
Microsoft "Press

Microsoft Press

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1995 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Programmer's 'guide to pen services for Microsoft Windows 95 / by

Microsoft Corporation.
p. cm.

Includes index.
ISBN 1-55615-835-1
1. Pen-based computers--Programming. 2. Microsoft Windows 95.

I. Microsoft Corporation.
QA76.89.P76 1995
005.7' 12--dc20

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 MLML 0 9 8 7 6 5

95-1474
CIP

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

Borland International is a registered trademark of Borland International, Inc. Microsoft, MS, MS-DOS,
Windows, and Win32 are registered trademarks of Microsoft Corporation. 3M is a registered trade­
mark and Post-it is a trademark of Minnesota Mining and Manufacturing Company.

U.S. Patent No. 4955066

Contents

iii

Introduction . ix
Organization . ix.

Document Conventions .. xi

Books and Articles for Further Reading .. xii

System Requirements. xiii

Acknowledgments .. xiii

Chapter 1 Overview of the Pen Application Programming Interface. 1
Architecture of the Pen API. .. 1

Windows '" 2

Drivers ... 6

Recognizer. .. 8

Accessing the Pen API from Applications. .. 10

Chapter 2 Starting Out with System Defaults 11
Pen-Unaware Applications. .. 11
Pen-Aware Applications. .. 12

Beginning an Input Session. .. 12

DoDefaultPenInput Messages 13

Chapter 3 The Writing Process .. 21
Pen Edit Controls. .. 21

The hedit Control .. 22

The bedit Control ... 26

The iedit Control. .. 30

Ink Input. .. 33
Starting the Chain of Events. .. 34

Collecting and Displaying Data .. 35

Processing the Data. .. 38

The On-screen Keyboard .. 38

iv Contents

Chapter 4 The Inking Process. .. 39
The HPENDAT A Object .. 40

Overview of HPENDATA 40

Data Within an HPENDA TA Object 41

HPENDAT A Functions ... 43

Creating an HPENDATA Object 44

Displaying Pen Data. ... 44

Scaling Pen Data . 46

Examining Pen Data ... 47

Editing or Copying Pen Data. ... 48

Compressing Pen Data .. 50

The HINKSET Object .. 51

The HINKSET Functions 52

Timing Information .. 52

Timing Macros ... 54

Chapter 5 The Recognition Process .. 57
The HRC Object .. 57

Using the HRC Functions .. 58

Creating the HRC ... 58

Configuring the HRC .. 59

Processing. 64

Getting Results. 65

Destroying the HRC ... 71

Chapter 6 Design Considerations. .. 73
Basic Principles .. 73

Keep It Simple. .. 73

Use Familiar Models . 74

Use Feedback .. ; ... 74

Make It Fast. .. 75

Make It Fun ... 75

Make Exploration Safe 75

Let the User Maintain Control. 76

Contents v

Recognition: Use and Misuse 76

Selecting Is Better Than Writing 76

bedit Is Better Than hedit. .. 77
Real Time Is Better Than Deferred Time. .. 77

Make Corrections Easy .. 77
Provide Easy Access to the On-screen Keyboard 78

Other Considerations .. 78
Don't Rely on Gestures 78
Provide Ample Target Space .. 79

Use Position Clues .. 79
Conserve Power .. 80

Guidelines for Applications 80
Annotation .. 80

Word Processor .. 81
Spreadsheet .. 81

Mail .. 82
Forms ... 83

Shell ... 83

Chapter 7 A Sample Pen Application. .. 85
Overview of PENAPP .. 85

Initialization .. 86
WinMain .. 86

InitInstance. .. 88
Window Procedures. .. 89

MainWndProc .. 90
InputWndProc ... 91
InfoWndProc .. 96
RawWndProc .. 98

Chapter 8 Writing a Recognizer. .. 101
Recognizer Objects .. 101

How a Recognizer Works. .. 102
List of Exported Functions. .. 103

Interpreting Input .. 109

Returning Results -' 112
Writing a Recognizer. .. 116

Recognition Functions .. 117
A Sample Recognizer .. 123

vi Contents

Chapter 9 Summary of the Pen Application Programming Interface 129
Pen API Functions .. 129

List of Pen API Functions . 130
Pen Kernel Functions . 138

Pen API Structures ... 139

Pen API Messages. 141
Pen API Constants .. 142

Chapter 10 Pen Application Programming Interface Functions 145

Chapter 11 Pen Application Programming Interface Structures 315

Chapter 12 Pen Application Programming Interface Messages 377

Chapter 13 Pen Application Programming Interface Constants 449

Appendix A Differences Between Versions 1.0 and 2.0 of the Pen Application
Programming Interface ... 475
Improvements to the bedit Control. 475

Recognition .. 476
The RC Structure .. 477

The RCRESULT Structure 478
Default Recognition . 479
Recognition Processing. 479

Initializing and Closing a Recognizer. 480
Word Lists and Dictionaries . 480

Gestures. 481
Action Handles. 482

On-Screen Keyboard .. 482
Timing Information. 482
Targeting . 483

HPENDATA Memory Block 483
Registry Configuration. 483

Appendix B Using the 32·Bit Pen Application Programming Interface 485
32-Bit Functions ... 486
32-Bit Messages ... 488

WM_PENEVENT Submessages 488

List of 32~Bit Window Messages 490
List of 32-Bit iedit Control Messages 492

Contents vii

Appendix C Modifying the SYSTEM.lNI File .. 493

Appendix D Accessing the Pen Device Driver , 495
Opening the Pen Driver .. 495
Pen Driver Return Values. .. 496
Pen Driver Messages .. 497

Glossary , . , , . , , ... , 503

Index ... , , . , , , , , 507

Introduction

This book describes how to create applications that use the Microsoft® Windows®
Pen Application Programming Interface (API). The book is divided into two parts.
Part 1 presents an overview of pen-based computing and describes the various
components of the Pen API. Sample code supplements the text and later chapters
present a complete sample program and sample recognizer as examples. (Recog­
nizers translate pen strokes into characters, symbols, or shapes.) Part 2 provides a
reference for the functions, structures, messages, and constants that make up the
Pen API. Following the reference, a number of appendixes provide information
about the differences between versions 1.0 and 2.0 of the Pen API, the 32-bit pen
services, and more.

ix

The Microsoft Windows 95 operating system includes a subset of the Pen API for
displaying pen data. This allows a pen-based application to collect pen data from a
pen tablet, store the data, and later display the data on any personal computer run­
ning Windows 95, even without pen hardware. The full pen services come only with
pen hardware from original equipment manufacturers (OEMs) of pen equipment.
Thus, an application running with Windows 95 has guaranteed access to at least the
display portion of the Pen API; if a pen tablet is attached, the application can also
accept pen input.

The full pen services of the Pen API version 2.0 described in this book can run only
with Windows 95 or later Windows versions.

This book assumes a familiarity with the C language and with Windows program­
ming in general. To keep discussions concise, the text does not digress to define
such general terms as dynamic-link library (DLL), callback/unction, or message.
However, pen-based computing generates its own lexicon, so the text defines new
terms specific to the Pen API as they are introduced. In addition, a brief glossary
of-terminology specific to pen-based computing appears at the end of this book.

Organization
This book is divided into the following chapters and appendixes.

Chapter or appendix

Chapter 1, Overview of the Pen Application
Programming Interface

Chapter 2, Starting Out with System
Defaults

Describes

Architecture of the Pen API.

How to add pen functionality to an
application with a minimum of program­
ming effort.

x Introduction

Chapter or appendix

Chapter 3, The Writing Process

Chapter 4, The Inking Process

Chapter 5, The Recognition Process

Chapter 6, Design Considerations

Chapter 7, A Sample Pen Application

Chapter 8, Writing a Recognizer

Chapter 9, Summary of the Pen Application
Programming Interface

Chapter 10, Pen Application Programming
Interface Functions

Chapter 11, Pen Application Programming
Interface Structures

Chapter 12, Pen Application Programming
Interface Messages

Chapter 13, Pen Application Programming
Interface Constants

Appendix A, Differences Between Versions
1.0 and 2.0 of the Pen Application
Programming Interface

Appendix B, Using the 32-Bit Pen
Application Programming Interface

Appendix C, Modifying the SYSTEM.INI
File

Appendix D, Accessing the Pen Device
Driver

Glossary

Describes

How an application gets input from a pen
device.

How an application collects and changes
pen input data.

Converting raw pen input into usable
characters such as letters and numerals.

Proper techniques, warnings, and tips
for writing a pen-based application.

The PENAPP.C sample application, to
illustrate the information in Chapters 1
through 6.

The requirements and design of a recog­
nizer. Illustrates information using the
sample recognizer SREC.C as a model.

Pen API services, listed by category.

Functions, listed alphabetically.

Structures, listed alphabetically.

Messages, listed alphabetically.

Constants, listed alphabetically.

Changes and improvements to the Pen API.

How to write 32-bit pen-based applications.

Settings used in Windows SYSTEM.INI.

How an application calls the pen driver.

Pen-based terms.

Introduction xi

Document Conventions
The following document conventions are used throughout this book.

Convention

Bold text

()

Italic text

Monospace text

ifC!RegisterClassCLPWNDCLASS)&wc))

else

Description

Bold letters indicate a specific term or
punctuation mark intended to be used
literally: language functions or keywords
(such as DrawPenDataEx or switch),
MS-DOS® commands, and command-line
options. You must type these terms and
punctuation marks exactly as shown. The
use of uppercase or lowercase letters is
usually, but not always, significant. For
example, you can invoke the C compiler by
typing either CL, cl, or CI at the MS-DOS
prompt.

In syntax statements, parentheses enclose
one or more parameters that you pass to a
function.

Italic text indicates a placeholder; you
are expected to provide an actual value.
For example, in the following syntax the
placeholder IpszRecogName represents
a pointer to the filename of a recognizer:

InstallRecognizer(IpszRecogName);

New terms pertaining to pen-based
computing also appear in italics where they
are first introduced or defined in the text.
Such terms are also listed in the glossary.

Code examples are displayed in a
nonproportional typeface.

A vertical ellipsis in a program example
indicates that a portion of the program
has been omitted.

A horizontal ellipsis following an item indi­
cates that more items having the same form
may appear.

xii Introduction

Convention

[[]]

{ }

SMALL CAPITAL LETTERS

Description

Double brackets enclose optional fields
or parameters in command lines or syntax
statements.

A vertical bar indicates that you can enter
one of the entries shown on either side of
the bar. In symbol graphs, a vertical bar
indicates the possible character choices.

Braces indicate that you must specify one of
the enclosed items.

Small capital letters indicate the names of
keys and key sequences; for example,
CTRL+ALT+DEL. If the key names are sepa­
rated by commas instead of plus signs; for
example ALT, F-then you must press the
keys consecutively rather than together.

Books and Articles for Further Reading
The documentation listed in the following table provides additional information
about the Pen API and about Windows in general.

Title

Microsoft Windows Pen API version 2.0
online Help

Microsoft Windows Software Development
Kit (SDK) documentation, or equivalent
documentation

Microsoft Windows Device Driver Kit
(DDK) documentation, or equivalent
documentation

Duncan, Ray. "Power Programming." PC
Magazine. New York, New York: Ziff­
Davis Publishing Company, January 14,
1992 through May 12, 1992

Petzold, Charles. Programming Windows.
Third edition. Redmond, Washington:
Microsoft Press, 1992

Contents

Online reference for Pen API functions,
structures, messages, and constants.

Information about the application
programming interface of the Windows
operating system.

Description of the application programming
interface of the Windows device drivers.
Required only for developing drivers.

Series of articles on the basics of the Pen
API version 1.0.

Good introduction to general programming
for Windows.

Introduction xiii

System Requirements
You can develop pen applications for version 2.0 of the Pen API with the following
software and hardware:

• A personal computer running Windows 95 or a later version of Windows

• A mouse, tablet, or other pointing device supported by the Pen API

• Microsoft Win32® Software Development Kit (SDK)

• Microsoft Windows 95 Device Driver Kit (DDK)-necessary only if you will
be building pen, display, or keyboard drivers

• Microsoft C Optimizing Compiler, version 5.1 or later, or Microsoft QuickC®
for Windows version 1.0 or later

• Microsoft Macro Assembler version 5.1 or later-necessary only if you will be
building pen, display, or keyboard drivers

You may also use equivalent development software produced by other manufac­
turers, such as Borland International, Inc.

Acknowledgments
Special thanks to the contributors to this book including:

Writers Beck Zaratian Mark Williams
Don Gilbert

Editors David Steinmetz Barb Ellsworth
Peter Delaney David Thombrugh

Program Managers Jeff Aamodt Steve Liffick
Eric Berman

Pen Services Development Team Eric Onasick Shishir Pardikar
Vinayak Bhalerao Chris Leyede
Haresh Ved Fumitaka Kawasaki

Recognition Development Team Mike VanKleeck Jim Adcock
Justin Ferrari ShamikBasu
SungRhee Oswaldo Ribas
Donald Sidoroff Patrick Haluptzok
Greg Hullender

Testing Team BeccaMoss Keith Stutler
Brian Watson Randy Shedden
Xian-Ling Wu David Flenniken

CHAPTER 1

Overview of the Pen Application
Programming Interface

This chapter presents an overview of pen-based computing, divided into two main
sections. The first section broadly describes the various components that make up
the Pen application programming interface (API). The second section describes how
applications access the pen services to incorporate pen-based features.

The architecture of version 2.0 of the Pen API remains similar to version 1.0, but its
style and design differ considerably. Even if you have worked with version 1.0, you
should read this chapter to understand the shift in programming philosophy in
version 2.0.

Architecture of the Pen API
The seemingly simple step of getting data from the pen to an application involves
many intermediate tasks. Fortunately, the Pen API itself takes on the major share
of this work. By providing applications with convenient access to pen features, the
Pen API insulates the programmer from the most tedious aspects of pen data recog­
nition. At the same time, its flexible design allows applications to control most of
the low-level processes of pen input.

As you read this section, keep in mind that the complexities of the Pen API
architecture in no way imply a corresponding difficulty in creating pen-based
programs. You will find that writing intelligent pen-based software is no more
difficult than writing other applications for Microsoft Windows.

2 Programmer's Guide to Pen Services for Microsoft Windows 95

Windows

Figure 1.1 illustrates the interaction between applications and the main components
of the Pen API.

Applications

Recognizers

Drivers

Figure 1.1 Components of the Pen API

The following four sections describe each component of Figure 1.1, beginning with
the .main Windows component. Each section contains a figure that incorporates
Figure 1.1, exploding the component into a detailed view. The accompanying text
describes the component and explains how it interacts with the other components.

As Figure 1.2 shows, the heart of the pen-based services for Microsoft Windows 95
consists of two libraries-PKPD.DLL and PENWIN.DLL. The PKPD.DLL file
provides ink management for the pen services of Windows 95. This allows an
application to display and manipulate ink data with any installation of Windows 95,
even one without pen hardware. Chapter 9, "Summary of the Pen Application
Programming Interface," identifies the pen services exported by PKPD.DLL.

I
I

I
I

I

Overview of the Pen Application Programming Interface 3

Applications

I
I

I
I

Pen-Unaware
Applications

I
t t

Pen Message
Interpreter

Windows 95

.Writing Palette and

.On-Screen Keyboard

Drivers

Pen-Aware
Applications

•

\

\

Pen Windows Library
(PENWIN.DLL)

Ink Manager Library
(PKPD.DLL)

Recognizers

\

\
\

\

Figure 1.2 Detailed view of Windows component

The PENWIN.DLL file is available only with original equipment manufacturer
(OEM) pen hardware and provides additional pen services that collect, modify, and
recognize ink data. Before using these input and recognition features, an application
should first test for the presence of the PENWIN.DLL file and either gracefully exit
or alter its behavior accordingly.

4 Programmer's Guide to Pen Services for Microsoft Windows 95

In Pen Windows version 1.0, applications were required to call RegisterPenApp
in order to tell the system to convert all edit controls to handwriting edit (hedit)
controls. With Pen API version 2.0, however, this is not necessary; all edit controls
in applications are automatically converted. If the application is version-stamped as
a Windows 95 - based application, the conversion is automatic; otherwise, applica­
tions version-stamped as Windows 3.1-based applications require the call to
RegisterPenApp that was required for Pen Windows version 1.0.

It is important to understand that for any application to successfully use the func­
tions in PENWIN.DLL, the computer on which it is running must load the pen
services when Windows boots and tenninated the pen services when Windows
shuts down (that is, PENWIN.DLLmust be referenced from the drivers line in the
[Boot] section of the SYSTEM.INI file). This does not apply to functions in the
PKPD.DLL library, which is automatically available on all Windows 95 systems.
See Appendix C, "Modifying the SYSTEM.lNI File," for infonnation on the
SYSTEM.lNI file requirements.

Because of this requirement, PENWIN.DLL should never be statically linked by
any application that may be run on a system on which pen services are not installed.
Instead, its functions should always be called using function pointers. Typically,
when the pen-aware application initializes, it calls GetSystemMetrics with
SM _ PENWINDOWS as a parameter which, if returned successful, provides a
handle to the loaded library. Then, for each PENWIN.DLL function used by the
application, the application calls the GetProcAddress function (with the library
handle and the function name) and saves a function pointer to be used in future
calls to that function. See the HFORM sample application for an example of this
technique.

By not linking PENWIN.LIB, it is insured that an application running on a system
on which PENWIN.DLL has not been installed, but which contains PENWIN.DLL
on the path, will not load PENWIN.DLL at runtime. Pen components not loaded at
system boot time are not guaranteed to perfonn properly. Note that this applies for
both 16-bit and 32-bit libraries.

Applications that are destined to be run only on systems that have pen services
installed can link directly to PENWIN.LIB. These applications should test for the
existence of pen services at startup, however, and exit if it is not found. Note that
most of the examples in this manual follow normal linking practice for the sake of
readability and do not use the safer practice of using function pointers. It is the
responsibility of the developer to choose the best means of accessing the functions
in PENWIN.DLL for each application.

Overview of the Pen Application Programming Interface 5

The Pen Message Interpreter provides basic pen services to pen-unaware applica­
tions. Such applications, which do not explicitly take advantage of Windows pen
services, currently represent a majority of Windows-based software. The Message
Interpreter allows use of a pen with pen-unaware programs by capturing hand­
written input and other pen events and converting them into equivalent keyboard
and mouse messages. The application has no knowledge of the pen or that pen input
has occurred.

In capturing handwritten input, the Message Interpreter acts only when it detects
a standard I-beam pointer or insertion point in the pen-unaware application. Since
applications generally show the system I-beam pointer when prompting for input in
writing areas, the Message Interpreter reliably serves most pen-unaware programs.
However, a few pen-unaware Windows-based applications do not prompt with a
standard I-beam pointer, defeating the Interpreter's detection method. Although the
Interpreter still allows the pen to serve as a mouse with such applications, it cannot
interpret handwritten input.

The Message Interpreter may also falter when serving applications developed for a
version of Windows earlier than version 3.1. These applications were not designed
with the pen in mind and therefore may not work optimally with the pen. For
example, edit fields in applications written for Windows version 3.0 are often too
small to write in with a pen. A final problem with older applications is that the
Message Interpreter has no means of receiving contextual information from the
application about what sort of input it expects. This can reduce recognition
accuracy.

The Message Interpreter is of academic interest for the programmer because it
pertains to only pen-unaware applications. The rest of this book focuses on how to
write pen-aware applications and dynamic-link libraries (DLLs) that make use of
the Pen API directly.

6 Programmer's Guide to Pen Services for Microsoft Windows 95

Drivers
Figure 1.3 shows the two types of drivers that function within the Pen API system.
Most drivers incorporate two modules: an installable device driver that uses the
Windows installable driver interface and a virtual device driver that handles inter­
action with the hardware.

Applications

Windows 95 Recognizers

/ ,
/ \

/ ,
/ \

/ ,
/ ,

/ ,
/ ,

/ \
/ \

/

Pen Driver Display Driver

Figure 1.3 Detailed view of drivers component

Pen Driver
The pen installable device driver, which Windows supplies as th~ file PENC.DRV,
interacts with the virtual pen driver (VPENDC.VXD) and passes pen movement
data to Windows. The fact that the pen driver's data may sometimes be needed for
on-the-fly handwriting recognition places several constraints on a pen input device:

• The pen driver must be able to report the location of the· pen at least 60 times per
second. This rate ensures the true path of tIie pen is reported accurately enough
to support the efforts of vector-based recognizers. It also makes the ink, a path
of pixels that traces the pen's movement, appear smooth and natural at normal
writing speeds. For more information about recognizers, see the "Recognizer"
section later in this chapter.

Overview of the Pen Application Programming Interface, 7

• The pen driver must be able to report pen positions with a resolution of at least
200 points per inch. This degree of resolution ensures ink coordinates are
sufficiently fine to let the recognizer make accurate judgments about the path
of the pen over the digitizing surface.

• Regardless of the resolution of the device, the pen driver must report the pen
position in tablet coordinates of 0.001 inch. This convention ensures that
Windows, the recognizer modules, and the application all view the ink at the
same scale.

Display Driver
The display driver is responsible for interacting with the display hardware and the
graphics device interface (GDI) module of Microsoft Windows. A display driver
should support inking to provide the user with visible feedback as the pen moves.
Technically, the Pen API does not require inking support from the display driver.
However, the system is far more practical and convenient when the user can see
the ink trail left by the pen.

Two types of display drivers are supported: Display Control Interface (DCI)
drivers (called DCI Providers) and non-DCI drivers, such as older VGA or 8514
drivers. For DCI Providers, no extra work is required to support the pen interface.

To support inking in a non-DCI driver, the display driver must be able to:

• Export the GetLPDevice function to provide Windows with a value identifying
the pen hardware.

• Export the InkReady function, which Windows calls to notify the driver that
the pen is in motion and Windows is ready to display ink. InkReady must be
able to handle calls during system interrupts.

• Provide a pointer in the shape of a pen.

Windows-not the display driver-displays the ink. When Windows receives
notice through its InkReady function, the driver calls back into Windows to draw
the ink.

For more details on display drivers, refer to the device driver kit (DDK) for
Windows 95 ..

8 Programmer's Guide to Pen Services for Microsoft Windows 95

Recognizer
A recognizer is a DLL with functions that determine what symbol a pattern of pen
strokes represents. As illustrated in Figure 1.4, Windows allows the concurrent
operation of more than one recognizer. For example, one recognizer may specialize
in English letters, another in mathematical symbols, another in geometric shapes,
and so forth. .

/
/

/

Applications

Windows 95

/
/

/

Dri¢s
/

/

/

/
/

/

Recognizer #1 I-- Word List(s) for
Recognizer #1

Recognizer #2 I--
Word List(s) for
Recognizer #2

. .

Recognizer #n f--- Word List(s) for
Recognizer #n

I
I

Figure 1.4 Detailed view of recognizers component

Overview of the Pen Application Programming Interface 9

Each handwriting recognizer can access any number of word lists . Word lists offer
a way for a recognizer to corroborate and refine its guesses. For example, if a
recognizer cannot decide whether a handwritten word is "boy" or "looy," finding
one word but not the other in a word list helps the recognizer make a more
confident choice.

Although many recognizers may be available to an application, only one serves as
the system default recognizer. This is the recognizer that Windows automatically
installs and calls by default. To use other recognizers, an application must first
specifically install them. (For information about how to install multiple recognizers,
see Chapter 5, "The Recognition Process.") The Microsoft Handwriting Recognizer
(GRECO.DLL) is provided as the default system recognizer on most OEM tablet
installations of Microsoft pen services. The Microsoft Handwriting Recognizer
recognizes all European letters, numerals, and punctuation, with emphasis on
English, French, and German, An application can set up a different system recog­
nizer by identifying the new file in the Windows registry. Appendix A explains how
to set up a new default recognizer.

10 Programmer's Guide to Pen Services for Microsoft Windows 95

Accessing the Pen API from Applications
As Figure 1.5 shows, applications that accept user input are divided into two cate­
gories: pen-aware and pen-unaware applications. A pen-unaware application, as
the name implies, is written to expect input only through the keyboard or mouse,
unaware of the existence of Windows pen services. However, if a pen device is
present, Windows 95 supports its use both as a mouse and for text entry with a pen­
unaware application. For details about how Windows allows the use of a pen with
an application not written to accept pen input, see "Pen-Unaware Applications" in
Chapter 2, "Starting Out with System Defaults."

I
I

I
I

\

\

\
I

I
\r---------------~

I
I

Pen-Unaware
Applications

Windows 95

Drivers

Pen-Aware
Applications

--- ----------,
: ____ 32-bit Thunk Lay~ ___ I

\

\

\

\
\

\
\

\

Recognizers

To Pen Message
Interpreter

To PENWIN.DLL

Figure 1.5 Detailed view of applications

The Pen API is designed for small handheld systems with limited memory and
power, so its API consists of 16-bit functions. Therefore, Windows provides a
thunk layer for 32-bit applications to call through to the API. The thunk layer
automatically converts 32-bit function parameters and structure data to 16-bit
equivalents. The application must ensure its data will fit into the smaller sizes
before calling into the Pen API. See Appendix B for information about using the
32-bit API.

CHAPTER 2

Starting Out with System Defaults

As much as possible, the Pen application programming interface (API) handles the
many complexities of pen-based computing. A rich API leaves the developer free to
concentrate on design without having to worry about details. This chapter describes
how to create a pen-based application that relies on the system default services of
the Pen API. For the sake of simplicity, the term "application" as used in this
chapter refers both to Windows-based programs and dynamic-link libraries (DLLs).

Pen-Unaware Applications
Microsoft Windows 95 supports the use of a pen even with pen-unaware applica­
tions. For such applications, Windows provides a means for the pen to mimic both
mouse and keyboard data. It does this in two ways.

The first method, the Pen Message Interpreter, is described in the "Windows"
section in the previous chapter. The second method involves two utility "applets"
called Writing Palette (WRITEP AL.EXE) and Screen Keyboard (SK.EXE), both
supplied as installed applications. Writing Palette allows the user to enter hand­
written text for those occasions when the Message Interpreter fails to detect an
input prompt. For example, when running an MS-DOS text editor in a window, the
user can input handwritten text through the Writing Palette utility. The Pen API
translates the handwritten text into characters and displays the result in the writing
window. The user can then correct the text if necessary and tap the OK button when
the corrections are recognized. Windows feeds the characters to the pen-unaware
text editor as a series of WM_KEYDOWN and WM_KEYUP messages as though
they were typed at the keyboard.

The Screen Keyboard applet displays an image of a typical keyboard on which the
user can "type" by tapping the keys of the on-screen keyboard with the pen. Each
key is sent as soon as it is typed. This does not require recognition because no
handwriting is involved.

12 Programmer's Guide to Pen Services for Microsoft Windows 95

Pen-Aware Applications
The Pen API allows the developer to approach pen-based computing in stages. For
those who wish to do only a minimum amount of programming work and yet
incorporate significant pen capabilities in an application, the Pen API provides the
DoDefaultPenInput function. DoDefaultPenInput embodies a set of more com­
plex API elements in one function. As its name implies, it allows applications to
rely on the system to make all of the decisions concerning pen input. The developer
can incrementally enhance a pen-based application as time and interest permit.

When called in response to a WM_LBUTTONDOWN message generated by the
pen device, DoDefaultPenInput starts a cascade of messages. These messages
reflect the many steps of the recognition process, each message serving as a notice
that a next step in the process is about to occur. The application can take some
action prior to each step or simply ignore the message and let the DefWindowProc
function provide default services.

This approach follows standard Windows messaging procedures. If an application
lets the message pass through to DefWindowProc, Windows translates the pen
events into the appropriate keyboard messages. For example, handwritten char­
acters generate appropriate WM_ CHAR messages. In this way, a developer can
gradually modify an existing application to become more and more sophisticated
about pen input by adding code to handle more of the DoDefaultPenInput
messages.

The following sections describe the programming convenience of using system
defaults, which you might think of as "letting the system do the work." The text
also mentions various options available to the developer who wishes to exercise
more control over the recognition process. These options involve manipulating data
objects such as HRC and HPENDATA, which are fully described in Chapters 4
and 5. The following sections serve as an introduction to the entire process of
converting pen-based input to usable data. When you later decide to incorporate
additional recognition management into your application, see Chapters 4 and 5.

Beginning an Input Session
A pen input session begins when the user touches pen to tablet and begins writing.
The end of the session depends on parameters established by the application.
Usually, the session ends when the user taps the pen outside the writing area or
when a brief period of inactivity elapses. As when writing with a real pen, people
tend to pause between words or sentences to gather their thoughts; an application
can use these momentary pauses to get recognition results. A new session begins
when the user begins writing again.

Starting Out with System Defaults 13

."""
When the pen first touches the tablet at the start of an input session, Windows sends
a WM_LBUTTONDOWN message to the application's main window procedure.
In a pen-based environment, this message can indicate either a true mouse event or
that the pen point has touched the tablet. The application must distinguish between
these two possibilities before calling the DoDefaultPenlnput function, as shown in
the following fragment:

LONG lExtraInfo;

switch (wMsg)
{

case WM_LBUTTONDOWN:
II If true pen-down event, call DoDefaultPenInput.
lExtraInfo = GetMessageExtraInfo();
if (IsPenEvent(wMsg. lExtraInfo)

return DoDefaultPenInput(hwnd, LOWORD(lExtraInfo));

else

DoDefaultPenlnput Messages

II No, it's a mouse
II button down

This section lists in chronologie order the message traffic that DoDefaultPenlnput
generates. It discusses why an application might want to handle each message and
explains what action DefWindowProc takes. The sample application described in
Chapter 7, "A Sample Pen Application," demonstrates how to handle most of these
messages.

Step 1: PE_BEGININPUT Submessage
Immediately upon calling DoDefaultPenlnput, an application receives a
WM_PENEVENT message with a PE_BEGININPUT submessage. Sending
WM_PENEVENT and PE_BEGININPUT via the SendMessage function is the
equivalent of calling DoDefaultPenlnput. The caller should not trap the
PE_BEGININPUT submessage because DefWindowProc starts the chain of
events based on this message. The application should complete all its initialization
work before calling DoDefaultPenlnput.

14 Programmer's Guide to Pen Services for Microsoft Windows 95

Step 2: PE_SETTARGETS Submessage
Windows sends the WM_PENEVENT message with a PE_SETTARGETS
submessage to the window that received the PE_BEGININPUT submessage.
PE_SETT ARGETS is important when several windows on the screen vie for input
at the same time, presenting Windows with more than one potential recipient for the
pen data. This can occur when a dialog box contains multiple edit controls or a
forms program prompts the user simultaneously with several writing areas. The user
can write in different writing areas without having to pause between each and wait
for recognition results. Windows treats the writing as part of a single input session,
regardless of the targets.

DoDefallltPenlnpllt must therefore select between targets when distributing pen
data. A target is a rectangular area associated with the handle of a window that is a
valid destination for pen data. When writing starts, all valid targets participate in
the DoDefallltPenlnpllt messaging. This allows the user to move freely between
windows-for example, writing the name of a city in one control, interrupting to
write the date in another control, then moving back to the first control to add the
state and zip code. The system correctly routes pen input to the control on which
ink was written or, barring that, to the control nearest the ink.

DoDefallltPenlnpllt handles all routing automatically. Upon receiving a
PE_SETT ARGETS submessage, the application can process the message and
create a T ARGINFO structure that describes all valid targets for the pen data. If
the application chooses not to process PE_SETT ARGETS itself, DefWindowProc
enumerates the children of the window and creates a TARGINFO structure
automatically. If the application returns FALSE to the PE_SETTARGETS sub­
message, Windows assumes no targets exist and sends the pen data to the window
that received PE_SETT ARGETS.

For information on how to specify a target area larger than the window size, see the
"PE_SETT ARGETS Submessage"section.

Step 3: PE_GETPCMINFO Submessage
If the application calls DefWindowProc to process the PE_SETT ARGETS sub­
message, every descendant of the window that received PE_SETT ARGETS
receives a PE_ GETPCMINFO message. This message is so named because it gets
information about the pen collection· mode (PCM). The PCM describes the system
state during an input session when the pen is writing and not operating as a mouse.

Starting Out with System Defaults 15

PE_GETPCMINFO gives each target the opportunity to:

• Proclaim or disclaim itself as a valid target.

• Specify termination conditions, such as timeout or range.

• Identify areas in which tapping terminates the input session.

• Do any combination of the above.

In processing PE_ GETPCMINFO, the child window must fill in a PCMINFO
structure that describes how pen interaction should proceed. If the candidate
window wishes to receive input from the pen and become a true target, it can
provide the coordinates of a bounding rectangle in the rectBound member of
PCMINFO. The bounding rectangle constitutes the target area of the child win­
dow; inking that occurs within or nearest a bounding rectangle is sent to the
window associated with the rectangle. If the child window does not process
PE_ GETPCMINFO, Windows does not consider the window a candidate for
pen input but also does not prevent ink from overwriting the window.

DefWindowProc collects all bounding rectangles and exclusion rectangles
provided by the descendant windows and creates a master PCMINFO structure
that describes the situation.

For information about how to initialize and make changes to a PCMINFO struc­
ture, see the "Starting the Chain of Events" section in Chapter 3, "The Writing
Process." See Chapter 11, "Pen Application Programming Interface Structures,"
for descriptions of the structure members.

Step 4: PE_GETINKINGINFO Message
Each target specified in the T ARGINFO structure created in step 2 that has a valid
bounding rectangle from step 3 receives a PE_ GETINKINGINFO message. In
response to this message, a child window can set ink color and ink width, establish
the ink clip region, and specify whether or not Windows should automatically
restore the screen and erase the ink after pen interaction has ceased.

Processing the message through DefWindowProc sets the system default ink
attributes, uses the window boundary for the ink clip region, and forces automatic
restoration of the screen after input. DefWindowProc merges the responses from
each target into a master INKINGINFO structure.

16 Programmer's Guide to Pen Services for Microsoft Windows 95

Step 5: Master PCMINFO and INKINGINFO Structures
Having created a master PCMINFO structure and a master INKINGINFO
structure, DefWindowProc sends one more PE_ GETPCMINFO message and
PE_GETINKINGINFO message to the parent window that contains the child
targets. This provides the parent window a final opportunity to examine and change,
if necessary, the system's assumptions about the impending inking event. For
example, the parent window can specify a default ink color in the INKINGINFO
structure or set an exclusion region around a screen object that had not, for some
reason, handled the PE_ GETPCMINFO message.

Step 6: PE_BEGINDATA Message
When pen activity destined for a particular target begins, the target first receives
a PE_BEGINDAT A message. This message provides the target a way to inform
DoDefauItPenlnput what to do with the data. If DefWindowProc handles this
message, it assigns the pen data to a default HR C object and uses the system
recognizer for recognition. (For more information about the system default
recognizer, see "Recognizer" and "Creating the HRC.") Alternatively, the target
can attach its own HRC for recognition, an HPENDAT A to store the data, or a
private object of some kind associated with the target.

To govern recognition, an application should handle PE_BEGINDAT A, create and
configure its own HRC object, and identify the object with the dwData member of
the TARGET structure pointed to by the message's [Paramo The application calls
the CreateCompatibleHRC function to create the HRC object and set its context.
This forces the system to use the new HRC. For more information about HRC and
how to create one with CreateCompatibleHRC, see "The HRC Object."

Step 7: PE_MOREDATA Message
Multiple PE_MOREDA T A messages can arrive at each target window to indicate
more pen data is available. Generally, an application passes PE_MOREDAT A on
to DefWindowProc for default processing. DefWindowProc accrues new data by
adding it to the HRC or HPENDATA object established in step 6.

Step 8: PE_ENDDATA Message
The PE_ENDDAT A message informs a target window that input for the target has
ceased. The message's [Param points to a TARGET structure, the dwData mem­
ber of which identifies the HRC or HPENDAT A created in step 6. If recognizing

Starting Out with System Defaults 17

input through an HRC object, the application should let DefWindowProc handle
this message. However, DefWindowProc will destroy an HPENDAT A object
when processing PE_ENDDATA. To preserve the HPENDAT A, the application
has two choices:

• Trap the message, preventing it from reaching DefWindowProc. In this case,
the HPENDATA object outlives the input session. Note that an HPENDATA
object occupies memory in the system heap. When finished, the application must
remove the object by calling DestroyPenData to avoid wasting resources.

• Alternatively, copy the HPENDATA object with DuplicatePenData before
letting the PE_ENDDAT A message fall through to DefWindowProc. However,
this approach has no advantage over the preceding method, merely trading the
original object for its clone. Again, the application is responsible for destroying
the new HPENDATA object.

Step 9: PE_RESUL T Message
The PE_RESULT message arrives only if the application has specified an HRC
object in step 6, rather than an HPENDA T A or other object. The message signals
the target window that recognition results are ready. This message differs slightly
from the others in that its IParam holds the HRC handle and not a pointer to a
TARGET structure. If DefWindowProc handles PE_RESULT, it converts the
recognizer's best guess to a string of characters and sends them to the target
window as WM_ CHAR messages. Gestures are also converted to appropriate
messages, such as WM_ COpy or WM_P ASTE.

If the application handles the message, it must not destroy the HRC for the default
system recognizer. Because DoDefaultPenInput created the default HRC, it
expects to destroy it as well. The application must not destroy objects it did not
create.

At this point, an application can process any of the results itself. For example, it
might check for a recognized gesture such as the lasso or cut gesture. The procedure
for examining gestures at this point involves three steps:

1. Retrieve any recognized gesture symbols from the HRCRESUL T object by
calling the GetResultsH~C function with the GRH_GESTURE argument.

2. If this call indicates the recognizer has found a gesture, the application then calls
the GetSymbolsHRCRESU~ T function to see if the gesture is a lasso or X
mark.

3. If the gesture is a lasso or X mark, the application should examine the data
further to determine the size of the gesture, as outlined in the following example.

18 Programmer's Guide to Pen Services for Microsoft Windows 95

If the first or second test fails, indicating the recognizer has found no lasso or X
mark, the application should pass the PE~RESUL T message to DefWindowProc
for text processing. Note that the lasso and cut gestures cannot exist with other
gestures; therefore, the following code allocates only one HRCRESUL T object
because it examines at most a single gesture:

HRCRESULT hresult; II Look at only the first gesture
HPENDATA hpendata; II POints that comprise the gesture
HRGN hrgn; II Screen region of the gesture
SYV syv; II Symbol value of the gesture
UINT uRgnType; II Region type: X or LASSO
int cGest; II Count of gestures in results

switch (wParam)
{

II Handle WM_PENEVENT messages

case PE_RESULT:
II Check for gesture
cGest = GetResultsHRC((HRC) lParam. II HRC handle

GRH_GESTURE. II Gestures only
(LPHRCRESUL T)&hresul t. I I Buffer
1); II Get one result

II If one gesture available. get its symbol
if (cGest == 1)

{

GetSymbolsHRCRESULT(hresult.
0.

II HRCRESULT handle
II Index to 1st syv
II Symbol buffer

II

(LPSYV) &syv.
1); II Get 1 symbol

II If the gesture is lasso or x. collect the
II points that make up the gesture
II
if (syv == SYV_LASSO I I syv == SYV CUT)
{

hpendata = GetPenDataHRC((HRC) lParam);
if (hpendata)
{

II Step 1: Get region of the gesture
uRgnType = (syv==SYV_LASSO) ? CPDR_LASSO : CPDR_BOX;
hrgn = CreatePenDataRegion(hpendata. uRngType);

break;

default :

Starting Out with System Defaults 19

II Step 2: Determine what text lies within the
II region. If the gesture covers more than one
II letter of a word but not the entire word, assume
II it's meant for entire word.

II Step 3: Either select
if (syv == SYV_LASSO)
{

II . or delete the text
else
{

}

DeleteObject(hrgn);
DestroyHPENDATA(hpendata);

II Select the text

II Delete the text

DefWindowProc(hwnd, message, wParam, lParam);

As the previous code shows, applying a gesture to text requires three steps:

1. Call the CreatePenDataRegion function to find the region covered by the
gesture.

2. Determine the text that lies within the gesture's region using the Windows
GetTextExtent function or some other method.

3. Select or cut the text, according to the gesture.

Step 10: PE_ENDINPUT Message
Windows sends the PE_ENDINPUT message to the window that received the
PE_BEGININPUT submessage in step 1. An application can perform any neces­
sary cleanup chores at this time, but should pass the PE_ENDINPUT message to
DetWindowProc.

f

CHAPTER 3

The Writing Process

This chapter begins a series of three chapters that describe the three main stages
of converting pen input into valid computer data. This chapter looks at the writing
process. The next two chapters discuss the processes of inking and recognition.

The writing process includes the various ways a user can write input to a pen-based
application. These involve not only writing words and scribbling figures with a pen,
but also gesturing with predefined pen movements and tapping an on-screen key­
board.

This chapter is divided into three main sections, each discussing a different method
by which an application can accept writing from the pen. The first section describes
the pen edit controls, which are pen-based versions of a standard Windows edit
control. The second section discusses ink input application programming interface
(API) services, which allow an application to govern pen interaction at a lower
level than edit controls. The final section briefly describes the on-screen keyboard.

Pen Edit Controls
The Pen API provides three different edit controls for pen input-the handwriting
edit (hedit), boxed edit (bedit), and ink edit (iedit) controls. (The first letter of the
control name is pronounced separately, as in "h-edit.")

The first two controls are designed for text input. Characters written in an hedit or
bedit control are passed to one or more recognizers and interpreted as equivalent
digital text. Usually, the interpreted text replaces the handwritten glyphs within the
control window after the recognition finishes. The iedit control serves as a drawing
area. With the exception of gestures, the iedit control does not attempt to recognize
written input but merely preserves the pen data in ~ts raw form.

An application creates a pen edit controlthrough the Windows CreateWindow
function, specifying a class ofHEDIT, BEDIT, or IEDIT. The next three sections
describe the pen edit controls in detail and provide examples of how to create them.

22 Programmer's Guide to Pen Services for Microsoft Windows 95

The hedit Control
Except under special circumstances, the hedit control displays two sets of text.
First, the handwritten characters appear as written by the user, formed by the ink
trail of the pen. When the writing is recognized, the handwritten ink disappears
from the screen, replaced within the control window by the interpreted characters
as determined by the recognizer. The interpreted text appears in a Windows font
as though typed at the keyboard.

The following instruction creates a multiline hedit control with left justification:

hwndHedit = CreateWindow< "HEDIT", NULL,
ES_MULTILINE I ES_LEFT I
WS_CHILD I WS_VISIBLE,
CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,
hwndParent, CHILD_ID, hinstCurrent, NULL);

The styles of ES_MULTILINE and ES_LEFT do not constrain the free-form
approach of handwriting in an hedit control. The user can write anywhere on the
pen tablet allowed by the control-usually within or near the control window. The
styles determine the format of the resulting interpreted text displayed in the control.

The hedit control is a pen-aware version of the default Windows 3.1 edit control.
The hedit control not only supports handwritten characters and gestures, but also
responds normally to keyboard and mouse events in the same way as an edit con­
trol. An application can use an hedit control anywhere a regular edit control will
work, including dialog boxes. In fact, specifying EDIT class for a control in
Windows 95 automatically creates an hedit control. The hedit control is visually
identical to a standard control except that it displays a pen pointer instead of an 1-
beam pointer. Single-line hedit controls also display a lens button when a pen is
present. When specifying an HEDIT control for a dialog box in a resource, use
the DIALOGEX resource. Refer to the DIALOGEX resource description in the
Win32 SDK tools documentation for a more information on using the HEDIT
control class.

With a window style of ES_READONL Y, an hedit window can accept no pen
input. The pointer within the control does not change to a pen.

The Writing Process 23

An hedit control processes tabs and carriage returns differently depending on
whether they are entered as gestures or typed from the keyboard. If the user draws
a tab or carriage return gesture in a multiline hedit control, the control inserts a tab
or carriage return character into the text. For tabs and carriage returns entered
from the keyboard, an hedit control in a dialog box mimics the standard dialog box
behavior-that is, pressing the TAB or RETURN key passes control respectively
to the T ABSTOP or DEFPUSHBUTTON statement given in the dialog box tem­
plate.

hedit Control Messages
The Pen API defines the WM_PENCTL message and its alias, WM_HEDITCTL.
An application can send the WM_PENCTL message to an hedit control like this:

lRet = SendMessage(hwndHedit. WM_PENCTL. wParam. lParam);

The wParam parameter ofWM_PENCTL contains an identifier for an HE_ sub­
message, as listed in Chapter 12, "Pen API Messages." The lParam specifies a
value dependent on the HE_ submessage. For more information about the wParam
and corresponding IParam values, see the entry for WM_PENCTL messages in
Chapter 12, "Pen Application Programming Interface Messages."

Sizing the Writing Area with Control Messages
An hedit control must make allowances for handwriting input by providing a suf­
ficiently large area in which to write. Typically, this area incorporates the control
window itself plus an ample margin around the border of the window. Besides
increasing user comfort, this extra space helps ensure parts of written characters
are not inadvertently clipped, making them difficult to recognize. For example, the
cut gesture X often extends above the text selected for deletion. Losing part of the
gesture at the edge of the control window can make it less recognizable.

Note that adjusting a control's writing area does not change the appearance or size
of the control window on the screen. It only specifies an invisible area overlaying
the window; any ink within the writing area belongs to the control. It is possible,
though not recommended, to enlarge the writing areas of two nearby controls so
that they overlap. In this case, Windows assumes ink within the overlapping area
belongs to only one of the control windows, according to normal Windows
z-ordering.

The Pen API provides two methods for an application to adjust the size of the con­
trol writing area. These methods involve either receiving a PE_SETT ARGETS sub­
message or sending an HE_SETINFLATE submessage. The following sections
describe both methods.

24 Programmer's Guide to Pen Services for Microsoft Windows 95

PE_SETTARGETS Submessage
As described in the "DoDefaultPenInput Messages" section in Chapter 2, Windows
sends a PE_SETTARGETS submessage to the application's window procedure
before ink collection begins. This submessage gives the application the opportunity
to set the target writing areas by specifying a new TARGINFO structure identified
by lParam. The structure member rgTarget contains an array of TARGET
structures, one for each target area. The rectangle in the rectBound member of
TARGET specifies each target's writing area. The following code fragment shows
how to set a writing area 4 pixels larger than the boundaries of the child window:

/ldefine NTARG 3 II Number of target windows
/ldefine MARGIN 4 II Inflation margin in pixel units

LPTARGINFO
HWND

1 pt i ;
hwndCtl[NTARG];

II Allocate new TARGINFO structure
II Handles to child windows

RECT
RECTL

rect;
rectl;

II Bounding rectangle of child
II Long version of bounding rect

HGLOBAL h;

h = GlobalAlloc(sizeof(TARGINFO) + (NTARG - l)*sizeof(TARGET));
lpti = GlobalLock(h);
lpti->cbSize = sizeof(TARGETINFO);
lpti->wFlags 0;
lpti->htrgOwner HtrgFromHwnd(hWnd);
lpti->cTargets = NTARG;

for (i=0; i < NTARG; i++)
{

GetWindowRect(hwndCtl[i], (LPRECT) &rect);
rectl.left (LONG) (rect.left - MARGIN);
rectl.top (LONG) (rect.top - MARGIN);
rectl.right (LONG) (rect.right + MARGIN);
rectl .bottom = (LONG) (rect.bottom + MARGIN);
lpti->rgTarget[i].idTarget = i;

II Inflate
1/
1/
1/

rectangle
by MARGIN
pixel units

lpti->rgTarget[i].htrgTarget = HtrgFromHwnd(hwndCtl[i]);
lpti->rgTarget[i].rectBound.left rectl.left;
lpti->rgTarget[i].rectBound.right rectl.right;
lpti->rgTarget[i].rectBound.top rectl.top;
lpti->rgTarget[i].rectBound.bottom = rectl.bottom;

The Writing Process 25

If the Windows DetwindowProc function handles the PE_SETT ARGETS sub­
message, it creates a TARGINFO structure identifying all child windows as
targets. DetwindowProc does not inflate writing areas; that is, it sets the writi1).g
area for each child window within the window borders.

HE_ SETINFLATE Submessage
An application can also enlarge a control's writing area by sending the submessage
HE_SETINFLATE to the control window specifying a RECTOFS structure:

typedef struct {
int dLeft; II Left margin
int dTop; II Top margin
int dRight; II Right margin
int dBottom; II Bottom margin

} RECTOFS FAR * LPRECTOFS;

The RECTOFS structure does not contain the coordinates of a writing rectangle
per se; instead, it contains the dimensions of the additional writing margin around
the control window. The margins specify how many pixel units to add to each
member of the windows rectangle. Margins conform to the x-y screen coordinate
system. Thus, to inflate a writing area, specify negative values for dLeft and dTop
as shown here:

#define
RECTOFS

MARGIN 4
rectofs = { -MARGIN,

-MARGIN,
MARGIN,
MARGIN};

wParam = HE_SETINFLATE;

II Inflation margin in pixel units
II Structure of window margins

lParam = (LONG)«(LPRECTOFS) &rectofs);
lRet SendMessage(hwndHedit. WM_PENCTL, wParam, lParam);

An application can retrieve a window's current inflation margins with the sub­
message H;E_GETINFLATE like this:

wParam = HE_GETINFLATE;
lParam = (LONG)«LPRECTOFS) &rectofs);
lRet SendMessage(hwndHedit, WM_PENCTL, wParam, lParam);

This call fills the RECTOFS structure pointed to by IParam with the control
window's current margins.

26 Programmer's Guide to Pen Services for Microsoft Windows 95

Notification Messages
An hedit window's parent receives the same EN_ notification messages as the
parent of a standard edit window. The parent receives a WM_COMMAND mes­
sage in which the low-order word of the wParam parameter contains the control
ID number and the IParam parameter contains the edit window handle. In 16-bit
applications, the high-order word of IParam also contains the notification value.
In 32-bit applications, the high-order word of wParam contains the notification.
The hedit control also provides HN_ notifications, described in Chapter 12, "Pen
Application Programming Interface Messages."

The hedit control ,also sends a WM_ CTLINIT message to its parent windows when
created. The wParam parameter holds the constant CTLINIT_HEDIT and IParam
points to a CTLINITBEDIT structure. The structure contains the current system
assumptions concerning the appearance and behavior of the hedit control. The
parent window has the option of changing any of these assumptions.

Printing an Edit Control
An application can display a pen edit control in any device context by sending the
control a WM_PRINT message. The message's wParam contains 'the HDC handle
for the device context. This technique, which applies to all pen edit controls, pro­
vides a means for printing the contents of a control window.

The bedit Control
The bedit (boxed edit) control is a variation of the hedit control. All characteristics
of an hedit control described in the preceding section also apply to the beditcontrol,
with two exceptions:

• A bedit window displays writing guides in which the user must write. Inter­
preted text returned from the recognizer replaces the handwritten characters
within the guides.

• A bedit control does not support edit control styles ES_READONL Y,
ES_CENTER, ES_LEFT, and ES_RIGHT. (Text in a bedit is left aligned.)

The Writing Process 27

An application can specify guides either as a comb or as a set of boxes, as shown in
Figure 3.1. The comb consists of a horizontal line with spaced tick marks. The user
writes individual characters between the marks.

, ;: be~it "co,mb' ~ritin~ gUi~e
, , , , , , I

t beditwriting guide,
presented as set of boxes.

Figure 3.1 Two forms of guides: a comb and a set of boxes

These visual guides can greatly improve recognition because they remove from the
recognizer the significant burden of correctly segmenting the text into separate
characters. For example, consider Figure 3.2, which shows a word written in an
hedit control.

I Problems with recognition can occur with hedit control.

cl e an
C' J e~V'1' I ,\, , U,I I, , , , , , I

~ Recognition problems reduced with bedit writing guides.

Figure 3.2 A word written in an hedit control

In this case, the recognizer would probably have difficulty choosing between the
words "clean" and "dean" because of the narrow spacing between the first two
strokes. The bedit control removes such ambiguities. By writing within the guides
of a bedit control, the user implicitly informs the recognizer what strokes compose
a single character.

For a description of how the bedit control has been improved in Windows 95, see
Appendix A, "Differences Between Versions 1.0 and 2.0 of the Pen Application
Programming Interface."

28 Programmer's Guide to Pen Services for Microsoft Windows 95

Windows treats characters in a bedit control as a continuous stream of text. If the
control contains more than one row, text wraps at each row end without regard to
word boundaries. The EM_SETWORDBREAK message has no effect on a boxed
edit control.

An application creates a bedit control with the Windows Create Window function,
specifying a window class of BED IT. The following code shows how to create a
multiline bedit control:

hwndBedit = CreateWindow("BEDIT", NULL,
ES_MULTILINE I WS_CHILD I WS_VISIBLE,
CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,
hwndParent, CHILD_ID, hinstCurrent, NULL);

The BOXLA YOUT structure governs the height and style of the box grid within
the bedit control. Its style member accepts one of the following BXS_ values:

Style Description

BXS_NONE

BXS_RECT

BXS_BOXCROSS

Resets current box style to the default comb style.

Specifies a grid of closed rectangular boxes.

Specifies small crosses at the center of each box. This is used
mainly to aid recognition of certain Far Eastern languages.

To set box height and style, fill a BOXLA YOUT structure with the desired values
and pass it as a submessage of WM_PENCTL, as shown here:

BOXLAYOUT boxlayout;

boxlayout.cyCusp = 6; II Box sides are 6 pixels high
boxlayout.cyEndCusp = 6; II Ends should be the same
boxlayout.style = BXS_RECT; II Grid of closed boxes
iRet = SendMessage(hwndHedit, WM_PENCTL, HE_SETBOXLAYOUT,

(LONG)«LPBOXLAYOUT) &boxlayout));

Referto Chapter 11, "Pen Application Programming Interface Structures," for
a more detailed description of the BOXLA YOUT structure. The next section
explains how to set the system assumptions about the appearance of a bedit control.

bedit Control Messages
The bedit control sends a WM_ CTLINIT message to its parent windows when
created. The wParam parameter holds the constant CTLINIT_BEDIT and lParam
points to a CTLINITBEDIT structure. The structure contains the current system
assumptions concerning the appearance and behavior of the bedit control. The
parent window has the option of changing any of these assumptions.

The Writing Process 29

An application can also initialize a bedit control for a dialog box by using a
DIALOGEX resource in the dialog resource file (.Re) and specifying a
CONTROL statement with a class of BEDIT or specifying a BEDIT edit control
class. In this case, the control still sends the WM_CTLINIT message. However,
the CTLINITBEDIT structure reflects the specifications of the BEDIT class
statement instead of the system defaults. As before, the parent window can modify
the structure if desired. Refer to Chapters 11 and 12 for descriptions of the
CTLINITBEDIT structure and WM_CTLINIT message, respectively. Refer to the
DIALOGEX resource description in the Win32 SDK tools for more infonnation
on using the BEDIT control class.

The EM_LIMITTEXT message deserves special mention because it has changed
slightly from version 1.0 of the Pen API. The message now sets the maximum
number of bytes of text, rather than the number of boxes, that the control can hold.
Note that although a newline character occupies only one box, the newline itself­
carriage return and linefeed-takes 2 bytes. Certain Far Eastern languages also
require 2 bytes per character.

Thus, the EM_LIMITTEXT message has the same effect on bedit controls as it
does on hedit and edit controls. For example, the instruction

SendMessage(hwndBedit, EM_LIMITTEXT, 50, 0L);

sets to 50 the number of bytes the bedit control can accept. This has the following
effects on the control:

• If the user attempts to write the 51 st byte, the control beeps and ignores the
input.

• If the user inserts text into existing text, the control beeps and ignores further
input after the total number of bytes equals 50.

Using bedit Controls in Dialog Boxes
Windows detennines the number of box cells that can fit within a control window
based on the window dimensions and the cell widths given in a GUIDE structure.
Although the Pen API does not provide a way to explicitly set the number of boxes
displayed in a bedit control, an application can imply the number by adjusting the
size of the control window or the size of the cells. Under certain circumstances,
however, Windows may change the dimensions of a bedit control in a dialog box,
thus potentially decreasing or increasing the number of box cells within the bedit.

Usually, this makes no difference to the developer or the user. But if your applica­
tion must always show a specific number of boxes within a bedit, this section
explains how to forestall or handle any changes.

30 Programmer's Guide to Pen Services for Microsoft Windows 95

By default, Windows sizes a dialog box and its controls based on the system font. If
the dialog template requests a different font with a FONT statement and the font is
not available when Windows creates the dialog box, Windows selects an available
font that best matches the requested font. It then scales the dialog box and the con­
trols within it according to the size of the selected font, but does not also scale the
bedit guides. Thus, although a bedit window may change in size because of new
scaling, the size of the boxes within it remain the same. For this reason, the window
may end up with fewer or more cells than the programmer expects.

To ensure a bedit window always displays a specific number of cells, use one of the
following techniques: .

• Remove the FONT statement from the dialog template and let Windows use the
system font in the dialog box controls.

• Specify a font likely to be always available. However, this technique cannot
guarantee correct results for an application that must run under many different
configurations of Windows.

• Readjust the size of the bedit window after Windows has changed it. When
processing WM_INITDIALOG, an application can call the GetWindowRect
function to see whether Windows has resized the bedit control window. If so, the
application can restore the window's original size with either the Move Window
or SetWindowPos function.

Note that this technique assumes a generous blank area surrounds the control, so
that if your application enlarges the control window while Windows shrinks the
rest of the dialog box, the various components of the dialog box do not overlap.

• Recalculate the GUIDE values if Windows has changed the window size.

By default, all the controls within a dialog box use the font selected for the dialog
box. An application can set a different font in bedit controls within the dialog box
by sending a WM_SETFONT message when processing WM_INITDIALOG.

The iedit Control
The ink edit (iedit) control provides easy formatting and manipulation of ink input.
It is not designed for text input, and in this regard differs from the other two pen
edit controls, hedit and bedit. Think of iedit instead as a convenient drawing area
suitable for sketches, diagrams, signatures, doodling-any sort of pen input that
does not need to be recognized as text. However, an application can collect hand­
written text as input from an iedit control and later transfer it to an hedit or bedit
control for editing, if desired, or send it to a recognizer for recognition.

The Writing Process 31

An iedit control ignores most keyboard input because the user cannot type text into
an iedit window. However, an iedit control supports the following keystrokes and
key combinations as convenient shortcuts:

Keystroke or key combination

DEL

CTRL+X

CTRL+C

CTRL+ V or CTRL+P

CTRL+A

CTRL+Z

Effect

Delete selected strokes.

Cut selected strokes to clipboard.

Copy selected strokes to clipboard.

Paste stroke from clipboard

Select all strokes.

Undo last command.

An iedit window can scroll like any other edit control. Specifying a window style
incorporating WS_ VSCROLL and WS_HSCROLL creates a scrollable drawing
area of 32,767 by 32,767 coordinate units. Scroll bars appear on the iedit window
only when ink resides outside the current visible area. This behavior mimics the
Control Panel window, which displays scroll bars only when an icon lies hidden
beyond the boundaries of the window.

The following sample procedure demonstrates how to use iedit to create a drawing
area within a single window. After creating the main parent window, the procedure
I nit Ins tan c e copies the window's coordinates into a RECT structure. It then
uses the results when sizing the child iedit window so that the child window entirely
overlays its parent.

HWND
HWND

vhwndMain;
vhwndledit;

II Main window
II iedit control window

BOOl InitInstance(HINSTANCE hInstance. int nCmdShow)
{

RECT rect; II Main window rectangle

32 Programmer's Guide to Pen Services for Microsoft Windows 95

II
II Create main window
II
vhwndMain = CreateWindow(

"StylusClass",
"Stylus Sample Program",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NULL);

if (!vhwndMain)
return FALSE;

II

II Window class name
II Text for title bar
II Window style
II Default horizontal position
II Default vertical position
II Default width
II Default height
II No parent
II Class default menu
II Window owner
II Unused pointer

II If can't create window,
I I exit

II Create iedit control window within main window
II
GetClientRect(vhwndMain, ~LPRECT) &rect);

vhwndIedit = CreateWindow(
"IEDIT",
NULL,
WS_CHILD I WS_VISIBLE I
WS_HSCROLL I WS_VSCROLL,
0,
0,
rect.right - rect.left,
rect.bottom - rect.top,
vhwndMain,
(HMENU) CHILD_ID,
hlnstance,
NULL);

if (!vhwndIedit)
return FALSE;

II Window class name
II No title bar
II Window style

II Overlay control window
II onto parent window
II Use parent width
II and parent height
II Parent window handle
II Child 10
II Window owner
II Unused pointer

II If problem,
II return error code

SetFocus(vhwndIedit); II Give control immediate focus
ShowWindow(vhwndMain, nCmdShow); II Display main ~indow
UpdateWindow(vhwndMain); II Force WM_PAINT message

return TRUE; II Return success

Ink Input

The Writing Process 33

iedit Control Messages
When created, an iedit control behaves similarly to a bedit control, as described in
the "bedit Control Messages" section. The iedit sends a WM_CTLINIT message
to its parent window. The message's wParam parameter contains the constant
CTLINIT_IEDIT and IParam points to a CTLINITIEDIT structure. The structure
contains the current system assumptions concerning the appearance and behavior
of the iedit control.

An application can initialize an iedit control in a dialog box by specifying the
desired attributes in an IEDIT statement in the .RC file. See "bedit Control Mes­
sages" for details. For information about the CTLINITIEDIT structure, see
Chapter 11.

The pen edit controls discussed previously provide a simple and efficient method for
an application to accept handwritten input. Pen edit controls continue the philoso­
phy and design of a standard Windows edit control; that is, they place the burden
of getting user input on the system rather than the application.

However, ink input API services also offer an application low-level control over the
writing process. Ink input allows an application to gather raw data from the pen,
then process it in any way it wishes. For example, the application can manage its
own inking or even postpone inking to a later time. It can massage or filter the pen
data in some way-say, by rotating an image based on pen movement. It can pass
the data to a handwriting recognizer or simply throw the data away. Ink input offers
an application greater freedom with ink data than simply parsing it for characters.

As you might expect, the increased control afforded by ink input requires increased
programming effort. The flexibility of ink input does not allow a simple recipe of
tasks, but in broad terms the three main steps are as follows:

1. Start the chain of events.

2. Collect and display data.

3. Process the data.

An application can rely on the DoDefaultPenlnput function to collect and process
ink input. For a description of this function, see Chapter 2, "Starting Out with
System Defaults." The following sections focus on the lowest-level API services.
Through these low-level services, all application has complete control over ink
input. These are the same services DoDefaultPenlnput calls internally. If you have
read Chapter 2, the message traffic described here will seem familiar.

34 Programmer's Guide to Pen Services for Microsoft Windows 95

The PENAPP sample application described in Chapter 7, "A Sample Pen
Application," demonstrates how to use the low-level API services for ink input.
Most of the code fragments in the following sections appear in the PENAPP.C
source listing located in the SAMPLEs\C\PENAPP directory.

Starting the Chain of Events
When an application receives a WM_LBUTTONDOWN message, that message
signals the beginning of an input session. (For a defmition of input session, see
"Beginning an Input Session" in Chapter 2.) The following code fragment shows
how to handle the message when not calling DoDefaultPenlnput:

INKINGINFO inkinfo;
PCMINFO pcminfo;
HPCM hpcm;
LONG lExlnfo;
int iRet = TRUE;

switch (wMsg)
{

case WM_LBUTTONDOWN:
lExInfo = GetMessageExtraInfo();

if (IsPenEvent(wMsg, LOWORD(lExInfo)
{

else
{

II Pen down (maybe)

II If true pen down,
II take the actions
II described in the
II text below

II No, it's a mouse
II button down

The application initializes a PCMINFO structure and INKINGINFO structure in
preparation for data collection and display. DoDefaultPenlnput handles this task
automatically, then provides the application an opportunity to selectively change the
default values. (For a description of the submessages PE_ GETPCMINFO and
PE_GETINKINGINFO, see "DoDefaultPenInput Messages" in Chapter 2.) If it
does not call DoDefaultPenlnput, an application must initialize the structures
itself, as shown here:

IIdefine
PCMINFO
INKINGINFO ink;

1000 II Time-out in msec

pcm.cbSize = sizeof(PCMINFO);
pcm.dwPcm = PCM_TIMEOUT I PCM_RECTBOUND;
pcm.dwTimeOut = TIME_OUT;

The Writing Process 35

1/ Required
II When to end session
II Time-out value in ms

GetWindowRect(hwnd. (LPRECT) &pcm.rectBound
ink.cbSize = sizeof(INKINGINFO);

); II Use window borders
II initialize
II the INKINGINFO
II structure "ink"

The above lines specify that the input session ends when the pen travels (or taps)
outside the hwn d window or pauses for the number of milliseconds set by the
constant TIME_OUT. For a detailed description of these structures, see the entries
for PCMINFO and INKINGINFO in Chapter 11, "Pen Application Programming
Interface Structures."

Collecting and Displaying Data
After initializing the necessary structures, the application calls StartPenlnput to
begin the process of collecting ink data:

hpcm = StartPenInput(hwnd. LOWORD (lExtraInfo).
(LPPCMINFO) &pcm. NULL);

The returned value h p em is a handle to the pen collection mode-that is, the input
session - that StartPenlnput begins. The variable 1 Ext r a I n f 0 is the value
returned by GetMessageExtralnfo called when first processing the message
WM_LBUTTONDOWN (see the preceding code fragment). Note that the
StartPenlnput call initiates ink collection, not ink display. The application must
take separate steps to begin inking immediately after StartPenlnput returns.

Inking is the process of displaying a trail of bits behind the tip of the pen as it
moves across the surface of the digitizer, simulating the ink dropped by a real pen.
If necessary, an application can take on the burden of real-time inking by hooking
hardware interrupts with SetPenHook and calling the appropriate graphics device
interface (ODI) functions to incrementally display ink. However, the Pen API
provides a much simpler and more convenient method with the StartInking
function.

As the PCMINFO structure governs StartPenlnput, the INKINGINFO structure
detennines how StartInking operates. To tum on inking with StartInking, an
application supplies the handle returned by StartPenlnput and a pointer to the
initialized INKINGINFO structure, like this:

iRet = StartInking(hpcm. LOWORD (lExtraInfo).
(LPINKINGINFO) &ink);

36 Programmer's Guide to Pen Services for Microsoft Windows ·95

StartInking offers flexibility in how it displays ink. By modifying values in the
INKINGINFO structure, an application can change ink color as the pen moves
over a specified screen area or it can prevent ink from overwriting a screen object.
With the wFlags member of INKINGINFO, an application can request automatic
screen restoration to erase the ink. In this case, Windows replaces the ink trail with
the original screen contents overwritten by the ink. This is much faster and simpler
than repainting an entire window. Alternatively, an application can prevent ink
erasure when pen input ends if, for example, it wants to preserve annotations or
other handwritten notes on the screen. The StartInking function allows both
scenarios.

When StartPenInput returns, a stream of WM_PENEVENT messages begins to
arrive at the application window procedure. These messages contain submessages
that represent current pen activity, such as PE_TERMINATING, PE_PENMOVE,
PE_PENDOWN, and PE_PENUP. These submessages represent milestones in the
system's ongoing process of collecting data from the pen driver. Each message
affords an application the opportunity to gather the raw pen data that has accumu­
lated since the last WM_PENEVENT message.

Windows maintains an internal buffer for data collection, informally named "the
ten-second buffer" as a reminder of its limitations. An application should regularly
drain the internal buffer by copying data from it at every opportunity afforded by
the WM_PENEVENT messages. If it responds to no other event, the application
must at least collect data when it receives the PE_BUFFERW ARNING sub­
message, which indicates the internal buffer is more than half full.

To gather the data, an application calls GetPenInput. This can be done either in a
polling model or in an event -driven model.

In the polling model, the application must repeatedly call GetPenInput to get data.
It is important for the application to yield periodically; for example, by calling the
PeekMessage function. A fast loop can potentially process the points before the
system can collect mdre. In this case, successive calls to GetPeriInput return 0
until the user writes sbme more. Polling is typically terminated when GetPenInput
detects and returns a tertnination condition specified in StartPenInput.

In the event model, the application calls GetPenInput in response to each
WM_PENEVENT message. The following fragment shows a typical message
handler that accumulates ink coordinates in an array of POINT structures. The
example assumes StartPenInput has already been called:

POINT rgPt[MAX_POINTS];
STROKEINFO si;

II Array of POINT structures
II Receives pen stroke info

switch (wParam)
{

case PE_PENDOWN:
case PE_PENMOVE:
case PE_PENUP:
case PE_TERMINATING:
case PE_BUFFERWARNING:

The Writing Process 37

II Process WM_PENEVENT message

liOn any of these events.
II get all points currently
II in the internal buffer

GetPenInput(hpcm. (LPPOINT) rgPt. NULL. NULL.
MAX_POINTS. (LPSTROKEINFO) &si);

II
II Latest batch of pen coordinates is now collected
II into rgPt array. At this pOint. the coordinates can be:
II (1) Passed to a recognizer (or recognizers)
II (2) Passed to a target or control
II (3) Placed into an HPENDATA object
1/

break;

case PE_TERMINATED:
II Input session has ended. Do any required
II clean-up work and display the results.

break;

The example continually calls GetPenInput while the pen is in motion until it
receives a PE_ TERMINATING submessage, indicating the data flow is about to
stop. Windows sends a PE_ TERMINATING message when it detects one of the
termination conditions specified in the PCMINFO structure. Typically, the input
session ends when the user taps the pen outside a given tablet area or when a
specified period of pen inactivity elapses.

An application may need to call StopPenInput to stop further data collection.
The call to StopPenInput is not necessary if the input session ends because of
a condition defmed in the PCMINFO structure. In this case, the system calls
StopPenInput internally. However, if the application terminates the input session
for any other reason, it must call StopPenInput explicitly. Unless your application
defmes all possible termination conditions in a PCMINFO structure, it should call
StopPenInput on detection of a condition that requires termipation. Even if the
system has already called the function, subsequent calls do no harm.

The preceding description also applies to StopInking, provided the application
has called StartInking to display ink. The system calls Stop Inking automatically
if it detects one of the termination conditions defmed in the PCMINFO structure;
otherwise, the application should call Stop Inking explicitly when required.

38 Programmer's Guide to Pen Services for Microsoft Windows 95

Processing the Data
The GetPenInput function accumulates the coordinates of the pen stroke in
an array of POINT structures and places information about the stroke in a
STROKEINFO structure. This data is "raw" in that it represents a literal history
of the pen movement. Some applications will require no more than this. However,
further processing of the raw data using other functions of the Pen API usually
requires placing the data into an HPENDATA or HRC object.

The next two chapters examine these objects thoroughly and continue the code
fragment outlined previously. Chapter 4, "The Inking Process," describes how an
application can alter or manipulate ink data with an HPENDA T A object. Chapter
5, "The Recognition Process," describes the HRC object, which pertains solely
to handwriting recognition.

The On-screen Keyboard
The hedit and bedit controls automatically provide user access to the on-screen
keyboard. In other situations, an application can display the on-screen keyboard
as required by calling the ShowKeyboard function.

Besides displaying and hiding the on-screen keyboard, ShowKeyboard can also
move and minimize the display and select different keyboard types. For a detailed
description of the capabilities of ShowKeyboard, see Chapter 10, "Pen Applica­
tion Programming Interface Functions." For other considerations concerning
ShowKeyboard, see the "Recognition: Use and Misuse" section in Chapter 6.

CHAPTER 4

The Inking Process

This chapter introduces the inking process, in which an application collects and
manipulates ink data written by the user. The inking process is a logical next step
from the writing process, described in the preceding chapter. In the writing process,
the application provides the means for the user to enter ink. In the inking process,
the application assembles the ink data, optionally modifies it, and applies it to some
task.

The inking process pertains to ink data collected for its own sake rather than imme­
diately passed on to a recognizer for interpretation. Although an application can
later submit gathered data to a recognizer, the inking process deals with ink that
"stays ink" rather than serving as transitory symbols immediately converted into
recognized characters.

The HPENDAT A data object serves as the major instrument in the inking process.
The first part of this chapter describes HPENDAT A and the various application
programming interface (API) functions that serve it. Example code fragments
throughout illustrate how to store and manage ink data with the HPENDAT A
services.

An application can refer to the data in an HPENDATA object by stroke and point
indices, or time intervals. For viewing and manipulating ink data that falls within
specified time intervals, the Pen API provides the HINKSET object. The last
section of this chapter, "The HINKSET Object," examines HINKSET and its
corresponding API functions.

40 Programmer's Guide to Pen Services for Microsoft Windows 95

The HPENDATA Object
An application accesses ink data with HPENDATA, which stands for "a handle
to pen data." Windows stores the pen data in a block of memory, called the
HPENDAT A object. This data structure is analogous to the other Window "H"
data types such as HDC, HCURSOR, and HPEN. HPENDATA shares certain
similarities with these data types:

• The handle references an internal data structure that resides in memory.

• Windows provides various API functions that operate on the data.

• Developers should ignore the details of the underlying data structure and use
the API functions alone to perform the required work.

The remainder of this chapter discusses the HPENDAT A object and the API
functions used to manipulate the data it contains.

Overview of HPENDATA
Windows allocates the HPENDA T A object with an internal call to the Windows
GlobalAlIoc function. Other Windows data objects are allocated from the USER
or GDI heaps, but the large size of an HPENDAT A object necessitates allocation
from the system global heap.

Windows imposes a 64K limit on the size of each HPENDAT A object. At a report
rate of 120 samples per second, at 4 bytes per data point, plus Some overhead data
structures, minus·the time the pen is not in contact with the surface of the tablet, a
single HPENDAT A object can contain the data representing roughly two and one­
half minutes of pen activity.

The following section describes the internal structure of an HPENDA T A memory
block. Though not recommended, your application can use this information to read
ink data if necessary. However, the internal structure of the HPEND A T A block
may change in future versions of Windows. Therefore, applications should always
use standard API functions to read from an HPENDA T A object.

Important Under no circumstances should an application write directly into an
HPENDATA block. The Pen API provides functions for modifying ink data safely.
Directly changing point data in the block can cause hazardous side effects.

The Inking Process 41

Data Within an HPENDATA Object
Figure 4.1 illustrates the internal structure of an HPENDAT A object.

Main Header

Key

••• Stroke header

~ Data points in stroke

l0Ssl Optional OEM data

Figure 4.1 HPENDAT A Memory Block

Windows stores the pen data in memory in a simple hierarchy. Data points are
grouped by strokes in the order in which they are entered. The HPENDATA block
of memory begins with a descriptive header area. The following sections describe
the data points, the stroke headers, and the main header that make up an
HPENDAT A object.

Note that the drawing in Figure 4.1 is not to scale. The data points generally
represent a much larger proportion of the memory block than the header
components.

Data Points
The data points associated with each stroke are initially tablet coordinates with a
resolution of 0.001 inch and an origin at the upper left comer of the tablet. Tablets
must report points in this scale regardless of their actual resolution. The Pen API
provides functions to scale the points to other metric systems. It is not necessary
for the data in an HPEND A T A object to remain at a resolution of 0.001 inch.

If Windows is running in portrait mode, the tablet still reports coordinates with the
upper left comer of the tablet corresponding to the current upper left comer of the
display. The developer need not be concerned with the current orientation of the
screen. The (0,0) coordinate of the Windows display always corresponds to (0,0)
on the tablet.

The HPENDA T A object can contain additional information supported by the pen
device, such as pen pressure, angle, and rotation. The main header section of the
HPENDAT A object specifies how this additional information is stored in the
stroke data areas for each data point. Internally, such data, which reflects original
equipment manufacturer (OEM) hardware, is stored immediately following the
block of coordinates for a stroke. This is called OEM data.

42 Programmer's Guide to Pen Services for Microsoft Windows 95

Stroke Headers
A stroke refers to the data points collected while the pen is in contact with the tab­
let. These are called pen-down points. When the user lifts the pen, the stroke ends.
A new stroke begins when the pen next touches the tablet. Some tablets also support
proximity strokes, which consist of points received when the pen is not in contact
with the tablet but near enough for the tablet to sense the pen movement. Such
points are called pen-up points; a stroke consisting of pen-up points is said to have
a pen-up state.

As Figure 4.1 shows, a stroke header prefaces each collection of pen coordinates
that make up a single stroke. Note that the structure of the stroke header in version
2.0 of the Pen API is different from the stroke header of version 1.0, because,
instead of the STROKEINFO structure used in version 1.0, the stroke header now
consists of a variable-length array. The current STROKEINFO structure is still
compatible with version 1.0 stroke headers.

Figure 4.1 shows strokes of different sizes. This is because the pen can be in con­
tact with the surface of the tablet for longer or shorter periods of time, resulting in
more or fewer points of data. The length of a single stroke is limited only by the
64K maximum size of an HPENDA T A memory block.

Main Header
A PENDATAHEADER structure is the first part of the main header of the
HPENDATA object. The PENDAT AHEADER structure, described in Chapter
11, "Pen Application Programming Interface Structures,"contains the following
information:

• Number of strokes

• Total number ofpomts

• Number of points in longest stroke

• Size in bytes of the memory block

• Bounding rectangle of all pen-down points

• Ink color

• Ink width

• Version

The wPndts member of the PEND A T AHEADER structure describes the state of
the data in the HPENDAT A object. The state of the data reflects whether the data
is compressed, includes pen-up points, or includes OEM data. The wPndts element
is a bitwise-OR combination of the PDTS_ flags described in Chapter 13, "Pen
Application Programming Interface Constants."

The Inking Process 43

The next component in the main header is a PENINFO structure. The PENINFO
structure contains information about the tablet device that produced the data. This
information includes the tablet width, height, resolution, report rate, proximity
capabilities, and barrel-button status. For more information about the PENINFO
structure, see Chapter 11, "Pen Application Programming Interface Structures."

The cbOemData member of the PENINFO structure specifies how much (if any)
OEM pen data each pen packet contains. The format and order of the extra OEM
information are contained in the rgboempeninfo member, which is an array of
OEMPENINFO structures. The OEMPENINFO structures describe the order,
minimum value, and scale of any OEM pen data the tablet reports along with the
coordinate data. Chapter 11 describes the OEMPENINFO structure in detail.

HPENDATA Functions
This section introduces the Pen API functions that manipulate ink data in an
HPENDAT A object. The recognition functions described in the next chapter apply
to a specific task-the recognition of text. The HPENDATA functions, however,
are not so easily summed up. They are building blocks for an infinite variety of
tasks, according to the requirements and imagination of the developer. For this
reason, the best introduction to the HPENDAT A functions is a simple list of their
capabilities.

The following subsections group the functions into six categories and provide a
brief description of each function. These subsections serve only as an introduction
to the HPE NDAT A functions. For complete details about the functions, see the
appropriate reference sections in Chapter 10, "Pen Application Programming
Interface Functions." To see some of the HPENDATA functions in use, refer to
the PENAPP sample program presented in Chapter 7, "A Sample Pen Application."

The six categories of the HPENDAT A functions are:

• Creating an HPENDATA object

• Displaying ink data

• Scaling ink data

• Examining ink data

• Editing or copying ink data

• Compressing ink data

The order in which functions appear in the following lists reflects either a logical
sequence of discussion or, where such criteria do not exist, simple alphabetic
ordering. The order does not imply relative importance of the functions.

44 Programmer's Guide to Pen Services for Microsoft Windows .95

Creating an HPENDATA Object
The Pen API provides five functions that allocate and free an HPENDA TA object.
These functions are similar to many Windows data types.

Note It is recommended that you use only the functions from version 2.0 of the Pen
API. Although API from version 1.0 are included for backward compatibility, it is
not guaranteed that they will be supported in future versions of the Pen API.

The functions that allocate and free HPENDAT A objects are as follows:

Function

CreatePenData

CreatePenDataEx

CreatePenDataHRC

DuplicatePenData

DestroyPenData

Displaying Pen Data

Description

Creates an empty HPEND A T A object. The application pro­
vides the PENINFO structure for the header, the real size
of any OEM data stored with each coordinate, and the scale
of the coordinates. Superseded by CreatePenDataEx.

Creates an empty HPEND A T A object. This function is an
enhanced version of CreatePenData that provides an
application with greater control over the contents of the
HPENDA T A object.

Returns a handle to an HPENDAT A object copied from an
HRC object. Since this call creates a new HPENDATA, the
application should free the object when finished by calling
DestroyPenData, described below. The AddPenDataHRC
function reverses the process by copying pen data to an HR C
object. Chapter 5, "The Recognition Process," describes the
HRC object.

Duplicates an HPENDA T A object, allowing an application
to create clones of existing pen data. Since this call creates a
new HPENDAT A, the application should free the object
when finished by calling DestroyPenData, described below.

Frees the heap memory occupied by the HPENDAT A block.
If the function returns TRUE, the handle to the object is no
longer valid and should be set to NULL.

The Pen API provides four functions for displaying the pen data contained in an
HPEND A T A object. An additional function, CreatePenDataRegion, determines
the screen area necessary to display the pen data. This enables an application to
determine the screen area affected by a gesture.

The Inking Process 45

The following table describes the API drawing functions:

Function

DrawPenData

DrawPenDataEx

DrawPenDataFmt

Redisplay PenData

CreatePenDataRegion

Description

Draws pen data in the specified device context using the
Windows GDI Polyline function. The ink width and color
specified in the PENDATAHEADER structure have no
effect on how DrawPenData renders the ink.

The rendering of the ink data produced by DrawPenData
generally does not exactly match the rendering produced
by the display driver when the data was first collected. An
application that requires an exact replication of the original
ink rendering should call the RedisplayPenData function.

Draws pen data in its original color or in a given device
context. This function is an enhanced version of
DrawPenData. Besides basic drawing capabilities,
DrawPenDataEx can control the speed at which the data
is rendered, a process called animation. This function can
also draw a selected subset of strokes or the points within a
stroke, rather than the entire pen data.

DrawPenDataEx can display a set of sequential strokes
with a single call. Drawing nonsequential strokes-say, the
second, fifth, and eighth strokes of the pen data-requires
separate calls to DrawPenDataEx for each stroke.

A macro function·that simplifies calls to DrawPenDataEx
by specifying:

• Rendering ink data in original ink attributes and speed
(no animation).

• Entire data set is drawn (no stroke subsets).

• Each stroke is drawn with the color and width specified
in the stroke header.

Draws pen data ink that exactly matches the original
rendering. RedisplayPenData displays pen data with a
square GDI pen brush for maximum drawing speed. When
displaying wide lines of ink, this optimization can cause
the ends of abutting lines to appear "blocky."

Returns a region of the screen required to show the contents
of an HPENDA T A object. Another call to the GDI function
GetRgnBox returns the bounding rectangle that holds the
region. (See also the description of GetPenDataAttributes,
which can return the bounding rectangle for the entire set of
pen data.) The application should call the Windows function
DestroyObject to free the region when finished.

46 Programmer's Guide to Pen Services for Microsoft Windows 95

Scaling Pen Data
The Pen API provides three functions to transform or scale pen data in an
HPENDAT A object. The related functions TPtoDP and DPtoTP do not operate
explicitly on an HPENDA T A object, but instead convert the resolution of an array
of points.

Function

MetricScalePenData

OffsetPenData

ResizePenData

Description

Converts pen coordinates between metric and English
standard measurements. Metric units are 0.1 and 0.01
millimeter; English standard units are 0.001 inch. These
scaling metrics comply with the mapping modes set in the
Windows function SetMapMode, described in the Windows
Software Development Kit.

MetricScalePenData can also convert pen data to display
resolution. See "Converting Data to Display Resolution" later
in this chapter.

Offsets the coordinates in an l!PENDAT A object to make
them relative to another origin. The function adds or subtracts
offset values"to or from the coordinate points. The offset
values must use the same units as the pen data. Offsetting
coordinates does not lose data. The process is completely
reversible and does not reduce recognition accuracy.

Scales ink into arbitrarily sized rectangles. This function
exhibits the same weakness as the other scaling functions. It
preserves rectangle proportions, but rounding errors prevent
the scaling process from being precisely reversible. However,
enlarging the ink data generally does not adversely affect
recognition accuracy for data later given to a recognizer.

The Inking Process 47

Examining Pen Data
The following functions enable an application to examine, directly modify, or
retrieve information from an HPENDA T A object:

Function

BeginEnumStrokes
GetPenDataStroke
EndEnumStrokes

GetPenDatalnfo

GetPenDataAttributes

Description

These three functions work in tandem. Together, they
enable an application to directly read an HPENDAT A
block in memory.

Use these functions with caution and only for reading pen
data. Do not attempt to write into an HPENDA T A block.

BeginEnumStrokes returns a far pointer to the
HPENDAT A memory block within the global heap.

GetPenDataStroke retrieves pointers to point data within
the HPENDAT A. Although an HPENDAT A block no
longer prefaces strokes with STROKEINFO structures,
GetPenDataStroke can retrieve a STROKEINFO
structure corresponding to any stroke within the block.

When the application has finished with the memory block,
it must call EndEnumStrokes. This unlocks the block in
the global heap and invalidates the pointers returned by
GetPenDataStroke. For this reason, an application must
not use the pointers once it has called EndEnumStrokes.

Retrieves summary information from the pen data memory
block. It is superseded by the GetPenDataAttributes
function to some extent.

Provides enhanced versions of some of the capabilities
of GetPenDatalnfo. It also provides additional detailed
information taken from the HPENDAT A block. For
example, GetPenDataAttributes can return

• The total number of points in the HPENDATA

• The total number of strokes

• The time the HPENDATA was created

• The device sampling rate

48 Programmer's Guide to Pen Services for Microsoft Windows 95

Function

GetStrokeAttributes
SetStrokeAttributes

GetStrokeTableAttributes
SetStrokeTableAttributes

HitTestPenData

Editing or Copying Pen Data

Description

Retrieve or set information about a given stroke in an
HPENDAT A object. For example, these functions can get
or set

• The pen state (up or down) for a stroke

• The ink color and width

• The absolute time the stroke occurred

Retrieve or set information about all strokes in an
HPENDAT A object that share a given class. For all such'
strokes, these functions can get or set:

• The ink color and width.

• The user value.

• The number of entries in the stroke table.

Determines whether a given point lies near the line of
a stroke. The function accepts a threshold value that
describes a square region around the given point on the
tablet or screen. If a stroke in an HPENDATA block
passes through the square, this function reports a "hit."
HitTestPenData considers only points with a pen-down
state.

The functions listed below add, delete, or copy coordinate data to and from an
HPENDAT A object.

An empty HPENDATA object has the following value for the wPndts member of
its PEND AT AHEADER structure:

PDTS_NOUPPOINTS I PDTS_NOCOLLINEAR I PDTS_NOEMPTYSTROKES

For a full list of PDTS_ values, see Chapter 13, "Pen Application Programming
Interface Constants." See Chapter 11 for a description of PEN DATA HEADER.

Functions in the following list with a name prefix of Add, Insert, Extract, or
Remove add to or delete from an HPENDAT A object. These functions check the
results of their operation and adjust the value in wPndts accordingly.

The Inking Process 49

Function Description

AddPenDataHRC Copies the pen data from an HPENDATA object to an HRC
object. This function provides the means for deferred
recognition. An application can gather pen data into an
HPENDATA block, manipulate or store it if desired, then
later copy the data to an HRC object for recognition.

AddPointsPenData Appends a set of points, including a STROKEINFO
structure and any corresponding OEM data, to an
HPENDAT A object.

ExtractPenDataPoints Copies points and OEM data from an HPENDAT A block to
supplied buffers. The application can convert the points to
screen resolution with the TPtoDP function to reduce the
buffer size. The application can also optionally delete these
points from the original pen data.

ExtractPenDataStrokes Copies selected strokes from an HPENDATA block,
optionally creating a new HPENDAT A block containing the
copied strokes. ExtractPenDataStrokes can optionally
delete the original strokes.

GetPointsFromPenData Retrieves information from an HPENDA T A object in a
way similar to the GetPenDataStroke function. However,
GetPointsFromPenData copies the required data to buffers
supplied by the application rather than simply returning
pointers to the original data in the global heap. Therefore,
the application need not call BeginEnumStrokes and/or
EndEnumStrokes when using GetPointsFromPenData.

InsertPenData Merges two separate HPEND AT A objects into a single
object.

InsertPenDataPoints Inserts points into the stroke of an existing HPENDAT A
object. InsertPenDataPoints automatically updates the
stroke and pen data headers.

InsertPenDataStroke

PenDataToBuffer
PenDataFromBuffer

RemovePenDataStrokes

This function can adversely affect recognition accuracy
for data that must later be recognized.

Inserts an entire stroke into an existing HPEND A T A object.
InsertPenDataStroke automatically updates the stroke
and pen data headers. The ink of the inserted stroke has
default color and width. To change these attributes, call
SetStrokeAttributes after inserting the stroke.

Copy an HPENDATA object as sequential data from and
to a buffer. PenDataFromBuffer creates and loads an
HPENDA T A object with the data from the sequential buffer
created by PenDataToBuffer. These functions are used to
transfer pen data to and from a file or the clipboard.

Deletes a contiguous set of strokes from an HPENDAT A
object.

50 Programmer's Guide to Pen Services for Microsoft Windows 95

Compressing Pen Data
Data compression plays an important role in pen-based computing. The high
sampling rates of a pen'device, combined with large amounts of input, result in
large blocks of ink data. The Pen API offers three methods of compression; each
with advantages and disadvantages depending on the intended use of the ink data.

• Removal of redundant or otherwise unwanted data from the data structure. This
compression method does not result in loss of recognition accuracy if the
compressed data is later recognized.

• Reversible compression, also called "lossless" compression. Subsequently de­
compressing the data produces an HPENDAT A object identical to the original.
Since this compression method loses no information, the data can later be
recognized with no loss of accuracy. However, the application cannot copy the
compressed data to an HRC object; it must first uncompress the data before
calling AddPenlnputHRC.

• Irreversible compression, sometimes called "lossy" compression. This method
produces the highest degree of compression, but at the cost of lost information.
Though the data is still perfectly suitable for display, it cannot be uncompressed
and given to a recognizer without a significant loss of recognition accuracy.
Irfeversible compression is discussed later in the section "Converting Data to
Display Resolution."

Compression Functions
Following are the three compression functions provided by the Pen API.

Function

CompactPenData

CompressPenData

TrimPenData

Description

Provided only for compatibility with version 1.0 of the Pen
API and may not be supported in future versions. Use the
functions CompressPenData and TrimPenData instead.

Primary function used to compress and uncompress pen data.

Removes selected data from an HPENDAT A object to
reduce the size of the memory block. For example,
TrimPenData can remove OEM information, timing
indexes, pen-up points, and so forth.

Converting Data to Display Resolution
Converting the points in an HPENDAT A block to display resolution effectively
compresses the data because display coordinates are coarser than tablet coordinates
and therefore occupy less memory. However, the conversion is irreversible; an
application cannot convert the points back to their original tablet resolution. More­
over, converting to display coordinates virtually disallows subsequent recognition
of the data because recognizers lose accuracy when dealing with data at coarse
screen coordinates.

The Inking Process 51

~ To compress pen data to screen resolution

1. Call MetricScalePenData to convert the ink data from tablet coordinates to
display coordinates.

2. Call TrimPenData with the TPD _COLLINEAR flag to remove the duplicate
and collinear points.

These two steps substantially reduce the number of points in the pen data by
removing many high-resolution digitizer points. The following code fragment
demonstrates these steps:

HPENDATA hpendata; II Handle to HPENDATA object

if (MetricScalePenData(hpendata, POTS_DISPLAY))
iRet = TrimPenData(hpendata, TPD_COLLINEAR);

After converting the HPENDAT A block to display resolution, the application can
call CompressPenData or TrimPenData to compress the points even more. For
maximum compression of data intended only for display, use the following
instructions instead of the preceding example:

if (MetricScalePenData(hpendata, POTS_DISPLAY))
if (TrimPenData(hpendata, TPD_EVERYTHING) == PDR_OK)

CompressPenData(hpendata, CMPD_COMPRESS);

The HINKSET Object
An inkset object consists of time intervals for either individual strokes or a collec­
tion of strokes. In turn, the interval of each stroke consists of the times at which
the stroke begins and ends. In this way, a pen-based application can refer to a
stroke not only by the points it contains but also by the time interval in which the
stroke occurs. A rough analogy of this sort of indirect referencing is the way some
programming languages allow the use of pointers to indicate data.

Timing information principally serves recognizers. It provides them with an
additional characteristic of the raw data that may offer clues for interpretation.

Timing information has other uses, as well. For example, it enables an application
to accurately verify a signature by comparing not only the coordinates but the
duration of each stroke against a copy of the original signature. This is an effective
safeguard against forgery because of the difficulty of simultaneously duplicating
both the patt~rn and duration of the original signature.

52 Programmer's Guide to Pen Services for Microsoft Windows 95

An HINKSET object can contain up to 5,460 intervals. An interval is expressed
as an INTERV AL structure, which consists of two ABSTIME structures. Each
INTERVAL structure identifies a stroke's start and stop times in milliseconds. See
the appropriate reference sections in Chapter 11 for type definitions of the
ABSTIME and INTER V AL structures.

The HINKSET Functions
The Pen API provides six functions for creating, adding data to, and destroying an
HINKSET object. The functions automatically ensure intervals within an inkset
remain in chronological order.

Function Description

CreateInkset Creates an empty inkset into which intervals can be
added with the AddInksetlnterval function.

CreateInksetHRCRESUL T Retrieves the intervals for a specified series of symbols
returned by the recognizer.

AddInksetlnterval Adds a single INTER V AL structure to an existing
HINKSET object. Intervals need not be added in
any particular order because AddInksetlnterval
automatically sorts the intervals chronologically and
merges overlapping intervals.

Getlnksetlnterval Copies a series of intervals from an HINKSET object to
an array of INTERV AL structures.

GetlnksetlntervalCount Returns the number of intervals in an HINKSET object.

DestroyInkset Frees the memory occupied by an HINKSET object and
invalidates its handle.

Timing Information
For uncompressed data, a stroke's interval implies the number of points in the
stroke. An application can obtain this number directly from a STROKEINFO
structure. The following is of academic interest only, illustrating how time intervals
correspond to the point data within a stroke.

The Inking Process 53

First, an application gets the device sampling rate with a call to GetPenDataInfo.
The sampling rate is the number of points the pen device driver sends to Windows
during each second of pen activity.

HPENDATA
PENINFO
int

hpndt;
peninfo;
nSamplingRate;

if (GetPenDataInfo(hpndt, NULL, (LPPENINFO) &peninfo, 0))
nSamplingRate = peninfo.nSamplingRate;

Alternatively, an application can query the pen device driver directly for the
sampling rate, as described in "Recognition Functions" in Chapter 8, "Writing
a Recognizer."

The number of points in a stroke can now be determined from the start and stop
times in the stroke's INTERVAL structure:

INTERVAL
int

interval;
nSamplingRate, nPoints, nms;

II Compute number of milliseconds in interval
nms = CCinterval.atEnd.sec - interval.atBegin.sec) * 1000) +

(interval.atEnd.ms - interval.atBegin.ms);

II Compute number of points that occurred during interval
nPoints = (nms * nSamplingRate) I 1000;

54 Programmer's Guide to Pen Services for Microsoft Windows 95

After recognition, an application can determine the time intervals at which recog­
nized symbols were written. Calling CreateInksetHRCRESUL T creates the
inkset for the required intervals:

HINKSET hinkset;
HRCRESULT hresult;

II Allocate the inkset
II Symbols for guesses go here

II Get symbols that make up the recognizer's best guess
GetResultsHRC(hrc, GRH_ALL, (LPHRCRESULT) &hresult, 1);

II Get the inkset for symbols 2 through 11 of the guess
hinkset = CreateInksetHRCRESULT(hresult, 2, 10);

The above code fragment creates an inkset containing a maximum of 10 intervals
corresponding to the second through eleventh symbols of the recognizer's best

. guess. The section "Unboxed Recognition" in the next chapter describes the
GetResultsHRC function in detail. For a description of the internal workings of
CreateInksetHRCRESULT, see "The Recognition Functions" in Chapter 8,
"Writing a Recognizer."

Timing Macros

dwDiffAT

Example

The PENWIN.H file defines several macro functions designed to deal with timing
information. The following reference section briefly describes these macros.

dwDiffAT(atl, at2)

Compute time difference in milliseconds between two ABSTIME (absolute time)
structures atl and at2. If at2 is more than atl, the result is positive.

x = dwDiffAT(atl, at2); II Get time difference in milliseconds

The Inking Process 55

dwDurlnterval
dwDurInterval(lpi)

Calculate the duration in milliseconds of the INTERVAL structure lpi points to.

Example x = dwDurInterval (1 pi); II Get duration in milliseconds

F Abs Ti mel n Interval

Example

F AbsTimeInInterval(at, lpi)

Test whether the time in the ABSTIME structure at is contained within the time
interval in the INTERVAL structure pointed to by lpi.

if (FAbsTimeInInterval(at, lpi» II TRUE if at within INTERVAL

FI ntervall n Interval

Example

FIntervalInInterval(lpiT, lpiS)

Test whether the time interval in the INTERV AL structure pointed to by /piT is
within the INTERVAL structure pointed to by lpiS.

if (FIntervalInterval(lpiT, lpiS » II TRUE if lpiT within lpiS

FI ntervalXI nterval

Example

FIntervalXInterval(lpiT, lpiS)

Test whether the time interval in the INTERVAL structure pointed to by lpiT
overlaps the INTERVAL structure pointed to by lpiS.

if (FIntervalXInterval(lpiT, lpiS » II TRUE if lpiT overlaps lpiS

56 Programmer's Guide to Pen Services for Microsoft Windows 95

FLTAbsTime
FL TEAbsTime
FEQAbsTime

FL T AbsTime(atl, at2)

FL TEAbsTime(atl, at2)

FEQAbsTime(atl, at2)

Compare two ABSTIME structures atl and at2. These macros return TRUE for
the following conditions: less than, less than or equal, and equal.

Example if (FLTAbsTime(atl, at2))
if (FLTEAbsTime(atl, at2))
if (FEQAbsTime(atl, at2))

MakeAbsTime
MakeAbsTime(lpat, sec, ms)

II TRUE if atl < at2
II TRUE if atl <= at2
II TRUE if atl == at2

Initialize the ABSTIME structure pointed to by lpat with the values sec and ms.

Example sec = 5;
ms = 400;
MakeAbsTime(lpat, sec, ms);

II Time = 5.4 seconds (5 seconds
II plus 400 milliseconds)
II Fill ABSTIME structure

CHAPTER 5

The Recognition Process

Recognition is the process of translating pen strokes into characters, symbols, or
shapes. An application conducts recognition by passing the raw pen data to special
dynamic-link libraries (DLLs) called recognizers, each of which may specialize in
a particular data type. For example, one recognizer may specialize in English text,
another in Greek, and yet another in electronic symbols.

The system default recognizer serves the recognition needs of most applications.
Alternatively, applications can load additional recognizers and select which to use
for any given input. Regardless of the recognizer, the DoDefauItPenInput function
can conveniently run the entire recognition process.

An application interfaces with recognizers through a data object called HRC, an
abbreviation for "handle to a recognition context." This chapter describes the HRC
and explains how an application uses the HRC functions to recognize pen-based
handwriting.

The HRC Object
The HRC object incorporates a set of functions, called the HRC functions, that
govern the recognition process. To conduct handwriting recognition, an application
creates an HRC object, configures its recognition parameters, sends pen data to the
object, gives the object time to perform recognition, and eventually gets results from
the object.

An HRC object provides four different functions, serving as:

• Recognition manager, containing the word lists, templates, alphabets, and
GUIDE information that aid recognition.

58 Programmer's Guide to Pen Services for Microsoft Windows 95

• Data storage, containing the pen coordinates placed into the object with the
AddPenlnputHRC or AddPenDataHRC functions. An application can
retrieve the entire set of pen data stored in the HRC object or only a portion.
For example, it can retrieve only the ink associated with a specific letter or word
in the recognized text.

• Recognition workhorse, handling the task of recognition through·the
ProcessHR C function.

