

Undocumented Windows™

ANDREW SCHULMAN
DAVID MAXEY

MATT PIETREK

Series Editor:

Andrew Schulman

•TT
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California
New Yorl< Don Mills, Ontario Wokingham, England
Amsterdam Bonn Sydney Singapore Tokyo Madrid

San Juan Paris Seoul Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to distinguish their prod
ucts are claimed as trademarks. Where those designations appear in this book and
Addison-Wesley was aware of the trademark claim, the designations have been printed
in initial capital letters.

The author and publisher have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connec
tion with or arising out of the use of the information or programs contained herein.

Library of Congress Cataloging-in-Publication Data

Schulman, Andrew.
Undocumented Windows: a programmer's guide to reserved Microsoft

Windows API functions / by Andrew Schulman, David Maxey, and Matt
Pietrek.

p. cm.
Includes index.
ISBN 0-201-60834-0
1. Windows (Computer programs) 2. Microsoft Wmdows (Computer

program) I. Maxey, David. II. Pietrek, Matt. III. Title.
QA76.76.W56S38 1992
OOS.4'3--dc20

Copyright © 1992 by Andrew Schulman and David Maxey

92-14831
CIP

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocop
ying, recording, or othetwise, without the prior written permission of the publisher.
Printed in the United States ofAmerica. Published simultaneously in Canada.

Series Editor: Andrew Schulman
Managing Editor: Amorette Pedersen
Production Editor: Andrew Williams
Line drawings: Jennifer Noble
Set in 10.5-point ITC Galliard by Benchmark Productions

3 4 5 6-ARM-96959493
Third printing, December 1993

Thanks to Phar Lap for providing the foundation on which we based the graphics.

CONTENTS

Preface

Acknowledgments

CHAPTER 1 This Was Not Supposed to Happen

Backdoor Programming
Dynamic Linking Aids Snooping
InsideNDW
Open Tools: No Longer Undocumented Windows
Finally, Undocumented Windows

The Saga ofFree System Resources
The Problem with Protected Mode

Further Inside the Norton Desktop
Microsoft's Use of Undocumented Windows
Undocumented Debugging
Microsoft Commercial Applications and Language Products

The "Chinese Wall)) and FTC)s Investigation ofMicrosoft
The Geary Incident

Inside Windows
Why Aren't They Documented?
Fear, Loathing, and Portability

Ix

xvi

1

5
5
7

12
14
14
21
26
28
34
36
40
42
46
48
51

iii

iv UNDOCUMENTED WINDOWS

What About NT? 55
Safe Use ofUndocumented Functions 56

CHAPTER 2 Examining Windows Executables 59

Using MAPWIN 64
Using EXEDUMP 73
Producing .DATFiles with EXEDUMP -EXPORTS 79
Quickie Examinations with EXEDUMP -MAGIC and -DESC 80

EXEUTIL 81

Finding Undocumented Functions with EXEUTIL -FINDUNDOC 82

Finding Calls to Undocumented Functions with EXEUTIL -UNDOC 85
Finding Calls to API Functions with EXEUTIL -IMPORTS 89
Finding DLL Changes with EXEUTIL -DIFF 90
Finding Function Equivalences with EXEUTIL -DUPES 92

CHAPTER 3 Disassembling Windows

Disassembling TASIa1AN

TASIa1AN Techniques

Examining API Functions and Data Structures

CHAPTER 4 Tools for Exploring Windows

Windows Spies, Walkers, and Debuggers
HEAPWALI(

SPY

CodeView for Windows
WDEB386
Debug Version ofWindows

Other Snooping Utilities

Soft-ICE/Windows
Disassembly with WINICE
WINICE Breakpoints

WINICE System-Information Commands

The WINIO Library
An Interactive Command Shell

95

103
122
126

135

135
136
136
137
137
138
139
142
143
145
148
151
153

CONTENTS v

Going Resident 156
Installing Event Handlers 157
WINIO Menus 159
WINIO Clickable Lines 161

CALLFUNC: Dynamic Linking at Your Fingertips! 165
CALLFUNC GP Fault Handling 171

Watching Undocumented WM_ Messages with SNOOP 173
Tracing Messages Through WndProc Calls 177
Deliberately-Intrusive Debugging 179

Watching Interrupts with WISPy 180
Starting a DOS Box 184
Fixing WINIO 185

Windows Browsers 188

CHAPTER 5 KERNEL: Windows System Services 189

Ver~onsofKE~EL 189
KE~ELData Structures 191
Handles, Handles Everywhere 193
KE~ELExports and Imports 202
KE~EL Initialization 202
Undocumented KERNEL Functions 204
Using the Undocumented Functions 207

CHAPTER 6 USER: Microsoft
Windows User Interface 399

USER Data Structures 399
USER Heaps 400
USER Objects 402

Global Heap Objects 402
User Local Heap Objects 402

USERWALK 406
USER Exports and Imports 411
USER Undocumented Functions 411

vi UNDOCUMENTED WINDOWS

USER Composition
Using Undocumented USER Functions

412
413

CHAPTER 7 Undocumented Windows Messages 517

Built-in WndProcs 533
Undocumented Control Messages 533

CHAPTER 8 GDI 535

GDI Data Structures 536
GDIWALK 537
GDI Heaps 543
GDI Exports and Imports 543
GDI Undocumented Functions 544
Using Undocumented GDI functions 545

CHAPTER 9 SYSTEM 601

CHAPTER 10 ToolHelp: A Partial
Replacment for Undocumented Windows 611

What Undocumented Functionality Can ToolHelp Replace? 612
Assorted ToolHelp Programming Considerations 614
Using ToolHelp in Your Product 616
The ToolHelp Functions 617
The·Heap Functions 617
The Windows Data Structure Walking Functions 623
Debugger and Miscellaneous Functions 626
Sample Program: WinWalk 639

Global Heap, Hex Dump, and Local Walk 639
Task List 641
Module List 641
Class List 641

Sample Program: Coroner 652
Running Coroner 652
The Coroner Code 653
Suggested Enhancements 668

APPENDIX A WINIO Library Reference

WINIO Differencesfrom Stdio
WINIO Functions
WMHANDLER Functions

APPENDIX B Annotated Bibliography

Index

CONTENTS vii

671

673
674
680

683

693

PREFACE

Welcome to the exciting world ofWindows internals!
Most Windows programming books, even the good ones, have a certain predict

ability: you know in advance what topics are going to be covered and what the code
will look like. Open the book to a random page, and you'll find calls to TextOut(),
BeginPaint(), and other familiar Windows functions.

We feel confident that, if nothing else, the contents of this book will surprise most
Windows programmers. Open the book to a random page, and the chances are good
that you will find something you've never seen before. The topics covered-walking
task lists, disassembling Windows functions, treating HWNDs as pointers, seeing what
interrupts WinExec generates, shifting atom handles right by 2, and so on-are impor
tant aspects ofWindows programming, but have been neglected in most treatments of
the subject. Furthermore, even the "look" of our code is different: you see main()
instead ofWinMain(), printf() instead of TextOut(), and tiny functions that handle a
single message, instead of massive fourteen-page switch statements.

Why Undocumented Windows?
We might as well tell you that, at first, at least one of us did not want to do this book.
For sure, we wanted to do a book on Windows programming. We had just finished
the book Undocumented DOS, and were looking forward to working for a change with
a nice, clean, documented interface: the Windows API.

What happened was that, almost immediately, we stllmbled into the problem of
undocumented Windows. At work, one of the authors needed to look at some com
mercial Windows programs, and kept running into calls to functions that weren't
documented in the Windows Software Development Kit (SDK), the Device Driver
Kit (DDK), or even in Microsoft's "Open Tools" material. Mainstream Windows

ix

x UNDOCUMENTED WINDOWS

programs were calling functions like GlobalMasterHandle(), GetHeapSpaces(), and
SetInternalWindowPos(), that just weren't documented anywhere. Weird!

Well, not so weird. The experience of working on Undocumented DOS didn't
leave us completely unprepared for the possibility that Windows too, despite the rela
tive newness of its first usable version (3.0, May 1990), would already have "insider"
knowledge and undocumented functions.

We also began to see a lot ofscattered notes about undocumented Windows flying
around networks like CompuServe and Usenet. As with undocumented DOS, the ran
domness of these notes was bothersome. For example, someone would see that some
Microsoft program was calling InitTask(). Hmm, InitTask() isn't in WINDOWS.H!
Aha, they would say, here's the "smoking gun": proof that Microsoft uses undocu
mented functions and that the FTC ought to do something about it. A few messages
later, it would turn out that InitTask() is part of the startup code used by every Win
dows program in existence. Anyhow, it quickly became clear that it would be good to
systematize all of this, and turn out a standard document on undocumented Windows.

Almost two years later, here it is. Undocumented Windows is about as complete as
possible for the core of Windows: KERNEL, USER, and GDI. This book systemati
cally covers undocumented functions, data structures, and messages in Windows 3.0
and 3.1, retail and debug versions, in Standard and Enhanced mode. In addition, we
cover various undocumented aspects of documented functions and messages, such as
the true meaning of InSendMessage()'s return value, or the wParam for WM_
NCPAINT.

In other words, it took an entire book just to cover KERNEL, USER, and GDI.
There is another entire low-level area, some of it undocumented and some of it just
very obscurely documented, that includes DPMI, virtual device drivers (VxDs), the
Virtual Machine Manager (VMM), INT 2Fh and other software-interrupt services
provided by Windows, device drivers, the Windows DOS extenders, file formats,
WinDebug, Windows' interactions with TSRs and memory managers, the SmartDrive
interfaces, and so on, that requires an entire separate book. (Yes, we're working on it!
We're thinking ofcalling it Dirty Windows.)

Most of the work on this book was done during the two-year reign of Windows
3.0 (some might call this period Life Under the UAE). Some of the functions that
were undocumented in 3.0 become documented in 3.1. "Became"? Actually, this hap
pened because of mounting pressure on Microsoft to document some of the key func
tions that many commercial developers were using anyhow. That some of these
functions have been documented in 3.1 underlines, rather than undermines, the use
fulness of this material: if, as the record shows, some of the most useful undocu
mented functions are eventually going to be documented by Microsoft, you might as
well use them now. Think of it as a way to get a two-year jump on your more stodgy
competition.

What's In This Book?
Ifyou're looking at someone else's copy of this book, hopefully it will simply fall open
to "the good parts." If not, here are some of the parts we're most pleased with:

PREFACE xi

• How to be a "drag and drop" server in 3.1 and 3.0 (See DragObject() in
chapter 6.)

• Where are the five famous DCs? (See DCE in chapter 6.)
• How are atoms managed? (See Atom Table in chapter 5.)
• How do all the different Windows handles (tasks, instances, modules,

PSP/PDB, task queues) relate? And, given one type of handle, how do I
derive another? (See the introduction to chapter 5.)

• What does an HWND point to? (See WND in chapter 6.)
• What does an HDC point to? (See DC in chapter 8.)
• What are those [compatibility] flags in Wmdows 3.I? (See GetAppCompat

Flags() in chapter 5.)
• What exactly is the "free system resources" problem, and how did USER's

local heaps change from Windows 3.0 to 3.I? (See the introduction to chap
ter 6).

• Where do messages go? (See the Task Queue in chapter 5, and the System
Message Queue in chapter 6.)

• What does WinExec() return? (See chapter 5.)

Actually, there's a lot more than this, but this list provides some idea of the ques
tions that this book answers.

What Handles Point To
Of course, some of these undocumented functions, messages, and data structures
can-if used in accordance with the safety and hygiene tips in chapter I-be incorpo
rated into Windows programs. Beyond this, however, really what we hope this book
provides is understanding.

In the sense we mean it, "understanding" almost seems like a dirty word in Wm
dows programming circles. The phrase ''you can use a handle without knowing what it
points to" is repeated so often, it has become the mantra of Wmdows programming.
Like any mantra, it is best repeated without thinking too carefully about its implica
tions.

In this book, we tell you what handles point to. For example, an HTASK, such as
GetWindowTask() returns and EnumTaskWindows() expects, is the segment (selec
tor) portion of a far pointer to the Task Database. Can you use an HTASK without
knowing what a Task Database is? Absolutely. Usually you should use an HTASK with
out worrying about what it actually points to. But in some cases, knowing how Win
dows' internal data structures really look can yield crucial techniques. As an example,
check out HANDLES.H and HANDLES.C in the introduction to chapter 5.

More important, while "knowing and forgetting" is a good educational technique,
"not knowing" isn't. Knowing what a Task Database is, and then choosing to forget

xii UNDOCUMENTED WINDOWS

this when working with an HTASK, is completely different from the being utterly
clueless about what an HTASK is.

At its extreme, the whole "you can use a handle without knowing what it points
to" abstraction encourages a state of deliberate cluelessness. This works okay in the
short run, but it also has the danger of producing programmers who program without
understanding, capable only of cautiously cut-and-pasting code fragments from
Petzold's book and the SDK examples. This is the Windows-specific version of what
one recent engineering textbook describes as "programmers who lack a clear under
standing of how or why their programs make real things happen." Abstractions and
interfaces are a crucial engineering discipline, but:

The abstractions work sufficiendy well now that our curricula (and, for
that matter, our job descriptions) accommodate specialists whose under
standing of computer systems is cripplingly incomplete. We confer com
puter science degrees on theorists who may be helpless when programming
is required, on hardware designers to whom the high-level structure of the
system to which they contribute is a mystery, and on programmers who
lack a clear understanding of how or why their programs make real things
happen. Often what passes for technical breadth takes the form of multiple
specialties: Students exhibit pockets oflocal facility, unable to connect them
into an effective understanding of the system as a whole. Such people can
and do perform useful functions, but their potential for creativity is limited
by their acceptance of the boundaries of their specialties. They shy from the
challenge to venture beyond familiar approaches, to reshape problems, to
develop new interfaces and revise existing ones; they accept the mysterious
rather than unveiling it, over-sensitized to their own limitations. They are,
in effect, imprisoned by the abstractions they have been taught.

Outstanding students, in contrast, somehow develop a perspective that
illuminates the interfaces between technologies, rather than the technolo
gies themselves, as the most important structural elements of their discipl
ine. They view the interfaces with respect but not reverence; they examine
both sides of an abstraction, treating it as an object of.study rather than a
boundary between the known and the intractably mystical (Stephen A.
Ward and Robert H. Halstead, Jr., Computation Structures, Cambridge
MA: MIT Press, 1990).

Sound familiar? If Windows programmers are to go beyond the state of fearful
cut-and-pasting, of using massive switch statements because that's what the SDK
examples do, and of blindly following by rote all the other nasty and unnecessary prac
tices put forward in the SDK, it will be helpful if they examine what's on the other
sound of the boundary between a HANDLE on the one hand, and a real, live data
structure on the other.

Doesn't this go against the whole notion of encapsulation, black boxes, and
"information hiding"? These are absolutely crucial tried-and-true engineering princi
ples, yet they seem to dictate that everything be done on a "need to know" basis; it

PREFACE xiii

would follow, then, that system internals, such as we present them in this book, are
one type of thing you should definitely not need to know, maybe even that it's bad to
know them.

It's absolutely true that encapsulation, black boxes, and information hiding are
good things. None of us could get anything done if nothing was hidden from us, if
everything was documented. (Jorge Luis Borges has a beautiful story, "Funes the
Memorious," on this very theme.) In many ways, we wish the designers of the Wm
dows API had done more to hide what goes on in the internals of Windows. For
example, why should programmers have to mess with MakeProcInstance()? This
could, and should, have been hidden from us! Much of the mechanics of Windows
could have been hidden behind higher-level programming interfaces. As the WINIO
library presented in chapter 4 shows, one can present programmers with a simple,
familiar interface like printf(), and still have it internally "do the right thing."

But, as with everything else, there is a price paid for hiding system internals. Jeff
Duntemann, in an article on "The Tragedy of the Black Box" (Dr. DobbJs Journal,
December 1991) has noted what the price is: "my lack of understanding of the hidden
parts of the system cripples my understanding of those parts of the system that I can
see." As Jeff points out, this is particularly true when the "black box" isn't complete,
and you have to tinker with the system.

At times, even Microsoft itself seems to understand that the idea of programming
on a "need to know" basis doesn't work. For example, the Windows SDK includes the
source code for the default window procedure, DetWindowProc(). With this code,
you can see what default handling Windows provides for different messages. As a con
sequence, the default window procedure is one of the few really well-understood parts
of the Windows API. As another example, the DDK includes source code for many of
the drivers that come with Windows; even just browsing through this code gives you a
much better feel for what Windows does.

Anyone who has ever traced through a Windows API routine in CVW or Soft
ICE/Windows will know what we're talking about here. One aim of this book is sim
ply to provide a lot more information on what Windows looks like "inside," and
(especially in chapters 1-4) to provide guidance on how to go about exploring its
internals on your own. Programmers necessarily construct mental models of the sys
tems they work on; needless to say, it helps if this model actually reflects reality in
someway.

What's on the Disk?
As with Undocumented DOS, the disk accompanying this book is not just a carbon
copy of the source code that appears in the book. Of course, all the sample programs
from the KERNEL, USER, and GDI chapters are here, but there are also many ready
to-run utilities. For example:

• MAPWIN (chapter 2) displays the names ofWindows API functions called by
a program or DLL, and the names of functions provided by DLLs.

xiv UNDOCUMENTED WINDOWS

• EXEUTIL (chapter 2) shows what undocumented Windows API functions a
program or DLL uses.

• RESDUMP (chapter 3) displays an textual representation of the resources
(dialog boxes, menus, string tables, accelerator tables, and so on) in a Win
dows program or DLL.

• CALLFUNC (chapter 4) is a Windows interpreter that provides instant access
to Windows API calls: to try out a function call, you can just type it in, with
out having to write or compile a program.

• SNOOP (chapter 4) is a message "spy" that focuses on undocumented mes
sages and on the behavior of the Windows built-in window procedures.

• WISPy (I Spy for Windows; chapter 4) is a protected-mode interrupt intercep
tor that logs the interrupts in a window.

• ATOMWALK (chapter 5) displays every atom in every atom table on the sys
tem.

• WINMOD and WINTASK (chapter 5) provide detailed information about
modules and tasks.

• USERWALK (chapter 6) and GDIWALK (chapter 8) provide detailed infor
mation about USER's and GDI's local heaps, and of USER and GDI objects
such as WNDs and DCs.

• CORONER (chapter 10) is a postmortem analyzer, similar to Dr. Watson and
WmSpector.

For reasons of space, some of these utilities do not come with source code. How
ever, there is enough depth to some of these programs that you will be able to use
them for quite some time, without worrying about source. By time you do want the
source, our forthcoming book on building Wmdows tools, The DOS Programmer)s
Guide to Windows, will hopefully be out. We're really not practicing "information hid
ing" here; we just ran out of room!

Most of these utilities are written using the WINIO library, which also comes on
the accompanying disk, as .LIB files for Borland C++ and Microsoft C/C++.

There are several general-purpose header files, such as HANDLES.H (with HAN
DLES.C, for KERNEL data structures), USEROBJ.H, and GDIOBJ.H.

Who Are You?
You will get more out of this book ifyou know the C programming language than if
you don't. All the source code is compatible with Borland C++ 3.0 and 3.1, and with
Microsoft C 6.0 and Microsoft C/C++ 7.0. On the other hand, almost everything here
is applicable to other languages, including Turbo Pascal for Wmdows (TPW) and Visual
Basic (VB). The bibliography recommends several books that you can use to bridge the
gap between, say, our C-centric explanation of GetHeapSpaces() in Undocumented
Windows and what you would have to do to call GetHeapSpaces() in TPW or VB.

Obviously, it will also aid your understanding of this book if you are familiar with
the documented Windows API. It would be difficult to fully appreciate

PREFACE xv

GlobalMasterHandle(), for example, ifyou've never used GlobaWloc(). On the other
hand, DOS programmers with only a smattering of Windows experience may find
that, seen from the angle of Undocumented Windows, Windows programming is a little
more interesting, and more open and accessible, than they first suspected. Ifyou liked
mucking around in undocumented DOS, you're going to love Windows, because
Windows is a much bigger mess than plain-vanilla DOS ever was.

For Windows "power users" who do not consider themselves programmers, there
are a few parts of this book that might prove interesting. For example, check out the
discussion of [compatibility] flags in chapter 5's section on GetAppCompatFlags(), or
the dissection of Task Manager in chapter 3. Several of the utilities on disk should be
useful to someone who likes to go Easter Egging in Windows.

What Versions of Windows?
As noted earlier, our goal here is to cover KERNEL, USER, and GDI in Windows
3.0, 3.1, retail and debug versions, in Standard and Enhanced mode.

In other words: no real mode! This book simply assumes that Windows 3.0 real
mode doesn't exist. Certainly, it ought never to have existed. Unlike many other Win
dows programming books that are revisions of earlier books written during the bad
old days of Windows 2.x, this is an entirely new book and is not carrying around any
baggage from real mode. The assumption throughout is that Windows is a protected
mode DOS extender. If, for whatever reason, you feel that Windows 3.0 real mode is
important, you are not going to be happy with us. Nor is there much here on Win
dows versions prior to 3.0.

On the other hand, we think that version 3.0 is still quite important. Just because
3.1 is out doesn't mean that 3.0 has fallen off the face of the earth. Remember, it was
almost two years from the release of 3.0 to the release of 3.1; there are a lot of copies
of 3.0 out there, still in use. Compatibility with 3.0 Standard and Enhanced modes is
important. In some cases, we show how to implement a new 3.1 feature on top of 3.0.

Looking to the future, how about Win32 and NT (New Technology)? It's impor
tant to separate the two: the Win32 API is the future of Windows programming, yet
NT seems as if it will be a niche product (how many of your customers have been
clamoring for C2-level security and the ability to run on RISC processors?). One
future product that seems like a winner is Win32s, Microsoft's planned "subset" of
Win32 that will run right on top of Windows 3.1. The Win32 API is mentioned in
various places throughout this book. In some cases, functions and messages that were
undocumented in 3.x are documented in Win32. At the same time, even some docu
mented features of Windows, such as the selector-manipulation functions, will not be
supported in Win32. In particular, it seems that ToolHelp will not be part ofWin32.

Speaking of ToolHelp, it is a crucial part of this book. With ToolHelp, Microsoft
has opened up Windows a little to provide an interface to Windows 3.0 and 3.1 inter
nals. ToolHelp does not provide access to the actual data structures used by Windows,
but to a (largely read-only) layer above them. For example, a ToolHelp TASKENTRY
structure is not identical to a Task Database, and changing fields in a TASKENTRY
will not alter the behavior of any tasks. But in many cases, ToolHelp does the job, and

xvi UNDOCUMENTED WINDOWS

should be used wherever possible instead of the actual undocumented data structures.
Chapter 10 of this book is devoted to ToolHelp, and is far more extensive than the
chapter on To01Help that Microsoft provides in the 3.1 SDK Programmer)s Reference.

There is no contradiction between using ToolHelp and using undocumented
Windows: in fact, they can work quite well together in the same program. There are
many examples throughout the book of using ToolHelp, and then dropping down to
undocumented Windows (the actual data structures) when the layering ToolHelp pro
vides is not adequate.

How Did We Find This Stuff Out?
Something almost everyone asks us is, "How did you find this stuff out?" Chapters 1
through 4 of this book are really an extended answer to that question. To start with,
Microsoft doesn't do very much to hide undocumented functions. The newexecut
able (NE) format used by Windows is almost designed to expose the names of undoc
umented functions. We started reverse engineering using the tools Microsoft provides,
such as EXEHDR and CodeView for Windows (CVW). We gradually built better
tools for exploring Windows, many of which are on the accompanying disk. Other
tools we built became a new product, Windows Source, available from V Communica
tions. When Nu-Mega's Soft-ICE/Windows came out, we greedily pounced on that.
Finally, we built several disassemblers of our own which we found very handy, but
which are not yet quite ready for prime time.

Beta versions of the Windows 3.1 SDK came with debug versions of Windows
with complete CV debug symbol tables; coupled with a disassembler such as Windows
Source that can use CV symbol tables, this helped tremendously. Unfortunately, these
complete symbol tables were stripped down in the final release of the 3.1 SDK

In addition to reverse engineering, we also tried to find as much information as we
could in sources like old Windows 2.x documentation, header files that come with the
DDK, and the Win32 API.

Acknowledgments
But really, the way we found out much of what's in this book, was with a lot of help
from our friends. The following were especially helpful in helping us over the rough
spots:

Len Berk, John "Knuckles" Benfatto (Phar Lap), Paul Bonneau (Windows/DOS
Developer's Journal), Ralf Brown, Ron Burk (Windows/DOS Developer's Journal),
Geoff Chappell, Bob Chiverton, Alan Cobb, Thuan-Tit Ewe (Metaware), Michael
Geary, Frank Grossman (Nu-Mega Technologies), Brad Kingsbury (Symantec), David
Lection, Bill Lewis (Qualitas), Ron Mann (Praxsys), Mike Maurice, Darren Miclette
(IBM WIN-OS/2), Robert Moote (Phar Lap), Duncan Murdoch, Dan Norton,
Andrew Pargeter, Jeroen Pluimers, Jeff Richter, Art Rothstein, Enrique Salem (Sym
antec), Brett Salter (Periscope), Michael Shiels, Richard Smith (Phar Lap), Victor

PREFACE xvii

Stone (Borland), Phil Taylor (Borland), Frank Van Gilluwe (V Communications), and
Jonathan Zuck.

Also, there are a surprisingly large number of people who, for one reason or
another, prefer to remain anonymous. All we can say is, thanks!

Our literary agent, Claudette Moore, got this book started.
The staff at Benchmark Productions and Addison-Wesley, especially Andrew Wil

liams, Amy Pedersen, Jennifer Noble, Chris Williams, and Abby Cooper, made sure
this book got out.

This book could not have been produced without the CompuServe Information
Service. Practically all work on this book occurred over CompuServe. However,
there's no need to formally express our indebtedness to CIS, because our monthly
credit-card bills already reflect this.

Andrew Schulman: During the long period that I was working on Undocumented
Windows, my employers at Phar Lap Software showed unusual forbearance and sup-
port. Considering how much this book cut into my work, Richard Smith, John
"Knuckles" Benfatto, and Robert Moote were absurdly understanding and supportive.
My coworkers, particularly Rob Adams, Andre Sant'Anna, Diego Escobar, Karl
Kinsella, Maria Vetrano, and Alan Convis, helped with this book in various ways.

Trudy Neuhaus and Neil Rubenking at PC Magazine helped immensely with a
two-part series on undocumented Windows that, much transformed, eventually
became chapter 1. Trudy has put up with intolerable delays in other articles because of
this book. Thanks!

Gretchen Bilson at Microsoft Systems Journal and Jon Erickson at Dr. DobbJs Jour
nal were also incredibly understanding about delays caused by this book.

Above all, I want to thank Ray Valdes, Ray Duncan, Claudette Moore, Pete
Olympia, Randy Wallin, Jon Udell, and Tony Rizzo, for providing opportunities and
encouragement over the years.

Especially during the last few months ofworking on this project, my son Matthew
and my wife Amanda Claiborne put up with me in various ways. Thanks ! In spite of
obstacles put in her way by this book, Amanda has won a Mellon Fellowship at Bran
deis. Matthew's fifth birthday is approaching, and he is nearing completion on his ini
tiation into the Teenage Mutant Ninja Turtles. Cowabunga, dude!
David Maxey: I particularly want to acknowledge the contribution of my family, for
being so tolerant of the empty place at the dinner table, and especially ofmy wife, who
stood in for me in my role as a normally functioning human being.
Matt Pietrek: I would like to thank my wife, April, and my "boys," Gunther and The
odore, for letting me work the many nights and weekends that this book required. I
would also like to extend thanks to my coworkers, especially E.S., E.B, and P.E. [The
editor feels obligated to point out that the said ".boys" are in fact two dachshunds.]

Andrew Schulman (CIS 76320,302; andrew@pharlap.com)
David Maxey (CIS 70401,3057)
Matt Pietrek (CIS 76117,1720)

June 1992

CHAPTER • 1

This Was Not Supposed to Happen

A key goal of Microsoft Windows is to be more orderly than MS-DOS. DOS is a
"house of cards," with memory-resident (TSR) programs, device drivers, disk caches,
memory managers, DOS extenders, networks, and multitasking environments (such as
Windows itself) all competing for control of your machine. From the software devel
oper's perspective, Windows often looks a lot saner. It provides a wide-ranging and
seemingly all-inclusive collection of services-such as protected mode, multitasking,
dynamic linking, window management, and graphics-that plain-vanilla DOS doesn't
offer. Often, Windows lets developers concentrate on making a program do what it is
supposed to do rather than on the underhanded shenanigans-including the use of
undocumented system functions-that are necessary to create a great DOS application.

For example, since Windows 3.x runs applications in protected mode, you no
longer need to worry about expanded memory, overlays, or other methods for shoe
horning software into 640K As with any other protected-mode DOS extender (which
is largely what Windows is), the 640K limit is gone, and along with it a whole class of
DOS programming problems.

Another example is TSR (terminate and stay resident) programming. To write a
robust TSR, you must use undocumented DOS functions; you simply have no choice.
But in the multitasking Windows environment, all applications are automatically
memory-resident, so the problem of writing TSRs disappears. (This holds for Win
dows applications only; if you want to write DOS TSRs that behave properly under
Windows, you actually have an additional set of worries.) Furthermore, dynamic link
ing in Windows largely (though not entirely) eliminates the need for programs to
hook interrupts to provide services to other programs.

The most visible contrast between Windows orderliness and DOS messiness is in
graphics programming. DOS doesn't provide setvices for doing graphical or even full
screen character-mode programs such as a spreadsheet, word processor, or CAD pro
grams. The ROM BIOS video services that do exist are too slow. Consequently, most
major PC commercial applications write directly to video memory, program the video
controller, and generally perform various low-level, exotic dances with the video

1

2 UNDOCUMENTED WINDOWS

hardware. Windows, on the other hand, makes these sorts of tricks unnecessary-and,
in fact, pretty much forbids them-by providing a relatively device-independent collec
tion of graphics functions, with moderately acceptable performance, that Windows
applications politely call.

The idea of "undocumented Windows," then, is really somewhat alarming. Using
undocumented functions is exactly the sort of problem Windows was supposed to
solve! Making use of functions that Microsoft has implemented but not documented
fits in perfectly with the free-wheeling style of DOS, but it seems to contradict the
entire spirit and purpose ofWindows. By providing an API much more extensive and
capable than DOS's, Windows is supposed to make such low-level tricks unnecessary.

In much the same way that high-level programming languages are supposed to
shield programmers from having to know assembly language or understand micropro
cessor architecture, the Windows API is supposed to shield programmers from low
level tricks. This intent is a little amusing, because the Windows API itself is so
low-level that it is notorious for requiring eighty lines of code to spell "hello world!"
on the display. But these eighty lines of code are in fact quite high level in that they
should work on any machine that can run Windows, including machines that are not
fully PC-compatible, such as Japanese NEC computers.

That high-level coding is one of the key principles ofWindows is spelled out nicely
in the text of a Microsoft invitation to a Windows hardware-engineering conference:

Why focus on Windows PCs?
Because Microsoft Windows creates the opportunity for PC hardware

vendors to innovate freely when designing new systems and subsystems.
Windows, unlike the MS-DOS standard that preceded it, leaves open the
door to engineering innovation by shielding the software writer from any
need to write directly to the hardware. Any personal computer capable of
running Windows smoothly can support all of the software written to the
Windows application programming interface (API). As a result, the engi
neering focus has shifted. In the new Windows world, it's hardware innova
tion and performance that count, not hardware conformance. ("Windows
Hardware Engineering Conference," 1-3 March 1992, Advance Invitation).

Wouldn't it be great ifWindows could really shift the engineering focus? By writ
ing only to the documented Windows API, we could let Windows move us to radically
improved platforms. Intel wouldn't be happy about it, perhaps, but if everyone played
by the rules and wrote to the documented Windows API, Microsoft might even be
able to move us, our code, and our customers to advanced RISC architectures and
away from the ugly world of segments, IBM compatibility, MS-DOS compatibility,
and all the other boring little issues that loom so large today.

In other words, one of the key ideas behind Windows is that developers should
write to the Windows API and to that alone (note that this API does at present
include at least some TNT 2Ih DOS calls). Unless you're writing a Windows device
driver, you do~'t do any low-level coding. You certainly don't make any undocu-

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 3

mented Windows calls or rely on knowledge about internal Windows data structures.
That would just be resurrecting the evils of MS-DOS!

