (szAppName, TEXT ("FileView"),

WS_VISIBLE, CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL,
hlnstance, NULL):

II Return fail code if window not created.
if (!lsWindow (hWnd)) return 0:

II Standard show and update calls
ShowWindow (hWnd, nCmdShow);
UpdateWindow (hWnd);
return hWnd;

1/ --
11 Termlnstance - Program cleanup
II
int Termlnstance (HINSTANCE hlnstance, int nDefRC) {

TermViewer (hlnstance, nDefRC);
return nDefRC:

)

II==
II Message handling procedures for MainWindow
11 --
11 MainWndProc - Callback function for application window.
II

394

Chapter 7 Files, Databases, and the Registry

LRESULT CALLBACK MainWndProc (HWND hWnd. UINT wMsg, WPARAM wParam,
LPARAM lParam) {

}

INT i ;
II
II Search message list to see if we need to handle this
II message. If in list, call function.
II
for (i = 0: i < dim(MainMessages); i++)

if CwMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxnl(hWnd, wMsg, wParam, lParam);

return DefWindowProc ChWnd, wMsg, wParam, lParam);

11- -- - - - - - - - - ---- -------- -- -- --- -- -- - - - - -- - -- - - - - - - - -- -- - - - - - --- - -- - ----
11 DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {
HWND hwndCB, hwndChild;
INT nHeight, nCnt;
RECT rect;
LPCREATESTRUCT lpcs;

II Convert lParam into pointer to create structure.
lpcs = (LPCREATESTRUCT) lParam;

II Create a minimal command bar that only has a menu and an
II exit button.
hwndCB = CommandBar_Create (hinst, hWnd. IDC_CMDBAR);
II Insert the menu.
CommandBar_InsertMenubar (hwndCB, h!nst, ID_MENU, 0);
II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 0);
nHeight = CommandBar_Height ChwndCB);

SetRect <&rect, 0, nHeight, lpcs ->cx, lpcs ->cy - nHeight);
hwndChild = CreateViewer (hWnd, &rect, ID_VIEWER);

II Destroy frame if window not created.
if (!IsWindow (hwndChild)) {

DestroyWindow (hWnd);
return 0:

ListView_SetitemCount ChwndChild, nCnt);
return 0;

(continued)

395

Part II Windows CE Basics

Figure 7-1. continued

11 ---------------------- -- ---------- --------- -- --------- ----------
11 DoSizeMain - Process WM_SIZE message for window.
II
LRESULT DoSi zeMain CHWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam){

HWND hwndViewer:

}

RECT rect:

hwndViewer = GetDlgitem ChWnd, ID_VIEWER);

II Adjust the si ze of the client rect to take into account
II the command bar height.
GetCl i entRect ChWnd, &rect);
rect.top += CommandBar_Height CGetDlgltem ChWnd, IDC_CMDBAR));

SetWindowPos (hwndViewer, NULL, rect.left, rect.top,
erect.right - rect .l eft), rect.bo t tom - rect.top,
SWP_NOZORDER);

return 0;

ll --------------------------------·----- ----------------------------- -- -
11 DoCommandMain - Process WM_COMMAND message for window.
II
LRESULT DoCommandMa i n CHWND hWnd, UINT wMsg, WPARAM wParam,

}

LPARAM lParam) (
WORD id l tem. wNotifyCode:
HWND hwndCtl ;
INT i:

II Parse the parameters.
idltem = (WORD) LOWORD CwParam);
wNotifyCode = (WORD) HIWORD CwParam);
hwndCtl = CHWND) lParam ;

II Call routine to handle control message.
for Ci = 0; i < dimCMainCommandltems); i++)

if (idltem == MainCommanditems[i].Code)
return (*MainCommanditems[i].Fxn)ChWnd, idltem, hwndCtl,

wNotifyCode):

return 0:

11 --
11 DoDestroyMain - Process WM_DESTROY message for window.
II

396

Chapter 7 Files, Databases, and the Registry

LRESULT DoDestroyMain CHWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM lParam) {

PostQuitMessage (0);
return 0:

}

II==
II Command handler routines
11--- ----- ------- ---- -------- -- ---- ----- ---------- ---- --- ----- ------ ----
11 DoMainCommandDpen - Process File Open command.
II
LPARAM DoMainCommandOpen CHWND hWnd, WORD idltem, HWND hwndCtl.

}

WORD wNotifyCode) {
TCHAR szFileName[MAX_PATH]. szText[64];
HWND hwndViewer;
INT re;

hwndViewer = GetDlgltem (hWnd, ID_VIEWER);

if (MyGetFileName (hWnd, szFileName . dim(szFileName)) 0)
return 0;

II Tell the viewer control to open the file.
re= SendMessage ChwndViewer. VM_OPEN. 0, CLPARAM)szFileName);

if (re) {

}

wsprintf (szText, TEXT ("File open failed. re: Sd ") ,re):
MessageBox (hWnd, szText, szAppName, MB_OK);
return 0:

return 0:

1/ -- --
11 DoMainCommandExit - Process Program Exit command.
II
LPARAM DoMainCommandExit (HWND hWnd, WORD idltem, HWND hwndCtl.

}

WORD wNotifyCode) {

SendMessage (hWnd, WM_CLOSE, 0, 0);
return 0;

11 -- ------ -- ---- ------ ------ --- ------------- ------ -------- ------- ---- -- -
11 DoMainCommandVText - Process the View Text command.
II
LPARAM DoMainCommandVText CHWND hWnd. WORD idltem. HWND hwndCtl.

WORD wNotifyCode) {
return 0;

(continued)

397

Part II Windows CE Basics

Figure 7-1. continued

11--
11 DoMainCommandVHex - Process the View Hex command.
II
LPARAM DoMainCommandVHex CHWND hWnd, WORD idltem, HWND hwndCtl.

WORD wNotifyCode) {
return 0:

)

11----------- ------------------------------- ------------------------ -- --
11 DoMainCommandAbout - Process the Help I About menu command.
II
LPARAM DoMainCommandAboutCHWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

)

II Use DialogBox to create a modal dialog.
DialogBox Chlnst, TEXT C"aboutbox"), hWnd, AboutDlgProc);
return 0:

II==
II About Dialog procedure
II
BOOL CALLBACK AboutDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
switch (wMsg > {

case WM_COMMAND:
switch (LOWORD (wParam>>

case IDOK:
case IDCANCEL:

break:

return FALSE:

EndDialog ChWnd. 0):
return TRUE:

11---------------- --
11 MyGetFileName - Returns a filename using the common dialog.
II
INT MyGetFileName (HWND hWnd, LPTSTR szFileName , INT nMax) {

OPENFILENAME of:
const LPTSTR pszOpenFilter =TEXT ("All Documents (•.•)\0•.•\0\0"):

szFileName[0] = '\0': II Initial filename
memset C&of, 0, sizeof (of)): II Initial file open structure

398

Chapter 7 Files, Databases, and the Registry

of . lStructSize = sizeof (of);
of.hwndOwner = hWnd;
of.lpstrFile = szFileName;
of.nMaxFile = nMax;
of.lpstrFilter = pszOpenFilter;
of . Flags = 0;

if (GetOpenFileName C&of))
return lstrlen (szFileName);

else
return 0;

Viewer.h

//==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==

/fdefi ne VM_OPEN (WM_USER+100)

11-- - - - --- - - - - - - - -- - - -- -- ----- - - -- -- -- -------
11 Function prototypes
II
int RegisterCtl (HINSTANCE hlnstance);
HWND CreateViewer CHWND hParent, RECT *prect, int nIDl:
int TermViewer CHINSTANCE hlnstance, int nDefRC);

Vlewer.c

II==
II Viewer - A file view control
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff

#include "fileview.h"
#include "viewer.h"

II Program-specific stuff
II Control-specific stuff

(continued)

399

Part II Windows CE Basics

Figure 7-1. continued

11----------------- ---
11 Internal function prototypes
LRESULT CALLBACK ViewerWndProc CHWND. UINT. WPARAM, LPARAM);

II Message handlers
LRESULT DoCreateViewer CHWND. UINT, WPARAM. LPARAM);
LRESULT DoSizeViewer CHWND. UINT, WPARAM. LPARAM);
LRESULT DoPaintViewer CHWND. UINT, WPARAM. LPARAM);
LRESULT DoVScrollViewer CHWND . UINT, WPARAM, LPARAM);
LRESULT DoDestroyViewer (HWND. UINT, WPARAM. LPARAM);
LRESULT DoOpenViewer CHWND. UINT. WPARAM. LPARAM);

HFONT GetFixedEquiv (HWND hWnd, HFONT hFontin);

#define BUFFSIZE 4096
11--------------- ------------------- --- ---------------------------------
11 Global data
extern HINSTANCE hinst;
HANDLE g_hFile = 0;
LONG g_lFileSize;
PBYTE g_pBuff = 0;
LONG g_lFilePtr = 0;

LONG g_lBuffBase = 0;
INT g_nBuffLen = 0;
HFONT g_hFont = 0;
INT g_nPageLen = 0;

II Program instance handle
II Handle to the opened file
II Size of the file
II Pointer to file data buffer
II Pointer to current offset
II 1 nto file
II Offset into file of buffer data
II Size of data in file buffer
II Fixed pitch font used for text
II Number of bytes displayed I page

const TCHAR szViewerCls[J =TEXT ("Viewer");

II Message dispatch table for ViewerWindowProc
const struct decodeUINT ViewerMessages[J = {

WM_CREATE. DoCreateV1ewer,
WM_PAINT. DoPaintViewer,
WM_SIZE. DoS1zeViewer,
WM_VSCROLL. DoVScrollViewer,
WM_OESTROY, DoDestroyViewer,
VM_OPEN. DoOpenV1ewer.

} ;

11-- ------- ---- ---------------
11 RegisterCtl - Register the viewer control.
II
int RegisterCtl CHINSTANCE hinstance) {

WNDCLASS we;

400

Chapter 7 Files, Databases, and the Registry

}

II Register application
we.style = 0:

viewer window class.

wc.lpfnWndProc = ViewerWndProc;
wc.cbClsExtra = 0:
wc.cbWndExtra = 0;
wc.hlnstance = hlnstance:
wc.hlcon = NULL,

II Window style
II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon
II Default cursor

GetStockObject CWHITE_BRUSH);
wc.hCursor = NULL:
wc.hbrBackground = CHBRUSH)
wc.lpszHenuName = NULL:
wc.lpszClassName = szViewerCls:

II Menu name
II Window class name

if (RegisterClass C&wc) == 0) return 1:

return 0;

11 --
11 CreateViewer - Create a viewer control.
II
HWND CreateViewer CHWND hParent, RECT • prect, int nlD) {

HWND hwndCtl;

}

II Create viewer control.
hwndCtl = CreateWindowEx (0 , szViewerCls, TEXT (""),

WS_VISIBLE I WS_CHILD I WS_VSCROLL I
WS_BORDER, prect ->left, prect ->top,
prect -> right - prect->left,
prect ->bottom - prect ->top,
hParent, CHHENU)nlD, hlnst, NULL):

return hwndCtl:

11 --
11 Termlnstance - Program cleanup
II
int TermViewer CHINSTANCE hlnstance, int nDefRC) {

if (g_hFile)
CloseHandle (g_hFile):

if (g_pBuff)
LocalFree (g_pBuff);

if (g_hfont)
DeleteObject (g_hFont):

return nDefRC:

II Close the opened file.

II Free buffer.

(continued)

401

Part II Windows CE Basics

Figure 7-1. continued

II==
II Message handling procedures for ViewerWindow
11 - - --- --- --- ---------- - - - - - - - - - - ---- - - - - - - - -- -- - - ------- - -- - - - - - - - - - - - -
II ViewerWndProc - Callback function for viewer window
II
LRESULT CALLBACK Vi ewerWndProc (HWND hWnd, UlNT wMsg, WPARAM wParam,

LPARAM l Pa ram) (

}

INT i ;
II
II Search message list to see if we need to handle this
II message. If i n list, call procedure.
II
for Ci = 0; i < dim(ViewerMessages); i++)

if CwMsg == ViewerMessages[i].Codel
return (*ViewerMessages[iJ.Fxnl(hWnd, wMsg, wParam, lParam);

return DefWindowProc ChWnd, wMsg, wParam, lParaml;

11 -- - -
11 DoCreateViewer - Process WM_CREATE message for window .
II
LRESULT DoCreateViewer (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) (
LPCREATESTRUCT lpcs;

II Convert lParam into pointer to create struct.
lpcs = CLPCREATESTRUCT) lParam;

II Allocate a buffer .
g_pBuff = LocalAlloc CLMEM_FIXED, BUFFSIZE);
if C ! g_pBuff) (

}

MessageBox (NULL, TEXT ("Not enough memory"),
TEXT ("Error"). MB_OK);

return 0;

II Create a fixed -pitch font.
g_hFont = GetFixedEquiv ChWnd, 0);
return 0;

11 -- - -
11 DoSizeViewer - Process WM_SIZE message for window.
II
LRESULT DoSizeViewer CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram)(
return 0;

402

Chapter 7 Files, Databases, and the Registry

11 -- - ------ - - - - - - ---- - - - - - - - - -- ------ -- -- -- -- -- -- - - -- -- - - - - --- ----
11 ComposeLine - Converts hex buff to unicode string
II
int ComposeLine {INT nOffset, LPTSTR szOut) (

INT i , nLen, nBuffOffset;
TCHAR szTmp[l6];
LPBYTE pPtr;
OWORD cBytes;

sz0ut[0] = TEXT {'\0');
if (g_hFile == 0)

return 0;
II If no file open, no text

II Make sure we have enough bytes in buffer for dump.
if CCnOffset + 16 > g_lBuffBase + g_nBuffLen) I I

CnOffset < g_lBuffBase)) (

II Move file pointer to new place and read data.
SetFilePointer (g_hFile, nOffset, NULL, FILE_BEGIN);
if C!ReadFile {g_hFile, g_pBuff, BUFFSIZE, &cBytes, NULL))

return 0;
g_l BuffBase = nOffset;
g_nBuffLen = cBytes;

nBuffOffset = nOffset - g_lBuffBase;
if CnBuffOffset > g_nBuffLen)

return 0;

II Now create the text for the line.
wsprintf CszOut, TEXT ("%08X "), nOffset);

pPtr = g_pBuff + nBuffOffset;
nLen = g_nBuffLen - nBuffOffset;
if {nLen > 16)

nLen = 16;
for Ci = 0; i < nLen; i++) (

wsprintf {szTmp, TEXT {"%02X"), *pPtr++);
lstrcat {szOut, szTmp) ;
if (i == 7)

lstrcat CszOut, TEXT(" -"));
else

lstrcat CszOut, TEXT(""));

return nLen;

(conlinued)

403

Part 11 Windows CE Basics

Figure 7·1. continued

11 --- -- ---- -- ---------------
11 DoPaintViewer - Process WM_PAINT message for window.
II
LRESULT DoPaintViewer (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram} {

}

TCHAR sz0ut[128]:
INT nFontHeight:
INT i, yCurrent:
TEXTMETRIC tm;
PAINTSTRUCT ps;
HFONT hOl dFont;
RECT rect:
HOC hdc:

hdc = BeginPaint (hWnd, &ps};
GetClientRect (hWnd, &rect}:

hOldFont = SelectObject (hdc, g_hFont}:

II Get the height of the default font.
GetTextMetrics (hdc, &tm}:
nFontHeight = tm.tmHeight + tm.tmExternalLeading:

i = 0:
yCurrent = rect.top:
while (yCurrent < rect.bottoml

i += ComposeLine (g_lFilePtr+i, szOut}:
ExtTextOut (hdc, 5, yCurrent, 0, NULL,

szOut . lstrlen CszOut}, NULL}:

II Update new draw point.
yCurrent += nFontHeight:

SelectObject (hdc, hOldFont};
EndPaint (hWnd, &ps}:
g_nPageLen = i:
return 0:

11 --
11 DoVScrollViewer - Process WM_VSCROLL message for window.
II
LRESULT DoVScrollViewer (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram} {
RECT rect:
SCROLLI NFO s i:
INT sOldPos = g_lFilePtr:

404

Chapter 7 Files, Databases, and the Registry

}

GetClientRect (hWnd, &rect):

switch CLOWORD CwParam>>
case SB_LINEUP:

g_lFilePtr -= 16:
break :

case SB_LINEDOWN:
g_lFilePtr += 16:
break:

case SB_PAGEUP:
g_lFilePtr
break:

g_nPageLen:

case SB_PAGEDOWN:
g_lFilePtr += g_nPageLen:
break:

case SB_THUMBPOSITION:

}

g_lFilePtr = HIWORD CwParam):
break:

II Check range.
if (g_lFilePtr < 0)

g_lFilePtr 0:
if (g_lFilePtr > g_lFileSize -16)

g_lFilePtr = Cg_lFileSize - 16) & 0xfffffff0:

II If scroll position changed, update scrollbar and
II force redraw of window.
if (g_lFilePtr != sOldPos) (

}

si.cbSize = sizeof Csi);
si.nPos = g_lFilePtr:
si.fMask = SIF_POS:
SetScrolllnfo ChWnd, SB_VERT, &si, TRUE);

lnvalidateRect ChWnd, NULL, TRUE):

return 0:

11 - - - --- -- ---- ---- - - - - - - --- - - ----- - - - - - - -- - ----- ------ -- --- -- - --- - - - --- -
II DoDestroyViewer - Process WM_DESTROY message for window.
II

(continued)

405

Part II Windows CE Basics

Figure 7-1. continued

LRESULT DoDestroyViewer (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM lParam) {

}

if (g_hFile)
CloseHandle (g_hFile) ;

g_hFile = 0;
return 0;

11--- -------- ----------------- --- ---------------------------------------
11 DoOpenViewer - Process VM_OPEN message for window.
II
LRESULT DoOpenViewer CHWND hWnd, UINT wMsg, WPARAM wParam.

}

LPARAM l Pa ram){
SCROLLINFO si;

if (g_hFil e)
CloseHandle (g_hFile);

II Open the file.
g_hFile = CreateFile CCLPTSTRllParam, GENERIC_READ I GENERIC_WRITE.

FILE_SHARE_READ. NULL. OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL. NULL);

if (g_hFile == INVALID_HANDLE_VALUEl
g_hFile = 0;
return GetLastError();

}

g_lFilePtr = wParam;
g_lFileSize = GetFileSize (g_hFile, NULL);

si.cbSize = sizeof (si);
si . nMin = 0:
si.nMax = g_lFileSize:
si.nPos = g_lFilePtr:
si.fMask = SIF_POS I SIF_RANGE;
SetScrollinfo ChWnd, SB_VERT. &si. TRUE);

InvalidateRect ChWnd, NULL, TRUE);
return 0;

1/ -- ---------------------------- --------------------------- ---- ---------
HFONT GetFixedEquiv CHWND hWnd, HFONT hFontin) {

HOC hdc;
TEXTMETRIC tm;
LOG FONT l f;
HFONT hOldFont;

406

Chap ter 7 Files, Databases, and the Registry

hdc = GetDC (hWnd) :
i f ChFontln == 0)

hFontln = GetStockObject CSYSTEM_FONT);
hOldFont = SelectObject (hdc, hFontlnl:
GetTextMetrics (hdc, &tm):
SelectObject (hdc, hOldFontl:
ReleaseDC (hWnd, hdc);

memset C&lf, 0, sizeof (lfll:

1f.1 fHei ght
1f .1 fWei ght
lf . lfltal i c

- (tm . tmHeightl:
tm . tmWeight:
tm.tmltalic:

lf.lfUnderline tm.tmUnderlined:
lf . lfStrikeOut tm.tmStruckOut:
lf . lfCharSet tm.tmCharSet:
lf.lfOutPrecision = OUT_DEFAULT_PRECIS:
lf.lfClipPrecision = CLIP_DEFAULT_PRECIS:
lf . lfQuality = DEFAULT_QUALITY;
lf . lfP i tchAndFamily = Ctm . tmPitchAndFamily & 0xf0) I TMPF_FIXED_PITCH;
lf.lfFaceName[0] = TEXT (' \0 ') :

II Create the font from the LOGFONT structure passed.
return CreateFontlndirect C&lfl:

The C source code is divided into two files , FileView.c and Viewer.c. FileView.c
contains the standard windows functio ns and the me nu command handle rs . In
Viewer.c, you find the ource code for a child window that opens the fil e and dis
plays its contents. The routines of interest are DoOpen Viewer, where the file is opened,
and Composel ine, where the fil e data is read . Both of these routines are in Viewer.c.
DoOpen Viewer uses CreateFile to open the file with read only access. If the function
succeeds, it calls GetFileSize to query the size of the file being viewed. This is used to
initialize the range of the view window scrollbar. The window is then invalidated to
force a WM_PAINT message to be sent.

In the WM_PAl T handler, OnPaintViewer, a fixed pitch font is selected into
the device context, and data from the file , starting at the current scroll location, is
di played in the window after the application ca lls the Comp osel ine function. This
routine is re ponsible for reading the fil e data into a 4096-byte buffer. The data is
then read out of the buffer 16 bytes at a time as each line is displayed. If the data for
the line isn 't in the file buffer, Composel ine refill s the buffer with the proper data from
the file by calling SetFilePointer and then ReadFile.

407

Part II Windows CE Basics

Memory-Mapped Files and Objects

408

Memory-mapped files give you a completely different method for reading and writ
ing files . With the standard file 1/0 functions , files are read as streams of data. To
access bytes in different part of a file , the file pointer mu t be moved to the first byte,
the data read, the file pointer moved to the other byte, and then the file read again.

With memory-mapped files , the file is mapped to a region of memory. Then,
instead of using FileRead and FileWrite, you simply read and write the region of
memory that's mapped to the file . Updates of the memory are automatically reflected
back to the file itself. Setting up a memory-mapped file is a somewhat more complex
process than making a simple call to CreateFile, but once a file is mapped, reading
and writing the file is trivial.

Memory-mapped files
Window CE uses a slightly different procedure from Windows NT or Windows 98 to
access a memory-mapped file . To open a file for memory-mapped access, a new
function , unique to Windows CE, is used; it's named CreateFileForMapping. The pro
totype for this function is the following:

HANDLE CreateFileforMapping (LPCTSTR lpfileName, DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition,
DWORD dwFlagsAndAttributes.
HANDLE hTemplatefile);

The parameters for this function are similar to those for CreateFile. The filename
is the name of the file to read. The dwDesiredAccess parameter, specifying the access
rights to the file , must be a combination of GENERIC_READ and GENERIC_ WRITE,
or it must be 0. The security attributes must be NULL, while the hTemplateFile pa
rameter is ignored by Windows CE. Note that Windows CE 2.1 is the first version of
Window CE to support write acce s to memory-mapped files. If you try to use this
function in versions earlier than 2.1, it will fail if the dwDesiredAccess parameter con
tains the GENERIC_ WRITE flag .

The handle returned by CreateFileForMapping can then be passed to

HANDLE CreatefileMapping (HANDLE hfile,
LPSECURITY_ATTRIBUTES lpfileMappingAttributes,
DWORD flProtect, DWORD dwMaximumSizeHigh,
DWORD dwMaximumSizeLow, LPCTSTR lpName);

Thi function creates a file mapping object and ties the opened file to it. The first
parameter for this function is the handle to the opened file . The security attributes
parameter must be set to NULL under Windows CE. The flProtect parameter should
be loaded with the protection flags for the vittual pages that will contain the file data .

Chapter 7 Files, Databases, and the Registry

The maximum size parameters should be set to the expected maximum size of the
object, or they can be set to 0 if the object should be the same size as the file being
mapped. The lpName parameter allows you to specify a name for the object. This is
handy when you're using a memory-mapped file to share information across differ
ent processes. Calling CreateFileMapping with the name of an already-opened fi.le
mapping object returns a handle to the object already opened instead of creating a
new one.

Once a mapping object has been created, a view into the object is created by
calling

LPVOID MapViewOfFile (HANDLE hFileMappingObject, DWORD dwDesiredAccess,
DWORD dwFileOffsetHigh, DWORD dwFileOffsetlow,
DWORD dwNumberOfBytesToMap);

MapViewOfFile returns a pointer to memory that's mapped to the file. The function
takes as its parameters the handle of the mapping object just opened as well as the
access rights, which can be FILE_MAP _READ, FILE_MAP _WRITE, or FILE_MAP _ALL_
ACCESS. The offset parameters let you specify the starting point within the file that
the view starts, while the dwNumberO}BytesToMap parameter specifies the size of
the view window.

These last three parameters are useful when you're mapping large objects. In
stead of attempting to map the file as one large object, you can specify a smaller view
that starts at the point of interest in the file. This reduces the memory required be
cause only the view of the object, not the object itself, is backed up by physical RAM.

When you're finished with the memory-mapped file, a little cleanup is required.
First a call to

BOOL UnmapViewOfFile (LPCVOID lpBaseAddress);

unmaps the view to the object. The only parameter is the pointer to the base address
of the view.

Next, a call should be made to close the mapping object and the file itself. Both
these actions are accomplished by means of calls to CloseHandle. The first call should
be to close the memory-mapped object, and then CloseHandle should be called to
close the file.

The code fragment that follows shows the entire process of opening a file for
memory mapping, creating the file-mapping object, mapping the view, then clean
ing up. The routine is written to open the file in read-only mode. This allows the code
to run under all versions of Windows CE.

HANDLE hFile, hFileMap;
PBYTE pFi l eMem;
TCHAR szFileName[MAX_PATH];

(continued)

409

Part II

410

II Get the filename.

hFile = CreateFileForMapping CszFileName, GENERIC_READ,
FILE_SHARE_READ, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL
FILE_FLAG_RANDOM_ACCESS,0);

if (hFile != INVALID_HANDLE_VALUE) {

hFileMap = CreateFileMapping (hFile, NULL, PAGE_READONLY, 0, 0, 0);
if (hFileMap) {

pFileMem = MapViewOfFile (hFileMap, FILE_MAP_READ, 0, 0, 0);
if (pFileMem) {

II
II Use the data in the file.
II

II Start cleanup by unmapping view.
UnmapViewOfFile CpFileMem);

CloseHandle (hFileMap);

CloseHandle ChFile);

Memory-mapped objects
One of the more popular uses for memory-mapped objects is for interprocess com
munication. For this purpose, you don't need to have an actual file; it's the shared
memory that's important. Windows CE supports entities referred to as unnamed
memory-mapped objects. These objects are memory-mapped objects that, under Win
dows NT and Windows 98, are backed up by the paging file but under Windows CE
are simply areas of virtual memory with only program RAM to back up the object.
Without the paging file, these objects can't be as big as they would be under Win
dows NT or Windows 98 but Windows CE does have a way of minimizing the RAM
required to back up the memory-mapped object.

You create such a memory-mapped object by eliminating the call to
CreateFileForMapping and passing a -1 in the handle field of CreateFileMapping. Since
no file is specified, you must specify the size of the memory-mapped region in the
maximum size fields of CreateFileMapping. The following routine creates a 16-MB
region using a memory-mapped file:

II Create a 16-MB memory mapped object.
hNFileMap = CreateFileMapping ((HANDLE)-1, NULL, PAGE_READWRITE,

0, 0xl000000, NULL);

Chapter 7 Files, Databases, and the Registry

if (hNFi l eMap)
II Map in the object.
pNFileMem = MapViewOfFile (hNFileMap,

FILE_MAP_WRITE, 0, 0, 0);

The memory object created by the code above doesn't actually commit 16 MB
of RAM. Instead, only the address space is reserved. Pages are autocommitted as they're
accessed. This process allows an application to create a huge, sparse array of pages
that takes up only as much physical RAM as is needed to hold the data. At some point,
however, if you start reading or writing to a greater number of pages, you'll run out
of memory. When this happens, the system generates an exception. I'll talk about
how to deal with exceptions in the next chapter. The important thing to remember is
that if you really need RAM to be committed to a memory-mapped object, you need
to read each of the pages so that the system will commit physical RAM to that ob
ject. Of course, don't be too greedy with RAM; commit only the pages you abso
lutely require.

Naming a memory-mapped object
A memory-mapped object can be named by passing a string to CreateFileMapping.
This isn't the name of a file being mapped. Instead the name identifies the mapping
object being created. In the previous example, the region was unnamed. The follow
ing code creates a named memory-mapped object named Bob. This name is global
so that if another process opens a mapping object with the same name, the two pro
cesses will share the same memory mapped object.

II Create a 16-MB memory mapped object.
hNFileMap = CreateFileMapping ((HANDLE)-1, NULL, PAGE_READWRITE,

0, 0xl000000, TEXT ("Bob"));
if (hNFileMap)

II Map in the object.
pNFileMem = MapViewOfFile (hNFileMap,

FILE_MAP_WRITE, 0, 0, 0);

The difference between named and unnamed file mapping objects is that a
named object is allocated only once in the system. Subsequent calls to CreateFile
Mapping that attempt to create a region with the same name will succeed, but the
function will return a handle to the original mapping object instead of creating a new
one. For unnamed objects, the system creates a new object each time CreateFile
Mapping is called.

When using a memory-mapped object for interprocess communication, processes
should create a named object and pass the name of the region to the second process,
not a pointer. While the first process can simply pass a pointer to the mapping region
to the other process, this isn't advisable. If the first process frees the memory-mapped

411

file region while the second process is still accessing the file, an exception will oc
cur. Instead, the second process should create a memory-mapped object with the same
name as the initial process. Windows knows to pass a pointer to the same region that
was opened by the first process. The system also increments a use count to track
the number of opens. A named memory-mapped object won't be destroyed until
all processes have closed the object. This assures a process that the object will re
main at least until it closes the object itself. The XTALK example in Chapter 8 pro
vides an example of how to use a named memory mapped object for interprocess
communication.

Navigating the File System

412

Now that we've seen how files are read and written, let's take a look at how the
files themselves are managed in the file system. Windows CE supports most of the
convenient file and directory management APis, such as CopyFile, MoveFile, and
CreateDirectory.

File and directory management
Windows CE supports a number of functions useful in file and directory management.
You can move files using MoveFile, copy them using CopyFile, and delete them using
DeleteFile. You can create directories using CreateDirectory and delete them using
RemoveDirectory. While most of these functions are straightforward, I should cover
a few intricacies here.

To copy a file, call

BOOL CopyFile (LPCTSTR lpExistingFileName, LPCTSTR lpNewFileName,
BOOL bFailifExists):

The parameters are the name of the file to copy and the name of the destination di
rectory. The third parameter indicates whether the function should overwrite the
destination file if one already exists before the copy is made.

Files and directories can be moved and renamed using

BOOL MoveFile (LPCTSTR lpExistingFileName, LPCTSTR lpNewFileNam);

To move a file, simply indicate the source and destination names for the file. The
destination file must not already exist. File moves can be made within the object store,
from the object store to an external drive, or from an external drive to the object store.
MoveFile can also be used to rename a file. In this case, the source and target direc
tories remain the same; only the name of the file changes.

MoveFile can also be used in the same manner to move or rename directories.
The only exception is that MoveFik can't move a directory from one volume to an
other. Under Windows CE, MoveFile moves a directory and all its subdirectories and

Chapter 7 Files, Databases, and the Registry

files to a different location within the object store or different locations within an
other volume.

Deleting a file is as simple as calling

BOOL DeleteFile (LPCTSTR lpFileNarne);

You pass the name of the file to delete. For the delete to be successful, the file must
not be currently open.

You can create and destroy directories using the following two functions:

BOOL CreateDirectory (LPCTSTR lpPathNarne,
LPSECURITY_ATTRIBUTES lpSecurityAttributes);

and

BOOL RernoveDirectory (LPCTSTR lpPathNarne);

CreateDirectory takes the name of the directory to create and a security parameter
that should be NULL under Windows CE. RernoveDirectory deletes a directory. The
directory must be empty for the function to be successful.

Finding files
Windows CE supports the basic FindFirstFile, FindNextFile, FindClose procedure for
enumerating files as is supported under Windows NT or Windows 98. Searching is
accomplished on a per-directory basis using template filenames with wild card char
acters in the template.

Searching a directory involves first passing a filename template to FindFirstFile,
which is prototyped in this way:

HANDLE FindFirstFile (LPCTSTR lpFileNarne,
LPWIN32_FIND_DATA lpFindFileData);

The first parameter is the template filename used in the search. This filename can
contain a fully specified path if you want to search a directory other than the root.
Windows CE has no concept of Current Directory built into it; if no path is specified
in the search string, the root directory of the object store is searched.

As would be expected, the wild cards for the filename template are ? and *.

The question mark (?) indicates that any single character can replace the question
mark. The asterisk (*) indicates that any number of characters can replace the as
terisk. For example, the search string \windows\alarrn?.wav would return the files
\windows\alarml.wav, \windows\alarm2.wav, and \windows\alarm3.wav. On the
other hand, a search string of \windows*.wav would return all files in the windows
directory that have a wav extension.

The second parameter of FindFirstFile is a pointer to a WIN32_FIND_DATA struc
ture as defined at the top of the following page.

413

Part II Windows

414

typedef struct _WIN32_FIND_DATA {
DWORD dwfileAttributes;
FILETIME ftCreationTime;
FILETIME ftLastAccessTime;
FILETIME ftlastWriteTime;
DWORD nFileSizeHigh;
DWORD nFileSizelow;
DWORD dwOID;
WCHAR cFileName[MAX_PATH];

} WIN32_FINO_DATA;

This structure is filled with the file data for the first file found in the search. The fields
shown are similar to what we've seen.

If FindFirstFile finds no files or directories that match the template filename, it
returns INVALID_HANDLE_ VALUE. If at least one file is found, FindFirstFile fills in
the WIN32_FIND_DATA structure with the specific data for the found file and returns
a handle value that you use to track the current search.

To find the next file in the search, call this function:

BOOL FindNextFile (HANDLE hFindFile,
LPWIN32_FIND_DATA lpFindFileData);

The two parameters are the handle returned by FindFirstFile and a pointer to a find
data structure. FindNextFile returns TRUE if a file matching the template passed to
FindFirstFile is found and fills in the appropriate file data in the WIN32_FIND_DATA
structure. If no file is found, FindNextFile returns FALSE.

When you've finished searching either because FindNextFile returned FALSE or
because you simply don't want to continue searching, you must call this function:

BOOL FindClose (HANDLE hfindFile);

This function accepts the handle returned by FindFirstFile. If FindFirstFile returned
INVALID_ HANDLE_ VALUE, you shouldn't call FindClose.

The following short code fragment encompasses the entire file search process.
This code computes the total size of all files in the Windows directory.

WIN32_FIND_DATA fd;
HANDLE hFind;
INT nTotalSize = 0;

II Start search for all files in the windows directory.
hFind FindFirstfile (TEXT ("\\windows\\•.•"), &fd);

II If a file was found. hFind will be valid.
if (hfind != INVALID_HANDLE_VALUE) {

Chapter 7 Files, Databases, and the Registry

II Loop through found files. Be sure to process file
II found with FindFirstFile before calling FindNextFile.
do {

II If found file is not a directory, add its size to
II the total. (Assume that the total size of all files
II is less than 2 GB.)
if (!(fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY))

nTotalSize += fd.nFileSizeLow;

II See if another file exists.
} while (FindNextFile (hFind, &fd));

II Clean up by closing file search handle.
FindClose (hFind);

In this example, the windows directory is searched for all files. If the found "file" isn't
a directory, that is, if it's a true file, its size is added to the total. Notice that the return
handle from FindFirstFile must be checked, not only so that you know whether a file
was found but also to prevent FindClose from being called if the handle is invalid.

Determining drives from directories
As I mentioned at the beginning of this chapter, Windows CE doesn't support the
concept of drive letters so familiar to MS-DOS and Windows users. Instead, file stor
age devices such as PC Cards or even hard disks are shown as directories in the root
directory. That leads to the question, "How can you tell a directory from a drive?"
The newer versions of Windows CE, starting with version 2.1, don't have a predefined
name for these other storage devices. Using a predefined name is shaky at best, any
way, given that the name was originally PC Card and then changed to Storage Card.

Instead, you need to look at the file attributes for the directory. Directories that are
actually secondary storage devices-that is, they store files in a place other than the
object store-have the file attribute flag FILE_ATTRIBUTE_TEMPORARY set. So, finding
storage devices on any version of Windows CE is fairly easy as is shown in the fol
lowing code fragment:

WIN32_FIND_DATA fd;
HANDLE hFind:
TCHAR szPath[MAX_PATHJ;
ULARGE_INTEGER lnTotal, lnFree;

lstrcpy (szPath, TEXT("\\•.•"));
hFind = FindFirstFile (szPath, &fd);

if (hFind != INVALID_HANDLE_VALUE) {

(continued)

415

Part II Windows CE Basics

416

}

do {
if ((fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) &&

(fd.dwFileAttributes & FILE_ATTRIBUTE_TEMPORARY)) {

}

II Get the disk space statistics for drive.
GetDiskFreeSpaceEx (fd.cFileName, NULL, &lnTotal.

& l nFree):

while (FindNextFile (hFind, &fd));
FindClose (hFind);

This code uses the find first/find next functions to search the root directory for
all directories with the FILE_ATIRIBUTE_TEMPORARY attribute set.

Notice in the code I just showed you, the call to this function:

BOOL GetDiskFreeSpaceEx (LPCWSTR lpDirectoryName,
PULARGE_INTEGER lpFreeBytesAvailableToCaller,
PULARGE_INTEGER lpTotalNumberOfBytes,
PULARGE_INTEGER lpTotalNumberOfFreeBytes);

This function provides information about the total size of the drive, and amount of
free space it contains. The first parameter is the name of any directory on the drive in
question. This doesn't have to be the root directory of the drive. GetDiskFreeSpaceEx
returns three values: the free bytes available to the caller, the total size of the drive,
and the total free space on the drive. These values are returned in three
ULARGE_INTEGER structures. These structures contain two DWORD fields named
LowPart and High Part. This allows GetDiskFreeSpaceEx to return 64-bit values. Those
64-bit values can come in handy on Windows NT and Windows 98, where the drives
can be large. If you aren't interested in one or more of the fields, you can pass a NULL
in place of the pointer
for that parameter. You can also use GetDiskFreeSpaceEx to determine the size of the
object store.

Another function that can be used to determine the size of the object store is

BOOL GetStorelnformation (LPSTORE_INFORMATION lpsi);

GetStorelnformation takes one parameter a pointer to a STORE_INFORMATION struc
ture defined as

typedef struct STORE_INFORMATION
DWORD dwStoreSize;
DWORD dwFreeSize;

} STORE_INFORMATION, *LPSTORE_INFORMATION;

As you can see, this structure simply returns the total size and amount of free space
in the object store. Why would you use GetStorelnformation when GetDiskFree
SpaceEx is available and more general? Because GetDiskFreeSpaceEx wasn't available
under Windows CE 1.0 but GetStorelnformation was.

Chapter 7 Files, Databases, and the Registry

That covers the Windows CE file APL As you can see, very little Windows CE
unique code is necessary when you're working with the object store. Now let's look
at an entirely new set of functions, the database APL

DATABASES
Windows CE gives you an entirely unique set of database APis not available under
the other versions of Windows. The database implemented by Windows CE is simple,
with only one level and a maximum of four sort indexes, but it serves as an effective
tool for organizing uncomplicated data, such as address lists or to-do lists.

Under the first two versions of Windows CE, databases could reside only in the
object store, not on external media such as PC Cards. Starting with the release of
Windows CE 2.1 however, Windows CE can now work with databases on PC Cards
or other storage devices. This new feature required changes to the database API, ef
fectively doubling the number of functions with xxxEx database functions now shad
owing the original database APL While the newer versions of Windows CE still support
the original database functions, those functions can be used only with databases stored
in the object store.

Basic Definitions
A Windows CE database is composed of a series of records. Records can contain
any number of properties. These properties can be one of the data types shown in
Figure 7-2.

Data Type Description

iVal 2-byte signed integer

uiVal 2-byte unsigned integer

!Val 4-byte signed integer

ulVal 4-byte unsigned integer

FILE TIME A time and date structure

LPWSTR 0-terminated Unicode string

CEBLOB A collection of bytes

BOOL* Boolean

Double* 8-byte signed value

*This data type supported only under Windows CE 2.1 and later

Figure 7-2. Database data types supported by Windows CE.

417

Part II Windows

418

Records can't contain other records. Also, records can reside on only one data
base. Windows CE databases can't be locked. However, Windows CE does provide a
method of notifying a process that another thread has modified a database.

A Windows CE database can have up to four sort indices. These indices are
defined when the database is created but can be redefined later, although the restruc
turing of a database takes a large amount of time. Each sort index by itself results in
a fair amount of overhead, so you should limit the number of sort indices to what
you really need.

In short, Windows CE gives you a basic database functionality that helps appli
cations organize simple data structures. The pocket series of Windows CE applica
tions provided by Microsoft with the H/PC, H/PC Pro, and the Palm-size PC use the
database API to manage the address book, the task list, and e-mail messages. So, if
you have a collection of data, this database API might just be the best method of
managing that data.

Designing a database
Before you can jump in with a call to CeCreateDatabase, you need to think carefully
about how the database will be used. While the basic limitations of the Windows CE
database structure rule out complex databases, the structure is quite handy for man
aging collections of related data on a small personal device, which, after all, is one of
the target markets for Windows CE.

Each record in a database can have as many properties as you need as long as
they don't exceed the basic limits of the database structure. The limits are fairly loose.
An individual property can't exceed the constant CEDB_MAXPROPDATASIZE, which
is set to 65,471. A single record can't exceed CEDB_MAXRECORDSIZE, currently
defined as 131,072.

Database volumes
Starting with Windows CE 2.1, database files can now be stored in volumes instead
of directly in the object store. A database volume is nothing more than a specially
formatted file where Windows CE databases can be located. Because database vol
umes can be stored on file systems other than the object store, database information
can be stored on PC Cards or similar external storage devices. The most immediate
disadvantage of working with database volumes is that they must be first mounted
and then unmounted after you close the databases within the volume. Essentially,
mounting the database creates or opens the file that contains one or more databases
along with the transaction data for those databases.

There are disadvantages to database volumes aside from the overhead of
mounting and unmounting the volumes. Database volumes are actual files and there
fore can be deleted by means of standard file operations. The volumes are, by de
fault, marked as hidden, but that wouldn't deter the intrepid user from finding and

Chapter 7 Files, Databases, and the Registry

deleting a volume in a desperate search for more space on the device. Databases
created directly within the object store aren't files and therefore are much more dif
ficult for the user to accidentally delete.

The Database API

Once you have planned your database, given the restrictions and considerations nec
essary to it, the programming can begin.

Mounting a database volume
To mount a database volume, call

BOOL CeMountDBVol (PCEGUID pguid, LPWSTR lpszVol, DWORD dwFlags);

This function performs a dual purpose: it can create a new volume or open an exist
ing volume. The first parameter is a pointer to a guid. CeMountDBVol returns a guid
that's used by many of the Ex database functions to identify the location of the data
base file. You shouldn't confuse the CEGUID-type guid parameter in the database
functions with the GUID type that is used by OLE and parts of the Windows shell. A
CEGUID is simply a handle that tracks the opened database volume.

The second parameter in CeMountDBVol is the name of the volume to mount.
This isn't a database name, but the name of a file that will contain one or more data
bases. Since the parameter is a filename, you should define it in \path\name.ext for
mat. The standard extension should be cdb.

The last parameter, dwFlags, should be loaded with flags that define how this
function acts. The possible flags are the following:

• CREATE_NEW Creates a new database volume. If the volume already
exists, the function fails.

• CREATE_ALWAYS Creates a new database volume. If the volume already
exists, it overwrites the old volume.

• OPEN_fiXISTING Opens a database volume. If the volume doesn't exist,
the function fails.

• OPEN_ALWAYS Opens a database volume. If the volume doesn't exist,
a new database volume is created.

• TRUNCATE_EXISTING Opens a database volume and truncates it to 0
bytes. If the volume already exists, the function fails.

If the flags resemble the action flags for CreateFile, they should. The actions
of CeMountDBVol essentially mirror CreateFile except that instead of creating or

419

Part II Windows CE Basics

420

opening a generic file, CeMountDBVol creates or opens a file especially designed to
hold databases.

If the function succeeds, it returns TRUE and the guid is set to a value that is
then passed to the other database functions. If the function fails, a call to GetLastError
returns an error code indicating the reason for the failure.

Database volumes can be open by more than one process at a time. The sys
tem maintains a reference count for the volume. As the last process unmounts a da
tabase volume, the system unmounts the volume.

Enumerated mounted database volumes
You can determine what database volumes are currently mounted by repeatedly calling
this function:

BOOL CeEnumDBVolumes (PCEGUID pguid, LPWSTR lpBuf, DWORD dwSize);

The first time you call CeEnumDBVolumes, set the guid pointed to by pguid to be
invalid. You use the CREATE_INVALIDGUID macro to accomplish this. CeEnumDB
Volumes returns TRUE if a mounted volume is found and returns the guid and name
of that volume in the variables pointed to by pguid and lpBuff. The dwSize param
eter should be loaded with the size of the buffer pointed to by lpBii:ff: To enumerate
the next volume, pass the guid returned by the previous call to the function. Repeat
this process until CeEnumDBVolumes returns FALSE. The code below demonstrates
this process:

CEGUID guid;
TCHAR szVolume[MAX_PATH];
INT nCnt = 0;

CREATE_INVALIDGUID (&guid);
while (CeEnumDBVolumes (&guid, szVolume, sizeof (szVolume)))

II guid contains the guid of the mounted volume,
II szVolume contains the name of the volume.
nCnt++; II Count the number of mounted volumes.

}

Unmounting a database volume
When you have completed using the volume, you should unmount it by calling this
function:

BOOL CeUnmountDBVol (PCEGUID pguid);

The function's only parameter is the guid of a mounted database volume. Calling this
function is necessary when you no longer need a database volume and you want to
free system resources. Database volumes are only unmounted when all applications
that have mounted the volume have called CeUnmountDBVol.

Chapter 7 Files, Databases, and the Registry

Using the object store as a database volume
If you're writing an application for Windows CE 2.1 or later, you still might want to
use the new Ex database functions but not want to use a separate database volume.
Because most of the new R"< functions require a CEGUID that identifies a database
volume, you need a CEGUID that references the system object store. Fortunately, one
can be created using this macro:

CREATE_SYSTEMGUID (PCEGUID pguid);

The parameter is, of course, a pointer to a CEGUID. The value set in the CEGUID by
this macro can then be passed to any of the Ex database functions as a placeholder
for a separate volume CEGUID. Databases created within this system CEGl:ID are
actually created directly in the object store as if you were using the old non-Ex data
base functions.

Creating a database
Creating a database is accomplished by calling one of two functions, CeCreateDatabase
or CeCreateDatahaseEx. The newer function is CeCreateDatabaseEx and works only
for Windows CE 2.1 and later. CeCreateDatabase is the proper function to use on
Windows CE 2.0. First, I'm going to talk about CeCreateDatabase, then I'll talk about
the expanded functionality of CeCreateDatahaseEx.

CeCreateDatabase is prototyped as

CEOID CeCreateDatabase (LPWSTR lpszName, DWORD dwDbaseType,
WORD wNumSortOrder,
SORTORDERSPEC * rgSortSpecs);

The first parameter of the function is the name of the new database. Unlike filenames,
the database name is limited to 32 characters, including the terminating zero. The
deDbaseType parameter is a user-defined parameter that can be employed to differ
entiate families of databases. For example, you might want to use a common type
value for all databases that your application creates. This allows them to be easily
enumerated. At this point, there are no rules for what type values to use. Some ex
ample type values used by the Microsoft Pocket suite are listed in Figure 7-3.

Database Value

Contacts 24 (18 hex)

Appointments 25 (19 hex)

Tasks 26 (lA hex)

Categories 27 OB hex)

Figure 7-3. Predefined database types.

421

422

The values listed in Figure 7-3 aren't guaranteed to remain constant; I simply
wanted to show some typical values. If you use a 4-byte value, it shouldn't be too
hard to find a unique database type for your application although there's no reason
another application couldn't use the same type.

The final two parameters specify the sort specification for the database. The
parameter wNumSortOrder specifies the number of sort specifications, up to a maxi
mum of 4, while the rgSortSpecs parameter points to an array of SORTORDERSPEC
structures defined as

typedef struct _SORTORDERSPEC {
PEGPROPID propid;
DWORD dwFlags;

} SORTORDERSP EC;

The first field in the SORTORDERSPEC structure is a property ID or PEGPROPID.
A property ID is nothing more than a unique identifier for a property in the database.
Remember that a property is one field within a database record. The property ID is a
DWORD value with the low 16 bits containing the data type and the upper 16 bits
containing an application-defined value. These values are defined as constants and
are used by various database functions to identify a property. For example, a prop
erty that contained the name of a contact might be defined as

#define PID_NAME MAKELONG CCEVT_LPWSTR, 1)

The MAKELONG macro simply combines two 16-bit values into a DWORD or LONG.
The first parameter is the low word or the result, while the second parameter becomes
the high word. In this case, the CEVI'_LPWSTR constant indicates that the property
contains a string while the second parameter is simply a value that uniquely identi
fies the Name property, distinguishing it from other string properties in the record.

The second field in the SORTORDERSPEC, dwFlags, contains flags that define
how the sort is to be accomplished. The following flags are defined for this field:

• CEDB_SORT_DESCENDING The sort is to be in descending order. By
default, properties are sorted in ascending order.

• CEDB_SORT_CASEINSENSI11VE The sort should ignore the case of the
letters in the string.

• CEDB_SORT_UNKNOWNFIRST Records without this property are to be
placed at the start of the sort order. By default, these records are placed
last.

A typical database might have three or four sort orders defined. After a database
is created, these sort orders can be changed by calling CeSetDatabaselnfo. However,

Chapter 7 Files, Databases, and the Registry

this function is quite resource intensive and can take from seconds up to minutes to
execute on large databases.

If you want to open a database outside of the object store, you can use the fol
lowing function:

CEOID CeCreateDatabaseEx (PCEGUID pguid, CEDBASEINFO *pinfo);

This function takes a pguid parameter that identifies the mounted database volume
where the database is located. The second parameter is a pointer to a CEDBASEINFO
structure defined as

typedef struct _CEDBASEINFO {
DWORD dwFlags;
WCHAR szDbaseName[CEDB_MAXDBASENAMELEN];
DWORD dwDbaseType;
WORD wNumRecords;
WORD wNumSortOrder;
DWORD dwSize;
FILETIME ftlastModified;
SORTORDERSPEC rgSortSpecs[CEDB_MAXSORTORDER];

CEDBASEINFO;

As you can sec, this structure contains a number of the same parameters passed
individually to CeCreateDatabase. The szDatabaseName. dwDbaseType, wNumSort
Order, and rgSortSpecs fields must be initialized in the same manner as they are when
you call CeCreateDatabase.

The dwFlags parameter has two uses. First, it contains flags indicating which
fields in the structure are valid. The possible values for the dwFlags field are:
CEDB_ VALID NAME, CEDB_ VALID1YPE, CEDB_ VALIDSORTSPEC, and CEDE_ VALID
DEFLAGS. When you're creating a database, it's easier to simply set the dwFlags field
to CEDE_ VALIDCREATE, which is a combination of the flags I just listed. An addi
tional flag, CEDE_ VALIDMODTIME, is used when this structure is used by
CeOidGetlnjo.

The other use for the dwFlags parameter is to specify the properties of the da
tabase. The only flag currently defined is CEDE_NOCOMPRESS. This flag can be speci
fied if you don't want the database you're creating to be compressed. By default, all
databases are compressed, which saves storage space at the expense of speed. By
specifing the CEDB_NOCOMPRESS flag, the database will be larger but you will be
able to read and write the database faster.

You can use CeCreateDatabaseEx but create a database within the object store
instead of within a separate database volume. The advantage of this strategy is that
the database itself isn't created within a file and is therefore safer from a user who
might delete the database volume.

The value returned by either CeCreateDatabase or CeCreateDatabasehx is a
CEOID. We have seen this kind of value a couple of times so far in this chapter. It's

423

Part II Windows CE Basics

424

an ID value that uniquely identifies the newly created database, not just among other
databases, but also among all files, directories, and even database records in the file
system. If the value is 0, an error occurred while you were trying to create the data
base. You can call GetLastError to diagnose the reason the database creation failed.

Opening a database
In contrast to what happens when you create a file, creating a database doesn't also
open the database. To do that, you must make an additional call to

HANDLE CeOpenDatabase(PCEOID paid, LPWSTR lpszName, CEPROPID propid,
DWORD dwFlags, HWND hwndNotify);

A database can be opened either by referencing its CEOID value or by referencing
its name. To open the database by using its name, set the value pointed to by the
poid parameter to 0 and specify the name of the database using the lpszName pa
rameter. If you already know the CEO ID of the database, simply put that value in the
parameter pointed to by poid. If the CEOID value isn't 0, the functions ignore the
lpszName parameter.

The propid parameter specifies which of the sort order specifications should
be used to sort the database while it's opened. A Windows CE database can have
only one active sort order. To use a different sort order, you can open a database again,
specifying a different sort order.

The dwFlags parameter can contain either 0 or CEDB_AUTOINCREMENT. If
CEDB_AUTOINCREMENT is specified, each read of a record in the database results
in the database pointer being moved to the next record in the sort order. Opening a
database without this flag means that the record pointer must be manually moved to
the next record to be read. This flag is helpful if you plan to read the database records
in sequential order.

The final parameter is the handle of a window that's to be notified when an
other process or thread modifies the database. This message-based notification al
lows you to monitor changes to the database while you have it opened. When a
database is opened with CeOpenDatahase, Windows CE sends the following three
messages to notify you of changes.

• DB_CEOID_CREATED A record has been created in the database.

• DB_CEOID_CHANGED A record has been changed.

• DB_CEOID_RECORD_DFJ,ETED A record has been deleted.

These messages are encoded as WM_USER+l, WM_USER+3, and WM_USER+6
respectively, so be careful not to use these low WM_USER messages for your own
purposes if you want to have that window monitor database changes.

Chapter 7 Files, Databases, and the Registry

If the function is successful, it returns a handle to the opened database. This handle
is then used by the other database functions to reference this opened database. If the
handle returned is 0, the function failed for some reason and you can use GetLastError
to identify the problem.

If you're running under Windows CE 2.1 or later you can use the function:

HANDLE CeOpenDatabaseEx (PCEGUID pguid,
PCEOID poid, LPWSTR lpszName, CEPROPID propid,
DWORD dwFlags, CENOTIFYREQUEST *pRequest);

With a couple of exceptions, the parameters for CeOpenDatabaseEx are the same as
for CeOpenDatabase. The first difference between the two functions is the extra pointer
to a guid that identifies the volume in which the database resides.

The other difference is the method Windows CE uses to notify you of a change
to the database. Instead of passing a handle to a window that will receive one of three
WM_USER based messages, you pass a pointer to a CENOTIFYREQUEST structure
that you have previously filled in. This structure is defined as

typedef struct _CENOTIFYREQUEST {
DWORD dwSize;
HWND hWnd;
DWORD dwFlags;
HANDLE hHeap;
DWORD dwParam;

CENOTI FY REQUEST;

The first field must be initialized to the size of the structure. The h Wnd field
should be set to the window that will receive the change notifications. The dwFlags
field specifies how you want to be notified. If you put 0 in this field, you'll receive
the same DB_CEIOD_xxx messages that are sent if you'd opened the database with
CeOpenDatabase. If you put CEDB_EXNOTIFICATION in the dwFlags field, your
window will receive an entirely new and more detailed notification method.

Instead of receiving the three DB_CEIOD_ messages, your window receives
a WM_ DBNOTIFICATION message. When your window receives this message, the

!Param parameter points to a CENOTIFICATION structure defined as

typedef struct _CENOTIFICATION {
DWORD dwSize
DWORD dwParam;
UINT uType;
CEGUID guid;
CEOID oid;
CEOID oidParent;

CENOTIFICATION;

425

Part 11 Windows CE Basics

426

As expected, the dwSize field fills with the size of the structure. The dwParam
field contains the value passed in the dwParam field in the CENOTIFYREQUEST
strncture. This is an application-defined value that can be used for any purpose.

The uType field indicates why the WM_DBNOTIFICATION message was sent.
It will be set to one of the following values:

• DB_CEOID_CREAIED A new file system object was created.

• DB_CEOID_DATABASE_DELE1ED The database was deleted from a
volume.

• DB_CEOID_RECORD_DELE1ED A record was deleted in a database.

• DB_CEOID_CHANGED An object was modified.

The guid field contains the guid for the database volume that the message re
lates to while the oid field contains the relevant database record oid. Finally, the
oidParent field contains the oid of the parent of the oid that the message references.

When you receive a WM_DBNOTIFICATION message, the CENOTIFICATION
structure is placed in a memory block that you must free. If you specified a handle to
a heap in the hHeap field of CENOTIFYREQUEST, the notification structure will be
placed in that heap; otherwise, the system defined where the structure is placed.
Regardless of its location, you are responsible for freeing the memory that contains
the CENOTIFICATION structure. You do this with a call to

BOOL CeFreeNotification(PCENOTIFYREQUEST pRequest,
PCENOTIFICATION pNotify);

The function's two parameters are a pointer to the original CENOTIFYREQUEST
structure and a pointer to the CENOTIFICATION structure to free. You must free
the CENOTIFICATION structure each time you receive a WM_DBNOTIFICATION
message.

Seeking (or searching for) a record
Now that the database is opened, you can read and write the records. But before you
can read or write a record, you must seek to that record. That is, you must move the
database pointer to the record you want to read or write. You accomplish this using

CEOID CeSeekDatabase (HANDLE hDatabase, DWORD dwSeekType, DWORD dwValue,
LPDWORD lpdwlndex);

The first parameter for this function is the handle to the opened database. The
dwSeekType parameter describes how the seek is to be accomplished. The param
eter can have one of the following values:

Chapter 7 Files, Databases, and the Registry

• CEDB_SEEK_CEOID Seek a specific record identified by its object ID. The
object ID is specified in the dwValue parameter. This type of seek is par
ticularly efficient in Windows CE databases.

• CEDB_SEhK_BEGJNNING Seek the n'h record in the database. The index
is contained in the dwValue parameter.

• CEDB_SEEK_CURRENI' Seek from the current position n records forward
or backward in the database. The offset is contained in the dwValue pa
rameter. Even though dwValue is typed as a unsigned value, for this seek
it's interpreted as a signed value.

• CEDB_SEEK_fiND Seek backward from the end of the database n records.
The number of records to seek backward from the end is specified in the
dwValue parameter.

• CEDB_SEEK_ VAIUESMALLER Seek from the current location until a
record is found that contains a property that is the closest to, but not equal
to or over the value specified. The value is specified by a CEPROPV AL
structure pointed to by dwValue.

• CEDB_SBEK_ VALUEFIRSTEQUAL Starting with the current location, seek
until a record is found that contains the property that's equal to the value
specified. The value is specified by a CEPROPVAL structure pointed to by
dwValue. The location returned can be the current record.

• CEDB_SEEK_ VAIUENEXTEQUAL Starting with the next location, seek
until a record is found that contains a property that's equal to the value
specified. The value is specified by a CEPROPV AL structure pointed to by
dwValue.

• CEDB_SEEK_ VALUEGREATER Seek from the current location until a
record is found that contains a property that is equal to, or the closest to,
the value specified. The value is specified by a CEPROPV AL structure
pointed to by dwValue.

As you can see from the available flags, seeking in the database is more than
just moving a pointer; it also allows you to search the database for a particular record.

As I just mentioned in the descriptions of the seek flags, the dw Value param
eter can either be loaded with an offset value for the seeks or point to a property
value for the searches. The property value is described in a CEPROPVAL structure
defined as

typedef struct _CEPROPVAL
CEPROPID propid;

(continued)

427

Part 11 Windows CE Basics

428

WORD wlenData;
WORD wFlags;
CEVALUNION val;

CEPROPVAL;

The propid field should contain one of the property ID values you defined for
the properties in your database. Remember that the property ID is a combination of
a data type identifier along with an application specific ID value that uniquely iden
tifies a property in the database. This field identifies the property to examine when
seeking. The wlenData field is ignored. None of the defined flags for the wFlags field
is used by CeSeekDatabase, so this field should be set to 0. The val field is actually a
union of the different data types supported in the database.

Following is a short code fragment that demonstrates seeking to the third record
in the database.

DWORD dwindex;
CEOID oid;

II Seek to the third record.
oid = CeSeekDatabase (g_hDB, CEDB_SEEK._BEGINNING, 3, &dwindex);
if (oid == 0) {

II There is no third item in the database.

Now say we want to find the first record in the database that has a height prop
erty of greater than 100. For this example, assume the size property type is a signed
long value.

II Define pid for height property as a signed long with ID of one.
#define PID_HEIGHT MAKELONG (CEVT_I4, 1)

CEO ID oi d;
DWORD dwindex;
CEPROPVAL Property;

II First seek to the start of the database.
oid = CeSeekDatabase (g_hDB, CEDB_SEEK._BEGINNING, 0, &dwindex);

II Seek the record with height> 100.
Property.propid = PID_HEIGHT:
Property.wlenData = 0;
Property.wFlags = 0:
Property.val.lVal = 100;

II Set property to search.
II Not used but clear anyway.
II No flags to set
II Data for property

oid = CeSeekDatabase (g_hDB, CEDB_SEEK._VALUEGREATER, &Property,
&dwlndex):

Chapter 7 Files, Databases, and the Registry

if (oid == 0) {
II No matching property found, db pointer now points to end of db.

else {
II oid contains the object ID for the record,
II dwlndex contains the offset from the start of the database
II of the matching record.

Because the search for the property starts at the current location of the database
pointer, you first need to seek to the start of the database if you want to find the first
record in the database that has the matching property.

Changing the sort order
I talked earlier about how CeDatabaseSeek depends on the sort order of the opened
database. If you want to choose one of the predefined sort orders instead, you must
close the database and then reopen it specifying the predefined sort order. But what
if you need a sort order that isn't one of the four sort orders that were defined when
the database was created? You can redefine the sort orders using this function:

BOOL CeSetDatabaselnfo (CEOID oidDbase, CEDBASEINFO *pNewlnfo);

or, under Windows CE 2.1 or later, this function:

BOOL CeSetDatabaseinfoEx (PCEGUID pguid,
CEOID oidDbase, CEDBASEINFO *pNewinfo);

Both these functions take the object ID of the database you want to redefine and
a pointer to a CEDBASEINFO structure. This structure is the same one used by
CeCreateDatabaseEx. You can use these functions to rename the database, change
its type, or redefine the four sort orders. You shouldn't redefine the sort orders casu
ally. When the database sort orders are redefined, the system has to iterate through every
record in the database to rebuild the sort indexes. This can take minutes for large data
bases. If you must redefine the sort order of a database, you should inform the user of
the massive amount of time it might take to perform the operation.

Reading a record
Once you have the database pointer at the record you're interested in, you can read
or write that record. You can read a record in a database by calling the following
function:

CEOID CeReadRecordProps (HANDLE hDbase, DWORD dwFlags, LPWORD lpcPropID,
CEPROPID *rgPropID, LPBYTE *lplpBuffer,
LPDWORD lpcbBuffer);

or, if you're running under Windows CE 2.1 or later, by calling the function you see
at the top of the next page.

429

Part II

430

CEOID CeReadRecordPropsEx (HANDLE hDbase, DWORD dwFlags,
LPWORD lpcProplD,
CEPROPID *rgPropID. LPBYTE *lplpBuffer,
LPDWORD lpcbBuffer,
HANDLE hHeap);

The differences between these two functions is the addition of the hHeap pa
rameter in CeReadRecordPropsEx. I'll explain the significance of this parameter shortly.

The first parameter in these functions is the handle to the opened database. The
lpcProp!D parameter points to a variable that contains the number of CEPROPID struc
tures pointed to by the next parameter rgProp!D. These two parameters combine to
tell the function which properties of the record you want to read. There are two ways
to utilize the lpcProp!D and rgProp!D parameters. If you want only to read a selected
few of the properties of a record, you can initialize the array of CEPROPID structures
with the ID values of the properties you want and set the variable pointed to by
lpcProp!D with the number of these structures. When you call the function, the re
turned data will be inserted into the CEPROPID structures for data types such as in
tegers. For strings and blobs, where the length of the data is variable, the data is
returned in the buffer indirectly pointed to by lplpBuffer.

Since CeReadRecordProps and CeReadRecordPropsEx have a significant over
head to read a record, it is always best to read all the properties necessary for a record
in one call. To do this, simply set rgProp!D to NULL. When the function returns, the
variable pointed to by lpcProp!D will contain the count of properties returned and
the function will return all the properties for that record in the buffer. The buffer will
contain an array of CEPROPID structures created by the function immediately followed
by the data for those properties such as blobs and strings where the data isn't stored
directly in the CEPROPID array.

One very handy feature of CeReadRecordProps and CeReadRecordPropsEx is
that if you set CEDB_ALLOWREALLOC in the dwFlags parameter, the function will
enlarge, if necessary, the results buffer to fit the data being returned. Of course, for
this to work, the buffer being passed to the function must not be on the stack or in
the static data area. Instead, it must be an allocated buffer, in the local heap for
CeReadRecordProps or in the case of CeReadRecordPropsEx, in the local heap or a
separate heap. In fact, if you use the CEDB_ALLOWREALLOC flag, you don't even
need to pass a buffer to the function, instead you can set the buffer pointer to 0. In
this case, the function will allocate the buffer for you.

Notice that the buffer parameter isn't a pointer to a buffer but a pointer to a
pointer to a buffer. There actually is a method to this pointer madness. Since the re
sulting buffer can be reallocated by the function, it might be moved if the buffer needs
to be reallocated. So the pointer to the buffer must be modified by the function. You

Chapter 7 Files, Databases, and the Registry

must always use the pointer the buffer returned by the function because it might have
changed. Also, you're responsible for freeing the buffer after you have used it. Even
if the function failed for some reason, the buffer might have moved or even have been
freed by the function. You must clean up after the read by freeing the buffer if the
pointer returned isn't 0.

Now to the difference between CeReadRecordProps and CeReadRecordPropsEx.
As you might have guessed by the above discussion, the extra bHeap parameter al
lows CeReadRecordPropsEx to use a heap different from the local heap when reallo
cating the buffer. When you use CeReadRecordPropsEx and you want to use the local
heap, simply pass a 0 in the hHeap parameter.

The routine below reads all the properties for a record, then copies the data
into a structure.

int ReadDBRecord (HANDLE hDB, DATASTRUCT *pData) {
WORD wProps;
CEOID aid;
PCEPROPVAL pRecord;
PBYTE pBuff;
DWORD dwRecSize;
int i ;

II Read all properties for the record.
pBuff 0; II Let the function allocate the buffer.
aid = CeReadRecordProps (hDB, CEDB_ALLOWREALLOC, &wProps, NULL,

&(LPBYTE)pBuff, &dwRecSize);
II Failure on read.
if (oi d == 0)

return 0;

II Copy the data from the record to the structure. The order
II of the array is not defined.
memset (pData, 0 , sizeof (DATASTRUCT));
pRecord = (PCEPROPVAL)pBuff;

for (i = 0; i < wProps; i++) {
switch (pRecord->propid) {
case PID_NAME:

II Zero return struct
II Point to CEPROPVAL
II array.

l strcpy (pData >szName. pRecord->val. l pwstr);
break;

case PID_TYPE:
lstrcpy (pData->szType. pRecord->val .lpwstr);
break;

(continued)

431

Part 11 Windows CE Basics

432

case PID_SIZE:
pData->nSize pRecord->val.iVal;
break;

pRecord++;
}

LocalFree (pBuff);
return i;

Since the function above reads all the properties for the record, CeReadRecordProps
creates the array of CEPROPVAL structures. The order of these structures isn't defined
so the function cycles through each one to look for the data to fill in the structure.
After all the data has been read, a call to LocalFree is made to free the buffer that was
returned by CeReadRecordProps.

There is no requirement for every record to contain all the same properties. You
might encounter a situation where you request a specific property from a record by
defining the CEPROPID array and that property doesn't exist in the record. When this
happens, CeReadRecordProps will set the CEDB_PROPNOTFOUND flag in the wFlags
field of the CEPROPID structure for that property. You should always check for this
flag if you call CeReadRecordProps and you specify the properties to be read. In the
example above, all properties were requested, so if a property didn't exist, no
CEPROPID structure for that property would have been returned.

Writing a record
You can write a record to the database using this function:

CEOID CeWriteRecordProps (HANDLE hDbase. CEOID oidRecord, WORD cPropID,
CEPROPVAL * rgPropVal);

The first parameter is the obligatory handle to the opened database. The oidRecord
parameter is the object ID of the record to be written. To create a new record instead
of modifying a record in the database, set oidRecord to 0. The cPropID parameter
should contain the number of items in the array of property ID structures pointed to
by rgProp Val. The rcProp Val array specifies which of the properties in the record to
modify and the data to write.

Deleting properties, records, and entire databases
You can delete individual properties in a record using CeWriteRecordProps. To do
this, create a CEPROPVAL structure that identifies the property to delete and set
CEDB_PROPDELETE in the wFlags field.

To delete an entire record in a database, call

BOOL CeDeleteRecord (HANDLE hDatabase, CEOID oidRecord);

Chapter 7 Files, Databases, and the Registry

The parameters are the handle to the database and the object ID of the record to de
lete.

You can delete an entire database using this function:

BOOL CeDeleteDatabase (CEOID oidDbase);

or, under Windows CE 2.1 or later, this function:

BOOL CeDeleteDatabaseEx (PCEGUID pguid, CEOID oid);

The database being deleted can't be currently open. The difference between the two
functions is that CeDeleteDatabaseEx can delete databases outside the object store.

Enumerating databases
Sometimes you must search the system to determine what databases are on the sys
tem. Windows CE provides two sets of functions to enumerate the databases in a
volume. The first set of these functions works only for databases directly within the
object store. These functions are

HANDLE CeFindFirstDatabase (DWORD dwDbaseType);

and

CEOID CeFindNextDatabase (HANDLE hEnum);

These functions act like FindFirstFile and FindNextFile with the exception that
CeFindFirstDatabase only opens the search, it doesn't return the first database found.
With these functions the only way to limit the search is to specify the ID of a specific
database type in the dwDbaseType parameter. If this parameter is set to 0, all data
bases are enumerated. CeFindFirstDatabase returns a handle that is then passed to
CeFindNextDatabase to. actually enumerate the databases.

Below is an example of how to enumerate the databases in the object store.

HANDLE hDBList;
CEOID oidDB;

SendDlgitemMessage (hWnd, IDC_RPTLIST, WM_SETREDRAW, FALSE, 0);

hDBList = CeFindFirstDatabase (0):
if (hDBList != INVALID_HANDLE_VALUE) {

}

oidDB = CeFindNextDatabase (hDBList);
while (oidDB) {

}

II Enumerated database identified by object ID.
MyDisplayDatabaseinfo (hCeDB);

hCeDB = CeFindNextDatabase (hDBList);

CloseHandle (hDBList):

433

Part II Windows CE Basics

434

To enumerate databases within a separate database volume, use

HANDLE CeFindFirstDatabaseEx (PCEGUID pguid, DWORD dwClassID);

and

HANDLE CeFindFirstDatabaseEx (PCEGUID pguid, DWORD dwClassID);

For the most past, these two functions work identically to their non-Ex predecessors
with the exception that they enumerate the different databases within a single data
base volume. The additional parameter in these functions is the CEOID of the mounted
volume to search.

Querying object information
To query information about a database, use this function:

BOOL CeOidGetinfo (CEOID oid, CEOIDINFO *POidinfo);

or, if under Windows CE 2.1 or later, use this function:

BOOL CeOidGetinfoEx (PCEGUID pguid, CEOID oid, CEOIDINFO *Oidinfo);

These functions return information about not just databases, but any object in the
file system. This includes files and directories as well as databases and database records.
The functions are passed the object ID of the item of interest and a pointer to an
CEOIDINFO structure. Here is the definition of the CEIOIDINFO structure:

typedef struct _CEOIDINFO {
WORD wObjType;
WORD wPad;
union {

} ;

CEFILEINFO infFile;
CEDIRINFO infDirectory;
CEDBASEINFO infDatabase;
CERECORDINFO infRecord;

} CEOIDINFO;

This structure contains a word indicating the type of the item and a union of four
different structures each detailing information on that type of object. The currently
supported flags are: OBJTYPE_FILE, indicating that the object is a file,
OBJTYPE_DIRECTORY for directory objects, OBJTYPE_DATABASE for database ob
jects, and OBJTYPE_RECORD indicating that the object is a record inside a database.
The structures in the union are specific to each object type.

The CEFILEINFO structure is defined as

typedef struct _CEFILEINFO
DWORD dwAttributes;

Chapter 7 Files, Databases, and the Registry

CEOID oidParent:
WCHAR szFileName[MAX_PATH]:
FILETIME ftlastChanged:
DWORD dwlength:

} CEFILEINFO:

the CEDIRINFO structure is defined as

typedef struct _CEDIRINFO {
DWORD dwAttributes:
CEO ID oi dParent:
WCHAR szDirName[MAX_PATH]:

} CEDIRINFO:

and the CERECORDINFO structure is defined as

typedef struct _CERECORDINFO {
CEO ID oi dParent:

} CERECORDINFO:

You have already seen the CEDBASEINFO structure used in CeCreateDatabaseE:x and
CeSetDatabaselrifo. As you can see from the above structures, CeGetOidlnfo returns
a wealth of information about each object. One of the more powerful bits of infor
mation is the object's parent oid, which will allow you to trace the chain of files and
directories back to the root. These functions also allow you to convert an object ID
into a name of a database, directory, or file.

The object ID method of tracking a file object should not be confused with the
PID scheme used by the shell. Object IDs are maintained by the file system, and are
independent of whatever shell is being used. This would be a minor point under other
versions of Windows, but with the ability of Windows CE to be built as components
and customized for different targets, it's important to know what parts of the operat
ing system support which functions.

The AlbumDB Example Program

It's great to talk about the database functions; it's another experience to use them in
an application. The example program that follows, AlbumDB, is a simple database
that tracks record albums, the artist that recorded them, and the individual tracks on
the albums. It has a simple interface because the goal of the program is to demon
strate the database functions, not the user interface. Figure 7-4 on the next page shows
the AlbumDB window with a few albums entered in the database.

Figure 7-5 contains the code for the AlbumDB program. When the program is
first launched, it attempts to open a database called AlbumDB. If one isn't found, a
new one is created. This is accomplished in the openCreateDB function.

435

Part II Windows CE Basics

Try Anythh;j Orce
Gaudl
Sll!reotomy
Vultu'e Cultu'e
Amoonla Avarua
Pyramid
!Robot
On Ar
Eve
Rm of a Fflerdly Ca'd
Cosmic Thh;j
No Need to AfrµJ
Everybody Else Is doh;j It Why can't We?
To the FaithfUI Depa'ted
CormulQ.Je
Makeh;j Movies
Love over Gold
Di'e Straits
Brothers i1 Arms
One Every Street
On the Boarder
1-iolBI California
Desperado
EaQles
Dulcnea
lnlil,11tS~

Coll

Alan P<l'sons Project
Alan Pa'sons Project
Alan Pa'sons Project
Alan Pa'sons Project
Alan Pa'sons Project
Alan Pa'sons Project
Alan Pa'sons Project
Alan Pa'sons Project
Alan P<l'sons Project
Alan Pa'sons Project
BS2's
Crarbefries
Crarberrles
Crarberrles
Dre Straits
Dre Straits
Di'e Straits
Dre Straits
Dre Straits
Dre straits
EaQles
EaQles
EaQles
EaQles
Toad the Wet Sprocket
Toad the Wet Sprocket
Toad the Wet Sprocket

Figure 7-4. 1be AlbumDB w indow.

AlbumDB.rc

Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock
Rock

II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright CC) 199B Douglas Boling
II==

#include "windows.h"
#include "albumdb.h" II Program-specific stuff
11 -------------------------- ------------------------------ --------------
11 Icons and bitmaps
II
ID_ICON ICON "albumdb.ico" II Program icon

11-------------- ---- -- --- ----- ----
11 Menu
II
ID_MENU MENU DISCARDABLE
BEGIN

POPUP "&File"
BEGIN

Figure 7-5. The AlbwnDB program.

436

Chapter 7 Files, Databases, and the Registry

END

END

HENUITEH "&Delete Database",
HENUITEH SEPARATOR
HENUITEH "E&xit",

POPUP "&Album"
BEGIN

END

HENUITEM "&New",
HENUITEM "&Edit",
HENUITEH "&Delete",
HENUITEM SEPARATOR
HENUITEM "&Sort Name",
MENUITEM "Sort &Artist",
MENUITEM "Sort &Category",

POPUP "&Help"
BEGIN

HENUITEM "&About ... ",
END

IDM_DELDB

IDH_EXIT

IDM_NEW
IDH_EOIT
IDM_DELETE

IDM_SORTNAHE
IDM_SORTARTIST
IDM_SORTCATEGORY

IDM_ABOUT

//-------------- -- ------- -- ---
// New/Edit Track dialog template
II
EditTrackDlg DIALOG d1scardable 10, 10, 165, 40
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER I

DS_MODALFRAME
EXSTYLE WS_EX_CAPTIONOKBTN
CAPTION "Edit Track"
BEGIN

LTEXT "Track Name" -1. 5. 5. 50, 12
EDITTEXT IOD_TRACK, 60, 5. 100 . 12, WS_TABSTOP

LTEXT "Time" - 1. 5. 20, 50, 12
EDITTEXT IDD_TIME, 60, 20, 50, 12, WS_TABSTOP

END
// --
// New/Edit Album data dialog template
II
EditAlbumDlg DIALOG discardable 10, 10 , 200, 100
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER I

DS_MODALFRAME
EXSTYLE WS_EX_CAPTIONOKBTN
CAPTION "Edit Album"
BEGIN

LTEXT "Album Name"
EDITTEXT

-1 , 5, 5, 50, 12
IDD_NAME, 60, 5, 135, 12, WS_TABSTOP

(continued)

437

Part II Windows CE Basics

Figure 7-5. continued

LTEXT "Artist"
EDITTEXT

LTEXT "Category"
COMBOBOX

LISTBOX

PUSHBUTTON "&New Track ... ",

· 1. 5.
IDD_ARTIST, 60,

WS_TABSTOP

20. 50,
20, 135,

12
12.

-1. 5, 35, 50, 12
IDD_CATEGORY, 60, 35, 135, 60,

WS_TABSTOP I CBS_DROPDOWN
IDD_TRACKS, 60, 50, 135, 45,

LBS_USETABSTOPS

IDD_NEWTRACK, 5, 50. 50, 12.
WS_TABSTOP

PUSHBUTTON "&Edit Track ... ".
I DD_ED ITT RACK. 5, 65, 50, 12,

WS_TABSTOP
PUSHBUTTON "&Del Track",

IDD_DEL TRACK. 5, 80, 50, 12,
WS_TABSTOP

END
11 --
11 About box dialog template
II
aboutbox DIALOG discardable 10, 10. 160, 40
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER I

DS_MODALFRAME
CAPTION "About"
BEGIN

I CON ID_I CON, -1. 5. 5, 10. 10
LTEXT "AlbumDB - Written for the book Programming Windows \

CE Copyright 1998 Douglas Boling"
-1 . 40. 5, 110. 30

END

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
II Returns number of elements
#define dim(x) CsizeofCx> I sizeof(x[0]))

438

Chapter 7 Flies, Databases, and the Registry

11 --- ----- -- ----- ---- ----- ----- -- ----- --------- ------------- ---- -- -- -- --
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (• Fxn)(HWND, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD (
UINT Code;
LRESULT (• Fxn)(HWND, WORD, HWND, WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

11 ----------------- ----------------------------- --------- -------------- -
II Generic defines used by application
#define ID_ICON 1
/ldefi ne IDc_CMDBAR 2
//define ID_MENU 3
//define ID_LISTV 5

II Menu item IDs
/ldefi ne IDM_DELDB 101
/ldefi ne IDM_EXIT 102

#define IDM_NEW 110
/ldefi ne IDM_EDIT 111
//define IDM_DELETE 112

/ldefi ne IDM_SORTNAME 120
//define IDM_SORTARTIST 121
//define IDM_SORTCATEGORY 122

//define IDM_ABOUT 150

II IDs for dialog box controls
#define IDD_NAME 100
#define IDD_ARTIST 101
#define IDD_NUMTRACKS 102
#define IDD_CATEGORY 103
#define IDD_TRACKS 104
#define IDD_NEWTRACK 105
#define IDD_EDITTRACK 106
#define IDD_DELTRACK 107

//define IDD_TRACK 200
//define IDD_TIME 201

II App icon resource ID
II Command band ID
II Main menu resource ID
II List view control ID

II File menu

II Album menu

II Sort IDs must be
II consecutive.

II Help menu

II Edit album di alog.

II Edit track dialog.

(continued)

439

Part 11 Windows CE Basics

Figure 7-5. continued

// --- -----------------
// Program-specifi c structures
II
II Structure used by New/Edit Album dlg proc
#define MAX_NAMELEN 64
#define MAX_ARTISTLEN 64
#define MAX_TRACKNAMELEN 512
typedef struct {

TCHAR szName[MAX_NAMELEN];
TCHAR szArtist[MAX_ARTISTLEN];
INT nDateRel:
SHORT sCategory;
SHORT sNumTracks:
INT nTrackDatalen:
TCHAR szTracks[MAX_TRACKNAMELEN]:

ALBUMINFO, • LPALBUHINFO;

II Structure used by Add/Edit album track
typedef struct {

TCHAR szTrack[64]:
TCHAR szTi me[l6];

TRACKINFO, • LPTRACKINFO;

II Structure used by GetltemData
typedef struct {

int nitem;
ALBUMINFO Album:

} LVCACHEDATA, • PLVCACHEDATA:

II Database property identifiers
#define PID_NAME MAKELONG CCEVT_LPWSTR,
#define PID_ARTIST MAKE LONG CCEVT_LPWSTR,
#define PID_RELDATE MAKE LONG CCEVT_l2, 3)
#define PID_CATEGORY MAKE LONG CCEVT_l2, 4)
#define PID_NUMTRACKS MAKE LONG CCEVT_l2, 5)
#define PID_TRACKS MAKE LONG CCEVT_BLOB, 6)
#define NUM_DB_PROPS 6

1)
2)

// --
// Function prototypes
II
int InitApp (HINSTANCE);
HWND Initlnstance CHINSTANCE, LPWSTR, int);
int Termlnstance CHINSTANCE. int):

HANDLE OpenCreateDB CHWND, int •);
vo i d ReopenDataba se CHWND, INT);

440

Chapter 7 Files, Databases, and the Registry

int GetltemData (int, PLVCACHEDATA);
HWND CreateLV CHWND, RECT •) ;
void ClearCache (void);

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM);

II Message handlers
LRESULT DoCreateMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoSizeMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoCommandMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoNotifyMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoDbNotifyMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain CHWND, UINT, WPARAM, LPARAM);

II Command functions
LPARAM DoMainCommandDelDB (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandExit CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandNew CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandEdit CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandDelete CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandSort CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandAbout CHWND, WORD. HWND, WORD);

II Dialog procedures
BOOL CALLBACK AboutDlgProc CHWND, UINT, WPARAM, LPARAM);
BOOL CALLBACK EditAlbumDlgProc CHWND, UINT, WPARAM, LPARAM);

AlbumDB.c

II==
II AlbumDB - A Windows CE database
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==========~===

#include <windows.h> II For all that Windows stuff
#include <windowsx.h> II For Window Controls macros
#include <commctrl.h> II Command bar includes

#include "AlbumDB.h" II Program-specific stuff

11---- ------------ --
11 Global data
II

(continued)

441

Part II Windows CE Basics

Figure 7-5. continued

const TCHAR szAppName[] = TEXT
HINSTANCE hlnst;

("AlbumDB");

HANDLE g_hDB = 0;
II Program instance handle
II Handle to album database
II Handle to album database
II Last sort order used

CEOID g_oidDB = 0;
INT g_nLastSort = PID_NAME:

II These two variables represent a one item cache for
II the list view control.
int g_nLastltem = -1:
LPBYTE g_pLastRecord = 0:

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {

WM_CREATE, DoCreateMain,

) ;

WM_SIZE, DoSizeMain,
WM_COMMAND, DoCommandMain,
WM_NOTIFY, DoNotifyMain,
WM_DESTROY, DoDestroyMain,
DB_CEOID_CHANGED, DoDbNotifyHain,
DB_CEOID_CREATED, DoDbNotifyHain,
DB_CEOID_RECORD_DELETED, DoDbNotifyMain,

II Command message dispatch for MainWindowProc
const struct decodeCMD MainCommandltems(J = {

IDM_DELDB, DoMainCommandDelDB,

) ;

IDM_EXIT, DoMainCommandExit,
IDM_NEW, DoMainCommandNew,
IDM_EDIT, DoHainCommandEdit,
IDM_DELETE, DoMainCommandDelete,
IDM_SORTNAHE, DoMainCommandSort,
IDM_SORTARTIST, DoMainCommandSort,
IDM_SORTCATEGORY, DoMainCommandSort,
IDM_ABOUT, DoMainCommandAbout,

II Album category strings; must be alphabetical.
const TCHAR • pszCategories[] ={TEXT ("Classical"), TEXT ("Country"),

TEXT ("New Age"), TEXT ("Rock"));
II==
II Program entry point
II
int WINAPI WinHain CHINSTANCE hlnstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine, int nCmdShow) (

442

HWND hwndHain;
MSG msg;
int re = 0;

Chapter 7 Files, Databases, and the Registry

}

II Initialize application.
re= InitApp Chinstance);
if (re) return re;

II Initialize this instance .
hwndMain = Initinstance Chinstance , lpCmdLine, nCmdShow);
if ChwndMain == 0)

return 0xl0;

II Application message loop
while CGetMessage C&msg, NULL. 0, 0)) {

TranslateMessage C&msg);
DispatchMessage C&msg);

}

II Instance cleanup
return Terminstance Chinstance , msg.wParam);

11 - - ------------ - -------------------------------- -- --- -- --------- - - - ----
11 InitApp - Application initialization
II
int InitApp CHINSTANCE hinstance)

WNDCLASS we;
INITCDMMONCONTROLSEX icex;

II Register application main window
we.style = 0;
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hlnstance = hlnstance;
wc.hicon = NULL,
wc.hCursor = NULL;

class.
II
II
II
II

Window style
Callback function
Extra class data
Extra window data

II Owner handle
II Application icon
II Default cursor

wc.hbrBackground = CHBRUSH) GetStockObject CWHITE_BRUSH);
II Menu name wc.lpszMenuName = NULL;

wc.lpszClassName = szAppName; II Window class name

if CRegisterClass C&wc) == 0) return l;

II Load the command bar common control class.
icex .dwSize = sizeof CINITCOMMONCONTROLSEX);
icex.dwICC = ICC_BAR_CLASSES I ICC_TREEVIEW_CLASSES

ICC_LISTVIEW_CLASSES;
InitCommonControlsEx C&icex);
return 0;

(continued)

443

Part 11 Windows CE Basics

Figure 7-5. continued

11 --
11 Initinstance - Instance initialization
II
HWND lnitinstance CHINSTANCE hlnstance, LPWSTR lpCmdLine, int nCmdShow)(

HWND hWnd:

}

II Save program instance handle i n global variable.
hinst = hinstance:

II Create main window.
hWnd = CreateWindow (szAppName, TEXT ("AlbumDB"), WS_VISIBLE,

CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, NULL, NULL, hinstance, NULL);

II Return fail code if window not created.
if (!IsWindow (hWnd)) return 0:

II Standard show and update calls
ShowWindow ChWnd, nCmdShow>:
UpdateWindow ChWnd):
return hWnd:

11 ----------- -------------- ---
11 Termlnstance - Program cleanup
II
int Termlnstance CHINSTANCE hlnstance, int nDefRC> (

II Close the opened database.

}

if (g_hOB)
CloseHandle (g_hDB):

II Free the last db query if saved.
ClearCache ();

return nDefRC:

II==
II Message handling procedures for MainWindow
11 --
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) (

444

INT i;
II
II Search message list to see if we need to handle th i s
II message. If in list. call procedure.
II

Chapter 7 Files, Databases, and the Registry

}

for Ci = 0; i < dimCMainMessages); i++) {
if CwMsg == MainMessages[iJ.Code)

return (*MainMessages[iJ.Fxn)ChWnd, wMsg, wParam, lParam);

return DefWindowProc ChWnd, wMsg, wParam, lParam);

11 --
11 DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram) {
HWND hwndCB, hwndChild;
INT nHeight, nCnt;
RECT rect;
LPCREATESTRUCT lpcs;

II Convert lParam into pointer to create structure.
lpcs = (LPCREATESTRUCT) lParam;

II Create a minimal command bar that only has a menu and an
II exit button.
hwndCB = CommandBar_Create (hinst, hWnd, IDC_CMDBAR);
II Insert the menu.
CommandBar_InsertMenubar (hwndCB, hinst, ID_MENU, 0);
II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 0);
nHeight = CommandBar_Height (hwndCB);

II Open the album database. If one doesn't exist, create it.
g_hDB = OpenCreateDB (hWnd, &nCnt);
if (g_hDB == INVALID_HANDLE_VALUE)

}

MessageBox ChWnd, TEXT ("Could not open database."), szAppName,
MB_OK);

DestroyWindow ChWnd);
return 0;

II Create the list view control in right pane.
SetRect C&rect, 0, nHeight, lpcs ->cx, lpcs ->cy - nHeight);
hwndChild = CreateLV ChWnd, &rect);

II Destroy frame if window not created .
if (!IsWindow (hwndChild))

DestroyWindow (hWnd);
return 0;

(continued)

445

Part 11 Windows CE Basics

Figure 7-5. co11ti11ued

}

ListView_SetltemCount (hwndChild, nCnt);
return 0;

11 --
11 DoSizeMain - Process WM_SIZE message for window.
II
LRESULT DoSizeMain CHWND hWnd. UINT wMsg, WPARAM wParam, LPARAM lParam){

HWND hwndLV;

}

RECT rect;

hwndLV = GetDlgltem ChWnd. ID_LISTV);

II Adjust the size of the client rect to take into account
II the command bar height.
GetClientRect ChWnd, &rect);
rect.top += CommandBar_Height (GetDlgltem ChWnd, IDC_CMDBAR));

SetWindowPos (hwndLV. NULL. rect.left, rect.top .

return 0;

(rect.right - rect.left} , rect.bottom - rect.top,
SWP _NOZORDER):

11--
11 DoCommandMain - Process WM_COMMAND message for window.
II
LRESULT DoCommandMa i n CHWND hWnd, UINT wMsg, WPARAM wParam,

}

LP A RAM l Pa ram) {
WORD idltem, wNotifyCode;
HWND hwndCtl;
INT i;

II Parse the parameters.
idltem =(WORD) LOWORD CwParam);
wNotifyCode =(WORD) HIWORD CwParam);
hwndCtl = CHWND) lParam:

II Call routine to handle control message.
for (i = 0; i < dim(MainCommandltems); i++)

if (idltem == MainCommandltems[i].Code)
return (*MainCommandltems[i].Fxn)(hWnd. idltem, hwndCtl.

wNot i fyCode) ;

return 0:

11 ---------------------------------- ---------- -- ----------------------- -
11 DoNotifyMain - Process DB_CEOID_xxx messages for window.

446

Chapter 7 Files, Databases, and the Registry

II
LRESULT DoDbNotifyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) (

)

switch (wMsg) (
case DB_CEOID_CHANGED:

InvalidateRect (GetDlgltem (hWnd, ID_LISTV), NULL, TRUE):
break;

case DB_CEOID_CREATED:
ReopenDatabase (hWnd, -1):
break;

case DB_CEOID_RECORD_DELETED:
ReopenDatabase (hWnd, -1);
break:

return 0:

11 --
11 DoNotifyMain - Process WM_NOTIFY message for window.
II
LRESULT DoNotifyMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) (
int idltem, i:
LPNMHDR pnmh;
LPNMLISTVIEW pnmlv;
NMLVDISPINFO • pLVdi;
LVCACHEDATA data;
HWND hwndLV;

II Parse the parameters.
idltem = (int) wParam;
pnmh = (LPNMHDRllParam;
hwndLV = pnmh -> hwndFrom;

if (idltem == ID_LISTV) (
pnmlv = (LPNMLISTVIEWllParam;

switch (pnmh->code) {
case LVN_GETDISPINFO:

pLVdi = (NMLVDISPINFO •)lParam;

II Get a pointer to the data either from the cache
II or from the actual database.
GetltemData (pLVdi ->i tem.iitem, &data);

if (pLVdi->item.mask & LVIF_IMAGE)
pLVdi ->i tem.iimage = 0;

(continued)

447

Part II Windows CE Basics

Figure 7-5. continued

448

if (pLVdi ->item.mask & LVIF_PARAM)
pLVdi->item .lParam = 0;

if (pLVdi -> item.mask & LVIF_STATE)
pLVdi->item.state = 0;

if (pLVdi ->item.mask & LVIF_TEXT)
switch (pLVdi->item.iSubitem)
case 0:

lstrcpy CpLVdi->item.pszText . data.Album.szName);
break;

case 1:
lstrcpy (pLVdi->item.pszText, data.Album.szArtist);
break;

case 2:

break;

lstrcpy (pLVdi->item.pszText,
pszCategories[data.Album.sCategory]);

break;

II Ignore cache hinting for db example.
case LVN_COLUMNCLICK:

i = ((NM_LISTVIEW •)lParaml->iSubitem + IDH_SORTNAHE:
PostMessage (hWnd, WM_COMMAND, HAKELPARAM (1, 0). 0);
break;

II Ignore cache hinting for db example.
case NM_DBLCLK:

PostMessage (hWnd. WH_COHHAND, HAKELPARAM (IDM_EDIT, 0), 0);
break;

II Ignore cache hinting for db example.
case LVN_ODCACHEHINT:

break;

case LVN_ODFINDITEM:
II We should do a reverse look up here to see if
II an item exists for the text passed.
return -1 ;

return 0;

Chapter 7 Files, Databases, and the Registry

11-- ----- ---- ---- -- ----- --------- ----- ---- -------- --- -------------------
11 DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram} {
PostQuitMessage (0};
return 0;

}

II==
II Command handler routines
11 ------------ --- ---------- -------------------- --------------- -- --------
11 DoMainCommandDelDB - Process Program Delete command.
II
LPARAM DoMainCommandDelDB CHWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode} {

}

int i , re;

MessageBox ChWnd, TEXT ("Delete the entire database?"},
TEXT ("Delete"}, MB_YESNO};

if Ci != !DYES}
return 0;

if (g_oidDB} {
CloseHandle (g_hDB};
re= CeDeleteDatabase (g_oidDB};
if (re == 0} {

TCHAR szDbg[128];
re= GetlastError(};
wsprintf (szDbg, TEXT ("Couldn\'t delete db. rc=%d"}, re };
MessageBox ChWnd, szDbg, szAppName, MB_OK};
g_hDB = CeOpenDatabase (&g_oidDB, NULL, g_nla stSort ,

0, hWnd};
return 0;

g_hDB = 0;
g_oidDB = 0;

ListView_SetltemCount (GetDlgltem (hWnd, ID_LISTV) , 0);
return 0;

11 - - -- - - - - - - -- -- - - ---- -------- - ------- - - - - - - -- - - - --- --- - - -- - - - --- - ---- - -
11 DoMainCommandExit - Process Program Exit command .
II
LPARAM DoMainCommandExit CHWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode} {

(contin ued)

449

Part II Windows CE Basics

Figure 7-5. continued

}

SendMessage (hWnd, WM_CLOSE, 0, 0);

return 0;

11--- ---- ---------- -- ---
11 DoMainCommandNew - Process Program New command.
II
LPARAM DoMainCommandNew (HWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {
PCEPROPVAL pcepv;
I NT i , re;
CEOID aid;
HWND hwndLV = GetDlgltem (hWnd, ID_LISTV);

II Display the new/edit dialog.
pcepv = 0;
re= DialogBoxParam (hlnst, TEXT ("EditAlbumDlg"J, hWnd,

EditAlbumDlgProc, CLPARAMJ&pcepv);
if (re== 0)

return 0;

II Write the record.
aid= CeWriteRecordProps(g_hDB, 0, NUM_DB_PROPS, pcepv); ·
if (!oidl (

TCHAR szText[64];
re= GetlastError Cl;
wsprintf (szText, TEXT ("Write Rec fail. Error %d (%x)"),

re, re I;
MessageBox (hWnd, szText, TEXT ("Error"), MB_OK);

ClearCache (); II Clear the lv cache.

i = ListView_GetltemCount ChwndLV) + 1; II Increment list view
II count.

ListView_SetltemCount ChwndLV. i);

InvalidateRect (hwndLV, NULL, TRUE); II Force list view
II redraw.

return 0:
}

11 - - - - - - - - -- - - -- - - · - - - - - -- - - -------- · · · · · · · · · · · - - - - - - -- - - - - -- -------- · · ·
II DoMainCommandEdit - Process Program Edit command.
II
LPARAM DoMainCommandEdit CHWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

450

PCEPROPVAL pcepv = 0;
INTnSel. re;
WORD wProps = 0;

Chapter 7 Files, Databases, and the Registry

DWORD dwRecSize, dwlndex;
CEOID aid;
HWND hwndLV = GetDlgltem (hWnd, ID_LISTV);

nSel = ListView_GetSelectionMark (hwndLV);
if (nSel == - 1)

return 0;

II Seek to the necessary record .
aid= CeSeekDatabase (g_hDB, CEDB_SEEK_BEGINNING, nSel, &dwlndex);
if (oi d == 0) (

TCHAR szTxt[64];
INT re= GetLastError();
wsprintf (szTxt, TEXT ("Db item not found. re= %d (%x)"),

re, re);
MessageBox (NULL, szTxt, TEXT ("err"), MB_OK);
return 0;

II Read all properties for the record. Have the system
II allocate the buffer containing the data.
aid = CeReadRecordProps (g_hDB, CEDB_ALLOWREALLOC, &wProps, NULL,

&(LPBYTE)pcepv, &dwRecSize);
if (oi d == 0) (

TCHAR szTxt[64];

)

INT re= GetLastError();
wsprintf (szTxt, TEXT ("Db item not read . re= %d (%x) "),

re, re);
MessageBox (NULL, szTxt, TEXT ("err"), MB_OK);
return 0;

II Display the edit dialog.
re= DialogBoxParam (hlnst, TEXT ("EditAlbumDlg" J, hWnd,

EditAlbumDlgProc, (LPARAMJ&pcepvl;
if (re == 0)

return 0;

II Write the record .
aid= CeWriteRecordProps(g_hDB, aid, NUM_DB_PROPS, pcepv);
if (laid) (

TCHAR szText[64] ;
re= GetLastError () ;
wsprintf (szText, TEXT ("Write Rec fail. Error %d (%x) "),

re, re) :
MessageBox (hWnd, szText , TEXT ("Error"), MB_OK);

(continued)

451

Part II Windows CE Basics

Figure 7-5. continued

LocalFree ((LPBYTE)pcepv);
ClearCache ();

InvalidateRect (hwndLV, NULL. TRUE);

return 0;

II Clear the lv cache.

II Force list view
II redraw.

11 ------------------------ --- ---- --- ------- -- ----- --- --- -- --- -- ----- --- -
11 DoMainCommandDelete - Process Program Delete command.
II
LPARAM DoMainCommandDelete (HWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotffyCode) {

}

HWND hwndLV;
TCHAR szText[64];
DWORD dwlndex;
int i :
CEOID oid;
int nSel;

hwndLV = GetDlgltem (hWnd, ID_LISTV);
nSel = ListView_GetSelectionMark (hwndLV);
if (nSel != -1) {

wsprintf (szText, TEXT ("Delete this item?"));
i = MessageBox (hWnd, szText, TEXT ("Delete"), MB_YESNOl;
if Ci != IDYES)

return 0;

II Seek to the necessary record.
oid = CeSeekDatabase (g_hDB, CEDB_SEEK_BEGINNING, nSel, &dwlndex);
CeDeleteRecord (g_hDB, oidl;

II Reduce the list view count by one and force redraw.
i = ListView_GetltemCount (hwndLV) - l;
ListView_SetltemCount (hwndLV, i);
ClearCache () ; II Clear the lv cache.
InvalidateRect ChwndLV, NULL, TRUE);

retu rn 0;

11 - -- -- - - - - - - -- -- --- - - - - - - -- - - - - - - - - -- - - -- - - - - - - - - ---- - ----- ---- - - - - -- --
11 DoMainCommandSort - Process the Sort commands.
II
LPARAM DoMa i nCommandSort (HWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {
int nSort ;

452

Chapter 7 Files, Databases, and the Registry

}

switch (idltem) {
case IDM_SORTNAME:

nSort = PID_NAME;
break;

case IDM_SORTARTIST:
nSort = PID_ARTIST;
break;

case IDM_SORTCATEGORY :
nSort = PID_CATEGORY;
break;

if (nSort == g_nlastSort)
return 0;

ReopenDatabase (hWnd, nSort);
return 0;

II Close and reopen the databa se.

11 --
11 DoMainCommandAbout - Process the Help I About menu command.
II
LPARAM DoMainCommandAbout(HWND hWnd, WORD iditem, HWND hwndCtl,

}

WORD wNotifyCode) {
II Use DialogBox to create modal dialog.
DialogBox Chlnst, TEXT ("aboutbox"), hWnd, AboutDlgProc);
return 0;

11-- --
11 CreateLV - Creates the list view control
II
HWND CreateLV CHWND hWnd, RECT *prect) [

HWND hwndLV;
LVCOLUMN lvc;

II Create album list window.
hwndLV = CreateWindowEx (0, WC_LISTVIEW, TEXT(""),

WS_VISIBLE I WS_CHILD I WS_VSCROLL I
LVS_OWNERDATA I WS_BORDER I LVS_REPORT.
prect->left, prect ->top,

II Add columns.
if (hwndLV) {

prect->right - prect -> left.
prect->bottom - prect -> top,
hWnd, (HMENU)ID_LISTV,
hinst. NULL);

lvc .mask = LVCF_TEXT I LVCF_WIDTH I LVCF_FMT I LVCF_SUBITEM;

(continued)

453

Part 11 Windows CE Basics

Figure 7-5. continued

)

lvc.fmt = LVCFMT_LEFT:
lvc.cx = 150:
lvc.pszText = TEXT ("Name"):
lvc.iSubltem = 0:
SendMessage (hwndLV, LVM_INSERTCOLUMN, 0, (LPARAM)&lvc):

lvc.mask I= LVCF_SUBITEM:
lvc.pszText = TEXT ("Artist•):
lvc.cx = 100:
lvc.iSubltem = 1:
SendMessage ChwndLV, LVM_INSERTCOLUMN, 1 , CLPARAM)&lvc):

lvc.mask I= LVCF_SUBITEM:
lvc.pszText = TEXT ("Category"):
lvc.cx = 100:
lvc.iSubltem = 2:
SendMessage ChwndLV, LVM_INSERTCOLUMN, 2, CLPARAM)&lvc):

return hwndLV:

11 -- - - - - - - - - - -- - - - -- - - ----- - --- - -- -- - -- - - - - - - - -- -- -------------- -- - - -- --
11 OpenCreateDB - Open database, create if necessary.
II
HANDLE OpenCreateDB (HWND hWnd, int *pnRecords) (

I NT i , re:

454

CEOIDINFO oidinfo:
SORTORDERSPEC sos[4]:

g_oidDB = 0:
g_hDB = CeOpenDatabase C&g_oidDB, TEXT ("\\Albums"),

g_nlastSort. 0, hWnd):
if (g_hDB == INVALID_HANDLE_VALUE) {

re = GetlastErrorC>:
if (re == ERROR_FILE_NOT_FOUND)

i = 0:
sos[i].propid = PID_NAME:
sos[i++J.dwFlags = 0:

sos[i].propid = PID_ARTIST:
sos[i++J.dwFlags = 0:

sos[i].propid = PID_CATEGORY:
sos[i++J.dwFlags = 0:

Chapter 7 Files, Databases, and the Registry

}

g_oidDB = CeCreateDatabase (TEXT ("\\Albums"), 0, 3,
sos);

if (g_oidDB == 0) {
TCHAR szErr[l28];
wsprintf (szErr, TEXT ("Database create failed. \

re %d"l. GetLastError());
MessageBox ChWnd, szErr, szAppName, MB_OKl;
return 0;

g_hDB = CeOpenDatabase(&g_oidDB,NULL, g_nLastSort, 0. hWnd);

CeOidGetlnfo (g_oidDB, &oidinfol:
*pnRecords = oidinfo.infDatabase.wNumRecords;
return g_hDB;

11 -- - -
11 ClearCache - Clears the one item cache for the list view control
II
void ClearCache (void)

}

if (g_pLastRecordl
Localfree (g_pLastRecord);

g_pLastRecord = 0;
g_nLastltem = -1:
return:

11 ------- ------- ------ ---- ---------------- - -----------------------------
11 ReopenDatabase - Closes and reopens the database
II
void ReopenDatabase CHWND hWnd, INT nNewSort) (

INT nCnt;

if CnNewSort != -1)
g_nLastSort = nNewSort;

if (g_hDBl
CloseHandle (g_hDBl;

ClearCache ();

g_hDB = OpenCreateDB (hWnd, &nCnt);

II Clear the lv cache.

ListView_SetltemCount (GetDlgltem (hWnd, ID_LISTVl. nCnt);
InvalidateRect (GetDlgltem (hWnd, ID_LISTV), NULL, 0);
return;

(co11ti1111ed)

455

Part 11 Windows CE Basics

Figure 7-5. continued

11-- - -------------------
11 Get the album data from the database for the requested lv item.
II
int GetitemData (int nltem, PLVCACHEDATA pcd) {

static WORD wProps:

456

DWORD dwlndex:
CEOID oid;
PCEPROPVAL pRecord NULL:
DWORD dwRecSize;
int i :

II See if the item requested was the previous one. If so,
II just use the old data.
if ((nltem == g_nLastltem) && (g_pLastRecord))

pRecord = (PCEPROPVAL)g_pLastRecord:
else {

II Seek to the necessary record.
oid = CeSeekDatabase (g_hDB, CEDB_SEEK._BEGINNING, nitem, &dwindex);
if Coid == 0) {

}

TCHAR szTxt[64] :
INT re= GetLastError();
wsprintf CszTxt, TEXT ("Db item not found. re= Id (Ix)"),

re. re):
MessageBox (NULL, szTxt, TEXT ("err"), MB_OK);
return 0;

II Read all properties for the record. Have the system
II allocate the buffer containing the data.
oid = CeReadRecordProps (g_hDB, CEDB_ALLOWREALLOC, &wProps, NULL.