• Results warehouse, storing recognition results and guesses.

Using the HRC Functions
The following sections describe how an application uses the HRC functions to
recognize handwritten input as the user writes. The text builds on the steps given in
"Starting the Chain of Events" in Chapter 3, "The Writing Process;" refer to that
section for more details on each step in the process. The following sections deal
with five separate areas of the recognition process:

• Creating the HR C

• Configuring the HR C

• Processing

• Getting results

• Destroying the HR C and other recognition objects

Creating the HRC
Before recognition can occur, the application must create an HRC object.
DoDefaultPenlnput does this automatically for the system recognizer, or an
application can call the CreateCompatibleHRC function to specify another
recognizer. CreateCompatibleHRC takes two arguments: a handle to an existing
HRC (if any) that serves as a template for the new HRC, and the handle to the
recognizer that serves the new HRC.

Either or both arguments can be NULL. Giving NULL as the first argument creates
a new HRC with default settings. The next section, "Configuring the HRC,"
describes tp.e default parameters, which include the following settings:

• Recognition ends after a brief period of inactivity or when the user taps outside
the target window.

• The target window does not use guides.

• The recognizer returns only its best guess without alternative guesses.

The Recognition Process 59

Giving NULL as the second argument binds the HRC to the system default recog­
nizer. Microsoft Windows sets the supplied file GRECO.DLL as the system default
recognizer, specified in the Microsoft Windows 95 system registry. Refer to
Appendix A for an explanation of how to change the default to another recognizer.

CreateCompatibleHRC, which is analogous to CreateCompatibleDC, copies
configuration information from an existing HRC to the new HRC, which the
application can then modify. The following fragment demonstrates how to load a
fictitious recognizer called RECOGI. DLL and bind it to a new HRC patterned after·
an existing HRC called hrcTempl ate:

HRC
HREC

hrcl;
hrecl;

II Handle to new HRC
II Module handle of recognizer

hrecl = InstallRecognizer("RECOG1.DLL");
if (hrecl)

hrcl = CreateCompatibleHRC(hrcTemplate, hrecl);

Each HRC can access only one recognizer and the binding lasts the life of the
HRC. To use multiple recognizers, an application must create multiple HRC
objects, binding each to a different recognizer. The Pen API does not provide a
means for changing the recognizer associated with an HRC.

As shown in the example above, an application must call InstallRecognizer to load
any other recognizer it will use. The exception is the system default recognizer,
which is already installed when the system starts up. An application should not
install the system recognizer with InstallRecognizer. Doing so only creates an
unnecessary module handle.

To preserve system resources, an application must free all handles obtained from
InstallRecognizer with separate calls to UninstallRecognizer. Unlike other
DLLs,a recognizer belongs to the system instead of the application. Windows
does not unload the recognizer from memory until every client has called
U ninstallRecognizer.

Once it receives a valid HRC handle, the application can begin configuring the
HRC to perform handwriting recognition.

Configuring the HRC
Before passing data to the HRC, the application must ensure the HRC is properly
configured to perform recognition. The configuration information in an HR C
provides a context to guide the recognition process. For example, if the application
expects only numerical input, it can configure the HRC accordingly. This prevents
the recognizer from mistakenly confusing the numeral "0" for the letter "0."

60 Programmer's Guide to Pen Services for Microsoft Windows 95

A new HRC shares the same configuration as the template HR C given when
calling CreateCompatibleHRC. If the application does not provide a template for
CreateCompatibleHRC, the new HRC receives a default configuration.

The following paragraphs describe the various configurations an application can set
for an HRC object.

Alphabet
The SetAlphabetHRC function specifies a set of symbols the HRC should expect
in the input. (A similar function, SetBoxAlphabetHRC, provides the same service
for a group of boxes when the HRC uses guides.) For example, the application can
constrain recognition to numerals and uppercase letters, as shown here:

iRet = SetAlphabetHRC(hrcl, ALC_NUMERIC I ALC_UCALPHA, NULL);

For more details about SetAlphabetHRC and SetBoxAlphabetHRC, see Chapter
10, "Pen Application Programming Interface Functions."

The first argument of SetAlphabetHRC is the HRC handle returned by Create­
CompatibleHRC. The second argument is a bitwise-OR value formed by the
desired combination of ALC_ constants, some of which are listed here:

Alphabet constant

ALC_LCALPHA

ALC_UCALPHA

ALC_NUMERIC

ALC_ALPHANUMERIC

ALC_PUNC

ALC_MATH

ALC_MONETARY

ALC_OTHER

ALC_ASCII

ALC_WHITE

ALC_NONPRINT

ALC_S YS MINIMUM

Description

Default alphabet value for recognizer. If recognizer can
serve as a system recognizer, its default alphabet must
include at least the ALC_SYSMINIMUM set. The Pen API
does not specify a default for nonsystem recognizers.

Lowercase letters: a-z.

Uppercase letters: A-Z.

Numerals: 0-9.

Combines ALC_LCALPHA, ALC_UCALPHA, and
ALC_NUMERIC.

Punctuation: !-;'''?O&.,;\

Math symbols: %"*O-+={ }<>,/.

Monetary symbols: ,.$ (or as determined by language).

Other special characters: @#'-~[].

Seven-bit characters ASCII #20 to ASCII #127.

White space such as tabs and newline and space characters.

TAB, ENTER, and CTRL keys.

Combines ALC_ALPHANUMERIC, ALe_PUNC,
ALC_ WHITE, and ALC_GESTURE.

The Recognition Process 61

If an application does not specify alphabet configuration either through an existing
HRC model or by calling SetAlphabetHRC or SetBoxAlphabetHRC, Windows
assumes ALC_SYSMINIMUM as the default alphabet configuration. For a
complete list of ALC_ values, see Chapter 13, "Pen Application Programming
Interface Constants."

Gesture
A default HRC enables all gestures. An application can disable certain gestures by
calling the EnableGestureSetHRC function to change the gesture configuration
for the HRC. The following example disables the gestures for cut, copy, and paste
while enabling all other gestures:

iRet = EnableGestureSetHRC(hrcl, GST_ALL A GST_CLIP, TRUE);

For more information about EnableGestureSetHRC, see the reference section in
Chapter 10, "Pen Application Programming Interface Functions."

The fIrst argument of EnableGestureSetHRC is the HRC handle returned by
CreateComptibleHRC. The second argument is a bitwise-OR value formed by
the desired combination of GST _ constants, listed here:

Gesture constant

GST_CLIP

GST_WHITE

GST_SEL

GST_EDIT

GST_SYS

GST_CIRCLELO

GST_CIRCLEUP

GST_CIRCLE

GST_ALL

Description

Cut, copy, and paste.

Space, tab, and newline.

Lasso selection.

Insert, correct, and undo.

Combines all the above.

Lowercase circle gestures.

Uppercase circle gestures.

Combines GST_CIRCLELO and GST_CIRCLEUP.

Combines all the above.

62 Programmer's Guide to Pen Services for Microsoft Windows 95

Word List
An application can select a word listfrom any number of lists to attach to an HRC.
A word list, referenced by a handle, consists of words the recognizer should con­
sider when translating a handwritten word or phrase. For example, Figure 5.1
shows a case in which the recognizer must decide between the valid interpretations
of "boy" and "looy".

/ A word list helps the recognizer reduce word selection choices.

100y
Figure 5.1 A word that can be better interpreted using a word list

By consulting a word list that contains the entry "boy" but not "looy", the
recognizer can select the first choice·with more confidence.

An application must call the CreateHWL function to create a word list. The func­
tion accepts a pointer to a word list already in memory. Alternatively, an applica­
tion can fill the word list from an existing file through the ReadHWL function.
The SetWordlistHRC function attaches the word list to a particular HRC, and
DestroyHWL returns the memory occupied by the list to the operating system.

The function SetWordlistCoercionHRC allows an application to establish the
word list's influence over the recognizer's interpretations. The function accepts
the following values to set the degree of coercion:

Coercion value Description

The recognizer should use the word list only for hints;
results are not strongly coerced to match the word list.
This is the default coercion value.

If the recognizer does not find an exact match in the word
list, it should return the best fit. For example, if the recog­
nizer interprets a hand~ritten word as "swoden," it will
return "Sweden," given a word list of country names.

Cancels any coercion currently in effect.

The Recognition Process 63

The following code fragment illustrates all these steps by reading a list of country
names from the fictitious file COUNTRY. LST and attaching the list to the HRC
identified by the handle h reI. It calls Set W ordlistCoercionHR C to force the
recognizer to return only names found in the COUNTRY. LST file. The code assumes
v h w 1 is a global variable, visible in all parts of the program.

HWL
HFI LE
OFSTRUCT
int

vhwl;
hfile;
OFstruct;
i Ret;

II Handle to word list
II File handle
II Receives info about open file
II Return code

II In intialization procedure, open and read the word list
hfile - OpenFile("COUNTRY.LST", (LPOFSTRUCT) &OFstruct, OF_READ);
if (hfile !- HFILE_ERROR)
{

vhwl - CreateHWL(hrecl, NULL, WLT_EMPTY); II Create empty list
iRet = ReadHWL(vhwl, hfile); II Read list from file

II After creating hrcl, attach word list vhwl to it
SetWordlistHRC(hrcl, vhwl); II Attach list to hrcl
SetWordlistCoercionHRC(hrcl, SCH_FORCE);

IIBefore terminating, destroy word list
DestroyHWL< vhwl);

II Establish coercion

Note that an application must first set the word list with SetWordlistHRC before
calling SetWordlistCoercionHRC.

Guide
Guides are visual cues such as lines or boxes in a bedit control. Guide configuration
informs the recognizer of the types and locations of guides displayed for the user.
With this information, the recognizer can confidently determine which pen strokes
constitute a single character or shape. For an illustration of box guides, see the
"The bedit Control" section in Chapter 3, "The Writing Process."

64 Programmer's Guide to Pen Services for Microsoft Windows 95

Processing

To establish guide configuration, an application calls the SetGuideHRC function,
providing a pointer to a GUIDE structure:

GUIDE guide;

iRet = SetGuideHRC(hrcl, (LPGUIDE) &guide, 0);

Number of Recognition Guesses
The application can specify the maximum number of guesses the recognizer should
provide in its results. This allows the application to prevent the recognizer from
generating more alternative guesses than required.

Set the maximum number of guesses with the SetMaxResultsHRC function. The
following example code tells the recognizer to provide its five best guesses:

iRet = SetMaxResultsHRC(hrcl, 5);

The default number of maximum recognition results is 1.

Once the HRC object has been properly created and configured, it can take on its
role of recognition agent. To fulfill this role, the HRC requires:

• The data generated by the pen movement.

• Sufficient central processing unit (CPU) time to execute the recognition
algorithms and generate results.

The following sections describe how an application supplies these two requirements
to the HR C object.

Adding Data to an HRC Object
An application provides pen data to the HR C through one of two API functions:
AddPenInputHRC or AddPenDataHRC.

AddPenInputHRC operates at intervals as pen data is collected, in the same man­
ner as GetPenInput. An application must call AddPenInputHRC only after it has
called GetPenInput. AddPenInputHRC provides the pen coordinates and original
equipment manufacturer (OEM) data to the recognizer bound to the HRC object.

AddPenDataHRC also provides pen data to the recognizer, but is designed to
operate after all the data is collected. An application can thus collect pen data with­
out real-time recognition, store the data in an HPENDAT A structure, and call
AddPenDataHRC to recognize the data any time thereafter.

The Recognition Process 65

Allocating Processing Time
After it has supplied the raw pen data to an HRC object, the application then allo­
cates processing time for recognition by calling ProcessHRC. To accommodate
applications with time-critical communications requirements or other CPU­
intensive activities, ProcessHRC takes a time-out value (in milliseconds) as its
second argument. If the time-out period elapses before ProcessHRC finishes
processing, the function returns an HRCR_INCOMPLETE value. In this way, an
application can repeatedly allocate small slices of time until the recognizer finishes
its work.

PENWIN.H defines three time-out codes that an application can use when calling
ProcessHRC. The following table describes the time-out codes.

Time-out code Description

Allocates the smallest possible period of time to the
recognizer, approximately 50 milliseconds.

Allocates a moderate amount of time to the recognizer,
approximately 200 milliseconds.

Grants the recognizer as much time as it requires to
complete the recognition.

The following line allocates the default time-out period to the recognizer in the
HR C identified by the handle h reI :

iRet = ProcessHRC(hrcl, PH_DEFAULT);

Typically, AddPenInputHRC and ProcessHRC work together in a loop or in
repeated response to a PE_ message as the user writes. One function continually
retrieves the latest pen data while the other processes that data. When the input
session terminates, an application should call ProcessHRC with PH_MAX to
finalize the recognition.

See the reference section for ProcessHRC in Chapter 10 for additional information
about this function. When ProcessHRC returns, the application can retrieve results
from the HRC object, as described in the next section.

Getting Results
The Pen API provides three methods for an application to get recognition results.
The first two methods are functions-GetBoxResultsHRC and GetResultsHRC
-that retrieve the results from an HRC object. The GetBoxResultsHRC function
assumes the application has provided a GUIDE structure to the HRC. If the appli­
cation has not specified a GUIDE structure, it must call GetResultsHRC to
retrieve an HRCRESUL T object for each alternative guess.

66 Programmer's Guide to Pen Services for Microsoft Windows 95

The third method applies only to version 1.0 recognition functions. It retrieves
recognition results for both boxed and unboxed input from an RCRESUL T struc­
ture. With this method, an application must dissect the RCRESULT structure to
get infonnation that GetBoxResultsHRC and GetResultsHRC provide auto­
matically.

The rest of this section gives examples for each of the three methods.

Boxed Recognition
GetBoxResultsHRC retrieves boxed recognition results on a box-by-box basis.
The function fills an array of BOXRESULTS structures with the results and alter­
natives for a set of boxed character positions in the recognized text. Each of the
BOXRESUL TS structure in the array contains one or more recognition guesses
for a single box.

For example, consider the case in which the user has written a seven-letter word
before requesting recognition-say, by tapping an OK button. The application can
retrieve results individually for each box by calling GetBoxResultsHRC in a loop,
or provide an array of at least seven BOXRESUL TS structures and receive all
seven recognition results with a single call to GetBoxResultsHRC.

The following example code retrieves recognition results two boxes at a time. It
requests only the first alternative for each box, which represents the recognizer's
best guess about the character in the box:

fldefi ne NBOX 2 II Number of boxes to get
fldefi ne NALT 1/ Only one aljternative per box

BOXRESULTS box[NBOX]; 1/ Array of BOXRESULTS structures
UINT ;Syv = 0; II Index of symbol values
int cBox; 1/ Number of results returned

do
cBox = GetBoxResultsHRC(hrcl, NALT, iSyv, NBOX,

iSyv += (UINT) cBox;
} while (cBox == NBOX)

(LPBOXRESULTS)&box, FALSE);
II Do error checking
II Read results from
II box[] array
II Increment index
II Loop for next boxes

The Recognition Process 67

By requesting only a single alternative for a small number of boxes, the preceding
example can allocate the array on the stack. However, the BOXRESUL TS struc­
ture contains a variable-length array of type SYV for additional alternative char­
acters. For a value of NAL T greater than 1, the application must allocate extra space
for the alternatives in each BOXRESUL TS, as the following line demonstrates:

HGLOBAL hMem = GlobalAlloc(GHND,
NBOX*(sizeof(BOXRESULTS) + (NALT-l)*sizeof(SYV)));

The example provided in the GetBoxResultsHRC reference section in Chapter 10
further illustrates how to use this function.

When GetBoxResultsHRC returns, the application can walk the BOXRESUL TS
array and display the information appropriately. The boxed edit control described in
the "The bedit Control" section in Chapter 3 uses GetBoxResultsHRC to perform
recognition and to generate alternative results.

Boxed writing does not constrain an application to call GetBoxResultsHR C for
recognition results. An application can also call GetResultsHRC, described next,
even if the HRC is configured for box guides.

Unboxed Recognition
For recognition of unboxed handwriting - that is, writing without visual guides
as specified by a GUIDE structure, an application must call the GetResultsHRC
function. This function fills an array of HRCRESUL T objects, each containing a
separate guess by the recognizer. The number of HRCRESUL T objects in the
array is always less than or equal to the maximum number of guesses requested
through the SetMaxResultsHRC function.

An example will clarify this. Assume an application contains the following
instructions:

ttdefi ne II Maximum number of guesses allowed

SetMaxResultsHRC(hrcl, MAX_GUESS);

The user next writes a word that the recognizer associated with h reI guesses
to be, in descending order of probability, either "clear," "dear," "clean," "dean,"
or "deer." Though it might have generated even more guesses, the recognizer is
constrained to stop after its fifth guess by the earlier call to SetMaxResultsHR C.
In this case, a subsequent call to GetResultsHRC fills an array of up to five
HRCRESUL T objects, the first HRCRESUL T containing the word "clear," the
second the word "dear," and so forth.

68 Programmer's Guide to Pen Services for Microsoft Windows 95

An HRCRESUL T object does not contain a normal ASCII string representation of
a guess. This is not possible since a guess might be made up of a gesture, shape,
or other entity that has no ASCII equivalent. Instead, an HRCRESUL T contains a
string of symbol values, which are 32-bit numbers type-defined as SYV.

Symbol values can represent geometric shapes, gestures, letters of the alphabet,
Japanese Kanji characters, musical notes, electronic symbols, or any other symbols
defmed by the recognizer. The Pen API provides the function SymbolToCharacter
to convert the null-terminated symbol string in HRCRESULT to an ASCII string.

The following code continues the example above, illustrating how to retrieve and
display the five guesses returned by the recognizer:

Ifdefi ne
1/define

MAX_GUESS 5 II Maximum number of guesses allowed
MAX_CHAR 50 II Maximum number of characters in

II a single guess
HRCRESULT result[MAX_GUESS]; II Array for recognition result objects
int cGuess;

SetMaxResultsHRC(hrcl, MAX_GUESS);

II
II Get all (non-gesture) guesses available, and if no errors,
II convert to ASCII strings and display them! Note in our
II example the following call returns the value 5 to cGuess.
II
cGuess = GetResultsHRC(hrcl, GRH_NONGESTURE,

(LPHRCRESULT) &result, MAX_GUESS);
if (cGuess > 0)
{

int
char
SYV

II

i, cSyv, cChar;
szText[MAX_CHAR];
rgSyv[MAX_CHAR];

II Buffer for converted text
II Buffer for symbol string

II Loop cGuess (5) times, retrieving each time a symbol string
II representing a different guess. Convert the symbol string
II to a normal ASCII string and display it.
II
II In our example, the five iterations of this loop display the
II words "clear," "dear," "clean," "dean," and "deer."
II

The Recognition Process 69

for (i = 0; i < cGuess; i++)
{

}

cSyv = GetSymbolsHRCRESULT(result[i]. 0. rgSyv. MAX_CHAR);
if (cSyv > 0)
{

SymbolToCharacter((LPSYV) rgSyv. cSyv.
(LPSTR) szText. (LPINT) &cChar);

II After converting to ASCII
II string. display text

TextOut(hdc. nX. nY. (LPSTR) szText. cChar);

DestroyHRCRESULT(result[i]);
result[i] = NULL;

II When finished with results.
II destroy HRCRESULT objects

For another example of how to use the GetResultsHRC function, see "Step 9:
PE_RESUL T Message" in Chapter 2. If an application must retrieve an unknown
number of symbol values from the recognizer, it should follow these three steps:

1. Call GetSymbolCountHRCRESUL T to determine the number of symbol
values the recognizer can return.

2. Allocate a sufficient buffer for the values.

3. Call GetSymbolsHRCRESUL T. to copy the symbol values to the buffer.

Getting Results from the RCRESUL T Structure

Note The RCRESUL T structure is supported only for backward compatibility. It
may not exist in future versions of the Pen API. Applications should obtain
recognition results through the API functions described in this chapter, rather than
from an RCRESUL T structure.

The RCRESUL T structure applies only when an application calls either of the
version 1.0 recognition functions, Recognize or RecognizeData. In this case, the
system sends a WM_RCRESULT message to the application. The wParam of this
message contains a REC_ submessage that indicates why recognition ended. The
IParam ofWM_RCRESULT points to an RCRESULT structure, which contains
all the results of the recognition.

An application can retrieve from the RCRESUL T structure all the recognizer's
guesses by walking through the list, called the symbol graph, contained in the
RCRESUL T structure.

70 Programmer's Guide to Pen Services for Microsoft Windows 95

The RCRESULT structure identifies the recognizer's "best guess," which is the
guess in which the recognizer places the most confidence. With this information, an
application can conveniently retrieve an ASCII string of the best guess by calling
SymboIToCharacter:· .

char szBestGuess[MAX_CHAR]; II ASCII string of best guess

switch (wMsg)
{

case WM_RCRESULT:
SymbolToCharacter(

(LPSYV) «LPRCRESULT)lparam)->lpsyv, II Symbol string
MAX_CHAR, II Maximum length
(LPSTR) szBestGuess, II Buffer for ASCII
NULL); II Don't need count

Compare the above call to SymbolToCharacter with the previous example. Here,
the second argument represents a maximum, rather than the actual length of the
symbol string, which is the value

(int) «LPRCRESULT)lparam)-)cSyv

By specifying the length of the buffer that receives the ASCII text, the second argu­
ment sets a cap on the number of symbols SymbolToCharacter will convert. This
prevents the function from overflowing the s z Be s t G u e s s buffer if the length of
the symbol string happens to be larger than MAX_CHAR .. SymbolToCharacter
returns when it encounters SYV _NULL at the end of the symbol string or when it
converts MAX_CHAR symbols, whichever occurs first.

An application that calls Recognize or RecognizeData must be prepared to receive
WM_RCRESULT messages before calling either function. This is because the
recognizer dispatches all WM_RCRESULT messages associated with a particular
recognition event before Recognize or RecognizeData returns.

Version 2.0 of the Pen API provides, through function calls, all the information
contained in an RCRESUL T structure. An application need not examine the
structure at all. RCRESUL T is a product of recognition, and is therefore of more
interest to the recognizer developer than the application developer. Consequently,
it is described in more detail in Chapter 8, "Writing a Recognizer."

The Recognition Process 71

Destroying the HRC
The useful life of an HRC object usually expires when the recognizer returns
results at the end of an input session. The next input session requires the creation
of a new HRC. When finished with an HRC object, an application should destroy
the object in two steps:

1. Call DestroyHRC to free the occupied memory.

2. Set the HRC handle to NULL.

For example:

HRC vhrc = NULL;

DestroyHRC(vhrc);
vhrc = NULL;

II Set to NULL until HRC is created

II Create and use the HRC

II Destroy the HRC when finished
II Handle is now invalid

When DestroyHRC returns, the handle value remains unchanged though no longer
valid. The second step above prevents frustrating bugs arising from the inadvertent
use of an invalid HRC handle.

This same advice applies to the other recognition objects, HRCRESUL T and
HWL. After calling DestroyHRCRESUL T or DestroyHWL, always set the
invalid handle to NULL.

CHAPTER 6

Design Considerations

The developer of pen-based applications should bear in mind the unusual qualities
of a pen interface. Input through a pen device provides unique advantages, yet at the
same time carries severe limitations. The best applications will seek to profit from
one quality while minimizing the effects of the other.

This chapter discusses some of the characteristics of an intelligent and responsive
pen-based application. It offers tips, ideas, and a few warnings. The advice is based
on experience and the results of usability studies conducted by Microsoft.

Basic Principles
Consider the following basic principles when designing the user interface of a pen­
based application. Though not intended to constrain the developer's creativity, these
principles can help ensure that the resulting application appeals to its users.

• Keep it simple.

• Use familiar models.

• Show feedback for user.

• Makeitfast.

• Make it fun.

• Make exploration safe.

• Let the user maintain control.

The following sections explore each of these guidelines.

Keep It Simple
The developer should value simplicity over power when designing a pen-based
application. Simplicity is not only a characteristic of good interface design, it
hastens the user's acceptance of a type of input paradigm apt to be new and
unfamiliar.

74 Programmer's Guide to Pen Services for Microsoft Windows 95

The same principles for writing a standard Windows-based application apply
equally to pen-based programs:

• Limit features and options to reduce the number of choices a user must make .
. When adapting an existing application to run on a pen-based computer,
remember the so-called "80/20" rule: 80 percent of an application's value is
typically provided oy only 20 percent of its features.

• Keep the interface clear, consistent, uncomplicated, and predictable. The
relationship between what a user does and how the application responds should
be logical and consistent. Keeping the interface consistent and predictable
reduces the amount of information the user must remember in order to use an
application.

• Make possible actions and results visible to the user. Enable the user to work
directly with objects without resorting to abstractions. The user wants to "send
mail" or "find a note," not "open an application" or "search for data."

• Use constraints to prevent the user from choosing inappropriate actions and
provide default choices whenever appropriate. Constraints encourage the user to
make appropriate decisions by limiting unlikely choices. For example, a button
enabling a user to save or pause a game should not be visible until play has
started.

Use Familiar Models
Familiar conceptual models are powerful aids in user-interface design. A concep­
tual model enables users to apply knowledge gained from experience toward under­
standing the structure and use of the application. For example, an Address applica­
tion modeled after a typical paper-based address book would allow users to apply
their understanding of address books to the new application.

Use Feedback
The user should receive immediate and tangible feedback during interaction with an
application. Appropriate feedback includes acknowledging a request, pointing out
an error, or tracking the progress of an operation. Although auditory feedback can
be useful for attracting a user's attention, it should be used sparingly in a pen-based
application for the following reasons:

• Many users find beeps annoying.

• Pen-based computers will be used more and more frequently in conference
rooms and other group areas where beeping from a machine will not be
welcome.

Make It Fast

Make It Fun

Design Considerations 75

• Auditory messages disappear without a trace. If the user is momentarily away
or distracted, the auditory signal has failed to do its job.

• If the user can turn the warning sound off, sound is not a reliable source of
feedback.

• An audible notification is not useful for users who are deaf or hard of hearing.

A simple and responsive interface is more appealing than an attractive yet sluggish
interface. An application should always be ready for user input and prepared to
offer immediate feedback. Ideally, results should quickly follow the user's actions.

Where immediate results are not possible, run lengthy operations in separate
threads if practical. This technique has the advantage of at least simulating speed
by returning control quickly to the user.

Users will look for applications that have simple, creative interfaces that are fun
to use when deciding what to keep on their portable pen-based machines. Paying
special attention to the visual appeal of an interface pays off in gaining user accep­
tance. The most powerful interfaces are those that combine aesthetics with func­
tionality.

Make Exploration Safe
People like to explore applications and learn by trial and error. Such self-motivated
learning is extremely effective, but users might not always be aware of potential
dangers. Even with the best-designed interface, users make mistakes-such as
accidentally tapping the wrong object or data, or making a wrong decision about
which data to select. The interface should accommodate user exploration by:

• Softening any penalty caused by mistake.

• Minimizing the opportunities for errors.

• Handling user errors gracefully, without implying the user is at fault.

• Allowing easy undo and undelete.

• Keeping separate training databases to accommodate guest users.

76 Programmer's Guide to Pen Services for Microsoft Windows 95

Let the User Maintain Control
People want to feel in control of an application. A well-designed, responsive user
interface contributes much toward the user's perception of being in control. The
following list gives design suggestions for achieving this:

• Enable the user to interruptIong operations.

• Discard meaningless user input during long operations. While waiting, users
might randomly tap on the pen tablet or display. To dispose of spurious input in
a discreet manner, enable your application to distinguish between meaningful
and unintentional data.

• Allow the user to specify desired default settings.

Recognition: Use and Misuse
Recognition is often the deciding factor in how people react to pen-based com­
puting.1t is, unfortunately, an inexact science and always will be. The best appli­
cations will seek to minimize the potential for error introduced by recognition by
restricting as much as possible the amount of recognition necessary. The follow­
ing may give you some ideas.

Selecting Is Better Than Writing
As much as possible, let the user select rather than write. For example, take advan­
tage of spin-box and list-box controls that don't require written input. When
prompting for a date, present the user with a simple calendar on which he or she
can pick a date by tapping with the pen.

Keep track of previous entries and allow the user to select one from a list rather
than having to rewrite it. For example, when prompting for a name, consider using
a combo-box control to provide access to a list of the previous 10 or so names the
user has last entered. This confines the potential for recognition errors to the first
time the name is written.

When prompting for a filename, provide an option for browsing through directory
lists, allowing the user to select a file and path by tapping the filename with the pen.

Design Considerations 77

bedit Is Better Than hedit
People prefer to write in the relatively unrestricted space of an hedit control, but the
bedit control offers better recognition accuracy. The comb and box guides of a bedit
also serve as discreet prompts, infonning the user that the application awaits written
input.

If saving screen space is important, consider using a lens instead of a bedit. Always
create a single-line edit control with ES_AUTOHSCROLL so it shows a lens
button.

Real Time Is Better Than Deferred Time
Deferred recognition offers the seductive advantages of speed and instantaneous
response. By collecting ink without pausing to recognize it, an application can
easily keep up with rapid pen movements. The input can be recognized later when
requested by the user, or perhaps during periods of user inactivity.

However, Microsoft tests have demonstrated that the accuracy of deferred recog­
nition often compares unfavorably to real-time recognition. This has nothing to do
with the recognizers, since they apply the same processing procedures to the data
regardless of when the ink is collected. The discrepancy arises from the fact that
people tend to write more carelessly if not continually infonned about the recog­
nizer's success rate.

By seeing the recognition results as they write, users naturally adapt their writing
speed and style to assure the greatest recognition accuracy. Although in theory the
user should train the recognizer, to a certain extent the reverse undeniably occurs.

Make Corrections Easy
Users don't mind recognition errors as much as they mind the effort required to
correct the errors. A good pen model focuses on making corrections as easy and
fast as possible.

An error in recognition should never have unpleasant consequences. For example,
misrecognizing an undo gesture wastes the user's time. When in doubt, prompt for
confmnation and make confirmation easy-say, with an extra-large OK button.
The extra step will annoy the user less·than having to recover from the error.

78 Programmer's Guide to Pen Services for Microsoft Windows 95

Provide Easy Access to the On-screen Keyboard
The on-screen keyboard serves well for short input, especially for correcting
erroneous recognition results. An application should ensure that the on-screen
keyboard is easily accessible to the user, yet remains unobtrusive. Microsoft
usability studies have shown that users prefer writing to tapping on the on-screen
keyboard, even though the latter is often faster because it avoids recognition errors.
Consider making the on-screen keyboard more or less noticeable depending on
whether your application runs on a desktop system with a real keyboard or on a
handheld unit with no physical keyboard.

Other Considerations
The developer of pen-based applications should consider other facets of pen
computing besides recognition. This section lists a few ideas.

Don't Rely on Gestures
fu a well-designed pen application, all operations are possible without gestures. The
application may support gestures as shortcuts, but should not sacrifice common
operations for the sake of the gesture.

Gestures also tend to remain a hidden (or "nondiscoverable") functionality, which
the novice user often does not guess at. Gestures should facilitate the experienced
user without hampering the uninitiated.

Action handles provide the same benefits as gestures. Moreover, they are more
discoverable and reliable, since they do not require recognition.

Every pen application should, at minimum, support the cut and lasso gestures.
Anything else is at the discretion of the developer. fucidentally, usability tests have
found that a common gesture among novice users is to scribble over an entry to
erase or undo it. An intelligent application should respond to such unknown gestures
and display a polite inquiry, listing possible alternative actions that the user can
select by tapping.

Design Considerations 79

Provide Ample Target Space
The pen often proves an inaccurate pointing device. The well-behaved pen appli­
cation allows ample margin for pointing errors from the user, who can easily miss
a small button or other target. Consider the following suggestions to make your
pen-based application friendly to the user with poor aim:

• Create targets as large as practical.

• Space toolbar buttons so that they have gaps between them.

• Avoid crowding dialog boxes with controls placed near one another.

• Pen-down events falling within a few pixels of a button should be treated as a
press of that button. Always increase the effective size of a control by sending
the HE_SETINFLATE submessage, as described in the "HE_SETINFLATE
Submessage" section in Chapter 3, "The Writing Process."

• Compensate for the pixel sizes of different displays. Use GetDeviceCaps to
determine sizes and maintain uniform dimensions for on-screen targets.

Use Position Clues
A pen-based application should consider position clues in determining the user's
intentions. The following offers a few examples of inferring the user's desires from
the position of the ink:

• A gesture drawn over part of a selection should operate on the entire selection.
In the same vein, a gesture or lasso that intersects more than a single letter of a
word is probably meant for the entire word.

• Writing text on a line below existing text serves as a good indication the user
intends the new text to go on a new line. In this case, an application can insert
a newline character automatically.

• Text written over an insertion point should be inserted at the insertion point.

80 Programmer's Guide to Pen Services for Microsoft Windows 95

Conserve Power
A pen-based environment will often be found on small notebook- or handheld-size
computers. Users will appreciate pen-based applications that extend battery life by
conserving power. Here are a few power-saving tips:

• Avoid "disk hits" as much as possible. Hard disks on small systems often turn
off after a period of inactivity and powering them up again significantly affects
battery life. An application should av()id unnecessarily accessing the disk, since
doing so may force the system to repower the drive.

• Keep code and data files small to minimize the disk swapping Windows must do
to clear memory. Restrict the number of dynamic-link library (DLL) files your
application requires and consider loading the DLLs early. In this way, Windows
reads the DLL files immediately after having loaded the application itself, while
the disk is still in motion. Linking to a DLL's import library ensures that the
DLL is installed at the same time as the application.

However, this advice applies only to small DLL files and DLLs that the applica­
tion will most likely use at some point. Large DLL files that stand a good chance
of not being required by the application should be loaded explicitly only when
needed by calling the InstaIlRecognizer function or the LoadLibrary function.
Although this risks powering up a dormant disk drive, it also prevents unneeded
objects from occupying memory.

• Prefer visual to auditory signals. Besides the negative reasons cited in the "Use
Feedback" section, beeps from the speaker also waste battery power.

• Reduce video power drain by making background colors black.

Guidelines for Applications

Annotation

The following presents some recommended approaches for different types of appli­
cations, based on the guidelines presented above. While by no means exhaustive,
the material may give you some ideas for various types of applications.

Many different types of software can benefit from the unique advantages of pen­
based annotation. A user annotates by writing with a pen on top of an existing doc­
ument, as though on an overlaying transparent sheet. This allows adding to the doc­
ument free-form writing such as notes, diagrams, review comments, questions, and
so forth.

Design Considerations 81

Unless evident by the context, an application should prompt the user to identify a
position in the document to attach the annotation. This prevents the annotation from
drifting from its intended location if the underlying document is changed.

Often, annotated text remains unrecognized, captured as ink data. Reduce such text
to display resolution to minimize the file space it occupies. For more information on
how to achieve maximum compression of handwritten text, see "Converting Data to
Display Resolution" in Chapter 4.

Word Processor

Spreadsheet

Although the pen does not serve well to create a word-processor document, it can
do so for small editing tasks on existing documents, such as for cut-and-paste
operations, formatting changes, rewriting small amounts of text, and navigation
(scrolling). Thus, the pen in a word-processing application should behave as a
pointing device most of the time. The user should be able to select text by dragging
the pen and the selection should include an action handle. Double-tapping should
display a writing window, as should an "edit" command on a selection action han­
dle. Consider also providing an insertion-point action handle, including an "insert
text" command.

When the user creates a new blank document, the application should automatically
display an editing window because the user clearly intends to enter new text. For
existing documents, the application should provide a means for annotating the text,
either by inserting scribble notes (like post-ieM notes) or by inking directly on top of
the text.

Within the spreadsheet area, the pen should default to a pointer. If the application
allows in-cell editing, double-tapping the cell should open a writing window in
which the user can write or edit the contents of the cell. This window should include
a palette of commonly entered symbols such as "*,, or formula names that are hard
to recognize. This allows the user to enter an unambiguous symbol by tapping an
appropriate button.

A formula bar area should behave more like the word-processor application just
described. If the area is empty, the application should display the writing window
automatically. Naturally, the recognizer should be configured according to the type
of input expected, whether text, numerical, or whatever.

82 Programmer's Guide to Pen Services for Microsoft Windows 95

Mail

Annotation, including quick notes and diagrams, represents an ideal usage of a pen
in a spreadsheet application. Often, annotated text can be kept as ink and does not
require recognition. Anchoring and targeting annotations on a spreadsheet is some­
what easier than on a word-processing document because cells do not flow in the
same manner as text. Annotations should be anchored to the data and not the cell.
This ensures that, if the data moves to another cell, the annotation moves with it.

Because spreadsheets contain much data that is not based on words, on-screen
keyboards should be easy to display (and automatic in many circumstances). As
with word-processing applications, writing in a spreadsheet will most likely be
limited to small editing and format changes.

The user will often wish to edit the contents of a single cell to see how it affects
the rest of the spreadsheet. To facilitate this operation with a pen, the application
should anticipate as much as possible. For example, double-tapping a field contain­
ing a numeric value should display a numeric on-screen keypad.

If the spreadsheet offers text entry with recognition, it should provide an appropri­
ate tool accessible from a toolbar or menu. When the user selects text-entry mode,
the spreadsheet should enlarge (zoom), allowing the user to write comfortably
within a cell. The application can rely on the automatic targeting capabilities pro­
vided by the Pen application programming interface (API), described in Chapter 2,
to route text appropria~ely to different cells.

Perhaps the most common operations in electronic mail with a pen are navigation,
annotation, responding to and forwarding mail, and composition of short notes.

When the user selects "new" to create a new blank message or presses a "reply" or
"forward" button, the application should automatically display a writing window in
which the user can enter new text. In the case of the reply and forward operations,
the writing window should include the text of the original message. The user may
wish to selectively edit or delete parts of the original message when replying or
forwarding. The application should provide action handles for this.

Forms

Shell

Design Considerations 83

Pen computers are ideal for filling out electronic forms. Forms applications can
achieve superior handwriting recognition for several reasons:

• The bedit control with its built-in guides serves perfectly in many if not all the
writing sections of a form.

• Because each writing window of an electronic form often expects input of a
certain type, the forms application can constrain recognition to that type. For
example, an application can restrict recognition to numerals for a control
window that expects a telephone number.

• Through the use of word lists such as local street names or regional cities, a
recognizer can greatly improve accuracy for certain input sections of the form.

Forms usually appear blank or nearly blank by default, so the most common opera­
tion in a forms application is adding text. The system's automatic targeting routes
input to the proper control window without intervention by the application.

A writing window should appear automatically on the appropriate field if recog­
nized text produces questionable results. Double-tapping should display a writing
window, and the application should provide a lens (writing window) and on-screen
keyboard accelerator buttons. It should also provide insertion-point action handles
for selection.

The most common shell operations involve selecting files, opening files or running
programs, dragging filenames to copy or move files, and deleting files. A pointer­
based interface serves all such operations well.· Therefore, the pen should behave as
a pointer in the shell. Tapping or dragging a rectangular marquee should select files,
double-tapping should open files, and dragging should copy or move files. The shell
can provide deletion services on selected files either through a "delete" option in a
menu or by handling a cut gesture.

CHAPTER 7

A Sample Pen Application

This chapter describes a simple pen-based application called PENAPP that demon­
strates some of the programming techniques covered in the previous chapters. The
source code in this chapter is fragmentary, illustrating only the most interesting
parts of the application. For the complete source listing, see the file PENAPP.C in
the Microsoft Win32 Software Development Kit, in the SAMPLES\PEN\PENAPP
directory.

PENAPP uses the sample recognizer SREC, described in the next chapter, "Writing
a Recognizer." The source files for SREC also reside in the SAMPLES directory.
To see PENAPP in action, you must first build both PENAPP.EXE and SREC.DLL
using the supplied makefiles. Place the SREC.DLL file in your Windows directory
or in a directory on the PATH list before running PENAPP.

The SAMPLES\PEN directory also provides source code for other sample pen­
based applications. All code is commented, demonstrating different approaches to
different issues.

Overview of PENAPP
PENAPP is a standard pen-based application with the familiar Windows look. It
displays a main window with a border, an application menu, and Minimize and
Maximize buttons. It also has three child windows titled Input, Info, and Raw Data.

In operation, PENAPP accepts pen input through the Input child window. Depend­
ing on the menu option, PENAPP sends the input to the system recognizer or the
sample custom recognizer SREC, or collects the data into an HPENDATA object
to create a mirror image of the ink.

86 Programmer's Guide to Pen Services for Microsoft Windows 95

The output from the recognizers is displayed through the Raw Data and Info child
windows. The Raw Data child window redisplays the raw input data, sized for the
smaller window. The Info child window displays one of the following, depending
on the current menu selection:

• If the selected recognizer is the system recognizer, the Info child window
displays the recognized ANSI text.

• If the selected recognizer is the sample custom recognizer, the Info child win­
dow displays an arrow indicating the compass direction of the input stroke. If the
pen rests on the tablet surface without moving, the Info window displays a single
dot.

• If the Mirror option is selected, the Info window displays a mirror image of the
drawing.

In this chapter, PENAPP function and variable names appear in monospace font,
including the application's entry function, Wi nMa in. In keeping with the conven­
tions of the rest of the book, API elements are styled bold.

In itialization

WinMain

The PENAPP function Wi nMa in is a standard Windows entry function. PENAPP
uses initialization functions, called I nit A p p and I nit Ins tan c e, to create win­
dows and initialize data. To an experienced programmer in Windows, the Win M a i n
and initialization functions will look very familiar.

The Wi nMa in function performs the same tasks as a regular Windows function:

• It calls the initialization functions to register window classes and create
windows.

• It enters a message loop to process messages from the application queue.

• The message loop ends when the user chooses Exit from the menu, generating
a WM_DESTROY message, which in turn posts a WM_QUIT message to
Wi nMa in. When the GetMessage function detects the WM_QUIT message,
it returns NULL to end the loop.

The Wi nMa in function calls GetSystemMetrics to check whether pen services
are installed. If they are not found, the application should either exit with an explan­
atory message or alter its behavior to run without pen input.

A Sample Pen Application 87

Note that Microsoft pen services must be installed when Windows starts. Simply
linking PENWIN.DLL and loading it at runtime is not sufficient to initialize pen
services. For this reason, unless it is known that the application being developed
will always be run on a system with pen services installed, pen API should be
called through function pointers. This mechanism insures that a pen-aware
application can run only on a system on which pen services has been properly
installed and will not run on any system that merely has PENWIN.DLL on the path.
See the HFORM sample application for an example of this technique.

For the sake of simplicity and readability, the PENAPP application described in this
chapter links directly to PENWIN.DLL and does not use function pointers.

int PASCAL WinMain(

}

MSG

HANDLE hInstance,
HANDLE hPrevInstance,
LPSTR lpszCommandLine,
int cmdShow)

msg;

II Instance handle
II Previous instance handle
II Command line string
II ShowWindow flag

II Mention to prevent compiler warnings
lpszCommandLine;

if (!hPrevInstance) II If first instance,
if (!InitApp(hInstance))

return FALSE;
II register window class
II Exit if can't register

if (!InitInstance(hInstance, nCmdShow))
II Create this instance's window

return FALSE; II Exit if error

if (!GetSystemMetrics(SM_PENWINDOWS))
return FALSE;

II If no pen services
I I exit

while (GetMessage((LPMSG) imsg, NULL, 0, 0))
{

TranslateMessage((LPMSG) &msg);
DispatchMessage((LPMSG) &msg);

return 0; II Success

88 Programmer's Guide to Pen Services for Microsoft Windows 95

Initlnstance

The In i tApp function initializes data and registers the window classes. Following
standard programming practice for Windows, the function returns FALSE if it
cannot register the window classes.

For the Input window, In i tApp specifies a cursor type of IDC_PEN. This is the
default cursor type supplied by the pen-aware display driver. For more information
on pen types, see the reference section for the IDC_ constants in Chapter 13, "Pen
Application Programming Interface Constants."

The following fragment shows how In i tA P P creates the Input window:

BaaL
{

InitApp(HANDLE hInstance) II Instance handle

WNDCLASSwc;

II
II Register PenApp child window classes
II
wc.hCursor
wc.hIcon

LoadCursor(NULL, IDC PEN);
NULL;

wc.lpszMenuName = NULL;
wc.lpszClassName = (LPSTR) szPenAppInputClass;
wc.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
wc.style = CS_VREDRAW I CS_HREDRAW I CS_SAVEBITS;
wc.lpfnWndProc = InputWndProc;
if (!RegisterClass((LPWNDCLASS) &wc))

return FALSE;

The I nit Ins tan c e function initializes all data structures for the program instance
and creates the necessary windows. In i tIn s tan c e looks like a standard Win­
dows initialization function except that it calls the InstallRecognizer function to
load the default recognizer SREC. Windows loads the default recognizer auto­
matically, so a program should call InstallRecognizer to load only recognizers
other than the default recognizer.

A Sample Pen Application 89

The following fragment taken from the I nit Ins tan c e function shows how the
program loads the SREC recognizer:

BOOl

/I

InitInstance(
HANDLE hInstance,
int cmdShow)

II load sample recognizer SREC
/I

II Instance handle
II ShowWindow flag

vhrec = InstallRecognizer((lPSTR) szSampleRec);
if (vhrec)

return TRUE;
else

MessageBox(vhwndMain, "Could not install recognizer SREC",
szPenAppWnd, MB_OK I MB_ICONSTOP);

return FALSE;

Window Procedures
PENAPP provides a separate procedure to handle messages for each of its four
windows. In accordance with usual programming techniques for Windows, each
window procedure passes all unprocessed messages to DefWindowProc for default
processing.

The following sections describe the procedures for the Main, Input, Raw, and Info
windows.

90 Programmer's Guide to Pen Services for Microsoft Windows 95

MainWndProc
As its name implies, the Ma i nWnd P roc function handles messages sent to the
program's parent (main) window. These messages signal that the user has made a
menu selection, resized the window, or changed the pen system through Control
Panel. These actions generate, respectively, the following messages:

• WM_ COMMAND message. If the user selects a command from the Options
menu, the program notes the selection in the global flag viM e nuS e 1 . The state <

of this flag determines whether subsequent input goes to the system recognizer
or the sample recognizer SREC, or is collected into an HPENDAT A object for
conversion to a mirror image.

• WM_SIZE message. PENAPP resizes its windows according to the information
in the 1 Par a m variable.

• WM_PENMISCINFO message. The procedure allows this message to fall
through to DefWindowProc for default handling.

LRESULT CALLBACK MainWndProc(

LONG lRet = 0L;

switch (message)
{

case WM_COMMAND:
switch (wParam)
{

case miExit:

HWND hwnd,
UINT message,
WPARAM wParam,
LPARAM lParam)

DestroyWindow(vhwndMain);
break;

case miSample:
case miSystem:
case miMirror:

break;

ResetWindow(wParam);
break;

II Window handle
II Message
II Varies
II Varies

InputWndProc

case WM_DESTROY:
if (vhpendata)
{

A Sample Pen Application 91

II PKPD.DLL API: function pointer not needed:

}

II

DestroyPenData(vhpendata);
vhpendata = NULL;

II Unload sample recognizer. (Don't
II unload system default recognizer.)
1/
UninstallRecognizer(vhrec);
vhrec = NULL;
PostQuitMessage(0);
break;

default:
lRet = DefWindowProc(hwnd, message, wParam, lParam);
break;

return lRet;

The In put W n d Pro c procedure receives the WM_LBUTTONDOWN message that
signals the start of an input session. It distinguishes between a pen-down event and
a true mouse event, using the methods described in the "Beginning an Input
Session" section in Chapter 2.

When it detects the start of a pen-input session, I n put W n d Pro c calls the
DoDefaultPenInput function to handle the chores of initialization, data collection,
and inking.

As described in the "Step 3: PE_ GETPCMINFO Message" section in Chapter 2,
In put W n d Pro c immediately receives a PE_ GETPCMINFO submessage. The
1 Par a m variable points to an initialized PCMINFO structure that the system will
use for recognition. The SREC recognizer requires the structure to specify a pen-up
event as a condition of termination. Accordingly, I n put W n d Pro c takes this
opportunity to set the PCM_PENUP flag.

92 Programmer's Guide to Pen Services for Microsoft Windows 95

I n put W n d Pro c next receives a PE_BEGINDA T A submessage, as described in
"Step 6: PE_BEGINDAT A Message" in Chapter 2. In response, the procedure
takes one of the following courses of action:

• If currently using the sample recognizer, In putWnd P roc creates an HRC
object for that recognizer and specifies the HRC in the TARGET structure
pointed to by 1 Par a m. This tells DoDefaultPenInput to use the sample
recognizer SREC instead of the system default recognizer.

• If displaying a mirror image of the ink, I n put W n d Pro c creates an
HPENDATA object for the ink and specifies it in the TARGET structure
pointed to by 1 Pa ram. This tells DoDefaultPenInput to collect data into
the HPENDAT A block instead of passing it to a recognizer.

• If using the default recognizer, In put W n d Pro c simply passes the message to
DefWindowProc, which creates an HRC for the default recognizer. The code
also demonstrates how an application can take advantage of the convenience
afforded by DefWindowProc, yet override any default assumptions it makes.

When DefWindowProc returns, 1 Pa ram still points to the TARGET structure,
which now reflects the default assumptions. One of these assumptions limits to
one the maximum number of guesses the system recognizer should return. Since
PENAPP requires a maximum of five guesses, it changes the value by calling
SetMaxResultsHRC for the HRC that DefWindowProc creates.

The PE_ENDDATA submessage informs I n put W n d Pro c that the input session
has ended. The procedure collects any symbols returned by the current recognizer
into an array of symbol strings called v s y v S y m b 01 . This portion of the code does
not check to see which menu option is current. It simply collects symbols into the
array if available. If the Mirror option is selected, the attempt to collect recognized
symbols harmlessly fails since no HRC exists.

After it collects the data, I nputWndProc invalidates all three child windows. This
sends WM_P AINT messages to each window, clearing the Input window and
causing the other two windows to display their new data.

#define MAX_GUESS 5 II Maximum number of guesses
#define MAX_CHAR 20 II Maximum number of characters per guess

II Global Variables ***
HRCRESULT vrghresult[MAX_GUESS]; II Array of results
SYV vsyvSymbol[MAX_GUESS][MAX_CHAR]; II Array of symbol strings
int vcSyv[MAX_GUESS]; II Array of string lengths

A Sample Pen Application 93

LRESULT CALLBACK InputWndProc(
HWND hwnd. II Window handle
UINT message. II Message
WPARAM wParam. II Varies
LPARAM lParam) II Varies

LONG lRet = 0L;
HRC hrc;

hdc;
ps;
dwInfo;

II Initialize return code to FALSE
II HRC object

HDC
PAINSTRUCT
DWORD
int i. cGuess;

switch (message)
{

case WM_LBUTTONDOWN:
II
II Two possibilities exist: user is using mouse or the pen.
II The latter case indicates the user is starting to write.
/!

dwInfo = GetMessageExtraInfo();
if (IsPenEvent(msg. dwInfo))
{

if (DoDefaultPenInput(vhwndInput.
(UINT)dwInfo) == PCMR_OK)

.1 Ret = TRUE;
else

lRet = DefWindowProc(hwnd. msg. wParam. lParam);

break;

case WM_PENEVENT:
switch (wParam)
{

case PE_GETPCMINFO:
II
II If using SREC recognizer. ensure session ends
lion pen-up.
II
if (viMenuSel == miSample)

«LPPCMINFO) lParam)->dwPcm 1= PCM_PENUP;
lRet = DefWindowProc(hwnd. msg. wParam. lParam);
break;

94 Programmer's Guide to Pen Services for Microsoft Windows 95

case PE_BEGINDATA:
II
II 1) If using sample recognizer, create an HRC
II for it and specify it in the TARGET structure
II pointed to by lParam. This tells
II DoDefaultPenInput to use the sample recognizer
II instead of the system default.
II
II 2) If displaying mirror image of ink, create an
II HPENDATA for it. This tells DeDefaultPenInput
II to collect data into the HPENDATA object
II instead of passing it to a recognizer.
/!
II 3) If using default recognizer, pass to
II DefWindowProc. DefWindowProc sets the maximum
II number of guesses to 1; the code below shows
II how to access the HRC that DefWindowProc
II creates and reset the maximum number of
II guesses to MAX_GUESS.
/!

if (vhpendata)
{

DestroyPenData(vhpendata);
vhpendata = NULL;

switch (viMenuSel)
{

case miSample:
hrc = CreateCompatibleHRC(NULL, vhrec);
if (hrc)
{

«LPTARGET) lParam)->dwData hrc;
1 Ret = LRET_HRC;

break;

case miMirror:
vhpendata = CreatePenData(NULL, 0,

PDTS_HIENGLISH, 0);
if (vhpendata)
{

«LPTARGET) lParam)->dwData
lRet = LRET_HPENDATA;

break;

vhpendata;

A Sample Pen Application 95

case miSystem:

break;

lRet = DefWindowProc(hwnd, msg,
wParam, lParam);

II
liOn return, lParam->dwData points to HRC.
II Use it to reset max number of guesses.
II
SetMaxResultsHRC(

brea k;

«LPTARGET) lParam)->dwData,
MAX_GUESS);

case PE_ENDDATA:
II
II DefWindowProc will destroy vhpendata, so if
II collecting mirror image, don't let DefWindowProc
II handle message.
II

if (viMenuSel 1= miMirror)
lRet = DefWindowProc(hwnd, msg, wParam, lParam);
break;

case PE_RESULT:
II
II At end of input, collect recognition results (if
II any) into symbol strings. DoDefaultPenInput
II generates the PE_RESULT submessage only when
II using a recognizer. The lParam contains the HRC
II for the recognition process.
II
II Collect pen data for DrawRawData

vhpendata = CreatePenDataHRC((HRC) lParam);

II Initialize array to zero
for (i = 0; i < MAX_GUESS; i++)

vcSyv[i] = SYV_NULL;

II Get number of guesses available
cGuess = GetResultsHRC((HRC) lParam,

GRH_ALL,
(LPHRCRESULT) vrghresult,
MAX_GUESS);

96 Programmer's Guide to Pen Services for Microsoft Windows 95

InfoWndProc

II Get guesses (in vsyvSymbol) and
II their lengths (in vcSyv)

if (cGuess != HRCR_ERROR)
for (i = 0; i < cGuess; i++)

break;

vcSyv[i] = GetSymbolsHRCRESULT(
vrghresult[i].
0.
(LPSYV) vsyvSymbol[i].
MAX_CHAR);

default:
lRet = DefWindowProc(hwnd. msg. wParam. lParam);

II End switch (wParam)
break;

default :
lRet DefWindowProc(hwnd. message. wParam. lParam);

} II End switch (msg)
return lRet;

PENAPP displays results in the Info window. When the In f 0 W n d Pro c procedure
receives a WM_P AINT message, it calls one of three functions to display the
results, depending on the current menu selection. It calls:

• Di s P 1 ayGuesses if the Default option is chosen.

• DrawArrow if the Sample option is chosen.

• DrawMi rror Image if the Mirror option is chosen.

The following list describes the three functions and points out interesting portions of
their code.

A Sample Pen Application 97

DisplayGuesses
The Dis P 1 a y G u e sse s function writes the guesses returned from the default
recognizer. The guesses appear in a column, listed in descending order of confi­
dence. The for loop shown below converts the symbol values to characters, then
calls the Windows function TextOut to display the text.

VOID
{

DisplayGuesses(HOC hdc) /I DC handl e

TEXTMETRIC tm;
int nX, nY; II Text coords

for (i = 0; i < MAX_GUESS; i++)
{

if (vcSyv[i])
{

SymbolToCharacter((LPSYV) vsyvSymbol[i],
vcSyv[i],
CLPSTR) szText,
(LPINT) &cChar);

TextOut(hdc, nX, nY, (LPSTR) szText, cChar);
nY += tm.tmExternalLeading + tm.tmHeight;

DrawArrow
DrawArrow draws an arrow to indicate the symbol value returned from the SREC
recognizer. SREC returns a compass direction determined from the start and end
points of the stroke. DrawArrow reads the direction in vsyvSymbol and diplays
an appropriate arrow.

DrawMirrorlmage
DrawMi rror Image creates a mirror image of the data by subtracting each x­
coordinate from the tablet width. This moves each point from one side of the tablet
to a corresponding position on the other side. In other words, the original distance
from the tablet's left side now becomes the point's distance from the tablet's right
side.

98 Programmer's Guide to Pen Services for Microsoft Windows 95

RawWndProc

DrawMi r ror Image works in five steps:

1. Creates a duplicate HPEND A T A of the input data.

2. Calls TrimPenData to remove unneeded infonnation from the block.

3. Converts the new HPENDATA block to a mirror image.

4. Displays the mirror image by calling DrawPenDataFmt.

5. Deletes the mirror image HPENDATA block.

The Ra wWn d Pro c function is a standard Windows procedure for the Raw Data
child window. It calls the DrawRawData function to draw a copy of the input
resized for the Raw Data window. Nonnal pen-down strokes appear in the current
window color; pen-up strokes appear in blue. Note that the system recognizer
GRECO.DLL does not collect pen-up strokes. Therefore, the blue pen-up strokes do
not appear when default recognition is selected from the menu.

DrawRawData calls the DrawPenDataEx function to display the strokes. Since
DrawPenDataEx does not show pen-up strokes, DrawRawData first changes all
pen-up strokes to pen-down strokes. The following fragment illustrates this:

VOID DrawRawData(HOC hdc)
{

PENDATAHEADER pendataheader;
HPEN hpenUp. hpenSave;
UINT fPen;
UINT iStroke=0;
int nWidth;

II Header for vhpendata
II GDI pen for up-strokes
I I Pen fl ag
II Stroke counter
II Ink width

if (!GetPenDataInfo(vhpendata. &pendataheader. NULL. 0 »
return;

nWidth = NSetExtents (hdc. &pendataheader. &rectWnd);
hpenUp . = CreatePen(PS_SOLID. nWidth. rgbBlue);
hpenSave = SelectObject(hdc. hpenUp);

A Sample Pen Application 99

II Loop for each stroke. beginning with first
for (iStroke = 0; iStroke < pendataheader.cStrokes; ++iStroke)

II
II If down stroke. use same ink characteristics as original.
II If up stroke. first call SetStrokeAttributes to convert it
II to a down stroke. then draw it in blue ink with GDI pen.
II
if (GetStrokeAttributes(vhpendata. iStroke. NULL. GSA_DOWN»

fPen = DPD_DRAWSEL;
else
{

SetStrokeAttributes(vhpendata. iStroke. 1. SSA_DOWN);
fPen = DPD_HDCPEN;

iRet DrawPenDataEx(hdc. NULL. vhpendata. iStroke. iStroke.
0. IX_END. NULL. NULL. fPen);

II Set altered strokes back to their original pen-up state
if (fPen == DPD_HDCPEN)

SetStrokeAttributes(vhpendata. iStroke. 0. SSA_DOWN);

SelectObject(hdc~ hpenSave);
DeleteObject(hpenUp);
return

CHAPTER 8

Writing a Recognizer

A recognizer is a dynamic-link library (DLL) that interprets lines of ink as char­
acters and symbols. Version 2.0 of the Pen API allows a pen-based application
to install multiple recognizers and use them selectively. Each recognizer should
specialize in recognizing a particular set of symbols instead of trying to handle
many different types. Besides keeping the recognizer code manageable, this
approach lets an application choose among several available recognizers to fulfill
its current recognition needs.

The recognizer developer must know both sides of the interface between application
and recognizer. The foregoing chapters, particularly Chapter 5, "The Recognition
Process," should be read before venturing into this one.

Such a developer should also have some familiarity with the coding requirements of
a DLL. For information about how to write a DLL, see the Guide to Programming
manual in the Microsoft Windows Software Development Kit. In addition, the
"Writing a Dynamic-Link Library for Windows" chapter in the MASM version 6.1
Programmer's Guide offers valuable infonnation about DLL coding requirements.

This chapter describes the framework of a recognizer DLL and the functions it must
export. The final section presents a sample recognizer called SREC. The source file
for SREC resides in the SAMPLES\PEN\<;REC subdirectory.

Recognizer Objects
Three objects serve the process of recognition, identified by their handles: recog­
nition context (HRC), recognition context result (HRCRESUL T), and word list
(HWL). The structure and implementation of these objects are left to the recognizer
developer and remain invisible to applications and the system. However, the objects
must comply with the following two requirements:

• The handle value must be a 32-bit pointer to the object in memory.

• The first DWORD (32 bits) of the memory that the handle points to is reserved
for system use. The recognizer must not alter the DWORD value during the life
of the object.

102 Programmer's Guide to Pen Services for Microsoft Windows 95

Thus, a recognizer's internal structure of a recognition object should be of the
following fonn:

typedef struct {
DWORD dwReserved:

INTERNALOBJECT;

It is the application's responsibility to destroy the recognition objects when fin­
ished. A recognizer should validate all handles to ensure an object exists before
processing. Although a product of an HRC, an HRCRESUL T is usually an inde­
pendent object. Destroying an HRC does not destroy its HRCRESUL T objects,
which remain valid objects and must be destroyed separately.

A single HWL object can be associated with multiple HRC objects at any given
time. The recognizer should not allow alteration of an HWL while processing any
of its associated HRC objects. Similarly, the recognizer should not allow destruc­
tion of an HWL before the destruction of all its associated HRC objects. In either
case, the recognizer should return an error to the application.

How a Recognizer Works
There are two techniques for recognizing handwriting, called bitmap and vector
recognition.

Bitmap recognition attempts to match an ink image with a record of known char­
acter images. The bitmap recognizer sees the ink data as a stencil pattern of points
that it can compare to a library of patterns, searching for the closest match. This
technique, employed by optical character recognizers (OCRs), works well for pat­
terns limited to a few styles and sizes.

In contrast, vector recognition sees the ink as lines rather than points. The method
considers characteristics of the lines collected as the pen moves. These character­
istics include sequence, curvature, direction, and so forth. Given the wide varieties
and styles of handwriting, vector recognition works best for deciphering pen input.
The Pen API does not mandate which method a recognizer employs, but is designed
to facilitate vector rather than bitmap recognition.

Writing a Recognizer 103

List of Exported Functions
Technically, an application does not call directly into a recognizer's exported func­
tions, though the distinction is not important to the recognizer. Instead, all calls go
to the system, which acts as a switchboard to route the calls to the proper recog­
nizer when more than one recognizer is installed. For example, when an application
loads a recognizer with InstallRecognizer, that recognizer exports functions with
the same name as those exported by other recognizers, including the default recog­
nizer. The system automatically transfers calls to the correct recognizer based on
the HRC argument or other value that identifies the intended recipient.

As a DLL, a recognizer must export functions to the pen system that installs the
recognizer. This section lists these recognition functions, describes their purpose,
and identifies them as required or optional.

The optional functions that a recognizer should provide depend on the clients it will
serve. Commonly, a recognizer DLL is part of an application package designed
only for that application. As author of both client application and its private DLL,
the developer need write only those functions the application requires. In this case,
the developer is also free to design other functions not specified by the Pen API.

At the other extreme, some recognizers serve client applications indiscriminately.
For example, a developer might market a recognizer of foreign script to various
application developers with international product lines. A recognizer can also take
on the role of system default recognizer, in which case it must:

• Export all recognizer functions.

• Recognize letters, punctuation, numbers, and predefined gestures from ink data.

• Associate raw data with matched results.

• Return characters only within the requested subset.

• Return an "I don't know" response when appropriate.

A system default recognizer should support all recognizer functions, not merely
export stub versions of the optional functions. At the very least, the recognizer must
return an HRCR_UNSUPPORTED value from functions it does not support. For a
description of how to specify the system recognizer through the registry, see
Appendix A, "Differences Between Versions 1.0 and 2.0 of the Pen Application
Programming Interface."

/

104 Programmer's Guide to Pen Services for Microsoft Windows 95

The following sections describe all 47 recognition functions of the Pen API version
2.0. The lists of functions represent the following categories:

• Initialization

• HRC functions

• HRCRESUL T functions

• Alphabet support

• Word lists

• Training

All recognizers must export 13 required functions, which are indicated by asterisks
in the following tables. The functions without asterisks are optional for a recog­
nizer. Each table corresponds to one of the categories listed previously, with func­
tions arranged in alphabetic order within the table.

Initialization
The Pen API specifies the following functions for initializing, modifying, and clos­
ing down the recognizer. Note that, in version 2.0 of the Pen API, the required
function ConfigRecognizer handles all initialization and configuration tasks. The
other initialization functions are obsolete in version 2.0 and should only be included
in a recognizer if it is expected to work with older applications that work with a)
version 1.0 recognizer (see the Microsoft Pen Windows, version 1.0 documentation
for descriptions of these functions).

Function

ConfigRecognizer*

CloseRecognizer

InitRecognizer

RecognizeDatalnternal

Recognizelnternal

Description

Provides access for querying or altering recognizer
configuration. In version 2.0, only the system calls
ConfigRecognizer. Applications call ConfigHREC,
which the system translates into a call to
ConfigRecognizer.

Required only for compatibility with version 1.0 API.
Called when the system uninstalls a version 1.0
recognizer.

Required only for compatibility with version 1.0 API.
Called when the system installs a version 1.0
recognizer.

Required only for compatibility with version 1.0 API.
The system calls this function only when an application
calls RecognizeData.

Required only for compatibility with version 1.0 API.
The system calls this function only when an application
calls Recognize.

Writing a Recognizer 105

HRC Functions
In general terms, the HRC functions carry out the recognition process. Together,
they collect raw data, derive recognized symbols from the data, and place the
symbols into HRCRESUL T objects. Their work ends with recognition. To retrieve
the recognized symbols, an application calls the HRCRESUL T functions
described in the next section.

Function

AddPenInputHRC*

CreatePenDataHRC

CreateCompatibleHRC*

DestroyHRC*

EnableGestureSetHRC

EnableSystemDictionaryHRC

EndPenInputHRC*

GetBoxResultsHRC

GetGuideHRC

GetHRECFromHRC*

GetMaxResultsHRC

GetResultsHRC*

ProcessHRC*

SetGuideHRC

SetMaxResultsHRC

Description

Adds input to the recognizer's HRC object. This
function is normally called at every pen movement,
providing data a few points at a time.

Returns an HPEND A T A handle for the pen data
within the HRC.

Creates an empty HRC object, ready to receive
input data.

Frees the memory occupied by an HRC object,
invalidating the handle value.

Enables or disables the recognition of a specified set
of gestures.

Specifies whether or not the recognizer should use
its dictionary to validate recognition guesses.

Notifies the recognizer that input has ended for the
session. This function does not initiate recognition
of the collected data; the client application must call
ProcessHR C to do that.

Gets recognition results for a range of boxes.

Retrieves a copy of the GUIDE structure (if any)
used in the HRC.

Gets the module handle to the recognizer DLL
attached to the HRC.

Gets the current maximum number of guesses the
recognizer can make for the HRC.

Retrieves recognition results as HRCRESULT
objects. Each object represents one guess.

Tells the recognizer that it should begin recognition
and sets the maximum amount of time allowed for
the task.

Specifies a GUIDE structure for recognition.

Sets the maximum number of guesses the
recognizer can make for the HRC.

106 Programmer's Guide to Pen Services for Microsoft Windows 95

HRCRESUL T Functions
The HRCRESUL T functions retrieve recognized symbols and other associated
information from the recognizer. The GetResultsHRC function described in the
previous table collects results into one or more HRCRESUL T objects. Each object
represents an alternative interpretation the recognizer has made about the input.
Once an application calls GetResultsHRC to create the HRCRESUL T objects,
it can then call the HRCRESULT functions listed here to get the recognized char­
acters from the objects.

Function Description

CreateInksetHRCRESULT Creates an inkset corresponding to recognition
results.

DestroyHRCRESULT* Frees the memory occupied by an HRCRESULT
object, invalidating the handle value.

GetAlternateWordsHRCRESULT Retrieves alternative guesses from the results of a
recognition process.

GetBoxMappingHRCRESUL T Retrieves the indices for a range of symbols in
boxes. For example, if writing begins in the fifth
box of a guide, this function returns the index 4
for the fIrst symbol.

GetHotspotsHRCRESUL T Returns the critical point for a given recognized
gesture. (See the "Hot Spots" section.)

GetSymboICountHRCRESULT* Gets the length of the symbol array that forms one
of the recognizer's guesses.

GetSymbolsHRCRESUL T* Retrieves symbol values corresponding to one of
the recognizer's guesses.

Specifying an Alphabet Set
By supporting the following alphabet functions, a recognizer enables an application
to specify which alphabet sets to consider during recognition. Alphabets are sets
of characters within the entire range of characters the recognizer can interpret. For
example, an application can limit recognition to any combination of lowercase char­
acters, punctuation, math symbols, and so forth.

The Pen API defines ALC_ values to identify an alphabet set. For further informa­
tion on alphabets and an abbreviated list of the most common ALC_ values, see
"Configuring the HRC" in Chapter 5, "The Recognition Process." A full list of
ALC_ values appears in Chapter 13, "Pen Application Programming Interface
Constants. "

Writing a Recognizer 107

The Pen API allows an application to set a priority when using multiple alphabet
sets. Priority can resolve conflicts when one glyph has different interpretations in
different alphabets. For example, consider a case in which input consists of both
letters and numerals, but the application expects numerals more often. By setting
an alphabet of ALC_ALPHANUMERIC and a priority of ALC_NUMERIC, the
application tells the recognizer to consider both letters and numerals, but interpret
for numerals first. This helps resolve the problem of distinguishing between the
numeral "0" and the letter "0."

The following table lists the optional recognizer functions that pertain to alphabets.

Function

GetAlphabetHRC

GetAlphabetPriorityHRC

SetAlphabetHRC

SetAlphabetPriorityHRC

SetBoxAlphabetHRC

Word Lists

Description

Retrieves bitwise-OR flags of ALC_ values indi­
cating which alphabet(s) the recognizer can cur­
rently recognize.

Retrieves bitwise-OR flags of ALC_ values indi­
cating priority.

Constrains recognition to a specified set of alpha­
bet characters.

Specifies the priority of alphabets used during
recognition.

Constrains recognition to a set of specified alphabet
characters for individual boxes in a group of boxes.

A word list acts as a broad alphabet set. A list consists of valid words that can in­
fluence the confidence a recognizer places in a guess. After guessing at a word
(or phrase), a recognizer can search for the guess in one or more word lists. Locat­
ing a guess in a word list helps verify the validity of the guess.

A word list Cal! consist of a small group of words permanently stored in the recog­
nizer's data segment. Often, however, the words reside in an accompanying file that
the recognizer reads as required. A word list file should be in standard ANSI text
format, one word per line, with each line ending in a carriage return and linefeed.
This allows the user to emend the files, if necessary, with a text editor.

A recognizer that uses word lists should export the ReadHWL and WriteHWL
functions. These functions read and write standard word list files,enabling an appli­
cation to move words directly between a file and an HWL object.

108 Programmer's Guide to Pen Services for Microsoft Windows 95

The table below lists the exported functions for a recognizer that uses word lists.

Function

AddWordsHWL

CreateHWL

DestroyHWL

GetWordlistCoercionHRC

GetWordlistHRC

ReadHWL

Set WordlistCoercionHRC

Set WordlistHRC

WriteHWL

Training

Description

Adds a specified collection of words to an existing word
list in memory.

Creates a word list in memory, either empty or containing
a given list of words.

Destroys a word list, invalidating the handle.

Retrieves the current degree of influence a word list or the
system dictionary has on the confidence level of a guess.

Retrieves a word list from the HRC object.

Reads from a file into an empty word list. The words
must be in ANSI text format, one word per line, each
line ending with a carriage return and linefeed.

Specifies the influence a word list or the system dictionary
should exert on the confidence level of a guess.

Sets a word list into the HRC object.

. Writes from a word list to a file. The words are written
as ANSI text, one word per line.

Training is optional·for a recognizer and the method of its implementation is up to
the developer. Through training, a recognizer can consider the individual style and
writing characteristics of different users when interpreting handwriting.

Training can be classified as either passive or active. However, the distinction
usually pertains more to the application than to the recognizer. In passive training,
the application quietly calls the recognizer's training functions whenever the user
corrects a wrong guess. Correctly implemented, passive training helps ensure that
the recognizer learns from its mistakes.

Active training takes place only when specifically requested by the user. A training
window prompts the user for written samples, then the verified input is given to
the recognizer to store in its database for that user. The recognizer can provide the
active training support, though usually this task is left to an application. Microsoft
usability studies have shown that users do not object to the time invested in active
training.

Writing a Recognizer 109

The following table lists the functions that a recognizer with training capabilities
can export. Only TrainHREC is used by version 2.0 Pen API. The other functions
are obsolete in version 2.0 and should be included in a recognizer only if it is
expected to work with older applications that work with a version 1.0 recognizer
(see the Microsoft Pen Windows version 1.0 documentation for descriptions of
these functions).

Function

TrainContextlnternal

TrainHREC

TrainInkInternal

Interpreting Input

Description

Passes a previous recognition result that may contain errors
along with the required interpretation. The system calls
this function in response to a call to TrainContext. This
function applies only to training recognizers compatible
with version 1.0 of the Pen API. It is superseded by the
TrainHREC function.

Passes ink data and its required interpretation to the recog­
nizer. The recognizer then stores the data and interpretation
for future reference.

Passes a previous erroneous recognition result along with
the correct interpretation. The system calls this function
when the application calls TrainInk. TrainInkInternal is
rendered obsolete by TrainHREC and is only for training
recognizers compatible with version 1.0 of the Pen API.

Typically, a recognizer converts pen input to recognized data in three steps:

1. Collect and process the raw pen input data.

2. Segment the written symbols.

3. Note the order and direction of pen strokes.

Processing Raw Data
Raw data for recognition consists of pen coordinates. At a minimum, the recognizer
must collect coordinate data while the pen is in contact with the tablet. Optionally,
the recognizer can also process additional pen data such as pen pressure, the height
of the pen tip above the pad, the angle of the pen, and the rotation of the pen. Not all
pen devices can provide such information.

The Microsoft Handwriting Recognizer (GRECO.DLL) processes only coordinate
data. The Pen API provides the OEMPENINFO structure for other types of pen
data. For details, see the entry for OEMPENINFO in Chapter 11, "Pen
Application Programming Interface Structures."

110 Programmer's Guide to Pen Services for Microsoft Windows 95

Noise Reduction and Normalization
To improve recognition, a recognizer can optionally employ noise reduction and
normalization techniques. Noise reduction· filters the input to weed out erroneous
input-for example, pen skips, inadvertent marks from the user, or spurious noise
from the input device.

Normalization corrects the natural skewing of handwritten text. In the same way
that lines of text tend to run askew on blank paper, lines of pen input are usually not
parallel to the top and bottom of the tablet. (An application can provide guidelines
to help correct this tendency.)

Coordinates should be normalized relative to a horizontal line, called the baseline,
that marks the bottom of the text. The baseline is analogous to a single line on lined
notebook paper. Letterdescenders, such as the lower parts of "y" or "j," descend
below the baseline.

If a guide is present, its vertical coordinate defines the baseline. The baseline of
a single-line guide in absolute coordinates is the sum of the yOrigin and cyBase
members of the GUIDE structure. For more information, see the reference
description of the GUIDE structure.

Allowed Time
The recognizer must return within the period of time specified by the dwTimeM ax
parameter of the ProcessHRC function. This parameter can have the values
PH_MIN, PH_DEFAULT, or PH_MAX. Respectively, these values limit the time
allowed for processing to approximately 50 milliseconds, 200 milliseconds, or as
much time as required.

For values other than PH_MAX, the recognizer must ensure that it does not exceed
the allotted time. The recognizer can either regularly poll with the GetTickCount
function to mark the passage of time or, through the SetTimer function, provide a
callback function that sets a time-out flag. The SREC sample recognizer described
at the end of this chapter demonstrates the latter technique.

Allowed Number of Guesses
The recognizer must return no more than the maximum number of guesses specified
by the SetMaxResultsHRC function. For a description of this function, see the
"Number of Recognition Guesses" section in Chapter 5. By default, the recognizer
returns only its best guess with no alternative guesses.

Writing a Recognizer 111

Segmentation of Symbols
A recognizer can view symbols at any granularity. For instance, most handwriting
recognizers see individual letters and numerals as symbols. A recognizer for cursive
writing, on the other hand, may see a complete word as a single symbol without
distinguishing each letter of the word.

No matter how it views symbols, a recognizer must separate them within a stream
of written symbols, a process called segmentation. The task of segmenting letters is
greatly facilitated if the application provides box guides. In this case, the recognizer
can assume that strokes lying within a box constitute a single character. The prob­
lem of accurate segmentation becomes more difficult for unguided text.

Segmentation is a crucial issue for recognizing different handwriting styles. The
fol-Iowing table lists the forms of input in decreasing order of constraint on the
user. The information in the table is taken from IBM Research Report RC 11175,
No. 50249, (May 21, 1985), An Adaptive System/or Handwriting Recognition, by
C. C. Tappert.

Input form

Boxed input

Discrete spaced

Discrete run-on

Cursive

Mixed

Definition

Each character appears within its own box.

A set of strokes in a given space belong to the same character.
(This is also called external segmentation.)

Printed characters can overlap.

Letters are connected by ligatures. The recognizer must either identify
discrete letters or interpret a whole word at a time.

The recognizer can segment discrete, run-on, and cursive writing.

Figure 8.1 illustrates these various styles.

[[][QJIR] Boxed

Dl 5' ex-e. t <:.. Discrete

~nD Discrete run-on

~ Cursive

ffiix.ed Mixed

Figure 8.1 Handwriting styles

The Pen API places few restrictions on the recognizer. At a minimum, however,
a default recognizer must be able to recognize discrete characters because many
applications do not use boxed input.

112 Programmer's Guide to Pen Services for Microsoft Windows 95

Stroke Order and Direction
Noting the order and placement of strokes can help a recognizer handle the
following cases:

• Delayed strokes. A delayed stroke occurs after other strokes, but belongs to an
earlier, unfinished character. For example, in writing the word "two," the user
might cross the "t" only after writing the rest of the word.

• Correction strokes. A correction stroke alters the interpretation of other strokes
-for example, placing a small stroke on the top of a "y" to change it to a "g."
Correction strokes are often delayed.

• Characters written out of order. For example, the user should be able to first
write "t 0," then fill in a "w" between the letters. The recognizer should recog­
nize the completed word as "two" instead of "tow."

• Variations in stroke orde~ or direction. Different users often write the multiple
strokes of characters in a different order and direction. To take an extreme
example, the four strokes forming a capital "E" can be written in 24*4! = 384
distinct ways.

Returning Results
To return results, the recognizer must conform to the procedures described in the
section "Getting Results" in Chapter 5. That section examines the case where the
words "clear," "dear," "clean," "dean," and "deer" represent valid interpretations
of a handwritten word. In such a case, the recognizer should return the possibilities
arranged in order of decreasing likelihood.

Without an internal concept of likelihood, the recognizer must impose an arbitrary
order. However, for multiple recognizers to cooperate, a recognizer must have some
concept of a poor match and be able to return "unknown" in lieu of a guess. While
the pen API does not strictly require a recognizer to assign confidence levels to its
guesses, without confidence values a recognizer cannot work efficiently with other
recognizers.

The recognizer must be able to associate individual strokes with a recognized sym­
bol. Applications can use the stroke data to correctly juxtapose the recognized text
with the ink on the screen, redraw the data, or send information to other recog­
nizers.

Writing a Recognizer 113

Speed and timing are very important in the recognition process. A recognizer should
recognize input at least at the speed of normal handwriting, approximately two to
three characters per second.

Results Messages
Results messages concerning recognition come from the system, not the recognizer.
The messages depend on what services the application uses:

• If DoDefaultPenlnput runs the recognition process, it sends a chain of mes­
sages to the application as described in Chapter 2, "Starting Out with System
Defaults."

• If the application calls one of the version 1.0 recognizer functions, such as
Recognize or ProcessWriting, the system generates a WM_RCRESULT mes­
sage. The system can send many WM_RCRESUL T messages during a single
recognition event, depending on the frequency that the application has specified
for receiving data. The IParam of each message points to a new, self-contained
RCRESUL T structure that contains the recognition results generated since the
last WM_RCRESULT message.

The RCRESUL T Structure
A recognizer can store its results in any format the developer wishes. It need not
create an RCRESUL T structure except in response to calls to certain superseded
functions such as Recognize and RecognizeData. For completeness, this section
describes the RCRESUL T structure, which the developer may wish to use as a
model for storage. Although a recognizer must calculate the information found in
an RCRESUL T structure, it need not organize the information in the same format.

Note The RCRESUL T structure is not required in version 2.0 of the Pen API and
is sup-ported only to maintain compatibility with older applications that use version
1.0 recognizer API.

The first member of the RCRESUL T structure is a list called the symbol graph,
which contains all the recognizer's guesses. An application can read the guesses
in order of likelihood by walking through the symbol graph.

114 Programmer's Guide to Pen Services for Microsoft Windows 95

The Symbol Graph
The best way to understand the symbol graph is to first diagram its contents before
describing how to actually readit. The following discussion again takes up the
example in the section "Getting Results" in Chapter 5, in which the recognizer gen­
erated the five guesses "clear," "dear," "clean," "dean," and "deer." A diagram of
the symbol graph that represents all these possibilities might look like this:

Letter: {' cl d e a e } r n
Confidence: 80% 60% 100% 85% 20% 80% 50%

Average: clear 86%
dear 81%
clean 79%
dean 74%
deer 58%

If you study the diagram a moment, you will see its logic. Alternative letters appear
separated by a C bitwise-OR symbol, with the most likely alternative first. All the
guesses in this example, however, agree that the second (or third) character is the
letter "e," so it has no alternatives. Taking the first letter in each alternative set pro­
duces the most likely of the guesses-in this case, the word "clear."

The symbol graph includes confidence values for each character or character set
(as in the case of the interpretation "cl"). The recognizer can determine a confi­
dence value for an entire word by averaging the values for each character or char­
acter set, as shown in the diagram above. (Note that this hypothesis is purely for
purposes of discussion. The pen API does not mandate how a recognizer determines
its confidence levels. The influence of word lists and other factors may also change
confidence levels.)

Symbol graphs must, therefore, contain three types of information:

• All characters (or character sets) determined as likely interpretations for a set
of pen strokes

• A map identifying the pen strokes that correspond to each interpretation

• A confidence level for each interpretation

As described in Chapter 11, "Pen Application Programming Interface Structures,"
the symbol graph is a structure of type SYG. The SYG structure contains two
additional data structures that provide the needed information: symbol
correspondence and symbol element structures.

Writing a Recognizer 115

A symbol correspondence structure SYC delineates a specific subset of the strokes
entered by the user. Each SYC contains the first and last strokes of a subset; these
strokes and the strokes between them define the subset of pen data associated with
the SYC. The symbol graph contains an array of SYC structures, each of which
corresponds to a different part of the ink input. Taken together, the SYC structures
define all the ink gathered during the input session.

A SYG structure also contains an array of symbol element SYE structures. An
SYE contains a symbol value, a confidence level, and an index into the array of
SYC structures. Each character or character set in the recognized input has its own
symbol element.

The Best Guess
The RCRESULT structure also provides information about the recognizer's "best
guess." The best guess is simply the first interpretation in the symbol graph, which
lists interpretations in descending order of probability. Since an application is often
interested only in the most likely interpretation, the recognizer should place in the
RCRESUL T the following three members specifically to identify the best guess:

• The lpsyv member points to.a null-terminated symbol string containing the best
guess.

• The cSyv member contains the number of symbols in the best guess string.

• The hSyv member is the handle to the memory block to which lpsyv points.

Location and Position of the Input
The RCRESUL T structure also contains information regarding the location and
position of the ink entered by the user.

• The nBaseLine member is the recognizer's estimate of the baseline of the ink
entered by the user. (For a definition of baseline, see "Noise Reduction and
Normalization" earlier in this chapter.) If the baseline is not known, the
recognizer sets this value to O. The Microsoft Handwriting Recognizer
(GRECO.DLL) sets nBaseLine to O.

• The nMidLine member is the recognizer's estimate of the midline of the ink
entered by the user. If the midline is not known, the recognizer sets this value
to O. The Microsoft Handwriting Recognizer sets nMidLine to O.

• The rectBoundlnk member is a Windows RECT structure. It holds the bound­
ing rectangle that circumscribes the area of the screen on which the user has
written. Typically, an application uses rectBoundlnk to invalidate the screen
area to update the display in the appropriate location. This occurs, for example,
when Windows replaces ink on the screen with recognized text.

116 Programmer's Guide to Pen Services for Microsoft Windows 95

Contextual Information
Two elements of the RCRESUL T structure provide infonnation about the recog­
nition event, but not as a part of the results of recognition. They are lprc, a far
pointer to the RC structure passed to the Recognize function, and wResultsType,
a flag that describes how the recognition event proceeded. The wResultsType flag
contains a combination of RCRT_ constants, described in Chapter 13, "Pen Appli­
cation Programming Interface Constants."

The Ink
The final two members of the RCRESUL T structure contain infonnation about the
ink entered by the user.

• The pntEnd member contains the last point of the ink data from the user only
if PCM_RECTBOUND or PCM_RECTEXCLUDE have been specified. An
application sets these flags either in the IPcm member of the RC structure or
the dwPcm member of the PCMINFO structure.

• The hpendata member is a handle to a pen data memory block that contains all
of the ink infonnation entered by the user.

Hot Spots
While recognizing a symbol, the recognizer may also identify critical points on the
symbol called hot spots. Hot spots can apply to any symbol but usually are of inter­
est only for gestures. For example, if the user writes an X for deletion, the cross of
the X - its hot spot - points to the item to be deleted. If the recognizer identifies hot
spots for a recognized symbol, it places coordinates for all hot spot points in the
rgpntHotSpot member of the symbol's SYG structure. This array can hold up to
MAXHOTSPOT points. Note that all symbols do not have the same number of hot
spots, and many symbols have none.

Writing a Recognizer
A recognizer must reflect the developer's requirements, design, and programming
style. Although it cannot prescribe anyone method for creating a recognizer, this
section offers guidance on writing several important recognition functions. The
section also presents a sample recognizer called SREC to illustrate some of the
infonnation in this chapter.

For a description of how an application uses the InstallRecognizer function to load
a recognizer function, see "Creating the HRC" in Chapter 5. The reference section
for InstallRecognizer in Chapter 10 also discusses how to load a recognizer by
using the LoadLibrary function to aid in debugging the recognizer. To designate
a recognizer as the system default recognizer, see "Registry Configuration" in
Appendix A.

WriUng a Recognizer 117

Recognition Functions
The following sections provide fragmentary examples of the recognition functions
AddPenlnputHRC, CreateCompatibleHRC, CreateInksetHRCRESUL T,
CreatePenDataHRC, and DestroyHRC.

For purposes of discussion, the examples assume the recognizer's HRC takes the
form of a private structure called H RCi nterna 1. This structure contains a handle
to an HPENDAT A block, which stores the stroke information and pen data points
for an input session. (For a description of HPENDAT A, see "The HPENDATA
Object" in Chapter 4.) The HRC applies only to a single session-say, a word
written by the user. The client application must create a new HRC to recognize the
next word.

The following typedef statement defines the hypothetical HRC object used by the
example code fragments in this section:

typedef struct
{

DWORD
HGLOBAL
HPENDATA
int

reserved;
hgl obal ;
hpendata;
wPdk;

} HRCinternal, FAR *LPHRCinternal;

II Reserve first DWORD for system
II Handle from GlobalAlloc
II HPENDATA handle for input
II Current stroke is pen-up or down
II Other information for the HRC

Notice that the structure reserves the first DWORD for system use. This is required
for all recognizer objects. The structure also groups pertinent variables within the
object itself instead of allocating them as global data. This ensures that the object
remains private to the client that creates it.

In the code that follows, all internal functions have an "N" prefix. This helps dis­
tinguish them from standard API functions.

CreateCompatibleHRC
The CreateCompatibleHRC function allocates memory for the HRC object. The
example below calls the Windows function GlobalAlloc and uses the returned
memory handle as the HRC.Locking the allocated memory with GlobalLock
provides a far pointer to the allocated H R C i n t ern a 1 structure.

118 Programmer's Guide to Pen Services for Microsoft Windows 95

When an input session begins, the pen state is always down. Therefore, the function
initializes the wPdk member to PDK_DOWN.

HRC WINAPI CreateCompatibleHRC(HRC hrcTemplate, HREC hrec)
{

HGLOBAL
LPHRCinternal

hglobal;
lphrc;

II Handle of allocated HRC object
II Far pointer to object

II Allocate memory for HRC and get far pointer to it
hglobal GlobalAlloc(GHND, sizeof(HRCinternal));
lphrc = (LPHRCinternal) GlobalLock(hglobal);

II If failure, return NULL
if (!lphrc)

return NULL;

II Save HRC memory handle, because DestroyHRC will need it
lphrc->hglobal = hglobal;

II If template provided, copy its information to the new HRC
if (hrcTemplate)

NCopyTemplateInfo(hrcTemplate, lphrc);

II Initialize other information
lphrc->hpendata = CreatePenData(NULL, 0, PDTS_HIENGLISH, 0);
lphrc->wPdk = PDK_DOWN;

II If no errors, return pointer as HRC handle
return «HRC) lphrc);

DestroyHRC
Generally, the life of an HRC object is brief. An application destroys the HRC
after obtaining results from the recognizer and creates a new HRC at the start of
the next input session.

In the model described above, CreateCompatibleHRC calls GlobalAlloc to allo­
cate system memory in which the HRC object resides. The function returns a
pointer to the fixed allocation as an HR C handle.

Writing a Recognizer 119

DestroyHRC reverses the action, using the original HGLOBAL handle to free the
allocated memory. When DestroyHRC successfully returns, the HRC handle is no
longer valid. The application should set the handle to NULL to prevent accidental
reuse, as described in "Destroying the HRC" in Chapter 5.

int WINAPI DestroyHRC(HRC hrc)
{

LPHRCinternal lphrc = (LPHRCinternal) hrc; II Pointer to HRC

if (!GlobalUnlock(lphrc->hglobal))
retu rn H RCR_OK;

else
return HRCR_ERROR;

AddPenlnputHRC
As the pen moves, an application continually gets data from the pen driver by
calling GetPenlnput. It then passes the retrieved information to the recognizer
via AddPenlnputHRC. This function may be called many times before the user
completes the stroke. Each time, AddPenlnputHRC receives a small subset of
points that collectively form a pen stroke.

Along with the subset of points, AddPenlnputHRC receives a STROKEINFO
structure that represents the points in the subset. For example, the member dwTick
contains the starting time for each subset, not the entire stroke. (The starting time
of the first subset of a stroke is also the starting time of the entire stroke.) Similarly,
cPnt contains the point count only for the current subset.

The following example lets the system take care of accumulating the points. It
calls the AddPointsPenData API function to add the subset of points to the
HPENDAT A block belonging to the HRC. The code also demonstrates how a
recognizer can determine when one stroke ends and another begins. This allows
the recognizer to take some intermediate steps to facilitate recognition at the end
of each stroke. Such intermediate work can remove some of the burden from
ProcessHRC, improving response time and perhaps accuracy as well.

int WINAPI AddPenlnputHRC(HRC hrc, LPPOINT lppnt, LPVOID lpvOem,
UINT oemdatatype, LPSTROKEINFO lpsi)

LPHRCinternal
int

lphrc = (LPHRCinternal) hrc; II Pointer to HRC
iRet = HRCR_OK; II Return code

120 Programmer's Guide to Pen Services for Microsoft Windows 95

}

1/
II If state change from down to up (or vice versa), the previous
II stroke has ended and the point data that lppnt points to belongs
II to a new stroke. Take any intermediate action to process the
II just-completed stroke.
1/
if (lpsi->wPdk != lphrc->wPdk)
{

II Take intermediate action

lphrc->wPdk lpsi->wPdk II Note new pen state
}

II Accumulate stroke points in internal
if (!AddPointsPenData(lphrc->hpendata,

lppnt,
1 pvOem,
1 ps i))

iRet = HRCR_ERROR;

HPENDATA object
II HPENDATA handle
II Point subset
II OEM data
II Subset STROKEINFO

II Return appropriate error code (HRCR_OK or HRCR_ERROR)
return (iRet);

CreatePen DataH RC
The CreatePenDataHRC function returns a handle to an HPENDATA object
that contains the raw data used for recognition. In the example code above,
AddPenlnputHRC has already done the work of storing the pen data into an
internal HPENDAT A. Thus, the hypothetical CreatePenDataHRC function
outlined below simply duplicates the internal object.

HPENDATA WINAPI
{

CreatePenDataHRC(HRC hrc)

}

LPHRCinternal lphrc = (LPHRCinternal) hrc; II Pointer to HRC

II Clone the internal HPENDATA and return its handle
return (DuplicatePenData(lphrc->hpendata, 0));

Writing a Recognizer 121

CreatelnksetHRCRESUL T
The optional CreatelnksetHRCRESUL T function creates a corresponding ink­
set from the data in an HPENDAT A object. For a description of inksets and the
INTERV AL structure, see "The HINKSET Object''' in Chapter 4.

A description of the CreatelnksetHRCRESUL T function first requires a brief
discussion of stroke start and end times. Some of this information also appears
in the section "Timing Information" in Chapter 4, but it is presented here from the
point of view of the recognizer rather than the application.

A stroke's start time is the starting tick count of the first group of points that
AddPenlnputHRC receives when a new stroke begins. The member dwTick
of the STROKEINFO structure is the number of milliseconds that have elapsed
since the system tick reference determined at system startup time. A recognizer
can retrieve this value in an ABSTIME structure through a call to the Pen API
function GetPenMisclnfo:

ABSTIME atTickRef;
GetPenMisclnfo(PMI_TICKREF, (LPARAM)«LPABSTIME) &atTickRef));

The STROKEINFO structure also contains in its cPot member the number of
points in the collection. Because the pen device sends points at a constant rate
(called the sampling rate), the number of points in the collection implies how
much time has elapsed between the first and last points.

The sampling rate does not change, so the recognizer need only determine the
rate during initialization and store the value. The following example shows how
a recognizer can get the sampling rate from the pen driver:

PENINFO
HDRVR
int

pinfo;
hPenDrv;
vnSamplingRate;

hPenDrv = OpenDriver("pen", 0, 0);
if (hPenDrv)
{

if (SendDriverMessage(hPenDrv, DRV_GetPenlnfo, (LPARAM)&pinfo, 0))
vnSamplingRate = pinfo.nSamplingRate;

CloseDriver(hDriverPen, 0, 0);

122 Programmer's Guide to Pen Services for Microsoft Windows 95

With this infonnation, CreateInksetHRCRESULT can fill an INTERVAL struc­
ture with a stroke's start and stop times as shown below. The code assumes the
HRCRESUL T object contains the HRC handle. This allows the internal function
NGetStrokeFromHPENDATA to locate the internal HPENDATA object with the
raw input data.

HINKSET WINAPI CreateInksetHRCRESULT(HRCRESULT hrcresult.
UINT isyv. UINT csyv)

HINKSET hinkset;
INTERVAL interval;
STROKEINFO s i ;
DWORD dwMsec;
UINT i • j;

II Call Pen API to create hinkset object
hinkset = CreateInkset(GMEM_MOVEABLE I GMEM_DDESHARE);

II Initialize INTERVAL with tick reference (described above)
GetPenMiscInfo(PMI_TICKREF.

(LPARAM) ((LPABSTIME) &i nterva 1 . atBegi n));

II For each SYV in the HRCRESULT between the given indices
for (i = 0; i < csyv; i++. isyv++)
{

j = 0;

II For each stroke in the SYV ...
while (NGetStrokeFromHPENDATA(hrcresult. &si. isyv. j++ »

{

II
II Calculate the interval for the stroke.
I I Note s i . dwTi ck is the number of mi 11 i seconds
II that have elapsed since system start-up.
II
dwMsec = (DWORD)(1000L*interval .atBegin.sec +

interval .atBegin.ms + si .dwTick);
interval .atBegin.sec = dwMsec/1000L;
interval.atBegin.ms = (UINT)(dwMsec % 1000L);

dwMsec = (DWORD)(1000L*interval .atBegin.sec +
interval .atBegin.ms +
1000L*si .cPnt/vnSamplingRate);

interval.atEnd.sec dwMsec/1000L;
interval.atEnd.ms = (UINT)(dwMsec % 1000L);

Writing a Recognizer 123

II Call Pen API function to add interval to inkset
AddInksetInterval (hinkset. (LPINTERVAL) &interval);

return (hinkset);

A Sample Recognizer
This section describes a simple recognizer called SREC that demonstrates some of
the information given in this chapter. The text describes the most interesting parts
of the program and illustrates with code fragments. The complete source listing for
SREC.C resides in the SAMPLES\PEN\SREC subdirectory.

SREC is used by the PENAPP application described in Chapter 7, "A Sample Pen
Application." To see how SREC works, you must create both PENAPP.EXE and
SREC.DLL using the supplied MAKE files, then run PENAPP.

When using the SREC recognizer, PENAPP specifies that a stroke ends when the
pen leaves the tablet. Therefore, SREC recognizes only one stroke at a time. SREC
takes the beginning and ending points of the stroke and calculates the nearest com­
pass direction of the line formed by these endpoints.

For its HRC object, SREC creates a structure that contains an HPENDAT A han­
dle to the input data, the module handle returned from InstallRecognizer, and
recognition results. The following typedef statements define the HRC and
HRCRESUL T objects for SREC. Notice that SREC keeps its HRCRESUL T
within the HRC.

typedef struct
{

II HRCRESULT object

DWORD reserved; II Reserve top DWORD
SYG syg; II Recognition results

HRCRESUL Ti nterna 1. FAR *LPHRCRESU L Ti nterna 1 ;

typedef struct
{

DWORD
HPENDATA
HREC

reserved;
hpendata;
hrec;

II HRC object

II Reserve top DWORD
II Raw pen data to be recognized
II Module handle for SREC

HRCRESULTinternal hrcresult; II HRCRESULT structure
HRCinternal. FAR *LPHRCinternal;

124 Programmer's Guide to Pen Services for Microsoft Windows 95

When it finishes recognizing a stroke, SREC fills out a SYG symbol graph struc­
ture. The structure holds one of the symbol values listed here:

Symbol value Direction

syvEast Right

syvSouth Down

syvWest Left

syvNorth Up

syvDot Single tap

The following sections describe the functions that SREC exports. These functions
appear under the same categories described earlier in this chapter, in the section
"List of Exported Functions." This allows for quick cross-referencing between a
general description of a functiofl and its actual implementation in SREC.

Although defined by the Pen API, the function names below appear in monospace
font rather than bold because the names refer to routines in the SREC.C source file.

SREC Initialization Functions
As a Windows dynamic-link library, SREC exports Lib Main and WEP. As a
recognizer, it also exports the required initialization function ConfigRecognizer.
All recognizers compatible with version 2.0 of the Pen API must provide these
functions.

LibMain and WEP
The first two functions in the SREC recognizer are the standard Windows functions
required in any dynamic-link library, LibMain and WEP. LibMain, the main DLL
function, is analogous to WinMain. It performs any needed initialization and
unlocks the data segment of the library. WEP is the standard DLL termination
function, which receives control when Windows unloads the DLL. For a description
of WEP, see the references listed at the beginning of this chapter.

Config Recognizer
The ConfigRecognizer function handles the recognizer's initialization tasks and
configures it for special options. When it loads a recognizer, InstailRecognizer
internally calls the recognizer's ConfigRecognizer function with the subcommand
WCR_INITRECOGNIZER. In response to this call, the recognizer should perform
any required initialization tasks.

As its name suggests, ConfigRecognizer handles more than initialization work. It
also provides the means for setting recognizer options and to query for capabilities.
With version 2.0 of the Pen API, which can load multiple recognizers, applications
do not call ConfigRecognizer, because the function provides no way to identify the
intended library. Instead, applications call the ConfigHREC function, which takes

Writing a Recognizer 125

the same arguments as ConfigRecognizer, with the addition of the HREC handle
returned from InstallRecognizer. Internally, the system identifies the intended
recognizer from the handle and passes the arguments to ConfigRecognizer in the
appropriate recognizer. Thus, ConfigHREC and ConfigRecognizer refer to the
same function. ConfigRecognizer is unique in that it is the only function exported
by a recognizer that applications do not call directly.