But how likely a scenario is this? How many commercial Windows applications can
really "play by the rules" and still be marketable, with decent performance and with
the features users expect? The idea that the Windows API can totally replace low-level
coding seems, unfortunately, no more reasonable than the idea that C++ can totally
replace assembly language-in other words, not very reasonable at all.

Actually, the idea that Windows shields programmers from low-level complexity is
a bit of a sham. Most Windows programmers would probably agree that you must be
intimately familiar with the Intel machine architecture (particularly the stack) to be a
really good Windows applications developer; in DOS you can get away without such
knowledge for a fairly long time. One programmer reports that it was not until he
started doing Windows that he ever had occasion to use assembly language or to
examine his compiler's startup code. Portable? High level? Huh?

What we will see in this chapter is that key commercial Windows applications,
including Microsoft's own, use undocumented API calls. In some cases, these calls
have since been documented by Microsoft, though only after developers went ahead
and used them anyway, without Microsoft's blessing. In other words, real-world use of
the Windows API has driven the documentation, rather than the other way around.
Writing only to the documented Windows API sounds great, but it has failed in the
real world.

What went wrong with the lovely notion of Windows programming without
tricks, without low-level, nonportable code, without undocumented shenanigans?
What went wrong, mostly, is that Wmdows succeeded. By winning the operating-system
wars Windows is now paying the price of success: large numbers of programmers are
banging on the system, and they need to make it do all sorts of things for which it was
probably never intended.

The use of undocumented features, in other words, is the inevitable price of suc
cess. MS-DOS paid this price, and now Windows will. Interestingly, Windows too is
now being called a "house of cards."

While solving many old problems, Windows has introduced a number of new
problems. If you think about it, this is hardly surprising: to provide so much more
functionality, the Windows API had to be that much "richer" than that of character
mode DOS; that richness, of course, introduces much more complexity and, hence, a
number ofentirely new programming problems.

For example, while Windows applications run in protected mode and can there
fore enjoy multi-megabytes of memory, real-mode DOS has not gone away and prob
ably won't go away anytime soon. Some Windows programs need access to device
drivers, TSRs, network drivers, absolute memory locations, or even undocumented
DOS functions and data structures. The Windows API, extensive though it is, fails to
provide adequate functionality for communicating with real mode from a protected
mode Windows application. There are plenty of undocumented Windows functions,
however, that do provide this needed functionality.

4 UNDOCUMENTED WINDOWS

Another example: Instead of the asynchronous interrupts that many DOS applica
tions have to worry about, events in Windows arrive in the form of properly behaved
messages. This is a benefit to nonpreemptive multitasking; in fact, the requirement
that a Windows application explicitly ask for its next message is what makes Windows
multitasking nonpreemptive. Rather than hook INT 8 to get timer events, for
instance, a Windows application uses the documented SetTimer() API call to politely
ask for timer messages. Even such timer messages arrive synchronously only when the
application asks for them by calling the GetMessage() function. But, well regulated
though it may be, it is not the behavior that some applications need from a timer-or
from other message sources, for that matter. Often an application needs to know
about something as soon as it happens, even if it's in the middle of doing something
else. Again, one solution is to use undocumented Windows API functions (in this
case, the system-timer functions provided by SYSTEM).

In Windows 3.1, Microsoft has rightly made a big fuss over "drag and drop." It's
a great feature. It was also provided in Windows 3.0 but used undocumented mes
sages, data structures, and functions that only File Manager knew about. In 3.1,
Microsoft documented an entirely new drag-and-drop protocol, but it still has not
documented the original drag-and-drop protocol, which persists in 3.1, and which
allows for the creation of both drag-and-drop clients and servers. Microsoft has not
officially documented how to be a drag-and-drop server, and the publication of an
excellent Microsoft Systems Journal article on that subject ("Drop Everything," by Jeff
Richter) faced opposition from within the company. Chapters 6 and 7 of this book
contain extensive discussions of how to be a drag-and-drop client or server in Win
dows 3.1 or 3.0.

We've been discussing new problems raised by Windows 3.0, but not every situa
tion where a programmer might use an undocumented Windows function is entirely
new. For example, just as DOS support for writing debuggers was until recently com
pletely undocumented and is still incorrectly documented by Microsoft, existing Win
dows debuggers, such as Turbo Debugger for Windows (TDW), Multiscope, and
Microsoft's own CodeView for Windows (CVW), all rely heavily on undocumented
functions. With its "Open Tools" strategy (discussed later in this chapter) and its new
ToolHelp library, Microsoft is making a genuine effort to document some of the key
Windows interfaces needed to write debuggers and other Windows development tools.
However, Windows debuggers, "spy" programs, memory browsers, and the like will
probably continue to use undocumented Windows functions for some time.

For better or worse, Windows commercial application programming has a lot of
the chaos and unruliness that one associates with DOS programming. This is not terri
bly surprising, considering that Windows is incredibly complex, and considering that,
for the foreseeable future, it is an extension to, and not a replacement for, good old
MS-DOS. The widespread use of undocumented functions in Windows applications is
not a deplorable fall from grace either, but a healthy sign of vitality. Developers are
stretching the system's capabilities. As the economist Joseph Schumpeter noted in a
somewhat different context, "If the system was perfect, it wouldn't work." Bless this
mess!

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 5

Backdoor Programming

Undocumented Windows API functions, messages, and data structures are just one
part of the Windows programming netherworld. Other parts of this netherworld
include

• The DOS Protected Mode Interface (DPMI)
• The Windows Device Driver Kit (DDK), in particular Enhanced mode Virtual

Device Drivers (VxDs, or .386 files)
• The "Open Tools" materials provided by Microsoft to Independent Software

Vendors (ISVs)
• The ToolHelp dynamic link library (made available in Windows 3.1 but also

backward-compatible with Windows 3.0)

Windows is much more than simply the functions described in the WINDOWS.H
header file that comes with the SDK and with SDK replacements such as Borland
C++. WINDOWS.H does not come close to defining the extent of the Windows pro
gramming universe.

The interfaces listed above are of much wider interest than one might at first sus
pect. For example, the Microsoft Windows Device Driver Kit (DDK) should interest
not just those few who are writing Windows device drivers. The DDK is the only place
that Microsoft documents the INT 2Fh interface that Windows provides to applica
tions running in the Enhanced mode DOS box. Because it is provided to the legions
of DOS applications, this INT 2Fh interface is potentially of much wider interest than
the Windows API itself, which is only directly accessible to Windows applications, not
to DOS applications running under Windows.

Likewise, Enhanced mode "virtual device drivers" or VxDs (.386 files) are often
really not device drivers at all. VxDs are the most powerful Windows applications one
can write. Any time something looks impossible in Windows, it's often trivial to do
from a tiny VxD. Some programmers even regard VxDs and the DDK as the "real"
Windows API, and the higher-level functions documented in the SDK as mere win
dow dressing, so to speak. VxDs may also be important in DOS 6.0.

Dynamic Linking Aids Snooping
So how does one go about finding undocumented Windows functions? Ironically, by
using the very feature that makes Windows services better regulated, better docu
mented, and quite simply less ad hoc than DOS services: dynamic linking. Whereas the
MS-DOS API uses interrupt vectors (whose ultimate expression is the TSR), the Wm
dows API uses dynamic linking (whose ultimate expression is the DLL, or dynamic
link library).

Windows is not, as is frequently believed, made up of components such as Program
Manager, Control Panel, and Task Manager. These are no more part ofWindows than

/

6 UNDOCUMENTED WINDOWS

COMMAND.COM is truly part of DOS; replacements such as the Norton Desktop
for Windows (NDW) show, and even a cursory examination of the SHELL= state
ment in the SYSTEM.INI configuration fue reveals, that these various managers are all
dispensable.

Instead, Windows is made up ofDLLs (dynamic link libraries). Three DLLs pro
vide· the core of the Windows API. In the earlier, unsuccessful real-mode versions of
Windows, these three DLLs were spliced together into one file, but in version 3.0 and
higher they are separate entities. They are

• KERNEL (system services-memory management, task management, dynamic
links, etc., with three different versions of this module: KERNEL.EXE for the
absurd Windows Real mode that disappeared in Windows 3.1,
KRNL286.EXE for 286 machines or Standard mode, and KRNL386.EXE for
386 and higher processors)

• GDI (Graphical Device Interface services: works with a DISPLAY device
driver such as VGA.DRV to display text, rectangles, etc.)

• USER (user interface services: creating windows, sending messages, etc.)

Of course, there are many other DLLs whose exported functions make up the
Windows API. Some of these, such as WIN87EM.DLL, COMMDLG.DLL, and
TOOLHELP.DLL, even have DLL filename extensions. Others, such as SYS
TEM.DRV and KEYBOARD.DRV, are Windows device drivers; device drivers in
Windows are simply DLLs under another name. In Windows 3.1 and in the Multime
dia Extensions for Windows, the Control Panel is extensible via * .CPL files; these too
are nothing more than DLLs. Even Windows *.FON font files are also just DLLs that
export discardable, shareable, read-only data (resources) rather than code. Thus, aside
from the one very confusing fact that this single type offile goes under such an assort
ment of different guises (EXE, DLL, DRV, CPL, FON, and so on), Windows is made
upofDLLs.

An important aside: A "module" in Windows is not quite the same as a DLL. For
example, we saw that the three DLLs, KERNEL.EXE, KRNL286.EXE, and
KRNL386.EXE, are three different implementations of the Windows KERNEL mod
ule. Likewise, V7VGA.DRV and VGAMONO.DRV are two different implementations
of the Windows DISPLAY module. The possible distinction between a DLL's or
DRV's file name ("VGA.DRV") and its module name ("DISPLAY") is one of the
underpinnings ofWindows device-independence.

Even Windows programs (such as WINWORD.EXE or PROGMAN.EXE) are
very similar to DLLs because both DLLs and Windows executables use the same "seg
mented-executable" fue format that is a superset of the .EXE format used under DOS.
Libraries (DLLs) export functions, and programs import these functions: that's what
dynamic linking is. Windows programs are similar to DLLs in that, in addition to
importing functions, they also export functions, which are "callbacks" to be used by
Windows itself. In effect, Windows treats programs as though they were libraries. This

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 7

upside-down quality causes Windows, a library of functions, to treat your program as
though it, too, were a library, making this one of the most confusing aspects of Win
dows programming. Similarly, DLLs import functions too, using the services of other
DLLs.

Given that the components of Windows itself (such as USER.EXE) and Windows
programs (such as MYPROG.EXE) look almost the same, it is not surprising that an
application can also provide its own DLLs that appear indistinguishable from the
DLLs that come "built in" to Windows. Another way of saying this is that the built-in
ones aren't all that built-in-aside from their special knowledge of undocumented
functions and data structures, that is.

We will see in a few minutes (and chapter 2 of this book shows this in even
more detail) that we can find, by mere inspection, the name of every function that
a DLL exports. We can then see if a prototype for this function appears in WIN
DOWS.H. This gives us a rough idea of what's undocumented. More important,
we can also find the name of every function that a Windows program imports. By
then comparing this list against the list of documented functions, we can determine
which programs use undocumented functions and thereby come up with a rough
idea of which ones are important and genuinely useful.

The structure of segmented executable files makes it trivial, and almost enjoyable,
to do this sort of exploration. Actual disassembly of code becomes important at a
much later stage than it would in DOS. In other words, precisely because Windows is
so much more orderly about the way that services are provided and used than plain
vanilla DOS ever was, it is very easy for us to see that maybe the Windows world isn't
quite so orderly and well-regulated, after all.

Inside NDW

To reiterate, because of the way Windows works, Windows .EXE files are more struc
tured than DOS .EXE (not to mention .COM) files. Windows dynamic linking makes
it easy to see what API calls a Windows application might use, without running the
program or even disassembling it.

Let's take as an example the Norton Desktop for Windows (NDW). Peter Norton
first become a household name through his book, Inside the IBM PC. It's fitting then
that we go "inside" NDW. The first release ofNDW had some odd behavior and took
too long to load, but NDW is easily the coolest collection of Windows utilities avail
able; it is a must-have replacement for Window's own Program Manager, at least in
Windows 3.0 (the File Manager in 3.1 definitely gives NDW a run for its money).

NDW is a collection of programs, such as NDW.EXE itself, SIW.EXE (System
Information for Windows), SLEEPER.EXE (screen saver), NDDW.EXE (Norton Disk
Doctor), and so on, plus several dynamic link libraries, such as NWIN.DLL,
NDWDLL.DLL, and NDLL.DLL. Commercial Windows applications often use not
only the KERNEL, GDI, and USER DLLs that come bundled with Windows, but
also their own DLLs.

8 UNDOCUMENTED WINDOWS

Of the many executable files that come with NDW, let's arbitrarily select one to
examine in detail: NBWIN.EXE (Norton Backup for Windows). NBWIN.EXE, like all
Windows programs, DLLs, and device drivers, is in Microsoft's segmented-executable
(or "new executable," or simply NE) file format.

Microsoft C comes with a utility, EXEHDR, to inspect NE fues; similarly Borland
C++ comes with TDUMP. If we use TDUMP to examine NBWIN.EXE, we find, in
the middle of many other details about the file, a list of the "modules" (DLLs and
device drivers) whose services NBWIN direcdy uses:

C:\BORLANOC\BIN>tdump \ndw\nbwin.exe

Module Reference Table
Module 1: NOWOLL
Module 2: NOLL
Module 3: NBWRES
Module 4: NBWFO
Module 5: NWIN
Module 6: KERNEL
Module 7: GOI
Module 8: USER
Module 9: KEYBOARD

TDUMP and EXEHDR can also tell us exacdy which Windows API functions
NBWIN (or any other Windows program, DLL, or device driver) uses. If you stop to
think about it, such snooping capabilities are simply amazing. In MS-DOS, it is com
paratively difficult to learn which software interrupts and functions a program uses;
here, by seeing which Windows API functions a program uses (or at least which ones
it references, which is not quite the same thing), we can do a high-level disassembly,
without disassembling one line of code.

Unfortunately, the form in which TDUMP and EXEHDR present this material is
not terribly useful. You wouldn't know it at first, but the following output from
EXEHDRshows some of the Windows API functions used by NBWIN:

C:\BIN>exehdr Iv \ndw\nbwin.exe

PTR 0333 imp KERNEL.169
PTR 010b imp GOI.35
PTR 0013 imp KERNEL.47
PTR 00a8 imp USER.33
PTR 017d imp KERNEL.51
PTR 009b imp USER.36
PTR 01e2 imp KERNEL.52
PTR 02bO imp USER.420
PTR 00e4 imp G01.45
PTR 0089 imp USER.39
PTR 0133 imp USER.40

In the module.ordinal format-such as KERNEL.169, USER.33, or GDI.35-the
ordinal number is simply an identifier for a function exported by a given DLL. Win
dows functions almost always have names, which appear in DLLs as NULL-terminated

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 9

ASCII (ASCIIZ) strings such as "GETFREESPACE" or "STRETCHBLT," but pro
grams or other DLLs that use these services generally reference them with the shorter
module.ordinal form. Unfortunately, TDUMP and EXEHDR only show this short
form, leaving it up to us to figure out what KERNEL. 169 or GDI.35 is.

When running a utility such as TDUMP or EXEHDR on a Windows program
like NBWIN.EXE, the program dumps out raw data that can be made useful by find
ing the ASCIIZ names that correspond to each module.ordinal import reference. We
find these simply by running TDUMP or EXEHDR again, but this time on the DLLs
that export the functions that the program imports.

For example, we can see in the EXEHDR output above that one section of
NBWIN.EXE uses some functions from the Windows USER module. If we now
examine USER.EXE with the EXEHDR utility, we see a list of every function that
USER exports (unfortunately, it is not sorted in any way):

C:\BIN>exehdr \windows\system\user.exe

Library:
Description:

Exports:
ord seg offset
465 14 03c6
404 8 0296
175 12 0999

88 24 22e4
500 1 558e
272 1 1ac5
168 3 20bd
147 38 015a

USER
Microsoft Windows User Interface

name
DRAGDETECT exported, shared data
GETCLASSINFO exported, shared data
LOADBITMAP exported, shared data
ENDDIALOG exported, shared data
FARCALLNETDRIVER exported, shared data
ISZOOMED exported, shared data
SETCARETBLINKTIME exported, shared data
SETCLIPBOARDVIEWER exported, shared data

40 59cc ENDPAINT exported, shared data

In all, about 400 functions are listed in USER.EXE alone. Not surprisingly, if we
examine this list, we will see plenty of functions that, from their names alone, sound
useful, but that are not listed in the Windows Programmer)s Reference or in the WIN
DOWS.H header file. These are usually, but not always, undocumented functions.

Let's not approach undocumented Windows from this angle, however. Rather
than embark on an Easter egg hunt, trying to find every function exported from a
DLL that doesn't happen to be listed in the Programmer's Reference or in WIN
DOWS.H, we can instead approach undocumented Windows from the perspective of
existing commercial Windows applications that use undocumented functions. Other
wise, the search for undocumented functions can become more like collecting baseball
cards and less like software engineering.

Examining the EXEHDR NBWIN output again, we can see that, for example,
NBWIN imports USER.40. Looking next at the last line of the EXEHDR USER list of
exports, we can see that ordinal #40 in the USER module corresponds to the function

10 UNDOCUMENTED WINDOWS

ENDPAINT. Thus, we now know that EndPaint() is one of the Windows API func
tions called by NBWIN. This is hardly surprising, because it is almost impossible to
produce any screen output in Windows without calling this documented function. But
we could carry out this same import/export process for every module.ordinal refer
enced by NBWIN, or any other Windows program or executable, and produce a com
plete picture of the Windows services it uses. That is more interesting.

In fact, the picture that emerges is extremely interesting, but to do it this way
would also be extremely boring. This is just the sort of work that a computer is good
for! What we really need is a utility that prints out a list of all the Windows API func
tions that a program uses, silently doing all the work of matching up module.ordinal
imports in one file with ASCIIZ name exports from another.

This utility is MAPWIN (provided on the accompanying disk), written by Richard
Smith, president of Phar Lap Software. We could have saved ourselves a lot of work
and simply used MAPWIN to begin with, instead of messing with EXEHDR and
TDUMP. But it is informative to step through once "by hand," so to speak, the pro
cess that MAPWIN carries out automatically, so you can see where its results come
from. For more details on MAPWIN, see chapter 2.

If we examine NBWIN.EXE with MAPWIN, we get a list of the Windows API
calls, both documented and undocumented, that NBWIN makes. A portion of the
output is shown below:

C:\B1N>mapwin @win30.imp \ndw\nbwin.exe

GETPROF1LESTR1NG (KERNEL.58)
GETPROP (USER.25)
GETSELECTORBASE (KERNEL.186)
GETSTOCKOBJECT (G01.87)
GETSUBMENU (USER.159)
GETSYSCOLOR (USER.180)
GETSYSTEMMENU (USER.156)
GETSYSTEMMETR1CS (USER.179)
GETTEMPF1LENAME (KERNEL.97)
GETTEXTEXTENT (601.91)
GETTEXTMETR1CS (601.93)
6ETT1CKCOUNT (USER.13)
GETVERS10N (KERNEL.3)
GETWINDOW (USER.262)
GETW1NDOWLONG (USER.135)
GETW1NOOWRECT (USER.32)
GETW1NOOWTEXT (USER.36)
GETW1NDOWWORD (USER.133)
GETW1NFLAGS (KERNEL.132)
GLOBALADDATOM (USER.268)
GLOBALALLOC (KERNEL.15)
GLOBALCOMPACT (KERNEL.25)
6LOBALDOSALLOC (KERNEL.184)
GLOBALDOSFREE (KERNEL.185)
GLOBALFREE (KERNEL.17)
GLOBALHANDLE (KERNEL.21)
GLOBALLOCK (KERNEL.18)

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 11

GLOBALNOTIFY (KERNEL.154)
GLOBALREALLOC (KERNEL.16)
GLOBALUNLOCK (KERNEL.19)
GRAYSTRING (USER.185)
INFLATERECT (USER.78)
INITAPP (USER.5)
INITTASK (KERNEL.91)
INVALIDATERECT (USER.125)
INVERTRECT (USER.82)
ISDIALOGMESSAGE (USER.90)

In all, MAPWIN lists 238 different functions referenced by NBWIN.EXE. As is
typical for Windows applications, a little over half the different functions used are in
the USER (window manager) module, about a quarter are in the KERNEL (system
services) module, and the remaining functions belong to other modules such as GDI
(graphics) and KEYBOARD. NBWIN also uses some functions from the DLLs that
come with the Norton Desktop.

Naturally, some functions used by NBWIN are also used by nearly every other
Windows application in existence. Functions such as RegisterClass(), CreateWmdow(),
GetMessage(), and DetWindowProc(), for example, are essentially "boilerplate," part
of the standard litany for creating a Windows application, and are called by 95% of all
Wmdows programs (the other 5% can be extremely useful Windows utilities, however).

What we're interested in seeing are what undocumented features of Windows
NBWIN might be using. We need to filter out every "standard" call made by
NBWIN, that is, every function that appears either in the WINDOWS.H header file or
in the Microsoft Windows Programmer)s Reference or the Guide to Programming.
(The Guide to Programming documents several important items intended to be used
only in assembly language and therefore not included in the Programmer)s Reference.)
This topic is addressed in more detail in chapter 2 of this book. For now, we can sim
ply say that if the documented calls are somehow filtered out, we're eventually left
with seven items, referenced by Norton Backup for Windows but listed nowhere in the
Windows 3.0 SDK manuals or header files. They are

_0040h (KERNEL.193)
GETHEAPSPACES (KERNEL.138)
GETSELECTORBASE (KERNEL.186)
INITAPP (USER.5)
INITIASK (KERNEL.91)
SETSELECTORBASE (KERNEL.I87)
WAITEVENT (KERNEL. 30)

It seems, then, that we have finally arrived at our subject: here are Windows API
calls made by a major Windows application, produced by a firm known for producing
robust, high-quality software, and not found anywhere in the Windows 3.0 SDK

12 UNDOCUMENTED WINDOWS

Open Tools: No Longer Undocumented Windows

Actually, we're not quite there yet. We first need to deal with the three functions Init
App(), InitTask(), and WaitEvent(). These sOWld interesting; what strange thing could
NBWIN be doing?

Nothing very strange at all. Whenever you run MAPWIN, you will see these same
three functions, for they are part of the standard Windows startup code, called from
any and every Windows application in existence!

When writing Windows applications in C or C++, your program's perceived start
of execution is at the WmMain() function, rather than at the standard main() function
used everywhere else in the C world. This use of WinMain() rather than main() is
totally unnecessary and should be regarded as a design flaw of the Windows API. Be
that as it may, WmMain() is called with four arguments:

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow)

Note the deliberate use of passive voice-"is called"-above. Who calls WinMain?
WinMain() is not the true entry point for your program. Instead, the initial entry point
is indicated, just as under plain-vanilla DOS, with an END statement in an assembly
language module. It is the startup code, provided with your compiler's run-time library,
that provides this END statement and that sets things up for, and calls, WinMain().
On entry to a Windows program (DLLs operate differently), the CPU registers hold
the following values:

BX Stack size
CX Heap size
DI Instance handle (hIntance)
SI Previous instance (hPrevInstance)
ES Program segment prefix (PSP)

The question is, what happens between here and WinMain()? What happens is
that the startup code provided by the compiler's run-time library calls InitTask(),
WaitEvent(), and InitApp(). Although the Windows 3.0 SDK does not contain
source-code for the startup module, Borland C++ does; if you have Borland C++, you
can learn all about Windows startup by reading the nicely commented file
\BORLANDC\EXAMPLES\STARTUP\COW.ASM. (Microsoft C/C++ 7.0 includes
startup source too.)

Even though the details of these three calls are probably of interest to only those
working on a compiler with Windows support or to someone who has worked on
implementing custom versions of the KERNEL and USER modules, the politics
behind these three little function calls are rather interesting.

Until Windows 3.1, InitTask(), WaitEvent(), and InitApp() really were not docu
mented anywhere in the Windows SDK. Thus, for years, every single Windows appli
cation contained three undocumented calls. This is bizarre because the SDK is

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 13

really not part of Windows itself, and therefore it ought to have no more privileged a
position than any other application or third-party development tool.

By not documenting these calls needed to take a Windows application from
startup to WinMain(), and thereby allow it to actually run under Wmdows (talk about
a crucial feature!), Microsoft's SDK for years had a near monopoly on the Wmdows
development-tools market. This was particularly annoying because, other than this
startup code, the SDK didn't bring much to the party. The Windows API functions
are often referred to in third-party books as "Kit routines" or "SDK functions," but,
as we've already noted, Windows dynamic linking means that these functions are actu
ally part of the DLLs contained in every retail copy ofWmdows that someone buys off
the shelf at Egghead; they are definitely not part of the SDK The SDK, in other
words, provides remarkably little other than the "secret sauce" of making a Windows
program jump through the necessary hoops before it gets to WinMain().

Eventually someone at Microsoft must have figured out that although Microsoft
makes some money from the SDK, the company as a whole does much better by sales
of Windows itself. Therefore, it is in the interests of Microsoft to have excellent Wm
dows development tools available, even if they compete with its own SDK and with its
own C compiler.

The end result is what Microsoft calls the "Open Tools Strategy," an attempt to
"level the playing field" in Windows development tools by making key pieces of pre
viously undocumented information available to tools vendors, including direct com
petitors with Microsoft C and the SDK, such as Borland and Zortech/Symantec. An
enormous three-ring binder of this material is available to "independent software ven
dors" (ISVs) by sending Internet mail to isv@microsoft.com. Much of this material has
also been made available in the Wmdows 3.1 SDK, as articles in the "Overviews" manual.

The Open Tools binder provides information on the following previously undocu
mented topics:

• Windows Application Startup (how to call WinMain(): the InitApp(),
InitTask(), and WaitEvent() functions)

• Windows Prologs and Epilogs (initialization of the DS register for callback
functions)

• Windows 80x87 Floating Point Emulator (WIN87EM.DLL and OS fixups)
• Self-Loading Windows Applications (the PatchCodeHandle() function used

by some versions of Microsoft Word for Windows and Microsoft Excel; see
the description ofPatchCodeHandle() in chapter 5 of this book).

• Creating Windows Hosted Debuggers (documents functions such as
DirectedYield() and SetEventHook())

• Resource Formats within Executable Files (however, what about resource for
mats outside executable files, in the .RES files produced by the resource
compiler?)

• Executable File Format (most of this has already been documented in OS/2
l.x, which uses the same segmented-executable NE file format as Windows)

14 UNDOCUMENTED WINDOWS

• Object Module Format for Windows (in particular, IMPDEF and EXPDEF
records, which form the link between an application's call to, for example,
GetVersion() on the one hand, and module.ordinal pairs such as KERNEL.3
on the other; these .OB] records are also documented in yet another obscure
but useful Microsoft offering, the Microsoft C Developer)s Toolkit Reference.)

• Library and Import Library Formats (structure of a Windows import library as
produced by the IMPLIB utility)

Open Tools also helps underline the point that WINDOWS.H and the SDK do
not define the full extent of the Windows universe. As another example of the same
point-that there's much more to Windows than what's in WINDOWS.H and the
SDK-it should also be noted that some Windows API functions that seem undocu
mented are actually described in the Windows Device Driver Kit (DDK).

There is a tendency among those exploring undocumented Windows to jump to
the conclusion that anything not in WINDOWS.H is therefore undocumented, and
there is a sentiment among Windows programmers that WINDOWS.H, Petzold, and
the Programmer)s Reference neatly encompass all of the Windows API. Those inter
ested in undocumented Windows should also become familiar with lesser-known but
important documented aspects of Windows such as the DDK, DPMI, and Open
Tools.

Finally, Undocumented Windows
Returning to NBWIN, we are now left wi~ four genuinely undocumented items. Two
of these are now documented in the 3.1 SDK, but they were not documented when
NBWIN was built, and they are still not documented for 3.0 (which hasn't disap
peared, remember). The only reason they eventually were documented is that pro
grams like NBWIN were using them anyhow, documentation or no documentation:

_0040h (KERNEL.193)
GetHeapSpaces (KERNEL.138)
GetSelectorBase (KERNEL.186)
SetSelectorBase (KERNEL.I87)

Four items may not seem like a lot, but remember that we're looking at a single
program. As we'll see later on, key Windows applications, including Microsoft's own
applications, use many additional undocumented Windows API functions.

The Sogo of Free System Resources
Let's look at the GetHeapSpaces() function (KERNEL.138) first, because it relates to
one of the more visible and confusing aspects of Windows performance, stability, and
capacity: System Resources, that is, the percentage of free system resources shown

CHAPTER 1 • THIS WAS NOT ~#PPOSED TO HAPPEN 15

(along with the amount of free memory) in the Program Manager About... box. This
number is important to end users of Windows because it determines-almost more
than the amount of free memory-the number of applications that can reasonably be
run at the same time. All Norton Desktop for Windows applications, including
NBWIN, show the free system resources percentage in their About... boxes.

Where does this information come from? And what does it really mean?
Like the 3.0 Program Manager, NDW computes the percentage of free system

resources on the basis of the undocumented GetHeapSpaces() function:

extern DWORD FAR PASCAL GetHeapSpaces(HANDLE hModule);

The window manager (USER) and the Graphical Device Interface (GDI) are just
modules in Windows. Like any other Windows DLL or application, they have default
local heaps, whose size is at most 64I(bytes, and from which memory can be allocated
with the documented LocalAlloc() function. What makes USER and GDI special is
that these modules are used by all other modules in the system: every window or
menu an application creates looks to USER like just another LocaWloc() from a local
heap; every device context (DC) handle, brush, pen, region, font, or bitmap an appli
cation creates looks to GDI like just another LocaWloc() from a local heap.

The implications of this in Windows 3.0 are rather frightening, and in Windows
3.1 they are still somewhat alarming. In 3.0, because all Windows applications share a
single 64K heap in USER and a single 64K heap in GDI, the amount of memory
remaining in these two heaps might be more important than the amount of total sys
tem memory. Even with the megabytes of memory available in protected mode, the
number of applications that could be run simultaneously-and their stability-is still
constrained by these two 64K barriers. In Windows 3.1, USER and GDI have multi
ple local heaps, thereby partially relieving the free system resources problem. Menus
were a particular problem and were moved out of USER's default local heap. How
ever, as the USERWALKand GDIWALKprograms in chapters 6 and 8 show, there is
still a definite upper limit on how many windows, menus, Des, pens, brushes, and so
on can be created at one time.

Why do USER and GDI use LocalAlloc() to allocate system resources for other
applications? Why not call GlobaWloc() and thereby remove any 64K limit? Because it
is more efficient for USER and GDI to address resources with two-byte near pointers
than with the four-byte far pointers that would be necessary for objects created via
GlobaWloc(). The designers ofWindows made a time vs. space trade-off.

The free system resources percentage, then, is simply the percentage of USER's
heaps that remains free or the percentage of GDI's heaps that remains free, whichever
one is smaller. Given a module handle, the undocumented GetHeapSpaces() function
returns an unsigned long (DWORD) that contains in its high word the total number
of bytes in the module's default local heap, and in its low word the number of free
bytes. As shown on the following page, it is up to the application that calls
GetHeapSpaces() to compute percentages and pick the one that's smaller:

16 UNDOCUMENTED WINDOWS

1* undocumented Windows call: KERNEL.138 *1
extern DWORD FAR PASCAL GetHeapSpaces(WORD hModule);

void heap_info(char *module, WORD *pfree, WORD *ptotal, WORD *ppercent)
{

DWORD info = GetHeapSpaces(GetModuleHandle(module»;
*pfree = LOWORD(info);
*ptotal = HIWORD(info);
*ppercent = (WORD) «(DWORD) *pfree) * 100L) I «DWORD) *ptotal»;

}

II
WORD user_free, user_total, user_percent;
WORD gdi_free, gdi_total, gdi-percent;
WORD total_free;

heap_info(IIUSER", &user_free, &user_total, &user_percent);
heap_info("GDI", &gdi_free, &gdi_total, &gdi_percent);
total_free = min(user_percent, gdi_percent);

Note that GetHeapSpaces() is passed an arbitrary module handle, such as those
returned from the documented GetModuleHandle() function. Two points are impor
tant here. First, all we need to get this information is the ASCIIZ name (such as
"USER" or "GDI") of a module. Windows makes extensive use of strings rather than
magic numbers, making it a far more accessible and open system than plain-vanilla
DOS. Second, note that GetHeapSpaces() is passed an arbitrary module handle and is
not limited to use with GDI and USER. (On the other hand, the call GetHeapSpaces
(GetModuleHandle("KERNEL")) makes no sense because KERNEL has no local
heap.)