&CLPBYTElpRecord, &dwRecSize);
i f (0 i d == 0) {

TCHAR szTxt[64];
INT re= GetLastError();
wsprintf (szTxt, TEXT ("Db item not read. re= Id (Ix)"),

re, re);
MessageBox (NULL, szTxt. TEXT ("err"), MB_OK) ;
return 0;

II Free old record and save the newly read one.
if (g_pLastRecord)

LocalFree (g_pLastRecord);
g_nLastitem = nitem;
g_pLastRecord = (LPBYTElpRecord;

Chapter 7 Files, Databases, and the Registry

}

II Copy the data from the record to the album structure.
for (i = 0; i < wProps; i++) {

switch (pRecord->propid) {
case PIO_NAME:

lstrcpy (pcd->Album.szName, pRecord->val .lpwstrl;
break;

case PIO_ARTIST:
lstrcpy Cpcd->Album.szArtist, pRecord->val.lpwstrl;
break;

case PID_CATEGORY:
pcd->Album.sCategory pRecord->val.iVal;
break;

case PID_NUMTRACKS:
pcd->Album.sNumTracks pRecord ->val.iVal;
break;

pRecord++;

return 1;

11----- ---
11 InsertLV - Add an item to the list view control.
II
INT InsertLV (HWND hWnd, INT nltem, LPTSTR pszName, LPTSTR pszType,

INT nSize) {

}

LVITEMlvi;
HWND hwndLV = GetDlgltem (hWnd, ID_LISTV);

lvi.mask = LVIF_TEXT I LVIF_IMAGE I LVIF_PARAM;
lvi.iltem = nltem;
lvi.iSubltem = 0;
lvi.pszText = pszName:
lvi.ilmage = 0;
lvi.lParam = nltem;
SendMessage (hwndLV, LVM_INSERTITEM, 0, CLPARAMl&lvil;

lvi.mask = LVIF_TEXT;
lvi.iltem = nltem;
lvi.iSubltem = 1;
lvi.pszText = pszType;
SendMessage (hwndLV, LVM_SETITEM, 0, CLPARAM)&lvil;

return 0;

11------ -- --

(continued)

457

Part II Windows CE Basics

Figure 7-5. continued

II ValidateTime - Trival error checking of time field
II
BOOL ValidateTime (TCHAR *pStr) (

BOOL fSep = FALSE;

}

TCHAR *pPtr;

pPtr = pStr;
II See if field contains only numbers and up to one colon.
while (*pPtr) {

if (*pPtr ==TEXT(':'))
if (fSep)

return FALSE;
fSep = TRUE;

else if ((*pPtr <TEXT ('0')) I I (•pPtr >TEXT ('9')))
return FALSE;

pPtr++;
}

II Reject empty field.
if (pPtr > pStr)

return TRUE;
return FALSE;

II==
II EditTrack dialog procedure
II
BOOL CALLBACK EditTrackDlgProc (HWND hWnd , UINT wMsg, WPARAM wParam,

LPARAM lParam) (

458

static LPTRACKINFO lpti;

switch (wMsg) (
case WM_INITDIALOG:

lpti = (LPTRACKINFO)lParam;
SendDlgltemMessage (hWnd, IDD_TRACK, EM_SETLIMITTEXT,

sizeof (lpti->szTrack), 0):
SendDlgltemMessage (hWnd, IDD_TIME, EM_SETLIMITTEXT,

sizeof (lpti ->szTime), 0):
II See if new album or edit of old one.
if (lstrlen (lpti->szTrack) == 0) (

SetWindowText (hWnd, TEXT ("New Track"));
} else {

SetDlgltemText (hWnd, IDD_TRACK. lpti ->szTrack):
SetDlgltemText (hWnd, IDD_TIME, lpt i- >szTime):

return TRUE:

Chapter 7 Files, Databases, and the Registry

case WM_COMMAND:
switch CLOWORD CwParamll {

case !DOK:
Edit_GetText CGetDlgitem ChWnd, IDD_TRACKl.

lpti->szTrack. sizeof (lpti ->szTrack));
Edit_GetText CGetDlgitem ChWnd, IDO_TIMEl.

lpti ->szTime, sizeof Clpti ->szTime));
if CValidateTime Clpti->szTime))

EndDialog ChWnd, ll;
else

MessageBox ChWnd, TEXT ("Track time must \
be entered in mm:ss format"),

}

break:

return TRUE:
case IDCANCEL:

TEXT ("Error"), MB_OK);

EndDialog ChWnd, 0):
return TRUE;

return FALSE;

II==
II EditAlbum dialog procedure
II
BOOL CALLBACK EditAlbumDlgProc CHWNO hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
static PCEPROPVAL • ppRecord;
static int nTracks;
PCEPROPVAL pRecord, pRecPtr:
TCHAR • pPtr. szTmp[128];
HWND hwndTList, hwndCombo:
TRACKINFO ti;
BOO L fEnable:
INT i, nLen, re:

switch CwMsg) {
case WM_INITDIALOG:

ppRecord = CPCEPROPVAL *llParam:
pRecord = *ppRecord;

hwndCombo GetOlgltem ChWnd, IOO_CATEGORYl:
hwndTList GetOlgltem ChWnd, IOD_TRACKS);

Edit_LimitText (GetOlgitem ChWnd. IDO_NAME). MAX_NAMELENl;

(continued)

459

Part 11 Windows CE Basics

Figure 7-5. continued

460

Edit_LimitText CGetDlgltem ChWnd , IDD_ARTIST),
MALARTISTLEN);

II Set tabstops on track list box.
i = 110;
ListBox_SetTabStops (hwndTList, l, &i);
II Initialize category combo box.
for (i = 0: i < dim(pszCategories); i++)

ComboBox_AddString (hwndCombo, pszCategories(i]);
ComboBox_SetCurSel ChwndCombo, 3);
nTracks = 0;

II See if new album or edit of old one.
if CpRecord == 0) {

}

SetWindowText (hWnd, TEXT ("New Album"));
else {

II Copy the data from the record to album structure.
for (i = 0; i < NUM_DB_PROPS; i++)

switch (pRecord->propid) (
case PID_NAME:

SetDlgitemText (hWnd , IDD_NAME,
pRecord->val.lpwstr);

break;
case PID_ARTIST:

SetDlgltemText (hWnd, IDD_ARTIST,
pRecord->val.lpwstr);

break:
case PID_CATEGORY:

ComboBox_SetCurSel (hwndCombo,
pRecord ->val.i Val);

break;
case PID_TRACKS:

pPtr = (TCHAR *)pRecord->val.blob.lpb;
for Ci = 0: *PPtr: i++)(

ListBox_InsertString ChwndTList,i ,pPtr);
pPtr += lstrlen (pPtr) + 1;
nTracks++;

}

break;

pRecord++;

II Select first track or disable buttons if no tracks.
if CnTracks)

ListBox_SetCurSel (GetDlgltem (hWnd, IDD_TRACKS), 3);

Chapter 7 Files, Databases, and the Registry

else {
EnableWindow (GetDlgltem ChWnd, IDD_DELTRACK),

FALSE);
EnableW1ndow CGetDlgltem ChWnd. IDD_EDITTRACK),

FALSE);

return TRUE;

case WH_COHHAND:
hwndTList = GetDlgltem ChWnd, IDD_TRACKS);
hwndCombo = GetDlgltem (hWnd, IDD_CATEGORY);
pRecord = •ppRecord:
switch (LOWORD CwParam)) {

case IDD_TRACKS:
switch CHIWORD CwParam))
case LBN_DBLCLK:

PostHessage (hWnd, WH_COHHAND,
HAKELONG(IDD_EDITTRACK, 0), 0);

break:
case LBN_SELCHANGE:

i = ListBox_GetCurSel (hwndTList);
if (i == LB_ERR)

fEnable = FALSE;
else

fEnable = TRUE;
EnableWindow CGetDlgltem ChWnd,

IDD_DELTRACK), fEnable);
EnableWindow CGetDlgltem (hWnd ,

IDD_EDITTRACK), fEnable);
break;

return TRUE;

case IDD_NEWTRACK:
memset C&ti, 0 , sizeof (ti));
re = DialogBoxParam Chlnst.

TEXT ("EditTrackDlg"), hWnd,
EditTrackDlgProc. (LPARAH)&ti);

if <re) {
wsprintf (szTmp, TEXT ("Ss\tSs ").

ti.szTrack, ti . szTime);
i = ListBox_GetCurSel (hwndTList);
if (i != LB_ERR)

i++;
i = ListBox_lnsertString (hwndTList, i,

szTmp) ;

(continued)

461

Part 11 Windows CE Basics

Figure 7-5. continued

462

ListBox_SetCurSel (hwndTList, i);

return TRUE:

case IDD_EDITTRACK:
i = ListBox_GetCurSel (hwndTList);
if (i != LB_ERRl (

ListBox_GetText (hwndTList, i, szTmp);
pPtr = szTmp;
while ((•pPtr !=TEXT (' \t')) &&

(•pPtr != TEXT ('\0')))

pPtr++:
if (•pPtr ==TEXT ('\t'))

• pPtr++ =TEXT ('\0');

lstrcpy (ti.szTime, pPtr):
lstrcpy (ti.szTrack, szTmp);
re = DialogBoxParam (hlnst,

if (re) (

TEXT ("EditTrackDlg"),
hWnd, EditTrackDlgProc,
(LPARAM)&ti);

wsprintf (szTmp, TEXT ("%s\t%s"),
ti.szTrack, ti.szTime);

1 = ListBox_GetCurSel (hwndTList);
ListBox_DeleteString (hwndTList, 1);

ListBox_InsertString ChwndTList, i,
szTmp):

ListBox_SetCurSel (hwndTList, i);

return TRUE:

case IDD_DELTRACK:
II Grab the current selection and remove
II it from list box.
i = ListBox_GetCurSel (hwndTList);
if (i != LB_ERR) {

re = MessageBox (hWnd,
TEXT ("Delete this item?"),
TEXT ("Track"), MB_YESNO);

if (re == !DYES) (
i=ListBox_DeleteString (hwndTList,i);
if(i)0}

i - - ;

Chapter 7 Files, Databases, and the Registry

ListBox_SetCurSel ChwndTList, i):

return TRUE:

case IDOK:
II Be lazy and assume worst case size values.
nlen = sizeof CCEPROPVAL) * NUM_OB_PROPS +

MAX_NAMELEN + MAX_ARTISTLEN +
MAX_TRACKNAMELEN:

II See if prev record, alloc if not.
if CpRecord) {

II Resize record if necessary.
if Cnlen > Cint)LocalSize (pRecord))

pRecPtr =

else

CPCEPROPVAL)LocalReAlloc CpRecord,
nlen, LMEM_MOVEABLE):

pRecPtr = pRecord:
else

pRecPtr = LocalAlloc CLMEM_FIXEO, nlen):
if (lpRecPtr)

return 0:
II Copy the data from the controls to a
II marshaled data block with the structure
II at the front and the data in the back.
pRecord = pRecPtr:
nTracks = ListBox_GetCount ChwndTList>:
pPtr = CTCHAR •)((LPBYTE)pRecPtr +

(sizeof (CEPROPVAL) * NUM_OB_PROPS));
II Zero structure to start over.
memset CpRecPtr. 0, LocalSize CpRecPtr)):

pRecPtr->propid = PID_NAME:
pRecPtr->val.lpwstr = pPtr:
GetDlgltemText (hWnd, IDD_NAME, pPtr,

MAX_NAMELEN):
pPtr += lstrlen CpPtr) + 1:
pRecPtr++ :

pRecPtr->propid = PID_ARTIST:
pRecPtr->val.lpwstr = pPtr:
GetDlgltemText ChWnd, IDD_ARTIST, pPtr,

MALARTI STLEN) :
pPtr += lstrlen (pPtr) + 1:
pRecPtr++:

(continued)

463

Part 11 Windows CE Basics

Figure 7-5. continued

pRecPtr->propid = PID_RELDATE:
pRecPtr->val.iVal = 0:
pRecPtr++:

pRecPtr->propid = PID_CATEGORY:
pRecPtr->val.iVal =

ComboBox_GetCurSel (hwndCombo):
pRecPtr++:

pRecPtr->propid = PID_NUMTRACKS:
pRecPtr->val.iVal = nTracks:
pRecPtr++:

pRecPtr->propid = PID_TRACKS:
pRecPtr->val.blob.lpb = (LPBYTE)pPtr:

II Get the track titles from the list box.
re = MAX_TRACKNAMELEN;
for (i = 0; i < nTracks; i++) {

II Make sure we have the room in the buff.
re -= ListBox_GetTextLen(hwndTList, i);
1f (re)

ListBox_GetText (hwndTList, i, pPtr);
else {

nTracks = i;
break;

pPtr += lstrlen (pPtr) + 1;

•pPtr++ =TEXT ('\0');
pRecPtr->val.blob.dwCount

(LPBYTE)pPtr - pRecPtr->val.blob.lpb;
•ppRecord = pRecord:
EndDialog (hWnd, 1);
return TRUE:

case IDCANCEL:

}

464

break:
}

return FALSE:

EndDialog (hWnd, 0);
return TRUE:

Chapter 7 Flies, Databases, and the Registry

II==
II About dialog procedure
II
BOOL CALLBACK AboutDlgProc CHWND hWnd, UINT wHsg, WPARAH wParam,

LPARAH lParam) {
switch CwHsg) {

}

case WH_COHHAND:
switch CLOWORD CwParam))

case !DOK:

break;

case IDCANCEL:
EndDialog ChWnd, 0);
return TRUE:

return FALSE;

The program uses a virtual list view control to display the records in the data
base. As I explained in Chapter 5, virtual list views don 't store any data internally.
Instead, the control makes calls back to the owning window using notification me -
sages to query the information for each item in the list view control. The WM_ OTIFY
handler OnNotifyMain calls GetltemData to query the database in re ponse to the
list view control sending LVN_GETDISPI FO notifications. The Getltemlnfo func
tion first eeks the record to read then reads all the properties of a database record
with one call to CeReadRecordProps. Since the list view control typically uses the
LVN_GETDISPINFO notification multiple time for one item, Getltemlnfo saves the
data from the last record read. If the next read is of the same record, the program
uses the cached data instead of rereading the database.

As I've explained before, you can change the way you sort by simply closing
the database and reopening it in one of the other sort modes. The list view control is
then invalidated, causing it to again request the data for each record being displayed.
With a new sort order defined, the eek that happens with each database record read
automatically sorts the data by the sort order defined when the database was opened.

AlbumDB doesn't use the new Ex database functions provided by Windows CE 2.1
based systems. This allows the program to run under earlier version of the operat
ing system. To modify the example to use separate database volumes, only minor
changes would be necessary. First a global variable g_guidDB of type CEOID would
be added. In the DoCreateMain routine, code such as the following, which mounts
the volume, would be added.

465

Part II Windows CE Basics

466

if (!CeMountDBVol C&g_guidDB, TEXT {"\\Albums.edb"), OPEN_ALWAYS)) {
wsprintf (szErr, TEXT ("Database mount failed. re %d"),

GetlastError());
MessageBox (NULL, szErr, szAppName, MB_OK);

}

The following code would be added to the OnDestroyMain routine to unmount
the volume:

if (!CHECK_INVALIDGUID (&g_guidDB))
CeUnmountDBVol (&g_guidDB);

Finally, the OpenCreateDB routine would be replaced by this version:

HANDLE OpenCreateDB (HWND hWnd, int *pnReeords) {
INTi,re;
CEOIDINFO oidinfo;
CEDBASEINFO dbi;
TCHAR szErr[128];
CENOTIFYREQUEST eenr;

g_oidDB = 0;
eenr.dwSize = sizeof (eenr);
eenr.hWnd = hWnd;
eenr.dwFlags = 0;
cenr.hHeap = 0;
cenr.dwParam = 0;

II Use old style notifications.

g_hDB = CeOpenDatabaseEx (&g_guidDB, &g_oidDB, TEXT ("\\Albums"),
g_nlastSort, 0, &cenr);

if (g_hDB == INVALID_HANDLE_VALUE) {
re= GetLastError();
if (re == ERROR_FILE_NOT_FOUND) {

i = 0;
dbi.rgSortSpecs[i].propid = PID_NAME;
dbi.rgSortSpecs[i++].dwFlags = 0;

dbi.rgSortSpees[i].propid = PID_ARTIST;
dbi.rgSortSpees[i++].dwFlags = 0;

dbi.rgSortSpecs[i].propid = PID_CATEGORY;
dbi.rgSortSpees[i++].dwFlags = 0;

dbi.dwFlags = CEDB_VALIDCREATE;
lstrepy (dbi.szDbaseName, TEXT ("\\Albums"));
dbi.dwDbaseType = 0;
dbi.wNumSortOrder = 3;

g_oidDB = CeCreateDatabaseEx C&g_guidDB, &dbi);

Chapter 7 Files, Databases, and the Registry

}

if (g_oidDB == 0) {
wsprintf (szErr,

TEXT ("Database create failed. re %d"J,
GetLastError());

MessageBox (hWnd, szErr, szAppName, MB_OK);
return 0;

g_hDB = CeOpenDatabaseEx (&g_guidDB, &g_oidDB, NULL,
g_nLastSort, 0, &cenr);

else if (g_hDB == 0){
wsprintf (szErr,

TEXT ("Database open failed. re %X ext err:%d"),
g_hDB, GetLastError());

MessageBox (hWnd, szErr, szAppName, MB_OK);

CeOidGetlnfoEx (&g_guidDB, g_oidDB, &oidinfo);
*pnRecords = oidinfo.infDatabase.wNumReeords;
return g_hDB;

THE REGISTRY
The registry is a system database used to store configuration information in applica
tions and in Windows itself. The registry as defined by Windows CE is similar but not
identical in function and format to the registries under Windows 98 and Windows NT.
In other words, for an application, most of the same registry access functions exist,
but the layout of the Windows CE registry doesn't exactly follow either Windows 98
or Windows NT.

As in all versions of Windows, the registry is made up of keys and values. Keys
can contain keys or values or both. Values contain data in one of a number of pre
defined formats. Since keys can contain keys, the registry is distinctly hierarchical.
The highest level keys, the root keys, are specified by their predefined numeric con
stants. Keys below the root keys and values are identified by their text name. Mul
tiple levels of keys can be specified in one text string by separating the keys with a
backslash (\).

To query or modify a value, the key containing the value must first be opened,
the value queried and or written, then the key closed. Keys and values can also be
enumerated so that an application can determine what a specific key contains. Data
in the registry can be stored in a number of different predefined data types. Among
the available data types are strings, 32-bit numbers, and free form binary data.

467

Part 11 Windows CE Basics

Registry Organization

468

The Windows CE registry supports three of the high-level, root keys seen on other
Windmvs platforms, Hl',.EY_LOCAL_I-/[ACHINE, HKEY_CURRENT_USER, and HKEY_
CLASSES_ROOT. As with other Windows platforms, Windows CE uses the
HKEY _LOCAL_MACHINE key to store hardware and driver configuration data, the
HKEY_CURRENT_USER to store user-specific configuration data, and the HKEY_
CLASSES_ROOT key to store file type matching and OLE configuration data.

As a practical matter, the registry is used by applications and drivers to store
state information that needs to be saved across invocations. Applications typically store
their current state when they are requested to close and then restore this state when
they are launched again. The traditional location for storing data in the registry by an
application is obtained by means of the following structure:

{ROOT_KEY}\Software\fCompany Name}\fCompany Product}

In this template, the ROOT _KEY is either HKEY _LOCAL_MACHINE for machine
specific data such as what optional components of an application may be installed
on the machine or HKEY_CURRENT_USER for user-specific information, such as the
list of the user's last-opened files. Under the Software key, the company's name that
wrote the application is used followed by the name of the specific application. For
example, Microsoft saves the configuration information for Pocket Word under the key

HKEY_LOCAL_MACHINE\Software\Microsoft\pocket Word

While this hierarchy is great for segregating registry values from different ap
plications from one another, it's best not to create too deep a set of keys. Because of
the way the registry is designed, it takes less memory to store a value than it does a
key. Because of this, you should design you registry storage so that it uses fewer
keys and more values. To optimize even further, it's more efficient to store more
information in one value· than to have the same information stored across a num
ber of values.

The window in Figure 7-6 shows the hierarchy of keys used to store data for
Pocket Word. The left pane shows the hierarchy of keys down to the Settings key
under the Pocket Word key. In the Settings key, three values are stored: Wrap To
Window, Vertical Scrollbar Visibility, and Horizontal Scrollbar Visibility. In this case,
these values are DWORDs, but they could have been strings or other data types.

Chapter 7 Flies, Databases, and the Registry

•
Figure 7-6. You can see the hierarchy of the registry by looking at the values stored by
Pocket Word.

The Registry API

ow let's turn toward the Windows CE regi try APL In general, the regi try API pro
vide all the functions neces ary to read and write data in the registry as well as enu
merate the keys and data store within. Windows CE doe n't support the security
features of th regi try that are upported under Window NT.

Opening and creating keys
A registry key is opened with a call to thi function:

LONG RegOpenKeyEx (HKEY hKey, LPCWSTR lpszSubKey, DWORD ulOptions,
REGSAM samDesired, PHKEY phkResult);

The first parameter is the key that contains th econd parameter, the subkey. This
fir t key must be either one of the root key constants or a previously opened key.
The ubkey to open i pecified a a text tring that contain the key to open. Thi
subkey string can contain multiple level of subkeys as long as each subkey is sepa
rated by a backslash. For example, to open the subkey HKEY _LOCAL_MACHINE\
oftware\ Micro oft\ Pocket Word , an application could either call RegOpenKeyEx

with HKEY _LOCAL_MACHINE as the key and Software\ Micro oft\ Pocket Word as
the ubkey or it could open the Software\ Micro oft key and then mak a call with

469

Part 11 Windows CE Basics

470

that opened handle to RegOpenKeyEx specifying the subkey Pocket Word. Key and
value names aren't case specific.

Windows CE ignores the ulOptions and samDesired parameters. To remain
compatible with future versions of the operating system that might use security fea
tures, these parameters should be set to 0 for ulOptions and NULL for samDesired.
The phkResult parameter should point to a variable that will receive the handle to
the opened key. The function, if successful, returns a value of ERROR_SUCCESS and
an error code if it fails.

Another method for opening a key is

LONG RegCreateKeyEx CHKEY hKey, LPCWSTR lpszSubKey, DWORD Reserved,
LPWSTR lpszClass, DWORD dwOptions,
REGSAM samDesired,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
PHKEY phkResult, LPDWORD lpdwDisposition);

The difference between RegCreateKeyEx and RegOpenKeyEx, aside from the extra
parameters, is that RegCreateKeyEx creates the key if it didn't exist before the call.
The first two parameters, the key handle and the subkey name, are the same as in
RegOpenKeyEx. The Resewed parameter should be set to 0. The lpClass parameter
points to a string that contains the class name of the key if it's to be created. This
parameter can be set to NULL if no class name needs to be specified. The dwOptions
and samDesired and lpSecurityAttributes parameters should be set to 0, NULL, and
NULL respectively. The phkResult parameter points to the variable that receives the
handle to the opened or newly created key. The lpdwDisposition parameter points
to a variable that's set to indicate whether the key was opened or created by the call.

Reading registry values
You can query registry values by first opening the key containing the values of inter
est and calling this function:

LONG RegQueryValueEx (HKEY hKey, LPCWSTR lpszValueName,
LPDWORD lpReserved, LPDWORD lpType,
LPBYTE lpData, LPDWORD lpcbData);

The hKey parameter is the handle of the key opened by RegCreateKeyEx or
RegOpenKeyEx. The lpszValueName is the name of the value that's being queried.
The lpType parameter is a pointer to a variable that receives the variable type. This
variable is filled with The lpData parameter points to the buffer to receive the data,
while the lpcbData parameter points to a variable that receives the size of the data. If
RegQueryValueEx is called with the lpData parameter equal to NULL, Windows re
turns the size of the data but doesn't return the data itself. This allows applications to
first query the size and type of the data before actually receiving it.

Chapter 7 Files, Databases, and the Registry

Writing registry values
You set a registry value by calling

LONG RegSetValueEx (HKEY hKey, LPCWSTR lpszValueName, DWORD Reserved,
DWORD dwType, canst BYTE *lpData, DWORD cbData);

The parameters here are fairly obvious: the handle to the open key followed by the
name of the value to set. The function also requires that you pass the type of data,
the data itself, and the size of the data. The data type parameter is simply a labeling
aid for the application that eventually reads the data. Data in the registry is stored in
a binary format and returned in that same format. Specifying a different type has no
effect on how the data is stored in the registry or how it's returned to the application.
However, given the availability of third-party registry editors, you should make ev
ery effort to specify the appropriate data type in the registry.

The data types can be one of the following:

• REG_SZ A zero-terminated Unicode string

• REG_EXPAND_SZ A zero-terminated Unicode string with embedded
environment variables

• REG_MULTI_SZ A series of zero-terminated Unicode strings terminated
by two zero characters

• REG_DWORD A 4-byte binary value

• REG_BINARY Free-form binary data

• REG_DWORD_BIG_ENDIAN A DWORD value stored in big-endian format

• REG_DWORD_LI17ZE_ENDIAN Equivalent to REG_DWORD

• REG_LINK

• REG_NONE

• REG_RESOURCE_LIST

Deleting keys and values
You delete a registry key by calling

LONG RegDeleteKey (HKEY hKey, LPCWSTR lpszSubKey);

The parameters are the handle to the open key and the name of the subkey you plan
to delete. For the deletion to be successful, the key must not be currently open. You
can delete a value by calling

LONG RegDeleteValue CHKEY hKey, LPCWSTR lpszValueName);

471

Part II Windows CE Basics

472

A wealth of information can be gleaned about a key by calling this function:

LONG RegQueryinfoKey (HKEY hKey, LPWSTR lpszClass, LPDWORD lpcchClass,
LPDWORD lpReserved, LPDWORD lpcSubKcys,
LPDWORD lpcchMaxSubKeyLen,
LPDWORD lpcchMaxClassLen,
LPDWORD lpcValues, LPDWORD lpcchMaxValueNameLen,
LPDWORD lpcbMaxValueData,
LPDWORD lpcbSecurityDescriptor,
PFILETIME lpftLastWriteTime);

The only input parameter to this function is the handle to a key. The function returns
the class of the key, if any, as well as the maximum lengths of the subkeys and val
ues under the key. The last two parameters, the security attributes and the last write
time, are unsupported under Windows CE and should be set to NULL.

Closing keys
You close a registry key by calling

LONG RegCloseKey (HKEY hKey);

When a registry key is closed, Windows CE flushes any unwritten key data to the
registry before returning from the call.

Enumerating registry keys
In some instances, you'll find it helpful to be able to query a key to see what subkeys
and values it contains. You accomplish this with two different functions: one to query
the subkeys, another to query the values. The first function

LONG RegEnumKeyEx (HKEY hKey, DWORD dwindex, LPWSTR lpszName,
LPDWORD lpcchName, LPDWORD lpReserved,
LPWSTR lpszClass,
LPDWORD lpcchClass, PFILETIME lpftLastWriteTime);

enumerates the subkeys of a registry key through repeated calls. The parameters to
pass the function are the handle of the opened key and an index value. To enumer
ate the first subkey, the dw!ndex parameter should be 0. For each subsequent call to
RegEnumKeyEx, dw!ndex should be incremented to get the next subkey. When there
are no more subkeys to be enumerated, RegEnumKeyEx returns ERROR_NO_
MORE_ITEMS.

For each call to RegEnumKeyEx, the function returns the name of the subkey,
and its classname. The last write time parameter isn't supported under Windows CE.

Values within a key can be enumerated with a call to this function:

LONG RegEnumValue CHKEY hKey, DWORD dwindex, LPWSTR lpszValueName,
LPDWORD lpcchValueName, LPDWORD lpReserved,
LPDWORD lpType, LPBYTE lpData, LPDWORD lpcbData);

Chapter 7 Files, Databases, and the Registry

Like RegEnumKey, this function is ca lled repeatedly, passing index values to enumerate
the different values stored under the key. When the function returns ERROR_ O_
MORE_ITEM , there are no more values under the key. RegEnumValue returns the
name of the values, the data stored in the value, as well as its data type and the size
of the data.

The RegView Example Program

The following program i a regi try viewer application. It allows a user to navigate
the trees in the registry and examine the contents of the data stored . Unlike RegEdit,
which is provided by Windows NT and Windows 98, RegView doesn't let you edit
the registry. However, uch an exten ion wouldn't be difficult to make. Figure 7-7
contains the code for the RegView program.

Reg View.re

II==
II Resource file
II
II Copyright CC> 1998 Douglas Boling
II==
#include "windows.h"
#include "regv1ew .h" II Program-specific stuff

11------ -- --
11 Icons and bitmaps
II
ID_ICON ICON "regview. ico"
ID_BMPS BITMAP "TVBmps. bmp"

II Program icon

11--
11 Menu
II
ID_MENU MENU DISCARDABLE
BEGIN

POPUP "&File"
BEGIN

HENUITEH "E&xit",
END

IDH_EXIT

Figure 7-7. Tbe Reg View program. (continued)

473

Part II Windows CE Basics

Figure 7-7. continued

END

POPUP "&Help"
BEGIN

MENUITEM "&About ... ",
END

IDM_ABOUT

11 --
11 About box dialog template
II
aboutbox DIALOG discardable 10, 10, 160, 40
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER I

DS_MODALFRAME
CAPTION "About"
BEGIN

ICON ID_ICON, - 1, 5, 5, 10, 10
LTEXT "RegView Written for the book Programming Windows CE \

Copyright 1998 Douglas Boling"
-1. 40, 5, 110, 30

END

RegVlew.h

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11 ------ --
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD {
UINT Code;
LRESULT (*Fxn)(HWND, WORD, HWND, WORD);

} ;

474

II Structure associates
II messages
II with a function.

II Structure associates
I I control IDs with a
II function.

Chapter 7 Flies, Databases, and the Registry

struct decodeNotify (
UINT Code:
LRESULT (*Fxnl(HWND, WORD, HWND, LPNMHDRl:

II Structure associates
II control IDs with a
II notify handler.

) :

11 --
II Generic defines used by application
/fdefi ne ID_ICON 1 II App icon resource ID
#define ID_BMPS 2 II Bitmap resource ID

/tdefi ne IDc_CMDBAR 10 II Command band ID
/fdefi ne ID_MENU 11 II Main menu resource ID
/fdefi ne ID_TREEV 12 II Tree view control ID
/tdefi ne ID_LISTV 13 II Li st view control ID

II Menu i tern IDs
/fdefi ne IDM_EXIT 101 II File menu
/fdefi ne IDM_ABOUT 150 II Help menu

11 --
11 Function prototypes
II
int InitApp (HINSTANCEl:
HWND Initinstance CHINSTANCE, LPWSTR, int);
int Terminstance CHINSTANCE, int);

INT EnumChildren (HWND, HTREEITEM, HKEY, LPTSTRl:
DWORD CountChildren (HKEY, LPTSTR, LPTSTRl:
INT EnumValues (HWND, HKEY, LPTSTRl:
INT DisplayValue (HWND, INT, LPTSTR, PBYTE, DWORD, DWORD);
INT GetTree (HWND, HTREEITEM. HKEY *· TCHAR *· INT);
HTREEITEM InsertTV (HWND, HTREEITEM, TCHAR *· LPARAM, DWORDl:
INT InsertLV (HWND, INT, LPTSTR, LPTSTRl:
HWND CreateLV (HWND. RECT *):
HWND CreateTV (HWND, RECT •);

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAMl:

II Message handlers
LRESULT DoCreateMain (HWND, UINT, WPARAM, LPARAMl:
LRESULT DoSizeMain (HWND, UINT, WPARAM, LPARAMl:
LRESULT DoNotifyMain (HWND, UINT, WPARAM, LPARAMl:
LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAMl:
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAMl:

(continued)

475

Part II Windows CE Basics

Figure 7-7. continued

II Command functions
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandAbout CHWND, WORD, HWND, WORD);

II Notify functions
LPARAM DoMainNotifylistV CHWND, WORD, HWND, LPNMHDR);
LPARAM DoMainNotifyTreeV CHWND, WORD, HWND, LPNMHDR);

II Dialog procedures
BOOL CALLBACK AboutDlgProc CHWND, UINT, WPARAM. LPARAM):

RegVlew.c

II==
II RegView - WinCE registry viewer
II
II Written for the book Programming Windows CE
II Copyright CC) 199B Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include <commctrl.h> II Command bar includes
#include <commdlg.h> II Common dialog includes

#include "RegView.h" II Program-specific stuff

1/------------- - --- ----------- --
11 Global data
II
const TCHAR szAppName[J
HINSTANCE hlnst:

TEXT C"RegView");
II Program instance handle

INT nDivPct = 40; II Divider setting between windows

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages(J = {

WM_CREATE, DoCreateMain.
WM_SIZE, DoSizeHain,
WM_COMMAND, DoCommandMain .
WH_NOTIFY, DoNotifyMain,
WM_DESTROY. DoDestroyHain,

} ;

II Command message dispatch for MainWindowProc
const struct decodeCMD MainCommandltems[J = {

476

IDM_EXIT, DoHainCommandExit,
IDH_ABOUT, DoMainCommandAbout,

Chapter 7 Files, Databases, and the Registry

) ;

II Notification message dispatch for MainWindowProc
const struct decodeNotify MainNotifyitems[] = (

) ;

ID_LISTV, DoMainNotifyListV,
ID_TREEV, DoMainNotifyTreeV,

II==
II
II Program entry point
II
int WINAPI WinMain CHINSTANCE hlnstance, HINSTANCE hPrevlnstance,

LPWSTR lpCmdLine . int nCmdShow) (
HWND hwndMain;
MSG msg;
int re = 0;

II Initialize application.
re= InitApp Chlnstance>:
if Crc) return re:

II Initialize this instance.
hwndMain = Initlnstance (hlnstance. lpCmdLine. nCmdShow);
if ChwndMain == 0)

)

return 0xl0;

II Application message loop
while CGetMessage C&msg, NULL. 0, 0)) (

TranslateMessage C&msg);
DispatchMessage C&msg);

)

II Instance cleanup
return Termlnstance Chlnstance, msg.wParam);

11 --
11 InitApp - Application initialization
II
int InitApp CHINSTANCE hlnstance)

WNDCLASS we;
INITCOMMONCONTROLSEX icex;

II Register application main window
we.style = 0;
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hlnstance = hlnstance;

class.
II
II
II
II
II

Window style
Callback function
Extra class data
Extra window data
Owner handle

(conlinued)

477

Part 11 Windows CE Basics

Figure 7-7. continued

}

wc.hlcon = NULL,
wc.hCursor = NU LL ;
wc .hbrBackground = (HBRUSH)

II Application icon
II Default cursor

GetStockObject (WHITE_BRUSH);
wc.lpszMenuName = NULL;
wc.lpszClassName = szAppName;

if (RegisterClass <&we) == 0) return 1:

II Menu name
II Window class name

II Load the command bar common control class.
icex.dwSize = sizeof (INITCOMMONCONTROLSEX);
icex.dwICC = ICC_BAR_CLASSES I ICC_TREEVIEW_CLASSES

ICC_LISTVIEW_CLASSES;
InitCommonControlsEx (&icex);
return 0:

11 ----------------------------- -------- --- ------------------------------
11 Initinstance - Instance initialization
II
HWND Initinstance (HINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow){

HWND hWnd:

}

478

II Save program instance handle in global variable.
hinst = hinstance;

II Create main window.
hWnd = CreateWindow (szAppName,

TEXT ("RegView"),
WS_VISIBLE,
CW_USEDEFAULT,
CW_USEDEFAUL T,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hinstance,
NULL);

II Return fail code if window not created.
if (!IsWindow (hWndll return 0:

II Standard show and update calls
ShowWindow (hWnd, nCmdShowl:
UpdateWindow (hWnd);
return hWnd;

II
II
II
II
II
II
II
II
II
II
II
II

Window class
Window title
Style flags
x position
y position
Initial width
Initial height
Parent
Menu, must be null
Application instance
Pointer to create
parameters

Chapter 7 Files, Databases, and the Registry

11 --- -- ---- -- ------- ---------------- -------- --------- ------- --- ------ ---
11 Terminstance - Program cleanup
II
int Termlnstance CHINSTANCE hinstance, int nDefRC) (

return nDefRC;
}

II==
II Message handling procedures for MainWindow
11 -------------------------- ---- ------------ -- ----------- ---------------
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc (HWND hWnd. UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) (
INT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0; i < dim(MainMessages); i++) (

if (wMsg == MainMessages[i] .Code)
return (*MainMessages[i].Fxn)(hWnd. wMsg, wParam, lParam);

return DefWindowProc (hWnd, wMsg, wParam, lParam);

11 ------------- -- --- --- -- -- -------------------------------- -- -- ---------
11 DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) (
HWND hwndCB. hwndChild;
INT nHeight;
RECT rect;
LPCREATESTRUCT lpcs;

II Convert lParam into pointer to create structure.
lpcs = (LPCREATESTRUCT) lParam;

II Create a minimal command bar that only has a menu and an
II exit button.
hwndCB = CommandBar_Create (hinst. hWnd, IDC_CMDBAR>:
II Insert the menu.
CommandBar_InsertMenubar (hwndCB. hinst. ID_MENU. 0);
II Add exit button to command bar .
CommandBar_AddAdornments (hwndCB. 0, 0);
nHeight = CommandBar_Height (hwndCB);

(continued)

479

Part 11 Windows CE Basics

Figure 7·7. continued

}

II Create the tree view control in the left pane.
SetRect C&rect, 0, nHeight, lpcs->cxl3, lpcs->cy - nHeight);
hwndChild = CreateTV (hWnd, &rect);

II Destroy frame if window not created.
if C!IsWindow ChwndChild)) {

DestroyWindow ChWnd);
return 0;

II Create the l i st view control in right pane.
SetRect C&rect, lpcs ->cxl3, nHeight, (lpcs->cx•2)13,

lpcs ->cy - nHeight);
hwndChild = CreateLV ChWnd. &rect);

II Destroy frame if window not created.
if C!IsWindow ChwndChild)) {

DestroyWindow ChWnd);
return 0;

}

II Insert the base keys.
InsertTV ChWnd, NULL, TEXT ("HKELCLASSES_ROOT"),

CLPARAH)HKEY_CLASSES_ROOT, l);

I nsertTV (hWnd, NULL, TEXT ("HKELCURRENT_USER"),
CLPARAM)HKEY_CURRENT_USER, 1):

lnsertTV ChWnd. NULL, TEXT C"HKELLOCALHACHINE"),
CLPARAM)HKEY_LOCALHACHINE, l);

InsertTV (hWnd, NULL. TEXT ("HKEY_USERS"),
CLPARAM)HKEY_USERS, l);

return 0;

11------------------------- - ---- -- - --------------- - ----- - ------- - - -- ·-- -
ll DoSizeMain - Process WM_SIZE message for window.
II
LRESULT DoSizeMain CHWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam){

HWND hwndLV, hwndTV;

480

RECT rect;
INT nDivPos;

hwndTV GetDlgltem (hWnd, ID_TREEV);
hwndLV GetDlgitem ChWnd, ID_LISTV);

II Adjust the size of the client rect to take into account
II the command bar height.
GetClientRect ChWnd, &rect>:
rect.top += CommandBar_Height (GetDlgitem ChWnd, IDC_CHDBAR));

Chapter 7 Files, Databases, and the Registry

}

nDivPos = ((rect.right - rect.left) * nDivPct)l100:

SetWindowPos (hwndTV, NULL, rect.left, rect.top,
nDivPos, rect.bottom - rect.top.
SWP_NOZORDER):

SetWindowPos (hwndLV, NULL , nDivPos, rect.top,
(rect.right - rect.left) - nDivPos,
rect.bottom - rect.top, SWP_NOZORDER>:

return 0:

11 ------------- -- --- - ---
11 DoCommandMa i n - Process WM_COMMAND message for window.
II
LRESULT DoCommandMain (HWND hWnd, UINT wMsg, WPARAM wParam.

}

LPARAM lParam) {
WORD idltem, wNotifyCode:
HWND hwndCtl:
INT i:

II Parse the parameters .
idltem =(WORD) LOWORD (wParam):
wNot i fyCode =(WORD) HIWORD CwParam):
hwndCtl = CHWNDl lParam:

II Call routine to handle control message.
for Ci = 0; i < dim(MainCommandltems>: i++)

if (idltem == MainCommandltems[i].Code)
return (•MainCommandltems[i].Fxn)(hWnd, idltem, hwndCtl.

wNot ifyCode) :

return 0:

11 --
11 DoNotifyMain - Process WM_NOTIFY message for window.
II
LRESULT DoNotifyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) (
UINT idltem :
HWND hCtl :
LPNMHDR pHdr:
INT i:

II Parse the parameters.
idltem = wParam:
pHdr = CLPNMHDR) lParam:
hCtl = pHdr ->hwndFrom:

(co nlinued)

481

Part II Windows CE Basics

Figure 7-7. continued

II Call routine to handle control message.
for (i = 0; i < dim(MainNotifyitems); i++)

if (iditem == MainNotifyitems[i].Code)
return (* MainNotifyltems[i].Fxn)(hWnd, idltem, hCtl, pHdr);

return 0;

11--- -----------------------------
11 DoDestroyMain - Process WM_DESTROY message for window.
II
LRESULT DoDestroyMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {
PostQuitMessage (0) ;
return 0;

}

II==
II Command handler routines
11--
11 DoMainCommandExit - Process Program Exit command.
II
LPARAM DoMainCommandExit (HWNO hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) (

)

SendMessage (h Wnd , WM_C LOSE. 0, 0);
return 0;

1/--
11 DoMainCommandAbout - Process the Help I About menu command.
II
LPARAM DoMainCommandAbout(HWND hWnd. WORD idltem. HWND hwndCtl.

)

WORD wNotifyCode) {

II Use DialogBox to create modal dialog box.
DialogBox (hlnst . TEXT ("aboutbox"), hWnd, AboutDlgProc);
return 0;

II==
II Notify handler routines
11--
11 DoMainNotifylistV - Process notify message for list view.
II
LPARAM DoMainNotifylistV CHWND hWnd, WORD idltem, HWND hwndCtl,

LPNMHDR pnmh) {
return 0;

482

Chapter 7 Files, Databases, and the Registry

11 ----------------- - -------- - ------ -- ----------- - --- - ----- - -- - ---- - -----
11 DoMainNotifyTreeV - Process notify message for list view.
II
LPARAM DoMainNotifyTreeV (HWND hWnd, WORD idltem, HWND hwndCtl,

LPNMHDR pnmh l {

LPNM_TREEVIEW pNotifyTV;
TCHAR szKey[256];
HKEY hRoot:
HTREEITEM hChild, hNext;
INT i:

pNotifyTV = CLPNM_TREEVIEWJ pnmh:

switch Cpnmh ->code) {
case TVN_ITEMEXPANDED:

if (pNotifyTV ->action == TVE_CDLLAPSEJ {
II Delete the children so that on next open, they will
II be reenumerated.
hChild = TreeView_GetChild ChwndCtl.

pNotifyTV->itemNew.hitemJ:
while ChChild) {

hNext = TreeView_GetNextltem ChwndCtl, hChild,
TVGN_NEXTJ:

TreeView_Deleteltem ChwndCtl, hChild);
hChild = hNext;

break;

case TVN_SELCHANGED:
GetTree ChWnd, pNotifyTV -> itemNew.hltem, &hRoot,

szKey, dimCszKey));
EnumValues ChWnd, hRoot, szKey);
break:

case TVN_ITEMEXPANDING:
if CpNotifyTV ->action == TVE_EXPANDJ {

GetTree ChWnd, pNotifyTV -> itemNew.hltem , &hRoot,
szKey, dimCszKey));

i = EnumChildren ChWnd, pNotifyTV ->itemNew.hitem,
hRoot, szKey);

break;

return 0;

(co ntinued)

483

Part II Windows CE Basics

Figure 7-7. continued

11- - - - - -- - - - ------------------------ - - -- - - - - -- - - - -- -- -- ---- - - - ------ - - --
11 CreateLV - Create list view control.
II
HWND CreateLV CHWND hWnd, RECT •prect) (

HWND hwndLV:

)

LVCOLUMN lvc:

II
II Create report window. Size it so that it fits under
II the command bar and fills the remaining client area.
II
hwndLV CreateWindowEx (0, WC_LISTVIEW. TEXT(""),

WS_VISIBLE I WS_CHILD I WS_VSCROLL
WS_BORDER I LVS_REPORT,
prect ->left, prect ->top,
prect ->right - prect->left,
prect ->bottom - prect ->top,

II Add columns.
if (hwndLV) (

hWnd, (HMENU) ID_LI STV,
hlnst, NULL):

lvc.mask = LVCF_TEXT I LVCF_WIDTH I LVCF_FMT I LVCF_SUBITEM I
LVCF _ORDER:

lvc.fmt = LVCFMT_LEFT;
lvc.cx = 120:
lvc.pszText =TEXT ("Name");
lvc.iOrder = 0:
lvc.iSubltem = 0;
SendMessage (hwndLV, LVM_INSERTCOLUMN, 0, (LPARAMl&lvc);

lvc.mask I= LVCF_SUBITEM:
lvc.pszText =TEXT ("Data");
lvc.cx = 250;
lvc.iOrder = 1:
lvc.iSubltem = 1:
SendMessage (hwndLV, LVM_INSERTCOLUMN, l, (LPARAM)&lvc);

return hwndLV:

11- ---- --- - - - - - - - - -- ---- - - - - - - -- - ----------- - -- - ---- - -- - - --- -- - - - - - -----
11 InitTreeView - Initialize tree view control.
II
HWND CreateTV (HWND hWnd, RECT •prect)

HBITMAP hBmp;
HIMAGELIST hi ml;
HWND hwndTV;

484

Chapter 7 Files, Databases, and the Registry

}

II
II Create tree view. Size it so that it fits under
II the command bar and fills the left part of the client area.
II
hwndTV CreateWindowEx (0, WC_TREE VIEW,

TEXT(""), W5_VISIBLE I WS_CHILD I WS_VSCROLL
WS_BORDER I TVS_HASLINES I TVS_HASBUTTONS
TVS_LINESATROOT, prect ->left, prect ->top,
prect -> right, prect ->bottom.
hWnd, (HMENU)ID_TREEV, hinst, NULL);

II Destroy frame if window not created.
if (!IsWindow (hwndTVll

return 0:

II Create image list control for tree view icons.
himl = ImageList_Create (16, 16, ILC_COLOR, 2, 0);
II Load first two images from one bitmap.
hBmp = LoadBitmap (hinst, MAKEINTRESOURCE (ID_BMPS));
ImageList_Add (himl, hBmp, NULL);
DeleteObjeet (hBmp);

TreeView_SetimageList(hwndTV, himl, TVSIL_NORMAL);
return hwndTV;

11- ------------- --------- ---
11 InsertLV - Add an item to the list view control.
II
INT InsertLV CHWND hWnd, INT nitem, LPTSTR pszName, LPTSTR pszDatal (

HWND hwndLV = GetDlgitem ChWnd, ID_LISTV);
LVITEM 1 vi;
INT re;

lvi .mask = LVIF_TEXT I LVIF_IMAGE I LVIF_PARAM;
lvi.iltem = nltem:
lvi.iSubltem = 0:
lvi.pszText = pszName:
lvi.iimage = 0;
lvi.lParam = nitem;
re= SendMessage (hwndLV, LVM_INSERTITEM, 0, (LPARAMl&lvi);

lvi .mask = LVIF_TEXT;
lvi.iltem = nltem:
lvi.iSubltem = 1;
lvi.pszText = pszData:

(continued)

485

Part 11 Windows CE Basics

Figure 7-7. contin ued

}

re= SendMessage (hwndLV, LVM_SETITEM, 0, CLPARAM)&lvi);
return 0;

11 ------------------------------- ------------ ---------------------------
11 InsertTV - Insert item into tree view control.
II
HTREEITEM lnsertTV (HWND hWnd, HTREEITEM hParent, TCHAR *pszName,

LPARAM lParam, DWDRD nChildren) {
TV_INSERTSTRUCT tvis;

}

HWND hwndTV = GetDlgitem (hWnd, ID_TREEV);
II Initialize the insertstruct.
memset C&tvis, 0, sizeof (tvis));
tvis.hParent = hParent;
tvis.hinsertAfter = TVl_LAST;
tvis.item.mask = TVIF_TEXT I TVIF_PARAM I TVIF_CHILDREN I

TVIF_IMAGE;
tvis.item.pszText = pszName:
tvis.item.cchTextMax = lstrlen (pszName);
tvis.item.ilmage = 1:
tvis.item.iSelectedimage = 1:
tvis.item.lParam = lParam;
if CnChildren)

tvis.item.cChildren l;
else

tvis.item.cChildren 0;

return TreeView_Insertitem (hwndTV. &tvis);

11 -------------------------------- ------------------ --------------------
11 GetTree - Compute the full path of the tree view item.
II
INT GetTree CHWND hWnd, HTREEITEM hltem, HKEY *pRoot. TCHAR *pszKey,

486

INT nMax) (
Tv_nEM tvi:
TCHAR szName[256];
HTREEITEM hParent;
HWND hwndTV = GetDlgltem ChWnd, ID_TREEV);

memset (&tvi. 0, sizeof (tvi));

hParent = TreeView_GetParent (hwndTV. hltem);
if (hParent) {

II Get the parent of the parent of the ...
GetTree ChWnd. hParent. pRoot, pszKey, nMax>:

Chapter 7 Files, Databases, and the Registry

}

II Get the name of the item.
tvi.mask = TVIF_TEXT:
tvi.hitem = hitem:
tvi.pszText = szName:
tvi.cchTextMax = dim(szName):
TreeView_Getitem (hwndTV, &tvi):

lstrcat CpszKey, TEXT ("\\")):
lstrcat CpszKey, szName):

} else (
•pszKey =TEXT ('\0'):
szName[0J =TEXT C'\0'):
II Get the name of the item.
tvi .mask= TVIF_TEXT I TVIF_PARAM:
tvi.hitem = hitem:
tvi.pszText = szName:
tvi.cchTextMax = dim(szNameJ:
if CTreeView_Getitem ChwndTV, &tvi))

•pRoot CHTREEITEM)tvi.lParam:
else (

INT re GetlastError(J:

return 0:

11-- ------------- --------- --- -----
11 DisplayValue - Display the data depending on the type.
II
INT DisplayValue CHWND hWnd. INT nCnt, LPTSTR pszName, PBYTE pbData,

DWORD dwDSize, DWORD dwType) {
TCHAR szData[S12]:
I NT i , l en:

switch (dwType) {
case REG_MULTl_SZ:
case REG_EXPAND_SZ:
case REG_SZ:

lstrcpy CszData, CLPTSTR)pbData>:
break:

case REG_DWORD:
wsprintf CszData. TEXT C"IX"J, • (int •) pbDataJ:
break:

(co111in.ued)

487

Part 11 Windows CE Basics

Figure 7-7. continued

)

case REG_BINARY:
szData[0] = TEXT ('\0');
for (i = 0; i < (int)dwDSize; i++) {

len = lstrlen (szData);
wsprintf C&szData[len], TEXT ("102X "), pbData[i]);
if (len > dim(szData) - 6)

break:
default:

break;

wsprintf (szData , TEXT ("Unknown type: Ix"), dwType);

InsertLV ChWnd, nCnt. pszName, szDatal:
return 0;

11--
11 EnumValues - Enumerate each of the values of a key.
II
INT EnumValues (HWND hWnd. HKEY hRoot, LPTSTR pszKey) (

INT nCnt = 0, re;

488

DWORD dwNSize, dwDSize, dwType;
TCHAR szName[MAX_PATH] ;
BYTE bData[l024];
HKEY hKey:

if (lstrlen (pszKey)) {
if (RegOpenKeyEx ChRoot. pszKey, 0, 0, &hKey) != ERROR....SUCCESS)

return 0;
else

hKey = hRoot;

II Clean out list view.
ListView_DeleteAllitems CGetDlgitem (hWnd, ID_LISTVll:

II Enumerate the values in the list view control.
nCnt = 0;
dwNSize = dim(szName);
dwDSize = dim(bData);
re = RegEnumValue (hKey, nCnt, szName, &dwNSize.

NULL. &dwType, bData, &dwDSizel:

while (re == ERROR....SUCCESSl {
II Display the value in the list view control.
DisplayValue ChWnd, nCnt. szName, bData, dwDSize. dwTypel:

Chapter 7 Files, Databases, and the Registry

}

dwNSize = dim(szName);
dwDSize = dim(bData);
nCnt++;
re = RegEnumValue ChKey, nCnt, szName, &dwNSize.

if ChKey != hRoot)
RegCloseKey ChKey);

return 1:

NULL, &dwType, bData. &dwDSize);

/!------------- -- -------
// CountChildren - Count the number of children of a key.
II
DWORD CountChildren CHKEY hRoot, LPTSTR pszKeyPath, LPTSTR pszKey)

TCHAR *pEnd:

}

DWORD dwCnt;
HKEY hKey;

pEnd = pszKeyPath + lstrlen (pszKeyPath);
lstrcpy CpEnd, TEXT ("\\"));
lstrcat CpEnd, pszKey);

if CRegOpenKeyExChRoot, pszKeyPath, 0, 0, &hKey) == ERROR_SUCCESS){
RegQuerylnfoKey ChKey, NULL, NULL, 0, &dwCnt, NULL, NULL, NULL,

NULL, NULL, NULL, NULL);
RegCloseKey (hKey);

*pEnd =TEXT ('\0');
return dwCnt;

//------ --
// EnumChildren - Enumerate the child keys of a key.
II
INT EnumChildren (HWND hWnd, HTREEITEH hParent. HKEY hRoot,

LPTSTR pszKey) {
I NT i = 0. re:
DWORD dwNSize:
DWORD dwCSize;
TCHAR szName[HAX_PATH];
TCHAR szClass[256];
FILETIHE ft;
DWORD nChild;
HKEY hKey;
TVITEH tvi;

(continued)

489

Part 11 Windows CE Basics

Figure 7-7. continued

}

II All keys but root need to be opened.
if Clstrlen CpszKey)) {

if (RegOpenKeyEx ChRoot, pszKey, 0, 0, &hKey) != ERROil.SUCCESS) {
re= GetLastErrorC):
return 0:

else
hKey = hRoot:

dwNSize = dimCszName):
dwCSize = dim(szClass):
re= RegEnumKeyEx ChKey, i, szName, &dwNSize, NULL,

szClass, &dwCSize, &ft):
while Crc == ERROil.SUCCESS) {

nChild = CountChildren ChRoot, pszKey, szName):
II Add key to tree view.
InsertTV ChWnd, hParent, szName, 0, nChildl;
dwNSize = dim(szName):
re= RegEnumKeyEx ChKey, ++i, szName, &dwNSize,

NULL, NULL, 0, &ft):
}

II If this wasn't the a root key, close it.
if ChKey != hRoot)

RegCloseKey ChKey);

II If no children, remove expand button.
if(i==0){

tvi.hitem = hParent:
tvi.mask = TVIF_CHILDREN:
tvi.cChildren = 0:
TreeView_Setitem CGetDlgitem ChWnd, ID_TREEV), &tvi):

return i:

II==
II About Dialog procedure
II
BOOL CALLBACK AboutDlgProc CHWND hWnd, UINT wHsg, WPARAH wParam,

LPARAH lParam) {

490

switch CwHsg) {
case WH_COHHAND:

switch CLOWORD CwParam))
case IDOK:
case IDCANCEL:

break ;

retu rn FALSE:

Chapter 7 Flies, Databases, and the Registry

EndDialog (hWnd, 0) ;
return TRU E;

The workhorses of this program are the enumeration function that qu ry what
keys and value are under each key. As a key i opened in the tree view control, the
control end a WM_ OTIFY me age. In re pon e , RegView enumerate the items
below that key and fill the tree view with the child key and the Ii t view contr I
with the value .

CONCLUSION
We have cov red a huge amount of ground in thi chapter. The fil y tern , while
radically different und r the cover , presents a standard Win32 interface to th pro
grammer and a familiar directory tructure to the u er. The databa e AP! is uniqu to
Windows CE and provide a va luable function for the information-centric device that
Window CE upports. The regi try tructure and interface are quite familiar to Win
dow programmer and should present no urprises.

The last two chapter have covered memory and the file ystem. Now it ' time
to look at th third part of the kernel triumvirate , proce e and thread . As with the
other part of Window CE, the API will be familiar if perhap a bit mailer. However
th underlying architecture of Window CE does make it elf known.

49 1

Chapters

Processes
and Threads

Like Windows NT, Windows CE is a fully multitasking and multithreaded operating
system. What does that mean? In this chapter I'll present a few definitions and then
some explanations to answer that question.

A process is a single instance of an application. If two copies of Microsoft Pocket
Word are running, two unique processes are running. Every process has its own,
protected, 32-MB address space as described in Chapter 6. Windows CE enforces a
limit of 32 separate processes that can run at any time.

Each process has at least one thread. A thread executes code within a process. A
process can have multiple threads running "at the same time." I put the phrase at the
same time in quotes because, in fact, only one thread executes at any instant in time.
The operating system simulates the concurrent execution of threads by rapidly switch
ing between the threads, alternatively stopping one thread and switching to another.

PROCESSES
Windows CE treats processes differently than does Windows 98 or Windows NT. First
and foremost, Windows CE has the aforementioned system limit of 32 processes being
run at any one time. When the system starts, at least four processes are created: NK.EXE,
which provides the kernel services; FILESYS.EXE, which provides file system services;
GWES.EXE, which provides the GUI support; and DEVICE.EXE, which loads and
maintains the device drivers for the system. On most systems, other processes are

493

Part 11 Windows CE Basics

also started, such as the shell, EXPLORER.EXE, and, if the system is connected to a
PC, REPLLOG.EXE and RAPISRV.EXE, which service the link between the PC and the
Windows CE system. This leaves room for about 24 processes that the user or other
applications that are running can start. While this sounds like a harsh limit, most sys
tems don't need that many processes. A typical H/PC that's being used heavily might
have 15 processes running at any one time.

Windows CE diverges from its desktop counterparts in other ways. Compared
with processes under Windows 98 or Windows NT, Windows CE processes contain
much less state information. Since Windows CE supports neither drives nor the con
cept of a current directory, the individual processes don't need to store that informa
tion. Windows CE also doesn't maintain a set of environment variables, so processes
don't need to keep an environment block. Windows CE doesn't support handle in
heritance, so there's no need to tell a process to enable handle inheritance. Because
of all this, the parameter-heavy CreateProcess function is passed mainly NULLs and
zeros, with just a few parameters actually used by Windows CE.

Many of the process and thread-related functions are simply not supported by
Windows CE because the system doesn't support certain features supported by Win
dows 98 or Windows NT. Since Windows CE doesn't support an environment, all the
Win32 functions dealing with the environment don't exist in Windows CE. While
Windows CE supports threads, it doesn't support fibers, a lightweight version of a
thread supported by Windows NT. So, the fiber API doesn't exist under Windows CE.
Some functions aren't supported because there's an easy way to work around the lack
of the function. For example, GetCommandLine doesn't exist in Windows CE, so an
application needs to save a pointer to the command line passed to WinMain if it needs
to access it later. Finally, ExitProcess doesn't exist under Windows CE. But, as you
might expect, there's a workaround that allows a process to close.

Enough of what Windows CE doesn't do; let's look at what you can do with
Windows CE.

Creating a Process

494

The function for creating another process is

BOOL CreateProcess (LPCTSTR lpApplicationName,
LPTSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL binheritHandles, DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCTSTR lpCurrentDirectory,
LPSTARTUPINFO lpStartupinfo,
LPPROCESS_INFORMATION lpProcessinformation);

While the list of parameters looks daunting, most of the parameters must be set to
NULL or 0 because Windows CE doesn't support security or current directories,

Chapter 8 Processes and Threads

nor does it handle inheritance. This results in a function prototype that looks more
like this:

BOOL CreateProcess (LPCTSTR lpApplicationName,
LPTSTR lpCommandLine, NULL, NULL, FALSE,
DWORD dwCreationFlags, NULL, NULL, NULL,
LPPROCESS_INFORMATION lpProcesslnformation);

The parameters that remain start with a pointer to the name of the application to launch.
Windows CE looks for the application in the following directories, in this order:

1. The path, if any, specified in the lpApplicationName.

2. For Windows CE 2.1 or later, the path specified in the SystemPath value in
[HKEY _LOCAL_MACHINE]\Loader. For earlier versions, the root of any
external storage devices, such as PC Cards.

3. The windows directory, (\Windows).

4. The root directory in the object store, (\).

This action is different from Windows NT, where CreateProcess searches for the
executable only if lpApplicationName is set to NULL and the executable name is passed
through the lpCcommnadLine parameter. In the case of Windows CE, the applica
tion name must be passed in the lpApplicaitonName parameter because Windows CE
doesn't support the technique of passing a NULL in lpApplicationName with the ap
plication name as the first token in the lpCommandLine parameter.

The lpCommandLine parameter specifies the command line that will be passed
to the new process. The only difference between Windows CE and Windows NT in
this parameter is that under Windows CE the command line is always passed as a
Unicode string. And, as I mentioned previously, you can't pass the name of the exe
cutable as the first token in lpCommandLine.

The dwCreationFlags parameter specifies the initial state of the process after it
has been loaded. Windows CE limits the allowable flags to the following:

• 0 Creates a standard process.

• CREATE_SUSPENDED Creates the process, then suspends the primary
thread.

• DEBUG_PROCESS The process being created is treated as a process being
debugged by the caller. The calling process receives debug information
from the process being launched.

• DEBUG_ONLY_1HIS_PROCESS When combined with DEBUG_PROCESS,
debugs a process but doesn't debug any child processes that are launched
by the process being debugged.

495

Part 11 Windows CE Basics

496

• CREATE_NEW_CONSOIE Forces a new console to be created. This is
supported only in Windows CE 2.1 and later.

The only other parameter of CreateProcess used by Windows CE is lpProcess
Information. This parameter can be set to NULL, or it can point to a PROCESS_
INFORMATION structure that's filled by CreateProcess with information about the new
process. The PROCESS_INFORMATION structure is defined this way:

typedef struct _PROCESS_INFORMATION {
HANDLE hProcess;
HANDLE hThread;
DWORD dwProcessid;
DWORD dwThreadid;

} PROCESS_INFORMATION;

The first two fields in this structure are filled with the handles of the new process and
the handle of the primary thread of the new process. These handles are useful for
monitoring the newly created process, but with them comes some responsibility. When
the system copies the handles for use in the PROCESS_INFORMATION structure, it
increments the use count for the handles. This means that, if you don't have any use
for the handles, the calling process must close them. Ideally, they should be closed
immediately following a successful call to CreateProcess. I'll describe some good uses
for these handles later in this chapter in the section, "Synchronization."

The other two fields in the PROCESS_INFORMATION structure are filled with
the process ID and primary thread ID of the new process. These ID values aren't
handles but simply unique identifiers that can be passed to Windows functions to iden
tify the target of the function. Be careful when using these IDs. If the new process
terminates and another new one is created, the system can reuse the old ID values.
You must take measures to assure that ID values for other processes are still identify
ing the process you're interested in before using them. For example, you can, by us
ing synchronization objects, be notified when a process terminates. When the process
terminated, you would then know not to use the ID values for that process.

Using the create process is simple, as you can see in the following code
fragment:

TCHAR szFileName[MAX_PATH];
TCHAR szCmdLine[64];
DWORD dwCreationFlags;
PROCESS_INFORMATION pi;
INT re;

lstrcpy (szFileName, TEXT ("calc"));
lstrcpy CszCmdLine, TEXT (""));
dwCreationFlags = 0;

Chapter 8 Processes and Threads

re = CreateProcess (szFileName, szCmdLine, NULL, NULL, FALSE,
dwCreationFlags, NULL, NULL, NULL, &pi);

if (re) {
CloseHandle (pi .hThread);
CloseHandle (pi .hProcess);

This code launches the standard Calculator applet found on Handheld PCs and Palm
size PCs. Since the file name doesn't specify a path, CreateProcess will, using the stan··
dard Windows CE search path, find calc.exe in the \Windows directory. Because I
didn't pass a command line to Cale, I could have simply passed a NULL value in
the lpCmdLine parameter. But I passed a null string in szCmdLine to differentiate the
lpCmdLine parameter from the many other parameters in CreateProcess that aren't
used. I used the same technique for dwCreationFlags. If the call to CreateProcess is
successful, it returns a nonzero value. The code above checks for this, and if the call
was successful, closes the process and thread handles returned in the PROCESS_
INFORMATION structure. Remember that this must be done by all Win32 applica
tions to prevent memory leaks.

Terminating a Process
A process can terminate itself by simply returning from the WinMain procedure. For
console applications, a simple return from main suffices. Windows CE doesn't sup
port the ExitProcess function found in Windows 98 and Windows NT. Instead, you
can have the primary thread of the process call ExitTbread. Under Windows CE, if
the primary thread terminates, the process is terminated as well, regardless of what other
threads are currently active in the process. The exit code of the process will be the exit
code provided by ExitTbread. You can determine the exit code of a process by calling

BOOL GetExitCodeProcess (HANDLE hProcess, LPDWORD lpExitCode);

The parameters are the handle to the process and a pointer to a DWORD that receives
the exit code that was returned by the terminating process. If the process is still run
ning, the return code is the constant STILL_ACTIVE.

You can terminate another process. But while it's possible to do that, you
shouldn't be in the business of closing other processes. The user might not be ex
pecting that process to be closed without his or her consent. If you need to terminate
a process (or close a process, which is the same thing but much nicer a word), the
following methods can be used.

If the process to be closed is one that you created, you can use some sort of
interprocess communication to tell the process to terminate itself. This is the most
advisable method because you've designed the target process to be closed by an
other party. Another method of closing a process is to send the main window of the
process a WM_ CLOSE message. This is especially effective on the Palm-size PC, where

497

Part 11 Windows CE Basics

applications are designed to respond to WM_ CLOSE messages by quietly saving their
state and closing. Finally, if all else fails and you absolutely must close another pro
cess, you can use TerminateProcess.

TerminateProcess is prototyped as

BOOL TerminateProcess (HANDLE hProcess, DWORD uExitCode);

The two·parameters are the handle of the process to terminate and the exit code the
terminating process will return.

Other Processes

498

Of course, to terminate another process, you've got to know the handle to that pro
cess. You might want to know the handle for a process for other reasons, as well. For
example, you might want to know when the process terminates. Windows CE sup
ports two additional functions that come in handy here (both of which are seldom
discussed). The first function is OpenProcess, which returns the handle of an already
running process. OpenProcess is prototyped as

HANDLE OpenProcess (DWORD dwDesiredAccess, BOOL blnheritHandle,
DWORD dwProcessld);

Under Windows CE, the ,first parameter isn't used and should be set to 0. The
blnheritHandle parameter must be set to FALSE because Windows CE doesn't sup
port handle inheritance. The final parameter is the process ID value of the process
you want to open.

The other function useful in this circumstance is

DWORD GetWindowThreadProcessld (HWND hWnd, LPDWORD lpdwProcessld);

This function takes a handle to a window and returns the process ID for the
process that created the window. So, using these two functions, you can trace a win
dow back to the process that created it.

Two other functions allow you to directly read from and write to the memory
space of another process. These functions are

BOOL ReadProcessMemory (HANDLE hProcess, LPCVOID lpBaseAddress,
LPVOID lpBuffer, DWORD nSize,
LPDWORD lpNumberOfBytesRead);

and

BOOL WriteProcessMemory (HANDLE hProcess, LPVOID lpBaseAddress,
LPVOID lpBuffer, DWORD nSize,
LPDWORD lpNumberOfBytesWritten);

The parameters for these functions are fairly self-explanatory. The first parameter is
the handle of the remote process. The second parameter is the base address in the
other process's address space of the area to be read or written. The third and fourth
parameters specify the name and the size of the local buffer in which the data is to

Chapter s Processes and Threads

be read from or written to. Finally, the last parameter specifies the bytes actually read
or written. Both functions require that the entire area being read to or written from
must be accessible. Typically, you use these functions for debugging but there's no
requirement that this be their only use.

THREADS
A thread is, fundamentally, a unit of execution. That is, it has a stack and a processor
context, which is a set of values in the CPU internal registers. When a thread is sus
pended, the registers are pushed onto the thread's stack, the active stack is changed
to the next thread to be run, that thread's CPU state is pulled off its stack, and the
new thread starts executing instructions.

Threads under Windows CE are similar to threads under Windows NT or Win
dows 98. Each process has a primary thread. Using the functions that I describe be
low, a process can create any number of additional threads within the process. The
only limit to the number of threads in a Windows CE process is the memory and process
address space available for the thread's stack.

Threads within a process share the address space of the process. Memory allo
cated by one thread is accessible to all threads in the process. Threads share the same
access rights for handles whether they be file handles, memory objects handles, or
handles to synchronization objects.

Before Windows CE 2.1, the size of all thread stacks was set at around 58 KB.
Starting with Windows CE 2.1, the stack size of all threads created within a process is
set by the linker. (The linker switch for setting the stack size in Microsoft Visual C++
is /stack.) Secondary threads under Windows CE 2.1 are created with the same stack
size as the primary thread.

The System Scheduler

Windows CE schedules threads in a preemptive manner. Threads run for a quantum
or time slice, which is usually 25 milliseconds on H/PCs and Palm-size PCs. (OEMs
developing custom hardware can specify a different quantum.) After that time, if the
thread hasn't already relinquished its time slice and if the thread isn't a time-critical
thread, it's suspended and another thread is scheduled to run. Windows CE chooses
which thread to run based on a priority scheme. Threads of a higher priority are sched
uled before threads of lower priority.

The rules for how Windows CE allocates time among the threads are quite dif
ferent from Windows NT and from Windows 98. Unlike Windows NT, Windows CE
processes don't have a priority class. Under Windows NT, a process is created with a
priority class. Threads derive their priority based on the priority class of their parent
processes. A process with a higher-priority class has threads that run at a higher pri
ority than threads in a lower-priority class process. Threads within a process can then
refine their priority within that process by setting their relative thread priority.

499

500

Because Windows CE has no priority classes, all processes are treated as peers.
Individual threads can have different priorities, but the process that the thread runs
within doesn't influence those priorities. Also, unlike Windows NT, the foreground
thread in Windows CE doesn't get a boost in priority.

In Windows CE, a thread can have one of eight priority levels. Those priorities
are listed below:

• IBREAD_PRIORI1Y_11ME_CRI11CAL Indicates 3 points above normal
priority. Threads of this priority aren't preempted.

• IBREAD _PRIORI1Y_HIGHEST Indicates 2 points above normal priority.

• IBREAD_PRIORITY_ABOVE_NORMAL Indicates 1 point above normal
priority.

• IBREAD_PRIORI1Y_NORMAL Indicates normal priority. All threads are
created with this priority.

• IBREAD_PRIORI1Y_BELOW_NORMAL Indicates 1 point below normal
priority.

• IBREAD_PRIORITY_LOWEST Indicates 2 points below normal priority.

• IBREAD_PRIORITY_ABOVE_IDLE Indicates 3 points below normal
priority.

• mREAD_PRIORITY_IDLE Indicates 4 points below normal priority.

All higher-priority threads run before lower-priority threads. This means that
before a thread set to run at particular priority can be scheduled, all threads that have
a higher priority must be blocked. A blocked thread is one that's waiting on some
system resource or synchronization object before it can continue. Threads of equal
priority are scheduled in a round-robin fashion. Once a thread has voluntarily given
up its time slice, is blocked, or has completed its time slice, all other threads of the
same priority are allowed to run before the original thread is allowed to continue. If
a thread of higher priority is unblocked and a thread of lower priority is currently
running, the lower-priority thread is immediately suspended and the higher-priority
thread is scheduled. Lower-priority threads can never preempt a higher-priority thread.

There are two exceptions to the rules I just stated. If a thread has a priority
of THREAD_PRIORITY_TIME_CRITICAL, it's never preempted, even by another
THREAD_PRIORITY_TIME_CRITICAL thread. As you can see, a THREAD_PRIORITY_
TIME_CRITICAL thread can and will starve everyone else in the system unless writ
ten carefully. This priority is reserved by convention for interrupt service threads in
device drivers, which are written so that each thread quickly performs its task and
releases its time slice.

Chapter 8 Processes and Threads

The other exception to the scheduling rules happens if a low-priority thread owns
a resource that a higher-priority thread is waiting on. In this case, the low-priority thread
is temporarily given the higher-priority thread's priority in a scheme known as prior
ity inversion, so that it can quickly accomplish its task and free the needed resource.

While it might seem that lower-priority threads never get a chance to run in
this scheme, it works out that threads are almost always blocked, waiting on something
to free up before they can be scheduled. Threads are always created at THREAD_
PRIORITY _NORMAL, so, unless they proactively change their priority level, a thread
is usually at an equal priority to most of the other threads in the system. Even at the
normal priority level, threads are almost always blocked. For example, an application's
primary thread is typically blocked waiting on messages. Other threads should be
designed to block on one of the many synchronization objects available to a Win
dows CE application.

Never Do This!
What's not supported by the arrangement I just described, or by any other thread
based scheme, is code like the following:

while (bFlag == FALSE)
II Do nothing, and spin

}

II Now do something.

This kind of code isn't just bad manners, since it wastes CPU power, it's a death sen
tence to a battery-powered Windows CE device. To understand why this is impor
tant, I need to digress into a quick lesson on Windows CE power management.

Windows CE is designed so that when all threads are blocked, which happens
over 90 percent of the time, it calls down to the OEM Abstraction Layer (the equiva
lent to the BIOS on an MS-DOS machine) to enter a low-power waiting state. Typi
cally, this low-power state means that the CPU is halted; that is, it simply stops
executing instructions. Because the CPU isn't executing any instructions, no power
consuming reads and writes of memory are performed by the CPU. At this point, the
only power necessary for the system is to maintain the contents of the RAM and light
the display. This low-power mode can reduce power consumption by up to 99 per
cent of what is required when a thread is running in a well-designed system.

Doing a quick back-of-the-envelope calculation, say a Palm-size PC is designed
to run for 15 hours on a couple of AAA batteries. Given that the system turns itself off
after a few minutes of non-use, this 15 hours translates into a month or two of battery
life in the device for the user. (I'm basing this calculation on the assumption that the
system indeed spends 90 percent or more of its time in its low-power idle state.) Say
a poorly written application thread spins on a variable instead of blocking. While this
application is running, the system will never enter its low-power state. So, instead of

501

Part 11 Windows CE Basics

900 minutes of battery time (15 hours x 60 minutes/hour), the system spends 100 per
cent of its time at full power, resulting in a battery life of slightly over 98 minutes, or
right at 1.5 hours. So, as you can see, it's good to have the system in its low-power
state.

Fortunately, since Windows applications usually spend their time blocked in a
call to GetMessage, the system power management works by default. However, if you
plan on using multiple threads in your application, you must use synchronization
objects to block threads while they're waiting. First, let's look at how to create a thread,
and then I'll dive into the synchronization tools available to Windows CE programs.

Creating a Thread

502

You create a thread by calling this function:

HANDLE CreateThread (LPSECURITY_ATTRIBUTES lpThreadAttributes,
DWORD dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddress,
LPVOID lpParameter, DWORD dwCreationFlags,
LPDWORD lpThreadld);

As with CreateProcess, Windows CE doesn't support a number of the parameters in
CreateTbread, and so they are set to NULL or 0 as appropriate. For CreateTbread,
the lpTbreadAttributes, and dwStackSize parameters aren't supported. The parameter
lpTbreadAttributes must be set to NULL and dwStackSize is ignored by the system
and should be set to 0. The third parameter, lpStartAddress, must point to the start of
the thread routine. The lpParameter parameter in CreateTbread is an application
defined value that's passed to the thread function as its one and only parameter.
The dwCreationFlags parameter can be set to either 0 or CREATE_SUSPENDED. If
CREATE_SUSPENDED is passed, the thread is created in a suspended state and must
be resumed with a call to ResumeTbread. The final parameter is a pointer to a DWORD
that receives the newly created thread's ID value.

The thread routine should be prototyped this way:

DWORD WINAPI ThreadFunc (LPVOID lpArg);

The only parameter is the lpParameter value, passed unaltered from the call to
CreateTbread. The parameter can be an integer or a pointer. Make sure, however,
that you don't pass a pointer to a stack-based structure that will disappear when the
routine that called CreateTbread returns.

If CreateTbread is successful, it creates the thread and returns the handle to the
newly created thread. As with CreateProcess, the handle returned should be closed
when you no longer need the handle. Following is a short code fragment that con
tains a call to start a thread and the thread routine.

Chapter s Processes and Threads

11- -- -- -- - - - - - --- -- - - - - --- - - - - - - -- - - -- - - - - - --- - - - - - - -- --- - - - - - - - - - ---- - -
II
II
HANDLE hThreadl;
DWORD dwThreadlID 0;
INT nParameter = 5;

hThreadl = CreateThread (NULL, 0, Thread2, nParameter, 0,
&dwThreadlID);

CloseHandle (hThreadl);

11-- - - - -- - -- - - - - - -- - - - - - - - - -- - - -- -- - - - ----- --- - -- -- ---- - - --- --- - - - ---- - -
II Second thread routine
II
DWORD WINAPI Thread2 (PVOID pArg)

}

INT nParam = (INT) pArg;

II
II Do something here.
II
II
II
return 0x15;

In this code, the second thread is started with a call to CreateTbread. The
nParametervalue is passed to the second thread as the single parameter to the thread
routine. The second thread executes until it terminates, in this case simply by return
ing from the routine.

A thread can also terminate itself by calling this function:

VOID ExitThread (DWORD dwExitCode);

The only parameter is the exit code that's set for the thread. That thread exit code
can be queried by another thread using this function:

BOOL GetExitCodeThread (HANDLE hThread, LPDWORD lpExitCode);

The function takes the handle to the thread (not the thread ID) and returns the exit
code of the thread. If the thread is still running, the exit code is STILL_ACTIVE, a con
stant defined as Ox0103. The exit code is set by a thread using ExitTbread or the value
returned by the thread procedure. In the preceding code, the thread sets its exit code
to Ox15 when it returns.

All threads within a process are terminated when the process terminates. As I
said earlier, a process is terminated when its primary thread terminates.

503

Part II

504

Setting and querying thread priority
Threads are always created at a priority level of THREAD _PRIORITY _NORMAL. The
thread priority can be changed either by the thread itself or by another thread calling
this function:

BOOL SetThreadPriority (HANDLE hThread, int nPriority);

The two parameters are the thread handle and the new priority level. The level passed
can be one of the constants described previously, ranging from THREAD _PRIORITY_
IDLE up to THREAD_PRIORITY_TIME_CRITICAL. You must be extremely careful when
you're changing a thread's priority. Remember that threads of a lower priority almost
never preempt threads of higher priority. So, a simple bumping up of a thread one
notch above normal can harm the responsiveness of the rest of the system unless that
thread is carefully written.

To query the priority level of a thread, call this function:

int GetThreadPriority (HANDLE hThread);

This function returns the priority level of the thread. You shouldn't use the hard-coded
priority levels. Instead, use constants, such as THREAD_PRIORITY_NORMAL, defined
by the system. This ensures that any change to the priority scheme in future versions
of Windows CE doesn't affect your program.

Suspending and resuming a thread
You can suspend a thread at any time by calling this function:

DWORD SuspendThread (HANDLE hThread);

The only parameter is the handle to the thread to suspend. The value returned is the
suspend count for the thread. Windows maintains a suspend count for each thread.
Any thread with a suspend count greater than 0 is suspended. Since SuspendTbread
increments the suspend count, multiple calls to SuspendTbread must be matched with
an equal number of calls to ResumeTbread before a thread is actually scheduled to
run. ResumeCount is prototyped as

DWORD ResumeThread (HANDLE hThread);

Here again, the parameter is the handle to the thread and the return value is
the previous suspend count. So, if ResumeTbread returns 1, the thread is no longer
suspended.

At times, a thread simply wants to kill some time. Since I've already explained
why simply spinning in a while loop is a very bad thing to do, you need another way
to kill time. The best way to do this is to use this function:

void Sleep (DWORD dwMilliseconds);

Sleep suspends the thread for at least the number of milliseconds specified in the
dwMilliseconds parameter. Since the quantum, or time slice, on a Windows CE

Chapter 8 Processes and Threads

system is usually 25 milliseconds, specifying very small numbers of milliseconds
results in sleeps of at least 25 milliseconds. This strategy is entirely valid, and some
times it's equally valid to pass a 0 to Sleep. When a thread passes a 0 to Sleep, it gives
up its time slice but is rescheduled immediately according to the scheduling rules I
described previously.

Thread Local Storage

Thread local storage is a mechanism that allows a routine to maintain separate in
stances of data for each thread calling the routine. This capability might not seem
like much, but it has some very handy uses. Take the following thread routine:

I NT g_nGl oba 1 ; II System global variable

int ThreadProc (pStartData) {
INT nValuel;
INT nValue2;

while (unblocked) {
II

}

II Do some work.
II

II We're done now, terminate the thread by returning.
return 0;

For this example, imagine that multiple threads are created to execute the same rou
tine, ThreadProc. Each thread has its own copy of nValuel and nValue2 because
these are stack-based variables and each thread has its own stack. All threads, though,
share the same static variable, g_nGlobal.

Now, imagine that the TbreadProc routine calls another routine, WorkerBee.
As in

int g_nGlobal; II System global variable

int ThreadProc (pStartData)
int nValuel;
int nValue2;
while (unblocked)

WorkerBee(); II Let someone else do the work.
}

II We're done now, terminate the thread by returning.
return 0;

(continued)

505

Part II Windows CE Basics

506

int WorkerBee (void) {
int nlocall;

}

static int nlocal2;
II
II Do work here.
II
return nlocal 1;

Now WorkerBee doesn't have access to any persistent memory that's local to a thread.
nLocall is persistent only for the life of a single call to WorkerBee. nLoca/2 is persis
tent across calls to WorkerBee but is static and therefore shared among all threads
calling WorkerBee. One solution would be to have TbreadProc pass a pointer to a
stack-based variable to WorkerBee. This strategy works, but only if you have control
over the routines calling WorkerBee. What if you're writing a DLL and you need to
have a routine in the DLL maintain a different state for each thread calling the rou
tine? You can't define static variables in the DLL because they would be shared across
the different threads. You can't define local variables because they aren't persistent
across calls to your routine. The answer is to use thread local storage.

Thread local storage allows a process to have its own cache of values that are
guaranteed to be unique for each thread in a process. This cache of values is small
because an array must be created for every thread created in the process, but it's large
enough, if used intelligently. To be specific, the system constant, TLS_MINIMUM_
AVAILABLE, is defined to be the number of slots in the TLS array that's available for
each process. For Windows CE, like Windows NT, this value is defined as 64. So, each
process can have 64 4-byte values that are unique for each thread in that process.
For the best results, of course, you must manage those 64 slots well.

To reserve one of the TIS slots, a process calls

DWORD TlsAlloc (void);

TlsAlloc looks through the array to find a free slot in the TLS array, marks it as in use,
and then returns an index value to the newly assigned slot. If no slots are available,
the function returns -1. It's important to understand that the individual threads don't
call TlsAlloc. Instead, the process or DLL calls it before creating the threads that will
use the TIS slot.

Once a slot has been assigned, each thread can access its unique data in the
slot by calling this function:

BOOL TlsSetValue (DWORD dwTlslndex, LPVOID lpTlsValue);

and

LPVOID TlsGetValue (DWORD dwTlsindex);

Chapter 8 Processes and Threads

For both of these functions, the TLS index value returned by 17sAlloc specifies
the slot that contains the data. Both 17sGetValue and 17sSetValue type the data as a
PVOID, but the value can be used for any purpose. The advantage of thinking of the
TLS value as a pointer is that a thread can allocate a block of memory on the heap,
and then keep the pointer to that data in the TLS value. This allows each thread to
maintain a block of thread-unique data of almost any size.

One other matter is important to thread local storage. When 11sAlloc reserves a
slot, it zeros the value in that slot for all currently running threads. All new threads are
created with their TLS array initialized to 0 a1> well. This means that a thread can safely
assume that the value in its slot will be initialized to 0. This is helpful for determining
whether a thread needs to allocate a memory block the first time the routine is called.

When a process no longer needs the TLS slot, it should call this function:

BOOL TlsFree (DWORD dwTlsindex);

The function is passed the index value of the slot to be freed. The function re
turns TRUE if successful. This function frees only the TLS slot. If threads have allo
cated storage in the heap and stored pointers to those blocks in their TLS slots, that
storage isn't freed by this function. Threads are responsible for freeing their own
memory blocks.

SYNCHRONIZATION
With multiple threads running around the system, you need to coordinate the activi
ties. Fortunately, Windows CE supports almost the entire extensive set of standard
Win32 synchronization objects. The concept of synchronization objects is fairly simple.
A thread waits on a synchronization object. When the object is signaled, the waiting
thread is unblocked and is scheduled (according to the rules governing the thread's
priority) to run.

Windows CE doesn't support some of the synchronization primitives supported
by Windows NT. These unsupported elements include semaphores, file change no
tifications, and waitable timers. Support for semaphores is planed for Windows CE in
the near future. The lack of waitable timer support can easily be worked around us
ing the more flexible Notification API, unique to Windows CE.

One aspect of Windows CE unique to it is that the different synchronization ob
jects don't share the same namespace. This means that if you have an event named
Bob, you can also have a mutex named Bob. (I'll talk about mutexes later in this chap
ter.) This naming convention is different from Windows NT's rule, where all kernel objects
(of which synchronization objects are a part) share the same namespace. While having
the same names in Windows CE is possible, it's not advisable. Not only does the prac
tice make your code incompatible with Windows NT, there's no telling whether a re
design of the internals of Windows CE might just enforce this restriction in the future.

507

Part II Windows CE Basics

Events

508

The first synchronization primitive I'll describe is the event object. An event object is
a synchronization object that can be in a signaled or nonsignaled state. Events are
useful to a thread to let it be known that, well, an event has occurred. Event objects
can either be created to automatically reset from a signaled state to a nonsignaled
state or require a manual reset to return the object to its nonsignaled state. Starting
with Windows CE 2.0, events can be named and therefore shared across different pro
cesses allowing interprocess synchronization.

An event is created by means of this function:

HANDLE CreateEvent (LPSECURITY_ATTRIBUTES lpEventAttributes,
BOOL bManualReset, BOOL binitialState,
LPTSTR lpName);

As with all calls in Windows CE, the security attributes parameter, lpEventAttrihutes,
should be set to NULL. The second parameter indicates whether the event being cre
ated requires a manual reset or will automatically reset to a nonsignaled state imme
diately after being signaled. Setting hManualReset to TRUE creates an event that must
be manually reset. The b!nitia!State parameter specifies whether the event object is
initially created in the signaled or nonsignaled state. Finally, the lpName parameter
points to an optional string that names the event. Events that are named can be shared
across processes. If two processes create event objects of the same name, the pro
cesses actually share the same object. This allows one process to signal the other
process using event objects. If you don't want a named event, the lpname parameter
can be set to NULL.

To share an event object across processes, each process must individually cre
ate the event object. You can't simply create the event in one process and send the
handle of that event to another process. To determine whether a call to CreateEvent
created a new event object or opened an already created object, you can call Get
LastE"or immediately following the call to CreateEvent. If GetlastE"or returns
ERROR_ALREADY _EXISTS, the call opened an existing event.

Once you have an event object, you'll need to be able to signal the event. You
accomplish this using either of the following two functions:

BOOL SetEvent (HANDLE hEvent);

or

BOOL PulseEvent (HANDLE hEvent);

The difference between these two functions is that SetEvent doesn't automatically reset
the event object to a nonsignaled state. For autoreset events, SetEvent is all you need
because the event is automatically reset once a thread unblocks on the event. For
manual reset events, you must manually reset the event with this function:

BOOL ResetEvent (HANDLE hEvent);

Chapter s Processes and Threads

These event functions sound like they overlap, so let's review. An event ob
ject can be created to reset itself or require a manual reset. If it can reset itself, a
call to SetEvent signals the event object. The event is then automatically reset to the
nonsignaled state when one thread is unblocked after waiting on that event. An event
that resets itself doesn't need PulseEvent or ResetEvent. If, however, the event object
was created requiring a manual reset, the need for ResetEvent is obvious.

PulseEvent signals the event and then resets the event, which allows all threads
waiting on that event to be unblocked. So, the difference between PulseEvent on a
manually resetting event and SetEvent on an automatic resetting event is that using
SetEvent on an automatic resetting event frees only one thread to run even if many
threads are waiting on that event. PulseEvent frees all threads waiting on that event.

You destroy event objects by calling CloseHandle. If the event object is named,
Windows maintains a use count on the object so one call to CloseHandle must be
made for eve1y call to CreateEvent.

Waiting ...

It's all well and good to have event objects; the question is how to use them. Threads
wait on events, as well as on the soon to be described mutex, using one of the fol
lowing functions: WaitForSingleObject, WaitForMultipleOhjects, MsgWaitForMultiple
Objects, or MsgWaitForMultipleObjectsEx. Under Windows CE, the WaitForMultiple
functions are limited in that they can't wait for all objects of a set of objects to be
signaled. These functions support waiting for one object in a set of objects being sig
naled. Whatever the limitations of waiting, I can't emphasize enough that waiting is
good. While a thread is blocked with one of these functions, the thread enters an
extremely efficient state that takes very little CPU processing power and battery power.

Another point to remember is that the thread responsible for handling a mes
sage loop in your application (usually the application's primary thread) shouldn't be
blocked by WaitForSingleObject or WaitForMultipleObjects because the thread can't
be retrieving and dispatching messages in the message loop if it's blocked waiting
on an object. The function MsgWaitForMultipleObjects gives you a way around this
problem, but in a multithreaded environment, it's usually easier to let the primary
thread handle the message loop and secondary threads handle the shared resources
that require blocking on events.

Waiting on a single object
A thread can wait on a synchronization object with the function:

DWORD WaitForSingleObject (HANDLE hHandle, DWORD dwMilliseconds);

The function takes two parameters: the handle to the object being waited on and a
timeout value. If you don't want the wait to time out, you can pass the value INFI
NITE in the dwMilliseconds parameter. The function returns a value that indicates why

509

Part II

510

Basics

the function returned. Calling WaitForSingleObject blocks the thread until the event
is signaled, the synchronization object is abandoned, or the timeout value is reached.

WaitForSingleObject returns one of the following values:

• WAIT_OB]ECT_O The specified object was signaled.

• WAIT_TIMEOUT The timeout interval elapsed, and the object's state re
mains nonsignaled.

• W AIT_ABANDONED The thread that owned a mutex object being waited
on ended without freeing the object.

• WAIT_FAIIED The handle of the synchronization object was invalid.

You must check the return code from WaitForSingleObject to determine whether
the event was signaled or simply that the time out had expired. (The WAIT_ABAN
DONED return value will be relevant when I talk about mutexes soon.)

Waiting on processes and threads
I've talked about waiting on events, but you can also wait on handles to processes
and threads. These handles are signaled when their processes or threads terminate.
This allows a process to monitor another process (or thread) and perform some ac
tion when the process terminates. One common use for this feature is for one pro
cess to launch another, and then by blocking on the handle to the newly created
process, wait until that process terminates.

The rather irritating routine below is a thread that demonstrates this technique
by launching an application, blocking until that application closes, and then relaunch
ing the application:

DWORD WINAPI KeepRunning (PVOID pArg) {
PROCESS_INFORMATION pi;
TCHAR szFileName[MAX_PATH];
INT re = 0;

II Copy the filename.
Lstrcpy (szFileName, (LPTSTR)pArg);
while (1) {

II Launch the application.
re = CreateProcess (szFileName, NULL, NULL, NULL, FALSE,

0, NULL, NULL, NULL, &pi);
II If the application didn't start, terminate thread.
if (!re)

return -1;
II Close the new process's primary thread handle.
Cl oseHandl e (pi. hThread);

Chapter 8 Processes and Threads

}

II Wait for user to close the application.
re= WaitForSingleObject (pi.hProcess, INFINITE);

II Close the old process handle.
CloseHandle (pi .hProcess);

II Make sure we returned from the wait correctly.
if (re != WAIT_OBJECT_0)

return -2;

return 0; //This should never get executed.

This code simply launches the application using CreateProcess and waits on the
process handle returned in the PROCESS_INFORMATION structure. Notice that the
thread closes the child process's primary thread handle and, after the wait, the handle
to the child process itself.

Waiting on multiple objects
A thread can also wait on a number of events. The wait can end when any one of the
events is signaled. The function that enables a thread to wait on multiple objects is
this one:

DWORD WaitForMultipleObjects (DWORD nCount, CONST HANDLE *lpHandles,
BOOL bWaitAll, DWORD dwMilliseconds);

The first two parameters are a count of the number of events or mutexes to wait on
and a pointer to an array of handles to these events. The b WaitAll parameter must be
set to FALSE to indicate the function should return if any of the events are signaled.
The final parameter is a timeout value, in milliseconds. As with WaitForSingleObject,
passing INFINITE in the timeout parameter disables the time out. Windows CE doesn't
support the use of WaitForMultipleObjects to enable waiting for all events in the ar
ray to he signaled before returning.

Like WaitForSingleObject, WaitForMultipleObjects returns a code that indicates
why the function returned. If the function returned due to a synchronization object
being signaled, the return value will be WAIT_OBJECT_O plus an index into the handle
array that was passed in the lpHandles parameter. For example, if the first handle in
the array unblocked the thread, the return code would be WAIT_OBJECT_O; if the
second handle was the cause, the return code would be WAIT_OBJECT_O + 1. The
other return codes used by WaitForSingleOf<ject-WAIT_TlMEOUT, WAIT_ABAN
DONED, and WAIT_FAILED-are also returned by WaitForMultipleObjects for the
same reasons.

511

Part II

512

Waiting while dealing with messages
The Win32 API provides other functions that allow you to wait on a set of objects as
well as messages: these are MsgWaitForMultipleObjects and MsgWaitForMultiple
ObjectsEx. Under Windows CE, these functions act identically, so I'll describe only
MsgWaitForMultipleObjects. This function essentially combines the wait function,
MsgWaitForMultipleObjects, with an additional check into the message queue so that
the function returns if any of the selected categories of messages are received during
the wait. The prototype for this function is the following:

DWORD MsgWaitForMultipleObjectsEx (DWORD nCount, LPHANDLE pHandles,
BOOL fWa itA 11 , DWORD dwMil 1 i seconds,
DWORD dwWakeMasks);

This function has a number of limitations under Windows CE. As with WaitFor
MultipleObjects, Msg WaitForMultipleObjectsEx can't wait for all objects to be signaled.
Nor are all the dwWakeMask flags supported by Windows CE. Windows CE supports
the following flags in dwWakeMask. Each flag indicates a category of messages that,
when received in the message queue of the thread, causes the function to return.

• QS_ALLINPUT Any message has been received.

• QS_INPUT An input message has been received.

• QS_KEY A key up, key down, or syskey up or down message has been
received.

• QS_MOUSE A mouse move or mouse click message has been received.

• QS_MOUSEBUITON A mouse click message has been received.

• QS_1VIOUSEMOVE A mouse move message has been received.

• QS_PAINT A WM_PAINT message has been received.

• QS_POSTMESSAGE A posted message, other than those in this list, has
been received.

• QS_SBNDMESSAGE A sent message, other than those in this list, has been
received.

• QS_TlMER A WM_TIMER message has been received.

The function is used inside the message loop, so that an action or actions can
take place in response to the signaling of a synchronization object while your pro
gram is still processing messages.

The return value is WAIT_OBJECT_O up to WAIT_OBJECT_O + nCount - 1 for
the objects in the handle array. If a message causes the function to return, the return
value is WAlT_OBJECT_O + nCount. An example of how this function might be used
follows. In this code, the handle array has only one entry, hSyncHandle.

Chapter 8 Processes and Threads

fContinue = TRUE;
while (fContinue)

}

re = MsgWaitForMultipleObjects (1. &hSyncHandle, FALSE,
INFINITE, QS_ALLINPUT);

if (re WAIT_OBJECT_0) {
II
II Do work as a result of sync object.
II

else if (re== WAIT_OBJECT_0 + 1) {
II It's a message, process it.
PeekMessage (&msg, hWnd, 0, 0, PM_REMOVE);
if (msg.message == WM_QUITl

fContinue = FALSE;
else f

TranslateMessage (&msg);
DispatchMessage (&msg);

Mutexes
Earlier I described the event object. That object resides in either a signaled or non
signaled state. Another synchronization object is the mutex. A mutex is a synchroni
zation object that's signaled when it's not owned by a thread and nonsignaled when
it is owned. Mutexes are extremely useful for coordinating exclusive access to a re
source such as a block of memory across multiple threads.

A thread gains ownership by waiting on that mutex with one of the wait func
tions. When no other threads own the mutex, the thread waiting on the mutex is
unblocked, and implicitly gains ownership of the mutex. After the thread has com
pleted the work that requires ownership of the mutex, the thread must explicitly re
lease the mutex with a call to ReleaseMutex.

To create a mutex, call this function:

HANDLE CreateMutex (LPSECURITY_ATTRIBUTES lpMutexAttributes,
BOOL binitialOwner, LPCTSTR lpName);

The lpMutexAttributes parameter should be set to NULL. The bJnitialOwner parame
ter lets you specify that the calling thread should immediately own the mutex being
created. Finally, the lpName parameter lets you specify a name for the object so that
it can be shared across other processes. When calling Createi\llutex with a name speci
fied in the lpName parameter, Windows CE checks whether a mutex with the same
name has already been created. If so, a handle to the previously created mutex is
returned. To determine whether the mutex already exists, call GetLastError. It returns
ERROR_ALREADY_EXISTS if the mutex has been previously created.

513

Part II

Gaining immediate ownership of a mutex using the blnitialOwner parameter
works only if the mutex is being created. Ownership isn't granted if you're opening
a previously created mutex. If you need ownership of a mutex, be sure to call Getlast
Error to determine whether the mutex had been previously committed. If so, call
WaitForSingleObject to gain ownership of the mutex.

You release the mutex with this function:

BOOL ReleaseMutex (HANDLE hMutex);

The only parameter is the handle to the mutex.
If a thread owns a mutex and calls one of the wait functions to wait on that

same mutex, the wait call immediately returns because the thread already owns the
mutex. Since mutexes retain an ownership count for the number of times the wait
functions are called, a call to ReleaseMutex must be made for each nested call to the
wait function.

Critical Sections

514

Using critical sections is another method of thread synchronization. Critical sections
are good for protecting sections of code from being executed by two different threads
at the same time. Critical sections work by having a thread call EnterCriticalSection
to indicate that it has entered a critical section of code. If another thread calls
EnterCriticalSection referencing the same critical section object, it's blocked until the
first thread makes a call to LeaveCriticalSection. Critical sections can protect more than
one linear section of code. All that's required is that all sections of code that need to
be protected use the same critical section object. The one limitation of critical sec
tions is that they can be used to coordinate threads only within a process.

To use a critical section, you first create a critical section handle with this function:

void InitializeCriticalSection (LPCRITICAL_SECTION lpCriticalSection);

The only parameter is a pointer to a CRITICAL_SECTION structure that you define
somewhere in your application. Be sure not to allocate this structure on the stack of
a function that will be deallocated as soon the function returns. You should also not
move or copy the critical section structure. Since the other critical section functions
require a pointer to this stmcture, you'll need to allocate it within the scope of all
functions using the critical section. While the CRITICAL_SECTION structure is defined
in WINBASE.H, an application doesn't need to manipulate any of the fields in that
stmcture. So, for all practical purposes, think of a pointer to a CRITICAL_SECTION
structure as a handle, instead of as a pointer to a structure of a known format.

When a thread needs to enter a protected section of code, it should call this
function:

void EnterCriticalSection (LPCRITICAL_SECTION lpCriticalSection);

Chapter 8 Processes and Threads

The function takes as its only parameter a pointer to the critical section structure ini
tialized with InitializeCriticalSection. If the critical section is already owned by an
other thread, this function blocks the new thread and doesn't return until the other
thread releases the critical section. If the thread calling EnterCriticalSection already
owns the critical section, then a use count is incremented and the function returns
immediately.

When a thread leaves a critical section, it should call this function:

void LeaveCriticalSection (LPCRITICAL_SECTION lpCriticalSection);

As with all the critical section functions, the only parameter is the pointer to the criti
cal section structure. Since critical sections track a use count, one call to Leave
Critica!Section must be made for each call to EnterCriticalSection by the thread that
owns the section.

Finally, when you're finished with the critical section, you should call

void DeleteCriticalSection (LPCRITICAL_SECTION lpCriticalSection);

This cleans up any system resources used to manage the critical section.

Interlocked Variable Access
Here's one more low-level method for synchronizing threads-using the functions
for interlocked access to variables. While programmers with multithread experience
already know this, I need to warn you that Murphy's Law1 seems to come into its
own when you're using multiple threads in a program. One of the sometimes over
looked issues in a preemptive multitasking system is that a thread can be preempted
in the middle of incrementing or checking a variable. For example, a simple code
fragment such as

if (!i++)

II Do something because was zero.
}

can cause a great deal of trouble. To understand why, let's look into how that state
ment might be compiled. The assembly code for that if statement might look some
thing like this:

1 oad regl, [addr of i] ;Read variable
add reg2, regl, 1 ;reg2 = regl + 1
store reg2. [addr of i] ;Save incremented var
bne regl, zero, skipblk ;Branch regl != zero

There's no reason that the thread executing this section of code couldn't be preempted
by another thread after the load instruction and before the store instruction. If this

1. Murphy's Law: Anything that can go wrong will go wrong. Murphy's first corollary: When some
thing goes wrong, it happens at the worst possible moment.

515

Part II

happened, two threads could enter the block of code when that isn't the way the code
is supposed to work. Of course, I've already described a number of methods (such
as critical sections and the like) that you can use to prevent such incidents from
occurring. But for something like this, a critical section is overkill. What you need is
something lighter.

Windows CE supports three of the interlocked functions from the Win32 API;
Interlocked!ncriment, InterlockedDecriment, and InterlockedlXxchange. Each of these
allows a thread to increment, decrement, and exchange a variable without your hav
ing to worry about the thread being preempted in the middle of the operation. The
functions are prototyped here:

LONG Interlockedlncrement(LPLONG lpAddend);

LONG InterlockedDecrement(LPLONG lpAddend);

LONG InterlockedExchange(LPLONG Target, LONG Value);

For the interlocked increment and decrement, the one parameter is a pointer to the
variable to increment or decrement. The returned value is the new value of the vari
able after it has been incremented or decremented. The InterlockedExchange func
tion takes a pointer to the target variable and the new value for the variable. It returns
the previous value of the variable. Rewriting the previous code fragment so that it's
thread safe produces this code:

if (!lnterlockedlncrement(&i))
II Do something because i was zero.

}

INTERPROCESS COMMUNICATION
There are many cases where two Windows CE processes need to communicate. The
walls between processes that protect processes from one another prevent casual
exchanging of data. The memory space of one process isn't exposed to another pro
cess. Handles to files or other objects can't be passed from one process to another.
Windows CE doesn't support the DuplicateHandle function available under Win
dows NT, which allows one process to open a handle used by another process. Nor,
as I mentioned before, does Windows CE support handle inheritance. Some of the
other more common methods of interprocess communication, such as named pipes,
are also not supported under Windows CE. However, you can choose from plenty of
ways to enable two or more processes to exchange data.

Finding Other Processes

516

Before you can communicate with another process, you have to determine whether
it's running on the system. Strategies for finding whether another process is running

Chapter 8 Processes and Threads

depend mainly on whether you have control of the other process. If the process to
be found is a third-party application in which you have no control over the design of
the other process, the best method might be to use FindWindow to locate the other
process's main window. FindWindow can search either by window class or by win
dow title. You can also enumerate the top-level windows in the system using Enum
Windows. You can also use the ToolHelp debugging functions to enumerate the
processes running, but this works only when the ToolHelp DLL is loaded on the sys
tem and unfortunately, it generally isn't included, by default, on most systems.

If you're writing both processes, however, it's much easier to enumerate them.
In this case, the best methods include using the tools you'll later use in one process
to communicate with the other process, such as named mutexes, events, or memory
mapped objects. When you create one of these objects, you can determine whether
you're the first to create the object or you're simply opening another object by call
ing GetlastError after another call created the object. And the simplest method might
be the best; call FindWindow and send a WM_ USER message to the main window of
the other process.

WM_COPYDATA
Once you've found your target process, the talking can begin. If you're staying at the
window level, a simple method of communicating is to send a WM_COPYDATA
message. WM_COPYDATA is unique in that it's designed to send blocks of data from
one process to another. You can't use a standard, user-defined message to pass pointers
to data from one process to another because a pointer isn't valid across processes.
WM_COPYDATA gets around this problem by having the system translate the pointer
to a block of data from one process's address space to another's. The recipient pro
cess is required to copy the data immediately into its own memory space, but this
message does provide a quick and dirty method of sending blocks of data from one
process to another.

Named memory-mapped objects
The problem with WM_COPYDATA is that it can be used only to copy fixed blocks
of data at a specific time. Using a named memory-mapped object, two processes can
allocate a shared block of memory that's equally accessible to both processes at the
same time. You should use named memory-mapped objects so that the system can
maintain a proper use count on the object. This procedure prevents one process from
freeing the block when it terminates while the other process is still using the block.