As the following code fragment shows, SREC returns only its identification string
and version number from ConfigRecognizer. Note also that SREC does not allow
itself to be set as the system recognizer. Since SREC does not support standard
editing gestures or recognize characters, it cannot serve as a system default recog­
nizer.

int WINAPI ConfigRecognizer(UINT uSubFunc,
WPARAM wParam, LPARAM lParam)

int iRet = TRUE;

switch (uSubFunc
{

case WCR_INITRECOGNIZER:
case WCR_CLOSERECOGNIZER:

break;

case WCR_RECOGNAME:

II No initialization or
II clean up duties to
II perform

lstrncpy((LPSTR)lParam, szID, wParam);
break;

case WCR_DEFAULT:
case WCR_OUERY:
case WCR_OUERYLANGUAGE:

iRet = FALSE;
break;

case WCR_PWVERSION:
case WCR_VERSION:

iRet = 0x0002;
break;

default:
iRet FALSE;
break;

return iRet;

II Can't be system default
II Does not support config dialog
II Does not support any language

II Recognizer version 2.0

II Anything else is unsupported

126 Programmer's Guide to Pen Services for Microsoft Windows 95

For a complete list of WCR_ subfunctions, refer to the reference section for
ConfigRecognizer in Chapter 10.

When the last client application unloads a recognizer, the UninstallRecognizer
function calls the recognizer's ConfigRecognizer function with the command
WCR_CLOSERECOGNIZER. This informs the recognizer that it is being
unloaded. The previous code takes no action for WCR~ CLOSERECOGNIZER
because in SREC, memory allocations come from the local heap. As with any
Windows-based program, a DLL's heap resides in its data segment. When Win­
dows unloads a DLL, it automatically returns the entire data segment to the mem­
ory pool.

However,unloading SREC does not destroy its internal HPENDATA object.
HPENDA T A blocks occupy global heap space. If the client application terminates
or unloads SREC without first destroying all HR C objects created by SREC, the
corresponding HPENDAT A blocks are left orphaned in memory. A recognizer
more intelligent than SREC should maintain a count of active HPENDAT A allo­
cations and free any that remain before terminating.

A recognizer's WEP routine also receives control when Windows unloads the
recognizer. Developers should note a subtle difference between handling cleanup
chores in ConfigRecognizer and in WEP. When the former executes in response
to the WCR_ CLOSERECOGNIZER subfunction, the client is still active. How­
ever, the WEP routine cannot safely make the same assumption when it executes.
ConfigRecognizer can therefore conceivably post a message to the client or per­
form some other action that relies on an active recipient.

The disadvantage of ConfigRecognizer is that the recognizer cannot be certain the
function will execute because the client might not call UninstaIlRecognizer. Since
the WEP function is guaranteed to execute when Windows unloads the recognizer,
essential cleanup duties, such as unhooking interrupts, should be handled in WEP.

SREC Recognition Functions
This section takes a brief look at some of SREC's exported recognition functions,
including CreateCompatibleHRC, ProcessHRC, and CreatePenDataHRC. The
code uses the macro

1/defi ne 1 pHRC «LPHRCinternal) hrc)

to represent a far pointer to the HRC object.

Writing a Recognizer 127

CreateCompatibleHRC
The CreateCompatibleHRC function allocates an H RC in te rna 1 structure in
the local heap, creates an HPENDATA block for the pen data, and returns a far
pointer to the structure. The LPTR argument forces LocaIAlIoc to return a far
pointer to the allocation instead of a memory handle. This far pointer serves as
SREC's HRC handle.

Since the HRC has no configurable elements, SREC ignores any template HRC
provided in the first parameter.

HRC WINAPI CreateCompatibleHRC(HRC hrcTemplate, HREC hrec)
{

HRC hrc;

hrc = (HRC) LocalAlloc(LPTR, sizeof(HRCinternal));
if (hrc)
{

lpHRC->hrec = hrec;
lpHRC->hpendata = CreatePenData(NULL, 0, PDTS_HIENGLISH, 0);
if (lpHRC->hpendata)

return (hrc);

LocalFree((HLOCAL) hrc);
return NULL;

}

ProcessHRC

II If error, free allocation
II and return NULL

The most interesting feature of SREC's ProcessHRC function is the way it sets
a time limit for processing. If called with a limit of PH_MIN or PH_DEFAULT,
ProcessHR C passes the address of a callback function to SetTimer. When the
specified time-out period elapses, the callback function receives control and sets
a global flag called vfOutOfTi me.

A recognizer can use this technique to ensure that it does not overrun a specified
time limit. Its internal processing functions should check the vfOutOfTi me flag
regularly and, if it is set, terminate immediately. In this case, ProcessHRC returns
a value of HRCR_INCOMPLETE to tell the caller recognition has not yet finished.

int WINAPI
{

UINT
int

ProcessHRC(HRC hrc, DWORD dwTimeMax)

idTimer, uTime;
i Ret;

128 Programmer's Guide to Pen Services for Microsoft Windows 95

}

vfOutOfTime = FALSE;
if (dwTimeMax != PH_MAX)
{

II Initialize time-out flag
II If time limit specified ...

uTime (dwTimeMax == PH_MIN) ? 50 : 200;
idTimer = SetTimer(NULL, NULL, uTime, (TIMERPROC) TimerProc);
iRet = GetSYG(hrc); II Quit if out of time
KillTimer(NULL, idTimer);

else
iRet = GetSYG(hrc); II Don't quit until finished

retu rn (i Ret) ;

VOID CALLBACK TimerProc(HWND hwnd, UINT ms, UINT ild, DWORD dwTm)
{

vfOutOfTime = TRUE;
}

CreatePenDataHRC
SREC keeps an HPENDAT A handle in its HRC structure. Because the
AddPenInputHRC function has already stored pen input in the internal
HPENDATA block, CreatePenDataHRC simply duplicates the block.

HPENDATA WINAPI CreatePenDataHRC(HRC hrc)
{

if (hrc)
r~turn (DuplicatePenData(lpHRC->hpendata, 0 »;

else
return NULL;

CHAPTER 9

Summary of the Pen Application
Programming Interface

This chapter summarizes the pen services by listing them according to category.
The lists complement the detailed descriptions of functions, structures, messages,
and constants in the reference chapters that follow this chapter. The lists let you
quickly identify those services that pertain to your application, then refer to the
reference chapters for detailed information.

The "Pen Kernel Functions" section is of interest to developers who want to write
applications for Microsoft Windows 95 that use ink data without the presence of
pen hardware.

Pen API Functions
The Pen Application Programming Interface (API) provides functions that can be
divided into 10 broad categories. The following table describes the 10 categories.
Other tables list the functions within each category.

Function category

System and hardware

Display

Pen data

Recognition

Symbol manipulation

Time intervals

Compression

Utility

Hook

Obsolete

Description

Provide information about pen hardware and current system
assumptions.

Display ink data, get screen information.

Collect, copy, move, and delete data in an HPEND A T A
object.

Recognize handwritten characters.

Collect and convert symbols returned from a recognizer.

Manipulate time intervals associated with pen strokes.

Reduce the size of an HPENDATA object.

Miscellaneous utility services provided by the system.

Program hooks to monitor inking or recognition.

Obsolete functions of version 1.0 maintained by version 2.0
only for compatibility reasons.

130 Programmer's Guide to Pen Services for Microsoft Windows 95

List of Pen API Functions
The following tables list by category all functions in version 2.0 of the PenfPI.
Functions appear in alphabetical order within each category, together with a brief
description.

System and hardware functions

GetPenAsyncState

GetPenMisclnfo

GetVersionPen Win

SetPenMiscInfo

UpdatePenlnfo

Display functions

CreatePenDataRegion

DrawPenDataEx

DrawPenDataFmt

RedisplayPenData

ShowKeyboard

Startlnking

Stoplnking

Pen data functions

AddPenDataHRC

AddPointsPenData

CreatePenData

CreatePenDataEx

CreatePenDataHRC

Description

Gets state of pen barrel button.

Gets current system settings.

Gets the Pen API version number.

Sets system defaults and assumptions.

Called by the pen driver to notify the system of a
change in the driver configuration.

Description

Returns a screen region that contains the points of
an HPENDAT A object.

Enhanced version of DrawPenData.

Default version of DrawPenDataEx.

Displays collected pen data exactly as originally .
drawn.

Displays or hides the on-screen keyboard.

Begins the process of leaving a visible ink trail
as the pen moves. See the descriptions of
StartPenlnput and DoDefaultPenlnput.

Stops the inking process begun by a call to
Startlnking.

Description

Adds an HPENDATA object to an HRC.

Adds new points and original equipment
manufacturer (OEM) data to an existing
HPENDATA object.

Allocates memory for a new HPEND A T A object
and initializes its header.

Enhanced version of CreatePenData.

Returns handle to HPENDAT A object associated
with an HRC.

Summary of the Pen Application Programming Interface 131

Pen data functions

DestroyPenData

DuplicatePenData

ExtractPenDataPoints

ExtractPenDataStrokes

GetPenDataAttributes

GetPenDatalnfo

GetPointsFromPenData

GetStrokeAttributes

GetStrokeTableAttributes

InsertPenData

InsertPenDataPoints

InsertPenDataStroke

OffsetPenData

PenDataFromBuffer

PenDataToBuffer

RemovePenDataStrokes

ResizePenData

SetStrokeAttributes

SetStrokeTableAttributes

Description

Frees memory occupied by an HP~NDATA
memory block.

Clones an existing HPEND A T A object.

Copies or removes points from a stroke.

Copies or removes selected strokes, optionally
creating a new HPENDATA object from the
copied strokes.

Retrieves information about an HPENDAT A
object.

Gets status information for an HPENDAT A
object.

Returns an array of points from an HPENDATA
object.

Retrieves information about a stroke.

Retrieves information about a stroke's class.
The class is an entry in a table stored in the
PEND AT AHEADER structure.

Combines two HPENDAT A blocks.

Inserts points into a stroke in an HPENDAT A
object.

Inserts data for a new stroke into an existing
HPENDAT A object.

Offsets pen data points by a specified amount.

Reverse of PenDataToBuffer, which must be
called first. Creates an HPENDAT A block and
writes the buffer back into it.

Serializes the contents of an HPENDAT A block
to a buffer.

Removes specified strokes from an HPEND A T A
object.

Scales ink data to fit a specified rectangle.

Sets attributes of a stroke. Reverse of
GetStrokeAttributes.

Sets attributes for a stroke's class. Reverse of
GetStrokeTableAttributes.

132 Programmer's Guide to Pen Services for Microsoft Windows 95

Recognition functions

AddPenInputHRC

AddWordsHWL

ConfigRecognizer

CreateCompatibleHR C

CreateHWL

DestroyHRC

DestroyHRCRESUL T

DestroyHWL

EnableGestureSetHRC

EnableSystemDictionary HRC

EndPenInputHRC

GetAlphabetHRC

GetAlphabetPriority HR C

GetAlternate WordsHRCRESUL T

GetBoxMappingHRCRESUL T

GetBoxResultsHRC

GetGuideHRC

GetHotspotsHRCRESULT

GetHRECFromHRC

GetMaxResultsHRC

GetResultsHR C

Description

Adds raw pen input to an HRC object.

Adds words to a word list.

System access to recognizer configuration.
Applications should not call this function.

Creates an empty HR C object.

Creates a word list.

Destroys a recognizer's recognition context object.

Destroys a recognizer's results object.

Destroys the word list handle created by
CreateHWL and frees its memory.

Enables or disables recognition of specified
gestures.

Specifies whether a recognizer should use its
dictionary.

Informs a recognizer that the input session has
ended.

Retrieves the current alphabet from a recognizer.

Retrieves the current alphabet priority from a
recognizer.

Gets alternative guesses made by a recognizer.

Retrieves from a recognizer the locations of a
range of symbols in boxes.

Gets recognition results for a range of boxes.

Gets a copy of the GUIDE structure (if any) in an
HRC object.

Returns the hot spots for a specified gesture.

Gets module handle of recognizer from an HRC.

Gets the maximum number of guesses a
recognizer can make.

Retrieves an HR CRESUL T object from
recognizer containing recognition results.

Summary of the Pen Application Programming Interface 133

Recognition functions

GetWordlistCoercionHRC

GetWordlistHRC

InstallRecognizer

ProcessHRC

ReadHWL

SetAlphabetHRC

SetAlphabetPriorityHRC

SetBoxAlphabetHRC

SetGuideHRC

SetMaxResultsHRC

SetWordlistCoercionHRC

SetWordlistHRC

TrainHREC

UninstallRecognizer

WriteHWL

Symbol manipulation functions

CharacterToSymbol

EnumSymbols

FirstSymbolFromGraph

GetSymbolCount

GetSymbolCountHRCRESUL T

GetSymbolMaxLength

GetSymbolsHRCRESULT

SymbolToCharacter

Description

Gets the current degree of influence a word list or
dictionary has on recognition confidence levels.

Gets a word list from an HRC object.

Loads a specified recognizer.

Tells recognizer to process input for a given
period of time.

Reads a word list from a file.

Specifies the alphabet for a recognition session.

Specifies alphabet priority for a session.

Specifies the alphabet for a range of boxes.

Specifies guides for an HRC.

Sets the maximum number of guesses a
recognizer can make.

Sets the degree of influence a word list or
dictionary has on recognition confidence levels.

Identifies a word list for an HRC object.

Passes ink and correct interpretations to
recognizer for training.

Unloads a specified recognizer.

Writes a word list to a file.

Description

Converts an ANSI string to an array of symbol
values.

Enumerates symbol strings in a symbol graph.

Returns the array of symbols that is the most
likely interpretation of a specific symbol graph.

Returns the number of symbol strings contained
in the symbol graph.

Gets the number of symbol values in results.

Gets the length of the longest symbol string
contained in the symbol graph.

Gets symbol values of recognition results.

Converts an array of symbols to an ANSI string.

134 Programmer's Guide to Pen Services for Microsoft Windows 95

Time interval functions

AddInksetInterval

CreateInkset

CreateInksetHRCRESUL T

Destroy Inkset

Getlnksetlnterval

GetlnksetlntervalCount

Compression functions

CompressPenData

DPtoTP

MetricScalePenData

TPtoDP

TrimPenData

Utility functions

Atomic Virtual Event

BoundingRectFromPoints

ConfigHREC

CorrectWriting

CorrectWritingEx

DoDefaultPenInput

GetPenAppFlags

Description

Adds an INTER V AL structure to an existing
HINKSET object.

Creates an empty inkset into which intervals can
be added with the AddInksetlnterval function.

Retrieves the intervals for a specified series of
symbols returned by the recognizer.

Frees memory occupied by an inkset and
invalidates the HINKSET handle.

Copies a series of intervals from an HINKSET
object to an array of INTER V AL structures.

Returns the number of intervals in an HINKSET
object.

Description

Compresses and uncompresses data.

Converts display coordinates to tablet coordinates.

Converts pen data points to one of the supported
metric modes.

Converts tablet coordinates to display coordinates.

Removes selected data from an HPENDAT A
block.

Description

Blocks out physical pen events while posting
virtual events.

Returns the bounding rectangle of an array of
points.

Configures or queries recognizer options.

Displays lens or Correct Text dialog box to allow
user to correct text.

Sends text to the CorrectText dialog box to allow
the user to edit text using the Japanese Data Input
Window. (Japanese version only.)

Runs high-level recognition/data collection.
Internally calls StartPenInput, Startlnking,
StopPenInput, and StopInking.

Returns the task flags created by
SetPenAppFlags.

Summary of the Pen Application Programming Interface 135

Utility functions

GetPenlnput

GetPenResource

HitTestPenData

IsPenEvent

KKConvert

PeekPenlnput

PostVirtualKeyEvent

PostVirtualMouseEvent

SetPenAppFlags

StartPenlnput

StopPenlnput

TargetPoints

Hook functions

SetPenHook

SetResultsHookHREC

UnhookResultsHookHREC

Description

Collects input data as the user writes.

Retrieves a copy of the pen services resource.
(Japanese version only.)

Detennines whether a given point lies near a
stroke.

Detennines whether a WM_LBUTTONDOWN
message is generated by a mouse or pen device.

(Japanese version only.) Activates the Kana-to­
Kanji converter.

Retrieves infonnation about a pen packet in the
pen input queue. This function is similar to
GetPenlnput, but does not remove the pen packet
from the queue.

Simulates a keystroke by sending a virtual key
code to Windows.

Simulates mouse activity by sending a virtual
mouse event to Windows.

Sets pen flags for the application that are used
globally by the pen services.

Begins collecting into an internal buffer ink
data generated by the moving pen. See also
the descriptions of . DoDefaultPenlnput and
StartInking.

Ends collection process begun by a call to
StartPenlnput.

Detennines the logical recipient of data among
several targets.

Description

Sets or removes a hook for capturing low-level
pen events.

Sets a hook for recognition results.

Unhooks a hook set by SetResultsHookHREC.

136 Programmer's Guide to Pen Services for Microsoft Windows 95

Obsolete functions

BeginEnumStrokes

CloseRecognizer

CompactPenData

DictionarySearch

DrawPenData

EmulatePen

EndEnumStrokes

GetGlobalRC

GetPenDataStroke

GetPenHwEventData

InitRC

InitRecognizer

Description

Locks an HPENDAT A memory block in global
memory in preparation for reading.

Called by the system when uninstalling a
recognizer. Subfunction has been superseded
by WCR_CLOSERECOGNIZER in
ConfigRecognizer.

Data compression function superseded by
CompressPenData and TrimPenData.

Searches dictionary for a word or phrase.

Displays ink according to a display context HDC.
Superseded by DrawPenDataEx.

Emulates a pen system.

Unlocks an HPENDAT A memory block.
Required after calling BeginEnumStrokes.

Retrieves a copy of the current system RC
structure.

Gets the raw data for a stroke stored in an
HPENDA T A memory block.

Retrieves a range of pen event data from the
internal pen data buffer.

Initializes recognition context for the recognizer.
Only for compatibility with version 1.0.

Called by the system when it installs a recognizer.
Superseded by WCR_INITRECOGNIZER
subfunction in ConfigRecognizer.

Obsolete functions

IsPenAware

Process Writing

Recognize

RecognizeData

Register PenApp

SetGlobalRC

SetRecogHook

TrainContext

TrainContextInternal

Trainlnk

Trainlnklnternal

Summary of the Pen Application Programming Interface 137

Description

Checks application's capability to handle pen
events. Superseded by GetPenAppFlags.

Runs high-level recognition services. Superseded
by DoDefaultPenlnput.

Begins recognition for a version 1.0 recognizer.

Delayed recognition for a version 1.0 recognizer.

Identifies an application to the system as pen­
aware. Superseded by SetPenAppFlags.

Sets default settings for the specified recognition
context. This function should be called only from
the pen Control Panel program.

Installs and removes a recognition hook in version
1.0. Superseded by SetResultsHookHREC.

Passes to the recognizer a previous recognition
result that may contain errors along with the
required interpretation.

Called by system when an application calls
TrainContext.

Informs the recognizer at the DLL recognition
level that the raw data input represents the symbol
value results.

Called by system when an application calls
Trainlnk.

\

138 Programmer's Guide to Pen Services for Microsoft Windows 95

Pen Kernel Functions
As described in Chapter 1, the services of the Pen API are provided by the libraries
PENWIN.DLL and PKPD.DLL. PENWIN.DLL is provided by original equipment
manufacturers and exists only on systems with attached pen hardware. The ink
management services of PKPD.DLL, however, are part of Windows 95. This
allows an application to display and manipulate ink data with any installation of
Windows 95, even one without pen hardware.

The following table lists the 41 Pen API functions exported by PKPD. If an
application detects Windows 95 without PENWIN.DLL, it can still use these
functions to display, examine, alter, and compress existing ink data.

Addlnksetlnterval

AddPointsPenData

BeginEnumStrokes

BoundingRectFromPoints

CompactPenData

CompressPenData

Createlnkset

CreatePenData

CreatePenDataEx

CreatePenDataRegion

Destroy Inkset

DestroyPenData

DrawPenData

DrawPenDataEx

DrawPenDataFmt

DuplicatePenData

EndEnumStrokes

ExtractPenDataPoints

ExtractPenDataStrokes

Getlnksetlnterval

GetlnksetlntervalCount

GetPenDataAttributes

GetPenDatalnfo

GetPenDataStroke

GetPointsFromPenData

GetStrokeAttributes

GetStrokeTableAttributes

HitTestPenData

InsertPenData

InsertPenDataPoints

InsertPenDataStroke

MetricScalePenData

OffsetPenData

PenDataFromBuffer

PenDataToBuffer

RedisplayPenData

RemovePenDataStrokes

ResizePenData

SetStrokeAttributes

SetStrokeTableAttributes

TrimPenData

Summary of the Pen Application Programming Interface 139

Pen API Structures
The Pen API defines 31 structures in the following categories:

Structure category

System and hardware

Display

Guides and controls

Recognition

Pen data

Target

Time intervals

Description

Information about the system and pen hardware.

Structures that affect display.

Structures that affect boxes, guides, and controls.

Pertain to the process and results of recognition.

Information about points and strokes.

Pertain to target windows.

Stroke interval information.

The following tables list the structures of the Pen API by category. For structures
new to version 2.0, the first member is cbSize, which contains the structure's size
in bytes.

Important Before using a version 2.0 structure, an application must initialize its
cbSize mem-ber with the value sizeof(structname), where structname represents
the name of the structure. For example:

INKINGINFO inkinginfo;
inkinginfo.cbSize = sizeof(INKINGINFO);

or

INKINGINFO inkinginfo

System and hardware structures

CALBSTRUCT

OEMPENINFO

PDEVENT

PENINFO

{sizeof(INKINGINFO)};

Description

Pen calibration information.

Tablet hardware information provided by original
equipment manufacturer.·

Provides information about the pen device
associated with an IN_PDEVENT notification.

Pen or tablet hardware information.

140 Programmer's Guide to Pen Services for Microsoft Windows 95

Display structures

ANIMATEINFO

CWX

INKINGINFO

PCMINFO

PEN TIP

RECTOFS

SKBINFO

Guide and control structures

BOXEDITINFO

BOXLAYOUT

CTLINITBEDIT

CTLINITHEDIT

CTLINITIEDIT

GUIDE

Recognition structures

BOXRESULTS

RC

RCRESULT

SYC

SYE

SYG

Description

Animation information used by the
DrawPenDataEx function.

Specifies optional parameters for the
CorrectWritingEx function. (Japanese version
only.)

Specifies where and how to display ink.

Specifies screen areas that affect pen data
collection.

Width and color of ink trail left by pen.

Offsets of inflated or deflated writing area.

Information about on-screen keyboard.

Description

Size information for boxed edit control.

Layout of boxed edit control.

Initialization for boxed edit control.

Initialization for handwriting edit control.

Initialization for ink edit control.

Characteristics of handwriting guides.

Description

Results returned from the GetBoxResultsHR C
function.

Various information about the recognition context
used by version 1.0 recognition functions.

Results of recognition initiated through a version
1.0 recognition function.

Symbol correspondence linking ink strokes with it
particular recognized symbol.

Symbol element containing a recognized symbol
and its confidence level.

Symbol graph containing SYC and SYE struc­
tures that together specify all guesses a recog­
nizer has made.

Summary of the Pen Application Programming Interface 141

Pen data structures

PENDATAHEADER

PENPACKET

STRKFMT

STROKEINFO

Time interval structures

ABSTIME

INTERVAL

Target structures

INPPARAMS

TARGET

TARGINFO

Pen API Messages

Description

Header structure of an HPENDAT A memory
block.

Data sent by pen driver to inform system of pen
activity.

Attributes of a stroke.

Information about points making up a single
stroke.

Description

Time of a pen data point in seconds and
milliseconds.

Start and end times for a set of data points.

Description

Describes a set of targets.

Information about a single target window.

Information about a set of targets.

The Pen API defines message and submessage values identified by the following
prefixes:

Message prefix

HN_

IE_
IN_

PE_

PMSC_

SKB_

SKN_

WM_

Description

Submessages for WM_ CTLINIT.

Messages from the pen hardware driver.

Submessages of WM_PENCTL for hedit and
bedit controls.

Notification messages for hedit and bedit controls.

Messages for iedit control.

Notification messages for iedit control.

Submessages for WM_PENEVENT.

Submessages for WM_PENMISC.

Submessages for WM_SKB.

Notifications for WM_SKB.

Window messages for pen-based applications.

142 Programmer;s Guide to Pen Services for Microsoft Windows 95

Pen API Constants
The PENWIN.R header file defines manifest constants for the Pen API, most of
which begin with prefixes of two or more letters to indicate their purpose. The
following table describes the prefixes of the Pen API constants:

Constant prefix

AC
ALC_

BEC

BESC_

BXD_

BXDK_

BXS_

CMPD_

COLOR_

CPD_

CPDR_

CWR_

DIRQ_

DPD_

EPDP_

EPDS_

GGRC_

GPA_

GRH_

GSA_

GST_

HEKK_

HEP_

HKP_

HRCR_

Description

Options for AnimateProc function.

Alphabet codes.

Information for bedit control.

Size of bedit control.

Define dimensions of bedit control (Roman).

Define dimensions of bed it control (Japanese).

Styles for bedit controls.

Options for CompressPenData function.

Input method editor colors for bedit control.

Storage codes for CreatePenDataEx.

Types for CreatePenDataRegion.

Options for CorrectWriting.

Dictionary request codes.

Flags for DrawPenDataEx function.

Options for ExtractPenDataPoints.

Options for ExtractPenDataStrokes.

Options for GetGlobalRC.

Options for GetPenDataAttributes.

Return types from GetResultsHR C.

Options for GetStrokeAttributes.

Codes for EnableGestureSetHRC.

Subfunctions for kana-kanji conversions.

Subfunctions for HE.:...STOPINKMODE.

Options for SetPenHook.

Return values from recognition functions.

Constant prefix

IDC_

IEB_

IEDO_

IEM_

IEMODE_

IEN_

IER_

IEREC_

IES_

IESEC_

IESF_

ISR_

OBM_

PCM_

PCMR_

PDC_

PDK_

PDR_

PDT_

PDTS_

PDTT_

PENTIP_

PHW_

PIC

PMC

PMSCL_

PMSCR_

PWF_

Summary of the Pen Application Programming Interface 143

Description

Cursor types defined by pen display driver.

Codes for background in iedit controls.

Codes for draw option IE_ messages.

Menu codes for IE_ iedit control messages.

Codes for IE_SETMODE message.

Codes for IE_SETNOTIFY message.

Codes for stroke format IE~ messages.

Codes for recognition IE_ messages.

Style attributes for iedit control.

Codes for security IE_ messages.

Flags for STRKFMT structure.

Return values from inkset functions.

Public bitmaps.

Termination conditions for pen collection mode.

Return values from data collection functions.

Pen device capability codes.

Pen driver state bits for GetPenAsyncState function.

General pen data return values.

Pen driver values specific to original equipment manufacturer.

Trim options for MetricScalePenData.

Trim options for CompactPenData.

Values for PENTIP structure.

Report codes for CreatePenDataEx.

Flags for INKINGINFO structure.

Codes for GetPenMiscInfo, SetPenMisclnfo, and
WM_PENMISCINFO.

lParam values for PMSC_ constants.

Return values for PMSC_TARGETING subfunction.

Subcodes of PMCSYSFLAGS.

144 Programmer's Guide to Pen Services for Microsoft Windows 95

Constant prefix

RC_

RCD_

RCO_

RCOR_

RCP_

RCRT_

REC_

RHH_

SGRC_

SHC_

SKB_

SSA_

SSH_

SYV_

TPD_

TPT_

VWM_

WCR_

WLT_

Description

Values for RC structure.

Indicates writing direction (left to right, top down, etc.).

Recognition options for R C structure.

Tablet orientation codes.

User preference codes.

Values for wResultsType member of RCRESUL T structure.

Return codes from a version 1.0 recognizer.

Hook types for ResultsHookHREC.

Options for SetGlobalRC.

Codes for word-list coercion functions.

Flag values for ShowKeyboard.

Options for SetStrokeAttributes.

Indicates writing direction (left to right, etc.).

Codes for symbol characters, shapes, and gestures.

Options for TrimPenData function.

Flags for T ARGINFO structure.

Flag values for Post VirtualMouseEvent.

Configuration options for ConfigHREC and ConfigRecognizer.

Word list types.

CHAPTER 10

Pen Application Programming
Interface Functions

This chapter provides a reference listing of the pen API functions, arranged in
alphabetical order. Each entry describes a separate function organized under the
following margin headings:

Margin beading

Parameters

Return Value

Comments

See Also

Description

List of function parameters

Possible return values and their meanings

Additional information about the function

Cross-reference to related API services

Next to each function name is a number that identifies the pen API version that
supports the function-for example, 1.0 or 2.0.

The names of application callback functions appear in italics to indicate the names
are placeholders. Callback functions can have any name.

Constants that pertain only to a specific function are listed in this chapter in the
reference entry for that function. Generally, constants that pertain to two or more
API services appear in Chapter 13, "Pen Application Programming Interface
Constants."

Add I n ksetl nterval
2.0

Merges an interval into an inkset.

BOOL AddInksetInterval(HINKSET hinkset, LPINTERV AL IpiNew)

146 Programmer's Guide to Pen Services for Microsoft Windows 95

Parameters

Return Value

Comments

See Also

hinkset
Handle to an inkset.

lpiNew
Address of an INTER V AL structure.

Returns TRUE if successful; otherwise FALSE.

The inkset is reallocated to a larger size by this function. The interval merges with
any existing intervals, changing the interval only when required. For example, if the
new interval is a subset of an existing one, there will be no change. Similarly, if the
new iriterval overlaps an existing one, the union is formed. The maximum number
of intervals allowed is defined to be (65536 - s i z e a f (INKS ET)) /
s i zeaf (INTERVAL), which evaluates to 5460.

The ending time of the new interval must be greater than or equal to the beginning
time. If the interval has a duration of 0, AddInksetlnterval does nothing, but
returns TRUE.

An inkset formed using this function is guaranteed to have the intervals in
ascending chronological order.

Getlnksetlnterval, INTERVAL

AddPenDataHRC

Parameters

Return Value

2.0

Adds an HPENDAT A object to an HRC object for recognition.

int AddPenDataHRC(HRC hrc, HPENDATAhpndt)

hrc
Handle to the HR C object.

hpndt
Handle to the HPENDATA object.

Returns HRCR_OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_INV ALIDPNDT

Description

Invalid parameter or other error.

Insufficient memory.

Invalid pen data object.

Comments

See Also

AddPenlnputHRC 147

Before terminating, the application must free the pen data, using DestroyPenData.
Because the recognizer copies any data it requires, the recognizer does not affect
the original data.

Calling this function is equivalent to adding data to the recognition context by
walking the pen data strokes from beginning to end in stroke order. (Note that the
stroke order may not necessarily be in chronological order if insertions have been
made.)

A recognizer is not required to use or maintain OEM data; that is, a recognizer may
choose to ignore some or all of the OEM data it receives from AddPenDataHRC.
This means that the HPENDAT A object that the recognizer returns through its
CreatePenDataHRC function may differ from hpndt in its OEM data.

CreatePenData, AddPenInputHRC

AddPenlnputHRC

Parameters

Return Value

2.0

Adds pen data to an HRC object for recognition. A recognizer must export this
function.

int AddPenInputHRC(HRC hrc, LPPOINT lppt, LPVOID IpvOem,
UINT juOem, LPSTROKEINFO lpsi)

hrc
Handle to the HRC object.

lppt
Address of an array of POINT structures.

IpvOem
Address of a buffer containing OEM data, or NULL if there is no OEM data.

juOem
Flags to specify which OEM data is valid.

lpsi
Address of a STROKEINFO structure.

Returns HRCR_ OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR-,-MEMERR

Description

Invalid parameter or other error.

Insufficient memory.

148 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

See Also

A recognizer is not required to use or maintain OEM data; that is, a recognizer may
choose to ignore some or all of the OEM data it receives from AddPenInputHRC.
This means that the HPENDATA object that the recogni:z;er returns through its
CreatePenDataHRC function may differ from hpndt in its OEM data.

GetPenInput, GetPenDataStroke

AddPointsPenData

Parameters

Return Value

Comments

1.0 2.0

Adds a set of data points to the pen data object.

HPENDAT A AddPointsPenData(HPENDATA hpendata, LPPOINT lppt,
LPVOID IpvOem, LPSTROKEINFO IpsiNew)

hpendata
Handle to a pen data object.

lppt
Address of an array of POINT structures containing new data points to be
added to the pen data. Zero points can be added to force a change of pen state
or to set a new pen state.

IpvOem
OEM data. Can be set to NULL if there is no additional OEM data. The pen
data header determines how the OEM data is interpreted.

IpsiNew
Address of a STROKEINFO structure for new stroke data. Contains the count
of points from lppt to be added.

Returns a handle to the pen data object. Normally, this is the same handle originally
passed to the function. NULL is returned on error. The size of hpendata is limited
to 64K.

A call to GetPenHwEventData or GetPenInput gets the IpsiNew and IpvOem
values. A subsequent call to AddPointsPenData appends the set of points to the
HPENDATA memory block identified by hpendata. The IpsiNew argument points
to a STROKEINFO structure that describes the new points, and IpvOem points
to the corresponding OEM data (if any) to be added along with the points.

See Also

AddWordsHWL 149

The STROKEINFO structure indicates the pen state of the new points-that is,
whether the pen is up or down. To avoid unnecessarily creating new strokes in the
HPENDA T A block, AddPointsPenData compares the pen state of the new points
with the pen state of the last stroke in the HPENDAT A block. If the new points
have the same pen state as the last stroke, the function appends the points to the
last stroke and updates the last STROKEINFO structure within the HPENDATA
block. If the new points have a different pen state, AddPointsPenData appends
them to the HPENDA T A block as a new stroke, along with the STROKEINFO
structure pointed to by IpsiN ew.

AddPointsPenData does not scale the data points. The calling application must
ensure that the added data points have the same scale as the rest of the
HPENDATA block.

CreatePenData, GetPenHwEventData

AddWordsHWL
2.0

Adds words to a word list.

int AddWordsHWL(HWL hwl, LPSTR lpsz, UINT uType)

Parameters hwl
Handle to a word list, or the constant HWL_SYSTEM for the recognizer's
master word list.

lpsz
A pointer to a source of words, depending on the uType parameter.

uType
Word list type. This can be one of the following values:

Constant Description

/psz points to a single null-terminated
character string in memory.

/psz points to an array of null-terminated
character strings in memory. The list is
terminated by two null characters.

/psz is the handle of a previously created
word list, cast as LPSTR.

150 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

See Also

Returns HRCR_OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

Description

Invalid parameter or other error.

Insufficient memory.

If a user wants to add a word to the system word list, which is available whenever
the system dictionary is enabled (see EnableSystemDictionaryHRC), then hwl
should be set to the predefined constant HWL_SYSTEM. Words that are not nor­
mally found in a dictionary, such as a person's name, can be added to the system
word list. How this list is implemented, its size, or if it even exists, depends on the
recognizer. A typical recognizer might maintain a thousand-word list, replacing
random entries on overflow.

The HWL_SYSTEM constant cannot be used in any of the other word-listfunc­
tions. For example, it is not possible to destroy the system word list with the
DestroyHWL function.

For a description of word lists and how a recognizer uses them, see "Configuring
the HRC" in Chapter 5, "The Recognition Process."

CreateHWL, .EnableSystemDictionaryHRC

AnimateProc

Parameters

2.0

The AnimateProc function is an application-defined callback function that
provides information to DrawPenDataEx on a periodic basis. The name
AnimateProc serves only as a placeholder; the function can have any name.

BOOL CALLBACK AnimateProc(HPENDAT A hpndt, DINT iStrk,
DINT cPnt, DINT FAR * IpuSpeedPct, LPARAM IParam)

hpndt
Handle to the pen data currently being drawn.

iStrk
Zero-based index to the stroke being drawn, or about to be drawn.

cPnt
Count of points already drawn in this stroke.

IpuSpeedPct
Address of the speed-percent value.

Return Value

Comments

See Also

AtomicVirtualEvent 151

lParam
Application-specific data passed to the callback. This value is specified in
ANIMATEINFO.

The callback function must return TRUE to continue drawing the pen data.
Returning FALSE stops animation immediately.

One of the parameters of DrawPenDataEx provides the address of this callback
function. The application must create an instance of this function using the
MakeProclnstance function, and ensure that it is exported in the module-definition
(.DEF) file.

The application can monitor the state of animation or provide the user with an
opportunity to change the speed of animation, including pausing it, using the value
addressed by lpuSpeedPct.

The application can also pass application-specific information to the callback in
lParam. For example, a handle to the DC (device context) can be passed.

Callbacks are made at the beginning of the stroke or time interval, before any
drawing is done. However, if AI_SKIPUPSTROKES is specified, a callback is not
made before up strokes.

DrawPenDataEx, ANIMATEINFO

AtomicVirtualEvent

Parameters

Return Value

Comments

1.0 2.0

Locks out pen packets.

void AtomicVirtualEvent(BOOLjBegin)

jBegin
Flag for beginning or ending lockout. TRUE begins lockout, FALSE ends it.

This function does not return a value.

AtomicVirtualEvent is used by the Pen Palette or a similar virtual-keyboard
program to lock out pen packets while the application is posting simulated key
or mouse events.

Calling Atomic VirtualEvent with a TRUE value blocks input from physical
devices until they are freed with a call specifying FALSE. Applications should
end the lockout as quickly as possible.

An interruptable thread should not call Atomic VirtualEvent.

152 Programmer's Guide to Pen Services for Microsoft Windows 95

Example The following code fragment posts a mouse click:

See Also

AtomicVirtualEvent(TRUE);
PostVirtualMouseEvent(VWM_MOUSELEFTDOWN. xPos. yPos);
PostVirtualMouseEvent(VWM_MOUSEMOVE. xPos. yPos);
PostVirtualMouseEvent(VWM_MOUSELEFTUP. xPos. yPos);
AtomicVirtualEvent(FALSE);

Post Virtual Key Event, Post VirtualMouseEvent

BeginEnumStrokes

Parameters

Return Value

Comments

See Also

1.0 2.0

Locks a pen data block in memory in preparation for enumerating strokes.

Note This function is provided only for compatibility with version 1.0 of the Pen
API, and will not be supported in future versions.

LPPENDAT A BeginEnumStrokes(HPENDATA hpendata)

hpendata
Handle to an HPENDATA object.

Returns a pointer to the locked pen data if successful. Returns NULL if hpendata
is compressed or if the handle cannot be locked.

BeginEnumStrokes calls the GlobalLock function internally, returning a far
pointer to the memory block in the global heap. This serves to lock the data in prep­
aration for direct reading or calling GetPenDataStroke. The return value from
BeginEnumStrokes is used as an argument for GetPenDataStroke. After calling
BeginEnumStrokes to lock data, an application must unlock the data when
finished by calling EndEnumStrokes.

An application should never modify data directly within an HPENDATA block.
Doing so can invalidate other information in the block. To modify an HPENDAT A
block, use one of the Pen API functions listed in Chapter 4, "The Inking Process."

EndEnumStrokes, GetPenDataStroke

Bounding RectFromPoints 153

BoundingRectFromPoints

Parameters

Return Value

Comments

1.0 2.0

Calculates a rectangle that bounds a range of points.

void BoundingRectFromPoints(LPPOINT lppt, UINT cPt, LPRECT lprect)

lppt
Address of an array of POINT structures.

cPt
Number of POINT structures in the array. This parameter can be O.

lprect
Address of a RECT structure that contains the bounding rectangle when the
function returns.

This function does not return a value.

The bounding rectangle is empty at [0,0] if there are no points. For a single point,
the rectangle is empty at that point.

CharacterToSymbol

Parameters

Return Value

Comments

See Also

1.0 2.0

Converts an ANSI string to an array of SYV _ symbol values.

int CharacterToSymbol(LPSTR lpstr, int cSyv, LPSYV lpsyv)

lpstr
Address of a null-terminated ANSI string to be converted.

cSyv
Maximum number of SYV _ symbols the array lpsyv can hold.

lpsyv
Address of an array of SYV _ symbol values into which CharacterToSymbol
places the converted symbols. The array must be large enough to hold cSyv
symbols.

Returns the number of characters converted, or -1 if there is an error.

Conversion proceeds until a null byte is found in lpstr or untillpsyv has been filled
with cSyv symbols. A null byte is converted to SYV _NULL.

SymbolToCharacter,SYG, SYV_

154 Programmer's Guide to Pen Services for Microsoft Windows 95

CompactPenData

Parameters

1.0 2.0

Compacts pen data based on specified trim options.

Note This function is provided for compatibility with version 1.0 of the Pen API
and will not be supported in future versions. Use TrimPenData and
CompressPenData instead.

HPENDAT A CompactPenData(HPENDAT A hpndt, UINT fuTrim)

hpndt
Handle to a pen data object.

fuTrim
Data-trimming options:

PDTT_DEFAULT
Reallocates memory block to fit the data; does not trim the data. If you call
CompactPenData with this trim option and then call the GlobalSize func­
tion with the pen data handle as a parameter, you can retrieve the size of the
pen data.

PDTT_ALL
Removes the PENINFO structure from the header. Discards all data from
pen-up points (points collected when the pen is not in contact with the
tablet), and removes OEM data and collinear points.

PDTT _COLLINEAR
Removes successive identical (coincident) points and collinear points from
the pen data. After the operation is performed, PDTS_NOCOLLINEAR is
set in the wPndts member of the PENDA T AHEADER structure. The
collinear points can be removed with very little if any loss of recognition
accuracy. If the collinear points are removed before the points are scaled
to display coordinates, there may bea small change in the displayed image.

PDTT _COMPRESS
Compresses the data without losing any information. After the data has been
compressed, the compressed handle to the pen data can be passed as a
parameter only to the functions CompactPenData, GetPenDataInfo, and
DuplicatePenData. CompactPenData uses a "lossless" compression
method that retains the ability for an application to recognize the ink after
subsequent decompression. You can use this option with other trim options,
including PDTT _DECOMPRESS. In this case, compression is done after all
other options have been satisfied.

Return Value

Comments

See Also

CompressPenData 155

PDTT _DECOMPRESS
Decompresses the data. You can use this option with other trim options,
including PDTT_ COMPRESS. In this case, decompression is performed
first, followed by any other trim options specified, and followed by recom­
pression if PDTT _COMPRESS is specified. Since the compression method
used by CompactPenData does not lose information, the data is completely
restored.

PDTT_OEMDATA
Removes all OEM data-this is data other than coordinates, such as pres­
sure. This option does not affect delayed recognition unless a recognizer
is being used that expressly requires OEM data. For example, signature
recognizers often use pressure information.

PDTT_PENINFO
Removes the PENINFO structure from the header. You can use this option
if there is no OEM data associated with the data points or if the application
does not use any of the OEM data. This option has no effect on the pen data
for delayed recognition. Any OEM data present is also removed.

PDTT_UPPOINTS
Removes all data from pen-up points (points collected when the pen is not
in contact with the tablet). This option has no effect on delayed recognition.
This option is not usually necessary because pen-up points are not a part of
standard pen data.

If successful, CompactPenData returns a handle to a pen data object; otherwise,
it returns NULL. CompactPenData may fail and return NULL in low-memory
situations if compression or decompression is requested.

The PDTS_ bits are set in the wPndts member of the PEND AT AHEADER struc­
ture to indicate which operations have been performed.

CompressPenData, TrimPenData, CreatePenData, PENINFO,
PENDATAHEADER

CompressPenData
2.0

Compresses or decompresses the data in an HPENDAT A object.

int CompressPenData(HPENDAT A hpndt, UINT juFlags,
DWORD dwReserved)

156 Programmer's Guide to Pen Services for Microsoft Windows 95

Parameters

Return Value

Comments

See Also

hpndt
Handle to the HPENDATA object.

fuFlags
Specifies whether to compress or decompress the data, as follows:

Constant

CMPD_COMPRESS

CMPD _DECOMPRESS

dwReserved
Must be o.

Description

Compress the pen data.

Decompress the pen data.

This function returns one of the following:

Constant

PDR_ERROR

PDR_MEMERR

PDR_PNDTERR

PDR_ VERSIONERR

Description

Successful completion. Redundant operations, such as
compressing an HPENDAT A object that has already
been compressed, are not errors.

Illegal parameter or other error.

Memory error.

Invalid pen data.

Could not convert old pen data.

This function replaces the the version 1.0 Pen API function CompactPenData,
which is supported for compatibility only.

For a discussion of data compression, see "Compressing Pen Data" in Chapter 4,
"The Inking Process."

CompactPenData, TrimPenData

ConfigHREC
2.0

Allows an application to set or query recognizer-specific values. All calls to
ConfigHREC are serviced by the recognizer's ConfigRecognizer function. In
version 2.0 of the Pen API, applications must call ConfigHREC rather than
ConfigRecognizer.

int ConfigHREC(HREC hrec, UINT uSubFunction, WPARAM wParam,
LP ARAM IParam)

Parameters

Return Value

Comments

ConfigHREC 157

hrec
Module handle of the recognizer library. If this value is NULL, the system
default recognizer is used.

uSubFunction
Recognizer subfunction identifier. See the "Comments" section below.

wParam
Depends on the value of uSubFunction.

IParam
Address of a buffer. The contents of the buffer depend on the value of
uSubFunction.

If successful, returns 0 or a positive value as described in the list of uSubfunction
constants below; otherwise, returns one of the following negative values:

Constant

HRCR_ERROR

HRCR_MEMERR

Description

Missing recognizer, invalid parameter, or other error.

Insufficient memory.

The uSubFunction parameter contains one of the following WCR_ values that
identifies the requested configuration service:

WCR_CONFIGDIALOG
Instructs the recognizer to open a dialog box to set any recognizer-specific
parameters. (This is analogous to DEVMODE in printer drivers, which is
called when a user sets up a printer.) Some examples of the kind of settings
a recognizer might implement are whether or not to allow cursive input, how
much to depend on stroke order, and how rapidly to modify prototypes based
on the user's own style.

The IP aram parameter points to the name of the user currently selected in the
Control Panel application. The wP aram parameter is used by the recognizer
as the parent window for any dialog boxes it displays. The return value is
always TRUE.

WCR_DEFAULT
Returns TRUE if the recognizer is capable of being a default recognizer. A
default recognizer must support the standard character set as well as
standard gestures.

WCR_GETALCPRIORITY
Returns the current default alphabet priority being used by the recognizer.
The IP aram parameter points to a variable that specifies the alphabet priority
as a bitwise-OR combination of ALC_ values. The wParam parameter is not
used. This subfunction is used by the system; applications should instead get
alphabet priority by calling GetAlphabetPriorityHRC. The return value is
TRUE if successful.

158 Programmer's Guide to Pen Services for Microsoft Windows 95

WCR_GETANSISTATE
Returns TRUE if the recognizer ~an recognize all of the ANSI character set;
otherwise, returns FALSE or HRCR_ERROR.

WCR_ GETDIRECTION
If successful, returns the current writing direction assumed by the recognizer;
otherwise, returns HRCR_ERROR.

WCR_GETHAND
If successful, returns 0 if the user writes with the right hand or nonzero if the
user writes with the left hand; otherwise, returns HRCR_ERROR.

WCR_PRIVATE
Values above WCR_PRIV ATE have a meaning dependent on the recog­
nizer.

WCR_PWVERSION
Returns the version number of the Pen API for which this recognizer was
created. This value is 2 for the current version.

WCR_QUERY
Returns TRUE if the recognizer supports a configuration dialog box.

WCR_QUERYLANGUAGE
The wParam parameter is not used. The [Param parameter points to a null­
terminated language string. The return value is TRUE if the recognizer
supports the language; otherwise, it is FALSE.

WCR_RECOGNAME
Retrieves an identification string from the recognizer. The [Param parameter
is treated as a far pointer to a buffer that is filled with an identification string
from the recognizer. The wParam parameter is the size of the buffer to fill.
The identification string is a short description of the recognizer that Control
Panel presents to the user. A sample string is "US English character set,
cursive & print." The return value is always O.

WCR_SET ALCPRIORITY
Sets the current default alphabet priority for the recognizer to the value in
[Paramo Note that setting a priority for individual characters is not supported
for defaults. The wParam parameter is not used. This subfunction is used by
the system; applications should set priority explicitly in an HRC with the
SetAlphabetPriorityHRC function. The return value is TRUE if
successful.

ConfigHREC 159

WCR_SET ANSIST ATE
Sets a flag to enable or disable recognition of the entire ANSI character
set. Setting IP aram to 1 enables recognition of the entire ANSI set; setting
IP aram to 0 allows recognition of only English (ASCII) characters. The
w P aram parameter is not used.

The WCR_SETANSIST ATE subfunction determines the default setting
when CreateCompatibleHRC creates an HRC. An application can
explicitly override the setting for the HRC with the SetInternationalHRC
function. The return value is TRUE if successful.

WCR_SETDIRECTION
Sets the current writing direction for the recognizer to the value in IP aram,
which can be an appropriate combination of the RCD _ values. The wParam
parameter is not used. The return value is TRUE if successful.

WCR_SETHAND
Sets the current writing hand preference for the recognizer. The IParam
parameter is 0 for a right-handed user or 1 for a left-handed user. The
wParam parameter is not used. The return value is TRUE if successful.

WCR_TRAIN
This subfunction returns TRAIN_NONE if the recognizer does not sup­
port training. A return value of TRAIN_DEFAULT indicates support for
the default trainer, including the capability of resetting its database to the
original "factory" setting (see WCR_ TRAINSA VE). A return value of
TRAIN_CUSTOM indicates that the recognizer also provides its own
custom trainer. A return value of TRAIN_BOTH indicates support for
both kinds of training.

WCR_TRAINMAX
The recognizer returns the maximum number of SYV _ symbol values that
it can train for any given shape.

The recognizer should return 0 if it can train any number of characters.
For example, the Microsoft recognizer can train one character for a shape;
a cursive recognizer may allow more.

WCR_TRAINSA VE
The trainer calls the ConfigHREC function with the parameters set to
(WCR_ TRAINS A VE, TRAIN_SAVE, 0) when it is time to save the data­
base. This happens when the user closes the trainer. After this call, the
recognizer should return TRUE if it can successfully save the database;
otherwise, it should return FALSE.

160 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

The trainer calls the function with (WCR_TRAINSA VE, TRAIN_REVERT,
0) before it discards any changes made to the database that have not yet been
saved to disk (that is, revert to saved). This happens when the user cancels
the changes. The recognizer should return TRUE if it is successful.

The trainer can alternatively call ConfigHREC with (WCR_TRAINSAVE,
TRAIN_RESET, 0) to reset the database to the original "factory" settings.
The recognizer should return TRUE if it is successful.

WCR_TRAINDIRTY
The recognizer returns TRUE if the recognizer needs to save training. The
recognizer returns FALSE if no training occurred, if the recognizer does not
use a database for training, if the recognizer saves as it works, or if the
recognizer cannot revert the training.

The hwnd parameter is a handle to the requesting window. The trainer can
use this as the parent window for a dialog box, for example. If there has been
a re~ent recognition, a pointer to it is passed in the IParam parameter,
although this may be NULL.

The format for the WCR_TRAINDIRTY subfunction call is:

ConfigHREC(hrec, WCR_TRAINDIRTY, 0, 0);

WCR_TRAINCUSTOM
If the recognizer returns TRAIN_CUSTOM or TRAIN_BOTH in response
to WCR_TRAIN, it will receive a WCR_TRAINCUSTOM message when it
is time to display its own training system.

The format for the WCR_ TRAINCUSTOM subfunction call is:

ConfigHREC(hrec, WCR_TRAINCUSTOM, hwnd, lprcresult);

WCR_USERCHANGE
Notifies the recognizer of a change in user. The IParam parameter points to
a null-terminated string containing the user's name. The wParam parameter
specifies the required modification:

A wParam value of CRUC_NOTIFY indicates a new user, the name of
whom is in the string that IParam points to.

A wParam value of CRUC_REMOVE indicates that the user identified by
IParam should be removed from the recognizer's user list. If the recognizer
has saved any files or settings for the user, they should be deleted in response
to this notification.

WCR_ VERSION
Returns the version number. The low-order byte of the return value specifies
the major (version) number. The high-order byte specifies the minor
(revision) number.

ConfigRecognizer, ALC_, SYV_

ConfigRecognizer 161

ConfigRecognizer

Parameters

1.0 2.0

Provides system access to the configuration settings of a recognizer. In version 2.0
of the Pen API, only the pen system can call ConfigRecognizer. Applications must
call ConfigHREC to query or set recognizer configuration values. The system
routes ConfigHREC calls to the ConfigRecognizer function of the appropriate
recognizer.

A recognizer must export ConfigRecognizer. The information in this entry is for
recognizer developers only, not application developers.

UINT ConfigRecognizer(UINT uSubFunction, WPARAM wParam,
LP ARAM IParam)

uSubFunction
Recognizer subfunction identifier. See ConfigHREC for descriptions of the
WCR_ subfunctions that ConfigRecognizer must support. In addition,
ConfigRecognizer must support the following two WCR_ subfunctions:

WCR_INITRECOGNIZER
When an application installs a recognizer by using InstallRecognizer, the
system calls the recognizer's ConfigRecognizer function with the
WCR_INITRECOGNIZER subfunction. The wParam parameter is not used
and IParam is a far pointer to an ASCII string containing the user's name,
as set in the system registry. If successful, the recognizer should return 1;
otherwise, it should return 0 to indicate an error.

In response to the WCR_INITRECOGNIZER subfunction, the recognizer
should perform any required initialization tasks. (This subfunction replaces
the InitRecognizer function exported by version 1;0 recognizers.)

WCR_CLOSERECOGNIZER
When an application unloads a recognizer by using UninstallRecognizer,
the system calls the recognizer'S ConfigRecognizer function with the
WCR_ CLOSERECOGNIZER subfunction. The wParam and IParam
parameters are not used. If successful, the recognizer should return 1;
otherwise, it should return 0 to indicate an error.

In response to the WCR_ CLOSERECOGNIZER subfunction, the recognizer
should perform any required cleanup tasks. (This subfunction replaces the
CloseRecognizer function exported by version 1.0 recognizers.)

wParam
Depends on the value of uSubFunction.

IParam
A value, or an address of a buffer. The contents of the buffer depend on the
value of uSubFunction.

162 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

See Also

Returns 0 or a positive value, depending on uSubFunction.

ConfigRecognizer provides initialization and query services for the pen system.
The parameter uSubFunctiol} is a WCR_ value that specifies the configuration
service that ConfigRecognizer must perform.

When an application calls ConfigHREC, the system determines the appropriate
recognizer and passes the call to that recognizer's ConfigRecognizer function.
ConfigHREC exists only because its extra argument hrec identifies to the system
the intended recognizer library. This information is necessary in version 2.0 of the
Pen API, which allows multiple recognizer libraries to exist simultaneously. Thus,
the names ConfigHREC and ConfigRecognizer refer to the same function. Appli­
cations refer to the function as ConfigHREC, while recognizers export it as
ConfigRecognizer.

ConfigHREC, SYV_

CorrectWriting
1.0 2.0

Sends text to the CorrectText dialog box to allow the user to edit text using a
single-line or multiline bedit control.

BOOL CorrectWriting(HWND hwnd, LPSTR IpTextO, UINT cbTextO,
LPVOID IpvReserved, DWORD dwFlags, DWORD dwParam)

Parameters hwnd
Handle of the owner of the CorrectText dialog box or writing tools used to edit
the text.

IpTextO
Far pointer to a buffer containing the text to be corrected.

When CorrectWriting returns, the IpTextO buffer holds the corrected text. As a
general rule, this parameter should allow for growth by a factor of at least two
or some maximum size that depends on the field of entry.

cbTextO
Number of characters in IpTextO. This value must be greater than 1 and include
a byte for the string's null terminator.

IpvReserved
This parameter is reserved and should be set to NULL.

CorrectWriting 163

dwFlags
Translation and style flags, formed by the low-order word and high-order word
of dwFlags. The low-order word must be one or more of the following flags,
combined with the bitwise-OR operator. Note that the CWR_REPLACECR and
CWR_REPLACETAB flags replace CWR_STRIPTAB and CWR_STRIPCR,
respectively; both flags are in version 1.0 of the Pen API.

Constant Description

CWR_BOXES Create bedit writing tool instead of keyboard. This flag
can be used only for edit control and its derivatives. Use
of this flag by applications is not recommended.

CWR_HEDIT Indicates that the given hwnd is an edit control or a
control derived from the edit control. This flag can be
used only for edit control and its derivatives. Use of this
flag by applications is not recommended.

CWR...:.INSERT Use "Insert Text" instead of "Edit Text" as the title.
CWR_ TITLE overrides this flag.

CWR_KEYBOARD Create keyboard writing tool instead of bedit lens. This
flag can be used only for edit control and its derivatives.
Use of this flag by applications is not recommended.

CWR_KKCONVERT Initiate IME (Japanese version only).

CWR_REPLACECR Replace carriage return characters in the text in the
buffer by spaces just before the call returns.

CWR_REPLACET AB Replace tabs in the text in the buffer by spaces just
before the call returns.

CWR_SIMPLE Use writing tool (simple dialog box). This flag can be
used only for an edit control and its derivatives. Use of
this flag by applications is not recommended.

CWR_SINGLELlNEEDIT Replace carriage returns and tabs with spaces and strip
linefeeds from the text in the buffer just before the call
returns.

Strip linefeed characters from the text in the buffer just
before the call returns.

Interpret dwParam (see below) as a pointer to the title
text string.

164 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

The high-order word must be one of the following values and cannot be com­
bined with the bitwise-OR operator. The values determine the type of keyboard
to show when the user clicks the keyboard button in the dialog box.

Constant

CWRK_TELPAD

CWRK_BASIC

CWRK_DEFAULT

CWRK_FULL

CWRK_NUMPAD

dwParam

Description

Use the telephone-type keyboard.

Use the basic keyboard.

Use the default keyboard type. The default
keyboard type is currently the same as the
basic keyboard type.

Use the full keyboard.

Use the numeric keyboard.

A far pointer to a text string that serves as the title of the dialog box if
CWR_TITLE is present in dwFlags; otherwise, this parameter must be O.

Returns TRUE if the writing tool or CorrectWriting operation was successful.
Otherwise, the return value is FALSE.

CorrectWriting sends a WM_PENMISC message with PMSC_GETHRC as the
IParam to the specified window. This message requests the HRC handle associated
with the window, which the system then uses for the dialog box. The window
should return a copy of its HRC so that the system can destroy it before the call
returns. If the window returns NULL to this message, the system creates a default
HRC.

Note that in the Japanese version, CorrectWriting is supported but internally calls
CorrectWritingEx, which opens a Dialog Input Window.

CorrectWritingEx
2.0

Sends text to the CorrectText dialog box to allow the user to edit text using the
Japanese Data Input Window. (Japanese version only.)

INT CorrectWritingEx(HWND hwnd, LPSTR IpText, DINT cbText,
LPCWX lpcwx)

CorrectWritingEx 165

Parameters hwnd

Return Value

Comments

Handle of the owner of the CorrectText dialog box or writing tool used to edit
the text. This can be NULL.

IpText
Far pointer to a buffer containing text to correct. This is copied into the Data
Input Window's edit control. If IpText is NULL, a WM_ GETTEXT message is
sent to the text source window, specified by the hwndT ext member of lpcwx,
or if lpcwx or its hwndText member is NULL, to hwnd. On successful exit,
a WM_SETTEXT message will be sent to that window with modified text.

cbText
Size of the IpText buffer. If the source of the text is an edit control constrained
by EM_LIMITTEXT, cbText should reflect that size. If IpText is NULL, the
cbText value will be used to limit text if it is greater than zero; otherwise, no
limit is used and the returned text may be of arbitrary size.

lpcwx
Address of a CWX structure, or NULL. The structure is used to specify optional
correction parameters; for a description of its members, see CWX. If this value
is NULL, the following default assumptions are made:

• The text window is the same as the owner window hwnd.

• A default recognition context is used.

• The edit control style is a combination of ES_LEFT and ES_MULTILINE.

• All text is selected; the caption is "Edit Text".

• Most recently use values for context flags, keyboard, keyboard states,
position, and size are used.

If there is a programming or memory error, the negative value CWXR_ERROR is
returned. Otherwise, one of the following non-negative values is returned:

Constant

CWXR_MODIFIED

CWXR_UNMODIFIED

Description

User pressed the OK button.

User pressed the Cancel button, or closed the dialog,
or pressed the OK button but did not make any
changes to the text.

An application must be sure to initialize the CWX structure properly if it is used. In
particular, the cbSize member must be set to s i zeof (CWX), and the remaining
fields (at least up to dwSel) are typically set to zero.

166 Programmer's Guide to Pen Services for Microsoft Windows 95

Example The following example shows how to initialize and call CorrectWritingEx when a
button is pressed in a dialog:

See Also

CWX cwx = {sizeof(CWX), 0, NULL, NULL, {0}, 0L, 0L};

cwx.hwndText = GetDlgItem(hdlg, IDD_ETSU; II dialog edit
cwx.dwEditStyle = GetWindowLong(cwx.hwndText, GWL_STYLE)

I ES_PASSWORD;
cwx.dwSel = SendMessage{cwx.hwndText, EM_GETSEL, 0, 0);
_fstrcpy«LPSTR)cwx.szCaption, (LPSTR)"Enter your password:");

II we specify kbd and context, but use MRU placement
cwx.wApplyFlags = CWXA_KBD I CWXA_STATE I CWXA_CONTEXT;

II don't update most-recently used settings for this one-shot:
cwx.wApplyFlags 1= CWXA_NOUPDATEMRU;
cwx.ixkb = CWXK_OWERTY;
cwx.rgState[CWXK_OWERTY-CWXK_FIRST] = CWXKS_HAN I CWXKS_ROMA;
cwx.dwFlags = CWX_NOTOOLTIPS I CWX_TOPMOST; II no distractions

if (CorrectWritingEx(hdlg, NULL, 0, &cwx) 1= CWXR_MODIFIED)
ErrBox(EB_WHOAREYOU);

II validate pwd in the text window etc ...

CWX

CreateCompatibleHRC

Parameters

2.0

Creates a handwriting recognition context HRC that can be used to do handwriting
recognition, optionally compatible with an existing context template. A recognizer
must export this function.

HRC CreateCompatibleHRC(HRC hrcTemplate, HREC hrec)

hrcTemplate
Handle to an existingHRC object that can provide default settings for the
recognition context being created. If NULL, this parameter is ignored and
default settings are used.

Return Value

Comments

See Also

CreateHWL

Parameters

CreateHWL 167

hrec
Instance handle of the recognizer library. This is the value returned by the
Windows function LoadLibrary. Note that the module handle returned by the
Windows function GetModuleHandle does not work in this case. If this value
is NULL, the system default recognizer is used by internally making a call to
GetPenMiscInfo with PMI_SYSREC as the first argument.

Returns a handle to a new HRC object if successful; otherwise, returns NULL.

The hrcTemplate parameter can be used to copy an old context into the new HRC
object. This includes settings such as word lists, coercion, and GUIDE structure,
but excludes any pen data that may be in the old context.

DestroyHR C, GetResultsHRC, SetMaxResultsHRC

2.0

Creates a handle to a word list.

HWL CreateHWL(HREC hrec, LPSTR lpsz, UINT uType,
DWORD dwReserved)

hrec
Module handle of the recognizer library. If this value is NULL, the system
default recognizer is used.

lpsz
A pointer to a source of words, depending on the uType parameter.

Type
Word-list type. This can be one of the following values:

Constant

dwReserved
MustbeO.

Description

An empty word list is created. The lpsz parameter is
ignored .

. The lpsz parameter points to a single null-terminated
character string in memory.

The lpsz parameter points to an array of null-termi­
nated character strings in memory. The list is termi­
nated by two null characters.

168 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

Example

See Also

If successful, returns the handle of a newly created word list; otherwise, returns
NULL. If the recognizer does not support word lists, the return value is NULL.

CreateHWL.creates a word list for constraining recognition. Word lists can be
combined using the AddWordsHWL function.

To make a word list from words in a file, an application uses CreateHWL to
create an empty word list, then reads the file into it with the ReadHWL function.

Any word lists created by an application must eventually be destroyed by calling
DestroyHWL. Attempting to unload a recognizer that has open word lists results
in an error.

For a description of word lists and how a recognizer uses them, see "Configuring
the HRC" in Chapter 5, "The Recognition Process." ,

The following example demonstrates how to provide a word list to constrain
recognition results to the words "Canada," "USA," or "Mexico":

static char szNames[] = { "Canada",
"USA",
"Mexico"

} ;

HWL hwlCountries = CreateHWL(NULL,
(LPSTR)szNames,
WLT_STRINGS, 0L); II Create early for later use

if (hrc = CreateCompatibleHRC(NULL, NULL))
{

SetWordlistHRC(hrc, hwlCountries); II Set list into HRC
SetWordlistCoercionHRC(hrc, SCH_FORCE); II Force match

II Code that collects and recognizes input goes here

AddWordsHWL, DestroyHWL, SetWordlistHRC

Createlnkset 169

Createlnkset •

Parameters

Return Value

See Also

2.0

Creates an empty inkset.

HINKSET CreateInkset(UINT gmemFlags)

gmemFlags
Flag that specifies whether or not the Windows GlobalAlIoc function should
create a shared memory object when the inkset object is created. This flag
should be either 0 or GMEM_DDESHARE. The GMEM_MOVEABLE and
GMEM_ZEROINIT flags are added to this value, and other GMEM_ flags
are ignored'.

Returns a handle to an inkset if successful; otherwise, the return value is NULL.

DestroyInkset, INTER V AL

CreatelnksetHRCRESUL T

Parameters

Return Value

2.0

Creates an inkset from parts of a recognition result.

HINKSET CreateInksetHRCRESUL T(HRCRESUL T hrcresult, UINT iSyv,
UINT cSyv)

hrcresult
Handle of an HRCRESUL T object.

iSyv
Index to first symbol for inkset.

cSyv
Count of symbols.

Returns the handle of a newly created inkset if successful. If the index to the first
symbol iSyv is invalid, or some other error occurs, the return value is NULL.

170 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

See Also

The inkset spans a series of continuous symbols; disjoint sets are not allowed.
Before terminating, the calling application must destroy the HINKSET object by
calling DestroyInkset.

If the range of symbols spe<;ified by iSyv + cSyv exceeds the number of symbols
available, the returned inkset is valid only for available symbols. This is not an
error, so it is possible to assign cSyv a large value to get an inkset for all symbols
after iSyv.

For a description of inksets, see "The HINKSET Object" in Chapter 4, "The Inking
Process."

Destroy Inkset, GetResultsHRC

CreatePenData

Parameters

1.0 2.0

Creates an empty HPENDATA block.

Note This function is provided only for compatibility with version 1.0 of the Pen
API and will not be supported in future versions. Use CreatePenDataEx instead.

HPENDA T A CreatePenData(LPPENINFO lppeninfo, int cbOem,
UINT uScale, UINT gmemFlags)

lppeninfo
Address of tablet information to be inserted into the PENINFO structure in
the pen data headeL If this parameter is NULL, the current tablet settings are
retrieved from the hardware instead. If there is no tablet, the pen data will
not have an embedded PENINFO section and the wPndts member in
PENDATAHEADER will have the PDTS_NOPENINFO flag set.

cbOem
Width of OEM data packet. If this value is greater than or equal to 0, the OEM
data overrides the contents of the PENINFO structure, if present; otherwise, a
negative value such as -1 can be used to specify that the system should calculate
the size of the OEM data packet.

Return Value

Comments

CreatePenData 171

uScale
Data-scaling metric value. This parameter can be one of the following values:

Constant

PDTS-,HIENGLISH

PDTS_ARBITRARY

PDTS_ST ANDARDSCALE

gmemFlags

Description

Each logical unit is mapped to 0.1
millimeter. Positive x is to the right;
positive y is down.

Each logical unit is mapped to 0.01
millimeter. Positive x is to the right;
positive y is down.

Each logical unit is mapped to 0.001 inch.
Positive x is to the right; positive y is
down.

The application has done its own scaling
of the data point.

The standard scaling metric; equivalent to
PDTSJUENGLISH.

Flag that specifies whether or not the Windows GlobalAlloc function should
create a shared memory object when the pen data object is created. This should
be either 0 or GMEM_DDESHARE. The GMEM_MOVEABLE and
GMEM_ZEROINIT flags are added to this value, and other GMEM_ flags are
ignored.

Returns a handle to a new and empty pen data object if successful; otherwise, it
returns NULL.

The application provides the PENINFO structure for the header, the real size of
any OEM data stored with each coordinate, and the scale of the coordinates.

The uScale parameter specifies scaling values that are also used in the
MetricScalePenData function and in the PEND AT AHEADER structure member
wPndts. The scaling values do not behave in the same way as the Windows scaling
units with similar names; For example, a i-inch line in MM_HIENGLISH will not
necessarily be an inch long on the screen because GDI does not know the size of
the monitor. However, with PDTS_HIENGLISH in MetricScalePenData, a line
drawn an inch long is actually an inch long.

172 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

If lppeninfo is NULL, and if there is no tablet on the system (that is, if
SendDriverMessage fails), it returns NULL.

The cbOem value must be less than or equal to 12, depending on the size of the
OEM data packet. A value of 0 explicitly sets the amount of OEM information
to none. A negative value indicates that the size of the OEM data packet is to be
calculated by the system. Any existing value for the cbOemData member of
PENINFO can be overwritten.

CreatePenDataEx, DestroyPenData, PDTS_

CreatePenDataEx

Parameters

2.0

Creates a PENDATA structure with specified OEM data subsets.

HPENDATA CreatePenDataEx(LPPENINFO lppeninjo, UINT uScale,
UINT juOptions, UINT gmemFlags)

lppeninfo
Address of tablet information to be inserted into the PENINFO structure in
the pen data header. If this parameter is NULL, the current tablet settings
are retrieved from the hardware instead. If there is no tablet, the pendata
will not have an embedded PENINFO section and the wPndts member in
PENDATAHEADER will have the PDTS_NOPENINFO flag set.

uScale
Data-scaling metric value. This parameter can be one of the following values:

Constant

PDTS_HIMETRIC

PDTS_HIENGLISH

PDTS_ARBITRARY

PDTS_STANDARDSCALE

Description

Each logical unit is mapped to 0.1
millimeter. Positive x is to the right;
positive y is down.

Each l?gical unit is mapped to 0.01
millimeter. Positive x is to the right;
positive y is down.

Each logical unit is mapped to 0.001 inch.
Positive x is to the right; positive y is
down.

The application has done its own scaling
of the data point.

The standard scaling metric is equivalent
to PDTS_HIENGLISH.

Return Value

CreatePenDataEx 173

juOptions
Storage and trim options. If this parameter is 0, no timing, PDK_, or OEM data
is stored. If it is CPD_DEFAULT, everything but user data is stored.

Otherwise, this parameter can explicitly specify subsets of OEM and other data.
To do so, the parameter should be a combination of one of the CPD _USER
values that allocate extra storage and any collection of PHW _ constants. (These
values should be combined using the bitwise-OR operator.)

The following table lists the PHW _ values for the jUOptions parameter:

Constant

PHW _PRESSURE

PHW_HEIGHT

PHW _ANGLEXY

PHW_ANGLEZ

PHW _BARRELROTATION

PHW _OEMSPECIFIC

PHW_PDK

PHW_ALL

CPD_DEFAULT

CPD_USERBYTE

CPD_USERDWORD

gmemFlags

Description

Report pressure in OEM data if available.

Report height in OEM data if available.

Report XY -angle in OEM data if available.

Report Z-angle in OEM data if available.

Report barrel rotation in OEM data if available.

Report OEM -specific value in OEM data if available.

Report per-point PDK_ bits in OEM data.

Report all available OEM data. This flag is the sum of
all other PHW _ flags.

The following table lists the CPD _ values for the
juOptions parameter:

Store timing, PDK, and all OEM data for each stroke.

Set internal flag to add space for one byte of additional
storage to be allocated for each stroke. Added space is
for application use.

Set internal flag to add space for one word of
additional storage to be allocated for each stroke.
Added space is for application use.

Set internal flag to add space for one doubleword of
additional storage to be allocated for each stroke.
Added space is for application use.

Maintain absolute time infonnation for each stroke.

Flag that specifies whether GlobalAlloc should create a shared memory object
or not when the pen data object is created. This should be either 0 or
GMEM_DDESHARE. The GMEM_MOVEABLE and GMEM_ZEROINIT
flags are added to this value, and other GMEM_ flags are ignored.

Returns the handle to the HPENDAT A object if successful; otherwise, returns
NULL.

174 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

See Also

CreatePenDataEx is an extension of CreatePenData that allows a more detailed
specification of what is stored in each. stroke of the pen data.

ThefuOptions parameter is typically specified as CPD_DEFAULT to request
collection and storage of all information generated by the tablet, including x-y data,
absolute stroke timing information, and all available OEM data. The OEM data set
that is actually stored in the pen data is the minimum set that satisfies both the
request and what is physically available from the tablet (that is, intersection set).

Iflppeninfo is NULL, and if there is no tablet on the system (that is, if the
SendDriverMessage function fails), the pen data that is created will not have any
hardware or OEM information and a default sampling rate of 100Hz will be used.
This case is similar to removing PENINFO from the header using TrimPenData
with a parameter of TPD _PENINFO.

A value of 0 for fuOptions is used to indicate that only coordinate data is required.
While recognition of this type of pen data may suffer, this provides the least
complicated type of pen data.

PHW _ bits can be specified to indicate which OEM values or per-point PDK_ pen
state information is to be collected. Note that, except for PHW _PDK, which is
always valid, this is only a request; if the hardware does not support certain types
of OEM data, that data will be absent.

The uScale parameter specifies scaling values that are also used in the
MetricScalePenData function and in the PENDATAHEADER structure member
wPndts. The scaling values do not behave in the same way as the Windows scaling
units with similar names. For example, a 1-inch line in MM_HIENGLISH will not
necessarily be an inch long on the screen, because GDI does not know the size of
the monitor. However, withPDTS_HIENGLISH in MetricScalePenData, a line
drawn an inch long is actually an inch long.

CreatePenData, DestroyPenData, PDTS_, PDK_

CreatePenDataHRC

Parameters

2.0

Returns the handle to the HPENDATA object containing the pen data in the HRC.

HPENDAT A CreatePenDataHRC(HRC hrc)

hrc
Handle to the HRC object.

Return Value

Comments

See Also

CreatePenDataRegion 175

Returns a handle to the HPENDA T A object if successful; otherwise, it returns
NULL.

It is the responsibility of the caller to destroy the HPENDAT A object.

A recognizer is not required to use or maintain OEM data; that is, a recognizer can
choose to ignore some or all of the OEM data it receives from AddPenDataHRC
or AddPenInputHRC. This means that the HPENDAT A object the recognizer
returns through CreatePenDataHRC may not contain all the OEM data originally
provided by the application. Whether or not a recognizer uses the OEM data, it
should store all such data it receives and forward it so that subsequent recognizers,
if any, can use the data.

AddPenInputHRC, AddPenDataHRC

CreatePenDataRegion·

Parameters

Return Value

2.0

Creates a region that envelops the point data in an HPENDAT A object.

HRGN CreatePenDataRegion(HPENDAT A hpndt, UINT uType)

hpndt
Handle to the HPENDATA object.

uType
Type of region to create. This can be one of the following values:

CPDR_BOX
The bounding box of the pen data ink is converted to a region.

CPDR_LASSO
The pen data describes a lasso that makes up the boundary of the region. If
the last point of the pen data does not coincide with the first point, a closed
figure is created either by joining the endpoints with a straight line or by
using the intersection point of the beginning and ending line segments,
whichever is more appropriate. Only the first stroke is used; if the pen data
has more than a single stroke, subsequent strokes are ignored.

This function returns a handle to a region if successful; otherwise the return value
is NULL.

176 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments The coordinates of the region are the same as those used in the pen data. It is the
application's responsibility to remove the region when the application is fmished
with it, using the Windows DeieteObject function.

CreatePenDataRegion enables an application to determine the screen area a
gesture such as lasso or cut applies to. For an example of how to use the
CreatePenDataRegion function to determine the area of a gesture, see the section
"DoDefaultPenInput Messages" in Chapter 2, "Starting Out with System Defaults."

DestroyHRC

Parameters

Return Value

Comments

See Also

2.0

Destroys an HRC object. A recognizer must export this function.

int DestroyHRC(HRC hrc)

hrc
Handle to the HRC object.

Returns HRCR_ OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

Description

Invalid parameter or other error.

Insufficient memory.

If the HRC contains other objects such as an HPENDAT A object, the recognizer
must destroy the contained objects as well. After DestroyHRC returns
HRCR_ OK, the handle hrc is no longer valid. The application should set hrc to
NULL to ensure it is not inadvertently used again.

CreateCompatibieHRC, DestroyHRCRESULT

DestroyHRCRESUL T
2.0

Destroys an HRCRESUL T object. A recognizer must export this function.

int DestroyHRCRESUL T(HRCRESUL T hrcresult)

Parameters

Return Value

Comments

See Also

DestroyHWL 177

hrcresult
Handle to the HRCRESULT object to destroy.

Returns HRCR_ OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

Description

Invalid parameter or other error.

Insufficient memory.

A recognizer must maintain a count of the number of HRCRESUL T objects it
creates. If an application calls DestroyHRC, the recognizer should not remove
the HRC from memory until the application has called DestroyHRCRESULT
for all HRCRESUL T objects associated with the HRC.

After DestroyHRCRESULT returns HRCR_OK, the handle hrcresult is no
longer valid. The application should set hrcresult to NULL to ensure it is not
inadvertently used again.

GetResultsHRC, Destroy HR C

DestroyHWL
2.0

Destroys a handle to a handwriting-recognition word list.

int DestroyHWL(HWL hwl)

Parameters hwl

Return Value

Comments

See Also

Word list to destroy.

Returns HRCR_OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

After DestroyHWL returns HRCR_OK, the handle hwl is no longer valid. The
application should set hwl to NULL to ensure it is not inadvertently used again.

CreateHWL

178 Programmer's Guide to Pen Services for Microsoft Windows 95

Destroylnkset

Parameters

Return Value

Comments

See Also

2.0

Frees memory associated with an inkset.

BOOL DestroyInkset(HINKSET hinkset)

hinkset
Handle of an inkset to destroy.

Returns TRUE if successful; otherwise FALSE.

Once memory is freed, the handle hinkset is invalid. The application should set the
handle to NULL.

CreateInkset, INTERV AL

DestroyPenData

Parameters

Return Value

Comments

See Also

1.0 2.0

Frees the memory associated with a specified pen data memory block.

BOOL DestroyPenData(HPENDAT A hpndt)

hpndt
Handle to a pen data memory block to destroy.

Returns TRUE if the memory was successfully freed; otherwise, FALSE.

Once the memory block is destroyed, the HPENDA T A handle is no longer valid.
The application should set the handle to NULL.

CreatePenData, CreatePenDataEx

DictionarySearch 179

DictionarySearch

Parameters

Return Value

Comments

1.0 2.0

Perfonns a dictionary search for a version 1.0 recognizer.

Note This function is provided only for compatibility with version 1.0 of the Pen
API and will not be supported in future versions.

BOOL DictionarySearch(LPRC lpre, LPSYE lpsye, int eSye, LPSYV lpsyv,
int esyvMax)

lpre
Address of an Restructure.

lpsye
Address of an array of SYE symbol elements that constitute the symbol graph.

eSye
Number of SYE structures in the array.

lpsyv
Output buffer of SYV types. This parameter contains the return results of the
dictionary search. A SYV _NULL value is always appended at the end of this
buffer. Therefore, this parameter must have enough space for esyvMax + 1 SYV
symbol values.

esyvMax
Size of the output buffer.

Returns TRUE if any enumeration is found in a dictionary. It returns FALSE if a
NULL dictionary was requested or none of the enumerations was found in any
dictionary. .

The DictionarySearch function uses the symbol graph pointed toby lpsye, per­
fonns a dictionary search based on the options set in lpre, and returns the result
as an array of SYV symbol values in the buffer pointed to by lpsyv. The function
returns the number of SYV elements copied, limited by the maximum specified in
the esyvMax parameter.

180 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

DictionarySearch first passes the symbol graph with DIRQ_SYMBOLGRAPH
to all the dictionaries in the rglpdf array in the specified RC structure. If none suc­
ceeds, the function enumerates the symbol graph in lpsye and searches through all
of the dictionary functions for a match. The calling application can get suggestions
by setting the RCO_SUGGEST flag in the IRcOptions field in the RC structure.
When this flag is set and no enumeration is found in any of the dictionaries in the
rglpdf array, DictionarySearch tries to get a suggestion from the dictionaries on
the path. DictionarySearch takes the first suggestion offered by any dictionary
and returns that as the result of the search. If there are no suggestions, the func­
tion returns the best enumeration. The best enumeration is obtained using the
FirstSymbolFromGraph function.

If the option RCO _NOSPACEBREAK is set in the IRcOptions field of the speci­
fied RC structure, DictionarySearch treats the entire lpsye array as a single sym­
bol graph. If this flag is not set, the function breaks down the input symbol graph
into tokens delimited by white space, performs the search sequence on each of
them, and assembles the result in the lpsyv array.

This function uses the EnumSymbols function for enumeration and the
wTryDictionary member in the RC structure to specify the maximum number
of enumerations to search through for each symbol graph token.

EnumSymbols, FirstSymbolFromGraph, SYE, SYV _, RC

DoDefaultPenlnput
2.0

Initiates default handling of pen input.

int DoDefaultPenInput(HWND hwnd, UINT wEventRef)

Parameters hwnd
Handle to the window initiating the default processing.

wEventRef
An identifier of a pen event in the input stream, from which input is begun. This
identifier is the value returned from the GetMessageExtraInfo function.

Return Value

Comments

Returns one of the following values:

Constant

PCMR_OK

PCMR_ALREADYCOLLECTING

PCMR_APPTERMINATED

PCMR_ERROR

PCMR_INV ALID _PACKETID

PCMR_SELECT

PCMR_TAP

DoDefaultPenlnput 181

Description

Pen collection was successfully started.

StartPenlnput has already been called for
this session.

The application aborted input.

Illegal parameter or unspecified error.

Invalid packet identifier.

Press-and-hold was detected. Collection is
not started.

A pen tap was detected. Collection is not
started.

DoDefaultPenInput simplifies the pen input process by including the following
capabilities in a single call:

• Starts pen input by calling StartPenInput

• Starts inking by calling StartInking

• Saves the screen background overwritten by the ink

• Collects the pen input data

• Stops inking by calling StopInking

• Stops pen input by calling StopPenInput

• Targets the pen input data to windows

• Recognizes results

• Sends the recognition results to the targets

The default processing proceeds in three phases: initialization, data gathering, and
termination. A set of submessages corresponds to each of the three phases.

• During the initialization phase, the system sends the WM_PENEVENT sub­
message PE_SETTARGETS and potentially several PE_ GETPCMINFO and
PE_ GETINKINGINFO messages. After the target or the DefWindowProc
function handles these messages and returns a value of PCMR_ OK to indicate
success, the data-gathering phase begins.

182 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

DPtoTP

Parameters

Return Value

Comments

See Also

• During the data-gathering phase, the window specified by the hwnd parameter
starts to receive the core pen-input submessages PE_PENDOWN, PE_PENUP,
and PE_PENMOVE. The window should let these submessages fall through
to DefWindowProc, which translates them into the higher-level messages
PE_BEGINDAT A and PE_MOREDAT A. These are sent to one of the windows
specified in the htrgTarget members of the TARGET structures if targeting is
in progress; otherwise, the messages are sent to hwnd.

• The termination phase begins when the pen input terminates. The target window
should let the core termination messages PE_TERMINATING and
PE_TERMINATED fall through to DefWindowProc. The PE_ENDDATA,
PE_RESULT, and PE_ENDINPUT submessages are sent by DefWindowProc
while processing PE_TERMINATED.

A return value of LRET _ABORT to any of the WM_PENEVENT submessages
aborts the entire process of default input.

WM_PENEVENT, StartPenInput, StartInking, StopPenInput, StopInking

1.0 2.0

Converts an array of points in display coordinates to tablet coordinates.

BOOL DPtoTP(LPPOINT lppt, int cPnt)

Ippt
Address of an array of POINT structures to convert to tablet coordinates. This
parameter cannot be NULL.

cPnt
Number of POINT structures to convert.

Returns TRUE if the conversion was successful; otherwise, returns FALSE.

Because of possible rounding errors, the DPtoTP and TPtoDP functions are not
guaranteed to be perfect inverses of each other.

The calling application must avoid overflow by passing in points that are within
the limits of the current physical display.

TPtoDP

DrawPenData 183

DrawPenData
1.0 2.0

Displays the pen data in an HPENDA T A object as a trail of visible ink.

void DrawPenData(HDC hdc, LPRECT lprect, HPENDATA hpndt)

Parameters hdc

Return Value

Comments

Handle to a device context. This parameter can also be the handle of a metafile.

lprect
Bounding rectangle of ink, in client coordinates. Can be NULL.

hpndt
Handle to a pen data object.

This function does not return a value. If hpndt is NULL, DrawPenData does
nothing.

DrawPenData draws the pen data in the specified device context using the GDI
Polyline function. The current settings in the device context rather than the ink
characteristics determine how the data is rendered. This means the ink width and
color specified in the PEND AT AHEADER structure have no effect on how
DrawPenData renders the ink. To alter the display characteristics of the ink, an
application must call the appropriate Windows GDI functions to set the GDI
drawing pen (not to be confused with the real pen).

The application using DrawPenData must either scale the data points or set the
mapping appropriately if lprect is NULL.

If lprect is not NULL, the points are scaled into lprect as the drawing is done.
Internally, nondestructive calls to the SetViewportExt, SetViewPortOrg,
SetWindowOrg, and SetWindowExt functions are used to render the pen data in
the device context within the bounds of the provided rectangle. An application must
compute the proper pen width (if it is other than 1) before calling this function with
a valid lprect parameter to account for the scaling that occurs.

DrawPenData draws the ink in the rectangle relative to the upper-left comer of the
window. It ignores any changes that have been made to the origin of the device con­
text by previous calls to the SetWindowOrg or SetViewportOrg functions. If the
origin has changed, the rectangle passed to DrawPenData must be offset by the
appropriate amount.

184 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

If the ink is to be drawn with a width of greater than 1 pixel, the width of the cur­
rently selected pen must be set to achieve the desired result. The width must be set
in client coordinates if a mapping mode is set in the device context. For example, if
the mapping mode has been set to MM_HIENGLISH, the pen width must be set to
a number appropriate for the desired width in MM_HIENGLISH units to preserve
the proper scale of the ink. This scaling is onI y an issue when the ink width is
greater than 1.

The rendering of the ink data produced by DrawPenData generally does not
exactly match the rendering produced by the display driver when the data was first
collected. This discrepancy results because DrawPenData and the Polyline func­
tion use different algorithms to draw the data. The difference is an occasional "off
by one" error that appears as a shifting of some pixels around the edges, depending
on the rounding done by Polyline. An application that requires an exact replication
of the original ink rendering should call the RedisplayPenData function.

The DrawPenDataEx function allows more control when drawing the contents of
pen structures.

CreatePenData, DrawPenDataEx, DuplicatePenData, RedisplayPenData

DrawPenDataEx
2.0

An enhanced version of DrawPenData. Besides displaying the pen data in an
HPENDAT A object as a trail of visible ink, DrawPenDataEx can govern the
speed at which the data is rendered, a process called animation.

int DrawPenDataEx(HDC hdc, LPRECT IprectVP, HPENDATA hpndt,
UINT iStrkFirst, UINT iStrkLast, UINT iPntFirst, UINT iPntLast,
ANIMATEPROC IpfnAnimateCB, LPANIMATEINFO lpai, UINT fuFlags)

Parameters hdc
Handle to a device context.

IprectVP
Viewport rectangle, usually the bounding rectangle of the pen data, in client
coordinates. The ink is scaled to fit the specified rectangle. If this parameter
is NULL, the bounding rectangle of the ink in hpndt is used, in whatever
coordinate system it happens t6 be in.

DrawPenDataEx 185

hpndt
Handle to a pen data object.

iStrkFirst
Index of the first stroke to display.

iStrkLast
Index of the last stroke to display.

iPntFirst
Index of the first point in the first stroke to display.

iPntLast
Index of the last point in the last stroke to display.

IpfnAnimateCB
Pointer to a callback function instance, or NULL. The callback function is
called periodically during drawing, and animation is controlled by values in the
structure addressed by the next parameter, lpai, which should not be NULL.
If IpfnAnimateCB and the speed in the lpai structure parameters are NULL,
the specified pen data is drawn without regard to timing information, and no
callback functions are generated. See AnimateProc for a description of the
callback function.

lpai
Address of an ANIMA TEINFO structure that specifies animation parameters
to control how the pen data is drawn. If this parameter is NULL, the function
draws the specified pen data without regard to timing information, and no
callback functions are generated; otherwise, the caller must initialize the cbSize
member to sizeof(ANIMATEINFO).

fuFlags
This flag can be 0 or one of the following values:

DPD_HDCPEN
Use the GDI pen already selected into the specified device context. If this
flag is set, any pen formatting stored in hpndt is ignored and all strokes are
drawn with a single width and color. The DrawPenData function uses this
flag.

DPD_DRAWSEL
Paint selected strokes in the specified range. A solid pen is used, with a
width slightly larger than the stroke width. This flag can be used only for
drawing and is ignored for animation. It is incompatible with
DPD_HDCPEN.

186 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

Returns PDR_OK if successful. Attempting to draw an empty HPENDATA
(containing no strokes) also returns PDR_OK. Otherwise, returns one of the
following:

Constant

PDR_CANCEL

PDR_COMPRESSED

PDR_ERROR

PDR_MEMERR

PDR_PNDTERR

PDR_PNTINDEXERR

PDR_STRKINDEXERR

PDR_ VERSIONERR

Description

Drawing aborted because pen data became invalid after
a callback or yield.

Callback cancel or impasse. An impasse occurs when
the user attempts to animate with 0 percent speed (that
is, pause), but the callback interval is on a per-stroke
basis.

Pen data is compressed.

Bad animation structure, invalid sampling rate (0 or
less) in pen data header, illegal flags, or other error.

Memory error.

Invalid pen data. This value is also returned if the pen
data is destroyed or corrupted during drawing or anima­
tion. This error can occur if an application is drawing a
large pen data object and then destroys the data before
drawing is complete.

Invalid point index.

Invalid stroke index.

Could not convert old pendata.

DrawPenDataEx is a general-purpose drawing function for rendering pen data
objects. The calling application can use the timing information in the strokes to
animate the pen data and specify which subset of the pen data should be drawn.

Partial pen data objects can be drawn by specifying first and last strokes and points
with iStrkFirst, iStrkLast, iPntFirst, and iPntLast. Set beginning values to 0 and
ending values to IX_END to display the entire pen data object. The function fails
if any of these values lie outside the ranges available in the pen data. The stroke
values must be between 0 and the total number of strokes in the pen data, and the
point indices must be between 0 and the number of points in their stroke.

DrawPenDataEx can display only a set of sequential strokes with a single call. To
draw nonsequential strokes-say, the second, fifth, and eighth strokes of the pen
data-requires multiple calls to DrawPenDataEx.

Ink displayed by DrawPenDataEx differs slightly from the original rendering,
as described in the DrawPenData topic. However, DrawPenDataEx can auto­
matically display the ink with its.original color and width, saving the application
the burden of resetting the current GDI pen characteristics. To draw the ink
according to the GDI settings, setfuFlags to DPD_HDCPEN.

See Also

DrawPenDataFmt 187

If lpfnAnimateCB is not NULL, the specified callback function must return TRUE
to continue drawing, or FALSE to terminate drawing.

An application can modify the pen data while it is being rendered, for example,
during an animation callback, task switching, or internal yield. However, doing
so can make internal pointers or data invalid and result in unpredictable behavior.
For this reason, editing the pen data during rendering is not recommended.

AnimateProc, DrawPenData, RedisplayPenData, DrawPenDataFmt,
ANIMATEINFO

DrawPen DataFmt
2.0

The DrawPenDataFmt macro is used to draw pen data using its stored stroke
attributes.

int DrawPenDataFmt(HDC hdc, LPRECT lprectVP, HPENDAT A hpndt)

Parameters hdc

Return Value

Handle to a device context.

lprectVP
Viewport rectangle, usually the bounding rectangle of the HPENDAT A object,
in client coordinates. The ink is scaled to fit the specified rectangle. If this
parameter is NULL, the bounding rectangle of the ink in hpndt is used, in
whatever coordinate system it happens to be in.

hpndt
Handle to an HPENDATA object.

Returns PDR_OK if successful. Attempting to draw valid but empty pen data
(containing no strokes) also returns PDR_ OK. Otherwise, the return value is one
of the following:

Constant

PDR_COMPRESSED

PDR_ERROR

PDR_MEMERR

PDR_PNDTERR

PDR_ VERSIONERR

Description

Pen data is compressed.

Invalid sampling rate (0 or less) in pen data header, or
other error.

Memory error.

Invalid pen data.

Could not convert old pen data.

188 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

See Also

The DrawPenDataFmt macro is a wrapper for DrawPenDataEx, providing
default values for most of the parameters.

The definition is:

#define DrawPenDataFmt(hdc, lprectVP, hpndt)
DrawPenDataEx(hdc, lprectVP, hpndt, 0, IX_END, 0, IX_END, NULL,

NULL, 0);

These default values specify:

• Full-speed rendering (no animation).

• Entire data set is drawn (no stroke subsets).

DrawPenDataEx

DuplicatePenData

Parameters

Return Value

Comments

See Also

1.0 2.0

Duplicates an HPENDAT A object, allowing an application to generate clones of
existing pen data.

HPENDATA DuplicatePenData(HPENDATA hpendata, UINT gmemFlags)

hpendata
Pen data to be duplicated.

gmemFlags
Flag that specifies whether or not the Windows GlobalAlloc function should
create a shared memory object when the pen data object is created. This
should be either 0 or GMEM_DDESHARE. The GMEM_MOVEABLE and
GMEM_ZEROINIT flags are added to this value and other GMEM_ flags are
ignored.

Returns a handle to the duplicated pen data object if successful; otherwise, it returns
NULL. It returns NULL if memory is not allocated successfully.

The DuplicatePenData function duplicates the data specified by the hpendata
parameter by creating a second pen data memory block. The application is
responsible for destroying this memory block by calling DestroyPenData.

CreatePenData, DestroyPenData

EmulatePen 189

EmulatePen

Parameters

Return Value

Comments

See Also

1.0 2.0

Emulates a pen in an application that does not use the standard Windows I -beam
cursor in text areas.

Note This function is provided only for compatibility with version 1.0 of the Pen
API and will not be supported in future versions. Use DoDefaultPenlnput or hedit
controls instead.

void EmulatePen(BOOLfPen)

fPen
Flag to set pen emulation. TRUE activates pen emulation; FALSE turns it off.

This function does not return a value.

The application must call EmulatePen withfPen set to TRUE whenever the cursor
is over a text input window. When the cursor leaves that area, the application must
call EmulatePen with fp en set to FALSE.

EmulatePen is useful only for those applications that do not use other Pen API
services and do not use the standard Windows I-beam cursor. Windows auto­
matically provides pen-based input in edit controls that use the I-beam cursor, as
described in Chapter 1.

DoDefaultPenlnput

EnableGestureSetHRC

Parameters

2.0

Enables or disables recognition of specific gestures or collections of gestures in
an HRC object.

int EnableGestureSetHRC(HRC hrc, SYV syv, BOOL fEnable)

hrc
Handle to the HRC object.

190 Programmer's Guide to Pen Services for Microsoft Wind~ws 95

Return Value

Comments

Example

See Also

syv
Either a gesture SYV _ symbol value, such as SYV _COPY, or one or more of
the following GST_ constants combined using the bitwise-OR operator. Note
that individual SYV _ gesture symbol values cannot be combined with GST_
constants.

Constant

GST_SEL

GST_CLIP

GST_WHITE

GST_EDIT

GST_CIRCLELO

GST_CIRCLEUP

GST_CIRCLE

GST_ALL

Description

Selection and lasso.

Cut, copy, paste.

Space, tab, return.

Insert, correct, undo.

Lowercase circle gestures.

Uppercase circle gestures.

All circle gestures.

All gestures.

fEnable
Enable recognition flag. This flag must be set to TRUE to enable recognition of
the gesture or gestures in SYV, or to FALSE to disable recognition of the speci­
fied gestures.

Returns HRCR_ OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

The results of EnableGestureSetHRC are cumulative. The function can be called
several times in succession to refine the precise gesture set required. However,
calling EnableGestureSetHRC with syv set to GST_ALL andfEnable set to
FALSE disables all gestures.

By default, a recognition context HRC enables all gestures that its associated
recognizer supports.

The following example enables selection, Clipboard functions, and
SYV _CIRCLEUPA:

EnableGestuFeSetHRC(hrc, GST_ALL, FALSE); II Disable all
EnableGestureSetHRC(hrc, GST_SEL I GST_CLIP, TRUE); II Enable sets
EnableGestureSetHRC(hrc, SYV_CIRCLEUPA, TRUE); II Enable circle A

SetAlphabetHRC, SYV _

EnableSystemDictionaryHRC 191

EnableSystem DictionaryH RC

Parameters

Return Value

Comments

See Also

2.0

Enables or disables a recognizer's dictionary.

int EnableSystemDictionaryHRC(HRC hrc, BOOLfEnable)

hrc
Handle to the HRC object for the recognizer.

fEnable
Enable recognition flag. This flag must be set to TRUE to enable use of the
dictionary, or FALSE to disable its use.

Returns HRCR_OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

Description

Invalid parameter, no system dictionary, or other error.

Insufficient memory.

The recognizer does not support this function.

The enable state of the system dictionary does·not affect any word lists that may
be set into the HRC object.

SetWordlistHRC

EndEnumStrokes
1.0 2.0

Unlocks an HPENDAT A memory block previously locked with the function
BeginEnumStrokes.

Note This function is provided only for compatibility with version 1.0 of the Pen
API, and will not be supported in future versions.

LPPENDATA EndEnumStrokes(HPENDAT A hpndt)

192 Programmer's Guide to Pen Services for Microsoft Windows 95

Parameters

Return Value

Comments

See Also

hpndt
Handle to the locked HPENDAT A memory block.

Returns NULL if the function is successful; otherwise, the return value is nonzero.

EndEnumStrokes internally calls the Windows GlobalUnlock function to unlock
the memory block specified by hpndt. Calling EndEnumStrokes invalidates any
pointers previously returned by the GetPenDataStroke function.

. BeginEnumStrokes, GetPenDataStroke

EndPenlnputHRC

Parameters

Return Value

Comments

2.0

Informs a recognizer that pen data input has been terminated. A recognizer must
export this function.

int EndPenInputHRC(HRC hrc)

hrc
Handle to the HRC object for the recognizer.

Returns HRCR_ OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_MEMERR

HRCR_ERROR

Description

Insufficient memory.

Invalid parameter or other error.

EndPenInputHRC does not instruct the recognizer to complete recognition; an
application must call ProcessHRC to do that. However, an application that does
not use DoDefaultPenInput must call EndPenlnputHRC when it detects that
input has finished. (DoDefaultPenlnput calls EndPenlnputHRC internally.)

The recognizer can terminate open-ended states and reduce ambiguity in searches
when it knows that no more ink will arrive. For example, the recognizer can keep
various options open for possible delayed strokes that can modify a character.
EndPenInputHRC tells the recognizer that no more delayed strokes will arrive.