Accessing Undocumented Functions

Often, all that is necessary to use GetHeapSpaces() is a function prototype like the
one shown above. WINDOWS.H does not contain prototypes for undocumented
functions (this is pretty much what makes them undocumented!), so you need to
supply one yourself, as illustrated in the code above.

Import libraries such as LIBW.LIB in Microsoft C and IMPORT.LIB in Borland C++
usually contain the necessary IMPDEF records, even for undocumented functions.
However, if the linker complains about an "unresolved external" or "undefined sym
bol" when you try to call an undocumented function, the import library you are
using does not contain the necessary IMPDEF record. For example, some undocu
mented functions have been yanked from the Windows 3.1 SDK version of LIBW.LIB,
even when the functions still exist in 3.1 itself.

If you get an "unresolved external" or "undefined symbol" error from the
linker when trying to use an undocumented function, there are a couple of differ
ent solutions:

continued

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 17

continued

First you can use the IMPLIB utility to create your own import library, you can
use Windows run-time dynamic linking to access the function, or you can use the
import statement in a linker .DEF file. We'll discuss the first two here.

The IMPLIB utility (included with the Microsoft Windows SDK, but also pro
vided with most third-party Windows development tools, such as Borland C++)
takes in a DLL (actually, any segmented executable with exports) and produces a
corresponding .LIB file that you can then link into your program. (The .LIB file, of
course, doesn't contain any code, just IMPDEF records for each function exported
from the DLL.) For example

implib kernel. lib \win31\system\krnl386.exe

The second way to access undocumented functions when you run into an
"unresolved external" or "undefined symbol" error is to use run-time dynamic link
ing. The usual form of dynamic linking in Windows is actually not all that dynamic:
it occurs when Windows loads a program into memory. In contrast, to get a call
able pointer to a function in a DLL with run-time dynamic linking, a program need
only know the ASCIIZ name of the DLL and of the item it wants to access; it passes
the module name to a function such as LoadLibraryO or GetModuleHandle(), and
the function name to GetProcAddressO. Thus, rather than rely on the presence of
IMPDEF records in a .LIB file, you can entirely bypass the .LIB file and link to the
function via GetProcAddressO. For example

DWORD (FAR PASCAL *GetHeapSpaces) (WORD hModule);
WORD kernel;
DWORD user_info;

kernel = GetModuleHandle(ftKERNEL It);
GetHeapSpaces = GetProcAddress(kernel, ItGETHEAPSPACES ft);
user_info = GetHeapSpaces(GetModuleHandle(UUSER"»;

Notice that we're using GetModuleHandleO for two different purposes here:
once to get a module handle to KERNEL that we can use with GetProcAddress(), to
get a function pointer to GetHeapSpaces(), and a second time to get a module
handle to USER that we pass to GetHeapSpacesO itself.

If you are familiar with traditional K&:R C, you may wonder how we can call
GetHeapSpaces() without having to explicitly reference the function pointer and
call (*GetHeapSpaces)(). The answer is simply that in ANSI C, which all Windows
capable C compilers support, and in C++, (*pfunc)O and pfunc() are equivalent;
this is handy when using GetProcAddressO.

At the end of this chapter, we will see that GetProcAddress() is useful not only
for accessing an undocumented function that is missing from an import library,
but also for safe use of the undocumented function, to ensure that it really exists in
the version of Windows your program is running under. •

18 UNDOCUMENTED WINDOWS

The implementation of GetHeapSpaces() in KERNEL itself relies on another
undocumented function, LocaICountFree(), which returns the number of free bytes in
a local heap. GetHeapSpaces() then uses the documented GlobalSize() function to get
the total size of the heap. See chapter 5 for details.

It is obviously a problem for something as visible to end users as the free system
resources percentage to rely on an undocumented function. Microsoft decided not to
document the GetHeapSpaces() function but instead to provide what seemed like
equivalent functionality. TOOLHELP.DLL, included with Windows 3.1, contains the
function, SystemHeapInfo(), that provides the same information. ToolHelp does not
come with Windows 3.0 but will work on top of it (this is a nice demonstration, by
the way, of the power of dynamic linking). An addendum to the SDK license agree
ment permits developers to redistribute ToolHelp and certain other DLLs along with
their applications, so it seems as if The Free System Resources Problem has been solved:
Call the documented SystemHeapInfo() function rather than the undocumented
GetHeapSpaces() function, and ship TOOLHELP.DLL along with your application.

So why would someone continue using GetHeapSpaces() rather than go with
TOOLHELP? Aside from a desire not to change code that already "works," the prob
lem is that, quite reasonably, few companies want to ship a DLL along with their
product just to show one silly number in their About... boxes. In particular, once you
start shipping a system DLL such as TOOLHELP, your Install program needs to
worry about "registration" issues: what if the user already has TOOLHELP in a later
version than the one you ship? With DLLs, you can get into a number of nasty "ver
sionitis" issues (this is a nice demonstration, by the way, of the downside to dynamic
linking).

Eventually, Microsoft settled on the following method: use the undocumented
(but hereby quasi-sanctioned) GetHeapSpaces() function in Windows 3.0; use a new,
documented function, GetFreeSystemResources(), in Windows 3.1 and higher. An
application uses the documented GetVersion() function to determine which version of
Windows it is running under. Given the differences from one version of Windows to
the next, GetVersion() is crucial whenever you are working with undocumented func
tions. This is illustrated in the following short example program, FREERES.C:

1* FREERES.C *1

#include Itwindows.h lt

II handy function from Petzold, Programming Windows
void OkMsgBox(char *szCaption, char *szFormat, .•.)
{

char szBuffer[256J ;
char *pArguments ;

pArguments = (char *) &szFormat + sizeof szFormat ;
wvsprintf(szBuffer, szFormat, pArguments) ; 1/ changed from vsprintf
MessageBox(NULL, szBuffer, szCaption, MB_OK) ;

}

II USER
II GDI
II total

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 19

#define GET_PROC(modname, funcname) \
GetProcAddress(GetModuleHandle(modname), funcname)

void heap_info(char *module, WORD *pfree, WORD *ptotal, WORD *ppercent)
{

static DWORD (FAR PASCAL *GetHeapSpaces)(WORD hModule) 0;
DWORD info;

if (! GetHeapSpaces) II one-time initialization
if (! (GetHeapSpaces = GET_PROC("KERNEL", "GETHEAPSPACES"»)

OkMsgBox("Error", "Can't find GetHeapSpaces\n");

1* In ANSI C and C++, pfunc(x) is identical to (*pfunc)(x) *1
info = GetHeapSpaces(GetModuleHandle(module»;
*pfree = LOWORD(info);
*ptotal = HIWORD(info);
*ppercent = (WORD) ««DWORD) *pfree) * 100L) I «DWORD) *ptotal»;

}

int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevlnstance,
LPSTR lpszCmdLine, int nCmdShow)

{

WORD vers = GetVersion();

if «LOBYTE(vers) == 3) && (HIBYTE(vers) == 0» II 3.0
{

WORD user_free, user_total, user_percent;
WORD gdi_free, gdi_total, gdi_percent;

heap_info(IUSER", &user_free, &user_total, &user_percent);
heap_info("GDI", &gdi_free, &gdi_total, &gdi_percent);

OkMsgBox("System Resources",
"USER heap: %u bytes free out of %u (%u%% free)\n"
"GDI heap: %u bytes free out of %u (%u%% free)\n"
"Free system resources: %u%%\n",

user_free, user_total, user-percent,
gdi_free, gdi_total, gdi_percent,
min(user_percent, gdi-percent»;

}

else II 3.1+
{

WORD FAR PASCAL (*GetFreeSystemResources)(WORD id)
GET_PROC("USER", "GETFREESYSTEMRESOURCES");

if (! GetFreeSystemResources)
OkMsgBox("Error", "Can't find GetFreeSystemResources\n");

else
OkMsgBox("System Resources",

"USER heap: %u%% free\n"
"GDI heap: %u%% free\n"
"Free system resources: %u%%\n",

GetFreeSystemResources(2),
GetFreeSystemResources(1),
GetFreeSystemResources(O»;

}

return 0;
}

20 UNDOCUMENTED WINDOWS

Even though GetHeapSpaces() persists in 3.1, the GetVersion() check is impor
tant. USER and GDI in Windows 3.1 have multiple local heaps; GetHeapSpaces()
only checks a module's single default local heap. Often, GetHeapSpaces() will return a
"reasonable" number in 3.1, but GetFreeSysytemResource() is still the correct func
tion to use. In many situations, GetVersion() will be quite important when you want
to use undocumented functions safely. In addition, FREERES.C also shows how
GetProcAddress() can be used to link to undocumented functions.

Of course, undocumented functions are also accessible from languages other than
C. For example, there are several BASIC environments for Windows, including the
WordBasic macro language in Microsoft Word for Windows, Microsoft Visual Basic,
and Realizer, that use run-time dynamic linking to provide access to the Windows
API. In WordBasic and Visual Basic, the DECLARE statement is used to access API
functions (both documented and undocumented). For example:

Declare Function GetVersion Lib "kernel" () As Integer
Declare Function GetHeapSpaces Lib "kernel" (hModule as integer) As Long

Both WordBasic and Visual Basic perform only signed arithmetic, so it is difficult,
in this example, to extract the correct LOWORD and HIWORD portions of the four
byte value returned from GetHeapSpaces(). It seems rather typical of BASIC that,
while it can easily do things that in C are very difficult, it does with great difficulty
things (like unsigned arithmetic) that in C are trivial. At any rate, Visual Basic maven
Jonathan Zuck came up with the following implementation of GetFreeResources()(see
Robert Arnson et aI., Visual Basic How-To):

Declare Function GetModuleHandle Lib "Kernel" (ByVal ModName$)
Declare Function GetHeapSpaces& Lib "Kernel" (ByVal hModule)

Function GetFreeResources (ModuleName$)"
rInfo& = GetHeapSpaces&(GetModuleHandle(ModuleName$»
Totalr& = HiWord&(rInfo&)
FreeR& = LoWord(rInfo&)
GetFreeResources = FreeR& * 100 \ Totalr&

End Function

Function HiWord& (LongInt&)
Temp& = Longlnt& \ &H10000
If Temp& < 0 Then Temp& = Temp& + &H10000
HiWord& = Temp&

End Function

Function LoWord& (LongInt&)
Temp& = LongInt& Mod &H10000
If Temp& < 0 Then Temp& = Temp& + &H10000
LoWord& = Temp&

End Function

Sub Form_Paint ()
UserFree = GetFreeResources("User")

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 21

GDIFree = GetFreeResources("GDI")
User. Caption = "User: II + Str$(UserFree) + "%"
GDI.Caption = IIGDI: II + Str$(GDIFree) + "%11

End Sub

This example doesn't make the call to GetVersion(), or the call to the documented
GetFreeSystemResources() function in 3.1, but these could easily be translated from C
into BASIC. For further details on making Windows API calls from Visual Basic, see
Jonathan Zuck's Visual Basic Techniques and Utilities. For extensive coverage of Win
dows API calls from both Visual Basic and WordBasic, see Woody Leonhard's book,
Windows 3.1 Programmingfor Mere Mortals.

To make a long story short, something as ridiculously simple as showing the user
the free system resources percentage turns out to not be so simple after all.

The Problem with Protected Mode
Let's now look at the other three undocumented items used by NBWIN:

• _0040h (KERNEL.193)
• GETSELECTORBASE (KERNEL.186)
• SETSELECTORBASE (KERNEL.IS7)

All three are related to the fact that Windows applications now run in protected
mode. NBWIN-like most good Windows applications-runs only in protected mode.
The idea that "good" Windows applications should be able to run in real mode was a
piece of foolishness put forward in the Microsoft Windows Guide to Programming;
thankfully, real mode is gone in Windows 3.1. Protected mode means that applications
are no longer constrained by the 640K limitations of MS- DOS; NBWIN, for example,
can use multi-megabytes of memory to efficiently read and backup a large number of
files.

However, like any other improvement, protected mode also has a downside. Although
less restrictive about the amount of memory it provides, protected mode is, as its name
implies, more restrictive ("protected") about everything else. This trade-off is well
worth making, but the result is that some real-mode code simply will no longer work
in protected mode.

In particular, if a Windows application needs to access absolute memory locations
(for instance, 522h), it can no longer do so by creating pointers out of thin air (such
as 0000:0522). In real mode, pointer 0000:0522 addresses absolute memory location
522h (this equivalence between pointers and absolute memory locations is the reason
it's called real mode). This equivalence doesn't hold in protected mode.

Let's say that, for some reason, you need to access absolute memory location
522h. In a real-mode program, you might do the following (yes, it is much better to

22 UNDOCUMENTED WINDOWS

use the INT lEh vector to get the address of the Disk Parameter Table, normally
stored at 522h, but we just need an example here):

xor bx, bx
moves, bx ; es .- 0
mov ax, es:[0522hJ

Or, in C, one might use the following code:

#ifndef MK_FP
#define MK_FP(s,o) \

«void far *) «(unsigned long) (s) « 16) I (0»)
#endif

unsigned char far *fp = MK_FP(O, Ox522);
unsigned char some_byte = *fp;

This same code, inside a protected-mode Windows application, will cause an
Unrecoverable Application Error (UAE). The problem is that the application has
dereferenced a pointer that is invalid because the application merely manufactured the
segment (selector) value itself; even worse, the selector happens to be zero, which in
protected mode always creates a NULL pointer.

To make such code work in any protected-mode environment, including Win
dows, you need a facility that creates protected-mode addresses that "map" real
mode addresses. To do this, first allocate a selector and then set its "base address" to
the absolute memory location you want to access and its "limit" (last valid byte offset)
to the size you need. It's easiest to put all this inside a function whose job is to map in
real-mode far pointers, such as the following imaginary map_real() function:

void far *map_real(void far *rmode_ptr, unsigned long nbytes)
{

WORD sel;

II allocate a selector
if «sel = get_a_selector(READWRITE_DATA» == 0)

return 0; II error: no available selectors

II set its absolute base address; base=(seg*16)+ofs
set_selector_base(sel,

«(OWORD) FP_SEG(rmode_ptr» « 4) + FP_OFF(rmode-ptr»;

II set its limit; limit=last legal offset (size-1)
set_selector_limit(sel, nbytes - 1);

return MK_FP(sel, 0);
}

To use this map_real() function, a program needs to pass in the real-mode far
pointer and the number of bytes it wants to access. The function returns a protected-

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 23

mode pointer that should be used instead of the original real-mode pointer. A pro
gram can call map_real() during initialization and use the pointer throughout its exe
cution. Sometime before terminating, though, the program should free the allocated
selector; Windows will not automatically free it when a program exits:

unsigned char far *fp = map_real(OxSOO, Ox22 + some_length);
unsigned char some_byte = fp[Ox22J;
/ / ...
free_selector(FP.SEG (fp»;

To turn map_real() into genuine code, we only need to locate the Windows func
tions that allocate, set the base and limit of, and free selectors. A selector can be allo
cated in Windows using the documented AllocSelector() function and freed sometime
later using FreeSelector(). But how do you set its base and limit? There are numerous
ways to do this in Windows, but none of them are documented by Microsoft in Win
dows 3.0.

The most complete solution to the problem of accessing real-mode data structures
from a protected-mode Windows application is to use the INT 31h services of the
DOS Protected-Mode Interface (DPMI); Windows 3.0 and 3.1 provide DPMI version
0.9 services (DPMI 1.0 currently leads a purely Platonic existence as an unimplemented
specification.)

For example, to set the base and limit of an already allocated selector with DPMI,
you could use the Set Segment Base Address (!NT 31h AX=7) and Set Segment Limit
(INT 31h AX=8) functions. To be precise, these set the base and limit of the segment
descriptor that corresponds to a selector; such segment descriptors are located in the
protected-mode Local Descriptor Table (LDT).

However, Microsoft barely documents the fact that INT 31h DPMI services are
available under Windows and, in any case, approves only a small handful of them for
use in Windows programs. The two DPMI functions noted above are not on the
approved list. According to a Microsoft Developer's Note, "Windows INT 21H and
NetBIOS Support for DPMI," only seven DPMI functions, all related to calling real
mode code, can be used in Windows applications. Other than these, says Microsoft,
"No DPMI functions are required for Windows applications since the Kernel provides
functions for allocating memory, manipulating descriptors, and locking memory."

In a sense, this is true: the Windows kernel does provide functions for manipulat
ing descriptors (that is, setting and getting their base address and limit). Prototypes for
these functions are

void FAR PASCAL SetSelectorBase(WORD sel, DWORD base);
void FAR PASCAL SetSelectorLimit(WORD sel, DWORD limit);
DWORD FAR PASCAL GetSelectorBase(WORD sel);
DWORD FAR PASCAL GetSelectorLimit(WORD sel);

The only problem is that these functions are undocumented in Windows 3.0.
Thus, we're stuck with using DPMI INT 31h functions that Intel documents but that

24 UNDOCUMENTED WINDOWS

Microsoft doesn't sanction, or with using Windows 3.0 functions that Microsoft
doesn't document, or with artificially restricting the program to run only in Windows
3.1 (where the functions are, as we'll see later, finally documented). What's a pro
grammer to do?

DPMI is certainly not the easiest solution. DPMI programming is sufficiently diffi
cult, or at least unfamiliar, that even many experienced Windows programmers would
rather use undocumented functions than use the DPMI interface. In any case, embed
ding calls such as INT 3lh AX=7 in your application goes against the spirit of Win
dows programming, when there are genuine Windows functions such as
SetSelectorBase() seemingly just waiting to be used. Finally, because Windows does at
least provide AllocSelector(), it makes sense to stick with Windows, rather than allocat
ing the selector with the Windows API calls and then manipulating it with INT 31h
calls. (Note that none of these selector-manipulation calls, documented or undocu
mented, are likely to be available to 32-bit programs running under Windows NT.)

As shown below, we can use the undocumented SetSelectorBase/Limit calls to
implement our map_real() function. Note that the documented AllocSelector() func
tion takes an already existing selector to be used as a model for the new selector.
Because we want a normal data selector, we can just pass the program's DS as the
parameter to AllocSelector():

void far *map_real(void far *rmode_ptr, unsigned long nbytes)
{

unsigned long base, limit;
unsigned short sel;

_asm mov sel, ds
// sel starts off as copy of our os: read/write data
if «sel = AllocSelector(sel» == 0)

return 0;

base = «(DWORD) FP_SEG(rmode-ptr) « 4) + FP_OFF(rmode-ptr);
limit = nbytes - 1;

SetSelectorBase(sel, base);
SetSelectorLimit(sel, limit);

return MK_FP(sel, 0);
}

We started discussing map_real() because NBWIN uses the SetSelectorBase()
function. Even if we don't know exacdy how it uses SetSelectorBase(), NBWIN is
obviously just the sort of application that needs to access real-mode data structures.
Structures such as the BIOS data area, the floppy disk parameter table, the fixed disk
parameter table, and so on are likely locations that a backup program would be inter
ested in.

On the other hand, Windows does provide a set of hard-wired selectors to access
popular absolute memory locations such as AOOOOh, B8000h (yes, there are Windows

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 25

applications, such as CodeView for Windows and Turbo Debugger for Windows, that
do direct screen writes), and FOOOOh. These selectors, which have names such as
_AOOOR, _B800R, and _FOOOR, are documented in the Microsoft Windows
Guide to Programming, though not in WINDOWS.H or in the Windows Program
mer)s Reference. These are not functions; they are global variables exported by the
KERNEL module.

One of the hard-wired selectors used by NBWIN, _0040H, is not documented
even in the Guide to Programming. As its name implies, this selector maps the BIOS
data area at absolute memory location 400h. _0040H is somewhat redundant
because there is yet another selector, _OOOOH, also undocumented, that maps the
entire 64K of memory starting at absolute location zero.

To best illustrate how these selectors can often be used as an alternative to some
thing like the map_real() function, we first need to see how to access the selectors
from a C program. Because these are variables, accessing them is a little trickier than
simply declaring them, as we did with undocumented Windows functions.

Two different techniques can be used to access the Windows selectors from C.
First, you can use a piece of code such as the following, which uses one of the Wmdows
selectors (_FOOOH) to read the machine's model value at absolute memory location
FFFFEh (for example, most 386-based AT-style clones have a model value ofFCh):

extern WORD _near _FOOOH;
WORD __FOOOH = (WORD) (&_FOOOH);
unsigned char far *fp = MK_FPC__FOOOH, 0);
unsigned char model = fpCOxFFFEJ;

Second, you can use run-time dynamic linking. When linking to variables rather
than functions, we still use GetProcAddress(); the LOWORD() macro extracts the rel
evant portion:

#define GET_SELCname) \
«WORD) (LOWORD(GetProcAddress(GetModuleHandle(flKERNEL fI), name»»

II ...
WORD _FOOOH = GET_SEL(fI__FOOOH fI);
unsigned char far *fp = MK_FP(__FOOOH, 0);
unsigned char model = fpCOxFFFEJ;

Using the undocumented _OOOOR selector to access the first 64K of memory
works in the same way. The following gives a protected-mode program access to the
disk parameter table at location 522h:

WORD _OOOOH = GET_SEL(fI__OOOOH fI);
DISK_PARAM far *tbl = MK_FP(__OOOOH, Ox522);

Since the Windows selectors can be used in an MK_FP() macro, we see that these
selectors can be used instead of the segment value that would be used in real mode

26 UNDOCUMENTED WINDOWS

(for example, _FOOOR instead of OxFOOO). Likewise, they can often be used instead
of the map_real() function we just built.

Given the existence of these hard-wired selectors and the fact that they can be
called from a C program, why would anyone use the Set/GetSelectorBase/Limit func
tions? First of all, a program may not know what addresses it needs access to until run
time. Second, the Windows selectors, even if we include the incredibly useful but
undocumented _OOOOR selector, leave a large area of memory that's inaccessible:
OIOOOh to AOOOOh, plus all of extended memory (that is, absolute locations over one
megabyte). To access anything in this area (a buffer located within a real-mode TSR,
for example), you would need something like our map_real() function, which uses
SetSelectorBase/Limit.

On the other hand, there's a real reason to stay away from the Get/Set
SelectorBase/Limit functions, at least in Windows 3.0: their implementation makes
these functions potentially very dangerous. No matter what selector value you actually
pass in, the 3.0 KERNEL automatically assumes that the selector is in the LDT; there
is no validity checking and no provision for the possibility that you may have (probably
mistakenly) passed in a GDT selector such as 40h. The 3.0 KERNEL does not use
DPMI to implement these calls; instead, it directly smacks the LDT. In Windows 3.1,
however, some of these functions have been reimplemented in a safer fashion, using
the underlying DPMI calls. (See chapter 5 for details.)

Further Inside the Norton Desktop

We have been examining the undocumented calls made by Norton Backup for Win
dows, which is just one program in the Norton Desktop for Windows. If we do the
same thing for every program and DLL that comes with NDW, we get a fairly com
plete picture of all the undocumented functions and variables it uses. It is merely
"fairly complete" because Windows also allows a program to link in functions while i-rs
running, via GetProcAddress(); any program that imports this function may use addi
tional (possibly undocumented) functions whose names won't turn up in the
MAPWIN output. To find such calls, we would need to disassemble the program with
a tool such as Sourcer, or set breakpoints on the undocumented functions we're inter
ested in, with Soft-ICE/Windows.

In any case, MAPWIN turns up NDW's use of undocumented services:

_OOOOH

_0040H

GetHeapSpaces (kernel. 138)
GetlnternalWindowPos (user.460)

GetSelectorBase (kernel. 186)
GlobalMasterHandle (kernel.28)

SetDeskWallpaper (user.285)
SetlnternalWindowPos (user.461)

SetSelectorBase (kernel. 187)
SetSelectorLimit (kernel.I89)

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 27

We already discussed _OOOOH, _0040H, GetHeapSpaces, and the Get/Set
SelectorBase/Limit family; later on, we will discuss some differences in the implemen
tation of these functions between Windows versions 3.0 and 3.1. Let's discuss the
other undocumented functions now.

Get/SetlnternalWindowPos are two undocumented USER functions that can be
used to get and set the restored size and position ofa window, to get and set the show
state, and to get the "park point" when a window is not iconized. For example, let's
say you need to know where a window will be restored, but it is currently iconized:

RECT rcRestore;
POINT ptPark;
GetlnternalWindowPos(hWnd, &rcRestore, &ptPark);

Similarly, if you need to set where a window will be restored, but it is currently
iconic, you can use SetInternalWindowPos:

RECT rcNewRestorePosition;
II ...
SetInternalWindowPos(hwnd, SW_SHOWMINIMIZED,

&rcNewRestorePosition, NULL);

In Windows 3.1, documented functions, GetWindowPlacement() and
SetWindowPlacement(), provide this same functionality. Of course, these will not
work in Windows 3.0, but the undocumented Get/SetInternalWindowPos() functions
will continue to work in Windows 3.1. If your program only works in 3.1 and higher
you need to use Get/SetInternal WindowPos.

GlobalMasterHandle() is used by SIW to produce its Windows Memory Display;
the function returns a selector to the "master" block of the Windows global heap,
which is a linked list. Using selectors kept in this master block, you can walk through
all Windows memory blocks and, for example, count how much memory is being used
by an application. Not surprisingly, GlobalMasterHandle() is used by most applica
tions that display Windows memory, including Heapwalk from the Microsoft Win
dows SDK and hDC's Memory Viewer.

However, GlobalMasterHandle() is no longer necessary. Documented functions
and data structures in Microsoft's TOOLHELP.DLL, which is available with the 3.1
SDK but which also works under Windows 3.0, can now be used in applications that
display Windows memory. On the other hand, because it does not require an addi
tional DLL, use of GlobalMasterHandle() is unfortunately likely to persist until Win
dows 3.1 is more prevalent than version 3.0.

SetDeskWalIPaper(), an undocumented USER function, is used as part of the
WallPaper() function in the NDW batch language; this batch language (designed by
Morrie Wilson), is also part of the products BatchWorks, WinBatch, and Command
Post. As its name implies, the function provides programmatic access to the Windows
desktop "wallpaper"; for example:

28 UNDOCUMENTED WINDOWS

extern BOOL FAR PASCAL SetDeskWallPaper(LPSTR lpszBmpFilename);

if (SetDeskWallPaper(argv[1J»
InvalidateRect(GetDesktopWindow(), NULL, TRUE);

Note that this function does not automatically repaint the Windows desktop; for
that, you must call InvalidateRect(). In addition, this call does not save your wallpaper
setting in WIN.INI; for that, you would also want to call WriteProfileString().

NDW uses several other slick tricks besides undocumented Windows functions.
For example, NDW is also a heavy user of the DPMI interface, making DPMI INT
31h calls to generate real-mode INT 13h (BIOS disk services) calls. The Soft
ICE/Windows BPINT (breakpoint on interrupt) command can be used to find which
INT 31h calls a Windows program makes.

The conclusion from all this? A key Windows application makes heavy use of
undocumented Windows, particularly functions in KERNEL and USER. This makes
sense, considering what NDW does, and considering that it aims to replace programs
that many users mistakenly think of as built-in to Windows. It's important to note, on
the other hand, that there are many Windows applications, just as slick in their own
way as NDW, that use no undocumented Windows functions.

Microsoft's Use of Undocumented Windows

Where we find particularly extensive use of undocumented Windows functions is, of
course, in Microsoft's own software: not surprisingly, in "shell software," such as Pro
gram Manager and in some of the debugging utilities included with the Windows
SDK, but also in Microsoft's commercial applications, such as Microsoft Excel, and in
its language products, such as Visual Basic (VB) and Quick C for Windows (QC/W).
Of course, the main place that undocumented Windows is used is internally, by the
Windows DLLs themselves.

Let's first look at "shell software"-those applications that come with Windows,
and which many users confuse with Windows itself, but which are replaceable by alter
nate shells. Such software includes Program Manager (PROGMAN.EXE), Task Man
ager (TASKMAN.EXE), File Manager (WINFILE.EXE), and the old MS-DOS
Executive (MSDOS.EXE). These seemingly integral parts ofWindows are replaceable
using the shell= statement, and in Windows 3.1 the taskman.exe= statement, in SYS
TEM.INI. On the following page is the "census" of undocumented API calls revealed
by running MAPWIN on the shell software from Windows 3.0 and 3.1 (where no
pathname is provided, the undocumented function is used by both the Windows 3.0
and 3.1 versions of the program):

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 29

CalcChildScroll (user.462)
PROGMAN.EXE

CascadeChildWindows (user.198)

TASKMAN.EXE

ControlPanelInfo (user.273)
\WIN30\CONTROL.EXE

CreateCursorIconIndirect (user.408)
\WIN30\PROGMAN.EXE
\WIN31\SYSTEM\SHELL.DLL

DeletePathname (kernel.76)

PRINTMAN.EXE

DirectResAlloc (kernel.I68)

PROGMAN.EXE
\WIN3I\SYSTEM\SHELL.DLL
WINHELP.EXE

DragObject (user.464)

PROGMAN.EXE
WINFILE.EXE

DumpIcon (user.459)
PROGMAN.EXE
\WIN31\SYSTEM\SHELL.DLL

FileCdr (kernel.130)
WINFILE.EXE

GetCurPid (kernel.I57)
\WIN30\PROGMAN.EXE
\WIN31\SYSTEM\SHELL.DLL
WINFILE.EXE
MSDOS.EXE
\WIN30\PIFEDIT.EXE

GetLastDiskChange (kernel.98)
MSDOS.EXE

GetSpoolJob (gdi.245)
CONTROL.EXE
PRINTMAN.EXE

GlobalMasterHandle (kernel.28)
MSDOS.EXE

IsWinOldApTask (kernel.158)
TASKMAN.EXE

LoadIconHandler (user.456)

\WIN30\PROGMAN.EXE
\WIN31\sYSTEM\SHELL.DLL
WINHELP.EXE

LongPtrAdd (kernel.180)
WINFILE.EXE

_ROMBIOS (kernel. 173)

WINFILE.EXE

ScrollChildren (user.463)

\WIN30\PROGMAN.EXE

SetDeskPattern (user.279)
CONTROL.EXE

SetDeskWallpaper (user.285)
\WIN30\CONTROL.EXE

SetGridGranularity (user.284)
\WIN30\CONTROL.EXE

SetInternalWindowPos (user.461)
PROGMAN.EXE
\WIN3I\WINFILE.EXE

30 UNDOCUMENTED WINDOWS

GetHeapSpaces (kernel. 138)
\WIN30\PROGMAN.EXE

\WIN31\SYSTEM\SHELL.DLL

\WIN30\WINFILE.EXE

MSDOS.EXE

GetlconID (user.455)
\WIN30\PROGMAN.EXE

\WIN31\SYSTEM\SHELL.DLL

GetInternalWindowPos (user.460)
PROGMAN.EXE

\WIN31\WINFILE.EXE

SwitchToThisWindow (user.I72)
TASKMAN.EXE

SystemParameterslnfo (user.483)
\WIN31\PROGMAN.EXE

TileChildWindows (user.199)
TASKMAN.EXE

That such programs re'quire undocumented Windows clearly presents a problem
for those writing alternate shells. We are already familiar with some of these functions,
such as Get/SetInternaIWindowPos, from our examination of NDW. Many of the
other functions are used by PROGMAN.EXE in Windows 3.0 but not in 3.1. In 3.1,
these functions-including CreateCursorIconIndirect(), DirectResAlloc(), DumpIcon(),
GetIconID(), and LoadlconHandler()-are instead used by SHELL.DLL, which in
turn is used by PROGMAN.EXE.

Moving the use of these undocumented calls out of PROGMAN.EXE and into
SHELL.DLL was a good move in Windows 3.1. It means that alternates to Program
Manager have a better chance of duplicating its functionality. However, it is not clear
to what extent the API provided by SHELL.DLL will be documented. Microsoft's
SHELLAPI.H marks several functions; ShellAbout(), Duplicatelcon(), and Extract
Associatedlcon()-as "internal." These functions are used by the 3.1 version of Pro
gram Manager. It is not clear whether non-Microsoft shells will still be at a
disadvantage, required to use functions that Microsoft regards as internal.