Of course, this level of interaction comes with a price. You need some synchro
nization between the processes when they're reading and writing data in the shared
memory block. The use of named mutexes and named events allows processes to
coordinate their actions. Using these synchronization objects requires the use of sec
ondary threads so that the message loop can be serviced, but this isn't an exceptional
burden.

517

Part II Windows CE Basics

I described how to create memory-mapped objects in Chapter 6. The example
program that shortly follows use memory-mapped object and synchronization
objects to coordinate access to the shared block of memory.

Communicating with files and databases
A more basic method of interprocess communication is the use of files or a custom
database. These methods provide a robust, if slower, communication path. Slow is
relative. Files and databases in the Windows CE object store are slow in the ense
that the ystem calls to access these objects must find the data in the object store,
uncompress the data , and deliver it to the process. However, since the object store is
based in RAM, you see none of the extreme slowness of a mechanical hard di k that
you 'd see under Windows NT or Windows 98.

The XTalk Example Program

518

The following example program, XTalk, uses events, mutexes, and a shared memory
mapped block of memory to communicate among different copies of itself. The ex
ample demonstrates the rather common problem of one-to-many communication. In
this case, the XTalk window ha an edit box with a Send button next to it. When a
u er taps the Send button, the text in the edit box is communicated to every copy of
XTalk running on the system. Each copy of XTalk receives the text from the sending
copy and places it in a list box also in the XTalk window. Figure 8-1 how two XTalk
programs communicating.

Figure 8-1.
The desktop showing two XTalk windows.

Chapter 8 Processes and Threads

To perform this feat of communication, XTalk uses a named memory-mapped
object as a transfer buffer, a mutex to coordinate access to the buffer, and two event
objects to indicate the start and end of communication. A third event is used to tell
the sender thread to read the text from the edit control and write the contents to the
shared memory block. Figure 8-2 shows the source code for XTalk.

XTalk.rc

II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright CC> 1998 Douglas Boling
II==
#include "windows.h"
#include "xtalk.h" II Program-specific stuff

11------------------ -- -------- --
11 Icons and bitmaps
II
ID_ICON ICON "xtalk.ico" II Program icon

11- ---
xtalk DIALOG discardable 10, 10, 120, 60
STYLE WS_OVERLAPPED I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I

DS_CENTER I DS_MODALFRAME
CAPTION "XTal k"
CLASS "xta l k"
BEGIN

LTEXT "&Text" - 1.
EDITTEXT IDD_OUTTEXT,

PUSHBUTTON "&Send", IDD_SENDTEXT,

2, 10, 20,
25, 10, 58,

WS_TABSTOP I
88, 10, 30,

12
12,
ES_AUTOHSCROLL
12, WS_TABSTOP

LISTBOX IDD_INTEXT, 2, 25, 116, 40,
WS_TABSTOP I WS_VSCROLL

END

XTalk.h

II==
II Header file
II
II Written for the book Programming Windows CE

Figure 8-2. 7be source code for XTalk . (continued)

519

Part 11 Windows CE Basics

Figure 8-2. continued

II Copyright CC) 1998 Douglas Boling
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))
11-------- ---------------- ----------------- -----------------------------
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (• Fxn)(HWND, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD {
UINT Code;
LRESULT (•Fxn)CHWND, WORD, HWND , WORD);

} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function .

11- ------------------- --- ---
II Generic defines used by application
f/defi ne ID_ICON 1

f/defi ne IDD_INTEXT 10 II Control IDs
f/defi ne IDD_SENDTEXT 11
#define IDD_OUTTEXT 12

f/defi ne MMBUFFSIZE 1024 II Size of shared buffer
fldefi ne TEXTSIZE 256

II Interprocess communication structure mapped in shared memory
typedef struct (

int nAppCnt;
int nReadCnt;
TCHAR szText[TEXTSIZE];

SHAREBUFF;
typedef SHAREBUFF • PSHAREBUFF:

11------- ------------------------------- --------------------------------
11 Function prototypes
II
int InitApp CHINSTANCE) :
HWND Initinstance CHINSTANCE, LPWSTR, int):
int Terminstance (HINSTANCE, int>:

II Window procedures
LRESULT CALLBACK MainWndProc CHWND, UINT, WPARAM, LPARAM);

520

Chapter 8 Processes and Threads

II Message handlers
LRESULT DoCommandMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain CHWND , UINT , WPARAM, LPARAM);

II Command functions
LPARAM DoMainCommandSend CHWND, WORD, HWND, WORD);
LPARAM DoMa i nCommandExit CHWND, WORD, HWND, WORD);

II Thread functions
int SenderThread CPVOID pArg);
int ReaderThread CPVOID pArg);

XTalk.c

II==
II XTalk - A simple application for Windows CE
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include <commctrl.h> II Command bar includes
#include "xtalk.h" II Program-specific stuff

11---------------------- --- ------------------------ ------ -------- -------
11 Global data
II
const TCHAR szAppName[] =TEXT C"xtalk");
HINSTANCE hlnst; II Program instance handle

HANDLE g_hMMObj = 0; II Memory -mapped object
PSHAREBUFF g_pBuff = 0; II Pointer to mm object
HANDLE g_hmWriteOkay = 0; II Write mutex
HANDLE g_hSendEvent = 0; II Local
HANDLE g_hReadEvent = 0: II Shared
HANDLE g_hReadDoneEvent = 0; II Shared

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {

WM_COMMAND, DoCommandMain,
WM_DESTROY, DoDestroyMain,

} ;

II Command Message dispatch for MainWindowProc
const struct decodeCMD MainCommandltems[] = {

IDOK , DoMainCommandExit,

send event
read data
data read

event
event

(co /l/inued)

521

Part II Windows CE Basics

Figure 8-2. continued

} ;

IDCANCEL, DoHainCommandExit,
IDD_SENDTEXT, DoHainCommandSend,

II==
II Program entry point
II
int WINAPI WinHain (HINSTANCE hlnstance, HINSTANCE hPrevlnstance,

LPWSTR lpCmdLine, int nCmdShow) {

}

MSG msg;
int re = 0;
HWND hwndHain;

II Initialize application.
re= lnitApp Chlnstance);
if (re) return re;

II Initialize t his instance.
hwndHain = Ini t lnstance (hlnstance, lpCmdLine, nCmdShow);
if (hwndHain == 0)

return Termlnstance (hlnstance, 0xl0);

II Application message loop
while (GetHessage C&msg, NULL, 0, 0)) {

}

if ((hwndHain == 0) I I !lsDialogHessage (hwndHain, &msg)) C
TranslateHessage C&msg);
DispatchHessage C&msg);

II Instance cleanup
return Termlnstance Chlnstance, msg.wParam);

// ----- --- -------------- -- ----
// lnitApp - Application initialization
II
int InitApp (HINSTANCE hlnstance) (

WNDCLASS we;

II Register application main window class.
we.style = 0; // Window style
wc.lpfnWndProc = HainWndProc; //Ca l lback function
wc.cbClsExtra = 0; // Ext ra class data
wc.cbWndExtra = DLGWINDOWEXTRA; // Extra window data
wc.hlnstance = hlnstance; // Owner handle
wc.hlcon = NULL, // Application icon
wc.hCursor = NULL; // Default cursor
wc.hbrBackground = CHBRUSH) GetStockObject CWHITE_BRUSH) ;

522

Chapter 8 Processes and Threads

}

wc.lpszMenuName = NULL;
wc.lpszClassName = szAppName;

if CRegisterClass C&wc) == 0) return 1:
return 0;

II Menu name
II Window class name

ll· ········---
11 Initinstance - Instance initialization
II
HWND Initinstance CHINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow) {

HWND hWnd;
HANDLE hThread;
INT re;
BOOL fFirstApp =TRUE;

II Save program instance handle in global variable.
hinst = hinstance;

II Create mutex used to share memory -mapped structure.
g_hmWriteOkay = CreateMutex (NULL. TRUE, TEXT C"XTALKWRT"));
re= GetLastError();
if (re == ERROR..ALREADY_EXISTS)

fFirstApp = FALSE;
else if (re) return 0;

II Wait here for ownership to ensure the initialization is done.
II This is necessary since CreateMutex doesn't wait.
re= WaitForSingleObject (g_hmWriteOkay, 2000);
if (re != WAIT_OBJECT_0)

return 0;

II Create a file-mapping object.
g_hHMObj = CreateFileMapping ((HANDLE)-1, NULL, PAGE_READWRITE , 0,

MMBUFFSIZE, TEXT ("XTALKB LK" J);
if (g_hMMObj == 01 return 0;

II Map into memory the file -mapping object.
g_pBuff = CPSHAREBUFF)MapViewOfFile (g_hMMObj, FILE_MAP_WRITE,

0, 0. 0);
if (I g_pBuff)

CloseHandle (g_hMMObj);

II Initialize structure if first application started.
if CfFi rstApp)

memset (g_pBuff, 0, sizeof CSHAREBUFF));

(continued)

523

Part II Windows CE Basics

Figure 8-2. continued

524

II Increment app running count. Interlock not needed due to mutex.
g_pBuff ->nAppCnt++:

II Release the mutex. We need to release the mutext twice
II if we owned it when we entered the wait above.
ReleaseHutex (g_hmWriteOkay);
if (fFi rstApp)

ReleaseHutex (g_hmWriteOkay);

II Now create events for read and send notification.
g_hSendEvent = CreateEvent CNULL. FALSE, FALSE, NULL);
g_hReadEvent = CreateEvent (NULL. TRUE, FALSE, TEXT C"XTALKREAD"));
g_hReadDoneEvent = CreateEvent (NULL, FALSE, FALSE,

TEXT ("XTALKDONE"));
1f (!g_hReadEvent II lg_hSendEvent I I lg_hReadDoneEvent)

return 0;

II Create main window.
hWnd = CreateDialog (hinst, szAppName, NULL, NULL);
re= GetLastError();

II Create secondary threads for interprocess communication.
hThread = CreateThread (NULL, 0, SenderThread, hWnd, 0, &re);
if ChThread)

CloseHandle ChThread);
else {

DestroyWindow ChWnd);
return 0;

hThread = CreateThread (NULL, 0, ReaderThread, hWnd, 0, &re);
if ChThread>

CloseHandle ChThread);
else {

DestroyWindow ChWnd>:
return 0:

II Return fail code if window not created.
if C!IsWindow ChWnd)) return 0:

II Standard show and update calls
ShowWindow ChWnd, nCmdShow);
UpdateWindow ChWnd);
return hWnd:

Chapter 8 Processes and Threads

11 --------------------------------- -- --------- ----- ------------ ---------
11 Termlnstance - Program cleanup
II
int Termlnstance (HINSTANCE hlnstance. int nDefRC) {

}

II Free memory -mapped object.
if (g_pBuff) {

}

II Decrement app running count.
InterlockedDecrement C&g_pBuff ->nAppCnt);
UnmapViewOfFile (g_pBuff);

i f (g_hMMObj)
CloseHandle (g_hMMObjl:

II Free mutex.
if (g_hmWriteOkay)

CloseHandle (g_hmWriteOkay):

II Close event handles.
if (g_hReadEvent>

CloseHandle (g_hReadEvent):

if (g_hReadDoneEvent)
CloseHandle (g_hReadDoneEvent);

if (g_hSendEvent)
CloseHandle (g_hSendEventl:

return nDefRC:

II==
II Message handling procedures for main window
11 --- ------------------ ---- -
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc CHWND hWnd , UINT wMsg, WPARAM wParam,

LPARAM 1 Pa ram) {
INT f:
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0: i < dim(MainMessages); i++) {

if (wMsg == MainMessages[i].Code)
return C•MainMessages[iJ.Fxn)(hWnd, wMsg, wParam, lParam);

return DefWindowProc ChWnd, wMsg, wParam, lParaml:

(continued)

525

Part 11 Windows CE Basics

Figure 8-2. continued

}

11 --
11 DoCommandHain - Process WH_COHHAND message for window.
II
LRESULT DoCommandHain (HWND hWnd, UINT wHsg, WPARAH wParam,

}

LPARAH lParam) {
WORD idltem, wNotifyCode:
HWND hwndCt l :
INT i:

II Parse the parameters.
idltem = (WORD) LOWORD (wParam):
wNotifyCode = (WORD) HIWORD (wParam):
hwndCtl = CHWND) lParam:

II Call routine to handle control message.
for(i = 0: i < dim(HainCommandltems>: i++l

i f(idltem == HainCommandltems[i].Code)
return (•HainCommandltems[i].Fxn)(hWnd, idltem, hwndCtl,

wNot i fyCode l :

return 0:

11-- ----------------- ------ -- --------------- -- -------------- ----- ---- ---
11 DoDestroyHain - Process WH_DESTROY message for wi ndow.
II
LRESULT DoDestroyHain CHWND hWnd, UINT wHsg, WPARAH wParam,

LPARAH lParam) {
PostQuitHessage (0):
return 0:

}

II==
II Command handler routines
11---- ----- ------- ------------------ ---------- ------ -- ----- -------- ---- -
11 DoHainCommandExit - Process Program Exit command
II
LPARAH DoHainCommandExit CHWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

}

SendHessage ChWnd, WH_CLOSE, 0, 0):
return 0:

11---------- -------- ---- -- --------- --- ---- ---- ------ --- ------------ --- --
11 DoHa1nCommandSend - Process Program Send command.
II
LPARAH DoHainCommandSend (HWND hWnd, WORD idltem, HWND hwndCtl,

526

Chapter 8 Processes and Threads

}

WORD wNotifyCode)

SetEvent (g_hSendEvent);
return 0;

II==
II SenderThread - Performs the interprocess communication
II
int SenderThread CPVOID pArg) C

HWND hWnd;

}

INT nGoCode, re;
TCHAR szText[TEXTSIZE];

hWnd = CHWND)pArg;
while (1) C

nGoCode = WaitForSingleObject (g_hSendEvent, INFINITE);
if CnGoCode == WAIT_OBJECT_0) (

SendDlgitemHessage ChWnd, IDD_OUTTEXT, WH_GETTEXT,
sizeof (szText) , CLPARAH)szText>:

re= WaitForSingleObject (g_hmWriteOkay, 2000);
if (re == WAIT_OBJECT_0) (

else

lstrcpy (g_pBuff->szText, szText):
g_pBuff->nReadCnt = g_pBuff->nAppCnt:
PulseEvent (g_hReadEvent);

II Wait while reader threads get data.
while (g_pBuff ->nReadCnt)

re = WaitForSingleObject (g_hReadDoneEvent,
INFINITE);

ReleaseHutex (g_hmWriteOkay);

return -1;

return 0;

II==
II ReaderThread - Performs the interprocess communication
II
int ReaderThread CPVOID pArgl {

HWND hWnd;
INT nGoCode , re, i;
TCHAR szText[TEXTSIZE];

hWnd = (HWND)pArg;

(continued)

527

Part 11 Windows CE Basics

Figure 8-2. continued

528

while C 1 > {

}

nGoCode = WaitForSingleObject (g_hReadEvent, INFINITE):
if CnGoCode == WAIT_OBJECT_0) {

i = SendDlgitemMessage ChWnd, IDD_INTEXT, LB__ADDSTRING, 0,
CLPARAM)g_pBuff ->szText);

SendDlgitemMessage ChWnd, IDD_INTEXT, LB_SETTOPINDEX, i, 0);

InterlockedDecrement C&g_pBuff->nReadCnt):
SetEvent (g_hReadDoneEvent);

else {
re = GetLastErrorC>:
wsprintf CszText, TEXT C"rc:Sd"), re);
MessageBox ChWnd, szText, TEXT C"ReadThread Err"), MB_OK):

return 0;

The intere ting routines in the XTalk example are the Initlnstance procedure
and the two thread procedures Sender7bread and Reader7bread. The relevant part
of Initlnstance is shown below with the error checking code removed for brevity.

II Create mutex used to share memory -mapped structure.
g_hmWriteOkay = CreateMutex (NULL, TRUE , TEXT C"XTALKWRT"));
re= GetlastError();
if (re== ERROILALREADY_EXISTS)

fFirstApp =FALSE;

II Wait here for ownership to insure the initialization is done.
II This is necessary since CreateMutex doesn't wait.
re= WaitForSingleObject (g_hmW riteOkay, 2000);
if (re != WAIT_OBJECT_0)

return 0:

II Create a file -mapping object.
g_h MMObj = CreateFileMapping CCHANDLE) -1, NULL , PAGE_READWRITE , 0,

MMB UFFSIZE, TEXT ("XTALKBLK")) ;

II Map into memory the file-mapping object.
g_pBuff = (PSHAREBUFF) MapViewOfFile (g_h MMObj , FILE_MAP_WRITE,

0. 0. 0);

II Initialize structure if first application started.
if (fFi rstApp)

memset (g_pBuff, 0, sizeof (SHAREBUFF));

Chapter 8 Processes and Threads

II Increment app running count. Interlock not needed due to mutex.
g_pBuff->nAppCnt++;

II Release the mutex. We need to release the mutex twice
II if we owned it when we entered the wait above.
ReleaseMutex (g_hmWriteOkay);
if (fFi rstApp)

ReleaseMutex (g_hmWriteOkay);

II Now create events for read and send notification.
g_hSendEvent = CreateEvent (NULL, FALSE, FALSE, NULL);
g_hReadEvent = CreateEvent (NULL, TRUE, FALSE, TEXT ("XTALKREAD")):
g_hReadDoneEvent = CreateEvent (NULL, FALSE, FALSE,

TEXT ("XTALKDONE"));

This code is responsible for creating the necessary synchronization objects as
well as creating and initializing the shared memory block. The mutex object is cre
ated first with the parameters set to request initial ownership of the mutex object. A
call is then made to GetLastError to determine whether the mutex object has already
been created. If not, the application assumes the first instance of XTalk is running
and later will initialize the shared memory block. Once the mutex is created, an ad
ditional call is made to WaitForSingleObject to wait until the mutex is released. This
call is necessary to prevent a late starting instance of XTalk from disturbing commu
nication in progress. Once the mutex is owned, calls are made to CreateFileMapping
and Map ViewOjFile to create a named memory-mapped object. Since the object is
named, each process that opens the object opens the same object and is returned a
pointer to the same block of memory.

Once the shared memory block is created, the first instance of XTalk zeros out
the block. This procedure also forces the block of RAM to be committed because
memory-mapped objects by default are autocommit blocks. Then nAppCnt, which
keeps a count of the running instances of XTalk, is incremented. Finally the mutex
protecting the shared memory is released. If this is the first instance of XTalk, Release
Mutex must be called twice because it gains ownership of the mutex twice-once
when the mutex is created and again when the call to WaitForSingleObject is made.

Finally, three event objects are created. SendEvent is an unnamed event, local
to each instance of XTalk. The primary thread uses this event to signal the sender
thread that the user has pressed the Send button and wants the text in the edit box
transmitted. The ReadEvent is a named event that tells the other instances of XTalk
that there's data to be read in the transfer buffer. The ReadDoneEvent is a named event
signaled by each of the receiving copies of XTalk to indicate that they have read
the data.

529

Part 11 Windows Basics

530

The two threads, ReaderThread and SenderThread are created immediately after
the main window of XTalk is created. The code for SenderThread is shown here:

int SenderThread (PVOID pArg) {
HWND hWnd;

}

INT nGoCode. re:
TCHAR szText[TEXTSIZE];

hWnd = CHWND)pArg;
while (1) {

nGoCode = WaitForSingleObjeet (g_hSendEvent, INFINITE):
if (nGoCode == WAIT_OBJECT_0) {

}

SendDlgitemMessage (hWnd, IDD_OUTTEXT, WM_GETTEXT,
sizeof (szText), (LPARAM)szText):

re WaitForSingleObjeet (g_hmWriteOkay, 2000);
if (re== WAIT_OBJECT_0) {

}

lstrepy (g_pBuff->szText, szText):
g_pBuff->nReadCnt = g_pBuff->nAppCnt:
~ulseEvent (g_hReadEvent);

II Wait while reader threads get data.
while (g_pBuff->nReadCnt)

re = WaitForSingleObjeet (g_hReadDoneEvent,
INFINITE):

ReleaseMutex (g_hmWriteOkay);

return 0;

The routine waits on the primary thread of XTalk to signal SendEvent. The pri
mary thread of XTalk makes the signal in response to a WM_ COMMAND message
from the Send button. The thread is then unblocked, reads the text from the edit control,
and waits to gain ownership of the WriteOkay mutex. This mutex protects two cop
ies ofXTalk from writing to the shared block at the same time. When the thread owns
the mutex, it writes the string read from the edit control into the shared buffer. It then
copies the number of active copies of XTalk into the nReadCnt variable in the same
shared buffer, and pulses the ReadEvent to tell the other copies of XTalk to read the
newly written data. A manual resetting event is used so that all threads waiting on
the event will be unblocked when the event is signaled.

The thread then waits for the nReadCnt variable to return to 0. Each time a reader
thread reads the data, the nReadCnt variable is decremented and the ReadDone
event signaled. Note that the thread doesn't spin on this variable but uses an event to
tell it when to check the variable again. This would actually be a great place to use

Chapter 8 Processes and Threads

WaitForMultipleObjects and have all reader threads signal when they've read the data,
but Windows CE doesn't support the WaitAll flag in WaitForMultipleObjects.

Finally, when all the reader threads have read the data, the sender thread re
leases the mutex protecting the shared segment and the thread returns to wait for
another send event.

The ReaderThread routine is even simpler. Here it is:

int ReaderThread (PVOID pArg) {
HWND hWnd;
INT nGoCode, re, i;
TCHAR szText[TEXTSIZE];

hWnd = (HWND)pArg;
while (1) {

nGoCode = WaitForSingleObject (g_hReadEvent, INFINITE);
if (nGoCode == WAIT_OBJECT_0) {

i = SendDlgitemMessage (hWnd, IDD_INTEXT, LB_ADDSTRING, 0,
(LPARAM)g_pBuff->szText);

SendDlgitemMessage (hWnd, IDD_INTEXT, LB_SETTOPINDEX, i, 0);

}

}

}

InterlockedDecrement (&g_pBuff->nReadCnt);
SetEvent (g_hReadDoneEvent);

return 0:

The reader thread starts up and immediately blocks on ReadEvent. When it's
unblocked, it adds the text from the shared buffer into the list box in its window. The
list box is then scrolled to show the new line. After this is accomplished, the nReadCnt
variable is decremented using InterlockedDecrement to be thread safe, and the Read
Done event is signaled to tell the SenderThread to check the read count. After that's
accomplished, the routine loops around and waits for another read event to occur.

EXCEPTION HANDLING
Windows CE, along with Visual C++ for Windows CE, supports Microsoft's standard,
structured exception handling extensions to the C language, the __ try, __ except and
__ try, __ finally blocks. Note that Visual C++ for Windows CE doesn't support the
full C++ exception handling framework with keywords such as catch and throw.

Windows exception handling is complex and if I were to cover it completely,
I could easily write another entire chapter. The following review introduces the con
cepts to non-Win32 programmers and conveys enough information about the sub
ject for you to get your feet wet. If you want to wade all the way in, the best source

531

Part 11 Windows CE Basics

for a complete explanation of Win32 exception handling is Jeffrey Richter's Advanced
Windows third edition (Microsoft Press, 1997).

The __ try, __ except Block

532

The first construct I'll talk about is the __ try, __ except block which looks like this:

__ try {

II Try some code here that might cause an exception.

__ except (exception filter) {

II This code is depending on the filter on the except line.

}

Essentially, the try-except pair allows you the ability to anticipate exceptions
and handle them locally instead of having Windows terminate the thread or the pro
cess because of an unhandled exception.

The exception filter is essentially a return code that tells Windows how to handle
the exception. You can hard code one of the three possible values or call a function
that dynamically decides how to respond to the exception.

If the filter returns EXCEPTION_EXECUTE_HANDLER, Windows aborts the
execution in the try block and jumps to the first statement in the except block. This is
helpful if you're expecting the exception and you know how to handle it. In the code
that follows, the access to memory is protected by a __ try, __ except block.

BYTE ReadByteFromMemory (LPBYTE pPtr, BOOL *bDataValid) {

}

BYTE ucData = 0;

*bDataValid =TRUE;
__ try {

ucData = *pPtr;

__ except (DecideHowToHandleException ()) {
II The pointer isn't valid, clean up.
ucData = 0;
*bDataValid =FALSE;

}

return ucData;

int DecideHowToHandleException (void) {
return EXCEPTION_EXECUTE_HANDLER;

}

Chapter B Processes and Threads

If the memory read line above wasn't protected by a __ try, __ except block and
an invalid pointer was passed to the routine, the exception generated would have
been passed up to the system, causing the thread and perhaps the process to be ter
minated. If you use the __ try, __ except block, the exception is handled locally and
the process continues with the error handled locally.

Another possibility is to have the system retry the instruction that caused the
exception. You can do this by having the filter return EXCEPTION_CONTINUE_
EXECUTION. On the surface, this sounds like a great option-simply fix the prob
lem and retry the operation your program was performing. The problem with this
approach is that what will be retried isn't the line that caused the exception, but the
machine instruction that caused the exception. The difference is illustrated by the
following code fragment that looks okay but probably won't work:

II An example that doesn't work ...
int Dividelt (int aVal, int bVal) {

intcVal:
__ try {

cVal = aVal I bVal:
}

__ except (EXCEPTION_CONTINUE_EXECUTION) {
bVal = 1;

}

return cVal;

The idea in this code is noble; protect the program from a divide-by-zero error
by ensuring that if the error occurs, the error is corrected by replacing b Val with 1.
The problem is that the line

cVal = aVal I bVal;

is probably compiled to something like the following on a MIPS-compatible CPU:

lw t6,aVal (sp)
lw t7 ,bVal (sp)
div t6,t7
sw t6,cVal(sp)

;Load aVal
:Load bVal
;Perform the divide
;Save result into cVal

In this case, the third instruction, the div, causes the exception. Restarting the
code after the exception results in the restart beginning with the div instruction. The
problem is that the execution needs to start at least one instruction earlier to load the
new value from bVal into the register. The moral of the story is that attempting to
restart code at the point of an exception is risky at best and at worst, unpredictable.

The third option for the exception filter is to not even attempt to solve the prob
lem and to pass the exception up to the next, higher __ try, __ except block in code.

533

Part 11 Windows Basics

This is accomplished by the exception filter returning EXCEPTION_CONTINUE_
SEARCH. Since __ try, __ except blocks can be nested, it's good practice to handle spe
cific problems in a lower, nested __ try, __ except block and more global errors at a
higher level.

Determining the problem
With these three options available, it would be nice if Windows let you in on why
the exception occurred. Fortunately, Windows provides the function

DWORD GetExceptionCode (void);

This function returns a code that indicates why the exception occurred in the first
place. The codes are defined in WINBASE.H and range from EXCEPTION_ACCESS_
VIOLATION to CONTROL_C_EXIT, with a number of codes in between. Another
function allows even more information:

LPEXCEPTION_POINTERS GetExceptionlnformation (void);

GetExceptionlnformation returns a pointer to a structure that contains pointers
to two structures: EXCEPTION_RECORD and CONTEXT. EXCEPTION_RECORD is
defined as

typedef struct _EXCEPTION_RECORD {
DWORD ExceptionCode;
DWORD ExceptionFlags;
struct _EXCEPTION_RECORD *ExceptionRecord:
PVOID ExceptionAddress;
DWORD NumberParameters;
DWORD Exceptionlnformation[EXCEPTION_MAXIMUM_PARAMETERS];

} EXCEPTION_RECORD;

The fields in this structure go into explicit detail about why an exception oc
curred. To narrow the problem down even further, you can use the CONTEXT struc
ture. The CONTEXT structure is different for each CPU and essentially defines the
exact state of the CPU when the exception occurred.

There are limitations on when these two exception information functions can
be called. GetExecptionCode can only be called from inside an except block or from
within the exception filter function. The GetExceptionlnformation function can be
called only from within the exception filter function.

The __ try, __ finally Block

534

Another tool of the structured exception handling features of the Win32 API is the
__ try, __ finally block. It looks like this:

Chapter 8 Processes and Threads

__ try {

II Do something here.

}

__ finally {

II This code is executed regardless of what happens in the try block.

}

The goal of the __ try, __ finalryblock is to provide a block of code, thefinally
block, that always executes regardless of how the other code in the try block attempts
to leave the block. If there's no return, break or goto in the try block, the code in the
finally block executes immediately following the last statement in the try block. If
the try block has a return or a goto or some other statement that transfers execution
out of the try block, the compiler insures that the code in the finally block will get
executed before execution leaves the try block. Take, for example, the following code:

int ClintSimFunc (int TodaysTask) {

__ try {

}

switch (TodaysTask) {
case THEGOOD:

/!Do the good stuff.
return l;

case THEBAD:
//Do the bad stuff.
return 2;

case THEUGLY:

}

//Do the ugly stuff.
break;

II Climb the Eiger.
return 0;

__ finally {
II Reload the .44.

}

In this example, the try block can be left three ways: returning after executing
the Good case or the Bad case or after executing the Ugly case, which breaks and
executes the Eiger code. However the code exits the try block, Clint's gun is always
reloaded because the finalry block is always executed.

It works out that having the compiler build the code to protect the try block exits
tends to create a fair amount of extra code. To help, you can use another statement,

535

Part 11 Windows CE Basics

536

__ leave, which makes it easier for the compiler to recognize what's happening and
make a code-efficient path to the finally block. Using the __ leave statement, the code
above becomes

int ClintSimfunc (int TodaysTask) {
int nfi stful l;

}

__ try {

}

switch (TodaysTask) {
case THEGOOD:

//Do the good stuff,
nfistfull = l;
__ leave:

case THEBAD:
//Do the bad stuff.
nfistfull = 2;
__ leave;

case THEUGLY:
//Do the ugly stuff.
break;

II Climb the Eiger.
nfistfull = 0;

II The code falls into the __ finally block.
__ finally {

II Reload the .44.
}

return nfistfull;

The _ _try, __ finally block is helpful for writing clean code because you can
use the __ leave statement to jump out of a sequence of statements that build upon
one another and put all the cleanup code in the finally block. The finally block also
has a place in structured exception handling since the finally code is executed if an
exception in the try block causes a premature exit of the block.

In the past three chapters, I've covered the basics of the Windows CE kernel
from memory to files to processes and threads. Now it's time to break from this low
level stuff and starting looking outward. The next section covers the different com
munication aspects of Windows CE. I start at the low level, with explanations of basic
serial and l/R communication and TAPI. Chapter 10 covers networking from a Win
dows CE perspective. Finally, Chapter 11 covers Windows CE to PC communications.
That's a fair amount of ground to cover. Let's get started.

Part III

COMMUNICATIONS

Chapter 9

Serial
Communications

If there's one area of the Win32 API that Windows CE doesn't skimp, it's in commu
nication. It makes sense. Systems running Windows CE are either mobile, requiring
extensive communication functionality, or they're devices generally employed to
communicate with remote servers. In this chapter, I introduce the low-level serial and
infrared communication APis. You use the infrared port at this level in almost the same
manner as a serial port. The only functional difference is that infrared transmission is
half duplex, that is, transmission can occur in only one direction at a time.

BASIC DRIVERS
Before I can delve into the serial drivers, we must take a brief look at how Windows CE
handles drivers in general. Windows CE separates device drivers into two main
groups: native and stream interface. Native drivers, sometimes called built-in drivers,
are those device drivers that are required for the hardware and were created by the
OEM when the Windows CE hardware was designed. Among the devices that have
native drivers are the keyboard, the touch panel, audio, and the PCMCIA controller.
These drivers might not support the generic device driver interface I describe below.
Instead, they might extend the interface or have a totally custom interface to the
operating system. Native drivers frequently require minor changes when a new
version of the operation system is released. These drivers are designed using
the OEM adaptation kit supplied by Microsoft. A more general adaptation kit, the

539

Part 111 Communications

Embedded Toolkit (ETK), also enables you to develop built-in drivers. However these
drivers are developed, they're tightly bound to the Windows CE operating system and
aren't usually replaced after the device has been sold.

On the other hand, stream interface device drivers (which used to be referred
to as installable drivers) can be supplied by third-party manufacturers to support
hardware added to the system. Since Windows CE systems generally don't have a bus
such as an ISA bus or a PCI bus for extra cards, the additional hardware is usually
installed via a PCMCIA or a Compact Flash slot. In this case, the device driver would
use functions provided by the low-level PCMCIA driver to access the card in the
PCMCIA or the Compact Flash slot.

In addition, a device driver might be written to extend the functionality of an
existing driver. For example, you might write a driver to provide a compressed or
encrypted data stream over a serial link. In this case, an application would access the
encryption driver, which would then in turn use the serial driver to access the serial
hardware.

Device drivers under Windows CE operate at the same protection level as ap
plications. They differ from applications in that they're DLLs. Most drivers are loaded
by the device manager process (DEVICE.EXE) when the system boots. All these driv
ers, therefore, share the same process address space. Some of the built-in drivers,
on the other hand, are loaded by GWE (GWES.EXE). (GWE stands for Graphics
Windowing and Event Manager.) These drivers include the display driver (DDl.DLL)
as well as the keyboard and touch panel (or mouse) drivers.

Driver Names
Stream interface device drivers are identified by a three-character name followed by
a single digit. This scheme allows for 10 device drivers of one name to be installed
on a Windows CE device at any one time. Here are a few examples of some three
character names currently in use:

COM Serial driver

ACM Audio compression manager

WA V Audio wave driver

CON Console driver

When referencing a stream interface driver, an application uses the three
character name, followed by the single digit, followed by a colon (:). The colon is
required under Windows CE for the system to recognize the driver name.

Enumerating the Active Drivers

540

The documented method for determining what drivers are loaded onto a Windows CE
system is to look in the registry under the key \Drivers\Active under HKEY_
LOCAL_MACHINE. The device manager dynamically updates the subkeys contained

Chapter 9 Serial Communications

here as drivers are loaded and unloaded from the system. Contained in this key i a
list of subkeys, one for each active driver. The name of the key is simply a place
holder; it's the values inside the keys that indicate the active drivers. Figure 9-1 shows
the registry key for the COMl serial driver on an HP 620.

Figure 9-1 . The registry 's active list values for the serial device driver for COMJ.

In Figure 9-1, the Name value contains the official five-character name (four char
acters plus a colon) of the device. The 1Hnd and Hnd values are handles that are
used internally by Windows CE. The interesting entry is the Key value. This value points
to the registry key where the device driver store its configuration information. This
second key is necessary because the active list is dynamic, changing whenever a device
is installed. In the case of the serial driver, its configuration data is generally stored
in Drivers\ Builtln\ Serial although you shouldn't hard code this value. Instead, you
can look at the Key value in the active list to determine the location of a driver's per
manent configuration data . The configuration data for the serial driver is shown in
Figure 9-2.

Tsp
DeviceArr aylrdex
PrefiX
011
Order
Device Type
FrlendtyNarre
DevConfig

Unmodem.dll
0
COM
Serial.Oil
0
0
Serial Cable on COMl:
10 00 00 00 OS 00 00 00 10 0100 00 0 ...

Figure 9-2. The registry entry for the serial driver.

You can look in the serial driver registry key for such information a the name
of the DLL that actually implements the driver, the three-letter prefix defining the driver
name, the order in which the driver wants to be loaded, and something handy for
user interfaces, the friendly name of the driver. ot all drivers have this friendly name,
but when they do, it's a much more user-friendly name than COM2 or NDSl.

541

Part 111 Communications

542

Drivers for PCMCIA or Compact Flash Cards have an additional value in their
active list key. The Pnpld value contains the Plug and Play ID string for the card. While
this string is more descriptive than the five-character driver name, some PCMCIA and
Compact Flash Cards have their Pnpld strings registered in the system. If so, a regis
try key for the Pnpld is located in the Drivers\PCMCIA key under HKEY _LOCAL_
MACHINE. For example, a PCMCIA Card that had a Pnpld string Tbis_is_a_pc_card
would be registered under the key \Drivers\PCMCIA\Tbis_is_a_pc_card. That key
may contain a FriendlyName string for the driver.

Following is a routine (and a small helper routine) that creates a list of active
drivers and, if specified, their friendly names. The routine produces a series of Unicode
strings, two for each active driver. The first string is the driver name, followed by its
friendly name. If a driver doesn't have a friendly name, a zero-length string is inserted
in the list. The list ends with a zero-length string for the driver name.

11--
11 AddToList - Helper routine
int AddToList (LPTSTR *pPtr, INT *pnListSize, LPTSTR pszStrl {

INT nLen = lstrlen (pszStrl + 1:

}

if (*pnListSize < nLen)
return -1;

lstrcpy (*pPtr, pszStrl:
*PPtr += nLen;
*pnListSize -= nLen:
return 0;

11--
11 EnumActiveDrivers - Produces a list of active drivers
II
int EnumActiveDrivers (LPTSTR pszDrvrList, int nListSizel {

INT i = 0, re;
HKEY hKey, hSubKey, hDrvrKey;
TCHAR szKey[128], szValue[l28];
LPTSTR pPtr = pszDrvrList;
DWORD dwType, dwSize:

*pPtr =TEXT ('\0');
if (RegOpenKeyEx (HKELLOCALMACHINE, TEXT ("drivers\\active"), 0,

0, &hKey) != ERROR_SUCCESS)
return 0;

while (1) {

II Enumerate active driver list.
dwSize = sizeof CszKey);
if (RegEnumKeyEx (hKey, i++, szKey, &dwSize, NULL, NULL,

NULL, NULL) != ERROR_SUCCESS)
break;

Chapter 9 Serial Communications

II Open active driver key.
re = RegOpenKeyEx (hKey, szKey, 0, 0, &hSubKey);
if (re != ERROR_SUCCESS)

continue;

II Get name of device.
dwSize = sizeof (szValue);
re= RegQueryValueEx (hSubKey, TEXT ("Name"), 0, &dwType,

(PBYTE)szValue, &dwSize);
if (re != ERROR_SUCCESS)

szValue[0J =TEXT ('\0');

if (AddTolist (&pPtr, &nlistSize, szValue)) {
re= -1;

}

RegCloseKey (hSubKey);
break;

II Get friendly name of device.
szValue[0] =TEXT ('\0');
dwSize = sizeof (szKey);
re= RegQueryValueEx (hSubKey, TEXT ("Key"), 0, &dwType,

(PBYTE)szKey, &dwSize);
if (re == ERROR_SUCCESS) {

}

II Get driver friendly name.
if (RegOpenKeyEx (HKEY_LOCAL_MACHINE, szKey, 0, 0,

&hDrvrKey) == ERROR_SUCCESS) {

dwSize = sizeof (szValue);
RegQueryValueEx (hDrvrKey, TEXT ("FriendlyName"), 0,

&dwType, (PBYTE)szValue, &dwSize);
RegCloseKey (hDrvrKey);

RegCloseKey (hSubKey);
if (AddTolist (&pPtr, &nlistSize, szValue)) {

re= -1;
break;

}

RegCloseKey (hKey);
II Add terminating zero.
if (! re)

re= AddToList (&pPtr, &nlistSize, TEXT (""));
return re;

543

Part 111 Communh::atiorr1s

Reading and Writing Device Drivers

544

Your application accesses device drivers under Windows CE through the file I/0 func
tions, CreateFile, ReadFile, WriteFile, and CloseHandle. You open the device using
CreateFile, with the name of the device being the five-character (three characters plus
digit plus colon) name of the driver. Drivers can be opened with all the varied access
rights: read only, write only, read/write, or neither read nor write access.

Once a device is open, you can send data to it using WriteFile and can read
from the device using ReadFile. As is the case with file operations, overlapped I/0
isn't supported for devices under Windows CE. The driver can be sent control char
acters using the function (not described in Chapter 7) Device/oControl. The function
is prototyped this way:

BOOL DeviceioControl (HANDLE hDevice, DWORD dwloControlCode,
LPVOID lplnBuffer, DWORD ninBufferSize,
LPVOID lpOutBuffer, DWORD nOutBufferSize,
LPDWORD lpBytesReturned,
LPOVERLAPPED lpOverlapped);

The first parameter is the handle to the opened device. The second parameter, dw!o
Contro!Code, is the IoCtl (pronounced eye-OC-tal) code. This value defines the op
eration of the call to the driver. The next series of parameters are generic input and
output buffers and their sizes. The use of these buffers is dependent on the JoCtl code
passed in dw!oControlCode. The lpBytesReturned parameter must point to a DWORD
value that will receive the number of bytes returned by the driver in the buffer pointed
to by lpOutBuffer.

Each driver has its own set of /oCtl codes. If you look in the source code for
the example serial driver provided in the ETK, you'll see that the following IoCtl
codes are defined for the COM driver. Note that these codes aren't defined in the
Windows CE SDK because an application doesn't need to directly call Device!oControl
using these codes.

IOCTL_SERIAL_SET_BREAK_ ON

IOCTL_SERIAL_SET _DTR

IOCTL_SERIAL_SET _RTS

IOCTL_SERIAL_SET_XOFF

IOCTL_SERIAL_GET _ WAIT_MASK

IOCTL_SERIAL_ WAIT_ON_MASK

IOCTL_SERIAL_GET_MODEMSTATUS

IOCTL_SERIAL_SET _TIMEOUTS

IOCTL_SERIAL_PURGE

IOCTL_SERIAL_IMMEDIATE_ CHAR

IOCTL_SERIAL_SET _DCB

IOCTL_SERIAL_DISABLE_IR

IOCTL_SERIAL_SET _BREAK_OFF

IOCTL_SERIAL_ CLR_DTR

IOCTL_SERIAL_ CLR_RTS

IOCTL_SERIAL_SET_XON

IOCTL_SERIAL_SET_ WAIT_MASK

IOCTL_SERIAL_GET_COMMSTATUS

IOCTL_SERIAL_GET_PROPERTIES

IOCTL_SERIAL_ GET_TIMEOUTS

IOCTL_SERIAL_SET_ QUEUE_SIZE

IOCTL_SERIAL_GET_DCB

IOCTL_SERIAL_ENABLE_IR

Chapter 9 Serial Communications

As you can see from the fairly self-descriptive names, the serial driver JoCtl func
tions expose significant function to the calling process. Windows uses these JoCtl codes
to control some of the specific features of a serial port, such as the handshaking lines
and time outs. Each driver has its own set of JoCtl codes. I've shown the ones above
simply as an example of how the DeviceloControl function is typically used. Under
most circumstances, there's no reason for an application to use the DeviceloControl
function with the serial driver. Windows provides its own set of functions that then
call down to the serial driver using DeviceloControl.

Okay, we've talked enough about generic drivers. It's time to sit down to the
meat of the chapter-serial communication. I'll talk first about basic serial connec
tions, and then venture into infrared communication. Windows CE provides excel
lent support for serial communications, but the API is a subset of the API for
Windows NT or Windows 98. Fortunately, the basics are quite similar, and the dif
ferences mainly inconsequential.

BASIC SERIAL COMMUNICATION
The interface for a serial device is a combination of generic driver 1/0 calls and spe
cific communication-related functions. The serial device is treated as a generic, in
stallable, stream device for opening, closing, reading, and writing the serial port. For
configuring the port, the Win32 API supports a set of Comm functions. Windows CE
supports most of the Comm functions supported by Windows NT and Windows 98.

A word of warning: programming a serial port under Windows CE isn't like
programming one under MS-DOS. You can't simply find the base address of these
rial port and program the registers directly. While there are ways for a program to
gain access to the physical memory space, every Windows CE device has a different
physical memory map. Even if you solved the access problem by knowing exactly
where the serial hardware resided in the memory map, there's no guarantee the se
rial hardware is going to be compatible with the 8250 (or, these days, a 16550) serial
interface we've all come to know and love in the PC world. In fact, the implementa
tion of the serial port on some Windows CE devices looks nothing like an 8250.

But even if you know where to go in the memory map and the implementation
of the serial hardware, you still don't need to "hack down to the hardware." These
rial port drivers in Windows CE are efficient, intermpt-driven designs and are written
to support its specific serial hardware. If you have any special needs not provided by
the base serial driver, you can purchase the Embedded Toolkit and write a serial driver
yourself. Aside from that extreme case, there's just no reason not to use the published
Win32 serial interface under Windows CE.

545

Part Ill Comnn.m1ications

Opening and Closing a Serial Port
As with all stream device drivers, a serial port device is opened using CreateFile. The
name used needs to follow the standards I described previously, with the three let
ters COM followed by the number of the COM port to open and then a colon. The
colon is requireci under Windows CE and is a departure from the naming convention
used for device driver names used in Windows NT and Windows 98. The following
line opens COM port 1 for reading and writing:

hSer = CreateFile (TEXT ("COMl:"), GENERIC_READ I GENERIC_WRITE,
0, NULL, OPEN_EXISTING, 0, NULL);

You must pass a 0 in the sharing parameter as well as in the security attributes
and the template file parameters of CreateFile. Windows CE doesn't support over
lapped I/0 for devices, so you can't pass the FILE_FLAG_OVERLAPPED flag in the
dwFlagsAndAttributes parameter. The handle returned is either the handle to the
opened serial port or INVALID_HANDLE_ VALUE. Remember that, unlike many of the
Windows functions, CreateFile doesn't return a 0 for a failed open.

You close a serial port by calling CloseHandle, as in the following:

CloseHandle (hSerl:

You don't do anything differently when using CloseHandle to close a serial device
than when you use it to close a file handle.

Reading and Writing to a Serial Port

546

Just as you use the CreateFile function to open a serial port, you use the functions
ReadFile and WriteFile to write to that serial port. Reading data from a serial port is
as simple as making this call to ReadFile:

INT re;
DWORD cBytes;
BYTE ch;

re= ReadFileChSer, &ch, 1. &cBytes, NULL);

This call assumes the serial port has been successfully opened with a call to CreateFile.
If the call is successful, one byte is read into the variable ch, and cBytes is set to the
number of bytes read.

Writing to a serial port is just as simple. The call would look something like the
following:

INT re;
DWORD cBytes;
BYTE ch;

ch TEXT ('a' l ;
re WriteFile(hSer, &ch, 1, &cBytes, NULL);

Chapter 9 Serial Communications

This code writes the character a to the serial port previously opened. As you may
remember from Chapter 7, both ReadFile and WriteFile return TRUE if successful.

Since overlapped I/0 isn't supported under Windows CE, you should be care
ful not to attempt to read or write a large amount of serial data from your primary
thread or from any thread that has created a window. Because those threads are also
responsible for handling the message queues for their windows, they can't be blocked
waiting on a relatively slow serial read or write. Instead, you should use separate
threads for reading and writing the serial port.

You can also transmit a single character using this function:

BOOL TransmitCommChar (HANDLE hFile, char cChar);

The difference between TransmitCommCharand WriteFile is that TransmitCommChar
puts the character to be transmitted at the front of the transmit queue. When you call
WriteFile, the characters are queued up after any characters that haven't yet been trans
mitted by the serial driver. TransmitCommChar allows you to insert control charac
ters quickly in the stream without having to wait for the queue to empty.

Asynchronous Serial 1/0
While Windows CE doesn't support overlapped I/0, there's no reason why you can't
use multiple threads to implement the same type of overlapped operation. All that's
required is that you launch separate threads to handle the synchronous I/0 opera
tions while your primary thread goes about its business. In addition to using sepa
rate threads for reading and writing, Windows CE supports the Win32 WaitCommEvent
function that blocks a thread until one of a group of preselected serial events occurs.
I'll demonstrate how to use separate threads for reading and writing a serial port in
the CeChat example program later in this chapter.

You can make a thread wait on serial driver events by means of the following
three functions:

BOOL SetCommMask (HANDLE hFile, DWORD dwEvtMask);
BOOL GetCommMask (HANDLE hFile, LPDWORD lpEvtMask);

and

BOOL WaitCommEvent (HANDLE hFile, LPDWORD lpEvtMask,
LPOVERLAPPED lpOverlapped);

To wait on an event, you first set the event mask using SetCommMask. The
parameters for this function are the handle to the serial device and a combination of
the following event flags:

• EV_BREAK A break was detected.

• EV_CTS The Clear to Send (CTS) signal changed state.

547

Part Ill

• EV_DSR The Data Set Ready (DSR) signal changed state.

• EV_ERR An error was detected by the serial driver.

• EV_RLSD The Receive Line Signal Detect (RLSD) line changed state.

• EV_RXCHAR A character was received.

• EV_RXFLA G An event character was received.

• EV_TXEMPTY The transmit buffer is empty.

You can set any or all of the flags in this list at the same time using SetCommMask.
You can query the current event mask using GetCommMask.

To wait on the events specified by SetCommMask, you call WaitCommEvent.
The parameters for this call are the handle to the device, a pointer to a DWORD that
will receive the reason the call returned, and lpOverlapped, which under Windows CE
must be set to NULL. The code fragment that follows waits on a character being re
ceived or an error. The code assumes that the serial port has already been opened
and the handle is contained in hComPort.

DWORD dwMask;
II Set mask and wait.
SetCommMask (hComPort. EV_RXCHAR I EV_ERR);
if (WaitCommEvent (hComPort, &dwMask, 0) {

}

II Use the flags returned in dwMask to determine the reason
II for returning.
Switch (dwMask) {
case EV_RXCHAR:

//Read character.
break;

case EV_ERR:

}

II Process error.
break:

Configuring the Serial Port

548

Reading and writing to a serial port is fairly straightforward, but you also must con
figure the port for the proper baud rate, character size, and so forth. The masochist
could configure the serial driver through device I/0 control (IOCTL) calls but the IoCtl
codes necessary for this are exposed only in the Embedded Toolkit, not the Software
Development Kit. Besides, here's a simpler method.

You can go a long way in configuring the serial port using two functions,
GetCommState and SetCommState, prototyped here:

Chapter 9 Serial Communications

BOOL SetCommState (HANDLE hFile, LPDCB lpDCB);
BOOL GetCommState (HANDLE hFile, LPDCB lpDCB);

Both these functions take two parameters, the handle to the opened serial port and a
pointer to a DCB structure. The extensive DCB structure is defined as follows:

typedef struct _DCB {
DWORD DCBlength;
DWORD BaudRate;
DWORD fBinary: 1;
DWORD fParity: 1;
DWORD fOutxCtsFlow:l;
DWORD fOutxDsrFlow:l:
DWORD fDtrControl :2:
DWORD fDsrSensitivity:l;
DWORD fTXContinueOnXoff:l;
DWORD fOutX: 1 ·
DWORD finX: 1;
DWORD fErrorChar: 1 ·
DWORD fNul l: 1;
DWORD fRtsControl:2:
DWORD fAbortOnError:l;
DWORD fDummy2: 17;
WORD wReserved;
WORD Xonlim;
WORD XoffL im:
BYTE ByteSize;
BYTE Parity;
BYTE Stop Bits:
char XonChar:
char XoffChar;
char ErrorChar;
char EofChar;
char EvtChar;
WORD wReservedl;

} DCB;

As you can see from the structure, the SetCommState can set a fair number of states.
Instead of attempting to fill out the entire structure from scratch, you should use the
best method of modifying a serial port, which is to call GetCommState to fill in a DCB
structure, modify the fields necessary, and then call SetCommState to configure the
serial port.

The first field in the DCB structure, DCB!ength, should be set to the size of the
structure. The BaudRate field should be set to one of the baud rate constants defined
in WINBASE.H. The baud rate constants range from CBR_l 10 for 110 bits per second
to CBR_256000 for 256 kilobits per second (Kbps). Just because constants are defined
for speeds up to 256 Kbps doesn't mean that all serial ports support that speed. To

549

Part Ill

550

determine what baud rates a serial port supports, you can call GetCommProperties,
which I'll describe shortly. Windows CE devices generally support speeds up to 115
Kbps, although some support faster speeds. The /Binary field must be set to TRUE
because no Win32 operating system currently supports a nonbinary serial transmit
mode familiar to MS-DOS programmers. The jPari~y field can be set to TRUE to en
able parity checking.

The fOutxCtsFlow field should be set to TRUE if the output of the serial port
should be controlled by the port CTS line. The JOutxDsrFlow field should be set to
TRUE if the output of the serial port should be controlled by the DSR line of the
serial port. The fDtrControl field can be set to one of three values: DTR_
CONTROL_DISABLE, which disables the DTR (Data Terminal Ready) line and leaves
it disabled; DTR_CONTROL_ENABLE, which enables the DTR line; or DTR_
CONTROL_HANDSHAKE, which tells the serial driver to toggle the DTR line in re
sponse to how much data is in the receive buffer.

The fDsrSensitivity field is set to TRUE, and the serial port ignores any incom
ing bytes unless the port DSR line is enabled. Setting the fTXContinueOnXqff field
to TRUE tells the driver to stop transmitting characters if its receive buffer has reached
its limit and the driver has transmitted an XOFF character. Setting the fOutX field to
TRUE specifies that the XON/XOFF control is used to control the serial output. Set
ting theftnX field to TRUE specifies that the XON/XOFF control is used for the input
serial stream.

The fErrorChar and ErrorChar fields are ignored by the default implementa
tion of the Windows CE serial driver although some drivers might support these fields.
Likewise, thefAbortOnErrorfields is also ignored. Setting thefNull field to TRUE tells
the serial driver to discard null bytes received.

The .fR.tsControl field specifies the operation of the RTS (Request to Send) line.
The field can be set to one of the following: RTS_CONTROL_DISABLE, indicating that
the RTS line is set to the disabled state while the port is open; RTS_CONTROL_ENABLE,
indicating that the RTS line is set to the enabled state while the port is open; or
RTS_CONTROL_HANDSHAKE, indicating that the RTS line is controlled by the driver.
In this mode, if the serial input buffer is less than half full, the RTS line is enabled
and disabled otherwise. Finally, RTS_ CONTROL_ TOGGLE indicates the driver enables
the RTS line if there are bytes in the output buffer ready to be transmitted and dis
ables the line otherwise.

The Xonlim field specifies the minimum number of bytes in the input buffer
before an XON character is automatically sent. The Xofflim field specifies the maxi
mum number of bytes in the input buffer before the XOFF character is sent. This limit
value is computed by taking the size of the input buffer and subtracting the value in
Xofflim. In the sample Windows CE implementation of the serial driver provided in
the ETK, the Xonlim field is ignored and XON and XOFF characters are sent based
on the value in Xofflim. However, this behavior might differ in some systems.

Chapter 9 Serial Communications

The next three fields, ByteSize, Parity, and StopBits, define the format of the
serial data word transmitted. The ByteSize field specifies the number of bits per byte,
usually a value of 7 or 8, but in some older modes the number of bits per byte can be
as small as 5. The parity field can be set to the self-explanatory constants EVENPARITY,
MARKPARITY, NOPARITY, ODDPARITY, or SPACEPARITY. The StopBits field should
be set to ONESTOPBIT, ONE5STOPBITS, or 1WOSTOPBITS depending on whether
you want one, one and a half, or two stop bits per byte.

The next Lwo fields, XonChar and XoffChar, let you specify the XON and XOFF
characters. Likewise, the EvtChar field lets you specify the character used to signal
an event. If an event character is received, an EV _RXFLAG event is signaled by the
driver. This "event" is what triggers the WaitCommEvent function to return if the
EV _RXFLAG bit is set in the event mask.

Setting the Port Timeout Values

As you can see, SetCommState can fine-tune, to almost the smallest detail, the opera
tion of the serial driver. However, one more step is necessary-setting the timeout
values for the port. The time out is the length of time Windows CE waits on a read or
write operation before ReadFile or WriteFile automatically returns. The functions that
control the serial time outs are the following:

BOOL GetCommTimeouts (HANDLE hFile, LPCOMMTIMEOUTS lpCommTimeouts);

and

BOOL SetCommTimeouts (HANDLE hFile, LPCOMMTIMEOUTS lpCommTimeouts);

Both functions take the handle to the open serial device and a pointer to a COMM
TIMEOUTS structure, defined as the following:

typedef struct _COMMTIMEOUTS {
DWORD ReadintervalTimeout;
DWORD ReadTotalTimeoutMultiplier:
DWORD ReadTotalTimeoutConstant;
DWORD WriteTotalTimeoutMultiplier:
DWORD WriteTotalTimeoutConstant;

} COMMTIMEOUTS;

The COMMTIMEOUTS structure provides for a set of timeout parameters that time
both the interval between characters and the total time to read and write a block of
characters. Time outs are computed in two ways. First ReadlntervalTimeout speci
fies the maximum interval between characters received. If this time is exceeded, the
ReadFile call returns immediately. The other time out is based on the number of char
acters you're waiting to receive. The value in ReadTotalTimeoutMultiplier is multi
plied by the number of characters requested in the call to ReadFile, and is added to
ReadTotalTimeoutConstant to compute a total time out for a call to ReadFile.

551

Part 111 Communications

552

The write time out can be specified only for the total time spent during the
WriteFile call. This time out is computed the same way as the total read time out, by
specifying a multiplier value, the time in WriteTotalTimeoutMultiplier, and a constant
value in WriteTotalTimeoutConstant. All of the times in this structure are specified in
milliseconds.

In addition to the basic time outs that I just described, you can set values in
the COMMTIMEOUTS structure to control whether and exactly how time outs are
used in calls to ReadFile and WriteFile. You can configure the time outs in the fol
lowing ways:

• Time outs for reading and writing as well as an interval time out. Set the
fields in the COMMTIMEOUTS structure for the appropriate timeout
values.

• Time outs for reading and writing with no interval time out. Set Read
Interva!Timeout to 0. Set the other fields for the appropriate timeout
values.

• ReadFile returns immediately regardless of whether there is data to be read.
Set Readlnterva!Timeout to MAXDWORD. Set ReadTotalTimeoutMultiplier
and ReadTotalTimeoutConstant to 0.

• ReadFile doesn't have a time out. The function doesn't return until the
proper number of bytes is returned or an error occurs. Set Read!nterval
Timeout, ReadTotalTimeoutMultiplier, and ReadTotalTimeoutConstant
to 0.

• WriteFile doesn't have a time out. Set WriteTotalTimeoutMultiplier and
WriteTotalTimeoutConstant to 0.

The timeout values are important because the worst thing you can do is to spin
in a loop waiting on characters from the serial port. While the calls to ReadFile and
WriteFile are waiting on the serial port, the calling threads are efficiently blocked on
an event object internal to the driver. This saves precious CPU and battery power during
the serial transmit and receive operations. Of course, to block on the ReadFile and
WriteFile, you'll have to create secondary threads because you can't have your pri
mary thread blocked waiting on the serial port.

Another call isn't quite as usefulc-SetupComm, prototyped this way:

BOOL SetupComm (HANDLE hFile, DWORD dwlnQueue, DWORD dwOutQueue);

This function lets you specify the size of the input and output buffers for the driver.
However, the sizes passed in SetupComm are only recommendations, not require
ments to the serial driver. For example, the example implementation of the serial driver
in the ETK ignores these recommended buffer sizes.

Chapter 9 Serial Communications

Querying the Capabilities of the Serial Driver

The configuration functions enable you to configure the serial driver, but with varied
implementations of serial ports you need to know just what features a serial port
supports before you configure it. The function GetCommProperties provides just this
service. The function is prototyped this way:

BOOL GetCommProperties (HANDLE hFile, LPCOMMPROP lpCommProp);

GetCommProperties takes two parameters: the handle to the opened serial driver, and
a pointer to a COMMPROP structure defined as

typedef struct _COMMPROP
WORD wPacketLength;
WORD wPacketVersion;
DWORD dwServiceMask;
DWORD dwReservedl;
DWORD dwMaxTxQueue;
DWORD dwMaxRxQueue;
DWORD dwMaxBaud;
DWORD dwProvSubType;
DWORD dwProvCapabilities;
DWORD dwSettableParams;
DWORD dwSettableBaud;
WORD wSettableData;
WORD wSettableStopParity;
DWORD dwCurrentTxQueue;
DWORD dwCurrentRxQueue;
DWORD dwProvSpecl;
DWORD dwProvSpec2;
WCHAR wcProvChar[l];

COMMPROP;

As you can see from the fields of the COMMPROP structure, GetCommPrope11ies
returns generally enough information to determine the capabilities of the device. Of
immediate interest to speed demons is the dwMaxBaud field that indicates the maxi
mum baud rate of the serial port. The dwSettableBaud field contains bit flags that
indicate the allowable baud rates for the port. Both these fields use bit flags that
are defined in WINBASE.H. These constants are expressed as BAUD_xxxx, as in
BAUD_19200, which indicates the port is capable of a speed of 19.2 kbps. Note that
these constants are not the constants used to set the speed of the serial port in the
DCB structure. Those constants are numbers, not bit flags. To set the speed of a COM
port in the DCB structure to 19.2 kbps, you would use the constant CBR_19200 in the
BaudRate field of the DCB structure.

Starting back at the top of the structure are the wPacketLength and wPacketVersion
fields. These fields allow you to request more information from the driver than is

553

Part Ill Communications

supported by the generic call. The dwSeroiceMask field indicates what services the
port supports. The only service currently supported is SP _SERIALCOMM, indicating
that the port is a serial communication port.

The dwMaxTxQueue and dwMaxRxQueue fields indicate the maximum size
of the output and input buffers internal to the driver. A value of 0 in these fields
indicates that you'll encounter no limit in the size of the internal queues. The
dwCurrentTxQueue and dwCurrentRxQueue fields indicate the current size for the
queues. These fields are 0 if the queue size can't be determined.

The dwProvSubType field contains flags that indicate the type of serial port
supported by the driver. Values here include PST_RS232, PST_RS422, and PST_RS423,
indicating the physical layer protocol of the port. PST_MODEM indicates a modem
device, and PST_FAX tells you the port is a fax device. This field reports what the
driver thinks the port is, not what device is attached to the port. For example, if an
external modem is attached to a standard, RS-232 serial po1t, the driver returns the
PST_RS232 flag, not the PST_MODEM flag.

The dwProvCapabilities field contains flags indicating the handshaking the port
supports, such as XON/XOFF, RTS/CTS, and DTR/DSR. This field also shows you
whether the port supports setting the characters used for XON/XOFF, parity check
ing, and so forth. The dwSettableParams, dwSettableData, and dwSettableStopParity
fields give you information about how the serial data stream can be configured.
Finally, the fields dwProvSpecl, dwProvSpec2, and wcProvChar are used by the driver
to return driver-specific data.

Controlling the Serial Port

554

You can stop and start a serial stream using the following functions:

BOOL SetCommBreak (HANDLE hFile);

and

BOOL ClearCommBreak (HANDLE hFile);

The only parameter for both these functions is the handle to the opened COM port.
When SetCommBreak is called, the COM port stops transmitting characters and places
the port in a break state. Communication is resumed with the ClearCommBreak
function.

You can clear out any characters in either the transmit or receive queues inter
nal to the serial driver using this function:

BOOL PurgeComm (HANDLE hFile, DWORD dwFlags);

The dwFlags parameter can be a combination of the flags PURGE_TXCLEAR and
PURGE_RXCLEAR. These flags terminate any pending writes and reads and reset the
queues. In the case of PURGE_RXCLEAR, the driver also clears any receive holds due

Chapter 9 Serial Communications

to any flow control states, transmitting an XON character if necessary, and setting RTS
and DTR if those flow control methods are enabled. Since Windows CE doesn't sup
port overlapped I/0, the flags PURGE_TXABORT and PURGE_RXABORT, used un
der Windows NT and Windows 98, are ignored.

The EscapeCommFunction provides a more general method of controlling the
serial driver. It allows you to set and clear the state of specific signals on the port. On
Windows CE devices, it's also used to control serial hardware that's shared between
the serial port and the IrDA port. (I'll talk more about infrared data transmission and
the Infrared Data Association (IrDA) standard later in this chapter.) The function is
prototyped as

BOOL EscapeCommFunction (HANDLE hFile, DWORD dwFunc);

The function takes two parameters, the handle to the device and a set of flags in
dwFunc. The flags can be one of the following values:

• SETDTR Sets the DTR signal.

• CLRDTR Clears the DTR signal.

• SETRTS Sets the RTS signal

• CLRRTS Clears the RTS) ignal.

• SETXOFF Tells the driver to act as if an XOFF character has been
received.

• SETXON Tells the driver to act as if an XON character has been received.

• SETBREAK Suspends serial transmission and sets the port in a break state.

• CLRBREAK Resumes serial transmission from a break state.

• SE11R Tells the serial port to transmit and receive through the infrared
transceiver.

• CLRIR Tells the serial port to transmit and receive through the standard
serial transceiver.

The SETBREAK and CLRBREAK commands act identically to SetCommBreak
and ClearCommBreak and can be used interchangeably. For example, you can use
EscapeCommFunction to put the port in a break state and ClearCommBreak to
restore communication.

Clearing Errors and Querying Status
The function

BOOL ClearCommError (HANDLE hFile, LPDWORD lpErrors, LPCOMSTAT lpStat);

555

Part Ill

performs two functions. As you might expect from the name, it clears any error states
within the driver so that I/0 can continue. The serial device driver is responsible for
reporting the errors. The default serial driver returns the following flags in the vari
able pointed to by lpErrors: CE_OVERRUN, CE_RXPARITY, CE_FRAME, and CE_
TXFULL. ClearCommError also returns the status of the port. The third parameter of
ClearCommError is a pointer to a COMSTAT structure defined as

typedef struct _COMSTAT
DWORD fCtsHold :
DWORD fDsrHold :
DWORD fRlsdHold
DWORD fXoffHold
DWORD fXoffSent
DWORD fEof : 1;
DWORD fTxim : 1:
DWORD fReserved
DWORD cbinQue;
DWORD cbOutQue;

COMSTAT;

1;
1;

1:
1;
1;

25;

The first five fields indicate that serial transmission is waiting for one of the
following reasons. It's waiting for a CTS signal, waiting for a DSR signal, waiting for
a Receive Line Signal Detect (also known as a Carrier Detect), waiting for an XON
character, or it's waiting because an XOFF character was sent by the driver. ThefEor
field indicates that an end-of-file character has been received. ThefTxim field is TRUE
if a character placed in the queue by the TransmitCommChar function instead of a call
to WriteFile is queued for transmission. The final two fields, cblnQue and cbOutQue,
return the number of characters in the input and output queues of the serial driver.

The function

BOOL GetCommModemStatus (HANDLE hFile, LPDWORD lpModemStat);

returns the status of the modem control signals in the variable pointed to by
lpModemStat. The flags returned can be any of the following:

• MS_CTS_ON Clear to Send (CTS) is active.

• MS_DSR_ON Data Set Ready (DSR) is active.

• MS__JUNG_ON Ring Indicate (RI) is active.

• MS_RLSD_ON Receive Line Signal Detect (RLSD) is active.

Stay'n Alive

556

One of the issues with serial communication is preventing the system from powering
down while a serial link is active. A Windows CE system determines activity by the
number of key presses and screen taps. It doesn't take into accounf such tasks as a

Chapter 9 Serial Communications

serial port transmitting data. To prevent a Windows CE device from powering off,
you can simulate a keystroke using either of the following functions:

VOID keybd_event (BYTE bVk, BYTE bScan, DWORD dwFlags,
DWORD dwExtrainfo);

or

UINT Sendinput (UINT ninputs, LPINPUT pinputs, int cbSize);

These functions can be used to simulate a keystroke that resets the activity timer used
by Windows CE to determine when the system should automatically power down.
Windows CE supports an additional constant for both these functions-KEYEVENTF _
SILENT, which prevents the default keyboard click sound from being played.

THE INFRARED PORT
Windows CE devices almost always have an infrared, IrDA-compatible serial port. In
fact, all H/PC and Palm-size PC systems are guaranteed to have one. The IR ports on
Windows CE devices are IrDA (Infrared Data Association) compliant. The IrDA stan
dard specifies everything from the physical implementation, such as the frequency
of light used, to the handshaking between devices and how remote systems find each
other and converse.

The IR port can be used in a variety of ways. At the most basic level, the port
can be accessed as a serial port with an IR transmitter and receiver attached. This
method is known as raw IR. When you're using raw IR, the port isn't Ir DA compliant
because the IrDA standard requires the proper handshaking for the link. However,
raw IR gives you the most control over the IR link. A word of warning: While all Win
dows CE devices I know currently support raw IR, some might not in the future.

You can also use the IR port in IrComm mode. In this mode, the IR link looks
like a serial port. However, under the covers, Windows CE works to hide the differ
ences between a standard serial port and the IR link. This is perhaps the easiest way
to link two custom applications because the applications can use the rather simple
Comm API while Windows CE uses the IrDA stack to handle the IR link.

The most robust and complex method of using the IR port is to use IrSock. In
this mode, the IR link appears to be just another socket. IrSock is an extension to
WinSock, the Windows version of the socket interface used by applications commu
nicating with TCP/IP. I'll cover WinSock in Chapter 10, so I'll defer any talk of IrSock
until then.

RawlR
As I mentioned previously, when you use raw IR you're mainly on your own. You
essentially have a serial port with an IR transceiver attached to it. Since both the trans
mitter and receiver use the same ether (the air), collisions occur if you transmit at the

557

Part Ill Communications

558

same time that you're receiving a stream of data from another device. This doesn't
happen when a serial cable connects two serial ports because the cable gives you
separate transmit and receive wires that can be used at the same time.

Finding the raw IR port
To use raw IR, you must first find the serial port attached to the IR transceiver. On
some Windows CE units, the serial port and the IR port use the same serial hardware.
This means you can't use the serial port at the same time you use the IR port. Other
Windows CE devices have separate serial hardware for the IR port. Regardless of how
a device is configured, Windows CE gives you a separate instance of a COM driver
for the IR port that's used for raw IR mode.

There is no official method of determining the COM port used for raw IR. How
ever, the following technique works for current devices. To find the COM port
used for raw IR, look in the registry in the \Comm\IrDA key under HKEY _LOCAL_
MACHINE. There, you should find the Port key that contains the COM port number
for the raw IR device. Below is a short routine that returns the device name of the
raw IR port.

11----- -- -- - -- --- - --- ----- - - - - - - - --- ----- - --- - - - -------- -- - - - - -------- --
11 GetRawirDeviceName - Returns the device name for the RawIR com port
II
INT GetRawirDeviceName (LPTSTR pDevName) {

DWORD dwSize, dwType, dwData;

}

HKEY hKey;
INT re;

*pDevName =TEXT ('\0');
II Open the IrDA key.
if (RegOpenKeyEx (HKELLOCAL_MACHINE, TEXT ("Comm\\IrDA"), 0,

0, &hKey) == ERROR__SUCCESS) {

II Query the device number.
dwSize = sizeof (dwData);
if (RegQueryValueEx (hKey, TEXT ("Port"), 0, &dwType,

CPBYTE)&dwData, &dwSize) == ERROR_SUCCESS)

II Check for valid port number. Assume buffer > 5 chars.
if CdwData < 10)

wsprintf (pDevName, TEXT C"COM%d:"), dwData);

RegCloseKey ChKey);

return lstrlen CpDevName);

Chapter 9 Serial Communications

Using raw IR
Once you have the port name, you must perform one more task before you can use
the port. If the COM port hardware is being shared by the serial port and the IR port,
you must tell the driver to direct the serial stream through the IR transceiver. You do
this by first opening the device and calling EscapeCommFunction. The command
passed to the device is SETIR. When you've finished using the IR port, you should
call EscapeCommFunction again with the command CLRlR to return the port back to
its original serial function.

Once the port is set up, there's one main difference between raw IR and stan
dard serial communication. You have to be careful when using raw IR not to transmit
while another device is also transmitting. The two transmissions will collide, corrupt
ing both data streams. With raw IR, you're also responsible for detecting the other
device and handling the dropped bytes that will occur as the infrared beam between
the two devices is occasionally broken.

lrComm
Using IrComm is much easier than using raw IR. IrComm takes care of remote device
detection, collision detection, and data buffering while communication with the other
device is temporally interrupted. The disadvantage of IrComm is that it's a point-to
point protocol--only two devices can be connected. In most instances, however, this
is sufficient.

Finding the lrComm port
Here again, there's no official method for determining the IrComm port. But you should
be able to find the IrComm port by looking in the registry under the Drivers\builtin
\IrCOMM key under HKEY _LOCAL_MACHINE. The item to que1y is the Index value,
which is the COM device number for the IrComm port. Following is a routine that
returns the device name of the IrComm port.

11--
11 GetlrCommDeviceName - Returns the device name for the IrComm port
II
INT GetirCommDeviceName (LPTSTR pDevName) {

DWORD dwSize, dwType, dwOata;
HKEY hKey;

*pDevName =TEXT ('\0');
II Open the IrDA key.
if (RegOpenKeyEx (HKEY_LOCAL_MACHINE,

TEXT ("Orivers\\Builtln\\IrCOMM"), 0,
0, &hKey) == ERROR_SUCCESS) {

(continued)

559

Part Ill Communications

}

}

II Query the device number.
dwSize = sizeof (dwData);
if (RegQueryValueEx (hKey, TEXT ("Index"), 0, &dwType,

(PBYTE)&dwData, &dwSize) == ERROR_SUCCESS)

II Check for valid port number. Assume buffer> 5 chars.
if (dwData < 10)

wsprintf (pDevName, TEXT ("COM%d:"), dwData);

RegCloseKey (hKey);

return lstrlen CpDevName);

The IrComm port is different in a number of ways from the serial port and the
raw IR port. These differences arise from the fact that the IrComm port is a simulated
port, not a real device. The IrComm driver uses IrSock to manage the IR link. The
driver is then responsible only for reflecting the data stream and a few control char
acters to simulate the serial connection. If you try to query the communication set
tings for the IrComm port using GetCommState, the DCB returned is all zeros. If you
try to set a baud rate or some of the other parameters, and later call GetCommState
again, the DCB will still be 0. IrSock manages the speed and the handshaking proto
col, so IrComm simply ignores your configuration requests.

On the other hand, the IrComm driver happily queues up pending writes wait
ing on another IrComm device to come within range. After the IrComm driver auto
matically establishes a link, it transmits the pending bytes to the other device. This
assistance is a far cry from raw IR and is what makes using IrComm so easy.

The best way to learn about the characteristics of the two methods of IR com
munication I've described is to use them. Which brings us to this chapter's example
program.

THE CECHAT EXAMPLE PROGRAM

560

The CeChat program is a simple point-to-point chat program that connects two Win
dows CE devices using one of the three methods of serial communication covered in
this chapter. The CeChat window is shown in Figure 9-3. Most of the window is taken
up by the receive text window. Text received from the other device is displayed here.
Along the bottom of the screen is the send text window. If you type characters here
and either hit the Enter key or tap on the Send button, the text is sent to the other
device. The combo box on the command bar selects the serial medium to use: stan
dard serial, raw IR, or IrComm.

Chapter 9 Serial Communications

)(

Figure 9-3. 7be CeChat window.

The source code for CeChat is hown in Figure 9-4. CeChat uses three threads
to accomplish its work. The primary thread manages the window and the mes age
loop. The two secondary threads handle reading from and writing to the appropri
ate serial port.

CeChat.rc

II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright (C) 199B Douglas Boling
II==
#include "windows.h"
#include "CeChat . h" II Program-specific stuff
11 --
11 Icons and bitmaps
II
ID_ICON ICON "CeChat.ico" II Program icon

11-- --
11 Menu
II
ID_MENU MENU DISCARDABLE
BEGIN

END

POPUP "&File"
BEGIN

MENUITEM "E&xit",
END
POPUP "&Help"
BEGIN

MENUITEM "&About ... ",
END

IDM_EXIT

IDM_ABOUT

Figure 9-4. 7be CeChat source code. (continued)

561

Part Ill Communications

Figure 9·4. continued

11 ------------------ ------- ------ -- -- --- -- ----- ---- -- ----- --------- -----
11 Accelerator table
II
ID_ACCEL ACCELERATORS DISCARDABLE
BEGIN

END

"S", ID_SENDBTN, VIRTKEY, ALT
VIC_RETURN, ID_SENDBTN, VIRTKEY

11 --
11 About box dialog template
II
aboutbox DIALOG discardable 10, 10, 160, 40
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I DS_CENTER I

DS_MODALFRAME
CAPTION "About"
BEGIN

ICON ID_ICON, -1. 5, 5, 10, 10
LTEXT "CeChat - Written for the book Programming Windows \

CE Copyright 1998 Douglas Boling"
-1. 40, 5, 110, 30

END

CeChat.h

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright CCl 1998 Douglas Boling
II==
II Returns number of elements
#define dim(x) CsizeofCxl I sizeof(x[0]ll

11 ---- -------------------- ---- -- -------------------------------- --------
11 Generic defines and data types
II
struct decodeUINT

UINT Code:

LRESULT (• FxnlCHWND, UINT, WPARAM, LPARAMl:
} ;

struct decodeCMD {
UINT Code:
LRESULT (• Fxn)(HWND, WORD, HWND, WORD):

562

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II funct 1 on.

Chapter 9 Serial Communications

} ;

//---- -- -- -- -- --- --- ----------- --- -- -- ---- ------- -------- - -- ------- -----
II Generic defines used by
fldefi ne ID_ICON
/Jdefi ne ID_MENU
/Jdefi ne ID_ACCEL
/Jdefi ne IDc_CMDBAR
/Jdefi ne ID_RCVTEXT
/Jdefi ne ID_SENDTEXT
/Jdefi ne ID_SENDBTN

II Menu item IDs
fldefi ne IDM_EXIT

fJdefi ne IDM_USECOM
/Jdefi ne IDM_ABOUT

II Command bar IDs
fJdefi ne IDC_COMPORT
fJdefi ne IDC_BAUDRA TE

#define TEXTSIZE 256

application
1
2
3
4
5
6
7

101

110
120

150
151

II App icon resource ID
II Menu resource ID
II Accel table ID
II Command band ID
II Receive text box
II Send text box
II Send button

II Use COM.
II Help menu

II COM port combo box
II Baud rate combo box

11 ------------------------------------ ------- --- ------------------------
11 Function prototypes
II
int ReadThread CPVOID pArg);
int SendThread (PVOID pArg);
HANDLE InitCommunication CHWND, LPTSTRl;
INT GetirCommDeviceName (LPTSTR);
INT GetRawirDeviceName (LPTSTRl:
int FillComComboBox CHWND);

int InitApp CHINSTANCE);
HWND Initlnstance (HINSTANCE, LPWSTR, int);
int Terminstance (HINSTANCE, int);

II Window procedures
LRESULT CALLBACK MainWndProc CHWND, UINT, WPARAM, LPARAMl;

II Message handlers
LRESULT DoCreateMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoSizeMain CHWND, UINT, WPARAM, LPARAMl;
LRESULT DoSetFocusMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoCommandMain (HWND, UINT, WPARAM, LPARAMl;
LRESULT DoDestroyMain (HWND, UINT, WPARAM, LPARAM);

(continued)

563

Part Ill Communications

Figure 9-4. continued

II Command functions
LPARAM DoMainCommandExit CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandComPort CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandSendText CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandAbout CHWND, WORD, HWND, WORD>:

II Dialog procedures
BOOL CALLBACK AboutDlgProc CHWND, UINT, WPARAM, LPARAM);
BOOL CALLBACK EditAlbumDlgProc CHWND, UINT, WPARAM, LPARAM>:

CeChat.c

II==
II CeChat - A Windows CE communication demo
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include <commctrl.h> II Command bar includes
#include "CeChat.h" II Program-specific stuff

11-- --- ------ ------ ---
11 Global data
II
const TCHAR szAppName[] TEXT C"CeChat"l:
HINSTANCE hlnst: II Program instance handle.

BOOL fContinue = TRUE:
HANDLE hComPort = INVALID_HANDLE_VALUE:
INT nSpeed = CBR._19200;
int nLastDev = -1:

HANDLE g_hSendEvent = INVALID_HANDLE_VALUE:
HANDLE hReadThread = INVALID_HANDLE_VALUE:

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[J = {

WM_CREATE, DoCreateMain,
WM_SIZE, DoSizeMain,
WM_COMMAND, DoCommandMain,
WM_SETFOCUS. DoSetFocusMain,
WM_DESTROY, DoDestroyMain,

} :
II Command Message dispatch for MainWindowProc

564

Chapter 9 Serial Communications

const struct decodeCMD MainCommanditems[]
IDC_COMPORT, DoMainCommandComPort,
ID_SENDBTN , DoMainCommandSendText,
IDM_EXIT, DoMainCommandExit,
IDM_ABOUT, DoMainCommandAbout ,

} ;

II==
II Program entry point
II
int WINAPI WinMain CHINSTANCE hinstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdLine , int nCmdShow) (

}

HWND hwndMain;
HACCEL hAccel;
MSG msg;
int re = 0:

II Initialize application.
re= InitApp Chinstance);
if (re) return re:

II Initialize this instance.
hwndMain = Initinstance (hinstance, lpCmdLine, nCmdShow);
if ChwndMain == 0)

return 0xl0;

II Load accelerator table.
hAccel = LoadAccelerators Chinst, MAKEINTRESOURCE CID_ACCEL));

II Application message loop
while CGetMessage C&msg, NULL, 0, 0)) (

}

if (!TranslateAccelerator <hwndMain , hAccel, &msg)) {
TranslateMessage <&msg);
DispatchMessage C&msg);

II Instance cleanup
return Terminstance (hinstance, msg.wParam);

11-- --
11 InitApp - Application initialization
II
int InitApp (HINSTANCE hinstance)

WNDCLASS we;
INITCOMMONCONTROLSEX icex;

II Register application main window class.

(continued)

565

Part Ill Communications

Figure 9-4. continued

}

we.style = 0:
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hinstance = hinstance;
wc.hicon = NULL.
wc.hCursor = NULL:

II Window style
II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon
II Default cursor

GetStockObject CWHITE_BRUSH);
II Menu name

wc.hbrBackground = (HBRUSH)
wc.lpszMenuName = NULL:
wc.lpszClassName = szAppName: II Window class name

if (RegisterClass (&we) == 0) return 1:

II Load the command bar common control class.
icex.dwSize = sizeof CINITCOMMONCONTROLSEX);
icex.dwICC = ICC_BAR_CLASSES;
InitCommonControlsEx C&icex);
return 0:

11--- ---
11 Initinstance - Instance initialization
II
HWND Initinstance (HINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow){

HWND hWnd:

566

INT re;
HANDLE hThread;

II Save program instance handle in global variable.
hinst = hinstance;

II Create unnamed auto - reset event initially false.
g_hSendEvent = CreateEvent (NULL, FALSE, FALSE, NULL);

II Create main window.
hWnd = CreateWindow (szAppName, TEXT C"CeChat"),

WS_VISIBLE, CW_USEDEFAULT. CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT, NULL,
NULL, hlnstance, NULL);

II Return fail code if window not created.
if (!IsWindow (hWnd)) return 0;

II Create write thread. Read thread created when port opened.
hThread = CreateThread (NULL, 0, SendThread, hWnd, 0, &re);
1f (hThread)

CloseHandle ChThread):
else {

Chapter 9 Serial Communications

}

}

DestroyWindow ChWndl;
return 0;

II Standard show and update calls
ShowWindow ChWnd, nCmdShow);
UpdateWindow (hWndl;
return hWnd;

11 -- -- -- -- -- ----------------------
11 Termlnstance - Program cleanup
II
int Termlnstance (HINSTANCE hlnstance, int nDefRCl (

HANDLE hPort = hComPort;

}

fContinue = FALSE;

hComPort = INVALID_HANDLE_VALUE;
if ChPort != INVALID_HANDLE_VALUE)

CloseHandle (hPort>:

if (g_hSendEvent != INVALID_HANDLE_VALUE)
PulseEvent (g_hSendEvent);
Sleep(100):
CloseHandle (g_hSendEvent);

return nDefRC;

I I==
II Message handling procedures for MainWindow
11 --- ----- ----
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

}

I NT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0: i < d1mCMainMessages); i++) (

if CwMsg == Ma1nMessages[1].Code)
return C•Ma1nMessages[i].Fxn)(hWnd, wMsg, wParam, lParam);

return DefW1ndowProc ChWnd, wMsg, wParam, lParam);

11 --

(continued)

567

Part Ill Communications

Figure 9-4. continued

II DoCreateMain - Process WM_CREATE message for window.
II
LRESULT DoCreateMain (HWND hWnd, UINT wMsg , WPARAM wParam ,

568

LPARAM lParam) {
HWND hwndCB, hCl, hC2, hC3;
INT i, j, nHeight;
TCHAR szFirstDev[32];
LPCREATESTRUCT lpcs;

II Convert lParam into pointer to create structure.
lpcs = CLPCREATESTRUCT) lParam;

II Create a command bar.
hwndCB = CommandBar_Create (hinst, hWnd, IDC_CMDBAR);
CommandBar_InsertMenubar (hwndCB, hinst, ID_MENU, 0);

II Insert the com port combo box.
CommandBar_InsertComboBox ChwndCB, hinst, 140, CBS_DROPDOWNLIST,

IDC_COMPORT, 1);
FillComComboBox (hWnd);

II Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 0);
nHeight = CommandBar_Height ChwndCB);

II Create receive text window.
hCl = CreateWindowEx CWS_EX_CLIENTEDGE, TEXT ("edit"),

TEXT (""), WS_VISIBLE I WS_CHILD I
WS_VSCROLL I ES_MULTILINE I ES_AUTOHSCROLL
ES_READONLY, 0, nHeight, lpcs ->cx,
lpcs ->cy - nHeight - 25, hWnd,
(HMENU)ID_RCVTEXT, hinst, NULL);

II Create send t ext window.
hC2 = CreateWindowEx (WS_EX_CLIENTEDGE, TEXT ("edit"),

TEXT (""), WS_VISIBLE I WS_CHILD,
0, lpcs->cy - 25, lpcs ->cx -50, 25,
hWnd, CHMENU)ID_SENDTEXT, hinst, NULL);

II Create send text window .
hC3 = CreateWindowEx (WS_EX_CLIENTEDGE, TEXT ("button"),

TEXT ("&Send"), WS_VISIBLE I W5_CHILD
BS_DEFPUSHBUTTON,
lpcs ->cx -50, lpcs ->cy - 25, 50, 25,
hWnd, (HMENU)ID_SENDBTN, hinst, NULL);

II Destroy frame if window not created.
if (!IsWindow (hCl) I I !IsWindow ChC2) I I !IsWindow (hC3)) {

DestroyWindow (hWnd):

Chapter 9 Serial Communications

)

return 0;
}

II Open a com port.
for ei = 0; i < 3; i++)

SendDlgltemMessage ehwndCB, IDC_COMPORT, CB_GETLBTEXT. i.
eLPARAM)szFirstDev);

j = lstrlen eszFirstDev);
II Really bad hack to determine which is the RAW IR port
if einitCommunication ehWnd. szFirstDev) !=

INVALID_HANDLE_VALUE) {
SendDlgltemMessage ehwndCB, IDC_COMPORT, CB_SETCURSEL, i.

eLPARAM)szFirstDev);
break;

return 0;

11 --
11 DoSizeMain - Process WM_SIZE message for window.
II
LRESULT DoSizeMain eHWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam){

RECT rect;

}

II Adjust the size of the client rect to take into account
II the command bar height.
GetClientRect ehWnd, &rect);
rect.top += CommandBar_Height eGetDlgltem ehWnd, IDC_CMDBAR));

SetWindowPos eGetDlgltem ehWnd, ID_RCVTEXT), NULL, rect.left.
rect.top. erect.right - rect . left),
rect.bottom - rect.top - 25, SWP_NOZORDER);

SetWindowPos eGetDlgltem ehWnd, ID_SENDTEXT), NULL, rect.left,
rect.bottom - 25, erect.right - rect.left) - 50,
25, SWP_NOZORDER);

SetWindowPos eGetDlgltem ehWnd, ID_SENDBTN), NULL,

return 0;

erect.right - rect.left) - 50, rect.bottom - 25,
50. 25, SWP_NOZORDER) :

11 ------ ---------------- --
11 DoFocusMain - Process WM_SETFOCUS message for window.
II
LRESULT DoSetFocusMain eHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {
SetFocus eGetDlgltem ehWnd, ID_SENDTEXT));
return 0;

(continued)

569

Part Ill Communications

Figure 9-4. continued

}

11 -- --------- --- ------
11 DoCommandHain - Process WH_CDHHAND message for window.
II
LRESULT DoCommandHain (HWND hWnd, UINT wHsg, WPARAH wParam,

}

LPARAH lParam) (
WORD 1dltem, wNotifyCode:
HWND hwndCtl;
INT i;

II Parse the parameters.
idltem = (WORD) LOWORD (wParam):
wNot1fyCode = (WORD) HIWORD (wParam):
hwndCtl = (HWND) lParam:

II Call routine to handle control message.
for (i = 0: i < dim(Ha1nCommandltems); i++)

if (idltem == HainCommandltems[1].Code)

return 0;

return (•HainCommandltems[1].Fxn)(hWnd. idltem, hwndCtl,
wNot 1fyCode > :

11 ------ --- -------------------------------- ---- ------ ---- ---------------
11 DoDestroyMa i n - Process WM_DESTROY message for window.
II
LRESULT DoDestroyHain CHWND hWnd, UINT wHsg, WPARAH wParam,

LPARAH lParam) {
PostQuitHessage (0);
return 0;

}

I I==
II Command handler rout i nes
11 --- ---
11 DoHainCommandExit - Process Program Exit command.
II
LPARAH DoHainCommandExit (HWND hWnd, WORD 1dltem, HWND hwndCtl,

WORD wNotifyCode) (
SendHessage ChWnd, WH_CLOSE, 0, 0):
return 0:

}

11 --
11 DoHainCommandComPort - Process the COM port combo box commands.
II
LPARAH DoHainCommandComPort (HWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) (

570

Chapter 9 Serial Communications

}

INT 1;
TCHAR szDev[32];

1f CwNot1fyCode == CBN_SELCHANGE) {
1 = SendMessage ChwndCtl, CB_GETCURSEL, 0, 0);
if (1 I= nLastDev> {

nLastDev = 1;
SendMessage ChwndCtl, CB_GETLBTEXT, 1, CLPARAM)szDev);
ln1tCommun1cat1on ChWnd, szDev);
SetFocus CGetDlgltem ChWnd, ID_SENDTEXT));

return 0;

11 ------------------ --- ------------------------------------- ------------
11 DoMa1nCommandSendText - Process the Send text button.
II
LPARAM DoMa1nCommandSendText CHWND hWnd, WORD 1dltem, HWND hwndCtl,

WORD wNot1fyCode) {

}

II Set event so that sender thread w1ll send the text.
SetEvent (g_hSendEvent);
SetFocus CGetDlgltem ChWnd, ID_SENDTEXT));
return 0;

11 ---------------------- ---------- ----- -------- ------------- ------------
11 DoMa1nCommandAbout - Process the Help I About menu command.
II
LPARAM DoMa1nCommandAboutCHWND hWnd, WORD 1dltem. HWND hwndCtl,

WORD wNot1fyCode) (
II Use D1alogBox to create modal d1alog.
D1alogBox Chlnst. TEXT ("aboutbox"l, hWnd, AboutDlgProc);
return 0;

}

II==
II About D1alog procedure
II
BOOL CALLBACK AboutDlgProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {
sw1tch C wMsg) C

case WM_COMMAND:
sw1tch CLOWORD CwParam))

case IDOK:
case IDCANCEL:

EndD1alog ChWnd, 0);
return TRUE;

(continued)

571

Part Ill Communications

Figure 9-4. continued

break;
}

return FALSE;
}
11--
11 GetRawlrDeviceName - Returns the device name for the RawIR com port
II
INT GetRawlrDeviceName (LPTSTR pDevName) {

DWORD dwSize, dwType. dwData;

}

HKEY hKey;

•pDevName =TEXT ('\0');
II Open the IrDA key.
if (RegOpenKeyEx (HKELLOCALMACHINE, TEXT ("Comm\\IrDA"), 0,

0, &hKey) == ERROil.SUCCESS) {

II Query the device number.
dwSize = sizeof CdwData);
if (RegQueryValueEx ChKey, TEXT ("Port"), 0, &dwType,

(PBYTEl&dwData, &dwSize) == ERROil.SUCCESS)

II Check for valid port number. Assume buffer > 5 chars.
if (dwData < 10)

wsprintf (pDevName. TEXT C"COMSd:"), dwData>:

RegCloseKey (hKey);

return lstrlen (pDevName);

11--
11 GetlrCommDeviceName - Returns the device name for the IrComm port
II
INT GetlrCommDeviceName (LPTSTR pDevName) {

DWORD dwSize. dwType, dwData;

572

HKEY hKey;

•pDevName =TEXT C'\0');
II Open the IrDA key.
if (RegOpenKeyEx CHKEY_LOCALMACHINE,

TEXT C"Drivers\\Builtln\\IrCOMM"), 0,
0, &hKey) == ERROil.SUCCESS) {

II Query the device number.
dwSize = sizeof (dwData);
if <RegQueryValueEx (hKey, TEXT ("Index"), 0, &dwType,

Chapter 9 Serial Communications

}

CPBYTE)&dwData, &dwSize) == ERROR_SUCCESS>

II Check for valid port number. Assume buffer > 5 chars.
if (dwData < 10)

wsprintf (pDevName, TEXT ("COMSd:"), dwData);

RegCloseKey ChKey);

return lstrlen (pDevName);

11 --- --------- ---------- --
11 FillComComboBox - Fills the com port combo box
II
int FillComComboBox CHWND hWnd) (

TCHAR szDev[64];

}

lstrcpy (szDev, TEXT ("Serial Port COMl:"));
SendDlgitemMessage (GetDlgltem (hWnd, IDC_CMDBARl.

IDC_COMPORT, CB_INSERTSTRING,
-1, (LPARAM)szDev);

lstrcpy CszDev, TEXT ("lrComm Port "));
GetlrCommDeviceName C&szDev[lstrlen (szDev)]);
SendDlgltemMessage (GetDlgltem (hWnd, IDC_CMDBAR),

IDC_COMPORT, CB_INSERTSTRING,
-1, CLPARAM>szDev);

lstrcpy CszDev, TEXT ("Raw IR Port "));
GetRawirDeviceName C&szDev[lstrlen (szDev)]);
SendDlgltemMessage (GetDlgltem ChWnd, IDC_CMDBAR),

IDC_COMPORT, CB_INSERTSTRING,
-1, CLPARAM)szDev);

SendDlgitemMessage (GetDlgitem (hWnd, IDC_CMDBAR), IDC_COMPORT,
CB_SETCURSEL, 0, 0);

return 0;

11-------- ---- ---- --- ---------
11 InitCommunication - Open and initialize selected COM port.
II
HANDLE InitCommunication CHWND hWnd, LPTSTR pszDevName)

DCB deb:
INT i:
TCHAR szDbg[l2B]:
COMMTIMEOUTS cto;
HANDLE hLocal;
DWORD dwTStat;

(continued)

5 7 3

Part 111 Communications

Figure 9-4. continued

574

hLocal = hComPort;
hComPort = INVALID_HANDLE_VALUE;

if (hLocal != INVALID_HANDLE_VALUE)
CloseHandle (hLocal); II This causes Wa1tCommEvent to return.

II The com port name is the last 5 characters of the string.
i = lstrlen (pszDevName);
hLocal = CreateFile C&pszDevName[i-5), GENERIC_READ I GENERIC_WRITE,

0, NULL, OPEN_EXISTING, 0, NULL);

if (hLocal != INVALID_HANDLE_VALUE)
II Configure port.
GetCommState ChLocal, &deb):
dcb.BaudRate = nSpeed:
dcb.fParity = FALSE;
dcb.fNull = FALSE:
dcb.StopBits = ONESTOPBIT;
deb . Parity = NOPARITY;
dcb . ByteSize = 8:
SetCommState ChLocal. &deb);

II Set the timeouts. Set infinite read timeout.
cto.ReadintervalTimeout = 0:
cto.ReadTotalT i meoutMultiplier = 0;
cto.ReadTotalTi meoutConstant = 0;
cto.WriteTotalTimeoutMultiplier = 0;
cto.WriteTotalTimeoutConstant = 0;
SetCommTimeouts (hLocal, &cto);

wsprintf (szDbg, TEXT ("Port Is opened\r\n"), pszOevNamel:
SendDlgitemMessage (hWnd, ID_RCVTEXT, EM_REPLACESEL, 0,

(LPARAM) szDbg);
II Really bad hack to determine which is the raw IR selection.
II We need to enable IR on the raw IR port in case port 1s
II shared with the standard serial port.
if (*pszDevName ==TEXT ('R'l) (

)

if C!EscapeCommFunction ChLocal, SETIR))
wsprintf (szDbg , TEXT ("Set IR failed. re Sd\r\n"),

GetLastError());
SendDlgitemMessage (hWnd, ID_RCVTEXT, EM_REPLACESEL,

0, (LPARAMlszDbg);

II Start read thread if not already started.
hComPort = hLocal:

Chapter 9 Serial Communications

}

if (!GetExitCodeThread ChReadThread. &dwTStat) I I
(dwTStat != STILL_ACTIVE)) (

else

hReadThread = CreateThread (NULL, 0, ReadThread. hWnd .
0. &dwTStat);

if (hReadThread)
CloseHandle (hReadThread);

wsprintf (szDbg, TEXT ("Couldn\'t open port Is. rc=%d\r\n"),
pszDevName. GetLastError());

SendDlgitemMessage (hWnd. ID_RCVTEXT. EM_REPLACESEL,
0. (LPARAM)szDbg);

return hComPort;

II==
II SendThread - Sends characters to the serial port
II
int SendThread CPVDID pArg)

HWND hWnd, hwndSText;
INT cBytes. nGoCode;
TCHAR szText[TEXTSIZE];

}

hWnd = (HWND)pArg;
hwndSText = GetDlgitem (hWnd. ID_SENDTEXT);
while (1) (

}

nGoCode = WaitForSingleObject (g_hSendEvent, INFINITE);
if (nGoCode == WAIT_OBJECT_0) (

if (!fContinue)
break;

GetWindowText (hwndSText. szText. dim(szText));
lstrcat (szText. TEXT ("\r\n"));
WriteFile (hComPort. szText, lstrlen (szText)•sizeof (TCHAR).

&cBytes. 0);
SetWindowText (hwndSText, TEXT ("")); II Clear out text box

else
break;

return 0;

//==
II ReadThread - Receives characters from the serial port
II
int ReadThread (PVOID pArg) (

HWND hWnd;
INT cBytes, i;

(continued)

575

Part Ill Communications

Figure 9-4. continued

576

BYTE szText[TEXTSIZE], •pPtr;
TCHAR tch;

hWnd = (HWNO)pArg;
while (fContinue) {

tch = 0;
pPtr = szText;
for Ci = 0; i < sizeof CszText)-sizeof CTCHAR); i++) {

while CIReadFile ChComPort. pPtr, 1. &cBytes. 0))
if ChComPort == INVALIO_HANDLE_VALUE)

return 0;

II This syncs the proper byte order for Unicode.
tch = (tch << 8) & 0xff00;
tch i= *pPtr++;
if Ctch ==TEXT ('\n'))

break;

*PPtr++ = 0; II Avoid alignment probs by addressing as bytes.
*pPtr++ = 0;

II If out of byte sync. move bytes down one.
if (i % 2) (

pPtr = szText;
while (*pPtr I I *(pPtr+l))

*pPtr = *(pPtr+l);
pPtr++:

*PPtr = 0;

SendDlgltemMessage ChWnd, IO_RCVTEXT. EM_REPLACESEL. 0,
(LPARAM)szText);

return 0;

When the CeChat window is created, it sniffs out the three port names using
the method I de cribed earlier in the chapter. The combo box is then filled and an
attempt is made to open one of the COM ports. Once a port is opened, the read thread
is created to wait on characters. The read thread isn't as simple as it should be
because it must deal with 2-byte Unicode character . Because it's quite possible to
drop a byte or two in a serial IR link, the receive thread must attempt to resync the
proper high bytes with their low byte pair to form a correct Unicode character.

Chapter 9 Serial Communications

The send thread is actually quite simple. All it does is block on an event that
was created when CeChat was started. When the event is signaled, it reads the text
from the send text edit control and calls WriteFile. Once that has completed, the send
thread clears the text from the edit control and loops back to where it blocks again.

In the CeChat window shown in Figure 9-3 on page 561, the program reports
that it can't open COMl; this is because COMl was being used by PC Link to connect
to my PC. One of the problems with debugging serial programs on the H/PC or
Palm-size PC is that you're generally using the one port that attaches to the PC. In
these situations, it helps to have a secondary communication path from the PC to
the Windows CE device. While you could put an additional serial PCMCIA Card into
the H/PC to acid ports, a faster link can be made with a PCMCIA Ethernet Carel. Which
brings us right to the next chapter, "Windows Networking and IrSock."

577

Chapter 10

Windows
Networking
and lrSock

Networks are at the heart of modern computer systems. Over the years, Microsoft
Windows has supported a variety of networks and networking APis. The evolving
nature of networking APis along with the need to keep systems backward compat
ible has resulted in a huge array of overlapping functions and parallel APis. As in
many places in Windows CE, the networking API is a subset of the vast array of net
working functions supported under Windows NT and Windows 98.

Windows CE supports a variety of networking APis. This chapter covers two.
First is the Windows Networking API, WNet. This API supports basic network con
nections so that a Windows CE device can access disks and printers on a network.

Windows CE also supports a subset of the WinSock 1.1 APL I'm not going to
cover the complete WinSock API because plenty of other books do that. I'll spend
some time covering what is directly relevant to Windows CE developers. Of particu
lar interest is the fact that that WinSock is the high-level API to the IrDA infrared
communication stack. I'll also cover another extension to WinSock, the Internet con
trol message protocol (ICMP) functions that allow Windows CE applications to ping
other machines on a TCP /IP network.

579

Part Ill

WINDOWS NETWORKING SUPPORT
The WNet API is a provider-independent interface that allows Windows applications
to access network resources without regard for the network implementation. The
Windows CE version of the WNet API has fewer functions but provides the basics so
that a Windows CE application can gain access to shared network resources, such as
disks and printers. The WNet API is implemented by a "redirector" DLL that trans
lates the WNet functions into network commands for a specific network protocol.

By default, the only network supported by the WNet API is Windows Network
ing. Supp01t for even this network is limited by the fact that redirector files that imple
ment Windows Networking aren't bundled with most H/PCs or Palm-size PCs. The
two files that implement this support, REDIR.DLL and NETBIOS.DLL, are available
from Microsoft. As a convenience, I've also included them on the book's companion
disc as well. As an aside, the NetBIOS DLL doesn't export a NetBIOS-like interface to
applications or drivers.

WNet Functions

580

Windows CE's support for the WNet functions started with Windows CE 2.0. As with
other areas in Windows CE, the WNet implementation under Windows CE is a subset
of the same API on the desktop, but supp01t is provided for the critical functions while
eliminating the overlapping and obsolete functions. For example, the standard WNet
API contains four different and overlapping WNetAddConnection functions while
Windows CE supports only one, WNetAddConnection3.

For the WNet API to work, the redirector DLLs must be installed in the \windows
directory. In addition, the network control panel, also a supplementary component
on most systems, must be used to configure the network card so that it can access
the network. If the redirector DLLs aren't installed, or an error occurs configuring or
initializing the network adapter, the WNet functions return the error code ERROR_
NO_NETWORK.

Conventions of UNC
Network drives can be accessed in one of two ways. The first method is to explicitly
name the resource using the Universal Naming Convention (UNC) naming syntax,
which is a combination of the name of the server and the shared resource. An ex
ample of this is \ \BIGSRVR\DRVC, where the server name is BIGSERV and the re
source on the server is named DRVC. The leading double backslashes immediately
indicate that the name is a UNC name. Directories and filenames can be included
in the UNC name, as in \ \bigservr\drvc\dir2\filel .ext. Notice that I changed case in
the two names. That doesn't matter because UNC paths are case insensitive.

As long as the WNet redirector is installed, you can use UNC names wherever
you use standard filenames in the Windows CE APL You'll have problems, though,

Cbapter 1 o Windows Networking and lrSock

with some programs, including, in places, the Windows CE shell, where the applica
tion doesn't understand UNC syntax. For example, the Explorer in a Windows CE 2.0
H/PC device understands UNC names, but the File Open dialog box on the same
system doesn't.

Mapping a remote drive
To get around applications that don't understand UNC names. you can map a net
work drive to a local name. When a network drive is mapped on a Windows CE sys
tem, the remote drive appears as a folder in the \network folder in the object store.
The \network folder isn't a standard folder; in fact, before Windows CE 2.1, it didn't
even show up in the Explorer. (For systems based on Windows CE 2.1, the visi
bility of the \network folder depends on a registry setting.) Instead it's a placeholder
name by which the local names of the mapped network drives can be addressed.
For example, the network drive \ \BigSror\DrvC could be mapped to the local name
]oeBob. Files and directories on \ \BigSrvr\DruC would appear under the folder
\network\joebob. Since Windows CE doesn't support drive letters, the local name
can't be specified in the form of a drive, as in G:.

I mentioned that the \network folder is a virtual folder; this needs further ex
planation. Before Windows CE 2.1, the network folder wasn't visible to the standard
file system functions. If you use the FindFirstFile/FindNextFile process to enumerate
the directories in the root directory, the \network directory won't be enumerated.
However, FindFirstFile/FindNextFile enumerates the mapped resources contained in
the \network folder. So if the search string is *. * to enumerate the root directory,
the network isn't enumerated, but if you use \network*.* as the search string, any
mapped drives will be enumerated.

Starting with Windows CE 2.1, the \network folder can be enumerated by Find
FirstFile and FindNextFile if the proper registry settings are made. However, even
though the folder can be enumerated, you still can't place files or create folders within
the \network folder. To make the \network folder visible, the DWORD value Register
FSRoot under the key [HKEY _LOCAL_MACHINE]\comm \redir, must be set to a non
zero value.

The most direct way to map a remote resource is to call this function:

DWORD WNetAddConnection3 (HWND hwndOwner, LPNETRESOURCE lpNetResource,
LPTSTR lpPassword, LPTSTR lpUserName,
DWORD dwFlags);

The first parameter is a handle to a window that owns any network support dialogs
that might need to be displayed to complete the connection. The window handle can
be NULL if you don't want to specify an owner window. This effectively turns the
WNetAddConnection3 function into the WNetAddConnection2 function supported
under other versions of Windows.