After calling EndPenInputHRC for an HRC, an application should cease adding
pen input into the HRC. Some recognizers, such as the Microsoft Handwriting
Recognizer (GRECO.DLL), do not accept late pen input. If the application calls
AddPenInputHRC after having called EndPenInputHRC for the same HRC,
the Microsoft Handwriting Recognizer returns HRCR_ERROR.

See Also

EnumSymbols 193

Other recognizers may differ. With such recognizers, a client may continue to
add pen input without error into a recognition context, even after having called
EndPenInputHRC. However, doing so is not efficient. In the worst case, the
recognizer may be forced to reprocess all of the pen data from the beginning.

For an example of a normal termination sequence, see the code sample in
GetSymbolsHRCRESULT.

ProcessHRC, DoDefaultPenInput

EnumSymbols

Parameters

Return Value

Comments

See Also

1.0 2.0

Enumerates strings in a symbol graph in order of most probable to least probable.

UINT EnumSymbols(LPSYG lpsyg, UINT cstrMax,
ENUMPROC lpEnumFunc, LPVOID IvData)

lpsyg
Address of the symbol graph SY G.

cstrMax
Maximum number of strings to enumerate.

lpEnumFunc
Address of enumeration function.

lvData
Application-specific data.

Returns the number of strings enumerated.

The EnumSymbols function enumerates all symbol strings (to a maximum defined
by cstrMax) contained in the symbol graph that lpsyg points to. The IpEnumFunc
parameter points to the enumeration function called with each enumeration.

To generate all the symbols from a symbol graph, set cstrMax equal to the value
retrieved by passing lpsyg to GetSymbolCount.

EnumSymbolsCallback, FirstSymbolFromGraph, SYG, SYV _

194 Programmer's Guide to Pen Services for Microsoft Windows 95

En umSymbolsCaliback

Parameters

Return Value

See Also

1.0 2.0

EnumSymbolsCalIback is a callback function pointed to by the IpEnumFunc
parameter of EnumSymbols. The callback function can have any name. The
function's name must appear in the EXPORT section of the application's module
definition file.

intCALLBACK EnumSymbolsCalIback(LPSYV lpsyv, int csyv, FAR void
* IvData)

lpsyv
Symbol string.

csyv
Count of symbols in string.

IvData
Address of application-specific data from EnumSymbols".

Returns TRUE to continue enumeration, or FALSE to stop enumeration.

EnumSymbols, SYV_

ExtractPenDataPoints

Parameters

2.0

Extracts points from a specified stroke in an HPENDAT A object.

int ExtractPenDataPoints(HPENDAT A hpndt, DINT iStrk, DINT iPnt,
DINT cPnts, LPPOINT lppt, LPVOID IpvOem, DINT jUOption)

hpndt
Handle to an HPENDATA object.

iStrk
Zero-based index of the stroke to remove points from.

iPnt
Zero-based index to the first point to remove.

cPnts
Count of points to remove. If this value is greater than the number of points
after iPnt, all the points from iPnt to the last point of the stroke are removed.
ExtractPenDataPoints fails if iPnt is greater then the number of points in the
stroke.

Return Value

Comments

See Also

ExtractPenData~troKes ll:f:>

Ippt
Array of POINT structures that receives the extracted points. This must be
large enough to hold cPnts points.

IpvOem
Buffer to put extracted OEM data if it exists, or NULL. This must be large
eno~h to hold cPnts OEM packets.

juOption
Flags. This value can be EPDP _REMOVE to remove the points from the stroke
in the pen data object.

Returns PDR_OK if successful; otherwise, the return value can be one of the
following negative values:

Constant

PDR_COMPRESSED

PDR_ERROR

PDR_MEMERR

PDR_STRKINDEXERR

PDR_PNTINDEXERR

PDR_ VERSIONERR

Description

Pen data is compressed.

Parameter or other unspecified error.

Out of memory.

Invalid stroke index.

Invalid point index.

Could not convert old pen data object.

ExtractPenDataPoints extracts points (and OEM data, if any) from a specified
stroke of the pen data object specified by hpndt. It copies the extracted points and
the OEM data to the buffers pointed to by Ippt and IpvOem.

Use ExtractPenDataStrokes to extract strokes from the pen data object or
RemovePenDataStrokes to remove "strokes from the pen data object.

InsertPenDataPoints,"InsertPenDataStroke, RemovePenDataStrokes

ExtractPenDataStrokes
2.0

Creates a new HPENDATA object that is a subset of an existing object.

int ExtractPenDataStrokes(HPENDATA hpndt, UINT juExtract,
LPARAM IParam, LPHPENDATA IphpndtNew, UINT gmemFlags)

196 Programmer's Guide to Pen Services for Microsoft Windows 95

Parameters hpndt
Handle to an existing pen data object.

JuExtract
Extraction options and modifiers. This value can be a combination of one of the
principal EPDS_ options, with all optional comparison modifier, if appropriate,
and the optional EPDS_REMOVE modifier. The flags should be combined
using the bitwise-OR operator.

The following table gives the principal options. These options specify what the
new pen data object will be based on.

Constant

EPDS_PENTIP

EPDS_SELECT

EPDS_STROKEINDEX

EPDS_TIPCOLOR

EPDS_TIPWIDTH

EPDS_ TIPNIB

EPDS_USER

Description

Based on a handle to an inkset. The
EPDS_GT, EPDS_GTE, EPDS_LT, and
EPDS_LTE comparison operators are
ignored, because extraction is based
on matching the inkset. (However,
EPDS_NOT creates a pen data set with
all stroke/inkset intersections that do
not match the provided inkset.)

Based on complete pen-tip characteristics.

Based on selected strokes.

Based on index.

Based on pen-tip color.

Based on pen-tip width.

Based on pen tip nib style.

Based on user-specific value;

The following table gives the optional
comparison modifiers and the optional
removal modifier:

Less than comparison: extract all strokes
with attribute less than the value specified
in IParam.

Less than or equal comparison: extract all
strokes with attributes less than or equal
to the value specified in IParam.

Greater than comparison: extract all
strokes with attributes greater than the
value specified in IP aram.

Greater than or equal comparison: extract
all strokes with attributes greater than or
equal to the value specified in IParam.

Constant

lParam

ExtractPenDataStrokes 197

Description

Negative comparison (alias EPDS_NE):
extract all strokes with attributes not
equal to the value specified by IParam. If
combined with other EPDS_ constants,
reverses the constant meaning (for
example, EPDS_NE I EPDS_LT I
EPDS_GT means not less than or not
greater than). If IParam is
EPDS_SELECT, EPDS_NOT means
extract all unselected strokes.

Remove matching strokes from source. If
this flag is added, any strokes matching
the criteria for extraction are removed
from the source pen data.

Meaning is dependent on the value of the JuExtract parameter, as follows:

Constant

EPDS_INKSET

EPDS_PENTIP

EPDS_SELECT

EPDS_STROKEINDEX

EPDS_TIPCOLOR

EPDS_ TIPNIB

EPDS_TIPWIDTH

EPDS_USER

lphpndtNew

Description

IP aram is a handle to an inkset.

IParam is a pointer to a PENTIP structure to
compare. Only equal or not-equal matches are
supported. EPDS_LT, for example, is ignored.

IParam is not used and should be set to O.

IParam is a zero-based stroke index to compare.

IP aram is a pen tip color to compare.

IParam is a pen tip nib style to compare. Only equal
or not-equal matches are supported.

IP aram is a pen tip width to compare.

IParam is a user-specific value to compare, cast to a
double-word value.

Address of a pen data handle if one is to be created; otherwise, NULL.

gmemFlags
Flag that specifies whether or not the Windows GlobalAlloc function should
create a shared memory object when the pen data object is created. This
should be either 0 or GMEM_DDESHARE. The GMEM_MOVEABLE and
GMEM_ZEROINIT flags are added to this value, and other GMEM_ flags are
ignored.

198 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

Example

Returns the number of strokes that match the comparison criteria if successful,
or a negative error value. (The return value can be O. The maximum is the largest
integer value.) The error value can be one of the following:

Constant

PDR_COMPRESSED

PDR_ERROR

PDR_INKSETERR

PDR_MEMERR

PDR_NA

PDR_PNDTERR

PDR_STRKINDEXERR

PDR_USERDATAERR

PDR_ VERSIONERR

Description

Pen data is compressed.

Parameter or other unspecified error.

Invalid inkset and EPDS _INKSET specified.

Memory error.

Option not available.

Invalid pendata.

Invalid stroke index.

EPDS_USER was specified but there is no per-stroke
user data.

Could not convert old pendata.

ExtractPenDataStrokes extracts strokes from an existing pen data object, option­
ally creating a new pen data object made up of the extracted strokes. The extraction
can be a copy or move process; that is, the source pen data object can remain the
same or contain only the remaining strokes not moved to the new structure. Modi­
fier flags infuExtract specify how the value in lParam compares with attributes
of the pen data strokes (equal by default, greater than, less than, or none of these
three).

If lphpndtN ew is NULL, no pen data object is created. This is useful for modifying
the original pen data object hpndt (when EPDS_REMOVE specified), or simply
for determining a return value without modifying or creating a pen data object. If
lphpndtNew is not NULL, the flags specified by gmemFlags are passed to the
GlobalAlloc function when memory for the pen data memory block is created.

If EPDS_REMOVE is specified, any strokes with an attribute matching the com­
parison criteria are removed from the source pen data object, regardless of whether
a new pen data is created. In the case of inksets, this may actually generate more
strokes if there are multiple intersections with the inkset within anyone stroke.

To create an HPENDAT A object consisting only of selected strokes:

ExtractPenDataStrokes(hpndt. EPOS_SELECT, 0, &hpndtOst, 0);

To return the count of selected strokes:

ExtractPenDataStrokes(hpndt, EPOS_SELECT, 0, NULL, 0);

See Also

FirstSymbolFromGraph 199

To delete all but the selected strokes from the source:

ExtractPenDataStrokes(hpndt. EPDS_NOT EPDS_SELECT I EPDS_REMOVE.
0. NULL. 0);

To copy strokes 0 through 10 inclusive to a new HPENDATA object:

ExtractPenDataStrokes(hpndt. EPDS_LTE I EPDS_STROKE. 10.
&hpndtDst. 0);

To move all but blue strokes to a separate HPENDA T A object:

ExtractPenDataStrokes(hpndt. EPDS_NOT I EPDS_TIPCOLOR EPDS_REMOVE.
RGB_BLUE. &hpndtDst. 0);

DuplicatePenData

FirstSymbolFromGraph

Parameters

Return Value

Comments

See Also

1.0 2.0

Retrieves an array of symbols that is the most likely interpretation of a specified
symbol graph SYG.

void FirstSymbolFromGraph(LPSYG lpsyg, LPSYV lpsyv, int cSyvMax,
LPINT IpcSyv)

lpsyg
Address of the symbol graph.

lpsyv
Address of an empty array of SYV _ symbol values. FirstSymbolFromGraph
fills this array with the likeliest interpretation from the graph.

cSyvMax
Size of the array that lpsyv points to.

IpcSyv
Number of symbols returned in lpsyv. This value is 0 if lpsyg is empty. It is-1
if the buffer is not large enough to hold the results.

This function does not return a value.

The array of symbols is identical to the first string returned to the
EnumSymbolsCallback callback function of EnumSymbols.

EnumSymbols, SYG, SYV_

200 Programmer's Guide to Pen Services for Microsoft Windows 95

GetAlphabetHRC

Parameters

Return Value

Comments

See Also

2.0

Retrieves the alphabet being used in a handwriting recognition context HRC.

int GetAlphabetHRC(HRC hrc, LPALC lpalc, LPBYTE rgbfAlc)

hrc
Handle to the HRC object.

lpalc
Address of a buffer that receives the current ALC_ values. If NULL, this
parameter is ignored.

rgbfAlc
Address of an array of bits or NULL. If NULL, this parameter is ignored. If
lpalc contains ALC_USEBITMAP and rgbfAlc points to a valid array, the array
is filled according to the bits set by the SetAlphabetHRC function.

Returns HRCR_OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

If rgbfAlc is not NULL, the array it points to must be large enough to accommodate
256 bits (32 bytes). If the nth bit is set, the nth ANSI character is recognizable. Bits
representing characters with ASCII values less than 32 (the space character) cur­
rently have no meaning.

ALC_DEFAULT specifies the set of characters at or above ALC_SYSMINIMUM
that the recognizer can accurately distinguish.

For a description of alphabets and their relationship to a recognizer, see
"Configuring the HRC" in Chapter 5, "The Recognition Process."

EnableGestureSetHRC, SetAlphabetHRC, GetAlphabetPriorityHRC, ALC_

GetAlphabetPriorityHRC 201

GetAlphabetPriorityHRC ED

Parameters

Return Value

See Also

2.0

Retrieves the alphabet priority used in a handwriting recognition context HRC.

int GetAlphabetPriorityHRC(HRC hre, LPALC lpale, LPBYTE rgbfale)

hre
Handle to the HRC object.

lpale
Address of an ALC type that will be filled with the current ALC_ priority
values.

rgbfale
Address of a 256-bit (32-byte) buffer whose bits map to ANSI single-byte
characters, or NULL if this information is not required.

Returns HRCR_ OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

For a description of how a recognizer uses alphabet priority, see "Configuring the
HRC" in Chapter 5, "The Recognition Process."

GetAlphabetHRC, SetAlphabetPriorityHRC, ALC_

GetAlternateWordsHRCRESUL T
2.0

Returns alternative word interpretations of a previous result. (Not supported in
Japanese version.)

int GetAlternate WordsHRCRESUL T(HRCRESUL T hreresult, UINT iSyv,
UINT eSyv, LPHRCRESUL T rghreresults, UINT eResults)

202 Programmer's Guide to Pen Services for Microsoft Windows 95

Parameters

Return Value

Comments

See Also

hrcresult
Handle of a results object.

iSyv
Index of the first of a span of symbols within the results object.

cSyv
The number of symbols in the original result, starting at iSyv, for which
alternative words are required.

rghrcresults
Address of a result array. This address cannot be NULL.

cResults
The size of the rghrcresults array in results. This parameter must be greater
than O.

Returns the number of results actually provided, if successful. This can be less than
the space allocated inrghrcresults, and may be 0; otherwise, returns one of the
following negative values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

GetAlternate WordsHRCRESUL T provides alternative word interpretations of
a previous result. The alternatives returned are strongly coerced to words in the
recognizer's dictionary, if enabled, and the word list, if any, of the HRC that
processed the results.

The span of symbols defined by iSyv and cSyv need not fall on word boundaries.
However, the recognizer returns only a single word per result. It is the application's
responsibility to ensure that embedding a full word within other symbols makes
sense. (The application can also choose to let the user make that decision.) For
example, finding alternatives for "polce" in the phrase "pig-in-a-polce" could
legitimately return "poke" as an alternative, but alternatives for "kef' in
"markefplace" would probably be meaningless.

GetResultsHRC

GetBoxMappingHRCRESUL T 203

GetBoxMappingHRCRESUL T

Parameters

Return Value

Comments

See Also

2.0

Returns the box indices for a range of symbols.

int GetBoxMappingHRCRESUL T(HRCRESUL T hrcresult, UINT iSyv,
UINT cSyv, UINT FAR * rgi)

hrcresult
Handle of a results object.

iSyv
Index of the first symbol of interest in the results object.

cSyv
The number of symbols following iSyv for which box indices are required. Note
that the array rgi must be large enough to accommodate this many items of size
UINT. A value of 0 is allowed, in which case the function simply returns O.

rgi
Address of an index array. The array must be large enough to store cSyv indices.
This address cannot be NULL.

Returns the number of indices actually retrieved, if successful. This can be less than
the space allocated in rgi if iSyv indexes an element near the end of the results
array, and is 0 if iSyv indexes a nonexistent element; otherwise, returns one of the
following negative values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

GetBoxMappingHRCRESUL T is typically used with boxed input established by
SetGuideHRC. If no guide structure has been set, the recognizer will return
HRCR_ERROR.

It is possible to allocate a small buffer in rgi and call
GetBoxMappingHRCRESULT repeatedly, incrementing the index iSyv each time
by the number of indices returned in the previous call until
GetBoxMappingHRCRESUL T returns O.

GetResultsHRC, SetGuideHRC

204 Programmer's Guide to Pen Services for Microsoft Windows 95

GetBoxResultsHRC

Parameters

Return Value

Comments

2.0

Encapsulates recognizer functionality for boxed input.

int GetBoxResultsHRC(HRC hrc, UINT cAlt, UINT zSyv, UINT cBoxRes,
LPBOXRESULTS rgBoxResults, BOOLfGetInkset)

hrc
Handle to the HRC object used for the boxed input.

cAlt
Count of alternatives expected in the BOXRESUL TS structure. If this
parameter is 0, the function returns O.

iSyv
Index to the starting symbol.

cBoxRes
The count of BOXRESUL TS structures that the rgBoxResults array can hold.
This parameter must be greater than O.

rgBoxResults
Address of an array of BOXRESUL TS structures.

fGetlnkset
Flag to request inksets for each result if TRUE. If FALSE, the recognizer
provides no inksets.

Returns the count of BOXRESULTS elements returned in the rgBoxResults
structure, if successful; otherwise, returns one of the following negative values:

Constant

HRCR_ERROR

HRCR_INV ALIDGUIDE

HRCR_MEMERR

HRCR_HOOKED

HRCR_UNSUPPORTED

Description

Invalid parameter or other error.

The guide structure is invalid.

Insufficient memory.

A hook preempted the result.

The recognizer does not support this function.

GetBoxResultsHRC simplifies the task of boxed recognition by providing char­
acter alternatives on a per-box basis in one call.

IffGetlnkset is TRUE, the recognizer assigns a valid inkset handle to the
hinksetBox member of the BOXRESULTS structure addressed by rgBoxResults.
It is the application's responsibility to destroy these inksets with Destroy Inkset.

Example

See Also

GetGlobalRC 205

The following code sample gets results for 10 boxes at a time, with five alternatives
per box:

HANDLE hMem = GlobalAlloc(GHND, 10 * (sizeof(BOXRESULTS
+ (5-1) * sizeof(SYV »);

LPBOXRESULTS rgBoxR = (LPBOXRESULTS)GlobalLock(hMem);
UINT indx = 0;

do
{

int cRes = GetBoxResultsHRC(hre, 5, indx, 10, rgBoxR, FALSE):

II Cheek for errors and use rgBoxR

indx += (UINT)cRes:

while (eRes == 10):

GetBoxMappingHRCRESUL T, GetResuitsHRC, Destroy Inkset

GetGlobalRC

Parameters

1.0 2.0

Queries the current default settings and fills an RC structure with the global values.
In version 2.0 of the Pen API, RC is made obsolete by the HRC object.

Note This function is provided only for compatibility with version 1.0 of the Pen
API and will not be supported in future versions.

UINT GetGlobalRC(LPRC lprc, LPSTR lpszDejRecog, LPSTR lpszDejDict,
int cbDejDictMax)

lprc
Address of an RC structure. This parameter can be NULL.

lpszDejRecog
Address of a character string in which the default recognizer module name is
returned. This must be at least 128 bytes long. This parameter can be NULL.

206 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

See Also

IpszDeJDict
Buffer in which the default dictionary path is returned. This path ends with two
null characters. This parameter can be NULL.

cbDeJDictMax
Size of IpszDeJDict buffer to be filled.

Returns GGRC_OK if successful; otherwise, the return value may be one of the
following values:

Constant

GGRC_PARAMERROR

GGRC_DICTBUFfOOSMALL

Description

One or more invalid parameters were detected.
The call to GetGlobalR C has no effect.

The size of the IpszDejDict buffer is not large
enough to contain the entire dictionary path.
The buffer is filled with as many complete dic­
tionary module names as allowed by the size.
The list is terminated by a null string.

GetGlobalRC fills the RC structure with global values. Values that have no
default settings-for example, the bounding rectangle-are set to O.

An application does not need to call this function to use the default values. When
an application initializes an RC structure using InitRC, the system default values
are set as the values for the structure members. This function returns the actual
current values for RC members. The InitRC function returns the default values,
which include placeholder values for some RC members.

InitRC, SetGlobalRC, RC

GetGuideHRC

Parameters

2.0

Retrieves the guide structure being used in a recognition context HRC.

int GetGuideHRC(HRC hrc, LPGUIDE lpguide, UINT FAR
* IpnFirstVisible)

hrc
Handle to the HRC object.

lpguide
Address of a GUIDE structure; all coordinates are in screen coordinates. This
parameter cannot be NULL.

Return Value

See Also

GetHotspotsHRCRESUL T 207

lpnFirstVisible
Pointer to first visible character or line, or NULL. For boxed controls, this is
the first visible box (leftmost and topmost for left-right, top-down languages
like English). For other controls, this is the first visible character position (left­
most for English) in a single-line control, and the first visible line (topmost for
English) in multiline controls.

If set to NULL, lpnFirstVisible is ignored.

Returns HRCR_ OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

GUIDE, SetGuideHRC

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

GetHotspotsHRCRESUL T

Parameters

Return Value

2.0

Retrieves the hot spots for a particular symbol.

int GetHotspotsHRCRESUL T(HRCRESUL T hrcresult, UINT iSyv,
LPPOINT lppt, UINT cPnts)

hrcresult
Handle of a results object.

iSyv
Index of the symbol in the results object.

lppt
Address of an array of up to MAXHOTSPOT POINT structures.

cPnts
Actual size of lppt array in points.

If successful, returns the count of hot spots; otherwise, returns one of the following
negative values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

208 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments Any symbol can have hot spots, but they are usually of interest only for gestures.
For example, if the user writes "X" for deletion, the center of the "X"-its hotspot
-points to the item to be deleted. Hot spots are returned in tablet coordinates. The
maximum number of hot spots allowed is provided in the PENWIN.H constant
MAXHOTSPOT. The Microsoft Handwriting Recognizer (GRECO.DLL), sup­
ports this function for gesture symbols only.

If cPnts is smaller than the actual number of hot spots, only cPnts points are
reported.

GetHRECFromHRC

Parameters

Return Value

See Also

2.0

Retrieves a handle to the recognizer bound to an HRC object. A recognizer must
export this function.

HREC GetHRECFromHRC(HRC hrc)

, hrc
Handle to the HR C object.

If successful, returns the handle to the recognizer used for the HRC object;
otherwise, returns NULL.

CreateCompatibleHRC, InstallRecognizer

Getlnksetlnterval

Parameters

2.0

Retrieves an interval from an inkset.

int GetInksetInterval(HINKSET hinkset, UINT ulndex, LPINTERVAL lpi)

hinkset
Handle to an inkset.

ulndex

lpi

Zero-based index of an interval or IX_END.

Pointer to an INTERV AL structure. This can be NULL if the user merely
wishes to find out how many intervals are in the inkset.

Return Value

Comments

See Also

GetinksetlntervalCount 209

GetInksetInterval returns the number of intervals in the inkset if successful;
otherwise, the return value can be one of the following negative values:

Constant

ISR_ERROR

ISR_BADINDEX

ISR_BADINKSET

Description

The inkset handle is bad, or a parameter error.

The interval index is bad.

The inkset has been corrupted or contains bad intervals.

An application can use GetInksetInterval to enumerate all the intervals in an
inkset.

GetInksetIntervalCount, INTERVAL

GetlnksetlntervalCount

Parameters

Return Value

Comments

See Also

2.0

Returns the number of intervals in an inkset.

int GetInksetIntervalCount(HINKSET hinkset)

hinkset
Handle to an inkset.

Returns the number of intervals in the inkset is successful; otherwise, the return
value can be one of the following negative values:

Constant

ISR_ERROR

ISR_BADINKSET

Description

The inkset handle is bad, or a parameter error.

The inkset has been corrupted or contains bad intervals.

An application uses GetInksetIntervalCount to determine how many intervals
there are to enumerate in an inkset. This function can also be used to verify that
an inkset is valid.

GetInksetInterval

210 Programmer's Guide to Pen Services for Microsoft Windows 95

GetlnternationalHRC

Parameters

2.0

Retrieves the country, language, script direction, and international preferences
from a recognition context HRC object.

int GetInternationalHRC(HRC hrc, UINT FAR * IpuCountry,
LPSTR IpszLangCode, UINT FAR * IpfuFlags, UINT FAR * IpuDir)

hrc
Handle to the HR C object.

IpuCountry
The country code, or NULL to ignore this value.

IpszLangCode
A buffer large enough to receive a three-letter string (that is, 4 bytes) identifying
the language ("enu", "fra", etc.). If set to NULL, IpszLangCode is ignored.

IpfuFlags
A pointer to a flags value or NULL to ignore this value. If
GetInternationalHRC returns SIH_ALLANSICHAR in IpfuFlags, it means
that the user intends to use the entire ANSI character set. If this is the case,
the application should ignore the value returned in IpszLangC ode, since all the
ANSI-based languages are undifferentiated .

. lpuDir
Address of a value for the script direction, or NULL to ignore this value. This
value specifies which primary and secondary writing directions are in use.
Possible values are:

Constant Description

SSH_RD To right and down (English).

SSH_RU To right and up.

SSH_LD To left and down (Hebrew).

SSH_LU To left and up.

SSH_DL Down and to the left (Chinese).

SSH_DR Down and to the right (Chinese).

SSH_UL Up and to the left.

SSH_UR Up and to the right.

Return Value

See Also

GetMaxResultsHRC 211

Returns HRCR_ OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

SetInternationalHR C

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

GetMaxResultsHRC

Parameters

Return Value

Comments

See Also

2.0

Gets the maximum number of recognition results that a recognizer can generate in
the current handwriting recognition context HRC object.

int GetMaxResultsHRC(HRC hrc)

hrc
Handle to the HRC object.

If successful, returns the maximum number of recognition results as a positive
number; otherwise,returns one of the following negative values:

Constant

HRCR_ERROR

HRCR_MEMERR

Description

Invalid parameter or other error.

Insufficient memory.

The default maximum number of results a recognizer can return is 1. An application
must call SetMaxResultsHRC to set a different maximum value.

SetMaxResultsHRC

GetPenAppFlags
2.0

GetPenAppFlags returns task pen flags cached by RegisterPenApp.

UINT GetPenAppFlags()

212 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

See Also

GetPenAppFlags returns the flags set by RegisterPenApp for the current task.
It extends and replaces the functionality of the version 1.0 function IsPenA ware,
which will not be supported in future versions of the Pen API.

Applications written specifically for Windows 95 and later versions automatically
get RPA_DEFAULT so that any edit controls created by such applications
automatically become pen-aware.

If the registration cache has been destroyed (which indicates PENWIN.DLL has
been unloaded), this function returns O.

RegisterPenApp, IsPenAware

GetPenAsyncState

Parameters

Return Value

1.0 2.0

Gets the state of the pen barrel button.

BOOL GetPenAsyncState(UINT wPDK)

wPDK
One of the PDK_ values for the barrel buttons. The following table lists the
PDK_ values that GetPenAsyncState can query for:

Constant

PDK_BARRELI

PDK_BARREL2

PDK_BARREL3

Description

Get state of barrel button 1.

Get state of barrel button 2.

Get state of barrel button 3.

Returns TRUE if the specified barrel button state is currently down; otherwise,
the return value is FALSE.

GetPen DataAttributes
2.0

Retrieves information about an HPENDAT A object.

int GetPenDataAttributes(HPENDATA hpndt, LPVOID IpvBuffer,
UINT uOption)

Parameters

GetPenDataAttributes 213

hpndt
Handle to the HPENDATA object.

/pvBuffer
Pointer to a structure whose type depends on uOption, or NULL if the uOption
parameter does not require this buffer.

uOption
Specifies the attributes to retrieve. This parameter can be one of the following:

Constant

GPAYOINTS

GPA_RECTBOUND

GPA_RECTBOUNDINK

Description

Retrieves the length (in points) of the longest
stroke. lpvBuffer is unused and ignored.

Retrieves the total number of points. lpvBuffer is
unused and ignored.

I
Retrieves the PDTS_ bits. lpvBuffer is unused and
ignored.

Retrieves the sampling rate in samples per second.
lpvBuffer is unused and ignored.

Retrieves the bounding rectangle of all pen-down
points. lpvBuffer is the address of a RECT
structure.

Like GPA_RECTBOUND, retrieves the bounding
rectangle of all pen-down points, but inflates the
rectangle to accommodate ink width. lpvBuffer is
the address of a RECT structure.

Retrieves the size of the pen data memory block in
bytes. Because of the potential large size of this
value, the return value of the function is not used.
Instead, lpvBuffer is the address of a DWORD
variable to fill with the size.

Retrieves the total number of strokes, including
pen-up strokes. lpvBuffer is unused and ignored.

Retrieves the absolute time of creation of the pen
data. lpvBuffer is the address of an ABSTIME
structure.

Retrieves the number of user bytes available per
stroke: 0, 1,2, or 4. lpvBuffer is unused and
ignored.

Retrieves the version number of the pen data.
lpvBuffer is unused and ignored.

214 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

See Also

Returns PDR_OK or an integer value if successful, depending on the uOption
parameter.

GetPenDataAttributes provides enhancements of some of the capabilities of
GetPenDatalnfo. It also provides additional detailed information taken from the
HPENDATA block.

GetStrokeAttributes, GetPenDatalnfo

GetPenDatalnfo

Parameters

Return Value

Comments

See Also

1.0 2.0

This function retrieves information from an HPENDATA memory block. It is
superseded by the GetPenDataAttributes function.

BOOL GetPenDatalnfo(HPENDATA hpndt, LPPENDAT AHEADER lppdh,
LPPENINFO lppeninfo, DWORD dwReserved)

hpndt
Handle to a pen data object that receives the pen data information.

lppdh
Address of a PENDAT AHEADER structure, or NULL if not required.

lppeninfo
Address of a PENINFO structure, or NULL if not required.

dwReserved
Reserved for future use. Must be set to O.

Returns TRUE if successful. The return value is FALSE if invalid parameters are
used, or if the handle to the pen data is invalid, or if the requested PENINFO does
not exist in the pen data. '

This function retrieves the header and pen information in the pen data memory
block. If lppeninfo is not NULL and the pen data does not contain pen informa­
tion, the contents of lppeninfo are not changed. The wPndtsmember in the
PENDATAHEADER structure can be checked to see if the HPENDATA object
has a PENINFO structure associated with it (a value ofPTDS_NOPENINFO
indicates not). The amount of data allocated is contained in the cbSizeUsed
member of the PENDAT AHEADER structure.

GetPenDataAttributes

GetPenDataStroke 215

GetPenDataStroke

Parameters

Return Value

Comments

1.0 2.0

Returns a pointer to stroke data contained in an HPENDA T A memory block
previously locked with the BeginEnumStrokes function.

Note This function is provided only for compatibility with version 1.0 of the Pen
API and will not be supported in future versions. Use other services such as
GetPenDataAttributes, GetPointsFromPenData, or GetStrokeAttributes to
examine an HPENDATA block.

BOOL GetPenDataStroke(LPPENDAT A lppd, UINT iStrk, LPPOINT FAR
* lplppt, LPVOID FAR * lplpvOem, LPSTROKEINFO lpsi)

lppd
Address of the HPENDAT A memory block. This parameter is the value
returned by a previous call to the BeginEnumStrokes function.

iStrk
Zero-based index of the stroke to retrieve.

lplppt
Address of a pointer to a point. The pointer returned by the function will point
to the first point of the stroke inside the pen data object. This parameter can be
NULL if point data is not required.

lplpvOem
Address of a void pointer. The pointer returned by the function will point to the
OEM data block of the stroke inside the pen data object. The format of the OEM
data is specified by the rgoempeninfo member in the PENINFO structure. This
parameter can be NULL if OEM data is not required.

lpsi
Address of a STROKEINFO structure. This parameter can be NULL if stroke
information is not required.

Returns TRUE if successful. If the stroke requested is out of range, the function
returns FALSE.

GetPenDataStroke returns in lpsi a pointer to a STROKEINFO structure created
from the stroke referenced by iStrk. The lpsi parameter does not point directly into
the HPENDATA memory block.

However, the lplppt argument points to the ftrst point of the stroke inside the
HPENDAT A block. For a description of how the GetPenDataStroke function has
changed in version 2.0 of the Pen API, refer to AppendixA.

216 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

Applications must call BeginEnumStrokes before calling GetPenDataStroke.
After the last call to GetPenDataStroke, the application must call
EndEnumStrokes. Once EndEnumStrokes is called, the data that lplppt and
IplpvOem point to is no longer valid.

Under no circumstances should an application modify data directly within an
HPENDA T A block. Doing so can invalidate other information in the block. To
modify an HPENDA T A block, use one of the Pen API functions listed in Chapter
4, "The Inking Process."

BeginEnumStrokes, EndEnumStrokes, GetStrokeAttributes

GetPenHwEventData

Parameters

1.0 2.0

Gets the pen data associated with events in a given range.

Note This function is provided only for compatibility with version 1.0 of the Pen
API and will not be supported in future versions. Use DoDefaultPenInput or
GetPenInput instead.

REC GetPenHwEventData(UINT wEventRefBeg, UINT wEventRefEnd,
LPPOINT lppt, LPVOID IpvOemData, int cPntMax, LPSTROKEINFO lpsi)

wEventRefBeg
Beginning pen event.

wEventRefEnd
Ending pen event.

lppt
Address of a an array of POINT structures. The size of the array must be at
least s i zeof (PO I NT) multiplied by cPntMax.

IpvOemData
Buffer to fill with OEM-specific data. This can be NULL if no data is required.

cPntMax
Maximum number of samples to return.

Return Value

Comments

See Also

GetPenlnput 217

lpsi
Address of a STROKEINFO structure that receives the stroke information,
including the count of points and point state. Also included is the time stamp of
the first point returned in the buffer, which is the number of milliseconds that
have elapsed since Windows started.

Returns REC_OK if successful; otherwise, the return value can be one of the
following:

Constant

REC_BUFFERTOOSMALL

REC_PARAMERROR

Description

The array identified by Ippt is not large enough to hold
all the points requested.

Invalid parameter.

This function fetches all data collected from the pen event wEventRefBeg up to
but not including the pen event wEventRefEnd. If wEventRefBeg equals
wEventRefEnd, GetPenHwEventData retrieves the single pen event associated
with wEventRefBeg.

The values for wEventRefBeg and wEventRefEnd are obtained by calling the
Windows GetMessageExtralnfo function.

This function can be called directly from an application. If it returns
REC_BUFFERTOOSMALL, no data is returned and the cPnt member of lpsi
contains the number of points between wEventRefBeg and wEventRefEnd. If
REC_OK is returned, the cPnt member contains the number of valid points placed
in the array at lppt.

STROKEINFO

GetPenlnput
2.0

Collects data after StartPenlnput has started pen input.

int GetPenlnput(HPCM hpcm, LPPOINT lppt, LPVOID IpvOem,
UINT juOemFlags, UINT cPntMax, LPSTROKEINFO lpsi)

218 Programmer's Guide to Pen Services for Microsoft Windows 95

Parameters

Return Value

hpcm
Handle to the current collection. This is the return value from StartPenInput.

. lppt
Address of an array of POINT structures. The array must consist of at least
cPntMax structures.

lpvOem
The address of a buffer of OEM data associated with each point. This parameter
can be NULL if the application does not require OEM data.

fuOemFlags
Flags specifying which OEM data to retrieve. If this parameter is NULL, all
OEM data provided by the tablet is returned in the order specified by the
rgoempeninfo array in PENINFO.

These flags have an implicit order. For example, if pressure and barrel rotation
are specified, cPntMax pairs of these data are returned, in the order [pressure,
rotation], [pressure, rotation], and so on.

Constant

PHW _PRESSURE

PHW_HEIGHT

PHW _ANGLEXY

PHW _BARRELROTATION

PHW _OEMSPECIFIC

PHW_PDK

cPntMax

Description

Retrieve pressure data.

Retrieve height data.

Retrieve data pertaining to the x- and y­
coordinates.

Retrieve data pertaining to the z­
coordinates.

Retrieve barrel-rotation data.

Retrieve OEM-specific data.

Retrieve per-point PDK_ infonnation in
OEM data.

The number of POINT structures in the array at lppt. This is the maximum
number of points to return and also the maximum number of OEM items the
buffer at lpvOem can hold.

lpsi
A pointer to a STROKEINFO structure. This structure receives information
about the first point of the collection of points placed into the array at lppt. The
cbPnts member contains the packet ID of the first point. All returned points in
the collection have the same tip polarity (that is, up or down) as the first point.

Returns 0 if there are no points available. If the return value is positive, the value
is the number of points copied to the lppt (and, optionally, lpvOem) buffers.
Otherwise, the return value is one of the following:

Comments

Constant

PCMR_APPTERMINATED

PCMR_EVENTLOCK

PCMR_INV ALIDCOLLECTION

PCMR_ TERMTIMEOUT

PCMR_ TERMRANGE

PCMR_ TERMPENUP

PCMR_TERMEX

PCMR_ TERMBOUND

· GetPenlnput 219

Description

Input has already terminated because the
application called StopPenlnput. There are
no more points to retrieve.

An event must be taken out of the queue
using the Windows functions
PeekMessage or GetMessage before any
more points can be retrieved using
GetPenlnput.

The hpcm handle is invalid because the
calling application did not start input with
StartPenlnput.

Input has already terminated because the
specified time-out period has elapsed.

Input has already terminated because the
pen has left the range of the tablet's zone of
sensitivity.

Input has already terminated because the
pen was lifted from the tablet.

Input has already terminated because the
pen went down in a specified exclusion
rectangle or region.

Input has already terminated because the "­
pen went down outside a specified
bounding rectangle or region.

Once an application initiates pen-input collection by calling StartPenlnput, the
application then calls the GetPenlnput function frequently to retrieve the actual
data arriving from the pen device. This can be done by responding to hardware
events or by continuously polling.

In the polling model, the application repeatedly calls GetPenlnput to get data. It
is important for the application to yield periodically; for example, by calling
PeekMessage. A fast loop can potentially process the points before the system can
collect more. In this case, successive calls to GetPenlnput return 0 until the user
writes some more. Polling is typically terminated when GetPenlnput detects and
returns a termination condition specified in StartPenlnput.

In the event model, the application calls GetPenlnput on receipt of a
WM_PENEVENT message. All points up to this event are returned to the caller.
An application can retrieve all available data in a short loop, until GetPenlnput
returns PCMR_EVENTLOCK. The application then falls out of the loop and exits
the window procedure. The process begins again when the window procedure is
called in response to another WM_PENEVENT message in the application's
message queue.

220 Programmer's Guide to Pen Services for Microsoft Windows 95

Example

See Also

If IpvOem is not NULL, the buffer must be large enough to hold cPntMax OEM
data packets. The size of each packet is the width specified in the cbOemData
member of the PENINFO structure, plus s i z e 0 f (U I NT) ifPDK_ values are
required.

The following code example gathers more pen input for use by the recognizer.
Assurrie the application has already called StartPenlnput and is using the mes­
saging collection model.

POINT rgPnt[cbBuffer];
STRaKEr N FO s i ;

II ... in WM_PENEVENT message handler:

switch (wParam)
{

case PE PENUP:
case PE_PENMOVE:
case PE_TERMINATING:

II Get all the points collected since the last message

while ((iRet = GetPenInput(hpcm, rgPnt, NULL, 0,
cbBuffer, &si)) > 0)

II Add pen data to recognition context and def process

AddPenInputHRC(vhrc, rgPnt, NULL, 0, &si);
ProcessHRC(vhrc, PH_DEFAULT);

}

break;

PeekPenlnput, StartPenlnput, PDK_

GetPen Resource
2.0

The GetPenResource function retrieves a copy of a pen services resource.
(Japanese version only.)

HANDLE GetPenResource(WPARAM wParam)

Parameters

Comments

Return Value

GetPenMisclnfo 221

wParam
Specifies the pen services resource for which to retrieve a handle. This may be
one of the following:

Constant

GPR_CURSPEN

GPR_CURSCOPY

GPR_CURSUNKNOWN

GPR_CURSERASE

GPR_BNICRMONO

GPR_BMLFMONO

GPR_BMTABMONO

GPR_BMDELETE

GPR_BMLENSBTN

GPR_BMHSPMONO

GPR_BMZSPMONO

Description

Standard pen cursor.

Copy cursor.

Unknown cursor.

Erase cursor.

Monochrome Return bitmap.

Monochrome LineFeed bitmap.

Monochrome Tab bitmap.

Delete bitmap.

Lens buttonface bitmap.

Hankaku space bitmap (Japanese version only).

Zenkaku space bitmap (Japanese version only).

An application can use this function to get a copy of a cursor or bitmap used by pen
services. It is the application's responsibility to destroy the object by calling either
the DestroyCursor or DeleteObject Windows API.

This function returns a handle to an object, depending on the index specified by
wParam if successful. Otherwise the return value is NULL.

GetPenMisclnfo

Parameters

1.0 2.0

Retrieves values pertaining to the pen system.

LONG GetPenMisclnfo(WPARAM wParam, LPARAM lParam)

wParam
Specifies the identifier of the pen system value to retrieve. The pen system
identifier must be a PMI_ value. See the table below for the possible PMI_
values in wParam.

222 Programmer's Guide to Pen Services for Microsoft Windows 95

IParam
Address of storage for data. This must not be NULL. The calling application
must ensure that there is sufficient room to store the requested information. The
type of storage object that IParam points to depends on wParam, as described in
the following table. For each value of wParam in the first column, the second
column describes the corresponding requirement for IParam:

wParam constant

PMCBEDIT

PMCCXTABLET

PMCCYTABLET

PMCINDEXFROMRGB

PMCENABLEFLAGS

PMCPENTIP

PMCRGBFROMINDEX

LParam description

IParam is the address of a BOXEDITINFO structure.
Boxed edit infonnation.

IParam is a far pointer to a UINT value specifying the
width of tablet (in units of 0.001 inch) if present;
otherwise, the width of the screen.

IParam is a far pointer to a UINT value specifying the
height of tablet (in units of 0.001 inch) if present;
otherwise, the height of the screen.

IParam is a far pointer to a DWORD value. On entry,
IParam is the address of an RGB ink color value. On
return, the low-order word of IParam is replaced with
an index in the range 0 to 15 for the closest standard
ink color and the high-order word is O.

IParam is a far pointer to a WORD value containing a
flag describing whether certain Pen API features are
enabled. The flags can be a combination of the
following values:

PWE_AUTOWRITE Enable pen func-tionality where
the I-Beam cursor is present.
PWE_ACTIONHANDLES Enable action handles in
controls.
PWE_INPUTCURSOR· Show cursor while writing.
PWE_LENS Enable pop-up letter guides (that is, the
lens).

IParam is the address of a PENTIP structure.

IParamis the address of a DWORD value. On entry,
IParam is the address of an index in the range a to 15;
on return, this value at this address is replaced with the
standard RGB ink color value.

Return Value

wParam constant

PMCSYSFLAGS

PMCSYSREC

PMCTICKREF

PMCTIMEOUT

PMCTIMEOUTGEST

PMCTIMEOUTSEL

GetPenMisclnfo 223

LParam description

IParam is a far pointer to a WORD value containing a
flag describing which pen system components are
loaded. The flags can be a combination of the
following values:

PWF _RC 1 Support available for Pen API version 1.0
Recognition Context (RC) and associated functions.
PWF _PEN Pen/tablet hardware is present.
PWF _INKDISPLA Y Ink-compatible display driver is
present.
PWF _RECOGNIZER System recognizer is present.
PWF _BEDIT Boxed edit (bedit) control is available.
PWF _HEDIT Handwriting edit (hedit) control is
available.
PWF _IEDIT Ink edit (iedit) control is available.
PWF _ENHANCED Enhanced features, including
gesture support and 1 millisecond timing, are
available.
PWF _FULL All components listed above are
present..

IParam is a far pointer to an HREC value which is the
handle of the system recognizer, if present.

IParam is the address of an ABSTIME structure
indicating the absolute refer -ence time that the system
uses to calcu-Iate time-stamps for strokes in pen data
objects and inkset

IParam is a far pointer to a UINT value indicating
time-out value to end hand-writing input, in
milliseconds.

IParam is a far pointer to a UINT value indicating
time-out value to end a gesture, in milliseconds.

IP aram is a far pointer to a UINT value indicating the
time-out value in milli-seconds for press-and-hold
gesture. The range of permissible values is 0 to 5000.
If press-and-hold has been disabled, this value is
65,535.

The return value is PMIR_ OK if successful; otherwise it is one of the following
negative error values:

Constant

PMIR_INDEX

PMIR_NA

PMIR_VALUE

Description

wParam is out of range.

Support for this value of wParam is not available.

IParam is NULL or a invalid pointer.

224 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

Example

See Also

The infonnation type returned varies depending on the index. Note that if a UINT is
expected, for example, it is an error to provide the address of a DWORD variable
without explicitly setting the HIWORD to O. This function only sets the LOWORD
in this case, and since the variable is usually declared on the stack, there would be
an unknown value in the HIWORD. See the examples below.

If wParam is PMI_INDEXFROMRGB or PMI_RGBFROMINDEX, the standard
pen-tip color table is as follows:

00 black RGB(0, 0, 0)
01 dark blue RGB(0, 0, 127)
02 dark green RGB(0, 127, 0)
03 dark cyan RGB(0, 127, 127)
04 dark red RGB(127, 0, 0)
05 purple RGB(127, 0, 127)
06 brown RGB(127, 127, 0)
07 gray RGB(127, 127, 127)
08 light gray RGB(192, 192, 192)
09 blue RGB(0, 0, 255)
10 green RGB(0, 255, 0)
11 cyan RGB(0, 255, 255)
12 red RGB(255, 0, 0)
13 magenta RGB(255, 0, 255)
14 yellow RGB(255, 255, 0)
15 white RGB(255, 255, 255)

The following code sample retrieves the timeout and pen tip:

UINT uTimeout;
PENTIP tip;

GetPenMisclnfo(PMI_TIMEOUT, (LPARAM)(UINT FAR *)&utimeout);
GetPenMisclnfo(PMI_PENTIP, (LPARAM)(LPPENTIP)&tip);

Note that the following is an error, since the HIWORD is undefined:

DWORD dwTimeout;

GetPenMisclnfo(PMI_TIMEOUT, (LPARAM)&dwtimeout); II Wrong!

SetPenMisclnfo, PMI_

GetPointsFromPenData 225

GetPointsFromPenData

Parameters

Return Value

Comments

See Also

1.0 2.0

Retrieves a specified range of points.

BOOL GetPointsFromPenData(HPENDATA hpndt, UINT iStrk, UINT iPnt,
UINT cPnts, LPPOINT /ppt)

hpndt
Handle to a pen data object.

iStrk
The zero-based stroke index from which points are retrieved.

iPnt
First point to retrieve from the specified stroke.

cPnts
Number of points to retrieve. If this value is 0, the function returns TRUE.

lppt
Address of buffer to fill with points.

Returns TRUE if successful, or FALSE if the requested points are out of range.

GetPointsFromPenData performs a function similar to GetPenDataStroke in
that it retrieves information from an HPENDAT A memory block. But
GetPointsFromPenData copies the required data to buffers supplied by the
application, rather than simply returning pointers to the original data in the global
heap.

An application can also request a copy of a particular subset of points within a
stroke. In this case, iPnt identifies the first point and cPnts is the number of points
to retrieve. This allows an application to digest the points in an HPENDAT A block
a few at a time to avoid having to allocate a large block of memory for the entire set
of points.

GetPointsFromPenData returns the last point in a stroke if the iPnt argument is
set to a value larger than the total number of points in the stroke. In the same
manner, the function returns the points of the last stroke if iStrk exceeds the total
number of strokes in the HPENDATA block. If the count of points to return is 1
and iPnt is beyond the last point in the stroke, the function returns the last point in
the stroke.

GetPenDataStroke

226 Programmer's Guide to Pen Services for Microsoft Windows. 95

GetResultsHRC

Parameters

Return Value

Comments

2.0

Retrieves results from a recognition context HRC. A recognizer must export this
function.

int GetResultsHRC(HRC hrc, UINT uType, LPHRCRESULT rghrcresults,
UINT cResults)

hrc
Handle to the HR C object.

uType
Specifies the type of expected results. This can be one of the following values:

Constant

GRH_ALL

GRH_GESTURE

GRH_NONGESTURE

rghrcresults

Description

Return all results.

Return results of type gesture only.

Return all results not of type gesture.

Address of an array of HRCRESUL T objects.

cResults
The size of the rghrcresults array, in objects. The actual size in bytes can be
calculated by multiplying cResults by the size of HRCRESULT. This param­
eter must be greater than O.

Returns the actual number of results returned if successful. This can be 0;
otherwise, returns one of the following negative values:

Constant

HRCR_ERROR

HRCR_HOOKED

HRCR_MEMERR

Description

Invalid parameter or other error.

A hook preempted the result.

Insufficient memory.

The actual number of results returned by this function may be less than the number
specified by cResults. It is also less than or equal to the count specified at the
creation of hrc by the cMaxResults parameter in SetMaxResultsHRC, regardless
of the size of the rghrcresults array.

See Also

GetStrokeAttributes 227

A return value of 0 indicates that the recognizer was not able to recognize any of
the input, even if coerced by a word list set into the HRC. A recognizer should
never return a result consisting entirely of SYV _UNKNOWN symbols.

The calling application must explicitly destroy each valid result using
DestroyHRCRESUL T. However, if the return value is 0 or negative, the contents
of the rghrcresults array are undefined (though not NULL) and
DestroyHRCRESUL T must not be called.

DestroyHRCRESUL T

GetStrokeAttributes

Parameters

2.0

Retrieves information about a stroke in an HPENDAT A object.

int GetStrokeAttributes(HPENDATA hpndt, UINT iStrk, LPVOID lpvBuffer,
UINT uOption)

hpndt
Handle to the HPENDA T A object, which must not be compressed.

iStrk
Zero-based stroke index. If there are no strokes in the pen data, an index of 0
can be used to retrieve the default attributes for the pen data. A value of
IX_END specifies the last available stroke in the pen data.

lpvBuffer
Pointer to a structure whose type depends on uOption, or NULL if the uOption
parameter does not require this buffer.

228 Programmer's Guide to Pen Services for Microsoft Windows 95

uOption
Specifies the attributes to retrieve. This parameter has one of the following
values:

Constant

GSA_PENTIPCLASS

GSA_RECTBOUND

GSA_USER

GSA_USERCLASS

Description

Retrieve the up/down state of the pen tip for this
stroke. Returns 1 if the stroke is a down-stroke or ° if
it is an up-stroke. /pvBuffer is unused and ignored.

Retrieve the pen-tip characteristics (color, width, nib)
used by the stroke specified by iStrk. /pvBuffer is a
pointer to a PENTIP structure. Return value is
PDR_OK.

Retrieve the pen-tip characteristics (color, width, nib),
if any, for the class of strokes of which the stroke
specified by iStrk is a member. /pvBuffer is a pointer
to a PEN TIP structure. Return value is PDR_OK.

Retrieve the bounding rectangle of the specified
stroke. /pvBuffer is a pointer to.a RECT structure.
Return value is PDR_OK.

Retrieve the selection status of the specified stroke.
/pvBuffer is unused and ignored. Returns a nonzero
value if the stroke is selected; otherwise, the return
value is 0.

Retrieve size of stroke in points and bytes. /pvBuffer
is a pointer to a double-word value, or NULL.
LOWORD(*(LPDWORD)/pvBuffer) is the size in
points, and HIWORD(*(LPDWORD)/pvBuffer) is
the size in bytes. Return value is PDR_OK.

Retrieve the absolute time of the stroke. /pvBuffer
is a pointer to an ABSTIME structure; it cannot be
NULL. The sec field specifies the number of seconds
since Jan 1, 1970, and the ms field specifies the
number of milliseconds offset from that time to the
beginning of the stroke. Return value is PDR_OK.

Retrieve the user value, if any, for the stroke.
/pvBuffer is a pointer to a double-word value, or
NULL. Returns the number of bytes of user data
available in the stroke: 0, 1, 2, or 4.

Retrieve the user value, if any, for the class of strokes
of which the stroke specified by iStrk is a member.
/pvBuffer is a pointer to a double-word value, or
NULL. The return value is 4 because the user value in
the strokes class table is a doubleword value.

Return Value

See Also

GetStrokeTableAttributes 229

Returns PDR_OK or an integer value if successful, as described for the uOption
parameter. If an error occurs, returns one of the following:

Constant

PDR_COMPRESSED

PDR_ERROR

PDR_MEMERR

PDR_PNDTERR

PDR_STRKINDEXERR

PDR_ TIMESTAMPERR

PDR_ VERSIONERR

Description

Pen data is compressed.

Parameter or other unspecified error.

Memory error.

Invalid pen data.

Invalid stroke index.

Timing information was removed.

Could not convert old pen data.

CreatePenDataEx, GetStrokeTableAttributes, SetStrokeAttributes,
SetStrokeTableAttributes, PENTIP

GetStrokeTableAttributes

Parameters

2.0

Retrieves information about a stroke's class from the table in the
PENDATAHEADER of an HPENDATA object.

int GetStrokeTableAttributes(HPENDAT A hpndt, UINT iTblEntry,
LPVOID IpvBuffer, UINT uOption)

hpndt
Handle to the HPENDAT A object, which must not be compressed.

iTblEntry
Zero-based table index to the class entry in the pen data header.

IpvBuffer
Pointer to a structure whose type depends on uOption, or NULL if the uOption
parameter does not require this buffer.

230 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

See Also

uOption
Specifies the attributes to retrieve. This parameter can be one of the following:

Constant

GSA,-SIZETABLE

GSA_USERTABLE

Description

Retrieve the pen-tip characteristics (color, width, nib)
of the class of strokes specified by iTblEntry.lpvBuffer
is a pointer to a PEN TIP structure. Return value is the
number of strokes using this class.

Retrieve the number of entries in the stroke class table.
iTblEntry and IpvBuffer are unused and ignored. Return
value is the number of classes used in the stroke class
table.

Retrieve the user value, if any, of the class of strokes
specified by iTblEntry. IpvBuffer is a pointer to a
doubleword value, or NULL. The number of bytes
that are valid in IpvBuffer depends on flags set in
CreatePenDataEx. This number is returned by the
function, and can beO (no user value), 1 (byte value),
2 (word value), or 4 (doubleword value). Return value
is 4, because the user value in the stroke class table
is a doubleword value.

Returns an integer if successful, depending on the value of uOption, as described
above. If an error occurs, returns one of the following:

Constant

PDR_ COMPRESSED

PDR_ERROR

PDR_MEMERR

PDR_PNDTERR

PDR_ VERSIONERR

Description

Pen data is compressed.

Parameter or other unspecified error.

Memory error.

Invalid pen data.

Could not convert old pen data.

CreatePenDataEx, GetStrokeAttributes, SetStrokeAttributes,
SetStrokeTableAttributes, PENTIP

GetSymbolCount
1.0 2.0

Returns the number of symbol strings contained in a symbol graph SYG.

int GetSymbolCount(LPSYG lpsyg)

Parameters

Return Value

Example

See Also

GetSymbolCountHRCRESUL T 231

lpsyg
Address of the symbol graph.

Returns the number of possible symbol strings that can be generated from the sym­
bol graph. Returns -1 for any graph that can generate more than 32,767 symbol
strings, or if there is a parameter error.

For example, if the symbol graph pointed to by lpsyg is

ex {a I u} mple

GetSymbolCount returns the value 2 because the graph contains two symbol
strings ("example" and "exumple").

EnumSymbols, FirstSymbolFromGraph, GetSymbolMaxLength SYG, SYV_

GetSymbolCountHRCRESUL T

Parameters

Return Value

Comments

See Also

2.0

Retrieves the count of symbols available in a recognition result. A recognizer must
export this function.

int GetSymbolCountHRCRESUL T(HRCRESUL T hrcresult)

hrcresult
Handle of a results object.

Returns the count of symbols if successful; otherwise, returns one of the following
negative values:

Constant

HRCR_ERROR

HRCR_MEMERR

Description

Invalid parameter or other error.

Insufficient memory.

This function is typically called before GetSymbolsHRCRESUL T to determine
the size of a buffer required to store the symbol values returned in a recognition
result. To calculate the size of the buffer, multiply the value returned by this
function by s i zeof (SYV).

GetSymbolsHRCRESULT, SYV_

232 Programmer's Guide to Pen Services for Microsoft Windows 95

GetSymbolMaxLength

Parameters

Return Value

Example

See Also

1.0 2.0

Returns the length of the longest symbol string contained in a symbol graph SYG;

int GetSymbolMaxLength(LPSYG lpsyg)

lpsyg
Address of the symbol graph.

Returns the number of symbols in the longest symbol string that can be generated
from the symbol graph, or -1 if there is a parameter error.

For example, if the symbol graph pointed to by lpsyg is

ab {c I de} f

GetSymbolMaxLength returns 5 because the longest string is "abdef'.

EnumSymbols, FirstSymbolFro~Graph, SYG, SYV_

GetSymbolsHRCRESUL T

Parameters

2.0

Retrieves an array of symbol values corresponding to a recognition result. A
recognizer must export this function.

int GetSymbo)sHRCRESUL T(HRCRESUL T hrcresult, UINT iSyv,
LPSYV rgsyv, UINT cSyv)

hrcresult
Handle of a results object.

iSyv
Index of the first symbol of interest in the results object.

rgsyv
Address of a buffer in which to put the symbols. The array must be large enough
to store cSyv symbols.

cSyv
The size of rgsyv in symbols (not bytes). This is the number of symbols to be
returned. A value of 0 is legal, in which case the function simply returns O.

Return Value

Comments

Example

GetSymbolsHRCRESUL T 233

Returns the count of symbols copied, if successful; otherwise, returns one of the
following negative values:

Constant Description

HRCR_ERROR

HRCR_MEMERR

Invalid parameter or other error.

Insufficient memory.

It is possible to allocate a small buffer in rgsyv and call this function repeatedly,
incrementing the index iSyv each time by the number of symbols returned in the
previous call, until the function returns O.

The following example gets a character result, using a small buffer:

#define CBCHBUF 10241/ Char buffer
#define CSYVMAX 32 II Relatively small symbol chunk

HRC vhrc; II Handle to a handwriting context
HRCRESULT vhrcresult; II Handle to a recognition result
SYV vrgsyv[CSYVMAX]; II Symbol result buffer
char vrgcBuff[CBCHBUF]; II Buffer for recognition results

II Code that creates HRC. gets input. etc

EndPenlnputHRC(vhrc); II Tell recognizer no more ink
ProcessHRC(vhrc. PH_MAX); II Finish recognition

II Retrieve a handle to the results

if (GetResultsHRC(vhrc. &vhrcresult. 1) > 0)
{

}

int ; = 0. cSyv;

II Retrieve some symbols
while «cSyv = GetSymbolsHRCRESULT(vhrcresult.

i. vrgsyv. CSYVMAX)) > 0)
{

if (; + cSyv + 1 > CBCHBUF) II Don't overflow buffer
cSyv = CBCHBUF - i-I;

if (cSyv > 0) II Still have something?
{

SymbolToCharacter(vrgsyv. cSyv. vrgcBuff + ;. NULL);
+= cSyv;

if (i + 1 >= CBCHBUF)
break;

}

vrgcBuff[;] chNull; II Terminate string

234 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

DestroyHRCRESULT(vhrcresult); II We're finished with result
vhrcresult = NULL;
DestroyHRC(vhrc); II Finished with this HRC session
vhrc = NULL;

GetSymboICountHRCRESULT, SYV_

GetVersionPenWin

Return Value

1.0 2.0

Retrieves the Pen API version number.

UINT Get Version Pen Wine)

The low-order byte of the return value specifies the major (version) number. The
high-order byte specifies the minor (revision) number.

GetWordlistCoercionHRC

Parameters

Return Value

2.0

Retrieves the current word list coercion setting in a handwriting-recognition context
HRC.

int GetWordlistCoercionHRC(HRC hrc)

hrc
Handle to the HR C object.

If successful, returns one of the following values:

Constant Description

The word list is a hint to the recognizer, and results are
not strongly coerced to match the word list.

If results do not match the word list, the closest fit is
returned.

Do not coerce. This flag can be used to tum off a
previous request.

See Also

GetWordlistHRC 235

Otherwise, returns one of the following negative values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

SetWordlistCoercionHRC

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

GetWordlistHRC

Parameters

Return Value

Comments

See Also

2.0

Retrieves a word list from a recognition context HRC.

int GetWordlistHRC(HRC hrc, LPHWL lphwl)

hrc
Handle to the HRC object.

lphwl
Address of a handle to a word list. The recognizer sets the handle to NULL if
the recognition context does not contain a word list.

Returns HRCR_ OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

An HRC can be configured for only one word list at a time. This is independent of
the recognizer's dictionary, which can be manipulated through the
EnableSystemDictionaryHRC function.

For a description of word lists and how a recognizer uses them, see "Configuring
the HRC" in Chapter 5, "The Recognition Process."

SetWordlistHRC

236 Programmer's Guide to Pen Services for Microsoft Windows 95

HitTestPenData

Parameters

Return Value

2.0

Detennines if a given point lies on or near the pen-down strokes contained in an
HPENDAT A object.

int HitTestPenData(HPENDAT A hpndt, LPPOINT lppt, UINTdThresh,
UINT FAR* IpiStrk, UINT FAR* IpiPnt)

hpndt
Handle to the HPENDAT A object. HitTestPenData does not alter the data in
the HPENDATA object.

lppt
Address of a POINT structure containing the point to test.

dThresh
Threshold around the point given in lppt. The point lies at the center of a
square with sides of length dThresh. If HitTestPenData finds a point in the
HPENDATA object that lies in the square, it indicates a "hit." dThresh must
have the same scaling units. as the points in the HPEND A T A or the result will
not be correct. If dThresh is 0, HitTestPenData assumes a default threshold
value of3.

IpiStrk
Stroke index from which to begin testing. After HitTestPenData returns from
a successful test, the variable that IpiStrk points to contains the index of the hit
stroke.

IpiPnt
Point index from which to begin testing. After HitTestPenData returns from
a successful test, the variable that IpiPnt points to contains the index of the hit
point in the stroke indicated by IpiStrk.

Returns one of the following if successful:

Constant Description

The point hits (intersects) the pen data or falls within the pro­
vided threshold around a particular point in the pen data as
specified by the stroke and the point indices. The stroke and
point values are returned in lpiStrk and lpiPnt, respectively.

The point does not hit (intersect) the pen data nor does it fall
within the provided threshold around a particular point in the
pen data as specified by the stroke and the point indices.

Comments

InitRC

InitRe 237

Otherwise, the function returns one of the following negative values:

Constant

PDR_ COMPRESSED

PDR_ERROR

PDR_MEMERR

PDR_PNDTERR

PDR_PNTINDEXERR

PDR_STRKINDEXERR

PDR_ VERSIONERR

Description

Pen data is compressed.

Parameter or other unspecified error.

Memory error.

Invalid pen data.

Invalid point index.

Invalid stroke index.

Could not convert old pen data.

HitTestPenData checks whether the point specified by lppt falls within the
threshold specified by dThresh around a point in the pen data, depending on the
zero-based starting stroke and point indices specified by IpiStrk and IpiPnt. This
function tests only down strokes in the pen data. If IpiStrk is greater than the
number of strokes in the pen data, testing starts from the first stroke.

Similarly, if IpiPnt is greater than the number of points in the stroke, testing starts
from the first point in that stroke. The first point in the first stroke (from the
specified indices) that meets the test condition is returned via IpiPnt and IpiStrk,
respectively.

In any case, HitTestPenData accounts for the width of the ink trail. If the value
given in dThresh is less than the ink width, HitTestPenData ignores the specified
value of dThresh and instead uses the ink width as the threshold.

HitTestPenData does not consider pen-up strokes.

1.0 2.0

Initializes an RC structure with default values.

Note This function is provided only for compatibility with version 1.0 of the Pen
API, and will not be supported in future versions.

void InitRC(HWND hwnd, LPRC lprc)

Parameters hwnd
Handle to a window.

238 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

lpre
Address of the RC structure to initialize.

This function does not return a value.

InitRC serves little purpose in applications that conform to version 2.0 of the Pen
API. Under version 2.0, a recognizer maintains an HRC object, which makes the
R C structure obsolete.

For suggestions on how to update a version 1.0 application to remove services that
rely on RC, see the section "The RC Structure" in Appendix A.

InitRC initializes an RC structure with default values, many of which come from
the global RC structure. The application can use the initialized RC structure when
calling the Recognize function. Although an application can change any of these
values, it should be careful about changing those items that can be set by the user
through the Windows Control Panel.

InitRC sets the bounding rectangle to the client area of the window identified by
hwnd. The bounding rectangle is valid only until the window is resized or moved.
When this occurs, the application must again call InitRC to update the rectBound
member of the R C structure or correct rectBound manually. If the window handle
hwnd is NULL, the bounding rectangle and hwnd remain uninitialized. The appli­
cation must set the hwnd member to a valid window before calling Recognize or
RecognizeData.

The following table describes the default values used to initialize the RC structure.
Values not listed in the table come from the global RC: Some of the global default
values can be modified by the user in Control Panel.

Value

rc.alc

rc.l RcOpt ions
rc.hwnd
rc.wResultMode
rc.rectBound

rc.l Pcm

rc.rectExclude
rc.guide
rC.wRcOrient
rc.wRcDirect

Description

ALC_DEFAULT. The function uses the complete
alphabet and all gestures. The exact character set
depends on the recognizer.

Zero.

hwnd (the first argument of InitRC).

RRM_COMPLETE.

(0,0,0,0) or client rectangle of hwnd if hwnd is not
NULL.

PCM_ADDDEFAULTS, or PCM_ADDDEFAULTS I
PCM_RECTBOUND if hwnd is not NULL.

(0,0,0,0).

(0,0,0,0,0,0,0).

RCOR_NORMAL.

OxOl03

See Also

InitRe 239

Members the user can change through the system Control Panel are filled with
values indicating that the system default should be used. These placeholder values
are RC_ WDEFAULT or RC_LDEFAULT, depending on whether the member is a
UINT or LONG value. During the processing of ProcessWriting, Recognize, or
RecognizeData, these values are replaced with the current system defaults before
the RC structure is passed to the recognizer. If the PCM_ADDDEFAULTS flag is
set in IPcm, the values of the IPcm member in the global RC are combined with the
current IPcm values with OR operators at the time the recognizer is called. If the
high bit is set in wRcPreferences, the values of the wRcPreferences member in
the global RC are combined with the current wRcPreferences values with bitwise­
OR operators at the time the recognizer is called.

The following table gives the default values for the members of the R C structure:

Value

rc.hrec
rc.lpfnYield
rc.lpUser
rc.wCountry
rc.wlntlPreferences
rc.lpLanguage
rc.rglpdf
rc.wTryDictionary
rc.clErrorLevel
rc.wTimeOut
rc.wRcPreferences
rc.nlnkWidth
rc.rgblnk
rc.alcPriority
rc.rgbfAlc

Description

RC_WDEFAULT

RC_LDEFAULT

RC_LDEFAULT

RC_WDEFAULT

RC_ WDEFAULTFLAGS

RC_LDEFAULT

RC_LDEFAULT

RC_WDEFAULT

RC_WDEFAULT

RC_WDEFAULT

RC_ WDEFAULTFLAGS

RC_WDEFAULT

RC_LDEFAULT

ALC_NOPRIORITY

Array initialized to 0

The RC structure pointed to in the RCRESULT structure is a copy of the original
RC structure passed as a parameter to Recognize. In the copy, default values are
replaced. All coordinates are in the tablet coordinate system and the IRcOptions
member has the RCO_TABLETCOORD flag set.

Recognize, RecognizeData, RC, ALC~, PCM_, RCO_

240 Programmer's Guide to Pen Services for Microsoft Windows 95

InsertPenData

Parameters

Return Value

Comments

2.0

Merges two blocks of pen data at the specified stroke index.

int InsertPenData(HPENDAT A hpndtDst, HPENDAT A hpndtSrc,
UINT iStrk)

hpndtDst
Handle of the pen data object to merge into. When this function returns, this is
the handle of the merged data.

hpndtSrc
Handle of the pen data object to merge from.

iStrk
Stroke index. The merge operation occurs before this index. This parameter can
also be IX_END to append hpndtSrc to the end of hpndtDst.

Returns PDR_OK if successful; otherwise, the return value is one of the following
negative values:

Constant

PDR_COMPRESSED

PDR_ERROR

PDR_MEMERR

PDR_OEMDATAERR

PDR_STRKINDEXERR

PDR_TIMESTAMPERR

PDR_USERDATAERR

PDR_ VERSIONERR

Description

Pen data is compressed.

Paramet~r or other unspecified error.

Out of memory.

Incompatible OEM data in the two pen data objects.

Invalid stroke index.

Incompatible time fields in the two pen data objects.

Incompatible user space in the two pen data objects.

Could not convert old pen data object.

InsertPenData merges two blocks of pen data starting at the zero-based stroke
index specified by iStrk of the destination pen data.

The blocks of pen data to be merged must be compatible. The calling application
should ensure that the blocks of data are in the same scaling mode. The user space,
if present, should be of the same size. OEM data, if present, must be compatible
and of the same type. The application can use TrimPenData to delete certain infor­
mation from either the source or the destination HPENDAT A object to make it
compatible. If hpndtDst has timing information and hpndtSrc does not, the merge
fails; However, if hpndtDst does not have timing information and hpndtSrc does
have it, the timing is stripped from hpndtSrc.

For a description of timing information, see "The HINKSET Object" in Chapter 4,
"The Inking Process."

See Also

InsertPenDataPoints 241

InsertPenDataStroke, InsertPenDataPoints, MetricScalePenData,
TrimPenData, CreatePenDataEx

InsertPenDataPoints

Parameters

Return Value

2.0

Inserts points into an existing HPENDA T A object.

int InsertPenDataPoints(HPENDAT A hpndt, UINT iStrk, UINT iPnt,
UINT cPnts, LPPOINT lppt, LPVOID lpvOem)

hpndt
Handle to an HPENDATA object.

iStrk
Zero-based index of the stroke into which the points are inserted. If this value is
IX_END, the points are inserted in the last stroke.

iPnt
Zero-based index of the point in the stroke before which the points are inserted.
If this value is IX_END, the points are appended to the end of the stroke.

cPnts
Total number of points to be inserted. If this is 0, the function returns PDR_OK
without taking any other action.

lppt
Address of an array of POINT structures containing the points to be inserted.

lpvOem
Address of a buffer containing the OEM data to be inserted. This value can be
NULL only if the HPENDAT A object does not have OEM data or a
PENINFO structure.

Returns PDR_ OK if successful; otherwise, the return value can be one of the
following negative values:

Constant

PDR_COMPRESSED

PDR_ERROR

PDR_MEMERR

PDR_STRKINDEXERR

PDR_PNTINDEXERR

PDR_ VERSIONERR

Description

Pen data is compressed.

Parameter or other unspecified error.

Out of memory.

Invalid stroke index.

Invalid point index.

Could not convert old pen data object.

242 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

See Also

InsertPenDataPoints inserts points into an existing stroke of the specified pen data
object. It does not create a new stroke. (Use the InsertPenDataStroke function to
insert new strokes into the pen data object.) The stroke attributes are not affected by
the points added to the stroke.

The calling application must ensure that lppt and IpvOem are valid and that the
points are in the same scale as those of the pen data object. InsertPenDataPoints
performs no automatic scaling of the points.

InsertPenDataPoints does not make any timing adjustments after adding points.
This can affect recognition accuracy and should be used judiciously.

For a description of timing information, see "The HINKSET Object" in Chapter 4,
"The Inking Process."

AddPointsPenData, ExtractPenDataPoints, InsertPenData,
InsertPenDataStroke, RemovePenDataStrokes

I nsertPen DataStroke

Parameters

2.0

Inserts a stroke into an existing HPENDAT A object.

int InsertPenDataStroke(HPENDAT A hpndt, DINT iStrk, LPPOINT lppt,
LPVOID IpvOem, LPSTROKEINFO IpsiNew)

hpndt
Handle to the HPENDATA object that receives the inserted strokes.

iStrk
Zero-based index of the stroke at which the new stroke is to be inserted. If this
value is IX_END, the stroke is appended at the end of the HPENDATA
memory block.

lppt
Pointer to a buffer containing the points to be· inserted.

IpvOem
Pointer to a buffer of OEM data. This value can be NULL only if the pen data
object does not have OEM data or a PENINFO structure.

IpsiNew
Pointer to the STROKEINFO structure containing information about the
stroke.

Return Value

Comments

See Also

Install Recognizer 243

Returns PDR_ OK if successful; otherwise, the return value can be one of the
following negative values:

Constant

PDR_COMPRESSED

PDR_ERROR

PDR_MEMERR

PDR_STRKINDEXERR

PDR_TIMESTAMPERR

PDR_ VERSIONERR

Description

Pen data is compressed.

Parameter or other unspecified error.

Out of memory.

Invalid stroke index.

Timing error.

Could not convert old pen data object.

InsertPenDataStroke inserts an entire stroke into an HPENDATA object. Use
InsertPenDataPoints to insert points into a particular stroke.

The inserted stroke assumes the default pen-tip attributes. SetStrokeAttributes
should be called after inserting the stroke to change such stroke attributes as the
pen-tip characteristics or user data.

The calling application must ensure that lppt and IpvOem are valid, and that the
points in the stroke that is being added have compatible scaling modes.

Attempting to insert an empty stroke simply returns PDR_ OK.

AddPointsPenData, ExtractPenDataPoints, InsertPenDataPoints,
RemovePenDataStrokes, STROKEINFO

Install Recognizer

Parameters

Return Value

1.0 2.0

Loads and initializes a specified recognizer.

HREC InstallRecognizer(LPSTR IpszRecogName)

IpszRecogName
Name of recognizer to load. If IpszRecogName is NULL, the default recognizer
is loaded. (An application should not set IpszRecogName to NULL, because
Windows automatically loads the default recognizer on initialization.)

Returns a handle to a recognizer if successful; otherwise, returns NULL.

244 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

See Also

The recognizer's name is the name of the DLL to be'loaded. Windows searches for
the recognizer file according to the standard rules for searching for a DLL-that is,
it first searches the current directory, then the Windows directory, the system
subdirectory, the PATH directories, and so forth. The procedure fails if the library
cannot be found, the load fails, or the loaded DLL is not a valid recognizer. The
recognizer may decline to load if it requires hardware information such as pen
pressure that the pen device cannot provide.

An application should not load the default recognizer. All recognizers installed by
an application must be uninstalled by a call to UninstallRecognizer before the
application terminates.

After loading a recognizer library, the system calls the recognizer's
ConfigRecognizer function with the subfunction WCR_INITRECOGNIZER.

An application can load a recognizer with a call to LoadLibrary instead of
InstallRecognizer. However, the application must first link with an import library
derived from the recognizer DLL. The recognizer's import library must appear in
the library section of the LINK command line before PENWIN.LIB. This forces
the application's calls to pass directly to the recognizer's exported recognition
functions instead of the system.

This procedure may facilitate debugging the recognizer, but otherwise ~serves no
purpose. It prevents use of other recognizers, including the system default recog­
nizer. For a discussion of import libraries, refer to the section on the IMPLIB utility
described in the Environment and Tools manual of the Microsoft VisuaIC++ docu­
mentation.

ConfigRecognizer, ConfigHREC, UninstallRecognizer

IsPenAware
1.0 2.0

Checks the capability of an application to handle pen events by returning cached
task pen flags.

Note This function is provided only for compatibility with version 1.0 of the Pen
API and will not be supported in future versions. Use GetPenAppFlags instead.

UINT IsPenA ware()

Return Value

See Also

IsPenEvent

Parameters

Return Value

Comments

KKConvert

Parameters

IsPenEvent 245

Returns the registration flags word set by a previous call to the SetPenAppFlags
function. If SetPenAppFlags has not been called, IsPenAware returns O.

GetPenAppFlags, SetPenAppFlags

1.0 2.0

Checks whether a mouse event was generated by the pen driver.

BOOL IsPenEvent(UINT message, LONG lExtralnfo)

message
Windows mouse message being queried.

lExtralnJo
Value returned by GetMessageExtraInfo for the given message.

Returns TRUE if the mouse event referenced by the message parameter was gener­
ated by the pen driver; otherwise, returns FALSE.

Mouse drivers that have not been updated to be compatible with pens may produce
an event that cannot be distinguished from a real pen event. This has a very low
probability of occurring.

2.0

Activates the Kana-to-Kanji converter. (Japanese version only.)

BOOL KKConvert(HWND hwndConvert, HWND hwndCaller, LPSTR lpBuf,
UINT cbBuJ, LPPOINT lpPoint)

hwndConvert
Handle to the window with the text to be converted.

hwndCaller
Handle to the window that calls KKConvert.

lpBuf
The text to be converted.

246 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

cBuf
The number of bytes (greater than 1) in lpBuf

lpPoint
. The positition where the Kana-to-Kanji converter will appear.

Returns TRUE if the text is successfully converted; otherwise, returns FALSE.

If lpBuf is NULL, the currently-selected text in the window specified by
hwndConvert will be used for conversion and then replaced with the converted text.
If lpBufis not NULL, the text in lpBufwill be converted and replaced with the
converted text. If the length of the converted text is longer than cbBuf, the text will
be truncated.

If the window referenced by hwndConvert is of the bedit class, lpPnt is ignored;
otherwise, the center of the Kana-to-Kanji conversion is displayed at lpPnt.

If the window referenced by hwndConvert is of the hedit class and lpPnt is NULL,
then the current caret position is used; otherwise, the client position (0,0) in the
window referenced by hwndC onvert is used.

MetricScalePenData

Parameters

1.0 2.0

Converts pen data points to one of the supported metric modes.

BOOL MetricScalePenData(HPENDAT A hpndt, DINT wPndtNew)

hpndt
Handle to a pen data object containing the points to be converted.

wPndtNew
Scaling metric to be used with the data, as listed here:

Constant

PDTS_HIMETRIC

PDTS_HIENGLISH

Description

Each logical unit is mapped to 0.1 millimeter. Positive x
is to the right; positive y is down.

Each logical unit is mapped to 0.01 millimeter. Positive
x is to the right; positive y is down.

Each logical unit is mapped to 0.001 inch. Positive x is
to the right; positive y is down. This is equivalent to
PDTS_ST ANDARDSCALE.

This parameter scales the data, using DPtoTP. The pen
data memory block is left in display coordinates.

Return Value

Comments

See Also

MetricScalePfmData 247

Returns TRUE if successful, or FALSE if hpndt is in a compressed state or if the
data is not already in one of the metric modes such as PDTS_ARBITRARY.

The MetricScalePenData function converts pen coordinates between metric and
English standard measurements. Metric units are 0.1 and 0.01 millimeter; English
standard units are 0.001 inch. These scaling metrics form the same mapping mode
set in the Windows function SetMapMode.

MetricScalePenData allows an application to transform pen data to the mapping
mode set for a device context. This ensures that ink rendered in the device context
appears in the proper scale.

Note the following caveats about MetricScalePenData:

• Because of rounding errors, scaling is not precisely reversible between mapping
modes. Rounding errors can also adversely affect recognition accuracy if the
data is later given to a recognizer. The problem arises when transforming the
standard ink scale of HIENGLISH to a scale of lower resolution, a transforma­
tion that loses some of the original data. The lost data cannot be recovered, even
if the coordinates are converted back into HIENGLISH.

• The scaling is not perfect and results in numerous "off-by-one" discrepancies,
visible when displaying the scaled data.

Strictly speaking, the PDTS_DISPLA Y scaling type is not a metric scale. To use it,
the current scale of the data must be in PDTS_STANDARDSCALE units.

The effect of this call is similar to that of using the TPtoDP function on the array
of points. A recognizer may not accurately recognize the resulting data. As with
the other scales, the PDTS_DISPLA Y is set in the wPndts member of the pen
data header. If data is in PDTS_DISPLAY scale, MetricScalePenData cannot be
called to scale it back to the other metric scales. No overflow checks are made.
Because of rounding errors, scaling conversion is not perfectly reversible. Recog­
nizers must recognize points that have been scaled to PDTS_STANDARDSCALE
(equivalent to PDTS_HIENGLISH).

OffsetPenData, ResizePenData, PDTS_

248 Programmer's Guide to Pen Services for Microsoft Windows 95

OffsetPenData

Parameters

Return Value

Comments

Example

See Also

1.0 2.0

Offsets the coordinates in an HPENDAT A memory block to make them relative to
another origin.

BOOL OffsetPenData(HPENDATA hpndt, int dx, int dy)

hpndt

dx

dy

Handle to a pen data object.

Offset of x-axis; that is, the amount to move left or right. To move left, the dx
value must be negative.

Offset of y-axis; that is, the amount to move up or down. To move up, the dy
value must be negative.

Returns TRUE if successful, or FALSE if hpndt is in a compressed state.

For every point in hpndt, dx is added to the x-coordinate and dy is added to the y­
coordinate. No overflow checks are made.

An application can use OffsetPenData to make points at display resolution relative
to a particular window. If the window is then moved, the application need only call
OffsetPenData again to move the data by the same amount, as shown in the
. example.

The following sample code illustrates using the OffsetPenData function.

DWORD dwOrg; II Store window origin

II After creating window. note its current position
dwOrg = GetWindowOrg(hWnd);

switch(wMsg)
{

case WM_MOVE:
dx (int) (LOWORD(lParam) - LOWORD(dwOrg)); II X increment
dy = (int) (HIWORD(lParam) - HIWORD(dwOrg)); II Y increment
dwOrg = (DWORD) lParam; II Keep new org
OffsetPenData(hpendata. dx. dy);

MetricScaiePenData, ResizePenData

PeekPenlnput 249

PeekPenlnput

Parameters

2.0

Retrieves information about a specified pen packet in the pen input queue. For a
definition of pen packet, see the description of SetPenHook.

int PeekPenInput(HPCM hpcm, UINT idEvent, LPPOINT lppt,
LPVOID IpvOem, UINT fuOemFlags)

hpcm
Handle to a pen collection. This is the return value from StartPenInput.

idEvent
The identifier of the packet to be retrieved. The idEvent is the low-order word
of the value returned from the Windows GetMessageExtralnfo function when
processing a WM_LBUTTONDOWN message.

Ippt
Far pointer to a POINT structure. PeekPenInput copies the point
corresponding to idEvent into the buffer pointed to by lppt.

IpvOem
The address of a buffer of OEM data in the packet. This parameter can be
NULL if no OEM data is required.

fuOemFlags
Flags specifying which OEM data to retrieve. If this parameter is NULL, all of
the OEM data provided by the tablet is returned in the order specified by the
rgoempeninfo array in PENINFO.

These flags have an implicit order. For example, if pressure and barrel rotation
are specified in that order, cPntMax pairs of these data are returned in the same
order: [pressure, rotation], [pressure, rotation], and so on. (cPntMax is the
number of POINT structures specified in GetPenInput.)

Constant

PHW _PRESSURE

PHW_HEIGHT

PHW _ANGLEXY

PHW_ANGLEZ

PHW _BARRELROTATION

PHW _OEMSPECIFIC

PHW_PDK

Description

Retrieve pressure data.

Retrieve height data.

Retrieve data pertaining to the x- and y­
coordinates.

Retrieve data pertaining to the z-coordinates.

Retrieve barrel-rotation data.

Retrieve OEM-specific data.

Retrieve PDK_ data.

250 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

See Also

Returns PCMR_ OK if successful; otherwise, the return value can be one of the
following:

Constant

PCMR_INV ALIDCOLLECTION

PCMR_INV ALID _PACKETID

Description

The hpcm handle is invalid because the
calling application did not start input with
StartPenlnput.

idEvent is invalid.

Unlike GetPenInput, this function does not remove data from the pen input queue.
It only returns information about the packet specified by idEvent.

Whereas lppt points into the pen input queue, IpvOem does not. If IpvOem is not
NULL, it points to a buffer provided by the caller into which the OEM data are
copied from the pen input queue.

The buffer that IpvOem points to must be large enough to hold the requested OEM
data copied from the packet. The size of each packet is the width specified in the
cbOemData member of the PENINFO structure, plus s i zeaf (U I NT) if
PDK_ values are required.

GetPenInput, PENPACKET, PDK_

Pen Data From Buffer

Parameters

2.0

Creates a HPENDATA object from serial data in a buffer. The buffer must have
been previously written by the PenDataToBuffer function.

LONG PenDataFromBuffer(LPHPENDATA lphpndt, DINT gmemFlags,
LPBYTE IpBuffer, LONG cbBuf, LPDWORD IpdwState)

lphpndt
Pointer to an uninitialized HPENDAT A handle. If PenDataFromBuffer
returns successfully, lphpndt points to a new HPENDATA object containing a
copy of the serial points.

gmemFlags
Flag that specifies whether or not the Windows GlobalAlIoc function should
create a shared memory object when the pen data object is created. This
should be either 0 or GMEM_DDESHARE. The GMEM_MOVEABLE and
GMEM_ZEROINIT flags are added to this value and other GMEM_ flags are
ignored.

Return Value

Comments

PenDataFromBuffer 251

/pBuffer
Pointer to a byte buffer containing serial data.

cbBuf
Size of the buffer, which must be at least 64 bytes in size. If the buffer serves as
an intermediate holding area, it need not be as large as the final HPEND A T A
object. To create the object, the application must call PenDataFromBuffer
successively, each time reading a new section of data into the buffer that
/pBuffer points to before the call. The example below illustrates this technique
by filling an HPENDA T A object in stages, reading data from a file in cbBuf
increments.

/pdwState
Address of a DWORD variable used by the system to maintain the transfer
state. The DWORD variable must be initialized to 0 before the first call to
PenDataFromBuffer. Between successive calls to PenDataFromBuffer,
the application must not alter the value that /pdwState points to. /pdwState
can be NULL to signify that the buffer contains the entire data set for the
HPENDAT A object. This implies that subsequent calls to
PenDataFromBuffer are not necessary.

If successful, PenDataFromBuffer returns the number of bytes transferred from
the buffer. If the size of the pen data is larger than the buffer, the return value is
equal to the buffer size passed in cbBuf A value of 0 indicates no more data to
transfer. If there is an error, one of the following negative values is returned:

Constant

PDR_ERROR

PDR_MEMERR

Description

Parameter or overflow error.

Memory error.

The data being provided by the application must have been previously written by
the PenDataToBuffer function. The application cannot modify this data in any
way. Embedded values within the first 64 bytes provide information to
PenDataFromBuffer about the size of the pen data.

PenDataFromBuffer creates an HPENDAT A object and provides a handle to it.
The application must destroy the object when finished. The /phpndt argument points
to a valid HPENDATA handle only if the function returns PDR_OK.

While this function is reconstituting the HPENDAT A object, the application must
not attempt to use it in any way because it will be invalid until the last buffer is
read.

252 Programmer's Guide to Pen Services for Microsoft Windows 95

Example The following example shows how to create a HPENDA T A object from a file
(hfile) that has already been opened for reading. Before reading the pen data, its
length is retrieved from the file:

See Also

#define cbBufMax1024

HPENDATA NEAR PASCAL ReadPenData(HFILE hfile)
{

HPENDATA
LONG
BYTE
DWORD

if (lhfile

hpndt = NULL;
cb, cbRead, cbHpndt;
lpbBuf[cbBufMax];
dwState = 0L;

II Buffer
II Must initialize to 0

I I (cb = _lread(hfile, &cbHpndt, sizeof(DWORD») == HFILE_ERROR
I I cb 1= sizeof(LONG»

return NULL;

while (cbHpndt > 0)
{

if «cbRead = _lread(hfile, lpbBuf, min(cbHpndt, cbBufMax »)
HFILE ERROR

I I PenDataFromBuffer(&hpndt, 0, lpbBuf,
cbBufMax, &dwState) < 0)

if (hpndt)
DestroyPenData(hpndt);

return NULL;

cbHpndt -= cbRead;

return hpndt;

PenDataToBuffer, GetPenDataAttributes

Pen DataToBuffer 253

PenDataToBuffer

Parameters

Return Value

2.0

Writes the data in an existing UPENDATA object to a serial buffer.

LONG PenDataToBuffer(HPENDA T A hpndt, LPBYTE lpBuffer,
LONG cbBuf, LPDWORD lpdwState)

hpndt
Handle to the HPENDATA object.

lpBuffer
Pointer to an empty buffer.

cbBuf
Size of the buffer in bytes. The buffer must be at least 64 bytes in size. If the
buffer serves as an intermediate holding area, it need not be as large as the
UPENDAT A object. To read all data from the object in this case, the applica­
tion must call PenDataToBuffer successively, each time copying the data from
the buffer that lpBuffer points to before the next call. The example below illus­
trates this technique by writing an HPENDATA object in cbBuf increments to
a file.

lpdwState
Address of a DWORD variable used by the system to maintain the transfer
state. The DWORD variable must be initialized to 0 before the first call to
PenDataToBuffer. Between successive calls to PenDataToBuffer, the appli­
cation must not alter the value that lpdwState points to. lpdwState can be NULL
to signify that the buffer is large enough to contain the entire UPEND A T A
object. This implies that subsequent calls to PenDataToBuffer are not neces­
sary.

If successful, PenDataToBuffer returns the number of bytes transferred into the
buffer. If the size of the pen data is larger than the buffer, the return value is equal
to the buffer size passed in cbBufuI).til the final transfer, when it is typically some
smaller value. A value of 0 indicates no more data to transfer. If there is an error,
one of the following negative values is returned:

Constant

PDR_ERROR

PDR_MEMERR

PDR_PNDTERR

PDR_ VERSIONERR

Description

Parameter or other unspecified error.

Memory error.

Invalid HPENDATA object.

Could not convert old HPENDAT A object.

254 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

Example

See Also

The buffer need not be large enough to accommodate the entire HPENDAT A
object. To allocate a buffer large enough for a single transfer, the application
can determine the required size with the GetPenDataAttributes subfunction
GPA_SIZE.

The following example shows how to save an HPENDATA object to a file
(h f i 1 e) that has already been opened for writing. The length of the pen data
is saved in the file before writing the pen data itself:

#define cbBufMax1024

BaaL NEAR PASCALWritePenData(HFILE hfile, HPENDATA hpndt)
{

BYTE lpbBuf[cbBufMax];
DWORD dwState = 0L;
LONG cb;
LONG cbSize;

if (!hfile I I !hpndt)
return FALSE;

II Get size and save to file

II Must initialize to zero

if (GetPenDataAttributes(hpndt, (LPVOID)&cbSize, GPA_SIZE) < 0)
ret urn FA L S E ;

II write size of pen data to file so that it can be used while
readi ng it back

}

if Clwrite(hfile, &cbSize, sizeof(LONG)) == HFILE_ERROR)
return FALSE;

II Write the pen data in chunks, and repeat until done
while «cb = PenDataToBuffer(hpndt, lpbBuf,

{

cbBufMax, &dwState)) > 0L)

if (_lwrite(hfile, lpbBuf, (UINT)cb) == HFILE_ERROR)
return FALSE;

return (cb >= 0L); II Return TRUE if cb >= 0

PenDataFromBuffer

PostVirtualKeyEvent 255

PostVirtualKeyEvent
1.0 2.0

Posts a virtual key-code event to Windows.

void PostVirtualKeyEvent(UINT vk, BOOLjUp)

Parameters v k

Return Value

Comments

See Also

Virtual key. This argument takes a Windows VK_ constant as defined in the
WINDOWS.H include file. Depending on the key, this is either the key scan
code or the ASCII equivalent to represent a character key. For example, VK_A
has the value "A."

jUp
Key-transition flag. This parameter should be FALSE to specify that the key is
down or TRUE to specify that it is up.

This function does not return a value.

PostVirtualKeyEvent does not check the virtual key code for errors.

Normally, an application should follow a key-down message with a corresponding
key -up message to accurately simulate the actual events from the keyboard. You
can post repeating keys by calling PostVirtualKeyEvent consecutively, one call
per repeat, with jU p set to FALSE. End the sequence with a single call to
PostVirtualKeyEvent withjUp set to TRUE.

The events are posted to the system message queue. The application with the input
focus can receive the messages by calling the Windows GetMessage or
PeekMessage function.

Atomic VirtualEvent, PostVirtualMouseEvent

PostVirtualMouseEvent
1.0 2.0

Posts a virtual mouse code to Windows.

void PostVirtualMouseEvent(UINT wMouseFZags, int xPos, int yPos)

256 Programmer's Guide to Pen Services for Microsoft Windows 95

Parameters

Return Value

Comments

Example

wMouseFlags
Flags indicating the type of mouse event. This can be one or more of the
following values, combined by a bitwise-OR operator.

Constant

VWM_MOUSEMOVE

VWM_MOUSELEFTDOWN

VWM_MOUSELEFTUP

VWM_MOUSERIGHTDOWN

VWM_MOUSERIGHTUP

xPos

Description

Simulates a change in the mouse cursor
position. This flag can be combined with any
of the other flags in this table.

Simulates pushing the left mouse button.

Simulates releasing the left mouse button.

Simulates pushing the right mouse button.

Simulates releasing the right mouse button.

The x-axis position in screen coordinates.

yPos
The y-axis position in screen coordinates.

This function does not return a value.

The x- and y-axis positions are absolute positions in screen coordinates. Note that
the x and y values should not exceed the screen-resolution limits. Values greater
than the maximum resolution in the x-direction (640 for standard VGA) or the
y-direction (480 for standard VGA) cause an overflow.

The events are posted to the system message queue. The application with the input
focus can receive the messages by calling the Windows GetMessage or
Peek Message message.

Because of the way Windows interprets mouse messages, the calling application
must be careful about the order in which events are sent to the system. A message
that represents both a button-state transition and a move generates first a Windows
event for the button transition at the current pointer location and then a move to the
new location. To simulate a move to a new location followed by a button transition,
the application must make separate calls to PostVirtualMollseEvent for each
simulated event.

When posting events, the caller should bracket the calls by calls to
Atomic VirtualEvent, which locks out pen packets while the application is posting
simulated mouse events. For example, the following code fragment posts a mouse
event:

AtomicVirtualEvent(TRUE);
II
II ... PostVirtualMouseEvent calls go here
II
AtomicVirtualEvent(FALSE);

See Also

ProcessHRC 257

The Windows GetMessageExtralnfo function returns 0 for any messages
generated by Post VirtualMouseEvent.

Atomic VirtualEvent, Post VirtualKey Event

ProcessHRC

Parameters

Return Value

2.0

Gives a recognizer sufficient time for intermediate processing of pen input. A
recognizer must export this function.

int ProcessHRC(HRC hrc, DWORD dwTimeMax)

hrc
Handle to the HRC object for the recognizer.

dwTimeMax
The maximum time in milliseconds that the recognizer should process before
returning from this call. This parameter can also be one of the following time-
out codes: .

Constant Description

The recognizer should take only a very small amount of time
to process the input, typically 50 milliseconds.

The recognizer should take a moderate amount of time to
process the input, typically 200 milliseconds.

The recognizer should take as much time as required to
complete recognition.

If there are no errors, returns one of the following values:

Constant

HRCR_OK

HRCR_INCOMPLETE

Description

Processing is successful.

The recognizer is still processing the current batch of
input.

The recognizer has recognized a possible gesture.
This can be returned before the recognition process
is complete. If the processing completes,
HRCR_COMPLETE is always returned, even for
gestures.

The recognizer completed processing and does not
expect any more input.

258 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

To indicate an error, ProcessHRC returns one of the following negative values:

Constant

HRCR_ERROR

HRCR_MEMERR

Description

Invalid parameter or other error.

Insufficient memory.

ProcessHRC returns if the time specified by dwTimeMax elapses before
recognition is complete.

In an operating environment that does not use threads, this function allows an
application to provide some time for the recognizer to process input. By checking
the return value, the application is able to monitor the progress, specifically whether
a gesture is a recognition candidate. If the function returns HRCR_ GESTURE, the
application can call GetResultsHR C to determine whether the gesture should be
acted on immediately.

Typically, the return value is HRCR_OK if the current batch of ink input has been
processed by the recognizer, and HRCR_INCOMPLETE if the recognizer has not
yet finished processing.

If ProcessHRC is called with PH_MAX, recognition is complete only if
EndPenlnputHRC has been called to notify the recognizer that no more results are
expected. The return value in this case is HRCR_COMPLETE, and the application
is free to get and display final results. If the application supplies further input at this
point, it has the effect of canceling the EndPenlnputHRC call, although this
procedure is not recommended for reasons of efficiency.

However, PH_MAX may result in poorer performance, since further processing in
the system is blocked until ProcessHRC returns. Instead, the· application can call
ProcessHRC in an idle loop or a separate thread, calling it repeatedly with smaller
time allotments until the function returns HRCR_COMPLETE. Note that if a sepa­
rate thread is used to finish processing, the main thread can call this function with
PH_MIN from time to time·to determine if processing has finished (that is, check­
ing for the HRCR_ COMPLETE return value).

See Also

ProcessWriting 259

The first time that ProcessHRC is called for a particular recognition context, func­
tions that set its state cannot be used for the remainder of that context's existence.
The following functions return an error if they are called beforeProcessHRC
returns HRCR_ COMPLETE:

• EnableGestllreSetHRC

• EnableSystemDictionaryHRC

• SetAlphabetHRC

• SetAlphabetPriorityHRC

• SetBoxAlphabetHRC

• SetWordlistCoercionHRC

• SetGllideHRC

• SetInternationalHRC

• SetMaxResllltsHRC

• SetWordlistHRC

EndPenlnplltHRC, GetResllltsHRC

ProcessWriting
1.0 2.0

Processes handwriting.

Note This function is provided only for compatibility with version 1.0 of the Pen
API and will not be supported in future versions. Use DoDefallltPenlnpllt instead.

REC ProcessWriting(HWND hwnd, LPRC [pre)

Parameters hwnd
Window to receive messages. This parameter must not be NULL.

[pre
Address of RC structure to use for recognition. This parameter can be NULL.

260 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

Returns values less than 0 if the application should treat the event as a mouse event
instead of a pen event. Return values less than 0 occur if the event did not come
from a pen, the user performed a press-and-hold action (REC_POINTEREVENT),
or an error occurred-for example, running out of memory.

The ProcessWriting function is similar to Recognize except that Process Writing
also takes care of inking, removing the ink, and converting the results message to
standard Windows messages.

Depending on the existing code in an application, ProcessWriting may not be
suitable for making an application pen-aware. This function can also limit the
power of a pen interface.

If lprc is NULL, a default RC structure is created for the application. The default
RC structure contains all system defaults and the inking is constrained to the client
area of hwnd. If lprc points to a valid RC structure, the rectBound member of the
RC structure is used to constrain the inking. Regardless of whether the application
provides an RC or not, ProcessWriting assumes a value ofRRM_COMPLETE
for the wResultMode member. See RC for a description ofwResultMode and the
RRM_ values.

After the writing is completed, the ink is removed before any messages are sent
to hwnd. After the ink is removed, the screen is updated and hwnd receives a
WM_RCRESUL T message. If the application processes this message, it should
return TRUE. In this case, no further messages are sent.

If the application returns FALSE, ProcessWriting performs the default conversion
of the results message to standard Windows messages, as shown in the following
table. The messages are sent rather than posted. Note that the DefWindowProc
function returns 0 when processing the WM_RCRESUL T message.

Results message

SYV _BACKSPACE

SYV_CLEAR

SYV _CLEARWORD

Windows message

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hot spot of the gesture,
followed by WM_ CHAR specifying a backspace.

WM_CLEAR.

WM_LBUTTONDOWN, WM_LBUTTONUP,
WM_LBUTTONDBLCLK, WM_LBUTTONUP at the
same point, followed by WM_ CLEAR.

WM_COPY.

See Also

Results message

SYV _CORRECT

SYV_CUT

SYV_EXTENDSELECT

SYV_RETVRN

SYV_TAB

text

ProcessWriting 261

Windows message

WM_LBUTTONDOWN, WM_LBUTTONUP,
WM_LBUTTONDBLCLK, WM_LBUTTONUP at the
hot spot of the gesture, followed by WM_COPY. At this
point the Edit Text dialog box is activated; it retrieves
text from the Clipboard. This uses the existing selection,
if any. The previous contents of the Clipboard are lost.