Because there are more intriguing-sounding functions listed than we could possi
bly have room to explore here, let's instead focus on a single program, the Task Man
ager (TASI<MAN.EXE). TASKMAN is a particularly nice example, not only because it
makes many undocumented calls, but because these calls directly relate to the pro
gram's visible operation. Click the "Cascade" button in Task Manager, and it calls
CascadeChildWindows(); click the "Tile" button, and it calls TileChildWindows(); the
"Switch To" button corresponds to the SwitchToThisWindow() call. Finally, a rather
annoying feature of the "End Task" button is that it can't be used to shut down a
DOS box; a glance at an assembly listing for TASKMAN shows that the code for
"End Task" calls the undocumented IsWinOldApTask() function to determine
whether a given task is a DOS box.

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 31

Aside from the way that its overt user-interface directly relates to the undocu
mented functions it uses, another nice thing about TASKMAN is that it is a very small
program (3K) that, when disassembled with V Communications' Sourcer, produces a
very clean, understandable TASKMAN.LST or TASKMAN.ASM. It turns out that
Task Manager is hardly more than a facade for some undocumented Windows
functions. C function prototypes and explanatory material for these functions are as
follows:

/*
Determine if a task belongs to the Windows WINOlDAP module,
i.e., if it is a DOS ("old") application. The task handle
parameter can be created from a window handle, using the
documented GetWindowTask() function. Thus, an IsDOSBox()
function can easily be synthesized.

*/
BOOl FAR PASCAL IsWinOldApTask(HANDlE hTask);

#define IsDOSBox(hwnd)

/*

IsWinOldApTask(GetWindowTask(hwnd»

Performs the equivalent of a Task Manager "Switch To". The
tRestore parameter determines whether an iconic window is
restored, or switched to but left iconic.

*/
void FAR PASCAL SwitchToThisWindow(HWND hWnd, BOOl tRestore);

/*
Rearranges the child windows of a specific parent into a
cascaded formation. The Task Manager "Cascade" operation
is equivalent to CascadeChildWindows(GetDesktopWindow(».
MDI windows such as Program Manager must be handled differently,
by sending a WM_MDICASCADE message, since MDI children are not
direct descendents.

*/
void FAR PASCAL CascadeChildWindows(HWND hParent, ...);

/*
Rearranges the child windows of a specified parent into an
old-style (Windows 1.x) tiled formation. See comment for
CascadeChildWindows() above for further notes.

*/
void FAR PASCAL TileChildWindows(HWND hParent, ...);

/* following only for 3.0--see below */
#define TileDesktop() TileChildWindows(GetDesktopWindow(»

By combining these undocumented functions with several documented functions,
you can synthesize a number of additional useful functions, such as IsDOSWindow()
and TileDesktop(). This last function puts the retro look and feel ofWindows l.x only
a function call away and can be run when using Windows in the presence of lawyers
from Apple.

32 UNDOCUMENTED WINDOWS

Handling Extra Parameters In 3.1

In Windows 3.1, both CascadeChiidWindows() and TileChiidWindowsO take an
extra parameter that is not present in the Windows 3.0 version of these functions:

#if (WINVER >= Ox030a)
void FAR PASCAL CascadeChildWindows(HWND hParent, WORD wStyle);
void FAR PASCAL TileChildWindows(HWND hParent, WORD wStyle);
#endif

For TileChiidWindows, the wStyle parameter is one of the Windows 3.1 WIN
DOWS.H values MDITILE_VERTICAL, MDITILE_HORIZONTAL, or MDITILE_SKIP
DISABLED; for CascadeChiidWindows, only the MDITILE_SKIPDISABLED option is
used.

Because these functions, like almost all other Windows API functions, use the
Pascal calling convention, you must call them with the correct number of argu
ments or your program may suffer a protection violation. In Windows 3.0, you
cannot simply pass in the extra argument as an unused "dummy" value, as you
could with a function that used the C (cdecl) calling convention.

The function prototypes shown earlier for these functions deal with this discrep
ancy by using ANSI C ... syntax to turn off checking after the first argument. To call
the function, you must still use the correct number of arguments. For example:

void TileDesktop(void)
{

extern WORD wVers;
if (wVers == Ox0003) II 3.0

TileChildWindows(GetDesktopWindow(»;
else if (wVers == OxOa03) II 3.1

TileChildWindows(GetDesktopWindow(), MDITILE_VERT);
}

Another way to handle undocumented functions whose number or size of
arguments differ from one Windows version to the next is to provide different
function prototypes for each Windows version. For example:

void FAR PASCAL CascadeCW30(HWND hParent);
void FAR PASCAL CascadeCW31(HWND hParent, WORD wStyle);

In other words, CascadeCW30() and CascadeCW31 () are aliases for the
CascadeChiidWindowsO function. However, this begs the question of how to link
this alias to the actual CascadeChiidWindows function in the 3.0 or 3.1 version of
USER.DLL. By using the function's module name and ordinal number, it's easy to
perform this linkage in a Windows .DEF file. For example:

continued

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 33

continued

IMPORTS
CASCADECW30=USER.198
CASCADECW31=USER.198
TILECW30=USER.199
TILECW31=USER.199

; 3.0 CascadeChildWindows
; 3.1 CascadeChildWindows
; 3.0 TileChildWindows
; 3.1 TileChildWindows

Another way, of course, is not to bother with the .DEF file at all and to instead
use our old friend GetProcAddressO:

extern void FAR PASCAL (*CascadeCW30)(HWND hParent);
extern void FAR PASCAL (*CascadeCW31)(HWND hParent, WORD wStyle);

II ...
HANDLE hUser=GetModule Handle ("USER");
CascadeCW30 GetProcAddress(hUser, "CASCADECHILDWINDOWS");
CascadeCW31 = GetProcAddress(hUser, "CASCADECHILDWINDOWS");

II ...
extern WORD wVers;
extern HWND hwndDesktop;

if (wVers == Ox0003)
CascadeCW30(hwndDesktop)

else if (wVers == OxOa03)
CascadeCW31(hwndDesktop, MDI_TILESKIPDISABLED);

Remember that ANSI C and c++ allow us to call through a function pointer like
CascadeCW31 using either (*CascadeCW31)0 or CascadeCW310; the two are
equivalent.

If you are using a programming language such as Visual Basic, Turbo Pascal, or
WordBasic, it is a lot easier to create such alias functions than it is in C or C++.
These other languages all provide ways to provide names of your own choosing for
imported functions. Obviously, this capability should be used sparingly if you want
other Windows programmers to be able to read your code!

In Turbo Pascal for Windows (TPW), you could handle CascadeCW300 and
CascadeCW31 () in the following way; you make the linkage to Cascade
ChiidWindowsO by specifying the function's module name and ordinal number:

uses WinProcs, WinTypes;

procedure CascadeCW30(hParent: Word); far;
external 'USER' index 198;

procedure CascadeCW31(hParent, wStyle: Word); far;
external 'USER' index 198;

continued

34 UNDOCUMENTED WINDOWS

continued

In Visual Basic and WordBasic, the DECLARE statement has an optional ALIAS
clause that is ready-made for handling the vagaries of undocumented functions.
For example, in WordBasic:

Declare Sub CascadeCW30 Lib "User" Alias "CascadeChildWindows" \
(hParent as integer)

Declare Sub CascadeCW31 Lib "User" Alias "CascadeChildWindows" \
(hParent as integer, wStyle as integer)

(The Visual Basic declaration would say "hParent byVal" and "wStyle byVal".)
Because this "function" has no return value, it can be declared as a SUB rather

than as a FUNCTION. This means that it can be called in a very natural, BASIC
looking way. The following is excerpted from Jonathan luck's TASKMGR, an
improved clone of the Windows Task Manager written in Visual Basic:

'Handle a click in the Cascade command button
Sub Cascade_Click ()

Select Case WinVer
Case 300

CascadeCW30 DesktopWnd
Case 310

CascadeCW31 DesktopWnd, MDI_TILESKIPDISABLED
End Select

End Sub •

Undocumented Debugging

Besides Microsoft's replaceable shell programs for Windows, software in the Microsoft
Windows SDK also uses undocumented functions. It's important to note that some of
these programs-including SPY, SHAKER, and SDKPAINT-use no undocumented
functions. But the software listed below does show that yet another feature ofWmdows
that developers tend to take for granted-the ability to debug-is based on undocu
mented foundations. This is particularly reminiscent of the situation in DOS, where
for years the key "load but don't execute" function used by debuggers, such as
DEBUG, SymDeb, and CodeView, was "reserved" by Microsoft:

AllocSelectorArray (kerne1.206)

WINMEM32.DLL

DirectedYield (kernel. 150)

WINDEBUG.DLL
TOOLHELP.DLL

GetSelectorBase (kernel. 186)

WINMEM32.DLL
WINDEBUG.DLL

GlobalHandleNoRIP (kernel.159)

HEAPWALK.EXE
WINDEBUG.DLL

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 35

GlobalMasterHandle (kernel.28)
HEAPWALK.EXE

WINDEBUG.DLL
TOOLHELP.DLL

IsTaskLocked (kernel.122)
WINDEBUG.DLL

LockCurrentTask (kernel. 33)

WINDEBUG.DLL

OpenPathname (kernel.75)
HEAPWALK.EXE

RegisterPtrace (kerne1.202)
WINDEBUG.DLL

TOOLHELP.DLL

SelectorAccessRights (kernel. 196)
WINMEM32.DLL

SetEventHook (user.32I)
CVW.EXE (CodeView for Windows)

SetSelectorBase (kernel. 187)
HEAPWALK.EXE

WINMEM32.DLL

WINDEBUG.DLL

SetSelectorLimit (kernel.189)
HEAPWALI(.EXE

WINMEM32.DLL

WinDebug (WINDEBUG.I)

CVW.EXE (via GetProcAddress)

Not only does the Windows debugging library, WINDEBUG.DLL, use a number
of undocumented functions, but even the interface it provides is undocumented! This
interface, the WinDebug() function, is used by all available Windows debuggers,
including CodeView for Windows (CVW), Turbo Debugger for Windows (TDW), and
Multiscope. Use of WinDebug() usually does not show up in MAPWIN output
because debuggers link to it at run-time via the amazing GetProcAddress() function.

WinDebug() is a hacked 32-bit version of the poorly documented DosPTrace()
function from OS/2 l.x, which, in turn, is based on the ptrace() function in Unix.
Like DosPTrace(), WinDebug() takes commands such as Go, Single-Step, Write Reg
isters, Read Registers, Write Memory, and Read Memory. It returns to its caller either
when the command completes or when some interesting event such as a breakpoint,
protection fault, or DLL load occurs. These commands and notifications appear in a
large structure whose address is passed to WinDebug(), as shown in the following
somewhat contrived code fragment:

void FAR PASCAL WinDebug(WINDEBUG_BUF far *wdbgBuf);
II ...
WINDEBUG_BUF wdbgBuf;
WORD cs, ds;
wdbgBuf.Cmd = DBG_C_ReadReg;
WinDebug(&wdbgBuf);
cs wdbgBuf.Client_CS;
ds = wdbgBuf.Client_DS;

36 UNDOCUMENTED WINDOWS

Returning to the list of undocumented functions used by SDK software, notice
that WINDEBUG.DLL imports both the IsTaskLocked() and LockCurrentTask()
functions. Task locking prevents other Windows tasks from getting message input; its
use by WinDebug() explains the rather annoying behavior of CVW and TDW, from
which-unlike practically all other Windows applications-you cannot switch away.

Alternatives to WinDebug() are available. For one thing, the KERNEL Register
Ptrace() function allows a Windows "notification" function to be installed. Windows
calls the notification function when it's about to do something interesting, like load or
terminate a task, load a DLL, and so on. (Unfortunately, only one such notification
function can be installed at any given time.) Other debug interfaces could be built on
top of this.

Even better, Microsoft's ToolHelp API, which, as noted earlier, is available start
ing with the Windows 3.1 SDK, but which will also work under Windows 3.0, pro
vides documented functions for registering handlers: InterruptRegister(), which can be
used to install a handler for such exceptions as general-protection (GP) faults and even
"bad" page faults, and NotifyRegister(), which can be used to catch the same events as
handled by RegisterPtrace(). These are explained in more detail in chapter 10 of this
book.

Clearly, Microsoft wants to move developers away from using the undocumented
WrnDebug() interface and toward writing Windows-hosted debuggers with
TOOLHELP.DLL and some quasi-documented functions in the Open Tools materials.
In other words, Microsoft isn't documenting the important WinDebug() function
because it wants to see it go away. This, in fact, is often why Microsoft doesn't document
seemingly crucial functions. WinDebug() is simply not going to disappear overnight (it
was renamed to CVWIN.DLL and TDWIN.DLL for Windows 3.1), so it's important
that developers have documentation for it; on the other hand, ToolHelp (though a
lower-level interface than WinDebug) certainly is preferable in most cases, and it
would be nice to see more use ofToolHelp and less use of those undocumented func
tions that it supplants. ToolHelp doesn't solve all the Windows problems that other
wise require undocumented functions, but it's an important step in the right direction.
At the same time, another important Windows debugging interface, INT 41h, remains
undocumented.

Microsoft Commercial Applications and 'Language Products
Probably no one objects to Microsoft's use of undocumented functions in its Win
dows debugging utilities. Mter all, debuggers are more like system software-pieces of
the operating system-and less like application software. (Except that, in tIle crazy PC
marketplace, an obscure piece of software like a debugger can become a mass-market
commodity, sold in tens of thousands of copies, and hence stops being a piece of sys
tem software and becomes a piece of application software.)

But what of Microsoft's application software, such its excellent word processor,
Word for Windows (which was used to write much of this book), and its Excel

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 37

spreadsheet for Windows? Isn't it just downright unfair if Microsoft applications use
undocumented Windows and DOS functions? We'll address this issue of fairness in a
few minutes, but first let's find out how extensive this use of undocumented functions
actually is.

Certainly, it is not difficult to see that the Excel spreadsheet uses undocumented
Windows functions. We only need to examine EXCEL.EXE and EXCELDE.EXE with
the same utility that we've been using to examine other Windows executable and librar
ies. The undocumented functions revealed include the following:

\EXCEL\EXCEL.EXE
EndMenu (user.I87)

FillWindow (user. 324)

Get80x87SaveSize (SYSTEM.7)
GetControlBrush (user.326)
GetPhysicalFontHandle (gdi.352)
GetTimerResolution (user.14)

\EXCEL\EXCELDE.EXE
FillWindow (user.324)

InquireSystem (SYSTEM.1)

KillSystemTimer (user.I82; called Bearl82 in 3.1)
LocalNotify (kernel.14)
PatchCodeHandle (kernel.IIO)
SetSystemTimer (user.ll; called Bearll in 3.1)

GetControlBrush (user.326)

Some of these references are located inside a large table of function pointers in
EXCEL.EXE, so it is difficult to tell exactly how Excel uses them. The calls
GetTimerResolution(), SetSystemTimer(), and KillSystemTimer() are particularly
intriguing, as these calls do not seem obviously related to the operation of Excel. As
noted in chapter 6 of this book, SetSystemTimer() can allocate a Windows timer even
when the documented SetTimer() function reports that one isn't available. (Note that
SetSystemTimer() in USER is quite different from CreateSystemTimer() in SYSTEM,
described in chapter 9.)

To see if these functions are really called by Excel, we can set breakpoil1ts on them
with Soft-ICE/Windows (Soft-ICE has symbolic information for all functions exported
from KERNEL, USER, and GDI, even if they're undocumented). The result is that
all of the functions listed above are indeed called while Excel is running. Some of
them are also called constantly even when Excel isn't running, and so must also be
used by parts of Windows itself, but the Soft Ice CSIP range qualifier lets us restrict
the breakpoint to calls coming from Excel.

In any case, while it is clear that Excel really does use all this undocumented stuff,
it is far less clear why. EndMenu(), for example, can be used to take down a menu
when required by a more pressing event; FiIIWindow() simply paints a window using a
given HBRUSH; GetControIBrush() retrieves an HBRUSH used for a given control.
Maybe it's even all just old code that is no longer needed.

The PatchCodeHandle() function used by Excel is another can of worms. As
explained in the Windows 3.1 SDK documentation, Windows permits "self-loading"

38 UNDOCUMENTED WINDOWS

Windows applications. Normally this is done to work around a limitation of the
WinExec() loader. Part of the process of writing your own Windows loader involves
calling PatchCodeHandle() to create the standard Windows prologs and epilogs.

This ability to write self-loading Windows executable files invites programmers to
come up with their own executable file formats. So long as certain minimal criteria are
met, you could devise a new executable-file format that, for example, decompressed
itself on the fly, as it was loading. Although this ability opens up a wide range of inter
esting possibilities for Windows software, it also means that we may see the current
consistent use of the segmented-executable NE format degenerate into a kind of "file
format of the week" confusion, interfering with the use of standard tools.

The first suggestion that this could happen is the executable file for version l.x
of Microsoft Word for Windows (WINWORD.EXE). Trying to run any standard
segmented-executable tools on WINWORD.EXE reveals a call to PatchCodeHan
dle(), followed by a completely nonstandard file format. Microsoft's own EXEHDR
utility knows enough about this format to issue a warning about "compressed reloca
tion records." In short, version l.x of WINWORD.EXE uses its own home-brew
compressed executable format; unfortunately we can't examine it with any of our utili
ties. This is probably the only time we have encountered anything that made it diffi
cult to examine a Windows application.

WinWord 2.0 no longer uses PatchCodeHandle() and compressed relocation
records. Therefore, it is trivial to see that WINWORD.EXE does, in fact, use two
undocumented Windows functions. Furthermore, the Draw, Graph, and Dialog Editor
utilities that come with WinWord 2.0 (MSDRAW also comes with Microsoft Works
for Windows) also use undocumented functions:

WINWORD.EXE (2.0)
EndMenu (user.I87)
LoadCursorlconHandler (user.336)

MSGRAPH\GRAPH.EXE
EndMenu (user.I87)
Get80X87SaveSize (SYSTEM.7)
GetHeapSpaces (kernel. 138)
InquireSysten (SYSTEM.I)
LocalNotify (kernel.I4)

MSDRAW\MSDRAW.EXE
InquireSystem (SYSTEM.I)
KillSystemTimer, BearI82 (user.I82)
SetSystemTimer, BearII (user.II)

MACRODE.EXE (Dialog Editor)
LocalNotify (kernel.I4)
InquireSystem (SYSTEM.l)
FillWindow (user.324)
GetControlBrush (user.326)

It's hard to know what to make of this. The undocumented functions imported
from USER-EndMenu(), LoadCursorIconHandler(), FillWindow(), and GetControl
Brush()-are probably serving a genuine purpose. But if, for example, you read the
description of InquireSystem() in chapter 8 of this book, it's hard to see how it would
be of much use to Draw, Graph, and the Dialog Editor: there are documented ways to
get the same information. The LocalNotify() function was documented in Windows

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 39

2.x, but it serves little purpose in protected-mode Windows where there's much more
memory to work with (perhaps this is just old code). Then again, the USER
Set/KillSystemTimer functions could be working some real magic for these Microsoft
applications, magic that has been declared off-limits for non-Microsoft developers.

How about Microsoft's language products for Windows, Visual Basic and Quick C
for Windows? These really are applications, not systems software; at least, they are
marketed that way. These too use a few undocumented functions:

\VB\VB.EXE
EndMenu (user.18?)
PrestoChangoSelector (kernel. I??)

\QCWIN\BIN\QCWIN .EXE
DirectedYield (kernel.I50)
GetTaskQueue (kerne1.35)

It is hard to decide whether the PrestoChangoSelector() function really is undocu
mented. In the Windows 3.0 Programmer)s Reference, a more sedate-sounding func
tion, ChangeSelector(), was documented but was not exported from any Windows
DLL or made available in the standard import libraries. However, PrestoChangoSelec
tor() was available instead, though this silly name was not documented in 3.0. Pre
stoChangoSelector(), or ChangeSelector() if you prefer, is used to implement
self-modifying code or executable data in protected-mode Windows. The function
works by twiddling a single bit in a descriptor table.

How can the same function turn a code selector into a data selector or a data
selector into a code selector? All that is required is to twiddle (XOR) a single bit in a
protected-mode descriptor. In fact, ifwe use Soft-ICE or Sourcer to look at the source
code for the Windows 3.0 implementation of PrestoChangoSelector(), it's easy to see
why the function was given this name. As seen here, the code does work a sort of
magic:

; from KRNL386 3.0
PRESTOCHANGOSELECTOR proc far

ENTER
SAVE ds, si, di
mov ds,cs:WIN_LOT
mov es,cs:WIN_LOT
mov si, wSourceSeLector
mov di, wDestSelector
and si,OFFF8h
and di,OFFF8h
mov ax,di
mov cx,4
cld
rep movsw
xor byte ptr [di-3J,8
MOVes, 0
or aL,5
RESTORE di, si, ds
LEAVE 4

PRESTOCHANGOSELECTOR endp

; [bp+8J
[bp+6J
turn seLector into LOT offset

; ditto

; copy the 8-byte descriptor
; PRESTOCHANGO: toggle the code/data bit
; push 0 / pop es

40 UNDOCUMENTED WINDOWS

Like other functions in the 3.0 kernel, PrestoChangoSelector() magically ANDs a
selector with OFFF8h to turn it into the corresponding descriptor's offset in the
protected-mode Local Descriptor Table (LDT). Unfortunately, this code is extremely
unsafe, as it makes the unwarranted assumption that any selector belongs to the LDT;
passing in a bad value will instandy corrupt the Windows LDT. This problem has been
corrected in Windows 3.1, where the code more sedately uses DPMI INT 31h calls to
manipulate the descriptor table:

; KRNL386 3.1
PRESTOCHANGOSELECTOR proc far

, ...
DPMICALL GET_DESC, [bp+8J
xor byte ptr [bp-3J, 8
DPMICALL SET_DESC, Cbp+6J
, ...

PRESTOCHANGOSELECTOR endp

; INT 31h AX=OOOBh
; PRESTOCHANGO: code <==> data
; INT 31h AX=OOOCh

As a threaded-code interpreter, it makes sense that VB would call PrestoChango
Selector(). This function is always used either to write self-modifying code or to have
executable data. For example, the Windows DISPLAY driver's BITBLT module calls
PrestoChangoSelector() to compile bitblts on the fly. (See the sample source code in
the Windows Device Driver Kit, for example \display\4plane\bitblt\bitblt.asm.)

Quick C for Windows' use of the undocumented functions also makes sense.
DirectedYield() and GetTaskQueue() (you can read more about these in chapter 5 on
KERNEL) both help the QCW integrated environment orchestrate the task-switching
between itself and a user's C program.

The "Chinese Wall" and FTC's Investigation of Microsoft
Given the use of undocumented Windows functions by Microsoft applications, it
seems important to note that Microsoft is under investigation from the u.S. Federal
Trade Commission (FTC), which will determine whether Microsoft's role as a pro
vider of operating-system software also gives it an unfair advantage in the applications
software business.

In fact, the use of undocumented Windows functions by Microsoft applications
such as Excel is probably no more nefarious than the use of undocumented Windows
functions by Norton/Symantec, Borland, or any other company whose software must
make Windows jump through hoops. Nonetheless, using these functions but not doc
umenting them certainly gives the appearal1ce of an unfair advantage over Microsoft's
competitors. For this reason, Microsoft employees from time to time deny that any
Windows application from Microsoft uses undocumented functions.

For example, Mike Maples, then head of the applications division at Microsoft,
was asked by InfoWorld (30 December 1991) whether there wasn't supposed to be a
"Chinese Wall" between the applications division and the systems-software division at
Microsoft. Maples said that there was, in fact, no such wall, but,

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 41

The bigger issue would be, if we were using secrets or undocumented
things, and we very consciously avoid that. A long time ago, when Win
dows was barely being strapped together, there were cases where things
were added to make [the application division's] life easier, but they were
added for other apps developers too. But right now, to my knowledge,
there isn't a single undocumented thing in Windows that is used by a
Microsoft application.

To this, the interviewer responded, "Yet this issue was evidently in the Federal
Trade Commission's mind after they did the first round of interviews with third par
ties, then expanded their probe of Microsoft. "

The issue of whether there is-or should be-a "Chinese Wall" between applica
tions and operating systems at Microsoft is frequently brought up in coverage of the
FTC investigation, and it is often viewed as related to the use of undocumented DOS
and Windows functions by Microsoft end-user applications. For example, PC Week (20
May 1991) explained the term "Chinese Wall" this way: "Does Microsoft leverage
control over the information flow between its operating-systems and applications
groups to hobble competitors?"

However, consider whether the term "Chinese Wall" may mean something
entirely different, at least to the FTC: not whether Microsoft applications take unfair
advantage of undocumented goodies in DOS and Windows, but whether the applica
tions group at Microsoft has unfair access to knowledge of changes that the Microsoft
operating-systems group is planning. For example, while Microsoft was telling the
world at large to develop applications for OS/2, its applications group may have had
inside knowledge that led it instead to develop for Windows.

From what we've seen of Microsoft, though, there often seems to be very little
communication between the operating-systems group and the other parts of the com
pany-too little communication, in fact. For example, for all of Microsoft's talk of how
NT represents the future of operating systems, Microsoft's languages group has been
dragging its feet on developing the 32-bit compilers, linkers, and debuggers that are
needed to give NT any hope of succeeding. Sometimes there seems to be too much of
a wall at Microsoft.

Their use of undocumented functions shows that Microsoft applications develop
ers obviously have access to information on Windows internals. But is this really such
an unfair advantage? Any owner of this book now also has access to this information.
More important, as chapters 2, 3, and 4 of this book show, anyone with a few simple
tools can delve into the depths of undocumented Windows. Microsoft has made
essentially no effort to keep you from finding out about these functions on your own.
The Windows license agreement, of course, has a standard "no disassembly" clause,
but Microsoft's own tools, such as CodeView for Windows (CVW) and EXEHDR,
make it almost impossible not to see disassembled pieces of Windows. The point is
merely that Microsoft really can't be found to have unfair access when anyone with
copies of CVW and EXEHDR has essentially the same access.

42 UNDOCUMENTED WINDOWS

The Geary Incident
That one can understand Windows internals, without access to the Windows source
code, is particularly important because of a dispute involving Microsoft and the bril
liant Windows programmer, Michael Geary. On the other hand, this incident also
tends to contradict what we just said about Microsoft's lack of an unfair advantage,
because Microsoft attorneys came after Geary for discussing undocumented Windows.

Microsoft's harassment of Geary is described in a letter by Carole Patton to PC
Week (3 June 1991), from which the following details are taken:

On 31 October (Halloween) 1991, Adobe CEO John Warnock received a letter
from Microsoft regarding Michael Geary; Geary worked on the Adobe Type Manager
(ATM) and was at the time doing other projects for Adobe. Microsoft's letter accuses
Geary of revealing Microsoft trade secrets: "Microsoft first learned of this unautho
rized disclosure through a recent CompuServe E-mail in which Geary describes how
he modifies a specific GDI entry point in Windows 3.0 in order to accommodate
ATM for Windows. According to the Microsoft development team, such a modifica
tion could only have been done by someone with an intimate knowledge of the inter
nals ofWindows 3.0."

This makes it sound almost as if "an intimate knowledge of the internals of Win
dows 3.0" is in itself a bad thing to have. The Microsoft letter goes on to claim that
Geary had gained this forbidden knowledge while working for Cooper Software,
which developed much ofVisual Basic. (So it really makes sense to complain to Adobe
about it, right?) Since "reverse engineering" is legal, Microsoft could only go after
Geary by claiming that he didn)t reverse engineer, but instead had worked with the
actual GDI source code.

What deep, dark secret had Geary revealed? As you can see from the following
transcript excerpted from CompuServe, Geary, by way of discussing how ATM works,
ends up describing some of the implementation details of Microsoft's CreateDC()
function in GDI. It is this description of CreateDC() that Microsoft's lawyers main
tained was derived from an illicit peek at the source code.

Before reading any further, think for a minute about how CreateDC() might be
implemented. The function takes the name of a DISPLAY driver, plus some other
parameters, and returns a handle to a display context. Somehow it has to get from a
driver on disk to a display context in memory. A display driver is just a DLL with a
certain set of required entry points, which are defined in the Windows DDK Creating
a display context from a driver means loading the driver and calling some of these
functions. How do you think CreateDC() does this?

Okay, here's the famous CompuServe exchange, from October 1990. To put the
conversation in context, recall that this was before the announcement of Windows 3.1
with TrueType:

#:0617 S9/Windows Developers
04-0ct-90 11:55:29

Sb: #Adobe Fonts, How Done?
Fm: Alan Cobb

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 43

To: Michael Geary

The Adobe Type Manager apparently is out now. Is it set up in
such a way that it transparently can be added to Windows? That
is, you just install it and magically all your applications
start to have less jagged screen images? Does the Windows font
system allow this to be done simply? (probably not :-)

#:50774 S9/Windows Developers
04-0ct-90 23:07:02

Sb: #50617-Adobe Fonts, How Done?
Fm: Michael Geary
To: Alan Cobb

That's right, Alan, ATM installs into Windows and existing
applications work transparently with it. There is no device
driver involved: ATM essentially sits between GDI and the
existing device drivers.

How it works: When GDI asks any driver to realize a font (this
happens when you do a SelectObject on an HFONT), ATM looks at
the font parameters and sees if it has a font to match. If so,
ATM returns a font structure to GDI that we mark as being our
own. (This is not a raster font; GDI actually thinks it is a
device vector font.) Otherwise, we pass the call on through to
the driver so it or GDI can realize the font.

Then, when the driver receives an ExtTextOut call, we grab that
and see if the font is one of ours. If not, we pass it through
to the driver. If it is ours, ATM than rastorizes the
characters from the font outlines and puts them into a memory
monochrome bitmap. We then call the driver's BitBlt function to
do the actual output. Depending on the size of the text string,
this can be one BitBlt call per character, or else I'll merge
the characters into one memory bitmap and BitBlt the whole
thing. (The latter is faster, so we do that wherever possible.)

Oh--we also intercept the EnumDFonts call so we can add the
Adobe fonts to the normal list of fonts. There are several
other calls we intercept and tweak as well, such as the Control
function. (That's known as Escape at the application level.)

44 UNDOCUMENTED WINDOWS

I lied. There is one driver involved. ATM actually installs
itself as a SYSTEM driver, of all things. It is a system driver
that does nothing special with the calls made into it, just
passing them all through to the original SYSTEM.DRV. The reason
it's done this way is this is a reasonably convenient way to
get our code loaded in early enough in the boot process.

Was it easy? Not at all ... :-)

#:50918 S9/Windows Developers
05-0ct-90 12:08:27

Sb: #50774-Adobe Fonts, How Done?
Fm: Alan Cobb
To: Michael Geary

> There is no device driver involved; ATM essentially sits
> between GDI and the existing device drivers.

> when the driver receives an ExtTextOut call, we grab that

> we also intercept the EnumDFonts call

How do you initially set up those interceptions? There is no
standard provision in Windows for this, is there? Do you have
to do some weird searching and repointing of addresses?
Enquiring minds want to know :-).

#:1222 S9/Windows Developers
06-0ct-90 15:15:41

Sb: #50918-#Adobe Fonts, How Done?
Fm: Michael Geary
To: Alan Cobb

Alan, it's a little on the nasty side, I'm afraid. Whenever
anyone calls CreateDC, that function calls LoadLibrary to load
in the .DRV file and then does a series of GetProcAddress calls
to pick up the driver entry points. Right after GDI is loaded
into memory, my code searches through the CreateDC function to
find those two function calls, and it patches them to point to
some routines of mine. My LoadLibrary intercept goes ahead and
calls the original LoadLibrary and also allocates an extra data
segment where I keep information about the device. This segment

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 45

has both a normal data selector and a CS alias. The GetProc
Address intercept calls the original GetProcAddress function
and then looks to see if it is one of the driver routines that
I want to intercept. If not, it just returns the original
address. If it is an entry we intercept, I save the original
driver function address in my context segment and then return
the address of a little stub entry that's also in the context
segment. Then, when GDI calls that driver entry, it goes
through my code.

That's it! Essentially, Geary disclosed little more about Windows internals than the
fact that CreateDC() calls the run-time dynamic linking functions LoadLibrary() and
GetProcAddress(). If you've been doing Windows programming for any time at all,
this description of CreateDC() probably occurred to you during our earlier thought
experiment. Geary is easily one of a small handful of really brilliant Windows program
mers on the planet, but the revelation about how CreateDC() is implemented is hardly
rocket science, and requires little more than a few minutes' reflection, not an illicit
peek at the GDI source code. If someone on the Microsoft development team told
Microsoft's lawyers that the inner workings of CreateDC() could only be understood
by someone with inside knowledge of GDI, then quite frankly, someone at Microsoft
wasn't thinking very clearly.