581

Part Ill

582

The second parameter, lpNetResource, should point to a NETRESOURCE struc
ture that defines the remote resource being connected. The structure is defined as

typedef struct _NETRESOURCE {

DWORD dwScope;
DWORD dwType;
DWORD dwDisplayType;
DWORD dwUsage;
LPTSTR lpLocalName;
LPTSTR 1 pRemoteName;
LPTSTR lpComment;
LPTSTR lpProvider;

} NETRESOURCE;

Most of these fields aren't used for the WNetAddConnection3 function and should
be set to 0. All you need to do is to specify the UNC name of the remote resource in
a string pointed to by lpRemoteName and the local name in a string pointed to by
lploca/Name. The local name is limited to 64 characters in length. The other fields in
this structure are used by the WNet enumeration functions that I'll describe shortly.

You use the next two parameters in WNetAddConnection3, lpPassword and
lpUserName, when requesting access from the server to the remote device. If you don't
specify a user name and Windows CE can't find user information for network access
already defined in the registry, the system displays a dialog box requesting the user
name and password. Finally, the dwFlags parameter can be either 0 or the flag CON
NECT_UPDATE_PROFILE. When this flag is set, the connection is dubbed persistent.
Windows CE stores the connection data for persistent connections in the registry.
Unlike other versions of Windows, Windows CE doesn't restore persistent connec
tions when the user logs on. Instead, the local name to remote name mapping is tracked
only in the registry. If the local folder is later accessed after the original connection
was dropped, a reconnection is automatically attempted when the local folder is
accessed.

If the call to WNetAddConnection3 is successful, it returns NO_ERROR. Unlike
most Win32 functions, WNetAddConnection3 returns an error code in the return value
if an error occurs. This is a nod to compatibility that stretches back to the Windows
3.1 days. You can also call GetlastError to return the error information. As an aside,
the function WNetGetlastError is supported under Windows CE in that it's redefined
as GetLastError, so you can call that function if compatibility with other platforms is
important.

The other function you can use under Windows CE to connect a remote resource
is WNetConnectionDialogl. This function presents a dialog box to the user request
ing the remote and local names for the connection. The function is prototyped as

DWORD WNetConnectionDialogl (LPCONNECTDLGSTRUCT lpConnectDlgStruc);

Chapter 1 o Windows Networking and lrSock

The one parameter is a pointer to a CONNECTDLGSTRUCT structure defined as the
following:

typedef struct {
DWORD cbStructure;
HWND hwndOwner;
LPNETRESOURCE lpConnRes;
DWORD dwFlags;
DWORD dwDevNum;

} CONNECTDLGSTRUCT;

The first field in the structure is the size field and must be set with the size of
the CONNECTDLGSTRUCT structure before you call WNetConnectionDialogl. The
hwndOwner field should be filled with the handle of the owner window for the dia
log box. The lpConnRes field should point to a NETRESOURCE structure. This struc
ture should be filled with zeros except for the lpRemoteName field, which may be
filled to specify the default remote name in the dialog. You can leave the lpRemoteName
field 0 if you don't want to specify a suggested remote path.

The dwFlags field can either be 0 or set to the flag CONNDLG_RO_PATH. When
this flag is specified, the user can't change the remote name field in the dialog box.
Of course, this means that the lpRemoteName field in the NETRESOURCE structure
must contain a valid remote name. Windows CE ignores the dwDevNum field in the
CONNECTDLGSTRUCT structure.

When the function is called, it displays a dialog box that allows the user to specify
a local and, if not invoked with the CONNDLG_RO_PATH flag, the remote name as
well. If the user taps on the OK button, Windows attempts to make the connection
specified. The connection, if successful, is recorded as a persistent connection in the
registry.

If the connection is successful, the function returns NO_ERROR. If the user
presses the Cancel button in the dialog box, the function returns -1. Other return
codes indicate errors processing the function.

Disconnecting a remote resource
You can choose from three ways to disconnect a connected resource. The first method
is to delete the connection with this function:

DWORD WNetCancelConnection2 (LPTSTR lpName, DWORD dwFlags,
BOOL fForce);

The lpName parameter points to either the local name or the remote network name
of the connection you want to remove. The dwFlags parameter should be set to O or
CONNECT_UPDATE_PROFILE. If CONNECT_UPDATE_PROFILE is set, the entry in
the registry that references the connection is removed; otherwise the call won't change
that information. Finally, the }Force parameter indicates whether the system should

583

Part Ill

584

continue with the disconnect, even if there are open files or print jobs on the remote
device. If the function is successful, it returns NO_ERROR.

You can prompt the user to specify a network resource to delete using this
function:

DWORD WNetDisconnectDialog CHWND hwnd, DWORD dwType);

This function brings up a system provided dialog box that lists all connections cur
rently defined. The user can select one from the list and tap on the OK button to
disconnect that resource. The two parameters for this function are a handle to the
window that owns the dialog box and dwType, which is supposed to define the type
of resources-printer (RESOURCETYPE_PRINT) or disk (RESOURCETYPE_DISK)
enumerated in the dialog box. However, some systems ignore this parameter and
enumerate both disk and print devices. This dialog, displayed by WnetDisconnect
Dialog, is actually implemented by the network driver. So it's up to each OEM to get
this dialog to work correctly.

A more specific method to disconnect a network resource is to call

DWORD WNetDisconnectDialogl (LPDISCDLGSTRUCT lpDiscDlgStruc);

This function is misleadingly named in that it won't display a dialog box if all the
parameters in DISCDLGSTRUCT are correct and point to a resource not currently
being used. The dialog part of this function appears when the resource is being used.

The DISCDLGSTRUCT is defined as

typedef struct {
DWORD cbStructure:
HWND hwndOwner;
LPTSTR lplocalName;
LPTSTR lpRemoteName:
DWORD dwFlags;

} DISCDLGSTRUCT:

As usual, the cbStructure field should be set to the size of the structure. The hwnd
Owner field should be set to the window that owns any dialog box displayed. The
lpLoca!Name and lpRemoteName fields should be set to the local and remote names
of the resource that's to be disconnected. Under current implementations, the
lpLocalName is optional while the lpRemoteName field must be set for the function
to work correctly. The dwFlags parameter can be either 0 or DISC_NO _FORCE. If this
flag is set and the network resource is currently being used, the system simply fails
the function. Otherwise, a dialog appears asking the user if he or she wants to dis
connect the resource even though the resource is being used. Under the current
implementations, the DISC_NO_FORCE flag is ignored.

Chapter 1 o Windows Networking and lrSock

Enumerating network resources
It's all very well and good to connect to a network resource, but it helps if you know
what resources are available to connect to. Windows CE supports three WNet func
tions used to enumerate network resources: WNetOpenEnum, WNetHnumResource,
and WNetCloseEnum. The process is similar to enumerating files with FileFindFirst,
FileFindNext, and FileFindClose.

To start the process of numerating network resources, first call the function

DWORD WNetOpenEnum (DWORD dwScope, DWORD dwType, DWORD dwUsage,
LPNETRESOURCE lpNetResource,
LPHANDLE lphEnum);

The first parameter dwScope specifies the scope of the enumeration. It can be one of
the following flags:

• RE'SOURCE_CONNECTED Enumerate the connected resources.

• RESOURCE_REMEMBERED Enumerate the persistent network connections.

• RESOURCE_GLOBALNET Enumerate all resources on the network.

The first two flags, RESOURCE_CONNECTED and RESOURCE_REMEMBERED,
simply enumerate the resources already connected on your machine. The difference
is that RESOURCE_CONNECTED returns the network resources that are connected
at the time of the call, while RESOURCE_REMEMBERED returns those that are per
sistent regardless of whether they're currently connected. When using either of these
flags, the dwUsage parameter is ignored and the lpNetResource parameters must
be NULL.

The third flag, RESOURCE_GLOBALNET, allows you to enumerate resources
such as servers, shared drives, or printers out on the network-that aren't connected.
The dwType parameter specifies what you're attempting to enumerate-shared
disks (RESOURCETYPE_DISK), shared printers (RESOURCETYPE_PRINT), or both
(RESOURCETYPE_ANY).

You use the third and fourth parameters only if the dwScope parameter is set to
RESOURCE_GLOBALNET. The dwUsage parameter specifies the usage of the resource
and can be 0 to enumerate any resource, RESOURCEUSAGE_CONNECTABLE to
enumerate only connectable resources, or RESOURCEUSAGE_CONTAINER to enu
merate only containers such as servers.

If the dwScope parameter is set to RESOURCE_GLOBALNET, the fourth param
eter, lpNetResource must point to a NETRESOURCE structure; otherwise the parameter
must be NULL. The NETRESOURCE structure should be initialized to specify the starting
point on the network for the enumeration. The starting point is specified by a UNC
name in the lpRemoteName field of NETRESOURCE. The dwUsage field of the NET
RESOURCE structure must be set to RESOURCETYPE_CONTAINER. For example, to

585

Part Ill Communications

586

enumerate the shared resources on the server BIGSERV the lpRemoteName field would
point to the string \ \BIGSERV To enumerate all servers in a domain, the lpRemote
Name should simply specify the domain name. For the domain EntireNet, the
lpRemoteName field should point to the string EntireNet. Because Windows CE
doesn't allow you to pass a NULL into lpRemoteName when you use the RESOURCE_
GLOBALNET flag, you can't enumerate all resources in the network namespace
as you can under Windows 98 or Windows NT. This restriction exists because
Windows CE doesn't support the concept of a Windows CE device belonging to a
specific network context.

The final parameter of WNetOpenEnum, lphEnum, is a pointer to an enumera
tion handle that will be passed to the other functions in the enumeration process.
WNetOpenEnum returns a value of NO_ERROR if successful. If the function isn't suc
cessful, you can call GetlastError to query the extended error information.

Once you have successfully started the enumeration process, you actually query
data by calling this function:

DWORD WNetEnumResource (HANDLE hEnum, LPDWORD lpcCount,
LPVOID lpBuffer,
LPDWORD lpBufferSize);

The function takes the handle returned by WNetOpenEnum as its first parameter. The
second parameter is a pointer to a variable that should be initialized with the num
ber of resources you want to enumerate in each call to WNetEnumResource. You can
specify a -1 in this variable if you want WNetEnumResource to return the data for as
many resources as will fit in the return buffer specified by the lpBuffer parameter.
The final parameter is a pointer to a DWORD that should be initialized with the size
of the buffer pointed to by lpBuffer. If the buffer is too small to hold the data for even
one resource, WNetEnumResource sets this variable to the required size for the buffer.

The information about the shared resources returned by data is returned in the
form of an array of NETRESOURCE stmctures. While this is the same stmcture I de
scribed when I talked about the WNetAddConnection3 function, I'll list the elements
of the stmcture here again for convenience:

typedef struct _NETRESOURCE {
DWORD dwScope;
DWORD dwType;
DWORD dwDisplayType;
DWORD dwUsage;
LPTSTR lplocalName;
LPTSTR lpRemoteName;
LPTSTR lpComment;
LPTSTR lpProvider;

} NETRESOURCE;

Chapter 1 o Windows Networking and lrSock

The interesting fields in the context of enumeration start with the dwType field,
which indicates the type of resource that was enumerated. The value can be
RESOURCE1YPE_DISK or RESOURCE1YPE_PRINT. The dwDisplayType field provides
even more information about the resource, demarcating domains (RESOURCE
DISPLAYTYPE_DOMAIN) from servers (RESOURCEDISPLAYTYPE_SERVER) and
from shared disks and printers (RESOURCEDISPLAYTYPE_SHARE). A fourth flag,
RESOURCEDISPLAY1YPE_GENERIC, is returned if the display type doesn't matter.

The lpLocalName field points to a string containing the local name of the
resource if the resource is currently connected or is a persistent connection. The
lpRemoteName field points to the UNC name of the resource. The lpComment field
contains the comment line describing the resource that's provided by some servers.

WNetEnumResource either returns NO_ERROR, indicating the function passed
(but you need to call it again to enumerate more resources), or ERROR_NO_
MORE_ITEMS, indicating that you have enumerated all resources matching the speci
fication passed in WNetOpenEnum. With any other return code, you should call
GetlastError to further diagnose the problem.

You have few strategies when enumerating the network resources. You can
specify a huge buffer and pass a -1 in the variable pointed to by lpcCount, telling
WNetEnumResource to return as much information as possible in one shot. Or you
can specify a smaller buffer and ask for only one or two resources for each call to
WNetEnumResource. The one caveat on the small buffer approach is that the strings
that contain the local and remote names are also placed in the specified buffer. The
name pointers inside the NETRESOURCE structure then point to those strings. This
means that you can't specify the size of the buffer to be exactly the size of the
NETRESOURCE structure and expect to get any data back. A third possibility is to
call WNetEnumResource twice, the first time with the lpBuffer parameter 0, and have
Windows CE tell you the size necessary for the buffer. Then you allocate the buffer
and call WNetEnumResource again to actually query the data. However you use
WnetEnumResource, you'll need to check the return code to see whether it needs to
be called again to enumerate more resources.

When you have enumerated all the resources, you must make one final call to
the function:

DWORD WNetCloseEnum (HANDLE hEnum);

The only parameter to this function is the enumeration handle first returned by
WNetOpenEnum. This function cleans up the system resources used by the enumera
tion process.

Following is a short routine that uses the enumeration functions to query the
network for available resources. You pass to a function a UNC name to use as the
root of the search. The function returns a buffer of zero-delimited strings that desig
nate the local name, if any, and the UNC name of each shared resource found.

587

Part Ill Communications

588

II Helper routine
int AddTolist (LPTSTR *pPtr, INT *pnlistSize, LPTSTR pszStr) {

INT nlen = lstrlen (pszStr) + l;

}

if (*pnListSize < nlen) return -1:
lstrcpy (*pPtr, pszStr);
*pPtr += nlen:
*pnListSize -= nlen;
return 0;

11- -- - - -- --- - -- - - - - - - -- -- - - -- - - - - -- - - - - --- - -- - - - - ------ - - - - --- - - - - - - - -- -
II EnumNetDisks - Produces a list of shared disks on a network
II
int EnumNetDisks (LPTSTR pszRoot, LPTSTR pszNetlist, int nNetSize){

INT i = 0, re, nBuffSize = 1024;
DWORD dwCnt, dwSize;
HANDLE hEnum;
NETRESOURCE nr;
LPNETRESOURCE pnr:
PBYTE pPtr, pNew;

II Allocate buffer for enumeration data.
pPtr = (PBYTE) LocalAlloc (LPTR, nBuffSize);
if (!pPtr)

return -1;

II Initialize specification for search root.
memset (&nr, 0, sizeof (nr));
nr.lpRemoteName = pszRoot;
nr.dwUsage = RESOURCEUSAGE_CONTAINER;

II Start enumeration.
re = WNetOpenEnum (RESOURCE_GLOBALNET, RESOURCETYPE_DISK, 0, &nr,

&hEnum);
if (re != NO_ERROR)

return -1;

II Enumerate one item per loop.
do

dwCnt = 1;
dwSize = nBuffSize;
re= WNetEnumResource (hEnum, &dwCnt, pPtr, &dwSize);

II Process returned data.
if (re == NO_ERROR) {

pnr = (NETRESOURCE *)pPtr;
if Cpnr->lpRemoteName)

re = AddTolist (&pszNetlist, &nNetSize,
pnr->lpRemoteName);

Chapter 10 Windows Networking and lrSock

}

II If our buffer was too small, try again.
} else if (re== ERROR_MORE_DATA) {

}

pNew = LocalReAlloc (pPtr, dwSize, LMEM_MOVEABLE);
if (pNew) {

pPtr = pNew;
nBuffSize = LocalSize (pPtr);
re = 0;

while (re 0);

II If the loop was successful, add extra zero to list.
if (re == ERROR_NO_MORE_ITEMS) {

}

re AddTolist (&pszNetlist, &nNetSize, TEXT (""));
re = 0;

II Clean up.
WNetCloseEnum (hEnuml;
LoealFree (pPtrl;
return re;

While the enumeration functions work well to query what's available on the
net, you can use another strategy for determining the current connected resources.
At the simplest level, you can use FileFindFirst and FileFindNext to enumerate the
locally connected network disks by searching the folders in the \network directory.
Once you have the local name, a few functions are available to you for querying just
what that local name is connected to.

Querying connections and resources
The folders in the \network directory represent the local names of network shared
disks that are persistently connected to network resources. To determine which of
the folders are currently connected, you can use the function

DWORD WNetGetConnection (LPCTSTR lplocalName,
LPTSTR lpRemoteName,
LPDWORD lpnlength);

WNetGetConnection returns the UNC name of the network resource associated with
a local device or folder. The lpLocalName parameter is filled with the local name of
a shared folder or printer. The lpRemoteName parameter should point to a buffer that
can receive the UNC name for the device. The lpnLength parameter points to a DWORD
value that initially contains the length in characters of the remote name buffer. If the
buffer is too small to receive the name, the length value is loaded with the number of
characters required to hold the UNC name.

589

Part Ill Communications

590

One feature (or problem, depending on how you look at it) of WNetGet
Connection is that it fails unless the local folder or device has a current connection to
the remote shared device. This allows us an easy way to determine which local fold
ers are currently connected and which are just placeholders for persistent connec
tions that aren't currently connected.

Sometimes you need to transfer a filename from one system to another and you
need a common format for the filename that would be understood by both systems.
The WNetGetUniversalName function translates a filename that contains a local net
work name into one using the UNC name of the connected resource. The prototype
for WNetGetUniversalName is the following:

DWORD WNetGetUniversalName (LPCTSTR lplocalPath, DWORD dwlnfolevel,
LPVOID lpBuffer, LPDWORD lpBufferSize);

Like WNetGetConnection, this function returns a UNC name for a local name. There
are two main differences between WNetGetConnection and WNetGetUniversalName.
First, WNetGetUniversalName works even if the remote resource isn't currently con
nected. Second, you can pass a complete filename to WNetGetUniversalName instead
of simply the local name of the shared resource, which is all that is accepted by
WNetGetConnection.

WNetGetUniversalName returns the remote information in two different formats.
If the dwlnfoLevel parameter is set to UNIVERSAL_NAME_INFO_LEVEL, the buffer
pointed to by lpBu.ffer is loaded with the following structure:

typedef struct _UNIVERSAL_NAME_INFO {
LPTSTR lpUniversalName:

} UNIVERSAL_NAME_INFO;

The only field in the structure is a pointer to the UNC name for the shared resource.
The string is returned in the buffer immediately following the structure. So, if a
server \ \BigServ\DriveC was attached as LocC and you pass WnetGetUniversalName
the filename \network\LocC\ win32\filename.ext, it returns the UNC name \\BigSero\
DriveC\win32\filename.ext.

If the dwlnfoLevel parameter is set to REMOTE_NAME_INFO_LEVEL, the buffer
is filled with the following structure:

typedef struct _REMOTE_NAME_INFO
LPTSTR lpUniversalName;
LPTSTR lpConnectionName;
LPTSTR lpRemainingPath;

} REMOTE_NAME_INFO;

This structure returns not just the UNC name, but also parses the UNC name into the
share name and the remaining path. So, using the same filename as in the previous

Chapter JO Windows Networking and lrSock

example, \ network\ LocC\ win32\ filename.ext , the REMOTE_ AME_I FO fields
would point to the following strings:

lpUniveralName: \ \ BigServ\DriveC\win32Vilename.ext
lpConnectionName: \ \ BigServ\ DriveC
lpRemainingPatb: \ win32\filename.ext

One more thing: you don't have to prefix the local hare name with \ network.
In the preceding example, the filename \ LocC\ Win32\ filename .ext would have pro
duced the same results.

One final WNet function upported by Window CE i

DWORD WnetGetUser (LPCTSTR lpName, LPTSTR lpUserName ,
LPDWORD lpnlengthl;

Thi function return the name the sy tern u ed to connect to the remote resource.
WnetGetUser is pa ed the local name of the shared resource and returns the user
name the system used when connecting to the remote re ource in the buffer pointed
to by lpUserName. The lpnLengb parameter hould point to a variable that contains
the size of the buffer. If the buffer isn't big enough to contain the user name, the variable
pointed to by lpnLengtb is filled with the required size for the buffer.

The ListNet Example Program

Lis et is a short program that lists the per istent network connections on a Windows CE
machine. The program' window is a dialog box with three control : a Ii t box that
displays the network connections, a Connect button that lets you add a new persis
tent connection, and a Disconnect button that lets you delete one of the connections.
Double-clicking on a connection in the Li t box opens an Explorer window to di -
play the contents of that network resource. Figure 10-1 shows the ListNet window
while Figure 10-2 on the next page shows the ListNet ource code.

Figure 10-1 . The ListNet window containing a few network/alders.

591

Part Ill Communications

LlstNet.rc

II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include "windows.h"
#include "ListNet.h" II Program-specific stuff

11---------------- ---- ----------- -- ----- ---- ------- ---------------------
11 Icons and bitmaps
II
ID_ICON ICON "ListNet.ico" II Program icon

11 -------------------- --- ---
11 Main window dialog template
II
ListNet DIALOG discardable 10, 10, 120, 65
STYLE WS_OVERLAPPED I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I

DS_CENTER I DS_MODALFRAME
CAPTION "ListNet"
BEGIN

LISTBOX IDD_NETLIST, 2, 2, 116, 46,
WS_TABSTOP I WS_VSCROLL I
LBS_NOINTEGRALHEIGHT I LBS_USETABSTOPS

PUSHBUTTON "&Connect ... ", IDD_CNCT, 2, 50, 55, 12, WS_TABSTOP
PUSHBUTTON "&Disconnect ... ",

IDD_DCNCT. 61, 50, 55, 12, WS_TABSTOP
END

ListNet.h

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
II Returns number of elements
#define dim(x) Csizeof(x) I sizeof(x[0]))

11- - - - - - - - - - - -- -- -- - - - - - - -- - - - - - - - - - - - - - -- - - - - - -- - ---- - - - - - - --------- ---
11 Generic defines and data types

Figure 10-2. Tbe ListNet source.

592

Chapter 1 o Windows Networking and lrSock

II
struct decodeUINT

UINT Code;
II Structure associates
II messages
II with a function.

LRESULT (• Fxn)(HWND, UINT, WPARAM, LPARAM);
} ;

struct decodeCMD (
UINT Code;

II Structure associates
II menu IDs with a

LRESULT (• Fxn)(HWND, WORD, HWND, WORD); II function.
} ;

11- -- - - - -- - - -- -- - --- - -- - ----- - -- - -- - - --- --- -- - --- - --- - ---- - -- - - ----- -- --
II Generic defines used by application

/tdefi ne ID_ICON 1

/tdefi ne IDD_NETLIST 100 II Control IDs
#define IDD_CNCT 101
/tdefi ne IDD_DCNCT 102

11 --------------- - -- - - - ------------ -- - - --- - - -- --- - --- -------- -----------
11 Function prototypes
II
int InitApp (HINSTANCE);
HWND Initinstance (HINSTANCE, LPWSTR, int);
int Terminstance (HINSTANCE, int);
INT RefreshLocalNetDrives (HWND hWnd);

II Dialog window procedure
BOOL CALLBACK MainWndProc (HWND, UINT, WPARAM. LPARAM) ;

II Dialog window Message handlers
BOOL DoCommandMain (HWND, UINT , WPARAM, LPARAM);

II Command functions
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandViewDrive (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandMapDrive (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandFreeDrive (HWND, WORD, HWND, WORD);

LlstNet.c

II==
II ListNet - A network demo application for Windows CE
II
II Written for the book Programming Windows CE

(continued)

593

Part Ill Communications

Figure 10-2. continued

II Copyright CC) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include <winnetwk.h> II Network includes
#include "ListNet.h" II Program-specific stuff

11---- :-------------------------------- ---------- ------------ -----------
11 Global data
II
const TCHAR szAppName[]
HINSTANCE hlnst;

TEXT C"ListNet");
II Program instance handle

BOOL fFirst =TRUE;

II Command Message dispatch for MainWindowProc
const struct decodeCMD MainCommandltems[] = {

!DOK, DoMainCommandExit,

} ;

IDCANCEL, DoMainCommandExit,
IDD_NETLIST, DoMainCommandViewDrive,
IDD_CNCT, DoMainCommandMapDrive,
IDD_DCNCT, DoMainCommandFreeDrive,

II==
II
II Program entry point
II
int WINAPI WinMain CHINSTANCE hlnstance, HINSTANCE hPrevlnstance,

LPWSTR lpCmdLine, int nCmdShow) (
II Save program instance handle in global variable.
hlnst = hlnstance;

II Create main window.
DialogBox Chlnst, szAppName, NULL, MainWndProc);
return 0;

II==
II Message handling procedures for main window
11----------------- ---------- ---
11 MainWndProc - Callback function for application window
II
BOOL CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,

594

LPARAM l Pa ram) (
INT i;
II With only two messages, do it the old-fashioned way.
switch CwMsg) {
case WM_INITDIALOG:

i = 75;

Chapter JO Windows Networking and lrSock

}

SendDlgltemMessage (hWnd, IDD_NETLIST, LB_SETTABSTOPS, 1,
CLPARAM)&i);

RefreshLocalNetDrives ChWnd);
break;

case WM_COMMAND:
return DoCommandMain ChWnd, wMsg, wParam. lParam);

return FALSE:

11 --
11 DoCommandMain - Process WM_COMMAND message for window.
II
BOOL DoCommandMain CHWND hWnd, UINT wMsg, WPARAM wParam. LPARAM lParam)(

WORD idltem. wNotifyCode;

}

HWND hwndCtl:
INT i;

II Parse the parameters.
idltem = (WORD) LOWORD CwParam):
wNotifyCode = CWORDl HIWORD (wParam);
hwndCtl = CHWNDl lParam:

II Call routine to handle control message.
for Ci = 0: i < dimCMainCommanditems); i++)

if (idltem == MainCommanditems[iJ.Codel
C•MainCommanditems[iJ.Fxn)(hWnd, idltem, hwndCtl,

wNot i fyCode) :
return TRUE:

return FALSE;

II==
II Command handler routines
11 --
11 DoMainCommandEx1t - Process Program Exit command
II
LPARAM DoMainCommandExit CHWND hWnd, WORD idltem, HWND hwndCtl.

}

EndDialog ChWnd, 0);
return 0:

WORD wNotifyCode) (

11-- --
11 DoMainCommandViewDrive - Process list box double clicks
II

(continued)

595

Part Ill Communications

Figure 10·2. continued

LPARAM DoMainCommandViewDrive CHWND hWnd, WORD idltem, HWND hwndCtl,

}

WORD wNotifyCode) {
TCHAR szCmdLine[l28], szFolder[MAX_PATH];
PROCESS_INFORMATION pi;
HCURSOR hOld;
I NT i , re;

II We're only interested in list box double -clicks.
if (wNotifyCode != LBN_DBLCLK)

return 0:

i = SendMessage (hwndCtl, LB_GETCURSEL, 0, 0);
if Ci == LB_ERR) return 0;
i = SendMessage ChwndCtl, LB_GETTEXT, i, (LPARAM)szFolder);

hOld = SetCursor (LoadCursor (NULL, IDC_WAIT));
lstrcpy (szCmdLine, TEXT ("\\network\\"));
lstrcat CszCmdLine, szFolder):

re= CreateProcess (TEXT ("Explorer"), szCmdLine, NULL, NULL,
FALSE, 0, NULL, NULL, NULL, &pi);

if (re) {

}

CloseHandle Cpi.hProcess);
CloseHandle Cpi.hThread);

SetCursor ChOld);
return TRUE;

11 --
11 DoMainCommandMapDrive - Process map network drive command.
II
LPARAM DoMainCommandMapDrive CHWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

596

DWORD re;
CONNECTDLGSTRUCT eds;
NETRESOURCE nr;
TCHAR szRmt[256];

memset C&nr, 0, sizeof Cnr));
nr.dwType = RESOURCETYPE_DISK;
memset (szRmt, 0, sizeof (szRmt));

cds.cbStructure = sizeof (eds);
cds.hwndOwner = hWnd;
cds.lpConnRes = &nr;
cds.dwFlags = CONNDLG_PERSIST;

Chapter JO Windows Networking and lrSock

}

II Display dialog box.
re= WNetConnectionDialogl C&cds):

if Crc == NO_ERROR)
RefreshlocalNetDrives ChWnd):

return 0:

11 --------------------------- -- ---
11 DoMainCommandFreeDrive - Process disconnect network drive command.
II
LPARAM DoMainCommandFreeDrive CHWND hWnd, WORD idltem, HWND hwndCtl,

}

WORD wNotifyCode) {
WNetDisconnectDialog (hWnd, RESOURCETYPE_DISK);
RefreshlocalNetDrives ChWndl:
return 0:

II==
II Network browsing functions
11--- ---
11 EnumeratelocalNetDrives - Add an item to the list view control.
II
INT RefreshlocalNetDrives CHWND hWnd) {

HWND hwndCtl = GetDlgltem ChWnd, IDD_NETLIST);
INT re, nBuffSize = 1024:
DWORD dwCnt, dwSize;
HANDLE hEnum;
LPNETRESOURCE pnr:
NETRESOURCE nr:
PBYTE pPtr, pNew;
TCHAR szText[256];

SendMessage ChwndCtl, LB_RESETCONTENT, 0, 0);

II Allocate buffer for enumeration data.
pPtr = CPBYTE) LocalAlloc CLPTR, nBuffSize);
if C !pPtr)

return -1:

II Initialize specification for search root.
memset C&nr, 0, sizeof Cnrl);
lstrcpy CszText. TEXT ("\\sjdev"));
nr.lpRemoteName = szText:
nr.dwUsage = RESOURCEUSAGE_CONTAINER:

II Start enumeration.
re = WNetOpenEnum CRESOURCE_REMEMBERED, RESOURCETYPE_ANY. 0. 0,

&hEnum):

(continued)

597

Part Ill Communications

Figure 10-2. continued

598

if Crc I= NO_ERROR) return -1:

II Enumerate one item per loop.
do {

dwCnt = l;
dwSize = nBuffSize:
re= WNetEnumResource ChEnum. &dwCnt, pPtr. &dwSize);
pnr = CNETRESOURCE •)pPtr:
lstrcpy CszText. pnr ->lplocalName):
II Process returned data.
if (re == NO_ERROR) (

switch Cpnr ->dwType) (
case RESOURCETYPE__ANY:

lstrcat CszText, TEXT C"\t Share"));
break:

case RESOURCETYPE_PRINT:
lstrcat CszText, TEXT ("\t Printer"));
break:

case RESOURCETYPE_OISK:
ls t rcat CszText. TEXT ("\t Disk"));
break:

SendHessage ChwndCtl. LB__AOOSTRING, 0. CLPARAHlszText):

II If our buffer was too small, try again.
} else if Crc == ERROR_HORE_OATAl {

}

pNew = LocalReAlloc CpPtr. dwSize, LHEH_HOVEABLE);
if CpNew) {

pPtr = pNew:
nBuffSize = LocalSize CpPtr):
re = 0:

else
break;

while ere == 0);
II Clean up.
WNetCloseEnum ChEnum);
LocalFree (pPtr);
return 0;

The heart of the networking code is at the end of ListNet, in the routine
RefresbLoca/NetDrives. This routine uses the WNet enumerate functions to determine
the persistent network resources mapped to the system. etwork connections
and disconnections are accomplished with calls to WNetConnectionDialogl and

Chapter 1 o Windows Networking and lrSock

WnetDisconnectDialog respectively. You open an Explorer window containing the
shared network disk by launching EXPLORER.EXE with a command line that's the
path of the folder to open.

BASIC SOCKETS
WinSock is the name for the Windows socket APL WinSock is the API for Windows CE
TCP/IP networking stack as well as the IrDA infrared communication stack. Win
dows CE implements a subset of WinSock version 1.1. What's left out of the
Windows CE implementation ofWinSock is the ever-so-handy WSAAsyncSelect func
tion that enables (under other Windows systems) an application to be informed when
a WinSock event occurred. Actually, most of the WSAxxx calls that provide asynchro
nous actions are missing from Windows CE. Instead, the Windows CE implementa
tion is more like the original "Berkeley" socket APL Windows CE's developers decided
not to support these functions to reduce the size of the WinSock implementation. These
functions were handy, but not required because Windows CE is multithreaded.

The lack of asynchronous functions doesn't mean that you're left with calling
socket functions that block on every call. You can put a socket in nonblocking mode
so that any function that can't accomplish its task without waiting on an event will
return with a return code indicating that the task isn't yet completed.

Windows CE has extended WinSock in one area. As I mentioned in Chapter 9,
WinSock is also the primary interface for IrDA communication. To do this, Windows
CE extends the socket addressing scheme, actually providing an entirely different
addressing mode designed for the transitory nature of IrDA communication.

In this section, I'm not going to dive into a complete explanation of socket-based
communication. Instead, I'll present an introduction that will get you started com
municating with sockets. In addition, I'll spend time with the IrSock side because this
interface is so significant for Windows CE devices.

Initializing the WinSock DLL

Like other versions of WinSock, the Windows CE version should be initialized before
you use it. You accomplish this by calling WSAStartup, which initializes the WinSock
DLL. It's prototyped as

int WSAStartup (WORD wVersionRequested, LPWSADATA lpWSAData);

The first parameter is the version of WinSock you're requesting to open. For all cur
rent versions of Windows CE, you must indicate version 1.1. An easy way to do this
is to use the MAKEWORD macro as in MAKEWORD (1,1). The second parameter must
point to a WSAData structure, shown in the code on the next page.

599

Part Ill Communications

600

struct WSAData {

} ;

WORD wVersion;
WORD wHighVersion;
char szDescription[WSADESCRIPTION_LEN+l];
char szSystemStatus[WSASYSSTATUS_LEN+l];
unsigned short iMaxSockets;
unsigned short iMaxUdpDg;
char FAR * lpVendorinfo;

This structure is filled in by WSAStartup, providing information about the specific
implementation of this version of WinSock. Currently, the first two fields return OxO 101,

indicating support for version 1.1. The szDescription and szSystemStatus fields can
be used by WinSock to return information about itself. In the current Windows CE
version of WinSock, these fields aren't used. The iMaxSockets parameter suggests a
maximum number of sockets that an application should be able to open. This num
ber isn't a hard maximum but more a suggested maximum. Finally, the iMaxUdpDg
field indicates the maximum size of a datagram packet. A 0 indicates no maximum
size for this version of WinSock.

WSAStartup returns 0 if successful; otherwise the return value is the error code
for the function. Don't call WSAGetlastError in this situation because the failure of
this function indicates that WinSock, which provides WSAGetlastError, wasn't initial
ized correctly.

Windows CE also supports WSACleanup, which is traditionally called when an
application has finished using the WinSock DLL. For Windows CE, this function per
forms no action but is provided for compatibility. Its prototype is

int WSACleanup ();

ASCII vs. Unicode
One issue that you'll have to be careful of is that almost all the string fields used in
the socket structures are char fields, not Unicode. Because of this, you'll find your
self using the functions

int WideCharToMultiByte(UINT CodePage, DWORD dwFlags,
LPCWSTR lpWideCharStr, int cchWideChar,
LPSTR lpMultiByteStr, int cchMultiByte,
LPCSTR lpDefaultChar, LPBOOL lpUsedDefaultChar):

to convert Unicode strings into multibyte strings and

int MultiByteToWideChar (UINT CodePage, DWORD dwFlags,
LPCSTR lpMultiByteStr, int cchMultiByte,
LPWSTR lpWideCharStr, int cchWideChar);

to convert multibyte characters into Unicode. The functions refer to multibyte
characters instead of ASCII because on double-byte coded systems, they convert
double-byte characters into Unicode.

Chapter 1 o Windows Networking and lrSock

Stream Sockets
Like all socket implementations, WinSock under Windows CE supports both stream
and datagram connections. In a stream connection, a socket is basically a data pipe.
Once two points are connected, data is sent back and forth without the need for
additional addressing. In a datagram connection, the socket is more like a mailslot,
with discrete packets of data being sent to specific addresses. In describing the
WinSock functions, I'm going to cover the process of a creating a stream connec
tion (sometimes called a connection-oriented connection) between a client and
server application. I'll leave explanation of the datagram connection to other, more
network-specific books.

The life of a stream socket is fairly straightforward: it's created, bound, or con
nected to an address; read from or written to; and finally closed. A few extra steps
along the way, however, complicate the story slightly. Sockets work in a client/server
model. A client initiates a conversation with a known server. The server, on the other
hand, waits around until a client requests data. When setting up a socket, you have
to approach the process from either the client side or the server side. This decision
determines which functions you call to configure a socket. Figure 10-3 illustrates the
process from both the client and the server side. For each step in the process, the
corresponding WinSock function is shown.

Server Function Client Function

Create socket socket Create socket socket

Bind socket to an address bind Find desired server (many functions)

Listen for client connections listen Connect to server connect

Accept client's connection accept

Receive data from client recv Send data to server send

Send data to client send Receive data from server recv

Figure 10-3. The process for producing a connection-oriented socket connection.

Both the client and the server must first create a socket. After that, the process
diverges. The server must attach, or to use the function name, bind, the socket to an
address so that another computer or even a local process, can connect to the socket.
Once an address has been bound, the server configures the socket to listen for a
connection from a client. The server then waits to accept a connection from a client.
Finally, after all this, the server is ready to converse.

The client's job is simpler: the client creates the socket, connects the socket to
a remote address, and then sends and receives data. This procedure, of course,
ignores the sometimes not-so-simple process of determining the address to connect
to. I'll leave that problem for a few moments while I talk about the functions behind
this process.

601

Part Ill Communications

602

Creating a socket
You create a socket with the function

SOCKET socket (int af, int type, int protocol);

The first parameter, af, specifies the addressing family for the socket. Windows CE
supports two addressing formats; AF _INET and AF _IRDA. You use the AF _IRDA con
stant when you're creating a socket for IrDA use, and you use AF _INET for TCP/IP
communication. The type parameter specifies the type of socket being created. For a
TCP /IP socket, this can be either SOCK_ STREAM for a stream socket or SOCK_DGRAM
for a datagram socket. For IrDA sockets, the type parameter must be SOCK_STREAM.
Windows CE doesn't currently expose a method to create a raw socket, which is a
socket that allows you to interact with the IP layer of the TCP/IP protocol. Among
other uses, raw sockets are used to send an echo request to other servers, in the pro
cess known as pinging. However, Windows CE does provide a method of sending
an ICMP echo request. I'll talk about that shortly.

The protocol parameter specifies the protocol used by the address family speci
fied by the af parameter. The function returns a handle to the newly created socket.
If an error occurs, the socket returns INVALID_SOCKET. You can call WSAGetLastError
to query the extended error code.

Server side: binding a socket to an address
For the server, the next step is to bind the socket to an address. You accomplish this
with the function

int bind (SOCKET s, const struct sockaddr FAR *addr, int namelen);

The first parameter is the handle to the newly created socket. The second parameter
is dependent on whether you're dealing with a TCP/IP socket or an IrDa socket. For
a standard TCP/IP socket, the structure pointed to by addrshould be SOCKADDR_IN,
which is defined as

struct sockaddr_in {

} :

short sin_family;
unsigned short sin_port;
IN_ADDR sin_addr;
char sin_zero[8];

The first field, sinJamily must be set to AF _INET. The second field is the IP port while
the third field specifies the IP address. The last field is simply padding to fit the stan
dard SOCKADDR structure. The last parameter of bind, name/en, should be set to
the size of the SOCKADDR_IN structure.

When you're using IrSock, the address structure pointed to by sockaddr is
SOCKADDR_IRDA, which is defined as

struct sockaddr_irda {

} ;

u_short irdaAddressFamily;
u_char irdaDeviceID[4];
char irdaServiceName[25];

Chapter 1 a Windows Networking and lrSock

The first field, irdaAddressFamily, should be set to AF _IRDA to identify the struc
ture. The second field, irdaDevicelD, is a 4-byte array that defines the address for
this IR socket. This can be set to 0 for an IrSock server. The last field should be set to
a string to identify the server.

You can also use a special, predefined name in the irdaServiceName field to
bypass the IrDA address resolution features. If you specify the name LSAP-SEI.xxx
where xxx is a value from 001through127, the socket will be bound directly to the
LSAP (Logical Service Assess Point) selector defined by the value. Applications should
not, unless absolutely required, bind directly to a specific LSAP selector. Instead, by
specifying a generic string, the IrDA Address resolution code determines a free LSAP
selector and uses it.

Listening for a connection
Once a socket has been bound to an address, the server places the socket in listen
mode so that it will accept incoming communication attempts. You place the socket
in listen mode by using the aptly named function

int listen (SOCKET s, int backlog);

The two parameters are the handle to the socket and the size of the queue that you're
creating to hold the pending connection attempts. This value can be set to SOMAX
CONN to set the queue to the maximum supported by the socket implementation.
For Windows CE, the only supported queue sizes are 1 and 2. Values outside this range
are rounded to the closest valid value.

Accepting a connection
When a server is ready to accept a connection to a socket in listen mode, it calls this
function:

SOCKET accept (SOCKET s. struct sockaddr FAR *addr.
int FAR *addrlen):

The first parameter is the socket that has already been placed in listen mode. The
next parameter should point to a buffer that receives the address of the client socket
that has initiated a connection. The format of this address is dependent on the proto
col used by the socket. For Windows CE, this is either a SOCKADDR_IN or a SOCK
ADDR_IRDA structure. The final parameter is a pointer to a variable that contains the
size of the buffer. This variable is updated with the size of the structure returned in
the address buffer when the function returns.

603

Part Ill Communications

604

The accept function returns the handle to a new socket that's used to commu
nicate with the client. The socket that was originally created by the call to socket will
remain in listen mode, and can potentially accept other connections. If accept de
tects an error, it returns INVALID_SOCKET. In this case, you can call WSAGetlastError
to get the error code.

The accept function is the first function I've talked about so far that blocks. That
is, it won't return until a remote client requests a connection. You can set the socket
in nonblocking mode so that, if no request for connection is queued, accept will re
turn INVALID_SOCKET with an extended error code of WSAEWOULDBLOCK. I'll talk
about blocking vs. nonblocking sockets shortly.

Client side: connecting a socket to a server
On the client side, things are different. Instead of calling the bind and accept func
tions, the client simply connects to a known server. I said simply, but as with most
things, we must note a few complications. The primary one is addressing-knowing
the address of the server you want to connect to. I'll put that topic aside for a mo
ment and assume the client knows the address of the server.

To connect a newly created socket to a server, the client uses the function

int connect (SOCKET s, const struct sockaddr FAR *name,
int namelen);

The first parameter is the socket handle that the client created with a call to socket.
The other two parameters are the address and address length values we've seen in
the bind and accept functions. Here again, Windows CE supports two addressing
formats: SOCKADDR_IN for TCP/IP-based communication and SOCKADDR_IRDA
for IrDA communication.

If connect is successful, it returns 0. Otherwise it returns SOCKET_ERROR, and
you should call WSAGetlastError to get the reason for the failure.

Sending and receiving data
At this point, both the server and client have socket handles they can use to commu
nicate with one another. The client uses the socket originally created with the call to
socket, while the server uses the socket handle returned by the accept function.

All that remains is data transfer. You write data to a socket this way:

int send (SOCKET s, const char FAR *buf, int len, int flags);

The first parameter is the socket handle to send the data. You specify the data you
want to send in the buffer pointed to by the buf parameter while the length of that
data is specified in !en. The flags parameter must be 0.

You receive data by using the function

int recv (SOCKET s, char FAR *buf, int len, int flags);

Chapter 10 Windows Networking and lrSock

The first parameter is the socket handle. The second parameter points to the buffer
that receives the data, while the third parameter should be set to the size of the buffer.
The flags parameter can be 0, or it can be MSG_PEEK if you want to have the current
data copied into the receive buffer but not removed from the input queue or if this is
a TCP/IP socket (MSG_OOB) for receiving any out-of-band data that has been sent.

Two other functions can send and receive data; they are the following:

int sendto (SOCKET s. canst char FAR *buf, int len. int flags,
canst struct sockaddr FAR *to, int token);

and

int recvfrom (SOCKET s, char FAR *buf, int len, int flags,
struct sockaddr FAR *from. int FAR *fromlen);

These functions enable you to direct individual packets of data using the address
parameters provided in the functions. They're used for connectionless sockets, but I
mention them now for completeness. When used with connection-oriented sockets
such as those I've just described, the addresses in sendto and recvfrom are ignored
and the functions act like their simpler counterparts, send and recv.

Closing a socket
When you have finished using the sockets, call this function:

int shutdown (SOCKET s, int how);

The shutdown function takes the handle to the socket and a flag indicating what part
of the connection you wish to shut down. The how parameter can be SD_RECEIVE
to prevent any further recv calls from being processed, SD _SEND to prevent any fur
ther send calls from being processed, or SD _BOTH to prevent either send or recv calls
from being processed. The shutdown function affects the higher level functions send
and recv but doesn't prevent data previously queued from being processed. Once
you have shut down a socket, it can't be used again. It should be closed and a new
socket created to restart a session.

Once a connection has been shut down, you should close the socket with a
call to this function:

int closesocket (SOCKET s);

The action of closesocket depends on how the socket is configured. If you've prop
erly shut down the socket with a call to shutdown, no more events will be pending
and closesocket should return without blocking. If the socket has been configured
into "linger" mode and configured with a timeout value, closesocket will block until
any data in the send queue has been sent or the timeout expires.

605

Part Ill

lrSock

606

I've alluded to IrSock a number of times as I've described functions. IrSock is essen
tially a socketlike API built over the top of the IrDA stack used for infrared commu
nication. lrSock is the only high-level interface to the IrDA stack. Even the IrComm
virtual comm port described in Chapter 9 uses the IrSock API underneath the covers.

The major differences between IrSock and WinSock are that IrSock doesn't
support datagrams, it doesn't support security, and the method used for addressing it
is completely different from that used for WinSock. What IrSock does provide is a
method to query the devices ready to talk across the infrared port, as well as arbitra
tion and collision detection and control.

From a programmer's perspective, the main difference in programming IrSock
and WinSock is that the client side needs a method of detecting what infrared ca
pable devices are within range and are ready to accept a socket connection. This is
accomplished by calling getsockopt with the level parameter set to SOL_IRLMP and
the optname parameter set to IRLMP _ENUMDEVICES, as in the following:

dwBuffSize = sizeof (buffer);
re = getsockopt (hlrSock, SOL_IRLMP, IRLMP_ENUMDEVICES,

buffer, &dwBuffSize);

When called with IRLMP _ENUMDEVICES, getsockopt returns a DEVICELIST structure
in the buffer. DEVICELIST is defined as

typedef struct _DEVICELIST {
ULONG numDevice;
IRDA_DEVICE_INFO Device[l];

} DEVICELIST;

The DEVICELIST structure is simply a count followed by an array of IRDA_DE
VICE_INFO structures, one for each device found. The IRDA_DEVICE_INFO struc
ture is defined as

typedef struct _IRDA_DEVICE_INFO
u_char irdaDeviceID[4J;
char irdaDeviceName[22J;
u_char Reserved[2];

} IRDA_DEVICE_INFO;

The two fields in the IRDA_DEVICE_INFO structure are a device ID and a string that
can be used to identify the remote device.

Following is a routine that opens an IR socket and uses getsockopt to query the
remote devices that are in range. If any devices are found, their names and IDs are
printed to the debug port.

Chapter 10 Windows Networking and lrSock

II
II Poll for IR devices.
II
DWORD WINAPI IrPol l (HWND hWnd) {

INT re, nSize. i, j;
char cDevice[256];
TCHAR szName[32J, sz0ut[256J;
DEVICELIST *PDL;
SOCKET irsock;

II Open an infrared socket.
irsock =socket CAF_IRDA, SOCK_STREAM, 0);
if (irsock == INVALID_SOCKET)

return -1;

II Search for someone to talk to, try 10 times over 5 seconds.
for (i = 0; < 10; i++) {

II Call getsockopt to query devices.
memset (cDevice, 0, sizeof (cDevice));
nSize = sizeof (cDevice);
re= getsockopt (irsock, SOL_IRLMP, IRLMP_ENUMDEVICES,

cDevice, &nSize);
if (re)

break;

pDL = (DEVICELIST *) cDevice;
if (pDL->numDevice) {

Add2List ChWnd, TEXT ("%d devices found."), pDL->numDevice);

for (j = 0; j < (int)pDL->numDevice; j++) {
II Convert device ID.

}

wsprintf (szOut,
TEXT ("DeviceID \t%02X.%02X.%02X.%02X"),
pDL->Device[jJ.irdaDeviceID[0J,
pDL->Device[j].irdaDe1viceID[lJ,
pDL->Device[j].irdaDeviceID[2],
pDL->Device[jJ.irdaDeviceID[3J);

OutputDebugString (szOut);

II Convert device name to Unicode.
mbstowcs (szName, pDL->Device[j].irdaDeviceName,

sizeof (pDL->Device[j].irdaDeviceName));

wsprintf (szOut, TEXT ("irdaDeviceName \t%s"),
szName);

OutputDebugString (szOut);

(continued)

607

Part Ill

608

}

}

Sleep(500);

closesocket (irsock);
return 0;

Just having a device with an IR port in range isn't enough; the remote device
must have an application running that has opened an IR socket, bound it, and placed
it into listen mode. This requirement is appropriate because these are the steps
any server using the socket API would perform to configure a socket to accept
communication.

Querying and setting IR socket options
IrSock supports the getsockopt and setsockopt functions for getting and setting the
socket options, but the options supported have little overlap with the socket options
supported for a standard TCP/IP socket. To query socket options, use this function:

int getsockopt (SOCKET s. int level, int optname,
char FAR *Optval, int FAR *Optlen);

The first parameter is the handle to the socket while the second parameter is the level
in the communications stack for the specific option. The level can be at the socket
level SO_SOCKET or a level unique to IrSock, SOL_IRLMP. The options supported
for IrSock are shown in the lists below.

For the SOL_SOCKET level, your option is

• SO_LINGER It queries the linger mode.

For the SOL_IRLMP level, your options are

• IRLMP _ENUMDEVICES which enumerate remote IrDA devices

• IRIMP_IAS_QUERY which queries IAS attributes

• IRIMP_SEND_PDU_LEN which queries the maximum size of send packet
for IrLPT mode.

The corresponding function with which to set the options is

int setsockopt (SOCKET s, int level, int optname,
con st char FAR *Opt val, int optl en);

The parameters are similar to getsockopt. The allowable options are shown below.
For the SOL_SOCKET level, your option is

• SO _LINGER which delays the close of a socket if unsent data remains in
the outgoing queue

Chapter 10 Windows Networking and lrSock

For the SOL_IRLMP level, your options are

• IRIMP _IAS_SET which sets IAS attributes

• IRIMP_IRLPT_MODE which sets the lrDA protocol to IrLPT

• IRLMP _5)WIRE_MODE which sets the lrDA protocol to 9-wire serial mode

• IRIMP_SHARP_MODE which sets the IrDA protocol to Sharp mode

Blocking vs. nonblocking sockets
One issue I briefly touched on as I was introducing sockets is blocking. Windows
programmers are used to the quite handy asynchronous socket calls that are an ex
tension of the standard Berkeley socket APL By default, a socket is in blocking mode
so that, for example, if you call recv to read data from a socket and no data
is available, the call blocks until some data can be read. This isn't the type of call
you want to be making with a thread that's servicing the message loop for your
application.

Although Windows CE doesn't support the WSAAsync calls available to desk
top versions of Windows, you can switch a socket from its default blocking mode to
nonblocking mode. In nonblocking mode, any socket call that might need to wait
to successfully perform its function instead returns immediately with an error code
of WSAEWOULDBLOCK. You are then responsible for calling the would-have-blocked
function again at a later time to complete the task.

To set a socket into blocking mode, use this function:

int ioctlsocket (SOCKET s, long cmd, u_long *argp);

The parameters are the socket handle, a command, and a pointer to a variable that
either contains data or receives data depending on the value in cmd. The allowable
commands for Windows CE IrSock sockets are the following:

• FIONBIO Set or clear a socket's blocking mode. If the value pointed to
by argp is nonzero, the socket is placed in blocking mode. If the value is
zero, the socket is placed in nonblocking mode.

• .HONREAD Returns the number of bytes that can be read from the socket
with one call to the recv function.

So to set a socket in blocking mode, you should make a call like this one:

fBlocking = FALSE;
re= ioctlsocket (sock, FIONBIO, &fBlocking);

Of course, once you have a socket in nonblocking mode, the worst thing you
can do is continually poll the socket to see if the nonblocked event occurred. On a

609

Part Ill Communications

610

battery-powered system, this can dramatically lower battery life. Instead of polling,
you can use the select function to inform you when a socket or set of sockets is in a
nonblocking state. The prototype for this function is

int select (int nfds, fd_set FAR *readfds, fd_set FAR *Writefds,
fd_set FAR *exceptfds,
const struct timeval FAR *timeout);

The parameters for the select function look somewhat complex, which, in fact, they
are. Just to throw a curve, the function ignores the first parameter. The reason it ex
ists at all is for compatibility with the Berkeley version of the select function. The next
three parameters are pointers to sets of socket handles. The first set should contain
the sockets that you want to be notified when one or more of the sockets is in a
nonblocking read state. The second set contains socket handles of sockets that you
want informed when a write function can be called without blocking. Finally, the third
set, pointed to by exceptfds, contains the handles of sockets that you want notified
when an error condition exists in that socket.

The final parameter is a timeout value. In keeping with the rather interesting
parameter formats for the select function, the timeout value isn't a simple millisecond
count. Rather, it's a pointer to a TIMEVAL structure defined as

struct timeval {
long tv_sec;
long tv_usec;

} ;

If the two fields in TIMEVAL are 0, the select call returns immediately even if none of
the sockets has had an event occur. If the pointer, timeout, is NULL instead of point
ing to a TIMEVAL structure, the select call won't time out and returns only when an
event occurs in one of the sockets. Otherwise, the timeout value is specified in sec
onds and microseconds in the two fields provided.

The function returns the total number of sockets for which the appropriate events
occur, 0 if the function times out, or SOCKET_ERROR if an error occurred while pro
cessing the call. If an error does occur, you can call WSAGetLastError to get the error
code. The function modifies the contents of the sets so that, on returning from the
function, the sets contain only the socket handles of sockets for which events occur.

The sets that contain the events should be considered opaque. The format
of the sets doesn't match their Berkeley socket counterparts. Each of the sets is
manipulated by four macros defined in WINSOCK.H. These are the four macros:

• FD_CLR Removes the specified socket handle from the set

• FD_ISSET Returns true if the socket handle is part of the set

Chapter 1 o Windows Networking and lrSock

• FD_SET Adds the specified socket handle to the set

• FD _ZERO Initializes the set to 0

To use a set, you have to declare a set of type fd_set. Then initialize the set with
a call to FD_ZERO and add the socket handles you want with FD_SET. An example
would be

fd_set fdReadSocks;

FD_ZERO (&fdReadSocks);
FD_SET (hSockl, &fdReadSocks);
FD_SET (hSock2, &fdReadSocks);

re =select (0, &fdReadSocks,
if (re != SOCKET_ERROR) {

NULL, NULL.

if (FD_ISSET (hSockl, &fdReadSocks))
II A read event occurred in socket

if (FD_ISSET (hSock2, &fdReadSocks))
II A read event occurred in socket

}

NULL);

1.

2.

In this example, the select call waits on read events from two sockets with handles
of hSockl and hSock2. The write and error sets are NULL as is the pointer to the timeout
structure, so the call to select won't return until a read event occurs in one of the two
sockets. When the function returns, the code checks to see if the socket handles are
in the returned set. If so, that socket has a nonblocking read condition.

The last little subtlety concerning the select function is just what qualifies as a
read, write, and error condition. A socket in the read set is signaled when one of the
following events occur:

• There is data in the input queue so that recv can be called without
blocking.

• The socket is in listen mode and a connection has been attempted so that
a call to accept won't block.

• The connection has been closed, reset, or terminated. If the connection
was gracefully closed, recv returns with 0 bytes read; otherwise the recv
call returns SOCKET_ERROR. If the socket has been reset, the recv func
tion returns the error WSACONNRESET.

A socket in the write set is signaled under the following conditions:

• Data can be written to the socket. A call to send still might block if you
attempt to write more data than can be held in the outgoing queue.

611

Part Ill Communications

• A socket is processing a connect and the connect ha been accepted by
the server.

A socket in the exception set is signaled under the following condition:

• A socket is processing a connect and the connect failed.

The MySqurt Example Program

To demonstrate IrSock, the following program, MySqurt, shows how to transfer files
from one Windows CE device to another. It's similar to the Ir quirt program provided
with the H/ PC and Palm-size PC. The difference is that instead of sending a file acros
the infrared link and having the receiving ide accept whatever file is sent, MySqurt
ha the receiving side specify the file that's sent from the serving side of the applica
tion. In addition, MySqurt has a window that displays a list of status messages as the
handshaking takes place between the two Windows CE systems. To use MySqurt, you 'll
need to have it running on both the Windows CE systems. To transfer a file , enter the
name of the file you want from the other system and tap on the Get File bunon. The
system transmits the request to the system and, if the file exists, it will be sent back to
the requesting system. The MySqurt window is shown in Figure 10-4. The source code
for the example is shown in Figure 10-5.

;:::i i . My~;qurt r.t jt> ;t; ~ f,j

M fi::1r1\1t·,....111 r· , .. !•1t.,.·1··•f

'" ,·J·-· ,,f,l

• h '~
f,j..,.., r~ ' i:i~

!-.-1 '· q11:tr··· ~ 'i " f>' IJ

[•: :1.Jr1 11t ~ r 1 ,r .. --: ,1)r•:il [~'H ~'._•I>•

~ , . : . ,. ';G\ ~.:;') f,j .. I · f,j . , ...

F' ,:.., : y '_ I.:. f_ -I~ ~ . l 1, I '~' ·:·tt 1 · : ,.
\1, .· 1 ,,
-,,l;1!

f.·.,,_,,r•1..,1 HI-'•

Figure 10-4. The MySqurt window after a file has been transferred.

MySqurt.rc

II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==

Figure 10-5. The MySqurl source.

612

Chapter JO Windows Networking and lrSock

#include "windows.h"
#include "MySqurt.h" II Program-specific stuff

11- ---
11 Icons and bitmaps
II
IO_ICON ICON "MySqurt.ico" II Program icon

11 --
11 Main window dialog template
II
MySqurt DIALOG discardable 10, 10, 130, 110
STYLE WS_OVERLAPPED I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I

DS_CENTER I DS_MODALFRAME
CAPTION "MySqurt"
CLASS "MySqurt"
BEGIN

LTEXT "&File:" -1.
ED ITT EXT IDD_OUTTEXT,

PUSHBUTTON "&Get File" IDD_GETFILE.

2, 11. 15,
17. 10, 71.

WS_TABSTOP I
92. 10. 34,

12
12,
ES_AUTOHSCROLL
12, WS_TA BSTOP

LISTBOX IDD_INTEXT, 2, 25, 124. 80.
WS_TABSTOP I WS_VSCROLL

END

MySqurt.h

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright CC> 1998 Douglas Boling
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11 -------------- ----- ------------------------------------- --------------
11 Generic defines and data types
II
struct decodeUINT

UINT Code:

LRESULT (•Fxn)(HWND, UINT, WPARAM, LPARAM):
} :

II Structure associates
II messages
II with a function.

(continued)

613

Part Ill Communications

Figure 10-5. continued

struct decodeCMD {
UINT Code;
LRESULT C•Fxn)(HWND, WORD, HWND, WORD):

} ;

II Structure associates
II menu IDs with a
II function.

11 --
11 Generic defines used by application

f/defi ne ID_ICON 1

I/define IDD_INTEXT 10 11 Control IDs
f/defi ne IDD_GETFI LE 11
I/define IDD_OUTTEXT 12

II Error codes used by transfer protocol
f/defi ne GOOD_XFER 0
I/define BAD_FILEOPEN -1
I/define BAD_FILEMEM -2
I/define BAD_FILEREAD -3
I/define BAD_FILEWRITE -3
f/defi ne BAD_SOCKET -4
f/defi ne BAD_SOCKETRECV -5
f/defi ne BAD_FILESIZE -6
f/defi ne BAD_MEMORY -7

I/define BLKSIZE 2048 II Transfer block size

11--- -------------------- ------------ -- ----------------- ---- ------- ---- -
11 Function prototypes
II
int ServerThread CPVOID pArg);
int SenderThread CPVOID pArg);
int GetFile (HWND hWnd, TCHAR • szFileName);

int InitApp CHINSTANCE);
HWND Initlnstance (HINSTANCE, LPWSTR, int);
int Termlnstance (HINSTANCE. int>:

II Window procedures
LRESULT CALLBACK MainWndProc CHWND, UINT, WPARAM, LPARAM);

II Message handlers
LRESULT DoCommandMain CHWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyMain CHWND, UINT, WPARAM, LPARAM);

614

Chapter 1 o Windows Networking and lrSock

II Command functions
LPARAM DoMainCommandGet (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandExit CHWND, WORD, HWND, WORD>:

II Thread functions
int SenderThread CPVOID pArg);
int ReaderThread CPVOID pArg);

MySqurt.c

II==
II MySqurt - A simple IrSock application for Windows CE
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
#include <windows .h> II For all that Windows stuff
#include <winsock .h> II socket includes
#include <af_irda .h> II IrDA includes

#include "MySqurt.h" II Program-specific stuff
11 --
11 Global data
II
const TCHAR szAppName[]
const char chzAppName[]
HINSTANCE hlnst;

=TEXT C"MySqurt");
= "MySqurt";

HWND hMain;
BOOL fContinue = TRUE;

II Program instance handle
II Main window handle
II Server thread cont. flag

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = (

WM_COMMAND, DoCommandMain,
WM_DESTROY, DoDestroyMain,

} ;

II Command Message dispatch for MainWindowProc
const struct decodeCMD MainCommandltems[] = {

} ;

IDOK, DoMainCommandGet,
IDCANCEL, DoMainCommandExit,
IDD_GETFILE, DoMainCommandGet,

II==
II Program entry point
II
int WINAPI WinMain CHINSTANCE hlnstance, HINSTANCE hPrevlnstance,

(continued)

615

Part Ill Communications

Figure 10-5. continued

}

LPWSTR lpCmdLine, int nCmdShowl (
MSG msg;
int re = 0:

II Initialize application.
re = InitApp (hinstancel:
if {rel return re:

II Initialize this instance.
hMain = Initinstance {hinstance, lpCmdLine, nCmdShow):
if (hMain == 0)

return Te rminstance Chinstance, 0xl0l:

II Application message loop
while CGetMes sage C&msg, NULL, 0, 0)) (

}

if {{hMain == 0) I I !IsDialogMessage {hMain, &msgll (
TranslateMessage C&msgl:
DispatchMessage C&msgl:

II Instance cleanup
return Terminstance Chinstance, msg.wParaml:

11 -- ----------- ---------- --- --- -
11 InitApp - Application initialization
II
int InitApp {HINSTANCE hinstancel C

WNDCLASS we;
HWND hWnd;

II If previous instance, activate it instead of us.
hWnd = FindWindow CszAppName, NULL);

616

if {hWndl {

}

SetForegroundWindow {hWnd);
return -1;

II Register application main window
we.style = 0:
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0:
wc.cbWndExtra = DLGWINDOWEXTRA;
wc.hinstance = hlnstance;
wc.hlcon = NULL,

class.
II Window style
II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon
II Default cursor wc.hCursor = NULL:

wc.hbrBackground = CHBRUSH)
wc.lpszMenuName = NULL:

GetStockObject {LTGRAY_BRUSH);
II Menu name

Chapter 1 o Windows Networking and lrSock

)

wc.lpszClassName = szAppName;

if (RegisterClass (&we) == 0) return 1;
return 0;

II Window class name

11- -------------------------------- ----- --------------------------------
11 Initinstance - Instance initialization
II
HWND Initinstance (HINSTANCE hinstance, LPWSTR lpCmdLine, int nCmdShow){

HWND hWnd;

)

HANDLE hThread;
INT re:

hlnst = hinstance; II Save program instance handle.

II Create main window.
hWnd = CreateDialog (hinst, szAppName, NULL, NULL):
II Return fail code if window not created.
if (!IsWindow ChWnd)) return 0;

II Create secondary threads for interprocess comm.
hThread = CreateThread (NULL, 0, ServerThread, hWnd, 0, &re):
if (hThread == 0) {

)

DestroyWindow ChWnd) ;
return 0:

CloseHandle ChThread);

ShowWindow ChWnd, nCmdShow);
UpdateWindow (hWnd>:

II Standard show and update calls

SetFocus CGetDlgitem (hWnd, IDD_OUTTEXT));
return hWnd:

11- ---------------- -- - -------------- ------ ----- -------------------------
11 Termlnstance - Program cleanup
II
int Termlnstance (HINSTANCE hlnstance, int nDefRC) {

return nDefRC ;
)

II==
II Message handling procedures for main window
11-------- --
11 MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

(continued)

61 7

Part Ill Communications

Figure 10-5. continued

}

INT i:
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for (i = 0; i < dim(HainHessages): i++) {

if CwHsg == HainHessages[i]. Code)
return C•HainHessages[iJ.Fxn)ChWnd, wHsg, wParam, lParam);

return DefWindowProc ChWnd, wHsg, wParam, lParam);

11- ---
11 DoCommandHain - Process WH_COHHAND message for window.
II
LRESULT DoCommandHain CHWND hWnd, UINT wHsg, WPARAH wParam,

}

LPARAH lParam) {
WORD iditem, wNotifyCode:
HWND hwndCtl:
INT i:

II Parse the parameters.
iditem = (WORD) LOWORD (wParam);
wNotifyCode = CWORD) HIWORD CwParam);
hwndCtl = CHWND) lParam:

II Call routine to handle control message.
for Ci = 0: i < dim(HainCommanditems): i++)

if Cidltem == HainCommandltems[iJ.Code)
return C•Hai nCommanditems[iJ.Fxn)ChWnd, iditem, hwndCtl,

wNot i fyCode) ;

return 0:

11- ---
11 DoDestroyHain - Process WH_DESTROY message for window.
II
LRESULT DoDestroyMain CHWND hWnd, UINT wHsg, WPARAH wParam,

LPARAH lParam) {

}

fContinue = FALSE:
Sleep (0 >:
PostQuitHessage (0):
return 0:

II Shut down server thread.
II Pass on timeslice.

//==
II Command handler routines
// --------------------------- ----- -- --- ----------- --- -- --- -------- ------

618

Chapter 10 Windows Networking and lrSock

II DoMainCommandExit - Process Program Exit command .
II
LPARAM DoMainCommandExit CHWND hWnd, WORD iditem, HWND hwndCtl,

WORD wNotifyCode) {

}

SendMessage ChWnd, WM_CLOSE, 0, 0);
return 0:

11 -- - ------------ - --------------------- -- -------------------------------
11 DoMainCommandGet - Process Program Get File command .
II
LPARAM DoMainCommandGet CHWND hWnd. WORD iditem, HWND hwndCtl,

WORD wNotifyCode) {
TCHAR szName[MAX_PATH];
INT re;

GetDlgitemText ChWnd. IDD_OUTTEXT. szName. dimCszName));
re= GetFile ChWnd, szName); //Receive file
return 0;

}

11----- ----------------------------- - - - -- - ------------------------------
11 Add2List - Add string to the report list box.
II
void Add2List CHWND hWnd, LPTSTR lpszFormat, ...)

inti, nBuf:

)

TCHAR szBuffer[512];

va_list args;
va_start(args, lpszFormat);

nBuf = _vstprintfCszBuffer, lpszFormat, args):

i = SendDlgltemMessage (hWnd, IDD_INTEXT, LB_ADDSTRING, 0,
(LPARAM)(LPCTSTR)szBuffer);

if Ci != LB_ERR)
SendDlgltemMessage ChWnd, IDD_INTEXT. LB_SETTOPINDEX. i.

CLPARAM)(LPCTSTR)szBuffer);
va_end(args) ;

//==
II ServerThread - Monitors for connections, connnects and notifies
II window when a connection occurs
II
i nt ServerThread CPVOID pArg)

HWND hWnd = CHWND)pArg;
INT re. nSize. i;
SOCKADDR_IRDA iraddr, t _iraddr;

(continued)

619

Part Ill Communications

Figure 10-5. continued

620

SOCKET t_sock, s_sock;
HANDLE hThread;

Add2List ChWnd, TEXT ("server thread entered"));

II Open an infrared socket.
s_sock =socket CAF_IRDA, SOCK_STREAM, 0);
if (s_sock == INVALID_SOCKET) (

}

Add2List ChWnd, TEXT ("socket failed. re Id"),
WSAGetlastErrorCll:

return 0;

II Fill in irda socket address structure.
iraddr.irdaAddressFamily = AF_IRDA;
for Ci = 0; i < dimCiraddr.irdaDevicelDl: i++l

iraddr.irdaDevicelD[i] = 0:
memcpy Ciraddr.irdaServiceName, chzAppName, sizeof CchzAppName)+l);

II Bind address to socket.
re = bind (s_sock, (struct sockaddr •l&iraddr, sizeof Ciraddr));
if (rel {

}

Add2List ChWnd, TEXT (" bind failed"));
closesocket (s_sockl:
return -2;

II Set socket into listen mode.
re = listen (s_sock, SOMAXCONN);
if (re == SOCKET_ERROR) (

}

Add2List ChWnd, TEXT ("listen failed Id"), GetLastError());
closesocket (s_sockl:
return -3:

II Wait for remote requests.
while (fContinue) (

II Block on accept.
nSize = sizeof (t_iraddr):
t_sock =accept Cs_sock, Cstruct sockaddr •l&t_iraddr, &nSize);
if Ct_sock == INVALID_SOCKET) {

Add2List ChWnd, TEXT ("accept failed Id"),
GetLastError()):

break:

Add2List ChWnd, TEXT ("sock accept ... ")):
hThread = CreateThread (NULL, 0, SenderThread,

CPVOIDlt_sock, 0, &re);
if (hThread)

Chapter JO Windows Networking and lrSock

}

CloseHandle (hThread);

closesocket (s_sock);
return re;

II==
II SenderThread - Sends the file requested by the remote device
II
int SenderThread (PVOID pArg) {

SOCKET t _sock = (SOCKET)pArg;
int nCnt, nFileSize. re:
TCHAR szFileName[MAX_PATH];
PBYTE pBuff, pPtr;
HWND hWnd = hMain;
HANDLE hFil e;

Add2List (hWnd, TEXT ("sender thread entered"));

II Read the number of bytes in the filename.
re= recv (t_sock , (PBYTE)&nCnt, sizeof (nCnt). 0):
if ((re == SOCKET_ERROR) I I (nCnt > MAX_PATH)) C

Add2List (hWnd, TEXT ("failed receiving name size"));
closesocket (t_sock);
return -1:

II Read the filename.
re= recv (t_sock, <PBYTE)&szFileName, nCnt, 0):
if (re == SOCKET_ERROR) {

Add2List ChWnd, TEXT ("failed receiving name"));
closesocket (t_sock>:
return -2:

Add2List ChWnd, TEXT ("name: Is"), szFileName);
hFile = CreateFile CszFileName, GENERIC_REAO, FILE_SHARE_REAO,

NULL, OPEN_EXISTING, 0, NULL);
if ChFile == INVALIO_HANOLE_VALUE) {

Add2List ChWnd, TEXT ("file opened failed. re Id"),
GetLastError());

re = BAO_FILEOPEN;
else C

re = 0;
nFileSize = GetFileSize (hFile, NULL);

II Allocate buffer and read file.
pBuff = LocalAlloc (LPTR, nFileSize):

(continued)

621

Part Ill Communications

Figure 10-5. continued

622

)

if CpBuff}
ReadFile (hFile, pBuff, nFileSize, &nCnt, NULL);
if (nCnt != nFileSize)

re = BAD_FILEREAD;
else

re= BAD_MEMORY;

II Start transfer. First send size and get acknowledgment.
if (!re) {

)

II Send file size. Size will always be < 2 GB.
re = send (t_sock , CPBYTE)&nFileSize. sizeof CnFileSize), 0);
if (re == SOCKET_ERROR)

re = BAD_SOCKET;
else

II Receive acknowledgment of file size.
recv (t_sock, (PBYTE)&rc, sizeof (re), 0);

II Send the file.
pPtr = pBuff;
while ((Ire) && nFileSize) {

)

II Send up to the block size.
nCnt =min CBLKSIZE, nFileSize);
re= send (t_sock, pPtr, nCnt, 0);
if (re == SOCKET_ERROR) {

Add2Li st ChWnd. TEXT ("send error %d "), GetLastError<>>:
re = BAD_SOCKET;

else
Add2List ChWnd, TEXT ("sent Id bytes"), re>:

pPtr += re;
nFileSize -= re;

II Receive acknowledgment.
recv (t_sock, CPBYTE)&rc, sizeof (re), 0):

II Send close code.
if Crc != BAD_SOCKET)

send (t_sock, CPBYTE)&rc, sizeof (re), 0);

closesocket (t_sock>:
II Clean up.
if (hFile != INVALID_HANDLE_VALUE)

CloseHandle ChFile);
LocalFree CpBuff):
Add2List (hWnd, TEXT ("sender thread exit"));
return 0;

Chapter 10 Windows Networking and lrSock

11 --
11 GetFile - Reads a file from the remote device
II
int GetFile (HWND hWnd, TCHAR • szFileName) {

SOCKET c_sock;
HANDLE hFile;
INT re, nSize, i, nFileSize, nCnt;
char cDevice[256];
SOCKADDR_IRDA iraddr;
DEV !CELI ST • pDL;
STORE_INFORHATION si;
PBYTE pBuff;

II Open an infrared socket.
c_sock = socket CAF_IRDA, SOCK....STREAH, 0);
if (c_sock == INVALID_SOCKET) {

)

Add2List (hWnd, TEXT ("sock failed. re Sd"), WSAGetlastError());
return 0;

II Search for someone to talk to.
for Ci = 0; i < 5; i++) {

)

memset CcDevice, 0, sizeof CcDevice));
nSize = sizeof CcDevice);
re = getsockopt (c_sock, SOL_IRLHP, IRLHP_ENUHDEVICES,

cDevice, &nSize);
if (re)

Add2List ChWnd, TEXT ("getsockopt failed. re Sd"),
WSAGetLastError()) ;

pDL = CDEVICELIST *) cDevice;
if CpDL->numDev1ce)

break;
Sleep(500);

II If no device found, exit.
if CpDL ->numDevice == 0) {

closesocket Cc_sock);
return -1;

II Copy address of found device.
memset C&iraddr, 0, sizeof (iraddr));
iraddr.irdaAddressFam1ly = AF_IRDA;
memcpy (iraddr.irdaDev1celD, pDL->Device[0].irdaDevicelD, 4);
II Now initialize the specific socket we're interested in.
memcpy (iraddr.irdaServiceName, chzAppName, sizeof (chzAppName)+l);

(continued)

623

Part Ill Communications

Figure 10-5. continued

624

Add2List ChWnd, TEXT ("Found: lhs"), pDL->Device[0].irdaDeviceName):
II Connect to remote socket.
re =connect (c_sock, (struct sockaddr •)&iraddr, sizeof (iraddr));
if (re> {

}

Add2List (hWnd, TEXT ("connect failed. re Id"),
WSAGetLastErrorC>>:

closesocket (c_sock);
return -4:

Add2List (hWnd, TEXT ("connected ... "));

II Send name size.
nCnt = (lstrlen (szfileName) + 1) • sizeof CTCHAR);
re= send (c_sock, CPBYTE)&nCnt, sizeof CnCnt), 0);
if (re != SOCKET_ERROR) (

II Send filename.
re= send (c_sock, CPBYTE)szfileName, nCnt, 0);

pBuff = LocalAlloc (LPTR, BLKSIZE); II Create buffer for file.
II Receive file size.
re= recv (c_sock, CPBYTE>&nfileSize. sizeof (nfileSize), 0);
Add2List (hWnd, TEXT ("received file size of Id bytes">. nfileSize);
if ((re != SOCKET_ERROR) && (nfileSize > 0)) (

GetStorelnformation C&si);
Add2List ChWnd, TEXT ("free space of Id bytes"), si.dwfreeSizeJ:
if CCINT)si.dwfreeSize < nfileSize + 1000)

re BAD_FILESIZE;
else

re GOOD_XFER;

if (re == GOOD_XFER)
II Create the file. Overwrite if user says so.
hfile = Createfile (szfileName, GENERIC_WRITE, 0, NULL.

CREATE_NEW. FILE_ATTRIBUTE_NORMAL, NULL);
if (hfile == INVALID_HANDLE_VALUE) (

if (GetLastError() == ERROR_FILE_EXISTS) (
i = MessageBox ChWnd,

TEXT ("file already exists. Replace?"),
szAppName, MB_YESNO);

if (i == !DYES)
hfile = Createfile CszfileName,

GENERIC_WRITE, 0, NULL,
CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);

Chapter 1 o Windows Networking and lrSock

}

if ChFile == INVALIO_HANDLE_VALUEl (
Add2List ChWnd, TEXT ("File Open failed. re Id"),

GetlastError());
re = BAO_FILEWRITE;

}

II Send acknowledgment code.
Add2List ChWnd, TEXT ("Sending size ack."));
send Cc_sock, CPBYTEJ&rc, sizeof Crc), 0);
II
II Receive file.
II
while ((!rel && CnFileSize > 0)) {

nCnt =min CBLKSIZE, nFileSize);
for CnSize = 0; nSize < nCnt;l (

i = recv (c_sock, pBuff+nSize, nCnt-nSize, 0);
if Ci == SOCKET_ERRORl (

Add2List (hWnd, TEXT C"recv socket err Sd"),
GetlastError());

re= BAO_SOCKETRECV;
break;

nSize += i;

Add2List ChWnd, TEXT ("recv'd Sd bytes."), nSize);
if (i) (

if C!WriteFile (hFile, pBuff, nSize, &i, 0))
re = BAO_FILEWRITE;

nFileSize -= i;
else

Sleep(50);
II Send acknowledgment of packet.
send (c_sock, CPBYTE)&rc, sizeof (re), 0);

else if (re == BAD_FILEOPENJ
Add2List ChWnd, TEXT ("File not found ."));

Add2List ChWnd, TEXT ("receive finished"));

CloseHandle ChFile);
closesocket (c_sockl;
LocalFree CpBuff);
return 0;

625

Part 111 Communications

From a Windows standpoint, MySqurt is a simple program. It uses a dialog box
as its main window. When the program is first launched, it creates the server thread
that creates an infrared socket, binds it to a service name, puts the socket into listen
mode, and blocks on a call to accept. When a remote device connects, the server thread
creates another thread to handle the actual sending of the file while it loops back
and waits for another connection.

The sender thread reads the filename from the client, opens the file, and attempts
to send the file to the client device. Once the file is sent, the sender thread closes its
socket and terminates. To support the transfer, a minimal amount of handshaking takes
place. The sender thread sends the size of the file or an error code if the file can't be
opened. The client then responds with an acknowledgment that the file size is ac
ceptable and that the send can take place. The actual sending of the data is broken
down into blocks arbitrarily set at 2048 bytes. After each block is sent, the sender
thread waits for an acknowledgment from the client before it sends the next block.

On the client side, a transmission is initiated when the user taps the Get File
button. If text exists in the edit box, it is read and the GetFile routine is called. In this
routine, a socket is created and any remote devices are enumerated using repeated
calls to getsockopt. If a device is found, a connection is attempted with a call to con
nect. Connect succeeds only if the remote device has bound an IR socket using the
same service name, which happens to be defined as the string contained in chzApp
Name, an ASCII representation of the program name. This addressing scheme ensures
that if a connection is made, the remote device is running MySqurt. Once a connec
tion is made, the client sends over the filename it wants. This is actually done in two
steps: first the byte length of the filename is sent, followed by the name itself. This
process allows the server to know how many characters to receive before continu
ing. If the file sent by the server device fits in the object store, the routine creates the
file on the client side, notifying the user if the file already exists. If all has gone well
to this point, the data is received and written to the file. The socket is closed, and the
buffer created to read the data into is freed.

While I've spent most of the explanation of sockets focused on IrSock, one area
of the TCP/IP WinSock is unique to Windows CE-the ICMP functions. These func
tions allow a "back door" that allows raw socketlike functions on a stack that doesn't
support raw sockets. Let's look now at why that's useful.

TCP/IP PINGING

626

On a TCP/IP network, there's no more basic diagnostic than to ping a site. Pinging is
the process of sending a request to a TCP/IP server to respond with an acknowledg
ment back to the sender. If you look at the source code for a ping utility, you'll see
that pinging is simply the process of sending a specific type of IP packet to the re
quested server and waiting for a reply.

Chapter 10 Windows Networking and lrSock

The format of these packets is defined by ICMP. ICMP stands for Internet Con
trol Message Protocol. This a protocol used by routers and servers on TCP/IP networks
to report errors and status information. While most of this work goes unseen by ap
plications because it's handled at the IP layer of the network stack, ping requests take
place at this level.

Under most systems, an application would have to open a raw socket. While
Windows CE's version of WinSock doesn't expose a way of opening raw sockets,
Windows CE gives you a few functions that encapsulate the process of pinging an
other server.

Windows CE supports three functions that allow Windows CE applications to
ping Internet addresses. Essentially, a Windows CE application opens a handle, sends
the ICMP request as many times as you want, and closes the handle. While the func
tions are documented in the Windows CE SDK, the include files that define these
prototypes aren't in all versions of the Windows CE SDK. The file ICMPAPI.H con
tains the function prototypes while IPEXPORTS.H contains the definitions for the
packet structures and constants used at the IP layer. These two include files are on
the CD-ROM included with this book.

To start the process, you must open an ICMP handle using this function:

HANDLE IcmpCreateFile (VOID);

The function takes no arguments and returns a handle that will be used in the
other ICMP functions. If the function fails, the return value will be INVALID_
HANDLE_ VALUE.

To actually send a ping request, you use this function:

DWORD WINAPI IcmpSendEcho (HANDLE IcmpHandle, IPAddr DestinationAddress,
LPVOID RequestData, WORD RequestSize,
PIP_OPTION_INFORMATION RequestOptions,
LPVOID ReplyBuffer, DWORD ReplySize,
DWORD Timeout);

The first parameter is the handle returned by the ICMPCreateFile function. The sec
ond parameter is the destination address that will be sent to the IP packet. The data
type for this address, IPAddr, is essentially an unsigned long value with the four bytes
of the IP address packed inside. The RequestData parameter is a pointer to a buffer
containing the data to be sent while the RequestSize parameter should specify the
size of the data. You can define any data you want in the buffer pointed to by
RequestData although you generally don't want to exceed the 8-KB packet size limit
found on some TCP/IP systems. What you do not get to do is directly define the ICMP
packet that's sent. That packet is automatically formed by IcmpSendEcho and sent
along with the data specified in the RequestData buffer.

627

Part Ill Communications

628

The RequestOptions parameter should point to an IP _OPTION_INFORMATION
stmcture that's defined as

Typedef struct ip_option_information {
unsigned char Ttl;
unsigned char Tos;
unsigned char Flags;
unsigned char OptionsSize;
unsigned char FAR *OptionsData;

} IP_OPTION_INFORMATION;

The data in this structure will be used by the function to fill in some of the IP packet
header that you use when sending an ICMP packet. The structure is a subset of the
IP packet structure since Windows CE takes care of things like computing checksums
and the like. The formal definitions of these fields are best left to texts that explain
the IP protocol in detail. What follows is a quick overview.

The first field, Ttl, is the "Time to Live" for the packet. If the packet isn't received
in this amount of time, it will be dropped. The Tos field defines the type of service
for the IP packet. The Flags field contains the flags for the IP header. Finally, the
OptionsData and OptionsSize fields specify the IP packet options. The options are
defined as bytes in the buffer pointed to by OptionsData. The OptionsSize field should
contain the number of bytes in the OptionsData buffer. The format of the options
buffer is defined by the IP protocol.

The next two parameters in IcmpSendEcho are the pointer to the buffer that
receives the reply and the size of that buffer. The receiving buffer must be large enough
to hold an ICMP _ECHO_REPLY structure plus the size of the data you specified in
the RequestData buffer. At a minimum, you must specify the buffer to be the size of
ICMP _ECHO_REPLY plus 8 bytes. The 8-byte allowance is the size of an ICMP error
message.

The final parameter is Timeout, which is the time, in milliseconds, that Icmp
SendEcho waits for returning packets before giving up.

JcmpSendEcho returns the number of reply packets received in response to the
ping request. If the return value is 0, an error occurred. In this case, you should call
GetlastError to receive the error code.

The data received by IcmpSendEcho is in the form of an array of ICMP _ECHO
_REPLY structures, one from each router or server that replied to the original packet.
Following the array will be the data sent out by IcmpSendEcho that returns with each
of the packets. The ICMP _ECHO_REPLY structure is defined as

struct icmp_echo_reply {
IPAddr Address;
unsigned long
unsigned long
unsigned short

Status;
RoundTripTime;
DataSize:

II Replying address
II Reply IP_STATUS
II RTT in milliseconds
II Reply data size in bytes

Chapter 10 Windows Networking and lrSock

unsigned short Reserved: // Reserved for system use
void FAR Data; // Pointer to the reply data
struct IP_OPTION_INFORMATION Options; // Reply options

}; /* icmp_echo_reply */

The Address field is the TCP/IP address of the responding router or server. The
address is in IPAddr format. The Status field contains the status returned by the re
sponding server. If the ping was successful, this field will contain IP _SUCCESS. Other
values indicate errors and are defined in IPEXPORT.H. The RoundTripTime field
contains the elapsed time, in milliseconds, from when the original packet was sent
until the packet from this server was received. The DataSize field contains
the size of the data returned by the server. This value should match the size of the
data originally sent. The Data field contains a pointer to the data returned by the
se1ver. This data should match the data originally sent. Finally, the Options field is an
IP _OPTION_INFORMATION structure that defines the details of the responding packet.

Generally, you'll call JcmpSendEcho a number of times to ping a site and then
clean up with a call to IcmpCloseHandle. This function is prototyped as

BOOL WINAPI IcmpCloseHandle (HANDLE IcmpHandle);

The only parameter is the handle that was received with JcmpCreateFile.
The routine below implements a very hasic ping. The routine calls IcmpOpen

and then fills in the IP packet data and calls JcmpSendEcho five times. The address
passed to PingAddress is a Unicode string in Internet dot format, as in 123.45.56.78.
The inet_addr function translates this into a DWORD value used by IcmpSendEcho.
Notice that the address string passed to PingAddress is first translated into ASCII be
fore the call is made to inet_addr.

!!--
// PingAddress - Ping a TCP/IP address.
II
INT PingAddress (HWND hWnd, LPTSTR lpszPingAddr, LPTSTR lpszOut) {

HANDLE hPing;
BYTE b0ut[32];
BYTE bln[1024];
char c0ptions[12J:
char szdbAddr[32];
IP_OPTION_INFORMATION ipoi;
PICMP_ECHO_REPLY pEr;
struct in_addr Address;
I NT i , j, re;
DWORD adr;

II Convert xx.xx.xx.xx string to a DWORD. First, convert the string
II to ascii.

(continued)

629

Part Ill

630

westombs (szdbAddr, lpszPingAddr, 31);
if ((adr = inet_addr(szdbAddr)) == -ll)

return -1;

II Open iemp handle.
hPing = IempCreateFile ();
if (hPing == INVALID_HANDLE_VALUE)

return -2:

wsprintf (lpszOut, TEXT ("Pinging: %s\n\n"), lpszPingAddr);
lpszOut += lstrlen (lpszOut) + 1;

II Ping loop
for (j = 0; j < 5; j++) {

II Initialize the send data buffer.
memset (&bout, 0, sizeof (bOut));

II Initialize the IP structure.
memset (&ipoi, 0, sizeof (ipoi));
ipoi.Ttl=32;
ipoi.Tos = 0;
ipoi.Flags = IP_FLAG_DF;
memset (cOptions, 0, sizeof (eOptions)):

II Ping!
re= IempSendEeho (hPing, adr, bOut, sizeof (bOut), &ipoi,

bln, sizeof (bin), 1000);
if (re) {

II Loop through replies.
pEr = (PICMP_ECHO_REPLY)bin:
for (i = 0: i < re; i++) {

Address.S_un.S_addr = (IPAddr)pEr->Address;
II Format output string
wsprintf (lpszOut,

TEXT ("Reply from %hs: bytes:%d time"),
inet_ntoa (Address), pEr->DataSize);

II Append round-tr~p time.
if CpEr->RoundTripTime < 10)

lstreat (lpszOut, TEXT ("<10mS\n"));
else

wsprintf C&lpszOut[lstrlen(lpszOut)],
TEXT ("%dmS\n"), pEr->RoundTripTime):

lpszOut += lstrlen (lpszOut) + l;
pEr++;

}

}

else

Chapter 10 Windows Networking and lrSock

lstrcpy (lpszOut, TEXT ("Request timed out."));
lpszOut += lstrlen (lpszOut) + l;

}

IcmpCloseHandle (hPing);

*lpszOut =TEXT ('\0');
return 0;

II Add final terminating zero.

The response packet from IcmpSendEcho is interpreted by looping through the
array ofICMP _ECHO_REPLY structures. Within each of these structures is enough data
to provide the very basic ping information. The routine could be extended in a num
ber of ways. For example, the reply packets could be dissected to determine the route
of the packets.

This chapter has given you a basic introduction to some of the networking fea
tures of Windows CE. Next on our plate is networking from a different angle. In
Chapter 11, we look at the Windows CE device from the perspective of its compan
ion PC. The link between the Windows CE device and a PC is based on some of the
same networking infrastrncture that we touched upon here. Let's take a look.

631

Chapter 11

Connecting to
the Desktop

One of the major market segments that Windows CE is designed for is desktop com
panions. In answer to the requirements of this market, the first two product catego
ries created using Windows CE are desktop companions: the Handheld PC and the
Palm-size PC. Both these products require a strong and highly functional link between
the Windows CE device and the desktop PC running Windows 98 or Windows NT.

Given this absolute necessity for good desktop connectivity, it's not surprising
that Windows CE has a vast array of functions that enable applications on the desk
top and the remote Windows CE device to communicate with one another. In gen
eral, most of this desktop-to-device processing takes place on the desktop. This is
logical because the desktop PC has much greater processing power and more stor
age space than the less powerful and much smaller Windows CE system.

The total of helper DLLs, communications support, and viewer programs is col
lected in a package named Windows CE Services. When a user buys any of the hori
zontal platforms, such as the Palm-size PC or the Handheld PC, a CD loaded with
Windows CE Services comes with the device. The user becomes accustomed to seeing
the Mobile Devices folder that, once Windows CE Services is installed, appears on his
desktop. But there's much more to Windows CE Services than Mobile Devices. A number
of DLLs are included, for example, to help the Windows CE application developer write
PC-based applications that can work with the remote Windows CE device.

In this chapter, I'll cover the various APis that provide the desktop-to
Windows CE link. These include the Remote API, or RAP!, that allows applications

633

running on the desktop to directly invoke functions on the remote Windows CE sys
tem. I'll tell you how to write a file filter that converts files as they're transferred from
the PC to the Windows CE device and back. I'll also look at methods a PC applica
tion can use to notified itself when a connection exists between a PC and a Windows CE
device.

In a departure from the other chapters in this book, almost all the examples in
this chapter are PC-based Windows programs. They're written to work both for Win
dows 95/98 and Windows NT. I take the same approach with the PC-based examples as
I do for the CE-based examples, writing to the API instead of using a class library such
as MFC. The principles shown here could easily be used by MFC-based applications.

THE WINDOWS CE REMOTE API
The remote API (RAPI) allows applications on one machine to call functions on an
other machine. Windows CE supports essentially a one-way RAPI; applications on
the PC can call functions on a connected Windows CE system. In the language of
RAPI, the Windows CE device is the RAPI server while the PC is the RAPI client. The
application runs on the client, the PC, which in turn calls functions that are executed
on the server, the Windows CE device.

RAPI Overview

634

RAPI under Windows CE is designed so that PC applications can manage the Win
dows CE device remotely. The exported functions deal with the file system, registry,
and databases, as well as functions for querying the system configuration. While most
RAPI functions are duplicates of functions in the Windows CE API, a few functions
extend the APL You use these functions mainly for initializing the RAPI subsystem
and enhancing performance of the communication link by compressing iterative op
erations into one RAPI call.

The RAPI functions are listed in the Windows CE API reference but are called by
PC applications-not by Windows CE applications. The RAPI functions are prefixed
with a Ce in the function name to differentiate them from their Windows CE-side coun
terparts; for example, the function GetStorelnformation in Windows CE is called
CeGetStorelnformation in the RAFI version of the function. Unfortunately, some APis
in Windows CE, such as the database API, also have functions prefixed with Ce. In
these cases, both the CE function (for example, CeCreateDatabase) and the RAPI func
tion (again, CeCreateDatahase) have the same name. The linker isn't confused in this
case because a Windows CE application won't be calling the RAPI function and a PC
based program can't call the database function except through the RAPI interface.

As I said, these Windows CE RAPI functions work for Windows 95/98 as well
as Windows NT, but because they're Win32 functions applications developed for the

Chapter 11 Connecting to the Desktop

Winl6 API can't use the Windows CE RAPI functions. The RAPI functions can be called
from either a Windows-based application or a Win32-console application. All you have
to do to use the RAPI functions is to include the RAPI.h header file and link with the
RAPI.lib library.

Essentially, RAPI is a remote procedure call. It communicates a PC application's
request to invoke a function and returns the results of that function. Because the RAPI
layer is simple on the Windows CE side, all strings used in RAPI functions must be in
Unicode regardless of whether the PC-based application calling the RAPI function
uses the Unicode format.

Dealing with different versions of RAPI
The problem of versioning has always been an issue with redistributable DLLs under
Windows. RAPI.DLL, the DLL on the PC that handles the RAPI API, is distributed with
the Mobile Devices software that comes with an H/PC, Palm-size PC, or other PC
companion Windows CE devices. Trouble arises because the RAPI API has been ex
tended over time as the Windows CE functions have expanded; you have to be aware
that the RAPI DLL you load on a machine might not be the most up-to-date RAPI DLL.
Older RAPI DLLs don't have all the exported functions that the newest RAPI DLL has.

For example, any RAPI DLL distributed with a device running Windows CE 2.1
or later will export the newer database Ex functions so that you can manipulate da
tabases that aren't in the object store of the remote device. However, if you assume
that those functions are there and you nm your RAPI application on a PC with an
older RAPI DLL, the application won't load because the extended database functions
aren't exported by the older DLL.

On the other hand, just because you're using the latest RAPI DLL doesn't mean
that the Windows CE system on the other end of the RAPI connection supports all
the functions that the RAPI DLL supports. An H/PC running Windows CE 2.0 won't
support the extended database API of Windows CE 2.1 no matter what RAPI DLL you're
using on the PC.

The best way to solve the problem of multiple versions of RAPI.DLL is to pro
gram defensively. Instead of loading the RAPI DLL implicitly by specifying an import
library and directly calling the RAPI functions, you might want to load the RAPI DLL
explicitly with a call to LoadLibrary. You can then access the exported functions by
calling GetProcAddress for each function and then by calling the pointer to that function.

The problem of different versions of Windows CE has a much easier solution.
Just be sure to call CeGetVersionEx to query the version of Windows CE on the re
mote device. This gives you a good idea of what the device capabilities of that de
vice are. If the remote device has a newer version of Windows CE than RAPI.DLL,
you might want to inform the user of the version issue and suggest an upgrade of the
synchronization software on the PC.

635

Part Ill Communlcatlor~s

636

Initializing RAPI
Before you can call any of the RAPI functions, you must first initialize the RAPI li
brary with a call to either CeRapilnit or CeRapilnitEx. The difference between the
two functions is that CeRapilnit blocks, waiting on a successful connection with a
Windows CE device, while CeRapilnitEx doesn't block. Contrary to what you might
expect, neither of these functions creates a connection between a PC and a device
physically hooked up to one another but unconnected.

The first initialization function is prototyped as

HRESULT CeRapilnit (void);

This function has no parameters. When the function is called, Windows looks for an
established link to a Windows CE device. If one doesn't exist, the function blocks
until one is established or another thread in your application calls CeRapiUninit, which
is generally called to clean up after a RAPI session. The return value is either 0, indi
cating that a RAPI session has been established, or the constant E_FAIL, indicating an
error. In this case, you can call GetLastError to diagnose the problem.

Unfortunately CeRapilnit blocks, sometimes, for an extended period of time.
To avoid this, you can use the other initialization function,

HRESULT CeRapilnitEx (RAPIINIT* pRapiinit);

The only parameter is a pointer to a RAPIINIT structure defined as

typedef struct _RAPIINIT {
DWORD cbSize;
HANDLE heRapiinit;
HANDLE hrRapiinit;

} RAPIINIT;

The cbSize field must be filled in before the call is made to CeRapilnitEx. After the
size field has been initialized, you call CeRapilnitEx and the function returns without
blocking. It fills in the second of the two fields, heRapilnit, with the handle to an
event object that will be signaled when the RAPI connection is initialized. You can
use WaitForSingleObject to have a thread block on this event to determine when the
connection is finally established. When the event is signaled, the final field in the
structure, hrRapilnit, is filled with the return code from the initialization. This value
can be 0 if the connection was successful or E_FAIL if the connection wasn't made
for some reason.

Handling RAPI errors
When you're dealing with the extra RAPI layer between the caller and the execution
of the function, a problem arises when an error occurs: did the error occur because
the function failed or because of an error in the RAPI connection? RAPI functions return

Chapter 11 Connecting to the Desktop

error codes indicating success or failure of the function. If a function fails, you can
use the following two functions to isolate the cause of the error:

HRESULT CeRapiGetError (void);

and

DWORD CeGetlastError (void);

The difference between these two functions is that CeRapiGetError returns an error
code for failures due to the network or other RAPI-layer reasons. On the other hand,
CeGetLastError is the RAPI counterpart to GetLastError, it returns the extended error for
a failed function on the Windows CE device. So, if a function fails, call CeRapiGetError
to determine whether an error occurred in the RAPI layer. If CeRapiGetError returns
0, the error occurred in the original function on the CE device. In this case, a call to
CeGetLastError returns the extended error for the failure on the device.

Here's one last general function, used to free buffers that are returned by some
of the RAPI functions. This function is

HRESULT CeRapiFreeBuffer (LPVOID Buffer);

The only parameter is the pointer to the buffer you want to free. The function re
turns SOK when successful and E_FAIL if not. Throughout the explanation of RAPI
functions, I'll mention those places where you need to use CeRapi.FreeBuffer. In gen
eral, though, you use this function anywhere a RAPI function returns a buffer that it
allocated for you.

Ending a RAPI session
When you have finished making all the RAPI calls necessary, you should clean up
by calling

HRESULT CeRapiUninit (void);

This function gracefully closes down the RAPI communication with the remote de
vice. CeRapiUninit returns E_FAIL if a RAPI session hasn't been initialized.

Predefined RAPI Functions

As I mentioned in the beginning of this chapter, the RAPI services include a number of
predefined RAPI functions that duplicate Windows CE functions on the PC side of the
connection. So, for example, just as GetStorelnformation returns the size and free space
of the object store to a Windows CE program, CeGetStorelnformation returns that same
information about a connected Windows CE device to a PC-based application. The
functions are divided into a number of groups that I'll talk about in the following pages.
Since the actions of the functions are identical to their Windows CE-based counterparts,

637

Part Ill

638

I won't go into the details of each function. Instead, although I'll list every RAPI func
tion, I'll explain at length only the functions that are unique to RAPI.

RAPI system information functions
The RAPI database functions are shown in the following list. I've previously described
most of the counterpart Windows CE functions shown, with the exception of CeGet
Password and CeRapilnvoke. The CeGetPassword function, as well as its Windows CE
counterpart GetPassword, compares a string to the current system password. If the
strings match, the function returns TRUE. The comparison is case specific. Another
function you might not recognize is CeGetDesktopDeviceCaps. This is the RAPI
equivalent of GetDeviceCaps on the Windows CE side.

System information functions

CeCetVersionEx

CeGlobalMemoryStatus

CeCetSystemPowerStatusEx

CeCetStorelnformation

CeCetSystemMetrics

CeCetDesktopDeviceCaps

CeGetSystemlnfo

CeCheckPassword

CeCreateProcess

RAPI file and directory management functions
The following list shows the RAPI file management functions, illustrating that almost
any file function available to a Windows CE application is also available to a PC-based
program.

File and directory management functions

CeFindAllFiles

CeFindFirstFile

CeFindNextFile

CeFindClose

CeGetFileAttributes

CeSetFileAttri but es

CeCreateFile

CeReadFile

Ce WriteFile

CeCloseHandle

CeSetFilePointer

CeSetEndO.fFile

Chapter 11 Connecting to the Desktop

CeCreateDirecto1y

CeRemove Directory

CeMoveFile

CeCopyFile

CeDeleteFile

CeGetFileSize

CeGetFileTime

CeSetFileTime

Here's a new function, CeFindAl!Files, that's not even available to a Windows
CE application. This function is prototyped as

BOOL CeFindAllFiles (LPCWSTR szPath, DWORD dwFlags,
LPDWORD lpdwFoundCount,
LPLPCE_FIND_DATA ppFindDataArray);

CeFindAllFiles is designed to enhance performance by returning all the files of a given
directory with one call rather than having to make repeated RAFI calls using
CeFindFirstFile and CeFindNextFile. The first parameter is the search string. This string
must be specified in Unicode, so if you're not creating a Unicode application, the TEXT
macro won't work because the TEXT macro produces char strings for non-Unicode
applications. In Microsoft Visual C++, prefixing the string with an L before the quoted
string as in L "*.*"produces a proper Unicode for the function even in a non-Unicode
application. For string conversion, you can use the WideCharToMultiByte and MultiByte
To WideChar library functions to convert Unicode and ANSI strings into one another.

The second parameter of the CeFindAllFiles function, dwFlags, defines the scope
of the search and what data is returned. The first set of flags can be one or more of
the following:

• FAF_A1TRIB_CIIILDREN Return only directories that have child items.

• FAF_ATIRIB_NO_HIDDEN Don't report hidden files or directories.

• FAF_FOLDERS_ONLY Return only folders in the directory.

• FAF_NO_HIDDEN_SYS_ROM1110DULES Don't report ROM-based system
files.

The second set of flags defines what data is returned by the CeFindAl!Files timc
tion. These flags can be one or more of the following:

• FAF_ATIRIBUTES Return file attributes.

• FAF_CREA110N_11ME Return file creation time.

• FAF_LASTACCESS_11ME Return file last access time.

639

Part Ill

640

• FAF_LASTWRITE_11ME Return file last write time.

• FAF_SIZE_HIGH Return upper 32 bits of file size.

• FAF_SIZE_LOW Return lower 32 bits of file size.

• FAF_OID Return the OID for the file.

• FAF_NAME Return the filename.

Just because the flags are listed above doesn't mean you can find a good use
for them. For example, the FAF _SIZE_HIGH flag is overkill, considering that few files
on a Windows CE device are going to be larger than 4 GB. The file time flags are also
limited by the support of the underlying file system. For example, the Windows CE
object store tracks only the last access time and reports it in all file time fields.

There also appears to be a bug with the FAF _ATTRIB_CHILDREN flag. This
valuable flag allows you to know when a directory contains subdirectories without
your having to make an explicit call to that directory to find out. The flag seems to
work only if the filename specification-the string to the right of the last directory
separator backslash (\)~ontains only one character. For example, the file specification

\\windows*

works with FAF _ATTRIB_CHILDREN, while

\\windows*.*

returns the same file list but the flag FILE_ATTRIBUTE_HAS_CHILDREN isn't set for
directories that have subdirectories.

The third parameter of CeFindAllFiles should point to a DWORD value that will
receive the number of files and directories found by the call. The final parameter,
ppFindDataArray, should point to a variable of type LPCE_FIND _DATA, which is a
pointer to an array of CE_FIND_DATA structures. When CeFindAllFiles returns, this
variable will point to an array of CE_FIND_DATA structures that contain the requested
data for each of the files found by the function. The CE_FIND_DATA structure is
defined as

typedef struct _CE_FIND_DATA {
DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftlastAccessTime;
FILETIME ftlastWriteTime;
DWORD nFileSizeHigh;
DWORD nFileSizelow;
DWORD dwOID;
WCHAR cFileName[MAX_PATH];

} CE_FIND_DATA;

Chapter 11 Connecting to the Desktop

The fields of CE_FIND_DATA look familiar to us by now. The only interesting
field is the dwOID field that allows a PC-based application to receive the OID of a
Windows CE file. 1bis can be used with CeGetOidGetlnfo to query more information
about the file or directory. The flags in the dwFileAttributes field relate to Windows CE
file attributes even though your application is running on a PC. This means, for ex
ample, that the FILE_ATTRIBUTE_TEMPORARY flag indicates an external storage
device like a PC Card. Also, attribute flags are defined for execute in place ROM files.
The additional attribute flag, FILE_ATTRIBUTE_HAS_CHILDREN, is defined to indi
cate that the directory contains child directories.

The buffer returned by CeFindAl!Files is originally allocated by the RAPI.DLL. Once
you have finished with the buffer, you must call CeRapiFreeBuf/er to free the buffer.

RAPI database functions
The RAPI database functions are shown in the following list. As you can see, these
functions mimic the extensive database API found in Windows CE. Here's a case in
which explicitly loading the RAPI DLL can come in handy. The many RAPI functions
that support the extended database API of Windows CE 2.1 aren't exported by older
RAPI DLLs. If your application attempts implicitly to load one of these functions, it
won't load if the PC has an older version of RAPI.DLL.