WM_CUT.

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hot spot of the gesture.
The MK_SHIFf flag is set for the wParam of these
messages.

WM_LBUTTONDOWN at upper-left comer of selected
area, followed by WM_MOUSEMOVE message,
followed by WM_LBUTTONUP at the lower-right
comer of selected area.

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hot spot of the gesture,
followed by WM_PASTE.

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hot spot of the gesture,
followed by WM_CHAR specifying a carriage return.

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hot spot of the gesture,
followed by WM_CHAR specifying a space.

WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hot spot of the gesture,
followed by WM_CHAR specifying a tab.

WM_UNDO.

One WM_ CHAR message per character of text.

The SYV _ symbol values in the previous table identify gestures. To see a complete
list of symbol values, refer to Chapter 13, "Pen Application Programming Interface
Constants. "

The IParam of a WM_RCRESULT message generated by ProcessWriting is a far
pointer to an RCRESUL T structure. By default, when an application receives a
WM_RCRESULT message, the hpendata member of the RCRESUL T structure
is NULL. If you need the HPENDATA handle, set the RCO_SAVEHPENDATA
flag in the lRcOptions member of the RC structure. In this case, the calling
application is responsible for destroying the HPENDAT A object.

DoDefaultPenlnput, InitRC, Recognize, REC_, SYV _, RCO_

262 Programmer's Guide to Pen Services for Microsoft Windows 95

ReadHWL
2.0

Reads a word list from a file.

int ReadHWL(HWL hwl, HFILE hfile)

Parameters hwl

Return Value

Comments

Example

A handle to an empty word list.

hfile
A handle to a file previously opened for reading.

Returns HRCR_ OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

Description

Invalid parameter or file or other error.

Insufficient memory.

The words are expected as ANSI text, one word per line, followed by a carriage
return and linefeed. In this context, a word can represent a phrase and contain
spaces or other non-characters, such as "New York" and "ne'er-do-well." Empty
lines or lines containing only spaces or tabs are allowed but ignored.

The file that hfile refers to must already exist and be open for reading.

The hwl parameter must be the handle of an empty word list created by
CreateHWL. If the word list is not empty, ReadHWL returns HRCR_ERROR.

Once the file is read, it can be closed immediately.

The following example demonstrates how to provide a word list to constrain
recognition results to the words contained in the fictitious file COUNTRY. LST:

HWL hwlCountries = CreateHWL(NULL, NULL, WLT_EMPTY, 0L);
OFSTRUCT ofStruct;
HFILE hfile = OpenFile("country.lst", &ofStruct, OF_READ);

if (hfile != HFILE_ERROR)
{

ReadHWL(hwlCountries, hfile);
_lclose(hfile);
}

else
ErrorMsg(FILEOPEN);

See Also

Recognize

Parameters

Return Value

Comments

if (hrc ~ CreateCompatibleHRC(NULL, NULL »
{

Recognize 263

SetWordlistHRC(hrc, hwlCountries); II Set list into HRC
SetWordlistCoercionHRC(hrc, SCH_FORCE); II Force match

II Code that collects and recognizes input here

CreateHWL, WriteHWL

1.0 2.0

Begins sampling pen data and converts tablet input to recognized symbols.

Note This function is provided only for compatibility with version 1.0 of the Pen
API and will not be supported in future versions.

REC Recognize(LPRC Iprc)

Iprc
Address of an RC structure.

Returns an REC_ value. See the "Comments" section for a description of the return
values.7

The RC structure that Iprc points to contains the parameters that control recogni­
tion. The system sends recognition results via the WM_RCRESULT message to the
window indicated by the hwnd member of the R C. All results messages are sent
before Recognize returns. Multiple result messages can be sent if the application
asks for results to be sent to the application before all input has been completed
(as indicated by the wResultMode member of the RC structure).

An application that uses version 1.0 recognizers should call Recognize when the
input session begins, signaled by the WM_LBUTTONDOWN message.

The value REC_OK is used in the wParam of the WM_RCRESULT message to
indicate that more data is coming. Return values of greater than a signal normal
successful completion. Return values of less than 0 indicate abnormal termination.
Return values of less than REC_DEBUG are reserved for return values from

264 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

debugging versions of the system or recognizer. If an application creates a condition
that would be caught in a debugging version while running a nondebugging version,
the results are undefined.

Each return value can be the wParam value of the WM_RCRESULT message or
the return value for Recognize. The wParam value of the last WM_RCRESULT
message generated by a call to Recognize is the return value of Recognize. Some
error conditions, such as REC_OOM or REC_NOTABLET, are returned without
generating any corresponding WM_RCRESULT message.

All of the values listed in the following table are in the debug version only. No
WM_RCRESUL T message is generated if these values are returned by Recognize.

Constant

REC_ALC

REC_BADEVENTREF

REC_CL VERIFY

REC_DEBUG

REC_DICT

REC_ERRORLEVEL

REC_GUIDE

REC_HREC

REC_HWND

REC_INV ALIDREF

REC_LANGUAGE

REC_NOCOLLECTION

REC_RECTBOUND

REC_RECTEXCLUDE

REC_RESULTSMODE

Description

Invalid enabled alphabet.

Returned when the wEventRef member in the lpre
structure is invalid.

Invalid verification level.

All debugging return values are less than this.

Invalid dictionary parameters.

Invalid error level.

Invalid GUIDE structure.

Invalid recognition handle.

Invalid handle to window to send results to.

Invalid data reference parameter.

Returned by the recognizer when the IpLanguage
member contains a language that is not supported
by the recognizer. Call ConfigRecognizer with the
WCR_QUERYLANGUAGE subfunction to detennine
whether a particular language is supported.

In version 1.0, was returned by GetPenHwData if
collection mode has not been set. Not used now.

Error codes less than or equal to REC_OEM are specific
to the recognizer.

Invalid lPcm member in the RC structure. There is no
way for the recognition to end.

Invalid rectangle.

Invalid rectangle.

Unsupported results mode requested.

InitRC, RecognizeData, GetPenHwEventData, RC, REC_

RecognizeData 265

RecognizeData

Parameters

Return Value

Comments

See Also

1.0 2.0

Converts the data in an HPENDAT A object to recognized symbols.

Note This function is provided only for compatibility with version 1.0 of the Pen
API and will not be supported in future versions.

REC RecognizeData(LPRC lprc, HPENDATA hpndt)

lprc
Address of an RC structure.

hpndt
Handle to an HPENDATA object.

Returns REC_DONE if successful, or an REC_ error code if an error occurs.

RecognizeData recognizes data in an HPENDA T A object and returns the results
to the window specified in the RC structure. RecognizeData is similar to
Recognize. The difference is that in RecognizeData, the input data comes from
a buffer of points already collected instead of from the tablet driver. Members per­
taining to the end of recognition in the Restructure are ignored.

RecognizeData can return REC_BUSY if the recognizer is not reentrant. A recog­
nizer is not guaranteed to return the same results for identical input. This is because
persistent states, such as the current average size of writing or the position of the
baseline, can affect recognition results. In addition, training may change the proto­
types against which the data is being compared.

RecognizeData attempts to convert the pen data to PDTS_STANDARDSCALE
if it is not already in standard scale. If the conversion fails (for example, because
the data was in an application-specific scale PDTS_ARBITRARY), the data is
still passed to the recognizer. A recognizer may return an error code
(REC_BADHPENDATA) for data in a scale it cannot handle.

InitRC, Recognize, GetPenHwEventData, RC, REC_, PDTS_

266 Programmer's Guide to Pen Services for Microsoft Windows 95

RedisplayPenData
1.0 2.0

Redraws the pen data in the same manner as originally inked.

BOOL RedisplayPenData(HDC hdc, HPENDATA hpndt, LPPOINT lpDelta,
LPPOINT lpExt, int nlnkWidth,DWORD rgbColor)

Parameters hdc

Return Value

Comments

Handle to a device context. The mapping mode should be MM_ TEXT.

hpndt
Handle to a pen data object. The pen data must be scaled to PDTS_DISPLA Y
or PDTS_STANDARDSCALE.

lpDelta
An offset, in logical units, that is subtracted from the pen data points to position
the ink. If lpDelta is NULL, there is no offset.

lpExt
Extent, in logical units, for scaling. If lpExt is NULL, no scaling is performed.

nlnkWidth
Width of the ink to be drawn, in pixels (1 to 15). If nlnkWidth is -1, the strokes
are rendered using the original ink width stored in the stroke header. An ink
width of 0 causes the function to simply return TRUE.

rgbColor
ROB value of the colorto draw the ink. If rgbColoris OxFFFFFFFF, the strokes
are rendered using the original ink color stored in the stroke header.

Returns TRUE if successful; otherwise FALSE.

The nlnkWidth and rgbColor values override the pen currently selected for the hdc
device context.

If the mapping mode of the hdc device context is not MM_ TEXT, two problems
can occur:

• RedisplayPenData uses TPtoDP to prepare the pen data points for render­
ing. After this, the points are in MM_ TEXT coordinates; this assumes an
MM_TEXT device context for display. If the device context is in a different
mapping mode, the ink coordinates will not be correct. Even if you use the ink­
scaling functions to bypass this problem, you will still encounter rounding-error
problems between the two scalings.

• No matter what scaling is done, rounding errors occur when converting between
modes. These errors cause the ink to shift slightly when repainted.

RedisplayPenData 267

For any rendering into a device context that represents anything other than a display
device context, DrawPenDataEx should be used. This is because
RedisplayPenData makes assumptions that are not optimal for other devices such
as printers or metafiles.

RedisplayPenData provides the ability to re-create original inking perfectly. To do
this, an application can use either of two methods:

• After the input session ends and data is collected into an HPENDAT A object,
store the current origin of the window containing the ink. When calling
RedisplayPenData to redraw the ink, supply the origin value in the IpDelta
argument, set IpExt to NULL, and set the mapping mode of the device context
to MM_TEXT. Only ink data with a common window origin can be merged
into a single HPENDATA.

• In the second method, the application must call two Pen functions immediately
after collecting the data into an HPENDAT A object. The first call to
MetricScalePenData converts the pen data to display coordinates. The second
call to OffsetPenData sets the display coordinates relative to the window
containing the original ink. To display, the application must call
RedisplayPenData with IpDelta and IpExt set to NULL and the mapping mode
of the device context set to MM_TEXT. If the application adopts this method
for multiple HPENDA T A objects, it can later merge them to form a single
HPENDAT A object (up to the 64K limit).

The second method has the advantages of simplicity and data compression. See the
description of MetricScalePenData for a discussion of the limitations of
converting data to display resolution.

Since the pen data has the origin of (0,0) based on the upper-left comer of the
display, applications must move from a screen-relative position to a position
relative to the device context. To do this, subtract the origin of the device context
(in screen coordinates) from the object currently residing in screen-coordinate
space.

The IpDelta parameter enables the application to render ink relative to the window
instead of relative to the screen. An application should call the ClientToScreen .
function for (0,0) to find the proper screen coordinates to be placed in the * IpDelta
PO INT structure. Once this is done, the pen data is rendered at the appropriate
location in window coordinates. If IpDelta is NULL, no offset for the data is
assumed.

The IpExt argument specifies the extents into which the data should be scaled. If
extents are provided, data is scaled into a rectangle described by IpDelta and IpExt.
The values of x and y in IpExt and IpDelta are in the mapping mode of the device
context into which the data is rendered.

268 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

RedisplayPenData displays pen data with a square graphical device interface
(ODI) pen brush for maximum drawing speed. When displaying wide lines of ink,
this optimization can cause the ends of abutting lines to appear blocky. If you prefer
a smoother look to the joints of wide lines at the expense of rendering speed, draw
the ink with DrawPenData, DrawPenDataEx, or DrawPenDataFmt instead of
RedisplayPenData. These functions draw wide lines by flood-filling a region, thus
smoothing the ends.

DrawPenData, DrawPenDataEx, PDTS_

RegisterPenApp
1.0 2.0

Notifies the pen system that the application edit controls should be replaced with
hedit controls. This function is required only for applications that specify EDIT
class (instead of HEDIT class) for control windows with versions of Windows
earlier than Windows 95.

Note that this function has been superseded by the SetPenAppFlags function in
the 2.0 version of the Pen API, although calling RegisterPenApp is still supported.
See SetPenAppFlags for more information.

void RegisterPenApp(UINT /uFlags, UINT uVersion)

RemovePenDataStrokes

Parameters

2.0

Removes strokes from an HPENDAT A object.

int RemovePenDataStrokes(HPENDAT A hpndt, UINT iStrk, UINT cStrks)

hpndt
Handle to the HPENDATA object.

iStrk
Zero-based index of the first stroke to remove. This value can be IX_END to
remove the last stroke. The function fails if iStrk is greater than the number of
strokes in the pen data object.

Return Value

Comments

See Also

ResizePenData 269

cStrks
Count of strokes to remove. If this value is greater than the number of strokes
after the specified stroke index, the stroke indexed by iStrk and all following
strokes are removed. cStrks can be IX_END to remove all strokes from iStrk
onward.

Returns PDR_ OK if successful; otherwise, the return value can be one of the
following negative values:

Constant

PDR_COMPRESSED

PDR_ERROR

PDR_MEMERR

PDR_PNDTERR

PDR_STRKINDEXERR

PDR_ VERSIONERR

Description

Pen data is compressed.

Parameter or other unspecified error.

Out of memory.

Invalid pen data object.

Invalid stroke index.

Could not convert old pen data object.

RemovePenDataStrokes removes the number of strokes specified by cStrks,
starting at the stroke specified by iStrk. Use ExtractPenDataPoints to remove
points from a particular stroke of the pen data object.

ExtractPenDataPoints, InsertPenDataPoints, InsertPenDataStroke

ResizePenData

Parameters

Return Value

Comments

1.0 2.0

Scales ink in an HPENDAT A object into an arbitrarily sized rectangle.

BOOL ResizePenData(HPENDAT A hpndt, LPRECT lprect)

hpndt
Handle to a pen data object.

lprect
Address of a bounding rectangle, or NULL.

Returns TRUE if successful; otherwise, the return value is FALSE.

This function changes the physical size of the object without changing the meaning
of the measurements. Use the MetricScalePenData function to convert the data to
one of the supported metric modes of measurement.

270 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

ResizePenData physically resizes the data in hpndt to the bounding rectangle
dimensions given by the lprect parameter. Data from hpndt is mapped to the new
rectangle. If lprect is NULL, this function recalculates the bounding rectangle (the
rectBound member in the PENDAT AHEADER structure). For example, consider
the case of pen data with PDTS_HIMETRIC scaling bounded by the square (500,
600, 1500, 1600). To double the size, set lprect to (500, 600, 2500, 2600).

OffsetPenData, MetricScalePenData, PDTS_

ResultsHookHREC

Parameters

2.0

The ResultsHookHREC function is an application-defined callback function that
provides the application with the opportunity to view all recognition results before
they are returned to the application. The name ResultsHookHREC is a place­
holder; the function can have any name.

BOOL CALLBACK ResultsHookHREC(HREC hrec, HRC hrc,
WORD wHooktype, UINT cResults, UINT cAlt, LPVOID rgresults)

hrec
Module handle of the recognizer library whose results are being hooked:

hrc
Handle to the HRC object for the recognizer that hrec refers to.

wHooktype
Type of hook. This can be one of the following values:

RHH_STD
Standard results generated by GetResultsHRC.

RHH_BOX
Boxed results generated by GetBoxResultsHRC.

cResults
Count of results available.

cAlt
Count bf box alternatives. This is valid only if wHooktype is RHH_BOX.

rgresults
An array of result objects. The object type depends on wHooktype. If
RHH_STD, rgresults should be cast as LPHRCRESUL T and the array
receives cResults HRCRESULT objects. If RHH_BOX, rgresults should be
cast as LPBOXRESUL TS and the array receives cResults BOXRESUL TS
structures.

Return Value

See Also

SetAlphabetHRC 271

The application hook function should return TRUE to indicate that it has processed
the data and that the recognizer should do no further processing. In this case, it is
the application's responsibility to destroy the results and inksets, if any; otherwise,
the hook function should return FALSE.

SetResultsHookHREC

SetAlphabetHRC

Parameters

Return Value

Comments

2.0

Specifies which alphabet should be used in an HRC object.

int SetAlphabetHRC(HRC hre, ALC ale, LPBYTE rgbfAle)

hre
Handle to the HRC object.

ale
Alphabet. This value is one or more ALC_ values combined using the bitwise­
OR operator.

rgbfAle
Array of bits if ale contains ALC_USEBITMAP; otherwise, it can be NULL.

Returns HRCR_OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

Some recognizers may not support ALC_ values and alphabet priorities. An
application should check for HRCR_UNSUPPORTED when using this function.

The following values may require Japanese, wide-character, or recognizer-specific
support: ALC_DBCS, ALC_JISl, ALC_KANJI, ALC_OEM, ALC_HIRAGANA,
and ALC_KATAKANA. In addition, ALC_RESERVED is reserved for future use
and is ignored. Recognizers, such as the Microsoft Handwriting Recognizer
(GRECO.DLL) for default American English, can return HRCR_OK even if some
of these values are set.

The size of the rgbfAle array, if used, must be large enough to accommodate 256
bits (32 bytes). If the nth bit is set, then the nth ANSI character is recognizable.
Bits representing characters less than 32 (space) currently have no meaning.

272 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

The ALC_ GESTURE valueis ignored, even if it is part of the ale parameter. See
EnableGestureSetHRC.

For a description of alphabets and their relationship to a recognizer, see
"Configuring the HRC" in Chapter 5, "The Recognition Process." For a list of
alphabet codes, see Chapter 13, "Pen API Constants."

EnableGestureSetHRC, GetAlphabetHRC

SetAlphabetPriorityHRC, ALC_

SetAl phabet PriorityH RC

Parameters

Return Value

Comments

See Also

2.0

Specifies the priority of alphabet sets in an HRC object.

int SetAlphabetPriorityHRC(HRC hre, ALC ale, LPBYTE rgbfale)

hre
Handle to the HR C object.

ale
Alphabet priority. This value is one or more ALC_ values combined using the
bitwise-OR operator.

rgbfale
Address of a 256-bit (32-byte) buffer whose bits map to ANSI single-byte
characters if ale contains ALC_USEBITMAP; otherwise, it can be NULL.

Returns HRCR_ OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

Some recognizers may not support ALC_ values and priorities. An application
should check for HRCR_ UNSUPPORTED when using this function.

For a description of how a recognizer uses alphabet priority, see "Configuring the
HRC" in Chapter 5, "The Recognition Process." For a list of alphabet codes, see
Chapter 13, "Pen Application Programming Interface Constants."

GetAlphabetHRC, SetAlphabetHRC, GetAlphabetPriorityHRC, ALC_

SetBoxAlphabetHRC 273

SetBoxAlphabetH RC

Parameters

Return Value

Comments

Example

2.0

Specifies the alphabet codes to use for a range of boxes.

int SetBoxAlphabetHRC(HRC hrc, LPALC rgalc, UINT cAlc)

hrc
Handle to an HRC object.

rgalc
An array of cAlc ALC_ values. The array is mapped onto boxes starting at box
zero.

cAlc
Number of ALC_ values in rgalc. This should match the number of boxes. If
this parameter is 0, SetBoxAlphabetHRC simply returns 0.

Returns HRCR_ OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

SetBoxAlphabetHRC applies only when an HRC has been configured for box
guides with the SetGuideIiRC function. Although SetAlphabetHRC can also
specify an alphabet set for boxed input, it attaches the same alphabet setting to all
boxes indiscriminately. SetBoxAlphabetHRC offers greater control by allowing
an application to set different alphabets for individual boxes of a single HRC.

For example, consider a boxed entry on a requisition form that expects a part num­
ber consisting of five characters. The first two characters are uppercase letters, the
next two are numerals, and the last character can be either another numeral or a
lowercase revision code. The following example demonstrates how to configure the
HRC for this hypothetical scenario:

4!defi ne PART _LEN 5 II Five characters in entry

HRC hrcPart; II HRC for parts entry
GUIDE guidePart; II GUIDE for parts entry
ALC alcPart[PART_LEN]; II Array of ALC_ codes for entry

II Initialize the GUIDE here

274 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

guidePart.cHorzBox = PART_LEN;
guidePart.cVertBox = 1;
guidePart.cyMid = 0;

II Number of boxes in entry
II Single row
II No midline

iret = SetGuideHRC(hrcPart. (LPGUIDE)&guidePart. 0);

if (iret == HRCR_OK)
{

alcPart[0] = alcPart[1] = ALC_UCALPHA; II Uppercase in boxes 1-2
alcPart[2] = alcPart[3] = ALC_NUMERIC; II Numerals in boxes 3-4
alcPart[4] = ALC_LCALPHA I ALC_NUMERIC; II Lower or numeral in box 5

II Map alphabet codes onto boxes of parts number entry
SetBoxAlphabet(hrcPart. (LPALC)&alcPart. PART_LEN);

GetAlphabetHRC, SetAlphabetHRC, ALC_

SetGlobalRC

Parameters

Return Value

1.0 2.0

Sets the current default settings for the global RC structure. In version 2.0 of the
Pen API, the RC structure is made obsolete by the HRC object.

Note This function is provided only for compatibility with version 1.0 of the Pen
API and will not be supported in future versions.

UINT SetGlobalRC(LPRC lpre, LPSTR lpszDejReeog, LPSTR lpszDeJDiet)

lpre
Address of an RC structure or NULL.

lpszDejReeog
Address of string specifying the name of the default recognizer module
(maximum 128 bytes).

lpszDeJDiet
Address of a string specifying the default dictionary path. The list should end
with two null characters.

Returns the value SGRC_OK if successful. If an error occurs, the return value
consists of one or more of the following values, combined using the bitwise-OR
operator.

Comments

Constant

SGRC_P ARAMERROR

SGRC_RECOGNIZER

SGRC_DICTIONARY

SetGlobalRC 275

Description

An invalid user name was found in the supplied
RC structure. The call to SetGlobalRC has no
effect.

One or more invalid parameters were detected.
The call to SetGlobalRC has no effect.

The supplied recognition context lpre has entries,
other than the user name, that contain invalid
settings for a global recognition context. The
supplied recognition context is ignored.

The supplied recognizer module name
IpszDejReeog is invalid or the recognizer cannot
be loaded. The supplied recognizer module name
is ignored.

The supplied dictionary path IpszDeJDiet is
invalid or some dictionaries on the path cannot be
loaded. The supplied dictionary path is ignored.

An error was encountered while saving the new
global recognition context settings to the pen
section of the system registry. The new settings
are lost after rebooting Windows.

Because the default RC values are shared among all version 1.0 applications run­
ning, the values should be changed only through the Control Panel. Whenever a
change is made to the global RC values, the WM_PENMISCINFO message is sent
to all top-level windows. The wParam and IParam values are not used, and they are
set to O.

Any of the parameters can be NULL to indicate that the calling application does not
want the value changed.

SetGlobalRC uses only the following members of the RC structure pointed to by
the lpre parameter:

clErrorLevel
IPcm (PCM_TIMEOUT and PCM_RANGE bits)
IpLanguage
IpUser
nlnkWidth
rgblnk
wCountry
w IntlPreferences
wRcDirect
wRcPreferences
wTimeOut
wTryDictionary

276 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

When InitRC is called for a new recognizer from within the SetGlobalRC call, the
R C structure that is passed in contains the new values for all members except hrec
and rglpdf. No new recognizer and dictionaries have been set up at this point.

When a version 1.0 application receives a WM_PENMISCINFO message, it
should call ConfigRecognizer with a WCR_RCCHANGE subfunction request.
This should be done for all recognizers that the application has loaded, excluding
the default recognizer. The RC Manager calls ConfigRecognizer in the new
default recognizer with a WCR_RCCHANGE subfunction request.

SetGlobalRC does not save the RCP _MAPCHAR flag in the wRcPreferences
member of the RC structure to the system registry. The RCP _MAPCHAR flag is
reflected in the global R C for the current session only.

InitRC, GetGlobalRC, RC

SetGuideHRC

Parameters

Return Value

2.0

Sets a guide structure into an HRC object.

int SetGuideHRC(HRC hrc, LPGUIDE lpguide, UINT nFirstVisible)

hrc
Handle to the HRC object.

lpguide
Pointer to a GUIDE structure, or NULL. All coordinates are in screen
coordinates.

nFirstVisible
For boxed controls, nFirstVisible refers to the first visible box (leftmost and
topmost for left-right, top-down languages like English). For other controls, this
is the first visible character position (leftmost for English) in a single-line con­
trol, and the first visible line (topmost for English) in multiline controls.

Returns HRCR_OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_INV ALIDGUIDE

HRCR_MEMERR

Description

Invalid parameter or other error.

The guide structure is invalid.

Insufficient memory.

Comments

See Also

SetlnternationalHRC 277

This function is useful for doing boxed recognition. The GUIDE structure defines
the size and position of the boxes. The nFirstVisible parameter notifies the recog­
nizer which is the first visible character position (single-line controls) or line
(multiline controls) in case the contents were scrolled. The writing direction affects
the meaning of this value.

If lpguide is NULL, or if all the members in the GUIDE structure are 0, the recog­
nizer does not use guides (free input).

GetGuideHRC, GUIDE

SetlnternationalHRC

Parameters

2.0

Sets the country, language, and script direction into a recognition context HRC.

int SetInternationalHRC(HRC hrc, UINT uCountry, LPCSTR IpszLangCode,
UINT fuFlags, UINT uDir)

hrc
Handle to the HRC object.

uCountry
The country code. A value of 0 indicates that this value should not be set.

IpszLangC ode
A three-letter, null-terminated string identifying the language (for example,
"enu" or "fra"), or NULL. A value of NULL indicates that the language code
should not be changed. For a list of three-letter language identifiers, refer to
Volume I of the Programmers Reference in the Windows Softw·are
Development Kit.

fuFlags
Flags. can be either SIH_ALLANSICHAR to indicate the user intends to use the
entire ANSI character set, or O.

278 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

See Also

uDir
The script direction. This parameter specifies which primary and secondary
writing directions to set. The default directions are left to right for the primary
direction and top to bottom for the secondary. A value of 0 indicates that the
writing direction should not be changed. Possible values for uDir are:

Constant Description

SSH_RD Leftto right and down (English).

SSH_RU Left to right and up.

SSH_LD Right to left and down (Hebrew).

SSH_LU Right to left and up.

SSH_DL Down and to the left (Chinese).

SSH_DR Down and to the right (Chinese).

SSH_UL Up and to the left.

SSH_UR Up and to the right.

Returns HRCR_ OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

SettingfuFZags to the value of SIH_ALLANSICHAR indicates the recognizer
should interpret text written in any language based on ANSI characters. To con­
strain recognition to a particular language, an application should setfuFlags to 0
and provide the appropriate language code in ·ZpszLangC ode.

SetlnternationalHRC overrides the default ALLANSICHAR setting in the
recognizer set by ConfigHREC for the life of the HRC object. ConfigHREC
should be used to change the default value.

GetlnternationalHRC, ConfigHREC

SetMaxResultsHRC 279

SetMaxResultsHRC
2.0

Sets the maximum number of guesses a recognizer should make when interpreting
pen data. When the recognizer fonnulates this number of results, the recognition
process ends.

int SetMaxResultsHRC(HRC hrc, UINT cMaxResults)

Parameters hrc

Return Value

Comments

See Also

Handle to the HRC object for the recognizer.

cMaxResults
The maximum number of results a recognition context should generate. This
value must be greater than O.

Returns HRCR_OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

Subsequent calls to SetMaxResultsHRC override any previous settings. If the
application does not call SetMaxResultsHRC to explicitly set a maximum value,
the default number of results generated is 1.

GetMaxResultsHRC, CreateCompatibleHRC

SetPenAppFlags
2.0

An application calls this function to set pen-specific properties that apply globally
to the application. This function replaces and enhances the RegisterPenApp
function from version 1.0 of Pen Windows.

void SetPenAppFlags(UINT juFlags, UINT uVersion)

280 Programmer's Guide to Pen Services for Microsoft Windows 95

Parameters

Return Value

Comments

See Also

fuFlags
Flags specifying application options. The following flags can be combined by
using the bitwise-OR operator:

Constant

RPA_KANJIFIXEDBEDIT

RPA_DBCSPRIORITY

RPA_SBCSPRIORITY

uVersion

. Description

Specifies that the system should treat any
EDIT -class controls in the application as
having HEDIT class. '

Boxed edit controls are a fixed size appropriate
for use with kanji. (Japanese version only.)

By default, double-byte equivalents of single- .
byte characters (as used in Japan) are preferred
in recognition results.

By default, single-byte characters are preferred
in recognition results. (Japanese version only.)

Specifies default pen behavior for the
application. This includes RPA_HEDIT.

The Pen API version number. The nonzero value PENVER causes the applica­
tion to be registered with Windows. A value of 0 unregisters the application.

This function does not return a value.

SetPenAppFlags should be called when an application starts with PENVER for the
uVersion parameter. PENVER is the Pen API version number, defined in
PENWIN.H.

PENVER ensures that the structures used are appropriate for the version of the Pen
API for which the application was compiled. In version 1.0, uVersion was a BOOL
value, so by default the version number was OxOOOl. Beginning with Pen API ver­
sion 2.0, PENVER contains the major release number in the HIBYTE and the
minor release number in the LOBYTE. Thus, for version 2.0, PENVER is defined
as Ox0200.

When an application terminates, it should call SetPenAppFlags with u Version set
to O. An application can unregister itself in this way more than once without error
to accommodate alternative exit code paths.

An application can call GetPenAppFlags to determine which flags were set by an
earlier call to SetPenAppFlags. However, normally only the system requires this
information.

Applications written specifically for Windows 95 and later Windows versions
automatically get RPA_DEFAULT so that any edit controls created by such appli­
cations become pen-aware.

GetPenAppFlags

SetPenHook 281

SetPenHook

Parameters

Return Value

Comments

See Also

1.0 2.0

Installs and removes a pen packet hook. This function is typically used by system­
level applications such as Control Panel applications.

BOOL SetPenHook(HKP hkpOp, LPFNRA WHOOK Ipfn)

hkpOp
Operation to be performed. This parameter can be HKP _SETHOOK to install a
hook or HKP _UNHOOK to remove a function from the hook list.

Ipfn
Pointer to callback function to handle pen packets.

Returns TRUE if successful or FALSE if GetPenlnput is unable to set or remove
the hook. The callback function returns FALSE to cancel the processing of a pen
packet.

The pen device generates approximately 100 hardware interrupts per second. At
each interrupt, the device sends data to the pen driver, which organizes the data into
a pen packet. Each packet contains the x- and y-coordinates of the current pen
position, the time, and possibly extra QEM data such as pen pressure, angle, and so
forth. The pen device may require more than one hardware interrupt to send all the
information for a single packet, so the rate at which the driver sends pen packets
may be less than the rate of interrupts generated by the pen hardware.

When it has created a pen'packet, the driver passes it to the system, which buffers
the packets in an internal queue as they arrive from the pen driver. The internal
queue is informally known as the "ten-second buffer" to indicate how much data
it can hold before overflowing. An application must call GetPenlnput regularly to
remove data from the queue.

SetPenHook enables an application to examine, modify, or cancel pen packets as
they arrive from the pen driver before GetPenlnput sees them.

SetPenHookCallback, SetResultsHookHREC, GetPenlnput

282 Programmer's Guide to Pen Services for Microsoft Windows 95

SetPenHookCaliback

Parameters

Return Value

Comments

See Also

1.0 2.0

SetPenHookCallback represents the name of the callback function that the lpfn
argument of SetPenHook points to. An application can use any name.

SetPenHook,PENPACKET

SetPenMisclnfo

Parameters

1.0 2.0

Sets constants pertaining to the pen system.

LONG SetPenMisclnfo(UINTwParam, LPARAM IParam)

wParam
Specifies the identifier of the pen system measurement to set. The identifier must
be a PMI_ value, and may be combined with PMI_SA VE (to force an immedi­
ate initialization file update) using the bitwise-OR operator for some values. See
the following table for the possible PMI_ values in wParam.

Return Value

Comments

SetPenMisclnfo 283

IParam
Specifies the value of the pen system measurement to set. Depending on the
value of wParam (listed in the first column of the table below), IParam can be
the address of a structure or a value, as described here:

wParam constant

PMCBEDIT

PMCENABLEFLAGS

PMCPENTIP

PMCTIMEOUT

PMCTIMEOUTGEST

PMC TIMEOUTSEL

IParam description

IParam is the address of a BOXEDITINFO
structure.

IParam is a WORD value.

IP aram is the address of a PEN TIP structure.

IParam is a UINT value.

IParam is a UINT value.

IParam is a UINT value.

Returns PMIR_OK if successful; otherwise, returns one of the following negative
error values:

Constant

PMIR_INDEX

PMIR_INIERROR

PMIR_INV ALIDBOXEDITINFO

PMIR_NA

PMIR_VALUE

Description

wParam is out of range.

Error writing to PENWIN .INI file.

BOXEDITINFO structure is invalid.

Support for this value of wParam is not
available.

IParam is invalid.

The type of information SetPenMisclnfo sets depends on wParam. The fun,ction
is provided for system applications such as Control Panel. User applications should
not generally call SetPenMisclnfo.

A WM_PENMISCINFO message is posted to all top-level windows whenever
SetPenMisclnfo successfully changes a setting, forwarding the value for wParam.
In the case of PM I_BED IT, a WM_PENMISC message is also broadcast to ensure
compatibility with version 1.0 of the Pen API. The wParam is set to
PMSC_BEDITCHANGE and IParam is a far pointer to a BOXEDITINFO
structure.

SetPenMisclnfo cannot set all the values available in GetPenMisclnfo because
certain values are determined by the system. These values are PMI_SYSREC,
PMI_CXTABLET, PMI_CYTABLET, PMI_SYSFLAGS, PMI_TICKREF,
PMI_INDEXFROMRGB, and PMI_RGBFROMINDEX.

The flag PMI_SAVE can be combined with the wParam identifier for the following
values: PMI_BEDIT, PMI_ENABLEFLAGS, PMI_PENTIP, PMI_ TIMEOUT,
PMI_TlMEOUTGEST, andPMI_TIMEOUTSEL. This forces Windows to
immediately update its initialization information.

284 Programmer's Guide to Pen Services for Microsoft Windows 95

Example The following code sample changes the pen color to red and the time out to a half
second (500 milliseconds), then forces a save-file update:

See Also

PENTIP tip;

GetPenMisclnfo(PMI_PENTIP, (LPARAM)(LPPENTIP) &tip);
tip.rgb = RGB(255, 0, 0);
SetPenMisclnfo(PMI_PENTIP, (LPARAM)(LPPENTIP) &tip);
SetPenMisclnfo(PMI_TIMEOUT I PMI_SAVE, (LPARAM)500);

GetPenMiscInfo, WM_PENMISCINFO, PMI_

SetRecogHook

Parameters

1.0 2.0

Installs and removes a recognition hook. This function works only for Pen API
version \1.0 recognizers accessed through Recognize or RecognizeData.

Note This function is provided only for compatibility with version 1.0 of the Pen
API and will not be supported in future versions. Use SetResultsHookHREC
instead.

BOOL SetRecogHook(UINT uScope, UINT uSetOp, HWND hwndHook)

uScope
Scope of hook. The hook parameter uSetOp determines the scope of the hook.
The following table lists the HWR_ values for uSetOp:

Constant

HWR_RESULTS

Description

The hook window receives a WM_HOOKRCRESULT
message before a WM_RCRESULT message is sent
to the target window.

The hook window receives the message
WM_HQOKRCRESULT before a WM_RCRESULT
message is sent to the target window if the target
window belongs to the same task as the window that
set an HWR_APPWIDE hook. This is useful for
implementing application-wide gestures.

The RCRT_ALREADYPROCESSED flag is set in the
wResultsType member of the RCRESUL TS
structure sent with WM_RCRESULT if an
application-wide hook has already processed the data.

Return Value

Comments

See Also

SetResultsHookHREC 285

uSetOp
Parameter to determine whether hook is set or removed. The operation param­
eter uSe tOp determines whether the hook is set or removed. The following table
lists the HKP _ values for uScope:

Constant

HKP _SETHOOK

HKP_UNHOOK

hwndHook
Handle to a window.

Description

Installs a hook.

Removes function from hook list.

Returns TRUE if successful; otherwise, FALSE.

SetRecogHook enables a version 1.0 application to examine the results of recog­
nition before they are sent to the target application.

The hook message is WM_HOOKRCRESULT. The wParam and IParam param­
eters are the same as for the WM_RCRESUL T message. If the window procedure
that receives the WM_HOOKRCRESUL T message returns FALSE, the message
WM_HOOKRCRESUL T is not sent to any of the remaining hooks in the chain.

No drawing should occur during the processing of the WM_HOOKRCRESULT
and before recognition is complete. Drawing at these times could cause timing
problems, with ink reappearing in formerly invisible controls as they are redrawn.

SetResultsHookHREC

SetResultsHookHREC

Parameters

2.0

Sets up a hook callback function for recognition results.

HRECHOOK SetResultsHookHREC(HREC hrec,
HRCRESULTHOOKPROC IpfnHook)

hrec
Module handle of the recognizer library whose results are to be hooked. If hrec
is set to NULL, the hook function specified in IpfnH ook receives results from
the system default recognizer. If hrec is set to SRH_HOOKALL, the hook func­
tion receives results for all recognizers the application has installed, including
the system recognizer.

IpfnHook
Address of the hook function.

286 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

See Also

Returns a handle to the installed hook if successful; otherwise, the return value is
NULL. The application must provide this handle when calling
UnhookResultsHookHREC to remove the hook.

An application can set multiple hooks. The system calls the hooks in reverse order
-that is, the most-recently-set hook is called first, then the previous hook, and so
on. If a hook function captures a result, the function that requested the results
returns HRCR_HOOKED to the application.

ResultsHookHREC, UnhookResultsHookHREC

SetStrokeAttributes

Parameters

2.0

Sets attributes of a stroke or of a class of strokes in an HPENDATA object.

int SetStrokeAttributes(HPENDAT A hpndt, UINT iStrk, LPARAM IParam,
UINT uOption)

hpndt
Handle to the HPENDATA object.

iStrk
Zero-based stroke index. A value of IX_END can be used to specify the last
available stroke in the pen data.

IParam
A pointer to a structure (cast to the LP ARAM type), or a byte, word, or double­
word value, depending on uOption. This parameter cannot be NULL.

SetStrokeAttributes 287

uOption
Specifies the attributes to set. This parameter has one of the following values:

Constant

SSA_PENTIPCLASS

SSA_USERCLASS

Description

Set the up and down state of the pen tip for the stroke
specified by iStrk. IParam is nonzero to make it a
downstroke or ° to make it an upstroke.

Set the pen-tip characteristics (color, width, nib type)
used by the stroke specified by iStrk. IParam is a
pointer to a PENTIP structure. If this attribute does
not already exist in the stroke class table, a new entry
for this type of stroke is created. There can be up to
255 different types of strokes.

Set the pen-tip characteristics (color, width, nib) for
all strokes of which the stroke specified by iStrk is a
member. IParam is a pointer to a PENTIP structure.
If the new type already exists in the stroke class table,
the types are merged.

Set the selection status of the stroke specified by iStrk.
IP aram is nonzero to select it or ° to deselect it.

Set the absolute time of the stroke. IParam is a pointer
to an ABSTIME structure. The sec member of the
ABSTIME structure specifies the number of seconds
since Jan 1, 1970, and the ms member specifies the
number of milliseconds offset from that time to the
beginning of the stroke.

Set the user value for the stroke specified by iStrk.
IParam is a BYTE, WORD, or DWORD value, and
the pen data must have been created with the
corresponding size allocated for user values.

Set the user value for the class of strokes of which the
stroke specified by iStrk is a member. IParam is a
BYTE, WORD, or DWORD value, and the pen data
must have been created with the corresponding size
allocated for user values.

288 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

See Also

)

Returns PDR_ OK if successful; otherwise, returns one of the following negative
values: .

Constant

PDR_COMPRESSED

PDR_ERROR

PDR_MEMERR

PDR_PNDTERR

PDR_SCTERR

PDR_STRKINDEXERR

PDR_TIMESTAMPERR

PDR_ VERSIONERR

Description

Pen data is compressed.

Parameter or other unspecified error.

Memory error.

Invalid pen data.

Stroke class table may be full, or related error.

Invalid stroke index.

Timing information was removed.

Could not convert old pen data.

The bounding rectangle of the pen data is recalculated each time the SSA_DOWN
option is used, because the rectangle represents the bounds of only the pen-down
points. Setting a pen-up point to the down state simply adds (union) the bounding
rectangles of the existing pen data and the stroke. Setting a pen-down point to the
up state is more calculation-intensive, however, since the bounding rectangle must
be calculated from all of the remaining strokes.

CreatePenDataEx, GetStrokeAttributes, GetStrokeTableAttributes,
SetStrokeTableAttributes, PENTIP

SetStroke TableAttri butes

Parameters

2.0

Sets attributes of a stroke's class within an HPENDATA object. (The class is an
entry in a table stored in the PENDAT AHEADER structure. Modifying the table
entry affects all the strokes described by the entry.)

int SetStrokeTableAttributes(HPENDAT A hpndt, DINT iTblEntry,
LPARAM IParam, DINT uOption)

hpndt
Handle to the HPENDA T A object.

iTblEntry
Zero-based table index to the class entry in the pen data header.

IParam
A pointer to a structure (cast to the LP ARAM type), or a byte, word, or
doubleword value, depending on uOption. This parameter cannot be NULL.

Return Value

See Also

SetWordlistCoercionHRC 289

uOption
Specifies the attributes to set. This parameter can be one of the following:

SSA_PENTIPT ABLE
Set the pen-tip characteristics (color, width, nib) of the class of strokes
specified by iTblEntry. IParam is a pointer to a PENTIP structure. All the
strokes sharing this entry in the stroke class table receive the new pen-tip
attribute.

SSA_USERTABLE
Set the user value, if any, of the class of strokes specified by iTblEntry.
IP aram is a byte, word, or doubleword value, and the pen data must have
been created with the corresponding size allocated for user values. All the
strokes sharing this stroke class table entry receive the new user value.

Returns PDR_OK if successful; otherwise, returns one of the following negative
values:

Constant

PDR_ COMPRESSED

PDR_ERROR

PDR_MEMERR

PDR_PNDTERR

PDR_SCTERR

PDR_ VERSIONERR

Description

Pen data is compressed.

Parameter or other unspecified error.

Memory error.

Invalid pen data.

Stroke class table may be full, or related error.

Could not convert old pen data.

CreatePenDataEx, GetStrokeAttributes, GetStrokeTableAttributes,
SetStrokeAttributes, PENTIP

SetWordlistCoercionHRC

Parameters

2.0

Specifies to what degree input must match a word list set into an HRC.
SetWordlistCoercionHRC determines the influence a recognizer's word list or
dictionary has on the recognizer's guesses.

int SetWordlistCoercionHRC(HRC hrc, UINT uCoercion)

hrc
Handle to the HRC object.

290 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

See Also

uCoercion
Coercion flag. This can be one of the following:

SCH_ADVISE
The word list serves only to advise the recognizer, but lacks a strong degree
of influence. Recognition results are not strongly coerced to match the word
list.

SCH_FORCE
If the recognizer's guess is not found in the word list, the closest matching
entry in the list is· returned. For example, if the recognizer interprets writing
as "Cana", it returns "Canada" from a word list of country names.

SCH_NONE
Do not coerce. This flag can be used to tum off a previous request.

Returns HRCR_ OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_MEMERR
HRCR_UNSUPPORTED

Description

Invalid parameter or other error, including an attempt to
set coercion with no word lists set into the recognition
context.

Insufficient memory.

The recognizer does not support this function.

The default type of coercion a recognizer provides is SCH_ADVISE. That is,
results are not strongly coerced to any word list that might be set into a recognition
context.

Coercion is used only if a word list (HWL) has actually been set into an HRC
with SetWordlistHRC, or if the recognizer's dictionary is enabled by
EnableSystemDictionaryHRC. If the HRC is configured with a word list and
the recognizer's dictionary is also enabled, coercion is done on both; the priority
depends on the recognizer.

CreateHWL, GetWordlistCoercionHRC

SetWordlistHRC
2.0

Sets a word list into a recognition context HR C object.

int SetWordlistHRC(HRC hrc, HWL hwl)

Parameters

Return Value

Comments

See Also

ShowKeyboard 291

hrc
Handle to theHRC object.

hwl
Handle to a word list to use, or NULL. A value of NULL means that the recog­
nizer should not constrain recognition based on any word list, including its own
dictionary .

Returns HRCR_OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

HRCR_UNSUPPORTED

Description

Invalid parameter or other error.

Insufficient memory.

The recognizer does not support this function.

Specifying NULL for hrc does not destroy the word list specified by hwl. Appli­
cations must call Destroy HWL to destroy a word list.

Only one word list can be set into an HRC at a time. This is independent of
the recognizer's dictionary, which can be manipulated through the function
EnableSystemDictionaryHRC.

For a description of word lists and how a recognizer uses them, see "Configuring
the HRC" in Chapter 5, "The Recognition Process."

CreateHWL, DestroyHWL

ShowKeyboard
1.0 2.0

Shows or hides the on-screen keyboard. (Not supported in Japanese version.)

Note This function is provided only for compatibility with version 1.0 of the Pen
API, and will not be supported in future versions. It is not supported for 32-bit
appli-cations. Applications should interface directly with the on-screen keyboard.

BOOL ShowKeyboard(HWND hwnd, UINT wCommand, LPPOINT lppt,
LPSKBINFO lpSKBlnfo)

292 Programmer's Guide to Pen Services for Microsoft Windows 95

Parameters

Return Value

Comments

hwnd
Handle of window invoking the on-screen keyboard.

wCommand
A show request and optional keypad. The values for the show requests are
listed in the "Comments" section below.

lppt .
Address of a POINT structure containing the keyboard position in screen
coordinates. If NULL, the keyboard appears centered on the display.

lpSKBlnfo
Address of an SKBINFO structure to be filled with values for the current
keyboard. This parameter is ignored if NULL. If the hwnd member of the
SKBINFO structure is NULL, no on-screen keyboard has been loaded.

Returns TRUE if successful; otherwise FALSE.

Any user action on the keyboard itself overrides the function requests. For example,
if the user closes the on-screen keyboard, the keyboard becomes unregistered for
all windows in all applications. If the user minimizes the keyboard, the active
SKBINFO structure is changed to reflect the new state.

ShowKeyboard tracks registration information for up to 20 window handles. If one
applIcation displays the keyboard and then another one does the same thing, both
applications must request that the keyboard be hidden before it actually disappears.

The following SKB_ requests can be specified in the wCommand parameter:

Constant

SKB_HIDE

Description

Hides the on-screen keyboard. This request may not
actually hide the keyboard if another application is also
using it. The command decrements the use count for the
keyboard. SKB_HIDE automatically loads the on-screen
keyboard if it is not already present.

Returns the current state of the keyboard pointed to
by the IpSKBlnfo parameter without invoking a new
keyboard state. This command does not automatically
load the on-screen keyboard.

Shows the on-screen keyboard in a restored state at
the most recently used screen location. This command
increments a window-use count. SKB_SHOW auto­
matically loads the on-screen keyboard if it ~s not
present.

Example

ShowKeyboard 293

The SKB_SHOW command in the wCommand parameter can be combined using
the bitwise-OR operator with any of the command or keypad requests listed in the
following tables:

Constant

SKB_CENTER

SKB_MINIMIZE

Description

Centers the keyboard on the display. This command
has higher priority than SKB_MOVE.

Displays the on-screen keyboard in a minimized state.
This command can be used with SKB_CENTER or
SKB_MOVE. If it is used with SKB_MOVE, the loca­
tion specified will be used when the keyboard is
restored.

Moves the keyboard to the location specified by the lppt
parameter. If lppt is NULL, the keyboard is centered on
the screen. If it is not NULL, lppt specifies a pointer to
the x and y screen coordinates of the upper-left comer of
the restored keyboard.

The following keypad requests can be used with SKB_SHOW in the wCommand
parameter. The SKB_BASIC, SKB_FULL, and SKB_NUMPAD constants can not
be combined with the OR operator:

Constant

SKB_BASIC

SKB_FULL

SKB_NUMPAD

Description

Switches the keyboard to a partial keyboard with no
extended keys.

Switches the keyboard to the fulllOl-key display.

Switches the keyboard to a partial keyboard consisting
only of ESC, TAB, SHIFT, and the numeric keypad.

The following three bitmaps are provided for owner-draw push buttons that
can be used to invoke the on-screen keyboard. The application must process
WM_DRA WITEM and other button-related code. On-screen keyboard push
buttons should behave the same way as other standard buttons (for example, the
Minimize button) and take the appropriate action when a button-up message is
received following a button-down message. .

Constant

OBM_SKBBTNUP

OBM_SKBBTNDOWN

OBM_SKBBTNDISABLED

Description

Push button is up.

Push button is down.

Push button is disabled.

The up bitmap, for example, can be loaded as shown in the following code sample:

HANDLE hDLL = GetSystemMetrics(SM_PENWINDOWS);
HBITMAP hBitmap = LoadBitmap(hDLL.

MAKEINTRESOURCE(OBM_SKBBTNUP));

294 Programmer's Guide to Pen Services for Microsoft Windows 95

The application must call the Windows DeleteObject function to delete each bit­
map handle returned by the Windows LoadBitmap function.

The button should be left in the up state after it is released. If the user closes the
keyboard and the buttons are up, they will still be up the next time the keyboard is
opened. The following code sample retrieves the current keyboard and restores the
current state:

#include <penwin.h>

if (ShowKeyboard(hwnd, SKB_SHOW, NULL, NULL)) II Nonzero: no error.
{

II Perform some tasks.

ShowKeyboard(hwnd, SKB_HIDE, NULL, NULL);

else
ErrorMsg("Unable to use Screen Keyboard");

The following code sample moves the keyboard and then puts it back into its
starting position:

SKBINFO skbinfo;
WORD wCommand SKB SHOW I SKB_MOVE;
POINT pnt;

pnt.x = wSKBLeft;
pnt.y = wSKBTop;

II Show the keyboard.

II Initialize point.

ShowKeyboard(hwnd, wCommand, &pnt, &skbinfo);

II Now restore the keyboard.

if (skbinfo.fVisible)

else

wCommand = SKB_SHOW I SKB_MOVE I
(skbinfo.fMinimized ? SKB_MINIMIZED 0);

wCommand = SKB_HIDE;

ShowKeyboard(hwnd, wCommand, (LPPOINT)(&skbinfo.rect), NULL)

Startlnking

Parameters

Return Value

Comments

Startlnking 295

2.0

Starts inking feedback while pen input is being collected.

int Startlnking(HPCM hpcm, UINT idEvent, LPINKINGINFO lpinkinginfo)

hpcm
Handle to the current collection. This is the return value from StartPenInput.

idEvent
The identifier of the packet at which to start inking.

lpinkinginfo
Address of an INKINGINFO structure, used to specify the characteristics of
the ink. This parameter can be NULL to use the default ink characteristics.
Otherwise, the structure's cbSize member must be initialized with
sizeof(INKINGINFO).

Returns PCMR_ OK if inking started successfully; otherwise, returns one of the
following:

Constant

PCMR_DISPLA YERR

PCMR_INV ALIDCOLLECTION

Description

There is no display device, or it was unable
to ink at this time, or there was an error in
setting the pen-tip characteristics.

The INKINGINFO structure contains
invalid values, or there was some other
unspecified error.

The hpcm handle is invalid because the
calling application did not start input by
calling StartPenInput.

The idEvent parameter is invalid.

An application calls Startlnking to track pen movement while the pen tip is down.
When pen input is started by calling the StartPenInput function, Windows
initializes the internal INKINGINFO structure as follows:

• The wFlagsmember is set to PII_INKPENTIP I PII_INKCLIPRECT.

• The tip member is set to the system default pen tip, as obtained by calling the
GetPenMiscInfo function.

• The rectClip member is set to the client area, in screen coordinates, of the
window that was used in the call to the StartPenInput function.

296 Programmer's Guide to Pen Services for Microsoft Windows 95

Example

See Also

The first call to Startlnking with the lpinkinginfo parameter set to NULL starts
inking with the settings listed above. If the calling application uses a non-NULL
value for lpinkinginfo, the appropriate internal inking parameters are modified
before inking starts, depending on the flags set in the wFlags member of the
INKINGINFO structure. .

Whenever Startlnking is called, the current settings of the internal inking struc­
ture are added to or replaced. Specific values must be set in the members of
INKINGINFO to disable them. Refer to the description of each member in the
INKINGINFO structure for these values.

If a region is passed in for clipping or stopping the ink, the application must destroy
the region. Since a copy is made, the region can be destroyed immediately following
the call to Startlnking. The application can specify either a clip region or a clip
rectangle. Specifying both will result in the clip rectangle being ignored.

The following code example changes the inking tip from the default (as set by a call
to StartPenlnput) to red ink, 5 pixels wide. It also adds an inks top rectangle
(inking stops if the pen touches down inside the inkstop rectangle). The clipping
rectangle remains unchanged from the default settings.

INKINGINFO inkinginfo;

inkinginfo.cbSize = sizeof(INKINGINFO);
inkinginfo.wFlags = PII_INKPENTIP I PII_INKSTOPRECT;
inkinginfo.tip.cbSize = sizeof(PENTIP);
inkinginfo.tip.rgb RGB(255,0,0);
inkinginfo.tip.bwidth = 5;
inkinginfo.rectlnkStop.left = rectlnkTop.top = 0;
inkinginfo.rectlnkStop.right = rectlnkTop.bottom = 100;

ClientToScreen(hwnd, (LPPOINT)&(inkinginfo.rectlnkStop));
ClientToScreen(hwnd, (LPPOINT)&(inkinginfo.rectlnkStop.right));
Startlnking(hpcm, wEventRef, &inkinginfo);

INKINGINFO, StartPenlnput, Stoplnking

StartPenlnput 297

StartPenlnput

Parameters

2.0

Begins collecting information from the pen input stream.

HPCM StartPenInput(HWND hwnd, UINT idEvent, LPPCMINFO IppcmlnJo,
LPINT IpiErrRet)

hwnd
Handle of the window that receives the WM_PENEVENT messages generated
by StartPenInput.

idEvent
Identifies the packet in the global queue of pen packets maintained internally by
the system. The idEvent is the low-order word of the value returned from the
GetMessageExtraInfo function when processing a WM_LBUTTONDOWN
message. For a definition of pen packet, see the description for SetPenHook.

IppcmlnJo
Address of a PCMINFO structure. If NULL, the system creates a default
PCMINFO structure with the following values:

Constant

dwPcm

rectBound

Description

PCM_RECTBOUND I PCM_TIMEOUT I
PCM_TAPNHOLD

The bounding rectangle of the window identified by hwnd

These values determine thatthe input session (a) terminates
when pen activity ceases for a specified time-out period; (b)
terminates when the pen moves outside the bounds of the
window; or (c) does not begin at all if the user taps and
holds the pen for a specified time-out period (about one-half
second). This "tap-and-hold" gesture switches the system
from input mode to selection mode. Usually, the cursor
changes from a pen (indicating input) to an upside-down
arrow (indicating selection) to acknowledge the switch.
Subsequent pen movement then behaves as a moUse with the
left button held down. This allows the user to make
selections as though dragging the mouse.

298 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

lpiErrRet
Address of an integer that receives a return code when StartPenlnput termi­
nates. If NULL, no return code is provided. If not NULL, the return code is one
of the following values:

Constant

PCMR_OK

PCMR_ALREADYCOLLECTING

PCMR_ERROR

PCMR_INV ALID_PACKETID

PCMR_SELECT

PCMR .. TAP

Description

Pen collection was successfully started.

StartPenlnput has already been called
for this session.

Illegal parameter or unspecified error.

Invalid idEvent parameter.

Tap-and,..hold gesture detected. Collection
is not started, as described in the
description of the /ppcmlnfo parameter.

The pen has briefly tapped the tablet. This
event may be inadvertent and in any case
does not indicate that the user has started
to write; therefore, collection is not
started.

Returns a handle to the application's queue of pen packets, if successful. Returns
NULL to indicate an error or the detection of a tap or press-and-hold condition.

When this function returns successfully, Windows creates a queue of pen packets
for the calling application. All subsequent pen packets from the pen device, begin­
ning with the packet identified by the idEvent argument, are placed into the queue.
Until a termination condition occurs (as specified in the lppcmlnfo parameter), or
until the application calls StopPenInput, the queue continues to receive all the
packets generated by the pen device as the pen moves.

An application can retrieve all the pen input in its queue of pen packets but should
never destroy the queue.

In event mode (the default mode), the collection session specified by the hpcm of
the GetPenlnput function becomes invalid when the WM_PENEVENT message
(with the PE_ TERMINATED submessage) is removed from the application's mes­
sage queue. This message is posted to the application's message queue either as a
consequence of automatic termination or a call to StopPenlnput.

In polling mode, the application's queue of pen packets is destroyed (and the hpcm
of GetPenlnput becomes invalid) after a successful call to StopPenlnput or a
termination return value from the GetPenlnput function.

Example

StartPenlnput 299

If lppcmlnfo is NULL, a default PCMINFO structure is established with the
dwPcm member set to PCM_RECTBOUND I PCM_TIMEOUT I
PCM_TAPHOLD, the rectBound member set to the bounds of hwnd, and the
dwTimeout member set to the default system time out.

If the dwPcm member of PCMINFO does not have the PCM_DOPOLLING flag
set, WM_PENEVENT messages are sent to the specified window for significant
events such as pen down, pen up, or after some threshold number of points has been
received. Otherwise, the application should poll for data using GetPenInput.

Other bits in the dwPcm member of PCMINFO can be used to determine which
conditions, if any, terminate pen input. An application can also call StopPenInput
to explicitly terminate the input.

The following example initiates pen input in a window procedure on detection of
pen down:

static HPCM vhpcm;
II ... omitted ...

switch (message)
{

case WM_LBUTTONDOWN:
{

II Get extra info associated with event:

DWORD dwExtraInfo = GetMessageExtraInfo();

if (IsPenEvent(message, dwExtraInfo» II Checks PDK bits
{

PCMINFO pcminfo; II Pen collection mode structure

pcminfo.cbSize sizeof(PCMINFO);
pcminfo.dwPcm PCM_RECTBOUND I PCM_TIMEOUT;
pcminfo.dwTimeout = dwTimeOutDefault; II 1 second

II Set inclusion rect to client area, but in screen coords:

GetClientRect(hwnd, &pcminfo.rectBound);
ClientToScreen(hwnd, (LPPOINT) &pcminfo.rectBound);
ClientToScreen(hwnd, (LPPOINT) &pcminfo.rectBound.right);

/

300 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

Stoplnking

Parameters

Return Value

Comments

See Also

II Start gathering input:

if (vhpcm = StartPenInput(hwnd,
LOWORD(dwExtraInfo), &pcminfo, NULL))

return lL; II We handled it

II Else fall into DefWindowProc below ...

break;

GetPenInput, St()pPenInput, PCMINFO WM_PENEVENT, PCM_

2.0

Stops inking feedback.

int StopInking(HPCM hpcm)

hpcm
Handle to the current collection. This is the return value from StartPenInput.

Returns PCMR_ OK if successful; otherwise, returns the following value:

Constant

PCMR_INV ALIDCOLLECTION

Description

The hpcm handle is invalid, or there is no
collection, or inking has not been started.

Inking must have been started by using the StartInking function for this function
to have any effect.

StartInking

StopPenlnput
2.0

Terminates collection of pen input.

int StopPenInput(HPCM hpcm, UINT idEvent, int nTermReason)

Parameters

Return Value

Comments

See Also

Stop Pen Input 301

hpcm
Handle to the collection of the pen data gathered during the input session.
HPCM stands for "handle to a pen collection mode."

idEvent
The identifier of the packet in the task -specific queue at which the pen input
should be terminated. If this value is PID _CURRENT, pen input stops immedi­
ately (that is, at the latest position in the task queue) and no further input is
collected. The idEvent parameter is the low-order word of the value returned
from the Windows GetMessageExtralnfo function when processing a
WM_LBUTTONDOWN message.

nTermReason
The reason for termination. This value is passed to the termination message
PE_ TERMINATED. It can be one of the following:

Constant

PCMR_APPTERMINATED

PCMR_TERMBOUND

PCMR_TERMPENUP

PCMR_TERMRANGE

PCMR_TERMTIMEOUT

Description

Application tenninated input.

Pen was pressed outside bounding
rectangle or region.

Pen was pressed inside exclusion
rectangle or region.

Pen was lifted from the tablet.

Pen left the tablet's range of sensitivity.

Time-out expired.

Returns PCMR_ OK if successful; otherwise, the return value can be one of the
following:

Constant

PCMR_INV ALIDCOLLECTION

PCMR_INV ALID _PACKETID

Description

The hpcm handle is invalid because the
calling application did not start input with
StartPenlnput .

. idEvent is invalid.

This function allows an application to explicitly terminate pen collection without
waiting for one of the conditions specified by StartPenlnput in the dwPcm
member of PCMINFO.

Due to the asynchronous nature of pen input messages, the application should wait
for the WM_PENEVENT message with wParam set to PE_TERMINATED to
make sure that the pen input process has completely terminated. This does not apply
if the application is using the polling method of pen input.

StartPenlnput

302 Programmer's Guide to Pen Services for Microsoft Windows 95

SymbolToCharacter

Parameters

Return Value

Comments

See Also

1.0 2.0

Converts an array of SYV _ symbol values to an ANSI string.

BOOL SymbolToCharacter(LPSYV lpsyv, int cSyv, LPSTR lpstr,
LPINT lpnConv)

lpsyv
Address of the array of SYV _ symbol values.

cSyv
Count of symbols in the lpsyv array, including the terminating SYV _NULL.

lpstr
Address of a buffer that receives the ANSI string. The buffer should be large
enough to hold at least cSyv number of ANSI characters (including
SYV_NULL).

lpnConv
If not NULL, lpnC onv contains the number of symbols converted when the
function returns. If NULL, this parameter is ignored.

Returns TRUE if successful. If one or more symbols cannot be converted to ANSI,
the return value is FALSE.

For ANSI characters, the size of the lpstr buffer must be at least cSyv bytes. For
double-byte characters (kanji, for example), the buffer size must be at least (2 *
cSyv) bytes. The SymbolToCharacter function converts at most cSyv symbol
values from lpsyv and places the equivalent ANSI characters in the lpstr buffer.
The conversion proceeds until an SYV _NULL value is encountered or until cSyv
symbols have been converted. An SYV _NULL is converted to O. The actual
number of symbols converted is returned in lpnConv if lpnConv is not NULL.

CharacterToSymbol, SYG, SYV _

TargetPoints
2.0

Determines the target to which pen data belongs.

int TargetPoints(LPTARGINFO lptarginfo, LPPOINT lppt,
DWORD dwReserved, UINT fuReserved, LPSTROKEINFO lpsi)

Parameters

Return Value

Comments

See Also

TPtoDP

Parameters

Return Value

Comments

See Also

TPtoDP 303

Iptarginfo
Address of a targeting data TARGINFO structure.

Ippt
Address of a buffer of POINT structures in tablet coordinates.

dwReserved
This parameter is reserved for future use and its value is ignored.

fuReserved
This parameter is reserved for future use and its value is ignored.

Ipsi
A pointer to a STROKEINFO structure. This structure holds information about
the stroke being targeted.

Returns an array index, starting from 0, of the target in the rgTarget array of the
T ARGINFO structure, if successful. If no suitable target is found, or if there are
no points to target, TargetPoints returns -1.

To select the desired targeting behavior, the application should set the dwFlags
member of the T ARGINFO structure that Iptarginfo points to.

GetPenInput, TARGET, TARGINFO

1.0 2.0

Converts points in tablet coordinates to display (screen)coordinates.

BOOL TPtoDP(LPPOINT Ippt, int cPnt)

lppt
Address of an array of POINT structures to convert to display coordinates. This
parameter cannot be NULL.

cPnt
Number of POINT structures to convert.

Returns TRUE if the conversion was successful; otherwise, returns FALSE.

The conversion fails if some tablet points lie outside the region mapped to the
screen.

Because of rounding errors, the DPtoTP and TPtoDP functions are not guaranteed
to be perfect inverses of each other.

DPtoTP

304 Programmer's Guide to Pen Services for Microsoft Windows 95

TrainContext

Parameters

Return Value

Comments

1.0 2.0

Provides the recognizer a previous recognition result that may contain errors, plus
the correct interpretation of the raw data.

Note This function is provided only for compatibility with version 1.0 of the Pen
API and will not be supported in future versions. Use TrainHREC instead.

BOOL TrainContext(LPRCRESUL T lprcresult, LPSYE lpsye, int csye,
LPSYC lpsyc, int csyc)

lprcresult
Address of the RCRESUL T structure containing the handle to the pen data that
contains the raw data and the recognizer's original interpretation of that data.
This parameter cannot be NULL.

lpsye
Address of an array of SYE structures that specify the correct interpretation of
the raw data. The values of the iSyc members of these structures index the SYC
structures pointed to be the lpsyc parameter.

csye
The number of SYE structures in the lpsye array.

lpsyc
An array of SYC structures that establish the mapping between the raw data and
the characters in the hpendata member of the structure pointed to by the
lprcresult parameter.

csyc
The number of SYC structures in the lpsyc array.

Returns TRUE if the ink is accepted for training; otherwise, returns FALSE.

TrainContext is called by an application with a recognition result that may contain
mistakes, along with a correct interpretation, so that the recognizer can learn from
the mistake and improve subsequent recognition. A second, simpler training func­
tion for 1.0 recognizers is provided by Trainlnk.

TrainContext internally calls the function TrainContextInternal exported by the
recognizer identified by the hrec member of the R C structure pointed to by the Iprc
member of the RCRESUL T structure. A version 1.0 recognizer should export both
TrainContextInternal and Trainlnklnternal, but can simply return FALSE from
both functions if the recognizer does not support this type of training.

See Also

TrainContext 305

When a training application is able to provide contextual information (such as seg­
mentation suggestions) to the version 1.0 recognizer, it calls the TrainContext
function. The lprcresult parameter points to an RCRESULT structure that contains
the results of a previous recognition. The raw data is also contained in the
hpendata member of the structure pointed to be lprcresult.

In addition to providing the incorrect interpretation of the data (by means of the
symbol graph, the Ipsyv member in the RCRESULT structure), a more detailed,
correct interpretation is also provided by the SYE structures and SYC structures.
Because the correct interpretation is passed by SYE structures, it is possible to
suggest segmentation boundaries to the recognizer.

Suppose, for example, that a user writes "Ie," and the recognizer interprets it as
"k". A trainer calls TrainContext using, first, an array of SYC structures that
point to the ink of the "Ie" and, second, the two SYE structures with the SYV
values "1" and "c". These two SYE structures sharethe same index into the lpsyc
array, indicating that both use the ink that was interPreted as "k".

Segmentation errors can be corrected in the other direction as well. Suppose, for
example, the user writes "k" and the recognizer interprets it as "Ie". A trainer could
call TrainContext using a single SYE with SYV values equal to "k" and an array
of SYC structures that incorporate the ink the recognizer had previously assigned
to the "1" and the "c".

To train several SYV symbol values to a single piece of ink (for example, a long
stroke that is an "he" ligature), there will be two consecutive SYE structures--one
for the "h" and one for the "e". Both SYE structures have the same iSyc member;
this means that the SYE structures both point to the same ink. A recognizer must
take this into consideration to avoid training the two characters separately using
the same ink for both; that would result in having "he" trained as "he he".

A recognizer can supply its own custom training dialog boxes. An application
should check whether the recognizer supports custom training by calling
ConfigRecognizer with the WCR_ TRAIN subfunction.

The trainer does not display an error message if Trainlnk or TrainContext returns
FALSE. Error messages that occur when training fails must be handled by the
recognizer.

ConfigRecognizer, Trainlnk, TrainHREC, SYC, SYE, SYV_

306 Programmer's Guide to Pen Services for Microsoft Windows 95

TrainHREC

Parameters

Return Value

Comments

2.0

Passes ink and its symbol interpretation to the recognizer for training.

int TrainHREC(HREC hrec, LPSYV lpsyv, UINT cSyv, HPENDAT A hpndt,
UINT uConflict)

hrec
Module handle of the recognizer library. If this value is NULL, the system
default recognizer is used.

lpsyv
Address of an array of symbols to train.

cSyv
Count of symbols in lpsyv. This must be greater than O.

hpndt
Handle to an HPENDATA object.

uConflict
One of the following TH_ values that specify how to handle training conflicts:

Constant Description

Query the user if the proposed training conflicts with
symbols in the database.

Perform the training without querying the user, even if
there is a conflict with the database.

Abandon the training if there is any conflict with the
database andretum an error (HRCR_CONFLICT).

Returns HRCR_OK if training is successful; otherwise, returns one of the following
negative values:

Constant

HRCR_ERROR

HRCR_CONFLICT

HRCR_INV ALIDPNDT

HRCR_MEMERR

HRCR_UNSUPPORTED

Description

Invalid parameter or other error.

TH_SUGGEST was specified but there was a conflict
with the database. No training was done.

Invalid HPEND A T A object.

Insufficient memory.

The recognizer does not support this function.

Typically, an application calls TrainHREC to train a single symbol. In other
words, lpsyv points to a single symbol that is followed by an SYV _NULL termi­
nator. However, multiple symbols-for example, those representing the character
string "ng"-may also be trainable, depending on the recognizer.

See Also

Trainlnk

Parameters

Return Value

Trainlnk 307

If uConflict is TH_QUERY, the recognizer is free to prompt the user with a dialog
box to resolve training conflicts. If it is TH_FORCE, the training is performed
regardless of conflicts and the original conflicting data may be lost. TH_SUGGEST
trains the recognizer only if there are no conflicts; otherwise, the call fails and
returns HRCR_CONFLICT.

If the user picks a meaning for some ink from a list of alternatives, such as in a
boxed edit control, the application can elect to train the recognizer with this infor­
mation. In this case, either THYORCE or TH_SUGGEST is a suitable value for
uConflict.

Training gestures depends on the recognizer. The Microsoft Handwriting
Recognizer (GRECO.DLL) does not support training for gestures.

CreateCompatibleHREC

1.0 2.0

Provides raw data and a correct interpretation of the data to the recognizer.

Note This function is provided only for compatibility with version 1.0 of the Pen
API and will not be supported in future versions. Use TrainHREC instead.

BOOL TrainInk(LPRC lprc, HPENDAT A hpndt, LPSYV lpsyv)

lprc
Address of an RC structure, or NULL. If this parameter is NULL, the RC
Manager replaces it with a pointer to the global RC structure, then calls the
recognizer associated with the global RC. If lprc is not NULL, the RC Manager
calls the recognizer identified by the hrec member of the R C structure.

hpndt
Handle to an HPENDATA object containing the ink to be trained. This
parameter cannot be NULL.

lpsyv
Pointer to a string of SYV symbol values terminated by SYV _NULL. This
parameter cannot be NULL.

Returns TRUE if the ink described by the pen data could be trained; otherwise, it
returns FALSE.

308 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

See Also

Applications call Trainlnk with raw data accompanied by a correct interpretation
of the data, so that the recognizer can improve subsequent recognition. A second,
more complex training function for version 1.0 recognizers is provided by
TrainContext.

Trainlnk is called by an application to access the Trainlnklnternal function in
the recognizer library. A private 1.0 recognizer must export both Trainlnklnternal
and TrainContextInternal, but the functions can simply return FALSE if the
recognizer does not support this type of training.

Trainlnk provides the lowest level of basic shape training. It requests the recog­
nizer to assign the meaning in lpsyv to the ink in hpndt. The recognizer should
interpret the ink to meet that request.

In the most common case, lpsyv points to a single character, and the recognizer will
train a new shape based on the ink and that character. In other cases, multiple SYV
symbol values can be passed, indicating that the ink represents multiple characters.
The recognizer must decide whether to simply add a new shape with a meaning
based on multiple SYV symbol values or to segment the ink into separate shapes
for each SYV.

An application should check whether a recognizer supports training by calling
ConfigRecognizer with the WCR_TRAIN subfunction.

The trainer does not display an error message if Trainlnk or TrainContext returns
FALSE. Error messages that occur when training fails must be handled by the
recognizer.

ConfigRecognizer, TrainContext, TrainHREC, SYV_

TrimPenData

Parameters

2.0

Removes selected data from an HPENDAT A object.

HPENDAT A TrimPenData(HPENDATA hpndt, DWORD dwTrimOptions,
DWORD dwReserved)

hpndt
Handle to the HPENDATA object.

TrimPenData 309

dwTrimOptions
The following option flags are listed in the order in which the trimming opera­
tions are performed. For example, OEM data is removed (TPD_OEMDATA)
before duplicate points (TPD _COLLINEAR).

Constant

TPD _RECALCSIZE

TPD_UPPOINTS

PHW _PRESSURE

PHW_HEIGHT

PHW _ANGLEXY

PHW_ANGLEZ

PHW _BARRELROTATION

PHW _OEMSPECIFIC

PHW_PDK

TPD_OEMDATA

TPD _PENINFO

TPD_USER

TPD_TIME

TPD _EMPTYSTROKES

TPD_EVERYTHING

dwReserved
Must be O.

Description

Recalculate size of pen data and reallocate if
smaller.

Remove pen-up strokes from the HPENDAT A
object.

Remove OEM pressure information.

Remove OEM height information.

Remove OEM XY -angle information.

Remove OEM Z-angle information.

Remove OEM barrel rotation information.

Remove OEM-specific value information.

Remove per-point Pen Driver Kit (PDK_)
information.

Remove all OEM and PDK information, but not
stroke tick or user data.

Remove all OEM values and PDK data.

Remove PENINFO structure from header. Note
that any OEM information present is discarded.

Remove collinear and duplicate (coincident)
points. There may not be any OEM data.

Remove per-stroke user information.

Remove per-stroke timing information.

Remove all strokes with 0 points.

Remove everything possible except pen-down
strokes. This includes both TPD _ and PHW _
flags.

310 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

See Also

Returns PDR_ OK if successful; otherwise, it returns one of the following negative
values:

Constant

PDR_COMPRESSED

PDR_ERROR

PDR_MEMERR

PDR_OEMDATAERR

PDR_PNDTERR

PDR_ VERSIONERR

Description

The pen data was compressed.

An unspecified memory error occurred.

Memory error.

The pen data does not have specific pressure or height
(PHW _) information. Thus, the specified PHW _ data
could not be selectively trimmed. Use TPD_OEMDATA
to remove all OEM information.

Invalid pen data.

A version 1.0 pen data object could not be converted to
the 2.0 format.

TrimPenData supplements the capabilities of CompressPenData. Together, these
two functions replace the version 1.0 Pen API function CompactPenData, which
is supported for compatibility only.

The data that hpndt points to must not be compressed. If it is, TrimPenData simply
retrieves the original (untrimmed) pen data.

CompactPenData, CompressPenData, PDK_

Un hookResultsHookH REC

Parameters

2.0

Unhooks a recognizer result hook set with the SetResllItsHookHREC function.

int UnhookResllItsHookHREC(HREC hrec, HRECHOOK hHook)

hrec
Module handle of the recognizer library. If this value is NULL, the system
default recognizer is used.

hHook
Handle of the hook function.

Return Value

See Also

Un install Recognizer 311

Returns HRCR_ OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

Description

Invalid parameter or other error.

Insufficient memory.

ResultsHookHREC, SetResultsHookHREC

Un install Recog n izer

Parameters

Return Value

Comments

See Also

1.0 2.0

Unloads a recognizer previously installed with InstallRecognizer.

void UninstallRecognizer(HREC hrec)

hrec
Recognizer handle.

This function does not return a value.

Windows maintains a use count for all installed recognizers and doesn't unload
a recognizer until the last remaining client application has called
UninstallRecognizer. For every call an application makes to InstallRecognizer, it
must must make a matching call to UninstallRecognizer.

Before unloading a recognizer library, the system calls the recognizer's
ConfigRecognizer function with the subfunction WCR_ CLOSERECOGNIZER.

It is not necessary to uninstall the default recognizer; an application must uninstall
all recognizers that it explicitly loads.

InstallRecognizer, ConfigHREC

312 Programmer's Guide to Pen Services for Microsoft Windows 95

UpdatePenlnfo

Parameters

Return Value

Comments

See Also

WriteHWL

1.0 2.0

Notifies the RC Manager that a PENINFO value has changed. This function is
called by pen drivers compatible with version 1.0 of the Pen API.

Note This function is provided only for compatibility with version 1.0 of the Pen
API and will not be supported in future versions.

void UpdatePenInfo(LPPENINFO lppeninfo)

lppeninfo
Address of a PENINFO structure containing the new information.

This function does not return a value.

A PENINFO value may change when the user alters the driver parameters in
the configuration dialog box. When this happens, the pen driver must call
UpdatePenInfo to notify the RC Manager of the change.

PENINFO

2.0

Writes a word list to a file.

int WriteHWL(HWL hwl, HFILE hfile)

Parameters hwl
Handle to a word list.

hfile
A handle to a file previously opened for writing.

Return Value

Comments

See Also

WriteHWL 313

Returns HRCR_ OK if successful; otherwise, returns one of the following negative
values:

Constant

HRCR_ERROR

HRCR_MEMERR

Description

Invalid parameter, or file or other error.

Insufficient memory.

The words are saved as ANSI text, one word per line, followed by a carriage return
and linefeed. The file must already exist and be open for writing. An application
can append to the file by positioning the file pointer at the end before calling
WriteHWL. In this context, a word can represent a phrase and contain spaces
or other noncharacters, such as "New York" and "ne're-do-well."

For a description of word lists and how a recognizer uses them, see "Configuring
the HRC" in Chapter 5, "The Recognition Process."

CreateHWL, ReadHWL

CHAPTER 11

Pen Application Programming
Interface Structures

ABSTIME

Members

See Also

This chapter describes in alphabetical order the structures defined by the Pen
Application Programming Interface (API). Each entry includes the structure
typedef definition, descriptions of the structure members, and cross-references
where appropriate. The entry heading identifies the Pen API version, such as 1.0
or 2.0, that supports the structure.

2.0

Absolute time structure.

typedef struct
DWORD sec;
UINT ms;

ABSTIME;

sec

ms

Number of seconds since 12:00 A.M. of January 1, 1970, as returned by the C
run time library time function.

Additional offset in milliseconds. This member can be any value from 0 through
999.

GetStrokeAttributes, SetStrokeAttributes, INTERVAL

316 Programmer's Guide to Pen Services for Microsoft Windows 95

ANIMATEINFO

Members

2.0

Animation information used by the DrawPenDataEx function for animation
control.

typedef struct {
DWORD cbSize;
UINT uSpeedPct;
UINT uPeriodC8;
UINT fuFlags;
LPARAM 1 Pa ram;
DWORD dwReserved;

ANIMATEINFO;

cbSize
Size of this structure in bytes.

uSpeedPct
Drawing speed, expressed as a percentage of the user's entry speed. To redraw
pen data at the same speed at which it was created, this value should be set to
100. A value of 0 halts drawing. Setting uSpeedPct to 0 is valid only if the
IpfnAnimateCB parameter of DrawPenDataEx is defined. Otherwise, the
drawing halts with no way to restart it. uSpeedPct can be changed by a call­
back function.

uPeriodCB
Callback period in milliseconds. Typical values are 1 (very fast), 250 (fast),
1000 (slow), or 0 (never). Any value in uPeriodCB is ignored if the
DrawPenDataEx argument IpfnAnimateCB is NULL. uPeriodCB may also be
AI_ CBSTROKE, to indicate that the callback should occur after each stroke is
drawn.

fuFlags
Flags that control animation (can be 0). The AI_SKIPUPSTROKES option
specifies that the time taken to account for the points in the up strokes should be
ignored. If this flag is 0, and if the value in uSpeedPct is small enough, there
will be a delay between pen-down strokes, reflecting the user's inter-stroke
delay during creation of the pen data.

Comments

See Also

BOXEDITINFO 317

IParam
Application value to pass to the callback function set up by the /pfnAnimateCB
argument of DrawPenDataEx.

dwReserved
MustbeO.

Before using ANIMA TEINFO, an application must initialize cbSize with
sizeof(ANIMATEINFO).

AnimateProc, DrawPenDataEx

BOXEDITINFO

Members

2.0

Size information for boxed edit control.

typedef struct
int cxBox;
int cyBox;
int cxBase;
int cyBase;
int cyMid;
BOXLAYOUT boxlayout;
UINT wFlags;
BYTE szFaceName[BEI_FACESIZE];
UINT wFontHeight;
UINT rgwReserved[8];

BOXEDITINFO;

cxBox
Width of a single box.

cyBox
Height of a single box.

318 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

cxBase
In-box x-margin to guideline.

cyBase
In-box y-offset from top to baseline.

cyMid
Reserved for future use; must be set to O.

boxlayout
BOXLA YOUT structure.

wFlags
Flags specifying boxed edit options. Currently, the only defined option is
BEIF _BOXCROSS.

szFaceName[BEI_ F ACESIZE]
Font face name, where BEI_FACESIZE is defined as 32.

wFontHeight
Font height.

rgwReserved[8]
Reserved for future use; must be set to O.

BOXLAYOUT

BOXLAYOUT
1.0 2.0

Specifies some of the characteristics of a bedit control. The G UID E and
BOXEDITINFO structures determine the rest. The HE_ GETBOXLA YOUT and
HE_SETBOXLA YOUT wParam values of the WM_PENCTL message retrieve
and set the BOXLA YOUT structure for a bedit control.

Members

Comments

BOXLAYOUT 319

For more details, see the WM_PENCTL message.

typedef struct {
int cyCusp;
int cyEndCusp;
UINT style;
DWORD dwReservedl;
DWORD dwReserved2;
DWORD dwReserved3;

BOXLAYOUT;

cyCusp
Height of the box in pixels when BXS _RECT is specified; otherwise, height of
the cusp in pixels (in comb style).

cyEndCusp
Height of cusps, in pixels, at extreme ends.

style
Bitwise-OR combination of the following BXS_ flags:

Constant

BXS_NONE

BXS_RECT

BXS_BOXCROSS

dwReservedl
Reserved; must be set to O.

dwReserved2
Reserved; must be set to O.

dwReserved3
Reserved; must be set to O.

Description

Default comb style.

Rectangular boxes (instead of comb style).

(Japanese version only.) Rectangular boxes with a
small cross at the center of each cell. Note that any state
set via this flag (or the absence of it) may be overridden
by the user's selection of the BOXCROSS setting in the
Bedit Control Panel.

The following table lists the default values for the BOXLAYOUT structure.

Value

cyCusp

cyEndCusp

style

Description

Equivalent in pixels of BXD_CUSPHEIGHT dialog
units.

Equivalent in pixels of BXD _ENDCUSPHEIGHT
dialog units.

Comb style.

320 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

Figure 11.1 shows the general layout of a boxed edit control. Some of the terms in
the figure are explained in the reference entry for the GUIDE structure. Figure 11.2
shows an individual cell from a boxed edit control.

---------�

1

.-----~I 1
- - - - T - - - 1- - - -1- -'- - 1 1 1

1 1 1 1 1 1 1+ 1

:-~~~~~1~-: [:tl+-:_CYEndCUSP

1 1 1 1 1 1 1
I~I~I~I~I 1 ______ ---

1 1 1 1 1
1 _ _ _ _ L _ _ _ 1- _ _ _ ..J _ _ _ _I cyCusp
1 1 1 1 1

I~I~I·~II .1
1 1 1 1 L-...J 1
1 1 1 1 1
1- - - - - - - - - - - - - - - - -

1 1 1 1
1 1 1 1 1

I~I~I~I~I
1

---------1
1

1 1 1 1

1 - -J- -,- -1- - - - r - ~ - - - -

- -------1

1 1

1 1

: t I I t-: - cyCusp

[

1

1 1
1 ______ ---

cyEndCusp

:tl It-: - cyCusp

[

1

1 1
1 ______ ---

cyCusp .

Figure 11.1 General layout of a boxed edit control

In style BXS-RECT

Figure 11.2 Boxed edit control individual cell

BOXEDITINFO, WM_PENCTL, GUIDE, BXD_

BOXRESULTS 321

BOXRESULTS

Members

See Also

2.0

Contains box results for the GetBoxResultsHRC function.

typedef struct {
int indxBox;
HINKSET hinksetBox;
SYV rgSyv[l];

BOXRESULTS;

indxBox
Index of the box with respect to the G UID E structure.

hinksetBox
An inkset representing the pen data that belongs to the box, if requested by the
GetBoxResultsHRC function. This member can be NULL.

rgSyv[l]
Variable-length array of alternative guesses made by the recognizer. The
guesses are arranged in descending order of confidence, so that the first
alternative in the array is the most likely choice.

GetBoxResultsHRC, GUIDE

322 . Programmer's Guide to Pen Services for Microsoft Windows 95

CALBSTRUCT

Members

1.0 2.0

Pen calibration information.

typedef struct {
int wOffsetX;
int wOffsetY;
int wDistinctWidth;
int wDistinctHeight;

CALBSTRUCT;

wOffsetX
Value in tablet units to add to x -coordinates for proper calibration.

wOffsetY
Value in tablet units to add to y-coordinates for proper calibration.

wDistinctWidth
Specifies the number of distinct x -coordinates the tablet can detect.

wDistinctHeight
Specifies the number of distinct y-coordinates the tablet can detect. The
wDistinctWidth and wDistinctHeight members have the same meanings
and values as the identically-named members in the PENINFO structure.

CTLINITBEDIT 323

CTLINITBEDIT

Members

2.0

Initialization infonnation for a boxed edit (bedit) control.

typedef struct {
DWORD cbSize;
HWND hwnd;
int id;
int wSizeCategory;
WORD wFlags;
DWORD dwReserved;

CTLINITBEDIT;

cbSize
Size of this structure in bytes.

hwnd
Handle of a boxed edit window.

id
Control identifier.

wSizeCategory
Size category, which can be one of the following BESC_ constants:

Constant

BESC_ROMANFIXED

BESC_KANJIFIXED

BESC_USERDEFINED

Description

Use the default size parameters to create the
boxed edit control. This results in the same
behavior as BESC_KANJIFIXED for applications
that have registered themselves through the
use of the SetPenAppFlags function with the
RPCKANJIFIXEDBEDIT flag. For all other
applications, it results in the same behavior as
BESC_ROMANFIXED.

Comb-style bedit control with dimensions
indicated by BXD_ constants (in dialog units).
Meant for use with Roman characters.

(Japanese version only.) Box-style bedit control
with dimensions indicated by BXDK_ constants
(in dialog units). Meant for use with kanji char­
acters. This value should be used by applications
that cannot handle user-defined box sizes.

A bedit control that can handle the box size param­
eters defined by the user. For further details, see
the description for PMSC_BEDITCHANGE in the
reference section for the WM_PENMISC message.

324 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

See Also

wFlags
Flags that detennine certain properties of the boxed edit control. This can be a
combination of the following values:

Constant

CIB_NOGDMSG

CIB_NOACTIONHANDLE

CIB_NOFLASHCURSOR

CIB_NOWRITING

dwReserved
Reserved, should be set to O.

Description

(N ot supported in Japanese version.)
Do not display the garbage-detection
message box when writing in the bedit
control.

Do not create action handles.

Do not change the cursor if tap-and-hold
action is detected.

(Japanese version only.) Do not allow pen
input into the control. Other methods of
inputting text, such as keyboard input or
pasting from the keyboard, are allowed.

Before using CTLINITBEDIT, an application must initialize cbSize with
sizeof(CTLINITBEDIT).

WM_CTLINIT

CTLINITHEDIT
2.0

Initialization infonnation for a handwriting edit (hedit) control.

typedef struct {
DWORD cbSize;
HWND hwnd;
int id;
DWORD dwFlags;
DWORD dwReserved;

CTLINITHEDIT;

Members

Comments

See Also

cbSize
Size of this structure in bytes.

hwnd
Handle of boxed edit window.

id
Control identifier.

dwFlags

CTLINITIEDIT J~:>

Flags that detennine some properties of the hedit control. This can be a
combination of the following values:

Constant

CIH_NOACTIONHANDLE

CIH_NOEDITTEXT

CIH_NOFLASHCURSOR

dwReserved
Reserved, should be set to O.

Description

(Not supported in Japanese version.) Do not
put up the garbage-detection message box
when writing in this hedit control.

Do not create action handles for this hedit
control.

Do not show the edit text, insert text, or
writing tool dialogs when writing in this
hedit control.

Do not change the cursor while doing tap­
and-hold selection in this hedit control.

Before using CTLINITHEDIT, an application must initialize cbSize with
sizeof(CTLINITHEDIT).

WM_CTLINIT

CTLINITIEDIT
2.0

Specifies the initial settings and options of an ink edit (iedit) control. A pointer to
this structure is passed to the parent window of the control as the IP aram parameter
of the WM_CTLINIT message. This fonns the last step of the control's processing
of the WM_CREATE message.

326 Programmer's Guide to Pen Services for Microsoft Windows 95

Members

typedef struct {
DWORD cbSize;
HWND hwnd;
int id;
WORD ieb;
WORD iedo;
WORD i ei ;
WORD ien;
WORD ierec;
WORD i es;
WORD iesec;
HPENDATA hpndt;
WORD pdts;
HGDIOBJ hgdiobj;
HPEN hpenGri d;
POINT ptOrgGrid;
WORD wVGrid;
WORD wHGrid;
DWORD dwApp;
DWORD dwReserved;

CTLINITIEDIT;

cbSize
Size of this structure in bytes.

hwnd
Handle to an ink edit window.

id
Control identifier.

ieb
Background IEB_ bit values (see IE_SETBKGND).

iedo
Draw options IEDO_ bit values (see IE~SETDRA WOPTS).

iei
Ink input IEI_ bit values (see IE_SETINKINPUT).

ieD
Notification IEN_ bit values (see IE_SETNOTIFY).

Comments

See Also

CTLINITIEDIT 327

ierec
Recognition IEREC_ bit values (see IE_SETRECOG).

ies
Style IES_ bit values (see IE_GETSTYLE).

iesec
Security IESEC_ bit values (see IE_SETSECURITY).

bpndt
Initial pen data.

pdts
Initial map mode.

bgdiobj
Brush or bitmap, depending on background bits option in ieb.

bpenGrid
Pen to use in drawing grid.

ptOrgGrid
Point of origin for the grid lines.

wVGrid
Vertical grid line spacing.

wHGrid
Horizontal grid line spacing.

dwApp
Application data.

dwReserved
Reserved.

Before using CTLINITIEDIT, an application must initialize cbSize with
s;zeof(CTLINITIEDIT).

IE~SETBKGND, IE_SETDRA WOPTS, IE_SETNOTIFY, IE_SETRECOG,
IE_SETSECURITY, IE_GETSTYLE, IE_SETDRAWOPTS, WM_CTLINIT

328 Programmer's Guide to Pen Services for Microsoft Windows 95

CWX II

Members

2.0

Specifies optional parameters for the CorrectWritingEx function. (Japanese
version only.)

typedef struct
DWORD cbSize;
WORD wApplyFlags;
HWND hwndText;
HRC hrc;
char szCaption[CBCAPTIONCWX];
DWORD dwEditStyle;
DWORD dwSel;
DWORD dwFlags;
WORD i xkb;
WORD rgState[CKBCWX];
POINT ptUL;
SIZE sizeHW;

CWX;

cbSize
Size of this structure in bytes. This field must be initialized to s i z e 0 f (C W X) .

w ApplyFlags
Options to specify which members of this structure are to be used to override the
most-recently-used values provided by default; not all fields qualify. If this
value is 0, the most-recently-used settings will be shown; otherwise, this value
can be a combination of the following values:

Constant

CWXA_CONTEXT

CWXA_KBD

CWXA_STATE

CWXA_PTUL

CWXA_NOUPDATEMRU

Description

Use the dwFlags member to specify context.

Use the ixkb member to specify a keyboard.

Apply the states provided in the rgState array.

Move the dialog box upper comer to the screen
position specified by the ptUL member.

Use the window size specified by the sizeHW
member while using the handwriting recognition
tab.

Do not update the registry with the last state of the
correction dialog. This causes any changes made to
the position and state of the Data Input Window to
be discarded. This has no effect on user changes to
the text, however.

CWX 329

hwndText
Text window to which to send WM_ GETTEXT and WM_SETTEXT messages.
If this is NULL, the owner of the Correct Writing dialog box will be used.

hrc
Handle to a recognition context. If this is NULL, a WM_PENMISC message
with the wParam parameter ofPMSC_GETHRC will be sent to the owner
window to get a recognition context. If that too is NULL, then a default context
will be used. The system will destroy its copy of hrc before the call returns.

szCaption[CBCAPTIONCWX]
A null-terminated array of characters to be used for a dialog caption. If this
string has O,length, then the default caption "Edit Text" will be used. The
maximum length of caption allowed is specified by the CBCAPTIONCWX
constant.

dwEditStyle
Style to use for the Data Input Window's edit control. By default this is
ES_LEFf. If this style includes ES_MULTILINE, entry of Return and Tab
characters is allowed; otherwise, they are not allowed. In any case, the style
of the actual edit control will look like a multiline edit control.

dwSel
Specifies the selection. The low-order word (LOWORD) is the start position
and the high-order word (HIWORD) is the end position. The default values are
o for start and OxFFFF for end, to select all text.

dwFlags
Specifies context flags, provided that the CWXA_CONTEXT bit is set in the
wApplyFlags member; otherwise, the most-recently-used context flags are used
and this field is ignored. On return, this field contains the updated flags. The
flags may be CWX_DEFAULT (0), or a bitwise-OR combination of the
following constant values:

Constant

CWX_NOTOOLTIPS

Description

Specifies that the dialog window is to be a topmost
window. The window is not topmost by default.

Disables showing tool tips for graphical buttons.
They are shown by default.

Specifies that the Japanese period is to be used on
some keys on the Data Input Window keypads. The
English period is used by default.

Specifies that the Japanese comma is to be used on
some keys on the Data Input Window keypads. The
English comma is used by default.

Zero; none of the above flags are set.

330 Programmer's Guide to Pen Services for Microsoft Windows 95

ixkb
Specifies which Data Input Window keyboard, or handwriting input, is to be
used first, provided that the CWXA_KBD bit is set in the w ApplyFlags mem­
ber; otherwise, the most-recently use keyboard is used and this field is ignored.
On return, this field contains the updated keyboard identifier. This may be one
of the following values:

Constant

CWXK_50

CWXK_QWERTY

CWXK_ROMAJI

CWXK_NUM

CWXK_KANJI

rgState[CKBCWX]

Description

Handwriting, not keyboard, input. If this value is
specified, most of the dialog will be available for
handwriting input, and the dialog will be sizable.

50-On keyboard.

QWERTY keyboard, including Hiragana, Katakana,
and Romaji-to-Kana conversion alternative states.

Condensed Romaji-to-Kana keyboard, similar to some
pocket computers.

Numeric and Telephone keyboard.

Kanji keyboard, which provides a method of specifying
a Kanji character based on its strokes.

Kanji Code Finder keyboard, which allows the lookup
of a Kanji character based on its JIS, Shift-JIS, or
Kuten code value.

Kanji character finder based on the sound, or "reading"
(Yomi) of the character.

An array of keyboard states with which to initialize the CKBCWX number of
keyboards, provided that the CWXA_STATE bit is set in the w ApplyFlags
member; otherwise, the most-recently-used states are used and this member is
ignored. On return, this member contains the updated states. Each element of the
array may be CWXKS_DEFAULT (0, which is equivalent to CWXKS_HAN +
CWXKS_ROMA), or a bitwise-OR combination of the following constants:

Constant

CWXKS_CAPS

CWXKS_HAN

CWXKS_ZEN

CWXKS_ROMA

CWXKS_HIRA

CWXKS_KATA

Description

Set CAPSLOCK state on QWERTY keyboard.

Set Hankaku (single-byte) state.

Set Zenkaku (double-byte) state.

Set Romaji characters state.

Set Hiragana characters state.

Set Katakana characters state.

Comments

See Also

GUIDE

Members

GUIDE 331

ptUL
Specifies the upper-left comer of the dialog in screen coordinates, provided that
the CWXA_PTUL bit is set in the wApplyFlags member; otherwise, the most­
recently-used position is used and this member is ignored. On return, this
member contains the updated screen position of the upper-left comer.

sizeHW
Specifies the size of the dialog when it is in handwriting input mode, provided
that the CWXA_SIZE bit is set in the wApplyFlags member; otherwise, the
most-recently-used size is used and this field is ignored. On return, this field
contains the updated size.

Note that even if some bits are not set in wApplyFlags, the corresponding structure
members are still updated with the last-used values on return.

CorrectWritingEx

1.0 2.0

Specifies the characteristics of any guidelines used in the writing area.

typedef struct {
int xOrigin;
int yOrigin;
int cxBox;
int cyBox;
int cxBase;
int cyBase;
int cHorzBox;
int cVertBox;
int cyMid;

GUIDE;

xOrigin
Position of left edge of the first box in screen coordinates.

yOrigin
Position of top edge of the first box in screen coordinates.

332 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

cxBox
Width of each box in screen pixels.

cyBox
Height of each box in screen pixels.

cxBase
Margin to the guideline. This is one-half the distance in pixels between adjacent
boxes.

cyBase
Vertical distance in pixels from the baseline to the top of the box.

cHorzBox
Number of columns of boxes.

cVertBox
Number of rows of boxes.

cyMid
Distance in pixels from the baseline to the midline, or 0 if midline is not present.

If the application has drawn guidelines on the screen on which the user is expected
to write, the application should set the values in the GUIDE structure to inform
the recognizer. The GUIDE structure is for the recognizer's use only. Setting the
GUIDE structure does not by itself draw any visual clues on the display. It is the
responsibility of the application or the control to draw the visual clues. The appear­
ance of a boxed edit control is determined by the BOXLA YOUT and GUIDE
structures together.

The xOrigin and yOrigin members are screen coordinates of the top-left comer.
of the area to write in. The cyBox and cxBox members are the height and width of
the individual boxes to write in. The cHorzBox and c V ertBox members specify the
number of columns and rows. cy Base specifies a baseline within the box. (Setting
cyBase to 0 indicates no baseline.) The cxBase member gives a horizontal dis­
placement of the edge of the guideline from the edge of the box where writing is
expected to start.

If only horizontal lines are present, set cxBox to O. In this case, only yOrigin,
cyBox, cyBase, and cyMid are valid. A default GUIDE structure has all elements
set to O.

To establish a guide, initialize a GUIDE structure and set it into an HRC with the
SetGuideHRC function. This also applies to a standard bedit, as demonstrated in
"The bedit Control" in Chapter 3.

See Also

GUIDE 333

For boxed input, the GetBoxMappingHRCRESUL T function returns an index to
the box containing the requested input character. This is numbered in zero-based
row-major order. In Figure 11.3 below, for example, the "h" character is in box 12.

I exBox

xOrigin -1--+-
1

- - - T - - - I 1 - - - - 1- - - - l

yOrigin 1 1 1 1 1 1

I

r- reetBound I~I~I~I~I~I
1 1 1 1 1 1

I - - - -i - - - -1- - - - 1- - - - + - - - -IJ----+-_ formatting reet
1 1 1 1 1

eyBox-f- I~I~I~I~I~I
1 1 1 1 1 1

r - - - -I - - - -1- - - - L - - - .L - .• 71~ -I

eyMid --I~--'-: ,ulnu,n:~:n,hu,:~n:~ :
L ____ I ___ =:..:, ___ I ____ .!. ____ I

imaginary grid lines

Figure 11.3 Guidelines

•

1

eyBox 1

~
1

ex Box
II

I-------~ eyBase
1

1 ---------------- -------F-d- cyMid

-------- ______ 1

ex Base

Figure 11.4 Guidelines box

I

eVertBox (3)
eHorzBox (5)

For best recognition results, the pair-wise ratios of cxBox, cyBox, and cyBase
should be similar to the default ratios.