As a curious denoument to the Geary incident, you might note that in Windows
3.1, CreateDC() has been reimplemented. It now looks like this:

CreateDC:
jmp somewhere_else
callf LoadLibrary
callf GetProcAddress
callf FreeLibrary

In other words, CreateDC() has in 3.1 specific knowldge of ATM's need to patch
GDI.

Geary was soon vindicated by Cooper Software, which informed Microsoft that,
while Cooper did have access to some Windows source code, it did not have the code
for GDI, which is what Geary had discussed on CompuServe.

In a follow-up letter, a Microsoft attorney told Adobe it was all right to retain
Geary, but concluded, "I trust, however, that all parties involved will continue to be
vigilant in preventing the possibility of improper use of proprietary information,
including undocumented internals."

It is possible that these threatening letters to Adobe, about an incident that
occurred while Geary was working for Cooper Software, are merely a sideshow in the
larger battles between Microsoft and Adobe. But by threatening a competitor for dis
cussing undocumented Windows, when Microsoft's own applications use these func
tions, Microsoft certainly makes us think twice that maybe its applications do after all
have an unfair advantage. Certainly, ifMicrosoft wants to combat the very widely held

46 UNDOCUMENTED WINDOWS

belief that its use of undocumented functions is unfair, it needs either to stop using
them or to document them. It also needs to publicly apologize to Michael Geary.

Inside Windows
Having discussed the way undocumented functions are used in Microsoft's shell pro
grams, SDK utilities, applications, and "quick" language products, we finally turn to
what is really the reason d'etre for undocumented Windows: its use internally by the
Windows DLLs themselves. Each Windows DLL, DRV, and so on uses functions
from the other components of Windows, and some of these functions, naturally, are
undocumented. It is completely legitimate for Microsoft not to document its internal
functions! It's also legitimate for us to try to figure out what's going on.

For example, the GDI (graphics device interface) module in Windows imports
functions from KERNEL; GDI makes no use of services, whether documented or
undocumented, from the USER (windowing) module. The undocumented functions
that Windows 3.0 GDI explicitly imports from KERNEL are shown below; Windows
3.1 is somewhat different, also using our old friend, Get/SetSelectorBase.

\WIN30\sYSTEM\GDI.EXE
DeletePathname (kernel.76)
GetCurPID (kernel.157)
GetExeVersion (kernel.105)
LocalCountFree (kernel.161)

LocalHeapSize (kernel.162)
LongPtrAdd (kernel.IBO)
NoHookDOSCall (kernel.IOI)
PrestoChangoSelector (kernel.177)

Ofcourse, this list of undocumented functions hardly gives us a well-rounded view
of how GDI and KERNEL interrelate. By walking relocation information in an NE
executable, it's easy to write programs (such as EXEUTIL -IMPORTS in chapter 2 of
this book) that show how many calls are generated to a function, whether documented
or undocumented; in this case, we would see that GDI relies on KERNEL for-not
surprisingly-global memory allocation, locking, and (somewhat surprisingly in 3.1,
where it shouldn't be necessary) unlocking. It should also be noted that GDI uses a
number of unnamed functions provided by KERNEL (this is possible because imports
occur by module.ordinal). Because we're stressing undocumented functions that we
can use in our own programs, we've down-played such unnamed DLL functions. Still,
it's important to know they exist.

The Windows USER module depends on both KERNEL and GDI, and almost all
the device drivers that are part of Windows: SYSTEM, KEYBOARD, MOUSE, DIS
PLAY, SOUND, and COMM. The following list shows the truly enormous number
of undocumented functions used by USER in Windows 3.0. Here, we really move
into Windows internals:

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 47

\WIN30\sYSTEM\USER.EXE
CallProclnstance (kernel.53)

CreateUserBitrnap (gdi.407)
CreateUserDiscardableBitmap (gdi.409)
Death (gdi.121)
DeleteAboveLineFonts (gdi.186)
DirectResAlloc (kernel. 168)
EMSCopy (kernel.160)
ExitKernel (kerne1.2)
FastWindowFrame (gdi.400)
FinalGDllnit (gdi.405)
GDllnit2 (gdi.403)
GDIMoveBitrnap (gdi.401)
GDIRealizePalette (gdi.362)
GDISelectPalette (gdi.361)
GetClipRgn (gdi.173)
GetCurLogFont (gdi.411)
GetCurPID (kernel.157)
GetDCState (gdi.179)
GetExePtr (kernel.133)
GetExeVersion (kernel. 105)
GetExpWinVer (kernel.I67)
GetTaskDS (kernel. 155)
GetTaskQueue (kernel. 35)
GetTaskQueueDS (kernel.118)
GetTaskQueueES (kernel.I19)

GlobalHandleNoRIP (kernel.159)

InquireVisRgn (gdi.131)
IntersectVisRect (gdi.98)
IsDCCurrentPalette (gdi.4I2)
IsDCDirty (gdi.169)
IsValidMetaFile (gdi.410)
IsWinOldApTask (kernel.158)
LocalCountFree (kernel.161)
LocalHeapSize (kernel.162)
LockCurrentTask (kernel.33)
OldYield (kernel. 117)
PostEvent (kernel. 31)
RealizeDefaultPalette (gdi.365)
RestoreVisRgn (gdi.I30)
Resurrection (gdi.I22)
SaveVisRgn (gdi.I29)
SelectVisRgn (gdi.l05)
SetDCOrg (gdi .117)
SetDCState (gdi.180)
SetDCStatus (gdi.170)
SetPriority (kerne1.32)
SetTaskQueue (kernel.34)
SetTaskSignalProc (kernel.38)
ShrinkGDIHeap (gdi.354)

There's another avenue for exploring the USER module. C source code for two
important parts of the USER module is included with the Windows SDK: \sam
ples\defprocs\defwnd.c contains the source for the DefWindowProc() function, and
\samples\defprocs\defdlg.c contains the code for DefDlgProc(). This code provides a
rare inside peek at the actual source for Windows. For example, the author of
DefWindowProc() has no apparent hesitation at writing a single function that's 550
(!) lines long but is embarrassed enough about using a goto statement that the label
ICantBelieveIUsedAGoToStatement appears in the code. It also helps us disassemble
other parts of USER and helps remind us that some of the chief users for undocu
mented functions exported from a DLL will be other parts of that same DLL. For
example, defwnd.c shows that the undocumented EndMenu() function exported from
USER is used by the DefWindowProc() function in USER. Though such internal calls

48 UNDOCUMENTED WINDOWS

are not displayed by MAPWIN, they are displayed by EXEUTIL -UNDOC in chapter
2 of this book.

We have made a rather shallow and cursory examination of the undocumented
functions used by GDI and USER. What about KERNEL?

As its name implies, the kernel is supposed to sit at the center of an operating sys
tem. And sure enough, running MAPWIN on KRNL286.EXE or KRNL386.EXE
turns up no modules that KERNEL itself depends on and no functions that it calls in
any other DLL. However, the GetProcAddress() function is part of KERNEL, and
KERNEL itself uses this function, particularly its initialization code (the Windows
BOOTSTRAP function). KERNEL loads the other Windows modules by calling func
tions they export. These functions, both documented and undocumented, are shown
below, to give some idea of how I<ERNEL actually touches numerous other parts of
Windows:

MessageBox (user.I)
DisableOEMLayer (user.4)
ExitWindows (user.7)
SetSystemTimer (user.11)
GetFocus (user.23)
IsWmdow (user.47)
PostMessage (user.lIO)
GetWindowTask (user.224)
SignalProc (user.314)
SysErrorBox (user.320)
UserYield (user.332)
IsUserldle (user.333)
FinalUserlnit (user.400)

StringFunc (user.470)
UserPaintDisable (display.SOO)
Disable (mouse.3)
Inquire (keyboard.1)
Disable (keyboard.3)
AnsiToOEM (keyboard.S)
OEMToAnsi (keyboard.6)
EnableKbSysReq (keyboard.136)
InquireSystem (system.1)
CreateSystemTimer (system.2)
DisableSystemTimers (system.S)
Get80x87SaveState (system.7)

The calls to such USER functions as PostMessage() and IsWindow() indicate that
KERNEL "knows about" windows and messages. This point is somewhat depressing
because it means that the Windows KERNEL is not such a kernel after all. When
attempting to draw a diagram of how the different Windows modules interrelate, it is
impossible to draw a directed graph. Instead, as we'll see in chapter 2, the result looks
more like a drunken spider's web. It gets even worse if one takes into account
DOSX.EXE in Standard mode and WIN386.EXE and assorted .386 files in Enhanced
mode. The architecture ofWindows is baroque. But this is also probably why it works.

Why Aren't They Documented?

By now, we can see a certain pattern. Some Windows API names keep coming up
again and again; clearly these functions and selectors have proven useful to serious

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 49

Windows developers. We might even attempt a sort of "top twenty hit parade" of
undocumented calls (actually, there are more than twenty):

_OOOOH

_0040H
CascadeChildWindows
DirectResAlloc
Dumplcon
EndMenu
GetHeapSpaces
GetlnternalWindowPos
GetSelectorBase
GetSelectorLimit
GetSpoolJob
GlobalHandleNoRIP
GlobalMasterHandle

IsWinOldApTask
KillSystemTimer
LoadlconHandler
PrestoChangoSelector
RegisterPtrace
SetDeskWallpaper
SetlnternalWindowPos
SetSelectorBase
SetSelectorLimit
SetSystemTimer
TileChildWindows
WinDebug

In one sense, it is foolish to ask why Microsoft Windows has undocumented func
tions. Any system of such complexity has no choice but to contain many functions that
aren't described to outsiders. After all, "information hiding" is at the very foundation
of modern software design. In fact, given how difficult Windows programming can be,
one might well complain that Windows doesn't hide more of its functions. We don't
much care, say, that the Death() and Resurrection() functions exported by GDI and
imported by USER are undocumented-these are clearly "private" and probably oflit
tle use to us. It's a good thing that Microsoft hides such details from us; otherwise,
Windows programming would be even harder than it already is.

But since many of the functions we've been discussing are clearly so useful-and,
in some cases, crucial-for Windows programmers, we need to ask why these really
useful functions are undocumented.

Ifyou spend a few hours examining disassembled listings for some of these undoc
umented functions, you'll have little question why Microsoft doesn't document them!
Although the documented interfaces are admittedly not models of order, the undocu
mented functions uncovered here are a mess. Clearly, they were thrown together at
various points during the evolution of Windows as ad hoc fixes to problems. These
problems are very real, which is the reason the functions exist in the first place and the
reason outsiders often need to know about them. But the solutions are far from
perfect.

Consequently, Microsoft often declines to document these functions because it
wants to come up with a better, less ad hoc solution and document that. For example,
rather than document the embarrassingly messy WinDebug() function, Microsoft
instead worked on providing equivalent functionality as part of the documented
ToolHelp interface. Unfortunately, when Microsoft refuses to document a function

50 UNDOCUMENTED WINDOWS

because it is working on a better one, this doesn't help the poor programmer who
needs a solution today. That poor programmer might even work at Microsoft.

In addition to messy implementations (like Get/SetSelectorBase/Limit in Win
dows 3.0) or screwy interfaces (like the InquireSystem() function in SYSTEM.DRV),
sometimes these undocumented functions have embarrassing, juvenile, or facetious
names that would need to be changed in any published API. Examples include
WinOldAppHackOMatic(), TabTheTextOutForWimps() (any programmer who calls
the documented TabbedText Out() function must, we guess, be a wimp),
FixBogusPublisherMetafile() (that wouldn't be Ventura Publisher, would it?)" and the
Death()/Resurrection() functions.

Besides the desire to provide nice functions, rather than document the existing
messy ones, another typical sentiment at Microsoft is that documenting these for
internal-consumption-only interfaces will hold back future changes. As one Microsoft
employee once put it, all Microsoft employees are "two releases ahead of reality" and
put far more emphasis on unreleased and hypothetical versions of Windows than on
whichever one exists today. In a company whose primary product sometimes seems to
be change itself, documenting system internals is definitely not attractive.

Another reason for failing to document these functions is simply a mistaken notion
that very few Windows programmers need to know about them. For example,
Microsoft has consistently failed to see the need that many, many applications would
have for accessing real-mode DOS from protected-mode Windows. Consequently, the
key Windows services for doing just that have been, as we saw earlier, undocumented.

With all this talk of Microsoft's unwillingness to divulge information on undocu
mented functions, it should be noted that many individual Microsoft employees, when
you can reach them via uunet, for example, are often very open and willing to provide
information if you sound as though you really need it to do your work and are not
simply Easter egging.

More important, Microsoft has a history of eventually documenting undocu
mented functions, if enough people use them and if enough people scream that they
need to be documented. For example, the first edition (1988) of Charles Petzold's
classic Programming Windows contained a section on "Undocumented File I/O
Functions"; Microsoft documented these functions in Windows 3.0. Similarly, Tim
Paterson and Steve Flenniken in Dr. DobbJs Journal in early 1990 (just before the
release of Windows 3.0, the first useful version of Windows) described the undocu
mented Windows memory-management function DefineHandleTable(); this too then
became documented in Windows 3.0, though not very well, perhaps because the func
tion's importance was limited to real mode.

Another "lesson from history" is that useful undocumented functions tend to be
cleaned up, rather than dropped. We saw this earlier in the case of PrestoChango
Selector(). Another good example is the Get/SetSelectorBase/Limit family, whose
implementation in Windows 3.0 is positively dangerous, but which in 3.1 has been
given a more robust implementation, relying on DPMI services rather than blindly
banging on the LDT.

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 51

In fact, as this chapter was being written, several of the functions discussed here
became documented in Windows 3.1. For example, the Get/SetSelector Base/Limit
family now has prototypes in the Windows 3.1 SDK version ofWINDOWS.H. This is
less helpful than one would at first think because the enormous number of copies of
Windows 3.0 sold means that most Windows software will need to continue to work
with 3.0 as well as with 3.1. It would have been a lot more useful to document the
functions in Windows 3.0 as well as in 3.1. Windows 3.1 is a vast improvement over
3.0, and it would be terrific if everyone upgrades (especially because this will contrib
ute to the withering away of real mode), but given that almost two years went by be
tween the release of Windows 3.0 (May 1990) and the release of Windows 3.1 (April
1992), it may take a very long time for 3.1 to replace 3.0.

The fact remains that some of the most useful undocumented functions in 3.0
became documented in 3.1. This raises an interesting question for those who maintain
that it is just plain wrong to use undocumented functions: How wrong was it, really,
to use these functions in Windows 3.0 if they were destined to become cleaned up and
documented in Windows 3.1?

Fear, Loathing, and Portability
Let's discuss this question in more detail: how safe is it to use undocumented func
tions? This question is directly related to how yesterday's undocumented Windows
functions can become tomorrow's documented functions; if the most useful undocu
mented functions are destined to be documented-and if, in fact, by using them, you
(in an odd kind of marketplace democracy) help make Microsoft document them
then clearly they are safe to use.

This is a somewhat flippant answer to a truly serious question. Many programmers
feel that it is dangerous to use undocumented functions. For example, Peter Norton
and Paul Yao's book, Peter NortonJs Windows 3.0 Power Programming Techniques,
states, "It has been our experience that 'undocumented goodies' are interesting to
look at, but dangerous to include in software that is intended for general distribu
tion."

This statement, from a book with Peter Norton's name on the cover, is somewhat
amusing in light of what we have seen of the Norton Desktop for Windows own
almost flagrant use of undocumented functions. That pretty much sums up the situa
tion with undocumented function, though: lots of shrinkwrap commercial software,
quite definitely intended for general distribution, uses these functions because the
authors had no choice, yet the same authors might say this practice is dangerous.

In what way is it unsafe to use undocumented functions? It's important to pin this
down. Undocumented functions, of course, are not unsafe in the sense that they will
work one million times and then, on the million and first call, reformat a user's hard
disk. Instead, there are two ways in which undocumented functions are less safe than
documented functions:

52 UNDOCUMENTED WINDOWS

• There may be boundary conditions or odd circumstances in which the func
tions don't behave as advertised. This is a major reason, in fact, why they're
not advertised! A good example is the failure of the call GetSelector
Base(_0040H) in Windows 3.0.

• The function may change, or be removed entirely, in some future version of
Windows. This is usually what is meant when people call using undocumented
functions unsafe. Because the function is undocumented, Microsoft is under
no obligation to continue providing it.

So the problem with using undocumented functions is very real, but also some
what limited: it mostly concerns future versions of Windows. Given that it took
Microsoft almost two years to move from Windows 3.0 to version 3.1, any software
that uses undocumented features should have plenty of time in which to settle down
and get comfortable.

Then there are those who argue that using undocumented functions is just plain
"bad engineering." We put this phrase in quotes because, for some reason, this is pre
cisely the phrase that keeps coming up in conversations on this topic. But the idea that
using undocumented functions is just "bad engineering" is based on a misunderstand
ing of how software engineering (or any engineering, really) works in the real world:
it's full of such compromises.

Finally, there is a feeling-eertainly within Microsoft, and to some extent outside
it-that using undocumented functions is bad because it will hold back Microsoft's
ability to make sweeping changes to the system. In the words of one participant in a
USENET (comp.windows.ms.programmer) conversation on undocumented Win
dows, "Windows isn't DOS: it's pretty capable. Once people start getting clever with
undocumented stuff in mass-market products, these calls that were intended for inter
nal use get carved in stone. To fix any flaws or make any substantial changes, the old,
unofficial calls have to be retained while new calls are added. The complexity of the
system increases and everybody suffers. Play with them all you want, but PLEASE just
keep it to that!"

This is a weird argument, because it assumes that Microsoft is a better judge of
what belongs in the Windows API, of what should be "carved in stone," than are the
actual developers of mass-market products. Sure, once developers of mass-market
products start getting clever with undocumented functions, then these functions will
have to be preserved in future versions, and maybe even documented. What's so bad
about that? Shouldn't the actual requirements of real, live products at least in part
determine what goes into the API? How is it that Microsoft somehow knows better
than applications developers themselves what belongs in the future Windows API?

In other words, the point that use of undocumented functions and internals may
tie Microsoft's hands is almost exactly correct. Anyone who bemoans such constraints
shouldn't be in the operating-systems business in the first place. In fact, Microsoft's
history shows that it is, when push comes to shove, quite adept at making its operating
systems compatible with the way that mass-market products twist, reshape, and yes,

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 53

occassionally misuse, its APIs. For a good example of this, see the GetApp
CompatFlags() function, described in chapter 5.

Rather than tell developers to "play" with undocumented functions, but not to
actually use them, it makes far more sense to tell them not to play, and to use them
only when absolutely necessary. Before using an undocumented function, message, or
data structure, carefully check to make sure there isn't some documented function, or
perhaps even awkward combination of documented functions, that will work just as
well for you. In other words, using undocumented Windows is okay, but only if you
have no choice: if you have really been responsible, looked for alternatives, and found
that there really were none.

Using undocumented Windows, just for the apparent sheer joy of using an undoc
umented function, or because you failed to look carefully enough for documented
functions that do the same thing, does unnecessarily increase the complexity of Win
dows. In a multitasking environment like Windows, it is particularly important for
applications to try to play by the rules. Because several Windows applications can be
running at the same time, Windows is really the sum total of all the key commercial
applications written for it. Strange things could be happening to your program, not
because of anything that it does or even that the core Windows DLLs do, but because
of something out of the ordinary that, say, WinWord or Excel or PageMaker-an
application-is doing. That's multitasking for you: a total testing nightmare. Any
tricks your program uses might affect other programs. Use this power only for good!
In particular, never use it out ofsheer laziness.

As a good example of how tricks in one program can cause grief for other pro
grams, consider the fact that, whenever one of your users runs Microsoft Word for
Windows, the Reschedule() function in KERNEL doesn't get an opportunity to make
DOS INT 28h idle calls. If you have a DOS TSR that depends on these calls, or ifyou
wanted to write a Windows program that hooked INT 28h to do idle-time processing
(power management? autosave?), you would be out of luck. And WinWord isn't even
using an undocumented call here; it's just using PeekMessage() in a certain way. So
much for the notion of Microsoft omnipotence. (So much for the notion that the
WinWord developers talk to the Windows developers! Where's a decent monopoly
when you need one?)

For a good example of totally unnecessary hackery, you need look no further than
Windows itself. Disassembly of Windows reveals a high degree of "play": amazing
assembly-language hacks used for no apparent reason other than the sheer joy of writ
ing weird code. Jumping into the middle ofan instruction is a particular favorite. When
Microsoft's developers themselves play by very few rules, sometimes violating the
standards of good programming taste for no good reason at all, is it right to com
plain when Windows developers outside Microsoft break the rules when absolutely
necessary?

Ultimately, one has to trust the Windows software market. We trust developers
not to use undocumented functions just because they are there (the "Mount Everest"
approach to undocumented Windows). What will get used in commercial applications
are, in general, truly useful and necessary features of undocumented Windows. And, if

54 UNDOCUMENTED WINDOWS

history is any indication, these most useful undocumented functions will eventually
become documented, rather than dropped. Ifyou really need it, you might as well use
it now.

Do applications ever unnecessarily use undocumented functions and data-structure
internals? Unfortunately, yes. An informed source tells us:

"Knowing this internal information (especially the layout of internal data struc
tures) is really great for debugging and general understanding of what's going on.
However, using it irresponsibly in a shipping application causes everyone grief in the
form of decreased performance and time to market for system improvements. This
kind ofhackey makes the system much harder to evolve.

"There are two notorious cases of this in 3.1:
"1) Microsoft tried to reduce the size of the window instance by two additional

bytes, but some applications were using the hiword of the extend style to store appli
cation information.

"2) Microsoft tried to make a performance improvement in the GDI BitBlt call by
rearranging some fields in the DC and bitmap structures, but were unable to do so
because applications depended on this structure.

"Perhaps most aggravating was that in both cases there were documented ways to
achieve the goals of these applications!"

With the availability of TOOLHELP, the point about only using undocumented
features when absolutely necessary is particularly important. As chapter 10 shows in
more detail, in many cases ToolHelp provides the functionality that once required an
undocumented function, or knowledge of the layout of an internal data structure.
Use ToolHelp wherever possible. It's true that ToolHelp provides only a partial, dis
torted, read-only view of the Windows internals, but for many, many applications this
partial view is perfectly adequate. Remember too that ToolHelp works in Windows
3.0, and can be redistributed along with your application for those users who do not
have 3.1.

On the other hand, we know of many developers who want to use undocu
mented Windows calls, even when ToolHelp would work for them, because they
don't want the apparent hassle of redistributing this DLL along with their applica
tion. At one point there were several different versions of ToolHelp in circulation,
and applications that worked with one version would not work with another. In one
case, Borland C++ shipped with a version of ToolHelp that used different ordinal
numbers than the version shipped with Windows 3.1. This caused no end of grief.
But as more and more users switch to 3.1, this should cease to be a problem. If you
can, use TOOLHELPJ

And even if ToolHelp does not supply a totally complete picture of Windows
internals to meet your needs, you can still use it. As several examples in this book
show, ToolHelp and undocumented functions work well together. You can use
ToolHelp to do your basic heap walking, for example, and then switch over to
using an undocumented function or data structure for those areas that ToolHelp

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 55

does not cover. Good examples of this are the TASKWLK2 program in chapter 4, the
ATOMWALK program in chapter 5 (see Atom Table), the USERWALK program in
chapter 6, and the GDIWALKprogram in chapter 8. All these programs use ToolHelp
to locate items in the Windows global heap, and then use knowledge of undocu
mented internals to present a more detailed view of these items.

In other words, just because an undocumented function or data structure is used
in one part of a program does not obligate the use of undocumented features
throughout the program. Most programs that use undocumented features will proba
bly do so in very limited ways, in just one small part of the program, perhaps in just
one small subroutine, to perform some magic that is otherwise impossible. We have
seen programs that do absolutely everything "by the book," with no undocumented
features except for a single call to, say, IsWinOldApTask(). That one little call makes
all the difference.

To turn the same point around, just because you're using ToolHelp does not
mean you are limited to TOOLHELP. We have seen Windows browsers that show
only what ToolHelp itself shows; in other words, these browsers are just some user
interface slapped on top of TOOLHELP. If ToolHelp doesn't reveal the presence of
Task Queues, then neither do these browsers. This seems like a shame. Where
ToolHelp fears to tread, use undocumented Windows.

What About NT?
The future Windows NT ("New Technology") is causing much excitement right now
and curiosity about whether Windows applications with undocumented calls will run
under NT. However, it is more realistic to note that NT will require eight megabytes
of memory and to ask whether many customers (i.e., people who call you on the
phone, credit card in hand) will be able to, or want to, run NT itself. In its first ver
sion at least, NT is apparently intended more to put a stake in the ground than to be
something that the masses of PC power users will need to rush out and buy.

On the other hand, the 32-bit NT API is very exciting, and we hope some home
will be found for it, with reasonable memory requirements, on top of good old MS
DOS. So it's definitely important to be aware of what Microsoft is saying will happen
to the Windows API under NT. The primary change for undocumented Windows is
that all selector-manipulation functions, both documented and undocumented, will
be dropped from the 32-bit Windows API; certain resource-handling functions will be
dropped because executables in NT (which use the new Portable Executable 'PE' file
format) are accessed as memory-mapped files.

At the same time, some undocumented functions persist in NT. For example, the
NT version of USER.EXE includes functions such as CascadeChildWindows, Calc
ChildScroll, DragObject, GetInternalWindowPos, SetInternalWindowPos, SwitchTo
ThisWindow, and TileChildWindows, all of which are undocumented in 16-bit
Windows.

Interestingly, some WM_ messages that are present but undocumented in 16-bit
Windows have been documented in Win32. As chapter 7 explains in more detail, such

56 UNDOCUMENTED WINDOWS

messages include WM_GETHOTKEY, the WM_OTHERWINDOWXXX messages,
and WM_PAINTICON.

Microsoft is saying that existing 16-bit Windows applications will run unmodified,
out of the box, under NT, and that the APIs unavailable to 32-bit NT applications
will "always be available to a 16-bit application running in Windows NT" (Microsoft
Systems Journal, November-December 1991). Given the extensive use of undocu
mented Windows by applications such as NDW, Microsoft will probably need to pro
vide the undocumented APIs for 16-bit Windows applications running under NT.

A good question, then, is what facilities, if any, Microsoft will provide for mixing,
that is, calling 16-bit API functions from 32-bit Windows code. In the past, Microsoft
has underestimated the need for such mixing, failing to anticipate, for example, the
pressing need that many developers would have for calling real-mode code from their
protected-mode Windows applications. Perhaps facilities for mixing 16- and 32-bit
code will be part of an NT device driver layer. In any case, a Win32 "client" applica
tion could always use SendMessage() or PostMessage() to deliver a WM_ message
request of some sort to a Win16 "selVer" application, asking it to make whatever calls
the Win32 application itselfwas not allowed to make.

Interestingly, Microsoft's habit of undocumenting large pieces of functionality
persists in NT: the entire low-level NT API contained in NTDLL.DLL won't be doc
umented, apparendy because Microsoft wants to discourage programmers from writ
ing direcdy to the NT API; they should instead be writing to the Win32 API. Given
that many of the functions in NTDLL.DLL appear to provide functionality not avail
able through the documented interface (even in the lowest documented level, which is
BASE.DLL), this may be wishful thinking. It all depends on how successful NT is. If
NT is not widely used, then there will, in fact, be litde incentive for developers to
extend it in unforeseen ways.

In other words, Microsoft's desire to keep programmers away from the undocu
mented NTDLL APIs will probably succeed only if NT itself fails to gain more than a
tiny percentage of the PC operating-systems market. You can have complete control
over an operating system, or the operating system can gain many users and have many
applications developed for it, but you can't have both at the same time.

Safe Use of Undocumented Funrtions
Using undocumented functions certainly isn't safe all by itself. In general, these func
tions should be used in a somewhat different way than you would use a function
described in the SDK or prototyped in WINDOWS.H. Even though both docu
mented and undocumented functions have the same source-the DLLs that make up
Windows-the undocumented functions really are different: they could be removed or
altered in some fundamental way, in the next release of Windows. Therefore, you
should check that the function exists before you call it.

CHAPTER 1 • THIS WAS NOT SUPPOSED TO HAPPEN 57

How can you check that a Windows function exists? By using one ofWindows key
features, run-time dynamic linking. The GetProc() function, shown below, can be
used to get the callable address ofa Windows API function:

FARPROC GetProc(char *szFunction, char *szModule, int nOrdinal)
{

HANDLE hModule;
FARPROC lpfnByName;
FARPROC lpfnByOrd;

if (! (hModuLe = GetModuLeHandle(szModule»)
if (! (hModule = LoadLibrary(szModule»)

return 0;
if (! (lpfnByName = GetProcAddress(hModule, szFunction»)

return 0;
if (! (lpfnByOrd = GetProcAddress(hModule, nOrdinaL»)

return 0;
if (LpfnByName != lpfnByOrd)

return 0;
1* stiLL here *1
return lpfnByName;

}

1* sample use */
DWORD FAR PASCAL (*GetSelectorBase)(WORD sel);
if (! (GetSeLectorBase = GetProc("GETSELECTORBASE", "KERNEL", 186»)

fail("Windows has changed! Please downgrade to an old version!");
/ / ...
foo = GetSelectorBase(bar); II in ANSI C, same as (*GetSelectorBase)(bar)

GetProc() is extremely paranoid and overly conservative and will return zero if
anything is fishy. Before using an undocumented function, you should declare a
pointer to it, complete with prototype, and then call GetProc(); you will need to know
both the function's name and its module.ordinal, as shown in the example above. The
GetProc() function can easily be adapted to languages other than C, such as Turbo
Pascal.

Another benefit to GetProc() is that it bypasses the import-library mechanism so
that it makes no difference whether the function is provided in an import library.
Interestingly, this also means that calls to undocumented functions made this way
won't show up in a report from MAPWIN or a similar utility, only the call to
GetProcAddress() will.

As noted earlier, you should also make sure to use the Windows GetVersion()
function when an undocumented call has known differences from one version ofWin
dows to another.

CHAPTER • 2

Examining Windows Executables

There is a building in Paris, the Centre Pompidou (also known as the Beaubourg),
whose "insides"-plumbing, wiring, skeletal structure, and so on-seem to be on the
outside, the inner workings of the building revealed, or at least seemingly revealed, for
all to see.

That, of course, is just the sort of edifice we're trying to construct in this book:
Windows turned inside out, with its internal features, its undocumented functions and
data structures, plainly visible. An obvious question then is how one goes about uncov
ering Windows' insides, how one finds undocumented functions and data structures,
how one figures out what undocumented WM_ messages do, and so on.

The next three chapters present the scaffolding used during the construction of
this book. We could have removed this scaffolding, just showing you the completed
structure: here are the undocumented functions and data structures, here's where they
are used, here's how to use them, the end. But to reveal some of Windows' inner
workings only to conceal our own would substitute one form of mystery for another.

There need be no mystery here because finding undocumented Windows func
tions and data structures is really quite easy. What we will see is that these undocu
mented features are really not very well hidden at all.

In fact, Windows is somewhat like that building in Paris. Chapter 1 already noted
that, by providing dynamic linking, Windows also provides special opportunities for
snooping around inside the system. The Windows executable file format includes large
amounts ofsymbolic information that the Windows kernel needs for its own purposes,
but that also can be used by anyone curious about how Windows works.

This symbolic information is contained in every shrink-wrapped retail copy of
Windows or ofa Windows application. Every Windows DLL contains the ASCII name
(this is what we mean by symbolic information) of every API function that it provides,
whether that function is documented or undocumented. Talk about information at
your fingertips! Likewise, every Windows executable contains an explicit reference to
the Windows API functions it calls; these references let us look up the function's name
back in the appropriate DLL. Since Windows applications (somewhat unfortunately)

59

60 UNDOCUMENTED WINDOWS

often seem to consist of little more than Windows API calls strung together in differ
ent ways, one can-once the standard "boilerplate" functions used by nearly every
Windows application are filtered out-tell a lot about an application from the API
functions that it calls.

One way to reveal Windows' insides is, of course, to disassemble it: take
KRNL386.EXE, for example, submit it to a disassembler, and then pore over the
resulting KRNL386.ASM or KRNL386.LST file. We will indeed take a close look at
Windows disassembly in chapter 3, but the point about all the information in Win
dows executables is that we can discover a lot about undocumented Windows before
we disassemble even one file.