Database management functions

CeCreateDatabase

CeCreateDatabaseEx

CeDeleteDatabase

CeDeleteDatabaseEx

CeDeleteRecord

CeFindFirstDatabase

CeFindFirstDatabaseEx

CeFindNextDatabase

CeFindNextDatabaseEx

CeOidGetlnfo

CeOidGetlnfoEx

CeOpenDatabase

CeOpenDatabaseEx

CeReadRecordProps

CeReadRecordPropsEx

CeSeekDatahase

CeSetDatabaselnfo

CeSetData haselnfoE.x

Ce WriteRecordProps

Support in

Windows CE 2.1 or later

Windows CE 2.1 or later

Windows CE 2.1 or later

Windows CE 2.1 or later

Windows CE 2.1 or later

Windows CE 2.1 or later

Windows CE 2.1 or later

Windows CE 2.1 or later

(continued)

641

Part Ill

642

continued

Database management functions

CeMountDBVol

CeUnmountDBVol

CeEnumDBVofumes

CeFindAllDatahases

Support in

Windows CE 2.1 or later

Windows CE 2.1 or later

Windows CE 2.1 or later

All but one of the database functions has a Windows CE counterpart. The only
new function is CeFindAllDatabases. Like CeFindAllFiles, this function is designed
as a performance enhancement so that applications can query all the databases on
the system without having to iterate using the FindFirstDatabase and FindNext
Database functions. The function is prototyped as

BOOL CeFindAllDatabases (DWORD dwDbaseType, WORD wFlags,
LPWORD cFindData,
LPLPCEDB_FIND_DATA ppFindData);

The first parameter is the database type value, or 0, if you want to return all
databases. The wFlags parameter can contain one or more of the following flags, which
define what data is returned by the function.

• FAD_OID Returns the database OID

• FAD_FLAGS Returns the dwFlags field of the Dblnfo structure

• FAD_NAME Returns the name of the database

• FAD_TYPE Returns the type of the database

• FAD_NUM_RECORDS Returns the number of records in the database

• FAD_NUM_SORT_ORDER Returns the number of sort orders

• FAD_SORT_SPECS Returns the sort order specs for the database

The cFindData parameter should point to a WORD variable that receives the
number of databases found. The last parameter should be the address of a pointer
to an array of CEDB_FIND_DATA structures. As with the CeFindAl!Files function,
CeFindAllDatabases returns the information about the databases found in an array
and sets the ppFindData parameter to point to this array. The CEDB_FIND_DATA
structure is defined as

struct CEDB_FIND_DATA {
CEOID OidDb;
CEDBASEINFO Dblnfo;

} ;

The structure contains the OID for a database followed by a CEDBASEINFO
structure. I described this structure in Chapter 7, but I'll repeat it here so that you can
see what information can be queried by FindAllDatabases.

Chapter 11 Connecting to the Desktop

typedef struct _CEDBASEINFO {
DWORD dwFlags;
WCHAR szDbaseName[CEDB_MAXDBASENAMELEN];
DWORD dwDbaseType;
WORD wNumRecords;
WORD wNumSortOrder;
DWORD dwSize;
FILETIME ftlastModified;
SORTORDERSPEC rgSortSpecs[CEDB_MAXSORTORDER];

CEDBASEINFO;

As with CeFindAl!Files. you must free the buffer returned by CeFindAl!Databases with
a call to CeRapiFreeBuffer.

One other function in this section requires a call to CeRapiFreeBuffer. The func
tion CeReadRecordProps, which returns properties for a database record, allocates
the buffer where the data is returned. If you call the RAPI version function, you need
to call CeRapiFreeBuffer to free the returned buffer.

RAPI registry management functions
The RAPI functions for managing the registry are shown in the following list. The
functions work identically to their Windows CE counterparts. But remember that all
strings, whether they are specifying keys and values or strings returned by the func
tions, are in Unicode.

Registry management functions

CeRegOpenKeyEx

CeRegEnumKeyE.x:

CeRegCreateKeyEx

CeRegCloseKey

CeRegDeleteKey

CeRegEnum Value

GeRegDelete Value

GeRegQuerylnfoKey

CeRegQueryValueEx

CeRegSetValueEx

RAPI shell management functions
The RAPI shell management functions are shown in the first list on the following page.
While I'll cover the Windows CE-equivalent functions in the next chapter, you can
see that the self-describing names of the functions pretty well document themselves.
The CeSHCreateShortcut and CeSHGetShortcutTarget functions allow you to create
and query shortcuts. The other two functions, CeGetTempPath and CeGetSpecial
FolderPath, let you query the locations of some of Lhe special-purpose directories on
the Windows CE system, such as the programs directory and the recycle bin.

643

Part Ill Communications

Shell management .functions

CeSHCreateShortcut

CeSHGetShortcutTarget

CeGetTempPath

CeGetSpecia/FolderPath

RAPI window management functions
The final set of predefined RAPI functions allow a desktop application to manage the
windows on the Windows CE desktop. The e functions are shown in the following List.
The functions work similarly to their Windows CE functions . The CeGetWindow func
tion allows a PC-based program to query the windows and child windows on the desk
top while the other functions allow you to query the values in the window structures.

Window management .functions

CeGet Window

CeGet Window Long

CeGet Window Text

CeGetClassName

The RapiDir Example Program

644

The RapiDir example is a PC-console application that displays the contents of
a directory on an attached Windows CE device. The output of RapiDir, shown in
Figure 11-1, resembles the output of the standard DIR command from a PC command
line. RapiDir is passed one argument, the directory specification of the directory on
the Windows CE machine. The directory specification can take wildcard arguments
such as •.exe if you want, but the program isn't completely robust in parsing the di
rectory specification. Perfect parsing of a directory string isn 't the goal of RapiDir
demonstrating RAPI is.

Figure 11-1 . The output of RapiDir.

Chapter 11 Connecting to the Desktop

The source code for RapiDir is shown in Figure 11-2. The program is a com
mand line application and therefore doesn't need the message loop or any of the other
structure seen in a Windows-based application. Instead the WinMain function is re
placed by our old C friend, main.

Remember that RapiDir is a standard Win32 desktop application. It won't even
compile for Windows CE. On the other hand, you have the freedom to use the copi
ous amounts of RAM and di k space provided by the comparatively huge desktop
PC. When you build RapiDir, you 'll need to add rap i.lib to the libraries that the linker
uses. Otherwise, you'll get unresolved external errors for all the RAPI fu nctions you
caU in your application.

II==
II RapiDir - Returns the contents of a directory on a Windows CE system
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include <stdio .h>
#include <rapi.h> II RAS includes

II==
II main - Program entry point
II
int main (int argc, char •• argv)

RAPI INIT ri;
char szSrch[MAX_PATH], •pPtr;
WCHAR szwDir[MAX_PATH];
CE_FINO_OATA •pfd;
DWORD i, cltems, dwTotal 0;
FI LETIME ft;
SYSTEMTIME st;
char ampm = 'a';
INT re;

II Call RapilnitEx to asynchronously start RAPI session.
ri.cbSize = sizeof Cri);
re= CeRapilnitEx C&ri);

if Crc != NOERROR) {

}

printf (TEXT C"Rapi Initialization failed\r\n"));
return 0;

II Wait 5 seconds for connect.
re= WaitForSingleObject Cri .heRapilnit, 5000);

Figure 11-2. The RapiDir source code. (continued)

645

Part 111 Communications

Figure 11-2. continued

646

if (re == WAIT_OBJECT_0) {

}

if (ri.hrRapiinit I= NOERROR)
printf <TEXT ("Rapi Initialization failed.\r\n"));
return 0:

else if (re== WAIT_TIMEOUT) {
printf (TEXT ("Rapi Initialization timed out.\r\n"));
return 0;

II If no argument, assume root directory.
if (argc > 1)

lstrcpy (szSrch, argv[l]);
else

lstrcpy (szSrch, "\\");

II Point to end of name.
pPtr = szSrch + lstrlen (szSrch) - 1;

II Strip any trailing backslash.
if (•pPtr == '\\')

• pPtr = '\0';

II Look for wildcards in filename. pPtr points to string end.
for (i = 0; (pPtr >= szSrch) && (•pPtr != '\\'); pPtr- -) {

if CC • pPtr == ' • ') I I (• pPtr == '?'))
i++;

}

II Display dir name first so that on long calls we show we're alive.
if (pPtr >= szSrch) {

char ch;
ch = • pPtr:
• pPtr = '\0';
printf (TEXT ("\r\n Directory of ls\r\n\r\n"), szSrch);
• pPtr = ch;

else if (i)
printf (TEXT ("\r\n Directory of \\\r\n\r\n"));

else
printf (TEXT ("\r\n Directory of ls\r\n\r\n"), szSrch);

II No wildcards, append *· *
if (i == 0)

lstrcat (szSrch, "\\ • . • ");

II Convert ANSI string to Unicode.
mbstowcs (szwDfr, szSrch, lstrlen (szSrch));
II RAPI call

}

Chapter 11 Connecting to the Desktop

re = CeFindAllFiles CszwDir, FAF_SIZE_LOW I FAF_NAME I
FAF_ATTRIBUTES I FA F_LASTACCESS_TIME.
&cltems, &pfdl:

II Display the results.
if Ccltems l {

for Ci = 0: i < cltems: i++) (
II Convert file time.
Fi leTimeToLocalFileTime C&pfd -> ftLastAccessT i me, &ft) :
FileTimeToSystemTime C&ft, &st);
II Adjust for AM/PM.
if (st.wHour == 0)

st.wHour = 12:
else if Cst.wHour > lll

ampm = 'p':
if (st.wHour > 12)

st .wHour -= 12:

printf (TEXT ("S02d/S02d/S02d S02d:S02dSc\t") ,
st.wMonth, st.wDay, st.wYear ,
st.wHour, st.wMinute, ampm) :

II Display dir marker or file size.
if Cpfd ->dwFileAttributes & FILE_ATTRIBUTE_DIRE CTORY)

printf CTEXT C"<DIR>\t\t "));
else {

printf (TEXT ("\tSSd "), pfd ->nFileSizeLow);
dwTotal += pfd ->nFileSizeLow;

II Display name, use Cap IS to indicate Un i code.
printf (TEXT C"SS\r\n"J, pfd ->cFileNamel:
pfd++;

printf (TEXT ("\tl10d FileCsJ\tS9d bytes\r\n\r\n"J,
cltems, dwTotal);

else
printf (TEXT ("File not Found\r\n\r\n"));

II Clean up by uninitializing RAPI.
CeRapiUninit ();
return 0;

This single procedure application first calls CeRapilnitEx to initialize the RAP!
session. I u ed the Ex version of the initialization function o that RapiDir can time
out and terminate if a connection isn't made within 5 seconds of starting the program.

647

Part Ill Communications

If I'd u d CeRapilnit in tead, th only way to terminate RapiDir if a remote CE de
vice weren 't conn cted would be a u er-unfriendly Control-C key combination.

Once the RA.PI ion i initialized, a minimal amount of work i done on the
ingle command line argument that' the earch string for the directory. Once that

work is compl te , the tring i converted into Unicode and pa sed to CeFindAl/Fi/es.
This RA.PI function then returns with an array of CE_FIND_DATA tructures that con
tain the name and requested data of the file and directories found . The data from
that array i then di played u ingprintf tatements. Finally, th RA.PI e ion i termi
nated with a call to CeRapiUninit.

If you compare the output of RapiDir with the output of the tandard DIR com
mand, you notice that RapiDir doe n't display the total byte free on the di k after
the Ii ting of file . While I could hav di played the total free space for the object
tore u ing CeGet toragelnformation, this wouldn 't work if the u r di played a di

rectory on a PCMCIA card or other external media. Window CE upport the
GetDi kFreeSpaceEx function , but the Window CE RA.PI DLL doe n't expo e this
function . To get thi information, we'll use RA.PI ' ability to call u er defined func
tion on a Windows CE y tern.

Custom RAPI Functions

648

o matter how many function the RA.PI interface support , you can alway think of
function that an application need but the RA.PI interfac doesn 't give you . Because
of thi , RA.PI provide a method for a PC application to call a u er-defined function
on the Window CE device.

You can invoke a u er-defined RA.PI function in one of two way . The fir t way
i called block mode. In block mode, you make a call to the RA.PI remote invocation
function , the function make the call to a pecified function in a pecified DLL, the
DLL function doe it thing and return , and the RA.Pl function then return to the
calling PC program with the output. The econd method i called tream mode. In
thi mode, the RA.PI call to the function returns immediately, but a connection i
maintained between th calling PC application and the Window CE DLL-ba ed func
tion. Thi method allow information to be fed back to the PC on an ongoing ba is .

Using RAPI to call a custom function
The RA.Pl function that lets you call a generic function on the Window CE device is
CeRapilnvoke, which is prototyped a

HRESULT CeRapilnvoke (LPCWSTR pDllPath, LPCWSTR pFunctionName,
DWORD cblnput , BYTE • plnput, DWORD • pcbOutput,
BYTE ••ppOutput, IRAPIStream ••ppIRAPIStream,
DWORD dwReserved);

Chapter 11 Connecting to the Desktop

The first parameter to CeRapilnvoke is the name of the DLL on the Windows CE
device that contains the function you want to call. The name must be in Unicode but
can include a path. 1f no path is specified, the DLL is assumed to be in the \ windows
directory on the device. The second parameter is the name of the function to be called.
The function name must be in Unicode and is case pecific.

The next two parameters, cb!nput and p!nput, should be set to the buffer con
taining the data and the size of that data to be sent to the Windows CE-ba ed func
tion. The pcbOutput and ppOutput parameters are both pointers-the first a pointer
to a DWORD that receives the size of the data returned and the second a pointer to a
PBYfE variable that receives the pointer to the buffer containing the data returned by
the Windows CE function. I'll describe the next-to-last parameter, pp/RAP/Stream, later.

To use CeRapi!nvoke in block mode, all you do i specify the DLL containing
the function you want to call, the name of the function, and the data and make the
call. When CeRapilnvoke returns, the data from the CE-based function will be sitting
in the buffer pointed to by your output pointer variable.

Writing a RAPI server function
You can't just call any function in a Windows CE DLL. The structure of the Windows CE
function must conform to the following function prototype:

STDAPI INT FuncName (DWORD cblnput , BYTE *pl nput, DWORD *pcbOutput ,
BYTE ** ppOutput, IRAPIStream *pIRAPIStream);

As you can see, the parameters closely match those of CeRapilnvoke. As with
CeRapilnvoke, I'll talk about the parameter p!RAP/Stream, later.

Figure 11-3 contains the source code for a very simple block-mode RAPI server.
This is a DLL and therefore has a different structure from the application files previ
ously used in the book. The primary difference is that the DLL contains a LibMain
routine instead of WinMain. The LibMain routine is ca lled by Windows whenever a
DLL is loaded or freed by a process or thread. In our case, we don't need to take any
action other that to return TRUE indicating all is well .

You should be careful to make the name of your RAPI server DLL eight charac
ters or less. Current implementations of the RAPI DLL will fail to find server DLLs with
names not in the old 8.3 format.

II==
II RapiServ - A RAPI block mode server DLL
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff

Figure 11-3. RapiServ.c, a simple block-mode RAP! server DLL. (conli nued)

649

Part 111 Communications

Figure 11-3. continued

II This ensures that the function will be exported by the DLL.
~declspec(dllexport) INT RAPIGetDiskSize CDWDRD, BYTE *· DWDRD *•

BYTE **• PVDID);

II==
II DllMain - DLL initialization entry point
II
BDDL WINAPI DllMain CHINSTANCE hinstDLL, DWDRD dwReason,

LPVDID lpvReserved) {
return TRUE:

)

II==
II RAPIGetDiskSize - Returns the disk size and free space. Called from
II PC application using RAPI.
II
INT RAPIGetDiskSize (DWORD cbinput, BYTE *pinput, DWDRD *PCbOutput,

BYTE ** ppOutput. PVOID reserved) {

650

PDWORD pdwLocal;
LPTSTR pPtr;
DWORD i;
ULARGE_INTEGER lnFree, lnTotal;

•pcbOutput = 0; II Zero output bytes for now.

II See if proper zero -terminated string.
pPtr = (LPTSTR)plnput;
for (i = 0; i < cblnput I 2; i++)

if (!•pPtr++)
break:

II If not zero terminated or if zero length. return error.
if ((i >= cbinput I 2) I I Ci 0))

return -2;

II Call the function.
if CGetDiskFreeSpaceEx ((LPTSTR)plnput, NULL. &lnTotal, &lnFree)) {

II Allocate memory for the return buffer.
pdwLocal = CPDWORD) LocalAlloc CLPTR, 2 * sizeof CDWORO));
if (pdwLoca 1) {

II Copy data from function to output buffer.
pdwLocal[0] lnTotal.LowPart:
pdwLocal[l] = lnFree.LowPart;

Chapter 11 Connecting to the Desktop

} el se

II Specify s1ze and buffer .
•pcbOutput = 2 • s1zeof CDWORD);
•ppOutput = CPBYTE)pdwlocal;

else
return GetLastError();

return GetLa stE rror() ;
return 0;

The unusual prefix before the function prototype for RAP!GetDiskSize,

_declspec (dllexport) INT RAPIGetDiskSize ...

tells the linker to export the function listed so that external modules can ca ll the func
tion directly. This declaration is a shortcut for the old way of defining exports in a
separate function definition (DEF) file used in Win16 programming. While this short
cut is convenient, sometimes you still need to fall back on a DEF file .

The function of RapiServ is to make ava ilable that GetDiskFreeSpaceEx function
we needed in the RapiDir example application. The erver function, RAP!GetDiskSize,
has the same prototype I described earlier. The input buffer is used to pass a direc
tory name to the DLL while the output buffer return the total disk space and the free
disk space for the directory passed. The format of the input and output buffers is totally
up to you. However, the output buffer should be allocated using LocalAlloc o that the
RAPI library can free it after it has been used. The value returned by RAP!GetDiskSize
is the value that's returned by the CeRapilnvoke function to the PC-based application.

On the PC side, a call to a block mode RAP! server function looks like the
following.

11----- -------- ----- --------------------- --------------------------------
11 MyCeGetDiskFreeSpaceEx - Homegrown implementation of a RAP!
II GetDiskFreeSpace function
II
BDDL MyCeGetDiskFreeSpaceEx (LPWSTR pszDir, PDWORD pdwTotal,

PDWORD pdwFree) {
HRESULT hr;
DWORD dwl n, dwOut;
LPBYTE plnput ;
LPWSTR pPtr ;
PDWORD pOut:

II Get length of Unicode string.
for Cdwln = 2 , pPtr = pszDir; *pPtr++; dwln+=2);

(continued)

651

Part Ill

652

}

II Allocate buffer for input.
pinput = LocalAlloc (LPTR, dwln);
if (! plnput)

return FALSE;
II Copy directory name into input buffer.
memcpy (pinput, pszDir, dwin);

II Call function on Windows CE device.
hr= CeRapiinvoke (L"\\RapiServ", L"RAPIGetDiskSize". dwln,

pinput, &dwOut, (PBYTE *)&pout, NULL, 0);

II If successful, return total and free values.
if(hr==0){

}

*pdwTotal = p0ut[0];
*pdwFree = pOut[l];
CeRapiFreeBuffer (pOut);
return TRUE;

return FALSE;

This routine encapsulates the call to CeRapilnvoke so that the call looks just like
another CE RAPI call. The code in this routine simply computes the length of the
Unicode string that contains the directory specification, allocates a buffer and copies
the string into it, and passes it to the CeRapilnvoke function. When the routine re
turns, the return code indicates success or failure of the call. CeRapilnvoke frees the
input buffer passed to it. The data is then copied from the output buffer and that buffer
is freed with a call to CeRapiFreeBuffer.

Throughout this section, I've put off any explanation of the parameters refer
ring to IRAPIStream. In fact, in the example code above, the prototype for the server
call, RAPJGetDiskSize, simply typed the p!RAP!Stream pointer as a PVOID and ignored
it. In the client code, the CeRapilnvoke call passed a NULL to the pp!RAP!Stream
pointer. This treatment of the !RAP/Stream interface is what differentiates a block
mode call from a stream-mode call. Now let's look at the !RAP/Stream interface.

Stream mode
Stream-mode RAPI calls are different from block mode in that the initial RAPI call
creates a link between the PC application and the server routine on the Windows CE
device. When you call CeRapilnvoke in stream mode, the call returns immediately.
You communicate with the server DLL using an /RAP/Stream interface. You access

Chapter 11 Connecting to the Desktop

this interface using a pointer returned by the CeRapilnvoke call in the variable pointed
to by pp/RAP/Stream.

The /RAP/Stream interface is derived from the standard COM !Stream interface.
The only methods added to !Stream to create !RAP/Stream are SetRapiStat and
GetRapiStat, which let you set a timeout value for the RAPI communication. Fortu
nately, we don't have to implement an /RAP/Stream interface either on the client side
or in the server DLL. This interface is provided for us by the RAPI services as a way to
communicate.

Following is a call to CeRapilnvoke that establishes a stream connection and
then writes and reads back 10 bytes from the remote server DLL.

DWORD dwin, dwOut, cbBytes;
IRAPIStream *PIRAPIStream;
BYTE bBuff[BUFF_SIZE];
PBYTE pout;
HRESULT hr;

II RAPI call
hr= CeRapiinvoke (L"ServDLL", L"RAPIRmtFunc", dwln, bBuff,

&dwOut, &pOut, &pIRAPIStream, 0);
if (hr == S_OK) {

}

II Write 10 bytes.
pIRAPIStream->Write (bBuff, 10, &cbBytes);
II Read data from server.
pIRAPIStream->Read (bBuff, 10, &cbBytes);

When establishing a stream connection, you can still use the input buffer to pass
initial data down to the remote server. From then on, you should use the Read and
Write methods of /RAP/Stream to communicate with the server.

The RapiFind Example Program

The RapiFind example program searches the entire directory tree of a Windows CE
device for files matching a search specification. The program is in two parts: a RAPI
server DLL, FindSrv.DLL, and a console-based, Win32 application, RapiFind. The
program works by passing a search string on the command line. RapiFind returns
any files on the attached Windows CE device that match the search string. If the search
specification includes a directory, only that directory and any of its subdirectories are
searched for matching files. Figure 11-4 on the following page shows the output of
RapiFind.

653

Part Ill Communications

Figure 11-4. Tbe output of RapiFind.

You'll notice that the following example is written in C++, and so are the rest of
the examples in this chapter. Actually, almost all the code in both files is standard C,
but the C++ extensions are u ed to reference the IRAP!Stream interface. I could have
written a C-equivalent structure to access the interface, but I could see little rea on to
avoid using C++ in this case. (A an aside, mo t COM interface defined in Win32
have C-interface equivalents for those of us who still like C.) First, let's look at the
server DLL, FindSrv, shown in Figure 11-5.

II==
II FindSrv - A RAP! stream server DLL
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff

II Returns number of elements
#define dim{x) Csizeof{x) I sizeof{x[0]))

11-- --------------- ------------
11 Not included in a server-side include file

Figure 11-5. FindSrv.cpp, a stream-mode RAP! server DU.

654

Chapter 11 Connecting to the Desktop

typedef enum tagRAPISTREAHFLAG
STREAH_TIHEOUT_READ

} RAPISTREAHFLAG;

DECLARE_I NTERFACE_ (lRAPIStream, !Stream)
{

} ;

STDHETHODCSetRapiStat)(THIS_ RAPISTREAHFLAG Flag,
DWORD dwValue) PURE;

STDHETHOD (GetRapiStat)(THIS_ RAPISTREAHFLAG Flag,
DWORD •pdwValue) PURE;

11 ----------------------------- ---- --------------------------- -----------
11 Function prototypes declared as exports from the DLL.
II Bracket so that function name won't be mangled by C++.
extern "C" {
~declspec(dllexport) INT RAPIFindFile (DWORD cblnput, BYTE • plnput,

DWORD • pcbOutput, BYTE ••ppOutput,
IRAPIStream •pIRAPIStream);

II==
II DllHa i n - Dll initialization entry point
II
BOOL WINAPI DllHain (HINSTANCE hinstDLL, DWORD dwReason,

LPVOID lpvReserved) (
return TRUE;

}

11 -- -------------
11 WriteToClient - Writes a command and optional string to the client
II
int WriteToClient (INT nCmd, INT nSize, LPTSTR pszStr,

IRAPIStream • plRAPIStream) {
INT nBuff;
DWORD cbBytes;
HRESULT hr;

II Write command code.
hr = pIRAPIStream->Write (&nCmd, sizeof (nCmd), &cbBytes);

II Write size value.
hr = pIRAPIStream->Write (&nSize, sizeof CnSize), &cbBytes);

II Write length of string.
nBuff = (lstrlen CpszStr) + 1) • sizeof (TCHAR>:
hr = pIRAPIStream->Write (&nBuff, sizeof CnBuff) , &cbBytes);

(continued)

655

Part Ill Communicat ions

Figure 11-5. continued

II Write string.
hr= pIRAPIStream->Write CpszStr , nBuff , &cbBytes);
return 0:

int nFlag;
11----- --------------- ------------------------------ -------------- -------
11 SrchDirectory - Recursive routine that searches a directory and all
II child dirs for matching files
II
int SrchDirectory CLPTSTR pszDir, IRAPIStream • pIRAPIStream) {

WIN32_FIND_DATA fd;

656

TCHAR szNew[MAx_PATH];
INT i, re, nErr = 0;
HANDLE hFind:
TCHAR •pPtr, •pSrcSpec;

II Separate subdirectory from search specification.
for CpSrcSpec = pszDir + lstrlen CpszDir); pSrcSpec >= pszDir:

pSrcSpec --)
if C•pSrcSpec ==TEXT C'\\'))

break;

II Copy the search specification up to the last directory sep char.
if CpSrcSpec <= pszDir)

lstrcpy (szNew, TEXT ("\\"));
else C

for Ci = 0; Ci < dim(szNew)-10) &&
CCpszDir+i) <= pSrcSpec>: i++)

szNew[i J = • CpszDir+i);
szNew[i] =TEXT C'\0'):

pPtr = szNew + lstrlen CszNew);

II Report directory we're searching.
WriteToClient (2, 0, szNew, pIRAPIStream);

II Find matching files.
hF1nd = FindF1rstF1le CpszDir, &fd);
if ChF1nd I= INVALID_HANDLE_VALUE) (

do
II Report all matching files.
if C!Cfd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY))

WriteToClient Cl, fd .nFileSizelow, fd.cFileName,
pIRAPIStream);

Chapter 11 Connecting to the Desktop

}

re= FindNextFile (hfind, &fd);
while (re);

FindClose Chfind);
else {

re= GetlastError();
if ((re I= ERROR._FILE_NOT_FOUND) &&

(re I= ERROR._NO_MORE_FILES)) (
TCHAR szDbg[64]:
wsprintf CszDbg, TEXT ("lfind Error:%d"), re);
WriteToClient (99, 0, szDbg, pIRAPIStream);
return -1:

II Create generic search string for all directories.
lstrcat CszNew, TEXT (" • . •"));

hfind = Findfirstfile CszNew, &fdl:
if (hfind I= INVALID_HANDLE_VALUEJ {

do (
if (fd.dwfileAttributes & FILE_ATTRIBUTE_DIRECTORYJ {

II Recurse to the lower directory.

}

lstrcpy CpPtr, fd.cfileNamel:
lstrcat CpPtr, pSrcSpecJ;
nErr = SrchDirectory CszNew, pIRAPIStream);
if CnErr) break;
•pPtr =TEXT C'\0 ');

re = FindNextfile Chfind, &fdl:
while (re):

FindClose (hfind):
else {

re= GetlastError();
if ((re I= ERROR._FILE_NOT_FOUND) &&

Crc I= ERROR._NO_MORE_FILESJJ (
TCHAR szDbg[64];

}

wsprintf CszDbg, TEXT C"2Find Error:%d"), re);
WriteToClient (99, 0 , szDbg, pIRAPIStreaml:
return -1:

return nErr:

(continued)

657

Part Ill Communications

Figure 11-5. continued

II==
II RAPIFindFile - Searches the device for matching files. Called from
II PC application using RAP!.
II
INT RAPIFindFile CDWORD cblnput, BYTE •plnput, OWORD •pcbOutput,

BYTE ••ppOutput, IRAPIStream •pIRAPIStream) {

658

INT nBuff;
DWORD i, cbBytes;
TCHAR • pPtr;
HRESULT hr:

• pcbOutput = 0:
II See if proper zero -terminated string.
pPtr = (LPTSTR)plnput;
for Ci = 0; i < cblnput I 2: i++)

if Cl • pPtr++)
break;

II If not zero terminated or if zero length, return error.
if ((i >= cblnput I 2) I I Ci 0))

return -2:
nFlag = 0:
II Search for files
SrchDirectory ((LPTSTR) plnput, pIRAPIStream):

II Write end code. Cmd 0 -> end of search
nBuff = 0;
hr = pIRAPIStream->Write C&nBuff, sizeof CnBuff), &cbBytes);
return 0;

As with the earlier RAPI server DLL, FindSrv is short and to the point. The dif
ferences between this server and the block erver can be een early in the file . The
IRAPIStream interface isn't defined in any of the include files used by Windows CE
applications, so this interface is derived at the top of the file from IStream. Immedi
ately following the interface declaration is the exported function prototype. otice
that the prototype is enclosed in an extern C bracket. This prevents the default man
gling of the function name that the C++ precompiler would normally perform. We
need the name of the function unmangled so that it's a known name to the client.

The exported RAPI function is RAPJFindFile, which you can see at the end of
the source code. This routine does little more than check to see that the search string
is valid before it calls SrchDirectory, a function internal to the DLL. SrchDirectory is
a recursive function that searches the directory defined in the search specification and

Chapter 11 Connecting to the Desktop

all subdirectories underneath. When a file is found that matches the search specifica
tion, the name and size of the file is sent back to the client caller using the Write method
of !RAP/Stream. The format of the data transmitted between the client and seiver is
up to the programmer. In this case, I send a command word, followed by the file
size, the length of the name, and finally the filename itself. The command word gives
you a minimal protocol for communication with the client. A command value of 1
indicate a found file, a value of 2 indicates the seiver is looking in a new directory,
and a value of 0 indicates that the search is complete.

The source code for the client application, RapiFind, is shown in Figure 11-6.

II==
II RapiFind - Searches for a file or files on a Windows CE system
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include <stdio.h>
#include <rapi.h> II RAS includes

II==
II main - Program entry point
II
int main (int argc, char ••argv)

RAPIINIT ri;
char szSrch[MAX_PATH], •pPtr;
WCHAR szwDir[MAX_PATH];
WCHAR szName[MAX_PATH];
DWORD i, dwTotal = 0, dwFiles 0, dwln, dwOut, cbBytes:
IRAPIStream •plRAPIStream;
PBYTE pinput, pOut;
HRESULT hr:
INT re, nCmd, nSize;

II If no argument, fail.
if Cargc < 2) {

printf ("\r\nUSAGE: %s <search spec>\r\n\r\n", argv[0]);
return -1 ;

lstrcpy (szSrch, argv[l]);

II Call RapiinitEx to asynchronously start RAPI session.
ri.cbSize = sizeof Cri);
re= CeRapiinitEx C&ri);

Figure 11-6. RapiFind.cpp, a stream-mode RAPI client application. (continued)

659

Part Ill Communications

Figure 11-6. continued

660

if (re != NOERROR)

}

printf <TEXT ("Rapi Initialization failed\r\n"));
return 0:

II Wait 5 seconds for connect.
re= WaitForSingleObject (ri.heRapiinit, 5000);
if (re == WAIT_OBJECT_0) {

if (ri.hrRapiinit != NOERROR) {

}

printf (TEXT ("Rapi Initialization failed\r\n")):
return 0:

} else if Crc == WAIT_TIHEOUT) {

}

printf (TEXT ("Rapi Initialization timed out.\r\n"));
return 0:

II Point to end of name.
pPtr = szSrch + lstrlen (szSrch) - 1:

II Strip any trailing backslash.
if (*pPtr == '\\')

*pPtr = '\0' :

II Look for wildcards in filename. pPtr points to string end.
for Ci = 0: CpPtr >= szSrch) && (*pPtr I= '\\'): pPtr--) {

if ((*pPtr == '*') I I (*pPtr == '?'))
i++:

}

if (pPtr <= szSrch)
lstrcpy (szSrch, TEXT ("\\"));
lstrcat (szSrch, argv[l]);

if (i) {

printf (TEXT C"\r\n Searching for Ss\r\n\r\n"), pPtr+l);
else

printf (TEXT ("\r\n Searching in Ss\r\n\r\n"), szSrch):

II No wildcards, append *· *
if (i == 0)

lstrcat (szSrch, "*. *"):

II Convert ANSI string to Unicode. At the same time, copy it
II into a discardable buffer for CeRapiinvoke.
dwin = lstrlen (szSrch)+l:

Chapter 11 Connecting to the Desktop

plnput = CPBYTE)LocalAlloc CLPTR, dwln * sizeof CWCHAR));
if Clplnput) {

printf CTEXT C"\r\nOut of memory\r\n"));
return -1:

mbstowcs ((LPWSTR)plnput, szSrch, dwln):
dwln •= sizeof CWCHAR>:

II RAPI call
hr= CeRapilnvoke (L"\\FindSrv", L"RAPIFindFile", dwln,

plnput. &dwOut. &pout, &pIRAPIStream, 0>:
if Chr == S_OK) {

II Read command.
pIRAPIStream->Read C&nCmd, sizeof CnCmd), &cbBytes);
while CnCmd) {

}

switch (nCmd) {
II Display found file.
case 1:

II Read length of file.
pIRAPIStream->Read (&1, sizeof Ci>. &cbBytes);
dwTotal += 1:
dwFiles++:

II Read length of filename.
pIRAPIStream->Read C&nSize. sizeof CnSize), &cbBytes);
II Read name itself.
pIRAPIStream->Read CszName, nSize, &cbBytes) ;

II Print directory and name.
printf (TEXT ("S9d\tSSSS\r\n"), 1, szwDir, szName);
break:

II Display name of directory we're currently searching.
case 2:

)

II Read and discard dummy length value.
pIRAPIStream->Read C&nSize. sizeof CnSize). &cbBytes):
II Read length of directory.
pIRAPIStream->Read C&nSize, sizeof CnSize), &cbBytes):
II Read directory name itself.
pIRAPIStream->Read CszwDir, nSize. &cbBytes):
break:

II Read next command.
pIRAPIStream->Read C&nCmd, sizeof CnCmd), &cbBytes):

(continued)

661

Part Ill Communications

Figure 11-6. continued

} else if Chr == ERROR_FILE_NQT_FOUND)
printf (TEXT ("The RAPI server DLL FindSrv cou l d not be found \

on the CE target device.\r\n"));

}

else
printf (TEXT C"CeRapilnvoke returned Id"), hr);

printf <TEXT ("\ r\nFound Id file(s). Total of Id bytes. \r\n\r\n").
dwFiles, dwTotal);

II Clean up by uninitializing RAPI .
CeRapiUninit ();
return 0;

The call to CeRapi!nvoke return a pointer to an IRAP!Stream interface that's then
used to read data from the server. The client reads one integer value to determine whether
the following data is a found file, a report of the current search directory, or a report
that the search has ended. With each command, the appropriate data is read using the
Read method. The result of the search is then reported using prinif statements.

While you could implement the same file find function of RapiFind using a block
mode connection, the stream format has a definite advantage in this ca e . By report
ing back results as files are found, the program lets the user known that the program
is executing correctly. If the program were designed to use a block-mode call, RapiFind
would appear to go dead while the server DLL completed its entire search, which
could take 10 or 20 seconds.

As I mentioned in the explanation of CeRapi!nit, a call to this function doesn't initiate
a connection to a device. You can, however, be notified when a connection to a Win
dows CE device is established. There are ways, both on the PC and on the Windows CE
device, to know when a connection is made between the two systems. After a brief look
at CeUtil, which provides some handy helper functions for PC applications dealing with
Windows CE devices, I'll talk about connection notifiers in the next section.

THE CEUTIL FUNCTIONS

662

Windows CE Services uses the PC registry to store voluminous amounts of informa
tion about the Windows CE devices that have partnered with the PC. Windows CE
Services also uses the registry to store extensive configuration information. While most
of these registry keys are documented, if you access them by name you 're assuming
that those key names will alway remain the same. This might not be the case, espe
cially in international versions of Window where registry keys are sometimes in a
different language.

Chapter 11 Connecting to the Desktop

The CeUtil DLL exports functions that provide an abstraction layer over the
registry keys used by Windows CE Services. Using this DLL allows a PC application
to query the devices that are currently registered and to add or delete registry values
underneath the keys that hold data for specific devices. The CeUtil DLL doesn't com
municate with a remote Windows CE device; it only looks in the PC registry for infor
mation that has already been put there by Windows CE Services.

The keys in the registry related to Windows CE Services are separated into either
HKEY _LOCAL_MACHINE, for generic configurations such as the initial configuration
for a newly registered device, or HKEY_CURRENT_USER, where the configuration
information for the already registered devices is located. When a new device is reg
istered, CE Services copies the template in HKEY _LOCAL_MACHINE to a new subkey
under HKEY_CURRENT_USER that identifies the specific device.

In general, you register a new filter in the keys under HKEY _LOCAL_MACHINE
to ensure that all devices that are registered in the future also use your filter. You use
the registry entries under HKEY_CURRENT_USER to register that filter for a specific
device that was already registered before you installed that same filter.

Accessing Windows CE Services registry entries
To open one of the many registry keys that hold connection information, you can
use this function:

HRESULT CeSvcOpen (UINT uSvc, LPTSTR pszPath, BOOL fCreate,
PHC ESVC phSvc);

The first parameter of this function is a flag that indicates which predefined key you
want to open. The available flags are listed below.

Keys under HKEY_LOCAL_MACHINE that apply to generic Windows CE
Services configuration information

• CESVC_ROOT_MACHINE Windo~vs CE Services root key under HKEY _
LOCAL_MACHINE

• CESVC_FILTERS Root key for filter registration

• CESVC_CUSTOM_MENUS Root key for custom menu registration

• CESVC_S.ERVICES_COMMON Root key for services

• CESVC_SYNC_COMMON Root key for synchronization services registration

Keys under HKEY _CURRENT _USER that apply to specific Windows CE
devices that are partnered with the PC

• Ch'SVC_ROOT_USER. Windows CE Services root key under HKEY_LOCAL_
USER

• CESVC_DEVICES Root key for individual device registration

663

Part Ill Communications

664

• CESVC_DEVICEX Root key for a specific device

• CESVC_DEVICE_SELECTED Root key for the device currently selected in
the Windows CE Services window

• CESVC_SERVICES_USER Root services subkey for a specific device

• CESVC_SYNC Synchronization subkey for a specific device

Of the many registry keys that can be returned by CeSvcOpen, the ones I'll be
using throughout the chapter are CESVC_FILTERS, the key in which a filter is regis
tered for all future devices; CESVC_DEVICES, the key in which information for all reg
istered devices is located; and CESVC_DEVICEX, which is used to open keys for a specific
registered devices. The other flags are useful for registering synchronization objects as
well as for registering general Windows CE Services configuration information.

The second parameter to CeSvcOpen is pszPath. This parameter points either
to the name of a subkey to open underneath the key specified by the uSvc flag or to
a DWORD value that specifies the registered Windows CE device that you want to
open if the uSvc flag requires that a device be specified. The /Create parameter should
be set to TRUE if you want to create the key being opened because it currently doesn't
exist. If this parameter is set to FALSE, CeSvcOpen fails if the key doesn't already exist
in the registry. Finally, the phSvc parameter points to a CESVC handle that receives
the handle of the newly opened key. While this isn't typed as a handle to a registry
key (an HKEY), the key can be used in both the CeUtil registry functions as well as
the standard registry functions.

CeSvcOpen returns a standard Win32 error code if the function fails. Otherwise,
the key to the opened registry key is placed in the variable pointed to by phSvc.

You can open registry keys below those opened by CeSvcOpen by calling
CeSvcOpenEx. This function is prototyped as

HRESULT CeSvcOpenEx CHCESVC hSvcRoot, LPTSTR pszPath, BOOL fCreate,
PHCESVC phSvc);

The parameters for this closely mirror those of RegOpenKey. The first parame
ter is a handle to a previously opened key. Typically, this key would have been opened
by CeSvcopen. The second parameter is the string that specifies the name of the sub key
to be opened. Notice that since we're running on the PC, this string might not be a
Unicode value. The /Create parameter should be set to TRUE if you want the key to
be created if it doesn't already exist. Finally, the phSvc parameter points to a CESVC
handle that receives the handle to the opened key.

When you have finished with a key, you should close it with a call to this function:

HRESULT CeSvcClose CHCESVC hSvc);

The only parameter is the handle you want to close.

Chapter 11 Connecting to the Desktop

Enumerating registered devices
Of course, the requirement to specify the device ID value in CeSvcOpen begs the
question of how you determine what devices have already been partnered with the
PC. To determine this, you can use the function

HRESULT CeSvcEnumProfiles (PHCESVC phSvc, DWORD lProfilelndex,
PDWORD plProfile);

The first parameter to CeSvcEnumProfiles is a pointer to a CESVC handle. The
handle this parameter points to is uninitiated the first time the function is called.
The function returns a handle that must be passed in subsequent calls to CeSvc
EnumProfiles. The second parameter is an index value. This value should be set to 0
the first time the function is called and incremented for each subsequent call. The
final parameter is a pointer to a DWORD that receives the device ID for the regis
tered device. This value can be used when calling CeSvcOpen to open a registry key
for that device.

Each time the function is called, it returns NOERROR if a new device ID is re
turned. When all devices have been enumerated, CeSvcEnumProfiles returns ERROR_
NO_MORE_ITEMS. You should be careful to continue calling CeSvcEnumProfiles until
the function returns ERROR_NO_MORE_ITEMS so that the enumeration process will
close the handle parameter pointed to by phSvc. If you want to stop enumerating after
you've found a particular device ID, you'll need to call CeSvcClose to close the hSvc
handle manually.

The following routine enumerates the Windows CE devices that have been reg
istered on the PC. The program enumerates all the registered Windows CE devices
and prints out the name and device type of each of the devices. The program uses
the function CeSvcGetString, which I'll describe shortly.

int PrintCeDevices (void) {
HCESVC hSvc, hDevKey;
TCHAR szName[128], szType[64];
DWORD dwPro;
INT i;

II Enumerate each registered device.
i = 0;
while (CeSvcEnumProfiles (&hSvc, i++, &dwPro) == 0) {

II Open the registry key for the device enumerated.
CeSvcOpen (CESVC_DEVICEX, (LPTSTR)dwPro, FALSE, &hDevKey);

II Get the name and device type strings.
CeSvcGetString (hDevKey, TEXT ("DisplayName"),

szName, dim(szName));

(continued)

665

Part Ill Comnmnications

666

CeSvcGetString (hDevKey, TEXT ("DeviceType"),
szType, dim(szTypell:

II Print to the console.
printf (TEXT ("Name: %s\t\tType: %s"J, szName, szTypel:

II Close the key opened by CeSvcOpen.
CeSvcClose (hDevKey);

return i-1: II Return the number of devices found.

Reading and writing values
The remainder of the CeUtil library functions concern reading and writing values in
the registry. In fact, you can skip these functions and use the registry functions di
rectly, but the CeSvcxxx functions are a bit simpler to use. These functions allow you
to read and write three of the data types used in the registry, DWORD, string, and
binary data. These just happen to be the only data types used in the values under the
Windows CE Services keys. The functions are all listed here:

HRESULT CeSvcGetDword (HCESVC hSvc, LPCTSTR pszValName,
LPDWORD pdwVal);

HRESULT CeSvcSetDword (HCESVC hSvc, LPCTSTR pszValName,
DWORD dwVal);

HRESULT CeSvcGetString (HCESVC hSvc, LPCTSTR pszValName,
LPTSTR pszVal. DWORD cbVal);

HRESULT CeSvcSetString (HCESVC hSvc, LPCTSTR pszValName,
LPCTSTR pszVall:

HRESULT CeSvcGetBinary (HCESVC hSvc. LPCTSTR pszValName,
LPBYTE pszVal, LPDWORD pcbVal);

HRESULT CeSvcSetBinary (HCESVC hSvc, LPCTSTR pszValName,
LPBYTE pszVal. DWORD cbVal);

The parameters for these functions are fairly self-explanatory. The first parame
ter is the handle to an open key. The second parameter is the name of the value being
read or written. The third parameter specifies the data or a pointer to where the data
will be written. The fourth parameter on some of the functions specifies the size of
the buffer for the data being read or, in the case of CeSvcSetBinary, the length of the
data being written.

One final function in the Ce Util library is

HRESULT CeSvcDeleteVal (HCESVC hSvc, LPCTSTR pszValName);

Chapter 11 Connecting to the Desktop

This function, as you might expect, lets you delete a value from the registry. The
parameters are the handle to an open key and the name of the value to be deleted.

The CeUtil library doesn't provide any function that you couldn't do yourself
with a bit of work and the standard registry functions. However, using these func
tions frees you from having to depend on hard-coded registry key names that could
change in the future. I strongly advise using these functions whenever possible when
you're accessing registry entries that deal with Windows CE Services.

CONNECTION NOTIFICATION
Windows CE Services gives you two ways of notifying PC-based applications when a
connection is made with a Windows CE device. The first method is to simply launch
all the applications listed under a given regist1y key. When the connection is broken,
all applications listed under another key are launched. This method has the advan
tage of simplicity at the cost of having the application not know why it was launched.

The second method of notification is a COM-interface method. This notifica
tion method involves two interfaces: JDccMan, provided by RAPI.DLL, and IDcc
ManSink, which must be implemented by the application that wants to be notified.
This method has the advantage of providing much more information to the applica
tion as to what is actually happening at the cost of having to implement a COM-style
interface.

Registry Method

To have your PC application launched when a connection is made to a Windows CE
device, simply add a value to the PC registry under the following key:

[HKEY_LOCAL_MACHINEJ
\Software\Microsoft\Windows CE Services\AutoStartOnConnect

I'll show you shortly how to access this key using CeSvcOpen so that the pre
cise name of the key can be abstracted. The name of the value under AutoStart
OnConnect can be anything, but it must be something unique. The best way to ensure
this is to include your company name and product name plus its version in the value
name. The actual data for the value should be a string that contains the fully speci
fied path for the application you want to launch. The string can only be the filename;
appending a command line string causes an error when the program is launched. For
example, to launch a myapp program that's loaded in the direct01y c:\windowsce\
tools\syncstu:ff, the value and data might be

MyCorpThisApp c:\windowsce\tools\syncstuff\myapp.exe

667

Part Ill Communications

668

To have a command line passed to your application, you can have the entry in
the registery point to a shortcut that will launch your application. The entry in the
registry can't pass a command line, but shortcuts don't have that limitation.

You can have an application launched when the connection is broken between
the PC and the Windows CE device by placing a value under the following key:

[HKEY_LOCAL_MACHINE]
\Software\Microsoft\Windows CE Services\AutoStartOnDisconnect

The format for the value name and the data is the same as the format used in the
AutoStartOnConnect key.

A routine to set these values is simple to write. The example routine below uses
the CeSvcOpen and CeSvcSetString functions to write the name of the module to the
registry. Remember that since this routine runs on a PC, and therefore perhaps under
Windows NT, you'll need administrator access for this routine to have write access to
the registry.

II
II RegStartOnConnect - Have module started when connect occurs.
II
LPARAM RegStartOnConnect (HINSTANCE hlnst) {

TCHAR szName[MAX_PATHJ:

}

HCESVC hSvc;
HRESULT re;

II Get the name of the module.
GetModuleFileName (hinst, szName, dim(szName));

II Open the AutoStartOnConnect key.
re = CeSvcOpen (CESVC_ROOT_MACH INE, "AutoSta rtOnConnect",

TRUE, &hSvc);
if (re == NOERROR) {

II Write the module name into the registry.
CeSvcSetString (hSvc, TEXT ("MyCompanyMyApp"), szName);
CeSvcClose ChSvc);

return re;

The routine above doesn't have to know the absolute location of the Windows CE
Services keys in the registry, only that the Autostart key is under CESVC_
ROOT _MACHINE. You can modify this routine to have your application started when
a connection is broken by substituting AutoStartOnConnect with AutoStartOn
Disconnect in the call to CeSvcOpen.

Chapter 11 Connecting to the Desktop

COM Method

As I mentioned before, the COM method of connection notification is implemented
using two COM interfaces-!DccMan and /DccManSink. The system implements
/DccMan, while you are responsible for implementing /DccManSink. The /DccMan

interface gives you a set of methods that allow you to control the link between the
PC and the Windows CE device. Unfortunately, most of the methods in /DccMan aren't
currently implemented. The /DccManSink interface is a series of methods that are
called by the connection manager to notify you that a connection event has occurred.
Implementing each of the methods in !DccManSink is trivial because you don't need
to take any action to acknowledge the notification.

The process of connection notification is simple. You request an /DccMan in
terface. You call a method in !DccMan to pass a pointer to your /DccManSink inter
face. Windows CE Services calls the methods in /DccManSink to notify you of events
as they occur. In this section, I'll talk about the unique methods in /DccManSink and
/DccMan, but I'll skip over the /Unknown methods that are part of every COM inter
face. For a very brief introduction to COM, read the sidebar, "COM Isn't a Four-Letter
Word" at the end of this chapter and the Appendix, "COM Basics."

The IDccMan interface
To gain access to the /DccMan interface, you need to call the COM library function
Co/nitialize to initialize the COM library. Then you make a call to CoCreatelnstance

to retrieve a pointer to the /DccMan interface. Once you have this interface pointer,
you call the method /DccMan::Advise to notify the connection manager that you want
to be notified about connection events. This method is prototyped as

HRESULT IDccMan::Advise (IDccManSink *pDccSink,
DWORD *PdwContext);

The first parameter is a pointer to an /DccManSink interface that you must have pre
viously created. I'll talk about !DccManSink shortly. The second parameter is a pointer
to a DWORD that receives a context value that you pass to another /DccMan method
when you request that you no longer be advised of events.

You can display the communications configuration dialog of Windows CE Ser
vices by calling this method:

HRESULT IDccMan::ShowCommSettings (void);

There are no parameters. This method simply displays the communications dialog
box. The user is responsible for making any changes to the configuration and for
dismissing the dialog box.

669

Part Ill

670

When you no longer need connection notifications, you call the Unadvise

method, prototyped as

HRESULT IDccMan::Unadvise (DWORD dwContext);

The only parameter is the context value that was returned by the Advise method. After
you have called Unadvise, you no longer need to maintain the !DccManSink interface.

The IDccManSink interface
You are responsible for creating and maintaining the !DccManSink interface for as
long as you want notifications from the connection manager. The interface methods
are simple to implement-you simply provide a set of methods that are called by the
connection manager when a set of events occurs. Following are the prototypes for
the methods of !DccManSink:

HRESULT IDccManSink::OnLoglisten (void);

HRESULT IDccManSink::OnLogAnswered (void);

HRESULT IDccManSink::OnloglpAddr (DWORD dwlpAddr);

HRESULT IDccManSink::OnlogActive (void);

HRESULT IDccManSink::OnlogTerminated (void);

HRESULT IDccManSink::Onloglnactive (void);

HRESULT IDccManSink::OnlogDisconnection (void);

HRESULT IDccManSink::OnlogError (void);

While the documentation describes a step-by-step notification by the connection
manager, calling each of the methods of !DccManSink as the events occur, I've found
that only a few of the methods are actually called with any consistency.

When you call CoCreatelnstance to get a pointer to the IDccManSink interface,
the connection manager is loaded into memory. When you call Advise, the connec
tion manager responds with a call to OnLogListen, indicating that the connection mana
ger is listening for a connection. When a connection is established, the connection
manager calls OnLoglpAddr to notify you of the IP address of the connected device.
OnLoglpAddr is the only method in !DccManSink that has a parameter. This parame
ter is the IP address of the device being connected. This address is handy if you want
to establish a socket connection to the device, bypassing the extensive support of
the connection manager and RAPI. This IP address can change between different
devices and even when connecting the same device if one connection is made using
the serial link and a later connection is made across a LAN. The connection manager

Chapter 11 Connecting to the Desktop

then calls OnlogActive to indicate that the connection between the PC and the de
vice is up and fully operational.

When the connection between the PC and the Windows CE devices is dropped,
the connection manager calls the OnlogDisconnection method. This disconnection
notification can take up to a few seconds before it's sent after the connection has
actually been dropped. The connection manager then call the Onloglisten method
to indicate that it is in the listen state, ready to initiate another connection.

Some of the other methods are called under Windows 98. Those methods sim
ply refine the state of the connection even further. Since your application has to op
erate as well under Windows NT as it does under Windows 98, you 'll need to be able
to operate properly using only the notifications I've just described.

The CnctNote Example Program
The CnctNote program is a simple dialog box-based application that u es the COM
based method for monitoring the PC-to-Windows CE device connection state. The
example doesn't act on the notifications-it simply displays them in a list box. The
source code for CnctNote is shown in Figure 11-7.

CnctNote.rc

II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==

finclude "windows . h"
finclude "CnctNote.h" II Program-specific stuff

11- -------------- ----------- --------------- --------------- -------------- -
11 Icons and bitmaps
II
ID_ICON ICON "CnctNote. i co" II Program icon

11 --------------------------------- ------ ---------------------- --------- -
CnctNote DIALOG discardable 10, 10, 220, 160
STYLE WS_OVERLAPPED I WS_VISIBLE I WS_CAPTION I WS_SYSHENU I

DS_CENTER I DS_HODALFRAHE
CAPTION "CnctNote"
CLASS "CnctNote"

Figure 11-7. CnctNote source code. (continued)

671

Part Ill Communications

Figure 11-7. continued

BEGIN
LISTBOX IDC_RPTLIST, 2, 10. 216, 140,

WS_TABSTOP I WS_VSCROLL
END

CnctNote.h

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))
11- -- --------------------- ---- ------ ------------------- --------- ---------
11 Generic defines and data types
II
struct decodeUINT

UINT Code;

LRESULT (*FXn)CHWND, UINT, WPARAM,
} ;

struct decodeCMD {
UINT Code;

LPARAMl:

LRESULT (*Fxn) (HWND, WORD, HWND, WORD);
} ;

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
II function.

11 -------- ------- --------- --- ---- -- ------------------- -------------------
11 Generic defines used by application

#define ID_ICON
#define IDC_RPTLIST

1
10 II Control IDs

11--------------------------- --- ----------------------------------- ---- --
11 Function prototypes
II
int InitApp CHINSTANCE);
HWND Initlnstance CHINSTANCE, LPSTR, int);
int Termlnstance CHINSTANCE, int);
void Add2List CHWND hWnd, LPTSTR lpszFormat, ...):

II Window procedures
LRESULT CALLBACK MainWndProc (HWND, UINT, WPARAM, LPARAM):

672

Chapter 11 Connecting to the Desktop

II •• · ·································· · ·············· · ···············
II MyDccSink
II
class MyDccSink : public IDccManSink {
public:

MyDccSink CHWND hWnd, IDccMan • pDccMan) ;
-MyDccSi nk ();

II *** !Unknown methods •••
STDMETHODIMP Querylnterface (THIS_ REFIID riid, LPVOID • ppvObj);
II Note: No reference counting is actually maintained on this object.
STDMETHODIMP_(ULONG) AddRef (THIS);
STDMETHODIMP_(ULONG) Release CTHIS);

II These methods correspond to GW_LOG messages generated by the Win95
II DccMan application. (On NT, the GW_LOG messages are simulated.)
STDMETHODIMP OnloglpAddr (THIS_ DWORD dwlpAddr);
STDMETHODIMP OnLogTerminated (THIS);
STDMETHODIMP OnLogActive (THIS);
STDMETHODIMP Onloglnactive (THIS);
STDMETHODIMP OnlogAnswered (THIS);
STDMETHODIMP Onloglisten (THIS);
STDMETHODIMP OnLogDisconnection (THIS);
STDMETHODIMP OnLogError CTHISJ;

private:

) :

long m_lRef;
HWND hWnd;
IDccMan •m_pDccMan;

CnctNote.cpp

II==
II CnctNote - A simple application for Windows CE
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
#include <windows . h>
#include <stdio.h>
#include <initguid . h>
#include <dccole.h>
#include "CnctNote . h"

II For all that Windows stuff

II Program-specific stuff

(contin11ed)

673

Part Ill Communications

Figure 11-7. conti11ued

11 ------- ----------- --- ----- ------------------ ----------------------- ----
11 Global data
II
const TCHAR szAppName[]
HINSTANCE hinst;

TEXT ("CnctNote"):
II Program instance handle

BOOL fFirst =TRUE;

IDccMan *pDccMan;
MyDccSink *pMySink;
DWORD g_Context;

II Notification interface
II Context variable

II==
II Program entry point
II
int WINAPI WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,

LPSTR lpCmdline, int nCmdShow) (

)

MSG msg;
int re = 0;
HWND hwndMain:
II Initialize application.
re= InitApp (hinstance):
if (rel return re;

II Initialize this instance.
hwndMain = Initlnstance (hlnstance, lpCmdLine, nCmdShow>:
if (hwndMain == 0)

return Terminstance Chinstance, 0xl0):

II Application message loop
while CGetMessage C&msg, NULL, 0, 0)) {

}

if ((hwndMain == 0) I I !IsDialogMessage ChwndMain, &msg>> (
TranslateMessage (&msg):
DispatchMessage C&msg);

II Instance cleanup
return Termlnstance (hinstance, msg.wParaml:

11- - -- - - - - - - - - - - --- -- -- - - - - -- - - - -- ----- - ----- -- -- - - - - - - ---- -- -- ----- - - - - -
II InitApp - Application initialization
II

674

InitApp CHINSTANCE hlnstance) {
WNDCLASS we:

Chapter 11 Connecting to the Desktop

)

II Register application main window
we.style = 0:
wc.lpfnWndProc = MainWndProc:
wc.cbClsExtra = 0:
wc.cbWndExtra = DLGWINDOWEXTRA:
wc.hlnstance = hlnstance:
wc.hlcon = NULL,

class.
II Window style
II Callback function
II Extra class data
II Extra window data
II Owner handle
II Application icon
II Default cursor wc.hCursor = NULL:

wc.hbrBackground = CHBRUSH) (COLOR_WINDOW + 1):
wc.lpszMenuName = NULL:
wc.lpszClassName = szAppName:

if CRegisterClass (&we) == 0) return l;
return 0:

II Menu name
II Window class name

11 - ---- -- ------ - - --- -- - - - ------ - --------------- - ---------------------- - --
11 Initlnstance - Instance initialization
II
HWND Initinstance CHINSTANCE hinstance, LPSTR lpCmdLine, int nCmdShow) {

HWND hWnd:
HRESULT hr:
INT re:
II Save program instance handle in global variable.
hinst = hinstance:

II Initialize COM.
hr = CoinitializeCNULLl:
if CFAILED(hr)) {

MessageBox (NULL, "Coinitialize failed" , szAppName, MB_OK) ;
return 0;

II Create main window.
hWnd = CreateDialog Chinst. szAppName, NULL, NULL);
re = GetLastErrorCl :

II Return fail code if window not created.
if (!IsWindow ChWnd)) return 0:

II Standard show and update calls
ShowWindow (hWnd, nCmdShow):
UpdateWindow ChWndl;
return hWnd:

(continued)

675

Part Ill Communications

Figure 11-7. continued

11 ------ ----- ------ ----- -- ----- --- ----- -- ---- -- ------ ---- -- --- -- --- ------
11 Termlnstance - Program cleanup
II
int Termlnstance (HINSTANCE hlnstance, int nDefRC) {

}

II Release COM.
CoUninitialize();

return nDefRC;

II==
II MainWndProc - Callback function for application window
II
LRESULT CALLBACK MainWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

676

switch <wMsg)

case WM_SIZE:
if (fFirstl

HRESULT hr;
IDccManSink • pdms;
fFi rst = FALSE;

II Get a pointer to the IDccMan COM interface.
hr = CoCreatelnstance (CLSID_DccMan, NULL, CLSCTX_SERVER,

IID_IDccMan, (LPVOID• l&pOccMan);
if (FAILEDChr)) {

Add2List ChWnd, "CoCreatelnstance failed"):
break;

II Create new notification object.
pMySink =new MyDccSinkChWnd, pDccMan);
pMySink ->Ouerylnterface <IIO_IOccManSink, <void •• >&pdms):
II Ask to be advised of connect state changes.
pDccMan ->Advise Cpdms. &g_Context);

break;
case WM_COMMAND:

switch (LOWORD (wParam)) {
case IDOK:
case IDCANCEL:

SendMessage (hWnd, WM_CLOSE, 0, 0):
break ;

Chapter 11 Connecting to the Desktop

}

break:
case WM_DESTROY:

II Stop receiving notifications.
pDccMan->Unadvise (g_Context>:

II Release the DccMan object .
pDccMan->Release(}:

PostQuitMessage (0};
break;

return DefWindowProc (hWnd, wMsg, wParam, lParam>:

11 ---
11 Add2List - Add string to the report list box.
II
void Add2List CHWND hWnd, LPTSTR lpszFormat, ... }

1 nt nBuf, 1 :
TCHAR szBuffer[512];

va_list args;
va_start(args, lpszFormat>:

nBuf = vsprintf(szBuffer, lpszFormat. args}:

1 = SendDlgltemMessage (hWnd, IDC_RPTLIST, LB_ADDSTRING, 0,
(LPARAM}(LPCTSTR}szBuffer}:

1 f (i I= LB_E RR}
SendDlgltemMessage ChWnd, IDC_RPTLIST, LB_SETTOPINDEX, i,

(LPARAM}(LPCTSTR)szBuffer}:
va_end (a rgs):

II**
II Constructor
MyDccSink::MyDccSink (HWND hwndMain, IDccMan •pDccMan> {

}

m_pDccMan = pDccMan:
hWnd = hwndMain:

m_pDccMan->AddRef();
return:

11 ------- --------- ----------- --
11 Destructor

(continued)

677

Part Ill Communications

Figure 11-7. continued

MyDccSink::-MyDccSink Cl {

)

m__pDccMan->Release():
return:

//---
// AddRef - Increment object ref count.
STDMETHODIMP_(ULONG) MyDccSink::AddRef (THIS) (

return (ULONGllnterlockedlncrement (&m__lRefl:
)

// ----------------------------- ----------- ------ -------------------------
// Release - Decrement object ref count.
STDMETHODIMP_CULONGl MyDccSink::Release (THIS) {

)

ULONG cnt:

cnt = (ULONG)lnterlockedDecrement (&m__lRefl:
if Cent == 0) C

delete this:
return 0:

return cnt:

//- ----------------------------- ---------------- -------------------- -----
// Querylnterface - Return a pointer to interface.
STDMETHODIMP MyDccSink::Querylnterface CREFIID riid, LPVOID * ppvObj) {

)

if (llD_IUnknown==riid I I IID_IDccManSink==riidl
• ppvObj CIDccManSink• lthis:

else (
• ppvObj NULL:
return E_NOINTERFACE:

AddRef():
return NO_ERROR:

// -------------------------- --- --------- ---- ------------------- ----------
//
STDMETHODIMP MyDccSink::OnLoglpAddr (DWORD dwlpAddrl (

Add2List (hWnd, TEXT ("OnLoglpAddr S08x"), dwlpAddrl:
return NO_ERROR:

)

//-- ------------- ----------- --- ----
//

678

Chapter 11 Connecting to the Desktop

STDMETHODIMP MyDccS1nk::OnlogTerm1nated ()
Add2L1st (hWnd. TEXT ("OnlogTerm1nated "));
return NO_ERROR;

}

// ----------------- ------- ------------ -------------------------- ---------
//
STDMETHODIMP MyDccS1nk::OnlogAct1ve ()

Add2List (hWnd, TEXT ("0nlogAct1ve "));
return NO_ERROR;

}

// --------- -- --- ---------------
//
STDMETHODIMP MyDccSink::Onloglnact1ve () {

Add2List ChWnd, TEXT ("0nloglnact1ve "));
return NO_ERROR;

}

// ------------ - --------------------------------- - ----- -------------------
//
STDMETHODIMP MyDccS1nk::OnlogAnswered () {

Add2L1st ChWnd. TEXT C"OnlogAnswered"));
return NO_ERROR;

}

// --------------------------------- --- ------------- ------------------- ---
//
STDMETHODIMP MyDccS1nk::OnlogL1 sten ()

Add2L1st ChWnd, TEXT C"Onloglisten "));
return NO_ERROR;

}
// --- --------
//
STDMETHODIMP MyDccS1nk::OnlogDi sconnection ()

Add2Li st ChWnd, TEXT ("OnlogDisconnection " ll :
return NO_ERROR;

}
// -- -- ----------- ------------------
//
STDMETHODIMP MyDccSink::OnlogError ()

Add2List (hWnd, TEXT ("OnlogError ")) ;
return NO_ERROR;

}

The meat of Cnct ate is in the WM_ IZE handler of the window procedure.
Here, CoCreatelnstance is called to get a pointer to the IDccMan interface. If this is
successfu l, an object is created that implements an IDccManSink interface. The

679

Part Ill

Advise method is then called to register the !DccManSink object. The sole job of the
methods in IDccManSink is to report when they're called by posting a message in
the list box, which is the only control on the dialog box.

Connection Detection on the Windows CE Side
As you know, this chapter describes the PC-side applications that work with remote
Windows CE devices. However, while reading the previous section, you probably
wondered how a Windows CE application can know when a connection is made
between the Windows CE device and a PC.

Windows CE supports a unique API known as the Notification APL While
I'll describe this API fully in the next chapter, a quick mention of one function,
CeRunAppAtEvent, which provides Windows CE applications the ability to be noti
fied when a connection is made, wouldn't hurt. CeRunAppAtEvent registers an appli
cation with the system so that it can be launched when a specified event occurs in
the system. Such events include when the system time is changed, when a system is
restored from a backup, and yes, when a connection is made to a PC. This function
is prototyped as

BOOL CeRunAppAtEvent (TCHAR *pwszAppName, LONG lWhichEvent):

The first parameter is the name of the application to be launched when the event oc
curs. The second parameter is a set of bit flags that indicate which events you want to
monitor. A number of flags are related to various events in the system. For the moment,
I'll mention two: APP _RUN_AT_RS232_DETECT and APP _RUN_AFTER_SYNC. These
flags launch the specified program after a connection is detected and after the synchro
nization process has completed.

When the application is launched by the notification system, a predefined string
is passed to the application on the command line. For an application launched due to
an RS232 detection, the command line string is AppRunAtRs232Detect. For an applica
tion launched at the end of synchronization, the command line is AppRunAfterSync.
For a complete description of this function and the other notification functions, refer to
Chapter 12.

FILE FILTERS

680

Windows CE file filters are COM objects that exist on the PC. They're loaded and called
by Windows CE Services. When a file is copied to or from the Windows CE device to
the PC using Windows CE Services, it checks to see whether a file converter is regis
tered for the file type being transferred. If so, the file filter is loaded and requested to
convert the file. All this takes place on the PC side of the link. If a file is being moved

Chapter 11 Connecting to the Desktop

from the Windows CE system to the PC-exported, in Windows CE-speak-it's
copied in its original form to the PC, then converted by the file filter, and finally stored
on the PC. Likewise, if a file is being imported to the Windows CE device, it's first
converted and then copied to the Windows CE device.

Windows CE file filters are tied closely to the Mobile Devices folder. Only files
moved to and from a Windows CE device by users dragging and dropping them in
the Mobile Devices folder are converted. If a file is transferred to a Windows CE sys
tem by any other method, accessing a file through the Windows CE LAN redirector,
for example, the file filter isn't loaded and file won't be converted. Likewise, if a file
is downloaded from the Internet using Pocket Inbox, the file won't be converted.

Registering a File Filter

Windows CE Services knows about file filters by looking in the registry. File filters
need to be registered in two places. First, file filters should be among the Windows
CE Services entries for each registered device under HKEY _CURRENT_USER. Second,
they should be registered under the Windows CE Services entries under HKEY _
LOCAL_MACHINE so that each filter will be automatically registered for any new
devices that link to the PC. The CeUtil functions are helpful when you're registering
a file filter because they handle opening the proper subkeys in which you register
the file filter.

In addition to registering the file filter itself, you must make a few other new
entries in the registry. The COM server that implements the file filter must be regis
tered under [HKEY_CLASSES_ROOT]\CLSID. This registration follows the standard
format for a COM object with a few extensions I'll describe in a moment. In addition
to registering the COM object, you must also register the file extensions for both the
PC file type and the file type for the Windows CE version of the file.

To sum up, a file filter needs to make a number of changes in the registry to
properly function. For example, the program that installed the Pocket Word converter,
which changes DOC format files used by Microsoft Word to the Pocket Word format
PWD used by Pocket Word, must first register the PWD file type under [HKEY _
CLASSES_ROOT]. You do this with two entries: one to associate the file extension
with a file type and another entry to associate the file type with its name and the default
shell actions. For the Pocket Word files, the entries look like this:

[HKEY_CLASSES_ROOTJ\.pwd pwdfil e

and

[HKEY_CLASSES_ROOTJ\pwdf1le Pocket Word File
Defaultlcon c:\Program Files\Windows CE Services\minshell.dll,-204
Shell

Open c:\Program Files\Microsoft Office\Office\WinWord.exe

681

Part Ill

682

The Windows CE file type must be registered on the PC even though this file
type generally exists only on a Windows CE system.

The DOC file type, which is the PC-side file type of the Pocket Word file filter,
is already registered on Windows-based PCs, but if you introduce a new file type for
the PC side of your converter it, too, must be registered.

The COM object that implements the Pocket Word file filter is registered in an
entry under the [HKEY_CLASSES_ROOT]\CLSID key. The key name is the CLSID for
the COM server that provides the file filter. Underneath this key are entries for the
object's icon and the location of the DLL that provides this class ID. For Pocket Word,
the entry looks like this:

[HKEY_CLASSES_ROOT]\CLSID\{4D3E2CF2-9B22-11D0-82A3-00AA00C267Cl}
Defaulticon c:\Program Files\Windows CE Services\pwdcnv.dll,0
InProcServer32 c:\Program Files\Windows CE Services\pwdcnv.dll

Pegasus Filter
ThreadingModel Apartment

Description
Import
NewExtension

Pocket Word 2.0 Document

.pwd

The long series of numbers in the key name is the GUID for the PWD file filter.
Each object will have a unique GUID that matches the GUID the object checks for
when the DllGetClassObject call is made. The Defaultlcon and InProcServer32 keys
are standard for all COM object servers. The PegasusFilter key is unique to Windows CE
file filters. This key contains the Description and NewExtension values that give you
the extension and description of the resulting file type of the converter. The Import
value indicates that this file filter will be converting files copied from the PC to the
Windows CE device. If this filter converted Windows CE format files to PC format
files it would have a value named Export under the PegasusFilter key.

Now that the file types and the filter DLL itself have been registered, all that
remains is to register the filter with Windows CE Services so that it will be called when
a file is copied to or from the Windows CE device. To register the filter so that it will
be used on guest devices and all future devices, you add a key with the name of the
destination file extension under the key [HKEY _LOCAL_MACHINE]\Software
\Microsoft\ Windows CE Services\Filters. Under this key, you add entries that asso
ciate the import and export action with the CLSID of the COM server that implements
the filter.

The file extension that you register is the extension of the source file, whether
it's being imported to the Windows CE device or exported to the PC. So a Word

Chapter 11 Connecting to the Desktop

document file with the extension DOC wouldn't require any conversion when cop
ied up to a PC, but would need to be converted to the pocket word (PWD) format
when it's copied from the PC to the Windows CE. The entry that registers a filter to
convert DOC files to PWD format looks like this:

[HKEY_LOCAL_MACHINE]\Software\M1crosoft\W1ndows CE Services\Filters\.DOC
DefaultExport
Defaultlmport

Binary Copy
{403E2CF2-9B22-1100-82A3-00AA00C267Cl}

InstalledF1lters
{4D3E2CEC-9B22-11D0-82A3-00AA00C267Cl}
{4D3E2CED-9B22-11D0-82A3-00AA00C267Cl}
{4D3E2CF2-9B22-1100-82A3-00AA00C267Cl}

{403E3068-9B22-1100-82A3-00AA00C267Cl}

This entry registers filters for all files with the DOC file extension. When the file
is imported to the Windows CE device, the filter used is contained in the COM server
with the CLSID of 4D3E2CF2-9B22-11D0-82A3-00AAOOC267Cl. When a DOC file is
exported from the Windows CE device to the PC, no conversion is needed, so the
placeholder Binary Copy is used in place of a CLSID. When Windows CE Services
sees this, it simply copies the file without modification. If this Entry isn't in the regis
try, Windows CE Services thinks no filter is registered for this file type and displays a
warning to the user when the file is copied. In this case, we don't want to convert a
DOC file when it's being exported from the Windows CE device, so the registry has
a Binary Copy flag entry for this entry.

Under the lnstalledFilters key, you place one or more CLSIDs for different fil
ters. Pocket Word for example, has a number of filters to convert PWD files into
Word 97 documents, Word 95 documents, Word Perfect documents, and such. All these
selections are presented to the user in the File Conversion dialog box that can be
displayed from the Mobile Devices window on the PC.

One limitation of the current registry setup for file filters is that the same CLSID
can't be defined to perform both the import and export conversions on a file. This is
because the destination file extension is taken from the registry entries under the CLSID
key. You can, however, have one COM server that supports two CLSTDs that, in turn,
create the appropriate filters for each CLSID.

In addition to registering the file filter generically, you need to register the filter
for any devices that already have a partnership with the PC. Otherwise, these devices
won't use your filter. To do this, you need to repeat the registration procedures just
described in this section under the key [HKEY_CURRENT_USER]\Software\Microsoft
\Windows CE Services\Partners\<<Device ID>>\filters.

683

Part Ill Communications

684

You register the file filter for a specific device the same way you register the
filter generically: by specifying the filter under its file extension.

In the key on the preceding page, the <<Device ID>> placeholder should be
replaced with the device ID of each of the devices for which you want to register the
filter. This is where the CeUtil functions come in handy. Using CeSvcEnumDevices,

you can specify each device and then open the proper key using CeSvcOpen. So for
the remainder of this section, I'll use the CeSvc functions provided by the CeUtil li
brary to abstract the keys instead of talking about the proper registry keys in terms of
their absolute key names.

To open the registry key where filters are located, you would use the CeSvcopen

function and pass the constant CESVC_FILTERS. In the subkey name parameter, you
would pass the extension of the file filter, as in

hr= CeSvcOpen (CESVC_FILTERS, [[your file extension]],
TRUE, &hSvc):

To carry on our example, the key for the Pocket Word converter would be
opened this way:

hr= CeSvcOpen (CESVC_FILTERS, TEXT (".pwd"), TRUE, &hSvc);

Once the key is opened, you can use CeSvcSetString to write the specific en
tries in the registry.

In the routine below, a file filter is registered both generically and under each
currently registered device. The routines below use the CeSvcxxx functions, although
you could use standard registry functions if you feel the need.

//---- - - -- -- -- --- - -- -- - - - - --- --- -- - -- --- -- - - - - - --- - - - -- --- - - - - - -- - - - - - - - -

II RegExtensionforDevice - Helper routine that registers the filter for
JI one device
JI
HRESULT RegExtensionforDevice (HCESVC hSvc, LPTSTR pszGUID,

LPTSTR pszExt, BOOL b!mport) {

}

TCHAR szTag[32];
HCESVC hKey;
HRESULT hr;

if (blmport)
lstrcpy (szTag, TEXT ("Defaultimport"));

else
lstrcpy CszTag, TEXT ("DefaultExport"ll;

CeSvcSetString (hSvc, szTag, pszGUID);
hr= CeSvcOpenEx ChSvc, TEXT ("InstalledFilters"l. TRUE, &hKey);
if (hr) return hr;
CeSvcSetString (hKey, pszGUID, TEXT (""));

return hr:

Chapter 11 Connecting to the Desktop

11---- -- - - --- - -- - ---- - - ------ -- - - -- - - - - -- - -- - - - -- -- - - - -- --- - -- - - -- - - - - ---
11 RegFileExtension This routine registers a file extension for all
II currently partnered devices as well as for guest devices.
II
HRESULT RegFileExtension CLPTSTR pszGUID, LPTSTR pszExt, BOOL bimport) {

HRESULT hr;

}

HCESVC hSvc, hDev, hDevFilterKey;
DWORD dwPro, i = 0;
TCHAR szKeyName[64];

II Open generic filter key.
hr= CeSvcOpen CCESVC_FILTERS, pszExt, TRUE, &hSvc);
if (hr)

return hr;
II Call routine to fill in proper keys.
hr= RegExtensionforDevice ChSvc, pszGUID, pszExt, bimport);
CeSvcClose ChSvc);

II Now register for each current partner.
while (CeSvcEnumProfiles C&hSvc, i++, &dwPro) 0) {

}

II Open key for that partner.
hr= CeSvcOpen CCESVC_DEVICEX, (LPTSTR)dwPro, FALSE, &hDev);
if Chr) {

CeSvcClose ChSvc);
return hr;

II Open filter key underneath.
lstrcpy (szKeyName, TEXT ("Filters\\"));
lstrcat (szKeyName, pszExt);
hr= CeSvcOpenEx (hDev, szKeyName, TRUE, &hDevFilterKey);

II Close this key since we don't need it anymore.
CeSvcClose ChDev);
if (hr) {

}

CeSvcClose (hSvc);
return hr;

II Call routine to fill in proper keys.
hr= RegExtensionforDevice (hDevFilterKey, pszGUID, pszExt,

bimport);
II Close filter\extension key.
CeSvcClose (hDevFilterKey);

return hr;

685

Part Ill

To register a file filter with the routines, you would call RegFileExtension. This
routine first calls RegExtensionforDevice to register the file filter for future partners
under HKEY _LOCAL_MACHINE. Then the routine enumerates each currently registered
partner and registers the filter for those devices. The GUID and file extension for
RegFileExtension are passed as strings. An example call would be

RegFileExtension ("{2b06f7al-088e-lld2-93fl-204c4f4f5020}",
". tst", TRUE);

For the other parts of the registry initialization, registering file extensions and
registering the class library, a simple REG file will do. A REG file is a text file that
contains the keys and values to merge into the registry. Following is an example
REG file that registers a class library for converting TST files into PTS files on the
Windows CE device.

REGEDIT4

[HKEY_CLASSES_ROOT\CLSID\{2b06f7al-088e-lld2-93fl-204c4f4f5020}]
@="CEFileFilter Example"
[HKEY_CLASSES_ROOT\CLSID\{2b06f7al-088e-lld2-93fl-204c4f4f5020}\Defaulticon]
@="TstFilt.dll ,-100"
[HKEY_CLASSES_ROOT\CLSID\{2b06f7al-088e-lld2-93fl-204c4f4f5020}\InProcServer32]
@="e:\\CEBOOK\\11. Connecting to the Desktop\\TstFilt\\Debug\\TstFilt.dll"
"ThreadingModel"="Apartment"
[HKEY_CLASSES_ROOT\CLSID\{2b06f7al-088e-lld2-93fl-204c4f4f5020}\PegasusFilter]
"Import"=""
"Description"="TstFilt: Copy a .tst file with no conversion."
"NewExtension"="pts"

[HKEY_CLASSES_ROOT\.tst]
@="tstfi 1 e"
[HKEY_CLASSES_ROOT\tstfile]
@="TstFilt: Desktop TST File"
[HKEY_CLASSES_ROOT\tstfile\Defaultlcon]
@="e: \ \CEBOOK\ \11. Connecting to the Desktop\\ TstFi 1 t\ \Debug\\ TstFi 1t.dl1, -100"
[HKEY_CLASSES_ROOT\ptsfile]
@="TstFilt: HPC TST File"
[HKEY_CLASSES_ROOT\ptsfile\Defaultlcon]
@="e: \\CEBOOK\\11. Connecting to the Desktop\\ TstFi lt\\Debug\\ TstFi lt. dll, -101"

Now that we've learned how to register a file filter, let's look into building one.

686

Chapter 11 Connecting to the Desktop

The File Filter Interfaces
Windows CE file filters are COM in-proc servers that export an ICeFileFilter interface.
The filter can also optionally export an JCeFileFilterOptions interface. Mobile Devices
indirectly calls these two interfaces using the OLE object manager when it needs to
convert a file. When stripped of all the COM paraphernalia, implementing a file filter
is nothing more that implementing three functions, two of which are quite trivial.

The JCeFileFilter interface has the following methods:

• ICeFileFilter::NextConvertFile Called to convert a file

• JCeFileFilter::FilterOptions Called to display a dialog box for filter options
during setup

• JCeFileFilter::FormatMessage Called to convert an error code into a text
message to be displayed to the user

ICeFileFilter::NextConvertFi/e
The primary method of a file filter is NextConvertFile. This method is called by the
Mobile Devices program when a file needs to be converted from its PC format to its
Windows CE format or the reverse. The method actually keeps being called until you
tell it to stop. This allows a file filter to create multiple output files for every input file
it converts.

The prototype for this method is

HRESULT ICeFileFilter::NextConvertFile (int nConversion,
CFF_CONVERTINFO *PCi,
CFF_SOURCEFILE *PSf,
CFF_DESTINATIONFILE *pdf,
volatile BOOL *pbCancel,
PR_ERROR *perr);

The first parameter, nConversion, is a count value that's incremented each time the
method is called for a single file. This means that the first time NextConvertFile is called
to convert the file FOO.BAR, nConversion is 0. After you return from NextConvertFile,
Mobile Devices calls NextConvertFile again, specifying the same input file, FOO.BAR,
and the nConversion parameter is set to 1. Most file filters simply return the error code
ERROR_NO_MORE_ITEMS, which tells Mobile Devices that you've completed con
verting the file. On the other hand, you can continue to process the conversion of
FOO.BAR in the second, third, and subsequent calls. Mobile Devices continues to call
NextConvertFile, specifying the same input file until you return ERROR_NO_
MORE_ITEMS.

687

Part Ill

688

The next parameter, pci, is a pointer to a CFF _CONVERTINFO structure, which
give you general information about the conversion as well as providing a pointer to
the ICeFileFilterSite interface. The structure looks like this:

typedef struct {
BOOL blmport;
HWND hwndParent;
BOOL bYesToA 11 ;
ICefileFilterSite *pffs;

} CFF_CONVERTINFO;

The first field, blmport, is set to TRUE if the file is being copied from the PC to the
Windows CE device. The hwndParent parameter is the handle of a window that you
can use as the parent window for any dialog boxes that need to be displayed. The
bYesToAll field should be set to TRUE if you're copying more than one file. This flag
indicates whether the Yes To All button is displayed in the overwrite files dialog box.
Finally, the p./fs field contains a pointer to an ICeFileFilterSite interface. This interface
provides the functions used by the file filter to open and close the source and desti
nation files.

JCeFileFilterSite has the following methods:

• JCeFileFilterSite::OpenSourceFile Opens the source file

• ICeFileFilterSite::OpenDestinationFile Opens the destination file

• JCeFileFilterSite::CloseSourceFile Closes the source file

• JCeFileFilterSite::CloseDestinationFile Closes the destination file

• ICeFileFilterSite::ReportProgress Updates the modeless dialog box that
indicates the progress of the conversion

• JCeFileFilterSite::ReportLoss Causes a dialog box to be displayed that
reports to the user that data was lost in the conversion

The OpenSourceFile and OpenDestinationFile methods of ICeFileFilterSite re
turn pointers to !Stream or !Storage interfaces that are used to read and write these
files. The !Stream interface is used if the file is opened as a standard flat file while the
!Storage interface is returned if the file is opened as an OLE compound document.

The next parameter of NextConvertFile, psf, is a pointer to a CFF _SOURCEFILE
structure that gives you information about the source file used in the conversion. The
structure is defined as

typedef struct {
TCHAR szFullpath[_MAX_PATH];
TCHAR szPath[_MAX_PATH];

TCHAR szFilename[_MAX_FNAME];
TCHAR szExtension[_MAX_EXT];
DWORD cbSize;
FILETIME ftCreated;
FILETIME ftModified;

CFF_SOURCEFILE;

Chapter 11 Connecting to the Desktop

The szFullPath field contains the fully qualified filename of the source file. The
next three fields contain the parsed components of the same name. The cbSi.ze pa
rameter contains the size of the source file, while the ftCreated and ftModified fields
contain the time the file was created and last modified.

The pq/parameter points to a CFF _DESTINATIONFILE that defined the particu
lars of the recommended destination filename. The structure is defined as

typedef struct {
TCHAR szFullpath[_MAX_PATH];
TCHAR szPath[_MAX_PATH];
TCHAR szFilename[_MAX_FNAME];
TCHAR szExtension[_MAX_EXTJ:

} CFF_DESTINATIONFILE;

The structure bas the same first four fields as the CFF _SOURCEFILE structure.
The difference is that the name in the CFF _DESTINATIONFILE structure is a recom
mended name. You can override the name of the destination file in the Open
DestinationFile method of JCeFileFilterSite. To do this, use the suggested path of
the destination file contained in szPath and append the name and extension with
the suggested modifications. Pass this new name to the pszFullPath parameter in
OpenDestinationFile. The file filter example at the end of the chapter uses this tech
nique to rename the destination file.

The next parameter of NextConvertFile is pbCancel, a pointer to a BOOL. The
pbCancel parameter points to a boolean that is changed to FALSE if the user pressed
the Cancel button on the modeless dialog box that's reporting the progress of the
conversion. The file filter must check this value periodically to see whether the user
has canceled the conversion.

The last parameter, perr, points to an error value that's returned by the
NextConvertFile method. If NextConve71File returns the error code E_FAIL, the value
pointed to by perr is used as the error code for the routine. This code is then passed
back to the filter for interpretation when you call FormatMessage.

ICeFileFilter::FormatMessage
The FormatMessage method closely follows the syntax of the FormatMessage system
call that formats messages using an error code and either the system message table
or a string table from a module. For many uses, you can simply pass the call directly
from /CeFileFilter::FormatMessage to the Win32 function FormatMessage.

689

Part Ill

690

!CeFileFilter::FormatMessage has the prototype

HRESULT ICeFileFilter::FormatMessage CDWORD dwFlags,
DWORD dwMessageld,
DWORD dwLanguageid, LPTSTR lpBuffer,
DWORD nSize. va_list *Arguments.
DWORD *PCb);

While the parameter list looks daunting, the best way to handle this method is to create
a message resource in the filter and pass the call directly to Win32's FormatMessage
with the addition of the flag FORMAT_MESSAGE_FROM_HMODULE to the dwFlags
parameter. The only additional processing is to copy the number of bytes returned
by Win32's FormatMessage and set the byte count in a variable pointed to by the
parameter pcb. An example would be

//-- ---- - - - ---- - - - - - ---- - - - --- - - - - ------ - - - -- - - - - - --- - - - - - - - - - - - -- -- - -- - -
II FormatMessage - Called to format error messages
II
STDMETHODIMP MyFileFilter::FormatMessage (DWORD dwFlags,

}

DWORD cMsgLen:

DWORD dwMessageld, DWORD dwlanguageld,
LPTSTR lpBuffer, DWORD dwSize,
va_list *args, DWORD *PCb) {

II Pass the error code on to the Win32 FormatMessage. Force look
II into message table of filter by ORing dwFlags with
II FORMAT_MESSAGE_FROM_HMODULE.
cMsglen = ::FormatMessage (dwFlags I FORMAT_MESSAGE_FROM_HMODULE.

hlnst. dwMessageld, dwlanguageld,
lpBuffer, dwSize, args);

if (cMsglen)
*pcb = cMsglen;

else
return E_FAIL;

return NOERROR;

If you're going to use custom filter error messages, you should define them using
a constant combined with the macro CF _DECLARE_ERROR. This macro ensures that
the error value you choose won't conflict with the standard Win32 error constants.
In addition to defining the constants, you associate a string with the constant by
including a message table resource in your filter. This, combined with the FORMAT_
MESSAGE_FROM_HMODULE flag when you're calling Win32's FormatMessage, causes

Chapter 11 Connecting to the Desktop

your message text to be used for your error constants. If the error value returned isn't
one you defined, FormatMessage then looks in the system message table for a matching
error message.

ICeFileFilter::FilterOptions
The final method of /CeFileFilter is FilterOptions. This method is prototyped as

HRESULT IPegasusFileFilter::FilterOptions (HWND hwndParent);

The only parameter is a handle to a window that should be used as the parent win
dow for the dialog box. Windows CE Services calls this method when the user re
quests that the Options dialog box be displayed. However, none of the current versions
of Windows CE Services support this Options button-so while you need to support
this method, you can't depend on the user being able to gain access to any dialog
box displayed by this method.

The ICeFileFilterOptions Interface

Windows CE file filters can support one other interface, ICeFileFilterOptions. This
interface has, aside from the !Unknown methods, only one method: SetFilterOptions.
The SetFilterOptions method enables Windows CE Services to tell the file filter whether
it can display a modal dialog box during the conversion process. This is necessary
because some conversions might take place in the background, where such displays
of dialog boxes wouldn't be appropriate.

SetFilterOptions is prototyped as

HRESULT SetFilterOptions (CFF_CONVERTOPTIONS* pco);

The only parameter is a pointer to a CFF _CONVERTOPTIONS structure, which is
defined as

typedef struct
ULONG cbSize;
BOOL bNoModalUI;

} CFF_CONVERTOPTIONS;

While it may seem that using a structure to pass one Boolean is overkill, the use of a
structure with a size field at the start lets Microsoft think about extending this struc
ture while remaining backward compatible with older file filters.

The DivFile Filter Example

The example shown on the next page is a Windows CE file filter that detects when
the user is copying files larger than 100 KB to a Windows CE device and splits the file
into separate files on that device. If the file is larger than 100 KB and the version of

691

Part Ill Communications

Windows CE is earlier than 2.1, the DivFile filter splits the file into multiple parts so
that it can be stored in the object store of the device. Although the actual limit for
files in Windows CE 2.0 and earlier is 4 MB, the 100-KB limit gives you an opportu
nity to see the splitting in action without having to wait for a file larger than 4 MB to
be copied across to a Windows CE device.

The filter defines two new file types, TST for a file on the PC and PTS for pocket
test, a sample file type on a Windows CE device. For this example, the splitting func
tion is performed only on TST files larger than 100 KB. The result is a serie of files
on the Windows CE device, each with a number appended to the original filename
and a new file type of PTS. The PTS files can be copied back to the PC unaltered and
then rejoined u ing a binary copy operation, as in

copy /b file_l . pts+file_2 . pts+file_3 . pts+file_4.pts original . tst

The first file in this example isn't a source or include file ; it's a registry file that
registers the file filter, DivFile.reg. ote that since I'm not using an install program
that can enumerate the various Windows CE devices already partnered, this filter won't
be used until a new device i partnered with the PC or a device is attached as a guest
of Windows CE Services. Also, the Explorer doesn't recognize the new file type until
the y tern i rebooted--or more precisely, until the desktop is restarted . DivFile.reg
is shown in Figure 11-8.

REGEDIT4

[HKEY_CLASSES_ROOT\CLSID\(2b06f7al -088e -lld2 -93fl -204c4f4f5020}]
@="DivFile Sample"
[HKEY_CLASSES_ROOT\CLSI0\(2b06f7al -088e - lld2 -93fl -
204c4f 4f5020}\0efaultlcon]
@="copy. dll. -100"
[HKEY_CLASSES_ROOT\CLSI0\(2b06f7al -088e - lld2 -93fl -
204c4f4f5020}\lnProcServer32]
@="C:\\Programming Windows CE\\Chapll\\DfvFfle\\Debug\\DivFile.dll"
"ThreadingHodel"="Apartment"
[HKEY_CLASSES_ROOT\CLSI0\{2b06f7al -088e - lld2 -93fl -
204c4f4f5020}\PegasusFf lter]
"Import"=""
"Descriptfon"="DivFfle: Copy a .tst f i le with no conversion."
"NewExtension"="pts"

[HKEY_CLASSES_ROOT\.tst]
@="ts tfil e"
[HKEY_CLASSES_ROOT\tstffle]
@="OfvFile: Desktop TST File"

Figure 11-8. 1be DivFile.regfilefilter.

692

Chapter 11 Connecting to the Desktop

[HKEY_CLASSES_ROOT\tstfile\Defaulticon]
@="C: \\ Programming Windows CE\\Chapll \\Di vFil e\\Debug\\Di vFil e. dll, -100"

[HKEY_CLASSES_ROOT\.pts]
@="ptsfile"
[HKEY_CLASSES_ROOT\ptsfile]
@="Div File: HPC TST File"
[HKEY_CLASSES_ROOT\ptsfile\Defaulticon]
@="C:\\ Programming Windows CE\\Chapll\\DivFile\\Debug\\DivFile.dll , -101"

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsof t\Windows CE Services \ Filters\.t st]
"Defaultimport"="(2b06f7al -088e -lld2 -93fl-204c4f4f5020) "
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows CE Services\Filters\ . tst\

InstalledFilters]
"(2b06f7al -088e -lld2 -93fl -204c4f4f5020) "=""

The registry file shown here uses the path to the copy of the DivFile.dll on my
machine; you'll need to modify the path for your machine. Also, the GUID I gener
ated should be replaced with one you create using GUIDGE .EXE. The lines in this
registry file are grouped into four section . The first section registers the COM server
DLL, DivFile.DLL. The second and third groups of lines register the file types TST and
PTS. Finally, the last group of lines registers the file filter in the generic section of
Windows CE Services' entries in the registry. You could easily write an install pro
gram to automatically register the file filter with the currently partnered Windows CE
devices, using the routines I presented earlier in the chapter.

The next file in the example is DivFile.def. The def file describes the exported
functions from the DLL. I don't use the declspec macro used in the earlier example
here because of the predefined type definitions of the functions DllGetClassObject
and DllCanUnloadNow. Figure 11-9 shows DivFile.def.

;Standard COM library DEF file

LIBRARY DIVFILE.DLL

EXPORTS
DllCanUnloadNow @l PRIVATE
DllGetClassObject @2 PRIVATE

Figure 11-9. The DivFile.de/ program.

Finally, we get to the source files for the example, DivFile.rc, DivFile.h, and
DivFile.cpp shown in Figure 11-10 on the following page. The resource file declares

693

Part Ill Communications

two icon files that are used for the TST and PT file type . The header file contain
the clas definitions for my derivations of the ICeFileFilter and IClassFactory objects.
And last but not lea t, Divfile.cpp i filled mainly with code to upport the require
ment of a COM server.

DlvFlle.rc

II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright CC> 1998 Douglas Soling
II==

100 ICON "PCSide.ico"
101 ICON "CESide.ico"

DlvFlle.h

II==
II Header f1l e
II
II Written for the book Programming Windows CE
II Copyright CC> 1998 Douglas Boling
II==

II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x(0J>>

II **** Start of Generic COM declarations ****

II==
II MyClassFactory - Object declaration
II
class MyClassFactory : public IClassFactory

private:
long nLl Ref;

public:
MyClassFactory();
-MyClassFactory();

II !Unknown methods
STDMETHODIMP Querylnterface (THIS_ REFIID riid, LPVOID *ppv):

Figure 11-10. DivFile source code files.

694

Chapter 11 Connecting to the Desktop

} ;

STDMETHODIMP_(ULONGl AddRef (THIS);
STDMETHODIMP_(ULONG) Release (THIS);
II IClassFactory methods
STDMETHODIMP Createlnstance (LPUNKNOWN pUnkOuter. REFIID riid.

LPVOID *PPV):
STDMETHODIMP LockServer (BOOL flock);

II **** End of Generic OLE declarations ****

11- - - - - - - ---- --------- --- -- - - -- -- -- - - -- -- -- - - -- -- -- ---- -- -- -- - ------- - - - -
II Defines used by the DLL
II
#define BUFFSIZE 4096

#define FILESIZELIMIT (100•1024)
#define FILEBREAKSIZE (100•1024)

II==
II MyFileFilter - Object declaration ·
II
class MyFileFilter : public ICeFileFilter

private:
long m_lRef;
BOOL m_fBreakFile;
ULONG m_ulTotalMoved;

public:
My Fil eFil ter ();
-My Fil eFil ter():

II !Unknown methods
STDMETHODIMP Querylnterface (THIS_ REFIID riid, LPVOID •ppvObj) ;
STDMETHODIMP_(ULONG) AddRef (THIS);
STOMETHODIMP_(ULONG) Release (THIS);

II ICeFileFilter methods
STDMETHODIMP NextConvertFile (THIS_ int nConversion.

PFF_CONVERTINFO •pci, PFF_SOURCEFILE •psf.
PFF_DESTINATIONFILE •pdf,
volatile BOOL •pbCancel, PF_ERROR • perr);

STDMETHODIMP FilterOptions (THIS_ HWND hwndParentl:

(continued)

695

Part Ill Communications

Figure 11-10. continued

STDHETHODIHP FormatHessage (THIS_ DWORD dwFlags, DWORD dwHessageld,
DWORD dwLanguageld, LPTSTR lpBuffer,
DWORD dwSize, va_list • args, DWORD •pcb) :

} :

DlvFlle.cpp

II==
II DivFile - A Windows CE file filter DLL
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include <windows.h>

#define INITGUID
#include <initguid.h>
#include <replfilt.h>
#include <rapi.h>

#include "DivFile.h"

HINSTANCE hlnst:
long g_DllCnt = 0:

II Replace this GUID with your own!

II For all that Windows stuff

II GU ID defines
II Required for file filters
II Required for RAPI functions

II DLL instance handle
II Global DLL reference count

II {2B06F7Al-088E-lld2-93Fl-204C4F4F5020}
static const GUID CLSID_HyCopyFilter =
{0x2b06f7al , 0x88e, 0xlld2, {0x93,0xfl,0x20,0x4c,0x4f,0x4f,0x50,0x20}};

II==
II DllHain - DLL initialization entry point
II
BOOL WINAPI DllHain CHINSTANCE hinstDLL, DWORD dwReason,

LPVOID lpvReserved) {

}

hlnst = hinstDLL:
return TRUE:

II==
II DllGetClassObject - Exported function called to get pointer to
II Class factory object
II

696

Chapter 11 Connecting to the Desktop

STDAPI DllGetClassObject CREFCLSID rclsid, REFIID riid, LPVOID • ppv) (
MyClassFactory • pcf:

}

HRESULT hr:

II See if caller wants us
if ClsEqualCLSID Crclsid, CLSID_MyCopyFilter))

II Create class factory object.
pcf =new MyClassFactory():
if (pcf == NULL)

return E_OUTOFMEMORY:

II Call class factory's query interface method.
hr= pcf ->Ouerylnterface Criid, ppv):
II This will cause an object delete unless interface found.
pcf ->Release():
return hr:

return CLASS_E_CLASSNOTAVAILABLE:

II==
II DllCanUnloadNow - Exported function called when DLL can unload
II
STDAPI DllCanUnloadNow () {

if (g_Dll Cnt)
return S_FALSE:

return S_OK:

II ••**
II MyClassFactory Object implementation
11 -- --------- ----------- ------ -- -------- ------ ------ --- ----- -- ---------- -
11 Object constructor
MyClassFactory::MyClassFactory () (

}

nU Ref = 1:
g_Dll Cnt++:
return:

II Set ref count to 1 on create.

11 --- --------- ----- --------
11 Object destructor
MyClassFactory: :-MyClassFactory O (

g_Dll Cnt- - :
return:

(continued)

697

Part Ill Communications

Figure 11-10. continued

11 --------- -- ---------- ---- ---- -- --- --- --- ------ ---- -------------- -- ---- -
11 Querylnterface - Called to see what interfaces this object supports
STDMETHODIMP MyClassFactory::Querylnterface (THIS_ REFIID riid,

}

LP VOID •ppv) {

II If caller wants our !Unknown or IClassFactory object,
II return a pointer to the object.
if ClsEqualIID Criid, IID_IUnknown) 11

IsEqualIID Criid, IID_IClassFactory)){

•ppv = CIClassFactory •)this: II Return pointer to object.
AddRefC): II Inc ref to prevent delete on return.
return NOERROR:

•ppv = NULL:
return CE_NOINTERFACEl:

11 ------------------------- ---------------- -- ----------------------------
11 AddRef - Increment object ref count.
STDMETHODIMP_(ULONG) MyClassFactory::AddRef (THIS) {

}

ULONG cnt:

cnt = CULONG)lnterlockedlncrement C&m_lRef):
return cnt:

11 ---- --- ------------------------------- -- ------- ----------- -------------
11 Release - Decrement object ref count.
STDMETHODIMP_(ULONG) MyClassFactory::Release (THIS) (

}

ULONG cnt:

cnt = CULONG)lnterlockedDecrement C&m_lRef);
1f Cent == 0) {

delete this:
return 0:

return cnt:

11- -- ------------------------
11 LockServer - Called to tell the DLL not to unload even if use cnt 0
STDMETHODIMP MyClassFactory::LockServer CBOOL flock) (

698

1f (flock>
Interlockedlncrement C&g_DllCnt):

else
lnterlockedDecrement C&g_DllCnt):

return NOERROR;

Chapter 11 Connecting to the Desktop

11------- ----- ----- --- ------- ----------------- --------- -- ------ -- ---- -- --
11 Createlnstance - Called to have class factory object create other
II objects
STDMETHODIMP MyClassFactory::Createlnstance CLPUNKNOWN pUnkOuter,

REFIID riid,

MyFileFilter • pMyff;
HRESULT hr ;

if CpUnkOuterl
return CCLASS_E_NOAGGREGATIONl;

LPVOID •ppvl (

if (lsEqualIID (riid, IID_IUnknown) I I
IsEqualIID Criid, IID_ICeFileFilterll

II Create file filter object.
pMyff =new MyFileFilter();
if (I pMyff)

return E_OUTOFMEMORY;

II See if object exports the proper interface .
hr = pMyff->Ouerylnterface Criid, ppvl;
II This will cause an object delete unless interface found.
pMyff ->Release Cl;
return hr;

return E_NOINTERFACE;

II**
II MyFileFilter Object implementation
11 ---
11 Object constructor
MyFileFilter::MyFileFilter () {

}

m_lRef = 1;
return;

II Set ref count to 1 on create.

11-- ---
11 Object destructor
MyFileFilter::-MyFileFilter Cl {

return;
}

11--- ---------- - -------------------------------------- -- -----------------
11 Querylnterface - Called to see what interfaces this object supports

(continued)

699

Part Ill Communications

Figure 11-10. continued

STDMETHODIMP MyF i leF i lter::Querylnterface (THIS_ REFIID riid,
LPVO ID *PPV) {

}

II If caller wants our !Unknown or IID_ICeFileFilter object,
II return a pointer to t he object .
if (lsEqualIID Criid, IID_IUnknown) I I

IsEqualIID Criid, IID_ICeFileFilter)){

}

II Return pointer to object.
•ppv = (ICeFi leFilter •)this:
AddRef(): II Inc ref to prevent delete on return.
return NOERROR:

*PPV = NULL:
return (E_NOINTERFACE):

11 --- - - - --- - ---
11 AddRef - Increment object ref count.
STDMETHODIMP_CULONG) MyFi l eFilter::AddRef (THIS) {

}

ULONG cnt:

cnt = (ULONG)Interlockedlncrement (&m_lRef):
return cnt:

11 ---
11 Release - Decrement object ref count.
STDMETHODIMP_(ULONG) MyFileFilter::Release CTHIS) {

}

ULONG cnt;

cnt = CULONG)InterlockedDecrement (&m_lRef);
if (cnt == 0)

delete thi s :
return cnt:

11 ---
11 NextConvertFile - Called to convert the next file
STDMETHODIMP MyFileFilter::NextConvertF i le (int nConversion,

700

!Stream •pstreamSrc:
!Stream •pstreamDest;
ICeFileFilterSite • pffs:
CEOSVERSIONINFO vi:

CFF_CONVERTINFO • pci, CFF_SOURCEFILE •psf,
CFF_DESTINATIONFILE • pdf,
volatile BOOL •pbCancel, CF_ERROR • perr) {

DWORD cBytesRemaining, cBytesRead, cCopySize:

Chapter 11 Connecting to the Desktop

LARGE_INTEGER largMov:
TCHAR szNewName[MAX_PATH]:
PBYTE pBuff:
HRESULT hr:
int i:

II If first call for file, see if too large to fit in object store.
if (nConversion == 0) {

m_fBreakFile = FALSE:
m_ulTotalMoved = 0:
II If import to CE and file > 4 MB, see if too big for
II object store.
if ((pci->bimport) && psf ->cbSize > FILESIZELIMIT)

vi.dwOSVersioninfoSize = sizeof (vi):
CeGetVersionEx (&vi):
II If version < 2.1, ask user
II if we should break file.
i = (vi.dwMajorVersion << 8) I vi.dwMinorVersion;
if (i < 0x20a > {

i = MessageBox (pci ->hwndParent,
TEXT ("The file being copied is too \

large for the object store, would you like to break it into separate\
files?"),

TEXT ("Size Filter"), MB_YESNO);
if Ci == IDYES)

m_fBreakFile = TRUE;
else {

•perr = HRESULT_TO_PFERROR (hr,ERROR._ACCESS_OENIED);
return E_FAIL;

else if (m_fBreakFile) {

if ((UINT)CnConversion * FILEBREAKSIZE) > psf->cbSize)
return HRESULT_FROM_WIN32CERROR._NO_MORE_ITEMS);

} else
return HRESULT_FROM_WIN32CERROR._NO_MORE_ITEMS);

II Allocate buffer for transfer.
pBuff = CPBYTE)LocalAlloc (LPTR, BUFFSIZE);
if (!pBuff) {

• perr = HRESULT_TO_PFERROR (hr, E_OUTOFMEMORY);
return E_FAIL;

(continued)

701

Part Ill Communications

Figure 11-10. continued

702

II Get pointer to FileFilterSite interface.
pffs = pci -> pffs;

II Open source file.
hr= pffs ->OpenSourceFile (PF_OPENFLAT, (PVOID •)&pstreamSrc);

if (!SUCCEEDED (hr)) (
LocalFree (pBuff);
• perr = HRESULT_TO_PFERROR (hr, ERROR_ACCESS_DENIED);
return E_FAIL;

II Seek to part of file for this section.
if (m_fBreakFile) (

largMov.HighPart = 0;
largMov . LowPart = nConversion * FILEBREAKSIZE;
hr = pstreamSrc->Seek (largMov, STREAM_SEEK_SET, NULL);

II Modify destination name to mark part. New name becomes
II old name with a number appended for each part.
wsprintf (szNewName, TEXT ("Ssls_Sd.Ss "),

pdf->szPath, pdf->szFilename, nConversion,
pdf ->szExtensionl:

hr = pffs ->OpenDestinationFile (PF_OPENFLAT. szNewName,
CPVOID •)&pstreamDest);

if (!SUCCEEDED (hr)) (

else

LocalFree CpBuff};
pffs->CloseSourceFile (pstreamSrc);
•perr = HRESULT_TO_PFERROR (hr , ERROR_ACCESS_DENIED);
return E_FAIL;

II Open destination file with default name.
hr= pffs->OpenDestinationFile (PF_OPENFLAT, NULL,

(PVOID • >&pstreamDest>;
if (!SUCCEEDED (hr)) {

LocalFree (pBuff);
pffs ->CloseSourceFile CpstreamSrc);
*perr = HRESULT_TO_PFERROR (hr, ERROR_ACCESS_DENIED);
return E_FAIL;

II Copy data.
cCopySize =min (psf->cbSize - m_ulTotalMoved, FILEBREAKSIZE);

Chapter 11 Connecting to the Desktop

}

for CcBytesRemaining = cCopySize; cBytesRemaining > 0; l {
II Read the data.