SetGuideHRC, BOXLAYOUT, BXD_

334 Programmer's Guide to Pen Services for Microsoft Windows 95

INKINGINFO

Members

2.0

Provides information about where and how the system should display ink.

typedef struct {'
DWORD cbSize;
UINT wFlags;
PENTIP tip;
RECT rectClip;
RECT rectlnkStop;
HRGN hrgnClip;
HRGN hrgnlnkStop;

INKINGINFO;

cbSize
Size of this structure in bytes.

wFlags
A bitwise-OR combination of the following PII_ flags:

tip

Constant

PICINKPENTIP

PICINKCLIPRECT

PICINKSTOPRECT

PICINKCLIPRGN

PICINKSTOPRGN

PICSA VEBACKGROUND

PICCLIPSTOP

Description

Use tip for pen characteristics.

Clip ink using rectClip.

Terminate inking on a pen-down event inside
rectInkStop.

Clip ink using hrgnClip. If hrgnClip is set,
any value in rectClip is disregarded.

Terminate inking on a pen-down event inside
hrgnlnkStop.

Save the background that is being inked on.
The saved background is restored when the
current input session terminates.

Directs Windows to stop inking if the pen
goes down outside rectClip or hrgnClip, if
either have been set.

A PENTIP structure defming the pen type, size, and color.

rectClip
Clipping rectangle for the ink. Setting rectClip to {-32767, -32767, 32767,
32767} is equivalent to having no clipping region.

Comments

See Also

INPPARAMS 335

rectlnkStop
Rectangle in which a pen-down event stops inking. Setting rectlnkStop to
empty is equivalent to not having an ink stop region.

hrgnClip
Clipping region for the ink. Setting hrgnClip to NULL is equivalent to not
having a clipping region.

hrgnlnkStop
Region in which a pen-down event stops inking. Setting hrgnlnkStop to NULL
is equivalent to not having an ink stop region.

All areas are in screen coordinates.

The wFlags member specifies which of the other members contain valid informa­
tion. For example, if PII_INKCLIPRECT is set in wFlags, the rectClip member
specifies the clipping rectangle. Otherwise, a default value is used.

Before using INKINGINFO, an application must initialize cbSize with
sizeof(INKINGINFO).

PENTIP, Startlnking, WM_PENEVENT

INPPARAMS

Members

2.0

Describes a set of targets.

typedef struct {
DWORD cbSize;
DWORD dwFlags;
HPENDATA hpndt;
TARGET target;

INPPARAMS;

cbSize
Size of this structure in bytes.

dwFlags
Reserved for future use; must be O.

hpndt
Handle to a pen data object.

target
A TARGET structure where input is directed.

336 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

See Also

INTERVAL

Members

See Also

Before using INPP ARAMS, an application must initialize cbSize with
sizeof(INPPARAMS).

TARGET

2.0

Interval structure for inksets.

typedef struct {
ABSTIME atBegin;
ABSTIME atEnd;

INTERVAL;

atBegin
Beginning of I-millisecond granularity interval.

atEnd
Time at 1 millisecond past end of interval.

ABSTIME

OEMPENINFO
1.0 2.0

Structure containing original equipment manufacturer (OEM) hardware information
for the pen or tablet.

typedef struct {
UINT wPdt;
UINT wValueMax;
UINT wDistinct;

OEMPENINFO;

Members

Comments

OEMPENINFO 337

wPdt
A combination of PDT_values.

wValueMax
The largest value returned by the device.

wDistinct
The number of distinct readings possible.

The OEMPENINFO structure contains a description of the additional OEM
information that the hardware can generate. It is a component of the PENINFO
structure.

Besides capturing the x- and y- coordinates of the pen movement, a pen device
has the option of providing a number of other types of input data, such as pen
pressure, height of the pen tip above the tablet surface, angle of the pen, and so
on. A pen driver can capture up to MAXOEMDATA WORDS types of data, where
MAXOEMDATA WORDS is defined as six. An application can access the OEM
data through the GetPenlnput function. A recognizer can receive OEM data from
an application through the AddPenlnputHRC function. It is the up to the applica­
tion whether to send this data or not.

Each pen event generates a packet of information from the pen driver that contains
the current pen position and, optionally, other types of OEM information. The
cbOemDatamember of the PENINFO structure specifies the width of the optional
OEM data in bytes. Each type of data is one word wide. The type of data in the nth
word of the OEM data packet is given by the nth element of the rgoempeninfo
member (an array of OEMPENINFO structures) in the PENINFO structure.

For the wPdt member, PDT_NULL indicates no data. Values greater than
PDT _ OEMSPECIFIC are reserved for private use by drivers for data types not
currently defined as standard. The wValueMax member contains the largest
variable size the device can return for that data type. The wDistinct member is the
number of distinct readings the device can take between 0 and wValueMax.

For a list of values for the wPdt member, see the entry for PDT_values in Chapter
13, "Pen Application Programming Interface Constants."

338 Programmer's Guide to Pen Services for Microsoft Windows 95

Example As an example of how to use OEMPENINFO, consider a device that can sense
both the height above the tablet surface and the Z-angle of the pen. Assume the
device can sen~e 256 levels of height in a range from 0 to 10 centimeters and has a
resolution of 1· degree on the angle of the pen. The two additional words of OEM
information occupy 4 bytes, so the cbOemDataand rgoempeninfo members of
PENINFO look like this:

See Also

peninfo.cbOemData = 4
peninfo.rgoempeninfo[MAXOEMDATAWORDS]

{PDT_HEIGHT, 1000, 256},
{PDT_ANGLEZ, 1800, 180},
{PDT NULL, 0, 0},
{PDT_NULL, 0, 0},
{PDT_NULL, 0, 0},
{PDT_NULL, 0, 0} };

This optional information is saved by the pen driver in the same manner as the x­
and y- coordinate data. There must be a one-to-one correspondence between the
OEM event data and the coordinate data.

Figure 11.5 shows the pen in a position where both the Xy-angle and Z-angle are
approximately 45 degrees.

Angle XV

Angle Z

Side View Top View

Figure 11.5 Pen angles relative to the surface of the tablet.

PENINFO

OEM PENPACKET

Members

Comments

See Also

2.0

A pen packet used by Pen API, version 2.0, consisting of the infonnation received
from the pen device for a single sample. For a definition of pen packet, see
SetPenHook.

typedef struct {
UINT wTabletX;
UINT wTabletY;
UINT wPDK;
UINT rgwOemData[MAXOEMDATAWORDS];
DWORD dwTime;

PENPACKET ;

wTabletX
The x-dimension in raw tablet coordinates.

wTabletY
The y-dimension in raw tablet coordinates.

wPDK
Pen hardware state bits, expressed as a combination of PDK_ values.

rgwOemData[MAXOEMDATA WORDS]
Array of OEM-specific data. MAXOEMDATAWORDS is defined as 6.

dwTime
Time stamp indicating when the pen packet originated.

A pen packet is the basic unit of communication between the pen driver and Win­
dows. A pen packet contains all of the infonnation about a single logical event: x-y
coordinate position, button states, and any optional infonnation such as pressure or
barrel rotation. Several physical events-that is, interrupts-may be needed to con­
struct a single logical event.

The rgwOemData member contains the data relating to the OEM hardware, such
as pen pressure, angle, and so forth.

SetPenHookCallback, OEMPENINFO, PENPACKET

340 Programmer's Guide to Pen Services for Microsoft Windows 95

PCMINFO

Members

Comments

See Also

2.0

Pen collection mode infonnation. All regions and rectangles are in screen
coordinates. Time-out values are in milliseconds.

typedef struct {
DWORD cbSize;
DWORD dwPcm;
RECT rectBound;
RECT rectExclude;
HRGN hrgnBound;
HRGN hrgnExclude;
DWORD dwTimeout;

PCMINFO;

cbSize
Size of this structure in bytes.

dwPcm
A combination of PCM_ flags specifying options for pen collection.

rectBound
Bounding rectangle for pen collection.

rectExclude
Exclusion rectangle for pen collection.

hrgnBound
Bounding region for pen collection.

hrgnExclude
Exclusion region for pen collection.

dwTimeout
Time-out before tenninating pen collection.

Before using PCMINFO, an application must initialize cbSize with
sizeof(PCMINFO). .

StartPenInput, WM_PENEVENT, PCM_

PDEVENT

Members

PDEVENT

2.0

Provides details of the pointing-device event that is the subject of an
IN_PDEVENT notification. A pointing-device event can be a pen tap, mouse
double-click, and so on. This structure is returned by the IE_GETPDEVENT
message.

typedef struct {
DWORD cbSize;
HWND hwnd;
UINT wm;
WPARAM wParam;
lPARAM lParam;
POINT pt;
BOOl fPen;
lONG lExInfo;
DWORD dwReserved;

PDEVENT;

cbSize
Size of this structure in bytes.

hwnd
Handle to ink edit window.

WIll

Window WM_ message.

wParam
wParam of event.

IParam
IP aram of event.

pt
Event point in ink edit client coordinates.

fPen
TRUE if pen event, FALSE if mouse event.

IExInfo
Windows GetMessageExtralnfo function return value.

dwReserved
Reserved.

341

342 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

See Also

Before using PDEVENT, an application must initialize cbSize with
sizeof(PDEVENT).

For descriptions of the WM_ messages that pertain to pen-based computing, refer
to Chapter 12, "Pen Application Programming Interface Messages."

PENDATAHEADER

Members

1.0 2.0

Main header of an HPENDA TA memory block.

typedef struct {
UINT wVersion;
UINT cbSizeUsed;
UINT cStrokes;
UINT cPnt;
UINT cPntStrokeMax;
RECT rectBound;
UINT wPndts;
int nlnkWidth;
DWORD rgblnk;

PENDATAHEADER;

wVersion
Pen data format version. Same as the version number for the Pen API, which
is currently Ox0002. Calling GetPenDataAttributes with the GP A_ VERSION
argument retrieves the value of wVersion.

cbSizeUsed
Size (in bytes) of pen data memory block.

cStrokes
Number of strokes in the block. (Each pen-down and pen-up sequence counts
as a single stroke.)

cPnt
Count of all points in the block. Calling GetPenDataAttributes with the
GP A_POINTS argument retrieves the value of cPnt.

cPntStrokeMax
Length (in points) of longest stroke. Calling GetPenDataAttributes with the
GP A_MAXLEN argument retrieves the value of cPntStrokeMax.

Comments

See Also

PENINFO

PENINFO 343

rectBollnd
Bounding rectangle of all pen-down points.

wPndts
Data scaling metric value, expressed as a bitwise-OR combination of PDTS_
values.

nInkWidth
Ink width, in pixels.

rgbInk
Ink color.

The PEND AT AHEADER structure describes the contents of an HPENDAT A
memory block. Use the GetPenDataInfo or GetPenDataAttributes function
to retrieve information from a PEND AT AHEADER structure.

For a description of the HPENDAT A memory block, see "The HPENDATA
Object" in Chapter 4, "The Inking Process."

For a list of data scaling values, refer to the entry for PDTS_ values in Chapter 13,
"Pen Application Programming Interface Constants."

GetPenDataInfo, GetPenDataAttriblltes, PDTS_

1.0 2.0

Contains dimensions, sampling rate, and other information about the pen or tablet
hardware.

typedef struct {
UINT cxRawWidth;
UINT cyRawHeight;
UINT wDistinctWidth;
UINT wDistinctHeight;
int nSamplingRate;
int nSamplingDist;
LONG lPdc;
int cPens;
int cbOemData;
OEMPENINFO rgoempeninfo[MAXOEMDATAWORDS];
UINT rgwReserved[7];
UINT fuOEM;

PENINFO;

344 Programmer's Guide to Pen Services for Microsoft Windows 95

Members cxRawWidth
Width of tablet in thousandths of an inch. Also specifies the maximum tablet
x -coordinate.

cyRawHeight
Height of tablet in thousandths of an inch. Also specifies the maximum tablet
y-coordinate.

wDistinctWidth
Number of distinct x-coordinates the hardware can detect.

wDistinctHeight
Number of distinct y-coordinates the hardware can detect. Together, the
wDistinctWidth and wDistinctHeight members express the x-y resolution of
the tablet. For example, if a tablet is 8 inches wide and has a resolution of 1/500
of an inch, cxRawWidth is 8000 and wDistinctWidth is 4000 because the
tablet hardware can return 4000 distinct x-order values ranging from 0 to 8000.

nSamplingRate
Specifies the number of samples per second the tablet can return. This value
may be less than the number of hardware interrupts per second the tablet
generates because several interrupts may be required to create one pen packet
sample. See the "Comments" section below for information on adjusting the
sampling rate.

nSamplingDist
Specifies the distance in distinct tablet units a pen must travel before a new
pen event is generated. See the "Comments" section below for information
on adjusting the sampling distance.

IPdc
Pen-device capabilities, expressed as a bitwise-OR combination of the PDC_
flags.

cPens
Number of pens the tablet can simultaneously support.

cbOemData
Specifies the width, in bytes, of the additional OEM data passed in each pen
packet. For example, if a tablet can detect pressure and Z-angle information, this
information occupies two additional words of OEM data, so cbOemData is 4.

Comments

See Also

PENINFO 345

rgoempeninfo[MAXOEMDATA WORDS]
An array of OEMPENINFO structures. Each structure describes one word of
additional OEM data contained in each pen packet. (MAXOEMDAT A WORDS
is defined as 6.)

rgwReserved[7]
Reserved for internal use.

fuOEM
Flags representing which OEM data to report in rgoempeninfo; used by
applications to determine the OEM data used in an HPENDAT A object. This
member is set and used internally by the pen services and should never be
modified by an application. This member is a bitwise-OR combination of the
following values:

Constant

PHW_ALL

PHW _PRESSURE

PHW_HEIGHT

PHW _ANGLEXY

PHW~NGLEZ

PHW _BARRELROTATION

PHW _OEMSPECIFIC

PHW_PDK

Description

Report all available OEM data.

Report pressure if available.

Report height if available.

Report Xy-angle if available.

Report Z-angle if available.

Report barrel rotation if available.

Report OEM-specific value if available.

Report per-point PDK_ values.

The DRV _GetPenInfo pen driver message fills a PENINFO structure with the
current device parameters. DRV _GetPenInfo returns FALSE if a tablet is not
present. If this occurs, the PENINFO structure that the message's lP aram} points
to is not valid. Note that an application should retrieve tablet information with the
GetPenDatalnfo and GetPenDataAttributes functions, rather than accessing
the pen driver directly.

An application can also adjust the tablet sampling rate and sampling distance by
sending the DRV _SetSamplingRate or DRV _SetSamplingDist messages to the
device driver. For more information, see Appendix E, "Accessing the Pen Device
Driver."

For a list of state bits for the pen driver, refer to the entry for PDK_ values in
Chapter 13, "Pen Application Programming Interface Constants."

CreatePenDataEx, GetPenDatalnfo, TrimPenData, UpdatePenlnfo,
OEMPENINFO

346 Programmer's Guide to Pen Services for Microsoft Windows 95

PENPACKET

Members

Comments

See Also

PENTIP

1.0 2.0

A pen packet used by Pen Windows, version 1.0, consisting of the information
received from the pen device for a single sample. For a definition of pen packet,
see SetPenHook.

typedef struct {
UINT wTabletX;
UINT wTabletv;
UINT wPDK;
UINT rgwOemData[MAXOEMDATAWORDS];

PENPACKET;

wTabletX
The x -dimension in raw tablet coordinates.

wTabletY
The y-dimension in raw tablet coordinates.

wPDK
Pen hardware state bits, expressed as a combination of PDK_ values.

rgwOemData[MAXOEMDATA WORDS]
Array of OEM-specific data. MAXOEMDATAWORDS is defined as 6.

A pen packet is the basic unit of communication between the pen driver and
Windows. A pen packet contains all of the information about a single logical event:
x-y coordinate position, button states, and any optional information such as pressure
or barrel rotation. Several physical events-that is, interrupts-may be needed to
construct a single logical event.

The rgwOemData member contains the real-time values associated with the pen
data types described in the entry for the OEMPENINFO structure.

SetPenHookCallback, OEMPENINFO, OEM_PENPACKET

2.0

Pen tip characteristics.

Members

Comments

See Also

typedef struct {
DWORD cbSize;
BYTE btype;
BYTE bwidth;
BYTE bheight;
BYTE bOpacity;
COLORREF rgb;
DWORD dwFlags;
DWORD dwReserved;

PENTIP;

cbSize
Size of this structure in bytes.

btype

PENTIP 347

Pen nib type. Types in the range 0 through 63 are reserved for predefined
standard types. An application can use values in the range 64 through 255.

bwidth
Pen nib width, in display device units (pixels).

bheight
Pen nib height, in display device units (pixels). In the current version of the Pen
API, this member is ignored.

bOpacity
Opacity of the ink, which corresponds to the JOT standard. bOpacity must have
one of the following values:

rgb

Constant

PENTIP _OPAQUE

PENTIP _HILITE

PENTIP _TRANSPARENT

RGB pen color.

dwFlags
Reserved.

dwReserved
Reserved; must be set to O.

Description

New ink overwrites any existing ink.

New ink is visible but partly transparent,
possibly interacting with underlying ink.

Ink is completely transparent. There is no
interaction with any underlying ink.

Before using PENTIP, an application must initialize cbSize with
sizeof(PENTIP).

GetStrokeAttributes, SetStrokeAttributes, GetStrokeTableAttributes,
SetStrokeTableAttributes, GetPenMisclnfo, SetPenMisclnfo, INKINGINFO

348 Programmer's Guide to Pen Services for Microsoft Windows 95

RC
1.0 2.0

Defines a recognition context (RC) for applications compatible with version 1.0 of
the Pen API. Applications that do not call the superseded functions Recognize or
RecognizeData do not use the RC structure. These applications instead use HRC
objects, which render RC obsolete.

Note The RC structure is provided only for compatibility with version 1.0 of the
Pen API and will not be supported in future versions.

typedef struct
HREC hrec;
HWND hwnd;
UINT wEventRef;
UINT wRcPreferences;
LONG lRcOptions;
RCYIELDPROC lpfnYield;
BYTE lpUser[cbRcUserMax];
UINT wCountry;
UINT wIntlPreferences;
char lpLanguage[cbRcLanguageMax];
LPDF rglpdf[MAXDICTIONARIES];
UINT wTryDictionary;
CL cl ErrorLevel ;
ALC alc;
ALC alcPriority;
BYTE rgbfAlc[cbRcrgbfAlcMax];
UINT wResultMode;
UINT wTimeOut;
LONG lPcm;
RECT rectBound;
RECT rectExclude;
GUIDE guide;
UINT wRcOrient;
UINT wRcDirect;
int nlnkWidth;
COLORREF rgblnk;
DWORD dwAppParam;
DWORD dwDictParam;
DWORD dwRecognizer;
UINT rgwReserved[cwRcReservedMax];

RC;

Members hree
Handle of recognizer to use.

hwnd
Window to which results are sent.

wEventRef
Index into ink buffer.

wRePreferenees
Flags specifying preferences, described in "Comments" section.

IReOptions
Recognition options, described in "Comments" section.

IpfnYield
Procedure called during processing of the Yield Windows function.

IpUser[ebReUserMax]
Current writer.

wCountry
Country code.

w IntlPreferenees
Flags for international preferences.

IpLanguage[ebReLanguageMax]
Language strings.

rglpdf[MAXDICTIONARIES]
List of dictionary functions.

wTryDictionary
Maximum enumerations to search.

clErrorLevel
Level where recognizer should reject input.

ale
Enabled ALC_ alphabet codes.

alePriority
Sets priority of the ALC_ codes.

rgbfAle[ebRergbfAleMax]
Bit field for enabled characters.

wResultMode

RC 349

Result return mode specifying when to send (eith~r as soon as possible or when
complete). The RRM_ codes are described in "Comments" section.

wTimeOut
Recognition time-out in milliseconds.

IPem
Bitwise-OR combination of PCM_ flags for ending the recognition session.

350 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

rectBound
Bounding rectangle for inking. By default, the rectangle is in screen coordinates.

rectExcIude
A pen.:.down event inside this rectangle tenninates recognition.

guide
GUIDE structure that defines guidelines for recognizer.

wRcOrient
Orientation of writing with regard to the tablet.

wRcDirect
Direction of writing.

nInkWidth
Ink width of 1-15 pixels. A value of 0 prevents display of the ink.

rgbInk
Ink color.

dwAppParam
For application use.

dwDictParam
For application use; to be passed on to dictionaries.

dwRecognizer
For application use; to be passed on to recognizer.

rgwReserved[cwRcReservedMax]
Reserved.

The following paragraphs discuss the R C members, listed in the order in which
they appear in the preceding structure.

hrec
The hrec member is the handle of the recognizer to use. This value should be set to
the value returned by a previous call to InstallRecognizer, or to RC_ WDEFAULT
for the default recognizer.

Ifhrec is NULL, no recognizer is used. WM_RCRESULT messages are generated
as with a real recognizer, but the wResultsType member of RCRESUL T is set to
RCRT_NORECOG, and the hSyv and Jpsyv members are set to NULL. (For a list
of other values in wResultsType, see the entry for RCRT_ values in Chapter 13,
"Pen Application Programming Interf~ce Constants.")

hwnd
The hwnd member specifies the window to send recognition results to. This mem­
ber cannot be NULL. Also, the mouse capture is set to this window to clear the
queue of pending mouse messages that were meant for recognition.

RC 351

wEventRef
The value for wEventRef indicates which tablet ~ata to begin recognition with. The
wEventRef member is returned from the GetMessageExtralnfo function.

InitRC sets this member to RC_ WDEFAULT. If Recognize is called during the
processing of the WM_LBUTTONDOWN message that initiates the input session,
the application need take no other action.

Before an application starts recognition on some other Windows event, it should use
GetMessageExtralnfo to save the event reference of the appropriate mouse mes­
sage and place this value in wEventRef before calling Recognize.

This member is not used on calls to RecognizeData.

wRcPreferences
The wRcPreferences member specifies the user preferences as a combination
of RCP _ constants.

IRcOptions
The IRcOptions member specifies various options for recognition. It is a bitwise­
OR combination of RCO_ constants.

IpfnVield
The Ipfn Yield member points to a callback function used by the recognizer before
it yields. The application sets this to NULL for no yield processing. Recognition
can often take more than a few seconds; therefore, a recognizer should periodically
call the yield function to yield control to other Windows tasks. The default yield
function is:

BOOl FAR PASCAL StandardYieldFunction()
{

}

Yield();
return 1;

If Recognize or RecognizeData is called with IpfnYield set to RC_LDEFAULT,
then the default yield function is called. If the Ipfn Yield member is not NULL, the
recognizer calls Ipfn Yield every time before it yields.

352 Programmer's Guide to Pen Services for Microsoft Windows 95

IpUser

#define cbRcUserMax 32
BYTE lpUser[cbRcUserMax];

The IpUser member specifies the name of the current writer. The current writer is
used to specify any custom prototype sets that might be available to the recognizer.
If the IpUser member is NULL, it means that the recognizer should use the stan­
dard prototype set-that is, the prototype set as it existed before it was modified
(through training, for example).

wCountry
The wCountry member contains the country code. The values for country code
are the same as the values used by the International item of the Control Panel for
the iCountry member in the [intl] section of the WIN.lNI file.

wlntl Preferences
The wIntlPreferences member contains a combination of various RCIP _ flags.
Currently, this member can be only ° or RCIP _ALLANSICHAR. If 0, only char­
acters from the current language or languages are enabled. If wIntlPreferences
is RCIP _ALLANSICHAR, the entire ANSI character set is enabled.

IpLanguage

#define cbRcLanguageMax 44
char lpLanguage[cbRcLanguageMax]

The IpLanguage member is a list of language strings. Each string is null­
terminated and the list ends with a null string.

The set of values for each language string is the same as the set used by the
International item of the Control Panel for the sLanguage member in the [Intl]
section of the WIN.lNI file. These three-letter codes are documented in the
Microsoft Windows Software Development Kit.

A recognizer should implement recognition of the ANSI character set and then use
this information during recognition to limit a match to the appropriate subset. The
IpLanguage member holds strictly optional information; a recognizer may choose
to ignore it. By definition, the character set implied by a language string is the set of
characters that can be generated from the country-specific keyboard without using
the ALT+numeric keypad combinations. It is still possible to enter ANSI characters
outside the given language through the use of the onscreen keyboard and
ALT+numeric keypad combinations.

RC 353

rglpdf

#define MAXDICTIONARIES 16
LPDF rglpdf[MAXDICTIONARIES]

The dictionary path member rglpdf specifies which dictionaries are called by the
RC Manager to convert symbol graphs into strings.

If rglpdf[O] is NULL, the NULL dictionary path is used. The NULL dictionary
path indicates that the first enumeration from the symbol graph is used as the best
enumeration. The array of dictionary functions is null-terminated. During recog­
nition, the dictionary functions are called in the order in which they appear. For
more details, see the entry for the DictionarySearch function.

wTryDictionary
The wTryDictionary member specifies the maximum number of enumerations
generated from the symbol graph during dictionary processing on the results of
recognition. The minimum number allowed is 1 and the maximum is 4096. The
default value is 100.

clErrorLevel
Recognition accuracy is defined as the percentage of times the recognizer accur­
ately assigns a symbol to an input. There is no penalty or gain if the recognizer does
not attempt a match and returns "unknown." The value can range from 0 to 100.

There are situations in which a higher accuracy rating is preferable despite an
increased number of unknown results. For example, in a forms application, the
Social Security field must be correctly recognized. If the recognizer is unsure, it
can get the application to prompt the user again for the input (or a portion of it).
At other times, it is preferable that the recognizer make a guess, no matter how
wild, in order to limit the number of unknown results. For example, while taking
notes in a meeting, the user may not care whether all of the results are transcribed
perfectly.

The c1ErrorLevel member allows the application to signal its preference to the
recognizer. Recognizers should return the SYV _UNKNOWN symbol for any
symbol having a confidence level below clErrorLevel.

alc
The ale member is used to define the enabled alphabet for any RC structure with
ALC_ constants. Any of the ALC_ constants can be combined together with a
bitwise-OR operator to form the desired set of characters.

354 Programmer's Guide to Pen Services for Microsoft Windows 95

The actual characters enabled depend on the language. For example, if the user has
requested French language support, the letter "e" is included in the lowercase
alphabet. In the same way, "£" replaces "$" if ALC_MONETARY is set in British
systems. For a list of alphabet values, see the entry for ALC_ values in Chapter. 13,
"Pen Application Programming Interface Constants."

Setting the RCIP _ALLANSICHAR flag in the wIntlPreferenees member of the
Restructure enables all characters of the appropriate set regardless of the language
setting.

A recognizer that recognizes characters other than ANSI can ignore this member. If
you want an application to pass character subset information to private non-ANSI
recognizers, you can use the dwReeognizer member.

A recognizer should not return a symbol value outside the specified subset. How­
ever, a recognizer does not have to force a match to the subset; it can return
SYV _UNKNOWN if a suitable match is not found.

alcPriority
The ale Priority member sets the priority of the ALC_ codes ,used to enable alpha­
bets. It does this by telling the recognizer in which order to list options in the
symbol graph.

The alePriority member uses the same ALC_ codes used in the ale member. The
bits set in ale Priority should be a subset of those set in ale. Bits set in alePriority
that are not also set in the ale member have no effect.

A recognizer can recognize a glyph that belongs to more than one enabled ALC_
subset. For example, a vertical stroke can be the letter "I" in the ALC_LCALPHA
subset or the number "1" in the ALC_NUMERIC subset. The alePriority member
specifies that the recognizer should first return those interpretations that are in the
subsets indicated in alcPriority. If no interpretations are in any of the alePriority
sets, or no priority members are set, the recognizer returns all possibilities within
the enabled sets.

For example, suppose the user writes a symbol that looks like either a "q" or a "9."
The generated symbol graph contains {q 1 9 }. The alePriority member determines
the exact look of the symbol graph. If alePriority has the ALC_ALPHA bit set, the
recognizer should return { q 1 9 } in the symbol graph. If ale Priority has the
ALC_NUMERIC bit set, the recognizer should return { 91 q } in the symbol graph.

Note that alePriority does not affect the dictionary processing directly.

If ALC~USEBITMAP is set, the rgbfAle member indicates which characters have
priority.

RC 355

rgbfAlc

#define cbRcrgbfAlcMax 32
BYTE rgbfAlc[cbRcrgbfAlcMax];

The rgbfAlc member is the bit field used for enabled characters. For more details,
see the description of ALC_ constants. If ALC_USEBITMAP is set, the 256-bit bit
field in rgbfAlc is used to indicate which characters from the ANSI character set
are currently enabled. Character 0 is the low bit of the low-order byte in the array.
Characters thus indicated are connected by OR operators to any characters enabled
using the other ALC_ codes. A "I" set in a bit array indicates that the character is
enabled.

As an example, to enable the "$" character, set the fifth bit of byte four like this:

rgbfAlc[4] 1= 0x10

A recognizer that recognizes characters other than ANSI can ignore this member.
If an application wants to pass character subset information to private non-ANSI
recognizers, it can use the dwRecognizer member of the RC structure.

A set of macros, defined in PENWIN.H, simplifies user setting and testing the
rgbfAlc bits for an RC structure. The ANSI macros listed in the following table set
(bit=l), clear (bit=O), or test (TRUE ifbit==l, else FALSE) the appropriate bits in
1 pre - > r 9 b fA 1 c corresponding to the index i, which is the ANSI value to use.
The /prc is a pointer to the RC structure containing the rgbfAlc[] array.

Macro

SetAlcBitAnsi([pre, i)

ResetAlcBitAnsi([pre, i)

IsAlcBitAnsi([pre, i)

Description

Sets the bit specified by i in rgbfAlc of [pre
to 1.

Resets the bit specified by i in rgbfAlc of
[pre to O.

Returns TR DE if the bit specified by i in
rgbfAlc of [pre is set.

Only the IsAlcBitAnsi macro returns a value (BOOL). The return values of the
other macros are undefined.

356 Programmer's Guide to Pen Service.s for Microsoft Windows 95

Setting bits in rgbfAIe[] also requires combining ALC_ USEBITMAP by an OR
operator with ale for the bits to have meaning. The bits are used in addition to
other ale settings. For example, adding ALC_NUMERIC does not also set the bits
in rgbfAIe that correspond to 0 through 9. Thus, to recognize octal numbers (the
set 0 to 7), use the following code:

RC rc;
i nt i;

rc.alc = ALC_USEBITMAP; II Note no ALC_NUMERIC
for (i = (int)'0'; i <= (int)'7'; i++)

SetAlcBitAnsi(&rc, i);

wResultMode
The wResultMode member specifies the timing and granularity of the results
messages to be sent back to the specified wind?w. The following times are defined.

Constant

RRM_COMPLETE

Description

The granularity is set at a word boundary. As soon as the
recognizer sees a word break, it can send all symbols up
to the point of the word break.

The granularity is set at a new line. As soon as the
recognizer sees a line break, it sends the result to that
point.

When recognition is completed by one of the methods
(for example, time-out or barrel button), the results
message is sent just before Recognize returns.

The granularity is set at the stroke level. A result
message is sent at each stroke. This is used in the NULL
recognizer.

The granUlarity is set at the symbol level. A result
message is sent at each symbol. Default dictionary
processing is disabled when this value is used.

A recognizer is free to send the messages any time after the requested time (defined
in the preceding order), but it cannot send any messages sooner. Because of recog­
nizer constraints, a recognizer may combine intermediate results messages. For
example, if an application requests RRM_ WORD, the recognizer may choose to
return results on a line-by-line basis instead.

RC 357

Results sent at a word boundary do not have to be sent strictly one word at a time.
The requirements are as follows:

• The raw data returned must be contiguous, and it must begin with a pen-down
and end with a pen-up.

• The returned "word" may contain spaces. For example, "fat { space I NULL } cat"
would be resolved into two words, "fat cat." This is also necessary if the raw
data for successive words overlaps.

• The recognizer should not send a word until it knows what follows the word. If
the word is followed by a word on the same line, the word should be space­
terminated. If the word is followed by text on a new line, the recognizer should
append a soft newline symbol. The key point is that the recognizer must make it
possible for the application to detect word and line spacing so it can display the
recognized text appropriately.

• Once a word has been sent, the recognizer cannot change the results because of
the late arrival of more strokes.

The rules for returning results with RRM_NEWLINE are similar:

• The new line should be included with the symbol graph in the result.

• Once a word has been sent, the recognizer cannot change the results because
of the late arrival of more strokes.

wTimeOut
The wTimeOut member specifies the time-out threshold. After the time-out
threshold has passed, the recognizer stops the recognition process.

Time-out occurs if more than wTimeOut milliseconds elapse between the most
recent pen-up and the next pen-down. If time-out occurs, the recognition context is
closed. Closing a recognition context means no more data is accepted; the existing
data is processed and the results are sent to the application. This value is ignored if
IPcm does not enable time-out.

In general, applications should use the value set by the user in the Control Panel.
This value can be set by setting this member to RC_ WDEFAULT.

The maximum value allowed is 65,534 milliseconds. If wTimeOut is set to
OxFFFF (65,535), the system-level value is used.

358 Programmer's Guide to Pen Services for Microsoft Windows 95

IPcm
rectBound
rectExclude
These three members of the R C structure set the conditions for ending recognition.
The IPcm member sets the flags for ending recognition, expressed as a bitwise-OR
combination of PCM_ values.

The two RECT members specify inclusive and exclusive rectangles for inking. The
rectangle values are in screen coordinates or, if RCO_TABLETCOORD is set, in
tablet coordinates. RCO_TABLETCOORD cannot be used with ProcessWriting.

When RCRESUL T is returned, the rectBound and rectExclude values are con­
verted from screen to tablet coordinates and the RCO_TABLETCOORD flag is set.

Only pen events within rectBound are collected as part of the recognition context.
If PCM_RECTBOUND is set in IPcm, the first pen-down event outside the
rectangle closes the context. Dragging the pen outside the rectangle after starting
inside does not close the context; the data is still collected outside the rectangle.

If PCM_RECTEXCLUDE is set in IPcm, any pen-down event within rectExclude
closes the context. The event that ends pen collection mode-that is, an event
outside the bounding rectangle or inside the exclusion-is entered into Windows as
a mouse event. For hit-testing the rectangles, the top and left borders are included,
but not the right or bottom borders.

The bounding rectangle set by InitR C is valid only until the window is resized or
moved. If the window is moved or resized, the application should specify again the
rectBound member in the RC structure.

guide
The guide member is a structure of the GUIDE type. It contains information that
specifies the placement of guidelines in the writing area for the recognizer's use.

wRcOrient
The wRcOrient member specifies the orientation of the tablet, expressed as
RCOR_ values. For a list of orientation values, see the entry for RCOR_ values
in Chapter 13, "Pen Application Programming Interface Constants."

wRcDirect
The wRcDirect member informs the recognizer of the direction of writing,
expressed as RCOR_ values. There are both primary and secondary directions. For
example, English is written from left to right (primary) and then down the page
(secondary). Chinese is often written from the top down (primary) and then right
to left across the page (secondary). For a list of direction values, see the entry for
RCD_ values in Chapter 13, "Pen Application Programming Interface Constants."

See Also

RC 359

The high byte of the direction indicates primary direction; the low byte, secondary
direction. A recognizer can choose to ignore this word and support only the natural
direction of the given language. The default value is determined by the recognizer.

Not all recognizers can respond to this member.

nlnkWidth
rgblnk
These two members specify the ink width and color to be used during inking. The
DInk Width member is the thickness in pixels of the pen to use during inking. If this
value is 0, no ink is drawn. The current maximum value allowed is 15. The default
is the ink width set in the global RC.

The rgbInk member is the color to use for inking. If this is not a solid color, it is
mapped to the closest solid color. The default is the ink color set in the global RC.

dwAppParam
dwRecognizer
These two members are analogous to the dwDictParam member described below.
The dw AppParam value is provided for use by the application and passed to the
application by way of the Iprc member in the RCRESUL T structure.

The dwRecognizer value is passed to the recognizer specified in rc.hrec. Applica­
tions can use this to pass information to a private recognizer for functionality not
directly supported.

These values are set to 0 by InitRC and should remain 0 if they are not used by the
application or recognizer.

dwDictParam
The dwDictParam parameter is set by an application and passed on to the diction­
ary by the RC Manager. It is intended to provide for dictionary functionality not
directly supported. For example, a dictionary can request that the application pass
in a pointer to a structure that contains a given sentence. You can use this infor­
mation to extend the dictionary functionality-to highlight misspelled words, for
example.

If it is not used by the application, dwDictParam should be left to the value (0) set
by InitRC.

rgwReserved[cwRcReservedMax]
The rgwReserved member is reserved. Applications should not change the
values set by InitRC for this member.

GUIDE, PCMINFO

ALC_, RCRT_, PCM_, RCD_, RCOR_

360 Programmer's Guide to Pen Services for Microsoft Windows 95

RCRESULT

Members

1.0 2.0

Applications that do not call the superseded functions RecognizeData or
Recognize do not use the RCRESUL T structure. In confonning to version 2.0
of the Pen API, applications instead use HRCRESUL T objects, which render
RCRESUL T obsolete.

Note The RCRESUL T structure is provided only for compatibility with version
1.0 of the Pen API, and will not be supported in future versions.

typedef struet {
SYG syg;
UINT wResultsType;
int eSyv;
LPSYV lpsyv;
HANDLE hSyv;
int nBaseLine;
int nMidLine;
HPENDATA hpendata;
RECT reetBoundInk;
POINT pntEnd;
LPRC 1 pre;

} RCRESULT;

syg
Symbol graph.

wResultsType
An RCRT_ value.

cSyv
Number of symbol values, not including the NULL tenninator.

lpsyv
Null-tenninated pointer to the recognizer's best guess.

hSyv
Globally shared handle to the symbol value specified by the lpsyv member.

nBaseLine
Zero or baseline of input writing.

nMidLine
Zero or midline of input writing.

hpendata
Handle to pen data.

Comments

RCRESUL T 361

rectBoundlnk
Bounding rectangle for ink.

pntEnd
Point that tenninated recognition.

Iprc
Recognition context used.

When an application calls Recognize, RecognizeData, or ProcessWriting, the
WM_RCRESUL T message is sent to the appropriate window procedure when the
recognizer has a result to return. The wParam parameter of the message contains
the reason recognition ended (one of the REC_ codes). It is REC_OK if more
results will be sent; otherwise, it is the same value for the last message returned
by Recognize or RecognizeData. The IParam parameter is a far pointer to an
RCRESUL T structure. All of the data in the RCRESUL T structure is in tablet
coordinates.

The following sections elaborate on the RCRESUL T members. All of the
members are allocated with GMEM_SHARE so they can be passed between
processes.

syg
This member contains the raw results returned by the recognizer. These include the
various possible interpretations of the pen input, the mapping of the results to the
raw data, and locations of any hot spots if the result is a gesture. The syg.lpsyc
member is not valid unless RCP _MAPCHAR was set in the RC structure when
Recognize or RecognizeData was called.

wResultsType
This member indicates the type of recognition results, expressed as a bitwise-OR
combination of RCRT_ values. The RCRT_ values are not mutually exclusive.
Note that the recognizer should never have to set RCRT_GESTURETOKEYS,
RCRT_ALREADYPROCESSED,orRCRT_GESTURETRANSLATED.Fora
list of values, see the entry for RCRT_ values in Chapter 13, "Pen Application
Programming Interface Constants."

Ipsyv
This member contains the symbols that are recognized. An application should use
these values to display the text or gestures recognized. The Ipsyv member is the
result of any dictionary search on the SYG structure or further postprocessing. It
is NULL if the NULL recognizer is used.

hpendata
This member contains the raw data captured during inking.

362 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

RECTOFS

Members

reetBoundlnk
This is the bounding rectangle of the ink drawn during recognition. It is in coordi­
nates of the window that receives the results. If the user attempts to draw ink
outside rc.rectbound, the ink will not be displayed. However, rectBoundlnk is
calculated as though the ink were drawn.

If data is collected outside the bounding rectangle, the rectBound member of
PENDAT AHEADER reflects this. (Note that rectBound applies only to pen­
down points.) This means, however, that a portion of the rectBoundlnk rectangle
lies outside the rc.rectBound rectangle. The actual ink drawn lies in the inter­
section of rectBoundlnk and the rc.rectBound rectangle. Before calculating the
intersection, convert rectBoundlnk from tablet to screen coordinates. The
bounding rectangle includes the width of the ink drawn.

pntEnd
If recognition ended on a tap outside the bounding rectangle or inside the exclusive
rectangle, pntEnd contains the coordinates of those points in display coordinates.

Ipre
This is the RC used for recognition. Any default values (RC_ WDEFAULT or
RC_LDEFAULT) are replaced by the correct default value.

RC, SYG, RCRT_

1.0 2.0

Rectangle offset for nonisometric inflation of a rectangular writing area.

typedef struct
int dLeft;
int dTop;
int dRight;
int dBottom;

} RECTOFS;

dLeft
Inflation margin leftward from left side.

dTop
Inflation margin upward from top.

Comments

See Also

SKBINFO

SKBINFO 363

dRight
Inflation margin rightward from right.

dBottom
Inflation margin downward from bottom.

Inflation margins are in screen (pixel) coordinates. To inflate a window rectangle,
dLeft and dTop should be negative (moving in the negative x- and y-directions,
respectively) and dRight and dBottom should be positive. To deflate the rectangle,
reverse the signs of the margins.

In addition to having the basic characteristics of an edit control, an hedit or bedit
control must make allowances for the input of handwriting. The client rectangle
often needs to be adjusted to a larger size to allow for easier writing.

For example, the cut gesture typically extends above the selected text it is deleting.
If the gesture is arbitrarily clipped off at the edge of the client window, recognition
accuracy suffers. Likewise, restricting handwriting input to stay within the lines can
also hinder recognition accuracy. To correct this, rectangle offsets are used in hedit
and bedit controls to make the writing area slightly larger than the client window
size of a normal edit control. The HE_SETINFLATE and HE_ GETINFLATE
wParam values of the WM_PENCTLmessage are used for this purpose. These
messages use a RECTOFS structure as a parameter. The values in the RECTOFS
structure are added to the corresponding client area to create the bounding rectangle
for the ink.

The inflation does not need to be symmetrical in every direction.

1.0 2.0

Stores information about the current onscreen keyboard.

typedef struct
HWND hwnd;
UINT nPad;
BOOl fVisible;
BOOl fMinimized;
RECT rect;
DWORD dwReserved;

SKBINFO;

364 Programmer's Guide to Pen Services for Microsoft Windows 95

Members hwnd

See Also

STRKFMT

Members

Handle of window for onscreen keyboard.

nPad
Current view of the keypad. Either SKB_FULL, SKB_BASIC, or
SKB _NUMP AD for full, basic, or numeric keypad, respectively.

fVisible
TRUE if the keyboard is available and visible, FALSE otherwise.

fMinimized
TRUE if the keyboard is minimized, FALSE otherwise.

reet
Screen coordinates or the restored keyboard rectangle.

dwReserved
Must be O.

Show Keyboard

2.0

Provides a method for retrieving or changing the attributes of specified strokes
in an iedit control. This structure is used by the IE_ GETFORMA T and
IE_SETFORMAT messages.

typedef struct {
DWORD cbSize;
UINT iesf;
UINT iStrk;
PENTIP tip;
DWORD dwUser;
DWORD dwReserved;

STRKFMT;

ebSize
Size of this structure in bytes.

Comments

STRKFMT 365

iesf
Stroke format flags. Note that the first three flags cannot be combined with each
other by the bitwise OR operator:

Constant

IESF_ALL

IESF _SELECTION

IESF _STROKE

IESF _PENTIP

IESF _ TIPCOLOR

IESF _ TIPWIDTH

iStrk
Index of a specific stroke.

tip

Description

Assume all strokes in the control.

Assume all selected strokes.

Assume the stroke specified in the iStrk member,
described in "Comments" section.

Set both pen tip color and width.

Set only pen tip color.

Set only pen tip width.

PENTIP structure, containing ink tip attributes.

dwUser
User data for stroke.

dwReserved
Reserved.

When sending either IE_GETFORMAT or IE_SETFORMAT, the application
initializes the iesf member with bit flags, indicating:

• The strokes in the iedit control to which the IE_ messages refer.

• The attributes (color and/or width) of those strokes.

Setting the IESF _STROKE bit flag in iesf limits action to the single stroke identi­
fied in iStrk. Setting IESF _SELECTION references all selected strokes. Setting
IESF _ALL references all strokes in the control. These flags are mutually exclusive
and cannot be combined.

The application must also set the bit flags IESF _ TIPCOLOR or IESF _ TIPWIDTH
in the iesf member of the structure. These bit flags identify the stroke attribute to
which the IE_ messages refer. For convenience, the defined value IESF _PENTIP
combines IESF _TIPCOLOR and IESF _TIPWIDTH to identify both color and
width.

With these bit flags, an application can alter stroke color and width at the same time
or alter only one attribute while leaving the other unchanged.

366 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

Sending an IE_GETFORMAT message to the control produces the following
results:

• If the requested strokes have the same color and width, the returned STRKFMT
contains the common color and width in the rgb and bwidth members of its
PENTIP structure. The return value from IE_GETFORMAT is O.

• If the requested strokes do not all share the same attribute, the returned
STRKFMT contains the attribute of the last stroke in the group. The return
value from IE_GETFORMAT contains the bit flags IESF _TIPCOLOR and/or
IESF _ TIPWIDTH to indicate the attribute in which the strokes differ.

Before using STRKFMT, an application must initialize cbSize with
sizeof(STRKFMT).

IE_GETFORMAT, IE_SETFORMAT, PENTIP

STROKEINFO

Members

1.0 2.0

Contains information about a sequence of pen data.

typedef struct {
UINT cPnt;
UINT cbPnts;
UINTwPdk;
DWORD dwTick;

STROKEINFO;

cPot
Count of points in the stroke.

cbPnts
Used internally to contain length of compressed data. Applications should ignore
this value.

wPdk
State of the stroke, expressed as a PDK_ value.

dwTick
Time at beginning of the stroke. dwTick holds the number of milliseconds that
have elapsed since the system tick reference that Windows determines at startup.

Comments

See Also

SYC

Members

SYC 367

The STROKEINFO structure serves two main purposes. First, it is returned by
the GetPenHwEventData functions with each piece of new data from the tablet.
Second, it is used in certain pen data functions such as AddPenInputHRC,
AddPointsPenData, and GetPenDataStroke as a header for each stroke. In
both cases, it contains information about a sequence of data from the tablet.

For examples and further information about STROKEINFO and its members, see
the section "Recognition Functions" in Chapter 8, "Writing a Recognizer."

For a list of stroke state bits, refer to the entry for PDK_ values in Chapter 13, "Pen
Application Programming Interface Constants."

AddPenInputHRC, GetPenDataStroke, GetPenInput, GetPenHwEventData,
InsertPenDataStroke, TargetPoints, PDK_

1.0 2.0

The SYC symbol correspondence structure is best described in context with the
SYG symbol graph and SYE symbol element structures. For a description of the
SYC structure, see the entry for SYG' below.

Note The SYC structure is provided only for compatibility with version 1.0 of the
Pen API and will not be supported in future versions.

A single shape can be identified by one or more SYC structures.

typedef struct {
UINT wStrokeFirst;
UINT
UINT
UINT
BOOl

SYC;

wPntFirst;
wStrokelast;
wPntlast;
flastSyc;

wStrokeFirst
Index number of the first stroke of the correspondence.

wPntFirst
Index number of the first point in the stroke identified by wStrokeFirst.

368 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

See Also

wStrokeLast
Index number of the last stroke of the correspondence.

wPntLast
Index number of the last point in the stroke identified by wStrokeLast.

tLastSyc
TRUE if there are no more SY C structures for the current SYE (symbol
element).

All indexes are zero-based, so that an index of 0 indicates the first of a sequence.

Figure 11.6 illustrates the relationship of symbol values and symbol graphs. The
first line shows that a symbol value is a single SYE symbol element. A series of
symbol values can be connected by the SYV _OR value to create an OR string, as
the second line illustrates. This OR string begins with the SYV _BEGINOR value
and ends with a symbol value followed by SYV _ENDOR. The third line shows a
symbol graph that is simply a symbol value or an OR string, in either case ending
with the SYV _NULL value.

Symbol value

OR string

-----..[SYE

Symbol graph

Figure 11.6 Symbol values and symbol graphs

RCRESUL T, TrainContext, SYV _

SYE

Members

SYG

SVE 369

1.0 2.0

The SYE symbol element structure is best described in context with the SYG sym­
bol graph and SYC symbol correspondence structures. For a description of the SYE
structure, see the entry for SYG below.

Note The SYE structure is provided only for compatibility with version 1.0 of the
Pen API, and will not be supported in future versions.

An SYE structure contains a symbol, which can be a character, gesture, or string.

typedef struct {
SYV syv;
LONG 1RecogVa1;
CL c1 ;
int iSyc;

SYE;

syv
Symbol value.

IRecogVal
Reserved.

cl
Confidence level.

iSyc
Index into array of SYC structures. The array identifies the raw data that makes
up the symbol. It is possible for several SYE structures to use the same SYC
structures.

1.0 2.0

A symbol graph, which represents the possible interpretations identified by the
recognizer.

370 Programmer's Guide to Pen Services for Microsoft Windows 95

Members

Comments

typedef struct {
POINT rgpntHotSpots[MAXHOTSPOT];
int cHotSpot;
int nFirstBox;
lONG 1 RecogVa 1 ;
lPSYE lpsye;
int cSye;
lPSYC lpsyc;
int cSyc;
SYV syv;
lONG 1 RecogVa 1 ;
C l cl;
int iSyc;
UINT wStrokeFirst;
UINT wPntFirst;
UINT wStrokelast;
UINT wPntlast;
BOOl flastSyc;

SYG;

rgpntHotSpots[MAXHOTSPOT]
Hot spots of the symbol (if any). MAXHOTSPOT is defined as 8.

cHotSpot
Number of valid hot spots in rgpntHotSpots.

nFirstBox
Row-major index to box of first character in result.

IRecogVal
Reserved.

Ipsye
Pointer to array of SYE structures representing nodes of symbol graph.

cSye
Number of SYE structures in array Ipsye.

Ipsyc
Pointer to corresponding array of SYC symbol ink structures.

cSyc
Number of SYC structures in symbol graph.

All indexes are zero-based.

If a single entity recognized by the recognizer is mapped to a string of several
symbol values, the recognizer creates multiple SYE. This is the case for recog­
nizers that can recognize highly stylized sequences of characters-for example,
"ing"-in which the individual characters are not necessarily recognized.

SYG 371

The nFirstBox member has no meaning for gestures. A gesture is applied to the
location indicated by its hot spot.

The SYG, SYE, and SYC structures define the relationship between raw pen data
and recognized results. However, in version 2.0 of the Pen API they are rarely of
interest to applications for two reasons. First, API functions return recognition
results without forcing the application to deal with the complexities of raw pen
data. And second, SYG, SYE, and SYC apply mainly to recognizers.

All nontrivial recognizers should somehow track the pen strokes that form each
character in the returned results. To be compatible with version 1.0, a recognizer
must use the SYG, SYE, and SYC structures and return a symbol graph-an SYG
structure-as a member of the RCRESULT structure. Version 2.0 does not
mandate how a recognizer should map pen data to symbols. However, these three
structures represent a viable method. Recognizer developers writing for version 2.0
may want to use the structures or create variations.

The following information applies to version 1.0 applications and recognizers, and
to version 2.0 recognizers that employ symbol graphs to relate strokes to recognized
symbols. For further information about SYG, SYE, and SYC, see "Returning
Results" in Chapter 8, "Writing a Recognizer."

A symbol graph is a representation of the possible interpretations identified by the
recognizer. The RC Manager processes the symbol graph using the dictionary path
to identify the best interpretation. This best interpretation is returned in the results
message along with the symbol graph.

A symbol value is a 32-bit value that represents a glyph (such as a character or
a gesture) recognized by a recognizer. This is sometimes referred to as a symbol.
A symbol string is an array of symbols terminated with SYV _NULL.

Each element of the symbol graph, an SYE, contains information about the recog­
nized character-for example, bounding rectangle and hot spots. The SYC struc­
ture maps SYE structures back to the corresponding raw data. If two or more
consecutive SYE structures map to the same SYC, they represent an indivisible
unit. For example, the user might teach the system of "th" with the crossbar of
the "t" connected to the "h." SYC structures are used primarily for training.

372 Programmer's Guide to Pen Services for Microsoft Windows 95

A version 1.0 application generally does not use the symbol graph directly. Instead,
it uses the hSyv member of R CRESUL T, which contains a symbol string that
represents the best interpretation from the symbol graph. SYE and SYC structures
work together with the HPENDAT A memory block to identify strokes and mean­
ings for ink. The following table lists the basic functions of these structures.

Structure

HPENDATA

SYC

SYE

SYV

SYG

Description

Contains raw data information: strokes, pen up, pen
down, points, and so on.

A symbol character map. SYC structures delimit strokes
in an HPENDAT A. A single shape can be identified
by one or more SYC structures. Each SYC identifies a
starting stroke, an ending stroke, a starting point, and an
ending point. A flag also indicates whether subsequent
SYC structures in the array contain additional strokes
for the shape. (This feature is used for delayed strokes,
such as the cross stroke of the letter "t.")

A symbol element. An SYE contains a symbol, which
can be a character, a gesture, or a string. The symbol
is denoted by an SYV. The SYE contains an index into
an array of SYC structures; this array identifies the
raw data that makes up the symbol. It is possible for
several SYEs to use the same SYC structures. The
SYC structures contain indexes into the raw data.

A symbol value.

A symbol graph.

A set of SYEs and SYCs, together with an HPENDAT A structure, is sufficient to
define ink and specify how that ink should be interpreted. The training functions
TrainContext and Trainlnk use this information in training.

TARGET 373

TARGET II

Members

See Also

2.0

Contains information about a single target.

typedef struct {
DWORD dwFl ags;
DWORD idTarget;
HTRG htrgTarget;
RECTL rectBound;
DWORD dwData;
RECTL rectBoundlnk;
RECTL rectBoundLastlnk;

TARGET;

dwFlags
Reserved for future extensions. Must be set to O.

idTarget
Array index to the target within rgTarget array in T ARGINFO structure.

htrgTarget
Handle to the owner window that receives messages on behalf of the target.

rectBound
Bounding rectangle of the target.

dwData
Target-specific extra information to be filled during data collection.

rectBoundlnk
Reserved; must be O.

rectBoundLastlnk
Reserved; must be O.

TargetPoints, TARGINFO, WM_PENEVENT, INPPARAMS

374 Programmer's Guide to Pen Services for Microsoft Windows 95

TARGINFO

Members

2.0

A set of targets.

typedef struct
DWORD cbSize;
DWORD dwFlags;
HTRG htrgOwner;
WORD cTargets;
WORD iTargetLast;
TARGET rgTarget[l];

TARGINFO;

cbSize
Size of this structure in bytes. Note that this is the original size, which assumes
only a single TARGET structure in rgTarget. The value should be
sizeof(TARGINFO).

dwFlags
Flags have been defined to get different targeting behavior depending on the
needs of the calling application. These flags work as hints for the targeting
algorithm. The flags are considered by the Pen API in the order in which they
appear in the following list. If none of the flags are set, the stroke is not assigned
to any target.

TPT _TEXTUAL
When this flag is set, Windows applies textual heuristics, such as identifying
word breaks, while deciding the target to which a stroke should be assigned.

If there is no text to intersect with, the input is disregarded completely.
Therefore, this option should not generally be used by itself.

TPT _INTERSECTINK
Indicates that if the stroke being targeted intersects with the ink in a target,
the stroke should be assigned to that target. Intersection is determined based
on the bounding rectangle of the stroke and the bounding rectangle of the
pen data assigned to· a target. If there is no ink to intersect with, the input is
disregarded completely • Therefore, this option should not generally be used
by itself.

TPT_CLOSEST
Indicates that the stroke should be targeted to the target closest to the stroke.
The bounding rectangle of the stroke and the bounding rectangle of the target
are specified by the rectBound element of the TARGET structure.

Comments

See Also

TARGINFO 375

htrgOwner
Handle to the owner target. Use the HtrgFromHwnd and HwndFromHtrg
macros to convert a target handle of HTRG type to and from an HWND type.

cTargets
Number of targets.

iTargetLast
Last target. Used by the TargetPoints function during textual heuristics.
iTargetLast contains the number of the target window that last received data.
The system uses this value to optimize its determination of the next target.
Applications can read but should not overwrite iTargetLast.

rgTarget[l]
Variable-length array of targets.

For best results, most applications should set all hints for targeting. That is, the
dwFlags member ofTARGINFO should be set to TPT_DEFAULT, which is the
combination of TPT _TEXTUAL I TPT _INTERSECTINK I TPT_CLOSEST.

Before using TARGINFO, an application must initialize cbSize with
sizeof(TARGINFO).

TARGET, TargetPoints

CHAPTER 12

Pen Application Programming
Interface Messages

This chapter describes in alphabetical order many of the messages and submessages
defmed by the Pen Application Programming Interface. Each entry describes a
separate message organized under the following topic headings:

Topic heading

Parameters

Return Value

Comments

See Also

Description

Message wParam and IParam parameters.

Return value from the Windows SendMessage
function (if applicable).

Additional information about the message.

Cross-references to related API services.

HE CANCELCONVERT

Parameters

Return Value

Cancels Kana-to-Kanji conversion. Submessage ofWM_PENCTL. (Japanese
version only.)

wParam
HE_CANCELCONVERT.

lParam
Reserved and must be O.

Returns TRUE if there are no errors; otherwise, returns FALSE.

378 Programmer's Guide to Pen Services for Microsoft Windows 95

HE CHAROFFSET

Parameters

Return Value

Comments

See Also

Converts the logical character position of a character in a control into a byte offset
to the character. Submessage of WM_PENCTL.

wParam
HE_CHAROFFSET.

lParam
The low-order word contains the logical character position. The high-order word
is reserved and must be O.

If the supplied logical character position is less than the total number of logical
characters in the control, the low-order word of the return value contains the
requested byte offset of the position and the high-order word is O. Otherwise, the
low-order word contains the length of the text in bytes and the high word contains
OxFFFF.

This submessage is for bedit controls only. Both the logical character position and
the byte offset are zero-based.

HE CHARPOSITION

Parameters

Return Value

Comments

See Also

Converts a byte offset in the text buffer of a control to the logical character
position, which contains the byte specified by the byte offset. Submessage of
WM_PENCTL.

wParam
HE_CHARPOSITION.

lParam
The low-order word contains the byte offset. The high word is reserved and
must be O.

If the supplied byte offset is less than the length of the text in bytes, the low-order
word of the return value contains the logical character position and the high-order
word is 0; otherwise, the low-order word contains the total number of logical
characters in the text of the control and the high-order word contains OxFFFF.

This submessage is for bedit controls only. Both the byte offset and the logical
character position are zero-based.

HE_DEFAUL TFONT 379

HE DEFAUL TFONT

Parameters

Return Value

Comments

See Also

Switches the font of a bedit control to the default font that the bedit control selected
at the time of creation. Submessage of WM_PENCTL.

wParam
HE_DEFAULTFONT.

IParam
If the low-order word is nonzero, the control is repainted.

The return value is undefmed.

This submessage is for bedit controls only.

HE ENABLEAL TLIST

Parameters

Return Value

Comments

See Also

Enables or disables the alternate list in a bedit control. Submessage of
WM_PENCTL.

wParam
HE_ENABLEALTLIST.

IParam
If the low-order word is nonzero, the alternate list menu is enabled; otherwise,
it is disabled.

The return value is undefined.

This submessage is for bedit controls only.

HE FIXKKCONVERT

Parameters

Confirm undetermined string and close Input Method Editor (IME). Submessage
ofWM_PENCTL. (Japanese version only.)

wParam
HE_FIXKKCONVERT.

380 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

lParam
Reserved and must be o.

Returns TRUE if there are no errors; otherwise, returns FALSE.

When in preconversion mode, the marked conversion string area is removed.
Marked conversion strings are indicated in the Input Method Editor (lME) in a
different shade than standard edit control text selection. When in conversion mode
(no marked string), the string is confirmed and the IME is closed. Available for
bedits only.

HE GETBOXLAVOUT

Parameters

Return Value

Comments

See Also

Retrieves the box layout for a control. Submessage of WM_PENCTL.

wParam
HE_GETBOXLA YOUT.

lParam
Address of a BOXLA YOUT structure that is filled with the current box layout
for the control.

The return value is undefined.

This submessage is for bedit controls only.

BOXLAYOUT, WM_PENCTL

HE GETCONVERTRANGE

Parameters

Return Value

Comments

Gets the range of the marked conversion string. Submessage of WM_PENCTL.
(Japanese version only.)

wParam
HE_GETCONVERTCHAR.

lParam
Not used.

Returns a 32-bit value with the starting character position (not byte position) of
the marked conversion string in the low-order word and the position of the last
character of the marked conversion string plus 1 in the high-order word.

Available for bedits only. The message returns a valid value only when in
preconversion mode; otherwise, it returns O.

HE_GETINFLATE 381

HE GETINFLATE

Parameters

Return Value

Comments

See Also

Retrieves the inflation rectangle for a control. Submessage of WM_PENCTL.

wParam
HE_ GETINFLATE.

IParam
Address of a RECTOFS structure that is filled with the current values for
the inflation rectangle.

Returns TRUE if successful; otherwise, FALSE.

For a description of how to increase or decrease the writing area of a control,
see "HE_SETINFLATE Submessage" in Chapter 3, "The Writing Process."

HE_SETINFLATE, RECTOFS, WM_PENCTL

HE GETINKHANDLE

Parameters

Return Value

Comments

See Also

Retrieves the ink handle for the current control. Submessage of WM_PENCTL.

wParam
HE_GETINKHANDLE.

IParam
Unused.

The low-order word of the return value contains a handle to the captured ink. If
the return value is NULL, the control is not in ink mode.

The returned ink handle is valid only during the life of the control. The handle
becomes invalid after the control is destroyed.

HE GETKKCONVERT
Determines if the Input Method Editor (1MB) is in conversion mode. Submessage
ofWM_PENCTL. (Japanese version only.)

382 Programmer's Guide to Pen Services for Microsoft Windows 95

Parameters

Return Value

Comments

wParam
HE_GETKKCONVERT.

IParam
Reserved and must be O.

Returns TRUE if the IME is in conversion mode; otherwise, returns FALSE.

Available for bedits only.

HE GETKKSTATUS

Parameters

Return Value

Comments

Determines the mode of the Kana-to-Kanji conversion in the Input Method Editor
(IME). Submessage of WM_PENCTL. (Japanese version only.)

wParam
HE_GETKKSTATUS.

IParam
Reserved and must be O.

Returns one of the following values or FALSE:

Value

HEKKR_PRECONVERT
HEKKR_CONVERT
HHEKKR_NOCONVERT

Current Status

In preconversion mode.

In conversion mode

In nonconversion mode

The 1MB recognizes three modes: preconversion mode, conversion mode, and non­
conversion mode. In preconversion mode, the user has entered text intended for
conversion by the 1MB and the text is marked. When the user invokes the 1MB on
the marked range of characters, the conversion mode is entered and the 1MB is
active. Once the user confirms an IME conversion, the nonconversion mode
(normal mode) is entered.

The term "marked" refers to the range of cells in the bedit that have been selected
for character conversion. Characters marked for conversion appear differently to
the user than normally selected characters.

This submessage is available for bedits only. This message. can also be used to
determine keyboard IME status by checking for HEKKR_ CONVERT.

HE_GETUNDERLINE 383

HE GETUNDERLINE

Parameters

Return Value

Comments

See Also

Queries for the current underline mode. Submessage of WM_PENCTL.

wParam
HE_GETUNDERLINE.

lParam
Unused.

Returns TRUE if the underline mode is set; otherwise, FALSE.

This submessage is for hedit controls only.

HE HIDEAL TLIST

Parameters

Return Value

Comments

See Also

Hides the alternate list in a bedit control, assuming an alternate list menu is being
displayed. Submessage of WM_PENCTL.

wParam
HE_HIDEALTLIST.

lParam
If the low-order word is HEAL_DEFAULT, the alternate list menu is hidden.

The return value is undefined.

This submessage is for bedit controls only.

HE_ENABLEALTLIST, HE_SHOWTLIST, WMYENCTL

HE KKCONVERT
Starts Kana-to-Kanji conversion. Submessage of WM_PENCTL. (Japanese version
only.)

384 Programmer's Guide to Pen Services for Microsoft Windows 95

Parameters

Return Value

Comments

wParam
HE_KKCONVERT.

lParam
Must be one of the following values:

Value

HEKK_CANDIDATE

HEKK_DBCSCHAR

Meaning

The first time the conversion is specified, the selected
character string is replaced with the conversion result;
the second time it is specified, the conversion candidate
dialog box appears.

The selected character string is replaced with the
conversion result regardless of how many times
conversion has been specified.

Causes the conversion candidate dialog box to appear.

The SBCS characters (Ox20 - Ox7E, OxAI - OxDF) are
replaced by their DBCS equivalents.

The DBCS characters in the selected character string or
marked conversion string that have equivalent SBCS
representations are replaced by their equivalent SBCS
characters.

The katakana characters (DBCS or SBCS) in the
selected character string or marked conversion string are
replaced with their hiragana equivalents.

The hiragana characters in the selected character string
or marked conversion string are replaced with their
DBCS katakana representation.

Returns TRUE if there are no errors; otherwise, returns FALSE:

In this message, "marked conversion string" indicates the string in the Input Method
Editor (IME) that is marked for conversion. Text marked for conversion is indicated
by a different selection color than that used for normal text selection in a standard
text edit control. Available for bedits only.

HE_PUTCONVERTCHAR 385

HE PUTCONVERTCHAR

Parameters

Return Value

Comments

Sends a character to the Input Method Editor (IME) and marks it for conversion.
Submessage ofWM_PENCTL. (Japanese version only.)

wParam
HE_PUTCONVERTCHAR.

IParam
The low-order word contains the character code, which can be an SBCS or
DBCS character.

Returns TRUE if there are no errors; otherwise, returns FALSE.

Posting this message is exactly like posting a WM_CHAR message to a bedit or
edit control with the exception that the posted character also acquires the attribute
of being a character marked for conversion in the Input Method Editor. This sub­
message is available for bedits only.

HE SETBOXLA YOUT

Parameters

Return Value

Comments

See Also

Sets the box layout for a control. Submessage of WM_PENCTL. Submessage
ofWM_PENCTL.

wParam
HE_SETBOXLA YOUT.

IParam
Address of the BOXLAYOUT structure to be set.

Returns TRUE if successful; otherwise, returns FALSE.

This submessage is for bedit controls only.

386 Programmer's Guide to Pen Services for Microsoft Windows 95

HE SETCONVERTRANGE

Parameters

Return Value

Comments

Sets the range of the marked conversion string. Submessage of WM_PENCTL.
(Japanese version only.)

wParam
HE_SETIMEDEFAULT.

IParam
The low-order word contains the starting character position (not byte position)
of the marked conversion string. The high-order word contains the ending
character position plus 1.

Returns TRUE if there are no errors; otherwise, returns FALSE.

Available for bedits only. If the starting character position is 0 and the ending char­
acter position is -1, all the text in the control becomes the marked conversion
string. If the starting character is -1, the marked conversion string area is removed.
When characters are marked for conversion, the Input Method Editor is said to be
in preconversion mode.

Returns FALSE if in conversion mode. If there is a selection, the selection will be
cleared. The caret will be moved to the end of the marked conversion string.

HE SETINFLATE

Parameters

Return Value

Comments

See Also

Sets the inflation rectangle for a control. Submessage of WM_PENCTL.

wParam
HE_SETINFLA TE.

IParam
Address of a RECTOFS structure specifying the inflation margins for the
writing window.

Returns TRUE if successful, or FALSE if an invalid window rectangle is specified.

This is a submessage of the WM_PENCTL message.

For a description of how to increase or decrease the writing area of a control, see
"HE_SETINFLATE Submessage"in Chapter 3, "The Writing Process."

HE_GETINFLATE, RECTOFS, WM_PENCTL

HE_SETINKMODE 387

HE SETINKMODE

Parameters

Return Value

Comments

See Also

Starts ink data collection in a control. Submessage of WM_PENCTL.

wParam
HE_SETINKMODE.

IParam
The low-order word is the initial HPENDA T A object or NULL. If the initial
HPENDA T A is supplied, it must be relative to the top-left comer of the client
rectangle of the control.

Returns TRUE if successful; otherwise, returns FALSE.

This is a submessage of the WM_PENCTL message.

HESETUNDERLINE

Parameters

Return Value

Comments

See Also

Sets or cancels underline mode in an hedit control. Submessage of WM_PENCTL.

wParam
HE_SETUNDERLINE.

IParam
The low-order word is TRUE to set underline mode and FALSE to cancel it.

Returns the current underline mode.

This submessage is for single-line hedit controls only.

HE SHOWAL TLIST

Parameters

Displays the alternate list menu for the current cell in a bedit control, assuming that
alternate lists are enabled. Submessage ofWM_PENCTL.

wParam
HE_SHOWALTLIST.

IParam
If the low-order word is HEAL_DEFAULT, the alternate list menu is displayed.

388 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

See Also

If more than one character is selected, the alternate list of the fIrst character in the
selection is displayed. If nothing is selected, the alternate list for the character to the
right of the caret is displayed and the return value is TRUE.

This submessage is for bedit controls only. If more than one box is selected, the
HE_SHOW AL TLIST message will drop a word alternate list menu; otherwise, it
will drop a character alternate list menu.

HE_ENABLEALTLIST, RE_RIDEALTLIST, WM_PENCTL

HE STOPINKMODE

Parameters

Return Value

Comments

See Also

Stops ink collection in a control. Submessage of WM_PENCTL.

wParam
HE_STOPINKMODE.

IParam
If the low-order word is REP _RECOG, the control performs recognition and
displays text. If the low-order word is HEP _NORECOG (0), the control
removes the ink without performing recognition. If the low-order word is
HEP _ W AITFORT AP, the control performs recognition when the next tap in
the writing area occurs.

Returns TRUE if successful; otherwise, returns FALSE.

This is a submessage of the WM_PENCTL message.

HN BEGINDIALOG

Parameters

Sent by a bedit or hedit control to its parent window just before the control puts
up any kind of dialog, including the lens, edit text, or garbage-detection dialogs.

The control's parent window receives this notification message through a
WM_COMMAND message.

wParam
Specifies the identifier of the hedit or bedit control.

IParam
SpecifIes the handle of the hedit or bedit control in the low-order word and the
HN_BEGINDIALOG notifIcation message in the high-order word.

Return Value

HN _ENDDIALOG 389

If the parent window returns TRUE to this notification message, the bedit or hedit
control refrains from opening the dialog; otherwise, the dialog is opened. Note that
the application can disable the hedit or bedit control's ability to open a dialog by
specificying CIH_NOEDITTEXT in the WM_CTLINIT message.

HN ENDDIALOG

Parameters

Return Value

Sent by a bedit or hedit control to its parent window of the dialog when a dialog
opened by the control is destroyed.

The control's parent window receives this notification message through a
WM_COMMAND message.

wParam
Specifies the identifier of the hedit or bedit control.

lParam
Specifies the handle of the hedit or bedit control in the low-order word and
the HN_ENDDIALOG notification message in the high-order word.

The return value is ignored.

HN ENDKKCONVERT

Parameters

Return Value

Sent after a bedit control has completed the Kana-to-Kanji conversion. Submessage
of WM_PENCTL. (Japanese version only.)

The control's parent window receives this notification message through a
WM_COMMAND message.

wParam
Specifies the identifier of the hedit or bedit control.

lParam
Specifies the handle of the hedit or bedit control in the low-order word and the
HN_ENDKKCONVERT notification message in the high-order word.

The return value is ignored.

390 Programmer's Guide to Pen Services for Microsoft Windows 95

HN ENOREe

Parameters

Return Value

Sent after an hedit or bedit control has acted upon the results of recognition from
a recognition session.

The control's parent window receives this notification message through a
WM_COMMAND message.

wParam
Specifies the identifier of the hedit or bedit control.

IParam
Specifies the handle of the hedit or bedit control in the low-order word and the
HN_ENDREC notification message in the high-order word.

The return value is ignored.

HN RESULT

Parameters

Return Value

Comments

See Also

Sent when an hedit or bedit control receives results of inking or recognition from a
recognition session, but before the control absorbs the results into its internal data
structures.

The control's parent window receives this notification message through a
WM_COMMAND message.

wParam
Specifies the identifier of the hedit or bedit control.

IParam
Specifies the handle of the hedit or bedit control in the low-order word and the
HN_RESUL T notification message in the high:-order word.

The return value is ignored.

IE CANUNDO

Parameters

Return Value

Retrieves an indication of whether the control can undo the last user operation.

wParam
Not used; must be O.

lParam
Not used; must be O.

Returns one of the following values:

Constant

IER_PARAMERR

Description

The control can undo the last operation.

The control cannot undo the last operation or the control
has security protection disallowing an undo operation.

wParam or IParam is invalid.

IE DOCOMMAND

Parameters

Causes an ink edit control to execute a command.

wParam
Contains one of the following command message codes:

Constant

IEM_CLEAR

IEM_COPY

IEM_CUT

IEM_ERASE

IEM.-LASSO

IEM_PASTE

IEM_PROPERTIES

IEM_RESIZE

IEM_SELECTALL

IEM_UNDO

lParam
Not used; must be O.

Description

Clear (delete) the selection.

Copy selected strokes.

Cut selected strokes.

Use eraser mode to erase.

Use lasso mode to select strokes.

Paste Clipboard contents to the iedit control.

Invoke the properties dialog box on the selected
strokes.

Resize selected strokes.

Select all the strokes in the control.

Undo the last action.

392 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

See Also

Returns IER_ OK if successful; otherwise, returns one of the following:

Constant

IER_PARAMERR

IER_MEMERR

IER_SECURITY

Description

wParam or IParam is invalid.

A memory error occurred.

The control has security protection disallowing the
operation.

An application can use this message to force the ink edit control to execute a valid
command. For example, an application might have a toolbar button or menu item
that can be used to trigger a copy command. The IE_DO COMMAND message can
be used in response to the user's pressing the button or selecting the menu item to
have the iedit control copy the selected ink to the Clipboard.

The iedit control sends its parent an IN_COMMAND notification if the lEN_EDIT
notify bit is set, to which the parent can respond in the usual ways. Sending a
command that the iedit control cannot interpret (that is, a command code of
IEM_ USER or above) causes any specified notification but the iedit control takes
no other action.

The lEN_EDIT bit is set by default. It should be cleared if the control's parent does
not want to receive the IN_COMMAND notification message.

IE_GETCOMMAND

IE EMPTYUNDOBUFFER
Empties the undo buffer.

Parameters wParam
Not used; must be O.

IParam
Not used; must be O.

Return Value

Comments

See Also

Returns one of the following:

Constant

IER_OK

IER_PARAMERR

IER_SECURITY

IE_GETAPPDATA 393

Description

Success.

wParam or lParam is invalid.

The control has security protection disallowing the
operation.

If there is nothing in the undo buffer, this message returns IER_OK but
does nothing else. As long as the buffer remains empty after sending
IE_EMPTYUNDOBUFFER, the messages IE_CANUNDO and WM_UNDO
return FALSE.

IE_CANUNDO

IE GETAPPDATA

Parameters

Return Value

Comments

See Also

Retrieves the application data saved inthe ink edit control.

wParam
Not used; must be O.

IParam
Not used; must be O.

Returns the contents of the application data area if successful; otherwise, returns
IER_PARAMERR to indicate that wParam or IParam is invalid.

An application can save any DWORD value with the ink edit control. The control
does not use this data. The IE_SETAPPDATA and IE_GETAPPDATA messages
provide the only means for an application to interact with the data.

394 Programmer's Guide to Pen Services for Microsoft Windows 95

IEGETBKGND

Parameters

Return Value

Comments

See Also

Retrieves the current background painting options of an ink edit control.

wParam
Not used; must be O.

IParam
Address of a WORD variable that receives the current background options, as
given in the following list:

Constant

IEB_BIT_ CENTER

IEB_BIT _STRETCH

IEB_BIT_TILE

IEB_BIT_UL

IEB_BRUSH

IEB_DEFAULT

IEB_OWNERDRA W

Description

Center supplied bitmap in control.

Stretch bitmap to fit control.

Tile supplied bitmap repeatedly in control.

Align supplied bitmap to upper-left comer in the
control. (UL stands . for "upper left.")

Use application-supplied brush in IParam.

Do default background (use COLOR_WINDOW).

Parent will draw background.

If successful, returns a handle to the background bitmap or a brush, or NULL,
according to the option specified in IParam; otherwise, returns IER_PARAMERR
to indicate that wParam or IParam is invalid.

The returned handle is owned by the iedit control; the application should not delete
it. If the application needs to preserve this information, it should copy the handle.

IE GETCOMMAND
Retrieves the menu item number of a selected command.

Parameters wParam
Not used; must be O.

IParam
Not used; must be O.

Return Value

Comments

See Also

IE_GETCOUNT 395

Returns the menu item number if successful; otherwise, returns one of the
following:

Constant

IER_PARAMERR

IER_NOCOMMAND

Description

wParam or lParam is invalid.

Attempt to issue IE_GETCOMMAND when no
command was selected.

The application sends the IE_ GETCOMMAND message when it receives an
IN_COMMAND notification to find out what menu item the user selected. This
message can be sent only during processing of anIN_COMMAND notification.
It returns the IER_NOCOMMAND error code if sent at any other time.

IE GETCOUNT

Parameters

Return Value

See Also

Retrieves the count of strokes in the· control.

wParam
Not used; must be O.

lParam
Not used; must be O.

If successful, returns the total number of strokes in the control; otherwise, returns
IER_PARAMERR to indicate that wParam or lParam is invalid.

IE_ GETSELCOUNT

IE GETDRAWOPTS
Retrieves the ink-drawing option.

Parameters wParam
Not used; must be O.

lParam
Not used; must be O.

396 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

See Also

Returns one of the following ink-drawing options:

Constant

IEDO_NONE

IEDO_SA VEUPSTROKES

Description

Drawing is done as fast as possible. This is the default
setting.

No drawing is done (disabled drawing).

Save pen-up strokes in the HPENDAT A object.

IEDO_FAST and IEDO_NONE are mutually exclusive options.

IE GETERASERTIP

Parameters

Return Value

Comments

See Also

Retrieves the eraser pen tip.

wParam
Not used; must be O.

IParam
Address of a PENTIP structure.

Returns IER_ OK if successful; otherwise, returns IER_P ARAMERR to indicate
that wParam or IParam is invalid.

The PENTIP structure is filled with the current pen tip used for erasing.

PENTIP, IE_SETERASERTIP

IE GETFORMAT

Parameters

Return Value

Retrieves the current format of a stroke or a set of strokes in an iedit control.

wParam
Not used; must be O.

IParam
Address of a STRKFMT structure.

If successful, returns bit flags that indicate whether the strokes identified in the
STRKFMT structure have different color or width, as described in the
"Comments" section.

Comments

IE_GETFORMAT 397

If an error occurs, returns one of the following values:

Constant

IER_ERROR

IER_PARAMERR

Description

Unknown error.

wParam or IParam is invalid. Also returned when there
is an invalid stroke index and the IESF _STROKE option
is specified in the iesf member of the STRKFMT
structure.

The control has security protection disallowing the
operation.

No valid selection when the IESF _SELECTION option
is specified in the iesf member of the STRKFMT
structure.

If the value in the iesf member of the STRKFMT structure has the IESF _STROKE
bit set, IE_GETFORMAT refers to the single stroke identified in the iStrk member.
In this case:

• The return value is O.

• The bwidth and rgb members in PEN TIP specified in the STRKFMT
structure contain the stroke's color and width.

If either the bit IESF _SELECTION or IESF _ALL is set in iesf, IE_ GETFORMA T
retrieves format information for multiple strokes. In this case, the return value con­
tains the IESF _TIPCOLOR or IESF _TIPWIDTH bit flags that indicate whether the
multiple strokes share the same ink color and width.

For example, if the mUltiple requested strokes all have the same width, then

• The IESF _ TIPWIDTH bit of the return value is 0 to indicate the strokes all have
the same width.

• The bwidth member in PENTIP specified in the STRKFMT structure contains
the common width.

If the strokes do not all have the same color, IE_ GETFORMAT returns the
following information:

• The IESF _TIPCOLOR bit is set in the return value to indicate the strokes do not
share a common color.

• The rgb member in PENTIP specified in the STRKFMT structure contains the
color of the last stroke in the group.

The caller must initialize the cbSize member of the STRKFMT structure to
s i zeaf (STRKFMT) before sending IE_GETFORMAT.

398 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

The supplied STRKFMT structure specifies the stroke or strokes for which the
attributes are desired. The structure is filled according to the request and the actual
stroke attributes.

IE_SETFORMAT, PENTIP, STRKFMT

IE GETGESTURE

Parameters

Return Value

Comments

Retrieves the specifics of a gesture.

wParam
Not used; must be O.

lParam
Not used; must be O.

Returns an HRCRESUL T of the gesture if successful; otherwise, returns one of
the following:

Constant

IER_PARAMERR

IER_NOGESTURE

Description

wParam or IParam is invalid.

Indicates an attempt to issue IE_ GETGESTURE when
no gesture was performed.

An application sends IE_GETGESTURE when it receives an IN_GESTURE notifi­
cation, to retrieve the specifics of the user's gesture. This message can be sent
only during processing of an IN_GESTURE notification. It returns the error code
IER_NOGESTURE if it is set at any other time.

If successful, the application receives an HR CRESUL T, which can then be used
to get information about the gesture specifics. This handle is still owned by the iedit
control, however, and the application must neither delete the handle nor modify the
data to which it refers.

IE GETGRIDORIGIN
Retrieves the current origin of the rule or grid-line settings for the control.

Parameters wParam
Not used; must be O.

lParam
Not used; must be O.

Return Value

See Also

IE _ GETGRIDPEN 399

Returns the x-coordinate of the origin in the low-order word and the y-coordi­
nate of the origin in the high-order word, if successful; otherwise, returns
IER_PARAMERR to indicate that wParam or IParam is invalid.

. IE_GETBKGND, IE_GETGRIDORIGIN, IE_GETGRIDSIZE, IE_SETBKGND,
'IE_SETGRIDORIGIN, IE_SETGRIDPEN, IE_SETGRIDSIZE .

IE GETGRIDPEN

Parameters

Return Value

Comments

See Also

Retrieves the current GDI pen used to draw the rules or grid lines for the control.

wParam
Not used; must be O.

IParam
Not used; must be O.

If successful, returns a handle to a GDI pen that is being used to draw the grid lines.
This handle can be NULL; otherwise, returns IER_P ARAMERR to indicate that
wParam or IParam is invalid.

The handle of the GDI pen returned remains the property of the iedit control. The
application must not delete this handle.

IE_GETBKGND, IE_GETGRIDORIGIN, IE_GETGRIDSIZE, IE_SETBKGND,
IE_SETGRIDORIGIN, IE_SETGRIDPEN, IE_SETGRIDSIZE

IE GETGRIDSIZE

Parameters

Return Value

See Also

Retrieves the current horizontal and vertical spacing of the rule or grid-line settings
for the control.

wParam
Not used; must be O.

IParam
Not used; must be O.

If successful, the low-order word has the horizontal spacing and the high-order
word has the vertical spacing; otherwise, returns IER_P ARAMERR to indicate that
wParam or IParam is invalid.

IE_GETBKGND, IE_GETGRIDORIGIN, IE_GETGRIDPEN, IE_SETBKGND,
IE_SETGRIDORIGIN, IE_SETGRIDPEN, IE_SETGRIDSIZE

400 Programmer's Guide to Pen Services for Microsoft Windows 95

IE GETINK

Parameters

Return Value

Comments

See Also

Retrieves the contents of an ink edit control.

wParam
IEGI_ALL to get the entire ink, or IEGI_SELECTION to get only the selected
ink.

lParam
Not used; must be O.

Returns the handle to the HPEND A T A structure if successful; otherwise, returns
one of the following:

Constant

IER_PARAMERR

IER_MEMERR

IER_SECURITY

Description

wParam or lParam is invalid.

A memory error occurred.

The control has security protection disallowing the
operation.

Nothing is selected in the control; operation assumes a
selection.

The returned HPENDAT A structure becomes the property of the application,
which must eventually destroy it. This handle is a copy of the handle used internally
by the control. An application cannot change the control by modifying the pen data
referred to by this handle, although the modified handle can subsequently be used in
an IE_SETINK call, which modifies the control's contents.

IE GETINKINPUT

Parameters

Return Value

Retrieves the current ink input options for the control.

wParam
Not used; must be O.

lParam
Not used; must be O.

Returns the current ink input bits if successful; otherwise, returns
IER_P ARAMERR to indicate that wParam or lParam is invalid.

Comments

See Also

IE_GETINKRECT 401

The ink input bits are as follows:

Constant

IECMOVE

IECRESIZE

IECCROP

IECDISCARD

IE_SETINKINPUT

Description

Move all ink inside the control.

Resize all ink to fit inside the control.

Crop all ink that falls outside the control.

Discard all ink if any falls outside the control.

IE GETINKRECT

Parameters

Return Value

Comments

Retrieves the bounding rectangle of the ink.

wParam
Not used; must be O.

IParam
Address of a RECT structure.

Returns IER_OK if successful; otherwise, returns IER_PARAMERR to indicate
that wParam or IParam is invalid.

The RECT structure is filled with the bounding rectangle of the current ink in
the control. The rectangle is in the same coordinates as the scaling mode the
HPENDAT A object is in.

IE GETMENU

Parameters

Return Value

Retrieves a handle to an ink edit control's pop-up menu.

wParam
Not used; must be O.

IParam
Not used; must be O.

Returns the handle to the menu if successful; otherwise, returns IER_P ARAMERR
to indicate that wParam or lParam is invalid.

402 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments The iedit control continues to own the menu handle.

The application can perfomi standard menu operations upon the returned handle,
including the addition, deletion, and modification of menu items. The application's
changes are reflected the next time the pop-up menu is invoked.

IE GETMODE

Parameters

Return Value

See Also

Retrieves the current mode the control is in.

wParam
Not used; must be O.

IParam
Not used; must be O.

If successful, returns one of the following values indicating the current control
mode:

Constant

IEMODE_ERASE

IEMODE_LASSO

Description

The control is ready for inking, moving strokes, tapping,
resizing, and so on.

The control is set to erasing mode.

The control is set to lasso selection mode.

Otherwise, returns IER_PARAMERR to indicate that wParam or IParam is
invalid.

IE GETMODIFY

Parameters

. Queries whether the contents of the control have been modified since the control
was created.

wParam
Not used; must beO.

IParam
Not used; must be O.

Return Value

Comments

See Also

IE_GETNOTIFY 403

Returns one of the following values:

Constant

IER_YES

IER_NO

IER_PARAMERR

Description

The control's contents have been modified.

The control's contents have not been modified.

wParam or IParam is invalid.

This command succeeds regardless of the security setting.

IE GETNOTIFY

Parameters

Return Value

See Also

Retrieves the current notification options for the control.

wParam
Not used; must be O.

IParam
Not used; must be O.

If successful, returns the current notification bits, as listed here:

Constant

lEN_EDIT

lEN_FOCUS

lEN_PAINT

IEN_PDEVENT

Description

Require notifications of editing or command events.

Require notifications of focus events.

Require notifications of painting events.

Require notifications of pointing -device events (clicks
and taps).

Require notifications before bringing up the properties
dialog box.

Require notifications of scrolling events.

Otherwise, returns IER_PARAMERR to indicate that wParam or IParam is
invalid.

404 Programmer's Guide to Pen Services for Microsoft Windows 95

IE GETPAINTDC

Parameters

Return Value

Comments

Retrieves the handle to the device context (HDC), which is used to paint an ink edit
control. This HDC was supplied to the iedit control by BeginPaint; therefore, its
clipping region is set according to those portions of the iedit control that have been
invalidated.

wParam
Not used; must be O.

IParam
Not used; must be O.

Returns the HDC if successful; otherwise, returns one of the following:

Constant

IER_PARAMERR

IER_NOTINP AINT

Description

wParam or lParam is invalid.

Attempted IE_ GETP AINTDC outside of paint
notification.

The application can send this message only when the parent window is processing
one of the painting notifications: IN_PREPAINT, IN_PAINT, IN_POSTPAINT,
or IN_ERASEBKGND. An attempt to send it at any other time will fail, returning
IER_NOTINPAINT.

The clipping region is already appropriately set when sending IE_ GETP AINTDC.
The HDC is in the MM_ TEXT mapping mode. The HDC must not be released;
the iedit control does this after returning from the painting notification.

IE GETPDEVENT

Parameters

Retrieves the pointing-device event that triggered the IN_PDEVENT notification.
This can be from a mouse, pen, or other device.

wParam
Not used; must be O.

IParam
Address of a PDEVENT structure that is filled by the control when it receives
this message.

Return Value

Comments

See Also

Returns one of the following:

Constant

IER_OK

IER_PARAMERR

IER_NOPDEVENT

Description

Success.

wParam or lParam is invalid.

No event occurred.

IE_GETPENTIP 405

This message can succeed only during the processing of an IN_PDEVENT
notification. At all other times its use is invalid. The caller must initialize the
cbSize member of the PDEVENT structure to s i zeof(PDEVENT) before
sending this message.

The application can cause the event to be discarded by returning TRUE to the
IN_PDEVENT notification.

IN_PDEVENT, PDEVENT

IEGETPENTIP

Parameters

Return Value

Comments

See Also

Retrieves the default ink pen tip.

wParam
Not used; must be O.

IParam
Address of a PENTIP structure.

Returns IER_ OK if successful; otherwise, returns IER_P ARAMERR to indicate
that wParam or IParam is invalid.

The PENTIP structure is filled with the current pen tip used for default inking.

PENTIP, IE_SETPENTIP

IE GETRECOG
Retrieves the current recognition setting of the control.

Parameters wParam
Not used; must be o.

IParam
Not used; must be o.

406 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

See Also

If successful, returns the following recognition flags, which can be combined using
the bitwise-OR operator:

Constant

IEREC_ALL

- IEREC_GESTURE

IEREC_NONE

Description

All recognition enabled.

Gesture recognition enabled.

Recognition disabled.

Otherwise, returns IER_PARAMERR to indicate that wParam or IParam is
invalid.

Currently, IEREC_GESTURE and IEREC_ALL are equivalent.

IE_SETRECOG

IE GETSECURITY

Parameters

Return Value

See Also

Retrieves the current security setting of the control.

wParam
Not used; must be O.

IParam
Not used; must be O.

If successful, returns the following security flags, which can be combined using
the bitwise-OR operator:

Constant

IESEC_NOCOPY

IESEC_NOCUT

IESEC_NOPASTE

IESEC_NOUNDO

IESEC_NOINK

IESEC_NOERASE

IESEC_NOGET

IESEC_NOSET

Description

Copying not allowed.

Cutting, deleting, and clearing not allowed.

Pasting disabled.

Undo not permitted.

Inking not allowed.

Erasing not allowed.

The IE_ GETINK message is disabled.

The IE_SETINK message is disabled.

Otherwise, returns IER_SECURITY to indicate that the control has security pro­
tection disallowing the operation.

IE GETSEL

Parameters

Return Value

See Also

Retrieyes the selection status of a particular stroke.

wParam
Contains the zero-based index of the stroke whose selection status is queried.

IParam
Not used; must be O.

Returns one of the following values:

Constant

IER_YES

IER_NO

IER . ..:P ARAMERR

Description

The stroke is selected.

The stroke is not selected.

wParam or lParam is invalid.

IE GETSELCOUNT

Parameters

Return Value

See Also

Retrieves the number of selected strokes.

wParam
Not used; must be O.

IParam
Not used; must be O.

If successful, returns the number of selected strokes; otherwise, returns
IER_PARAMERR to indicate that wParam or IParam is invalid.

IE_GETSEL,IE_GETCOUNT

IE GETSELITEMS
Retrieves a list of all selected strokes in the control.

Parameters wParam
Size of the buffer passed in.

408 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

See Also

IParam
Address of a buffer of UINT variables that will be filled with the indices of the
selected strokes in the control. This buffer must be large enough to hold all
requested indices. The application can ensure this by first getting the number
of selected strokes with the IE_ GETSELCOUNT message and then calculating
the required size of the buffer.

Returns IER_ OK if successful; otherwise, returns IER_P ARAMERR to indicate
that wParam or IParam is invalid.

IE_ GETSELCOUNT

IE GETSTYLE

Parameters

Return Value

Retrieves the current style attributes of an ink edit control.

wParam
Not used; must be O.

IParam
Not used; must be O.

If successful, returns the following current style bits:

Constant

IES_BORDER

IES_HSCROLL

IES_ VSCROLL

IES_OWNERDRA W

Description

Border drawn around control.

Horizontally scrollable control.

Vertically scroll able control.

Application will do all ink drawing.

Otherwise, returns IER_PARAMERR to indicate that wParam or IParam is
invalid.

IE SETAPPDATA
Sets the application data saved in the ink edit control.

Parameters wParam
Not used; must be O.

IParam
Data to be saved.

Return Value

Comments

See Also

IE_SETBKGND 409

Returns the previous contents of the application data area, if successful; otherwise,
returns IER_PARAMERR to indicate that wParam or IParam is invalid.

An application can save any DWORD value with the ink edit control. The control
does not use this data. The IE_SETAPPDATA and IE_GETAPPDATA messages
provide the only means for an application to interact with the data.

IE_GETAPPDATA

IE SETBKGND

Parameters

Return Value

Sets the background painting options for the control.

wParam
Specifies the background options, as given in the following list:

Constant

IEB_BRUSH

IEB_DEFAULT

IEB_OWNERDRAW

IParam

Description

Center bitmap in control. The IP aram parameter
contains bitmap.

Stretch bitmap to fit control. The IParam parameter
contains bitmap.

Tile supplied bitmap repeatedly in control. The
IParam parameter contains bitmap.

Align supplied bitmap to upper-left comer in the
control. (UL stands for "upper left.") The IP aram
parameter contains bitmap.

Use brush supplied in IParam.

Do default background (use COLOR_WINDOW).

Parent will draw background.

Contains a handle to the background bitmap or a brush, or is NULL, according
to the specified option in wParam.

Returns IER_OK if successful; otherwise, returns IER_PARAMERR to indicate
that wParam or IParam is invalid.

410 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

See Also

The application can change the background at any time. The control is synchro­
nously repainted upon any change.

The HBITMAP or HBRUSH handle, if there is one, becomes the property of the
iedit controL The application must make no further use of the handle if the message
returns IER_ OK. If the IEB _ OWNERDRA W option is selected, the parent window
must process the IN_ERASEBKGND notification. If an application must place
such objects as icons or metafiles in the background, it must do so either in an
owner-draw capacity or during the IN_PREPAINT notification.

IE_GETBKGND, IE_GETGRIDPEN, IE_SETGRIDPEN

IE SETDRAWOPTS

Parameters

Return Value

Comments

Sets the ink drawing option.

wParam
Contains the drawing option.

Constant

IEDO_FAST

IEDO_NONE

IEDO_SA VEUPSTROKES

IParam
Not used; must be O.

Description

Drawing is done as fast as possible. This is the
default setting.

No drawing is done (disabled drawing).

Save pen-up strokes in the HPENDAT A object.

Returns IER_ OK if successful; the previous draw option is returned in the high­
order word; otherwise, returns one of the following:

Constant

IER_PARAMERR

IER_OWNERDRAW

Description

wParam or IParam is invalid.

The control is an owner-draw control; setting draw
options is invalid.

The control has security protection disallowing the
operation.

Unlike using the WM_SETREDRA W message, IEDO _NONE controls only the
drawing of the ink. The control's background, grid lines, and so forth are redrawn
as usuaL By default, pen-up strokes are not saved in the HPENDA T A object.

IE_SETERASERTIP 411

IE SETERASERTIP

Parameters

Return Value

Comments

See Also

Sets the eraser pen tip.

wParam
Not used; must be O.

IParam
Address of a PENTIP structure.

Returns IER_OK if successful; otherwise, returns IER_PARAMERR to indicate
that wParam or IParam is invalid.

The pen tip specified by PENTIP is used for erasing in the control.

PENTIP, IE_GETERASERTIP

IE SETFORMAT

Parameters

Return Value

Comments

Sets the format of a stroke or a set of strokes in an ink edit control.

wParam
Not used; must be O.

IParam
Address of a STRKFMT structure.

Returns IER_ OK if successful; otherwise, returns one of the following:

Constant

IER_ERROR

IER_PARAMERR

IER_MEMERR

IER_SECURITY

Description

Unknown error.

wParam or lParam is invalid. Also returned when there
is an invalid stroke index and the IESF _STROKE option
is specified in the iesf member of the STRKFMT
structure.

A memory error occurred.

The control has security protection disallowing the
operation.

No valid selection with the IESF _SELECTION option in
the iesf member of the STRKFMT structure.

The stroke or strokes indicated by the STRKFMT structure are modified as
indicated and repainted (unless drawing has been tumed.offusing the
IEDO_NONE bit in IE_SETDRA WOPTS).

412 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

The iesf member of the STRKFMT structure contains the IESF _ TIPCOLOR or
IESF _ TIPWIDTH bit flags to selectively adjust the color or width attributes of
the ink. This allows setting only the color, for example, while leaving the width
unchanged. If the value in iesf has either IESF _ TIPCOLOR or IESF _ TIPWIDTH
set, the ink in the control adopts the new color or width given in the rgb or bwidth
members of the PENTIP structure identified in the tip member of STRKFMT.

The caller must initialize the cbSize member of the STRKFMT structure to
s i z e 0 f (S T R K FMT) before sending this message.

IE_GETFORMAT, IE_SETDRAWOPTS, STRKFMT

IE SETGRIDORIGIN

Parameters

Return Value

Comments

See Also

Sets the origin of the rules or grid lines.

wParam
Not used; must be O.

IParam
the low-order word has the x-coordinate of the origin and the high-order word
has the y-coordinate of the origin.

Returns IER_ OK if successful; otherwise, returns IER_P ARAMERR to indicate
that wParam or IParam is invalid.

Rules and grids are painted after the background and before the ink (and the
IN_PREP AINT notification), and are treated separately from both.

The default setting is for no grid lines. The grid lines act purely as guides for the
user; the ink does not interact with the grid in any way. The specification of the
grid lines is in the MM_TEXT mapping mode (that is, display pixel).

IE_GETBKGND, IE_GETGRIDPEN, IE_GETGRIDSIZE,
IE_SETGRIDORIGIN, IE_SETGRIDPEN, IE_SETGRIDSIZE, IE_SETBKGND

IE SETGRIDPEN
Sets the GDI pen for the background rules or grid lines.

Parameters wParam
Not used; must be O.

Return Value

Comments

See Also

IE_SETGRIDSIZE 413

IParam
Contains a handle to a GDI pen used to draw the grid lines.

Returns IER_OK if successful; otherwise, returns IER_PARAMERR to indicate
that wParam or IParam is invalid.

Rules and grids are painted after the background and before the ink (and the
IN_PREPAINT notification), and are treated separately from both. A GDI pen, if
specified, becomes the property of the ink edit control and must not be deleted or
otherwise used by the application. If the application needs to change the settings,
it must create a new pen each time it sends the IE_SETGRIDPEN message ..

The default setting is for no grid lines. The grid lines act purely as guides for the
user; the ink does not interact with the grid in any way. The specification of the
grid lines is in the MM_TEXT mapping mode (that is, display pixel). If the GDI
pen handle is NULL, the ink edit control will use a default pen. (The default pen
attributes are a solid line, a width of 1 pixel, and the window grayed text color.)
The maximum grid spacing is 255 pixels.