This chapter will examine all this in more detail, presenting a series of utilities to
examine the files that make up Windows. Because we're just examining files, the tools
don't need to be Windows applications, and Windows doesn't even need to be run
ning. (Though some of them would make excellent Windows applications if worked
over by someone with a good user-interface design sense.) In other words, this is a
static analysis of the Windows executable files. The same goes for Windows disassem
bly in chapter 3. In chapter 4, we present a dynamic analysis; consequently, the tools
built there must be run with Windows and generally must be Windows applications.

What can we find out about Windows, without necessarily running Windows, just
by looking at its files? As it turns out, a lot. We've noted that given any Windows pro
gram, we can fmd the names of the Windows API functions it relies on, that is, what it
imports. Given a dynamic link library (DLL), we can find the names of the functions it
provides, that is, what it exports. Given both imports and exports, we can build up a
picture ofhow the various pieces ofWindows relate to each other: the Windows econ
omy, as it were.

Let's look at a Windows program. Because it's small (3I(bytes), the Windows
Task Manager (TASKMAN.EXE) is a good choice. This program needs to be small
because (unless you reconfigure Windows) it gets loaded from disk and run every time
you press Ctrl-Esc. Because of its small size, and because it relies heavily on undocu
mented functions, we're going to use TASKMAN as a running example throughout
this chapter, looking at these mere 3K bytes from many different angles. The following
page shows what TASI<MAN looks like to a user ofWindows.

We can see that Task Manager is really just a dialog box, with a list box, static text,
and a number of buttons. It is quite similar in this way to Charles Petzold's famous
HEXCALC program, which consists of nothing but a dialog box. Petzold derides his
own HEXCALC as "perhaps the epitome of lazy programming"-by using
CreateDialog() rather than CreateWindow(), the program avoids most of the malarkey
usually associated with Windows programming-but this has become an increasingly
important model for Windows utilities; for example, Visual Basic programs also use
this technique.

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 61

rco·mm·an·(j··s·tl'ei·i································· ~

Program Manager
File Manager - [C:\:I:.:I:]
USER Heap Walker: Heap Segments
C: \UNDOC\l/IN\ TASKWlK2.EXE
Clock - OS/21

Because Task Manager is a program, it corresponds to a file somewhere, and it can
be examined at this level:

C:\8IN>dir \win31\taskman

Volume in drive C is STACKER
Directory of C:\WIN31

TASKMAN EXE 3744 03-10-92 3: 1Oa
1 file(s) 3744 bytes

11654784 bytes free

And, because it is a file, you can examine Task Manager at the lowest possible level
by dumping out its bytes. Using any hex-dump utility, here is what TASKMAN.EXE
looks like from the inside:

C:\8IN>dump \windows\taskman.exe
0000 I 4D 5A A2 00 03 00 00 00 20 00 00 00 FF FF 07 00 MZ
0010 I 00 01 65 40 00 00 00 00 40 00 00 00 01 00 00 00 .. e@ @.......
0020 I 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0030 I 00 00 00 00 00 00 00 00 00 00 00 00 00 04 00 00
.. . lots of zeros ...
01fO I 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0200 I E8 53 00 54 68 69 73 20 70 72 6F 67 72 61 6D 20 .S.This program
0210 I 72 65 71 75 69 72 65 73 20 4D 69 63 72 6F 73 6F requires Microso
0220 I 66 74 20 57 69 6E 64 6F 77 73 2E OD OA 24 20 20 ft Windows ... S
0230 I 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
0240 I 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
0250 I 20 20 20 20 20 20 5A DE 1F 84 09 CD 21 88 01 4C z..... ! .. L
0260 I CD 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .!
0270 I 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

62 UNDOCUMENTED WINDOWS

lots
03fO
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
04aO
04bO
04cO

of zeros ...•
00 00 00 00 00
4E 45 05 14 A9
00 02 00 DC 89
1C 00 40 00 50
01 00 04 00 00
50 00 19 05 50
04 00 05 80 01
OA 80 00 00 00
1E 00 30 DC 01
48 4D 41 4E 00
47 50 52 4F 43
52 4E 45 4C 04
00 00 18 57 69
4D 61 6E 61 67

etc.

00 00 00 00 00 00 00 00 00 00 00
00 09 00 99 A3 EC E3 02 03 02 00
04 01 00 00 00 02 00 02 00 02 00
00 7C 00 98 00 9C 00 82 04 00 00
00 02 08 4E 00 7E 00 00 00 OA 03
1D 19 05 84 00 50 00 51 DC 50 00
00 00 00 00 00 8A 00 DE 00 70 1C
00 10 80 01 00 00 00 00 00 CC 00
80 00 00 00 00 00 00 07 54 41 53
00 DE 54 41 53 48 4D 41 4E 44 4C
01 00 00 01 00 08 00 00 06 48 45
55 53 45 52 01 FF 01 CD 3F 01 78
6E 64 6F 77 73 20 54 61 73 68 20
65 72 20 33 2E 31 00 00 00 00 00

NE .

•• @.P.I •••• ••• ••
•••••••• N••••••
P ••• P••••• P.Q.P.
.••..•••....•. p.

.• 0 TAS
KMAN TASKMANDL
GPROC KE
RNEL.USER ?{
... Windows Task
Manager 3.1

This hex dump shows TASKMAN.EXE's executable headers. Though Windows
runs on top of MS-DOS, it uses a different executable file format from DOS. The
DOS EXE fue format, known as the MZ format (after the MZ signature, the initials
of Microsoft's Mark Zbikowski, in the first two bytes of .EXE files), does not contain
enough information for an advanced protected-mode, dynamic-linking, multitasking
environment such as Windows. Windows instead uses a new executable file format
(with an NE signature) that contains much more symbolic information than the MZ
format does.

In the hex dump of TASKMAN you can see both the MZ and NE signatures:
every Windows application begins with a standard DOS executable MZ program, fol
lowed by a new-executable (NE) header. The NE format is a superset of the MZ for
mat. The MZ program, or stub, is just a program that runs if the executable is invoked
under DOS. This program is usually called STUB.EXE or WINSTUB.EXE, but it can
be any arbitrary DOS program of any size. For example, Excel contains a DOS stub
that,when Windows is not running, starts Windows and Excel with an INT 2Ih EXEC
of "win.com excel.exe." For another example, see the description of KERNEL's stub
(KERNSTUB) in the introductiol1 to chapter 5.

In the hex dump ofTASKMAN, you also can see several strings that look useful,
or at least interesting. But hex dumping the file's bytes presents a view that is generally
too low-level. We need a utility that knows something about the NE data structure
and can use it to present the information in a more structured way. Both Microsoft C
(including Microsoft C/C++ 7.0) and Borland c++ come with utilities that can let us
look at Windows executables in this way. Microsoft's is called EXEHDR; Borland's is
called TDUMP. For example, here is part ofEXEHDR's view of Task Manager:

C:\MSC7\8IN>exehdr Iv \win31\taskman.exe
Microsoft (R) EXE File Header Utility Version 3.00
Copyright (C) Microsoft Corp 1985-1992. All rights reserved .
... some boring details omitted ...

Module
Description:

TASKMAN
Windows Task Manager 3.1

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 63

flags
EXECUTEREAD, PRELOAD, NONCONFORMING, NOIOPL,
relocs, (movable), (discardable),

length 0010 (16)
length 002c (44)
length 001c (28)
length 0004 (4)
length OOOd (13)
length 0009 (9)
length 001c (28)

3.10versionMicrosoft Windows
NONSHARED
seg 1 offset 04b9
seg 2 offset 0000
OcOO bytes
seg 2
5.20
e3eca399
00000440
00000450
0000047c
00000498
0000049c
000004a9
000004b2
1
16
0200 bytes
WINDOWAPI

Operating system:
Data:
Initial CS:IP:
Initial SS:SP:
Extra stack allocation:
DGROUP:
Linker version:
32-bit Checksum:
Segment Table:
Resource Table:
Resident Names Table:
Module Reference Table:
Imported Names Table:
Entry Table:
Non-resident Names Table:
Movable entry points:
Segment sector size:
Heap allocation:
Application type:
Other module flags:
no. type address file mem

1 CODE 00000500 00519 00519

(nonshared)
2 DATA 00000b40 00050 00050 READWRITE, NONSHARED, PRELOAD, NOEXPANDDOWN,

NOIOPL, (movable), (nondiscardable)
Exports:
ord seg offset name
1 1 007b TASKMANDLGPROC exported

type
BASE
PTR
PTR
PTR
PTR
PTR

offset target
0441 seg 1 offset 0000
04fO imp USER. 5
01a5 imp USER.262
0058 imp USER .135
0302 imp KERNEL .158
04e7 imp KERNEL. 30

more boring details omitted ...
PTR 0353 imp USER.1 06
PTR 00d3 imp USER.110
PTR 0028 imp USER.111
34 relocations

The strings that appeared earlier in the hex dump show up here, too, but this time
in a structured way. Files are just data structures on a disk, and if you know the data
structure you obviously can do a better job of displaying the file than ifyou just dump
bytes, aimlessly look for strings and so on. In this case, the data structure is the new
executable (NE) file format, which is described in the Windows 3.1 Software Develop
ment Kit (SDK) Programmer)s Reference, Volume 4: Resources, chapters 6 and 7.
(EXEHDR itself is documented in the Microsoft C/C++ 7.0 Environment and Tools
manual, chapter 17.)

From EXEHDR's output, we can see that TASKMAN.EXE exports one function,
TaskManDlgProc(). This confirms our suspicion that the Task Manager is really just a

64 UNDOCUMENTED WINDOWS

dialog box. The table that EXEHDR labels "Exports" is a synthesis of three tables
found in NE files: the Entry Table, the Resident Name Table, and the Nonresident
Name Table. Borland's TDUMP, incidentally, presents the three tables as they are in
the file.

At the very end of the EXEHDR output, we can see that Task Manager uses a
number ofWindows API functions from the USER and KERNEL dynamic link librar
ies (this section of the EXEHDR output should really be labeled "Relocations" or
"Imports"). Once again, this information is a synthesis of information from the actual,
lower-level tables found in the NE file: the Segment Table, the Relocation Table for
each segment, the Imported Names Table, and the Module Reference Table.

Unfortunately, it's rather difficult to tell which Windows API functions TASK
MAN uses, because both EXEHDR and TDUMP simply present the API functions'
ordinal numbers (such as USER262) rather than their names. An API function's ordi
nal number is simply its position in the entry table of the module that exports it.

As noted in chapter 1, we could now run EXEHDR again, this time on
USER.EXE and KRNL386.EXE, look at their "Exports" sections, and match every
thing up, finding, for example, that USER.262 is actually GetWindow(). But once we
know we ,can do this, there really is no point in actually doing it; it's just the sort of
thing a program would be good at.

Unfortunately, it's not something that EXEHDR is good at. This deficiency of
EXEHDR has spawned a small industry of improved executable-header utilities. Only
rarely have their authors resisted the temptation to give these super-EXEHDR utilities
names such as SEX or SEXYHDR

Using MAPWIN
Our first utility, Phar Lap Software's MAPWIN, is a super-EXEHDR utility that
makes it easy to see what API functions a Windows program, dynamic-link library
(DLL), or device driver uses (imports), and what functions a program, DLL, or driver
provides (exports). Phar Lap uses this utility to determine what API functions need to
be implemented to run a program under its 286lDOS-Extender environment, which
uses the same NE executable file format as Windows. You can use MAPWIN, pro
vided on the accompanying disk, to snoop around inside Windows and uncover useful,
undocumented API functions.

MAPWIN is a character-mode program that runs under DOS, the DOS box in
Windows, or (for what it's worth) in OS/2 l.x. To use MAPWIN, simply point it at a
Windows executable file. The output can be redirected to a file. For example

C:\BIN>mapwin \windows\taskman.exe > taskman.log

C:\BIN>mapwin \windows\system\user.exe > user. log

C:\BIN>mapwin \windows\system\system.drv > system. log

MAPWIN will produce a list of the executable's exports and another list of its
imports, plus some other information. For example, here's what the Windows Task
Manager looks like at this level:

GETWINDOWTEXT (USER.36)
INITAPP (USER.5)
INITTASK (KERNEL.91)
ISWINDOW (USER.47)
ISWINDOWVISIBLE (USER.49)
ISWINOLDAPTASK (KERNEL.158)
MAKEPROCINSTANCE (KERNEL.51)
MESSAGEBEEP (USER.104)
MOVEWINDOW (USER.56)
POSTMESSAGE (USER.110)
SENDMESSAGE (USER.111)
SETWINDOWPOS (USER.232)
SHOWWINDOW (USER.42)
SWITCHTOTHISWINDOW (USER.172)
TILECHILDWINDOWS (USER.199)
WAITEVENT (KERNEL.30)

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 65

C:\BIN>mapwin \win31\taskman.exe
MAPWIN: 4.0 -- Copyright (C) 1986-91 Phar Lap Software, Inc.

Dump of the .EXE file -- \win31\taskman.exe

Header information
Target operat i ng system• Wi ndows
Initial CS:IP #0001:04B9
Initial SS:SP•.............••• #0002:0000
Initial DS #0002
Initial heap size 512 bytes (Ox0200)
Initial stack size 3072 bytes (OxOOOO)
Automatic data segment Multiple

DLLs called by this program
KERNEL
USER

Exported entry points
TASKMANDLGPROC (taskman.1)

Imported references
__WINFLAGS (KERNEL.178)
ARRANGEICONICWINDOWS (USER.170)
CASCADECHILDWINDOWS (USER.198)
DIALOGBOX (USER.87)
DOS3CALL (KERNEL.102)
ENDDIALOG (USER.88)
FREEPROCINSTANCE (KERNEL.52)
GETDESKTOPWINDOW (USER.286)
GETDLGITEM (USER.91)
GETKEYSTATE (USER.106)
GETLASTACTIVEPOPUP (USER.287)
GETPROCADDRESS (KERNEL.50)
GETSYSTEMMETRICS (USER.179)
GETWINDOW (USER.262)
GETWINDOWLONG (USER.135)
GETWINDOWRECT (USER.32)
GETWINDOWTASK (USER.224)

The "DLLs called by this program" section shows that TASKMAN depends on
KERNEL and USER; that there are no GDI calls is interesting. You do need to be
somewhat cautious, though, in how you interpret this information. If TASKMAN
contained calls to LoadLibrary(), LoadModule(), GetModuleHandle(), or
GetSystemMetrics(SM_PENWINDOWS), then it could be linking to additional DLLs
at run time.

The "Imported references" section tells us the specific functions that a program or
a DLL uses. For our purposes, this is a lot more useful than what EXEHDR shows.
For example, we can clearly see that our supposition about Task Manager was proba
bly correct: it imports DialogBox(), but not CreateWindow().

Our idea was only probably correct, though, because we can also see that TASK
MAN imports GetProcAddress(). This function, part of Windows' support for run
time dynamic linking (that's right, linking while the program is running), means that

66 UNDOCUMENTED WINDOWS

TASKMAN could be importing something else, without it showing up in the
MAPWIN display: maybe even CreateWindow(). (In fact, disassembly ofTASKMAN
with Windows Source (see below) reveals that GetProcAddress() is being used as part
of support for Pen Windows.)

Of course, the "Imported references" section is also where we find what undocu
mented functions, if any, are being used. As already noted, TASKMAN relies heavily
on undocumented functions; MAPWIN lists the following:

CASCADECHILDWINDOWS (USER.198)
ISWINOLDAPTASK (KERNEL.158)
SWITCHTOTHISWINDOW (USER.172)
TILECHILDWINDOWS (USER.199)

The "Exported entry points" section of MAPWIN's output shows the other side
of the import/export equation. In TASKMAN, this display isn't particularly interest
ing because TASKMAN is a program, not a library, and contains only one export. An
export is a function (or data item) provided to other programs; the purpose ofa library
is generally to provide exports. It may seem odd, then, that TASKMAN contains any
exports; after all, it's not a library. In Windows, however, programs have callbacks,
functions that Windows calls. The key ones are window procedures (WndProcs), dia
log procedures (DlgProcs), and enumeration procedures (EnumProcs); TASKMAN
exports TaskManDlgProc. There are several crucial differences between programs and
DLLs (the main one is that DLLs never get turned into tasks), but when examining
NE files, the main difference is that DLLs generally export more functions than pro
grams and that these functions are more general-purpose.

We can get a better illustration of the MAPWIN "Exported entry points" section
by examining a DLL or DRV. For example, here's a small portion of the MAPWIN
output for USER.EXE (which, despite its .EXE extension, is a DLL):

C:\BIN>mapwin \windows\system\user.exe
MAPWIN: 4.0 -- Copyright (C) 1986-91 Phar Lap Software, Inc.

Dump of the .DLL file -- \windows\system\user.exe
... details omitted

DLLs called by this program
SYSTEM
KEYBOARD
MOUSE
DISPLAY
SOUND
COMM
KERNEL
GDI

Exported entry points
... details omitted
DELETEMENU (user.413)

HIDECARET (user.166)
EXITWINDOWS (user.7)

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 67

GETMENUITEMID (user.264)
SETWC2 (user.319)
CASCADECHILDWINDOWS (user.198)
GETASYNCKEYSTATE (user.249)
RELEASEDC (user.68)
ANSINEXT (user.472)
CLEARCOMMBREAK (user.211)
POSTQUITMESSAGE (user.6)

MESSAGEBOX (user.1)
ISTWOBYTECHARPREFIX (user.51)
GETINPUTSTATE (user.335)
CREATECURSORICONINDIRECT (user.408)
CREATECARET (user.163)
SCROLLDC (user.221)
TILECHILDWINDOWS (user.199)
GETSYSTEMMETRICS (user.179)

Here you can see the names of many Windows API functions (forced to upper
case, because this is what LINK does with the names of functions that use the Pascal
calling convention). You also can see the names of two of the undocumented func
tions that TASKMAN imports: CascadeChildWindows() and TileChildWindows().

When a Windows program such as TASKMAN imports these functions, it actually
does so "by ordinal." The source code undoubtedly references these functions by
name, but when compiled and then linked with an import library such as LIBW.LIB
or IMPORTS.LIB, an IMPDEF record for USER. 198 and USER. 199 is placed in the
executable fue. (IMPDEF and EXPDEF are explained in chapters 10 and 11 of the
Windows 3.1 SDK Programmer)s Reference, Volume 4: Resources.) That's why
EXEHDR and TDUMP simply print out the module name and ordinal number for
the function being called; the actual function name isn't contained in the calling exe
cutable, and getting it would require going somewhere else, to the called executable.

So where does MAPWIN get the names of imported functions?
MAPWIN assigns names to imports based on a table that matches module.ordinal

pairs such as USER.198 with ASCII function names such as CASCADECHILD
WINDOWS. This table is built right into MAPWIN.

Fortunately, this table can be overridden because MAPWIN does not "know"
about all Windows 3.0 DLLs and device drivers; nor does it know about vendor
specific DLLs that come with many Windows applications; nor does it know about any
new functions provided by Windows 3.1. The table is overridden by specifying an
"import file" on the command line (you must give an exact path). For example:

C:\BIN>mapwin @\undocwin\winfunc.imp \windows\taskman.exe

An import files contains one or more lines such as the following:

IMPORT GETTABBEDTEXTEXTENT=USER.197
IMPORT CASCADECHILDWINDOWS=USER.198
IMPORT TILECHILDWINDOWS=USER.199
IMPORT OPENCOMM=USER.200

The accompanying disk comes with the file WINFUNC.IMP, which includes all
exports from the following modules, for Windows 3.0 and 3.1:

COMM.DRV (Communications driver)
COMMDLG.DLL (Common dialogs)

68 UNDOCUMENTED WINDOWS

DDEML.DLL (DDE Manager library)
FINSTALL.DLL (Font installer)
GDI.EXE (Graphics Device Interface)
HPPCL.DRV (HP LaserJet)
KEYBOARD.DRV (Keyboard device driver)
KRNL386.EXE (KERNEL)
LANMAN.DRV (LAN Manager API)
LZEXPAND.DLL (file decompression)
MIDIMAP.DRV (Multimedia MIDI Mapper)
MMSOUND.DRV (Multimedia Sound driver)
MMSYSTEM.DLL (Multimedia)
MOUSE.DRV (Mouse device driver)
NETAPI20.DLL (Lan Manager API)
NETWARE.DRV (Novell NetWare driver)
OLECLI.DLL (OLE Client)
OLESVR.DLL (OLE Server)
PENWIN.DLL (Pen Windows)
SHELL.DLL (Support for shell programs like PROGMAN)
SOUND.DRV (Sound device driver)
SUPERVGA.DRV (DISPLAY)
SYSTEM.DRV (Floating point, system timers, disk drives)
TOOLHELP.DLL (Debugger and tool helper)
UNIDRV.DLL (Universal Printer Driver Library)
USER.EXE (Windows User Interface)
V7VGA.3GR (GRABBER)
VER.DLL (Version-stamping library)
WIN87EM.DLL (Math Coprocessor/Emulator Library)
WINDEBUG.DLL (Ptrace for Windows)
WINMEM32.DLL (32-bit memory manager)
WINOA386.MOD (WINOLDAP; support for DOS apps)
WINNLS.DLL (Kanji Windows National Language Support)
KKLIB.DLL (Kanji Windows)
MSKANJI.EXE (Kanji Windows)
GAIJILIB.DLL (Kanji Windows)
WIFEMAN.DLL (Kanji Windows Intelligent Font Environment Manager)

In all, WINFUNC.IMP lists over 1600 functions.
In addition to WINFUNC.IMP, you can create your own *.IMP files by using the

MArWIN -IMPMAKE switch. For example:

C:\BIN>for %f in (\bigapp*.dll) do mapwin -impmake %f » winfunc.imp

You can specify multiple * .IMP files on the MAPWIN command line, like so:

C:\BIN>mapwin @winfunc.imp @phoo.imp @bar.imp \baz\zar\quux.exe

MArWIN is extracted from a far more extensive Phar Lap utility, MArEXE, that,
in addition to these Windows NE files, also handles OS/2 l.x NE files, Windows LE
files (linear executables, such as *.386 virtual device drivers), the W3 format used by
WIN386.EXE, Win32jNT portable executables (PE files), and OS/2 2.0 LX files.
MArWIN handles only Windows NE files. The TDUMP utility included with Borland
C++ works with LE files; the LEDUMP and W3MAP utilities provided with Windows
Source (see chapter 3) work with both LE and W3 files.

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 69

Windows Module Dependencies

The /lOLls called by this program" section of MAPWIN's output, which is just a dis
play of the Module Reference Table in an NE file, is surprisingly useful for anyone
who wants to get a picture of how the different pieces of Windows fit together.
For example, we've seen that TASKMAN depends on (calls functions in) KERNEL
and USER, and that USER depends on KERNEL, GDI, MOUSE, and so on. If you run
MAPWIN on all the executables that come with Windows, you can use the results
to try to put together a dependency graph of Windows modules. For example:

PROGMAN
KERNEL
GDI
USER
KEYBOARD
SHELL
SHELL

KERNEL
[no DLLs used]

GDI
KERNEL

USER
SYSTEM
KEYBOARD
MOUSE
DISPlAY
SOUND
COMM
KERNEL
GDI

KEYBOARD
KERNEL

SHELL
KERNEL
GDI
USER
KEYBOARD

SYSTEM
KERNEL

MOUSE
SYSTEM
KERNEL

DISPLAY (e.g., VGADRV)
KEYBOARD
KERNEL

SOUND
KERNEL

COMM
SYSTEM
KERNEL

In other words, one might conclude the following:

• KERNEL, being the kernel, depends on nobody (but see the next page!).
• USER, being the topmost portion of Windows (PROGMAN, the Windows

Program Manager, isn't part of Windows at all; it's just an application),
depends on almost everything else: KERNEL, GDI, and a host of device
drivers (SYSTEM, KEYBOARD, MOUSE, DISPLAY, SOUND, COMM).

• GDI depends only on KERNEL (but see the following information!).

continued

70 UNDOCUMENTED WINDOWS

continued

Unfortunately, these results need to be taken along with a large dose of cau
tion. First, even though the Module Reference Table displayed by MAPWIN indi
cates that KERNEL is a self-contained kernel, disassembly of KERNEL reveals that it
is in fact heavily dependent on other modules! As already noted in chapter 1, KER
NEL uses internal versions of its own GetModuleHandleO and GetProcAddress()
functions to dynamically link to functions in USER, SYSTEM, KEYBOARD, MOUSE,
and DISPLAY. Some kernel!

Second, we know that GDI must communicate with a DISPLAY device driver in
some way, yet this fact is not reflected in the results shown above. Once again, the
explanation is run-time dynamic linking: the CreateDC() function (actually, the
InternaICreateDC() function, described in the chapter on GDI) uses LoadLibrary()
and GetProcAddressO to link to the DISPLAY driver whose name is passed as its
first parameter. (By the way, it was for revealing this rather obvious fact about
CreateDC() that Microsoft's lawyers went after Michael Geary.)

Anyway, our attempts at drawing a directed graph of Windows modules ends
up producing something that looks more like a spider's web.

Figure 2-1 shows how a dynamic-linking, multitasking, device-independent
graphical windowed operating environment is constructed on top of MS-DOS.

Figure 2-1: Architecture of Windows Real Mode.

- User ... r--- COMM e---

System
+ ... Keyboard

I GDI m ...
lit

Display
+ I via GetProcAddress

Mouse
Kernel - Sound f---

~ .--- .. -----_ _---
petProcAddress ••••• oJ

display.drv=vga.drv

i
.....1 *.FON ~....\

continued

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 71

continued

However, this picture is also misleading: this is really the architecture of Win
dows real mode. The problem with this picture is that with all these modules
loaded like this on top of real-mode DOS, there's no room in which to run any
applications.

Thus, we need to revise the diagram for Windows Standard mode and
Enhanced mode. In Standard mode, the whole USER-GDI-KERNEL-DISPLAY-etc.
mess sits on top of a 16-bit DOS extender and DPMI server in DOSX.EXE:

In Figure 2-2, Windows components are stuck on top of DOSX.EXE (DOS
extender) and, in Windows 3.1, the Task Swappers DSWAP.EXE and WSWAP.EXE.
Most of Windows is swapped out to disk to run an "old app" (DOS application).

Figure 2-2: Architecture of Windows Standard Mode.

DPMI
(lNT 31 h),
INT 21

.-----------Windows Application

INT 21h
DPMI(lNT31h)
INT 2Fh/AH=16

DOSX.EXE

Using KRNL286.EXE or
KRNL386.EXE (3.1)

In Enhanced mode, it all rests on top of the Virtual Machine Manager (VMM),
32-bit virtual device drivers (VxDs), 32-bit DOS extender, and DPMI server col
lected into WIN386.EXE.

continued

72 UNDOCUMENTED WINDOWS

continued

In Figure 2-3, Windows components are stuck on top of WIN386.EXE, which
contains a DPMI server, 32-bit DOS extender, Virtual Machine Manager (VMM),
and Virtual Device Drivers (VxDs).

Figure 2-3: Architecture of Windows Enhanced Mode.

<:
00
0"\

j
LOADHl

WINA20

*.386

Using KRNL386.EXE

fw!lta INT 21

dlsplay.drv"vga.drv

INT 1h, INT 2Fh,

'------.t •. FON

VxDs
VMM

WIN386.EXE

..-------Windows Application

DOS BOX

VMM
VDD
VKD
VPICD
DOSSMGR
SHELL
V86MMGR

The upper portion of Windows 3.x, KERNEL in particular, communicates with
the lower portions via interrupts and exceptions: DOS INT 21 h calls, DOS Pro
tected-Mode Interface (DPMI) INT 31 h calls, INT 2Fh calls, deliberately generated
faults, and so on.

It's certainly true that MAPWIN, or any other program that examines the Mod
ule Reference Table in NE files, could not tell us about this aspect of Windows. It
also couldn't help with any calls made via run-time dynamic linking. But it did get
us thinking about how Windows is put together, and it did provide most of the
pieces. The fact that it isn't 100% accurate is just an indication of how important
interrupts, exceptions, and run-time dynamic linking are to Windows internals. •

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 73

Using EXEDUMP
The nice thing about MAPWIN is that it presents a high-level view of a Windows exe
cutable; "high-level" is another way ofsaying that it suppresses details. There are many
things about a Windows executable that MAPWIN does not show you; this is what
makes it useful.

Unfortunately, sometimes we really need detailed information. It won't be clear
until a little later why, but sometimes we need to know where a program's CODE and
DATA segments are located in the file, where (segment:offset address) each of its
exports is, where each of its imports is used, and so on.

Our next utility, EXEDUMP, presents just this sort of low-level view of a Win
dows (or OS/2 l.x) executable (EXE, DLL, DRV, etc.). It shows the entry table
(exports), relocation table (imports), segment table, selected useful fields from the NE
header, plus selected CodeView information, if present. For example, here is
EXEDUMP's view of the Windows 3.1 Task Manager:

C:\BIN>exedump \win31\taskman.exe
name \win31\taskman.exe
program
target WINDOWS 3.10
80286 instructions
dgroup 2
start_csip 1:04b9
description "Windows Task Manager 3.1"
modname TASKMAN

begin entry
1 007b TASKMANDLGPROC

begin segtab
1 500 0519 CODE USE16
2 b40 0050 DATA USE16

begin modref
KERNEL
USER

begin reloc
1 04b9 [eJ start
1 0441 [sJ 1 0000 SEG
1 04fO [mJ USER 5 PTR
1 01a5 [mJ USER 262 PTR
1 01c6 [mJ USER 262 PTR
1 0200 [mJ USER 262 PTR
1 0058 [mJ USER 135 PTR
1 02cd [mJ USER 135 PTR
1 031e [mJ USER 135 PTR
1 0302 [mJ KERNEL 158 PTR
1 04e7 [mJ KERNEL 30 PTR

you get the idea
0212 [mJ USER 111 PTR
0291 [mJ USER 111 PTR
029b [mJ USER 111 PTR

74 UNDOCUMENTED WINDOWS

This is quite similar to what Microsoft's EXEHDR utility shows, except that it
appears in a form that's more convenient for parsing by other programs (namely,
EXEUTIL; see the discussion later in this chapter). Also, it does a number of things
EXEHDR does not do, which we'll get to later.

First, EXEDUMP presents some header information:

• Executable type: "program" (application) or "library" (DLL or DRV).
• The target operating system: Windows or OS/2. For Windows, the target ver

sion (3.00 or 3.10) is also shown; the intended version of an executable
depends on the linker used to create it.

• The Logical Segment Number (LSN) for the default data segment
(DGROUP). Utilities that dump Windows executables use LSNs, which are
shown in decimal (not hex), and which start with I (not 0).

• The entry point (starting CS:IP) for the program or library. This is not the
same as WinMain() or LibMain(); it is the address (in LSN:offset form) of the
first instruction to be executed when KERNEL loads the file; it generally cor
responds to the compiler's startup code, which in turn calls WinMain() or
LibMain(). (See chapter 1 and the discussion of lnitTask() in chapter 5.)

• The module name and description string for the executable. These are not
actually in the NE header (the description string is the first entry in the Non
resident Names Table, and the module name is the first entry in the Resident
Names Table), but the header is a good place to display them.

Module Name != File Name

We've been throwing around this term "module" without explaining it. What does
it mean that TASKMAN references the KERNEL module? It means that there exists
an NE file that contains the string "KERNEL" as entry 0 in its Resident Names Table,
and that, somewhere in TASKMAN's Relocation Tables (see the next page), there is
at least one import of a function or variable that this KERNEL module exports.

But note: this KERNEL module is not necessary called KERNEL.DLL or KER
NEL.EXE. Because all NE files contain their own module name (contrast this with a
DOS .EXE program, which doesn't necessarily know its own name), this opens up
an interesting and important possibility: the module name and file name do not
need to match. You can have multiple files, all answering to the same module
name. This is just the case with KERNEL: in Windows 3.0, KERNEL.EXE,
KRNL286.EXE, and KRNL386.EXE are all versions of the KERNEL module.

In fact, this possible discrepancy between module name and file name is a
basis for Windows device drivers: you can have a thousand different files, with
names such as VGAMONO.DRV, V7VGA.DRV, and even CGA.DRV, but all with
same module name, "DISPLAY", and all with same basic set of entry points. You
specify the one you want with a DISPLAY.DRV= statement in the Windows SYS
TEM.lNI file. Same interface, different implementation: voila! Device independence.
Some might even call it object-oriented. •

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 75

• If the executable contains its own loader, EXEDUMP displays the string "Self
loading." (See the description of PatchCodeHandle() in chapter 5 for more
information on self-loading Windows applications.)