}

i =min CBUFFSIZE. cBytesRemaining);
hr= pstreamSrc->Read CpBuff, i, &cBytesRead);
if CcBytesRead == 0)

break;

II See if user canceled the transfer.
if (*pbCancell {

hr = ERROR_CANCELLED;
break;

II Write the data and update bytes remaining.
hr = pstreamDest->Write (pBuff, cBytesRead, NULL);
if (!SUCCEEDED Chrll

break;

II Update transfer total s .
m_ulTotalMoved += cBytesRead;
cBytesRemaining -= cBytesRead;

II Tell the user how far we've gotten.
pffs-> ReportProgress (m_ulTotalMovedlpsf ->cbSize * 100);

II Close files and clean up.
pffs->CloseSourceFile CpstreamSrc l;
pffs->CloseDestinationFile <TRUE, pstreamDest);
Local Free CpBuff);

i f (hr == ERROR_CANCELLEDl
ret urn HRESULT_FROM_WIN32 (ERROR_CANCELLED);

i f (!SUCCEEDED (hr))
*perr = hr;
return E_FAIL;

return NOERROR;

11 --------------------- -- ----------
11 FilterOpt ions - Called to indicate the file filter options
STDMETHODIMP MyFileFilter::FilterOptions (HWND hwndParent) {

}

MessageBox (hwndParent, TEXT ("Filter Options Box"), TEXT ("Title").
MB_OK);

return NOERROR;

(con.lin.ued)

703

Part Ill Communications

Figure 11-10. contin ued

11 --------------------------------------- ----------- --------- ------------
11 FormatMessage - Called to format error messages
II
STDMETHODIMP MyFileFilter::FormatMessage CDWORD dwFlags,

704

DWORD cMsglen;

DWORD dwMessageld, DWORD dwlanguageld,
LPTSTR lpBuffer, DWORD dwSize,
va_list •args, DWORD • pcb) {

II Pass the error code on to the Win32 FormatMessage. Force look
II into message table of filter by ORing dwFlags with
II FORMAT_MESSAGE_FROM_HMODULE.
cMsglen = ::FormatMessage CdwFlags I FORMAT_MESSAGE_FROM_HHODULE,

hlnst, dwHessageld. dwlanguageld,
lpBuffer, dwSize. args);

if CcHsglen)
*PCb = cHsglen;

else
return LFAIL;

return NO ERROR;

The code that does the actual work of the file filter is contained in NextConvert
File. The routine uses the value in nConversion to see whether this is the fir t time it
is being called to convert the file . If so, the routine checks the file size to see whether
it's bigger than the arbitrary file size limit. If so, the user is asked if the file should be
plit into multiple file .

The routine creates individual destination files by specifying a new name for the
destination file when the routine calls OpenDestinationFile. For files that are split, the
routine generates each new filename by appending a number to the end of the original
filename. Note that the routine takes care to preserve the suggested path for the des
tination file. This path specifies the temporary directory on the PC that Windows CE
Services uses before copying the converted file down to the Windows CE device. At
this point, the source file i copied to the new destination file up to the limit of the
destination file size. The files are then closed, and Ne:xtConvertFile returns.

Windows CE Services calls NextConvertFile again, this time with nConversion

incremented . The routine opens a new destination file and the old source file , then
seek to an offset in the source file that matches the last byte read in the previous
call. The new data i then copied, and the routine again returns .

This process of calling NextConvertFile is continued until the routine determines
that all the source fil e ha been copied into the various destination files. At this point,

Chapter 11 Connecting to the Desktop

the routine returns ERROR_NO_MORE_ITEMS, which ends the conversion process
for the file.

Now I come to the end of my explanation of the PC-side Windows CE Services.
In the next two chapters, I'll return to the Windows CE-side of things to look at the
shell. The Windows CE shell varies widely across the different platforms. The Handheld
PC shell looks on the surface like a standard Windows 95 shell, although the pro
gramming interface is much simpler. The Palm-size PC shell, on the other hand, is
new and unique.

COM ISN'T A FOUR-LETTER WORD

At this point, I've written 705 pages in a modern Windows programming book,
and I have yet to explicate COM. It's amazing in this day and age that we've
actually programmed almost an entire Windows system without COM. That
avoidance ends here because COM is used extensively on the PC side of the
Windows CE data synchronization interfaces.

COM is the acronym for Component Object Model. In brief, COM is for
mally defined as a binary standard for defining objects. The classical definition
of an object is data surrounded by a collection of/unctions, usually called
methods, which act on the data. Sometimes people stretch this classical object
definition when they talk about COM. It works out that the only internal data
state that some COM objects have is a use count variable. That kind of COM
object simply provides an interface that's used for some purpose or another.
Plenty of COM objects do maintain some internal data but this condition isn't a
requirement of a COM object.

Many people have written and argued about COM. Various program
mers think of COM as the Second Coming, the ultimate programming concept,
or even the key to World Peace. On the other hand, others think of COM as the
devil incarnate, a complex unworkable mess, or most evil of all, a way to keep
dozens of authors employed writing books trying to explain it. In my mind, COM
is simply a tool. Many books have been written about COM, but only one,
Mr. Bunny's Guide to Active X, captures the essence of COM. Check it out if
you get the opportunity.

In the Appendix, "COM Basics," I touch ever so lightly on the subject of
COM. I talk only about a few interfaces, and then only to the extremely shallow
depth necessary to accomplish our task at hand, synchronizing data between a
PC and a Windows CE device. This treatment doesn't do justice to COM nor is
it meant to. I'm just trying to use a tool to accomplish a job.

705

Part IV

ADVANCED TOPICS

Chapter 12

Shell Programming
-Part 1

One of the unique aspects of Windows CE is that different Windows CE platforms
have different shells. The shell for the Handheld PC is significantly different from the
shell for the Palm-size PC. Despite differences, the parts of the shell that are the same
(and there are plenty of common shell components), share the underlying APT.

The shells used by the H/PC and H/PC Pro derive from the Windows 95 and 98
shells. To the user, the look is almost pure Windows 95. That is, of course, by design.
The folks at Microsoft figured that having the Windows CE shell resemble the Win
dows 95 shell would flatten the user's learning curve and enhance the acceptability
of Windows CE devices.

The shell used by the Palm-size PC keeps some of the more basic aspects of
the Windows 95 shell. Gone are the Explorer and the familiar desktop icons. In place
of the Explorer is the Active Desktop, which displays data from applications directly
on the desktop. But while the Explorer is gone, the taskbar, with its familiar Start
button, remains. The interface for the taskbar, common to both desktops, is the same.
Both systems also use special directories and the shell namespace, which I'll talk
about shortly.

So although the Windows CE shell resembles the Windows 95 shell, it's not as
flexible. Most of the powerful interfaces available under Windows 95, such as the ability
to drag and drop objects between programs, are either only partially implemented or

709

Part IV

not implemented at all. The goal of the programmers of the Windows CE 2.0 shell
seemed to be to implement as few of the native COM interfaces as possible while
still retaining the ability to contain the Internet viewing capabilities of an embedded
Internet Explorer in the shell. That said, the current Windows CE shell does use
some COM interfaces. It's just that those interfaces aren't the ones available on the
desktop.

This chapter covers the concept of the shell namespace and the shell's use of
special directories. This chapter also explains how to work with the taskbar as well
as how to create shortcuts. And although the Notification API and the console aren't
strictly part of the shell, this chapter covers them, too. Windows CE provides a pow
erful notification interface that allows applications to schedule themselves to run at a
certain time or when some system event occurs. The code that implements the noti
fication API was moved from the shell to the base operating system in Windows CE 2.1.
This allows the notification functions to be used in the embedded versions of Win
dows CE where only a minimal shell is provided. The Windows CE console, on the
other hand, was introduced in Windows CE 2.1. Windows CE doesn't support the full
character mode API found in Windows NT, but you can write fairly complete con
sole applications.

For those of you who are working with the embedded version of Windows CE 2.1
and later, most of what's covered in this chapter (with the exception of the Notifica
tion API and console applications) won't help you. The embedded version of Win
dows CE 2.1 includes only a bare minimum shell that has neither a taskbar nor an
Explorer, and doesn't include many of the DLLs that support the shell. This means
that you'll have to employ third-party developers or write your own shell to perform
any shell-like functions.

WORKING WITH THE SHELL
Because the H/PC and Palm-size PC shells are derived from the Windows 95 shell, I
must cover some system definitions first introduced with Windows 95. In general, while
the concepts remain the same, the implementation is completely different under
the covers.

The Shell Namespace

710

From Windows 95 on, the Windows shell has used the concept of a shell namespace.
The Windows CE shell also uses the namespace concept to track the objects in the
shell. Simply put, the shell namespace is the entire collection of the operating system's
objects, files, directories, printers, control panel applets, and so forth. The idea is that
by addressing files the same way as control panel applets, the shell makes it easy to
deal with the diverse collection of objects.

Cbapter 12 Shell Programming-Part I

A folder is simply a collection of objects. A directory is a collection of files on a
disk. A folder generalizes and extends the directory concept, in that a folder doesn't
merely contain files, but can include other objects such as control panel objects, print
ers, or remote connection links. Each object in a folder is called an item. Items are
identified by an item ID.

The item ID is a data structure that uniquely identifies the item in the folder.
Since folders also have identifiers, an individual item can be uniquely defined by means
of a list of item IDs that identify the item, its folder, and the parent folders of the folder.
Think of this list of item identifiers as a completely specified pathname of a file. A
system might have many files namedjoobar, but only one in a specific directory. This
list of item IDs is appropriately called an ID list. A pointer to such a list is a pointer to
an ID list, frequently abbreviated as pidl, which is generally and rather unfortunately
pronounced piddle. Shell functions usually reference items in the shells by their pidls.
There is, of course, a translation function that converts a pidl to a filename.

With the release of the Palm-size PC, the developers faced a problem. The pidl
concept is powerful, but implementing and maintaining jJidls didn't seem worth the
trouble, given the limited need the Palm-size PC shell has for them. But because some
of the shell functions use pidls to remain compatible with the H/PC, the Palm-size PC
has to implement pidls. The solution is for the Palm-size PC shell to "fake" pidls. The
necessary APis use a value typed as a pidl but the actual implementation is a con
stant, not a pointer to an item ID list. This strategy doesn't much affect you as you
program the Palm-size PC, but you should be aware of it.

Special Folders

The Windows CE shell, like the shells for Windows 95 and Windows NT 4.0, has a
set of folders that are treated differently from normal directories in the file system.
An example of this is the recycle bin, which is simply a hidden directory to which
the shell moves files and directories when the user deletes them. Another example
is the Programs folder, which contains a set of shortcuts that are then displayed on
the Start menu.

The list of special folders changes with each shell. The Windows 95, Windows 98,
and Windows NT 4.0 shells have a different set of special folders from those of the
Windows CE shells. The shells implemented on the Palm-size PC and H/PC each
implement their own subset of special folders. Fortunately, the function to return the
location of a specific special folder is the same on all these systems. That function,
SbSpecialFolderLocation, is prototyped as

HRESULT SHGetSpecialFolderlocation (HWND hwndOwner, int nFolder,
LPITEMIDLIST *ppidl);

711

712

The first parameter is a handle to a window that owns any dialog box the shell
needs to display during the processing of this function. The second parameter is a
constant that specifies the directory you're requesting. The two main shells for Win
dows CE support different subsets of the constants defined by Windows. Below are
the lists of constants supported by the H/PC and the Palm-size PC.

On the Handheld PC

• CSIDL_BITBUCKET The location of the recycle bin.

• CSIDL_DESKTOP The folder that stores the objects that appear on the
desktop. Note that the use of this constant is different than under Win
dows 95.

• CSIDL_FONTS The folder that contains the system fonts.

• CSIDL_DRIVES The root of the file system.

• CSIDL_PROGRAMS The folder that contains the items shown in the Pro-
grams submenu of the Start menu.

• CSIDL_PERSONAL The default folder in which to save documents.

• CSIDL_FAVORITES The folder that contains shortcuts to favorite items.

• CSIDL_STARTUP The folder that contains programs or shortcuts to pro
grams that will be launched when the system is restarted.

• CSIDL_RECENT The folder that contains the list of recently used docu
ments.

On the Palm-size PC

• CSIDL_DRIVES The root of the file system.

• CSIDL_PROGRAMS The folder that contains the items shown in the Pro
grams submenu of the Start menu.

• CSIDL_STARTUP The folder that contains programs or shortcuts to pro-
grams that will be launched when the system is restarted.

• CSIDL_FONTS The folder that contains the system fonts.

• CSIDL_FAVORITES The folder that contains shortcuts to favorite items.

• CSIDL_STARTMENU The folder that contains the items shown in the Start
menu.

• CSIDL_PJ-,"'RSONAL The default folder in which to save documents.

Chapter 12 Shell Programming-Part I

The final parameter in SHGetSpecialFolderLocation, pidl, is a pointer to an
ITEMIDLIST pointer that receives a pointer to the folder's item ID list.

The pidl that is returned by SHGetSpecialFolderlocation can be translated to a
standard file path using this function:

BOOL WINAPI SHGetPathFromIDList (LPCITEMIDLIST pidl,
LPTSTR pszPath);

The two parameters for this function are a pidl and a pointer to a buffer that receives
the path of the folder specified by the pidl. This buffer must be at least MAX_PATH
characters in length.

If you needed only to call SHGetSpecialFolderLocation and follow that by call
ing SHGetPathFromlDList to get the path, life would be simple. Unfortunately, the
process isn't that simple. On systems other than the Palm-size PC, the pidl that's re
turned by SHGetSpecialFolderLocation points to a buffer that has been allocated by
the shell. You need to call the shell back to free this buffer after you're finished with
the ID list. You free this buffer using an /Malloc interface provided by the shell.

The /Malloc interface contains methods that allow an application to allocate,
free, and otherwise manipulate memory in the local heap of the !Malloc provider. In
the case of the shell, a pointer to its !Malloc interface can be acquired with a call to
SHGetMalloc. The function is prototyped as

HRESULT SHGetMalloc (LPMALLOC *ppMalloc);

Once you have a pointer to the interface, you can call the Free method to free
any ID lists returned by ShGetSpecialFolderLocation. On systems other than the Palm
size PC, the process can be encapsulated in the following routine:

INT MyGetSpecialDirectory (HWND hWnd, INT nFolderID,
LPTSTR lpDir) {

int re;
LPITEMIDLIST pidl;
LPMALLOC lpMalloc =NULL;

II Get the Shell Malloc interface to be able to free the pidls.
re= SHGetMalloc (&lpMallocl;
if (re != NOERROR)

return re;

II Ask the shell for the specified folder's pidl.
re= SHGetSpecialFolderlocation (hWnd, nFolderID, &pidl);
if (re == NOERROR) {

II Translate the pidl to a directory name.
SHGetPathFromIDList (pidl, lpDir);

(continued)

713

714

}

}

II Free the idlist.
IMalloc_Free(lpMalloc,pidl);

II Free shell's IMalloc interface.
IMalloc_Release(lpMalloc);
return re;

This routine calls SHGetMalloc to receive a pointer to the shell's !Malloc inter
face. You then make calls to SHGetSpecialFolderLocation and SHGetPathFromlDList
to get the folder and translate it into a directory name. Next you call the Free method
of IMalloc using a macro defined for C-compiled programs. The methods of most COM
interfaces have macros defined for C-compiled programs if your application isn't
written in C++. Finally you call the Release method of !Malloc to free the interface.

As I mentioned earlier, the Palm-size PC doesn't formally implement pidls. In
stead, SHGetSpecia!FolderLocation returns a constant, typed as a pidl, that can then
be passed to SHGetPathFromIDList to get a directory name. Had the developers also
implemented a dummy !Malloc interface for the shell, the process for getting the lo
cation of a special folder would be identical. Instead, the current version of the Palm
size PC shell doesn't implement an IMalloc interface. Although you could simply
remove any references to the !Malloc interface, a better solution would be something
like the following routine:

INT MyGetSpecialDirectory (HWND hWnd, INT nFolderID,
LPTSTR 1 pDi r) (

int re;
LPITEMIDLIST pidl;
BOOL fUseIMalloc =TRUE;
LPMALLOC lpMalloc = NULL;

II Attempt to get the Shell Malloc interface.
re= SHGetMalloc (&lpMalloc);
if (re == E_NOTIMPL)

fUseIMalloc = FALSE;
else if (re != NOERROR)

return re;

re= SHGetSpecialFolderLocation (hWnd, nFolderID, &pidl);
if (re == NOERROR) {

II Translate the idlist to a directory name.
SHGetPathFromIDL i st (pi dl , 1 pDi r);
II Free the idlist.
if (fUseIMalloc)

IMalloc_Free(lpMalloc,pidl);

Chapter 12 Shell Programming-Part I

II Free shell's IMalloc interface.
if (fUseIMalloc)

IMalloc_Release(lpMalloc);
return re;

Shortcuts

Shortcuts are small files that, when opened, launch an application or open a docu
ment in another folder. The idea behind shortcuts is that you could have an applica
tion located in one directory but you might want to be able to launch it from other
directories. Since the shell uses the contents of special directories to define what is in
the Start menu and on the desktop, placing a shortcut in one of those special direc
tories allows an application to appear in the Start menu or on the desktop.

While the concept of shortcuts was taken from Windows 95, the method of cre
ating them was not. Instead of using a COM interface, as is done under Windows 95,
you create a shortcut in Windows CE using the following function:

BOOL SHCreateShortcut (LPTSTR szShortcut, LPTSTR szTarget);

The first parameter specifies the name and location of the shortcut. This name should
be a fully qualified filename with an extension of LNK. The second parameter is the
fully qualified filename of the application you want to start or the file you want to
open. The function returns TRUE if successful.

You can determine the contents of a shortcut by calling this function:

BOOL SHGetShortcutTarget (LPTSTR szShortcut, LPTSTR szTarget,
int cbMax);

The first parameter is the filename of the shortcut. The remaining two parameters are
the buffer that receives the target filename of the shortcut and the size of that buffer.

Configuring the Start Menu

Shortcuts come into their own when you're customizing the Start menu. When the
Start button is clicked, the taskbar looks in its special folder and creates a menu item
for each item in the folder. Sub folders contained in the special folder become submenus
on the Start menu.

The Start menu of the H/PC is limited in that you can't customize the Start menu
itself. You can, however, modify the Programs submenu and the submenus it con
tains. To add an item to the Programs submenu of the H/PC Start menu, you place a
shortcut in the folder returned after you called SHGetSpecialFolderLocation with the
folder constant CSIDL_PROGRAMS. For example, look at the short code fragment
on the next page; it lists the Cale program in the Programs submenu of the Start
directo1y on an H/PC.

715

Part IV Advanced

INT re;
TCHAR szDir[MAX_PATH];

re= MyGetSpecialDireetory (hWnd, CSIDL_PROGRAMS, szDir);
if (re == NOERROR) {

lstreat (szDir, TEXT ("\\Cale.lnk"));
SHCreateShortcut (szDir, TEXT ("\\windows\\eale.exe"));

}

This fragment uses the routine MyGetSpecialDirectory, which I listed earlier in
the chapter, to return the folder used by the Programs submenu. Once that's found,
all that is required is to append the necessa1y LNK extension to the name of the link
and call SHCreateShortcut specifying the location of CALC.EXE.

The Start menu of the Palm-size PC is more flexible than the H/PC's because
you can add items directly to the Start menu itself. To accomplish this, add shortcuts
to the folder returned with SHGetSpecialFolderlocation and the constant CSIDL_
STARTMENU. From that folder, you can use the standard FindFirstFile and FileNextFile
functions to determine the structure of the Start menu.

Recent Documents List
A feature of the Start menu since it was introduced in Windows 95 is the Documents
submenu. This menu lists the last 10 documents that were opened by applications in
the system. This list is a convenient place in which users can reopen recently used
files. The system doesn't keep track of the last-opened documents. Instead, an appli
cation must tell Windows that it has opened a document. Windows then prunes the
least recently opened document on the menu and adds tlle new one.

Under Windows CE, the function that an application calls to add a document to
the recently used list is

void SHAddToReeentDoes (UINT uFlags, LPCVOID pv);

The first parameter can be set to one of two flags, SHARD_PATH or SHARD_PIDL. If
uFlags is set to SHARD_PATH, the second parameter points to the fully qualified path
of the document file. If SHARD_PIDL is specified in uFlags, the second parameter
points to a pointer to an ID list. If the second parameter is 0, all items in the recently
used document menu are deleted.

THE TASKBAR

716

The taskbar interface under Windows CE is almost identical to the taskbar interface
under Windows 95 and Windows NT 4.0. I've already talked about how you can
configure the items in the Start menu. The taskbar also supports annunciators, those
tiny icons on the far right of the taskbar. The taskbar icons are programmed by the

Chapter 12 Shell Programming-Part I

identical methods used in Windows 95. The only limitation under the current Win
dows CE shell is that it doesn't support tool tips on the taskbar icons.

Programs can add, change, and delete taskbar icons using this function:

BOOL Shell_Notifylcon (DWORD dwMessage, PNOTIFYICONDATA pnid);

The first parameter, dwMessage, indicates the task to accomplish by calling the func
tion. This parameter can be one of the following three values:

• NIM_ADD Adds an annunciator to the taskbar

• NIM_DELETE Deletes an annunciator from the taskbar

• NIM_MODIFY Modifies an existing annunciator on the taskbar

The other parameter points to a NOTIFYICONDATA structure, which is de
fined as

typedef struct _NOTIFYICONDATA {
DWORD cbS1ze;
HWND hWnd;
UINT uID;
UINT uFlags;
UINT uCallbackMessage;
HICON hlcon;
WCHAR szTip[64];

} NOTIFYICONDATA;

The first field, cbSize, must be filled with the size of the structure before a call is made
to Shell_Notifylcon. The h Wnd field should be set to the window handle that owns
the icon. This window receives messages notifying the window that the user has
tapped, double-tapped, or moved her pen on the icon. The u!D field identifies the
icon being added, deleted, or modified. This practice allows an application to have
more than one icon on the taskbar. The uFlags field should contain flags that identify
which of the remaining fields in the structure contain valid data.

When you're adding an icon, the uCallbackMessage field should be set to a
message identifier that can be used by the taskbar when notifying the window of user
actions on the icon. This value is usually based on WM_USER so that the message
value won't conflict with other messages the window receives. The taskbar looks at
this field only if uFlags contains the NIF _MESSAGE flag.

The hlcon field should be loaded with the handle to the 16-by-16-pixel icon to
be displayed on the taskbar. You should use Loadlmage to load the icon because
Loadlcon doesn't return a small format icon. The taskbar looks at this field only if
the NIF _ICON flag is set in uFlags. Finally, the szTip field would contain the tool
tip text for the icon on other Windows systems but is ignored by the current Windows
CE shells.

717

Part IV Advanced Topics

Managing a taskbar icon involves hanclling the notification messages the taskbar
sends and acting appropriately. The message are ent with the mes age identifier
you defined in the ca ll to Shell_Notifylcon. The wParam parameter of the message
contains the ID value of the taskbar icon that the message references. The /Param

parameter contains a code indicating the reason for the message. These values are
actually the message codes for various mouse events. For example, if the user taps
on your taskbar icon, the /Param value in the notification message will be WM_
LBUTTONDOWN, followed by another message containing WM_LBUTTONUP.

The TBlcons Example Program

718

The TBicons program demonstrates adding and deleting taskbar annunciator icons.
Figure 12-1 shows the TBicons window. The buttons at the bottom of the window
allow you to add and delete icons from the taskbar. The list box that takes up most of
the window displays the callback me sages as the taskbar sends them. ln the taskbar,
you can see two icon that TBlcons has added. The list box contain a list of mes
sages that have been sent by the taskbar back to the TBicons window.

:It; / ~

f.l
M H;ir11jl,;:.ld :r-,•i:_.ri-1;:.t

p,: = • t,:11•)~ .:.r • f-.1.,
:r1:1Jf-r>?l1I

~
f.l• ~
ht': '::i;.:-•-,j,,r

l Bir ml '>

on 2 WM_LBUTTOMXlWN
on 2 WM_LBUTTQN)llLCLJ<
on 2 WM_MOUSEMOllE

2 WM__MOUSEMOllE
on 2 WM__MOUSEMOllE

2 WM_LBUTTOMJP

...
r.i ·e Jt>

_.J t 11:t T::1 ~ ~

f.l ..
M1,:r1:• •:1tT

l:J "'
.,

r.:i:-.:1:-r11.:;.r

Figure 12-1 . The Windows CE desktop with a 7Blcons window.

~
r.;~11: I ,-~

f:' I~": ~ 0:- t

.. .•• i:t/' 1

&:l
\111:1 :' '~ , . r

The source code for TBicons is shown in Figure 12-2. The program uses a dia
log box as its main window. The routines that add and delete taskbar icons are
DoMainCommandAddlcon and DoMainCommandDellcon. Both these routines sim
ply fill in a NOTIFYICONDATA structure and call Shell_Notify/con. The routine that

Chapter 12 Shell Programming- Part I

handles the notification messages is DoTaskBarNotifyMain. This routine is called when
the window receives the user-defined message MYMSG_TASKBARNOTIFY, which is
defined in TBicons.h as WM_USER+lOO. Remember that dia log boxes use some of
the WM_U ER message constants, so it's a good practice not to use the first hundred
values above WM_USER to avoid any conflicts.

TB Icons.re

II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
#include "windows.h"
#include "TBicons.h" II Program-specific stuff

11 --------------- -- -------- ------- -- ------ --- ---------------------------
11 Icons and bitmaps
II
ID_ICON ICON "TBicons.ico" II Program icon

11 ------------------ --
TBicons DIALOG discardable 25, 5, 120, 110
STYLE WS_OVERLAPPED I WS_VISIBLE I WS_CAPTION I WS_SYSMENU I

DS_CENTER I DS_MODALFRAME
CAPTION "TBicons"
BEGIN

LISTBOX IDD_OUTPUT, 2, 2, 116, 90,
WS_TABSTOP I WS_VSCROLL I LBS_NOINTEGRALHEIGHT

PUSHBUTTON "&Add Icon", IDD_ADDICON, 2, 95, 55. 12, WS_TABSTOP
PUSHBUTTON "&Delete Icon",

IDD_DELICON, 61, 95, 55, 12, WS_TABSTOP
END

TBlcona.h

II==
II Header file
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==

Figure 12-2. TB/cons source code. (continued)

7 19

Part IV Advanced Topics

Figure 12-2. continued

II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11 -- -- ---------- ------------------ --- ------- ---- ----- -- -----------------
11 Generic defines and data types
II
struct decodeUINT

UINT Code:

BOOL C•Fxn)(HWND, UINT, WPARAM, LPARAM);
} :
struct decodeCMD (

UINT Code:
LRESULT (• Fxn)(HWND, WORD, HWND, WORD>:

} :

II Structure associates
II messages
II with a function.

II Structure associates
II menu IDs with a
11 function.

11------------------- ----- ------------- -- -------- ---- -- --------- ----- -- -
II Generic defines used by application

/ldefi ne ID_ICON 1

#define IDD_ADDICON 10 11 Control IDs
#define IDD_DELICON 11
#define IDD_OUTPUT 12

/ldefi ne MYMSG_TASKBARNOTIFY (WM_USER + 100)

11--- --- ------------------------
11 Function prototypes
II
void Add2List (HWND hWnd, LPTSTR lpszFormat, ...);

II Window procedures
BOOL CALLBACK MainDlgProc CHWND, UINT, WPARAM. LPARAM);

II Message handlers
BOOL DolnitDlgMain (HWND, UINT, WPARAM, LPARAM);
BOOL DoCommandMain (HWND, UINT, WPARAM, LPARAM);
BOOL DoTaskBarNotifyMain CHWND, UINT, WPARAM, LPARAM):

II Command functions
LPARAM DoMainCommandExit CHWND. WORD, HWND, WORD):
LPARAM DoMainCommandAddlcon CHWND. WORD, HWND. WORD>:
LPARAM DoMainCommandDellcon CHWND. WORD, HWND, WORD);

720

Chapter 12 Shell Programming-Part I

TBlcons.c

II==
II TBicons - Taskbar icon demonstration for Windows CE
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include "TBi cons.h" II Program-specific stuff

11- - ------- - --------------- - ------------- - --- - ----------------- - -- - -- ---
11 Global data
II
const TCHAR szAppName[]
HINSTANCE hlnst:

TEXT ("TBicons");
II Program instance handle

INT nlconID = 0: II ID values for taskbar icons
BOOL fPalm = FALSE;

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {

WM_INITDIALOG, DolnitDlgMain,

} ;

WM_COMMAND, DoCommandMain,
MYMSG_TASKBARNOTIFY, DoTaskBarNotifyMain,

II Command Message dispatch for MainWindowProc
const struct decodeCMD MainCommandltems[] = {

} :

!DOK. DoMainCommandExit,
IDCANCEL, DoMainCommandExit,
IDD_ADDICO N, DoMainCommandAddicon,
IDD_DELICON, DoMainCommandDelicon,

II==
II Program entry point
II
int WINAPI WinMain (HINSTANCE hlnstance, HINSTANCE hPrevlnstance,

LPWSTR lpCmdLine, int nCmdShow) {
hlnst = hlnstance:

II Display dialog box as main window.
DialogBoxParam Chlnstance, szAppName, NULL, MainDlgProc, 0);
return 0:

(continued)

721

Part IV Advanced Topics

Figure 12-2. continued

II==
II Message handling procedures for main window
11 ------------------ ------------ ----- -- ------- ------ -------- ------ ------
11 MainDlgProc - Callback function for application window
II
BOOL CALLBACK MainDlgProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LP A RAM l Pa ram) {

}

INT i ;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for Ci = 0; i < dimCMainMessages); 1++) {

if CwMsg == MainMessages[i] .Code)
return C•MainMessages[i].Fxn)(hWnd, wMsg, wParam, l Param l ;

return FALSE;

11---- ---------------------- ---- --
11 DoinitDlgMain - Process WM_INITDIALOG message for window.
II
BOOL DoinitDlgMain CHWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam){

TCHAR szType[256];

}

SystemParametersinfo CSPI_GETPLATFORMTYPE, dimCszType), szType, 0);
if Clstrcmp CszType, TEXT ("Palm PC")) == 0) {

fPalm = TRUE:
PostMessage ChWnd, WM_COMMAND,

MAKELONG CIDD_ADDICON, BN_CLICKED), 0):

~eturn 0:

11------- --------- ----- ----- --- ------ ----- ------------------------------
11 DoCommandMain - Process WM_COMMAND message for window.
II
BOOL DoCommandMain CHWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam){

WORD iditem, wNotifyCode:

722

HWND hwndCtl;
INT i;

II Parse the parameters.
iditem = (WORD) LOWORD CwParam);
wNotifyCode = (WORD) HIWORD CwParam>:
hwndCtl = CHWND) lParam;

Chapter 12 Shell Programming-Part I

}

II Call routine to handle control message.
for Ci= 0; i < dimCMainCommandltems); i++) {

if (idltem == MainCommandltems[i].Code) {
(*MainCommandltems[i].Fxn)(hWnd, idltem, hwndCtl,

wNot 1 fyCode) ;
return TRUE;

return FALSE;

11- ---
11 DoTaskBarNotifyMain - Process MYMSG_TASKBARNOTIFY message for window.
II
BOOL DoTaskBarNotifyMain CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) {

}

TCHAR szText[l28];

SetForegroundWindow ChWnd);
wsprintf CszText,

TEXT ("icon Sd "), wParam);
switch ClParam) {
case WM_MOUSEMOVE:

lstrcat (szText, TEXT C"WM_MOUSEMOVE"l);
break;

case WM_LBUTTONDOWN:
lstrcat CszText, TEXT ("WM_LBUTTONDOWN"ll;
break;

case WM_LBUTTONUP:
lstrcat (szText, TEXT ("WM_LBUTTONUP"));
break;

case WM_LBUTTONDBLCLK:

}

lstrcat (szText, TEXT ("WM_LBUTTONDBLCLK"));
break;

Add2L1st ChWnd , szText);
return 0;

II==
II Command handler routines
11 --
11 DoMainCommandExit - Process Program Exit command.
II

(continued)

723

Part IV Advanced Topics

Figure 12-2. continued

LPARAM DoMainCommandExit CHWND hWnd, WORD idltem, HWND hwndCtl,
WORD wNotifyCode) {

}

NOTIFYICONDATA nid;

II Delete any remaining taskbar icons.
memset C&nid, 0. sizeof nid);
nid.cbSize = sizeof CNOTIFYICONDATA);
nid.hWnd = hWnd;
while CnlconlD) {

}

nid.uID = nlconID--;
Shell_Notifylcon (NIM_DELETE. &nid):

EndDialog (hWnd, 0):
return 0;

11--- -- ---------- -- ---------------------------------- ------------- ------
11 DoMainCommandAddlcon - Process Add Icon button.
II
LPARAM DoMainCommandAddlcon CHWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

}

NOTIFYICONDATA nid;

nlconID++;
nid.cbSize = sizeof (NOTIFYICONDATA);
nid.hWnd = hWnd;
nid.uID = nlconID;
nid.uFlags = NIF_ICON I NIF_MESSAGE; II NIF_TIP not supported
nid.uCallbackHessage = MYHSG_TASKBARNOTIFY;
nid.hlcon = Loadlmage (hlnst, MAKEINTRESOURCE (ID_ICON),

IMAGE_ICON, 16,16,0);
n1d.szTip[0) = '\0';

Shell_Notifylcon (NIM_ADD, &nid);
return 0;

11---------------------- --------- ------------- ----------------- ---------
11 DoMainCommandDellcon - Process Del Icon button.
II
LPARAM DoMainCommandDellcon (HWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

724

NOTIFYICONDATA nid;

II Leave one icon on for Palm-size PC, so user can get back to the
II window. Otherwise, don't delete an icon if none currently exists.

}

Chapter 12 Shell Programming-Part I

if CCfPalm && (nlconID == 1)) I I CnlconID == 0))
return 0:

memset C&nid, 0, sizeof ni d);
nid.cbSize = sizeof CNOTIFYICONDATA);
nid.hWnd = hWnd:
nid.uID = nlconID -- :

Shell _Notifylcon CNIM_DELETE, &nid);
return 0;

// -------------------------------------- --------------------------------
// Add2Lis t - Add str i ng to the report l i st box.
II
void Add2List CHWND hWnd, LPTSTR lpsz Format , . ..)

i nti, nBuf;
TCHAR szBuffer[512];

va_l i st args;
va_start(args, lpszFormat);

nBuf = _vstprintfCszBuffer, lpszFormat, args) ;
i = SendDlgltemMessage (hWnd, I DD_OUTPUT , LB_ADDSTRING , 0,

(LPARAM) (LPCTSTR) szBuffer) ;
i f Ci != LB_ERR)

SendDlgltemMessage ChWnd, IDD_OUTPUT , LB_S ETTOPINDEX, i ,
(LPARAMl (LPCTSTR)szBuffer);

va_end(args) :

THE OUT OF MEMORY DIALOG BOX
Because Windows CE applications are almost always running in a limited memory
environment, it seems likely that they'll need an Out Of Memory dialog box. The stan
dard Windows CE shells give you just such a dialog box as a system service. Figure 12-3
on the following page shows this dialog box on a Casio E-10 Palm-size PC.

The advantage of using the system-provided Out Of Memory dialog box is that
you don't have to create one yourself in what, by definition, is already a low-memory
condition. The dialog box provided by the system is also correctly configured for the
proper screen size and local language. To display an Out Of Memory dialog box, you
call this function :

int SHShowOutOfMemory CH WND hwndOwner, UINT grfFlags);

725

Part IV Advanced Topics

Eile Iest Testl Tes~ !:felp)(
Slot lAOOOOOO

Out Of Memory Error C [3

0 There is not enough
memory. Please exit some
running programs and try
again.

~ .• Jt2:12p

Figure 12-3. The Windows CE Out Of Memory dialog box.

The two parameters are the owner window and grjFlags, which must be set to 0. In
the latest versions of Windows CE, this function has been moved from the shell so
that it's available to embedded systems designed with the Embedded Toolkit (ETK).

NOTIFICATIONS
One area in which Windows CE exceeds the Windows 98 and Windows NT API is
the notification interface. Windows CE applications can register to be launched at a
predetermined time or when any of a set of system events occur. Applications can
also register a user notification. In a user notification, the system notifies the user at
a specific time without the application itself being launched at that time.

In Windows CE 2.1 , the notification interface was moved from the shell to the
base system. The advantage of this change is that this interface is now available for
embedded systems.

User Notifications

726

A Windows CE application can schedule the user to be notified at a given time using
the CeSetUserNotification function . When the time of the notification occurs, the sys
tem alerts the user by displaying a dialog box, playing a wave file , or flashing
an external LED. Window CE also di plays the icon of the application that set the
notification on the taskbar. The user has the option of acknowledging the notifica
tion either by clicking OK on the notification dialog box, pressing the Notify but
ton on the system case, if one is present, or tapping on the application's taskbar

Chapter 12 Shell Programming-Part I

annunciator icon, which launches the application that registered the notification.
After a user notification has been set, you can modify it by making another call to
CeSetUserNotification.

Setting a user notification
CeSetUserNotification is prototyped as

HANDLE CeSetUserNotification (HANDLE hNotification,
TCHAR *pwszAppName, SYSTEMTIME *lpTime,
PCE_USER_NOTIFICATION lpUserNotification);

The hNotification parameter is set to 0 to create a new notification. To modify a no
tification already registered, you should set hNotification to the handle of the user
notification that you want to modify. The pswzAppName parameter specifies the name
of the owning application. If this application has a small icon (16-by-16-pixel) image
in its primary icon, that icon will be displayed as the taskbar annunciator icon when
the notification occurs. The lpTime parameter is a pointer to a SYSTEMTIME struc
ture that specifies the time for the notification to occur. The lpUserNotification pa
rameter points to a CE_USER_NOTIFICATION structure that describes how the user
is to be notified. This structure is defined as

typedef struct UserNotificationType {
DWORD ActionFlags;
TCHAR *PWSZDialogTitle;
TCHAR *PWSZDialogText;
TCHAR *PWSZSound;
DWORD nMaxSound;
DWORD dwReserved;

} CE_USER_NOTIFICATION;

The ActionFlags field of this structure contains a set of flags that define how
the user is notified. The flags can be any combination of the following:

• PUN_IED Flash the external LED.

• PUN_ VIBRATE Vibrate the device.

• PUN_DIALOG Display a dialog box.

• PUN_SOUND Play a wave file.

• PUl\f_REPEAT Repeat the wave file for 10 to 15 seconds.

The fact that these flags are defined doesn't mean that all systems implement
all these actions. Most Windows CE devices can't vibrate and a few don't even have
an external LED. There isn't a defined method for determining the notification capa
bilities of a device, but as I'll presently show you, the system provides a dialog box
that's customized by the OEM for the capabilities of each device.

727

728

The remainder of the fields in the structure depend on the flags set in the
ActionFlags field. If the PUN_DIALOG flag is set, the pwszDialogTitle and pwsz
DialogText specify the title and text of the dialog that's displayed. The pwszSound
field is loaded with the filename of a wave file to play if the PUN_SOUND flag is set.
The nMaxSound field defines the size of the pwsSound field.

Configuring a user notification
To give you a consistent user interface for choosing the method of notification,
Windows CE provides a dialog box to query the user how he wants to be notified.
To display the user configuration dialog box, you call this function:

BOOL CeGetUserNotificationPreferences (HWND hWndParent,
PCE_USER_NOTIFICATION lpNotification);

This function takes two parameters-the window handle of the parent window for
the dialog box and a pointer to a CE_USER_NOTIFICATION structure. You can ini
tialize the CE_USER_NOTIFICATION structure with default settings for the dialog
before CeGetUserNot~ficationPreferences is called. When the function returns, this
structure is filled with the changes the user made. CeGetUserNotificationPrejerences
returns TRUE if the user clicked on the OK button to accept the changes and FALSE
if an error occurred or the user canceled the dialog box.

This function gives you a convenient method for configuring user notifications.
The dialog box lets you have check boxes for playing a sound, displaying another
dialog box, and flashing the LED. It also contains a combo box that lists the available
wave files that the user can choose from if he wants sound. The dialog box doesn't
have fields to allow the user to specify the text or title of the dialog box if one is to be
displayed. That text must be provided by the application.

Acknowledging a user notification
A user notification can be cleared by the application before it times out by calling

BOOL CeClearUserNotification (HANDLE hNotification);

Once a user notification has occurred, it must be acknowledged by the user. The user
can tap the OK button on the notification dialog box or press the notification button
on the H/PC or Palm-size PC case. A third alternative is for the user to tap on the
taskbar icon of the program that registered the notification. This icon is displayed by
the system when the notification is made. In this case, Windows CE launches the
application.

If the user taps on the taskbar icon, the notification isn't automatically acknowl
edged. Instead, an application should programmatically acknowledge the notifica
tion by calling this function:

BOOL CeHandleAppNotifications (TCHAR *pwszAppName);

Chapter 12 Shell Programming-Part I

The one parameter is the name of the application that was launched due to the taskbar
icon tap. Calling this function removes the dialog box, stops the sound, turns off the
flashing LED, and removes the application's annunciator icon from the taskbar.

When the system starts an application due to a notification, it passes a command
line argument to indicate why the application was started. For a user notification, this
argument is the command line string AppRunToHandleNotification followed by a space,
and the handle of the notification. Instead of using the literal string for comparison,
notify.h, which is the include file that contains the notification API, includes defines for
the command line strings. The constant for AppRunToHandleNotffication is APP _RUN_
TO_HANDLE_NOTIFICATION.

As a general rule, an application started by a notification should first check to
see whether another instance of the application is running. If so, the application should
communicate to the first instance that the notification occurred and terminate. This
saves memory because only one instance of the application is running. The code frag
ment below shows how this can be easily accomplished.

I NT i;
HWND hWnd;
HANDLE hNotify;
TCHAR szText[l28];

if (*lpCmdLine) {
pPtr = lpCmdLine;

}

II Parse the first word of the command line.
for (i = 0; i < dim(szText) && *lpCmdLine >TEXT(''); i++)

szText[i] = *pPtr++;
szText[i] =TEXT ('\0');

II Check to see if app started due to notification.
if (lstrcmp (szText, APP_RUN_TO_HANDLE_NOTIFICATION) 0) {

II Acknowledge the notification
GetModuleFileName (hlnst. szText, sizeof (szText));
CeHandleAppNotifications (szText);

II Get handle off the command line.
hNotify = (HANDLELwtol (pPtr);

II Look to see if another instance of the app is running.
hWnd = FindWindow (NULL, szAppName);
if (hWnd) {

SendMessage (hWnd, MYMSG_TELLNOTIFY, 0, (LPARAM)hNotify);
II This app should terminate here.
II return 0;

729

Part IV Advanced Topics

This code first looks to see whether a command line parameter exists and if so,
whether the first word is the keyword indicating that the application was launched
by the system in response to a user notification. If so, the notification is acknowl
edged and the application looks for an instance of the application already running,
using FindWindow. If found, the routine sends an application-defined message to
the main window of the first instance and terminates. Otherwise, the application can
take actions necessary to respond to the user's tap of the program icon on the taskbar.

Timer Event Notifications
To run an application at a given time without user intervention, use a timer event
notification. The function that creates a timer event notification is this one:

BOOL CeRunAppAtTime (TCHAR *pwszAppName, SYSTEMTIME *lpTime);

The two parameters are the name of the application to launch and a pointer to
a SYSTEMTIME structure to set the time to launch the application. Only one timer
event notification can be set for any one application. Calling CeRunAppAtTime a sec
ond time with a new time simply replaces the first notification with the second. A
timer notification can be cleared by passing a NULL pointer in the lpTime parameter.

When the timer notification is activated, the system powers on, if currently off,
and launches the application with a command line parameter of APP _RUN_AT_TIME.
As with the user notification, the application should check to see whether another in
stance of the application is running and pass the notification on if one is running. Also,
an application should be careful about creating a window and taking control of the
machine during a timer event. The user might object to having his game of solitaire
interrupted by another application popping up because of a timer notification.

System Event Notifications

730

Other times, you might want an application to be automatically started. Windows CE
supports a third type of notification, known as a system event notification. This noti
fication starts an application when one of a set of system events occurs, such as after
the system has completed synchronizing with its companion PC. To set a system event
notification use this function:

BOOL CeRunAppAtEvent (TCHAR *pwszAppName, LONG lWhichEvent);

As with the timer event notification, the first parameter is the name of the application
to launch. The second parameter is a constant indicating which event to monitor. The
flags are the following:

• NOTIFICATION_EVENT_NONE Clear event notifications.

Chapter 12 Shell Programming-Part I

• NOTIFICATION_EVENT_SYNC_END Notify when sync complete.

• NOTIHCATION_EVENT_DEVICE_CHANGE Notify when a PCMCIA de
vice is added or removed.

• NOTIFICATION_EVENT_RS232_DETECTED Notify when an RS232 con
nection is detected.

• NOTIFICATION_EVENI'_11ME_CHANGE Notify when the system time is
changed.

• NOTIFICATION_EVENT_RESTORE_END Notify when a device restore is
complete.

For each of these events, the application is launched with a specific command
line parameter indicating why the application was launched. In the case of a device
change notification, the NOTIFICATION_EVENT_DEVICE_CHANGE command line
string is followed by either I ADD or /REMO VE and the name of the device being added
or removed. For example, if the user inserts a modem card, the command line for the
notification would look like this:

AppRunDeviceChange /ADD COM3:

A number of additional system events are defined in notify.h but at this point, none
are currently supported.

Once an application has registered for a system event notification, Windows CE
will start the application again if the event that caused the notification is repeated. To
stop being notified, an application must call CeRunAppAtEvent and pass its name and
NOTIFICATION_EVENT_NONE in the lWhichEvent parameter.

The MyNotify Example Program

The following program, MyNotify, demonstrates each of the notification functions that
allow you to set user notifications, system notifications, and timer notifications. The
program presents a simple dialog box that has four buttons. The first two buttons
allow you to configure and set a user notification. The second two buttons let you
set system and timer notifications. The gap above the buttons is filled with the com
mand line, if any, that was passed when the application started. It's also used to dis
play a message when another instance of My Notify is started due to a user notification.
Figure 12-4 on the following page shows two MyNotify windows. The one in the fore
ground was launched because of a user notification, while the one in the background
displays a message, indicating it was sent a message from the other instance of the
application.

731

Part IV Advanced Topics

Figure 12-4. Tbe MyNotify window.

The source code for MyNotify is shown in Figure 12-5. The notification code is
confined to the button handler routines. The code is fairly simple: for each type of
notification, the appropriate Windows CE function is called. When asked to config
ure a user notification, the application calls CeGetUserNotificationPreferences. The
program gives you one additional dialog box with which to configure the system
notifications.

MyNotlfy.rc

II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
#include "windows.h"
I/include "MyNotify.h" II Program-specific stuff

11------- -------------------------- -------- --- --------------------------
11 Icons and bitmaps
II
ID_ICON ICON "MyNotify.ico" II Program icon
11--- -----

Figure 12-5. Tbe MyNotify program.

732

Chapter 12 Shell Programming-Part I

II Hain window dialog template
II

120. 85 HyNotify DIALOG discardable 25, 5,
STYLE WS_OVERLAPPED I WS_VISIBLE WS_CAPTION I WS_SYSHENU I

DS_CENTER I DS_HODALFRAHE
CAPTION "HyNotify"
BEGIN

LTEXT "", IDD_OUTPUT, 2,
PUSHBUTTON "&Set User Notification",

IDD_ADDUSERNOT,

2.

2,
PUSHBUTTON "&Configure User Notification",

IDD_CFGUSERNOT, 2,

PUSHBUTTON "&Set System Notification",

115, 21

25. 115. 12.

38, 115, 12,

WS_TABSTOP

WS_TABSTOP

IDD_ADDSYSNOT, 2, 56, 115, 12, WS_TABSTOP
PUSHBUTTON "&Set Timer Notification",

IDD_ADDTIHENOT, 2, 69, 115. 12, WS_TABSTOP
END
11 --- ---- ------- -- ---------- ------------------------------ --------------
11 Set system event notification dialog box dialog template.
II
SysNotifyConfig DIALOG DISCARDABLE 0, 0, 139, 87
STYLE DS_HODALFRAHE I WS_POPUP I WS_CAPTION I WS_SYSHENU
EXSTYLE WS_EX_CAPTIONOKBTN
CAPTION "Notify On . .. "
BEGIN

AUTOCHECKBOX "Sync End", IDc_syNc_END. 7.
WS_TABSTOP

AUTOCHECKBOX "Device Change",IOc_DEVICLCHANGE, 7,
WS_TABSTOP

AUTOCHECKBOX "Serial Connection Detected",

7.

22.

121.

121,

IDC_SERIAL_DETECT, 7, 37, 121,
WS_TABSTOP

AUTOCHECKBOX "System Time Change",
IDC_TIHE_CHANGE, 7. 52, 121.

WS_TABSTOP

10,

10,

10.

10.

AUTOCHECKBOX "Restore End", rnc_RESTORE_END, 7, 67, 121. 10.
WS_TABSTOP

END

MyNotlfy.h

II==
II Header file
II
II Written for the book Programming Windows CE

(continued)

733

Part IV Advanced Topics

Figure 12·5. continued

II Copyright (C) 1998 Douglas Boling
II==
II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

11------ --- -- -------------
11 Generic defines and data types
II
struct decodeUINT {

UINT Code;

BOOL (*Fxn)(HWND, UINT, WPARAH, LPARAH);
) ;

struct decodeCHD {
UINT Code;
LRESULT (*Fxn)(HWND, WORD. HWND. WORD):

) ;

II
II
II

II
II
II

II Define function not supported under Windows CE.
#ifndef IsDlgButtonChecked
#define IsDlgButtonChecked(a, b)\

Structure associates
messages
with a function.

Structure associates
menu IDs with a
function.

SendDlgltemHessage (a, b, BH_GETCHECK, 0, 0)
#endif
11 --- -----
II Generic defines used by application

//define ID_ICON 1

//define IDD_ADDUSERNOT 10 11 Control IDs
//define IDD_CFGUSERNOT 11
//define IDD_ADDSYSNOT 12
//define IDD_ADDTIMENOT 13
#define IDD_OUTPUT 14

//define IDG_SYNC_END 20
//define IDC_DEVICE_CHANGE 21
//define IDC_SERIAL_DETECT 22
//define I DG_ Tl HLCHANGE 23
//define IDG_RESTORLEND 24

//define MYMSG_TELLNOTIFY CWH_USER + 100)

1/---- ---------------------------------- ---------- -- --------------------
11 Function prototypes
II
void Add2List CHWND hWnd, LPTSTR lpszFormat, ...);

734

Chapter 12 Shell Programming-Part I

II Window procedures
BOOL CALLBACK MainDlgProc CHWND, UINT. WPARAM, LPARAM);
BOOL CALLBACK SetEventNotifyDlgProc CHWND, UINT . WPARAM, LPARAM) ;

II Message handlers
BOOL DolnitDialogMain CHWND, UINT, WPARAM, LPARAM);
BOOL DoCommandMain (HWND, UINT, WPARAM, LPARAM);
BOOL DoTellNotifyMain CHWND. UINT. WPARAM. LPARAM);

II Command functions
LPARAM DoMainCommandExit (HWND, WORD, HWND, WORD);
LPARAM DoMainCommandAddUserNotification CHWND, WORD, HWND, WORD);
LPARAM DoMainCommandConfigUserNotification CHWND, WORD. HWND. WORD);
LPARAM DoMainCommandAddSysNotification CHWND. WORD, HWND . WORD);
LPARAM DoMainCommandAddTimerNotification CHWND. WORD . HWND, WORD);

MyNotify.c

II==
II MyNotify - Demonstrates the Windows CE Notification API
II
II Written for the book Programming Windows CE
II Copyright CC> 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff
#include <notify.h> II For notification defines
Iii ncl ude "MyNotify. h" 11 Program-specific stuff

11 -- - ---
11 Global data
II
const TCHAR szAppName[] =TEXT ("MyNotify");
HINSTANCE hlnst; II Program instance handle

CE_USER_NOTIFICATION g_ceun; II User notification structure
TCHAR szDlgTitle[128] =TEXT ("Notification Demo");
TCHAR szDlgText[128] =TEXT ("Times Up! ");
TCHAR szSound[MAX_PATH] =TEXT ("alarml.wav");

II Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = (

WM_INITDIALOG, DolnitDialogMain,
WM_COMMAND, DoCommandMain.
MYMSG_TELLNOTIFY, DoTellNotifyMain,

} ;

(continued)

735

Part IV Advanced Topics

Figure 12-5. continued

II Command Message dispatch for MainWindowProc
const struct decodeCMD MainCommandltems[] = {

!DOK, DoMainCommandExit,

} ;

IDCANCEL, DoMainCommandExit,
IDD_ADDUSERNOT, DoMainCommandAddUserNotif1cat1on,
IDD_CFGUSERNOT, DoMa1nCommandConfigUserNot1f1cat1on,
IDD_ADDSYSNOT, DoMainCommandAddSysNot1ficat1on,
IDD_ADDTIMENOT. DoMainCommandAddTimerNot1f1cat1on,

II==
II Program entry point
II
int WINAPI WinMain (HINSTANCE hlnstance, HINSTANCE hPrevlnstance,

LPWSTR lpCmdL1ne, 1nt nCmdShow) {

736

INT i;
TCHAR szText[MAX_PATH];
WCHAR *pPtr;
HANDLE hNotify;
HWND hWnd:

hlnst = hlnstance:

if (*lpCmdLine) {
pPtr = lpCmdLine:
II Parse the first word of the command line.
for Ci= 0: Ci< dim(szText)-1) && (*pPtr >TEXT(' ')); i++)

szText[i] = *pPtr++:
szText[i] =TEXT ('\0');

II Check to see if app started due to notification.
if Clstrcmp (szText, APP_RUN_TO_HANDLE_NOTIFICATION) 0) {

II Ack the notification
GetModuleFileName (hlnst, szText, sizeof CszText));
CeHandleAppNotifications CszText);

II Get handle off the command line.
hNotify = CHANDLE)_wtol CpPtr):

II Look to see if another instance of the app is running.
hWnd = FindWindow (NULL, szAppName>:
if (hWnd) {

SendMessage ChWnd, MYMSG__TELLNOTIFY. 0,
CLPARAM)hNotify);

II I should terminate this app here, but I don't so you
II can see what happens.
II return 0;

Chapter 12 Shell Programming-Part I

}

}

II Do a little initialization of CE_USER_NOTIFICATION.
memset C&g_ceun, 0, sizeof (g_ceun)l;
g_ceun.ActionFlags = PUN_DIALOG:
g_ceun.pwszDialogTitle = szDlgTitle:
g_ceun.pwszDialogText = szDlgText:
g_ceun.pwszSound szSound:
g_ceun.nMaxSound = sizeof (szSound);

II Display dialog box as main window.
DialogBoxParam (hlnstance, szAppName, NULL, MainDlgProc,

(LPARAMllpCmdLine);
return 0:

II==
II Message handling procedures for main window
11 --
11 MainDlgProc - Callback function for application window
II
BOOL CALLBACK MainDlgProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Paraml (

}

I NT i;
II
II Search message list to see if we need to handle this
II message. If in list, call procedure.
II
for Ci = 0; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[i].Codel
return (*MainMessages[i].Fxn>ChWnd. wMsg, wParam. lParaml;

return FALSE;

11-- --
11 DolnitDialogMain - Process WM_INITDIALOG message for window.
II
BOOL DolnitDialogMain (HWND hWnd, UINT wMsg, WPARAM wParam.

}

LPARAM l Pa ram) {

if (*(LPTSTRllParam)
Add2List (hWnd, (LPTSTR)lParam):

return FALSE;

11--

(continued)

737

Part IV Advanced Topics

Figure 12-5. continued

II DoCommandMain - Process WM_COMMAND message for window.
II
BOOL DoCommandMain CHWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam){

WORD idltem, wNotifyCode;

)

HWND hwndCtl;
INT i;

II Parse the parameters.
idltem = (WORD) LOWORD (wParam);
wNot ifyCode = (WORD) HIWORD (wParam);
hwndCtl = CHWND) lParam:

II Call routine to handle control message.
for (i = 0; i < dim(MainCommandltems); i++) {

if (idltem == MainCommandltems[i].Code) {
(•MainCommandltems[i].Fxn)(hWnd, idltem, hwndCtl.

wNotifyCodeJ;
return TRUE;

}

return FALSE;

11--
11 DoTellNotifyMain - Process MYMSG_TELLNOTIFY message for window.
II
BOOL DoTellNotifyMain (HWND hWnd, UINT wMsg, WPARAH wParam,

LPARAM lParam) {
Add2List (hWnd, TEXT {"Notification Sd reported"), lParam>:
return 0;

)

II==
II Command handler routines
11 -- -- -- ---- -- -- - - - - -- - - -- - - - -- - --- -------------- - -- ---- - -- - - - -- -- ----- -
II DoMainCommandExit - Process Program Exit command.
II
LPARAM DoMainCommandExit CHWND hWnd, WORD idltem, HWND hwndCtl,

WORD wNotifyCode) {

)

EndDialog ChWnd, 0);
return 0;

11 -------------------------------- --------------------------------------
11 DoMainCommandAddUserNotification - Process Add User Notify button.
II

738

Chapter 12 Shell Programming-Part I

LPARAM DoMainCommandAddUserNotification (HWND hWnd, WORD idltem,

)

HWND hwndCtl, WORD wNotifyCode)
SYSTEMTIME st:
TCHAR szExeName[MAX_PATH], szText[128];
HANDLE hNotify;

II Initialize time structure with local time.
GetLocalTime C&st):
II Do a trival amount of error checking.
if (st.wMinute == 59) {

st.wHour++;
st.wMinute = 0:

else
st.wMinute++;

GetModuleFfleName (hlnst, szExeName, sizeof (szExeName));
II Set the notification.
hNotify = CeSetUserNotification (0, szExeName. &st. &g_ceun):
if ChNotify) {

wsprintf (szText. TEXT ("User notification set for %d:%02d"),
st.wHour, st.wMinute):

MessageBox (hWnd, szText, szAppName. MB_OK);

return 0:

11 ---- ----------------- -- ---------------------- ----- --- -- ---------------
11 DoMainCommandConfigUserNotificatfon - Process Config user
II notification button.
II
LPARAM DoMainCommandConfigUserNot1f1cat1on CHWND hWnd, WORD iditem,

}

HWND hwndCtl, WORD wNotifyCodel {
CeGetUserNotificationPreferences ChWnd, &g_ceun);
return 0:

11 --
11 DoMainCommandAddSysNotification - Process Add Sys notify button.
II
LPARAM DoMainCommandAddSysNotification (HWND hWnd, WORD idltem,

}

HWND hwndCtl, WORD wNotifyCode)

DialogBox (hlnst, TEXT ("SysNotifyConfig"), hWnd ,
SetEventNotifyDlgProc):

return 0:

11 ------------- ---

(continued)

739

Part IV Advanced Topics

Figure 12-5. continued

II DoMa1nCommandAddTimerNotif1cation - Process add timer notify button.
II
LPARAM DoMainCommandAddTimerNot1f1cation CHWND hWnd, WORD idltem,

}

HWND hwndCtl. WORD wNot1fyCode)
SYSTEMTIME st:
TCHAR szExeName[MAX_PATH], szText[l28];

II Initialize time structure w1th local t1me.
GetlocalT1me C&st):
II Do a triv1al amount of error check1ng.
if Cst.wM1nute == 59) (

st.wHour++;
st.wMinute = 0;

else
st.wM1nute++;

GetModuleFileName Chinst, szExeName, s1zeof CszExeName));
II Set the notificat1on.
1f CCeRunAppAtTime CszExeName, &st))

wspr1ntf CszText. TEXT ("Timer notification set for Sd:Sd"),
st.wHour, st.wMinute);

MessageBox (hWnd, szText, szAppName, MB_OK);

return 0;

11 ------ ----- --- -- -------- -- ------- ------ --- --- --- -- --------- ----- ------
11 Add2List - Add string to the report list box.
II
void Add2List CHWND hWnd, LPTSTR lpszFormat, ...) {

int 1, nBuf;

)

TCHAR szBuffer[512];

va_list args;
va_startCargs, lpszFormat);

nBuf = _vstprintf(szBuffer, lpszFormat, args);
i = SendDlgltemMessage ChWnd, IDD_OUTPUT, WM_SETTEXT, 0,

CLPARAH)(LPCTSTR)szBuffer);
va_end(args):

II==
II SetEventNotifyDlgProc - Callback function for Event dialog box
II

740

Chapter 12 Shell Programming-Part I

BOOL CALLBACK SetEventNotifyDlgProc CHWND hWnd, UINT wHsg,
WPARAH wParam,

}

LPARAH 1 Pa ram) (
LONG lEvent:
TCHAR szExeName[HAX_PATH]:

switch (wHsg) {
case WH_COHHAND:

(

WORD idltem = LOWORD CwParam):
switch (idltem> (
case IDOK:

lEvent = 0:

II lsDlgButtonChecked isn't defined in Win CE, so
II a macro has been defined.
if ClsDlgButtonChecked (hWnd, IDC_SYNC_END) 1)

lEvent I= NOTIFICATION_EVENT_SYNC_END:

if (lsDlgButtonChecked (hWnd, IDC_SERIAL_DETECT) 1)
lEvent I= NOTIFICATION_EVENT_RS232_DETECTED;

if (lsDlgButtonChecked (hWnd, IDC_DEVICE_CHANGE) 1)
lEvent i= NOTIFICATION_EVENT_DEVICE_CHANGE;

if (lsDlgButtonChecked (hWnd, IDC_TIHE_CHANGE) 1)
lEvent I= NOTIFICATION_EVENT_TIHE_CHANGE;

if (lsDlgButtonChecked (hWnd, IDC_RESTORE_END) 1)
lEvent I= NOTIFICATION_EVENT_RESTORE_END;

II Set the notification.
GetHoduleFileName (hlnst, szExeName,

sizeof (szExeName));
CeRunAppAtEvent (szExeName, lEvent);

EndDialog (hWnd, l);
return TRUE;

case IDCANCEL:

break;

EndDialog (hWnd, 0);
return TRUE;

return FALSE;

74 1

When MyNotify is started, it examines the command line to determine whether
it was started by a user notification. If so, the program attempts to find another in
stance of the application already running. If the program finds one, a message is sent
to the first instance, informing it of the user notification. Because this is an example
program, the second instance doesn't terminate itself as it would were it a com
mercial application.

CONSOLE APPLICATIONS

742

A console driver was added to Windows CE in version 2.1. Windows CE doesn't sup
port the character mode API supported by Windows NT. Instead, a Windows CE
console application just uses the standard C library I/0 functions, such as prinif and
getc, to read and write characters from the command line. Another major difference
between command line applications on Windows CE and on other versions of Win
dows is that they use the standard WinMain entry point instead of the standard C
entry point of main.

Below is a Windows CE console application that runs under Windows CE 2.1.
Aside from the difference of the entry point, a Windows CE console application looks
like any other standard C command line application.

II
II HelloCon - A simple console application
II
#include <windows.h> II For all that Windows stuff

II Program entry point
int WINAPI WinMain (HINSTANCE hlnstance, HINSTANCE hPrevinstance,

LPWSTR lpCmdline, int nCmdShow) {

}

II You don't use Unicode for the stdio functions ...
printf ("Hello World\n"l;

// ... but you can with the 'w' versions.
wprintf (TEXT ("Hello World\n"ll;
return 0;

Windows CE console applications have access to the Win32 APL In fact, a con
sole application can create windows, enter a message loop, and operate as if it were
a standard Windows application. The difference is that the first time you call one of
the stdio C library functions, such as print/, a console window is created and the re
sult of that function will be seen in that window.

You implement consoles under Windows CE using a console driver with the
appropriate device name of CON. Up to 10 console windows can be opened at any
one time. The limit comes from the CONO through CON9 naming convention used

Chapter 12 Shell Programming- Part I

by drivers under Windows CE. Console application don't directly open a CO driver
to read and write to the window. At the current time, support for console applica
tions is limited to a subset of tl1e standard C library character mode functions.

Because the initialization of the console driver occurs only after the first call
to an 1/0 library function , it's possible for a console application to run to comple
tion and terminate without ever creating a console window for output. If you want
a console window to always be created, you'll need to include a prinif or other
console input or output call to force the console to be created. You can alway in ert
a line like

printf (" \b ");

which prints a space and then backspaces over the space to force tl1e console to be
created.

The CEFind Example Program
The following program i a short console application that searches the Windows CE
file system for matching file names. The program can be launched from a console
window using CMD.EXE, or it can be launched from the Explorer. Because no con
cept of a current directory is built into Windows CE, the search alway tarts from
the root of the file system unless a path is specified with the filename specification.
Figure 12-6 shows the re ulcs of CEFind when looking for all the TrueType fonts
on a system.

Figure 12-6. 7be results of a CEFind search for TrueType font files.

743

Part IV Advanced Topics

The CEFind source is contained in one file , CEFind.C, shown in Figure 12-7.
The entry point i WinMain, which then calls SrchDirectory, which recursively call
itself to search each of the directories underneath the original directory.

CEFind.c

II==
II CEFind - A Windows CE console file search application
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
#include <windows.h> II For all that Windows stuff

II Returns number of elements
#define dim(x) (sizeof(x) I sizeof(x[0]))

in t SrchDirectory (LPTSTR pszDirl:
11----- --- ---- --------------- ------------ ---- -- ------- --------- ---------
11 Global data
II
int nTotal 0:
int nFiles 0:

II==
II Program entry point
II
int WINAPI WinMain (HINSTANCE hlnstance, HINSTANCE hPrevlnstance,

LPWSTR lpCmdline, int nCmdShowl {
TCHAR plnput[256]:

if <wcslen (lpCmdline) == 0) {
printf ("USAGE: CEFIND filespec\n"):
return 0:

}

printf ("\n"):
II We always start at the root.
if (• lpCmdline !=TEXT(' \\ '))

plnput[0] =TEXT(' \\ '):
} else

plnput[0] L'\0':
wcscat Cplnput, lpCmdline):

II Perform recursive search .
SrchDirectory Cplnput):

II Initialize the console.

Figure 12-7. 7be CEFind program.

744

Chapter 12 Shell Programming-Part I

}

wprintf CL"\n S9d fileCsl found. Sd by t es .\n". nFiles, nTot all;
return 0;

11 - - --- - ------- -- --------- - --- --- -- - ------------------------------------
11 SrchDirectory - Recursive routine that searches a dir and all
II child dirs for matching files
II
int SrchDirectory CLPTSTR pszDirl {

WIN32_FIND_DATA fd;
TCHAR szNew[MAX_PATH];
INT i, re, nErr = 0;
HANDLE hFind;
TCHAR *pPtr. •pSrcSpec;

II Separate subdirectory from search specification.
for CpSrcSpec = pszDir + lstrlen CpszDir); pSrcSpec >= pszD i r ;

pSrcSpec -- l
i f C• pSrcSpec ==TEXT{'\\'))

break;

II Copy the search specification up to the last di rectory
II separation character.
if {pSrcSpec <= pszDirl

lstrcpy {szNew. TEXT {"\\"));
else {

for Ci = 0; Ci < dimCszNew)-10) &&
CCpszDir+il <= pSrcSpecl; i++J

szNew[i] = • {pszDir+i);
szNew[i] = TEXT {'\0'):

pPtr = szNew + lstrlen CszNewl:

II Find matching files.
hFind = FindFirstFile CpszDir. &fdl:
if {hfind != INVALID_HANDLE_VALUE) {

do {
II Report all matching files.
if {!{fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)) {

wprintf CL" S9d\t SsSs\n", fd.nFileSizeLow, szNew,
fd.cFileName>:

nTotal += fd.nFileSizeLow;
nFiles++;

(continued)

745

Part IV Advanced Topics

Figure 12-7. continued

746

re = FindNextFile ChFind, &fd):
} while (re):

FindClose ChFind);
else {

re= GetlastError();
if ((re I= ERROR_FILE_NOT_FOUNO) &&

Crc != ERROR_NO_HORE_FILES)) {
wprintf (L"lFind Error. Str:Ss rc:Sd", pszDir, re);
return -1:

II Create generic search string for all directories.
lstrcat CszNew, TEXT (" • . • ">>:

hFind = FindFirstFile CszNew, &fd);
if (hFind I= INVALIO_HANDLE_VALUE) {

do {
if (fd.dwFileAttributes & FILE_ATTRIBUTE_OIRECTORY)

II Recurse to the lower directory
lstrcpy CpPtr, fd.cFileName);
lstrcat CpPtr, pSrcSpec);
nErr = SrchDirectory CszNew>:
if (nErr) break:
• pPtr =TEXT ('\0');

re= FindNextFile ChFind, &fd);
}whileCrc);

FindClose ChFind);
} else {

re= GetlastError();
if ((re I= ERROR_FILE_NOT_FOUNO) &&

(re I= ERROR_NO_HORE_FILES)) {
wprintf (L"2Find Error:Sd", re);
return -1:

return nErr:

I began this chapter by aying the Windows CE shell is intere ting in that, like
many parts of Window CE, it re embles its desktop counterpart but i implemented

Chapter 12 Shell Programming-Part I

very differently. These differences show up the most in places, such as the Explorer,
where almost all of the COM interfaces are unique and private, and in console appli
cations, where the implementation is limited to supporting a subset of standard C library
calls and nothing else.

The next chapter covers the tablet mode shell components. These shell com
ponents were first introduced for the Palm-size PC. These components include the
SIP (the supplementary input panel), and dedicated hot keys on the system. Let's
take a look.

747

Chapter 13

Shell Programming
-Part2

A Windows CE programmer needs to understand at least three shells when program
ming a Windows CE device. The Handheld PC and Handheld PC Pro devices, each
equipped with a keyboard and a landscape-oriented screen, use an Explorer-type shell
that looks similar to the shell used by Windows 95 and Windows NT 4. The Palm
size PC and other Windows CE keyboardless devices, which come equipped with a
portrait-oriented screen, use a completely different shell, one that doesn't expose the
file system to the user. Each of these devices has an Active Desktop that displays in
formation from various applications directly on the desktop. The third shell a Win
dows CE programmer needs to know is the one not written. This is the custom shell,
written by the OEM designing an embedded device.

This chapter covers components that most directly relate to the Palm-size PC
shell, although the technologies presented in this chapter aren't restricted to use in
the Palm-size PC. The primary difference between the Palm-size PC and other Win
dows CE devices is the Palm-size PC's lack of a full hardware keyboard. In its place,
is the Supplementary Input Panel, or SIP, which gives the user a way to register key
strokes directly on the screen. However, as with many Windows CE technologies, the
SIP has now been generalized in Windows CE 2.1 for use on other platforms.

I'll also cover how to handle the hardware buttons that are on many Palm-size
PCs. These buttons can be used two ways-to launch an application or to provide
additional keys to an application while it's running. While the navigation buttons are

749

specific to the Palm-size PC, the application launch buttons are also available on some
Handheld PC and Handheld PC Pro systems as well as other Windows CE-based
systems.

THE SUPPLEMENTARY INPUT PANEL
The SIP gives the user access to a keyboard's capacities on devices that don't have a
keyboard or at times when the keyboard of a device isn't available to the user. Having
a SIP on a Windows CE system affects the application in a couple of ways. First the
screen real estate used by the SIP isn't available to the application. Second since the
SIP can be displayed and hidden interactively by the user, the amount of the screen
that's available to the application can change while the application is running. What
doesn't change is the way an application deals with keyboard input. Characters entered
by means of a SIP appear to an application in the same message-based way that keys
appear if they're pressed on a hardware keyboard. That is, the same series of WM_
KEYDOWN, WM_CHAR, and WM_KEYUP messages are generated by the system in
response to a key being entered through a SIP.

A SIP can use a number of different input methods or IMs. These input meth
ods are installable components and provide the user interface to the SIP. Two such
input methods are the keyboard IM and the Jot Character recognizer IM, which are
provided on the Palm-size PC.

Working with a SIP

750

The functions available to Windows CE applications for interaction with the SIP have
changed since they were introduced with the Palm-size PC. So while Windows CE 2 .1
adds a newer and more general set of functions, I'm going to present the Palm-size
PC functions first, because most applications dealing with the SIP run, at this point,
on the Palm-size PC. At the end of this section, I'll describe the different functions
provided by Windows CE 2.1 for use with the SIP.

The primary function an application uses when dealing with the SIP on a Palm
size PC is SHSipinfo. This omnibus function allows an application to receive infor
mation about the current SIP settings (such as its location), set those settings, query
the current default SIP, and even change the default SIP. The function is prototyped as

BOOL SHSiplnfo (UINT uiAction, UINT uiParam, PVOID pvParam,
UINT fWinlni);

The first parameter to SHSiplnfo, uiAction, should be set with a flag that specifies the
action you want to perform with the function. The allowable flags are these:

Chapter 13 Shell Programming-Part 2

• SPI_SETSIPINFO Sets the SIP configuration including its location and its
visibility

• SPI_GETSIPINFO Queries the SIP configuration

• SPI_SETCURRENTIM Sets the current default input method

• SPI_GETCURRENTIM Queries the current default input method

Because the behavior of SHSiplnfo is completely different for each of the flags,
I'll describe the function as if it were four different function calls. For each of the flags
though, the second and fourth parameters, uiParam andfWinlni, must be set to 0.

Querying the state of the SIP
To query the current state of the SIP, you would call SHSiplnfo with the SPI_GET
SIPINFO flag in the uiAction parameter. In this case, the function looks like this:

BOOL SHSipinfo (SPI_GETSIPINFO, 0, SIPINFO *psi, 0);

The third parameter must point to a SIPINFO structure, which is defined as

typedef struct {
DWORD cbSize;
DWORD fdwFlags;
RECT rcVisibleDesktop;
RECT rcSipRect;
DWORD dwimDataSize;
VOID *pvimData;

} SIP INFO;

The structure's first field, chSize, must be set to the size of the SIPINFO struc
ture before a call is made to SHSiplnfo. The second field in SIPINFO,fdwHags, can
contain a combination of the following flags:

• SIYF_ON When set, the SIP is visible.

• SIPF_DOCKED When set, the SIP is docked to its default location on the
screen.

• SIPF_JDCKED When set, the visibility state of the SIP can't be changed
by the user.

The next two fields of SIPINFO provide information on the location of the SIP.
The field re VisibleDesktop is filled with the screen dimensions of the visible area of
the desktop. If the SIP is docked, this area is the rectangle above the SIP. If the SIP
is undocked, this rectangle contains the full desktop area minus the taskbar, if it's

751

Part IV Advanced

752

showing. This field is ignored when you set the SIP configuration. Some SIPs might
have a docked state that doesn't run from edge to edge of the screen. In this case, the
rectangle describes the largest rectangular area of the screen that isn't obscured by
the SIP.

The rcSipRect field contains the location and size of the SIP. If the SIP is docked,
the rectangle is usually the area of the screen not included by rcVisibleDesktop. But if
the SIP is undocked, rcSipRect contains the size and position of the SIP while
rcVisibleDesktop contains the entire desktop not obscured by the taskbar, including
the area under the SIP. Figure 13-1 shows the relationship between re VisibleDesktop
and rcSipRect.

<10--------1>-

rcVisibleDesktop

Docked SIP

rcVisibleDesktop

<l~---D-S>

l rcSipRect
SIP__

Undocked SIP

Figure 13-1. The relationship between rcVisibleDesktop and rcSipRect in the
SIPINFO structure.

The final two fields of SIPINFO allow you to query information specific to the
current input method. The format of this information is defined by the input method.
To query this information, the pvlmData field should be set to point to a buffer to
receive the information and dwlmDataSize should be set to the size of the buffer. It
is up to the application to know which input methods provide what specific data.
For most input methods, these two fields should be set to 0 to indicate that no IM
specific data is being queried.

Setting the SIP configuration
To set the configuration of the current SIP, you call SHSiplnfo with the SPI_SETSIPINFO
flag, as in

BOOL SHSipinfo (SPI_SETSIPINFO, 0, SIPINFO *PSi, 0);

Chapter 13 Shell Programming-Part 2

The parameters are the same as when you call to query the SIP configuration with
the third parameter pointing to a SIPINFO structure. As a general rule, you shouldn't
fill in the SIPINFO fields from scratch. Instead, you should call SHSiplnfo to fill in the
SIPINFO structure, modify the fields necessary to make your change, and then call
SHSiplnfo again to make the changes. That said, you really can't change much with
the present version of the Palm-size PC shell. Currently, an application can't undock
a SIP, move the SIP, or even dock an undocked SIP. The only state that an application
can change is to show or hide the SIP by toggling the SIPF_ON flag in thefdwFlags
field of the SIPINFO structure.

Changing the default input method
You can use SHSip!rifo to query and to change the current SIP. To query the current
SIP, you call SHSip!nfo with the SPI_GETCURRENTIM flag in the uiAction parameter
as in

BOOL SHSipinfo (SPI_SETSIPINFO, 0, CLSID •pclsid, 0);

In this case, the third parameter points to a CLSID variable that receives the CLSID of
the current input method.

To set the current input method, call SHSiplnfo with the uiAction parameter set
to SPI_SETCURRENTIM, as in

BOOL SHSipinfo (SPI_SETSIPINFO, 0, CLSID *pclsid, 0);

Here again, the third parameter of SHSiplnfo is a pointer to a CLSID value. In this
case, the value must contain a CLSID of a valid input method.

Enumerating the installed input methods
The Palm-size PC has no function that enumerates the input methods that are installed
on a system. So applications must iterate through the registry to find the input method
DLLs. Fortunately, this isn't an onerous task because input methods are COM objects,
and an input method is required to have a special key named JsSIP!nputMethod with
a default value of 1 in its COM registration key. So, to enumerate the installed input
methods, all you have to do is enumerate the CLSID keys under [HKEY_CLASSES_
ROOT)\CLSID. In each key that you open, look for the subkey lsSIP!nputMethod. If
you find it, the entry is the CLSID of an input method and the default value of the
CLSID key is the name of the input method.

The routine that follows enumerates the installed input methods. The routine
fills a buffer with a list of strings. For each input method found, the routine returns
two strings, the CLSID of the input method and the input method's friendly name.
The list is terminated with a null character.

753

Part IV Advanced

11- --- - - --- --- -- - - - - - - - ---- --- - - - - - - - - ---- --- - - - -- - ---------- - --- - -- -- --
11 EnumerateinputMethods - Produces a list of installed input methods
II and their CLSIDs
II
int EnumerateinputMethods (LPTSTR pOut, int sMax) {

INT i = 0, re, nCnt = 0;
HKEY hKey, hSubKey, hKey2;
DWORD dwType, dwSize;

II Open CLSID key.
if (RegOpenKeyEx (HKELCLASSES_ROOT, TEXT ("CLSID"), 0,

0, &hKey) != ERROR_SUCCESS)
return 0;

sMax -= 2; II Make room for terminating zero.
while (sMax > 0) {

II Enumerate active driver list.

754

dwSize = sMax;
if (RegEnumKeyEx (hKey, i++, pOut, &dwSize, NULL, NULL,

NULL, NULL) != ERROR_SUCCESS)
break;

II Open object ID key for object.
re= RegOpenKeyEx (hKey, pOut, 0, 0, &hSubKey);
if (re != ERROR_SUCCESS)

continue;

II See if IsSIPMethod key present indicating an IM object.
re= RegOpenKeyEx (hSubKey, TEXT ("IsSIPinputMethod"), 0, 0,

&hKey2);

if (re == ERROR_SUCCESS) {
RegCloseKey (hKey2);
II Move output pointer beyond CLSID.
sMax -= (lstrlen (pOut) + 1) * sizeof (TCHAR);
if (sMax > 0)

pOut += lstrlen (pOutl + 1;
else

break;
II Get name of IM.
dwSize = sMax;
re= RegQueryValueEx (hSubKey, 0, 0, &dwType,

(PBYTElpOut, &dwSize);
RegCloseKey (hSubKey);
if (re != ERROR_SUCCESS) {

*pOut =TEXT ('\0');
RegCloseKey (hSubKey);
RegCloseKey (hKey);
return -1;

Chapter 13 Shell Programming-Part 2

II Move output pointer beyond current name.
sMax -= (int)dwSize;
if (sMax > 0)

pOut += lstrlen (pOut) + l;

nCnt++;

RegCloseKey (hSubKey);

RegCloseKey (hKey);
II Add terminating zero.
if (!re)

*pOut =TEXT ('\0');
return nCnt;

Reacting to SIP Changes

When the user or an application displays or hides the SIP, the Palm-size PC shell sends
a WM_SETTINGCHANGE message to all top-level windows. To indicate that the
message was sent in response to the state of the SIP changing, the wParam value is
set to the constant SPI_SETSIPINFO. You can then call SHSiplnfo to determine the
new state of the SIP. Note that while this message is sent to all top-level windows,
only the foreground window should make any changes to the SIP. A window not in
the foreground can save the indication that the SIP state has changed and respond
when that window is brought to the foreground.

When the user changes the input method of the SIP, a WM_SETIINGCHANGE
message is sent to all top-level windows. In this case, the wParam value is set to the
constant SPI_SETCURRENTIM.

When a foreground application detects that the SIP has been displayed, it should
ensure that the SIP doesn't obscure the location of the input caret or, in the case of a
dialog box, the control that currently has focus. In most cases, this means scrolling
the window or reconfiguring the dialog box so that the user can see the control even
with the SIP displayed. Another option is to always have controls laid out on the top
two thirds of the Palm-size PC screen because docked SIPs won't obscure this area.

Input Panels on Windows CE 2.1 Devices

One of the goals of Windows CE 2.1 was to take some of the more interesting and
useful functional units of the different H/PC and Palm-size PC shells and move them
into the base operating system. This would allow developers of embedded systems,
who don't currently have access to those complex shells, to use those functional blocks.
One of the functional blocks moved is the notification API that I talked about in Chapter
12. Another functional block is the SIP architecture. When the SIP was moved to the
operating system from the shell, the API for the SIP was redesigned to be a more general

755

756

API. Because of this, SIP-aware applications written for Windows CE 2 .1 need to use
a different set of functions than used by their Palm-size PC cousins.

Note that the SIP API isn't the same IME API that's also supported on Win
dows CE 2.1. The IME API is a much more general and complex API than the rela
tively simple SIP needs.

The first four functions of the Windows CE 2.1 SIP API correspond directly to
the four different modes of the Palm-size PC's SHSiplnfo functions. Their prototypes
are

BOOL SipGetinfo (SIPINFO *pSIPinfo);
BOOL SipSetinfo (SIPINFO *pSIPinfo);
BOOL SipGetCurrentIM (CLSID *pClsid);
BOOL SipSetCurrentIM (CLSID *pClsid);

Both SipGetlnfo and SipSetlnfo use the same SIPINFO structure that I described ear
lier in connection to the SHSiplnfo function. Likewise, the SipGetCurrent!M and
SipSetCurrent!M functions use pointers to CLSID values to identify the input methods.

A new function has been added to simplify the process of showing and hiding
the SIP. Instead of using SipGetlnfo and SipSetlnfo to fill in a SIPINFO structure and
modify the SIPP _ON flag to show or hide the SIP, you can use the SipShow!M func
tion. It's prototyped as

BOOL SipShowIM (DWORD dwFlags);

The only flags that can be specified are SPIF _ON and SPIF _OFF.
Instead of your having to manually enumerate the input methods by looking

through the registry, you can use a new function, SipEnum!M. This function is
prototyped as

int SipEnumIM (IMENUMPROC pEnumIMProc);

The only parameter is a pointer to an enumeration function in your application. If
you pass NULL in the pEnum!MProc parameter, SipEnum!M returns the number of
input methods installed on the system. The callback function should be prototyped as

int SipEnumIMProc (IMENUMINFO * pIMinfo);

Windows CE will call the enumeration function once for each input method
installed on the system. The function will be called with the parameter pointing to an
IMENUMINFO structure, which is defined as

struct _IMENUMINFO {
TCHAR szName[MAX_PATH];
CLSID Clsid;

IMENUMINFO;

Chapter 13 Shell Programming-Part 2

Here again, the fields are fairly self-explanatory. The szName is the friendly name of
the IM, while the Clsid field contains the CLSJD value for the IM.

Another function is SipStatus. This function tells the caller whether the SIP com
ponent of Windows CE is installed on a system. The function is prototyped as

DWORD SipStatus(void);

The function returns SIP STATUS_AVAILABLE if the SIP functions are available or
SIP _STATUS_UNAVAILABLE if the SIP component isn't installed.

The last two functions are provided for SIP maintenance. The Palm-size PC
doesn't need these functions because its shell maintains the SIP. For systems whose
shells don't have knowledge of a SIP, you'll have to write an application that main
tains the SIP through these functions. A better alternative would be to have your custom
shell provide the SIP maintenance through these functions.

On the Palm-size PC, the taskbar maintains the button that displays and hides
the SIP window. The taskbar maintains a button that displays a bitmap, which repre
sents the current input method so that the user knows which input method is the
default. On other systems, this function must be performed by another application
or more likely, by a custom shell. To provide this function, the custom shell needs to
know what bitmap the SIP wants displayed, while also maintaining the default rect
angle for the SIP. Windows CE 2.1 gives you two functions for this purpose.

The SipRegisterNotification function can be called by the application that main
tains the SIP. This application will then be notified when the input method changes
the bitmaps that are used to represent the input method. Only one application, the
application that manages the SIP, can call SipRegisterNotification to ask to be noti
fied when the SIP changes state. That application will then be notified about input
method changes until the system is rebooted. The function is prototyped as

BOOL SipRegisterNotification (HWND hWnd);

The only parameter is the window that will receive the notifications. That window
will receive WM_IM_INFO messages when an input method initially sets or later
changes its bitmaps. The wParam for this message contains one of the following flags,
indicating what's being changed by the input method. These flags are

• IM_POSJTJON The size or position of the input method has changed.

• IM_ WIDHIMAGE The input method has selected a new wide image.

• IM_NARROWIMAGH The input method has selected a new narrow
image.

757

Part IV Advanced

The !Param parameter contains different data, depending on the flag. For
IM_pOSITION, lParam isn't used. For IM_ WIDEIMAGE and IM_NARROWIMAGE,
!Param contains the handle to the new bitmap to be used.

The final function is also used by the custom shell or the application maintain
ing the SIP. It is

BOOL SipSetDefaultRect (RECT * pRect);

This function is called to set the default docked rectangle for the SIP. This allows a
custom shell to define where the docked position of the SIP is to be on the screen.
The only parameter is the rectangle that defines the default location. This new loca
tion won't be used until a new input method is selected either by the user or by the
program.

You might want to have your SIP-aware applications that need to be cross-com
patible with the Palm-size PC shell manually load the function pointers to the differ
ent SIP functions. This procedure would allow an application to run both on the
Palm-size PC as well as on any embedded Windows CE 2.1 or later system. I describe
how to do this in Chapter 14.

WRITING AN INPUT METHOD
Up to this point, I've talked only about the application side of dealing with SIPs. You
can also design your own input method rather easily. An input method is merely a
COM object that exports an IlnputMethod interface and creates an input method
window in response to requests from the input panel.

The Components of a SIP

758

A SIP is composed of two main components-the input panel and the input method.
The input panel is supplied by the system. It creates the input panel window, pro
vides the message loop processing for the SIP, and the window procedure for the
input panel window. The input panel cooperates with the taskbar or other shell pro
gram to provide the user with the ability to switch between a number of installed
input methods.

, The input method is the installable portion of the SIP. It's responsible fortrans
lating pen strokes and taps into keyboard input. It's also responsible for the look and
feel of the SIP while it's selected. In almost all cases, the input method creates a win
dow that's a child of the input panel window. Within that child window, the input
method draws its interface and interprets mouse messages. The input method then
calls back to the input panel when it wants to generate a key event.

Each of these two components implements a COM interface that becomes the
interface between them. The input method implements an IlnputMethod interface,

Chapter 13 Shell Programming-Part 2

while the input panel implements an l/MCallback interface. In the interaction between
the input panel and the input method, the input panel drives the interaction. For the
most part, the input method simply responds to calls made to its llnputMethod meth
ods. Calls are made when the input method is loaded, when it's unloaded, and when
it's shown or hidden. In response, the input method must draw in its child window,
interpret the user's actions, and call methods in the JIM Callback interface to send keys
to the system or to control the input panel's window.

Input methods are implemented as COM in-proc servers. Because of this, they
must conform to the standard COM in-proc server specifications. This means that an
input method is implemented as a DLL that exports DllGetClassObject and DllCan
UnloadNow functions. Input methods must also export DllRegisterServer and Dll
UnregisterServer functions that perform the necessary registry registration and
unregistration for the server DLL.

Threading Issues with Input Methods
Because the input panel and input method components are so tightly interrelated,
you must follow a few rules when writing an input method. While it's permissible to
use multiple threads in an input method, the interaction between the input panel and
the input method is strictly limited to the input panel's primary thread. This means
that the input method should create any windows during calls to methods in the
llnputMethod interface. This ensures that these windows will use the same message
loop as the input panel's window. This, in turn, allows the input panel to directly call
the input method's window procedures, as necessary. In addition, that same thread
should make all calls made back to the llMCallback interface.

In short, try not to multithread your input method. If you must, create all win
dows in your input method using the input panel's thread. Secondary threads can be
created, but they can't call the IIMCallback interface and they shouldn't create any
windows.

The llnputMethod Interface
The llnputMethod interface is the core of an IM. Using the interface's methods, an IM
should create any windows, react to any changes in the parent input panel window,
and provide any cleanup when it's released. The llnputMethod interface exports the
following methods in addition to the standard !Unknown methods:

• llnputMethod::Select The user has selected the IM. The IM should cre
ate its window.

• llnputMethod::Deselect The user has selected another IM. The IM should
destroy its window.

759

Part IV Advanced Topics

760

• llnputMetbod::Sbowing The IM window is about to be displayed.

• llnputMetbod::Hiding The IM window is about to be hidden.

• llnputMetbod::Getlnfo The system is querying the IM for information.

• llnputMetbod::ReceiveSiplrifo The system is providing information to the IM.

• llnputMetbod::RegisterCallback The system is providing a pointer to the
IIMCallback interface.

• llnputMetbod::GetlmData The IM is queried for IM-specific data.

• llnputMetbod::SetlmData The IM is provided IM-specific data.

• llnputMetbod::UserOptionsDlg The IM should display an options dialog
box to support the SIP control panel applet.

Let's now look at these methods in detail so that we can understand the pro
cessing necessary for each.

llnputlfethod::Select
When the user chooses your input method, the DLL that contains your IM is loaded
and the Select method is called. This method is prototyped as

HRESULT IInputMethod::Select (HWND hwndSip);

The only parameter is the handle to the SIP window that's the parent of your input
method's main window. You should return S_OK to indicate success or E_FAIL if you
can't create and initialize your input method successfully.

When the Select method is called, the IM will have just been loaded into memory
and you'll need to perform any necessary initialization. This includes registering any
window classes and creating the input method window. The IM should be created as
a child of the SIP window because it's the SIP window that will be shown, hidden,
and moved in response to user action. You can call GetClientRect with the parent
window handle to query the necessary size of your input window.

llnputlfethod::Getlnfo
After the input panel has loaded your IM, it calls the Getlnfo method. The input panel
calls this method to query the bitmaps that represent the IM. These bitmaps appear
in the SIP button on the taskbar. In addition, the IM can provide a set of flags and the
size and location on the screen where it would like to be displayed. This method is
prototyped as

HRESULT IInputMethod::Getinfo (IMINFO *pimi);

The only parameter is a pointer to an IMINFO structure that the IM must fill out to
give information back to the SIP. The IMINFO structure is defined as

typedef struct {
DWORD cbSize:
HANDLE himageNarrow:
HANDLE himageWide;
int iNarrow;
int iWide;
DWORD fdwFl ags;
RECT rcSipRect;

} IMINFO;

Chapter 13 Shell Programming-Part 2

The first field, cbSize, must be filled with the size of the IMINFO structure. The
next two fields, hlmageNarrow and hlmageWide, should be filled with handles to
image lists that contain the bitmaps that will appear on the taskbar SIP button. The
wide image is a 32-by-16-pixel bitmap that's used when the shell has room to display
the wide SIP button on the taskbar. When space on the taskbar is constrained, the
system narrows the SIP button and displays the 16-by-16 bitmap from the Narrow
image list. The input method must create these image lists and pass the handles in
this structure. The IM is responsible for destroying the image lists when a user or an
application unloads it. You can create these image lists in the Getlnfo method, as long
as you design your application to know not to create the image lists twice if Getlnfo
is called more than once. Another strategy is to create the image lists in the Select
method and store the handles as member variables of the IlnputMethod object. Then
when Getlnfo is called, you can pass the handles of the already created image lists to
the input panel.

The next two fields, iNarrow and iWide, should be set to the index in the im
age lists for the bitmap you want the SIP to use. For example, you might have two
different bitmaps for the SIP button, depending on whether your IM is docked to the
taskbar or is floating. You can then have an image list with two bitmaps, and you can
specify the index depending on the state of your IM.

The fdwFlags field should be set to a combination of the flags, SIPP _ON, SIPP_
DOCKED, SIPP _LOCKED, and SIPF _DISABLECOMPLETION, all of which define the
state of the input panel. The first three flags are the same flags that I described ear
lier. When the SIPP _DISABLECOMPLETION flag is set, the auto-completion function
of the SIP is disabled.

Finally, the rcSipRect field should be filled with the default rectangle for the input
method. Unless you have a specific size and location on the screen for your IM, you
can simply query the client rectangle of the parent SIP window for this rectangle. Note
that just because you request a size and location of the SIP window doesn't mean
that the window will have that rectangle. You should always query the size of the
parent SIP window when laying out your IM window.

761

Part IV Advanced Topics

762

llnputMethod::ReceiveSiplnfo
The ReceiveSiplnfo method is called by the input panel when the input panel is shown
and then again when an application moves or changes the state of the input panel.
The method is prototyped as

HRESULT IlnputMethod::ReceiveSiplnfo (SIPINFO *psi);

The only parameter is a pointer to a SIPINFO structure that I described earlier in this
chapter. When this method is called, only two of the fields are valid-the fdwFlags
field and the reSipRect field. The rcSipRect field contains the size and location of the
input panel window, while the f dwFlags field contains the SIPP _X%%" flags previously
described. In response to the ReceiveSiplnfo method call, the IM should save the new
state flags and rectangle.

llnputMethod::RegisterCallback
The input panel calls the RegisterCallback method once, after the input method has
been selected. The method is prototyped as

HRESULT IlnputMethod::RegisterCallback (IIMCallback *lpIMCallback);

This method is called to provide a pointer to the /JM Callback interface. The only action
the IM must take is to save this pointer so that it can be used to provide feedback to
the input panel.

llnputMethod::Showing and llnputMethod::Hiding
The input panel calls the Showing and Hiding methods just before the IM is shown
or hidden. Both these methods have no parameters and you should simply return
S_OK to indicate success. The Showing method is also called when the panel is moved
or resized. This makes the Showing method a handy place for resizing the IM child
window to properly fit in the parent input panel window.

llnputMethod::GetlmData and llnputMethod::SetlmData
The GetlmData and SetlmData methods give you a back door into the IM for appli
cations that need to have a special communication path between the application and
a custom IM. This arrangement allows a specially designed IM to provide additional
data to and from applications. The two methods are prototyped as

HRESULT IlnputMethod::GetlmData (DWORD dwSize, void* pvimData);

HRESULT IlnputMethod::SetlmData (DWORD dwSize, void* pvimData);

For both of these functions, the pointer points to a block of memory in the applica
tion. The dwSize parameter contains the size of the block pointed to by pvlmData.

When an application is sending data to a custom IM, it calls SHSiplnfo with
the SPI_SETSIPINFO flag. The pointer to the buffer and the size of the buffer are

Chapter 13 Shell Programming-Part 2

specified in the pvlmData and dwlmDataSize fields of the SIPINFO structure. If these
two fields are nonzero, the input panel then calls the SetlmData method with the
pointer and the size of the buffer contained in the two parameters of the method.
The input method then accepts the data in the buffer pointed to by pvlmData. When
an application calls SHSiplnfo with the SPI_GETSIPINFO structure and nonzero val
ues in pvlmData and dwlmDataSize, the input panel then calls the GetlmData method
to retrieve data from the input method.

llnputMethod::Deselect
When the user or a program switches to a different default IM, the input panel calls
Deselect. Your input method should save its state (its location on the screen, for ex
ample), destroy any windows it has created, and unregister any window classes it
has registered. It should also destroy any image lists it's still maintaining. The proto
type for this method is

HRESULT IInputMethod::Deselect (void);

After the Deselect method is called, the SIP will unload the input method DLL.

llnputMethod::UserOptionsDlg
The UserOptionsDlg method isn't called by the input panel. Instead, the input panel's
control panel applet calls this method when the user clicks on the Options button.
The IM should display a dialog box that allows the user to configure any settable
parameters in the input method. The UserOptionsDlg method is prototyped as

HRESULT IInputMethod::UserOptionsDlg (HWND hwndParent);

The only parameter is the handle to the window that should be the parent window
of the dialog box. Because the IM might be unloaded after the dialog box is dismissed,
any configuration data should be saved in a persistent place such as the registry, where
it can be recalled when the input panel is loaded again.

The llMCallback Interface

The IIMCallhack interface allows an IM to call back to the input panel for services
such as sending keys to the operating system. Aside from the standard !Unknown
methods that can be ignored by the IM, only four methods are exposed by IIMCallback.
These methods are

• IIMCallhack::Setlmlnfo Sets the bitmaps used by the input panel as well
as the location and visibility state of the input method

• IIMCallback::SendVirtualKey Sends a virtual key to the system

763

Part IV Advanced

764

• IIMCallback::SendCharEvents Sends Unicode characters to the window
with the current focus

• IIMCallback::SendString Sends a string of characters to the window with
the current focus

It's appropriate that the //MCallback interface devotes three of its four methods
to sending keys and characters to the system because that's the primary purpose of
the IM. Let's take a quick look at each of these methods.

llMCallback::Setlmlnfo
The Setlmlnfo method allows the IM control over its size and location on the screen.
This method can also be used to set the bitmaps representing the IM. The method is
prototyped as

HRESULT IIMCallback::Setiminfo (IMINFO *pimi);

The only parameter is a pointer to an IMINFO structure. This is the same structure
that the IM uses when it calls the Getlnfo method of the IlnputMethod interface, but
I'll repeat it here for clarity.

typedef struct
DWORD cbSize;
HANDLE himageNarrow;
HANDLE himageWide;
int iNarrow;
int iWide;
DWORD fdwFlags;
RECT rcSipRect;

} IMINFO;

This structure enables an IM to tell the input panel the information that the panel
asked for in Getlnfo. The IM must correctly fill in all the fields in the IMINFO struc
ture because it has no other way to tell the input panel to look at only one or two of
the fields. You shouldn't re-create the image lists when you're calling Setlmlnfo; in
stead, use the same handles you passed in Getlnfo unless you want to change the
image lists used by the input panel. In that case, you'll need to destroy the old image
lists after you've called Setlmlnfo.

You can use Setlm/nfo to undock the input panel and move it around the screen
by clearing the SIPF_DOCKED flag infdwFlags and specifying a new size and loca
tion for the panel in the rcSipRect field. Because Windows CE doesn't provide sys
tem support for dragging an input panel around the screen, the IM is responsible for
providing such a method. The sample IM I present beginning on page 766 supports
dragging the input panel around by creating a gripper area on the side of the panel
and interpreting the stylus messages in t11is area to allow the panel to be moved around
the screen.

Chapter 13 Shell Programming-Part 2

llMCallback::SendVirtualKey
The SendVirtualKey method is used to send virtual key codes to the system. The dif
ference between this method and the SendCharEvents and SendString methods is that
this method can be used to send noncharacter key codes, such as those from cursor
keys and shift keys, that have a global impact on the system. Also, key codes sent by
SendVirtualKey are affected by the system key state. For example, if you send an a
character and the Shift key is currently down, the resulting WM_ CHAR message con
tains an A character. SendVirtualKey is prototyped as

HRESULT IIMCallback::SendVirtualKey (BYTE bVk, DWORD dwFlags);

The first parameter is the virtual key code of the key you want to send. The second
parameter can contain one or more flags that help define the event. The flags can be
either 0 or a combination of flags. You would use KEYEVENTF_KEYUP to indicate
that the event is a key up event as opposed to a key down event and KEYEVENTF _
SILENT, which specifies that the key event won't cause a key click to be played for
the event. If you use SendVirtualKey to send a character key, the character will be
modified by the current shift state of the system.

llMCallback::SendCharEvents
The SendCharEvents method can be used to send specific characters to the window
with the current focus. The difference between this method and the SendVirtua/Key
method is that SendCharEvents gives you much more control over the exact infor
mation provided in the WM_KEY~ and WM_CHAR messages generated. Instead
of simply sending a virtual key code and letting the system determine the proper
character, this method allows you to specify the virtual key and associate a completely
different character or series of characters generated by this event. For example, in a
simple case, calling this method once causes the messages WM_KEYDOWN, WM_
CHAR, and WM_KEYUP all to be sent to the focus window. In a more complex case,
this method can send a WM_KEYDOWN, and multiple WM_ CHAR messages, followed
by a WM_KEYUP message.

This method is prototyped as

HRESULT IIMCallback::SendCharEvents (UINT uVK, UINT uKeyFlags,
UINT uChars, UINT *puShift, UINT *puChars);

The first parameter is the virtual key code that will be sent with the WM_KEYDOWN
and WM_KEYUP messages. The second parameter is the key flags that will be sent
with the WM_KEYDOWN and WM_KEYUP messages. The third parameter is the
number of WM_ CHAR messages that will be generated by this one event. The next
parameter, puShift, should point to an array of key state flags, while the final param
eter, puCbar, should point to an array of Unicode characters. Each entry in the shift
array will be joined with the corresponding Unicode character in the character array

765

Part IV Advanced Topics

when the WM_CHAR message are generated. This allows you to give one key on
the IM keyboard a unique virtual key code and to generate any number of WM_ CHAR
messages, each with its own shift state.

llMCallback::SendString
You u e the SendString method to send a series of characters to the focus window.
The advantage of this function i that an IM can easily send an entire word or sen
tence, and the input panel will take care of the details such as key down and key up
events. The method is prototyped as

HRESULT IIMCallback: :SendString (LPTSTR ptszStr, DWORD dwSize);

The two parameters are the string of characters to be sent and the number of charac
ters in the string.

The NumPanel Example Input Method

766

The NumPanel example code demonstrates a simple IM. NumPanel gives a user a
simple numeric keyboard including keys 0 through 9 as well as the four arithmetic
operators, +, - , *, and I and the equal sign key. While not of much use to the user,
NumPanel doe demonstrate all the requirements of an input method. The NumPanel
example is different from the standard IMs that come with the Palm-size PC in that it
can be undocked. The umPanel IM has a gripper bar on the left side of the window
that can be used to drag the IP around the screen. When a user double-taps the gripper
bar, the SIP snaps back to its docked position. Figure 13-2 shows the NumPanel IM
in its docked position while Figure 13-3 shows the same panel undocked.

Sunday, July 26, 1998

No upcoming appointments for tnday.

8/3/98 ChaptEr 14 due
- 7 /20/98 ChaptEr 13 due
- ChaptEr 13 Ed its
- ChaptEr 14 Ed its
- Implement OEMWritEDebugLED

Figure 13-2. 7be NumPanel JM window in its docked position .

Chapter 13 Shell Programming-Part 2

Sunday, Ju ly 26, 1998

I • '__ _ ' I I I _Li_ __

No upcoming appointments fur tnday.

it 11jhl:OBa

Figure 13-3. 7be NumPanel IM window undocked.

The ource code that implements umPanel i divided into two main files,
NumPanel.cpp and NPWnd.c. umPanel.cpp provides the COM interfaces nece ary
for the IM, including the IlnputMethod interface and the !ClassFactory interface. In
this file a well i DI/Main, and the other functions necessary to implement a COM
in-proc erver. NPWnd.c contain the code that implements the NumPanel window.
Thi code compri e the umPanel window procedure and the supporting me sage
handling procedures. The ource code for umPanel is shown in Figure 13-4 .