IE_GETBKGND, IE_GETGRIDORIGIN, IE_GETGRIDPEN,
IE_GETGRIDSIZE, IE_SETGRIDORIGIN, IE_SETGRIDSIZE, IE_SETBKGND

IE SETGRIDSIZE

Parameters

Return Value

Comments

See Also

Sets the vertical and horizontal spacing of the rules or grid lines.

wParam
Not used; must be O.

IParam
The low-order word has the horizontal spacing and the high-order word has
the vertical spacing.

Returns IER_ OK if successful; otherwise, returns IER_P ARAMERR to indicate
that wParam or IParam is invalid.

Rules and grids are painted after the background and before the ink (and the
IN_PREPAINT notification), and are treated separately from both.

The default setting is for no grid lines. The grid lines act purely as guides for the
user; the ink does not interact with the grid in any way. The specification of the
grid lines is in the MM_TEXT mapping mode (that is, display pixel).

IE_GETBKGND, IE_GETGRIDORIGIN, IE_GET GRID PEN,
IE_ GETGRIDSIZE, IE_SETGRIDORIGIN, IE_SETGRIDPEN, IE_SETBKGND

414 Programmer's Guide to Pen Services for Microsoft Windows 95

IE SETINK

Parameters

Return Value

Comments

See Also

Sets the contents of an ink edit control.

wParam
Contains IESI_REPLACE to replace any existing control contents with the
supplied ink, or IESI_APPEND to append the supplied ink to the existing
contents of the ink edit control.

IParam
Contains a handle to pen data with which to initialize or reinitialize the contents
of the control. If NULL, the contents of the control are cleared; any pen data
in the control is discarded.

Returns IER_ OK if successful; otherwise, returns one of the following:

Constant

IER_PARAMERR

IER_MEMERR

IER_SECURITY

Description

wParam or lParam is invalid.

A memory error occurred.

The control has security protection disallowing the
operation.

Attempted to merge ink of incompatible scale factors.

The application can clear or change the contents of the control at any time with
this function. During the creation of controls with existing contents, this message
might be sent in response to the WM_ CTLINIT message.

The HPENDA T A handle becomes the property of the control; the application must
make no further use of the handle if the message returns success. On a merge
operation, the original HPENDAT A is destroyed following a successful merge. If
the result of IE_SETINK indicates there is no ink left in the control, the mode is
reset to IEMODE_READY if the previous mode was either IEMODE_ERASE or
IEMODE_LASSO. The corresponding IN_MODECHANGED notification is also
sent at this time.

IE_SETINKINPUT 415

IE SETINKINPUT

Parameters

Return Value

Comments

See Also

Sets the ink input options for an ink edit control.

wParam
Consists of one or two flags specifying the new ink input option. Anyone of
the following flags can be used as the wParam value. If lEI_MOVE is specified,
one (and only one) additional value can combined to indicate a secondary option
if all ink will not fit inside the control when moved. For example, the combi­
nation I E I _M 0 V E I I E I _R E S I Z E specifies to move ink into the control and
resize the control to fit if necessary. Bitwise-OR combinations of constants not
including lEI_MOVE are not yalid.

Constant

IECMOVE

IECRESIZE

IECCROP

IECDISCARD

IParam
Not used; must be O.

Description

Move all ink inside the control.

Resize all ink to fit inside the control.

Crop all ink that falls outside the control.

Discard all ink if any falls outside the control.

Returns the previous ink input bits if successful; otherwise, returns
IER_PARAMERR to indicate that wParam or IParam is invalid.

An application can dynamically modify the ink input options. If more than 1 bit is
set, the order of priority is as listed in the previous table.

IE_GETINKINPUT

IE SETMODE

Parameters

Sets the control to a particular mode.

wParam
Specifies the mode to set the control to, as follows:

Constant

IEMODE_ERASE

IEMODE_LASSO

Description

The control is ready for inking, moving strokes, tapping,
and so forth.

The control is set to erasing mode.

The control is set to lasso selection mode.

416 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

See Also

IParam
Not used; must be O.

Returns one of the following values:

Constant

IER_OK

IER_PARAMERR

IER_PENDATA

Description

Success.

wParam or IParam is invalid.

Attempted to set erase or lasso mode with a null
HPENDATA handle in the control.

IE SETMODIFY

Parameters

Return Value

Comments

See Also

Sets the modify bit in the control, indicating whether the contents of the control
have been modified.

wParam
The new value of the modify bit. Must be either TRUE or FALSE.

IParam
Not used; must be O.

Returns IER_ OK if successful; otherwise, returns IER_PARAMERR to indicate
that wParam or IParam is invalid.

The modify bit is set in the control whenever the user takes some action that
changes the ink in the control. Such actions include drawing new ink, erasing,
pasting, changing attributes, and moving ink. Note that calling a function to change
the contents of the control also sets the modify bit.

To preserve the value of the modify bit during some modifying action, the appli­
cation must first retrieve the bit's value with IE_GETMODIFY, then restore the
value after completing the action.

This command succeeds regardless of the security setting.

IE_SETNOTIFY 417

IE SETNOTIFY

Parameters

Return Value

Comments

See Also

Sets the notification options for an ink edit control.

wParam
Consists of flags specifying the kinds of notifications required:

Constant

IParam
Not used; must be O.

Description

Require notifications of editing or command events.
Notifications sent: IN_CHANGE, IN_UPDATE,
IN_GESTURE, IN_COMMAND.

Require notifications of focus events. Notifications
sent: IN_SETFOCUS, IN_KILLFOCUS.

Require notifications of painting events. Notifications
sent: IN_PREPAINT, IN_POSTPAINT.

Require notifications of pointing-device events (clicks
and taps). Notification sent: IN_PDEVENT.

Require notifications before bringing up the properties
dialog box. Notification sent: IN_PROPERTIES.

Require notifications of scrolling events. Notifications
sent: IN_HSCROLL, IN_ VSCROLL.

Returns the previous notification bits if successful; otherwise, returns
IER_PARAMERR to indicate that wParam or IParam is invalid.

An application can dynamically modify the kinds of notifications and the frequency
with which they are generated.

Unless otherwise specified, the parent window receives no notifications beyond the
default messages sent by Windows to the parent of a child window.

418 Programmer's Guide to Pen Services for Microsoft Windows 95

IE SETPENTIP

Parameters

Return Value

Comments

See Also

Sets the default ink pen tip.

wParam
Not used; must be O.

IParam
Address of a PENTIP structure.

Returns IER_ OK if successful; otherwise, returns IER_P ARAMERR to indicate
that wParam or IParam is invalid.

The pen tip specified by PENTIP is used for all default inking in the control. Note
that the new pen tip applies only to new ink entered into the control. It does not
change the attributes of existing ink in the control.

PENTIP, IE_ GETPENTIP

IE SETRECOG

Parameters

Return Value

Comments

See Also

Sets the recognition options of the control.

wParam
Contains bits designating the new recognition options, as listed here:

Constant

IEREC_ALL

IEREC_GESTURE

IEREC_NONE

IParam
Not used; must be O.

Description

All recognition enabled.

Gesture recognition enabled.

Recognition disabled.

Returns the previous recognition bits if successful; otherwise, returns
IER_PARAMERR to indicate that wParam or IParam is invalid.

By default, all recognition is enabled. Currently, IEREC_GESTURE and
IEREC_ALL are equivalent.

IE_GETRECOG

IE_SETSECURITV 419

IE SETSECURITY

Parameters

Return Value

See Also

IE SETSEL

Parameters

Sets the security options of the control.

wParam
Contains the new security bits. The high-order word is unused and must be O.
The security flags can be combined using the bitwise-OR operator.

Constant

IESEC_NOCOPY

IESEC_NOCUT

IESEC_NOPASTE

IESEC_NOUNDO

IESEC_NOINK

IESEC_NOERASE

IESECflOGET

IESEC_NOSET

IParam
Not used; must be O.

Description

Copying not allowed.

Cutting, deleting, and clearing not allowed.

Pasting disabled.

Undo not permitted.

Inking not allowed.

Erasing not allowed.

The IE_GETINK message is disabled.

The IE_SETINK message is disabled.

Returns the previous security bits if successful; otherwise, returns one of the
following:

Constant

IER_PARAMERR

IER_SECURITY

Description

wParam or lParam is invalid.

The control has security protection disallowing the
operation.

Sets the selection status of a particular stroke.

wParam
Contains the zero-based index of the stroke whose selection status is to be set.
A value of IX_END sets the selection status of all the strokes in the control.

IParam
IParam is TRUE to select the stroke or FALSE to remove the selection. Other
values produce an IER_P ARAMERR return value.

420 Programmer's Guide to Pen Services for Microsoft Windows 95

Return Value

Comments

See Also

Returns one of the following values:

Constant

IER_YES

IER_NO

IER_PARAMERR

Description

The stroke was previously selected.

The stroke was not previously selected.

wParam or lParam is invalid.

This message affects the selection status of only the specified stroke. The selection
status of other strokes remains unchanged.

IN CHANGE

Parameters

See Also

IN CLOSE

Parameters

Sent after the contents of the control have been modified and repainted.

The control's parent window receives this notification message through
a WM_COMMAND message if the lEN_EDIT bit has been set using the
IE_SETNOTIFY message.

wParam
Specifies the identifier of the ink edit control.

IParam
Specifies the handle of the iedit control in the low-order word and the
IN_CHANGE notification message in the high-order word.

IE_SETNOTIFY

Sent when the control is closing and about to be destroyed.

The control's parent window receives this notification message through a
WM_COMMAND message.

wParam
Specifies the identifier of the ink edit control.

IParam
Specifies the handle of the iedit control in the low-order word and the
IN_CLOSE notification message in the high-order word.

Return Value The application should return TRUE to prevent the control from being closed
or FALSE for default handling.

IN COMMAND

Parameters

Return Value

Comments

See Also

Sent when the user has selected an item from the pop~up menu.

The control's parent window receives this notification message through
a WM_COMMAND message if the lEN_EDIT bit has been set using the
IE_SETNOTIFY message.

wParam
Specifies the identifier of the ink edit control.

IParam
Specifies the handle of the iedit control in the low-order word and the
IN_COMMAND notification message in the high-order word.

The application should return TRUE to discard the command selection or FALSE
for default processing.

The application can retrieve details about the selection by using the
IE_GETCOMMAND message.

IE_GETCOMMAND,IE_SETNOTIFY

IN ERASEBKGND

Parameters

Sent to the parents of ink edit controls that have the IEB_OWNERDRAW option
to request the painting of the control background.

The control's parent window receives this notification message through a
WM_COMMAND message.

wParam
Specifies the identifier of the ink edit control.

IParam
Specifies the handle of the ink edit control in the low-order word and the
IN_ERASEBKGND notification message in the high-order word.

422 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

See Also

The application should use the IE_ GETP AINTDC message to retrieve such
information as the correct device context and clipping region.

IE_GETPAINTDC

IN GESTURE

Parameters

Return Value

Comments

See Also

Sent when the user has performed a gesture in the iedit controL

The control's parent window receives this notification message through
a WM_ COMMAND message if the IEN_EDIT bit has been set using the
IE_SETNOTIFY message.

wParam
Specifies the identifier of the ink edit controL

lParam
Specifies the handle of the ink edit control in the low-order word and the
IN_GESTURE notification message in the high-order word.

The application should return TRUE to discard the gesture or FALSE for default
processing.

An application can retrieve details about the gesture by using the
IE_ GETGESTURE message.

IE_SETNOTIFY

IN HSCROLL

Parameters

The IN_HSCROLL notification message is sent when the user has clicked the ink
edit control's horizontal scroll bar.

The control's parent window receives this notification message through a
WM_COMMAND message if the lEN_SCROLL bit has been set using the
IE_SETNOTIFY message. This bit is set by default and should be cleared if
the control's parent does not require this notification message.

wParam
Specifies the identifier of the ink edit control.

lParam
Specifies the handle of the ink edit control in the low-order word and the
IN_HSCROLL notification message in the high-order word.

Return Value

See Also

IN_KILLFOCUS 423

The application should return TRUE to discard the scrolling request.

IN KILLFOCUS

Parameters

Return Value

See Also

Sent to inform the parent window that the control is losing the focus.

The control's parent window receives this notification message through a
WM_ COMMAND message if the lEN_FOCUS bit has been set using the
IE_SETNOTIFY message. This bit is set by default and should be cleared if
the control's parent does not require this notification message.

wParam
Specifies the identifier of the ink edit control.

IParam
Specifies the handle of the iedit control in the low-order word and the
IN_KILLFOCUS notification message in the high-order word.

The application should return TRUE to prevent the control from losing the focus.

IN MEMERR

Parameters

Return Value

Comments

Sent when the system is unable to satisfy a memory request made by the control.

The control's parent window receives this notification message through a
WM_COMMAND message.

wParam
Specifies the identifier of the ink edit control.

IParam
Specifies the handle of the ink edit control in the low-order word and the
IN_MEMERR notification message in the high-order word.

The application should return TRUE to retry the operation (generally after it frees
memory). If it returns TRUE and the control still cannot perform the memory
operation, another IN_MEMERR notification is generated.

The ink edit control does not display an error message of any kind. Any such error
messages must be displayed by the application.

424 Programmer's Guide to Pen Services for Microsoft Windows 95

IN MODECHANGED

Parameters

See Also

IN PAINT

Parameters

Comments

See Also

Sent after the control mode has changed.

The control's parent window receives this notification message through
a WM_COMMAND message if the lEN_EDIT bit has been set using the
IE_SETNOTIFY message.

wParam
Specifies the identifier of the ink edit control.

IParam
Specifies the handle of the ink edit control in the low-order word and the
IN_MODECHANGED notification message in the high-order word.

IE_SETNOTIFY, IE_GETMODE, IE_SETMODE

Sent to the parent window of an owner-draw ink edit control to indicate that
the control should be painted.

The control's parent window receives this notification message through a
WM_COMMAND message.

wParam
Specifies the identifier of the ink edit control.

IParam
Specifies the handle of the ink edit control in the low-order word and the
IN_PAINT notification message in the high-order word.

The application should use the IE_ GETP AINTDC message to retrieve the details
of the required painting.

IN PDEVENT

Parameters

Return Value

Comments

See Also

Sent when a pointing-device transition event (such as a tap, up-click, or double-tap)
occurs.

The control's parent window receives this notification message through a
WM_ COMMAND message if the IEN_PDEVENT bit has been set using the
IE_SETNOTIFY message.

wParam
Specifies the identifier of the ink edit control.

lParam
Specifies the handle of the ink edit control in the low-order word and the
IN_PDEVENT notification message in the high-order word.

The application should return TRUE to discard the event, or FALSE for normal
processing.

The application can retrieve a PDEVENT structure describing the event by sending
the IE_ GETPDEVENT message.

IE_GETPDEVENT,IE_SETNOTIFY

IN POSTPAINT

Parameters

Comments

See Also

Sent to inform the parent that painting is finished.

The control's parent window receives this notification message through a
WM_ COMMAND message if the lEN_PAINT bit has been set using the
IE_SETNOTIFY message.

wParam
Specifies the identifier of the ink edit control.

lParam
Specifies the handle of the ink edit control in the low-order word and the
IN_POSTP AINT notification message in the high-order word.

The application can send the IE_ GETP AINTDC message to retrieve a device con­
text with the correct clipping region to perform any additional painting on top of
the ink edit control.

426 Programmer's Guide to Pen Services for Microsoft Windows 95

IN PREPAINT

Parameters

Comments

See Also

Sent just before the control paints the ink.

The control's parent window receives this notification message through a
WM_ COMMAND message if the lEN_PAINT bit has been set using the
IE_SETNOTIFY message.

wParam
Specifies the identifier of the ink edit control.

lParam
Specifies the handle of the ink edit control in the low-order word and the
IN_PREP AINT notification message in the high-order word.

The application can send the IE,-GETP AINTDC message to retrieve a device
context with the correct clipping region to perform any additional painting before
the ink edit control paints.

IN PROPERTIES

Parameters

Return Value

See Also

Signals the iedit control's standard Properties dialog box is about to be displayed
on the screen.

The control's parent window receives the IN_PROPERTIES notification message
. through a WM_COMMAND message if the lEN_PROPERTIES bit has been set
using the IE_SETNOTIFY message. This bit is set by default and should be cleared
if the control's parent does not require this notification message.

wParam
Specifies the identifier of the ink edit control.

lParam
Specifies the handle of the ink edit control in the10w-order word and the
IN_PROPERTIES notification message in the high-order word.

The application should return TRUE to avoid displaying the iedit control's standard
Properties dialog box.

IN~SETFOCUS 427

IN SETFOCUS

Parameters

Return Value

See Also

Sent to inform the parent window that the control is gaining the focus.

The control's parent window receives this notification message through a
WM_ COMMAND message if the lEN_FOCUS bit has been set using the
IE_SETNOTIFY message. This bit is set by default and should be cleared if
the control's parent does not require this notification message.

wParam
Specifies the identifier of the ink edit control.

IParam
Specifies the handle of the ink edit control in the low-order word and the
IN_SETFOCUS notification message in the high-order word.

The application should return TRUE to prevent acquiring the focus.

IN UPDATE

Parameters

See Also

Sent when the contents of the control have been modified but not yet repainted.

The control's parent window receives this notification message through a
WM_ COMMAND message if the lEN_EDIT bit has been set using the
IE_SETNOTIFY message.

wParam
Specifies the identifier of the ink edit control.

IParam
Specifies the handle of the ink edit control in the low-order word and the
IN_UPDATE notification message in the high-order word.

IE_SETNOTIFY

428 Programmer's Guide to Pen Services for Microsoft Windows 95

IN VSCROLL

Parameters

Return Value

See Also

Sent when the user has clicked the ink edit control's vertical scroll bar.

The control's parent window receives this notification message through a
WM_COMMAND message if the lEN_SCROLL bit has been set using the
IE_SETNOTIFY message. This bit is set by default and should be cleared if
the control's parent does not require this notification message.

wParam
Specifies the identifier of the ink edit control.

lParam
Specifies the handle of the ink edit control in the low-order word and the
IN_ VSCROLL notification message in the high-order word.

The application should return TRUE to discard the scrolling request.

PE BEGINDATA

Parameters

Comments

Sent to the window specified by the htrgTarget member of the TARGET structure
the first time any pen data is directed toward that window. Submessage of
WM_PENEVENT.

wParam
PE_BEGINDAT A

lParam
Address of a TARGET structure.

A target window can initialize the dwData member of the TARGET structure with
a handle to pen data (HPENDATA), a handwriting recognition object (HRC), or
some private data type. If dwData is an HPENDA T A object, the HPENDA T A
object should be in standard scale· with no OEM data. For example, the
HPENDA T A object can be created as follows:

CreatePenOataEx(NULL. PDTS_STANDARDSCALE. CPO_TIME. 0);

The target window informs Windows of the type of data in the dwData member
of the TARGET structure by returning LRET _HPENDATA, LRET _HRC, or
LRET _PRIV ATE (or LRET _DONE). If the application lets the message fall down
to the Windows DefWindowProc function, then the function creates a handwriting
recognition object (HRC) for this target.

See Also

PE_BEGININPUT 429

The window can ignore all input except gestures. In this case, it must create a
handwriting recognition object and customize it to recognize only gestures.

For an example of how an application can handle PE_BEGINDA T A, see the source
code for PENAPP.C in Chapter 7, "A Sample Pen Application."

TARGET, WM_PENEVENT

PE BEGININPUT

Parameters

Return Value

Comments

See Also

Begins default input processing. Submessage of WM_PENEVENT.

wParam
PE_BEGININPUT

IParam
The high-order word is the handle of the window in which the pen first touched
down, and the low-order word is the event reference identifier returned from
GetMessageExtralnfo.

Returns PCMR_ OK if successful; otherwise, it returns one of the following values:

Constant

PCMR_ALREADYCOLLECTING

PCMR~APPTERMINATED

PCMR_ERROR

PCMR_INV ALID _PACKETID

PCMR_SELECT

Description

StartPenInput has already been called for
this session.

The application terminated input.

Parameter or unspecified error.

A packet identifier is invalid.

Press-and-hold action was detected.
Collection is not started.

A tap was detected. Collection is not
started.

A control can initiate default pen-input processing by sending this message to
its parent. If the parent allows the message to be processed by passing it to
DefWindowProc, default pen-input behavior begins. The DoDefaultPenlnput
function uses this technique.

For further information about default processing, refer to Chapter 2, "Starting Out
with System Defaults."

DoDefaultPenlnput, WM_PENEVENT

430 Programmer's Guide to Pen Services for Microsoft Windows 95

PE BUFFERWARNING

Parameters

Comments

See Also

Generated by the pen driver component of the system when the input queue is
approximately half full. When an application receives PE_BUFFERWARNING,
it should immediately call GetPenInput to drain the input queue. Submessage
of WM_PENEVENT.

wParam
PE_BUFFERW ARNING.

IParam
Extra information encapsulating a reference to the event and the HPCM that
generated it. Applications can use the EventRef'From WpLp and
HpcmFrom WpLp macros to retrieve these values.

If an application receives this message, it has fallen behind in processing the input.
The buffer is in danger of overflowing. The application should repeatedly call
GetPenInput to gather the unprocessed pen input.

GetPenInput, WM_PENEVENT

PE ENDDATA

Parameters

Comments

Sent at the termination of pen input to all windows specified by the htrgTarget
member of the TARGET structure that have received a PE_BEGINDATA
message. Submessage of WM_PENEVENT.

wParam
PE_ENDDATA.

IParam
Address of a TARGET structure.

A target can inform the recognizer that pen input has ended and process the
HRC in response to this message. If this message is allowed to fall through to
the DetWindowProc function, default result processing is done if the value in
the dwData member of the TARGET structure is of type HRC. EndPenInput
is called followed by a call to ProcessHRC. Then the PE_RESULT submessage
is sent to the target to allow the target to get results and process them.

See Also

PE_ENDINPUT 431

If the dwData member of the TARGET structure has the HPENDAT A or HRC
type, the object is destroyed by DefWindowProc on completion of results
processing.

TARGET, WM_PENEVENT

PE ENDINPUT

Parameters

See Also

Sent to indicate that the default collection has terminated. Submessage of
WM_PENEVENT.

wParam
PE_ENDINPUT.

IParam
Not used.

WM_PENEVENT

PE GETINKINGINFO

Parameters

Return Value

Comments

Fills an INKINGINFO structure. Submessage ofWM_PENEVENT.

wParam
PE_GETINKINGINFO.

IParam
Address of an INKINGINFO structure, which is initialized with default values.

The targeted windows in the application should return 1 to customize inking
information. A return value of 0 results in default inking behavior.

Before beginning default pen input, Windows sends PE_ GETINKINGINFO to all
the windows specified by the htrgTarget member of the TARGET structure. (The
TARGET structure is part of the T ARGINFO structure created during processing
of the earlier PE_SETT ARGETS messages.)

The default values are the same as those used when StartInking is called with
IpinkinginJo set to NULL, but the PII_SA VEBACKGROUND flag is forced on in

. the wFlags member of the INKINGINFO structure to automatically save and
restore the inking background.

432 Programmer's Guide to Pen Services'for Microsoft Windows 95

See Also

The hrgnClip member of the INKINGINFO structure temporarily contains
the index of the target in the TARGINFO structure retrieved by the
PE_SETTARGETS message. Note that this is an overloading of this member
to identify the targets. If the htrgTarget window specified in the TARGET
structure returns 1 to this message, the following actions are taken:

• If both the PII_INKPENTIP and PII_RECTCLIP flags are set, the pen tip
specified by the tip member of the INKINGINFO structure is saved and used
whenever the pen goes down within the area defmed by the rectClip member.
In most cases, the ink color changes at or near the clipping boundary, even
when the pen is dragged over it. Because inking is done on a per-segment basis,
there may be a slight overlap of color near a common boundary.

• If the width given in the tip member is 0, no ink will appear within the area
specified by the rectClip member. Password fields can be implemented using
this technique.

• If the PII_SA VEBACKGROUND flag is clear (0), any ink dropped within the
area specified by the rectClip member is not removed at the termination of the
collection. The ink edit control, for example, uses this technique. However, the
parent window can override this default behavior when it finally receives a
PE_ GETINKINGINFO message after all its targets have been called.

• If the PII_INKSTOP flag is set, the rectlnkStop member is folded into the
region specified by the hrgnlnkStop member, which is used in calls to the
Startlnking function. When inking stops due to a pen-down event in the
rectlnkStop rectangle, a WM_PENMISC message with the PMSC_INKSTOP
submessage is sent to the window specified by the htrgTarget member of the
TARGET structure. lParam is the same as in the PE_PENDOWN message
that caused the inking to stop. As with PII_SA VEBACKGROUND, hwnd can
override the preprocessed values accumulated by the targets.

For further information about PE_GETINKINGINFO, see Chapter 2, "Starting Out
with System Defaults."

INKINGINFO, PE_SETTARGETS, Startlnking, TARGET, TARGINFO,
WM_PENEVENT

PE _ GETPCMINFO 433

PE GETPCMINFO

Parameters

Comments

See Also

Fills a PCMINFO structure, which is then used in a call to StartPenlnput.
Submessage of WM_PENEVENT.

wParam
PE_GETPCMINFO.

lParam
Address of a PCMINFO structure, which is initialized with default values.

The default values are the same as those applied when StartPenlnput is called
with the lppcminfo parameter set to NULL:

• Inking terminates when the time-out period elapses.

• Inking terminates when a tap occurs outside the client rectangle of hwnd.

• Inking does not start if the initial pen input consists of a press-and-hold gesture.

However, an exclusion region specified by the hrgnExclude member of the
PCMINFO struct~e may have accumulated while processing PE_SETT ARGETS
messages. The window procedure can modify the values to customize the collection
parameters before pen input begins.

If the PCM_DOPOLLING flag in the dwPcm member of the PCMINFO structure
is set, it is disregarded and pen input remains in event mode.

PCMINFO, PE_SETTARGETS, StartPenlnput, WM_PENEVENT

PE MOREDATA

Parameters

Sent to the window specified by the htrgTarget member of the TARGET structure
to indicate that more pen data is available for that window. Submessage of
WM_PENEVENT.

wParam
PE_MOREDATA.

lParam
Address of an INPP ARAMS structure.

434 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

See Also

DefWindowProc collects the pen input in response to the PE_PENDOWN,
PE_PENUP, and PE_PENMOVE messages and sends the input on a stroke-by­
stroke basis to one of the targets in the T ARGINFO structure. On a pen-tip
transition-that is, from pen-down to pen-up or vice versa-the Windows
DefWindowProc function sends a PE_MOREDAT A message to the window
specified by the htrgTarget member of the TARGET structure identified in the
PE_BEGINDATA message.

If it receives a PE_MOREDAT A message, DefWindowProc uses
AddPointsPendata or AddPenlnputHRC, or does nothing, depending on whether
the data type in the dwData member of the TARGET structure is a handle to an
HPENDAT A, an HRC handle for handwriting recognition, or some private data
type.

AddPenlnputHRC, AddPointsPendata, INPP ARAMS, PE_PENMOVE,
PE_PENDOWN, PE_PENUP, TARGET, TARGINFO, WM_PENEVENT

PEPENDOWN

Parameters

See Also

Generated by the pen driver component of the system when the pen tip touches the
tablet surface. Submessage of WM_PENEVENT.

wParam
PE_PENDOWN.

IParam
Extra information encapsulating a reference to the event and the HPCM that
generated it. Applications can use the EventRefFrom WpLp and
HpcmFrom WpLp macros to retrieve these values.

WM_PENEVENT

PE PENMOVE
Generated by the pen driver component of the system when the pen moves, forcing
more packets into the input queue. Submessage of WM_PENEVENT.

Parameters

Comments

See Also

PE PENUP

Parameters

See Also

wParam
PE_PENMOVE.

IParam
Extra information encapsulating a reference to the event and the HPCM that
generated it. Applications can use the EventRefFrom WpLp and
HpcmFrom WpLp macros to retrieve these values.

This message is analogous to WM_MOUSEMOVE. It provides notification that the
pen is moving. Like its mouse counterpart, PE_PENMOVE messages are coalesced
so that only a single such message exists in the application's message queue. How­
ever, the event the message represents is the first of these coalesced events, not the
last event, as is the case with WM_MOUSEMOVE.

An application need not handle this message if transition events like PE_PENUP
and PE_PENDOWN are sufficient notification. PE_PENMOVE is useful when an
application must monitor pen movement with greater frequency than PE_PENUP
or PE_PENDOWN allows.

WM_PENEVENT

Generated by the pen driver component of the system when the pen tip leaves the
tablet surface. Submessage of WM_PENEVENT.

wParam
PE_PENUP.

IParam
Extra information encapsulating a reference to the event and the HPCM that
generated it. Applications can use the EventRefFrom WpLp and
HpcmFrom WpLp macros to retrieve these values.

WM_PENEVENT

436 Programmer's Guide to Pen Services for Microsoft Windows 95

PE RESULT

Parameters

Comments

See Also

During the processing of the PE_ENDDAT A submessage, sent to all windows
specified by the htrgTarget member of the TARGET structure that have received
a PE_BEGINDATA message. PE_RESUL T applies only to recognition and is sent
only if the value in the dwData member of the TARGET structure is of type HRC.
Submessage of WM_PENEVENT.

wParam
PE_RESULT.

IParam
HRC object for the recognition session.

A target can perfonn recognition-result processing in response to PE_RESUL T. If
it receives this message, the Windows DefWindowProc function performs default
result processing. The first HRCRESUL T object for the HRC is obtained using
the GetResultsHRC function. The HRCRESUL T handle is used to retrieve a
string of symbols that are converted, one by one, into characters. The characters are
then posted as WM_ CHAR messages to the window specified by the htrgTarget
member of the TARGET structure.

The clear, cut, copy, paste, and undo gestures are converted to WM_CLEAR,
WM_CUT, WM_COPY, WM_PASTE, and WM_UNDO messages. They are
posted to the htrgTarget target, together with appropriate mouse messages, so that
the target can perform. appropriat~ processing (such as selection) before applying
the gestures.

TARGET, WM_PENEVENT

PE SETTARGETS

Parameters

Return Value

Sent to an application window so that it can set its own targeting structure.
Submessage of WM_PENEVENT.

wParam
PE_SETTARGETS.

IParam
Address of a far pointer to a T ARGINFO structure. (Note that IParam is a
pointer to a pointer.)

The application should return LRET _DONE to indicate that it has set up the
targeting information for the child windows. A return of 0 indicates that the
application is the only target. The application can also return LRET _ABORT to
abort the targeting process altogether.

Comments

Example

PE_SETIARGETS 437

The DefWindowProc function enumerates all the descendants of the window
specified in its first parameter and sends each one a PE_GETPCMINFO message.
For every descendant that returns 1 to this message, the PCM_RECTBOUND and
PCM_RECTEXCLUDE flags of the PCMINFO structure are examined. If the
PCM_RECTBOUND flag is set, the descendant is included in the list of potential
targets and the rectBound member in PCMINFO is copied to the rectBound
member of the TARGET structure. If the PCM_RECTEXCLUDE flag is set, the
rectExclude member of PCMINFO is added to an exclusion region that is passed
(as the hrgnExclude member of the PCMINFO structure) to the StartInput call.
If there are no descendants, or if the window procedure of hwnd returns 0, a
T ARGINFO structure is constructed with hwnd as the single target.

For default processing behavior, the application should allow PE_SETT ARGETS
to fall through to DefWindowProc. A PE_GETPCMINFO message will follow to
establish targets or termination conditions (buttons, for example).

For further information about PE_SETTARGETS, see Chapter 2, "Starting Out
with System Defaults."

An application can replace the default targeting with a set of targets it defines itself.
In this case, the application allocates enough memory for the T ARGINFO
structure plus all the TARGET structures.

The following example illustrates how to handle PW _SETT ARGETS for n targets,
where each target is in the array rgHwnd. Notice the code increases the allocation
by n-l TARGET structures, since TARGINFO already contains one TARGET
structure.

DWORD cbAlloc = sizeof(TARGINFO) + (n-I) * sizeof(TARGET);
HGLOBAL hTargets GlobalAlloc(GHND. cbAlloc);
LPTARGINFO lptarginfo = GlobalLock(hTargets);

lptarginfo->cbSize sizeof(TARGINFO);
lptarginfo->cTargets = n; II Number of targets
lptarginfo->htrgOwner = HtrgFromHwnd(hwnd); II Macro in penwin.h
lptarginfo->dwFlags = TPT_TEXTUAL; II For text

for (i =0; i < n; i++)
{

HWND hwnd = (HTRG)rgHwnd[i]; II Window of this target

lptarginfo->rgTarget[i].dwFlags = 0; II Reserved
lptarginfo->rgTarget[i].idTarget = i;
lptarginfo->rgTarget[i].htrgTarget = HtrgFromHwnd(hwnd);
lptarginfo->rgTarget[i].dwData = 0;

/

438 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

II Use screen coords of each window:
{

II Note: rectBound is a RECTL. In 16-bit code, one has to assign each
II field separately. In 32-bit code, you can use the rectBound directly.

RECT rect;
GetClientRect(hwnd, &rect);
ClientToScreen(hwnd, (LPPOINT)&rectBound.left);
ClientToScreen(hwnd, (LPPOINT)&rectBound.right);

lptarginfo->rgTarget[i].rectBound.left = rect.left;
lptarginfo->rgTarget[i].rectBound.top = rect.top;
lptarginfo->rgTarget[i].rectBound.right = rect.right;
lptarginfo->rgTarget[i].rectBound.bottom = rect.bottom;
}

II Return our structures:
*(LPTARGINFO FAR *)lParam = lptarginfo;

PCMINFO, TARGET, TARGINFO, WM_PENEVENT

PE TERMINATED

Parameters

Comments

See Also

Generated by the pen driver component of the system when pen input terminates.
Submessage of WM_PENEVENT.

wParam
PE_TERMINATED.

IParam
Extra information encapsulating a reason for termination and the current
HPCM. Applications can use the TerminationFrom WpLp and
HpcmFrom WpLp macros to retrieve these values.

When an application receives the PE_TERMINATED message, collection has
already terminated and the HPCM handle returned from StartPenInput has
become invalid. PE_TERMINATED indicates an application should perform such
tasks as final results processing, repainting, and cleanup.

WM_PENEVENT

PE_TERMINATING 439

PE TERMINATING

Parameters

Comments

See Also

Generated by the pen driver component of the system when pen input is about to
terminate. Submessage of WM_PENEVENT.

wParam
PE_TERMINATING.

IParam
Extra information encapsulating a reason for termination and the current
HPCM. Applications can use the TerminationFrom WpLp and
HpcmFrom WpLp macros to retrieve these values.

When it receives PE_TERMINATING, the application must immediately retrieve
any remaining points.

WM CTLINIT

Parameters

Comments

See Also

Sent to the parent of a bedit, hedit, or iedit control while the control is being created
in order to get extra information about the control.

wParam
Type of control. This parameter can be CTLINIT_BEDIT, CTLINIT_IEDIT,
or CTLINIT _HEDIT.

IParam
Address of a control structure, depending on wParam. For values of
CTLINIT_BEDIT, CTLINIT_HEDIT, or CTLINIT_IEDIT in wParam, IParam
points to either a CTLINITBEDIT, CTLINITHEDIT, or CTLINITIEDIT
structure, respectively.

Each of the CTLINIT structures has its first three members already initialized:
cbSize (size of the structure), hwnd (handle to the control window), and id (child
identifier of the control). The parent of the control can set appropriate values to
the rest of the members in the structure and the control will then use those values
when initializing itself.

CTLINITHEDIT, CTLINITBEDIT, CTLINITIEDIT

440 Programmer's Guide to Pen Services for Microsoft Windows 95

WM GLOBALRCCHANGE

WM HOOKRCRESUL T

Parameters

Comments

See Also

Sent to a window before WM_RCRESULT is sent to the target window.

Note The WM_HOOKRCRESULT message is provided only for compatibility
with version 1.0 of the Pen API and will not be supported in future versions.

wParam
REC_ code indicating why recognition ended.

IParam
Address of an RCRESULT structure.

The application may examine the results in the RCRESUL T structure. Changing
any of the values leads to unpredictable results. The application should make a copy
of any information it needs.

RCRESULT, SetRecogHook, WM_RCRESULT

WM PENCTL
Performs several actions, including:

• Converts a logical character position to a byte offset.

• Converts a byte offset to a logical character position.

• Switches the font in a bedit control to the default font.

Parameters wParam
Submessage identifier as described in the following table. Each submessage is
documented separately.

Constant

HE_CANCELCONVERT

HE_CHAROFFSET

. HE_CHARPOSITION

HE_DEFAULTFONT

HE_ENABLEAL TLIST

HE_FIXKKCONVERT

HE_ GETBOXLA YOUT

HE_GETCONVERTRANGE

HE_GETINFLATE

HE_GETINKHANDLE

HE_GETKKCONVERT

HE_GETKKSTATUS

Description

Cancels Kana-to-Kanji conversion. (Japanese
version only.)

Converts logical character position of a
character in the control to byte offset to the
character. For bedit controls only .

Converts byte offset in the text buffer of the
control to the logical character position, which
contains the byte specified by the byte offset. For
bedit controls only.

Switches the font of the bedit control to the
default font that the bedit selects at the time of
creation. For bedit controls only.

Enables or disables the alternate list in a bedit
controL

Confirm undetermined string and close Input
Method Editor (IME). (Japanese version only.)

Points to the BOXLAYOUT structure, which is
filled with the current box layout for the control.
For bedit controls only.

Gets the range of the marked conversion string.
(Japanese version only.)

LPRECTOFS filled with current value.

Retrieves a handle to the captured ink.

Determines if the Input Method Editor (IME) is
in pen (or keyboard) conversion mode.
(Japanese version only.)

Determines the mode ofthe Kana-to-Kanji
conversion. (Japanese version only.)

Fills an RC structure, whose address is passed
in the lParam, with current values. See the note
that follows.

Queries whether underline mode is set. For hedit
controls only.

442 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

Constant

HE_HIDEALTLIST

HE_PUTCONVERTCHAR

HE_SETCONVERTRANGE

HE_SETINKMODE

HE_SETRC

HE_STOPINKMODE

Description

Hides the alternate list in a bedit control,
assuming it is being displayed.

Starts Kana-to-Kanji conversion. (Japanese
version only.)

Sends a character, marked for conversion, to the
IME. (Japanese version only.)

Sets a BOXLAYOUT structure. For bedit
controls only.

Sets the range of the marked conversion string.
(Japanese version only.)

Specifies adjustments to the control window to
specify the size of the writing window.

Starts the collection of inking.

Sets the RC structure, whose address is passed
in the IParam. See the note that follows.

Sets or cancels underline mode. For hedit
controls only;

Displays the alternate list menu in a bedit
control, assuming that alternate lists are enable.

Stops the collection of ink.

Note The HE_GETRC and HE_SETRC submessages are provided only for
compatibility with version 1.0 of the Pen API and will not be supported in future
versions.

IParam
Depends on wParam. See the individual HE_ submessage descriptions for more
information.

Any control message (a message with the EM_ prefix) that can be sent to an edit
control can also be sent to an hedit window. Most of these control messages are
also supported by bedit controls.

The HE_ submessages are also common to both hedit and bedit controls except
as noted in the preceding table. In a bedit control, each cell contains one logical
character. Carriage return (CR) and line-feed (LF) bytes together form one logical
character.

See Also

Before using the HE_SETBOXLA YOUT or HE_SETINFLATE submessages, it is
often useful to retrieve the current structure associated with the control using the
HE_ GETBOXLA YOUT or HE_GETINFLATE submessages. You should then
change the appropriate members in the retrieved structure. This procedure reduces
the risk of inadvertent changes to the structure.

In older applications compatible with version 1.0 of the Pen API, placing the value
RRM_SYMBOL in wResultMode of the RC structure disables all default diction­
ary processing in a bedit control. The 1.0 application can perform dictionary pro­
cessing on its own by retrieving the recognition results during the processing of
the HN_RESULT notification and calling the DictionarySearch function.

HE_CANCELCONVERT, HE_CHAROFFSET, HE_CHARPOSITION,
HE_DEFAULTFONT, HE_ENABLEALTLIST, HE_FIXKKCONVERT,
HE_GETBOXLA YOUT, HE_GETIMEDEFAULT, HE_GETINFLATE,
HE_GETINKHANDLE, HE_GETKKCONVERT, HE_GETKKSTATUS,
HE_ GETUNDERLINE, HE_SETBOXLA YOUT, HE_SETIMEDEF AUL T,
HE_SETINFLATE, HE_SETINKMODE, HE_SETUNDERLINE,
HE_SHOWALTLIST, HE_STOPINKMODE

WM PENEVENT

Parameters

Sent to an application after StartPenlnput has initiated a pen collection.

wParam
Submessage identifier as described in the following table. Each submessage is
documented separately.

Constant

PE_BEGINDATA

PE_BEGININPUT

PE_BUFFERW ARNING

PE_ENDDATA

PE_RESULT

PE_ENDINPUT

Description

Initialization message to all targets.

Begin default input.

The input queue is getting full. The application
should call GetPenlnput.

Tennination message to all targets.

Recognition result message to all targets.

Input tennination message to window.

444 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments

See Also

Constant

PE_GETINKINGINFO

PE_GETPCMINFO

PE_MOREDATA

PE_PENMOVE

PE_PENDOWN

PE_PENUP

PE_SETI ARGETS

PE_TERMINATED

PE_TERMINATING

lParam

Description

Get inking infonnation.

Get input collection infonnation.

Target gets more data.

The pen moved, placing more packets into the
input queue without a tip transition. This mes­
sage is coalesced with other PE_PENMOVE
messages, so the Windows queue has only a
single such message waiting.

The pen tip went down.

The pen tip went up.

Set T ARGINFO target data structure.

Pen input tenninated. The HPCM handle for the
current collection has become invalid.

Pen input is about to tenninate. The application
must retrieve any remaining points immediately.

Depends on wParam. In most cases, this is extra information encapsulating a
reference to the event and the HPCM that generated it. These are retrieved
using the EventRefFrom WpLp and HpcmFrom WpLp macros.

This message is not sent if polling is used-that is, if the dwPcm member of the
PCMINFO structure contains the PCM_DOPOLLING flag.

GetPenlnput, StartPenlnput, T ARGINFO

WM PENMISC
Sent to notify an application of some pen-related change, such as a change in a
bedit control. WM_PENMISC is also used to get information from a window about
pen-related attributes.

Parameters wParam
One of the following subfunctions:

PMSC_BEDITCHANGE
Indicates that system settings for bedit controls have been changed. When
it receives this message, a bedit control updates its state according to the
settings indicated by the BOXEDITINFO structure that lParam points to.

PMSC_GETHRC
Return a copy of the HRC handle associated with the window. lParam is
unused and should be set to O. If a window has no associated HRC structure,
NULL is returned. It is the caller's responsibility to destroy any HRC the
message returns.

PMSC_GETINKINGINFO
Retrieve the INKINGINFO structure associated with the window and copy
it to the structure pointed to by lP aram. The message is ignored if lP aram is
NULL.

PMSC_GETPCMINFO
Retrieve the PCMINFO structure associated with the window and copy it
to the structure pointed to by lP aram. If a window has no associated
PCMINFO structure, NULL is returned. The message is ignored if lP aram
is NULL. The system initializes PCMINFO as follows:

• dwPcm is a combination of the PCM_RECTBOUND,
PCM_TIMEOUT, and PCM_TAPNHOLD flags.

• rectBound is the client area of hwnd, in screen coordinates.

• dwTimeout is the current writing time-out in milliseconds, as reported
by GetPenMisclnfo using PMI_ TIMEOUT.

• All other members are O.

PMSC_INKSTOP
Inking has stopped because of a pen-down event. lP aram contains the
HPCM handle corresponding to the collection and the event reference at
which the inking stopped. An application can retrieve these values with
the HpcmFromWpLp and EventRef'FromWpLp macros, respectively.

PMSC_KKCTLENABLE
WM_PENMISC is broadcast when kana-kanji controls are enabled.
(Japanese version only.)

446 Programmer's Guide to Pen Services for Microsoft Windows 95

PMSC_LOADPW
WM_PENMISC is broadcast when PENWIN.DLLloads or unloads.
IParam is one of the following:

• PMSCL_LOADED (PENWIN.DLL just loaded).

• PMSCL_ UNLOADED (PENWIN.DLL just unloaded).

• PMSCL_ UNLOADING (PENWIN.DLL is about to unload).

PMSC_PENUICHANGE
Broadcast to indicate that the pen user interface DLL (PENUI) has been
changed. (Japanese version only.)

PMSC_SETHRC
Associate the HRC handle in IParam with the window. The window makes
a copy of the HR C for itself so that the sender of the message can destroy
its copy. Returns nonzero if successful; otherwise, returns O.

PMSC_SETINKINGINFO
Associate the INKINGINFO structure pointed to by IParam with the
window. Returns nonzero if successful; otherwise, returns O.

PMSC_SETPCMINFO
Associate thePCMINFO structure pointed to by IParam with the window.
The cbSize member of the structure must be initialized with
s i z e 0 f (PC MIN F 0) . Returns nonzero if successful; otherwise, returns O.

PMSC_SUBINPCHANGE
Indicates the character finder DLL (SUBINPUT) has been changed .
. (Japanese version only.)

PMSC_GETSYMBOLCOUNT
Retrieve the number of symbols contained in the last recognition result.
IParam should be O. This message should be sent by the window that
received the HN_RESUL T notification before returning from the notification
message.

PMSC_GETSYMBOLS
Retrieve the symbols contained in the last recognition result. IParam should
be a pointer to a buffer large enough to accommodate the number of symbols
contained in the result followed by SYV _NULL. The number of symbols in
the result can be obtained by sending the WM_PENMISC message to the
window with the PMSC_GETSYMBOLCOUNT submessage. This message
should be sent by the window that received the HN_RESUL T notifiCation
before returning from the notification message. A nonzero value is returned
to indicate success.

See Also

WM _PENMISCINFO 447

PMSC_SETSYMBOLS
Change the symbols for the last recognition result. IP aram should be a
pointer to a buffer containing the array of symbols to be set terminated by
SYV _NULL.IParam may be NULL to indicate an empty result. The control
receiving this message should not perform any garbage detection on results
set in this manner. This allows the application to perform its own garbage
detection. In the case of the bedits controls, the number of symbols set must
be the same as the number of symbols obtained using the WM_PENMISC
message with the PMSC_GETSYMBOLCOUNT submessage.lfnot, the
symbols are not set. This message should be sent by the window that
received the HN_RESUL T notification before returning from the notifi­
cation message. A nonzero value is returned to indicate success.

IParam
Depends on wParam.

BOXEDITINFO, INKINGINFO, PCMINFO

WM PENMISCINFO

Parameters

Comments

See Also

Posted to all top-level windows whenever a pen system change is made.

wParam
PMI_ value that identifies the system change.

IParam
New value, depending on wParam.

This message is broadcast to all top-level windows whenever a new global pen
default is set by a call to the SetPenMisclnfo function. (Control Panel is the
principal source of these changes.) A series ofWM_PENMISCINFO broadcasts
is typically made after a Control Panel application is closed.

In version 2.0 of the Pen API, the message parameters have been defined and the
name of this message has been changed from WM_ GLOBALRCCHANGE to
WM_PENMISCINFO, although the value is the same for compatibility with
version 1.0. The wParam and IParam parameters are the same as the parameter
values provided to the SetPenMisclnfo function.

For version 1.0 compatibility, a call to the SetGlobalRC function also causes a
posted broadcast of this message to all top-level windows, but the parameters are
both O. PMI_RCCHANGE may be used as an alias for a for wParam; however,
PMI_RCCHANGE is not a valid parameter to GetPenMisclnfo or
SetPenMisclnfo.

SetPenMisclnfo, GetPenMisclnfo, SetGlobalRC, PMI_

448 Programmer's Guide to Pen Services for Microsoft Windows 95

WM RCRESULT

Parameters

See Also

Sent to an application by a recognizer with the results of a recognition.

Note The WM_RCRESUL T message is provided only for compatibility with
version 1.0 of the Pen API and will not be supported in future versions.

wParam
REC_ code indicating why recognition ended.

IParam
Address of an R CRESUL T structure.

ProcessWriting, RCRESULT, Recognize, RecognizeData

CHAPTER 13

Pen Application Programming
Interface Constants

This chapter describes some of the many manifest constants defined by the Pen
Application Programming Interface, listed alphabetically. Constants listed in this
chapter are primarily those that do not contain a complete listing in any individual
function or message description elsewhere in this documentation. Constants that
pertain to individual functions or messages can be found with the descriptions of
those functions or messages.

Each entry includes a complete description of the constant. For a comprehensive
list of the Pen API coI1stants, see Chapter 9, "Summary of the Pen Application
Programming Interface," or refer to the PENWIN.H header file. Refer to the index
to locate the descriptions of any of the Pen API constants.

ALC _ Alphabet Codes
The ALC_ constants enable a subset of the active character set, depending on the
current language.

For example, the French language includes "h" in the lowercase alphabet. In the
same way, "£" replaces "$" if ALC_MONETARY is set in British systems. For
more information about alphabets, see "Specifying an Alphabet Set" in Chapter 8
and "Alphabet" in Chapter 5.

450 Programmer's Guide to Pen Services for Microsoft Windows 95

Comments The following ALC_ constants are are supported:

Constant

ALC_ALPHANUMERIC

ALC_ASCII

ALC_GLOBALPRIORITY

Description

All characters except Japanese characters.

ALC_LCALPHA I ALC_UCALPHA.

ALC_LCALPHAIALC_UCALPHAI
ALC_NUMERIC.

Seven-bit characters ASCII #20-ASCII #Ox7F

Allow double-byte character set (DBCS) variety of
single-byte character set (SBCS).

Default value; uses complete set of recognizable char­
acters and gestures. The set of these is defined by
the recognizer. It is the set of characters at or above
ALC_SYSMINIMUM that the recognizer can accurately
distinguish.

If an application sets ALC_DEFAULT in the HRC
object, and the recognizer is an alphanumeric system
recognizer, the recognizer must at least support
ALC_SYSMINIMUM as a default. ALC_DEFAULT
should be the same character set as the complete
character set for the given language minus the
ALC_OTHER characters.

If an application combines ALC_DEFAULT with
other ALC_ values, ALC_DEFAULT is ignored.

Gestures.

Specifies that the global recognition priorities (from
Tool Palette) are to be used during recognition. An
application can control its own recognition priority
in a control by clearing this flag and then setting its
own priorities in the HRC.

Hiragana characters. (Japanese version only.)

All Kanji Shift JIS level 1 characters. (Japanese version
only.)

Kanji characters, ShiftJIS levels 1,2, and 3. (Japanese
version only.)

ALC_ALLI ALC_HIRAGANAI ALC_KATAKANAI
ALC_KANJI. (Japanese version only.)

ALC_KANJISYSMINIMUM Minimum set of characters needed for Japanese system
recognizer. Same as ALC_SYSMINIMUM I
ALC_HIRAGANA I ALC_KA TAKANA I ALC_JIS 1.
(Japanese version only.)

Constant

ALC_KATAKANA

ALC_LCALPHA

ALC_MATH

ALC_MONETARY

ALC_NONPRINT

ALC_NOPRIORITY

ALC_NUMERIC

ALC_OEM

ALC_OTHER

ALC_PUNC

ALC_RESERVED

ALC_SYSMINIMUM

ALC_UCALPHA

ALC_USEBITMAP

ALC_WHITE

ALC_ Alphabet Codes 451

Description

Katakana characters. (Japanese version only.)

Lowercase letters a-z.

Math symbols: %A*O-+={ }<>,/.

Monetary symbols: ,.$ or appropriate currency desig­
nation such as the yen or pound sterling symbol, accord­
ing to the current language setting.

Space, tab, carriage':'retum, and control glyphs.

No priority. This value means the application has no
preference for one type of symbol over another.

Numerals 0-9.

Bits reserved for recognizer capabilities specific to the
original equipment manufacturer (OEM).

Other symbols: @ # I _ - []. That is, all other symbols
not included in ALC_ALPHANUMERIC,
ALC_MONETARY, ALC_MATH, and ALC_PUNC.

Punctuation: !-;'''?()&.,\

Reserved .

. Minimum set of characters needed for Roman alphabet
system recognizers: ALPHANUMERIC I ALC_PUNC I
ALC_ WHITE I ALC_GEST.

Uppercase letters A-Z.

(Description follows table.)

White space. If this value is not set in the HRC object,
the recognizer should ignore any white space left
between characters. Thus, ALC_ WHITE is included
in the ALC_DEFAULT. For example, in the zip code
field of the Hform sample application, where
ALC_NUMERIC I ALC_GESTURE is set, the user
does not have to worry about getting any extraneous
spaces.

If ALC_USEBITMAP is set, it indicates the recognizer should adopt an alphabet
set defmed by the application. The defined set specifies individual characters of an
alphabet by setting bits in a 256-bit bitfield. The lowest bit corresponds to the first

. character of the alphabet, the second bit to the second character, and so forth.

452 Programmer's Guide to Pen Services for Microsoft Windows 95

An application passes the bitfield to a recognizer through the SetAlpbabetHRC
or SetBoxAlpbabetHRC functions. The following code shows how. Assume
the array r 9 b f Set hoids the desired bit values.

HRC
BYTE

hrc;
rgbfSet[cbRcrgbfAlcMax]

II HRC handle
II 256-bit bitfield

SetAlphabetHRC(hrc, ALC_USEBITMAP, (LPBYTE) rgbSet);

ALC_USEBITMAP can be combined with other ALC_ values using the bitwise­
OR operator. An application can thus, for example, select certain letters with a
defined bitmap and combine them with all numerals and punctuation.

For Asian languages other than Japanese, refer to the appropriate subsets within
the language: phonetic symbols for words within the language, phonetic symbols
for words outside the language, and native pictographs. For example, in Korean,
ALC_RANGUEL equals ALC_KATAKANA, and ALC_RANJA equals
ALC_KANJI.

For kanji and other Asian encodings, different effects are possible depending on
the state of ALC_DBCS. These effects are described in the following table.

Character in ALC DBCS=O

N/A

ALC_JISI N/A

OxAI - OxDF

ALC~KANJI N/A

ALC DBCS = 1

Shift JIS characters Ox8154,
Ox8155, and Ox829F­
Ox82Fl.

All Kanji Shift JIS level I
characters.

Shift JIS characters
Ox814A, Ox814B, Ox8152,
Ox8153,Ox815B,and
Ox8340 - Ox8396.

All Kanji characters, Shift
JIS levels I, 2, and 3.

ALe_Alphabet Codes 453

The following table shows the characters in Shift-JIS in each ALC_ set supported
in the Japanese version:

ALC value

ALC_HIRAGANA

ALC_JIS1

ALC_KANJI

ALC_LCALPHA

ALC_MATH

ALC_MONETARY

ALC_NONPRINT

ALC_NUMERIC

ALC_OTHER

ALC_UCALPHA

ALC_WHITE

Shift JIS Code

Ox8154, Ox8155, and Ox829F - Ox82F1

Ox8156 - Ox815A, Ox889F - Ox9872

Ox8156 - Ox815A, Ox889F - OxEAA4, OxED40-
OxEDFC, OxEE40 - OxEEFC, OxF040 - OxF9FC,
OxFAFO - OxFAFC, OxFB40 - OxFBFC, OxFC40 -
OxFC4B

Ox814A, Ox814B, Ox8152, Ox8153, Ox815B, Ox8340-
Ox8396

Ox8281- Ox829A

Ox8143,Ox8144,Ox814F,Ox815E,Ox8169,Ox816A,
Ox816F, Ox8170, Ox817B - Ox817E, Ox8180 - Ox8188,
Ox8193,Ox8196

Ox8143, Ox8144, Ox818F - Ox8192

Ox8140

Ox824F - Ox8258

Ox814C - Ox814E, Ox8150, Ox8151, Ox8160 - Ox8164,
Ox816B, Ox816C, Ox8171 - Ox8174, Ox8179, Ox817 A,
Ox817F, Ox8189 ~ Ox818E, Ox8194, Ox8197 - Ox81FC,
Ox8240 - Ox824E, Ox8259 - Ox825F, Ox827 A - Ox8280,
Ox829B - Ox829E, Ox82F2 - Ox82FC, Ox837F, Ox897 -
Ox83FC, Ox8840 - Ox84FC, Ox8740 - Ox879D

Ox8141 - Ox8149, Ox815B - Ox815F, Ox8165 - Ox816A,
Ox816D - Ox8170, Ox8175 - Ox8178, Ox817C, Ox8195

Ox8260 - Ox8279

Ox8140

A recognizer must not return a symbol value outside the specified subset. However,
a recognizer does not have to force a match to the subset; it can instead return
"unknown" if a suitable match is not found.

You can set the ALC_ value for an hedit or bedit control in a dialog box by insert­
ing a special string in the .RC file's CONTROL statement. This string is in the
form ALC<xxxx> where xxxx represents a case-independent hexadecimal ALC_
code, without a preceding Ox qualifier. You can append normal window text after
the ALC_ entry.

454 Programmer's Guide to Pen Services for Microsoft Windows 95

The following line demonstrates setting the ALC_ value for an heditcontrol using
a CONTROL statement:

CONTROL "ALC<402C>Do 11 a rs". I DD_PAI D. "hedi t". ES_LEFT I ... etc.

In the above example, the ALC<402C> value is stripped out with "Dollars" left as
window text. The number 402C is the hexadecimal equivalent of:

ALC_NUMERIC I ALC_PUNC I ALC_MONETARY I ALC_GESTURE

The following example allows only kanji characters, katakana characters, and
gestures; it does not specify initial window text:

CONTROL "ALC<74000>". IDD_J. "hedit". ES_LEFT I ... etc.

BXD Boxed Edit Control
The BXD _ values define the initial dimensions of the various components of a
boxed edit (bedit) control. These are constants defined in terms of dialog units.
They are converted to pixel dimensions by the bedit control before use.

For more information, see the entries for the BOXLA YOUT and GUIDE
structures in Chapter 11, "Pen Application Programming Interface Structures."

The following table lists the BXD _ values.

Constant Value

BXD_BASEHEIGHT 13

BXD_BASEHORZ 0

BXD_CELLHEIGHT 16

BXD _CELL WIDTH 12

BXD _CUSPHEIGHT 2

BXD_ENDCUSPHEIGHT 4

BXD_MIDFROMBASE. 0

Description

Initial value for cyBase in GUIDE structure
after conversion from dialog units to pixels.

Initial value for cxBase in GUIDE structure
after conversion from dialog units to pixels.

Initial value for cyBox in GUIDE structure
after conversion from dialog units to pixels.

Initial value for cxBox in GUIDE structure
after conversion from dialog units to pixels.

Initial value for cyCusp in BOXLAYOUT
structure after conversion from dialog units
to pixels.

Initial value for cyEndCusp in
BOXLA YOUT structure after conversion
from dialog units to pixels.

Same as BXD~BASEHORZ.

BXDK _ Japanese Boxed Edit Control 455

BXDK_ Japanese Boxed Edit Control
The BXDK_ values define the initial dimensions of the various components of a
Japanese boxed edit (bedit) control. These are constants defined in terms of dialog
units. They are converted to pixel dimensions by the bedit control before use.

For more information, see the entries for the BOXLAYOUT and GUIDE
structures in Chapter 11, "Pen Application Programming Interface Structures."

The following table lists the BXDK_ values.

Constant

BXDK_BASEHEIGHT

BXDK_BASEHORZ

BXDK_CELLHEIGHT

BXDK_CELLWIDTH

BXDK_CUSPHEIGHT

BXDK_ENDCUSPHEIGHT

Value

28

0

32

32

28

10

Description

Initial value for cyBase in GUIDE structure
after conversion from dialog units to pixels.

Initial value for cxBase in GUIDE structure
after conversion from dialog units to pixels.

Initial value for cyBox in GUIDE structure
after conversion from dialog units to pixels.

Initial value for cxBox in GUIDE structure
after conversion from dialog units to pixels.

Initial value for cyCusp in BOXLAYOUT
structure after conversion from dialog units
to pixels.

Initial value for cyEndCusp in
BOXLA YOUT structure after conversion
from dialog units to pixels.

IDC _ Display Cursor

Example

A pen-aware display driver must define the following new cursor types.

Constant Value

32501

32631

Description

Upside-down standard arrow used for tap­
and-hold selection.

Default pen. Pen points up and to the left.

You can access the tap-and-hold cursor with the following code:

HANDLE hPenDLL = GetSystemMetrics(SM_PENWINDOW);
if (hPenDLL)

SetCursor(LoadCursor(hPenDLL, IDC_ALTSELECT);

456 Programmer's Guide to Pen Services for Microsoft Windows 95

PCM Pen Collection Mode
Pen collection mode values defme the condition that terminates an input session.
(The system is said to be in "pen collection mode" during an input session when pen
movement generates input data instead of being interpreted as mouse movement.)
Pen collection can be stopped on any of the following conditions set by the PCM_
values in the dwPcm member of the PCMINFO structure:

Constant

PCM_ADDDEFAULTS

PCM_PENUP

PCM_RANGE

PCM_RECTBOUND

PCM_RECTEXCLUDE

PCM_RGNEXCLUDE

PCM_TAPNHOLD

PCM_TIMEOUT

Description

Combine the default termination conditions with those
specified by the application.

Request polling mode, rather than the default
WM_PENEVENT messages.

Stop pen collection if the user touches the "eraser" end
of the pen to the tablet. Not all tablets can detect this
event.

Stop pen collection when the pen is lifted from the tablet.

Stop pen collection when the pen leaves tablet's range of
sensitivity. Not all tablets can detect this event.

Stop when the pen is placed down outside the inclusion
rectangle. The inclusion rectangle is specified in the
rectBound member of the PCMINFO structure.

Stop when the pen touches inside the exclusion
rectangle. The exclusion rectangle is specified in the
rectExclude member of the PCMINFO structure.

Stop when the pen touches outside the bounding region
specified in the hrgnBound member of the PCMINFO
structure.

Stop when the pen touches inside the exclusion
region specified in the hrgnExclude member of the
PCMINFO structure.

Enable detection of the tap-and-hold gesture.

Stop pen collection if there is no pen activity for a
specified time-out. The time-out value is specified in
the dwThneout member of the PCMINFO structure.

PDC _ Pen Device Capabilities 457

PDC_ Pen Device Capabilities
The following table lists the values for the IPdc member of the PENINFO
structure:

Constant

PDC_BARRELI

PDC_BARREL2

PDC_BARREL3

PDC_INTEGRATED

PDC_INVERT

PDC_RANGE

Description

Barrel button 1 is present.

Barrel button 2 is present.

Barrel button 3 is present.

Tablet surface is also a display monitor.

The tablet can detect when the "eraser" end of the
pen is in contact with the tablet.

The tablet can detect when the pen is near but not in
contact with the tablet surface.

The tablet can detect when the pen leaves or enters
the tablet's range of sensitivity.

The pen driver can generate only relative coordinates.

For additional details, see the entry for the PENINFO structure in Chapter 11,
"Pen Application Programming Interface Structures."

PDK State Bits for Pen Driver Kit
The PDK_ values inform the system when a mouse event is being generated by
pen movement, as well as the current state of any barrel buttons. This information
is contained in the wPDK and wPdk members of the STROKEINFO and
PENPACKET structures, respectively. The GetPenAsyncState function also
accepts a PDK_ value as its only argument. The following table lists the PDK_
values:

Constant Value

OxOOOO
OxOOOO

Description

No flags set (default).

Same as PDK_NULL.

458 Programmer's Guide to Pen Services for Microsoft Windows 95

See Also

Constant

PDK_BARRELI

PDK_BARREL2

PDK_BARREL3

PDK_DOWN

PDK_SWITCHES

PDK_TIPMASK

PDK_TRANSITION

PDK_EVENT

PDK_PENIDMASK

PDK_INVERTED

PDK_INKSTOPPED

PDK_OUTOFRANGE

PDK_DRIVER

Value

OxOOO2

OxOOO4

OxOOO8

OxOOOI

OxOOOF

OxOOOI

OxOO10

OxOO10

OxOFOO

OxOO80

Ox2000

Ox4000

Ox8000

Description

Barrel button 1 is depressed.

Barrel button 2 is depressed.

Barrel button 3 is depressed.

Pen is in contact with the tablet.

All of the above.

Mask for testing PDK_DOWN.

Only has meaning if set by pen services.
This bit is set if the first point in the
sequence being returned is in a different
pen-tip state (up or down) from the previous
points returned.

If set on a call to AddPointsPenData, a
new stroke is created even if the previous
call to AddPointsPenData appended points
of the same pen state. By default, a sub­
sequent call to AddPointsPenData adding
points of the same state as the previous call
appends the points to the last stroke instead
of creating a new stroke.

Alias for PDK_TRANSITION.

Mask for bits 8-11 (see paragraph following
table).

Pen is upside down ("eraser" end is in
contact with tablet).

Inking has stopped.

Set if the tablet detects the pen leaving the
range of detection. If set, other information
in the packet is invalid.

Set if event is generated by the pen driver
(as opposed to the mouse driver).

For PDK_ values other than PDK_PENIDMASK, bits 8 through 11 contain the
identification number of the physical pen that generated the event. Pen numbering
begins at O.

PENPACKET, STROKEINFO

PDT _ OEM-Specific Data 459

PDT _ OEM-Specific Data
PDT_values provide information specific to the tablet hardware. These values are
used in the wPdt member of the OEMPENINFO structure.

Constant Value Description

PDT_NULL 0 Null value.

PDT_PRESSURE 1 Tablet can detect change in pen pressure.

PDT_HEIGHT 2 Tablet can detect height of pen above
surface.

PDT_ANGLEXY 3 Tablet can detect change in pen horizontal
angle.

PDT_ANGLEZ 4 Tablet can detect change in pen vertical
~gle.

PDT_BARRELROTATION 5 Tablet can detect rotation of pen barrel.

PDT _ OEMSPECIFIC 16 Maximum number of values allowed.

For additional information, see the PENINFO and OEMPENINFO structures in
Chapter 11, "Pen Application Programming Interface Structures."

PDTS_ Pen Data Scaling
The PDTS_ data scaling units are used in the uScale and wPndtNew arguments of
the CreatePenData and MetricScalePenData functions, respectively. These units
are used for the wPndts member of the PENDAT AHEADER structure. Positive
x-coordinate is to the right; positive y-coordinate is down.

The following table lists the PDTS_ values. These values cannot be combined with
the bitwise-OR operator.

Constant

PDTS_ARBITRARY

PDTS_COMPRESS2NDDERIV

PDTS_DISPLA Y

Description

The application has done its own scaling of
the data point.

The second derivative between points is
stored.

Each logical unit is equivalent to a display
pixel. Positive x is to the right; positive y is
down.

460 Programmer's Guide to Pen Services for Microsoft Windows 95

Constant

PDTS_HIENGLISH

PDTS_LOMETRIC

PDTS_STANDARDSCALE

Description

Each logical unit is mapped to 0.001 inch.
Positive x is to the right; positive y is down.

Each logical unit is mapped to 0.001
millimeter. Positive x is to the right;
positive y is down.

Each logical unit is mapped to 0.01
millimeter. Positive x is to the right;
positive y is down.

The standard scaling metric, equivalent to
PDTS_HIENGLISH. Standard recognizers
scale to this value.

The following table lists the PDTS_ bit settings. These bit settings can be combined
using the bitwise-OR operator.

Constant

PDTS_COMPRESSED

PDTS_NOCOLLlNEAR

PDTS_NOEMPTYSTROKES

PDTS_NOOEMDATA

PDTS_NOPENINFO

PDTS_NOTICK

PDTS_NOUPPOINTS

PDTS_NOUSER

Description

The data is compressed.

All redundant points removed.

All empty strokes removed.

OEM data removed.

The PENINFO structure has been trimmed
from the header.

Timing information removed.

All pen-up strokes removed.

User information removed.

The following table lists the PDTS_ mask values:

Constant

PDTS_COMPRESSMETHOD

PDTS_SCALEMASK

Description

Bits encode the compression scheme that is
used.

Mask scaling bits for hardware information.

For additional information, see the entries for the CompactPenData and
MetricScalePenData functions in Chapter 10, "Pen Application Programming
Interface Functions."

PDTT _ Pen Data Trimming 461

PDTT _ Pen Data Trimming
PDTT _ values are used as arguments for the CompactPenData function. The
following table describes the PDTT_ values:

Constant

PDTT_COMPRESS

PDTT _DECOMPRESS

PDTT_OEMDATA

PDTT_PENINFO

PDTT_UPPOINTS

Description

Reallocates memory block to fit data; does
not trim the data.

Removes PENINFO structure from header,
all pen-up points, OEM data, and collinear
points.

Removes coincident and collinear points
from the pen data.

Compresses the data without losing any
information.

Decompresses the data.

Removes all OEM data.

Removes PENINFO structure from header.

Removes all data from pen-up points
(points collected when the pen is not in
contact with the tablet).

For additional information, see the CompactPenData function in Chapter 10, "Pen
Application Programming Interface Functions."

PMI Pen Miscellaneous Information
The PMI_ values are used as arg~ents for the GetPenMisclnfo and
SetPenMisclnfo functions. The WM_PENMISCINFO message also uses PMI_
values in its wParam parameter.

The following table describes the PMI_ values:

Constant

PMCBEDIT

PMCCXTABLET

PMCCYTABLET

Description

Boxed edit information.

Width of tablet (in units of 0.001 inch) if present, else
the width of the screen.

Height of tablet (in units of 0.00 I inch) if present, else
the height of the screen.

462 Programmer's Guide to Pen Services for Microsoft Windows 95

Constant

PMCENABLEFLAGS

PMCINDEXFROMRGB

PMCPENTIP

PMCRGBFROMINDEX

PMCSAVE

PMCSYSFLAGS

PMCSYSREC

PMCTICKREF

PMCTIMEOUT

PMCTIMEOUTGEST

PMCTIMEOUTSEL

Description

Flags describing whether certain Pen API features are
enabled. The flags can be a combination of the following
values:

PWE_AUTOWRITE Enable pen functionality where
the I-Beam cursor is present.
PWE_ACTIONHANDLES Enable action handles in
controls.
PWE_INPUTCURSOR Show cursor while writing ..
PWE_LENS Enable pop-up letter guides (that is, the
lens).

A standard RGB pen-tip color value from 0 to
OxFFFFFF.

Address of current pen-tip structure.

An integer index from 0 to 15 for the standard pen-tip
color table.

Save settings to file.

Flags describing which pen system components are
loaded. The flags can be a combihation of the following
values:

PWF _RCI Support available for Pen API version 1.0
Recognition Context (RC) and associated functions.
PWF _PEN Pen/tablet hardware is present.
PWF _INKDISPLA Y Ink-compatible display driver is
present.
PWF _RECOGNIZER System recognizer is present.
PWF _BEDIT Boxed edit (bedit) control is available.
PWF _HEDIT Handwriting edit (hedit) control is
available.
PWF _IEDIT Ink edit (iedit) control is available.
PWF _ENHANCED Enhanced features, including

gesture support and 1 millisecond timing, are available.
PWF _FULL All components listed above are present.

Handle to system recognizer, if present.

Absolute reference time that the system uses to calculate
time-stamps for strokes in pen data objects and inksets.

Time-out value to end handwriting input, in
milliseconds.

Time-out value to end a gesture, in milliseconds.

Time-out value in milliseconds for press-and-hold
gesture. The range of permissible values is 0 to 5000. If
press-and-hold has been disabled, this value is 65,535.

ReD_Writing Direction 463

For additional information, see the entries for the GetPenMisclnfo and
SetPenMisclnfo functions in Chapter 10, "Pen Application Programming Interface
Functions. "

ReD_Writing Direction

Example

See Also

RCD_ values are used in the wRcDirect member of the global RC structure. The
RC structure is passed to a version 1.0 recognizer in the lpRe argument of InitRC
and informs the recognizer of the writing direction. To set the writing direction
differently than the default direction, call SetGlobalRC with the desired RCD_
value in wRcDirect.

Note RCD _ constants are provided only for compatibility with version 1.0 of the
Pen API and will not be supported in future versions.

The writing direction consists of both primary and secondary directions. For
example, English is written from left to right (primary) and then down the page
(secondary). Chinese is often written from the top down (primary) and then right
to left across the page (secondary).

The high byte of the direction indicates primary direction; the low byte indicates
secondary direction. A recognizer can choose to ignore this word and support only
the natural direction of the given language. The default value is determined by the
recognizer.

The following table lists the RCD _ values:
~Q

Constant Description

RCD_DEFAULT Default value.

RCD_BT Bottom to top.

RCD_LR Left to right.

RCD_RL Right to left.

RCD_TB Top to bottom.

For example, the value for standard English writing direction is defined as follows:

1Idefi ne wRcDi rectRoman ((RCD_LR«8) I RCD_ TB)

RC

464 Programmer's Guide to Pen Services for Microsoft Windows 95

RCO Recognition Options
RCO _ values apply only to recognizers compatible with version 1.0 of the Pen API.
They are used in the IRcOptions member of the RC structure, which specifies
various options for recognition. RCO_ values can be combined with a logical-OR
operator.

Constant

RCO_BOXCROSS

RCO_BOXED

RCO_DISABLEGESMAP

RCO_NOFLASHCURSOR

RCO_NOFLASHUNKNOVVN

RCO_NOHIDECURSOR

RCO_NOHOOK

RCO_NOPOINTEREVENT

RCO_NOSPACEBREAK

RCO_SAVEALLDATA

Description

Display a plus sign (+) at center of each box in a
bedit control.

Set if the writer is expect~d to write in boxes and the
GUIDE structure contains valid data.

Set in results messages if the result is coming from
cold recognition.

Disables gesture mapping during the Recognize
function call.

No flash cursor feedback.

If set in the R C structure and nothing was
recognized, the cursor will not momentarily change to
a question-mark cursor shape.

If set, doesn't remove cursor while inking.

Prevents application-wide and system-wide hooks
from being called.

If set, the RC Manager will not try to recognize a
pointer event but will pass on all data to the recog­
nizer. This is useful, for example, if the application
has installed a shape recognizer so the user can
enter dots of ink.

If the null recognizer is selected into the RC,
RCO_NOPOINTEREVENT is assumed to be set.

If set, indicates that the results passed back from the
recognizer should be passed on to the dictionaries
without breaking at space boundaries.

Saves all the pen data in the RCRESUL T structure
that is generated by the tablet, including any data for
pen-up strokes and optional data such as pressure. By
default, only data used by the recognizer is saved.

The Microsoft recognizer collects all data from first to
, last pen-down stroke, including pen-up strokes in
between, and any available OEM data for each stroke.

Constant

RCO_SAVEHPENDATA

RCO_TABLETCOORD

RCOR_ Tablet Orientation 465

Description

Saves the pen data. If this is set, the recognizer does
not delete the data when the application returns from
WM_RCRESULT.1t is the application's
responsibility to free the pen data.

If set, the following actions take place: After all
dictionaries have been unsuccessfully searched with
strings from the symbol graph, each dictionary is
called with DIRQ_SUGGEST to allow the diction­
aries to make suggestions. If a string is not yet
identified by a dictionary, the null dictionary is used
to create a symbol string from the symbol graph.

If set, indicates that the members representing coordi­
nate values in the RC structure are in tablet coordi­
nates instead of screen coordinates. This can be used
to collect recognition data on the portion of the tablet
not mapped to the screen.

ReOR Tablet Orientation

See Also

RCOR_ values are used in the wRcOrient member of the global RC structure. The
RC structure is passed to a version 1.0 recognizer in the /pRC argument of InitRC
and informs the recognizer of the tablet orientation. The recognizer can optionally
,use the orientation to direct the transformation of tablet coordinates to ideal coordi­
nates used for recognition.

Note RCOR_ constants are provided only for compatibility with version 1.0 of the
Pen API and will not be supported in future versio~s.

The following table lists the RCOR_ values:

Constant

RCOR_NORMAL

RCOR_LEFT

RCOR_RIGHT

RCOR_UPSIDEDOWN

X -coordinate

x=x'
X=yMax- Y'

X=Y'

X=xMax-X'

Y -coordinate

Y=Y'

Y=X'

Y=xMax-X'

Y=yMax- Y'

As with the preceding values, direction is provided as a clue to the recognizer. A
recognizer may attempt to identify the direction of writing by itself.

RC

466 Programmer's Guide to Pen Services for Microsoft Windows 95

RCP User Preferences

See Also

RCP _ values are used in the wRcPreferences member of the global RC structure.
The R C structure is passed to a version 1.0 recognizer in the /pRC argument of
InitRC and informs the recognizer of the user preferences.

Note RCP _ constants are provided only for compatibility with version 1.0 of the
Pen API and will not be supported in future versions.

The following table lists the RCP _ values:

Constant

RCP _LEFfHAND

RCP _MAPCHAR

RC

Description

User writes with left hand.

Tells a version 1.0 recognizer to fill in segmentation
information in the Ipsyc member of the SYG structure.
This value cannot be set by the user because there
is no Control Panel access to it. RCP _MAPCHAR is
used by the Trainer.

RCRT _ Results Type
RCRT_ values apply only to recognizers compatible with version 1.0 of the Pen
API. They are used in the wResultsType member of the RCRESUL T structure,
which specifies the type of results as described in the following table:

Constant

RCRT_ALREADYPROCESSED

Description

Set by a hook if the result has already been
acted upon. If an application receives a
result with this bit already set, it should
erase the ink and perform no other pro­
cessing. An application-wide hook can set
this flag. The Hform sample application
demonstrates its use.

Normal return type.

Example

Constant

RCRT_GESTURE

RCRT_NORECOG

RCRT_NOSYMBOLMATCH

RCRT_PRIVATE

RCRT _UNIDENTIFIED

RCRT _ Results Type 467

Description

Result is a gesture symbol.

Nothing recognized; only the data is
returned. No recognition was attempted.

Nothing recognized. The ink drawn did
not match any enabled symbols.

Recognizer-specific symbol recognized.

Result contained unidentified results.

The code below shows an example of how to use RCRT_ values:

if «lpr->wResultsType & (RCRT_NOSYMBOLMATCH I RCRT_ALREADYPROCESSED
RCRT_NORECOG I RCRT_PRIVATE)) == 0)

else
{

II A gesture or character
if (lpr->wResultsType & RCRT_GESTURE)
{

else
{

II Handle Gesture

II Character results

II Handle special cases as necessary. In general.
II should just ignore. This is what hedits do.

468 Programmer's Guide to Pen Services for Microsoft Windows 95

REC_ Recognition Functions
The REC_ constants specify return values from the GetPenHwEventData and
GetPenHwData functions. They are also returned from the obsolete functions
Recognize, RecognizeData, and ProcessWriting, and as the wParam value of the
WM_RCRESULT message. Return values less than REC_DEBUG are provided
for debugging purposes only and represent abnormal termination.

Constant

REC_BADHPENDATA

REC_BUFFERTOOSMALL

REC_BUSY

REC_DONE

REC_NA

REC_NOINPUT

REC_NOTABLET

REC_OOM

REC_OVERFLOW

Description

This result message to be followed by other results
before Recognize terminates. This is a valid wParam
value for WM_RCRESULT, but it can never be the
return value for Recognize.

Recognition stopped by a call to EndPenCollection with
this value. The /pPnt data is not valid.

Returned if HPENDAT A cannot be locked or has an
invalid header. This value is also returned if /

HPENDA T A has no data in it or if the data is i~ an
incorrect scale or compressed.

Returned by GetPenHwEventData.

Returned if another task is currently performing
recognition.

Returned by RecognizeData upon normal completion.

Function not available.

Returned by RecognizeData if the buffer contains no
data, or returned by Recognize if recognition ended
before any data was collected. For example, a pen-down
stroke may have occurred outside the bounding rectangle
before any data was collected.

Tablet not physically present.

Out-of-memory error.

Data overflow during execution of the call.

Constant

REC_POINTEREVENT

REC_TERMBOUND

REC_TERMEX

REC_TERMOEM

REC_TERMPENUP

REC_TERMRANGE

REC_TERMTIMEOUT

REC_ Recognition Functions 469

Description

Returned if the user makes contact with the tablet
surface and lifts the pen before the pen tip travels a
short distance. This value is also returned if the user
does a press-and-hold action; that is, the pen makes
contact with the tablet and remains in that position
for a short period of time.

REC_POINTEREVENT informs the application it
should begin selection actions rather than inking or
recognition. IfREC_POINTEREVENT is returned, no
WM_RCRESUL T message is generated and no ink is
displayed.

Recognition ended because of a hit test outside the
bounding rectangle. The pntEnd member of
RCRESUL T is filled with the point causing the stop.

Recognition ended because of a hit test inside the
exclusion rectangle. The pntEnd member of
RCRESUL T is filled with the point causing the stop.

Values greater than or equal to 512 reserved for
recognizer-specific termination reasons.

Recognition ended on pen up. ThepntEnd member of
RCRESUL T is filled with the pen-up point that
terminated recognition.

Recognition ended because the pen left the proximity
range.

Recognition ended on time-out. (The pen was up con­
tinuously for a given amount of time.)

470 Programmer's Guide to Pen Services for Microsoft Windows 95

Debugging Values
All of the values listed in the following table are in the debug version of
PENWIN.DLL only. No WM_RCRESULT message is generated if these values
are returned by Recognize.

Constant

REC_ALC

REC_BADEVENTREF

REC_CL VERIFY

REC_DICT

REC_ERRORLEVEL

REC_GUIDE

REC_HREC

REC_HWND

REC_INV ALIDREF

REC_LANGUAGE

REC_NOCOLLECTION

REC_PARAMERR

REC_RECTBOUND

REC_RECTEXCLUDE

REC_RESULTMODE

SYV _ Symbol Values

Description

All debugging return values are less than or equal
to this.

Invalid enabled alphabet.

Returned when the wEventRef member in the RC
structure is invalid.

Invalid verification level.

Invalid dictionary parameters.

Invalid error level.

Invalid GUIDE structure.

Invalid recognition handle.

Invalid handle to window to send results to.

Invalid data reference parameter.

Returned by the recognizer when the IpLanguage
member of RC contains a language that is not supported
by the recognizer. Call ConfigRecognizer with the
WCR_QUERYLANGUAGE subfunction to determine
whether or not a particular language is supported.

Returned by GetPenHwData if collection mode has
not been set.

Error values below REC _OEM (-1024) are specific to
the recognizer.

Invalid IPcm member in R C structure. There is no way
for the recognition to end.

Invalid parameter.

Invalid rectangle.

Invalid rectangle.

Unsupported results mode requested.

Each glyph a recognizer can identify has an associated symbol value. It is this value
that is returned to the application by the recognizer.

SYV _ Symbol Values 471

The high-order and low-order words of a symbol value have the following
meanings:

High-order word

o
1

2

3

4

5

6

7-0x7EFF

Ox7FOO-Ox7FFF

>=Ox8000

Low-order word

System symbols.

ANSI character code.

Gestures.

Shift character codes (kanji).

Shapes.

Unicode.

Virtual keys.

Reserved for future use.

Recognizer-specific symbols.

Character code for given code page. The low 15 bits of
the high-order word indicate the code page.

Recognizers for the European market should return symbol values using ANSI
and gesture symbol values (ANSI is the native character set for Windows in the
European market). For the Japanese market, recognizers can use Shift JIS Levell
and gestures. When writing a recognizer, bear in mind that symbol values outside
these ranges cannot be interpreted by all Windows applications.

System Symbol Values
The following system symbol values are supported for recognizers:

Constant

SYV_EMPTY

SYV_ENDOR

SYV _SOFTNEWLINE

SYV _SPACENULL

SYV _UNKNOWN

Description

Begins a list of choices; in the bedit guide, displayed as
an opening brace character ({).

Empty.

Ends a list of choices. In the bedit guide, displayed as a
closing brace character (}).

Null terminator.

Separator for list of choices; in the bedit guide, displayed
as a vertical bar (I).

Translated to a space by SymbolToCharacter.

Used in a symbol graph to indicate an alternative to a
space.

Unrecognized glyph.

472 Programmer's Guide to Pen Services for Microsoft Windows 95

Constant

SYV _BACKSPACE

SYV_CLEAR

SYV _ CLEARCHAR

SYV _CLEARWORD

SYV_COPY

SYV_CORRECT

SYV_CONTEXT

SYV_CUT

Gesture Symbol Values
All system recognizers are expected to recognize a special set of glyphs used as
commands. In the following table, the "Windows Equivalent" column shows the
mouse and keyboard equivalents in Windows.

Value

OO-OxOOFF

OxOOO20008

OxOOO2FFD5

OxOOO2FFD2

OxOOO2FFDD

OxOOO2FFDA

OxOOO2FFDF

OxOOO2FFD7

OxOOO2FFDB

Description

Command gesture given. The low byte
specifies which ANSI character was
modified by the command gesture.

Deletes character under gesture and
sets insertion point.

Clears the selection.

Clears the selection.

Deletes word or object under gesture.

Copies selection to Clipboard.

Corrects selection or word under
gesture.

Displays a context menu

Cuts selection and places it on
Clipboard.

Windows
equivalent

Nonstandard (usually
CTRL+key).

BACKSPACE.

DEL.

DEL.

Double-click, DEL.

CTRL+INS.

None.

Right mouse click.

SH I FT+DEL.

SYV_EXTENDSELECT OxOOO2FFD8 For linear selection (text), selects all
text between current insertion point
and point of extend-selection gesture.
For nonlinear selection (objects), adds
object under gesture to selection.

S H I FT +mouse click.

SYV_INSERT OxOOO2FFD6

SYV _KKCONVERT OxOOO2FFD4

SYV_PASTE OxOOO2FFDC

SYV_RETURN OxOOO2000D

SYV_SPACE OxOOO20020

SYV_TAB OxOOO20009

SYV_UNDO OxOOO2FFD9

SYV_USER OxOOO2FFDE

Opens the lens to allow text to be
inserted.

Starts Kana-to-Kanji converter.
(Japanese version only.)

Pastes selection at point indicated by
hot spot of paste gesture.

Enters carriage-return key.

Adds space character.

Enters tab.

Undoes previous action.

Any circle gesture.

None

N/A

Click (place insertion
point) followed by
SHIFT+INS.

Click, RETURN.

Click, SPACEBAR.

Click, TAB.

ALT +BACKSPACE.

See the following
section.

SYV _ Symbol Values 473

Circle Gesture Symbol Values
A circle gesture consists of a circled letter, either uppercase or lowercase. The Pen
API version 2.0 does not explicitly support circle gestures. They are defined only
for application or recognizer use.

The following table lists the SYV _ values for the circle gestures. Intervening values
correspond to the letters between "a" and "z".

Constant

SYV _APPGESTUREMASK

SYV _CIRCLELOA

SYV _CIRCLELOZ

SYV _CIRCLEUPA

SYV _CIRCLEUPZ

Value

Ox00020000

Ox000224DO

Ox000224E9

Ox000224B6

Ox000224CF

Selection Symbol Values

Description

Mask value for circle gestures.

Lowercase "a" circle gesture.

Lowercase "z" circle gesture.

Uppercase "A" circle gesture.

Uppercase "Z" circle gesture.

The following table lists the SYV _values for selection symbol gestures.

Constant Value Description

SYV _SELECTFIRST OxOOO2FFC2 Minimum value for section
SYVs.

SYV_LASSO OxOOO2FFCl Lasso selection (equivalent
to double-click).

SYV _SELECTLEFf OxOOO2FFC2 Select text to the left (not
supported by the Microsoft
Handwriting Recognizer).

SYV _SELECTRIGHT OxOOO2FFC3 Select text to the right (not
supported by the Microsoft
Handwriting Recognizer).

SYV _SELECTLAST OXOOO2FFCF Maximum value for selection
SYVs.

474 Programmer's Guide to Pen Services for Microsoft Windows 95

Shape Symbol Values
These values should be used by shape recognizers.

Constant Value Description

SYV _SHAPELINE OxOOO40001 Shape recognized as a line.

SYV _SHAPEELLIPSE OxOOO40002 Shape recognized as an ellipse.

SYV _SHAPERECT OxOOO40003 Shape recognized as a rectangle.

SYV _SHAPEMIN OxOOO40001 Minimum value for recognized shape
SYVs.

SYV _SHAPEMAX OxOOO40003 Maximum value for recognized shape
SYVs.

APPENDIX A

Differences Between Versions 1.0
and 2.0 of the Pen Application
Programming Interface

Version 2.0 of the Pen Application Programming Interface (API) provides more
services-and more avenues for innovation-than did version 1.0. A skimming of
Chapters 10 and 11, which identify functions and structures new to version 2.0,
indicates the extent of the enhancements added to the API.

However, if you have used version 1.0 of the Pen API, also known as Microsoft
Windows for Pen Computing, you will find more than additional functions and
other services in this release. Programming philosophy has changed as well. Partic­
ularly in the area of recognition, the Pen API now allows greater freedom and
responsibility for the handling and interpretation of pen input.

This appendix identifies some of the most important changes and improvements to
the Pen API since version 1.0. It would require a number of pages to itemize all the
improvements incorporated into version 2.0, which are described throughout this
book. The purpose of this appendix is to help the developer familiar with version
1.0 to quickly identify several important areas of version 2.0 that reflect significant
change. You will find that version 2.0 of the Pen API opens up new possibilities for
collected ink data other than simply passing it to a recognizer.

Improvements to the bedit Control
The bedit control of version 2.0 of the Pen API has been significantly improved
over that of version 1.0. The improvements aim to make text entry more convenient
and more intuitive for the user. The following list briefly describes the major
improvements:

• The current insertion point is now indicated by an action handle instead of the
caret of version 1.0.

476 Programmer's Guide to Pen Services for Microsoft Windows 95

• The user can select text by dragging the insertion point action handle. Selected
text appears in reverse video.

• The user can move selected text within the control window by dragging it to a
new position.

• Single-line bedit windows can automatically scroll horizontally when the user
fills either of the last two visible boxes. The last character remains visible after
the scroll to help orient the user. The control window also provides scroll arrows
for horizontal scrolling.

• A single tap near the center of a character displays a list of alternative charac­
ters determined by the recognizer. Double-tapping brings up a menu with a list
of alternative words that can replace the entire word above the tap. The user
selects a letter or complete word by tapping the menu selection.

• As do other controls in Microsoft Windows 95, bedit controls now provide a
context menu from which the user can cut or copy a selection, paste, insert, and
so forth.

• If the user inserts a carriage return in a line of a multiline bedit, text to the right
of the carriage return automatically wraps to the next line.

• Empty cells are marked with a light-gray dot to help distinguish them from
spaces.

The EM_LIMITTEXT message has a slightly different effect on bedit controls in
version 2.0 of the Pen API. In version 1.0, sending EM_LIMITTEXT to a bedit
control window set the number of boxes in the control as specified by the message's
wParam parameter. In version 2.0, EM_LIMITTEXT sets the maximum number of
bytes of text the control can hold instead of the number of boxes. For more infor­
mation about EM_LIMITTEXT, see "The bedit Control" in Chapter 3, "The
Writing Process."

Recognition
Version 2.0 of the Pen API significantly changes the wayan application intyracts
with a recognizer. It allows an application to install multiple recognizers and use
them selectively, first creating an HRC object for each recognizer to configure the
recognition process. Version 2.0 provides many more recognition functions than
did version 1.0, but places the full burden of recognition on the recognizer. All
recognition functions are provided by the installed recognizer dynamic-link libraries
(DLLs) and not by Windows.

Differences Between Versions 1.0 and 2.0 of the Pen Application Programming Interface 477

The change in philosophy mentioned at the beginning of this chapter is particulary
true with regard to recognition. Recognizers are now more clearly separate from the
system and enjoy a corresponding freedom in their implementation. The Pen API
defines the interaction between application and recognizer, but stops short of man­
dating how a recognizer perfonns its tasks. The recognizer objects described in
Chapter 8, "Writing a Recognizer," are called objects to emphasize that their fonns
are invisible to the application. The objects are "black box" entities, which the
recognizer developer designs without restraint from the system.

For a description of the HRC object and other elements of recognition, see Chapter
5, "The Recognition Process."

The RC Structure
The core of the recognition process in version 1.0 was the RC data structure. The
structure still exists in version 2.0, but it is made obsolete by the HRC object that
governs the recognition process. An application can still use an RC structure when
calling the obsolete version 1.0 functions ProcessWriting, InitRC, Recognize,
and RecognizeData.

The following table lists the members of the RC structure. For each member, the
second column describes the corresponding services in version 2.0 of the Pen API.
Use this table to update your version 1.0 applications to use the new services. See
the reference chapters in Part 2 for descriptions of the functions, messages, and
constants cited in the table.

RCmember

hrec

hwnd

wEventRef

wRcPreferences

IRcOptions

IpfnYield

IpUser

Equivalent service in Pen API 2.0

Return value from InstallRecognizer.

PE_SETT ARGETS message. (See "Step 2:
PE_SETTARGETS Message" in Chapter 2.)

Return value from GetMessageExtraInfo. (See sample
code in "!nputWndProc" in Chapter 7.)

ConfigHREC with WCR_GETHAND or
WCR_SETHAND.

Various HRC functions described in Chapters 5 and 8.

Not applicable in version 2.0.

GetPenMiscInfo with PMCUSER. Cannot set new user in
version 2.0.

478 Programmer's Guide to Pen Services for Microsoft Windows 95

RC member

wCountry

wIntlPreferences

IpLanguage

rglpdf

wTryDictionary

clErrorLevel

ale

alePriority

rgbfAlc

wResultMode

wTimeOut

IPcm
rectBound
rectExclude

guide

wRcOrient

wRcDirect

nInkWidth
rgbInk

dwAppParam

dwDictParam

dwRecognizer

The RCRESUL T Structure

Equivalent service in Pen API 2.0

GetInternationalHRC or SetInternationalHRC.

ConfigHREC with WCR_ GETANSISTATE or
WCR_SETANSISTATE.

GetInternationalHRC or SetInternationalHRC.

Not applicable in version 2.0.

Not applicable in version 2.0.

Not applicable in version 2.0.

GetAlphabetHRC or SetAlphabetHRC. (See "Specifying
an Alphabet Set" in Chapter 8.)

GetAlphabetPriorityHRC or SetAlphabetPriorityHRC.
Also ConfigHREC with WCR_ GET ALCPRIORITY or
WCR_SETALCPRIORITY.

GetAlphabetHRC or SetAlphabetHRC.

Not applicable in version 2.0.

GetPenMiscInfo or SetPenMiscInfo with
PMCTlMEOUT.

These three members are replaced by PE_ GETPCMINFO
message. (See "Step 3: PE_ GETPCMINFO Message" in
Chapter 2.)

GetGuideHRC or SetGuideHRC.

Not applicable in version 2.0.

Con{igHREC with WCR_GETDlRECTION or
WCR_SETDIRECTION.

These two members are replaced by GetPenMiscInfo and
SetPenMiscInfo with PMCPENTIP.

Determined by recognizer.

Not applicable in version 2.0.

Determined by recognizer.

The RCRESUL T structure provides the means for a version 1.0 recognizer to
communicate results to the application. When the recognizer finishes its work,
the application receives a WM_RCRESUL T message containing a pointer to an
RCRESULT structure. It then reads the recognizer's guesses from the structure.

Differences Between Versions 1.0 and 2.0 of the Pen Application Programming Interface 479

In version 2.0, the RCRESUL T structure is made obsolete by the HRCRESUL T
object. Although they have similar names, do not confuse the two or attempt to
draw parallels between them. The HRCRESUL T contains the recognizer's results
in a format determined by the recognizer. This format most likely has nothing to do
with RCRESUL T. The application simply calls into the recognizer for recognition
results.

For complete descriptions of the version 2.0 recognition functions, see Chapters 5
and 8 and the reference entries in Chapter 10.

Default Recognition
The version 2.0 application collects, displays, and distributes ink to the recognizer
while the user is writing. The Pen API provides convenient and flexible default
processing for these tasks in the DoDefaultPenlnput function, which completely
supersedes Process Writing.

Nearly all pen-based applications should take advantage of the capabilities of
DoDefaultPenlnput. Through a system of messages, the function allows an
application to monitor and govern the recognition process, or simply accept the
default decisions of DefWindowProc.

For a description of DoDefaultPenlnput and the message traffic it generates, read
Chapter 2, "Starting Out with System Defaults." To see DoDefaultPenlnput in
use, refer to the code for the PENAPP sample application presented in Chapter 7,
"A Sample Pen Application."

Recognition Processing
In version 2.0, applications have much greater control over scheduling the recog­
nition process. If it does not use DoDefaultPenlnput, an application continuously
feeds pen data to a recognizer through the AddPenlnputHRC function. By calling
ProcessHRC, the application can also schedule regular time slots for the recog­
nizer to see the input as the user writes.

This real-time recognition processing contrasts with the recognition procedures of
version 1.0, in which the application relinquished control to the obsolete Recognize
function for the duration of the input session. The version 2.0 recognizer can now
"cook" pen input virtually as it arrives from the pen driver, with the application
determining how often and how long the recognizer has control.

480 Programmer's Guide to Pen Services for Microsoft Windows 95

Initializing and Closing a Recognizer
The recognition functions InitRecognizer and CloseRecognizer are obsolete in
version 2.0 of the Pen API. In their place, two new subfunctions have been added
to ConflgRecognizer. When the pen system loads a recognizer, it now calls
ConflgRecognizer with the subfunction WCR_INITRECOGNIZER. In response
to this call, the recognizer should perform the required initialization tasks formerly
conducted by InitRecognizer.

Similarly, the system also calls ConflgRecognizer when it unloads the recognizer,
this time with the subfunction WCR_CLOSERECOGNIZER. This call informs the
recognizer it is being unloaded and it should conduct any required cleanup
operations.

Applications based on version 2.0 do not call ConflgRecognizer. This is because
the function has no argument that refers to a specific recognizer of the several
that may be currently installed. Instead, version 2.0 applications call the new API
function ConflgHREC to configure a recognizer or query for its capabilities. The
system determines the intended recognizer and passes the call on to that recog­
nizer's ConflgRecognizer function. Thus, a version 2.0 recognizer exports
ConflgRecognizer, which an application accesses by calling ConflgHREC.

Word Lists and Dictionaries
Word lists are new to version 2.0. An application can select from among any
number of word lists to help a recognizer verify its guesses. Word-list files must
have standard text formatting to allow users to create or modify them with a text
editor, but otherwise have no restrictions in size or content.

Dictionaries existed in version 1.0 as DLL files. In version 2.0, a dictionary serves
a recognizer invisibly as a large word list. The application has no access to a dic­
tionary except to tell the recognizer whether or not to use one. Dictionary files can
have any format, but are usually compressed in some manner private to the recog­
nizer.

A dictionary is thus a private (and optional) tool of a recognizer. The "system" in
the name EnableSystemDictionaryHRC does not refer to the operating system,
but simply emphasizes ownership. In this case, "system" means "not application."

Differences Between Versions 1.0 and 2.0 of the Pen Application Programming Interface 481

Gestures
Version 2.0 no longer provides explicit support for user-defined gestures. The
burden of recognizing and handling new gestures instead falls to the recognizer
and application. The Gesture Manager (GESTMAN.EXE) and API function
ExecuteGesture do not exist in version 2.0.

The standard set of "circle-letter" gestures remains, however. All version 2.0 edit
controls-hedit, bedit, and iedit-respond normally to the gestures listed in the
following table. An application or recognizer is free to provide support for any
other gesture.

This table lists the gestures available in version 2.0 edit controls. Note that the V­
circle and check-mark-circle gestures have identical behavior. The V-circle gesture
is provided only to prevent confusion with the check-mark-circle gesture.

Gesture Name Action

0 Lasso-tap Select

® X-circle Cut current selection

(C;J C-circ1e Copy current selection

® P-circle Paste

c;b Check-mark-circle Edit/properties

(2) V-circle Edit/properties

GJ Caret-circle Ins~rt text

CH:l M-circ1e Display context menu

aD D-circle Clear/Delete

@ S-circle Space

® N-circle Newline (carriage return)

c:D T-circle Tab

@ U-circle Undo

482 Programmer's Guide to Pen Services for Microsoft Windows 95

Action Handles
In version 2.0, edit controls have small icons called action handles. Action handles
provide the user a more intuitive and discoverable means for carrying out certain
editing tasks than do gestures. With action handles, the user can:

• Select text.