• If the default data segment (DGROUP) does not contain a valid NULL seg
ment block, EXEDUMP displays the string "No NULL segment." (See the
description of "Instance Data" in chapter 5 for more information on the
NULL segment block found at offset 0 in a Windows program's default data
segment.)

After the initial header information, EXEDUMP displays several tables. Each starts
with a line such as "begin entry," "begin segtab," "begin CodeView," or "begin
reloc." Below, we've extracted a sample of the output to help explain each table.

Entry Table

begin entry
1 007b TASKMANDLGPROC

The entry table lists every export (entry point), named and unnamed, from a Win
dows DLL or program. For each export, EXEDUMP shows the logical segment num
ber (in decimal), the offset within the segment (in hex), the ordinal number of the
export, and the name (if available) of the export. In the example above, in other
words, entry #1 (TASKMAN.1), named TaskManDlgProc, is located at 1:007B.

In a DLL, EXEDUMP may show hundreds of exports, perhaps corresponding to
Windows API functions. For example, here's part of the display from EXEDUMP
\WIN31\SYSTEM\SHELL.DLL:

begin
2
2
2
2

entry
15cc
15fa
1670
1628
details

5 0000
10 026e
4 0550
8 010e
4 128c
4 11ca
2 0000
1 0077

details
12 0000
12 0016

1 REGOPENKEY
2 REGCREATEKEY
3 REGCLOSEKEY
4 REGDELETEKEY
omi tted •••
38 FINDENVIRONMENTSTRING
39 INTERNALEXTRACTICON
100 HERETHARBETYGARS
101 FINDEXEDLGPROC
102 REGISTERSHELLHOOK
103 SHELLHOOKPROC
104
105
omitted
127
128

For example, there is an unnamed export (function or variable), SHELL.128, at
offset 16h in logical segment #1,7. Likewise, the 3.1 RegOpenKey() function
(SHELL.l) lives at offset 15CCh in segment #2 of this version of SHELL.DLL.

76 UNDOCUMENTED WINDOWS

When a program that calls RegOpenKey() dynamically links to this function, the
address it gets will have an offset of 15CCh and a segment of whatever protected
mode selector corresponds to segment #2 in SHELL. The correspondence between
logical segment numbers in the file and protected-mode selectors in memory is kept in
the in-memory Segment Table, described in chapter 5's description of the Module
Database. The Module Database is the in-memol)' version of the NE format.

Segment Table

begin segtab
1 500 0519
2 b40 0050

CODE
DATA

USE16
USE16

The segment table (segtab) lists every segment in the executable. For each seg
ment, EXEDUMP shows the logical segment number (in decimal), the file offset for
the segment (in hex), the number of bytes in the segment (again in hex), whether it is
CODE or DATA, and whether it is USE16 or USE32 (through you're unlikely to
find any USE32 segments in an NE file).

The existence of a segment table in NE executables represents a key difference
from DOS (MZ) executables: in Windows, segments are genuine, discrete units in the
file. Though many Windows DLLs do store data in their code segments, there is at
least a notion of separate code and data segments. In fact, NE executables are some
times also called segmented executables, and the Microsoft linker that produces them
is called the Segmented-Executable Linker.

In our example, the first segment in TASKMAN.EXE is CODE, 519h bytes long,
located at offset 500h in the fue. The second segment is its single, default DATA seg
ment (DGROUP), 50h bytes long, located at offset OB40h in the file. Note that these
offsets are from the start of the entire file, not from the beginning of its NE compo
nent. The use of file rather than NE offsets makes this table dependent on the size of
the DOS stub program; any "rebind" utility that manipulates the DOS stub in an NE
executable has to adjust all the file offsets in this table (aargh!).

Module-Reference Table

begin modref
KERNEL
USER

The next EXEDUMP section displays the module-reference (modre£) table and is
identical to the "DLLs called by this program" list shown by MAPWIN.

CodeView Symbols The next table, not present in TASKMAN.EXE, is an optional
table of CodeView (CV) symbols. For example:

begin CodeView
2 0000
2 001a
1 0000

001a
090c
OOdb

libentry.obj (MODULE)
init.obj (MODULE)
time.obj (MODULE)

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 77

8 0000 04ed joy.obj (MODULE)
9 0006 rsrvptrs (USHORT)
9 OOOe pStaekMin (USHORT)
9 OOOe pStaekBot (USHORT)
2 0014 WEP (TYP 03CCh)
9 OOOa pStaekTop (USHORT)
9 0006 pLoealHeap (USHORT)
9 0008 pAtomTable (USHORT)
0 0001 - acrtused (TYP ABS)
8 00d2 joyReleaseCapture

and so on ...

As usual, the first number is a logical segment (in decimal), and the next number
is an offset within the segment (in hex). If the CodeView symbol describes an .OBJ or
source module, indicated by "(MODULE)", the next number is the offset (hex) for
the last byte in the module. In the example above, JOY.OBJ is located at 8:0000
through 8:04ED. For symbols other than module names, EXEDUMP shows the sym
bol name, followed by its type, if available. In the example above, USHORT
pLocalHeap is located at 9:0006. Names are shown only for simple types; nonprimi
tive types are indicated with a TIP number.

In the example shown (from a debug version of MMSYSTEM.DLL), the
joyReleaseCapture() function lives at 8:00D2. Because this is an export from
MMSYSTEM (documented in the Multimedia ProgrammerJs Reference), the
EXEDUMP entry-table display would show the same information. The CodeView
information is useful if it provides names for internal (nonexported) functions and
variables.

EXEDUMP only shows public CodeView symbols; other information such as local
variables and type information is not handled. (Borland's TDUMP displays all
CodeView information.)

CodeView information is important because some releases of the debug version of
Windows (included with the Windows SDK) come with very complete CodeView
information that EXEDUMP can pass along to a disassembler. Unfortunately, in most
releases of the debug version of Windows, all the symbols for internal (nonexported
and/or undocumented) functions and variables are replaced with strings of spaces.
EXEDUMP normally suppresses these mangled CodeView symbols; if you want
EXEDUMP to show these blanks (it's a sad sight), use the -CVBLANKS command
line option:

C:\BIN>exedump -evblanks \windev.31\debug\krnl386.exe

The CodeView symbol format (through Microsoft C 6.0) is documented in the
Microsoft C DeveloperJs Toolkit Reference (Microsoft Part No. 18161). The completely
different CV format used by Microsoft C/C++ 7.0 is documented as part of Open
Tools (see chapter 1).

EXEDUMP does not handle Turbo Debugger symbols, but Borland's TDUMP
does display these symbols, of course. The TD symbol-table format is documented in

78 UNDOCUMENTED WINDOWS

the Borland Languages Open Architecture Handbook (Borland Part No. 14MN
RCHOI-IO).

Relocation Table

begin reloc
1 04b9 [eJ start
1 0441 [sJ 1 0000 SEG
1 0410 [mJ USER 5 PTR
1 01a5 [mJ USER 262 PTR
1 01c6 [mJ USER 262 PTR
1 0200 [mJ USER 262 PTR

Each segment in a Windows executable is optionally followed by a relocation
table. Relocations are places that need to be "fixed up" (patched) before the program
can run. EXEDUMP groups all the relocation tables into one and adds a few more
items that aren't really relocations, but that are convenient to place here anyway.

An executable's Windows API calls, plus any other DLL calls it makes, are all
dynamic links that can't be resolved until the program is loaded into memory. Because
all far calls need to be fixed up, Windows API calls are reflected in the relocation table;
this is where we learn the full details of an executable's imports. In a large program or
library, this table will be thousands of lines long. Although essential when studying
imports (the functions called), it is useless when studying exports (the functions pro
vided), so the table can be suppressed with the EXEDUMP -NORELOC switch.

For each relocation item, EXEDUMP indicates the logical segment number (in
decimal), the offset within the segment (in hex), the relocation type, and additional
information, which depends upon the type. The types are

[i] Import by name: module name and function name (not ordinal) provided
[m] Import by ordinal: module name and ordinal provided
[n] Internal reference to item exported from this module
[s] Fix up to segment:offset elsewhere in this module
[e] Program entry point-always named "start." It is not a relocation entry, but it appears

in this table anyhow.
[g] General Protection (GP) fault handler from _ GP list. This is not a relocation,

but it appears in this table anyhow. (See the description of _ GP in chapter 5.)

Relocations are further qualified with "PTR," "SEG," and "OFF," which indicate
if an entire four-byte far pointer is to be fixed up or whether just the two-byte seg
ment or offset is.

In the example above, "1 0441 [s] 1 0000 SEG" indicates that, at 1:0441, there
are two bytes (SEG) that need to be patched with the address of segment 1. For
example, there might at 1:0440 be an instruction such as "PUSH SEG Some
Handler": the PUSH opcode occupies one byte, and the two bytes to be fixed up
would immediately follow at 1:0441:

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 79

1:0440
1:0443

68 XX xx
, ...

push XXXX

Note that although the instruction starts at 1:0440, the relocation starts one byte
in, at 1:0441. Only the operand needs modification, not the instruction itself.

More interesting for the study of undocumented Windows is a line such as "1
01A5 [m] USER 262 PTR": this indicates that, at 1:01AS, four bytes (PTR) need to
be patched with the address of the USER.262 function. In other words, "USER 262
PTR" is the source, and "1 OlAS" is the target. For example:

1:01A2 6A 00 push 0
1:01A4 9A XX XX xx XX call far ptr XXXX
1 : 01 A9 , ...

When KERNEL loads this executable into memory, it will smack the four bytes at
1:0 lAS with a far function pointer to USER.262. If you run EXE
DUMP -NORELOC \WIN31\SYSTEM\USER.EXE, you will see that this happens
to be GetWindow(). When loading TASKMAN, KERNEL would get the address of
GetWindow() from USER's Module Database.

Although needed to implement dynamic linking, these relocations also serve the
secondary purpose of giving us an easy way to see which API functions an executable
references. There's a lot of useful information in these initially rather unhelpful-looking
lines. Essentially, the MAPWIN program shown earlier merely collects all these reloca
tions together, throws out any duplicates, produces the name for each module.ordinal,
and sorts the list alphabetically.

The TASKMAN example includes several references to USER.262, all in the same
segment. Every relocation with the same source, and the same target segment, is
chained together in a linked list. The relocation table merely contains the head of the
chain; the rest of the linked list threads its way through the segment. EXEHDR merely
shows the head of the chain; EXEDUMP shows the entire chain. Getting the entire
relocation chain is important for disassembling and for seeing how often (or rather,
from how many places) a particular API function is used (see EXEUTIL -UNDOC
and -IMPORTS, below).

Producing .DAT Files with EXEDUMP -EXPORTS
In addition to producing listings like the one we've just examined, EXEDUMP can
also produce a simple list of an executable's exports. The EXEDUMP -EXPORTS
option serves the same purpose as the MAPWIN -IMPMAKE option, but it produces
output in a different form, for use by EXEUTIL and by Windows Source. For example

C:\BIN>exedump -exports \win31\system\user.exe > \undocwin\user.dat

C:\BIN>type \undocwin\user.dat

; \win31\system\user.exe
; "Microsoft Windows User Interface"

80 UNDOCUMENTED WINDOWS

,
USER . 1
USER • 2
USER • 3
USER . 4
USER • 5
USER • 6
USER • 7
USER • 8
USER . 10
USER. 11
USER • 12
USER • 13
USER . 14
USER. 15
... about

MESSAGEBOX
OLDEXITWINDOWS
ENABLEOEMLAYER
DISABLEOEMLAYER
INITAPP
POSTQUITMESSAGE
EXITWINDOWS
WEP
SETTIMER
BEAR11
KILLTIMER
GETTICKCOUNT
GETTIMERRESOLUTION
GETCURRENTTIME

400 lines omitted ...

Ifrun on something other than a valid NE file, EXEDUMP -EXPORTS produces
no output at all. Thus, you can generate an omnibus listing of all Windows API func
tions on your system with something like the following:

C:\BIN>for %f in (\win31\system*.*) do exedump -exports %f » winfunc.dat

The resulting file should contain about 1,000 functions in Windows 3.0 and
about 1,700 in Windows 3.1.

Quickie Examinations with EXEDUMP -MAC/C and -DESC
If EXEDUMP is run on an executable file that is not in the NE format, it will print
out a message such as "Use LEDUMP to examine this file" (for LE linear executables;
LEDUMP is a program that comes with Windows Source); or "sorry, this is an OS/2
2.0 linear executable, not a segmented executable" (for LX files). This message is
sometimes useful all by itself; EXEDUMP -MAGIC can be used to examine an execut
able file's "magic" (its two-byte signature):

MZ "old" DOS executable (initials of Mark Zbikowski)
NE new executable (Windows or OS/2 1.x)
LE linear executable (Windows VxD)
LX linear executable (OS/2 2.x)
W3 WIN386 collection of linear executables
PE portable executable (Win32/NT)

The EXEDUMP -DESC option prints out nothing more than an NE executable's
name and description string. By collecting these, you can get a picture of many of the
files that Windows uses on your hard disk:

C:\BIN>for %f in (\win31*.*) do exedump -desc %f » win_desc.log

C:\BIN>for %f in (\win31\system*.*) do exedump -desc %f » win_desc.log

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 81

C:\BIN>type win_desc.log
\win31\system\COMM.DRV
Windows Communications Driver

\win31\system\COMMDLG.DLL
Common Windows Dialogs, Ver. 3.10

\win31\system\CPWIN386.CPL
Windows 386 Enhanced Control Panel

\win31\system\DDEML.DLL
ODE Manager Library

\win31\system\DRIVERS.CPL
Multimedia Control Panel Drivers Applet

\win31\system\FINSTALL.DLL
Font Installer

\win31\system\GDI.EXE
Microsoft Windows Graphics Device Interface
.•. etc .•••

EXEDUMP -DESC currently handles only NE files. Obviously, this utility would
be a lot more useful if it could deduce something about every single file in your Win
dows subdirectories, not just the NE files. However, it's a start.

EXEUTIL
EXEDUMP isn't terribly interesting or useful all by itself, but the boring-looking
information it provides can be used as the foundation for many different interesting
Windows-snooping utilities. We've collected a number of these into a single program,
EXEUTIL. EXEUTIL runs EXEDUMP on a specified NE executable, reads in the
output from EXEDUMP, and then uses it to do something useful:

EXEUTIL -FINDUNDOC

EXEUTIL -UNDOC
EXEUTIL -IMPORTS

EXEUTIL -DIFF

EXEUTIL -DUPES

Compares an NE executable's exports with a C .H
#include file to find exports of likely undocumented
functions.
Displays all imports ofundocumented functions.
Displays all ofan executable's imports and gives a rough
indication of the most important (or at least most
frequently used) ones.
Displays the entry-point differences between two versions
of an NE executable.
Displays multiple entry points that share the same code.

Ideally, these might have been packaged as five separate .EXE files. However, they
have all been written using the AWK programming language, and the AWK compiler
we're using (the excellent Thompson AWK, formerly PolyAWK, from Thompson

82 UNDOCUMENTED WINDOWS

Automation) currently produces rather large .EXE files, so a single large executable
with five command-line switches seemed like a better choice than five large executables.

In every other respect, AWK turned out to be an excellent choice for writing utili
ties such as these. Once we have the output from"EXEDUMP, finding undocumented
functions is essentially an exercise in text manipulation; this is exactly what AWI<, a C
like pattern-matching language from AT&T Bell Laboratories, is designed to do. (For
more information, see The A W!(Programming Language by Alfred Aho, Brian
Kernighan, and Peter Weinberger.)

Finding Undocumented Functions with EXEUTIL -FINDUNDOC
Earlier, when we looked at the MAPWIN-generated list of TASKMAN's Windows
API calls, the reader may have wondered how we knew which functions were undocu
mented. Obviously, we can go through each function listed by MAPWIN, look for the
function in WINDOWS.H, look for the function in the Windows SDK Programmer)s
Reference, maybe if we're really enterprising look in the Windows Device Driver Kit
(DDK), and if we don't find the function listed anywhere, decide that it's undocu
mented. Then we can go and carry out the same technique for the next function, and
the next. In other words, bogo-search:

for each function that the executable imports
if the function isn't in WINDOWS.H, SDK, or DDK

it's undocumented

A far better algorithm is to move all the searching of WINDOWS.H, the SDK,
and the DDK "out of the loop," as it were, and create a master list of undocumented
functions:

1* one-time initialization *1
if UNDOCWIN.DAT doesn't exist

for each DLL and DRV in the \windows\system subdirectory
for each export from the DLL or DRV

if the function isn't in WINDOWS.H, SDK, or DDK
put it in UNDOCWIN.DAT

for each function that the executable imports
if the function IS in UNDOCWIN.DAT

it's undocumented

EXEUTIL -FINDUNDOC carries out the first part of this process, or at least as
much of it as can be automated. EXEUTIL -UNDOC (see next page) carries out the
second part.

EXEUTIL -FINDUNDOC (from now on, we'll just say FINDUNDOC) com
pares the exports from a DLL with the function prototypes in a C .R #include file (the
DLL and the #include flie should correspond to the same version ofWindows). In the

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 83

following example, FINDUNDOC locates the functions exported from USER.EXE,
but not prototyped in WINDOWS.H:

C:\BIN>exeutiL -findundoc \win31\system\user.exe \win31\windev\windows.h
,
; Functions in \win31\system\user.exe but not in \win31\windev\windows.h:
; Microsoft Windows User Interface
,
USER . 2 OLDEXITWINDOWS
USER . 3 ENABLEOEMLAYER
USER • 4 DISABLEOEMLAYER
USER . 5 INITAPP
USER . 8 WEP
USER. 11 BEAR11
USER . 51 BEARS1
USER . 86 BEAR86
USER . 172 SWITCHTOTHISWINDOW
USER. 182 BEAR182
USER . 187 ENDMENU
USER • 198 CASCADECHILDWINDOWS
USER . 199 TILECHILDWINDOWS
USER . 216 USERSEEUSERDO
USER . 217 LOOKUPMENUHANDLE
USER . 273 CONTROLPANELINFO
... etc.: see USER chapter for List
USER . 480 GETUSERLOCALOBJTYPE
USER . 481 HARDWARE_EVENT
USER . 484 _GP
USER . 499 WNETERRORTEXT
USER . 501 WNETOPENJOB
USER . 502 WNETCLOSEJOB
USER. 503 WNETABORTJOB
... many other WNET* functions

The above list (if you include the parts we omitted for brevity) represents a reason
able approximation of the undocumented functions in USER. By a completely
mechanical process, we found EndMenu(), SwitchToThisWindow(), Cascade/ Tile
Child Windows(), UserSeeUserDo(), and other gems discussed in chapter 6 on
USER.

FINDUNDOC sometimes decides that a function is undocumented when in fact
it's documented. (It's sort of like one's coworker who every week thinks he's found a
bug in the compiler.) FINDUNDOC simply compares a DLL's exports with the con
tents of the .H fue you've passed in, and in Windows not everything that is docu
mented winds up in an .R file.

For example, the FINDUNDOC output from USER shown above indicates all
WNET* functions as undocumented. Many Windows programmers also seem to think
they're undocumented, so FINDUNDOC is in good company. These functions are
documented, in the Windows DDK, and have a corresponding WINNET.R file. Like
wise, the InitApp() function is part of the standard Windows startup code; it was doc
umented as part of Open Tools (see chapter 1).

84 UNDOCUMENTED WINDOWS

Normally, one would run FINDUNDOC on every EXE, DLL, and DRV in the
\WINDOWS\SYSTEM subdirectory and concatenate all the results to one omnibus
file such as UNDOCWIN.DAT. To keep things simple here, we'll concentrate on
USER.

After producing UNDOCWIN.DAT, we can edit it by hand to remove any func
tions that, for one reason or another, we don't consider to be undocumented. The
utilities that use UNDOCWIN.DAT (such as EXEUTIL -UNDOC; see below) skip
over any line that contains a semicolon, so we can decorate the file with comments
rather than delete lines; this makes UNDOCWIN.DAT a good record not only of the
undocumented areas of the Windows API, but also of its semi-documented or poorly
documented fringes. For example:

USER . 2 OLDEXITWINDOWS
USER . 3 ENABLEOEMLAYER
USER . 4 DISABLEOEMLAYER
USER • 5 INITAPP
USER . 8 WEP
USER. 11 BEAR11
USER . 51 BEAR51
USER . 86 BEAR86
USER . 172 SWITCHTOTHISWINDOW
USER • 182 BEAR182
USER . 187 ENDMENU
... etc
USER . 480 GETUSERLOCALOBJTYPE
USER . 481 HARDWARE_EVENT
USER . 484 __GP
USER . 499 WNETERRORTEXT
USER 501 WNETOPENJOB
USER 502 WNETCLOSEJOB
USER. 503 WNETABORTJOB
... etc .•..

;; startup
;; windows exit procedure
SetSystemTimer
IsTwoByteCharPrefix
IconSize

KillSystemTimer

WINNET.H "internal"
" DDK
" DDK
;; DDK

The items that should be commented-out in UNDOCWIN.DAT include any
thing documented in the DDK or Open Tools, plus any WndProcs or WEPs (Win
dows exit procedures). On the other hand, functions such as the
Get/SetSelectorBase/Limit family, which are documented in 3.1, but which were
undocumented in 3.0, can be added back in.

In addition to looking up functions in WINDOWS.H, remember that in the Win
dows 3.1 SDK there are a large number of important auxiliary #include files, such as
OLE.H, DDE.H, SHELLAPI.H, TOOLHELP.H, and so on. These can be used to
check for undocumented functions in their corresponding DLLs. For example, we can
verify that every named export from TOOLHELP.DLL is documented in
TOOLHELP.H (WEP is just a Windows exit procedure):

C:\BIN>exeutil -findundoc \win31\system\toolhelp.dll
\win31\windev\toolhelp.h

~ Functions in \win31\system\toolhelp.dll but not in \win31\windev\toolhelp.h:

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 85

; TOOLHELP - Debug/Tool Helper library
,
TOOLHELP . WEP

While usually used with an .R file, FINDUNDOC can actually compare the
exports from a DLL with any readable text file. This allows decoded on-line help files
to be used as input. For example, Microsoft QuickHelp files can be converted to
straight text, using the Microsoft C RELPMAKE utility's /DU (decode helpfile
unformatted, text only) switch:

C:\BIN>helpmake IOU \win31\windev\api31.hlp > \undocwin\api31.txt

C:\BIN>exeutil -findundoc \win31\system\user.dll \undocwin\api31.txt

Similarly, the table of contents from WinHelp files can be copied to the Windows
clipboard and then pasted into a text file in Notepad, to be fed to FINDUNDOC.

When we're done, the resulting UNDOCWIN.BAT lists about 550 functions.
About 400 of them are actually undocumented, with roughly 80 functions in KER
NEL, 60 in USER, and 60 in GDI.

Finding Calls to Undocumented Functions with EXEUTIL -UNDOC
Once we have a useful UNDOCWIN.DAT, we can systematically go about finding
programs, DLLs, and drivers that use undocumented Windows API calls.

EXEUTIL -UNDOC compares all of an NE executable's imports against the mas
ter list of undocumented functions in UNDOCWIN.DAT. For example, here's the
Windows 3.1 Task Manager again:

C:\BIN>exeutil -undoc \win31\taskman.exe
\WIN31\TASKMAN.EXE undocumented imports:

ISWINOLOAPTASK (KERNEL.158)
SWITCHTOTHISW1NOOW (USER.172)
CASCAOECHILOWINOOWS (USER.198)
TILECHILOWINOOWS (USER.199)
Uses run-time dynamic linking (6etProcAddress)

TASKMAN uses undocumented functions from USER. In turn, USER itself not
only exports these and other undocumented functions, but also uses undocumented
functions, from GDI and KERNEL:

C:\BIN>exeutil -undoc \win31\system\user.exe
\W1N31\SYSTEM\USER.EXE undocumented imports:

INTERSECTVISRECT (601.98)
SELECTVISR6N (601.105)
SETDCOR6 (601.117)
DEATH (601.121)
RESURRECTION (GOI.122)
SAVEV1SR6N (601.129)
RESTOREVISR6N (6D1.130)

86 UNDOCUMENTED WINDOWS

1NQU1REV1SRGN (G01.131)
GETCL1PRGN (G01.173)
GETDCSTATE (GD1.179)
SETDCSTATE (GD1.180)
SETDCHOOK (G01.190)
SETHOOKFLAGS (G01.192)
SHR1NKGD1HEAP (G01.354)
... about 40 lines omitted

The GDI module, in turn, not only exports these and other undocumented func
tions, but also imports undocumented functions from KERNEL. All of these modules
internally make use of their own undocumented functions, too. The end result is a
network (or is it nest?) of undocumented function calls.

In many ways, this is the most valuable information you can get about undocu
mented Windows. EXEUTIL -UNDOC shows, as nothing else can, what undocu
mented functions are truly useful. Only rarely do Windows executables use an
undocumented function where a documented one, or a combination of undocu
mented ones, could have done the trick. Some of the undocumented calls that USER
makes into GDI, or that GDI makes in KERNEL, might conceivably only be useful
for components of Windows itself. But in the case of a straightforward utility such as
TASKMAN, IsWinOldApTask(), SwitchToThisWindow(), CascadeChildWindows(),
and TileChildWindows() are genuinely useful functions that ought to be part of
the Windows programmer's arsenal. (See chapter 6 for more details about these
functions.)

In addition to printing the names of any undocumented functions,
EXEUTILUNDOC also prints a warning if the specified executable contains a refer
ence to the GetProcAddress() function, for reasons that should be clear from the dis
cussions ofmn-time dynamic linking earlier in this chapter.

If the specified executable contains more than 10 separate calls (that is, calls from
10 or more different segment:offset locations) to an undocumented function,
EXEUTIL -UNDOC also prints the number of calls. For example, the following pro
vides some indication of the undocumented functionality that USER depends on from
KERNEL and GDI:

C:\BIN>exeutil -undoc \win31\system\user.dll
... just showing a few selected lines ...
MAKEOBJECTPRIVATE (GDI.463) -- 34 refer~nces

GETTASKQUEUEES (KERNEL.119) -- 11 references
GETEXPW1NVER (KERNEL.167) -- 24 references
HANDLEPARAMERROR (KERNEL.327) -- 25 references

By themselves, these kind of statistics are fairly bogus. However, coupled with
knowledge of the actual code, they serve as useful reminders. As an example, take the
GetTaskQueueES() calls that USER makes: the Task Queue data structure, described
in the KERNEL chapter, is really shared between KERNEL and USER. USER calls
GetTaskQueueES() so that it can place WM_ messages in a task's queue. It does this

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 87

in more than 10 different places, so GetTaskQueueES() is an important means of
communication between USER and KERNEL.

EXEUTIL -UNDOC also tries to catch any internal references to undocumented
functions. For example, USER.EXE exports the u11documented function EndMenu().
If you look at the source code for DefWindowProc() provided with the Windows SDK
in the file DEFWND.C, you'll note that DefWindowProc(), which resides in USER,
calls EndMenu(), which also resides in USER. EXEUTIL -UNDOC tries to ferret out
such cases:

C:\BIN>exedump -undoc \win30\system\user.exe
... just showing internal references ...
ENDMENU (USER.1B7) -- INTERNAL
SETSYSTEMMENU (USER.2BO) -- INTERNAL
GETCONTROLBRUSH (USER.326) -- INTERNAL -- 11 references
LOADCURSORICONHANDLER (USER.336) -- INTERNAL -- 12 references
LOADDIBCURSORHANDLER (USER.356) -- INTERNAL
LOADDIBICONHANDLER (USER.357) -- INTERNAL
DRAGDETECT (USER.465) -- INTERNAL

The above list was produced using the Windows 3.0 version of USER.EXE.
Newer versions of the Microsoft linker optimize relocations of internal references to
exported functions; as a consequence, this sort of information about internal refer
ences does not show up as often in 3.1 executables. Losing this information is a small
price to pay, especially since we can still find it by going in and disassembling the
executable.

If you run EXEUTIL -UNDOC on as many Windows programs and libraries as
you can get your hands on, and if you concatenate the redirected output to a single
file, you will begin to build a database of important undocumented Windows calls,
much as we did in chapter 1 of this book. For example, running EXEUTIL -UNDOC
on the Windows 3.1 Program Manager, File Manager, SDK Heapwalk, SHELL.DLL,
TOOLHELP.DLL, and WinOldAp module yields this list:

\WIN31\PROGMAN.EXE undocumented imports:
ISROMMODULE (KERNEL.323)
SHELLABOUT (SHELL.22)
EXTRACTASSOCIATEDICON (SHELL.36)
DOENVIRONMENTSUBST (SHELL.37) -- 21 references
INTERNALEXTRACTICON (SHELL.39)
REGISTERSHELLHOOK (SHELL.102)
GETINTERNALICONHEADER (USER.372)
DUMPICON (USER.459)
CALCCHILDSCROLL (USER.462)
DRAGOBJECT (USER.464)
uses run-time dynamic linking (GetProcAddress)

\WIN31\WINFILE.EXE undocumented imports:
FILECDR (KERNEL.130)
LONGPTRADD (KERNEL.180)
SHELLABOUT (SHELL.22)

88 UNDOCUMENTED WINDOWS

FINDENVIRONMENTSTRING (SHELL.38)
DRAGOBJECT (USER.464)
WNETERRORTEXT (USER.499)
uses run-time dynamic linking (GetProcAddress)

\WIN31\SYSTEM\SHELL.DLL undocumented imports:
GETCURPID (KERNEL.157)
DIRECTRESALLOC (KERNEL.168)
GETICONID (USER.455)
LOADICONHANDLER (USER.456)
uses run-time dynamic linking (GetProcAddress)
WCI (SHELL.32) -- INTERNAL
HERETHARBETYGARS (SHELL.100) -- INTERNAL
SHELLHOOKPROC (SHELL.103) -- INTERNAL

\WIN31\WINDEV\HEAPWALK.EXE undocumented imports:
GLOBALHANDLENORIP (KERNEL.159)
SHELLABOUT (SHELL.22)

\WIN31\SYSTEM\TOOLHELP.DLL undocumented imports:
GLOBALMASTERHANDLE (KERNEL.28)
REGISTERPTRACE (KERNEL.202)
uses run-time dynamic linking (GetProcAddress)

\WIN31\SYSTEM\WINOA386.MOD undocumented imports:
SETOBJECTOWNER (GDI.461)
DOENVIRONMENTSUBST (SHELL.37)
REGISTERSHELLHOOK (SHELL.102)
SWITCHTOTHISWINDOW (USER.172)
GETNEXTGUEUEWINDOW (USER.274)
WINOLDAPPHACKOMATIC (USER.322)

Naturally, we can continue this way, listing not only the undocumented calls that
various Windows modules rely on from USER and GDI, for example, but also listing
the undocumented calls from KERNEL that USER and GDI themselves, in turn, rely
on. When we're done, we end up with a rather large list that is undoubtedly interest
ing but also of questionable usefulness. The list can be made useful by turning it
around (we wrote a IO-line throwaway AWKprogram for this): instead of showing the
undocumented calls that each executable makes, the transformed list shows the exe
cutables that call each function:

CALCCHILDSCROLL (USER.462)
\WIN31\PROGMAN.EXE

DIRECTRESALLOC (KERNEL.168)
\WIN31\SYSTEM\SHELL.DLL

DOENVIRONMENTSUBST (SHELL.37)
\WIN31\PROGMAN.EXE
\WIN31\SYSTEM\WINOA386.MOD

DRAGOBJECT (USER.464)
\WIN31\PROGMAN.EXE
\WIN31\WINFILE.EXE

DUMPICON (USER.459)

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 89

\WIN31\PROGMAN.EXE
EXTRACTASSOCIATEDICON (SHELL.36)

\WIN31\PROGMAN.EXE
FILECDR (KERNEL.130)

\WIN31\WINFILE.EXE
... etc ...•

It's worth reminding ourselves here that we have yet to disassemble these Win
dows executables. Merely by inspecting NE executables with MAPWIN, EXEDUMP,
and EXEUTIL, we're gaining some genuinely useful knowledge about undocumented
Windows.