NumPanel.def

;Standard COM library OEF file

LIBRARY NUMPANEL.DLL

EXPORTS
DllCanUnloadNow @l PRIVATE
DllGetClassObject @2 PRIVATE
DllRegisterServer @3 PRIVATE
DllUnregisterServer @4 PRIVATE

Figure 13-4. 7be umPanel source code. (conlintted)

767

Part IV Advanced Topics

Figure 13-4. continued

NumPanel.rc

II==
II Resource file
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include "windows.h" II For all that Windows stuff
#include "NumPanel.h" II Program-specific stuff

11- ----------------------------- --
II Icons and bitmaps
II
!D_ICON ICON "NumPane 1 . i co" II Module icon

NarrowBmp BITMAP "nkbd.bmp" II Bmp used in image list
NarrowMask BITMAP "nmask.bmp" II Mask used in image list
WideBmp BITMAP "widekbd.bmp" II Bmp used in image list
WideMask BITMAP "widemask.bmp" II Mask used in image list

NumPanel.h

//==
II Header file
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==

#define ID_ICON 1
#define IDC_SIP 10

II **** Start of Generic COM declarations ****
II==
II MyClassFactory - Object declaration
II
class MyClassFactory : public IClassFactory

private:
long m_lRef;

public:

768

MyClassFactory();
-MyClassFactory() ;

Chapter 13 Shell Programming-Part 2

} ;

//!Unknown methods
STDMETHODIMP Query!nterface (THIS_ REFIID riid, LPVOID *ppvl;
STDMETHODIMP_CULONG) AddRef (THIS);
STDMETHODIMP_(ULONG) Release (THIS);

//IClassFactory methods
STDMETHODIMP Createlnstance CLPUNKNOWN pUnkOuter. REFIID riid,

LPVOID *PPV);
STDMETHODIMP LockServer CBOOL flock);

II **** End of Generic OLE declarations ****

//==
II MyIInputMethod - Object declaration
II
class MyIInputMethod : public IInputMethod

private:
long m_lRef;
HWND m_hwndParent;
HWND m_hwndMyWnd;
HIMAGELIST m_himlWide;
HIMAGELIST m_himlNarrow;
IIMCallback *m_pIMCallback;

public:
MyIInputMethod();
-MyIInputMethod();

//!Unknown methods
STDMETHODIMP Querylnterface (THIS_ REFIID riid, LPVOID *ppvObj);
STDMETHODIMP_(ULONGl AddRef (THIS);
STDMETHODIMP_(ULONG) Release (THIS);

//IInputMethod
HRESULT STDMETHODCALLTYPE Select CHWND hwndSip);
HRESULT STDMETHODCALLTYPE Deselect (void);
HRESULT STDMETHODCALLTYPE Showing (void);
HRESULT STDMETHODCALLTYPE Hiding (void);
HRESULT STDMETHODCALLTYPE Getlnfo CIMINFO ~RPC_FAR *pimi);
HRESULT STDMETHODCALLTYPE ReceiveSiplnfo (SIPINFO ~RPC_FAR *PSi);
HRESULT STDMETHODCALLTYPE RegisterCallback (

IIMCallback ~RPC_FAR *lpIMCallback);
HRESULT STDMETHODCALLTYPE GetlmData CDWORD dwSize, LPVOID pvlmData);
HRESULT STDMETHODCALLTYPE SetimData CDWORD dwSize, LPVOID pvlmData);

(continued)

769

Part IV Advanced Topics

Figure 13-4. continued

HRESULT STDMETHODCALLTYPE UserOptionsOlg CHWND hwndParent);

} ;

NPWnd.h

II==
II NPWnd.h - An include file
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==

#ifdef ~cplusplus
extern "C"{
f/endi f

II Returns number of elements
#define dim(x) CsizeofCx) I sizeof(x[0]))

struct decodeUINT
UINT Code;

LRESULT (• Fxn)(HWNO, UINT, WPARAM, LPARAM):
} :

II Structure associates
II messages
II with a function.

//define MYSIPCLS TEXT C"MyNumPanelWndCls")
#define MYMSG_METHCALL CWM_USER+l00) II Used to pass info

f/defi ne GRIPWIDTH 9
l/defi ne FLOATWIDTH 200
//define FLOATHEIGHT 100

//define CXBTNS 5
//define CYBTNS 3

II
II Local data structure for keypad IM window
II
typedef struct {

DWORD dwBtnDnFlags:
IIMCallback • pIMCallback:
RECT rectOocked:

770

II Width of the gripper
II Width of floating wnd
II Height of floating wnd

II Num columns of buttons
II Num rows of buttons

Chapter 13 Shell Programming-Part 2

BOOL fMoving;
POINT ptMovBasis;
POINT ptMovStart;
IMINFO imi;

SIPWNDSTRUCT, *LPSIPWNDSTRUCT;

LRESULT CALLBACK NPWndProc CHWND, UINT, WPARAM, LPARAM);

LRESULT CALLBACK DoCreateSip (HWND, UINT, WPARAM, LPARAM);
LRESULT CALLBACK DoSetSipinfo (HWND, UINT, WPARAM, LPARAM);
LRESULT CALLBACK DoPaintSip (HWND, UINT, WPARAM, LPARAM);
LRESULT CALLBACK DoMouseSip (HWND, UINT, WPARAM. LPARAM);
LRESULT CALLBACK DoDestroySip (HWND, UINT, WPARAM. LPARAM);

#ifdef ~cplusplus
}

#endif

NumPanel.cpp

II==
II NumPanel - A Windows CE example input method
II
II Written for the book Programming Windows CE
II Copyright (C) 1998 Douglas Boling
II==
#include <windows.h> II For all that Wi ndows stuff
#include <commctrl.h> II Command bar i ncludes
//define INITGUID
#include <initguid.h>
#include <coguid.h>
#include <aygshell.h> II Palm-s ize PC shell includes
#include <sip.h> II SIP includes

#include "NumPanel.h"
#include "NPWnd.h"
HINSTANCE hinst;
long g_DllCnt = 0;

II Replace this GUID with your own!
static const TCHAR szCLSIDNumPanel[J

II Local program includes
II My IM window includes
II DLL instance handle
II Global DLL reference count

TEXT ("{C915FE81-24C0-lld2-93F7-204C4F4F5020}");
static const GUID CLSID_NumPanel =
{0xc915fe81, 0x24c0, 0xlld2, {0x93,0xf7,0x20,0x4c,0x4f,0x4f,0x50,0x20}};
static const TCHAR szFriendlyName[J =TEXT ("Numer i c Keypad");

(continued)

771

Part IV Advanced Topics

Figure 13-4. con.tillued

II==
II DllMain - DLL initialization entry point
II
BOOL WINAPI DllMain CHINSTANCE hinstDLL, DWORD dwReason,

LPVOID lpvReserved) (

}

hlnst = hinstDL L;
return TRUE;

II==
II DllGetClassObject - Exported function called to get pointer to
II Class factory object
II
STDAPI DllGetClassObject CREFCLSID rclsid, REFIID riid, LPVOID •ppv) (

MyClassFactory •pcf ;

}

HRESULT hr;

II See if caller wants us .. .
if (IsEqualCLSID (rclsid, CLSID_NumPanel))

II Create IClassFactory object.
pcf = new MyClassFactory();
if Cpcf == NULL)

return E_OUTOFMEMORY;

II Call class factory's query interface method.
hr= pcf->Querylnterface (riid, ppv>:
II This will cause an obj delete unless interface found
pcf -> Release();
return hr;

return CLASS_E_CLASSNOTAVAILABLE;

II==
II DllCanUnloadNow - Exported function called when DLL can unload
II
STDAPI DllCanUnloadNow () (

}

if (g_DllCnt)
return S_FALSE;

return S_OK;

II==
II DllRegisterServer - Exported function called to register the server
II
STDAPI DllRegisterServer () (

TCHAR szName[MAX_PATH+2];

772

Chapter 13 Shell Programming-Part 2

}

DWORD dwDisp:
HKEY hKey, hSubKey;
I NT re. i :

GetModuleFileName (hinst. szName, sizeof (szName)):
II Open the key.
re= RegCreateKeyEx (HKEY_CLASSES_ROOT, szCLSIDNumPanel. 0,

TEXT (""), 0, 0, NULL, &hKey, &dwDisp);
if (re != ERROR_SUCCESS)

return E_FAIL:

II Set the friendly name of the SIP.
RegSetValueEx ChKey, TEXT(""), 0, REG_SZ, CPBYTE)szFriendlyName,

(lstrlen (szFriendlyName)+l) * sizeof (TCHAR));

II Create subkeys.
II Set the module name of the SIP.
re RegCreateKeyEx (hKey, TEXT ("InProcServer32"), 0. TEXT(""),

0, 0, NULL, &hSubKey, &dwDisp);
re RegSetValueEx (hSubKey, TEXT(""), 0, REG_SZ, (PBYTE)szName,

(lstrlen (szName)+l) * sizeof CTCHAR));
RegCloseKey (hSubKey);

II Set the default icon of the server.
RegCreateKeyEx ChKey, TEXT ("Defaultlcon"), 0, TEXT(""),

0, 0, NULL, &hSubKey, &dwDisp);
lstrcat (szName, TEXT (",0"));
RegSetValueEx (hSubKey, TEXT ('"'), 0. REG_SZ, (PBYTE>szName.

Clstrlen (szName)+l) * sizeof (TCHAR));
RegCloseKey ChSubKey);

II Set the flag indicating this is a SIP .
RegCreateKeyEx (hKey, TEXT ("I sSIPinputMethd"), 0, TEXT(""),

0, 0, NULL, &hSubKey, &dwDisp);
i = 1;
RegSetValueEx (hSubKey, TEXT(""), 0, REG_DWORD, CPBYTEl&i, 4);
RegCloseKey (hSubKey);

RegCloseKey (hKey);
return $_OK;

II==
II DllUnregisterServer - Exported function called to remove the server
II information from the registry
II

(continued)

773

Part IV Advanced Topics

Figure 13-4. continued

STDAPI DllUnregisterServer()
INT re;
re = RegDeleteKey (HKEY_CLASSES_RDDT, szCLSIDNumPanel);
if (re == ERROR_SUCCESS)

return S_OK:
return E_FAIL;

//**
II MyClassFactory Object implimentation
//---- --- - -- - - - -- ------ --- - - --- -- ---- - - - -- --- -------- -- - -- --------- --- --
II Object constructor
MyClassFactory::MyClassFactory () (

m_lRef = l; //Set ref count to 1 on create
return:

}

/!- -- --- ---- ------- -------
// Object destructor
MyClassFactory: :-MyClassFactory () (

return:
}

// --- -- ---
// Querylnterface - Called to see what interfaces this object supports
STDMETHODIMP MyClassFactory::Ouerylnterface (THIS_ REFIID riid,

}

LPVOID *PPV) (

II If caller wants our !Unknown or IClassFactory object,
II return a pointer to the object.
if (lsEqualIID (riid , IID_IUnknown) I I

IsEqualIID (riid. IID_IClassFactory))

• ppv = (LPVOID)this;
Add Ref();
return NOERROR;

*PPV = NULL;
return (E_NOINTERFACE);

II Return pointer to object.
II Inc ref to prevent delete on return.

11 -- ---- --------
// AddRef - Increment object reference count.
STDMETHODIMP_CULONG) MyClassFactory::AddRef (THIS) (

774

ULONG cnt;

cnt = CULONG)lnterlockedlncrement C&m_lRef);
return cnt;

Chapter 13 Shell Programming-Part 2

11----- -------- ---------- ----------- ------ ------ ---- ---- --- --- ----------
11 Release - Decrement object reference count.
STDMETHODIMP_(ULONGl MyClassFactory::Release (THIS) {

)

ULONG cnt;

cnt = CULONG)InterlockedDecrement C&l!LlRef);
if Cent == 0)

delete this;
return cnt;

11 --- ------ -------
11 LockServer - Called to tell the DLL not to unload even if use cnt 0
STDMETHODIMP MyClassFactory::LockServer (BOOL flock) {

)

if (flock)
Interlockedlncrement C&g_DllCntl;

else
InterlockedDecrement C&g_DllCntl:

return NOERROR;

11 --
11 Createlnstance - Called to have class factory object create other
II objects
STDMETHODIMP MyClassFactory::Createlnstance (LPUNKNOWN pUnkOuter,

REFIID riid, LPVOID •ppv>

}

MyIInputMethod • pMyIM;
HRESULT hr;

if (pUnkOuter)
return (CLASS_E_NOAGGREGATION);

if (lsEqualIID Criid , IID_IUnknown) I I
IsEqualIID (riid, IID_IlnputMethod))

II Create file filter object.
pMyIM = new MyIInputMethod();
if (I pMyIMl

return E_OUTOFMEMORY;

II See if object exports the proper interface.
hr= pMyIM ->Querylnterface Criid, ppvl;
II This wi ll cause an obj delete unless interface found.
pMyIM -> Release ();
return hr;

return E_NOINTERFACE;

(continued)

775

Part IV Advanced Topics

Figure 13-4. contin ued

// **
II HyllnputHethod Object implementation
//-- --- -- -------------------------
// Object constructor
HyllnputHethod::HyllnputHethod () {

}

nLl Ref = 1;
g_OllCnt++;
return;

//Set reference count to 1 on create.

// --
// Object destructor
HyllnputHethod::-HyllnputHethod () {

}

g_OllCnt -- ;
return:

//- ---
// Querylnterface - Called to see what interfaces this object supports
STDHETHODIHP HyllnputHethod::Querylnterface (THIS_ REFIID riid,

)

LPVOID *PPV) {

II If caller wants our !Unknown or IID_ICeFileFilter object,
II return a pointer to the object .
if (lsEqualIID (riid, IID_IUnknown) I I

IsEqualIID (riid, IIO_IInputHethod)){

II Return pointer to object.
*PPV = (IInputHethod •) this:
AddRef(); // Inc ref to prevent delete on return.
return NOERROR;

• ppv = NULL;
return CE_NOINTERFACE);

// --
// AddRef - Increment object reference count.
STDHETHODIHP_(ULONG) HyIInputHethod: :AddRef (THIS) {

)

ULONG cnt;

cnt = CULONG)lnterlockedincrement C&m_lRef);
return cnt;

//- ---
// Release - Decrement object reference count.
STDHETHODIHP_(ULONG) HyllnputHethod::Release (THIS) {

ULONG cnt;

776

Chapter 13 Shell Programming-Part 2

}

cnt = CULONG)InterlockedDecrement (&m_lRef);
if Cent == 0) {

delete this;
return 0:

return cnt;

11 - -- - - -- - - - - -- - -- - - - - - -- -- ------- - - --- -- - --- - - - - - - - - - - - - -- - - - -- -- ---- --
11 Select - The IM has just been loaded into memory.
II
HRESULT STDMETHODCALLTYPE MyIInputMethod: :Select CHWND hwndSip) {

RECT rect;
WNDCLASS we;
HBITMAP hBmp, hbmpMask;

m_hwndParent = hwndSip;

II Create image list for narrow (16xl6) image.
m_himlNarrow = Imagelist_Create (16 . 16. ILC_COLOR I ILC_MASK .

1. 0);

hBmp = LoadBitmap (hlnst. TEXT ("NarrowBmp"));
hbmpMask = LoadBitmap Chinst. TEXT ("NarrowMask"));
Imagelist_Add (m_himlNarrow, hBmp. hbmpMaskl;
DeleteObject (hBmp);
DeleteObject (hbmpMask);

II Create image list for wide (32xl6) image.
m_himlWide = Imagelist_Create (32, 16, ILC_COLOR ILC_MASK, 1, 0);
hBmp = LoadBitmap (hinst, TEXT C"WideBmp"));
hbmpMask = LoadBitmap (hinst, TEXT C"WideMask"));
Imagelist_Add (m_himlWide, hBmp, hbmpMask);
DeleteObject ChBmp);
DeleteObject ChbmpMask):

II Register SIP window class.
memset (&we, 0, sizeof (we));
we.style = CS_DBLCLKS;
wc.lpfnWndProc = NPWndProc; II Callback function
wc.hinstance = hinst; II Owner handle
wc.hbrBackground = CHBRUSH) GetStockObject CWHITE_BRUSH);
wc.lpszClassName = MYSIPCLS; II Window class name
if CRegisterClass <&we) == 0) return E_FAIL;

II Create SIP window.
GetClientRect ChwndSip, &rect):

(continued)

777

Part IV Advanced Topics

Figure 13-4. continued

m_hwndMyWnd = CreateWindowEx (0, MYSIPCLS. TEXT ("").
WS_VISIBLE I WS_CHILD I WS_BORDER. rect.left.
rect.top. rect.right - rect.left,
rect.bottom - rect.top, hwndSip, CHMENU)IOC_SIP,
hinst, 0);

if C!IsWindow (m_hwndMyWnd))
return E_FAIL;

return S_OK;

11--- - ----------------
11 Deselect - The IM is about to be unloaded.
II
HRESULT STDMETHODCALLTYPE MyilnputMethod::Deselect (void) (

II Clean up since we're about to be unloaded.
DestroyWindow (m_hwndMyWnd);

}

UnregisterClass CMYSIPCLS. hinst);
Imagelist_Oestroy (m_himlNarrow);
Imagelist_Destroy (m_himlWide);
return S_OK;

11--
11 Showing - The IM is about to be made visible.
II
HRESULT STDMETHODCALLTYPE MyIInputMethod::Showing (void) (

return S_OK;
}

11--
11 Hiding - The IM is about to be hidden.
II
HRESULT STDMETHODCALLTYPE MyIInputMethod::Hiding <void) (

return S_OK:

1/--- ------- --
11 Getinfo - The SIP wants info from the IM.
II
HRESULT STDMETHODCALLTYPE MyIInputMethod::Getinfo

778

pimi ->cbSize = sizeof CIMINFO);
pimi->himageNarrow = m_himlNarrow;
pimi -> hlmageWide = m_himlWide;
pimi -> iNarrow = 0:
pimi -> iWide = 0;
pimi ->fdwFlags = SIPF_OOCKEO;

IMINFO ~RPC_FAR • pimi) (

Chapter 13 Shell Programming-Part 2

}

pimi -> rcSipRect.left = 0:
pimi ->rcSipRect . top = 0;
pimi ->rcSipRect.right = FLOATWIDTH;
pimi ->rcSipRect.bottom = FLOATHEIGHT;
SendMessage (m_hwndMyWnd. MYMSG_METHCAL L. l, CLPARAM) pimi);
return S_OK;

11 --- - ------------
11 ReceiveSipinfo - The SIP is passing in f o to the IM .
II
HRESULT STDMETHODCALLTYPE MyIInputMethod : :ReceiveSiplnfo

)

SIPINFO ~RPC_FAR *PSi) {
II Pass the SIP info data to the window .
SendMessage (m_hwndMyWnd. MYMSG_METHCALL, 2, CLPARAM) psi) ;
return S_OK :

11 --
11 RegisterCallback - The SIP is providing the IM with the pointer to
II the IIMCallback interface .
II
HRESULT STDMETHODCALLTYPE MyIInputMethod: :RegisterCallback

)

IIMCallback ~RPC_FAR *lpIMCallback)
m_pIMCallback = lpIMCallback;
PostMessage (m_hwndMyWnd, MYMSG_METHCALL , 0. (LPARAM)m_pIMCallback) ;
return S_OK;

11 --------------------- - ------ - ---
11 GetimData - An application is pass ing IM -s pecfic data to the IM.
II
HRESULT STDMETHODCALLTYPE MyIInputMethod: :GetlmData (DWORD dwSize.

LPVOID pvimData)
return E_FAIL:

}
11- --- - ----- - -- - - - ----------------------- --------- ----------------------
11 SetimData - An application is query i ng IM -s pecfic data from the IM.
II
HRESULT STDMETHODCALLTYPE MyIInputMethod::SetimData (DWORD dwSize.

LPVOID pvimData)
return S_OK;

)
11 -- - ----------- - ---
11 UserOptionsDlg - The SIP control panel applet is asking for a
II configuration dialog box to be displayed.
II

(continued)

779

Part IV Advanced Topics

Figure 13-4. continued

HRESULT STDMETHODCALLTYPE MyllnputMethod::UserOptionsDlg (
HWND hwndParent)

MessageBox (hwndParent. TEXT ("UserOptionsDlg called."),
TEXT C"NumPanel"), MB_OK):

return S_OK:

NPWnd.c

II==
II NPWnd - An IM window
II
II Written for the book Programming Windows CE
II Copyright CC) 1998 Douglas Boling
II==
#include <windows.h>
#define COBJMACROS
#include <aygshell .h>
//include <sip.h>
#include <keybd.h>

#include "NPWnd.h"

II Palm-size PC shell includes
II SIP includes
II Keyboard flag includes

II Includes for this window

INT OrawButton (HOC hdc, RECT •prect, LPTSTR pChar. BOOL fPressed):

TCHAR g_tcBtnChar[] = {

} :

TEXT ('1'). TEXT ('2'). TEXT ('3'). TEXT (' - '). TEXT (' • '),
TEXT ('4'), TEXT ('5'), TEXT ('6'), TEXT('+'), TEXT ('I '),

TEXT ('7 '), TEXT ('8'), TEXT ('9'), TEXT ('0'), TEXT('= '),

UINT g_BtnVChars[] = {

} :

'l', '2', '3', VK_H YPHEN, VK_MULTIPLY,
'4'. '5', '6', VK_ADD, VK_SLASH,
'7', '8', '9', '0', VK_EQUAL.

II Message dispatch table for SipWindowProc
const struct decodeUINT SipMessages[] = {

WM_C REATE, DoCreateSip,

780

WM_PAINT, DoPaintSip,
MYMSG_METHCALL, DoSetSiplnfo,
WM_LBUTTONDOWN, DoMouseSip,
WM_MOUSEMOVE, DoMouseSip,
WM_LBUTTONUP, DoMouseSip,

Chapter 13 Shell Programming-Part 2

} ;

WM_LBUTTONDBLCLK. DoMouseSip,
WM_DESTROY, DoDestroySip,

II==
II NPWndProc - Window procedure for SIP
II
LRESULT CALLBACK NPWndProc CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lParam) (

}

INT i;
II Call routine to handle control message.
for Ci = 0; i < dim(SipMessages); i++) C

if CwMsg == SipMessages[i].Code)
return C•SipMessages[iJ.Fxn)(hWnd, wMsg, wParam, lParam);

return DefWindowProc ChWnd, wMsg, wParam, lParam);

11- ---
11 DoCreateSip - Process WM_CREATE message for window.
II
LRESULT CALLBACK DoCreateSip (HWND hWnd, UINT wMsg, WPARAM wParam.

)

LP A RAM 1 Pa ram) (
LPSIPWNDSTRUCT pWndData;

II Allocate a data structure for the SIP keyboard window.
pWndData = LocalAlloc (LPTR. sizeof CSIPWNDSTRUCT));
if C !pWndData) C

DestroyWindow (hWnd);
return 0;

memset (pWndData, 0, sizeof (SIPWNDSTRUCT)) ;
GetWindowRect CGetParent ChWnd), &pWndData ->rectDocked);
SetWindowLong (hWnd, GWL_USERDATA. CINT)pWndData);
return 0;

11- ---
11 DoSetSiplnfo - Process set information user message for window.
II
LRESULT CALLBACK DoSetSipinfo CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM lPa ram) (
LPSIPWNDSTRUCT pWndData;
RECT rect;

pWndData = CLPSIPWNDSTRUCT)GetWindowLong ChWnd, GWL_USERDATA);
switch CwParam) (
II Called when RegisterCallback method called

(continued)

781

Part IV Advanced Topics

Figure 13-4. co111i1111ed

)

case 0:
pWndData->pIMCallback = CIIMCallback •)lParam;
break;

II Called when Getlnfo method called
case 1:

pWndData -> imi = • (IMINFD •)lParam;
break;

II Called when ReceiveSipinfo method called
case 2:

GetClientRect CGetParentChWndl, &rectl;
MoveWindow (hWnd, 0, 0, rect.right - rect.left,

rect.bottom - rect.top , TRUE);
break;

return 0;

11-- -------------------------------------- --- -- ------------- -- ----- -----
11 DoPaintS ip - Process WM_PAINT message for window .
II
LRESULT CALLBACK DoPaintSip (HWND hWnd, UINT wMsg , WPARAM wParam,

LPARAM lParam) {

7 82

HOC hdc;
HBRUSH hOld;
PAINTSTRUCT ps;
RECT rect, rectBtn;
INT i . j, k, x, y, ex, cy, cxBtn, cyBtn;
LPSIPWNDSTRUCT pWndData;

pWndData = CLPSIPWNDSTRUCT)GetWindowLong ChWnd, GWL_USERDATAl;

hdc = BeginPaint ChWnd, &psl;
GetClientRect (hWnd . &rect);

ex= Crect.right - rect . left - 3 - GRIPWIDTH) I CXBTNS;
cy = erect.bottom - rect.top - 3) I CYBTNS;
cxBtn ex - 3;
cyBtn = cy - 3;

II Select a brush for the gripper .
hOld = SelectObject (hdc, GetStockObject CGRAY_BRUSH));
Rectang le (hdc, rect . left, rect.top, rect.left + GRIPWIDTH .

re ct. bot tom) ;
SelectObject (hdc, hOldl:

k 0;
y 3;

Chapter 13 Shell Programming-Part 2

}

for Ci = 0: i < CYBTNS; i++) (
x = 3 + GRIPWIDTH;
for Cj = 0; j < CXBTNS; j++)

SetRect C&rectBtn, x, y, x + cxBtn, y + cyBtn);
DrawButton Chdc, &rectBtn, &g_tcBtnChar[k++],

pWndData ->dwBtnDnFlags & Cl << k));
x += ex:

Y += cy;

EndPaint ChWnd, &ps);
return 0;

11 ---------------------- ------- ---------------- ----------- --------- -----
11 HandleGripper - Handles mouse messages over gripper bar
II
LRESULT HandleGripper CHWND hWnd, LPSIPWNDSTRUCT pWndData, UINT wHsg,

LPARAH l Paraml (
POINT pt;

pt.x Cshort)LQWORD ClParam);
pt.y Cshort)HIWORD ClParam);

switch C wHsg) {
case WH_LBUTTONDOWN:

if Cpt.x > GRIPWIDTH+3)
return 0:

SetCapture ChWndl;
pWndData->fHoving = TRUE;
pWndData->ptHovBasis = pt;
ClientToScreen ChWnd, &pt):
pWndData -> ptHovStart = pt;
break:

case WH_HOUSEHOVE:
if C!pWndData ->fHoving)

return 0:
break:

case WM_LBUTTONUP:
if ClpWndData->fHoving)

return 0:
ReleaseCaptureC):
pWndData->fHoving = FALSE;
ClientToScreen ChWnd, &pt);

(continued)

783

Part IV Advanced Topics

Figure 13-4. conlinued

}

if ((abs CpWndData->ptMovStart.x - pt.x) < 3) &&
Cabs CpWndData->ptMovStart.y - pt.y) < 3))
break;

pt.x pWndData ->ptMovBasis.x:
pt.y -= pWndData->ptMovBasis.y:

pWndData ->i mi.rcSipRect.right = FLDATWIDTH:
pWndData ->imi.rcSipRect.bottom = FLOATHEIGHT:
pWndData- >imi .rcSipRect.left = pt.x:
pWndData ->imi . rcSipRect.top = pt.y:
pWndData ->i mi.rcSipRect.right += pt.x;
pWndData->imi.rcSipRect.bottom += pt.y:

pWndData- >i mi.fdwFlags &= -SIPF_DOCKED:
pWndData ->i mi .fdwFlags I= SIPF_ON:

IIMCallback_Setlmlnfo(pWndData ->pIMCallback, &pWndData->imi):
break;

case WM_LBUTTONDBLCLK:
if Cpt.x > GRIPWIDTH+3)

return 0;
ReleaseCapture():
pWndData- >fMoving = FALSE;
pWndData ->i mi .fdwFlags I= CSIPF_ODCKED I SIPF_ON):
pWndData ->i mi . rcSipRect = pWndData -> rectDocked:
IIMCallback_Setlmlnfo(pWndData->pIMCallback, &pWndData ->imi):
break;

pWndData- >dwBtnDnFlags 0;
return 1;

II If we moved, no buttons down.

11---------------- --- --- ----
11 DoMouseSip - Process mouse button messages for window.
II
LRESULT CALLBACK DoMouseSip CHWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {

784

RECT rect:
INT i, x, y, ex, cy, nChar:
DWDRD BtnDnFlags, dwShiftFlags = 0;
LPSIPWNDSTRUCT pWndData;
pWndData = CLPSIPWNDSTRUCT)GetWindowLong ChWnd, GWL_USERDATA):

II See if mov i ng gripper or gripper tap.
if CHandleGripper (hWnd, pWndData, wMsg, lParam))

return 0:

Chapter 13 Shell Programming-Part 2

)

II Compute the button grid.
GetClientRect (hWnd, &rect);
ex= (rect . right - rect.left - 3 - GRIPWIDTH) I CXBTNS;
cy = erect.bottom - rect.top - 3) I CYBTNS ;
x = ((LOWORD (lParam)-3-GRIPWIDTH) I ex);
y ((HIWORD (lParam) -3) I cy);
i = (y * CXBTNS) + x; II i now contains btn index.

II Do small amount of message-specific processing.
switch (wMsg) {
case WM_LBUTTONDOWN:

SetCapture ChWnd);
II Fall through to WM_MOUSEMOVE case.

case WM_MOUSEMOVE:
BtnDnFlags = 1 << i;
break;

case WM_LBUTTONDBLCLK:
case WM_LBUTTONUP:

)

if (pWndData->dwBtnDnFlags)
ReleaseCapture();

BtnDnFlags = 0;
nChar = g_tcBtnChar[i);
IIMCallback_SendCharEvents(pWndData->pIMCallback,

break;

g_BtnVChars[iJ. KeyStateDownFlag,
1, &dwShiftFlags, &nChar);

II Decide how to repaint wnd. If only 1 btn changed, just
II invalidate that rect. Otherwise, invalidate entire wnd.
if ((wMsg == WM_MOUSEMOVE) && (BtnDnFlags !=pWndData ->dwBtnDnFlags))

InvalidateRect (hWnd, NULL. FALSE);
else {

i = 3+GRIPWIDTH; II Compensate for the gripper on left side.
SetRect C&rect, X*Cx+i, Y*CY. (x+l) *CX+i. (y+l) *CY);
InvalidateRect ChWnd, &rect, FALSE);

pWndData->dwBtnDnFlags = BtnDnFlags;
return 0;

11- - - - - --- -- ---- - --- -- - - - - - -- -- -- - - - - - - - -- - - - - - - - - - - - ---- - - -- - - -- - - - - -- -
II DoDestroySip - Process WM_DESTROY message for window .
II
LRESULT CALLBACK DoDestroySip CHWND hWnd. UINT wMsg, WPARAM wParam,

LPARAM l Pa ram) {
LPSIPWNDSTRUCT pWndData;

(continued)

785

Part IV Advanced Topics

Figure 13-4. continued

}

pWndData = (LPSIPWNDSTRUCT)GetWindowlong ChWnd, GWL_USERDATA);
LocalFree (pWndData);
return 0;

//- --- ------- --------- --
// DrawButton - Draws a button
II
INT DrawButton (HOC hdc, RECT *prect, LPTSTR pChar, BOOL fPressed) {

786

if (lfPressed) {
SelectObject (hdc, GetStockObject (BLACK..._PEN));
SelectObject (hdc, GetStockObject (WHITE_BRUSH));
SetBkColor (hdc, RGB (255, 255, 255));
SetTextColor (hdc, RGB (0, 0, 0));

else (
SelectObject (hdc, GetStockObject (BLACK..._BRUSH));
SelectObject (hdc, GetStockObject (WHITE_PEN));
SetTextColor (hdc, RGB (255, 255, 255));
SetBkColor (hdc, RGB (0, 0, 0));

Rectangle (hdc, prect ->l eft, prect ->top, prect->right,
prect->bottom);

Rectangle (hdc, prect ->l eft+l, prect->top+l, prect->r1ght+l,
prect->bottom+l);

DrawText (hdc, pChar, 1, prect, DT_CENTERIDT_VCENTERjDT_SINGLELINE);
return 0;

Although NumPanel is divided into two source files , both the I!nputMethod
interface and the NumPanel window procedure run in the same thread. In response
to a call to the Select method of I!nputMethod, the umPanel window class is regis
tered and the window is created a a child of the IM's window. The image lists used
by the IM are also created here with the handles tared in member variables in the
MylnputMethod object. The only other work of interest performed by the code in

umPanel.cpp is the code for the Getlnfo method . In thi method, the image list
handles are provided to the IM along with the requested dimensions of the undocked
window. The dimensions of the docked window are provided by the system.

For three other methods, all MylnputMethod does is to post messages to the
window pro edure of the umPanel window. In NMWnd.c, these messages are fielded
in the MYMSG_METHCALL user-defined message. The three methods make available
to the window a pointer to the IIMCallback interface and notify the umPanel win
dow that the window is about to be displayed or that the state of the input panel is
changing.

Chapter 13 Shell Programming-Part 2

The other code in the NumPanel window draws the keys on the window and
processes the stylus taps. The DoPaintSip routine handles the painting. The routine
draws a grid of 3 rows of 5 columns of buttons. In each button, a character is drawn
to label it. A separate bit array contains the up or down state of each button. If the
button is down, the background of the button is drawn in reverse colors.

Two routines-DoMouseSip and HandleGripper-handle the mouse messages.
The mouse messages all initially go to DoMouseSip, which calls HandleGripper. If the
routine determines that the mouse message is on the gripper or; that the window is
currently being dragged, HandleGripper handles the message. Otherwise, if the
DoMouseSip routine determines that a mouse tap occurs on one of the buttons, it calls
the SendCharEvent method of IIMCallback to send the character to the focus window.

When the window is dragged to a new location on the screen, the HandleGripper
routine clears the SIPF _DOCKED flag and sets the new size and location of the SIP
by calling the Setlm!nfo method of llMCallback. When the user double-taps on the
gripper, HandleGripper sets the SIPF _DOCKED flag and sets the SIP rectangle to
the original docked rectangle that was saved when the NumPanel window was first
created.

HARDWARE KEYS
The SIP isn't the only way for the user to enter keystrokes to an application. All Palm
size PCs and some Handheld PCs have additional buttons that can be assigned to
launch an application or to send unique virtual key codes to applications. The Palm
size PC has an additional set of buttons known as navigation buttons that mimic
common navigation keys such as Line Up and Line Down. These navigation keys give
the user shortcuts, which allow scrolling up and down as well as access to the ser
vices of the often-used keys, Enter and Escape. Because the scrolling buttons simply
send Page Up, Page Down, Line Up, and Line Down key messages, your application
doesn't have to take any special action to use these keys.

The application launch buttons are another matter. When pressed, these keys
cause the shell to launch the application registered for that key. Although a system is
usually configured with default associations, you can override these settings by modi
fying the registry so that pressing a hardware control button launches your applica
tion. An application can also override the application launch ability of a specific key
by having the key mapped directly to a window. In addition, you can use the hot
key features of GWE to override the hardware key assignment and send a hot key
message to a window.

787

Part IV Advanced Topics

Virtual Codes for Hardware Keys

788

Since the hardware control buttons are treated as keyboard keys, pressing a hard
ware control key results in WM_KEYDOWN and WM_KEYUP messages as well as a
WM_ CHAR message if the virtual key matches a Unicode character. The system map
ping of these keys employs two strategies. For the navigation keys, the resulting vir
tual key codes are codes known and used by Windows applications so that those
applications can "use" the keys without even knowing that's what they're doing. The
application-launching keys, on the other hand, need virtual key codes that are com
pletely different from previously known keys so that they won't conflict with stan
dard key events.

Navigation key codes
As I mentioned above, the navigation keys are mapped to common navigation keys.
The actual virtual key code mapping for navigation keys is shown below.

Key Action Key Message Key Code

Action Press WM_KEYDOWN OEM dependent•

Action Release WM_KEYUP OEM dependent•

WM_KEYDOWN VK_RETURN

WM_ CHAR VK_RETURN

WM_KEYUP VK_RETURN

Exit Press WM_KEYDOWN OEM dependent•

Release WM_KEYUP OEM dependent•

WM_KEYDOWN VK_ESCAPE

WM_KEYUP VK_ESCAPE

Rock Up Press WM_KEYDOWN OEM dependent•

Release WM_KEYUP OEM dependent•

WM_KEYDOWN VK_UP

WM_KEYUP VK_UP

Rock Down Press WM_KEYDOWN OEM dependent*

Release WM_KEYUP OEM dependent•

WM_KEYDOWN VK_DOWN

WM_KEYUP VK_DOWN

. OEM-dependent key codes differ from system to system. Some OEMs might not send these mes-
sages while others may send the messages with a virtual key code of 0.

Unfortunately, there's no reliable way of determining whether a VK_RETURN
key event came from the SIP or from a hardware button. Each OEM has a different
method of assigning virtual key codes to the hardware navigation buttons.

Chapter 13 Shell Programming-Part 2

Application launch key codes
The shell manages the application launch keys named Appl through a possible Appl6.
These keys produce a combination of virtual key codes that are interpreted by the
shell. The codes produced are a combination of the left Windows key (VK_LWIN)
and a virtual code starting with OxCl and continuing up, depending on the applica
tion key pressed. For example, Appl key produces the virtual key sequence VK_LWTN
followed by OxCl while App2 key produces the sequence VK_LWTN followed by OxC2.

Using the Application Launch Keys

Applications are bound to a specific application launch key through entries in the
registry. Specifically, each key has an entry under [HKEY _LOCAL_MACHINE)\
Software\Microsoft\Shell\Keys. The entry is the virtual key combination for that key,
so for the Appl key, the entry is

[HKEY_LOCAL_MACHINE]\Software\Microsoft\Shell\Keys\40Cl

The 40Cl comes from the code Ox40, which indicates the Windows key has been
pressed and concatenated with the virtual key code of the application key, OxCl. The
default value assigned to this key is the fully specified path name of the application
assigned to the key. A few other values are also stored under this key. The ResetCmd
value is the path name of the application that is assigned to this key if the Restore
Defaults button is pressed in the Palm-size PC's Button control panel applet. The Name
value contains the friendly name of the key, such as Button 1 or Side Button.

The only way to change the application assigned to a key is to manually change
the registry entry to point to your application. Of course, you shouldn't do this with
out consulting your users, since they may have already configured the application
keys to their liking. The routine that follows assigns an,application to a specific but
ton and returns the name of the application previously assigned to that button. The
vkAppKey parameter should be set to an application key virtual key code, OxCl through
OxCF. The pszNewApp parameter should point to the fully specified path name of the
application you want to assign to the key.

11- - - - - - - - - - - - - - -- - - - - - - -- -- - - - - - - - --- - - - - - - -- - -- - - - - - - - ---- - - - -- -- - - - - -

II SetApplaunchKey - Assigns an application launch key to an
II application
II
int SetApplaunchKey (LPTSTR pszNewApp, BYTE vkAppKey, LPTSTR pszOldApp,

INT nOldAppSize) {
TCHAR szKeyName[256];
DWORD dwType, dwDisp;
HKEY h Key;
INT re;

(continued)

789

790

}

II Construct the key name.
wsprintf (szKeyName,

TEXT ("Software\\Microsoft\\Shell\\Keys\\40%02x"), vkAppKey);

I I Open the key.
re= RegCreateKeyEx (HKEY_LOCAL_MACHINE, szKeyName, 0, TEXT('"'),

0, 0, NULL, &hKey, &dwDisp);
if (re != ERROR_SUCCESS)

return -1;

II Read the old application name.
re= RegQueryValueEx (hKey, TEXT (""), 0, &dwType,

(PBYTE)pszOldApp, &nOldAppSize);
if (re != ERROR_SUCCESS) {

RegCloseKey (hKey);
return -2;

II Set the new application name.
re= RegSetValueEx (hKey. TEXT (""), 0. REG_SZ, (PBYTE)pszNewApp.

(lstrlen (pszNewApp)+l) * sizeof (TCHAR));
RegCloseKey (hKeyl;
if (re != ERROR_SUCCESS)

return -3;

return 0;

When q:n application button is pressed, the system doesn't check to see whether
another copy of the application is already running-it simply launches a new copy.
You should design your application, especially on the Palm-size PC, to check to see
whether another copy of your application is already running and if so, to activate the
first copy of the application and quietly terminate the newly launched copy.

You can determine whether an application is assigned to a key by calling the
Palm-size PC-specific function SHGetAppKeyAssoc, which is prototyped as

Byte SHGetAppKeyAssoc (LPCTSTR ptszAppl;

The only parameter is the fully qualified name of your application. If a key is associ
ated with your application, the function returns the virtual key code for that key. If
no key is associated with your application, the function returns 0. This function is
useful because most applications, when launched by an application key, override the
default action of the key so that another copy of the application won't launch if the
key is pressed again.

Chapter 13 Shell Programming-Part 2

Dynamically Overriding Application Launch Keys

A running application can override a launch key in two ways. The first method is to
use the Palm-size PC-specific function SHSetAppKeyWndAssoc, prototyped as

BOOL SHSetAppKeyWndAssoc (BYTE bVk, HWND hwnd);

The first parameter is the vittual key code of the hardware button. The second pa
rameter is the handle of the window that's to receive the notices of button presses.
For example, a program might redirect the Appl key to its main window with the
following line of code:

SHSetAppKeyWndAssoc (0xC1, hwndMain);

The window that has redirected an application might receive key messages but the
virtual key codes received and the type of key messages are OEM-specific. The chief
reason for using SHSetAppKeyWndAssoc is to prevent the button from launching an
application. When you no longer want to redirect the application launch key, you
can call SHSetAppKeyWndAssoc specifying the virtual code of the key and NULL for
the window handle.

The second method of overriding an application launch key is to use the Register
HotKey function. The advantage of using the RegisterHotKey function is that your
window will receive known messages, albeit WM_HOTKEY instead of WM_KEY.x:x.x
messages when the key is pressed, no matter what application currently has the key
board focus. A second, even more important reason to use RegisterHotKey is that this
function is supported on Handheld PCs as well as on Palm-size PCs. This function is
prototyped as

BOOL RegisterHotKey (HWND hWnd, int id, UINT fsModifiers. UINT vk);

The first parameter is the handle of the window that receives the WM_HOTKEY
messages. The second parameter is an application-defined identifier that's included
with the WM_HOTKEY message to indicate which key caused the message. The
fsModifiers parameter should be set with flags, indicating the shift keys that must also
be pressed before the WM_HOTKEY message can be sent. These self-explanatory
flags are MOD_ALT, MOD_CONTROL, MOD_SHIFT, and MOD_WIN. An additional
flag, MOD_KEYUP, indicates that the window will receive WM_HOTKEY messages
when the key is pressed and when the key is released. When using RegisterHotKey
on application keys, you should always specify the MOD_ WIN flag because applica
tion keys always are combined with the Windows shift-modifier key. The final pa
rameter, vk, is the virtual key code for the key you want as your hot key. This key
doesn't have to be a hardware key code; you can actually use almost any other vir
tual key code supported by Windows, although assigning Shift-F to your custom fax

791

Part IV

792

application might make Pocket Word users a bit irate when they tried to enter a
capital F.

When the key registered with RegisterHotKey is pressed, the system sends a
WM_HOTKEY message to the window. The wParam parameter contains the ID code
you specified when you called RegisterHotKey. The low word of lParam parameter
contains the shift-key modifiers, MOD_.xxx, that were set when the key was pressed,
while the high word of !Param contains the virtual key code for the key.

The disadvantage of using RegisterHotKey is that if another application has al
ready registered the hot key, the function will fail. This can be problematic on the
Palm-size PC, where applications stay running until the system purges them to gain
extra memory space. One strategy to employ when you want to use a hardware
key temporarily-for example, in a game-would be to use SHGetAppKeyAssoc to
determine what application is currently assigned to that key. It's a good bet that if
RegisterHotKey failed clue to some other program using it, the application assigned
the application key is also the one currently running and has redirected the hot key
to its window. You can then send a WM_CLOSE message to that application's main
window to see whether it will close and free up the hardware key.

When you no longer need the hot key, you can unregister the hot key with this
function:

BOOL UnregisterHotKey (HWND hWnd, int id);

The two parameters are the window handle of the window that had registered the
hot key and the ID value for that hot key you assigned with RegisterHotKey.

As you can see, the Palm-size PC presents new problems and new opportuni
ties for developers. The SIP technology, originally developed for the Palm-size PC, is
already starting to migrate to other Windows CE platforms. The application launch
buttons are another area of cross platform cooperation. You use the same techniques
for managing these buttons on H/PCs as on Palm-size PC devices.

In the final chapter of the book, I step back from application programming and
look at system programming issues. Chapter 14 explains how the different compo
nents of Windows CE work together while presenting a unified Win32-compatible APL

Chapter 14

System
Programming

This chapter takes a slightly different tack from the previous chapters of the book.
Instead of touring the API of a particular section of Windows CE, I'll show you Win
dows CE from a systems perspective.

Windows CE presents standard Windows programmers some unique challenges.
First, because Windows CE supports a variety of different microprocessors and sys
tem architectures, you can't count on the tried and true IBM/Intel PC-compatible design
that can be directly traced to the IBM PC/ AT released in 1984. Windows CE runs on
devices that are more different than alike. Different CPUs use different memory lay
outs and while the set of peripherals are similar, they have totally different designs.

In addition to using different hardware; Windows CE itself changes, depending
on how it's ported to a specific platform. While all H/PCs of a particular version have
the same set of functions, that set is slightly different from the functions provided by
Windows CE for the Palm-size PC. In addition, Windows CE is designed as a collec
tion of components so that OEMs using Windows CE in embedded devices can re
move unnecessary small sections of the operating system, such as the Clipboard APL

All of these conditions make programming Windows CE unique, and I might
add, fun. This chapter describes some of these cross-platform programming issues.
I'll begin the chapter by describing how the system boots itself, from reset to running
applications.

793

Part IV

THE BOOT PROCESS
If you're a systems programmer, you might enjoy, as I do, seeing how a system boots
up. When you think about it, booting up poses some interesting problems. How does
the system load its first process when the process loader is part of that process you
want to load? How do you deal with 30 different CPUs, each with its own method of
initialization?

In the case of Windows CE, we have a somewhat better view of this process.
Because the hardware varies radically across the different platforms, Windows CE
requires that OEMs write some of the initialization code. In each instance, this initial
ization code is incorporated in the HAL (hardware abstraction layer), under the ker
nel. When an OEM builds the system for a specific hardware platform, the HAL is
statically linked with the Windows CE kernel code to produce NK.exe.

Actually, the OEM writes far more than the HAL when porting Windows CE to
a new platform. The OEM also writes a thin layer under the Graphics Windowing
and Event Manager (GWE) to link in some of the more basic drivers used by GWE.
In addition, the OEM must write a series of device drivers, from a display device driver
to drivers for the keyboard, touch panel, serial, and audio devices. The actual collec
tion of drivers is, of course, dependent on the hardware. This collection of the HAL
layer plus the drivers is called the OEM Adaptation Layer, or OAL.

In any case, let's get back to the boot process. This boot process is described
through the documentation and code examples provided in the Embedded Tool Kit.
Our journey starts, as with any CPU, at the occurrence of a reset.

Reset
When the system is reset, the CPU jumps to the entry point of NK.exe, which is the
kernel module for Windows CE. 1 The code at the entry point is actually written by
the OEM, not Microsoft. This routine, written in assembler, is traditionally named
Startup and is responsible for initializing the CPU into a known state for the kernel.
Since most CPUs supported by Windows CE are embedded CPUs, they generally have
a number of registers that must be set to configure the system for the speed and some
times even the base address of memory. Startup is also responsible for initializing any
caches and for ensuring that the system is in an uncached, flat addressing mode.

NK.exe

794

When Startup has completed its tasks, it jumps to the entry point of the kernel,
Kerne/Start. This is the entty point for the Microsoft written code for NK. Kerne/Start
configures the virtual memory manager, initializes the interrupt vector table to a

1. The program that builds the ROM image inserts the proper jump instructions, or vector, at the re
set location, which causes the CPU to start executing code at the entry point of NK.

Chapter 14 System Programming

default handler, and calls down to the OEM layer to initialize the debug serial port. 2

Kerne/Start then initializes its local heap by copying the initialized heap data from
ROM into system RAM, in a routine named Kerne/Relocate. Now that the local heap
for NK.exe has been initialized, the code can start acting less like a loader and more
like a program. The kernel then calls back down to the HAL to the OEWlnit routine.

The job of OEMinit, which is customarily written in C. is to initialize any OEM
specific hardware. This includes hooking interrupts, initializing timers, and testing
memory. 3 Many systems perform some initial configuration of integrated peripher
als, if only to place them in a quiescent state until the driver for that peripheral can
be loaded. The OEMJnit routine is generally responsible for drawing the splash screen
on the display during a boot process.

When OEMinit returns, the kernel calls back into the HAL to ask whether any
additional RAM is available to the system. When an OEM creates a ROM image of the
Windows CE files, it makes some preliminary estimates about the size and location
of the RAM as well as defining the size and location of the ROM. This routine,
OEMGetExtensionDRAM, allows the OEM to tell the kernel about additional RAM that
can be used by the system. Once OEMGetExtensionDRAivl returns, the kernel enables
interrupts and calls the scheduler to schedule the first thread in the system.

FileSys.exe
At this point, the kernel looks for the file FileSys.exe and launches that application.
FileSys is the process that manages the file system, the database functions, and more
important at this stage, the registry. When FileSys is loaded, it looks in the RAM to
see whether it can find a file system already initialized. If one is found, FileSys uses
the already initialized file system. This allows Windows CE devices to retain the data
in their RAM-based file systems over a reboot of the system.

If FilSys doesn't find a file system, it creates one that merges an empty RAM file
system with the files on ROM. FileSys knows \vhat files are in ROM by means of a
table that's built into the ROM image by the ROM builder program, which merged all
the disparate programs into one image. FileSys reads the default direct01y structure
from a file stored on ROM, which is composed of entries suggested by Microsoft for
the OEM. In addition to initializing the file system, FileSys creates default database
images and a default registry. The initial images of the default databases and default
registry are also defined in files in ROM written by the OEM and Microsoft. This file
driven initialization process allows OEMs to customize the initial images of the file
system from the directory tree to the individual entries in the registry.

2. All Windows CE systems, including all WPCs and Palm-size PCs, have a way to access a dedicated
scrial port used for debugging. For consumer platforms, where controlling hardware cost is criti
cal, this debug serial port is typically on a separate "debug board" that can be plugged into a
system.

3. It's the OEM's decision whether to nm a RAM test when the system boots. Microsoft requires only
that the system boot process is complete within 5 or so seconds.

795

796

One other feature of FileSys acts like a back door to the file system. During
initialization, FileSys looks to see whether the system is connected to a debugging
station, which is a PC running a program named CESH.4 Traditionally, the connec
tion between the PC and the Windows CE system was a parallel port link. However,
starting with Windows CE 2.1, this link can be made over Ethernet or a dedicated
serial link. If such a connection is found, FileSys takes the additional step of looking
on the PC for files when the system asks it to load a file. In effect, this seamlessly
extends the \windows directory on the Windows CE system to include any files in a
specific directory on the debugging PC. This procedure allows the system to load files
that aren't in the initial ROM image during the boot process. Later, when the system
is running, files can be directly loaded from the PC without your first having to copy
them into the object store of the Windows CE system.

Launching optional processes
Once FileSys has initialized, the system initialization can proceed. The kernel needs
to wait because, at this point, it needs data from the registry to continue the boot
process. Specifically, the kernel looks in the registry for values under the key [HKEY_
LOCAL_MACHINE)\Init. The values in this key provide the name, order, and depen
dencies of a set of processes that should be loaded as part of the boot process. The
processes to be launched are specified by values named Launchxx where the xx is a
number defining the order of the launch. An optional value, Depend.xx, can be used
to make the launch of a process dependent on another process specified earlier in
the order. For example, the following set of values was take from the registry of a
Casio Handheld PC.

Value Data Comments
Launch10 SHELL. EXE

Launch20 DEVICE.EXE

Launch30 GWES.EXE
Depend30 0014 Depends on Device (0x14 20)

Launch50 EXPLORER. EXE
Depend50 0014 001E Depends on Device and GWE

While I've listed the values in their launch order for clarity, the values don't need
to be in order in the registry. The numbers embedded in the names of the values define
the launch order.

The kernel loads each of the modules listed in their own process space. When
a process completes its initialization successfully, it signals this event to the kernel

4. CESH is a PC-based debugging tool provided by Microsoft in the ETK. It was called PPSH, for par
allel port shell, before the release of Windows CE 2.1.

Chapter 14 System Programming

by calling the function Signa!Started and passing the application's launch number.
The kernel knows from these calls to Signa!Started that any dependent processes can
now be launched.

What's interesting here is that each of these components of the operating sys
tem functions as a standard user-level process. Just because a process appears in this
list doesn't mean that it's part of the operating system. While this launch list is gener
ally used only by OEMs, you can insert other processes in this list, as long as the func
tions needed by that application have been loaded earlier in the list. For example,
you could write an application that's loaded after Device and before GWES.exe as
long as that application didn't make any calls to the window manager or the graph
ics functions until GWE is initialized. On the other hand, launching an application
with a standard user interface before Explorer loads can confuse Explorer. So unless
you need to launch a process to support system services, you should use Explorer to
launch your applications on startup. One additional point-you can't separately launch
an application that depends on Explorer to launch successfully because Explorer.exe
doesn't call Signa!Started during its initialization. Now let's follow this sequence and
examine each of these launched processes.

Shell.exe
Shell is an interesting process because it's not even in the ROM of most systems.
Shell.exe is the Windows CE side of CESH, the command line-based monitor. Be
cause Shell.exe isn't in the ROM, the only way to load it is by connecting the system
to the PC debugging station so that the file can be automatically downloaded from
the PC.

CESH uses the FileSys link to the debugging PC to communicate with the pro
grammer. Instead of opening a file on the PC, CESH opens a console session on the
PC. The CESH debugger provides a number of useful functions to the Windows CE
OEM. First it gives the OEM developer a command line shell, running on a PC that
can be used to launch applications, query system status, and read and write memory
on the system.

CESH also lets the OEM developer manipulate a very handy feature of debug
builds of Windows CE named debug zones. When you're developing software, it's
often useful to insert debugging messages that print out information. On a Windows
CE system, these debugging messages are sent via the debug serial port. The prob
lem is that too many messages can hide a critical error behind a blizzard of irrelevant
informational messages. On the other hand, Murphy says that the day after you strip
all your debugging messages from a section of code, you'll need those messages to
diagnose a newly reported bug. Debug zones allow the developer to interactively
enable and disable sets of debug messages that are built into debug builds of Win
dows CE. All of the base processes bundled with Windows CE as well as all the de
vice drivers have these debugging messages built into them. Every message is assigned

797

Part IV Advanced Topics

798

to one of 16 defined debug zone for that process or DLL. So, a developer can use
CE H to enable or disable each of the 16 zone for a module, which enables or dis
ables the messages for that zone.

hell.exe uses a Windows CE version of toolhelp.cW, so when Shell loads, it loads
ToolHelp. Shell doesn't bring any additional function to Windows CE; it's just one
place where Microsoft has added built-in debugging features for the OEM.

Device.exe
After hell, the next module in the launch list is Device.exe. otice that there's no
Depened20 Line that makes the launch of Device.exe dependent on Shell.exe. That's
important because hell won't launch succes fully unless the system ha Shell.exe in
the object store or is connected to a debug station. The job of Device.exe is to load
and manage the installable device drivers in the system. This includes managing any
PCMCIA Card drivers that must be dynamically loaded and freed as well.

When Device.exe loads, it fir t loads the PCMCIA driver. It then looks in the
regi try under [HKEY _LOCAL_MACHINE\ Builtln for the List of the other drivers it must
load when it initializes. This list is contained in a series of keys. The names of the
keys don't matter-it's the values contained in the keys that define which drivers to
load and the order in which to load them. Figure 14-1 shows the contents of the
WaveDev key. The Wave driver is the audio driver.

' .. .,..., ----
_ --· I
0

Figure 14-1. Tbe registry key for the Wave driver on an HP360.

Chapter 14 System Programming

The four values under this key are the basic four entries used by a device driver
under Windows CE. The Prefix value defines the three-letter name of the driver.
Applications that want to open this driver use the three-letter key with the number
that Windows CE appends to create the device name.

The Index value is the number that will be appended to the device name. The
Dll key specifies the name of the DLL that implements the driver. This is the DLL that
Device.exe loads.

The Order value allows the OEM to recommend the order in which the drivers
are loaded. Device.exe loads drivers with lower Order values before drivers with higher
Order values in the registry. As Device.exe reads each of the registry keys, it loads
the DLL specified, calls RegisterDevice to register the DLL as a device driver with the
system, and then unloads the DLL. The DLL stays in memory because RegisterDevice
increments the use count of the DLL.

While this is the standard load procedure, you can use another method. If the
driver key contains a value named Entry, Device loads the DLL, and then, instead of
calling RegisterDevice, it calls the entry point in the driver named in Entry. The driver
is then responsible for calling the RegisterDevice function on its own so that it will be
registered as a driver with the system.

The Entry value allows OEMs to fine-tune the loading process for a driver, if
necessa1y. If the Entry key is present, another key, Keep, can also be specified. Speci
fying the Keep key tells Device.exe not to attempt to unload the driver after it calls
the driver's entry point. This allows the driver DLL to avoid calling RegisterDevice and
therefore avoid being a driver at all. Instead, the DLL is simply loaded into the pro
cess space of Device.exe.

One of the subtle points about having Device.exe load the installable drivers is
that all these drivers will execute in the same 32-MB process space of Device.exe.
This coincidence allows related drivers to actually directly call entry points in each
other, although the preferred method would be to formally make an IOCTL call into
the other driver. You can't count on this common process arrangement in future ver
sions of Windows CE.

GWES.exe
Referring again to the list in the registry, we see that the next module to be loaded is
GWES.EXE. GWES.exe contains the GWE subsystem. As I mentioned earlier in the
book, GWE stands for Graphics Windowing and Event Manager. Essentially, GWES
is the graphical user interface over the top of the base operating system composed of
NK, FileSys, and Device.

Because GWE forms the user interface of a graphical version of Windows CE,
it's not too surprising that the drivers that directly access the user interface hardware,
the keyboard, the touch panel, and the display are loaded by GWES.exe instead of

799

800

Device.exe. A "pure" operating system design would isolate these drivers with the
others, down in the kernel. Given the lightweight nature of Windows CE, however,
having these drivers loaded by GWE makes a faster and simpler interface for the
operating system. These drivers also don't support the standard stream interface re
quired of drivers loaded by Device.exe. Instead, each driver has a custom set of en
try points called by GWES.exe.

Unlike device.exe, GWES.exe doesn't load just any set of drivers. Instead, GWE
simply loads three predefined drivers: the keyboard driver, the touch panel driver,
and the display driver. GWES.exe looks in the registry in the following keys to find
these drivers all under the root registry key of [HKEY_LOCAL_MACHINE]:

Driver

Keyboard

Touch Panel

Display

Registry Key Name

\HARDW ARE\DEVICEMAP\KEYBD

\HARDWARE\DEVICEMAP\ TOUCH

\SYSTEM\GDI\DRIVERS

Value Name

Driver Name

Driver Name

Display

If the registry entries aren't found for a particular driver, GWES.exe uses default
names for that driver. These drivers are written by the OEM and are called native drivers
to differentiate them from the installable form of a driver loaded by Device.

In addition to the drivers loaded by GWE, the OEM also is charged with writing
a small amount of system adaptation code to support GWE. This code deals with
providing information about the state of the battery and an interface to the notifica
tion LED, if one is present. Although this code can be statically linked to GWE when
the system is built, many OEMs isolate this code into one or more DLLs and statically
link only a small amount of code that loads these DLLs.

Custom processes
At this point in the boot process, Windows CE, as an operating system, is up and
running. All that's left is to launch the shell. Some OEMs, however, launch processes
at this point that manage some OEM-specific tasks. Although you can launch other
applications before you launch the Explorer, you should be careful about that, as I
mentioned before. The Explorer isn't written to handle visible top-level windows that
are created before the Explorer. You can see this by inserting the following lines in
the init key that launches Cale before the Explorer:

Launch45
Depend45

calc.exe
0014 001E

After you insert the lines, reset your Windows CE device. Tap the desktop but
ton on the right end of the taskbar a couple of times and you'll see the Cale window.
Pressing on the Pop-Up button reduces the size of the Cale window so you can again
see the Explorer underneath. Notice that the taskbar doesn't have a button for the

Chapter 14 System Programming

Cale window. Nor, if you press Alt-Tab, is Cale listed in the Active Tasks list. Figure 14-2
shows thi unusual arrangement of Cale and the Explorer on an H/PC.

Figure 14-2. 1be unusual arrangement of Cale and the Explorer.

Because of the limitations of this arrangement, you shouldn't launch applica
tions with a user interface before the Explorer is launched. On the other hand, if you
have an application that doesn't have a user interface but you need to launch before
the hell , this is the time to do it.

Explorer.exe
Finally the list is terminated by the launch of the Explorer, or Shell32.exe, if the sys
tem is a Palm-size PC. The Explorer is, of cour e, the shell. Although the latest ver
sions of the Explorer add some functions to the API , the trend is to move as many
functions as possible from the shell to the operating system. This allows developers
of embedded systems to use those functions even if the system doe n't include the
Explorer.

At this point, the location of the list of files launched during startup changes
from the registry to the file system. After the Explorer initializes the desktop and the
taskbar window, it looks in the \ windows\ startup directory and launches any
executables or shortcuts contained in that directory. This is the standard, user
accessible method for launching applications when the system starts. This auto launch
ing is part of the Explorer, so if you 're building an embedded system without the
Explorer, you'll have to perform this last task yourself.

Powering Up Doesn't Boot the System

One thing to always remember in Windows CE is that for most configurations, in
cluding all battery-powered systems, pressing the Power button doesn't reset the
device. As I explained in Chapter 6, when the system is powered down it doesn't
really turn off. Instead, the system enters an extremely low power state in which all
the peripherals and the CPU power down but the state of the RAM is maintained.
When a user presses the power switch, the sy tern restores power and simply returns
to the thread that was executing when the power button was originally pressed.

801

Part IV Ae:hianced

Battery-powered Windows CE systems are reset only when power is initially
applied to the system-that is, when the first set of batteries is put in the device. Other
than that, resets occur only when the user presses the reset button that's generally
exposed through a pinhole somewhere on the case of the device. Memory isn't erased
when a user presses the reset switch, which allows FileSys to use the Object Store
that was already in RAM before the reset.

SYSTEM CONFIGURATION
At this point, the system is up and running, but just what is running and how is it
configured? Figure 14-3 shows the system after a reset has occurred. The diagram
separates the individual processes into their memory slots. Remember that slot 0 is
reserved for the currently active process. The list of DLLs that each process has loaded
is shown below the name of the process.

First user
NK.exe FileSys.exe Device.axe GWES.exe Explorer.axe application

Coredll.dll Coredll.dll Coredll.dll Coredll.dll Coredll.dll Coredll.dll
PCMCIA.dll DDl.dll WinSock.dll
wavedev.dll touch.di! ASForm.dll
Serial.di I keybddr.dll old32.dll
AFD.dll OEMLib.dll• OleAut32.dll
arp.dll CEShell.dll
lrDAstk.dll commctrl.dll
waveapi.dll webview.dll
IRComm.dll imgdecmp.dll
WinSock.dll WinlNet.dll
Tapi.dll
Unimodem.dll

SlotO Slot 1 Slot2 Slot3 Slot4 Slots Slot6

• OEMLib.dll - Most OEMs have a DLL to support battery and notification LED.

Figure 14-3. The system configuration after the system starts up.

7

Last user
application

Coredll.dll

Slot 33

Note that Coredll.dll is loaded by every process. Coredll provides the entry points for
most APis supported by Windows CE. As a call is made into Coredll.dll, it redirects
the call to the appropriate server process-NK, FileSys, Device, GWE, or Explorer.

Notice that Shell.exe isn't shown in Figure 14-3. This is because when I cap
tured the information for this figure, the Windows CE device I was using wasn't con
nected to a debug PC, so Shell.exe wasn't loaded.

WRITING CROSS-PLATFORM
WINDOWS CE APPLICATIONS

802

Over the years, Windows programmers have had to deal concurrently with different
versions of the operating system. Part of the solution to the problem this situation
posed was to call GetVersion or GetVersionEx and to act differently depending on

Chapter l 4 System Programming

the version of the operating system you were working with. You can't do that under
Windows CE. Because of the flexible nature of Windows CE, two builds of the same
version of Windows CE can have different APis. The question remains, though, how
do you support multiple platforms with a common code base? How does the operat
ing system version relate to the different platforms?

Platforms and Operating System Versions

To understand how the different platforms relate to the different versions of Win
dows CE, it helps to know how the Windows CE development team is organized within
Microsoft. Windows CE is supported by a core OS group within Microsoft. This team
is responsible for developing the operating system, including the file system and the
various communication stacks.

Coordinating efforts with the OS team are the various platform teams, working
on the Handheld/PC, Palm-size PC, Auto PC, and Handheld/PC Pro as well as many
other platforms yet to be announced. Each team is responsible for defining a sug
gested hardware platform, defining applications that will be bundled with the plat
form, and deciding which version of the operating system the platform will use.
Because the OS team works continually to enhance Windows CE, planning new ver
sions over time, each platform team generally looks to see what version of Windows CE

will be ready when that team's platform ships.
The individual platform teams also develop the shells for their platforms. Be

cause each team develops its own shell, many new functions or platform-specific
functions first appear as part of the shell of a specific platform. Then if the newly
introduced functions have a more general applicability, they're moved to the base
operating system in a later version. You can see this process in both the Notification
API and the SIP APL Both these sets of functions started in their specific platform
group and have now been moved out of the shell and are in the base operating
system.

Following is a list of the different platforms that have been released up to this
point and the version of Windows CE that those platforms use.

Platform

Original H/PC

Japanese release of H/PC

H/PC

Original Palm-size PC

Windows CE 2.1 for
embedded systems

Handhekl PC Pro

Windows CE version

1.00

1.01

2.00

2.01

2.10

2.11

803

It's not presently difficult to remember what platform is associated with which
version of Windows CE, but this task will get more difficult as more platforms are
added to the list.

You can choose from a number of ways to deal with the problem of different
platforms and different versions of Windows CE. Let's look at a few.

Compile· Time Versioning

804

The version problem can be tackled in a couple of places in the development pro
cess of an application. At compile time, you can use the preprocessor definition
_ WIN32_ WCE to determine the version of the operating system you're currently build
ing for. By enclosing code in an #if preprocessor bracket, you can cause code to be
compiled for specific versions of Windows CE.

Following is an example of a routine that's tuned both for the original Palm
size PC and for other platforms equipped with a SIP that are based on Windows CE 2.1.

II
II Get SIP rectangle.
II
void MyGetSipRect (RECT *prect) {

#if _WIN32_WCE == 201
SIPINFO si;

memset <&si, 0, sizeof (si));
si. cbSi ze = si zeof (SIPINFO);
II On original Palm-size PC, use old PPC Shell function.
SHSiplnfo (SPI_GETSIPINFO, 0, &si, 0);
*prect = si.rcSipRect;

#el if _WIN32_WCE >= 210
SIPINFO si;

si .cbSize = sizeof (SIPINFO);
II On Windows CE 2.1 or later, use new function.
SipGetinfo (&si);
*prect = si .rcSipRect;

#else
II Else, there isn't support for this function.

#error No SIP support.
Jtendif

return;
}

Chapter 14 System Programming

A virtue of this code is that linker links the appropriate function for the appro
priate platform. Without this sort of compile-time code, you couldn't simply put a
rnn-time if statement around the call to SHSiplnfo because the program would never
load on anything but a Palm-size PC. The loader wouldn't be able to find the exported
function SHSiplnfo in Coredll.dll because it's present only in Palm-size PC versions
of Windows CE.

Builds for the Palm-size PC have an additional define set named Palm. So you
can bracket Palm-size PC code in the following way:

/foifdef Palm
II Insert Palm-size PC code here.

/foendif

The reason I didn't use the Palm define in the previous code is that I wanted to
target specifically the original Palm-size PC, which used Windows CE version 2.01.
Othenvise, if I'd used the Palm define, that code would be included even when I
was compiling for newer versions of the Palm-size PC, which will use a newer ver
sion of Windows CE. The problem with using conditional compilation is that while
you still have a common source file, the resulting executable will be different for each
platform.

Explicit Linking

You can tackle the version problem other ways. Sometimes one platform requires that
you call a function different from one you need for another platform you're working
with but you want the same executable file for both platforms. A way to accomplish
this is to explicitly link to a DLL using LoadLibrary, GetProcAddress, and FreeLihrary.

You can then call the function as if it had been implicitly linked by the loader.
LoadLihrary is prototyped as

HINSTANCE Loadlibrary (LPCTSTR lplibFileName);

The only parameter is the filename of the DLL. The system searches for DLLs in the
following order:

1. The image of the DLL that has already been loaded in memory.

2. The statically linked DLL in ROM for a ROM-based executable.

3. The file in the path specified in lpLibFileName parameter.

4. The directory of the executable loading the library. (This is supported only
for Windows CE 2.1 and later.)

5. The Windows directory.

805

Part IV Advanced

806

6. The root directory.

7. The image of the DLL in ROM.

Notice in the search sequence above that if the DLL has already been loaded
into memory, the system uses that copy of the DLL even if your pathname specifies
a different file from the DLL originally loaded. Another peculiarity of LoadLihrary is
that it ignores the extension of the DLL when comparing the library name to what's
already in memory. For example, if SIMPLE.dll is already loaded in memory and you
attempt to load the control panel applet SIMPLE.cpl, which is under the covers sim
ply a DLL with a different extension, the system won't load SIMPLE.cpl. Instead the
system returns the handle to the previously loaded SIMPLE.dll.

LoadLihrary returns either an instance handle to the DLL that's now loaded or
0 if for some reason the function couldn't load the library.

Once you have the DLL loaded, you get a pointer to a function exported by
that DLL by using GetProcAddress, which is prototyped as

FARPROC GetProcAddress (HMODULE hModule, LPCWSTR lpProcName);

The two parameters are the handle of the module and the name of the function you
want to get a pointer to. The function returns a pointer to the function or 0 if the
function isn't found. Once you have a pointer to a function, you can simply call
the function as if the loader had implicitly linked it.

When you are finished with the functions from a particular library, you need to
call FreeLibrary, prototyped as

BOOL FreeLibrary (HMODULE hLibModule);

FreeLihrary decrements the use count on the DLL. If the use count drops to 0, the
library is removed from memory.

The following routine solves that same problem I presented earlier (how to
retrieve the SIP rectangle without using compile-time switches). The routine explic
itly loads the two possible functions, calls the one found, and frees the libraries loaded.
A more efficient application would load the libraries and query the function pointers
when the program was initialized instead of performing this task each time the func
tions were needed.

II Type definitions for the function pointers.
typedef HRESULT (CALLBACK* GETSIPINFOFUNC)(SIPINFO *);
typedef HRESULT (CALLBACK* SHSIPINFOFUNC)(INT, INT, PVOID, INT);

int MyGetSipRectl (RECT *prect) {
HINSTANCE hCoreDl l, hAGYShel l;
GETSIPINFOFUNC lpfnGetSipinfo;

}

Chapter 14 System Programming

SHSIPINFOFUNC lpfnSHSipinfo;
SIPINFO si;
INT re = 0;

//Load the DLL.
hCoreDll = Loadlibrary(TEXTC"coredll .dll"));
II If we can't load Coredll, something is really strange!
if (! hCoreDl l)

return -2;

II Prepare structure for call.
memset (&si, 0, sizeof (si));
si .cbSize = sizeof (SIPINFO);

II Attempt to get a pointer to GetSipinfo.
lpfnGetSipinfo = (GETSIPINFOFUNC)GetProcAddress(hCoreDll,

TEXT("GetSipinfo"));
if (lpfnGetSipinfo) {

II Call GetSipinfo.
(*lpfnGetSipinfo)(&si);

} else {
II This DLL exports the Palm-size PC shell APis.
hAGYShell= Loadlibrary(TEXT("aygshell.dll"));
if (hAGYShell) {

II Attempt to get a pointer to SHSipinfo.
lpfnSHSipinfo = (SHSIPINFOFUNC)GetProcAddress(

hAGYShell, TEXT("SHSipinfo"});
if (lpfnSHSipinfo) {

}

(*lpfnSHSipinfo)(SPI_GETSIPINFO, 0, &si, 0);
} else

re = -1;
Freelibrary (hAGYShell);

} else
re= -1;

II At this point, one of the two functions has been called.
if (!re)

*prect = si.rcSipRect;

II Free the library.
Freelibrary(hCoreDll);
return re;

807

Part IV Advanced

This routine can be run on any platform, but will work only with those that export
one of the two get SIP information functions. On the other platforms, the routine simply
returns an error code of -1.

Run-Time Version Checking

808

When you're determining the version of the Windows CE operating system at run
time, you use the same function as under other versions of Windows-GetVer.sionEx,
which fills in a OSVERSIONINFO structure defined as

typedef struet _OSVERSIONINFO{
DWORD dwOSVersioninfoSize;
DWORD dwMajorVersion;
DWORD dwMinorVersion;
DWORD dwBuildNumber;
DWORD dwPlatformld;
TCHAR szCSDVersion[128];

OSV ERS ION INFO;

Upon return from GetVersionEx, the major and minor version fields are filled
with the Windows CE version. This means, of course, that you can't simply copy
desktop Windows code that branches on classic version numbers like 3.1 or 4.0.
The dwPlatformld field contains the constant VER_PLATFORM_ WIN32_CE under
Windows CE.

Although it's possible to differentiate platforms by means of their unique Win
dows CE versions numbers, you shouldn't. For example, you can identify the current
Palm-size PC by its unique Windows CE version, 2.01, but newer versions of the Palm
size PC will be using different versions of Windows CE. Instead, you should call
SystemParameter.slnfo with the SPI_GETPLATFORMTYPE constant, as in

TCHAR szPlat[256];
INT re;

re= SystemParametersinfo (SPI_GETPLATFORMTYPE, sizeof (szPlat),
szPl at, 0);

if (lstremp (szPlat, TEXT ("Jupiter") == 0) {
II Running on an HIPC Pro

} else if (lstremp (szPlat, TEXT ("Palm PC") == 0)
II Running on a Palm-size PC

else if (lstremp (szPlat. TEXT ("HPC") == 0) {
II Running on an H/PC

Aside from the differences in their shells, though, the platform differences aren't
really that important. The base operating system is identical in all but some fringe

Chapter 14 System Programming

cases. 5 The best strategy for writing cross-platform Windows CE software is to avoid
differentiating among the platforms at all-or at least as little as possible.

For the most part, discrepancies among the user interfaces for the different
consumer Windows CE devices can be illustrated by the issue of screen dimension.
The Palm-size PC's portrait-mode screen requires a completely different layout for
most windows compared to the Handheld PC's landscape-mode screen. The Handheld
PC Pro's screen is landscape, but it's at least double the height of an H/PC screen. So,
instead of looking at the platform type to determine what screen layout to use, you'd
do better to simply check the screen dimensions using GetDeviceCaps.

This has been a brief tour of some of the system issues for Windows CE. The
configurability of Windows CE makes it the chameleon of operating systems, chang
ing its API and even its size, depending on the platform. Whatever the platform dif
ferences, though, remember that underneath the covers, all configurations of Windows
CE share the same basic design. Keep this in mind as you look at the wide variety of
platforms developed for Windows CE.

The configurability of Windows CE makes it a powerful tool for the systems
designer. Its Win32 API makes it familiar to thousands of programmers. But most of
all, the Windows CE operating system is fun. Enjoy it.

5. For example, first generation Palm-size PCs don't support printing, so you wouldn't want to im
plicitly link to any printing APis if you wanted an application that ran on both the H/PC 2 and the
original Palm-size PC.

809

Appendix

COM Basics

To qualify as COM compliant, all an object has to have is an implicit 1Unknou 1n in
terface. In C++ talk, a COM-compliant interface must be derived from, directly or
indirectly, an !Unknown interface. The !Unknown interface has three methods:
Querylnterjace, AddRf!f, and Release.

The methods AddRf!l and Release are called to increment and decrement the
reference count of the COM interface. When an object is created and a pointer is
returned by the object to an interface, an implicit call is made to AddRef When a
program no longer needs an interface, it calls Release, which decrements the use count
for that interface. When the use count for all interfaces exposed by the object is 0,
Release deletes the object.

The third method, Querylnterface, provides a way for the caller to receive a
pointer to a specific interface the COM-compliant object supports. Querylnterface is
prototyped as

HRESULT Queryinterface CREFIID iid, void** ppvObject);

The first parameter to Querylnteijace is an identifier to an interface that the caller
is requesting. Because there are countless interfaces and new ones generated every
day, this identifier needs to be unique-globally and universally unique-for all COM
interfaces ever programmed. Thus, the globally unique interface identifier is abbre
viated as a GUID, pronounced goo-id or gwid (rhymes with squid). If you create your
own unique interface, you too will need a GUID. You can create your own GUID using
the GUIDGEN utility provided with Visual C++.

The second parameter is a pointer that receives a pointer to the requested in
terface. So, to use an interface, the Querylnterface method, which must be included
in any COM-compliant interface, is called to return a pointer to a specific interface
exposed by the object. If the object makes a requested interface available, a pointer
to that interface is returned.

811

Appendix

USING COM INTERFACES
In many cases, applications use COM interfaces without even knowing that's what
they're doing. In the RAPI stream example I used in Chapter 11, both the CE-side and
the PC-side applications used an !Stream interface. This interface is formally defined
as a COM interface, but because the pointer to the interface was provided, neither
the CE- nor the PC-side applications had to know anything about COM.

COM CLIENTS

812

However, sometimes you need to directly create and use a COM interface. In this case,
the application becomes a COM client. Before an application can use the COM li
brary, it must initialize the COM handler library by calling this function:

HRESULT Coinitialize (LPVOID pvReserved);

The only parameter is reserved and must be set to NULL. Colnitialize returns S_OK
if the COM library was successfully initialized. You can also call ColnitializeEx in
stead of Colnitialize if you need to more precisely specify how the library is initialized.

To get a pointer to an interface, you then call the function

STDAPI CoCreateinstance (REFCLSID rclsid, LPUNKNOWN pUnkOuter,
DWORD dwClsContext, REFIID riid,
LPVOID * ppv);

The first parameter for this function is the class identifier of the interface or object
you're trying to load. The second parameter specifies a pointer to an !Unknown

interface if you're trying to extend an existing COM object with the new interface.
In all our uses of this function, this parameter will be NULL. The third parameter
is the context in which you're opening the object. For our purposes, we'll use
CLSCTX_SERVER, indicating that we're loading a server object and we don't care
whether that server runs in our process or in another process. The riid parameter
specifies the interface ID of the interface to be loaded. Finally, the last parameter,
ppv, is a pointer to a value that will receive the pointer for the interface being re
quested. CoCreatelnstance returns S_OK if the function was successful.

At this point, the client has a pointer to the interface for the object and can call
the methods provided by that interface. When you're finished with the object, a call
should be made to the Release method of the object to free it.

COM Basics

COM SERVERS
On the other side of the COM fence is a COM server. A COM server is a module, EXE
or DLL, which provides one or more COM interfaces. There are three types of COM
servers: in-proc, which operate in the process space of the caller; local, which oper
ate in separate process spaces; and remote, which reside on different machines from
the COM clients. For all our cases, I'll stick to COM in-proc servers.

A COM server doesn't just provide a pointer to a requested interface. That would
be too easy. Instead, a COM server must make available an additional interface,
!ClassFactory. !ClassFactory is composed of the /Unknown methods, Querylnterface,
AddRef, and Release along with two additional methods, Createlnstance and Lock
Server. It's through calling methods within !ClassFactory that the server creates other
objects provided by the server. To create an instance of an interface, the client calls
the IClassFactory Createlnstance method. The prototype for this function is

HRESULT Createlnstance (!Unknown * pUnkOuter, REFIID riid,
void** ppvObject):

If the first parameter isn't NULL, it's a pointer to the controlling /Unknown in
terface of the aggregate object. The second parameter is the CLSID for the object you
want to create. Finally, the ppvObject parameter points to a value that receives a pointer
to the interface provided by the newly created object. When Createlnstance is called,
!ClassFactory examines the GUID in the riid parameter to see what interface it iden
tifies; if that interface is provided, !ClassFactory creates the object that implements
the interface and queries that object for a pointer to the newly created interface that
it then returns.

So, just how does a client get access to !ClassFactory? Well, if we're talking
about in-proc servers, COM must fall back on functions exported from the DLL or
EXE. A COM server must provide at least two exported functions-DllGetClassObject
and DllCanUnloadNow. The first of these two functions is the more interesting. It's
prototyped as

STDAPI DllGetClassObject (REFCLSID rclsid, REFIID riid,
LPVO ID *PPV):

The first parameter is a class ID, which is a GUID that uniquely identifies this object.
Many objects, for example, might export a file filter interface, but each will have a
unique class ID. The COM server must ensure that the object's class ID matches its
class ID and, if not, return an error to the caller.

The second parameter is the reference ID for the interface that the client wants.
When calling DllGetClassObject, the reference ID usually identifies either /Unknown
or !ClassFactory, but it doesn't have to. The server's responsibility here is to compare

813

Appendix

814

the requested interface with those that are provided. If that interface is provided, a
pointer to it is returned in a variable pointed to by the third parameter, ppv.

The other exported function is

STDAPI DllCanUnloadNow (void);

This function is called to determine whether the DLL can be removed from memory.
The COM server is required to know whether any object instances are currently ac
tive. Each object tracks this information by keeping a count of the number of instances
of itself currently created. This is what the AddRef and Release methods of /Unknown
are used for. When the use count for a specific object/interface reaches 0, the Release
method of the object deletes the object. The server must keep track of which objects
are still in use and return S_FALSE from Dl!CanUnloadNow if any of the objects it
serves are still in use.

One final point. Plenty of DLLs are in a system. How does the COM library know
to load a specific DLL to look for a specific class? It looks in the registry. If you look
in the registry under [HKEY_CLASSES_ROOT]\CLSID, you'll see hundreds of keys with
class IDs for names. Each of these class ID keys has a series of subkeys that identify
the DLL that implements that COM object as well as identifying other information im
portant to the implementation of the server.

So, to sum up, when a client requests an object identified by a class ID, the COM
library finds the name of the DLL that implements that object in the registry. The DLL
is then loaded into memory and the exported function DllGetClassObject is called to
confirm the class ID and to (usually) request a pointer to the object's associated
JClassFactory object. The client then calls a method in the JClassFactory interface to
request that an object that has a requested interface be created. If it can comply, the
JClassFactory object creates the requested object and returns a pointer to an inter
face exposed by that object. Whew.

This short and almost trivial COM primer isn't meant to turn you into a COM
expert. My goal is to help you identify all those extra functions implemented in the
examples that use COM in this book. I strongly encourage you to learn more about
COM from other books and papers. For all its complexity, COM is the wave of the
present and future in Windows programming.

Index

Page numbers for tables and figures are
in italics.

Special Characters
& (ampersand), 129, 175
•(asterisk), 173, 413
: (colon), 541, 546
... (ellipsis), 129
I (forward slash), 128
? (question mark), 413

A
ACCELERATORS resource type, 129
accept function, 601, 603-4
access rights, 356-57, 363-65, 409
ACM (audio compression manager) device

drivers, 540
ActionFlags field, 727, 728
Active Desktop, 709, 749
Add1-ess field, 629
Advanced Windows (Richter), 377
AF _IRDA constant, 602, 603
AF _NET constant, 602
AlbumDB program, 435-67

AlbumDB.c, 441-65
AlbumDB.h, 438--41
AlbumDB.rc, 436-48
window, 436

AllocationBase field, 363, 364
ampersand(&), 129, 175
annunciators, 716-18
API (application programming interface). See

also RAPI (Windows CE Remote API)
Clipboard API, 793
database APL 379, 417-67
file API, 379-417
functions, availability of, on particular

platforms, 5

API (application programming interface),
continued

functions, Hungarian notation and, 15
heapAPI, 358-59, 367-69
IME API, 756
Notification API, 710, 753, 680, 804
registry API, 379, 467-91
socket API (WinSock), 599-626
virtual memory, 354, 361

applications. See also API (application
programming interface)

cross-platform, 802-9
launch keys for, 788-92

Apply button, 218
Appointments database, 421
ASCII (American Standard Code for Informa-

tion Interchange)
IrSock and, 629
resource files, 128-29
strings, 20
Unicode vs., 4, 600

asterisk (*), 173, 413
ATA flash cards, 380
atoms

basic description of, 23
exclusion of, from fields, 23

Auto PC, 5, 803-4

B
background

color, 62, 40-47, 207, 298 (see also color)
mode, 40

backward compatibility, 35
bar graphs, 74
baselines, for text, 51
batteries, 501-2, 350, 801-2
BaudRate field, 549, 553
baud rates, 549-50, 553

815

Index

BEGIN keyword, 129, 210
BeginPaint function, 29-30, 37, 38, 61
bEnable flag, 95
hErase parameter, 37
biBitCount field, 67
biClrlmportant field, 67
biClrUsed parameter, 67
biCompression field, 67
binary data blocks, defining, 129
hind function, 601, 604
binheritHandle parameter, 498
bJnitialOwner parameter, 513
binitialState parameter, 508
BIOS (basic input/output system), 350, 501
hiPlanes field, 67
hiSizefmage parameter, 67
BitBlt function, 69, 70
BITMAPINFOHEADER structure, 66--67
BITMAPINFO structure, 66, 74
bitmaps, 129, 130, 132. See also images

as arrays of hits, 63, 64
basic description of, 63-70
brushes and, 73-74
for command bar buttons, 270, 271
referencing, 271-73
representing the IM control, 764

bits, bitmaps as arrays of, 63, 64
BITSPIXEL value, 40
biWidth field. 67
biXPelsPerMeter field, 67
biYPelsPerMeter field, 67
bLastMove field, 147
block mode, 648
blocks

_try block, 531
_try, _except block, 532-34
_try, _J!nally block, 531, 534-36

bManualReset parameter, 508
BN_CLICKED message, 170, 171, 206
boilerplate code, 14
Bold button, position of, on the command

bar, 280
Boolean data type, 168, 417
boot process, 540, 794-801, 802
breakpoints, setting, 19
brushes, 73-75, 76, 77---B6
BS_2STATE style flag, 171
BS_AUT02STATE style flag, 171

816

BS_AUT03STATE style flag, 206
BS_AUTOCHECKBOX style flag, 171, 206
BS_AUTORADIOBUTTON style flag, 171, 206
BS_BOTTOM style flag, 171
BS_CHECKBOX style flag, 171
BS_ICON style flag, 172
BS_LEFT style flag, 171
BS_MULTILINE style flag, 171
BS_OWNERDRAW style flag, 172
BS_RADIOBUTTON style flag, 171
BS_RIGHT style flag, 171
BS_TOP style flag, 171
BtnDlg.c, 244-50
BtnWnd.c, 186-92, 206
BtnWndProc procedure, 206-7
buf parameter, 604
Button control class, 170-73
buttons. See also buttons (listed by name)

background color for, 207
bitmaps for, 270, 271
customizing the appearance of, 171-73
disabled, 274-75
drop-down, 275-77
position of, on the command bar, 280

buttons (listed by name). See also buttons;
Close button

Apply button, 218
Bold button, 280
Cancel button, 218
Help button, 210, 268, 279
IDCANCEL button, 214-16, 223
IDOK button, 214-16, 223
Italic button, 280
New button, 280
Notify button, 726
OK button, 218, 223, 583, 584
Open button, 280
Print button, 280
Save button, 280
Send button, 518, 529
Start button, 63, 149, 709
Underline button, 280

blVaitAll parameter, 511
BY_HANDLE_FILE_INFORMATION

structure, 388---B9
bytes

layout of, within a bitmap, 64, 65
multiple, storage of characters in, 5-6

ByteSize field, 551

c
C programming, 26, 370, 742--43
C++ programming, 370
CALBACK type definition, 26
Cale program, 497, 715-16, 800, 801
calc.cxe, 497, 716
calendar control, 5
callback functions, handling fonts with,

52-53, 61-62
Cancel button, 218
Casio Handheld PC, 796. See also H/PC

(Handheld PC)
catch keyword, 531
Categories daLabase, 421
cblnQue field, 556
cbOutQue field, 556
chSize field, 168, 169, 297, 751
chStructure field, 5Wi.
cbWndE.xtra field, 22, 152
CCS_ VERT style flag, 295
cDayState field, 321
CeChat program, 560-77

CeChat.c, 564--76
CeChat.h, 562-64
CeChat.rc, 561-62
window, 561

CeCheckPassword function, 638
CeCloseHandle function, 638
CeCopyFile function, 639
CeCreateDatabaseEx function, 421, 423, 429,

435, 641
CeCreateDatabase function, 418, 421, 423,

634, 611
CeCreateDirectory function, 639
CeCreateFile function, 638
CeCreateProcess function, 638
CeDatabaseEx function, 433
CeDatabaseSeek function, 429
CEDB_ALLOWREALLOC flag, 430
CEDBASEINFO structure, 123, 429, 435
CEDB_AUTOINCREMENT flag, 424
CEDB_MAXPROPDATASIZE flag, 418
CEDB_MAXRECORDSIZE flag, 118
CEDB_PROPDELETE flag, 432
CEDB_pROPNOTFOUND flag, 431
CEDB_SEEK_BEGINNING flag, 427
CEDB_SEEK_CEOID flag, 127
CEDB_SEEK_CURRENT flag, 427

Index

CEDB_SEEK_END flag, 427
CEDB_SEEK_ V ALUEFIRSTEQUAL flag, 427
CEDB_SEEK_ VALUEGREATER flag, 427
CEDB_SEEK_ V ALUENEXTEQUAL flag, 427
CEDB_SEEK_ V ALUESMALLER flag, 427
CEDB_SORT_CASEINSENSITIVE flag, 422
CEDB_SORT_DESCENDING flag, 422
CEDB_SORT_UNKNOWNFIRST flag, 422
CEDB_VALIDCREATE flag, 423
CEDB_VALIDDBFLAGS flag, 423
CEDB_ VALIDMODTIME flag, 423
CEDB_ VALIDNAME flag, 423
CEDB_ VALIDSORTSPEC flag, 423
CEDB_VALIDTYPE flag, 423
CeDeleteDatabaseEx: function, 641
CeDeleteDatabase function, 641
CeDeleteFile function, 639
CeDeleteRecord function, 641
CeEnumDBVolumes function, 420
CEFILEINFO structure, 434--35
CeFindAllDatabases function, 642, 643
CeFindAllFiles function, 638, 642, 643, 648
CeFindClose function, 638
CE_FIND_DATA structure, 640--41, 648
CeFindFirstDatahaseEx function, 641
CeFindFirstDatabase function, 433. 641
CeFindFirstFile function, 638
CeFindNextDatabaseEx function, 641
CeFindNextDatabase function, 433, 641
CeFindNextFile function, 638
CEFind program, 743--47

CEFind.c, 744--47
window, 743

CeGetDesktopDeviceCaps function, 638
CeGetFileAttributes function, 638
CeGetFileSize function, 639
CeGetFileTime function, 639
CeGetStorelnformation function, 634, 637, 638
CeGetSystemlnfo function, 638
CeGetSystemMetrics function, 638
CeGetSystemPowerStatusEx function, 638
CeGetVersionEx function, 635, 638
CeGlobalMemoryStatus function, 638
CEIODINFO structure, 434
CeMoundDBVol function, 419-20, 642
CeMoveFile function, 639
CENOTIFICATION structure, 425, 426
CENOTIFYREQUEST structure, 425, 426

817

Index

CeOidGetlnfoEx function, 641
CeOidGetirifo function, 641
CeOpenDatahaseEx function, 425, 641
CeOpenDatabase function, 425, 641
CEPROPID structure, 430, 432
CEPROPVAL structure, 427, 432
CeRapiFreeBuffer function, 643
CeRapiGetError function, 637
CeRapilnitEx function, 636, 647
CeRapilnit function, 636, 648, 662
CeRapilnvoke function, 648-49, 651-53, 662
CeRapiUninit function, 636
CeReadFile function, 638
CeReadRecordPropsEx function, 430, 431,

432, 641
CeReadRecordProps function, 430, 431, 641,

643, 465
CeRemoveDirectoiy function, 639
CeR11nAppAtEvenl function, 680
CeSeekDatahase function, 428, 641
CeSetDatabaselnfo function, 422, 435
CeSetDatabaselnf oEx function, 641
CeSetEndOjFile function, 638
CeSetFilePointer function, 638
CeSetFileTime function, 639
CeSetUserNotification function, 726-28
CESH, 796
CESVC_CUSTOM_MENUS registry key, 663
CESVC_DEVICE_SELECTED registry key, 664
CESVC_DEVICES registry key, 663, 664
CESVC_DEVICEX registry key, 664
CESVC_FILTERS registry key, 663, 664
CeSucOpen function, 664, 665, 667-68, 684
CESVC_ROOT_l'vIACHINE registry key,

663, 668
CESVC_ROOT_USER registry key, 663
CESVC_SERVICES_COMMON registry

key, 663
CESVC_SERVICES_USER registry key, 664
CESVC_SYNC_COMMON registry key, 663
CESVC_SYNC registry key, 664
CeUnmountDBVol function, 420, 642
CeUtil functions, 662-67, 681, 684
CEVT _LPWSTR constant, 422
CeWriteFile function, 638
CeWriteRecordProps function, 432, 641
cFindData parameter, 642
char data type, 5, 15

818

chat program, 560-77
check boxes

background color for, 207
basic description of, 170-71

child windows, 6, 149
basic description of, 150-69
enumerating, 151
finding, 151, 152

Choose Color dialog box, 224
Choose Font dialog box, 224
circles, drawing, 75-76
cleanup action, 21
ClearCommBreak function, 554-55
ClearCommError function, 556
ClientWnd.c, 154, 159-68
Clipboard API, 793
clipping regions, 37, 62
Close button, 19, 223, 268, 374

adding, 28
disabling, 22
Windows logo on, 63

CloseFile function, 382
clrBack field, 298
CLRBREAK flag, 555
CLRDTR flag, 555
CLRIR flag, 555
CLRRTS flag, 555
CmdBand program, 304-19

CmdBand.c, 307-18
CmdBand.h, 305-7
CmdBand.rc, 304-5

CMDBAR_HELP flag, 279
CMDBAR_OK flag, 279
CmdBar program, 280-94

CmdBar.c, 283-94
CmdBar.h, 281-83
CmdBar.rc, 280-81

CMD.EXE, 743
CnctKote program, 671--80

CnctNote.cpp, 673-80
CnctNote.h, 672-73
CnctNote.rc, 671-72

colon(:), 541, 546
color

background, 62, 40-47, 207, 298
for bitmaps, 67-68
for buttons, 172-73
for controls, 207, 298, 320

color, continued
foreground, 40-47
palettes, specifying the number of colors

in, 67-68
RGB, 66--68, 72-74, 172-73
transparent, 70

Color dialog box, 150, 261
COLOR_STATIC constant, 207
COM (Component Object Model), 546, 553-

54, 558, 576
basic description of, 705
input methods and, 753-54, 758-59
method of connection notification, 669-80
objects, file filters as, 680-706
shell programming and, 710, 715. 747,

753-54, 758, 759
combo boxes, 170, 174, 277-78
Combo control class, 170, 174
COM device drivers, 540, 544
command band control

basic description of, 294-319
adding, 296-300
CmdBand program for, 304-19
configuring, 300-301
creating, 295-96
destroying, 318
image lists for, 296
layout, saving, 301-3
messages, handing, 303

COMMANDBANDRESTOREINFO structure,
301-3

CommandBar _AddAdornments function,
28, 279

CommandBar_AddBitmap function, 270,
271-72, 274

command bar control
basic description of, 5, 268-80
CmdBar program for, 280-94
creating, 28, 268
design guidelines for, 279--80
destroying, 30-31, 279
positioning the scroll bar relative to, 63

CommandBar_Create function, 28
CommandBar_Destroy function, 30-31
CommandBar_DrawMenubar function, 269
CommandBar_Height function, 29, 279
CommandBar_InsertComboBox function, 278
CommandBar _InsertAfenubar function, 269

Index

commctrl.h, 14, 267. 271
COMMCTRL image, 357
COMMPROP structure, 553
COMMTIMEOUTS structure, 551, 552
Compact Flash Cards, 381, 540, 542
compatibility, backward, 35
compile-time versioning, 804-5
ComposeLine function, 407
compression, file, 67. 381,(386--87
COMSTAT structure, 556
CON (console) device drivers, 540, 742-43
CONNECTDLGSTRUCT structure, 583
connect function, 601, 612
console applications, 540, 742-47
constants

AF _IRDA constant, 602, 603
AF _NET constant. 602
CEVT_LPWSTR constant, 422
COLOR_STATIC constant, 207
CSIDL_BITBUCKET constant, 712
CSIDL_DESKTOP constant, 712
CSIDL_DRIVES constant, 712
CSIDL_FAVORITES constant, 712
CSIDL_FONTS constant, 712
CSIDL_PERSONAL constant, 712
CSIDL_PROGRAMS constant, 712, 715
CSIDL_RECENT constant, 712
CSIDL_STARTMENU constant, 712
CSIDL_STARTUP constant, 712
EVENTPARITY constant, 551
NOPARITY constant, 551
ODDPARITY constant, 551
PROCESSOR_ARCHITECTURE_INTEL

constant, 354
PROCESSOR_ARCHITECTURE_SHx

constant, 354
PROCESSOR_HITACHI_SH4 constant, 354
PROCESSOR_HITACHI_SH3 constant, 354
SPACEPARITY constant, 551
STILL_ACTIVE constant, 497
VK_O-VK_9 constants, 90
VK_A-VK_Z constants, 90
VK_ADD constant, 91
VK_APOSTROPHE constants, 91
VK_APPS constant, 91
VK_ATTN constant, 92
VK_BACK constant, 89
VK_BACKQUOTE constant, 91

819

Index

constants, continued
VK_BACKSLASH constant, 91
VK_CANCEL constant, 89
VK_CAPITAL constant, 90
VK_ CLEAR constant, 89
VK_COMMA constant, 91
VK_CONTROL constant, 90
VK_CRSEL constant, 92
VK_DECIMAL constant, 91
VK_DELETE constant, 90
VK_DIVIDE constant, 91
VK_DOWN constant, 90
VK_END constant, 90
VK_EQUAL constant, 91
VK_EREOF constant, 92
VK_ESCAPE constant, 90
VK_EXECUTE constant, 90
VK_EXESEL constant, 92
VK_Fl-VK_F24 constants, 91
VK_HELP constant, 90
VK_HOME constant, 90
VK_HYPHEN constant, 91
VK_INSERT constant, 90
VK_LBRACKET constant, 91
VK_LBUTTON constant, 89, 94
VK_LCONTROL constant, 91
VK_LEFT constant, 90
VK_LMENU constant, 91
VK_LSHIFT constant, 91
VK_LWIN constant, 90, 788
VK_MENU constant, 90, 94
VK_MULTIPLY constant, 91
VK_NEXT constant, 90
VK_NONAME constant, 92
VK_NUMLOCK constant, 91
VK_NUMPAD0-9 constants, 91
VK_OEM_CLEAR constant, 92
VK_OFF constant, 92
VK_P Al constant, 92
VK_PERIOD constant, 91
VK_PLA Y constant, 92
VK_PRIOR constant, 90
VK_RBRACKET constant, 91
VK_RBUTTON constant, 89
VK_RCONTROL constant, 91
VK_RETURN constant, 90
VK_RIGHT constant, 90
VK_RMENU constant, 91

820

constants, continued
VK_RSHIFT constant, 91
VK_SCROLL constant, 91
VK_SELECT constant, 90
VK_SEMICOLON constant, 91
VK_SEPARATOR constant, 91
VK_SHIFT constant, 90
VK_SLASH constant, 91
VK_SNAPSHOT constant, 90
VK_SP ACE constant, 90
VK_SUBTRACT constant, 91
VK_ TAB constant, 89
VK_ UP constant, 90
VK_ZONE constant, 92

canst keyword, 372
Contacts database, 421
CONTROL keyword, 131, 210-11
controls. See also specific controls

basic description of, 149-50, 169-207
common, 265-337
new, in Windows CE, 5

Cool Bars, 268
CopyFile function, 412
Coredll.dll, 357, 358, 802, 805
cPlanes parameter, 64
cProp!D parameter, 432
CPUs (central processing units), 794, 801

exception handling and, 534
memory management and, 351-52, 354,

356, 365, 373-74
that support Windows CE, 3
system programming and, 793-94, 801
target, selecting, 16
threads and, 499, 501

crColor parameter, 72, 73
CreateBitmap function, 67
CreateCommandBand routine, 318
CreateCompatibleDC function, 70
CreateDialog function, 218
CreateDIBPatternBrushPt function, 74, 85
CreateDIBSection function, 67, 68
CreateDirectory function, 412
CreateEvent function, 508, 509
CreateFileForMapping function, 408
CreateFile function, 382-84, 387, 407-8, 419,

544, 546
CreateFileMapping function, 409, 410-12, 529
CreateFontlndirect function, 49

CreateHatchBrush function, 85
CreateiVfenu function, 126
CreateMessage function, 217
CreatePenlndirect function, 72-73
CreateProcess function, 494-97. 502
CREATESTRUCT structure, 125
CreateThread function, 502, 503
CreateWindowEx function, 170, 324
CreateWindow function, 24, 25, 27, 150, 165,

170. 206, 324
critical sections, 514-15
CRITICAL_SECTION structure, 514
cross-platform applications, 802-9
CSIDL_BITBUCKET constant, 712
CSIDL_DESKTOP constant, 712
CSIDL_DRIVES constant, 712
CSIDL_FAVORITES constant, 712
CSIDL_FONTS constant, 712
CSIDL_PERSONAL constant, 712
CSIDL_PROGRAMS constant, 712, 715
CSIDL_RECENT constant, 712
CSIDL_STARTMENU constant, 712
CSIDL_STARTUP constant, 712
Ct/ID field, 172
Ct/Type field, 172
Ct!View program, 176-208, 261

Ct!View.c, 180-86, 206
Ct!View.h, 176-80
Ct!Vicw.rc, 176
windows, with the button child window

displayed, 206
CTS (Clear to Send) signals, 547, 556
CW _USEDEFAULT flag, 24
ex/deal field, 298
cxMinChild field, 298
cyMinChild field, 298

D
databases

AlhumDB program for, 435-67
API for. 379, 417-67
communicating with, 518
creating, 421-24
deleting, 432-33
designing, 418
desktop connectivity and, 641-43
enumerating, 433-34
management functions for, 641-43

databases, continued
opening, 424-26
types of, predefined, 421
volumes, 418--20, 465-67

data compression. 67, 381, 386----87
data types

Boolean data type, 168, 417
double data type, 15, 64, 417
integer data type, 15, 417
the registry API and, 467, 471
supported by Windows CE, summary

of, 417

Index

date and time picker control, 5, 321-24
DB_CEOID_CHANGED message, 424-25
DR_CEOID_CREATED message, 424-26
DB_CEOID_RECORD_DELETED message,

424-25
DCs (device contexts)

basic description of, 29, 37-47, 64-70
bitmaps and, 64-65, 66, 68--70
deleting, 70
fonts and, 49-50, 53
KeyTrac program and, 104-5
returning handles to, 61
the Windows CE file API and, 407

DCX_LOCKWINDOWUPDATE flag, 38
DCX_NORESETATTRS flag, 38
DCX_P ARENTCLIP flag, 38
DCX_VALIDATE flag, 38
DDBs (device dependent bitmaps), 65-66.