• Cut, copy, and paste.

• Change the insertion point.

• Drag-and-drop a selection.

• Access a menu of options.

On-Screen Keyboard
In version 2~0, the on-screen keyboard is an independent application named
SK.EXE, which can be launched in the same way any application is launched in
Windows; for example, by using the WinExecO function.

The ShowKeyboard function, which invoked the on-screen keyboard in version
1.0, is still supported but for older applications, but has been modified due to the
fact that the on-screen keyboard is a separate application in version 2.0.

The WM_SKB message, available in version 1.0, is no longer sent to top-level
windows when the on-screen keyboard changes.

Timing Information
The new HINKSET object allows an application to refer to stroke data completely
or partially by time, rather than by coordinates. The HINKSET object is a tem­
poral version of HPENDA T A. It sees each stroke as an interval of time instead of
a collection of physical points. See "The HINKSET Object" in Chapter 4 for a
description of stroke timing and HINKSET.

Stroke timing allows a new characteristic of ink rendering called animation.
Through animation, an application can control the speed at which pen data is
displayed. For more information, see the description of DrawPenDataEx in
Chapter 10, "Pen Application Programming Interface Functions."

Differences Between Versions 1.0 and 2.0 of the Pen Application Programming Interface 483

Targeting
An application based on version 2.0 of the Pen API can create multiple windows
and writing areas on the screen that simultaneously accept pen input. Targeting
allows the application to govern the distribution of input data to the proper window.

For example, a forms application can establish targeting information for each of
several controls on the screen. Even if the user writes in the controls in arbitrary
order, targeting ensures the pen data arrives at the proper window procedure.

For more information on targeting, see "Step 2: PE_SETT ARGETS Message" in
Chapter 2, "Starting Out with System Defaults." Also see the reference sections
for TARGET and T ARGINFO in Chapter 11, "Pen Application Programming
Interface Structures."

HPENDATA Memory Block
The internal structure of the HPENDAT A memory block has changed since ver­
sion 1.0. As described in "Data Within an HPENDATA Object" in Chapter 4, the
stroke header no longer incorporates a STROKEINFO structure. However, to
maintain compatibility with version 1.0, the GetPenDataStroke function provides
a copy of a STROKEINFO structure for the requested data points.

Since the HPENDAT A format may again change in future versions, applications
should avoid attempting to read the memory block directly and instead rely on the
appropriate HPEND A T A functions described in Chapter 4, "The Inking Process."

The PENINFO structure in the block's HPENDATAHEADER has also changed
since version 1.0. PENINFO contains a new member, fuOEM, that indicates the
type of original equipment manufacturer (OEM) data the HPENDATA object
contains.

Registry Configuration
In version 1.0, the PENWIN.lNI file contained system configuration information
such as the name of the default recognizer and the time-out value for selection.
Version 2.0 removes configuration information from the PENWIN.lNI file and
instead stores it in the system registry.

4ts4 Programmer's Guide to Pen Services for Microsoft Windows 95

For example, the following code fragment sets the fictitious recognizer
R E COG 1 . 0 L L as the default system recognizer. The code presumes that
RECOGl.DLL:

• Resides in a location where Windows can find it (usually the system
subdirectory).

• Is capable of taking on the role of system recognizer.

For more information about recognizers, see Chapter 8, "Writing a Recognizer."
For descriptions of the registry functions RegSetValueEx, RegCreateKey, and
RegCloseKey, see the documentation included in the Win32 Software Develop­
ment Kit.

HKEY hk; II Key handle returned by RegCreateKey

II Open (or create) the registry for the parent key
if «lRes = RegCreateKey(HKEY_LOCAL_MACHINE.

(LPSTR)REGSTR_PATH_CONTROL.
&hk)) == ERROR_SUCCESS)

}

I I If successful. set "RECOGl. DLL" as the system recogni zer
RegSetValueEx(hk. REGSTR_VAL_PEN_RECOG. NULL. REG_SZ.

(LPBYTE)(LPSTR)"RECOGl.DLL". 0);

II Close it
RegCloseKey(hk);

The PENREG.H header file defines values pertaining to the system registry. Note
that, generally, applications should not change the system configuration, relying
instead on the user to do so through the Control Panel.

For information on retrieving and setting other pen system parameters, see the
reference entries for GetPenMisclnfo and SetPenMisclnfo in Chapter 10, "Pen
Application Programming Interface Functions."

APPENDIX B

Using the 32·Bit Pen Application
Programming Interface

This appendix describes the 32-bit pen services provided by the PENWIN32.DLL
and PKPD32.DLL libraries. With some exceptions, these dynamic-link libraries
(DLLs) offer Win32TM-based applications the same pen-based support as the 16-bit
libraries PENWIN.DLL and PKPD.DLL without requiring the intermediate steps
of thunk conversions.

The services not supported by the 32-bit Pen Application Programming Interface
(API) consist mainly of outdated functions no longer required in version 2.0. These
outdated functions are supported in the 16-bit Pen API only to maintain backward
compatibility with version 1.0. They will not be supported in future versions.

To enable 32-bit pen services, an application must be created in a 32-bit environ­
ment-that is, the compiler, linker, libraries, and header files must be of 32-bit
type. Before including pertinent header files, the application must define the
constant WIN32 as shown here:

#define WIN32
#include <windows.h>
#include <penwin.h>

A 32-bit application links to the pen system libraries in the same way it links to any
other Windows library, with either of the following methods:

• Link to the import library PKPD32.LIB (not recommended for
PENWIN32.LIB), or

• Explicitly load PENWIN32.DLL and PKPD32.DLL with the LoadLibrary
function. After loading the libraries, the application must call GetProcAddress
to obtain the address of each Pen API function it intends to use. Before termin­
ating, the application should call FreeLibrary to unload the libraries from
memory.

486 Programmer's Guide to Pen Services for Microsoft Windows 95

The first method should nonnally be used to link functions in PKPD32.LIB. This
method can be used for functions in PENWIN32.LIB if it is known for certain that
the application will always be run on systems that have pen services installed, in
which case the application should test for the existence of pen services at startup
and exit if not found.

The second method should be used for PENWIN32.DLL functions when it is
anticipated that the application may be run on systems where pen services are not
installed. The reason for not linking PENWIN32.LIB is to prevent the application
from loading PENWIN32.DLL on a system that has not loaded pen services at
startup. This could happen, for example, on a computer that has PENWIN32.DLL
on the path but has not installed pen services. Loading PENWIN32.DLL dynamic­
ally does not sufficiently start pen services and errors are likely to occur.

In a 32-bit application, the call

GetSystemMetrics(SM_PENWINDOWS);

returns the handle of PENWIN32.DLL. This DLL makes available some of the
same resources (such as cursors) provided by the 16-bit PENWIN.DLL library.

32·Bit Functions
The following table lists the functions supported by the 32-bit Pen API. The syntax
for each function remains the same as for 16-bit applications. For the description
and syntax of each function, refer to Chapter 10, "Pen Application Programming
Interface Functions."

The table also uses an asterisk (*) to identify the functions PKPD32.DLL exports.
These functions are always available to 32-bit applications running with Windows
95, regardless of whether the PENWIN32.DLL file is present. For more infonna­
tion, see "Pen Kernel Functions" in Chapter 9, "Summary of the Pen Application
Programming Interface."

Addlnksetlnterval*

AddPenDataHRC

AddPenlnputHRC

AddPointsPenData*

AddWordsHWL

BoundingRectFromPoints*

CharacterToSymbol

CompressPenData*

ConfigHREC

ConfigRecognizer

CorrectWriting

CorrectWritingEx

CreateCompatibleHRC

CreateHWL

Createlnkset*

CreatelnksetHRCRESUL T

CreatePenData

CreatePenDataEx*

CreatePenDataHR C

CreatePenDataRegion*

Using the 32·Bit Pen Application Programming Interface 487

DestroyHRC

DestroyHRCRESUL T

DestroyHWL

Destroy Inkset*

DestroyPenData*

DoDefaultPenlnput

DPtoTP

DrawPenDataEx*

DuplicatePenData*

EnableGestureSetHRC

EnableSystemDictionaryHRC

EndPenlnputHRC

ExtractPenDataPoints*

ExtractPenDataStrokes*

GetAlphabetHRC

GetAlphabetPriority HRC

GetAlternateWordsHRCRESUL T

GetBoxMappingHRCRESUL T

GetBoxResultsHRC

GetGuideHRC

GetHotspotsHRCRESUL T

GetHRECFromHRC

Getlnksetlnterval*

GetlnksetIntervalCount*

GetInternationalHRC

GetMaxResultsHRC

GetPenAppFlags

GetPenAsyncState

GetPenDataAttributes*

GetPenDatalnfo*

GetPenlnput

GetPenMisclnfo

GetPenResource

GetPointsFromPenData*

GetResultsHRC

GetStrokeAttributes*

GetStrokeTableAttributes*

GetSymbolCountHRCRESUL T

GetSymbolsHRCRESUL T

GetVersionPen Win

GetWordlistCoercionHRC

GetWordlistHRC

HitTestPenData*

InsertPenData *

InsertPenDataPoints*

InsertPenDataStroke*

InstallRecognizer

IsPenEvent

MetricScalePenData*

OffsetPenData*

PeekPenlnput

PenDataFromBuffer*

PenDataToBuffer*

ProcessHRC

ReadHWL

RedisplayPenData*

RemovePenDataStrokes*

ResizePenData*

SetAlphabetHRC

SetAlphabetPriority HRC

SetBoxAlphabetHRC

SetGuideHRC

SetInternationalHRC

SetMaxResultsHRC

SetPenAppFlags*

SetPenMisclnfo

SetResultsHookHREC

SetStrokeAttributes*

488 Programmer's Guide to Pen Services for Microsoft Windows 95

SetStrokeTabIeAttributes*

SetWordlistCoercionHRC

SetWordlistHR C

Startlnking

StartPenlnput

Stoplnking

StopPenlnput

SymboIToCharacter

32-Bit Messages

TargetPoints

TPtoDP

TrainHREC

TrimPenData*

UnhookResuItsHookHREC

UninstaIIRecognizer

WriteHWL

The 32-bit Pen API does not support all the 16-bit messages described in Chap-
ter 12, "Pen Application Programming Interface Messages." This section lists the
messages that are supported by the 32-bit Pen API. Although most 32-bit messages
behave the same way as 16-bit messages, certain WM_PENEVENT submessages
behave differently.

WM_PENEVENT Submessages
The following submessages of WM_PENEVENT require different treatment in
32-bit applications:

PE_BEGININPUT

PE_BUFFERW ARNING

PE_PENDOWN

PE_PENMOVE

PE_PENUP

PE_TERMINATED

PE_TERMINATING

In 16-bit applications, these submessages store different values in the high-order
and low-order words of their IParam:

• wParam = PE_ submessage number

• LOWORD(IParam) = event reference or termination code

• HIWORD(IParam) = HPCM handle

This scheme is not possible in Win32-based applications because IParam must
contain a single 32-bit handle; therefore, the parameters for the submessages listed
above are arranged differently in the 32-bit Pen API:

• LOWORD(wParam) = PE_ submessage number

• HIWORD(wParam) = event reference or termination code

• IParam = HPCM handle

Using the 32·Bit Pen Application Programming Interface 489

To extract data from the parameters, use the following macros defined in the
PENWIN.R header file. These macros render the differences in the parameters
transparent to an application because they automatically adjust for 16-bit or 32-bit
type of programs:

Macro Description

HpcmFrom WpLp Retrieves HPCM handle returned from StartPenlnput.
If the application calls DoDefaultPenlnput, that function
calls StartPenInput internally.

EventRefFrom WpLp Retrieves event reference value for session returned from
GetMessageExtraInfo. Both DoDefaultPenlnput and
StartPenlnput take this value as their second argument.

TerminationFrom WpLp Retrieves a PCM_ value indicating the reason for
termination from the PE_TERMINATED and
PE_ TERMINATING submessages.

SubPenMsgFrom WpLp Retrieves PE_ submessage value.

The macros take both wParam and IParam as arguments and automatically return
the desired value for both 16-bit and 32-bit applications. For example:

HPCM
LONG
int

hpcm;
1 Info;
i Ret;

II HPCM handle created by StartPen~nput
II Return value from GetMessageExtralnfo
II Error code

case WM_LBUTTONDOWN:
lInfo = GetMessageExtralnfo();
if (IsPenEvent(msg. lInfo »
{

iRet = DoDefaultPenlnput(hwnd. LOWORD(lInfo));

case WM_PENEVENT:
switch(SubPenMsgFromWpLp(wParam));
{

case PE_PENDOWN:
hpcm = HpcmFromWpLp(wParam, lParam);
II
II Note lInfo and EventRefFromWpLp(wParam. lParam)
II contain the same event reference value.
II

490 Programmer's Guide to Pen Services for Microsoft Windows 95

List of 32·Bit Window Messages
The following table lists the WM_ window messages and corresponding sub­
messages supported by the 32-bit Pen API (submessages available in the Japanese
version are indicated by an asterisk):

WM _ messages

WM_PENMISCINFO
WM_PENCTL

Sub messages

* HE_CANCELCONVERT
HE_CHAROFFSET
HE_CHARPOSITION
HE_DEFAULTFONT
HE_ENABLEALTLIST
* HE_FIXKKCONVERT
HE_GETBOXLAYOUT
* HE_GETCONVERTRANGE
HE_GETINFLATE
HE_GETINKHANDLE*
HE_GETKKCONVERT
* HE_GETKKSTATUS
HE_GETUNDERLINE
HE_HIDEALTLIST
* HE_KKCONVERT

*
HE_PUTCONVERTCHARHE_SETBOXLAY
OUT
* HE_SETCONVERTRANGE
HE_SETINFLATE
HE_SETINKMODE
HE_SETUNDERLINE
HE_SHOW ALTLIST
HE_STOPINKMODE

WM _ messages

Using the 32·Bit Pen Application Programming Interface 491

Submessages

PMSC_BEDITCHANGE
PMSC_GETHRC
PMSC_GETINKINGINFO
PMSC_GETPCMINFOPMSC_GETSYMBOLC
OUNT
PMSC_GETSYMBOLS
PMSC_INKSTOP
* PMSC_KKCTLENABLE
PMSC_LOADPW
* PMSC_PENUICHANGE
PMSC_SETHRC
PMSC_SETINKINGINFO
PMSC_SETPCMINFO
PMSC_SETSYMBOLS
* PMSC_SUBINPCHANGE

CTLINIT_BEDIT
CTLINIT_HEDIT
CTLINIT_IEDIT

PE_BEGINDATA
PE_BEGININPUT
PE_BUFFERW ARNING
PE_ENDDATA
PE_ENDINPUT
PE_GETINKINGINFO
PE_GETPCMINFO
PE_MOREDATA
PE_PENDOWN
PE_PENMOVE
PE_PENUP
PE_RESULT
PE_SETIARGETS
PE_ TERMINATED
PE_TERMINATING

492 Programmer's Guide to Pen Services for Microsoft Windows 95

List of 32·Bit iedit Control Messages
The following table lists the IE_ messages available for iedit controls in 32-bit
applications:

IE_CANUNDO IE_GETRECOG

IE_DOCOMMAND IE_GETSECURITY

IE_EMPTYUNDOBUFFER IE_GETSEL

IE_GETAPPDATA IE_GETSELCOUNT

IE_GETBKGND IE_GETSELITEMS

IE_GETCOMMAND IE_GETS TYLE

IE_GETCOUNT IE_SET APPDAT A

IE_ GETDRA WOPTS IE_SETBKGND

IE_GETERASERTIP IE_SETDRA WOPTS

IE_GETFORMAT IE_SETERASERTIP

IE_ GETGESTURE IE_SETFORMAT

IE_ GETGRIDORIGIN IE_SETGRIDORIGIN

IE_ GETGRIDPEN IE_SETGRIDPEN

IE_ GETGRIDSIZE IE_SETGRIDSIZE

IE_GETINK IE_SETINK

IE_ GETINKINPUT IE_SETINKINPUT

IE_GETINKRECT IE_SETMODE

IE_GETMENU IE_SETMODIFY

IE_GETMODE IE_SETNOTIFY

IE_GETMODIFY IE_SETPENTIP

IE_GETNOTIFY IE_SETRECOG

IE_GETPAINTDC IE_SETSECURITY

IE_GETPDEVENT IE_SETSEL

IE_ GETPENTIP IE_UNDO

APPENDIX C

Modifying the SYSTEM.INI File

This appendix describes the settings used in the SYSTEM.INI. The SYSTEM.INI
file contains all of the editable information used by the Pen Application Program­
ming Interface (API). All other system information concerning the Pen API version
2.0 is maintained in the Windows 95 system registry and will not require modifica­
tion except by using the Control Panel Pen icon after Pen Services for Windows 95
is installed.

It is also unlikely that you will manually edit the pen entries in SYSTEM.INI in the
Windows 95 environment. A setup information file (PENWIN .INF) provided by
Microsoft contains the script that Windows 95 Setup uses to install Pen Services for
Windows 95 as an optional system component. This script adds the entries shown in
the table below to the SYSTEM.INI file. The one SYSTEM.INI entry that you may
want to edit manually after Pen Services is installed is the level of non-critical
errors reported. For this, you will have to manually edit the Pen WinErrors entry in
the [boot] section of SYSTEM.INI, using one of the values shown in the table
below.

In versions of Windows previous to Windows 95, pen services were removed from
a system by manually editing the SYSTEM.INI file and deleting the entries shown
in the table below. This should not be done with Windows 95. Use the Control
Panel Add/Remove Programs icon to remove Pen Services for Windows 95. This
will automatically delete all the Pen Services entries from SYSTEM.INI.

494 Programmer's Guide to Pen Services for Microsoft Windows 95

The following table lists the pen-related entries for SYSTEM.INI

SYSTEM.INI Entry Made at Installation Time

[boot]

drivers=pen penwindows

PenWinErrors=l

[drivers]

pen=penc.drv

penwindows=penwin.dll

Description

Section name.

Defines installable drivers.

Detennines the level of non­
critical errors displayed.
o = show no errors or warnings.
1 = show errors only.
2 = show errors and warnings.

Section name.

Sets the pen driver.

Pen API library.

APPENDIX D

Accessing the Pen Device Driver

There are no specific functions in the Pen Application Programming Interface (API)
for pen driver use. Instead, the pen driver functionality is implemented with install­
able driver messages.

The pen driver is a 16-bit install able driver in the Microsoft Windows 95 operating
system. All communication with an install able driver is through driver messages. A
16-bit application can send a message to the pen driver with the Windows API
SendDriver Message function.

Because a call to SendDriverMessage must originate from a 16-bit virtual
machine, 32-bit applications cannot use SendDriverMessage to send messages
directly to the pen driver. To communicate with the pen driver, a 32-bit application
must provide its own 16-bit dynamic-link library (DLL) to "thunk" calls to
SendDriver Message.

The installable portion of the pen driver may not exist in future versions of Win­
dows. For this reason, an application should not query for device information
directly from the driver unless necessary. Instead, an application should get
hardware information about an HPENDAT A object by calling GetPenDataInfo
or GetPenDataAttributes. These functions can apprise an application of various
hardware characteristics (such as sampling rate) current when collecting the
HPENDATA.

Opening the Pen Driver
Before sending a driver a message, an application must first obtain a handle to the
driver with the Windows Open Driver function. The following code demonstrates
this:

HDRVR hDrvPen;

496 Programmer's Guide to Pen Services for Microsoft Windows 95

hDrvPen = OpenDriver("pen", NULL, NULL);
if(hDrvPen == NULL)
{

II The pen driver does not exist.
II Either display an error message and exit,
II or continue to function as a pen-unaware application.

As an example of how to send the driver messages, the following code uses the pen
driver message DR V _SetPenSamplingRate to set the sampling rate to 200 points
per second. A later segment of code then queries the driver to get relevant pen infor­
mation.

WORD wOldRate;

wOldRate = SendDriverMessage(hDrvPen,
DRV_SetPenSamplingRate,
200,
NULL);

II Get information about the pen driver
PENINFO pi;
BOOl PenHardwareExists;

II Driver handle
II Message
II New rate in Hz
II Not applicable

fPenHardwareExists = SendDriverMessage(hDrvPen,
DRV_GetPenlnfo,
(DWORD)(LPPENINFO)&pi,
NULL);

When finished, an application must close the handle to the installable driver with
the CloseDriver function, as shown here:

CloseDriver(hDrvPen, NULL, NULL);

Pen Driver Return Values
All the values that can be returned by the Pen Driver in response to a message are
listed in the table below. These return value constants are defined in PENDRV.H.

Return Value Description

The message request was completed
successfully.

The message request was attempted, but
was not completed successfully.

Return Value

DRV_BADPARAMI

DRV _BADPARAM2

DRV _BADSTRUCT

Accessing the Pen Device Driver 497

Description

The message request was not attempted
because the first parameter in the message
was invalid.

The message request was not attempted
because the second parameter in the
message was invalid.

The message request was not attempted
because a message parameter that must
point to a structure was not pointing to a
valid structure of the required type. For
example, a message parameter that should
point to a PENINFO structure does not
point to a write able block of memory large
enough to contain a PENINFO structure.

Pen Driver Messages

Pen driver message

DRV _Configure

DRV _GetCalibration

The following table describes the pen driver messages an application can use, the
parameters that must be provided with each message, and the message return
values.

Meaning

Requests the driver to
display a configuration
dialog box.

Instructs the driver to
fill a CALBSTRUCT
structure with the cur­
rent calibration settings,
including size and off­
set values.

Parameters

IParaml LOWORDis
the handle to a window
that will own the dialog
box;
lParam2 is O.

IP araml is a far pointer
to a CALBSTRUCT
structure to be filled;
IP aram2 is O.

Return value

Returns
DRV _SUCCESS or, if
the window handle is
invalid, returns
DRV_FAILURE.

Returns
DRV _SUCCESS or
DRV _FAILURE if the
installed tablet does not
support re calibration.
DRV _BADPARAMI is
returned if IP araml is
invalid.

498 Programmer's Guide to Pen Services for Microsoft Windows 95

Pen driver message Meaning Parameters Return value

DRV _GetName Reports the name of the lParam} LOWORD is If successful, returns the
pen hardware. the length of the name number of characters

buffer; copied into the name
lParam2 is a LPSTR buffer, which is the
pointer to the name number of characters in
buffer. the driver name plus 1

(the string null termina-
tion character is copied
into the buffer).

Otherwise, returns
DRV _BADPARAMI
because provided buffer
length is insufficient or
DRV _BADPARAM2
because the provided
memory block is not a
writeable block of the
specified size.

DRV _GetPenInfo Fills in the PENINFO lP aram} is a far pointer Returns
structure pointed to by to a PENINFO structure DRV _SUCCESS or
the message's lP aram} to be filled; DRV _FAILURE if no
parameter with the lP aram2 is O. pen device is currently
current pen parameters. connected.
If lP aram} is set to DRV _BADPARAMI is
NULL, the driver checks returned if the provided
for the presence of a pen block of memory is not
tablet only. write able or not large

enough to contain a
PENINFO structure.

DRY _GetPenSamplingRate Returns the current lP aram} is 0; LOWORD contains the
sampling rate. lP aram2 is O. current sampling rate.

DRV _GetVersion Reports the Pen API lP aram} is 0; HIWORD contains the
version number the lParam2 is O. pen packet size in bytes.
driver supports and the Within the LOWORD,
pen packet size. HIBYTE contains the

minor version number,
LOBYTE is the major
version number.

DRV _PenPlayBack Sends an array of lP aram} is a far pointer If successful, returns I; if
recorded pen packets to an array· of pen packets failure, returns a value
to the driver, which the to be played through the less than I.
driver then sends back system;
to the system as though lParam2 LOWORD is
receiving the packets the number of pen
in real time from the packets to play back,
device. HIWORDisO.

Accessing the Pen Device Driver 499

Pen driver message Meaning Parameters Return value

DRV _PenPlayStart Informs the pen driver lParami is a far pointer Returns
of the format of the to a DWORD that is DRV _SUCCESS or
pen packet data it will updated when the driver DRV _FAILURE if the
receive after it receives is done playing back pen pen system is already
the next packets; in playback mode.
DRV _PenPlayBack lParam2 is either 0 or I
message. The driver and specifies the format
does not begin sending of the pen packets passed
pen packets into the to the driver (0 means
system until it receives version 1.0 packets and 1
the DRV _PenPlayBack means version 2.0
message. packets).

DRV _PenPlayStop Forces the driver out of lParami is 0; Always returns
playback mode. IParam2 is O. DRV _SUCCESS (the

pen driver was in play-
back mode and the
playback mode was
successfully stopped
or the pen driver was
already out of playback
mode).

DRV_Query Returns whether or not IParami LOWORD Returns
the version 2.0 pen driver specifies the message DRV _SUCCESS if the
supports the specified queried about; message is supported
message. IParam2 is O. or DR V _FAILURE if it

is not.

DRV _ QueryConfigure Returns whether or not IParami is 0; Returns
the driver can provide a IP aram2 is O. DRV _SUCCESS if the
configuration dialog box. driver provides a

configuration dialog
box or DR V _FAILURE
if it does not.

DRV _SetCalibration Sets the tablet IP araml is a far pointer Returns
calibration. to a CALBSTRUCT DRV _SUCCESS or

structure that describes DRV _FAILURE if the
the new calibration tablet does not sup-
parameters the pen port calibration.
driver must use; DRV_BADPARAMI
IParam2 is O. is returned if lparaml

is not a pointer to a
CALBSTRUCT
structure.

500 Programmer's Guide to Pen Services for Microsoft Windows 95

Pen driver message Meaning Parameters Return value

DRV _SetPenSamplingDist Sets the minimum pen IParaml HIWORD is 0; If successful, HIWORD
sampling distance. IParaml LOWORD is a contains 0; LOWORD
Successive points less new sampling distance; contains the previous
than the given distance IParam2 is O. sampling distance.
do not generate new Otherwise, returns
points. The distance is DRV_FAILURE.
defined in raw tablet
coordinates as the
maximum of the change
in x and y. The default
distance is 0, which
means that all pen events
generate new events.

A pen driver does not
have to simulate non zero
sampling distances. An
application must use the
DRV _GetPenInfo driver
message to determine the
actual sampling distance
set.

Pressing or releasing a
pen barrel button gen-
erates a new event, even
if the pen does not move.

DRV _SetPenSamplingRate Sets the pen sampling IParaml HIWORD is 0; If successful, HIWORD
rate in samples per IParaml LOWORD is a contains 0; LOWORD
second. new sampling rate; contains the previous

IP aram2 is O. sampling rate.

Otherwise, returns
DRV _FAILURE.

Accessing the Pen Device Driver 501

The calibration driver messages use the CALBSTRUCT structure defined as
follows:

typedef struct
{

int wOffsetX;
int wOffsetY;
int wDistinctWidth;
int wDistinctHeight;

CALBSTRUCT. FAR * LPCALPSTRUCT;

The wOffsetX and wOffsetY members are the amount in tablet coordinates that
need to be added to the x- and y-coordinate values returned by the hardware for
proper calibration. The wDistinctWidth and wDistinctHeight members have the
same meaning as in the PENINFO structure.

Glossary

A
action handle A small icon provided in edit
controls that facilitates an editing tasks such as
dragging or insertion.

B
baseline An imaginary horizontal line on which
handwritten text rests. Analogous to the lines of
lined notebook paper.

c
comb A form of writing guide, such as those used
in many common forms and questionnaires,
consisting of a horizontal line with spaced tick
marks. The guide gets its name from the
resemblance of the tick marks to the teeth of a
comb. The user writes in a comb guide with
individual characters separated by the tick marks.

confidence level A value assigned by a recognizer
to indicate its degree of certainty in the results of a
recognition. For example, in recognizing the word
"clear," a recognizer assigns a confidence level to
each of the five letters and can also assign a
confidence level to the entire word. Word lists and
dictionaries can influence confidence levels. See
also recognizer.

o
dictionary A list of words or phrases private to a
recognizer. A recognizer can use its dictionaries to
verify recognition guesses, as directed through the
EnableSystemDictionary function. See also
recognizer.

G
gesture A predefined pen motion that signifies

some desired action, such as a "lasso" to select or
an X to delete. See also lasso.

H
hook A callback function provided by an
application that receives certain data before the
normal recipient of the data. The hook function can
thus examine or modify the data before passing it
on.

hot spots Critical points on symbols, particularly
gestures, identified by a recognizer during
recognition. See also gesture, recognizer, symbol.

ink (1) A trail of colored pixels left on the screen
that marks the path of the pen's motion. (2) Input
data generated by the moving pen; pen data.

inkset An object that maps data points to time
intervals. The points recorded in an inkset object
may describe one or more strokes. See also stroke.

irreversible compression A data-compression
technique that produces a high degree of
compression, but at the cost of lost information.
After uncompression, the pen data can be
redisplayed but recognition accuracy may be
reduced. See also reversible compression.

L
lasso A gesture formed by circling a section of
text or other displayed data. See also gesture.

lens A standard Windows pen interface dialog
box that offers an on-screen keyboard or letter
guides and is used for entering and editing text.

504 lossless compression

loss less compression See reversible compression.

lossy compression See irreversible compression.

o
OEM data Data about pen pressure, angle, height,
and other aspects of pen input that is collected in
addition to data points. The specific OEM data
collected depends on the hardware and the data it
reports.

on-screen keyboard (1) An image of a keyboard
displayed on the screen. (2) The applet (Screen
Keyboard or SKB) that displays the image. The
user "types" on the on-screen keyboard by pressing
the pen on the desired keys, as though typing on a
real keyboard.

p
packet A collection of pen data sent by the pen
driver at a frequency determined by the sampling
rate. Each packet contains the current coordinates
of the pen, the time, and, optionally, other
information. Collectively, the packets represent a
digitized history of the pen's movement. See also
sampling rate.

pen collection mode The system state in which
pen movement generates data, instead of being
interpreted as mouse movement. Also known as
input session.

pen-down stroke Data points collected while the
pen is in contact with the tablet. Together, these
points comprise a stroke. See also pen state, pen tip
transition, pen-up points, proximity stroke.

pen packet See packet.

pen state The condition of the pen relative to the
tablet surface-either up or down, depending on
whether the pen is in contact with the tablet.

pen tip transition The act of touching a pen to or
lifting the pen from the tablet surface. The former

begins a pen-down stroke, while the latter ends a
pen-down stroke and begins a pen-up stroke. See
also stroke, proximity stroke.

pen-up stroke Data points received when the pen
is not in actual contact with the tablet, but near
enough for the tablet to sense movement. Together,
these points comprise a proximity stroke. See also
pen-down points, pen state, pen tip transition,
proximity stroke.

proximity stroke A stroke formed while the pen is
near but not on the tablet surface. Also called
"pen-up stroke." Not all pen tablets can detect
proximity strokes. See also pen tip transition, pen­
up points, stroke.

R
real time In the context of pen-based computing,
real time means "while the pen is moving."

recognition function One of the 43 Pen
Application Programming Interface (API)
functions exported by a recognizer dynamic-link
library. See also recognizer.

recognizer A dynamic-link library of functions
that collectively serve to recognize ink data as
characters, numerals, words, foreign script, or
other symbols.

reentrancy The condition in which a function is
interrupted during execution and restarted from its
beginning in response to another caller.

reversible compression A data-compression
technique that loses no information, so data can be
redisplayed and recognized with no loss of
accuracy after uncompression. See also
irreversible compression.

S
sampling rate The frequency at which the pen
driver sends packets to the pen system. A typical
sampling rate is 100-120 packets per second, but
does not necessarily equal the rate of hardware
interrupts generated by the pen tablet. See also
packets.

Screen Keyboard See on-screen keyboard.

SKB See on-screen keyboard.

stroke The pen data generated between two pen
tip transitions. For example, when the pen touches
the tablet (pen down), all data generated as the pen
moves comprises a pen-down stroke until the pen
leaves the tablet. If the tablet can sense proximity
strokes, the pen movement above the tablet surface
forms a separate pen-up stroke until the pen either
leaves the tablet's range. of sensitivity or touches
down again. Thus, in noncursive printing, the letter
"c" is formed as a single stroke while the letter
"E" requires several pen-down strokes separated
by pen-up strokes. See also pen-down points, pen
tip transitions, pen-up points, proximity strokes.

symbol An element interpreted by a recognizer
from raw pen data. For example, the default system
recognizer sees an individual letter or numeral as a
symbol. A word is thus a string of symbols. A
recognizer for cursive writing, however, may see
an entire word as a single symbol without
distinguishing each letter of the word. See also
Tecognizer.

symbol correspondence A map of the ink data
that forms a recognized symbol. See also symbol
element.

symbol element An SYE structure containing a
symbol value, its confidence level, and an
identification of the ink data that forms the symbol.
See also confidence level, symbol value.

symbol value A numerical value that represents a
recognized character or set of characters. A symbol

sampling rate 505

value is internal to the recognizer and by itself has
little meaning to the application. To translate a
symbol value to a character such as a letter or
numeral, an application must call the
SymbolToCharacter function.

T
target A window or writing area that receives pen
input data.

trainer An application that trains a recognizer.
The trainer application may operate in the
background, which is known as "passive training,"
or be activated by the user, which is "active
training." See also recognizer, training.

training The process used to update a recognizer's
database so that it better reflects the individual
style and writing characteristics of a particular
user, thus increasing the recognizer's accuracy in
handwriting interpretation. See also recognizer,
trainer.

Index

() (parentheses) xi
.. . (ellipsis) xi
[] (brackets) xii
{ } (braces) xii
lO-second buffer See Internal data buffer
32-bit API

described 485, 486
functions 486, 487, 488
messages 488,489,490,491,492

80/20 rule 74

A
ABSTIME structure 52,54,56, 141,315
Accuracy See Recognition, accuracy
Action handles 78, 475, 482
Active training 108
AddInksetInterval function 52, 134, 138, 145,486
AddPenDataHRC function 44,49, 64, 130, 146, 175,486
AddPenInputHRC function 64,65, 105, 119, 120, 132, 147,

192,337,367,486
AddPointsPenData function 49, 130, 138, 148,367,486
AddWordsHWL function 108, 132, 149, 168,486
AC animation information values 142, 151
ALC_ alphabet codes

constants 60, 106, 142,200,201,271,272,273,349,
353,354,449

Alphabet
priority 107, 132, 133
setting 60,61, 106, 107
setting in HRC 132, 133

Altering ink data See HPENDATA object, altering
Alternative guesses See Recognition, guesses
Angle See OEM data
ANIMATEINFO structure 140, 151, 185,316
AnimateProc callback function 150, 185
Animation 140, 482
Annotation 80
Application design 80-83
Applications

pen-aware 10, 12, 135, 137
pen-unaware 5, 10

AtomicVirtualEvent function 134, 151,256
Attributes of a stroke 48, 131
Auditory feedback 74, 75,80
Averaging confidence levels 114

B
Barrel button 130, 500
Baseline of input 110, 115
bedit control

described 26-29
dialog box 29,30
improvements 475,476
messages 26, 28
printing 26
recognition 77

Beep signal 74, 75,80
BeginEnumStrokes function 47, 136, 138, 152,215
Beginning recognition See Input session
BEC bedit control values 142
BESC_ bedit size values 142,323
Best guess of recognizer 58,66, 70, 110, 115, 133
Bitmap

on-screen keyboard 293
recognition 102

Bold text xi
Book format and conventions ix, xi, xii
BoundingRectFromPoints function 134, 138, 153, 486
Box guide structures 140
Box guides

bedit control 27, 83
results 66, 105, 106, 132
segmentation 111
setting 63,64, 105, 132, 133
with alphabets 60, 133

Box styles See BXS_ box style values
Boxed edit control See bedit control
Boxed recognition 107

507

BOXEDITINFO structure 140,283,317,445
BOXLAYOUT structure 28,140,318,332,380,385,454,

455
BOXRESULTS structure 66, 140,204,321
Braces { } xii
Brackets [] xii
Browse option 76
Buffering pen data See PenDataToBuffer function
BXD_ boxed edit control values 142,454
BXDK_ Japanese bedit control values 142,455
BXS_ boxed edit style values 28,142,319

c
CALBSTRUCT structure 139, 322, 501
Calibration 139,497, 501

508 Index

Callback functions
AnimateProc 150
EnumSymbolsCallback 194
ResultsHookHREC 270
SetPenHookCallback 282
timer 127, 128

Carriage return character 29
Changing ink data See HPENDATA object, altering
CharacterToSymbol function 133, 153,486
CIB_ CTLINITBEDIT values 324, 325
Circle gestures 61, 481
CloseRecognizer function 104, 136, 480
CMPD_ compression values 142, 156
Coercion of recognition 62, 108, 133
COLOR_ IME color values 142
Comb box style 27
Combining pen data 49,131
Communications 65
Compacting pen data See Pen data, compressing
CompactPenData function 50, 136, 138, 154, 156,461
Compressing pen data See Pen data, compressing
CompressPenData function 50,51, 134, 138, 155,486
Confidence level

described 70, 112
influencing 107, 108, 133
symbol graph 114, 115

ConfigHREC function 104, 134, 156, 161, 162,477,486
ConfigRecognizer function 104, 124-126, 132, 156, 161,

162,244,276,311,480,486
Conserving power 80
Constants

(list) 142-144
AC animation information 142, 151
ALC_ alphabet codes 60,106, 142,200,201,271,272,

273,349,353,354,449
BEC bedit control values 142
BESC_ bedit size values 142,323
BXD _ boxed edit control values 142, 454
BXDK_ Japanese bedit control values 142,455
BXS_ box style values 28, 142,319
CIB_ CTLINITBEDIT 324
CIH_ CTLINITHEDIT 325
CMPD_ compression values 142,156
COLOR_ IME color values 142
CPD _ CreatePenData values 142, 173
CPDR_ CreatePenDataRegion values 142, 175
CWR_ CorrectWriting values 142,163
CWRK_ CorrectWriting values 164
DIRQ_ dictionary request values 142
DPD_ DrawPenDataEx values 142, 185
EPDP _ ExtractPenDataPoints values 142, 196
EPDS_ ExtractPenDataStrokes values 142
ES_ window style codes 22,26, 77
GGRC_ GetGlobalRC values 142,206

Constants (continued)
GPA_ GetPenDataAttributes values 142,213
GRH_ GetResultsHRC values 142, 226
GRH_GESTURE 17
GSA_ GetStrokeAttribute values 142, 228, 230
GST_ gesture codes 61, 142, 190
HEKK_ kana-kanji values 142, 384
HEKKR_ kana-kanji conversion status 382
HEP _ HE_STOPINKMODE values 142
HKP _ SetPenHook values 142
HRCR_ recognition return values 142
HWR_ SetRecogHook values 284
IDC_ cursor values 88, 143,455
IE_REC iedit recognition values 406, 418
IEB_ iedit background values 143, 394,409
IEDO_ draw values 143,396,410
IEC iedit input values 401,415
IEM_ iedit message values 143,391
IEMODE_ iedit mode values 143,402,415
IEN_ IE_SETNOTIFYvalues 143
IEN_ iedit notification values 403,417
IER_ stroke format values 143
IEREC_ iedit recognition values 143
IES_ iedit style values 143,408
IESEC_ iedit security values 143,406,419
IESF _ STRKFMT structure values 143
ISR_ inkset return values 143
MAXDICTIONARIES 349
MAXHOTSPOT 208
MAXOEMDATAWORDS 339,346
OBM_ bitmap values 143
PCM_ pen collection mode values 116, 143,456
PCMR_ PCM return values 143, 181,218,250,295,298,

301
PDC_ pen device capabilities 143,457
PDK_ state bits for pen driver kit 143,212,457
PDR_ general return values 143, 156, 186, 187, 195, 198,

229,236,237,240,241,243,253,269,288,289,310
PDT_ OEM-specific values 143,337,459
PDTS_ data scaling values 42,48,143,155,171,172,

246,459
PDTT_ CompactPenData values 143, 154, 155,461
PENTIP _ PENTIP structure values 143,347
PH_ time-out codes 65, 110, 127,257
PHW _ pen hardware values 143, 173, 174,218,249,

309,345
PIC INKINGINFO structure values 143,334
PMC pen miscellaneous information values 143,222,

223,283,461
PMSCL_Iparam PMSC_ values 143
PMSCR_ PMSC_TARGETING values 143
PWF _ PMCSYSFLAGS structure values 143
RC_ RC structure values 144, 239
RCD_ writing direction values 144,463

Constants (continued)
RCO_ option values 144,351,464
RCOR_ tablet orientation values 144,465
RCP _ user preference values 144,466
RCRT_ results values 144,466
REC_ recognition codes 69, 144,217,264,468
RHH_ hook values 144, 270
RPA_ RegisterPenApp values 280
RRM_ results mode values 356
SCH_ coercion values 62, 144, 234, 290
SGRC_ SetGlobalRC values 144, 274
SKB_ ShowKeyboard values 144,292,293
SSA_ SetStrokeAttributes values 144,287,289
SSH_ writing direction values 144,210,278
SYV _ symbol values 144, 153, 190,260,302,368,470,

471,472,473,474
TH_ TrainHREC 306
TPD_ TrimPenData values 144,309
TPD_COLLINEAR values 51
TPT_ TARGINFO structure values 144
VWM_ PostVirtualMouseEvent values 144,256
WCR_ recognizer configuration 125, 126, 136, 144, 157,

160, 161
WIN32 485
WLT_ word list types 144, 149, 167

Context menu 476
CONTROL statement 29
Controls See Pen edit controls
Coordinates

metric 46, 134
offsets 46, 131
tablet 134

Correct Text dialog 134
Correction stroke 112
CorrectWriting function 134, 162,486
CorrectWritingEx function 134, 164
Correspondence structure SYC 114, 115
CPD_ CreatePenData values 142, 173
CPDR_ CreatePenDataRegion values 142, 175
CreateCompatibleHRC function 58, 59, 60, 105, 117, 118,

127, 132, 159, 166
CreateHWL function 62, 108, 132, 167,262,486
Createlnkset function 52, 134, 138, 169
CreatelnksetHRCRESULT function 52,54, 106, 121-123,

134,169
CreatePenData function 44, 130, 138, 170,459,486
CreatePenDataEx function 44, 130, 138, 170, 172, 486
CreatePenDataHRC function 44, 105, 120, 128, 130, 174,

486
CreatePenDataRegion function 19,44,45,130,138,175,486
Create Window function 22, 28
Creating

HINKSET object 52,54, 106, 121, 134
HPENDATA object 44,92, 120, 121, 127, 128, 130

Index 509

Creating (continued)
HRC object 58,59,105,117,118,127,132
word list 62, 108, 132

CTLINIT_ submessages 26,28,33,491
CTLINITBEDIT structure 26,28,29, 140,323,439
CTLINITHEDIT structure 140,324,439
CTLINITIEDIT structure 33, 140, 325,439
Cursive recognition 111
Cursor, pen 7, 22, 88
Cut gesture 12,17-19,23
CWR_ CorrectWriting values 142, 163
CWRK_ CorrectWriting values 164
CWX structure 140, 328

o
Data compression functions 50~134
Data objects See individual entry (e.g., HRC object)
Data storage 58
Default

alphabet 60
display 130
drawing 45
number of recognition guesses 64, 110
recognition 111, 134
recognizer 59,60, 103

DEFPUSHBUTTON statement 23
DefWindowProc function 12-16,25
Deinstalling See UninstallRecognizer function
Delayed stroke 112
Design principles 73-83
DestroyHRC function 71, 105, 118, 119, 132, 176,487
DestroyHRCRESULT function 71,106,132,176,487
DestroyHWL function 62,71,108, 132, 150, 168, 177,487
Destroying

HINKSET object 134
HPENDATA object 16,44,131
HRC object 17,71,102,105,118,119,132
HRCRESULT object 71, 102, 106, 132
word list 62, 71, 108, 132

Destroylnkset function 52, 134, 138, 170, 178, 204,487
DestroyPenData function 44,131,138,147,178,188,487
Device See Pen device
Device driver

display 6, 7
pen 6,53,130,493

Dialog box 29,30
Dictionary, recognizer 105, 108, 132, 133, 136,480
DictionarySearch function 136, 179,353,443
Directory list 76
DIRQ_ dictionary request values 142
Disk drive activity 80

510 Index

Display
conserving power 80
coordinates 134
defaults 45, 130
example 98
functions 129, 130
ink 7,45,130,136
region 45, 130
resolution 50
restoring 15
structures 139, 140

Display driver 6, 7
Displaying ink 44, 45
DLL file 8,59,80, 101, 126
DoDefaultPenlnput function 12-15,33,34, 113, 134, 180,

189,192,487
DPD_ DrawPenDataEx values 142, 185
DPtoTP function 46,134, 182,303,487
Drawing See Display, ink
DrawPenData function 45, 136, 138, 183, 184,268
DrawPenDataEx function 45,98, 130, 138, 150, 184,267,

268,316,487
DrawPenDataFmt function 45, 130, 138, 187
Driver See Device driver
DRV _ pen driver messages 497
DuplicatePenData function 44, 131, 138, 154, 188,487
dwDiffAT macro 54
dwDurInterval macro 55
Dynamic-link library See DLL file

E
E-mail 82
Edit controls See Pen edit controls
Editing ink data See HPENDATA object, altering
Editing text 81, 82
Electronic mail 82
Element structure 114, 115
Ellipsis ... xi
EM_LIMITTEXT message 29,476
EM_SETWORDBREAK message 28
EmulatePen function 136, 189
EnableGestureSetHRC function 61, 105, 132, 189,259,272,

487
EnableSystemDictionaryHRC function 105, 132, 191,235,

259,480,487
EndEnumStrokes function 47, 136, 138, 152, 191, 192,216
Ending data collection 58, 105, 132, 135
EndPenlnputHRC function 105, 132, 192,258,487
EnumSymbols function 133, 180, 193, 194, 199
EnumSymbolsCallback function 194, 199
EPDP _ ExtractPenDataPoints values 142
EPDS_ ExtractPenDataStrokes values 142, 196
ES _ window style codes 22, 26, 77

Event reference See Pen event reference
Examining pen data See HPENDATA object, examining
Example

AddPenInputHRC function 119, 120
CreateCompatibleHRC function 118,127
CreateInksetHRCRESULT function 122, 123
CreatePenDataHRC function 120, 121, 128
handling gestures 18
handling PE_ submessages 92-96
handwriting 27,62
iedit control 31, 33
pen data 27, 62
pen device driver 495, 496
PENAPP 85-99
ProcessHRC function 127, 128
sizing writing area 24, 25
SREC recognizer 85-89, 123
starting input session 13,34
stroke attributes 98, 99
timer callback 127, 128
unboxed recognition 68, 69
WinMain function 88
writing styles 111

ExecuteGesture function 481
Exported functions See Recognition, functions
ExtractPenDataPoints function 49, 131, 138, 194,269,487
ExtractPenDataStrokes function 49, 131,138, 195,487

F
FAbsTimeInInterval macro 55
Feedback 74
FIntervalInInterval macro 55
FIntervalXInterval macro 55
FirstSymbolFromGraph function 133, 180, 199
FLTAbsTime macro 56
FONT statement 30
Foreign script, recognizing See Recognition
Format of book ix, xi, xii
Forms applications 83
Free-form writing 22,30,80
Freeing memory See Memory, freeing
Functions

See also Callback functions
32-bit 485,486,487,488
AddInksetInterval 52, 134, 138, 145,486
AddPenDataHRC 44,49, 64, 130, 146, 175,486
AddPenInputHRC 64,65, 105, 119, 120, 132, 147, 192,

337,367,486
AddPointsPenData 49, 130, 138, 148,367,486
AddWordsHWL 108,132,149,168,486
AnimateProc· 185
AtomicVirtualEvent 134, 151,256
availability 138

Functions (continued)
BeginEnumStrokes 47, 136, 138, 152,215
BoundingRectFromPoints 134, 138, 153, 486
categories of 129
CharacterToSymbol 133, 153,486
CloseRecognizer 104, 136,480
CompactPenData 50, 136, 138, 154, 156,461
compression 50, 134
CompressPenData 50,51, 134, 138, 155,486
ConfigHREC 104, 134, 156, 161, 162,477,486
ConfigRecognizer 104,124-126,132,156,161,162,

244,276,311,480,486
CorrectWriting 134, 162,486
CorrectWritingEx 134, 164,486
CreateCompatibleHRC 58,59,60,105,117,118,127,

132, 159, 166
CreateHWL 62, 108, 132, 167,262,486
Createlnkset 52, 134, 138, 169
CreatelnksetHRCRESULT 52,54,106,121-123,134,

169
CreatePenData 44, 130, 138, 170,459,486
CreatePenDataEx 44,130,138,170,172,486
CreatePenDataHRC 44, 105, 120, 128, 130, 174,486
CreatePenDataRegion 19,44,45,130,138,175,486
CreateWindow 22,28
DefWindowProc 12-16,25
DestroyHRC 71,105,118,119,132,176,487
DestroyHRCRESULT 71,106, 132, 176,487
DestroyHWL 62,71, 108, 132, 150, 168, 177,487
Destroylnkset 52, 134, 138, 170, 178,204,487
DestroyPenData 44, 131, 138, 147, 178, 188,487
DictionarySearch 136, 179,353,443
display 130
DoDefaultPenlnput 12-17,33,34,113,134,180,189,

192,487
DPtoTP 46, 134, 182,303,487
DrawPenData 45, 136, 138, 183, 184,268
DfawPenDataEx 45,98, 130, 138, 150, 184,267,268,

316,487
DrawPenDataFmt 45, 130, 138, 187
DuplicatePenData 44, 131, 138, 154, 188,487
EmulatePen 136, 189
EnableGestureSetHRC 61, 105, 132, 189,259,272,487
EnableSystemDictionaryHRC 105, 132, 191,235,259,

480,487
EndEnumStrokes 47, 136, 138, 152, 191, 192,216
EndPenlnputHRC 105, 132, 192,258,487
EnumSymbols 133, 180, 193, 194, 199
EnumSymbolsCallback 199
ExecuteGesture 481
ExtractPenDataPoints 49, 131, 138, 194,269,487
ExtractPenDataStrokes 49, 131, 138, 195,487
FirstSymbolFromGraph 133, 180, 199
GetAlphabetHRC 107, 132,200,478,487

Index 511

Functions (continued)
GetAlphabetPriorityHRC 107, 132, 157,201,478,487
GetAlternateWordsHRCRESULT 106, 132,201,487
GetBoxMappingHRCRESULT 106,132,203,333,487
GetBoxResultsHRC 65,66, 105, 132,204,321,487
GetGlobalRC 136,205
GetGuideHRC 105,132,206,478,487
GetHotspotsHRCRESULT 106,132,207,487
GetHRECFromHRC 105, 132, 208, 487
Getlnksetlnterval 52, 134, 138,208,487
GetInksetlntervalCount 52, 134, 138,209,487
GetInternationalHRC 210,478,487
GetLPDevice 7
GetMaxResultsHRC 105, 132,211,487
GetMessageExtralnfo 477
GetPenAppFlags 134,211,244,280,487
GetPenAsyncState 130,212,487
GetPenDataAttributes 47, 131, 138,212,214,254,342,

345,487
GetPenDatalnfo 47,131, 138, 154,214,345,487
GetPenDataStroke 47, 136, 138, 152, 192,215,367
GetPenHwData 468
GetPenHwEventData 136,216,367,468
GetPenlnput 36,37,135,217,281,298,337,487
GetPenMiscInfo 38, 130, 167,221,283,295,445,447,

461,477,478,487
GetPenResource 135,220,487
GetPointsFromPenData 49,131,138,225,487
GetResultsHRC 65, 105, 106, 132, 226, 258, 270, 487
GetStrokeAttributes 48, 131, 138,227,487
GetStrokeTableAttributes 48, 131, 138,229,487
GetSymbolCount 133, 193,230
GetSymbolCountHRCRESULT 69,106,133,231,487
GetSymbolMaxLength 133,232
GetSymbolsHRCRESULT 17,69,106,193,232,487
GetVersionPenWin 130,234,487
GetWordlistCoercionHRC 108, 133,234,487
GetWordlistHRC 108, 133,235,487
GlobalAlloc 117
GlobalLock 117
HINKSET object 52
HitTestPenData 48, 135, 138,236,487
hook 135-137
HPENDATA object 43-50,130-131
HRCRESULT object 106,133
HWL object 107-108
InitRC 136, 206, 237, 276, 465
InitRecognizer 104, 136, 480
InkReady 7
InsertPenData 49, 131, 138,240,487
InsertPenDataPoints 49, 131, 138,241,242,243,487
InsertPenDataStroke 49, 131, 138,242,243,487
InstallRecognizer 59,88, 124, 133,243,311,350,477,

487

512 Index

Functions (continued)
IsPenAware 137,212,244
IsPenEvent 135,245,487
KKConvert 245
LibMain 124, 126
MetricScalePenData 46,51,134,138,171,174,246,

267,269,459,487
obsolete 136, 137
OffsetPenData 46, 131, 138,248,487
OpenDriver 78, 495
PeekPenlnput 135,249,487
PenDataFromBuffer 49,131,138,250,251,487
PenDataToBuffer 49, 131, 138,251,253,487
PKPD pen kernel 138
PostVirtualKeyEvent 135,255
PostVirtualMouseEvent 135,255
ProcessHRC 65, 105, 119, 127, 133, 192,257,258
ProcessWriting 137,259,260,468,479
ReadHWL 62,107,108,133,168,262,487
recognition 105,117-122,126,128,132-133
Recognize 69,116,137,238,239,263,284,348,468,

479
RecognizeData 69, 137,265,284,348,468
RecognizeDataIntemal 104
Recognizelnternal 104
RedisplayPenData 45, 130, 138,266,268
RegisterPenApp 135, 137,212,268
RemovePenDataStrokes 49, 131, 138, 195,268,487
ResizePenData 46, 131, 138, 269, 487
SendDriverMessage 172, 495
SetAlphabetHRC 60,61, 107, 133,200,259,271,273,

478,487
SetAlphabetPriorityHRC 107, 133,259,272,478,487
SetBoxAlphabetHRC 60,61,107,133,259,273,487
SetGlobalRC 137,274,447,463
SetGuideHRC 64, 105, 133, 203, 259, 273, 276, 332,

478,487
SetIntemationalHRC 159,259,277,478,487
SetMaxResultsHRC 64,92, 105, 110, 133,211,259,

279,487
SetPenAppFlags 245,268,279,280,487
SetPenHook 35,135,249,281,339,346
SetPenMiscInfo 130,282,447,461,478,487
SetRecogHook 137,284
SetResultsHookHREC 135,284,285,487
SetStrokeAttributes 48, 131, 138,243,286,487
SetStrokeTableAttributes 48, 131, 138,288,488
SetWordlistCoercionHRC 62,63, 108, 133,259,289,

488
SetWordlistHRC 62,63, 108, 133,259,290,488
ShowKeyboard iI, 38,130,291,292
Startlnking 35,36, 130, 181,295,488
StartPenlnput 35,135, 181,219,295,297,438,488
Stoplnking 130, 181,300,488

Functions (continued)

G

StopPenlnput 37,135,181,298,300,488
symbols 133
SymbolToCharacter 68,70, 133,302,488
system and hardware 130
TargetPoints 135, 302, 375, 488
TextOut 97
time intervals 134
TPtoDP 46, 134, 182,247,266,303,488
TrainContext 137,304,308
TrainContextIntemal 109, 137,304,308
TrainHREC 109,133,306,488
Trainlnk 137,304,305,307
Trainlnklntemal 109, 137,308
TrimPenData 50,51,134,138,174,240,308,488
UnhookResultsHookHREC 286, 310, 488
UninstallRecognizer 59, 126, 133,244,311,488
UpdatePenlnfo 130,312
utility 134, 135
WEP 124-126
WriteHWL 107, 108, 133,312,488

GESTMAN.EXE 481
Gestures

circle 61
cut 12,17,18,19,23,61
example 18, 481
GST_ codes 61,142
handling 17,18,19,78,79,83
in version 2.0 481
lasso 12,17,18,19,61
recognizing 17,18,19,61,105,132
undo 61

GetAlphabetHRC function 107, 132,200,478,487
GetAlphabetPriorityHRC function 107, 132, 157,201,478,

487
GetAltemateWordsHRCRESULT function 106, 132,201,487
GetBoxMappingHRCRESULT function 106,132,203,333,

487
GetBoxResultsHRC function 65,66, 105, 132,204,321,487
GetGlobalRC function 136, 205
GetGuideHRC function 105, 132, 206, 478, 487
GetHotspotsHRCRESULT function 106, 132,207,487
GetHRECFromHRC function 105,132,208,487
GetlnksetInterval function 52, 134, 138,208,487
GetInksetIntervalCount function 52, 134, 138,209,487
GetIntemationalHRC function 210,478,487
GetLPDevice function 7
GetMaxResultsHRC function 105, 132,211,487
GetMessageExtraInfo function 477
GetPenAppFlags function 134,211,244,280,487
GetPenAsyncState function 130,212,487

GetPenDataAttributes function 47, 131, 138,212,214,254,
342,345,487

GetPenDataInfo function 47, 131, 138, 154,214,345,487
GetPenDataStroke function 47, 136, 138, 152, 192,215,367
GetPenHwData function 468
GetPenHwEventData function 136,216,367,468
GetPenInput function 36,37,135,217,281,298,337,487
GetPenMiscInfo function 38, 130, 167,221,283,295,445,

447,461,477,478,487
GetPenResource function 135,220,487
GetPointsFromPenData function 49, 131, 138,225,487
GetResultsHRC function 17,65,105,106,132,226,258,

270,487
GetStrokeAttributes function 48, 131, 138,227,487
GetStrokeTableAttributes function 48, 131, 138,229,487
GetSymbolCount function 133, 193,230
GetSymbolCountHRCRESULT function 69, 106, 133,231,

487
GetSymbolMaxLength function 133,232
GetSymbolsHRCRESULT function 17,69, 106, 133, 193,

232,487
GetVersionPenWin function 130,234,487
GetWordlistCoercionHRC function 108, 133,234,487
GetWordlistHRC function 108, 133,235,487
GGRC_ GetGlobalRC values 142,206
Global RC structure 136, 137
GlobalAlloc function 117
GlobalLock function 117
GPA_ GetPenDataAttributes values 142,213
Graph,symbol 114,115
GRECO.DLL 9, 59, 98, 109, 115
GRH_ GetResultsHRC values 17,142,226
GSA_ GetStrokeAttribute values 142, 228, 230
GST_ gesture codes 61, 142, 190
GUIDE structure 29,64,65, 140, 167,206,276,277,321,

331,454,455,464
Guidelines for programming 80, 81, 82, 83
Guides See Box guides

H
Handle 101
Handwriting

example 27, 62, 111
segmentation 111
skewing 110
styles 102, 111
training 108

Handwriting edit control See hedit control
Hardware functions 130
HE_CANCELCONVERT submessage 377,441,490
HE_CHAROFFSET submessage 378,441,490
HE_CHARPOSITION submessage 378,441,490

Index 513

HE_DEFAULTFONT submessage 379,441,490
HE_ENABLEALTLIST submessage 379,441,490
HE_FIXKKCONVERT submessage 379,441,490
HE_GETBOXLA YOUT submessage 380,441,490
HE_GETCONVERTRANGE submessage 441,490
HE_GETCONVERTRANGE submessage 380
HE_GETINFLATE submessage 25,381,441,490
HE_GETINKHANDLE submessage 381,441,490
HE_GETKKCONVERTsubmessage 381,441,490
HE_GETKKSTATUS submessage 382,441,490
HE_GETRC submessage 441,490
HE_GETUNDERLINE submessage 383,441,490
HE_HIDEALTLIST submessage 383,441,490
HE_KKCONVERT submessage 383,441,490
HE_PUTCONVERTCHAR sUbmessage 385,441,490
HE_SETBOXLAYOUTsubmessage 385,441,490
HE_SETCONVERTRANGE submessage 386,441,.490
HE_SETINFLATE submessage 25,386,441,490
HE_SETINKMODE submessage 387,441,490
HE_SETRC submessage 441,490
HE_SETUNDERLINE submessage 387,441,490
HE_SHOW ALTLIST submessage 387, 441, 490
HE_STOPINKMODE submessage 388,441,490
hedit control

described 22, 23
messages 26
printing 26
recognition 77

Height above tablet 109
HEKK_ kana-kanji values 142,384
HEKKR_ kana-kanji conversion status 382
HEP _ HE_STOPINKMODE values 142
HGLOBAL handle 119
HINKSET object

creating 52,54, 106, 121, 134
described 51,52,482
destroying 52, 134
functions 52
macros 54,56, 71, 83, 99, 128

Hints for recognizer 62
HitTestPenData function 48, 135, 138, 236, 487
HKP _ SetPenHook values 142
HN_BEGINDIALOG notification 388
HN_ENDDIALOG notification 389
HN_ENDKKCONVERT notification 389
HN_ENDREC notification 390
HN_RESULT notification 390
Hook functions 129, 135, 137
Hotspots 106, 116, 132
HPCM handle 35,488,489
HPENDATA object

adding pen data 49, 131
adding to HRC 49, 130
altering 48,49, 131

514 Index

HPENDATA object (continued)
compressing 50, 51, 134, 136
contents 41
creating 44,92,120, 121, 127, 128, 130
default handling 16, 17
described 12,40
destroying 16, 17, 44, 131
displaying 44,45, 130, 136
duplicating 44, 131
examining 47,48,49, 131, 135
example 123
functions 43-50, 129-131
hardware information 495
header information 41,42
in HRC 105, 130
inking process 39
memory block 40,41,42,47, 136,483
merging 49, 131
preserving 16, 17
resolution 41
scaling 46, 131
size 40,50, 136
structures 141

HPENDA TAHEADER structure 42, 483
HRC object

adding pen data 49, 58, 65, 105, 130, 132
alphabet 60,61, 106, 107, 132, 133
box guides 66, 105, 106, 132, 133
configuring 59-64, 106-108, 124, 125, 126, 132, 133
creating 58,59,105,117,118,127,132
default handling 16, 17
described 12,57, 101, 102
destroying 17,71,105,118,119,132
dictionary 105, 132
duplicating 58,59
example 117, 123
functions 57, 105
gestures 105, 132
pen data 44,58, 105, 130
processing 119, 127, 128, 133
results 58, 65-69
training 108, 109, 133, 137
word list 102, 108, 133

HRCR_ recognition return values 142
HRCRESULT object

box guides 106, 132
described 101, 102,479
destroying 71, 106, 132
functions 106, 133
guesses 106, 132
hotspots 106, 132
inksets 134
results 18,67, 105, 132
symbols 68, 106, 133

HWLobject
See also Word list
creating 132, 133
described 10 1, 102
destroying 108, 132
functions 107, 108

HWR_ SetRecogHook constants 284

I-beam pointer 5
IDC_ cursor values 88, 143,455
IE_CANUNDO message 391,492
IE DOCOMMAND message 391,492
IE=EMPTYUNDOBUFFER message 392,492
IE_ GETAPPDA TA message 393, 492
IE_GETBKGND message 394,492
IE_ GETCOMMAND message 394, 492
IE_GETCOUNT message 395,492
IE_GETDRA WOPTS message 395,492
IE_GETERASERTIP message 396,492
IE_ GETFORMA T message 396, 492
IE_GETGESTURE message 398,492
IE_ GETGRIDORIGIN message 398, 492
IE_GETGRIDPEN message 399,492
IE_GETGRIDSIZE message 399,492
IE_ GETINK message 400, 492
IE_ GETINKINPUT message 400, 492
IE_GETINKRECT message 401,492
IE_GETMENU message 401,492
IE_GETMODE message 402,492
IE_ GETMODIFY message 402, 492
IE_ GETNOTIFY message 403, 492
IE_ GETPAINTDC message 404, 492
IE_ GETPDEVENT message 341, 404, 492
IE_GETPENTIP message 405,492
IE_GETRECOG message 405,492
IE_ GETSECURITY message 406, 492
IE_ GETSEL message 407, 492
IE_GETSELCOUNT message 407,492
IE_ GETSELITEMS message 407, 492
IE_ GETSTYLE message 408, 492
IE_REC iedit recognition values 406,418
IE_SETAPPDATA message 408, 492
IE_SETBKGND message 409, 492
IE_SETDRA WOPTS message 410,492
IE_SETERASERTIP message 411,492
IE_SETFORMAT message 411,492
IE_SETGRIDORIGIN message 412,492
IE_SETGRIDPEN message 412,492
IE_SETGRIDSIZE message 413,492
IE_SETINK message 414,492
IE_SETINKINPUT message 415,492
IE_SETMODE message 415,492

IE_SETMODIFY message 416,492
IE_SETNOTIFY message 417,492
IE_SETPENTIP message 418,492
IE_SETRECOG message 418,492
IE_SETSECURITY message 419,492
IE_SETSEL message 419,492
IE_UNDO message 492
IEB_ iedit background values 143,394,409
iedit control

described 30, 31, 33
messages 33
printing 26

IEDO_ draw values 143,396,410
lEe iedit input values 401,415
IEM_ iedit message values 143,391
IEMODE_ IE_SETMODE values 143,402,415
IEN_ IE_SETNOTIFY values 143,403,417
IER_ stroke format values 143
IEREC_ recognition values 143
IES_ iedit style values 143,408
IESEC_ security values 143,406,419
IESF _ STRKFMT values 143
IN_CHANGE notification 420
IN_CLOSE notification 420
IN_COMMAND notification 421
IN_ERASEBKGND notification 421
IN_GESTURE notification 422
IN_HSCROLL notification 422
IN_KILLFOCUS notification 423
IN_MEMERR notification 423
IN_MODECHANGED notification 424
IN_PAINT notification 424
IN_PDEVENT message 341
IN_PDEVENT notification 425
IN_POSTPAINT notification 425
IN_PREP AINT notification 426
IN_PROPERTIES notification 426
IN_SETFOCUS notification 427
IN_UPDATE notification 427
IN_ VSCROLL notification 428
Inferring user's desires 79
Inflating See Writing area, sizing
.INI initialization file, SYSTEM.INI 493
Initialization

application 86, 91
pen edit control 140
recognizer 104,480

InitRC function 136, 206, 237, 276, 465
InitRecognizer function 104, 136, 480
Ink

annotation 80
characteristics 15, 42, 48, 140
defined 6, 35

Ink (continued)
display 7,44,45, 130, 136
recognizing 102

Ink data See Pen data
Ink edit control See iedit control
Ink input 33
Inking 35,39

Index 515

INKINGINFO structure 15, 16,34,35,36, 140,295,296,
334,432,445

InkReady function 7
Inkset See HINKSET object
INPPARAMS structure 141,335
Input session

described 12,34,37
example 13, 34
termination 58

Insertion point 79
InsertPenData function 49, 131, 138,240,487
InsertPenDataPoints function 49, 131, 138,241,242,243,

487
InsertPenDataStroke function 49, 131, 138,242,243,487
Installing a recognizer 59, 133
InstallRecognizer function 59,88, 124, 133,243,311,350,

477,487
Interface 74
Internal data buffer 36, 135, 136
Interval See Time interval
INTERVAL structure 52,53,55,121,141,146,208,336
Irreversible compression 50
IsPenAware function 137,212,244
IsPenEvent function 135,245,487
ISR_ ink set return values 143
Italic text xi

J
Japanese Data Input Window 134
Japanese Pen functions

CorrectWritingEx 164, 486
GetPenResource 135,220,487
KKConvert 134, 135,245

K
Keyboard See On-screen keyboard
Keyboard bitmaps 293
Keystrokes xii, 31, 60,135
KKConvert function 245

L
Lassogesture 12,17,18,19
Learning a pen-based program 75
Lens 77, 134

516 Index

Letter descenders 110
LibMain function 124
Likelihood See Confidence level
Linefeed character 29
Linking 485
Lists

box guide structures 140
compression functions 134
constants 142-144
display functions 130
display structures 140
hook functions 135
HPENDATA functions 130, 131
HPENDATA structures 141
HWL functions 108
messages 141
obsolete functions 136, 137
pen driver messages 497
PKPD pen kernel functions 138
recognition functions 132-133
recognition structures 140
symbol manipulation functions 133
system and hardware functions 130
system and hardware structures 139
SYSTEM.lNI file 493
target structures 141
time interval functions 134
time interval structures 141
utility functions 134

List of words See Word list 132
Lossless compression 50
Lowercase text 60

M
Macros

PE_ submessages 489
time interval 54,56, 71, 83, 99, 128

Mail, electronic 82
MakeAbsTime macro 56
Math symbols, recognizing 60, 106
MAXDICTIONARIES constant 349
MAXHOTSPOT constant 208
MAXOEMDATAWORDS constant 339,346
Memory

allocating 117, 130
freeing 71, 105, 131, 132
HPENDATA object 42

Menu, context 476
Merging pen data See InsertPenData function
Messages

See also Submessages ; Notifications
(list) 141
32-bit 488,489,490,491, 492

Messages (continued)
bedit control 26, 28
DRV _SetPenSamplingRate 496,500
EM_LIMITTEXT 29,476
EM_SETWORDBREAK 28
handling 12, 13, 14
hedit control 23, 26
IE_CANUNDO 391,492
IE_DOCOMMAND 391,492
IE_EMPTYUNDOBUFFER 392, 492
IE_GETAPPDATA 393,492
IE_GETBKGND 394,492
IE_ GETCOMMAND 394, 492
IE_GETCOUNT 395,492
IE_GETDRAWOPTS 395,492
IE_GETERASERTIP 396,492
IE_GETFORMAT 396,492
IE_GETGESTURE 398,492
IE_GETGRIDORIGIN 398,492
IE_GETGRIDPEN 399,492
IE_GETGRIDSIZE 399,492
IE_ GETINK 400, 492
IE_ GETINKINPUT 400, 492
IE_GETINKRECT 401,492
IE_GETMENU 401,492
IE_GETMODE 402,492
IE_GETMODIFY 402,492
IE_GETNOTIFY 403,492
IE_ GETPAINTDC 404, 492
IE_GETPDEVENT 341,404,492
IE_GETPENTIP 405,492
IE_GETRECOG 405,492
IE_ GETSECURITY 406, 492
IE_GETSEL 407,492
IE_GETSELCOUNT 407,492
IE_GETSELITEMS 407,492
IE_GETSTYLE 408,492
IE_SETAPPDATA 408, 492
IE_SETBKGND 409,492
IE_SETDRA WOPTS 410,492
IE_SETERASERTIP 411,492
IE_SETFORMAT 411,492
IE_SETGRIDORIGIN 412,492
IE_SETGRIDPEN 412,492
IE_SETGRIDSIZE 413,492
IE_SETINK 414,492
IE-,-SETINKINPUT 415,492
IE_SETMODE 415,492
IE_SETMODIFY 416,492
IE_SETNOTIFY 417, 492
IE_SETPENTIP 418,492
IE_SETRECOG 418,492
IE_SETSECURITY 419,492
IE_SETSEL 419,492

Messages (continued)
IE_UNDO 492
iedit control 33
IN_PDEVENT 341
parameters 26
pen device driver 497
recognition 13, 14, 113
WM_CHAR 12, 17
WM_COMMAND 90
WM_COPY 17·
WM_CTLINIT 26,28,29,439,491
WM_DESTROY 86
WM_GLOBALRCCHANGE 440
WM_HEDITCTL 23
WM_HOOKRCRESULT 285,440
WM_INITDIALOG 30
WM_KEYDOWN 11
WM_KEYUP 11
WM_LBUTTONDOWN 12, 13, 34, 135
WM_PAINT 96
WM_PASTE 17
WM_PENCTL 23,319,363,440,490
WM_PENEVENT 36,93, 181,219,297,443,491
WM_PENMISC 323,444,491
WM_PENMISCINFO 90,275,276,283,447,461,490
WM_QUIT 86
WM_RCRESULT 69,70,113,285,448
WM_SIZE 90

Metric modes 41, 46, 134
MetricScalePenData function 46,51,134,138,171,174,246,

267,269,459,487
Microsoft Handwriting Recognizer 192,208,271,307
Mode, portrait 41
Module handle 105, 123, 132
Monetary symbols, recognizing 60
Monospace text xi, 86
Mouse 135

N
Newline character 29
Noise reduction 110
Normalizing input data 110
Notifications

See also Messages
hedit control 26
HN_BEGINDIALOG 388
HN_ENDDIALOG 389
HN_ENDREC 389, 390
HN_RESULT 390
IN_CHANGE 420
IN_CLOSE 420
IN_COMMAND 421
IN_ERASEBKGND 421

Notifications (continued)
IN_GESTURE 422
IN_HSCROLL 422
IN_KILLFOCUS 423
IN_MEMERR 423
IN_MODECHANGED 424
IN_PAINT 424
IN_PDEVENT 425
IN_POSTPAINT 425
IN_PREPAINT 426
IN_PROPERTIES 426
IN_SETFOCUS 427
IN_UPDATE 427
IN_ VSCROLL 428

Index 517

Number of recognition guesses 64,105,110,132,133

o
Objects See individual entry (e.g., HRC object)
OBM_ bitmap values 143
Obsolete functions 136, 137
OEM data 41,42,43,50, 109, 130, 139
OEM_PENPACKET structure 282,339
OEMPENINFO structure 43, 139,336,345,346,459
OffsetPenData function 46, 131, 138,248,487
Onscreen keyboard See Screen keyboard
OpenDriver function 78, 495
Optical character recognizer 102
Optional recognition functions 104

p
Packet 135, 141
Parentheses () xi
Passive training 108
PCM See Pen collection. mode
PCM_ pen collection mode values 116, 143,456
PCMINFO structure 15, 16,34,35,37, 140,297,299,340,

437,444,445,456
PCMR_ PCM return values 143, 181,218,250,295,298,

301
PDC_ pen device capabilities 143,457
PDEVENT structure 139,341,425
PDK_ state bits for pen driver kit 143,212,457
PDR_ general return values 143, 156, 186, 187, 195, 198,

229,236,237,240,241,243,253,269,288,289,310
PDT_ OEM-specific data values 337,459
PDT_ pen driver values 143
PDTS_ data scaling values 42,48,143,155,171,172,246,

459
PDTT_ CompactPenData values 143, 154, 155,461
PE_ submessages 488, 489
PE_BEGINDATA submessage 16,92,94,428,443,491
PE_BEGININPUT submessage 13,429,443,491

518 Index

PE-,-BUFFERWARNING submessage 36,430,443,491
PE_ENDDATA submessage 16,92,95,430,443,491
PE_ENDINPUT submessage 19,431,443,491
PE_GETINKINGINFO submessage 15,16,34,431,443,491
PE_GETPCMINFO submessage 14, 15, 16, 34, 93,433,443,

491
PE_MOREDATA submessage 16,433,443,491
PE_PENDOWN submessage 36,434,443,491
PE_PENMOVE submessage 36,434,443,491
PE_PENUP submessage 36,435,443,491
PE_RESULT submessage 17,18,95,436,443,491
PE_SETTARGETS submessage 14,23,24,436,443,477,

491
PE_TERMINATED submessage 438,443,491
PE_TERMINATING submessage 36,37,439,443,491
PeekPenInput function 135,249,487
Pen angle 41
Pen API

32-bh 10,485,486
and Windows 5
architecture 1
described ix, 1,2
hardware requirements ix
programming xii
summary 129
version number 130

Pen API messages See Messages
Pen collection mode

See also Input session
defined 14

Pen data
adding to HPENDATA 49, 131
adding to HRC 49,58,65, 105, 130, 132
altering 48,49,131
beginning 135
bounding rectangle 40,42,45, 134
collecting 135
combining 49, 131
compressing 50-51, 134-136
coordinate system 46, 134
copying 49, 131
ending collection 105, 132, 135
examining 47,48,49, 131, 135
example 27, 62
inking 39
input 11,119,120
internal buffer 135, 136
modifying 40
normalizing 110
offsetting 46, 131
packet 135, 141
point coordinates 43
processing 38, 119
resolution 50

Pen data (continued)
scaling 46, 131, 143
segmentation 111
stroke 42
structures 141
targeting 135

Pen device
accessing 495,496,497,500
barrel button 130, 500
calibration 139,497,501
characteristics 139
coordinates 134
functions 130
interaction with driver 6
resolution 7, 134
sampling distance 7, 500
sampling rate 7,47,53, 121, 122,496
specifying 493

Pen device driver 6,53, 130
Pen edit controls

bedh 26,27,28,29,30,77,475,476
described 21
hedit 22,23, 77
iedit 30, 31, 33, 492
printing 26
scrolling 31
structures 140

Pen event reference 34, 35
Pen hardware See Pen device
Pen height 109
Pen input

beginning 16
described 21
ending 16, 19
position 79, 115
random 76

Pen kernel ix, 2, 138, 485
Pen Message Interpreter 5
Pen packet 135, 141
Pen pressure 41, 109
Pen rotation 41, 109
Pen services resources 135
Pen-awareness 135, 137
Pen-up state 42, 98
PENAPP sample application 85-99
PENC.DRV pen driver 6
PenDataFromBuffer function 49, 131, 138,250,251,487
PENDATAHEADER structure 131, 141, 154, 155, 170, 171,

172,174,183,214,270,342,459
PenDataToBuffer function 49, 131, 138,251,253,487
PENINFO structure 43,44,139,154,170,171,172,214,

215,218,220,241,249,312,322,337,338,343,345,457,
483

PENPACKET structure 141,346,457

PENREG.H file 484
PENTIP structure 140,283,334,346,396,397,418
PENTIP _ PENTIP structure values 143,347
PENWIN.DLL 2,3, 138
PENWIN32.DLL 485, 486
PH_ time-out codes 65, 110, 127,257
PHW_ pen hardware values 143,173,174,218,249,309,

345
PIC INKINGINFO structure values 143,334
PKPD.DLL 2, 138
PKPD32.DLL 485
PMC pen miscellaneous information 143,222,223,283,461
PMSC_ submessages 491
PMSCL_ PMSC_ parameter values 143
PMSCR_ PMSC_TARGETING values 143
POINT structure 36, 153, 182, 195,216,218,236,241,249,

267,292,303
Pointer, I-beam 5
Portrait mode 41
Position 79, 115
PostVirtualKeyEvent function 135, 255
PostVirtualMouseEvent function 135,255
Power conservation 80
Pressure See OEM data
Printing an edit control 26
Priority, alphabet 107, 132, 133
ProcessHRC function 65, 105, 119, 127, 133, 192,257,258
ProcessWriting function 137,259,260,468,479
Programming

design 73-83
interface 74
recognizer 116-122, 126, 128
using system defaults 11, 12
window procedures 89,90,91,92
without pen device 2

Proximity stroke 42, 98
Punctuation, recognizing 60, 106
PWF _ PMCSYSFLAGS values 143

R
Random pen input 76
.RC file 33
RC structure 116,136,140,179,180,206,237,238,263,

265,274,276,307,348,443,463,464,465,477,478
RC_ structure values 144,239
RCD_ writing direction values 144,463
RCO_ option values 144,351,464
RCOR_ tablet orientation values 144,465
RCP _user preference values 144,466
RCRESULTstructure 66,69,70,113-116,140,239,261,

305,359,360,371,440,466,468,478,479
RCRT_ results values 144,466

Index 519

ReadHWL function 62, 107, 108, 133, 168,262,487
REC_ recognition codes 69,144,217,264,468
Recognition

accuracy 46,49,50,77
baseline 110, 115
best guess 58,66, 70, 110, 115, 133
bitmap 102
confidence level

described 70, 112
influencing 107, 108, 133
symbol graph 114, 115

configuring 59-64, 106-108, 124, 125, 126, 132, 133
default 134
deferred 77
defined 57
dictionary 105, 108, 132, 133, 136,480
example 68, 69
functions 57,58,103-105,117-122,126,128,129,132
gestures 17, 18, 19,61, 105, 132
guesses 64,105,106,110,115,132,133
guide 63,64
hook 135, 137
hotspots 106, 116, 132
HRC object 57, 59
initialization 104,480
math symbols 60, 106
messages 13, 14
monetary symbols 60
noise reduction 110
processing 64,65, 109, 110, 119, 127, 128, 133,479
punctuation 60, 106
results 65-116, 132
scheduling 65, 110, 133
segmentation 111
signatures 51
steps 58
structures 139, 140
symbols 106, 133
termination 58
time-out period 110
tips 76,77,78,116
training 108, 109, 133, 137
vector 102
version 1.0 104, 109, 113, 137, 140,476,477,478,479,

480
word list 62,63, 107, 108, 132, 133,480

Recognition context See HRC object
Recognize function 69, 116, 137,238,239,263,284,348,

468,479
RecognizeData function 69, 137,265,284,348,468
RecognizeDataIntemal function 104
RecognizeIntemal function 104

520 Index

Recognizer
described 8, 9, 10 1-104
example 85,86,89, 123
exported functions 103
handle 105, 123, 132
installing 59, 133-136
module 124
programming 116-122, 126, 128
specialty 57
system 9,57,59,60,98,103,111
uninstalling 136
with other recognizers 112

RECTOFS structure 25, 140,362,381,386
RedisplayPenData function 45, 130, 138,266,268
Region 45, 130
RegisterPenApp function 135, 137,212,268
Registry 59,483,484
RemovePenDataStrokes function 49, 131, 138, 195,268,487
Rendering See Display
Required recognition functions 104
ResizePenData function 46, 131, 138, 269,487
Resolution

display 50
tablet 41, 134

Results of recognition 65-70,105,106,112-116,132
ResultsHookHREC callback 270
RETURN key 23
Reversible compression 50
RHH_ hook values 144, 270
Rotation See OEM data
Rounding errors 46
RPA_ RegisterPenApp values 280
RRM_ results mode values 356

s
Sample recognizer 85,86,89, 123
Sampling distance 7, 500
Sampling rate 6,47,53, 121, 122
Scaling pen data 46, 131, 143
SCH_ recognition coercion values 62, 234, 290
Scheduling recognition 65, 110, 133
Screen See Display
Screen keyboard 11,38,140
Screen region 45, 130
Scrolling 31,476
Segmentation 111
Selected text 76
SendDriverMessage function 172, 495
Serial pen data See PenDataToBuffer function
SetAlphabetHRC function 60,61, 107, 133,200,259,271,

273,478,487
SetAlphabetPriorityHRC function 107,133,259,272,478,

487

SetBoxAlphabetHRC function 60,61, 107, 133,259,273,
487

SetGlobalRC function 137,274,447,463
SetGuideHRC function 64, 105, 133,203, 259, 273, 276,

332,478,487
SetInternationalHRC function 159,259,277,478,487
SetMaxResultsHRC function 64, 92, 105, 110, 133,211,259,

279,487
SetPenAppFlags function 245,268,279,280,487
SetPenHook function 35, 135,249,281,339,346
SetPenHookCallback callback 282
SetPenMiscInfo function 130,282,447,461,478,487
SetRecogHook function 137,284
SetResultsHookHREC function 135,284,285,487
SetStrokeAttributes function 48, 131, 138,243,286,487
SetStrokeTableAttributes function 48, 131, 138, 288, 488
SetWordlistCoercionHRC function 62, 63, 108, 133,259,

289,488
SetWordlistHRC function 62, 63, 108, 133,259, 290,488
SGRC_ SetGlobalRC values 144,274
SHC_ word list coercion values 144
Shell application 83
ShowKeyboard function 11,38, 130,291,292
sizeof operator 139
SKB See Screen Keyboard
SKB_ ShowKeyboard values 144,292,293
SKBINFO structure 140,292,363
Skewed handwriting 110
Small capital letters xii
Special characters 60
Special pen movements See Gestures
Spreadsheet 81, 82
Spurious input data 110
SREC sample recognizer 85,86,89, 123
SSA_SetStrokeAttributes values 144,287,289
SSH_ writing direction values 144,210,278
Startlnking function 35,36,130,181,295,488
StartPenlnput function 35, 135, 181,219,295,297,438,488
Stoplnking function 130, 181,300,488
StopPenlnput function 37, 135, 181,298,300,488
STRKFMT structure 141,364,396,411
Stroke

adding pen data 49, 131
adding to HPENDATA 49, 131
associated with symbol 112
attributes 48,49, 131
copying 49, 131
defined 42
delayed 112
header 42
order and direction 112
proximity 42, 98
recognizing 57
time stamp 48,52, 119-121

Stroke table See Stroke, attributes
STROKEINFO structure 38,42,52, 119, 121, 141, 148, 149,

215,217,218,303,366,457
Structures

ABSTIME 52,54,56,141,315
ANIMATEINFO 140, 151, 185,316
BOXEDITINFO 140,283,317,445
BOXLAYOUT 28,140,318,332,380,385,454,455
BOXRESULTS 66, 140,204,321
CALBSTRUCT 139,322,501
categories 139
CTLINITBEDIT 26, 28, 29, 140, 323,439
CTLINITHEDIT 140,324,439
CTLINITIEDIT 33, 140, 325, 439
CWX 140,328
display 140
GUIDE 29,64,65,140,167,206,276,277,321,331,

454,455,464
guides 140
HPENDATA object 141
HPENDATAHEADER 42,483
initialization 139
INKINGINFO 15, 16,34,35,36, 140,295,296,334,

432,445
INPPARAMS 141,335
INTERVAL 52,53,55, 121, 141, 146,208,336
OEM_PENP ACKET 282, 339
OEMPENINFO 43, 139,336,345,346,459
PCMINFO 15, 16,34,35,37, 140,297,299,340,437,

444,445,456
PDEVENT 139,341,425
pen edit controls 140
PENDATAHEADER 131,141,154,155,170,171,172,
17~ 183,21~27~34~459

PENINFO 43,44,139,154,170,171,172,214,215,
218,220,241,249,312,322,337,338,343,345,457,
483

PENPACKET 141,346,457
PENTIP 140,283,334,346,396,397,418
POINT 36,153,182,195,216,218,236,241,249,267,

292, 303
RC 116,136,140,179,180,206,237,238,263,265,

274,276,307,348,443,463,464,465,477,478
RCRESULT 66,69, 70, 113, 116, 140,239,261,305,

359,360,371,440,466,468,478,479
recognition 140
RECTOFS 25, 140,362,381,386
SKBINFO 140,292,363
STRKFMT 141,364,396,411
STROKEINFO 38,42,52, 119, 121, 141, 148, 149,215,

217,218,303,366,457
SYC 115, 140, 304, 367
SYE 115,140,179,304,368,369,370
SYG 114, 116, 124, 140, 193,232,369,371

Structures (continued)
system and hardware 139
SYV 179, 305, 308

Index 521

TARGET 16,24,92, 141, 182,335,373,374,428,430,
433,434,437

targets 141
TARGINFO 14, 15,24,25, 141,303,373,374,434
time interval 141

Submessages
See also Messages
(list) 141
CTLINIT_ codes 26,28,33,491
PE_TERMINATING 36,37
WM_PENMISC 488,489,491

SYC structure 115, 140,304,367
SYE structure 115, 140, 179, 304, 368, 369, 370
SYG structure 114, 116, 124, 140, 193,232,369,371
Symbol correspondence structure SYC 114, 115
Symbol element structure SYE 114, 115
Symbol graph SYG 114, 115, 124, 133
Symbol manipUlation functions 129, 133
Symbol values 68, 124
Symbols

counting 133
functions 133
recognizing 106
segmentation 111
string 133

SymbolToCharacter function 68, 70, 133,302,488
System and hardware

functions 129, 130
requirements xiii
structures 139

System defaults 11, 12
System RC structure 136, 137
System recognizer 9, 16,57,59,98, 103, 111
System registry 59,483,484
SYSTEM.INI file 493
SYV structure 179,305,308
SYV _ symbol values 68, 144, 153, 190,260,302,368,470,

471,472,473,474

T
TAB key 23
Table See List 493

Tablet
coordinates 134
dimensions 41, 43
interface with pen 42
resolution 41

T ABSTOP statement 23

522 Index

Target
defined 14,483
identifying 15, 135
structures 141

TARGET structure 16,24,92,141,182,335,373,374,428,
430,433,434,437

TargetPoints function 135,302,375,488
TARGINFO structure 14, 15,24,25, 141,303,373,374,434
Task flags 134
Template HRC object 58, 59
Ten-second buffer See Internal data buffer
Termination conditions 37,58, 143
Text conventions xi
Text editing 81, 82
Text, recognizing See Recognition
TextOut function 97
TH_ TrainHREC values 306

Thirty-two-bit API See 32-bit API
Thunklayer 10,485,495
Tick count See Time stamp
Time interval

described 51, 52, 54
functions 52, 129, 134
macros 54,56, 71, 83, 99, 128
structures 141

Time stamp 52, 119-121
Time-out period 65, 110, 127
Timer callback function 127, 128
TPD _ TrimPenData values 144, 309
TPD_COLLINEAR constant 51
TPT_ TARGINFO structure flags 144,374
TPtoDP function 46,134, 182,247,266,303,488
TrainContext function 137,304,308
TrainContextInternal function 109, 137,304,308
TrainHREC function 109, 133, 306,488
Training the recognizer 108, 109, 133, 137
TrainInk function 137,304,305,307
TrainInkInternal function 109, 137,308
Trimming pen data See Pen data, compressing
TrimPenData function. 50,51,134,138,174,240,308,488

u
Unhooking

interrupts 126
recognition 135

UnhookResultsHookHREC function 135, 286, 310, 488
UninstallRecognizer function 59, 126, 133,244,311,488
UpdatePenInfo function 130, 312
Uppercase text xii, 60
User control 76
Utility functions 134, 135

v
Vector recognition 102
Version 1.0

differences with version 2.0 475
gestures 481
recognition 104, 109, 113, 137, 140,476,477,478,479,

480
Version number 130
Virtual driver 6
Virtual event 134, 135
VWM_ PostVirtualMouseEvent flags 144,256
.VXDfile 6

w
WCR_ recognizer configuration codes 124, 125, 126, 136,

144, 157, 160, 161
WEP function 124
WIN32 constant 485
Window procedures 89,90, 91, 92
Window style

ES_ window style codes 22,26,77
WS_ window style codes 31

WinMain function 86
WLT_ word list types 144, 149, 167
WM_ CHAR message 12, 17
WM_COMMAND message 90
WM_COPY message 17
WM_CTLINIT message 26,28, 29,439,491
WM_DESTROY message 86
WM_GLOBALRCCHANGE message 440
WM_HEDITCTL message 23
WM_HOOKRCRESULT message 285, 440
WM_INITDIALOG message 30
WM_KEYDOWN message 11
WM_KEYUP message 11
WM_LBUTTONDOWN message 12, 13,34, 135
WM_PAINT message 96
WM_PASTE message 17
WM_PENCTL message 23,319,363,440,490
WM_PENCTL submessages

HE_CANCELCONVERT 377,441,490
HE_CHAROFFSET 378,441,490
HE,-CHARPOSITION 378,441,490
HE_DEFAULTFONT 379,441,490
HE_ENABLEALTLIST 379,441,490
HE_FIXKKCONVERT 379,441,490
HE_GETBOXLAYOUT 380,441,490
HE_GETCONVERTRANGE 380,441,490
HE_GETINFLATE 381,441,490
HE_GETINKHANDLE 381,441,490
HE_GETKKCONVERT 381,441,490

WM_PENCTL submessages (continued) (continued)
HE_GETKKSTATUS 382,441,490
HE_GETRC 441,490
HE_GETUNDERLINE 383,441,490
HE_HIDEALTLIST 383,441,490
HE_KKCONVERT 383,441,490
HE_NOKKCONVERT 385
HE_PUTCONVERTCHAR 385,441,490
HE_SETBOXLAYOUT 385,441,490
HE_SETCONVERTRANGE 386,441,490
HE_SETINFLA TE 386, 441, 490
HE_SETINKMODE 387,441,490
HE_SETRC 441, 490
HE_SETUNDERLINE 387, 441, 490
HE_SHOWALTLIST 387,441,490
HE_STOPINKMODE 388,441,490

WM_PENEVENT message 36,93, 181,219,297,443,488,
491

WM_PENEVENT submessages
PE_BEGINDATA 428,443,491
PE_BEGININPUT 429,443,491
PE_BUFFERW ARNING 430,443,491
PE_ENDDATA 430,443,491
PE_ENDINPUT 431,443,491
PE_GETINKINGINFO 431,443,491
PE_GETPCMINFO 433,443,491
PE_MOREDATA 433,443,491
PE_PENDOWN 434,443,491
PE_PENMOVE 434,443,491
PE_PENUP 435,443,491
PE_RESULT 436,443,491
PE_SETTARGETS 436,443,491
PE_TERMINATED 438,443,491
PE_TERMINATING 439,443,491

WM_PENMISC message 323,444,491
WM_PENMISCINFO message 90, 275, 276, 283, 447, 461,

490
WM_QUIT message 86
WM_RCRESULT message 69,70,113,285,448
WM_SIZE message 90
WM_SKB message 482
Word list

See also HWL object
coercing 62,63, 108, 133
creating 62, 107, 108, 132
described 9,62, 107, 108,480
destroying 62, 71, 108, 132
files 107, 108, 133
HRC object 101, 102, 133

Word processor 81
Word wrap 476
WriteHWL function 107, 108, 133,312,488

Writing area
overlapping 23
scrolling 31
sizing 23,24,25,29,30,79,131,140

Writing example 27, 62
Writing over a document 80
Writing Palette app1et 11
Writing process 21,39
WS_ window style codes 31
wTryDictionary function 180

z
z-ordering 23
Zooming 82

Index 523

he Win32@ API
liberates developers

from the oppression of 16-bit
programming, cooperative multitasking, and

memory limitations. And it offers the promise of tapping
into a rapidly expanding customer base of Windows NTTM 3.5 and
Windows® 95 users. But there's more to making the 16-bit to 32-bit
transition than just rowing across a river. Whether y'ou're building a
32-bit application from scratch or porting an existing 16-bit
application, ADVANCED WINDOWS offers the core information and
sage advice you need to maximize performance and minimize the
development cycle.

Microsoft Press® books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP.
Call1-800-MSPRESS for more information or to place a credit card order. * Please refer to BBK when placing your order. Prices subject to change.
*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call1-800-667-IllS.
Outside the U.S. and Canada, write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399 or fax +(206) 936-7329.

WELCOME TO THE WORLD OF

WIN DOW S ® 9 5 .----------------------:

The MICROSOFT®

WINDOWS®95

RESOURCE KIT

provides you with all of

the information necessary

to plan for and implement

Windows 95 in your

organization.

ISBN 1-55615-863-7
1376 pages, $49.95 (67.95 Canada)

Three - 3.5" disks -

Detai Is on how to
install, configure, and
supportWindows-95
will save you hours of
time and help ensure
you get the most from
your computing
investment.This
exclusive Microsoft
publication, written in

cooperation with the Windows 95 development team, is the perfect technical companion for
network administrators, support professionals, systems integrators, and computer professionals.

The MICROSOFTWINDOWS 95 RESOURCE KIT contains important information that will help you
get the most out of Windows 95.Whether you support Windows 95 in your company or just
want to know more about it, the MICROSOFTWINDOWS 95 RESOURCE KIT is a valuable addition
to your reference library.

Microsoft Press® books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP.
Call1-800-MSPRESS for more information or to place a credit card order.* Please refer to BBK when placing your order. Prices subject to change.

*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115.
Outside the U.S. and Canada, write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399, or fax +(206) 936-7329.

Microsoft Press

"No Windows
programmer
can afford to be
ignorant of the
techniques
descrioed in
these pages. II
From the Foreword by
Charles Petzold

RNIMHTIUN
TEtHNlUUES
IN WIN32'

Develo(:l!:f
Netwoik

This book provides all the infor­
mation you need to create 32-bit
sprite-based animation.
Thompson's approach is object
oriented: he streamlines the pro­
cess of creating a graphics engine
by using the Microsofe
Foundation Classes (MFC) to take
care of the tasks all Windows®­
based applications have in com­
mon, and he derives from MFC

classes a set of c++ classes that
implement an animation engine.
As the book progresses from

. chapter to chapter, you'll develop
a set of C++ classes to deal with
device-independent bitmaps,
palettes, sprites, and sounds. The
sample code includes a static­
link library built from the c++
classes developed in the book.
You can use this library to create
your own applications.

If you want to learn how to create
sprite-based animation in
Windows 95 and Windows NT™,
from bitmaps to full animation
scenes that even include sound,
there's no better source of in for­
mation and inspiration than
ANIMATION TECHNIQUES INWIN32.

Microsoft Press® books are available wherever quality books are
sold and through CompuServe's Electronic Mall-GO MSP.

Call1·800-MSPRESS for more information or to place a credit card order. *
Please refer to BBK when placing your order. Prices subject to change.

*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander
Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115.

Outside the U.S. and Canada, write to International Coordinator, Microsoft Press,
One Microsoft Way, Redmond, WA 98052-6399 or fax +(206) 936-7329.

MicmsoftPress

The Microsoft® Visual
C++™ d~v~lopment
system offers an

exciting new way to
create Windows™-based applications.

Now you can combine the power of object-
oriented programming with the efficiency of the C

language. The application framework approach in Visual C++ version 1.5-
centering on the Microsoft Foundation Class Library version2.5-enables
programmers to simplify and streamline the process of creating robust,
professional applications for Windows.

INSIDE VISUAL C++ takes you one step at a time through the process of creating
real-world applications for Windows-the Visual c++ way. Using ample
source code examples, this book explores MFC 2.5, App Studio, and the
product's nifty "wizards"-App Wizard and Class Wizard-in action. The book
also provides a good explanation of application framework theory, along with
tips for exploiting hidden features of the MFC library.

Whether you are relatively new to programming for Windows or you are an
old dog ready for new tricks, Kruglinski's insider expertise makes INSIDE

VISUAL C++ the fastest route to mastering this powerful development system.
Microsoft Press® books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP.

CalI1-800-MSPRESS for more information or to place a credit card order.*
Please refer to BBK when placing your order. Prices subject to change.

*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MI S 3C7, or call 1-800-667-1115.
Outside the U.S. and Canada, write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399 or fax +(206) 936-7329.

Microsoft Press

PR ·S GuIlE TO Pm SERvIcEs FOR MICROsOFr WNJowr 95
explains how to create appli ions that use the Microsoft Windows 95
Pen Application Programmin Interface (API). Among other featu res ,
Microsoft pen services provide the ability to collect data from a pen tablet
and then recognize the data s text, or render the pen data as " ink, "

I.......... which can be stored and dis layed. Although the full implementation of
• Microsoft pen services is re uired on any PC that collects, recognizes ,

or stores the pen data, every PC running icrosoft Windows 95 contains a subset
of pen services that allow stored ink to b displayed.

The first section of PROGRAMMER'S GUIDE TO PEN SERVICES FOR MICROSOFT WINDOWS95

provides an overview of pen-based computing that describes the architecture and
components of the Pen API , supplemented with sample code. The second section
is a complete reference to Pen API functions ,
structures, messages, and constants. Also included
is a glossary of terminology specific to pen-based
computing.

Topics covered include:
• The architecture of the Pen API

• Adding pen functional ity to an
with minimal effort

..
• How an application gets input from a pen

The definitive guide

to creating pen-aware
applications for

Windows 95.

device, and how it collects and modifies this data

• Converting raw pen input to usable characters

• Proper techniques for writing a pen-aware
application, with warnings and tips

• Requirements and design of a recognizer

• Changes and improvements to the Pen API

• How to write a 32-bit pen-aware application

If you're creating pen-aware applications for Microsoft
Windows·, PROGRAMMER'S GUIDE TO PEN SERVICES FOR

MICROSOFT WINDOWS 95 is an essential reference.

Windows/ Programming/ Mobile Computing

ISBN 1-556 15-835- 1

9 0 0 00

U.S.A. $27.95
U.K. £25.99
Canada $37.95 Microsoft-Press 9 7.8 1556 15 8 3 5 3