See also bitmaps
DDI.DLL, 540
debugging, 18--19. 371. See also errors

booting and, 797-98
processes and, 495, 517

Debug tab, 18
DEF (function definition) files, 651, 693
DefWindowProc function, 26, 32, 208, 213
DeleteDC function, 70
DeleteFile function, 412, 413
DeleteObject function, 62
deleting

databases, 432-33
device contexts (DCs), 70
directories, 412
files, 412, 413
properties, 432-33
records, 432-33
registry values, 471-72

821

Index

Depend20 line, 798
Deselect method, 759, 763
desktop

basic description of, 6
connectivity, 633-705
registry management functions, 643
window management functions, 644-45

DestroyCommandBand function, 318
device contexts (DCs)

basic description of, 29, 37-47, 64-70
bitmaps and, 64-65, 66, 68-70
deleting, 70
fonts and, 49-50, 53
KeyTrac program and, 104-5
returning handles to, 61
the Windows CE file API and, 407

device dependent bitmaps (DDBs), 65-66. See
also bitmaps

device drivers. See also serial communications
active, 540-43
boot process and, 798-800
console applications and, 742-43
creating lists of, 542-43
loading, 540, 541
names of, 540, 541, 542
native, 800
querying the capabilities of, 553-54
reading, 544-45
three-letter prefixes for, 540, 541
writing, 544-45

DEVICE.EXE, 493, 540, 798-800, 802
device independent bitmaps (DIBs), 65,

66-68, 74. See also bitmaps
device 1/0 control (IOCTL) functions,

544-45, 548
IOCTL_CLR_DTR function, 544-45
IOCTL_CLR_RTS function, 544-45
IOCTL_DISABLE_IR function, 544-45
IOCTL_GET_COMMSTATVS function,

544-45
IOCTL_GET_DCB function, 544-45
IOCTL_GET_MODEMSTATUS function,

544-45
IOCTL_GET_PROPER71ES function, 544-45
IOCTL_GET_TIMEOUTS function, 544-45
IOCTL_ GET_ WAIT_MASK function, 544-45
IOCTL_IMMEDIATE_CHAR function, 544-45
IOCTL_PURGE function, 544-45

822

device I/0 control (IOCTL) functions,
continued

IOCTL_SERIAL_ENABLE_IR function,
544-45

IOCTL_SET_BREAK_OFF function, 544-45
IOCTL_SET_BREAK_ON function, 544-45
IOCTL_SET_DCS function, 544-45
IOCTL_SET_DTR function, 544-45
IOCTL_SET_QUEUE_SIZE function, 544-45
IOCTL_SET_RTS function, 544-45
IOCTL_SET_TIMEMOTJTS function, 544-45
JOCTL_SET_ WAIT_MASK function, 544-45
IOCTL_SET_XOFF function, 544-45
JOCTL_SET_XON function, 544-45
IOCTL_ WAIT_ON_MASK function, 544-45

DEVICELIST structure, 606
dialog boxes, 149-50, 224-61. See also dialog

boxes (listed by name)
creating, 212-13
default, 208
DlgDemo program for, 226-61
measuring, with dialog units, 209
modal, 208, 217-18
modeless, 208, 216-18
procedures for, 213-16
templates for, 129, 209-10, 214-16

dialog boxes (listed by name). See also dialog
boxes

Choose Color dialog box, 224
Choose Font dialog box, 224
Color dialog box, 150, 261
File Open dialog box, 150, 208, 224,

225, 581
File Save dialog box, 150
Find dialog box, 208, 224
Out Of Memory dialog box, 376, 725, 726
Page Setup dialog box, 224
Print dialog box, 150, 208, 224, 261
Project Settings dialog box, 18
Save As dialog box, 224

DIALOG keyword, 209
Dialog Manager, 208, 223-24
DIALOG resource type, 129
DIBs (device independent bitmaps), 65,

66-68, 74. See also bitmaps
directories. See also folders

basic description of, 711
computing the total size of files in, 414

directories, continued
creating, 412
current, 380
deleting, 412
determining drives from, 415-17
root, 380

discardable keyword, 129, 209
DispatchMessage function, 21, 132, 213, 217
DivFile program, 691-705

DivFile.cpp, 693, 696-704
DivFile.h, 693-96
DivFile.rc, 693-94
DivFile.reg, 692-93

div instruction, 533
DlgDemo program, 226-61

DlgDemo.c, 232-44
DlgDemo.h, 229-32
DlgDemo.rc, 227-29
StaticDlg.c, 255-57
window, 226

DLGTEMPLATE structure, 212
DllMain function, 767
DLLs (dynamic-link libraries), 127, 517,

380, 506
common controls and, 265, 267, 268, 270
desktop connectivity and, 633, 635, 648-52,

663, 667, 682, 693
device drivers as, 540, 541
explicit linking and, 805, 806
initializing, 599-600
memory management and, 358, 369, 372
system programming and, 799-800, 802,

805, 806
DMA (direct memory access), 361
DoActivateMain procedure, 31-32
DOC file type, 681-83
DoCreateBtnWind function, 206
DoCreateMain function, 27-28, 465
DoDestroyMain function, 32
DoHibernateMain procedure, 30--31
DoMainCommandColor function, 261
DoMainCommandPrint function, 261
DoMainCommandVCmdBand routine, 318
DoMainCommandVCombo routine, 294
DoMainCommandVStcl routine, 294
DoMainCommanclVView routine. 294
DoMouseMain routine, 107
DoOpenViewer routine, 407

Index

DoPaintClient function, 166
DoPaintSip routine, 787
Do prefix, 27
DOS (Disk Operating System), 6, 47, 351, 382

drive letters, 415
serial communications and, 545, 550
truncating files in, 386

dot format, 629
double data type, 15, 64, 417
double-taps, 106
downloading, newly compiled files, 18-19
DrawBoard routine, 123
drawing mode, 40, 46
DRA \\1JTEMSTRl'.CT structure, 172
DrauJMenuBar function, 269
DrawText function, 30, 33, 35, 39, 46, 51,

61-62
drives

determining, from directories, 415-17
letters for, 380, 415
mapping remote, 581-83

DS_ABSALIGN style flag, 209
DS_CENTER style flag, 209
DS_MODALFRAME style flag, 209
DSR (Data Set Ready) signal, 556
DS_SETFONT style flag, 210
DS_SETFOREGROUND style flag, 210
DTN_FORMAT message, 324
DTK_FORMATQCERY message, 324
DTN_USERSTRlNG message, 322
DTN_ WMKEYDOWN message, 324
DTR (Data Terminal Ready) line, 550
DTR_CONTROL_DISABLE flag, 550
DTR_CONTROL_ENABLE flag, 550
DTR_CONTROL_HANDSHAKE flag, 550
DTS_APPCANPARSE style flag, 322
DTS_IC_DATE_CLASSES style flag, 322
DTS_LONGDATEFORMAT style flag, 322
DTS_SHORTDATEFORMAT style flag, 322
DTS_SHOWNONE style flag, 322
DTS_TIMEFORMAT style flag, 322
DTS_UPDOWI\ style flag, 322
Duncan, Ray, 16
DuplicateHandle function, 516
dwAllocationGranularity field, 354
dwAvailPageFile field, 355, 356
dwAvailPhys field, 355
dwAvailVirtual field, 355

823

Index

dwCreateFlags parameter, 495, 502
dwCurrentRxQueue field, 554
dwCurrentTxQueue field, 554
dwDatabaseType parameter, 433
dwDbaseType field, 423
dwDesiredAccess parameter, 382, 408
dwDevNum field, 583
dwFreeType parameter, 362
dw!ndex parameter, 472
dw!nfoLevel parameter, 590
dwlnitialSize parameter, 368
dw/oControlCode parameter, 544
dwLength field, 355
dwMaxBaud field, 553
dwNlaxRxQueue field, 554
dwMaxTxQueue field, 554
dwMemoryLoad field, 355
dwMilliseconds parameter, 504, 509
dwMoveMethod parameter, 385
dwNumberOJBytesToMap parameter, 409
dwO.ffset parameter, 68
dwOID field, 389
dwOptions parameter, 470
DWORDs, 363, 416, 422, 468

desktop connectivity and, 640
IrSock and, 581, 586, 589
processes and, 497, 502

dwPageSize field, 354
dwPlatform/D field, 808
dwProcessorRevision field, 354
dwProvSpecl field, 554
dwProvSpec2 field, 554
dwProvSubType field, 551
dwScope parameter, 585
dwSeekType parameter, 426
dwSemiceMask field, 554
dwSettableParams field, 554
dwSettableStopParity field, 554
dwSettableData field, 554
dwShareMode parameter, 382
dwSize field, 219, 220, 426
dwSize parameter, 359, 362, 363, 420, 762
dwStack parameter, 502
dwStackSize parameter, 502
dwStyle parameter, 150, 277, 295
dwTotalPageFile field, 355
dwTotalPhys field, 355
dwTotalVirtual field, 355

824

dwType field, 587
dwUsage field, 585
dwValue parameter, 427

E
Edit control class, 170, 173
EditDlg.c, 250-52
Edit menu, position of, on the command bar,

280
EditWnd.c, 193-95
Ellipse function, 73
ellipses, drawing, 75-76
ellipsis (...), 129
emulators, 16-17, 19
EnableHardwareKeyboard function, 95
EnableMenuitem routine, 147
EndDialog function, 214, 218
FND keyword, 129, 210
EndPaint function, 29, 30, 37
EnterCritica!Section function, 514, 515
EntireNet string, 586
EnumFontFamilies function, 53, 61
errors. See also debugging; exception

handling
clearing, 555-56
the database API and, 424, 425
the file API and, 384, 385
file filters and, 687, 689, 705
IIelloCE and, 17, 18
IrSock and, 580, 582--84, 586-87, 600, 602,

604, 610-11, 628
mutexes and, 513-14
RAFI connections and, 636-37
the registry API and, 470, 472
serial communications and, 555-56
synchronization and, 508

&capeCornmFunction function, 555, 558
ES_LOWERCASE style flag, 173
ES_MUL TILINE style flag, 173
ES_PASSWORD style flag, 173
ES_READONLY style flag, 173
ES_UPPERCASE style flag, 173
Ethernet cards, 577
ETK (Embedded Toolkit)

serial communications and, 540, 544-45,
548, 550, 552

shell programming and, 726
EV _DSR flag, 547

EVENTP ARITY constant, 551
events, 508-14, 547-48
EV _ERR flag, 547
EV _RLSD flag, 547
EV _RXCHAR flag, 547
EV _RXFLAG flag, 547, 551
EV _TXEMPTY flag, 547
example programs

AlbumDB program, 435-67
Cale program, 497, 715-16, 800, 801
CeChat program, 560--77
CEFind program, 743-47
CmdBand program, 304-19
CmdBar program, 280--94
CnctNote program, 671-80
CtlView program, 176-208, 261
DivFile program, 691-705
DlgDemo program, 226-61
FileView program, 389-407
FontList2 program, 153-69
FontList program, 53-62
HelloCE program, 3-21, 32-33
KeyTrac program, 95-105
ListNet program, 591-99
LView program, 326-46
myapp program, 667-68
MyNotify program, 731-42
MySqurt program, 612-26
RapiDir program, 644-48
RapiFind program, 653-62
Shapes program, 77-86
TBicons program, 718-25
TextDemo program, 40-47
TicTacl program, 114-25
TicTac2 program, 133-47
XTalk program, 518-31

exception handling, 531-36. See also errors
ExitProcess function, 494, 497
ExitT'hread function, 497, 503
expanded memory, 351. See also memory
explicit linking, 805-8
Explorer, 33, 298, 709, 581

boot process and, 797, 800, 801-2
Cale applet and, 800, 801
command line parameters and, 19
EXE file for, 494, 599
lack of, for the Palm-size PC, 18
system configuration and, 802

extended memory, 351. See also memory

F
FAbortOnError field, 550
fAllocationType parameter, 360
}Binary field, 550
FD_CLR macro, 610
FD_ISSET macro, 610
FD_SET macro, 611
FD_ZERO macro, 611
JErase field, 30
fErrorChar field, 550
fields

ActionFlags field, 727, 728
Address field, 629
AllocationBase field, 363
BaudRate field, 549, 553
biBitCount field. 67
biClrlmportant field, 67
biCompression field, 67
biPlanes field, 67
biWidth field, 67
biXPelsPerMeter field, 67
biYPelsPerMeter field, 67
bLastMove field, 147
ByteSize field, 551
cblnQue field, 556
cbOutQue field, 556
cbSize field, 168, 169, 297, 751
cbStructure field, 584
cbWndExtra field, 22, 152
cDayState field, 321
clrBack field, 298
CtllD field, 172
Ct/Type field, 172
cxldeal field, 298
cxMinChild field, 298
cyMinChild field, 298
dwAllocationGranularity field, 354
dwAuailPageFile field, 355, 356
dwAvailPbys field, 355
dwAvailVirtual field, 355
dwCurrentRxQueue field, 554
dwCurrentTxQueue field, 554
dwDbaseType field, 423
dwDevNum field, 583
dwLength field, 355
dwMaxBaud field, 553
dwMaxRxQueue field, 554
dwMaxTxQueue field, 554

Index

825

Index

fields, continued
dwMemoryLoad field, 355
dwOID field, 389
dwPageSize field, 354
dwPlatform!D field, 808
dwProcessorRevision field, 354
dwProvSpecl field, 554
dwProvSpec2 field, 554
dwProvSubType field, 554
dwServiceMask field, 554
dwSettableParams field, 554
dwSettableStopParity field, 554
dwSetttableData field, 554
dwSize field, 219, 220, 426
dwTota!PageFile field, 355
dwTotalPhys field, 355
dwTotalVirtual field, 355
dwType field, 587
dwUsage field, 585
FAbortOnError field, 550
fBinary field, 550
]Erase field, 30
jErrorChar field, 550
Flags field, 628
.fMask field, 168, 169, 297, 298, 299
/Maximized field, 303
fnBar field, 169, 175
}Parity field, 550
jRestore field, 30
fsState field, 272, 273, 297
hCursor field, 23
iBitmap field, 272
ilmage field, 298, 300
irdaAddressFamily field, 603
irdaServiceName field, 603
itemAction field, 172
itemData field, 172
itemState field, 172
lfClipPrecision field, 49
?{Escapement field, 49
ljFaceName field, 49
ifHeight field, 49
lfOrientation field, 49
lfOutPrecision field, 49
lfPitchAndFamily field, 49
lfQuality field, 49
ifWeight field, 49
ifWidth field, 49

826

fields, continued
lpCharSet field, 49
lpComment field, 587
lpMaximumApplicationAddress field, 354
lpMinimumApplicationAddress field, 354
lpszMenuName field, 23
lpText field, 298
nPos field, 168, 169
nTrackPos field, 169
Options field, 629
pcRe/Count field, 221
pfnCal!Back field, 220, 221
pfnDlgProc field, 221
Protect field, 363, 365
rcPaint field, 30
rcSipRect field, 752, 761, 762
Reserved field, 93
RoundTripTime field, 629
State field, 363, 365
Status field, 629
StopBits field, 551
szDatabaseName field, 423
szDescription field, 600
szFul!Path field, 689
szSystemStatus field, 600
tmAscent field, 51
tmDescent field, 51
tmExternalLeading field, 51, 62
tmHeight field, 51, 62
tmlnterna!Leading field, 51
Type field, 363, 365
wPacketLength field, 553
wPacketVersion field, 553

file API, 379-417
file I/0

basic description of, 381
accessing device drivers with, 544
memory-mapped files and, 408

File menu
key combinations, 131-32
position of, on the command bar, 280

filenames
extensions for, 65, 682-83, 716
IrSock and, 580-81
Windows CE format for, 381

File Open dialog box, 150, 208, 224, 225, 581

files. See also file API: file I/0: filenames
closing, 385
compression of, 67, 381, 386-87
communicating with, 518
creating, 382-84
downloading, 1&-19
finding, 413-15
information for, 129, 386-89
opening, 150, 208, 224, 225, 382-84, 581
reading, 384-89
truncating, 386
writing, 384-89, 408

File Save dialog box, 150
FileSys, 493, 795-96, 799, 802
FILESYS.EXE, 493, 795-96
FILETIME structure, 387, 388
FilcView program, 389-407

FileView.c, 392-99, 407
FileView.h, 390-92
FileView.rc, 389-90

File Write function, 408
filters

basic description of, 680-706
DivFile program for. 691-705
interfaces for, 687-91

FindClose procedure, 413, 414, 415
Find dialog box, 208, 224
FindFirstDatabase function, 642
FindFirstFile procedure, 413-15, 433, 581
FindNextDatabase function, 642
FindNextFile procedure, 414, 433, 581
FindNext procedure, 413
FindSrv.cpp, 654-58
FindWindow function, 517, 730
flags

BS_2STATE flag, 171
BS_AUT02STATE flag, 171
BS_AUT03STATE flag, 206
BS_AUTOCHECKBOX flag, 171, 206
BS_AUTORADIOBUTION flag, 171, 206
BS_BOTTOM flag, 171
BS_CHECKBOX flag, 171
BS_ICON flag, 172
BS_LEFT flag, 171
BS_MULTILINE flag, 171
BS_OWNERDRAW flag, 172
I3S_RADIOBUTTON flag, 171
BS_RIGHT flag, 171

Index

flags, continued
BS_TOP flag, 171
ccs_ VERT flag, 295
CEDB_ALLOWREALLOC flag, 430
CFDB_AUTOTNCREMENT flag, 424
CEDB_MAXPROPDATASIZE flag, 418
CEDB_MAXRECORDSIZE flag, 418
CFDB_PROPDELETE flag, 432
CEDB_PROPNOTFOUND flag, 431
CEDB_SEEK_BEGINNING flag, 427
CEDB_SEEK_CEOID flag, 427
CEDB_SEEK_CURRET\T flag, 427
CEDB_SEEK_END flag, 427
CEDB_SEEK_ VALUEFIRSTEQUAL flag, 427
CEDB_SEEK_VALUEGREATER flag, 427
CEDB_SEEK_ VALUENEXTEQUAL flag, 427
CEDB_SEEK_ VALUESMALLER flag, 427
CEDB_SORT_CASEINSENSITIVE flag, 422
CEDB_SORT_DESCENDING flag, 422
CEDB_SORT_UNKNOWNFIRST flag, 422
CEDB_VALIDCREATE flag, 423
CEDB_ VALIDDBFLAGS flag, 423
CEDB_ VALIDMODTIME flag, 423
CEDB_VALIDNAME flag, 423
CEDB_ VALIDSORTSPEC flag, 423
CEDB_ VALIDTYPE flag, 423
CLRBREAK flag, 555
CLRDTR flag, 555
CLRIR flag, 555
CLRRTS flag, 555
CMDBAR_HELP flag, 279
CMDBAR_OK flag, 279
CW_USEDEFAULT flag, 24
DCX_LOCKWTNDOWUPDATE flag, 38
DCX_NORESETATIRS flag, 38
DCX_P ARENTCLIP flag, 38
DCX_VALIDATE flag, 38
DS_ABSALTGN flag, 209
DS_CENTER flag, 209
DS_MODALFRAME flag, 209
DS_SETFONT flag, 210
DS_SETFOREGROUND flag, 210
DTR_CONTROL_DISABLE flag. 550
DTR_CONTROL_ENABLE flag, 550
DTR_CONTROL_HANDSHAKE flag, 550
DTS_APPCANP ARSE flag, 322
DTS_IC_DATE_CLASSES flag, 322
DTS_LONGDATEFORMAT flag, 322

827

Index

flags, continued
DTS_SHORTDATEFORMAT flag, 322
DTS_SHOWNONE flag, 322
DTS_TIMEFORMAT flag, 322
DTS_UPDOWN flag, 322
ES_LOWERCASE flag, 173
ES_MULTILINE flag, 173
ES_PASSWORD flag, 173
ES_READONLY flag, 173
ES_UPPERCASE flag, 173
EV _DSR flag, 547
EV _ERR flag, 547
EV _RLSD flag, 547
EV _RXCHAR flag, 547
EV _RXFLAG flag, 547, 551
EV _TXEMPTY flag, 547
GENERIC_READ flag, 382, 408
GENERIC_ WRITE flag, 382, 408
GWL_EXSTYLE flag, 152
GWL_ID flag, 152
GWL_STYLE flag, 152
GWL_USERDATA flag, 152
GWL_ WNDPROC flag, 152
HEAP _NO_SERIALIZE flag, 368, 369
HEAP _REALLOC_IN_PLACE_ONLY

flag, 369
HEAP _ZERO_MEMORY flag, 368, 369
ICC_BAR_CLASSES flag, 266
ICC_COOL_CLASSES flag, 266
ICC_DATE_CLASSES flag, 266, 319
ICC_LISTVIEW_CLASSES flag, 266, 324
ICC_PROGRESS_CLASSES flag, 266
ICC_TAB_CLASSES flag, 266
ICC_TREEVIEW _CLASSES flag, 266
ICC_UPDOWN_CLASSES flag, 266
KBDI_KEYBOARD_ENABLED flag, 95
KBDI_KEYBOARD_PRESENT flag, 95
KEYEVENTF _KEYUP flag, 94-95
KEYEVENTF _SILENT flag, 94
LPTR flag, 366
LVM_GETTEXTENDEDLISTVIEWSTYLE

flag, 324
L VM_INSERTITEM flag, 267
LVM_SETTEXTENDEDLISTVIEWSTYLE

flag, 324
LVN_GETDISPINFO flag, 325, 465
LVN_ODCHACHEHINT flag, 325-26
LVN_ODFINDITEM flag, 325

828

flags, continued
LVS_AUTOARRANGE flag, 325
LVS_EX_CHECKBOXES flag, 324, 325
LVS_EX_FLATSB flag, 325
LVS_EX_GRIDLINES flag, 325
LVS_EX_HEADERDRAGDROP flag, 324
LVS_EX_INFOTIP flag, 325
LVS_EX_ONECLICKACTIVATE flag, 325
LVS_EX_REGIONAL flag, 325
LVS_EX_SUBITEMIMAGES flag, 325
L VS_EX_ TRACKSELECT flag, 325
LVS_EX_TWOCLICKACTIVATE flag, 325
LVS_FULLROWSELECT flag, 325
LVS_OWNERDATA flag, 324, 325
LVS_SETITEMPOSITION flag, 325
LVS_SORTASENDING flag, 325
LVS_SORTDESCENDING flag, 325
MCS_DAYSTATE flag, 319
MCS_MULTISELECT flag, 319
MCS_NOTODAYCIRCLE flag, 319
MCS_NOTODAY flag, 319
MCS_ WEEKNUMBERS flag, 319
MONTHCAL_CLASS flag, 319
OPEN_ALWAYS flag, 383, 419
OPEN_EXISTING flag, 383, 419
PAGE_EXECUTE flag, 360
PAGE_EXECUTE_READ flag, 360
P AGE_EXECUTE_READWRITE flag, 360
PAGE_GUARD flag, 361
PAGE_NOACCESS flag, 361
PAGE_NOCACHE flag, 361
P AGE_READONL Y flag, 360
PAGE_READWRITE flag, 360
PSH_MODELESS flag, 219
PSH_PROPSHEETPAGE flag, 219
PSH_PROPTITLE flag, 219
PSH_USEPSTARTPAGE flag, 219
PSP _DLGINDIRECT flag, 220
PSP _PREMATURE flag, 221-22
PSP _USECALLBACK flag, 220-21
PSP _USEREFPARENT flag, 221
PSP _USETITLE flag, 221
PST_MODEM flag, 554
PURGE_RXABORT flag, 555
PURGE_RXCLEAR flag, 554-55
PURGE_TXABORT flag, 555
PURGE_ TXCLEAR flag, 554
QS_ALLINPUT flag, 512

flags, continued
QS_INPUT flag, 512
QS_KEY flag, 512
QS_MOUSEBUTION flag, 512
QS_MOUSE flag, 512
QS_MOUSEMOVE flag, 512
QS_PAINT flag, 512
QS_POSTMESSAGE flag, 512
QS_SENDMESSAGE flag, 512
QS_TIMER flag, 512
RBBIM_CHILD flag, 298
RBBIM_CHILDSIZE flag, 298
RBBIM_COLORS flag, 298
RBBIM_IDEALSIZE flag, 298
RBBIM_ID flag, 298
RBBIM_LP ARAM flag, 298
RBBS_BREAK flag, 297
RBBS_CHILDEDGE flag, 297
RBBS_FIXEDBMP flag, 297
RBBS_FIXEDSIZE flag, 297
RBBS_GRIPPERALWAYS flag, 297
RBBS_HIDDEN flag, 297
RBBS_NOGRIPPER flag, 297, 300, 318
RBBS_NOVERT flag, 297-98
RBBS_RBBIM_STYLE flag, 297
RBS_AUTOSIZE flag, 295
RBS_BANDBORDERS flag, 295
RBS_FIXEDORDER flag, 295
RBS_SMARTLABELS flag, 295, 298, 300, 318
RBS_VARHEIGHT flag, 295, 300
RBS_ VERTICALGRIPPER flag, 295
RESOURCE_CONNECTED flag, 585
RESOURCE_GLOBALNET flag, 585, 586
RESOURCE_REMEMBERED flag, 585
SETBREAK flag, 555
SETXOFF flag, 555
SETXON flag, 555
SIF _DISABLENOSCROLL flag, 169
SIF _PAGE flag, 169
SIF _POS flag, 168
SIF _RANGE flag, 168
SIF _TRACKPOS flag, 169
SIPF_DOCKED flag, 751
SIPF_LOCKED flag, 751
SIPF_ON flag, 751
TBSTATE_AUTOSIZE flag, 273
TBSTATE_BUTTON flag, 273
TBSTATE_CHECKED flag, 272

flags, continued
TBSTATE_CHECK flag, 273
TBSTATE_CHECKGROUP flag, 273
TBSTATE_DROPDOWN flag, 273
TBSTATE_ENABLED flag, 272
TBSTATE_GROUP flag, 273
TBSTATE_HIDDEN flag, 272
TBSTATE_INDETERMINATE flag, 272
TBSTATE_pRESSED flag, 272
TBSTATE_SEP flag, 273
TBSTATE_WRAP flag, 272
TRUNCATE_EXISTING flag, 383, 419
WS_CAPTION flag, 209, 210
WS_CHILD flag, 150, 165, 278
WS_EX_CAPTIONOKBTN flag, 210
WS_EX_CONTEXTHELP flag, 210
WS_GROUP flag, 211
WS_HSCROLL flag, 167
WS_OVERLAPPED flag, 150
WS_POPUP flag, 210
WS_SYSMENU flag, 209, 210
WS_TABSTOP flag, 211
WS_ VISIBLE flag, 24, 150, 165, 205,

278, 374
WS_ VSCROLL flag, 165, 167

Hags field, 628
flags parameter, 38, 604
jMask field, 168, 169, 297, 298, 299
./Maximized field, 303
jnBar field, 169, 175
jNewProtect parameter, 363
jnPenStyle parameter, 72
folders. See also directories

basic description of, 711
in ListNet windows, 591
special, 711-15

FontFamilyCallback function, 61
FontList2 program, 153-69

FontList2.c, 154-59
FontList2.h, 154-55

Index

with the scrollbar positioned beneath the
command bar, 153

FontList program, 53-62
FontList.c, 54-61
FontList.h, 53-54, 61
window, 62-63

829

Index

fonts, 47-53, 61-62. See also FontList2
program; FontList program

characteristics of, querying, 50-51
enumerating, 52-53
families of, 49, 52, 61
files for, including, as resources, 129
logical, 49, 50, 69
TrueType fonts, 47-50, 743

f open function, 382
/Options parameter, 368
Format menu, position of, on the command

bar, 280
FormatMessage function, 689-91
forward slash (/), 128
}Parity field, 550
}Protect parameter, 360, 408
/read function, 382
]Redraw parameter, 168
free memory pages, 352, 356-57
Free method, 713-14
FreeLibrary function, 805, 806
]Restore field, 30
}Show parameter, 279
fsModifiers parameter, 791
fsState field, 272, 273, 297
functions

accept function, 601, 603-4
BeginPaint function, 29-30, 37, 38, 61
bind function, 601, 604
BitBlt function, 69, 70
CeCheckPassword function, 638
CeCloseHandle function, 638
CeCopyFile function, 639
CeCreateDatahaseEx function, 421, 423,

429, 435, 641
CeCreateDatabase function, 418, 421, 423,

634,641
CeCreateDirectory function, 639
CeCreateFile function, 638
CeCreateProcess function, 638
CeDatahaseEx function, 433
CeDatabaseSeek function, 429
CeDeleteDatabaseEx function, 641
CeDeleteDatabase function, 641
CeDeleteFile function, 639
CeDeleteRecord function, 641
CeEnumDBVolumes function, 420
CeFindAllDatabases function, 642, 643

830

functions, continued
CeFindA!!Files function, 638, 642, 643, 648
CeFindClose function, 638
CeFindFirstDatabaseEx function, 641
CeFindFirstDatabase function, 433, 641
CeFindFirstFile function, 638
CeFindNextDatabaseEx function, 641
CeFindNextDatabase function, 433, 641
CeFindNextFile function, 638
CeGetDesktopDeviceCaps function, 638
CeGetFileAttributes function, 638
CeGetFileSize function, 639
CeGetFileTime function, 639
CeGetStorelnformation function, 634,

637, 638
CeGetSystemlnfo function, 638
CeGetSystemMetrics function, 638
CeGetSystemPowerStatusEx function, 638
CeGetVersionEx function, 635, 638
CeGlobalMemoryStatus function, 638
CeMoundDBVol function, 419-20, 642
CeMoveFile function, 639
CeOidGetlnfoEx function, 641
CeOidGetln:fo function, 641
CeOpenDatabaseEx function, 425, 641
CeOpenDatabase function, 425, 641
CeRapiFreeBu.ffer function, 643
CeRapiGetError function, 637
CeRapilnitEx function, 636, 647
CeRapilnit function, 636, 648, 662
CeRapilnvoke function, 648-49, 651-53, 662
CeRapiUninit function, 636
CeReadFile function, 638
CeReadRecordPropsEx function, 430, 431,

432, 641
CeReadRecordProps function, 430, 431, 641,

643, 465
CeRemoveDirectory function, 639
CeRunAppAtEvent function, 680
CeSeekDatabase function, 428, 641
CeSetDatabaselnfo function, 422, 435
CeSetDatabaselnfoEx function, 641
CeSetEndOJFile function, 638
CeSetFilePointer function, 638
CeSetFileTime function, 639
CeSetUserNotification function, 726-28
CeSvcOpen function, 664, 665, 667-68, 684
CeUnmountDBVol function, 420, 642

functions, continued
CeUtil functions, 662-67, 681, 684
CeWriteFile function, 638
CeWriteRecordProps function, 432, 641
ClearCommBreak function, 554-55
ClearCornrnError function, 556
CloseFile function, 382
CommandBar _AddAdornments function,

28, 279
CommandBar_AddBitmap function, 270,

271-72, 274
CommandBar_Create function, 28
CommandBar_Destroy function, 30-31
CommandBar_DrawMenubar function, 269
CommandBar_IIeight function, 29, 279
CornmandBar _InsertComboBox

function, 278
Command Bar _InsertMenubar

function, 269
ComposeLine function, 407
connect function, 601, 612
CopyFile function, 412
CreateBitmap function, 67
CreateDialog function, 218
CreateDIBPatternBrushPt function, 74, 85
CreateDIBSection function, 67, 68
CreateDirectory function, 412
CreateEvent function, 508, 509
CreateFileForlv!apping function, 408
CreateFile function, 382-84, 387, 407-8,

419, 544, 546
CreateFileMapping function, 409,

410-12, 529
CreateFontlndirect function, 49
CreateHatcbBrush function, 85
CreateMenu function, 126
CreateMessage function, 217
CreatePenlndirect function, 72-73
CreateProcess function, 494-97, 502
CreateThread function, 502, 503
CreateWindowEx function, 170, 324
Create Window function, 24, 25, 27, 150,

165, 170, 206, 324
DefWindowProc function, 26, 32, 208, 213
DeleteDC function, 70
DeleteFile function, 412, 413
DeleteObject function, 62
DestroyCommandBand function, 318

Index

functions, continued
DispatcbMessage function, 21, 132, 213, 217
DllMain function, 767
DoCreateBtnWind function, 206
DoCreateMain function, 27-28, 465
DoDestroyMain function, 32
DolvfainCommandColor function, 261
DoMainCommandPrint function, 261
DoPaintClient function, 166
DrawMenuBar function, 269
DrawText function, 30, 33, 35, 39, 46,

51, 61-62
DuplicateHandle function, 516
Ellipse function, 73
F.nableHardwareKeyboard function, 95
F.ndDialog function, 214, 218
F.ndPaint function, 29, 30, 37
EnterCritica!Section function, 514, 515
EnumFontFamilies function, 53, 61
F.scapeCommFunction function, 555, 558
ExitProcess function, 494, 497
ExitThread function, 497, 503
FileWrite function, 408
FindFirstDatabase function, 642
FindNextDatabase function, 642
FindWindow function, 517, 730
FontFami~yCallback function, 61
fopen function, 382
FormatMessage function, 689-91
fread function, 382
FreeLibrary function, 805, 806
GetCapture function, 113, 114
getc function, 742
GetClientRect function, 29
GetCommandLine function, 494
GetCommProperties function, 550, 553
GetCommState function, 548-49, 560
GetDC function, 38, 70
GetDeviceCaps function, 40, 49, 73, 809
GetDialogBaseUnits function, 209
GetDiskFreeSpaceEx function, 416, 648, 651
GetDlgitem function, 31, 32, 278
GetExceptionCode function, 534
Ge{Exceptionlnformation function, 534
GetFileinformationByHandle function, 388
GetFileSize function, 388, 407
GetFileTime function, 387
GetKeyboardStatus function, 95

831

Index

functions, continued
GetKeyState function, 93-94, 106, 114
GetLastError function, 384-85, 424-25,

508, 513-14, 517, 529, 582, 586-87, 628,
636-37

GetMessage function, 20, 21, 213, 502
GetMouseMovePoints function, 106-7
GetObject function, 70
GetProcAddress function, 95, 261, 369, 635,

805, 806
GetScrolllnfo function, 169, 175
GetStockObject function, 72, 73, 84
GetStorelnformation function, 355, 416,

634, 637
GetSysColorBrush function, 207
GetSystemlnfo function, 354
GetTextColor function, 40
GetVersionEx function, 95, 802-3, 808
GetVersion function, 802-3
GetWindowDC function, 70
GetWindow function, 151
GetWindowLong function, 152
GetWindowPos function, 27
GlobalAlloc function, 359
GlobalFree function, 359
GlobalMemoryStatus function, 354, 355
Globa!Realloc function, 359
HeapCreate function, 367
HeapDestroy function, 369
HeapReAlloc function, 369
lcmpCloseHandle function, 629
lcmpCreateFile function, 627, 629
lcmpSendEcho function, 627, 628, 629, 631
lmageList_Create function, 296
ImageList_Duplicate function, 275
inet_addr function, 629
InitCommonControlsEx function, 319,

321-22
InitCommonControls function, 319, 324
InvalidateRect function, 104
IOCTL_CLR_DTR function, 544-45
IOCTL_CLR_RTS function, 544-45
IOCTI_DISABLE_IR function, 544-45
IOCTL_ GET_ COMMSTA TUS function,

544-45
IOCTL_GET_DCB function, 544-45
IOCTL_GET_MODEMSTATUS function,

544-45

832

functions, continued
IOCTL_GET_PROPER17ES function, 544-45
IOCTL_GET_TIMEOUTS function, 544-45
IOCTL_ GET_ WAIT_MASK function, 544-45
JOCTL_IMMEDIATE_CHAR function, 544-45
IOCTL_PURGE function, 544-45
IOCTL_SERIAL_ENABLE_IR function,

544-45
IOCTL_SET_BREAK_OFF function, 544-45
IOCTL_SET_BREAK_ON function, 544-45
IOCTL_SET_DCS function, 544-45
IOCTL_SET_DTR function, 544-45
IOCTL_SET_QUEUE_SIZE function, 544-45
IOCTL_SET_RTS function, 544-45
IOCTL_SET_TIMEOUTS function, 544-45
JOCTL_SET_ WAIT_MASK function, 544-45
JOCTL_SET_XOFF function, 544-45
IOCTL_SET_XON function, 544-45
IOCTL_ WAIT_ON_MASK function, 544-45
lsDialogMessage function, 217
lsSIP!nputMethod function, 753
Kerne/Relocate function, 795
Kerne/Start function, 794-95
LeaveCritica!Section function, 514, 515
LibMain function, 649
listen function, 601, 603
LoadAccelerators function, 132
Load/con function, 717
Loadlmage function, 65, 130, 132, 717
LoadLibrary function, 95, 261, 635, 805, 806
LoadString function, 373
LocalAlloc function, 365, 366, 651
LocalFree function, 365
Loca!Realloc function, 365, 367, 369
lpEnumFunc function, 151
MapViewO}File function, 409, 529
Map VirtualKey function, 95
MaskBlt function, 70
memcopy function, 69
MoveFile function, 412-13
1v~yCreateHatchBrush function, 85
NextConvertFile function, 687-89, 704-5
OnPaintMain function, 46, 61, 84-85
OpenCreateDB function, 435
OpenDestinationFile function, 704
OptionsData function, 628
OptionsSize function, 628
PingAddress function, 629

functions, continued
PostQuitMessage function, 21, 32, 147
printjfunction, 742
PropertySheet function, 218, 219
rcVisibleDesktop function, 752
ReadDoneEvent function, 529
ReadDone function, 530
Reader1hread function, 528, 530, 531
ReadEvent function, 529, 530, 531
ReadFile function, 382, 384-85, 407, 544,

546-47, 551, 552
Readlnterva!Timeout function, 551, 552
ReadTotalTimeoutConstant function, 551
ReadTotalTimeoutMultiplier function, 551
rectangle function, 73, 74, 75
recu function, 601
RegCreateKeyEx function, 470
RegEnumKeyEx function, 472-73
RegisterClass function, 22, 23, 152
ReleaseCapture function, 113
ReleaseDC function, 38, 70
ReleaseMutex function, 514, 529
RemoveDirectory function, 412
ResetEvent function, 509
ResumeCount function, 504
Resume1hread function, 502, 504
RoundRect function, 73, 76
select function, 610, 611
SelectObject function, 51, 62, 69
SendCharEvents function, 764, 765-66
Sender1hread function, 528, 530, 531
send function, 601, 605
SendMessage function, 130, 267
SendString function, 764, 766
SendVirtualKey function, 763, 765
SetCommBreak function, 554, 555
SetCommState function, 548-49, 551
SetFilePointer function, 385, 407
Setlmlnfo function, 763-65
SetScrolllnfo function, 168, 169, 175
SetupComm function, 552
SetWindowLong function, 152, 224
ShowWindow function, 20, 25
SHSiplnfo function, 750-53, 755, 756,

762, 805
SignalStarted function, 797
SipRegisterNotijlcation function, 757
sleep function, 107, 504-5

Index

functions, continued

G

SrchDirectory function, 658-59, 744
Suspend1hread function, 504
TabbedTextOut function, 62
TerminateProcess function, 498
Termlnstance function, 21, 32
17sAlloc function, 506-7
TranslateMessage function, 20-21, 132, 217
TransmitCommChar function, 547, 556
ValidateRect function, 37
Virtua!Alloc function, 359. 361-62, 364
Virtua!Free function, 359, 362
Virtua!Project function, 363
Virtua!Query function, 363, 364, 365
Vi11ua!ReSize function, 359
WaitCommEuent function, 547, 548, 551
WaitForMultipleObjects function, 509, 511,

512, 531
WaitForSingleOhjects function, 509-11, 529
WriteFile function, 382, 384, 544, 546-47,

551-52, 556, 577
WSAGetLastError function, 600, 602, 604,

610
WSAStartup function, 599-600

GDI (Graphics Device Interface). See also
GWE (Graphics Windowing and Event)
handler

basic description of, 36
fonts and, 50, 51
lines and, 72
memory management and, 358
objects, selecting, 50

GENERIC_READ flag, 382, 408
GENERIC_ WRITE flag, 382, 408
GetCapture function, 113, 114
getc function, 742
GetClientRect function, 29
GetCommandLine function, 494
GetCommProperties function, 550, 553
GetCommState function, 548-49, 560
GetDC function, 38, 70
GetDeviceCaps function, 40, 49, 73, 809
GetDialogBaseUnits function, 209
GetDiskFreeSpaceEx function. 416, 648, 651
GetDlgltem function, 31, 32, 278
GetExceptionCode function, 534

833

Index

GetExceptionlnformation function, 534
GetFilelnformationByHandle function, 388
GetFile routine, 626
GetFileSize function, 388, 407
GetFileTime function, 387
GetlmData method, 760, 762-63
Getlnfo method, 760-61, 764, 786
GetKeyboardStatus function, 95
GetKeyState function, 93-94, 106, 114
GetLastError function, 384-85, 424-25,

508, 513-14, 517, 529, 582, 586-87, 628,
636-37

GetMessage function, 20, 21, 213, 502
GetMouseMovePoints function, 106-7
GetObject function, 70
GetProcAddress function, 95, 261, 369, 635,

805, 806
GetScrolllnfo function, 169, 175
GetStockObject function, 72, 73, 84
GetStorelnformation function, 355, 416,

634, 637
GetSysColorBrusb function, 207
GetSystemlnfo function, 354
GetTextColor function, 40
GetVersionEx function, 95, 802-3, 808
GetVersion function, 802-3
GetWindowDC function, 70
GetWindow function, 151
GetWindowLong function, 152
GetWindowPos function, 27
GlobalAlloc function, 359
GlobalFree function, 359
global heap, 359. See also heaps
GlobalMemoryStatus function, 354, 355
GlobalRealloc function, 359
Greenwich Mean Time, 387-88
Gregorian calendar, 319 .
group boxes, 171
GUI (graphical user interface), 35, 493
GUIDGEN.EXE, 693
GWE (Graphics Windowing and Event)

handler, 36, 787, 794, 799-800
GWES.EXE, 493, 540, 797, 799-800, 802
GWL_EXSTYLE style flag, 152
GWL_ID style flag, 152
GWL_STYLE style flag, 152
GWL_USERDATA style flag, 152
GWL_ WNDPROC style flag, 152

834

H
HAL (hardware abstraction layer), 794
half duplex transmissions, 539
handle data type, 15
handwriting recognition, 106
hard disks: absence of, 4
hardware

abstraction layer (HAL), 794
keys, 787-92

bCursor field, 23
HeapCreate function, 367
HeapDestroy function, 369
HEAP _NO_SERlALIZE flag, 368, 369
HeapReAlloc function, 369
HEAP _REALLOC_IN_FLACE_ONLY flag, 369
heaps

API for, 358-59, 367-69
basic description of, 365
creating, 368
destroying, 369
local, 357, 358, 365-67, 431

HEAP _ZERO_MEMORY flag, 368, 369
HelloCE program, 3-21, 32-33

HelloCE.c, 9-14
HelloCE.EXE, 33
HelloCE.h, 8-9, 14, 32

Help About menu, 226
Help button, 210, 268, 279
hicon/pszlcon union, 220-21
Hiding method, 760, 762
HKEY _CLASSES_ROOT registry key, 468,

681, 682
HKEY_CURRENT_USER registry key, 468,

663, 681
HKEY_LOCAL_MACHINE registry key, 468,

469, 495, 540-42, 558, 581, 663, 681,
682, 686, 789, 796, 798, 800

hot spots, for scroll bars, 166
H/PC (Handheld PC)

batteries, 350
Calculator applet, 497
command bar controls, 298
cross-platform applications and, 803-4
CtlView program and, 176
the database API and, 418
desktop connectivity and, 633, 635, 705
File Open dialog box, 225
fonts available for, 62

H/PC (Handheld PC), continued
gray-scale displays used by, 207
hardware keys and, 787, 791
input panels and, 753
IrSock and, 581
landscape-mode screen, 809
memory management and, 350, 355-56,

373--74, 37~76, 377
new controls for, 5
PCs and, establishing connections

between, 17
Pro, 418, 749, 803
processes and, 494, 497
running HelloCE on, 17-18, 32, 33
serial communications and, 557, 577
shell programming and, 709-12, 715-16,

728, 749, 753, 791-92
Start menu, 715-16
taskbar, 150
threads and, 499
WM_HIBERNATE messages and, 150

hPrevlnstance parameter, 19
bSection parameter, 68
bSrc parameter, 70
bTemplate parameter, 384
Hungarian notation, 14--15

iBitmap field, 272
IBM (International Business Machines), 4, 793
iButton parameter, 127, 269, 273, 277
ICC_BAR_CLASSES flag, 266
ICC_COOL_CLASSES flag, 266
ICCDATE_CLASSES flag, 266, 319
ICC_LISTVIEW _CLASSES flag, 266, 324
ICCPROGRESS_CLASSES flag, 266
ICCTAB_CLASSES flag, 266
ICC_TREEVIEW _CLASSES flag, 266
ICC_UPDOWN_CLASSES flag, 266
lceFileFilter interface, 687-91, 694
lceFileFilterOptions interface, 687, 691
lceFileFilterSite interface, 688
IClassFactory interface, 694, 767
ICmdLine parameter, 19, 20
ICMP (Internet Control Message Protocol)

functions, 579, 627
JcmpCloseHandle function, 629
IcmpCreateFile function, 627, 629
IcmpSendEcbo function, 627, 628, 629, 631

Index

ICMP APl.H, 627
ICMP _ECHO_REPLY structure, 628--31
icons, 22, 129, 130, 716-18
IDCANCEL button, 214--16, 223
IDccMan interface, 667, 669--70, 679
IDccManSink interface, 669, 670--71, 679
ID lists, 711, 713--14
idMenu parameter, 269
idNewltem parameter, 125
IDOK button, 214--16, 223
IDs

item IDs, 711
object IDs, 389, 434--35
property IDs, 422, 428

IFS (installable file system), 380
ilmage field, 298, 300
IIMCallback interface, 759, 762--66, 786
IlnputMethod interface, 758--64, 767, 786
ImageList_Create function, 296
ImageList_Duplicate function, 275
images. See also bitmaps

lists of, 275, 296
memory pages for, 356-57
referencing, 271-73

IMalloc interface, 713-14
iMaxSockets parameter, 600
IME API, 756
IMENUMINFO structure, 756
IMINFO structure, 760--61
indices, in Windows CE databases, 418
inet_addr function, 629
infrared transmissions, 539, 557--60. See also

IrDA (Infrared Data Association); serial
communications

InitApp procedure, 14, 20, 21-23, 261
InitCommonControlsEx function, 319, 321-22
InitCommonControls function, 319, 324
Initlnstance procedure, 20, 23--25, 528
inking, 106-7
input methods

changing, 753
enumerating, 753-55
NumPanel input method, 766-86
writing, 758--87

input panels, 753--58. See also SIP (Supple
mentary Input Panel)

Insert menu, position of, on the command
bar, 280

835

Index

integer data type, 15, 417
interfaces

lceFileFilter interface, 687-91, 694
IceFileFilterOptions interface, 687, 691
lceFileFilterSite interface, 688
IClassFactory interface, 694, 767
IDccMan interface, 667, 669-70, 679
IDccManSink interface, 669, 670-71, 679
IIMCallback interface, 759, 762--66, 786
IlnputMethod interface, 758--64, 767, 786
IMalloc interface, 713-14
IRAPIStream interface, 652-54, 658-59
!Stream interface, 688
!Unknown interface, 763, 759

interlocked variable access, 515-16
interprocess communication, 516-31. See also

DLLs (dynamic-link libraries)
InvalidateRect function, 104
1/0 (input/output). See also IOCTL (device

1/0 control) functions
file, 381, 408, 544
library functions, 742-43
overlapped 1/0, 547

IOCTL (device 1/0 control) functions,
544-45, 548

IOCTL_CLR_D1R function, 544-45
IOCTL_CLR_RTS function, 544-45
IOCTL_DISABLE_IR function, 544-45
JOCTL_GET_COMMSTATUS function,

544-45
IOCTL_GET_DCB function, 544-45
IOCTL_GET_MODEMSTATUS function,

544-45
IOCTL_GET_PROPER11ES function, 544-45
IOCTL_GET_11MEOUTS function, 544-45
IOCTL_GET_ WAIT_MASK function, 544-45
IOCTL_IMMEDIA1E_CHAR function, 544-45
IOCTL_PURGE function, 544-45
IOCTL_SERIAL_ENABLE_IR function,

544-45
IOCTL_SET_BREAK_OFF function, 544-45
IOCTL_SET_BREAK_ON function, 544-45
IOCTL_SET_DCS function, 544-45
IOCTL_SET_D1R function, 544-45
IOCTL_SET_QUEUE_SIZE function, 544-45
IOCTL_SET_RTS function, 544-45
IOCTL_SET_11MEMOUTS function, 544-45
IOCTL_SET_ WAIT_MASK function, 544-45

836

IOCTL (device 1/0 control) functions,
continued

IOCTL_SET_XOFF function, 544-45
IOCTL_SET_XON function, 544-45
IOCTL_ WAIT_ON_MASK function, 544-45

IRAPIStream interface, 652-54, 658-59
IrComm mode, 557, 559--60
IrDA (Infrared Data Association), 555, 557--60,

579. See also serial communications
address resolution features, 603
sockets, 602
stack, 606

irdaAddressFamily field, 603
IRDA_DEVICE_INFO structure, 606
irdaServiceName field, 603
IrSock, 557, 560

basic description of, 579--631
ListNet program and, 591-99
MySqurt program and, 612-26
options, 608-9

ISA (Industry Standard Architecture) bus, 540
IsDialogMessage function, 217
IsSIPinputMethod function, 753
!Stream interface, 688
Italic button, position of, on the command

bar, 280
italic font, 49
itemAction field, 172
itemData field, 172
item IDs, 711
itemState field, 172
!Unknown interface, 763, 759
iUsage parameter, 68
iWidth parameter, 277

K
KBDl_KEYBOARD_ENABLED flag, 95
KBDl_KEYBOARD_PRESENT flag, 95
Kbps (kilobits per second), 549-50
kernel, 36, 358, 794-802
Kerne/Relocate function, 795
Kerne/Start function, 794-95
keyboard. See also KeyTrac program

accelerator tables, defining, 129, 131-32
device drivers, 540
flags, 94-95
functions, 93-95
input, basic description of, 87-105

keyboard, continued
messages, 88-93
soft, 87
testing for, 95
virtual key codes for, 89-91, 788-89

KEYEVENTF _KEYUP flag, 94-95
KEYEVENTF _SILENT flag, 94
KeyTrac program, 95-105

KeyTrac.c, 98-104
KeyTrah.h, 96-97
window after a Shift-A key combination

and a lowercase key press, 96
keywords

l

BEGIN keyword, 129, 210
catch keyword, 531
canst keyword, 372
CONTROL keyword, 131, 210-11
DIALOG keyword, 209
discardable keyword, 129, 209
END keyword, 129, 210
MENUITEJ'vl keyword, 129
throw keyword, 531

LeaveCritica!Section function, 514, 515
LEDs (light-emitting diodes), 726, 727,

728, 729
lfClipPrecision field, 49
lfescapement field, 49
ljFaceName field, 49
{[Height field, 49
{[Orientation field, 49
lfOutPrecision field, 49
ifPitchAndFamily field, 49
ljQuality field, 49
lfl,Veight field, 49
{[Width field, 49
LibMain function, 649
light-emitting diodes (LEDs), 726, 727,

728, 729
lines

drawing, 71-73
height of, 51, 62
width of, 71-72

linking, explicit, 805-8
List control class, 170, 173-74
ListDlg.c, 252-55
listen function, 601, 603

listen mode, 603-4
ListNet program, 591-99

ListNet.c, 593-99
ListNet.h, 592-93
ListNet.rc, 592
window, 591

list view control
basic description of, 324-26
L View program and, 326-46
virtual, 325-26

ListWnd.c, 195-98
LoadAccelerators function, 132
Loadlcon function, 717

Index

Loadimage function, 65, 130, 132, 717
LoadLibrary function, 95, 261, 635, 805, 806
LoadString function, 37 3
LocalAlloc function, 365, 366, 651
Loca!Free function, 365
local heap, 357, 358, 365-67, 431. See also

heaps
LocalRealloc function, 365, 367, 369
LOGFONT structure, 48, 49, 51, 53
LOGPEN structure, 72
long data type, 15
LONG macro, 422
loops, 16, 20-21, 26, 131-32, 217
low-memory conditions, 4, 350, 370, 374-77,

725, 726
low-power modes, 501-2
lpAddress parameter, 362, 363, 364
lpApplicationName parameter, 495
!Param parameter, 26, 52, 61, 92, 93, 95, 106,

114, 123, 125, 127, 151, 166, 172-73, 212,
216, 221-23, 298, 274, 276, 717, 758, 792

lpBujfer parameter, 132, 273, 385, 586,
587, 590

lpBytesReturned parameter, 544
lpCharSet field, 49
lpCmdline parameter, 497
lpCommandLine parameter, 495
lpComment field, 587
lpcPropID parameter, 430
lpData parameter, 470
lpEnumFunc function, 151
lpEventAttributes parameter, 508
lpHandles parameter, 511
!pLibFileName parameter, 805
lpMaximumApplicationAddress field, 354

837

Index

lpMinimumApplicationAddress field, 354
lpName parameter, 409, 508, 513
lpNetResource parameter, 582, 585
lpNewltem parameter, 126
lpnLength parameter, 589, 591
lpOutBu.fler parameter, 544
lpOverlapped parameter, 384, 385, 548
lpParameter parameter, 502
lpProcesslnjormation parameter, 496
lpRect parameter, 37
lpSecurityAttributes parameter, 382, 470
lpszClassName parameter, 23
lpszMenuName field, 23
lpszName parameter, 424
lpszNewltem parameter, 125
lpszValueName parameter, 470
lpText field, 298
lpThreadAttributes parameter, 502
lpTime parameter, 727, 730
lpToo!Tips parameter, 278
LPTR flag, 366
lpType parameter, 470
lpUserName parameter, 591
LRESULT return type, 26
LSAP (Logical Service Assess Point)

selectors, 603
L View program, 326-46

Lview.c, 330-46
Lview.h, 328-30
Lview.rc, 327-28
window, 326

LVM_GETI'EXTENDEDLISTVIEWSTYLE style
flag, 324

L VM_INSERTITEM style flag, 267
LVM_SETTEXTENDEDLISTVIEWSTYLE style

flag, 324
L VN_GETDISPINFO style flag, 325, 465
LVN_ODCACHEHINT style flag, 325-26
LVN_ODFINDITEM style flag, 325
LVS_AUTOARRANGE style flag, 325
LVS_EX_CHECKBOXES style flag, 324, 325
L VS_EX_FLA TSB style flag, 325
L VS_EX_GRIDLINES style flag, 325
LVS_EX_HEADERDRAGDROP style flag, 324
LVS_EX_INFOTIP style flag, 325
LVS_EX_ONECLICKACTIVATE style flag, 325
LVS_EX_REGIONAL style flag, 325
LVS_EX_SUBITEMIMAGES style flag, 325
LVS_EX_TRACKSELECT style flag, 325

838

LVS_EX_TWOCLICKACTIVATE style flag, 325
LVS_FULLROWSELECT style flag, 325
LVS_OWNERDATA style flag, 324, 325
LVS_SETITEMPOSITION style flag, 325
LVS_SORTASCENDING style flag, 325
LVS_SORTDESCENDING style flag, 325

M
macros

defined in WINSOCK.H, 610--11
FD_CLR macro, 610
FD_ISSET macro, 610
FD_SET macro, 611
FD_ZERO macro, 611
LONG macro, 422
MAKEINTRESOURCE macro, 130, 212
MAKELONG macro, 422
MAKEWORD macro, 599
RGB macro, 72-73
TEXT macro, 24, 39, 639

MainMessages table, 26
MainWndProc procedure, 25-27
MAKEINTRESOURCE macro, 130, 212
MAKELONG macro, 422
MAKEWORD macro, 599
MapViewO.fFile function, 409, 529
MapVirtualKey function, 95
MaskBlt function, 70
masking images, 70
MCS_DAYSTATE flag, 319
MCS_MULTISELECT flag, 319
MCS_NOTODAYCIRCLE flag, 319
MCS_NOTODAY flag, 319
MCS_ WEEKNUMBERS flag, 319
memcopy function, 69
memory. See also memory maps

64-KB limit, 354, 361-62, 370
address space, 352-58
allocating, 358-77
basic description of, 349-77
bitmaps and, 66, 68
boot process and, 794-95
device contexts·and, 68-70
freeing, 362, 366, 368
loading strings into, 132
low-memory conditions, 4, 350, 370,

374-77, 725, 726
message tables and, 27
minimizing the use of, 27, 30--31, 132

memory, continued
Out Of Memory dialog box, 725, 726
regions vs. pages, 361--62
resizing, 366--67, 369
serial communications and, 545
stack, 370, 373, 376-77
static data area, 370-73, 374
system, querying, 354-56
thresholds, 3 7~ 76, 377
types, selecting the proper, 373-74

memory maps, 408--12, 517-18, 545. See also
memory

application address space and, 356-58
diagrams of, 353, 356-57, 371-72
showing the size of data segments, 3 71- 72
the Windows CE address space and, 352-56

MEMORYSTATUS structure, 355
MENUI1EM keyword, 129
MENU resource type, 129
menus

commands on, handling, 127
creating, 125-26
defining, as resources, 129
input for, handling, 87, 125-26
items on, checking/unchecking, 126
items on, querying, 126
templates for, 128--29

messages. See also notifications
BN_CLICKED message, 170, 171, 206
DB_CEOID_CHANGED message, 424-25
DB_CEOID_CREATED message, 424-26
DB_CEOID_RECORD_DELETED message,

424-25
DTN_FORMAT message, 324
DTN_FORMATQUERY message, 324
DTN_USERSTRING message, 322
DTN_ WMKEYDOWN message, 324
PSM_ADDPAGE message, 221
PSM_REMOVEPAGE message, 221
PSN_KILLACTIVE message, 223
WM_ACTIVATE message, 31
WM_CAPTURECHANGED message, 114
WM_CHAR message, 89, 92, 97, 750, 764,

765, 788
WM_CLOSE message, 147, 497, 498, 792
WM_COMMAND message, 127, 129, 131,

147, 170, 176-75, 205-7, 214, 216, 223,
226, 260--61, 267, 273, 275, 277-79, 530

Index

messages, continued
WM_COPYDATA message, 517-18
WM_CREATE message, 7, 25, 27, 31, 61,

125, 165, 205, 213
WM_DBNOTIFICATION message, 425, 426
WM_DEADCHAR message, 93
WM_DESTROY message, 32, 147
WM_DRAWITEM message, 172, 206-7
WM_HIBERNATE message, 30-31, 150,

374-77
WM_HSCROLL message, 169, 175, 207
WM_INITDIALOG message, 213, 216,

222, 261
WM_KEYDOWN message, 88--89, 92, 97,

750, 764, 788
WM_KEYUP message, 89, 92, 97, 750,

764, 788
WM_LBUTTONDOWN message, 105--6,

107, 717
WM_LBUTTONUP message, 106, 123, 717
WM_MOUSEMOVE message, 106, 107, 113
WM_MOVE message, 7, 8
WM_NOTIFY message, 223, 224, 226, 260,

267, 275, 303, 320, 465, 491
WM_PAINT message, 25, 28, 29, 30, 36, 37,

38, 61, 104, 166, 214, 407
WM_RBUTTONDOWN message, 114
WM_RBUTTONUP message, 114
WM_SETFOCUS message, 88
WM_SETTINGCHANGE message, 322
WM_SIZE message, 123, 679
WM_SYSCHAR message, 89, 92
WM_SYSKEYDOWN message, 89
WM_SYSKEYUP message, 89
WM_ VSCROLL message, 166, 169, 175, 207

microprocessors, 794, 801
exception handling and, 534
memory management and, 351-52, 354,

356, 365, 373-74
that support Windows CE, 3
system programming and, 793-94, 801
target, selecting, 16
threads and, 499, 501

Microsoft Pocket Word
configuration information, in the registry,

468, 469, 470
converter, 681
file format (PWD format), 681, 683
Find dialog box in, 208

839

Index

Microsoft Visual C++
building HelloCE with, 16-18
SDK tools, 17
string prefixes, 639

Microsoft Windows 3.1, 5, 48
Microsoft Windows 95, 17, 265, 352

data types and, 5
desktop connectivity and, 634, 705
shell programming and, 709-12, 717

Microsoft Windows 98, 5, 20, 150, 499
controls and, 265, 296
desktop connectivity and, 634
drawing on the screen and, 36, 65-66
emulators and, 17
the file API and, 389, 410, 413
handling bitmaps in, 65-66
memory management and, 349, 351, 365,

367, 368
processes and, 493, 494, 497
the registry API and, 467, 473
serial communications and, 546, 555
shell programming and, 709, 711-12,

715--16, 726
Microsoft Windows NT, 3, 20, 150, 265, 380

desktop connectivity and, 634
emulators and, 17
the file API and, 389, 410, 413
handling bitmaps in, 65-66
image list control and, 296
IrSock and, 579, 586
memory management and, 349, 351-52,

354, 365, 367-68
processes and, 493--94, 497
the registry API and, 469, 473
serial communications and, 546, 555
shell programming and, 710, 711-12,

716, 726
synchronization and, 507
threads and, 499, 506
Unicode-enabled applications for, 5

Microsoft Word, 681--82. See also Microsoft
Pocket Word

MIPS microprocessors, 16
MM_TEXT mapping mode, 36
Mobile Devices, 17, 633, 687
Mobile Devices folder, 17, 633
modems, indication of, with the PST_MODEM

flag, 554

840

MONTHCAL_CLASS flag, 319
month calendar control, 319-21
MONTHDAYSTATE variable, 320-21
mouse, 4, 105, 113--14

drivers, 540
right-button clicks, 114

MoveFile function, 412-13
MS-DOS, 6, 47, 351, 382

drive letters, 415
serial communications and, 545, 550
truncating files in, 386

MSG structure, 20
multitasking, preemptive, 515
Murphy's Law, 515
mutexes, 507, 509, 513--14, 529-30
myapp program, 667-68
MyCreateHatcbBrusb function, 85
MyNotify program, 731-42

MyNotify.c, 732-33, 735-42
MyNotify.h, 733-35
window, 732

MySqurt program, 612-26
MySqurt.c, 615-26
MySqurt.h, 613--15
MySqurt.rc, 612-13
window, after a file transfer, 612

N
navigation keys, 787
nBottomRect parameter, 76
nCmdSbow parameter, 25
NETRESOURCE structure, 582, 583, 585--87
New button, position of, on the command

bar, 280
NextConvertFile function, 687--89, 704-5
NK.EXE, 794--801, 802, 493
nLeftRect parameter, 76
NMDAYSTATE structure, 320
NMHDR structure, 320
NMSELCHANGE structure, 321
nonsignaled state, 508
NOPARITY constant, 551
Notepad, 128, 173
Notification API, 710, 753, 680, 804. See also

notifications
notifications. See also messages; Notification

API
basic description of, 6--8

notifications, continued
of double clicks/taps, 22
MyNotify program and, 731-42
shell programming and, 726-42

Notify button, 726
NOTIFYICONDATA structure, 717
NOTIFYICON structure, 718
nPos field, 168, 169
NPWnd.c, 780-86
NPWnd.h, 770-71
nReadCnt variable, 530, 531
nResult parameter, 214
nRightRect parameter, 76
nShowCmd parameter, 20, 23
nStartPage/pStartPage union, 219
nTopRect parameter, 76
nTrackPos field, 169
NULL_P1',N parameter, 72
NumPanel program

IM window, in docked/undocked
positions, 766-67

input method for, 766--86
NPWnd.c, 780-86
NPWnd.h, 770-71
NumPanel.cpp, 771-80
NumPanel.def, 767
NumPanel.h. 768--70
NumPanel.rc, 768

nWidth parameter. 64, 72
nXOrg parameter, 74
nYOrg parameter, 74

0
OAL (OEM Adaptation Layer), 794--95
objects. See also object store memory

event, 508--14
IDs for, 389, 434--35
information about, querying, 434--35
memory-mapped, 410-12
naming, 411-12
waiting on, 511

object store memory, 381, 420, 433-34
basic description of, 350, 379
opening databases outside of, 423
system memory queries and, 355

ODDPARITY constant, 551
OEMinit routine, 795
OK button, 218, 223, 583, 584

Index

OnCreateMain routine, 61, 147, 261, 318
OnNotifyMain routine, 294, 465
OnPaintMain function, 46, 61, 84--85
OOM (out-of-memory) dialog box, 376,

725, 726
opaque mode, 47, 85
OPEN_ALWAYS flag, 383, 419
Open button, position of, on the command

bar, 280
OpenCreateDB function, 435
OpenDestinationFile function, 704
OPEN_EXISTING flag, 383, 419
OptionsData function, 628
Options field, 629
OptionsSize function, 628
optname parameter, 606
05/2, 16, 67
OSVERSIONINFO structure, 808
Out of Memory dialog box, 376, 725, 726
overlapped 1/0, 547
owner/owned relationships, 149-51

p
packed format, 74
paged virtual memory, 351-52
PAGE_EXECUTE flag, 360
PAGE_EXECUTE_READ flag, 360
PAGE_EXECUTE_READWRITE flag, 360
PAGE_GUARD flag, 361
PAGE_NOACCESS flag, 361
PAGE_NOCACHE flag, 361
PAGE_READONLY flag, 360
PAGE_READWRITE flag, 360
Page Setup dialog box, 224
PAINTINFO structure. 61
PAINTSTRUCT structure, 29-30
Palm-size PC

batteries, 350, 501-2
boot process and, 801
Button control panel applet, 789
Calculator applet, 497
compile-time versioning and, 804--5
cross-platform applications and, 803-4
Ct!View program and, 176
the database API and, 418
desktop connectivity and, 633, 635, 705
dialog boxes and, 225, 261, 725, 726
displaying shapes on, 85

841

Index

Palm-size PC. continued
File Open dialog box on, 225
gray-scale displays used by, 207
group boxes and, 171
hardware keys, 789-90
input methods, 766-86
input panels and, 753, 754, 757
keyboard input and, 87
lack of a Close button in, 19
memory management and, 350, 373-74,

375--76, 377
navigation buttons, 787
new controls for, 5
Out Of Memory dialog box, 725, 726
portrait-mode screen, 809
processes and, 497-98
running HelloCE on, 1&-19, 32, 33
serial communications and, 557, 577
shell programming and, 709-13, 728,

749-55, 757, 766-87, 789-92
system programming and, 793, 801,

803-5, 809
threads and, 501

parameters
bErase parameter, 37
biClrUsed parameter, 67
blnheritHandle parameter, 498
blnitialOwner parameter, 513
b!nitia!State parameter, 508
biSizelmage parameter, 67
BLACKYEN parameter, 72
bManualReset parameter, 508
buf parameter, 604
bWaitAll parameter, 511
cFindData parameter, 642
cPlanes parameter, 64
cProp!D parameter, 432
crColor parameter, 72, 73
dwCreateFlags parameter, 495, 502
dwDatabaseType parameter, 433
dwDesiredAccess parameter, 382, 408
dwFreeType parameter, 362
dw!ndex parameter, 472
dwlnfoLevel parameter, 590
dwlnitialSize parameter, 368
dw!oControlCode parameter, 544
dwMilliseconds parameter, 504, 509
dwMoveMethod parameter, 385
dwNumberO/BytesToMap parameter, 409

842

parameters, continued
dwOjfset parameter, 68
dwOptions parameter, 470
dwScope parameter, 585
dwSeekType parameter, 426
dwShareMode parameter, 382
dwSize parameter, 359, 362, 363, 420, 762
dwStack parameter, 502
dwStackSize parameter, 502
dwStyle parameter, 150, 277, 295
dwValue parameter, 427
jAllocationType parameter, 360
flags parameter, 38, 604
jNewProtect parameter, 363
fnPenStyle parameter, 72
}Options parameter, 368
}Protect parameter, 360, 408
}Redraw parameter, 168
}Show parameter, 279
fsMod{fiers parameter, 791
hPrevlnstance parameter, 19
hSection parameter, 68
hSrc parameter, 70
h Template parameter, 384
iButton parameter, 127, 269, 273, 277
ICmdLine parameter, 19, 20
idMenu parameter, 269
idNewltem parameter, 125
iJllfaxSockets parameter, 600
iUsage parameter, 68
iWidth parameter, 277
lpAddress parameter, 362, 363, 364
lpApplicationName parameter, 495
lParam parameter, 26, 52, 61, 92, 93,

95, 106, 114, 12,3, 125, 127, 151, 166,
172-73, 212, 216, 221-23, 298, 274,
276, 717, 758, 792

lpBujfer parameter, 132, 273, 385, 586,
587, 590

lpBytesReturned parameter, 544
lpCmdline parameter, 497
lpCommandLine parameter, 495
lpcProp!D parameter, 430
lpData parameter, 470
lpEventAttributes parameter, 508
lpHandles parameter, 511
lpLibFileName parameter, 805
lpName parameter, 409, 508, 513
lpNetResource parameter, 582, 585

parameters, continued
lpNewl!em parameter, 126
lpnlength parameter, 589, 591
lpOutBuffer parameter, 544
lpOverlapped parameter, 384, 385, 548
lpParameter parameter, 502
lpProcesslnformation parameter, 496
lpRect parameter, 37
lpSecurityAttributes parameter, 382. 470
lpszClassName parameter, 23
lpszName parameter, 424
lpszNewltem parameter, 125
lpszValueName parameter, 470
lpThreadAttributes parameter, 502
lpTime parameter, 727, 730
lpToolTips parameter, 278
lpType parameter, 470
lpUserName parameter, 591
nBottomRect parameter, 76
nCmdShow parameter, 25
nLeftRect parameter, 76
nResult parameter, 214
nRightRect parameter, 76
nSbowCmd parameter, 20, 23
nTopRect parameter, 76
NUU_PEN parameter, 72
nWidth parameter, 64, 72
nXOrg parameter, 74
nYOrg parameter, 74
optname parameter, 606
phkResu!t parameter, 470
p!RAP!Stream parameter, 649, 652
ppvBits parameter, 68
RequestData parameter, 627
RequestOptions parameter, 628
RequestSize parameter, 627
Reserved parameter, 470
shutdown parameter, 605
szCmdline parameter, 497
uiAction parameter, 750-51
uNumToolTips parameter, 278
wParam parameter, 21, 26, 31-32,

88-89, 92, 95, 97, 106, 114, 127, 130,
166, 169-70, 172, 221, 717, 755, 757

parent/child windows, 6, 149
basic description of, 150-69
enumerating, 151
finding, 151, 152

Index

Pascal, 26
PC/AT (IBM), 793
PC Cards, 381, 386, 415
PCI bus, 540
PCMagazine, 16
PCMCIA cards, 539, 542, 577, 798
pcRefCount field, 221
pens, 72, 75. See also PenTrac program
PenTrac program

PenTrac.h, 108
PenTrac.c, 109-13
window, showing two lines drawn, 107

Petzold, Charles, 15, 86
pfnCal!Back field, 220, 221
pfnDlgProc field, 221
phkResult parameter, 470
pidl, 711, 713
PingAddress function, 629
p!RAP!Stream parameter, 649, 652
pixels, 4, 63, 64, 71-72
PMEMORY _BASIC_INFORMA TTON

stmcture. 363
Pocket Word. See Microsoft Pocket Word
pointer data type, 15
POINT stmctures, 71
polygons, 73, 76-77
PostQuitMessage function, 21, 32, 147
power supplies, 501, 801-2. See also batteries
ppsp/phpage union, 219
ppvBits parameter, 68
Print button, position of, on the command

bar, 280
Print dialog box, 150, 208, 224, 261
printjfunction, 742
priority classes. 499
private memory pages, 356--57
procedures

Btn WndProc procedure, 206-7
DoActivateMain procedure, 31-32
DoHibernateMain procedure, 30-31
FindClose procedure, 413, 414, 415
FindFirstFile procedure, 41.)-15, 433, 581
FindNextFile procedure, 414, 433, 581
FindNext procedure. 413
!nitApp procedure, 14, 20, 21-23, 261
lnitlnstance procedure, 20, 23-25, 528
MainWndProc procedure, 25-27
ScrollWndProc procedure, 207

843

Index

procedures, continued
window procedure, 6-7, 16
WinMain procedure, 16, 19, 23, 25-26, 32,

497, 645, 649, 742, 744
WinProc procedure, 16

processes. See also threads
basic description of, 493-536
creating, 494-97
finding other, 516-18
terminating, 497-98, 503
waiting on, 510-11

PROCESS_INFORMATION structure, 496, 497
PROCESSOR_ARCHITECTURE_INTEL

constant, 354
PROCESSOR_ARCHITECTURE_SHx

constant, 354
PROCESSOR_HITACHI_SH3 constant, 354
PROCESSOR_HITACHI_SH4 constant, 354
processors, 794, 801

exception handling and, 534
memory management and, 351-52, 354,

356, 365, 373-74
that support Windows CE, 3
system programming and, 793-94, 801
target, selecting, 16
threads and, 499, 501

program memory, 350
Programming Windows 95 (Petzold), 3,

15,86
programs

AlbumDB program, 435-67
Cale program, 497, 715-16, 800, 801
CeChat program, 560-77
CEFind program, 743--47
CmdBand program, 304-19
CmdBar program, 280-94
CnctNote program, 671-80
CtlView program, 176-208, 261
DivFile program, 691-705
DlgDemo program, 226-61
FileView program, 389--407
FontList2 program, 153-69
FontList program, 53-62
HelloCE program, 3-21, 32-33
KeyTrac program, 95-105
ListNet program, 591-99
L View program, 326--46
myapp program, 667-68

844

programs, continued
MyNotify program, 731--42
MySqurt program, 612-26
RapiDir program, 644-48
RapiFind program, 653-62
Shapes program, 77-86
TBicons program, 718-25
TextDemo program, 40--47
TicTacl program, 114-25
TicTac2 program, 133--47
XTalk program, 518-31

Programs submenu, 715-16
Project Settings dialog box, 18
properties. See also property pages; property

sheets
deleting, 432-33
IDs for, 422, 428

property pages, 218, 220-24
PropertySheet function, 218, 219
property sheets, 149, 218-24, 226
PROPSHEETHEADER structure, 218
PROPSHEETPAGE structure, 219, 220,

222, 261
Protect field, 363, 365
PSH_MODELESS flag, 219
PSH_PROPSHEETPAGE flag, 219
PSH_PROPTITLE flag, 219
PSH_USEPSTARTPAGE flag, 219
PSM_ADDPAGE message, 221
PSM_REMOVEPAGE message, 221
PSN_KILLACTIVE message, 223
PSP _DLGINDIRECT flag, 220
PSP_PREMATURE flag, 221-22
PSP _USECALLBACK flag, 220-21
PSP _USEREFPARENT flag, 221
PSP _USETITLE flag, 221
PST_MODEM flag, 554
pszTemplate/pResource union, 220
PTS file type, 692
PURGE_RXABORT flag, 555
PURGE_RXCLEAR flag, 554-55
PURGE_TXABORT flag, 555
PURGE_TXCLEAR flag, 554
push buttons, 170, 207
push models, 6
PWD (Pocket Word) format, 681, 683

Q
QS_ALLINPUT flag, 512
QS_INPUT flag, 512
QS_KEY flag, 512
QS_MOUSEBUTION flag, 512
QS_MOUSE flag, 512
QS_MOUSEMOVE flag, 512
QS_PAINT flag, 512
QS_POSTMESSAGE flag, 512
QS_SENDMESSAGE flag, 512
QS_TIMER flag, 512
quantum (time slice), 499, 504-5
querying

connections, 589-91
device driver capabilities, 553-54
database object information, 434-35
file size information, 388, 407, 639
memory access rights, 363--65
memory heaps, 366--67, 369
resources, 589-91
status, clearing, 555-56
system memory, 354-56
thread priority, 504

question mark(?), 413

R
radio buttons, 171, 207
RAM (random access memory), 174, 355, 380.

See also memory; object store memory
basic description of, 350
command bars and, 279
constant data and, 27
list boxes and, 174
power supplies and, 801
requirements, 349
ROM and, 350-51
threads and, 501
virtual, 4, 351

RAPI (Windows CE Remote API)
basic description of, 633--62
custom functions, 648-53
dealing with different versions of, 635
predefined functions, 637-44

RapiDir program, 644-48
RAPl.DLL, 635, 667
RapiFind program, 653--62

output, 654
RapiFind.cpp, 659--62

Index

RapiServ.c, 649-51
raw IR, 557-59, 576
RBBIM_CHILDSIZE style flag, 298
RBBIM_CHILD style flag, 298
RBBIM_COLORS style flag, 298
RBBIM_IDEALSIZE style flag, 298
RBBIM_ID style flag, 298
RBBIM_LP ARAM style flag, 298
RBBS_BREAK style flag, 297
RBBS_CHILDEDGE style flag, 297
RBBS_FIXEDBMP style flag, 297
RBBS_FIXEDSIZE style flag, 297
RBBS_GRIPPERALWAYS style flag, 297
RBBS_HIDDEN style flag, 297
RBBS_NOGRIPPER style flag, 297, 300, 318
RBBS_NOVERT style flag, 297-98
RBBS_RBBIM_STYLE style flag, 297
RBS_AUTOSIZE style flag, 295
RBS_BANDBORDERS style flag, 295
RBS_FIXEDORDER style flag, 295
RBS_SMARTLABELS style flag, 295, 298,

300, 318
RBS_ VARHEIGHT style flag, 295, 300
RBS_ VERTICALGRIPPER style flag, 295
RCDATA resource type, 129
rcPaint field, 30
rcSipRect field, 752, 761, 762
rcVisibleDesktop function, 752
ReadDoneEvent function, 529
ReadDone function, 530
Reader1bread function, 528, 530, 531
ReadEventfunction, 529, 530, 531
ReadFile function, 382, 384-85, 407, 544,

546-47, 551, 552
Readlnterva!Timeout function, 551, 552
read-only mode, 409
ReadTotalTimeoutConstant function, 551
ReadTotalTimeoutMultiplier function, 551
REBARBANDINFO structure, 296-97,

299-300, 318
ReceiveSiplnf method, 760, 762
recent documents list/submenu, 716
records

basic description of, 417-19
deleting, 432-33
reading, 429-32
searching for, 426-29
writing, 432

845

Index

Rectangle function, 73, 74, 75
rectangles, 46, 74-76, 85

clipping, 62
expanded view of, drawn with the

Rectangle function, 75
RECT structure for, 29, 30
for the TicTacl program, 124-25

recv function, 601
RegCreateKeyEx function, 470
RegEnumKeyEx function, 472-73
RegisterCallback method, 760, 762
RegisterClass function, 22, 23, 152
registry, 495, 581, 663-68. See also registry

keys
API, 379, 467-91
boot process and, 796, 798, 799, 600
deleting values in, 471-72
device driver documentation, 540, 541,

542-43, 558, 559
management functions, 643
method, of connection notification, 667-69
organization of, 468-69
reading/writing values in, 302, 470, 471,

666-67
registering file filters in, 681-86
RegView program and, 473-91

registry keys. See also registry; registry keys
(listed by name)

application launch keys, 788, 789-92
closing, 472
deleting, 471-72
enumerating, 472-73
hardware keys, 787-92
opening! creating, 469-70
for the Wave driver on an HP360, 798

registry keys Oisted by name). See also
registry keys

CESVC_CUSTOM_MENUS key, 663
CESVC_DEVICE_SELECTED key, 664
CESVC_DEVICES key, 663, 664
CESVC_DEVICEX key, 664
CESVC_fILTERS key, 663, 664
CESVC_ROOT_MACHINE key, 663, 668
CESVC_ROOT_USER key, 663
CESVC_SERVTCES_COMMON key, 663
CESVC_SERVICES_USER key, 664
CESVC_SYNC_COMMON key, 663
CESVC_SYNC key, 664

846

registry keys (listed by name), continued
HKEY_CLASSES_ROOT key, 468, 681, 682
HKEY_CURRENT_USER key, 468, 663, 681
HKEY_LOCAL_MACHINE key, 468, 469,

495, 540-42, 558, 581, 663, 681, 682, 686,
789, 796, 798, 800

RegOpenKeyEx function, 469-70
RegQueryValueEx function, 470
RegView program

RegView.c, 476-91
RegView.h, 474-76
RegView.rc, 473-74

ReleaseCapture function, 113
ReleaseDC function, 38, 70
Release method, 714
ReleaseMutex function, 514, 529
remote

drives, mapping, 581-83
resources, disconnecting, 583-84

RemoveDirectory function, 412
report mode, 324-25
RequestData parameter, 627
RequestOptions parameter, 628
RequestSize parameter, 627
Reserved field, 93
reserved memory pages, 352, 356-57
Reserved parameter, 470
ResetEvent function, 509
RESOURCE_CONNECTED flag, 585
RESOURCE_GLOBALNET flag, 585, 586
RESOURCE_REMEMBERED flag, 585
resources

basic description of, 127-32
creating, 128
fewer, in Windows CE devices, 4
enumerated, 585-69
querying, 589-91
remote, disconnecting, 583-84
types of, allowed by the resource

compiler, 129
ResumeCount function, 504
ResumeThread function, 502, 504
RGB color, 66-68, 72-74. 172-73
RGB macro, 72-73
Richter, Jeff, 377
right -clicking, 4
RLSD (Receive Line Signal Detect) line,

548, 556

ROM (read only memory), 27, 174, 805
basic description of, 350-51
boot process and, 795
the file API and, 380, 387
files, compressed, 387
static data and, 371, 374

ROM-based DLLs, 379-80
RoundRect function, 73, 76
RoundTripTime field, 629
RS-232 serial ports, 554. See also serial ports
RTS line, 550, 555
run-time version checking, 808-9

s
Save As dialog box, 224
Save button, position of, on the command

bar, 280
SB_BOTTOM code, 167
SB_CTL code, 168
SB_I-IORZ code, 168
SB_LINEDOWN code, 166, 167
SB_LINELEFT code, 166, 167
SB_LINERIGI-IT code, 166, 167
SB_LINEUP code, 166, 167
SB_pAGEDOWN code, 166, 167
SB_PAGELEFT code, 166, 167
SB_pAGERIGHT code, 166, 167
SB_PAGEUP code, 166, 167
SB_'1HUMBPOSITION code, 166, 167, 168
SB_THUMBTRACK code, 166, 167, 168
SB_TOP code, 167
SB_ VERT code, 168
screens, 4--5, 35-87, 95, 105-25, 809
scroll bars, 63, 153-70, 175

codes for, 166, 167
configuring, 168-69
in the FontList window, 62
hot spots for, 166
positioning, beneath command bars, 153,

154--69
Scrol!Dlg.c, 257-60
SCROLLINFO structure, 168, 169
Scrol!Wnd.c, 201-5
Scrol!WndProc procedure, 207
SDK (Windows CE Software Development

Kit), 544, 548, 627
security, 356--57, 363-65, 380, 409
select function, 610, 611

Index

Select method, 759, 761
SelectObject function, 51, 62, 69
semaphores, 507
Send button, 518, 529
SendCharEvents function, 764, 765-66
Sender1bread function, 528, 530, 531
send function, 601, 605
SendMessage function, 130, 267
SendString function, 761, 766
SendVirtualKey function, 763, 765
serial communications. See also device

drivers; infrared transmissions; serial
ports

basic description of, 539-78
CeCh<1;t program and, 560-77
configuring serial ports for, 548-51
setting timeout values for, 551-52

serial ports. See also serial communications
programming, 545-57
reaching to, 546--47
setting timeout values for, 551-52
writing to, 546--47

server functions, writing, 649-52
SETBREAK flag, 555
SetCommBreak function, 554, 555
SetCommState function, 548-49, 551
SetFilePointer function, 385, 407
SetlmData method, 760, 762-63
Setlmlnfo function, 763-65
SetScrollinfo function, 168, 169, 175
SetupComm function, 552
SetWindowLong function, 152, 224
SETXOFF flag, 555
SETXON flag, 555
shapes, 71, 73-86. See also Shapes program

polygons, 73, 76--77
rectangles, 29-30, 46, 62, 74-76, 85, 124-25

Shapes program, 77-86. See also shapes
Shapes.c, 78-84
shapes.h, 77-78
window, 85

shortcuts, 715
Showing method, 760
ShowWindow function, 20, 25
SHSiplnfo function, 750-53, 755, 756, 762, 805
shutdown parameter, 605
SIF _DISABLENOSCROLL flag, 169
SIF_PAGE flag, 169

847

Index

SIP _pos flag, 168
SIF_RANGE flag, 168
SIF_TRACKPOS flag, 169
signaled state, 508
Signa!Started function, 797
Simonyi, Charles, 15
SIMPLE.DLL, 806
SIP (Supplementary Input Panel), 749-59,

766-92, 803-4
components of, 758-59
explicit linking and, 806
hardware keys and, 787-92

SIPF_DOCKED flag, 751
SIPF _LOCKED flag, 751
SIPF_ON flag, 751
SIPINFO structure, 751, 752, 753, 756, 763
SipRegisterNotification function, 757
slash ((), 128
sleep function, 107, 504-5
slots, memory, 352
SOCKADDR structure, 602
sockets, 602-5, 609-12
Software Development Kit (Windows CE),

544, 548, 627
sort orders, 422-23, 429
SORTORDERSPEC structure, 422
SPACEPARITY constant, 551
SrchDirectory function, 658-59, 744
Start button, 63, 149, 709
Start menu, configuring, 715-16
State field, 363, 365
Static control class, 170, 175
StaticDlg.c, 255-57
Status field, 629
StatWnd.c, 199-201
STILL_ACTIVE constant, 497
StopBits field, 551
Storage Card, 415
stream mode, 652-53
strikeout font, 49
strings, 5, 373

converting, 24, 639, 648
data type for, 15
lists of, defining, 129
Unicode, 24, 39, 132, 542, 648

STRINGTABLE resource type, 129
struct data type, 15

848

structures
BITMAPINFOHEADER structure, 66-67
BITMAPINFO structure, 66, 74
BY_HANDLE_FILE_INFORMATION

structure, 388-89
CEDBASEINFO structure, 423, 429, 435
CEFILEINFO structure, 434-35
CE_FIND_DATA structure, 640-41, 648
CEIODINFO structure, 434
CENOTIFICATION structure, 425, 426
CENOTIFYREQUEST structure, 425, 426
CEPROPID structure, 430, 432
CEPROPVAL structure, 427, 432
COMMANDBANDRESTOREINFO structure,

301-3
COMMPROP structure, 553
COMMTIMEOUTS structure, 551, 552
COMSTAT structure, 556
CONNECTDLGSTRUCT structure, 583
CREATESTRUCT structure, 125
CRITICAL_SECTION structure, 514
DEVICELIST structure, 606
DLGTEMPLATE structure, 212
DRAWITEMSTRUCT strncture, 172
FILETIME structure, 387, 388
ICMP _ECHO_REPLY structure, 628-31
IMENUMINFO structure, 756
IMINFO structure, 760-61
IRDA_DEVICE_INFO structure, 606
LOGFONT structure, 48, 49, 51, 53
LOGPEN structure, 72
MEMORYSTATUS structure, 355
MSG structure, 20
NETRESOURCE structure, 582, 583, 585-87
NMDAYSTATE structure, 320
NMHDR structure, 320
NMSELCHANGE structure, 321
NOTIFYICONDATA structure, 717
NOTIFYICON structure, 718
OSVERSIONINFO structure, 808
PAINTINFO structure, 61
PAINTSTRUCT structure, 29-30
PMEMORY _BASIC_INFORMATION

structure, 363
PROCESS_INFORMATION structure,

496, 497
PROPSHEETHEADER structure, 218

structures, continued
PROPSHEETPAGE structure, 219, 220,

222, 261
REBARBANDINFO structure, 296-97,

299-300, 318
SCROLLINFO structure, 168, 169
SIPINFO structure, 751, 752, 753, 756, 763
SOCKADDR structure, 602
SORTORDERSPEC structure, 422
SYSTEMTIME structure, 320, 727, 730
TBBU1TON structure, 273
TBUTTON structure, 272
TEXTMETRIC structure, 50-51, 62
TIMEV AL structure, 610
TPMP ARAMS structure, 277
WINDCLASS structure, 1 'i2
\V'NDCLASS structure, 22-24
WSAData structure, 599

style flags. See also flags; styles
BS_2STATE style flag, 171
BS_AUT02STATE style flag, 171
BS_AUT03STATE style flag, 206
BS_AUTOCHECKBOX style flag. 171, 206
BS_AUTORADIOBUTTON style flag,

171, 206
BS_BOTTOM style flag, 171
BS_CHECKBOX style flag, 171
BS_ICON style flag, 172
BS_LEFT style flag, 171
I3S_MULTILINE style flag, 171
BS_OWNERDRAW style flag, 172
BS_RADIOBUTTON style flag, 171
BS_RIGHT style flag, 171
BS_TOP style flag, 171
CCS_ VERT style flag, 295
DS_ABSALIGN style flag, 209
DS_CENTER style flag, 209
DS_MODALFRAME style flag, 209
DS_SETFONT style flag, 210
DS_SETFOREGROUND style flag, 210
DTS_APPCANPARSE style flag, 322
DTS_IC_DATE_CLASSES style flag, 322
DTS_LONGDATEFORMAT style flag, 322
DTS_SHORTDATEFORMAT style flag, 322
DTS_SHOWNONE style flag, 322
DTS_TIMEFORMAT style flag, 322
DTS_UPDOWN style flag, 322
ES_LOWERCASE style flag, 173

style flags, continued
ES_MULTILINE style flag, 173
ES_PASSWORD style flag, 173
ES_READONLY style flag, 173
ES_ UPPERCASE style flag, 173
GWL_EXSTYLE style flag. 152
GWL_ID style flag, 152
GWL_STYLE style flag, 152
GWL_USERDATA style flag, 152
GWL_WNDPROC style flag, 152

Index

LPTR flag, 366
LVM_GETTEXTENDEDLISTVIEWSTYLE

style flag, 324
L VM_INSERTITEM style flag. 267
L VM_SETTEXTENDEDLISTVIEWSTYLE

style flag, 324
LVN_GETDISPINFO style flag, 325, 465
LVN_ODCACHEHINT style flag, 325-26
LVN_ODFINDITEM ~tyle flag, 325
LVS_AUTOARRANGE style flag, 325
LVS_EX_CHECKBOXES style flag, 324, 325
LVS_EX_FLATSB style flag, 325
LVS_EX_GRIDLINES style flag, 325
LVS_EX_HEADERDRAGDROP style

flag, 324
L VS_EX_INFOTIP style flag, 325
LVS_EX_ONECLICKACTIVATE style

flag, 325
LVS_EX_REGIONAL style flag, 325
LVS_EX_SUBITEMIMAGES style flag, 325
LVS_EX_TRACKSELECT style flag, 325
LVS_EX_TWOCLICKACTIVATE style

flag, 325
LVS_FULLROWSELECT style flag. 325
LVS_O\V'NERDATA style flag, 324, 325
LVS_SETITEMPOSITION style flag, 325
LVS_SORTASCENDING style flag, 325
LVS_SORTDESCENDING style flag, 325
RBBIM_CHILDSIZE style flag, 298
RBBIM_CHILD style flag, 298
RBBIM_CC)LORS style flag, 298
RBBIM_IDEALSIZE style flag, 298
RBBIM_ID style flag, 298
RBBIM_LP ARAM style flag, 298
RBBS_BREAK style flag, 297
RBBS_CHILDEDGE style flag, 297
RBI3S_FIXEDBMP style flag, 297
RBBS_FIXEDSIZE style flag, 297

849

Index

style flags, continued
RBBS_GRIPPERALWAYS style flag, 297
RBBS_HIDDEN style flag, 297
RBBS_NOGRIPPER style flag, 297, 300, 318
RBBS_NOVERT style flag, 297-98
RBBS_RBBIM_STYLE style flag, 297
RBS_AUTOSIZE style flag, 295
RBS_BANDBORDERS style flag, 295
RBS_FIXEDORDER style flag, 295
RBS_SMARTLABELS style flag, 295, 298,

300, 318
RBS_ VARHEIGHT style flag, 295, 300
RBS_ VERTlCALGRIPPER style flag, 295
WS_CAPTION style flag, 209, 210
WS_CHILD style flag, 150, 165, 278
WS_EX_CAPTIONOKBTN style flag, 210
WS_EX_CONTEXTHELP style flag, 210
WS_GROUP style flag, 211
WS_HSCROLL style flag, 167
WS_OVERLAPPED style flag, 150
WS_POPUP style flag, 210
WS_SYSMENU style flag, 209, 210
WS_TABSTOP style flag, 211
WS_ VISIBLE style flag, 24, 150, 165, 205,

278, 374
WS_ VSCROLL style flag, 165, 167

styles. See also style flags
extended, 324
new, in report mode, 324-25

stylus, 87, 95, 105-25
Su;pend1hread function, 504
synchronization, 507-16, 635
System control panel applet, 350
system event notifications, 730-31
system programming

basic description of, 793-810
cross-platform applications and, 802-9
system configuration, 802

System Scheduler, 499-501
SYSTEMTIME structure, 320, 727, 730
szCmdline parameter, 497
szDatabaseName field, 423
szDescription field. 600
szFullPath field, 689
szSystemStatus field, 600

850

T
TabbedTextOut function, 62
taskbar, 149-50, 726-27, 757

boot process and, 800-801
interface, 716-25
SIP configuration and, 751

Tasks database, 421
TBBUTTON structure, 273
TBicons program, 718-25

TBicons.c, 721-25
TBicons.h, 719-20
TBicons.rc, 719
window, 718

TBSTATE_AUTOSIZE flag, 273
TBSTATE_BU'CT'ON flag, 273
TBSTATE_CHECKED flag, 272
TBSTATE_CHECK flag, 273
TBSTATE_CHECKGROUP flag, 273
TBSTATE_DROPDOWN flag, 273
TBSTATE_ENABLED flag, 272
TBSTATE_GROUP flag, 273
TBSTATE_HIDDEN flag, 272
TBSTATE_INDETERMINATE flag, 272
TBSTATE_PRESSED tlag, 272
TBSTATE_SEP flag, 273
TESTATE_ WRAP flag, 272
TBUTTON structure, 272
TCHAR data type, 5
TCP/IP (Transmission Control ProtocoV

Internet Protocol), 557, 579, 602-5, 608,
626-31

templates, 128-29, 209-10, 214-16
TerminateProcess function, 498
terminating

processes, 497-98, 503
programs, 32

Termlnstance function, 21, 32
text. See also fonts

alignment, 175
color, 47
letters of, space between, 40

TextDemo program, 40-47
TextDemo.c, 42-46, 51
TextDemo.h, 41-42

TEXT macro, 24, 39, 639
TEXTMETRIC structure, 50-51, 62

THREAD_ABOVE_IDLE priority level, 500
THREAD_ABOVE_NORMAL priority

level, 500
THREAD_BELOW _NORMAL priority

level, 500
THREAD_HIGHEST priority level, 500
THREAD_IDLE priority level, 500
THREAD _LOWEST priority level, 500
THREAD_NORMAL priority level, 500
THREAD_PRIORITY_IDLE priority level, 504
THREAD_PRIORITY_NORMAL priority level,

501, 504
THREAD_PRIORITY_TIME_CRITICAL priority

level, 504
threads, 493-536, 547, 552. See also processes

blocked, 500
creating, 502-5
local storage, 505-7
priority classes for, 499-501, 504
suspending/resuming, 504-5
synchronization and, 507-16
waiting on, 510--11

THREAD_TIME_CRITICAL priority level, 500
throw keyword, 531
TicTacl program, 114-25

TicTacl.c, 116---24
TicTacl.h, 115-16
window, 115

TicTac2 program, 133--47
TicTac2.c, 136--47
TicTac2.h, 134-36
TicTac2.rc, 133-34

timeout values, 551-52, 628
timer event notifications, 730
time slice (quantum), 499, 504-5
TIMEVAL structure, 610
11sAlloc function, 506---7
tmAscent field, 51
tmDescent field, 51
tmExternalLeading field, 51, 62
tmHeight field, 51, 62
tmlnterna!Leading Held, 51
Too!Help, 517
Tools menu, position of, on the command

bar, 280
tool tips, for command bars, 278
top-level windows, 150
TPMPARAMS structure, 277

Index

TranslateMessage function, 20--21, 132, 217
TransmitCommChar function, 547, 556
transparent mode, 47, 85
TrueType fonts, 47-50, 743. See also fonts
TRUNCATE_EXISTING flag, 383, 419
_try block, 531
_try, _except block, 532-34
_try, _Jinally block, 531, 534-36
TTL (Time-To-Live) values, 628
Type field, 363, 365

u
uiAction parameter, 750--51
UNC (Universal Naming Convention), 580-81,

587, 589, 590
Underline button, position of, on the

command bar, 280
Undo menu item, 147
Unicode, 14, 19, 576, 629

ASCII versus, 4, 600
basic description of, 4-5
data type, 417
strings, 24, 39, 132, 542, 648

UNIX, 6
unnamed memory-mapped objects, 410-11
uNumToolTips parameter, 278
Update Remote File command, 19
User, 36, 358
user notifications, 726---30
UTC (universal time format), 387-88

v
ValidateRect function, 37
variables. See also specific variables

access to, interlocked, 515-16
Hungarian notation prefixes for, 15

version
checking, run-time, 808-9
problem, 803--5

VERSIONINFO resource type, 129
Viewer program

Viewer.c, 399--407
Viewer.h, 399

View menu
Command Bar command, 304
position of, on the command bar, 280

VIRTKEY command, 131
Virtua!Alloc function, 359, 361--62, 364

851

Index

Virtua!Free function, 359, 362
virtual key codes, 89-91, 78~9
virtual list view mode, 325-26
virtual memory, 4, 373, 794

API, 354, 361
basic description of, 351-52, 359-65
memory-mapped objects and, 410-11
reserved, that has nine pages

committed, 364
VirtualProject function, 363
VirtualQuery function, 363, 364, 365
VirtualReSize function, 359
Visual C++. See Microsoft Visual C++
VK_O-VK_9 constants, 90
VK_A-VK_Z constants, 90
VK_ADD constant, 91
VK_APOSTROPHE constant, 91
VK_APPS constant, 91
VK_A TIN constant, 92
VK_BACK constant, 89
VK_BACKQUOTE constant, 91
VK_BACKSLASH constant, 91
VK_CANCEL constant, 89
VK_CAPITAL constant, 90
VK_ CLEAR constant, 89
VK_COMMA constant, 91
VK_CONTROL constant, 90
VK_CRSEL constant, 92
VK_DECIMAL constant, 91
VK_DELETE constant, 90
VK_DIVIDE constant, 91
VK_DOWN constant, 90
VK_END constant, 90
VK_EQUAL constant, 91
VK_EREOF constant, 92
VK_ESCAPE constant, 90
VK_EXECUTE constant, 90
VK_EXESEL constant, 92
VK_Fl-VK_F24 constants, 91
VK_HELP constant, 90
VK_HOME constant, 90
VK_HYPHEN constant, 91
VK_INSERT constant, 90
VK_LBRACKET constant, 91
VK_LBUTTON constant, 89, 94
VK_LCONTROL constant, 91
VK_LEFT constant, 90
VK_LMENU constant, 91

852

VK_LSHIFT constant, 91
VK_LWIN constant, 90, 788
VK_MENU constant, 90, 94
VK_MUL TIPL Y constant, 91
VK_NEXT constant, 90
VK_NONAivlE constant, 92
VK_NUMLOCK constant, 91
VK_NUMPAD0-9 constants, 91
VK_OEM_CLEAR constant, 92
VK_OFF constant, 92
VK_PAl constant, 92
VK_PERIOD constant, 91
VK_PLAY constant, 92
VK_PRIOR constant, 90
VK_RBRACKET constant, 91
VK_RBUTTON constant, 89
VK_RCONTROL constant, 91
VK_RETURN constant, 90
VK_RIGHT constant, 90
VK_RMENU constant, 91
VK_RSHIFT constant, 91
VK_SCROLL constant, 91
VK_SELECT constant, 90
VK_SEMICOLON constant, 91
VK_SEPARATOR constant, 91
VK_SHIFT constant, 90
VK_SLASH constant, 91
VK_SNAPSHOT constant, 90
VK_SP ACE constant, 90
VK_SUBTRACT constant, 91
VK_ TAB constant, 89
VK_UP constant, 90
VK_ZONE constant, 92
volumes, database, 418-20, 465-67

w
WaitCommEvent function, 547, 548, 551
WaitForMultipleObjects function, 509, 511,

512, 531
WaitForSingleObjects function, 509-11, 529
waiting, 509-14
WAV files, 413, 540
WINBASE.H, 514, 534, 549, 553
WINDCLASS structure, 152
window class, 6, 22, 28
window handle data type, 15
window procedure, 6-7, 16

windows
basic description of, 149-50
enumerating, 151
finding, 151, 152
iterating through a series of, 151
management functions for, 151--63
sizing, 29
structure values for, editing, 152-53
valid/invalid regions of, 30, 37

Windows 3.1. See Microsoft Windows 3.1
Windows 95. See Microsoft Windows 95
Windows 98. See Microsoft Windows 98
Windows CE Services, 662-706
Windows.h. 14
Windows NT. See Microsoft Windows NT
WinMain procedure, 16, 19, 23, 25-26, 32,

497. 645, 649, 742, 744
WinProc procedure, 16
WinSock (socket API), 599--626
WlNSOCK.H, 610
WM_ACTIVATE message, 31
WM_CAPTURECHANGED message, 114
WM_ CHAR message, 89, 92, 97, 750, 764, 765,

788
WM_CLOSE message, 147, 497, 498, 792
WM_COMMAND message, 127, 129, 131, 147,

170, 176-75, 205-7, 214, 216, 223, 226,
260-61, 267, 273, 275, 277-79, 530

WM_COPYDATA message, 517-18
WM_CREATE message, 7, 25, 27, 31, 61, 125,

165, 205, 213
WM_DBNOTIFICATION message, 425, 426
WM_DEADCHAR message, 93
WM_DESTROY message, 32, 147
WM_DRAWITEM message, 172, 206-7
WM_HIBERNATE message, 30-31, 150,

374-77
WM_HSCROLL message, 169, 175, 207
WM_INITDIALOG message, 213, 216,

222, 261
WM_KEYDOWN message, 88-89, 92, 97, 750,

764, 788
WM_KEYUP message, 89, 92, 97, 750,

764, 788
WM_LBUTTONDOWN message, 105-6,

107, 717
WM_LBUTTONUP message, 106, 123, 717

Index

WM_MOUSEMOVE message, 106, 107, 113
WM_MOVE message, 7, 8
WM_NOTIFY message, 223, 224, 226, 260,

267, 275, 303, 320, 465, 491
WM_PAINT message, 25, 28, 29, 30, 36, 37,

38, 61, 10~ 16~ 214, 407
WM_QUIT messages, 21, 32
WM_RBUTTONDOWN message, 114
WM_RBUTTONUP message, 114
WM_SETFOCUS message, 88
WM_SETTINGCHANGE message, 322
WM_SIZE message, 123, 679
WM_SYSCHAR message, 89, 92
WM_SYSKEYDOWN message, 89
WM_SYSKEYUP message, 89
WM_VSCROLL message, 166, 169. 175, 207
WNDCLASS structure, 22-24
WNet functions, 580-91
Word. See Microsoft Word
word data type, 15
WorkerBee routine, 505--6
wPacketLength field, 553
wPacketVersion field, 553
wParam parameter, 21, 26, 31-32, 88-89, 92,

95, 97, 106, 114, 127, 130, 166, 169-70,
172, 221, 717, 755, 757

WriteFile function, 382, 384, 544, 546-47,
551-52, 556, 577

Write method, 659
WSAData structure, 599
WSAGetLastError function, 600, 602, 604, 610
WSAStartup function, 599-600
WS_CAPTION style flag, 209, 210
WS_CHILD style flag, 150, 165, 278
WS_EX_CAPTIONOKBTN style flag, 210
WS_EX_CONTEXTHELP style flag, 210
WS_GROUP style flag, 211
WS_HSCROLL style flag, 167
WS_OVERLAPPED style flag, 150
WS_POPUP style flag, 210
WS_SYSMENU style flag, 209, 210
WS_TABSTOP style flag, 211
WS_VISIBLE style flag, 24, 150, 165, 205,

278, 374
WS_ VSCROLL style flag, 165, 767

853

Index

x
XOFF character, 550-51, 555
XON character, 550-51, 555
XTalk program, 518--31

z

XTalk.c, 521-31
XTalk.h, 519-21
XTalk.rc, 519
window, 518

zero-delimited strings, 587
zones, debug, 797-98
Z-order, 88, 150, 151, 171, 375

854

DOUG BOLING

A longtime contributing editor to
PC Magazine and a columnist for
MIND, Dougla Boling i known as
an a tute ob erver of the computer
indu try. He ' an electrical engi
n er by training and a writer and a
con ultant by practice. He's a rec
ognized authority on Window CE
and other programming topic and
p ak at leading profe sional de

veloper onferences.

&
A NEW series of public and on-site Expert Seminars
by the same experts who WROTE the books and
TRAIN Microsoft's own developers.

David Solomon
Jeffrey Richter
Jeff Prosise

Jamie Hanrahan
Brian Catlin
Douglas Boling

Courses for the developers who need to stay on
the leading edge. Many of these topics you can 't
get anywhere else. Topics include:

• Windows NT Internal
Architecture I Windows NT 5.0

• Win32 Programming
• Windows NT & WDM Drivers
• COM & MFC Programming
• CE Embedded Systems and

Device Drivers

Suggested Expert Seminar Course Sequence for
Advanced High-Level Windows Programming Topics

Programming
Windows CE

' --- - - - - - __ J

Fundamentals '
of COM

' ' - - ----- - __ ___J

Windows NT 5.0 j
What's New .

For Developers t

Windows CE
Drivers and

_J

HAL Programming '
____ ______J

Writing Windows NT
Video/Display

Drivers
- ~ ~· - - I

Call 1.800. 735.4107 or visit www.solsem.com for course descriptions, schedules and reservations.

DAVID
SOLOMON

www.solsem.com

T he manuscript for this book was prepared

using Microsoft Word 97. Pages were composed

by Microsoft Press using Adobe PageMaker 6.52 for

Windows, with text in Garamond and display type in

Helvetica Black. Composed pages were delivered to

the printer as electronic prepress files.

Cover Graphic Designer
Tim Girvin Design, Inc.

Cover Illustrator
Glenn Mitsui

Interior Graphic Artist
Michael Victor

Principal Compositor
Elizabeth Hansford

Principal Proofreader/Copy Editor
Cheryl Penner

Indexer
Liz Cunningham

. Programming

MWi'1dows CE
Port your Win32 skills to the
expanding realm of portable
computing tech~ology.

Design sleek, high-perfonifance applications for the newest
generation of smart devices with PROGRAMMING MICROSOFT
WINDOWS CE. This practical , authoritative reference explains
how to extend your Windows or embedded programming skills
to the Windows CE environment. You'll review the basics of
event-driven development, then tackle the intricacies and
idiosyncrasies of this modular, compact architecture:

• Get under the hood of the streamlined Win32® API

• Investigate platform-specific programming considerations

• Use specialized techniques for handling memory, storage,
and power constraints

• Delve into serial, network, and device-to-desktop
communications

• Advance your skill with modules, processes, and threads

• Build or modify code to meet the requirements of different
Windows CE shells

Use Doug's expert guidance and the software development
tools on CD-ROM to mobilize your Win32 progra'rrfming efforts
for exciting new markets!

ISBN 1-57231-856-2

90000

7 90145 18562 4 9 781572 318564

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	175
	176
	176
	177
	177
	178
	178
	179
	179
	180
	180
	181
	181
	182
	182
	183
	183
	184
	184
	185
	185
	186
	186
	187
	187
	188
	188
	189
	189
	190
	190
	191
	191
	192
	192
	193
	193
	194
	194
	195
	195
	196
	196
	197
	197
	198
	198
	199
	199
	200
	200
	201
	201
	202
	202
	203
	203
	204
	204
	205
	205
	206
	206
	207
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	226
	227
	227
	228
	228
	229
	229
	230
	230
	231
	231
	232
	232
	233
	233
	234
	234
	235
	235
	236
	236
	237
	237
	238
	238
	239
	239
	240
	240
	241
	241
	242
	242
	243
	243
	244
	244
	245
	245
	246
	246
	247
	247
	248
	248
	249
	249
	250
	250
	251
	251
	252
	252
	253
	253
	254
	254
	255
	255
	256
	256
	257
	257
	258
	258
	259
	259
	260
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	740
	741
	742
	743
	744
	745
	746
	747
	748
	749
	750
	751
	752
	753
	754
	755
	756
	757
	758
	759
	760
	761
	762
	763
	764
	765
	766
	767
	768
	769
	770
	771
	772
	773
	774
	775
	776
	777
	778
	779
	780
	781
	782
	783
	784
	785
	786
	787
	788
	789
	790
	791
	792
	793
	794
	795
	796
	797
	798
	799
	800
	801
	802
	803
	804
	805
	806
	807
	808
	809
	810
	811
	812
	813
	814
	815
	816
	817
	818
	819
	820
	821
	822
	823
	824
	825
	826
	827
	828
	829
	830
	831
	832
	833
	834
	835
	836
	837
	838
	839
	840
	841
	842
	843
	844
	845
	846
	847
	848
	849
	850
	851
	852
	853
	854
	855
	856
	857
	858
	xBack