Finding Calls to API Functions with EXEUTIL ·IMPORTS
Our next EXEUTIL option, -IMPORTS, is just a generalization of -UNDOC.
Instead of using UNDOCWIN.DAT, it uses the file WINFUNC.DAT, produced ear
lier with EXEDUMP -EXPORTS. It lists all imports, whether documented or undoc
umented. Like -UNDOC, it warns about GetProcAddress() and shows internal
references (a DLL calls to its own exported functions) and counts frequently called
functions.

TASKMAN is too small a program to be interesting here, because with small pro
grams EXEUTIL -IMPORTS will produce essentially the same results as MAPWIN. If
we examine a larger executable, EXEUTIL -IMPORTS gives us a crude idea of the
API functions on which it heavily depends. For example

C:\BIN>exeutil -imports \win31\system\gdi.exe I grep references
\WIN31\SYSTEM\GDI.EXE imported references:

LOCALALLOC (KERNEL.5) -- 18 references
LOCALREALLOC (KERNEL.6) -- 13 references
LOCALFREE (KERNEL.7) -- 28 references
GLOBALALLOC (KERNEL.15) -- 46 references
GLOBALREALLOC (KERNEL.16) -- 33 references
GLOBALFREE (KERNEL.17) -- 90 references
GLOBALLOCK (KERNEL.18) -- 171 references
GLOBALUNLOCK (KERNEL.19) -- 218 references
GLOBALSIZE (KERNEL.20) -- 19 references
GETPROCADDRESS (KERNEL.50) -- 20 references
GETPROFILESTRING (KERNEL.58) -- 12 references
OPENFILE (KERNEL.74) -- 14 references
_LCLOSE (KERNEL.81) -- 24 references
_LREAD (KERNEL.82) -- 13 references
SETERRORMODE (KERNEL.107) -- 16 references
___AHSHIFT (KERNEL.113) -- 21 references
___AHINCR (KERNEL.114) -- 50 references
K327 (KERNEL.327) -- 21 references

As usual, we can't rely too heavily on such statistics. But look at the number of
separate calls that this Windows 3.1 version ofGDI.EXE makes to the GlobalUnlock()
and GlobalLock() calls, and then compare it with the number of times GlobalAlloc()
and GlobalFree() are called. From this, it looks as if GDI is still carrying around some

90 UNDOCUMENTED WINDOWS

dead weight from the days of real-mode Windows. In protected mode, it is a waste of
time to unlock and relock objects. Yet the preceeding certainly seems to indicate that
this is what GDI is doing.

Closer examination of 3.1 GDI confirms that, indeed, it does temporarily lock
objects, manipulate them, and then unlock them; this really is a waste oftime in protected
mode. By pointing out when executables contain a large number of references to an
API function, EXEUTIL -IMPORTS helps find anomalies such as these.

Finding DLL Changes with EXEUTIL -DIFF
When Windows 3.1 came out, the first thing that the authors of this book desperately
wanted to know was: How did undocumented functions change between 3.0 and 3.1?
What undocumented functions in 3.0 were dropped in 3.1? Which undocumented
functions in 3.1 were new?

EXEUTIL -DIFF displays any entry-point differences between two versions of a
Windows executable. For example

C:\BIN>exeutil -diff \win30\system\user.exe \win31\system\user.exe
Entry point differences:

\windows\system\user.exe \win31\system\user.exe
117 GETTASKFROMHWND
281 SNAPWINDOW
302 STATICWNDPROC
303 BUTTONWNDPROC
304 SBWNDPROC
305 DESKTOPWNDPROC
307 LBOXCTLWNDPROC
310 CONTSCROLL
311 CARETBLINKPROC
312 SENDMESSAGE2
313 POSTMESSAGE2
315 XCSTODS

etc
\win31\system\user.exe \windows\system\user.exe

8 WEP
11 BEAR11
51 BEAR51
86 BEAR86
182 BEAR182
184 QUERYSENDMESSAGE
216 USERSEEUSERDO
226 LOCKINPUT
231 GETSYSTEMDEBUGSTATE
245 ENABLECOMMNOTIFICATION
246 EXITWINDOWSEXEC
247 GETCURSOR
248 GETOPENCLIPBOARDWINDOW
251 SENDDRIVERMESSAGE

etc .•..

SETSYSTEMTIMER
ISTWOBYTECHARPREFIX
ICONSIZE
KILLSYSTEMTIMER

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 91

From this you can see, for example, that the undocumented SnapWindow() and
XCStoDS() functions in 3.0 USER are no long exported in 3.1 that what was called
SetSystemTimer() in 3.0 is called BEARll() in 3.1 and that the undocumented func
tion UserSeeUserDo() is new to 3.1.

You can also see that the documented functions GetSystemDebugState(),
SendDriverMessage(), and so on are present in 3.1, but not in 3.0. Of course, you
could also turn to the Windows SDK Programmer)s Reference to find this out. But
when the 3.1 SDK states that a function is new to 3.1, sometimes the truth is that the
function was also present in 3.0, but was not documented.

When Microsoft documents a previously undocumented Windows or DOS func
tion, it generally does so by claiming that the function is new to whatever version
under which they first decided to document it. (The reader is referred to the writings
of George Orwell for further commentary on this practice.) The KERNEL
Get/SetSelectorBase/Limit functions fall into this category. EXEUTIL -DIFF knows
that, at this level, there is no difference between Get/SetSelectorBase/Limit in 3.0
and 3.1. When functions that were present but undocumented in one version become
documented in the next version, it makes one wonder how unsafe it could have been
to use these in the first place. In fact, Microsoft generally documents such functions
because programmers have already been using them without its blessing.

Here's another use for EXEUTIL -DIFF: you may have Windows 2.1 disks, possi
bly sitting, unopened, in their original package (before 3.0, many copies of Windows
were shipped, but few were used). If so, it's instructive to use EXEUTIL -DIFF to
compare KERNEL, USER, and GDI for 2.1 and 3.0. It gives a good sense of how the
core set of industry-standard boilerplate functions, the ones used by nearly all Windows
applications, has remained remarkably stable. Windows has been under construction for
nearly 10 years; one of the reasons for Windows' success now is that it is a mature
product, with a mature API.

In some cases, this mature API includes undocumented functions. Nobody cares
about pre-3.0 versions of Windows any more, but the persistence of some undocu
mented functions from 2.1 (or earlier) to 3.0 to 3.1 indicates that these in particular
are likely to remain stable. For example, the VisRgn functions in GDI, such as
OffsetVisRgn() and SelectVisRgn() (described in chapter 8), are present, though
undocumented, in 2.1, 3.0, and 3.1. Other examples are the Set/GetTaskQueue func
tions in KERNEL and the Enable/DisableOEMLayer functions in USER. Such per
sistent functions are what don)t show up when you run EXEUTIL -DIFF.

Some of the differences between 2.1 and 3.0 that EXEUTIL -DIFF reveals are
important. For example

C:\BIN>exeutil -diff \win21\system\kernel.exe \win30\system\krnl386.exe
Entry point differences:

\undocwin\win21\kernel.exe \windows\system\krnl386.exe
39 SETTASKSWITCHPROC
40 SETTASKINTERCHANGE
43 ISSCREENGRAB
44 BUILDPDB

92 UNDOCUMENTED WINDOWS

\windows\system\krnl386.exe
77 RESERVED1
78 RESERVED2
79 RESERVED3
80 RESERVED4
87 RESERVED5
108 SWITCHSTACKTO
109 SWITCHSTACKBACK
126 MEMORYFREED

etc .•..

\undocwin\win21\kernel.exe
ANSINEXT
ANSIPREV
ANSIUPPER
ANSILOWER
LSTRCMP
STO
SBACK

This was how we found that the undocumented ReservedX functions in KERNEL
are nothing more than place holders for the AnsiXXX functions, which in 3.0 were
moved to USER It is also revealing that only four undocumented functions in 2.1
KERNEL (SetTaskSwitchProc, SetTaskInterchange, IsScreenGrab, and BuildBPB)
were removed in 3.0. Likewise, only a few were removed in USER and GDI.

Seen from the perspective ofEXEUTIL -DIFF, the changes from Windows 3.0 to
3.1 are far greater than those from 2.1 to 3.0. The big change in 3.0 was the introduc
tion of a protected-mode DOS extender, which was the only thing that could tum the
nice Windows architecture into a genuinely-useful product. But because protected
mode Windows was implemented by gluing what were in many ways the old 2.1 exe
cutables on top of a DOS extender, this momentous change is not visible when we
look only at DLLs.

Finding Function Equivalences with EXEUTIL -DUPES
Our final EXEUTIL option, -DUPES, does nothing more that locate multiple entry
points in a Windows executable that point to the same block of code. For example

C:\BIN>exeutil -dupes \win30\system\user.exe
Multiple entry points for same segment:offset:

1 1b5b 133 GETWINDOWWORD
1 1b5b 135 GETWINDOWLONG

1b5e 129 GETCLASSWORD
1b5e 131 GETCLASSLONG

1bf5 278 GETDESKTOPHWND
1bf5 286 GETDESKTOPWINDOW

6ed8 13 GETTICKCOUNT
6ed8 15 GETCURRENTTIME

Knowing that the undocumented GetDesktopHwnd() and GetTickCount() func
tions are just aliases for documented functions is nice, because that's two undocu
mented functions we don't need to explore further.

More interesting, though, is the apparent equivalence of GetWindowWord() with
GetWindowLong(), and of GetClassWord() with GetClassLong(). GetWindowWord()
retrieves a two-byte word value from a specified offset in a window structure;

CHAPTER 2 • EXAMINING WINDOWS EXECUTABLES 93

GetWindowLong() retrieves a four-byte long value; the GetClassWord/Long func
tions do the same with a window-class structure.

How can the same piece of code retrieve both a two-byte word and a four-byte
long? The answer is very simple: the function always retrieves a four-byte long. In 16
bit code on the PC, four-byte values are by convention returned in the DX:AX register
pair; two-byte values are returned in AX. Callers of GetWindowWord() or
GetClassWord() simply ignore the value in DX.

(Having mentioned the DX:AX four-byte return value and AX two-byte return
value convention for Windows functions, this seems like as good a place as any to
mention the other register-usage convention for Windows functions: according to the
SDK Guide to Programming, Windows functions are allowed to destroy any register
other than DI, SI, BP, and DS.)

In Windows 3.1, EXEUTIL -DUPES is less able to uncover function equiva
lences. In 3.1, the entry points for most documented API functions in KERNEL,
USER, and GDI have been moved into LAYER modules. The entry point in LAYER
does parameter validation and then jumps to the genuine, internal routine whose
name is inaccessible to EXEUTIL -DUPES.

If you look carefully at the addresses displayed by EXEUTIL -DUPES for the
GetWindow/ClassWord/Long functions, you'll notice something even stranger than
the equivalence of getting words and longs: the address of GetWindowWord/Long
(1:lB5B) is only three bytes away from the address of GetClassWord/Long (1:lB5E).
It seems as if GetClassWord/Long would be coming right in the middle' of
GetWindowWord/Long. In fact, it does. Not only that, it comes right in the middle
ofan instruction:

GETWINDOWWORD:
GETWINDOWLONG:
1:1bSb 31 C9 XOR CX,CX
1:1bSd A9 B1 80 TEST AX,80B1

GETCLASSWORD:
GETCLASSLONG:
1:1bSe B1 80 MOV CL,80

GETWC2:
, ...
1:1b70
1:1b72
1:1b75

MOV AX,[BX]
MOV DX,[BX+2J
RET

That's right, if you call GetWindowWord/Long, the bytes at 1:lB5E are used as
part of a (NaP) TEST AX,80B1 instruction, but ifyou call GetClassWord/Long, you
jump right into the middle of this instruction and use the bytes as a MOV CL, 80
instruction, before falling into GElWC2 (see chapter 6). The apparent intent here was
to save callers of GetWindowWord/Long from having to execute a IMP.

The next time you read or listen to a lecture from a Microsoft representative on
how one should never use undocumented functions or tricks, even if you think you

94 UNDOCUMENTED WINDOWS

need to, it might be useful to remember that the code for Windows is filled with
unnecessary tricks. There's an even worse example of such onanistic coding practices in
the Windows API functions that retrieve values from a display context (DC); see chap
ter 8 on GDI chapter for all the gory details.

In any case, EXEUTIL -DUPES is useful for alerting us to possible oddness like
this; it would be a lot harder to find if we were just wading through disassembly list
ings. The oddness in turn helps to demystify the Windows API a little, reminding us
that, behind the inscrutable face sometimes worn by the SDK ProgrammerJs Reference,
there is just code, written by programmers.

CHAPTER • 3

Disassembling Windows

The reader may recall the cute robot Number 5's line, "No disassemble," from the
movie Short Circuit a few years ago. For someone exploring the internals of an operat
ing system, "no disassemble" really is good advice-but only up to a point. In the pre
vious chapter, we saw that the symbolic information contained in Windows NE
executables lets us discover a lot about undocumented Windows, without having to
disassemble and examine any actual code. However, the knowledge we've gained
about undocumented Windows in this way is partial, and in some places downright
misleading.

For example, we've seen that because Windows provides run-time dynamic linking
via the GetProcAddress() function, a Windows executable can access another execut
able without anything more than a reference to GetProcAddress() showing up in the
NE header. For this reason, examination of its executable header will not show us how
GDI communicates with the DISPLAY module. Only examination of the actual code
for the CreateDC() function will show that.

Furthermore, by looking only at function exports and imports, we're missing out
on key pieces of the Windows action, such as sending, posting, and receiving ofWM_
messages, the use of software interrupts, access to fields in internal data structures, and
use of resources such as menus and dialog boxes. With the exception of resources
(which we'll get to later in this chapter), none of this shows up in the NE header: you
have to look at the code.

In addition, while this book focuses entirely on the core of the Windows API
KERNEL, USER, and GDI-there is a lot more to Windows, particularly Enhanced
mode Windows, than that. There are really three different Windows APIs; a good
Windows programmer should be familiar with all three:

• The 16-bit far call/stack-based API provided by DLLs, containing functions
such as CreateWindow() and GlobalAlloc(), which are documented in the
SDK or in the Device Driver Adaptation Guide of the Windows Device Driver
Kit (DDK), or which are undocumented.

95

96 UNDOCUMENTED WINDOWS

• A 32-bit register/INT 20h-based API provided by, and for, virtual device
drivers (VxDs), containing functions such as Get_Cur_VM_Handle and
VKD_Force_Keys, which are documented in the Virtual Device Adaptation
Guide of the DDK.

• An interrupt-based API, including the DOS Protected-Mode Interface (DPMI
0.9; INT 3Ih), the Virtual DMA Services (VDS; INT 4Bh), a large collection
of INT 2Fh calls, plus, of course, protected-mode DOS (INT 2Ih) services.
For example, DPMI includes functions such as "Set Processor Exception Han
dler Vector" and "Call Real Mode Procedure With Far Return Frame."

We need to disassemble Windows, including not only the NE files we've been
examining, but also linear executable (LE) files used by VxDs; the WIN386.EXE file,
which uses a W3 format to hold a large collection of VxDs; and DOS programs such
as DOSX.EXE and the DOS stubs of KERNEL and WIN386.

Of course, the nice symbolic information in NE files, used by programs such as
MAPWIN and EXEUTIL and demonstrated in chapter 2, can be put to excellent use
by a Windows disassembler. A Windows disassembler should take all the information
in an NE header and use it as though it were a debug symbol table. With the NE exe
cutable format, effectively every program comes with a symbol table, whether the pro
gram was compiled for debugging or not. (In fact, one of the authors has written a
program that can input a Windows executable and output a Turbo Debugger .TDS
file. This is a nice illustration of how Windows programs contain debug-like symbolic
information.)

The disassembler we use should ideally "know" about Windows: when it sees a
call to USER.262, it should automatically provide the name GetWindow; when it sees
a DOS or DPMI call, it should provide the function's name; when a VxD makes an
INT 20h call, it should automatically provide the name of the VxD service being used.

Unfortunately, one thing that Windows disassemblers currently won)t do is handle
blocks of "pcode", such as Microsoft C/C++ 7.0 optionally generates. Some
Microsoft programs, such as Excel and WinWord, contain blocks of pcode. Similarly,
the current generation of Windows disassemblers will not usefully disassemble Visual
Basic (VB) programs, which contain BASIC code in USERDATA resources, rather
than Intel instructions in CODE segments. Finally, none currently handle Win32/NT
portable-executable (PE) files.

In this chapter, we will look at disassembling Windows, showing in particular how
to turn the raw data ofa disassembled listing into something understandable and useful.
We will examine, and edit, disassembled listings for parts ofTASKMAN and KERNEL.

But where does the disassembled listing come from in the first place? There are
several ways to take a Windows executable and turn it into an assembly-language .LST
or .ASM file. While working on this book, one of the tools we built turned into Win
dows Source, which is a preprocessor for V Communications' Sourcer disassembler.
Together with Sourcer, Windows Source can produce commented assembly-language
listings for Windows executables, DLLs, drivers, and 32-bit VxDs (including the ones
built into WIN386.EXE, in particular the Virtual Machine Manager).

CHAPTER 3 • DISASSEMBLING WINDOWS 97

Windows Source

V Communications' Sourcer disassembler can be driven by text files that provide
information about the program under analysis. These Sourcer definition files can be
created by hand or by a program. WINP, the main program for Windows Source,
transforms the output from EXEDUMP (which is also included with Windows
Source) into a Sourcer definition file. For VxDs, Windows Source uses two pro
grams, LEDUMP and W3MAP, to input an LE or W3 file and output a Sourcer defini
tion file. The definition file is fed to Sourcer, along with the original program, to
produce a .LST or .ASM file.

When used with Windows Source, Sourcer:

• Labels all exports from a Windows executable, DLL, or device driver
• Identifies, by name, all imported function calls, including all Windows API

calls
• Includes CodeView symbols, such as those found in the debugging version

of Windows

• Labels the program's or DLL's main entry point and automatically identifies
WinMain

• Automatically identifies information such as variables in the NULL segment,
general-protection fault handlers in a _GP block, and APPLOADER func
tions in a self-loading Windows application

• Includes the RESDUMP utility, for matching up "magic numbers" in the dis
assembled listing with menu and control IDs, string table numbers, and
other resources

• In a VxD, identifies by name the VxD's API entry points, its Device Descrip
tor Block (DDB), Control procedure, Service table, plus any virtual-8086 or
protected-mode API procedures

• Identifies by name all VxD services that a VxD calls
• Makes available for assembly the many VxDs embedded within the

Enhanced mode WIN386 file; in particular, it allows the Virtual Machine
Manager (VMM) to be disassembled

• Automatically provides comments for all DOS and DOS Protected-Mode
Interface (DPMI) calls made in a Windows program.

Windows Source and Sourcer are available from V Communications (San Jose;
408-296-4224). •

Another Windows disassembler is WinToAsm, written by Stan Mitchell and avail
able from Eclectic Software (Milpitas, CA). Even though this chapter will focus on
using Windows Source, some of the discussion is also applicable to WinToAsm.

98 UNDOCUMENTED WINDOWS

Finally, as explained below in the "Masochist's Guide to Windows Disassembly,"
you can also use a non-Windows debugger such as Microsoft's SYMDEB to disassem
ble Windows. In fact, it's important to note that Microsoft provides all the tools nec
essary for Windows disassembly: SYMDEB, EXEHDR, and CodeView for Windows
(CVW). The tools discussed in this chapter simply make it much easier.

A Masochist's Guide To Disassembly

If you're feeling masochistic, you can use Microsoft's SYMDEB debugger to disas
semble the individual segments in Windows executables. A program such as
Microsoft's EXEHDR, Borland's TDUMP, or our own EXEDUMP (chapter 2), is also
needed to tell you where the CODE segments are in the file; you then feed this
information to SYMDEB. Using our running example of the Windows 3.1 TASK
MAN.EXE, we find a single CODE segment, 519h bytes long, at offset 500h in the
file. For example, Microsoft's EXEHDR displays this segment table:

C:\DISASM>exehdr \win31\taskman.exe

no. type address file mem flags
1 CODE 00000500 00519 00519 PRELOAD, (movable), (discardable)
2 DATA OOOOOb40 00050 00050 PRELOAD, (movable)

You need to tell SYMDEB to disassemble this many bytes, at this location in the
file. You also want to tell SYMDEB to start offsets at 0, not at 100h as it would oth
erwise do. There are a number of ways to do this, but the simplest, least-masochistic
technique comes from Alan Cobb's Reverse Engineering Windows and OS/2 Soft
ware.

First, copy TASKMAN.EXE to a file with a .BIN extension:

C:\DISASM>copy \win31\taskman.exe taskman.bin

Next, make up a SYMDEB response file:

C:\DISASM>copy con taskman.rsp
r cs
cs+60
u 0 519
q

This tells SYMDEB to add 60h to the current value of the CS register, then
unassemble 519h bytes, then quit. Why tell SYMDEB to change the value of CS?
Because we want it to start disassembling from somewhere other than the start of
the .BIN file. Why add 60h? Because we want SYMDEB to start disassembling at

continued

CHAPTER 3 • DISASSEMBLING WINDOWS 99

continued

offset SOOh, and we want the offsets to start not with 100h, but with o. In other
words, given the file offset of a CODE segment in an NE file, you must tell SYMDEB
to increment CS by (100h + seg_offset) I 10h.

Finally, run SYMDEB with the IX switch, to suppress its [more] display:

C:\OISASM>symdeb IX taskman.bin < taskman.rsp > taskman.asm

By the way, it's also possible to use Microsoft's even more primitive debugger,
DEBUG, which comes with DOS itself. However, the DEBUG command doesn't un
derstand expressions such as cs+60, so you would have to do the math yourself.
Furthermore, DEBUG doesn't understand anything more sophisticated than the
8088 instruction set, so most Windows programs, which contain 80286 instructions
such as PUSH immediate, will come out garbled.

Anyhow, we now have a TASKMAN.ASM. Let's look at part of the file:

2400:019F FF760E
2400:01A2 6AOO
2400:01A4 9AC6010000
2400:01A9 8946FC
2400:01AC 8BFO

PUSH
PUSH
CALL
MOV
MOV

[BP+OEJ
00
0000:01C6
[BP-04J,AX
SI,AX

To use any of this, you need to apply the relocation table by hand; as noted in
chapter 2, code segments are generally followed by relocation tables. In the instruc
tion starting at 1:01 A4 (2400:01 A4 above), we see a far call. The 0000:01 C6 target
for the call is clearly not a valid address, so this part of the instruction (one byte in,
at 1:01 AS) needs to be fixed up.

Examining the EXEDUMP display of the TASKMAN relocation table, we see "1
01 as [m] USER 262 PTR"; this means that the four bytes (PTR) at 1:01 AS need to be
patched with the address for USER.262. But before you can apply this change to the
above disassembly, you first have to note down the current contents of the reloca
tion at 1:01 AS: the number it contains, 01 C6h, is the next item in the relocation
chain for USER.262 in this segment:

2400:019F FF760E PUSH [BP+OEJ
2400:01A2 6AOO PUSH 00
2400:01A4 9AC6010000 CALL USER.262 ; contained 0000:01C6
2400:01A9 8946FC MOV [BP-04J,AX
2400:01AC 8BFO MOV SI,AX
, ...
2400:01CO 743A
2400:01C2 56
2400:01C3 6A04
2400:01C5 9A00020000

JZ 01FC
PUSH SI
PUSH 04
CALL USER.262 ; contained 0000:0200

continued

100 UNDOCUMENTED WINDOWS

continued

Since USER.262 is GetWindow(), and since GetWindowO is documented, we
can turn this into the following, using the documentation for GetWindow() to rela
bel the parameters and return values used by the program:

JZ 01FC
PUSH hFirstWnd
PUSH GW_OWNER
CALL GetWindow

2400:019F FF760E
2400:01A2 6AOO
2400:01A4 9AC6010000
2400:01A9 8946FC
2400:01AC 8BFO
, ...
2400:01CO 743A
2400:01C2 56
2400:01C3 6A04
2400:01C5 9A00020000
;

PUSH
PUSH
CALL
MOV
MOV

hWnd
GW_HWNDFIRST
GetWindow
hFirstWnd, AX
SI,AX

; [BP+OEJ
; 00
; USER.262
; [BP-04J

; SI
; 04

In other words, all you need to disassemble Windows is SYMDEB, EXEDUMP-,
and a huge amount of patience. Rather than go through all this hassle, you're bet
ter off getting a genuine Windows disassembler. But the example does at least
show the relationship between the addresses displayed by EXEHDR or EXEDUMP
and the actual code in the file.

As one more example, let's say that, while waiting for your copy of a real Win
dows disassembler to arrive in the mail, you desperately need to examine the
CascadeChiidWindows() function in USER. First, you need to run EXEHDR, TDUMP,
or EXEDUMP to find out where the function lives in USER; you find that
CascadeChildWindows (USER.198) is in logical segment 15, at offset 0875h:

C:\DISASM>exehdr \win31\system\user.exe

198 15 0875 CASCADECHILDWINDOWS

Now you need to know where segment 15 is located within the file; once
again, EXEHDR, TDUMP, or EXEDUMP show that this CODE segment is at offset
21 F80h in the file, and is 1B5Ch bytes long:

C:\DISASM>exehdr \win31\system\user.exe

15 CODE 00021F80 01B5C

Armed with this information, you can construct a SYMDEB response file to dis
assemble segment 15. You take the file offset for the segment, 21 F80h, add 100h
to it, knock the bottom digit (which had better be 0 for any of this to work) off the
result, and then tell SYMDEB to increment CS by the result:

continued

CHAPTER 3 • DISASSEMBLING WINDOWS 101

continued

C:\DISASM>copy con user15.rsp
r cs
cs+2208
u 0 1b5c
q

C:\DISASM>copy \win31\system\user.exe user.bin

C:\DISASM>symdeb IX user.bin < user15.rsp > user15.asm

C:\DISASM>del user.bin

And to locate the code for CascadeChildWindowsO, you just look at offset
875h in the USER' 5.ASM file:

45A8:0875 C8140000 ENTER 0014,00
45A8:0879 57 PUSH DI
45A8:087A 56 PUSH SI
45A8:087B 1E PUSH DS

45A8:08B1 FF7402 PUSH [SI+02J
45A8:08B4 6A01 PUSH 01
45A8:08B6 9A6F08E308 CALL 08E3:086F
45A8:08BB 8946FC MOV [BP-04J,AX
45A8:08BE 57 PUSH DI
45A8:08BF 9AB5002C09 CALL 092C:00B5
45A8:08C4 8946F6 MOV [BP-OAJ,AX

45A8:0914 FF76F6 PUSH [BP-OAJ
45A8:0917 56 PUSH SI
45A8:0918 6AOO PUSH 00
45A8:091A FF76EC PUSH [BP-14J
45A8:091D FF76EE PUSH [BP-12J
45A8:0920 FF76FO PUSH [BP-10J
45A8:0923 FF76F2 PUSH [BP-OEJ
45A8:0926 FF76FE PUSH [BP-02J
45A8:0929 9A14014A09 CALL 094A:0114
45A8:092E 8946F6 MOV [BP-OAJ,AX

Interesting, isn't it? CascadeChildWindowsO calls BeginDeferWindowPosO,
runs a DefWindowPos() loop to line up the windows, and then calls EndDefer
WindowPosO to show the changes all at once.

Oh, you don't see that in the above listing? The problem isn't that some lines
have been omitted, because the omitted lines look just like the lines that were
included. The problem is simply that you need a real Windows disassembler if you
expect to get much out of looking at code like this.

continued

102 UNDOCUMENTED WINDOWS

continued

At any rate, if you persist in using SYMDEB, you may find that the file you want
to examine is too big for SYMDEB, even though you could only disassemble one
segment at a time for it anyway. If this happens, you can use the EXTRACT utility
on the accompanying disk. This in fact is just how we started working on this book.
One of the first utilities we threw together was EXTRACT; it still comes in handy.

EXTRACT takes a portion of an existing file, and copies it to a new file. The por
tion is specified on the EXTRACT command line, along with the names of the old
and new files. For example, you could lift the code segment (519h bytes at offset
500h in the file) out of TASKMAN.EXE, and pass it to SYMDEB:

C:\BIN>extract \win31\taskman.exe Ox500 Ox519 seg1.bin

C:\BIN>symdeb seg1.bin
-r cs
:CS 7229
:cs+10
-u 0

EXTRACT expects its arguments in a particular (peculiar?) order:

argv[1J source file name
argv[2J long offset, in decimal or hexadecimal

or, if preceded by a dash, then indicates offset from end
argv[3J size, in decimal or hexadecimal

or, if preceded by a dash, then indicates end of a range
or, -stop indicates the remainder of the file

argv[4J = destination file name

Just to clarify some of EXTRACT's more exotic options, the following copies
the last eight bytes of \PHOO\BAR.EXE into CVSIG.TMP:

C:\BIN>extract \phoo\bar.exe -8 -stop cvsig.tmp

and the following extracts the bytes from offsets B40h through B90h:

C:\BIN>extract \phoo\bar.exe Oxb40 -Oxb90 quux.bin •

Actually there's one more way to get a source listings for a Windows mod
ule: forget about disassembly and acquire the actual source code! Depending on what
you're interested in, you may be able to get source code. As already noted, the Win
dows DDK is an incredible resource for anyone interested in Windows internals. It
comes with disk upon disk of source code for many (though by no means all) of the

CHAPTER 3 • DISASSEMBLING WINDOWS 103

16-bit device drivers and 32-bit device drivers that come with Windows; the 3.1 DDK
also comes with several header flies (particularly WINKERN.INC, TDB.INC, and a
special "internal" DDK version of WINDOWS.H) that may answer questions you
have. In addition to the DDK, the Windows SDK comes with C source code for the
DefWindowProc() and DefDlgProc() functions. Finally, both Borland C++ and
Microsoft C/C++ 7.0 come with source code for their Windows startup routines.

Assuming you can't get source code, though, it's now time to use a disassembler.
If you have questions about the legal implications ofdisassembly, we recommend Ray
mond T. Nimmer's The Law of Computer Technology, chapter 3 (Trade Secrets and
Confidentiality), particularly the discussions at 3.05[2][b] (Sale ofa Product: Reverse
Engineering) and 3.07 (End Users: Reverse Engineering). Alan Cobb's Reverse Engi
neering Windows and OS/2 Software also contains a good discussion of these issues.

At some point, every Windows programmer should look at the code for Windows,
if only to get some idea of what's on the other end of the line when they call a Win
dows API function. It's true that the whole "black box," "encapsulation" principle of
modern programming is based on the idea that you needn't, and perhaps even
shouldn)t, understand what is going on internally when you call a library or operating
system function: you only need to understand its inputs, outputs, and side effects.
How or why it produces these externally visible effects is supposed to be of no concern
(this is a behavioralist as opposed to a Freudian approach to programming). But it has
recently become widely recognized that the black-box approach has a serious
downside: by teaching that an understanding of how something achieves its effect is
irrelevant as long as you know the proper incantation, programmers end up mystified,
treating interfaces (such as the Windows API) not with respect, but with reverence and
even fear.

So Windows programmers should look at least once at the code for Windows.
Unless you work at Microsoft, or otherwise have access to the original .C and .ASM
files ofWindows source code, this means disassembling Windows.

Disassembling TASKMAN
As an example of disassembling Windows, let's look, as we did in chapter 2, at the
Task Manager program. TASKMAN is an excellent program with which to experiment
because its internals relate in a fairly direct way to its visible operation, and because its
small size (3K bytes) results in a small, easily-grasped listing. Furthermore, from run
ning EXEUTIL -UNDOC on TASKMAN in chapter 2, we already know that TASK
MAN relies on several undocumented functions:

C:\BIN>exeutil -undoc \win31\taskman.exe
\WIN31\TASKMAN.EXE undocumented imports:

ISWINOLDAPTASK (KERNEL.158)
SWITCHTOTHISWINDOW (USER.172)
CASCADECHILDWINDOWS (USER.198)
TILECHILDWINDOWS (USER.199)
Uses run-time dynamic linking (GetProcAddress)

104 UNDOCUMENTED WINDOWS

As an added bonus, by disassembling TASKMAN we will find some undocu
mented features in its operation.

The Startup Code Let's start by looking at TASKMAN's startup code. This generally
isn't necessary with Windows Source because the only real reason to look at startup
code is to help locate WinMain(), and Windows Source automatically finds and labels
WinMain() for you. Both Borland and Microsoft provide the startup in source-code
form, so there generally isn't any other reason to bother with a disassembled listing of
it. However, if the disassembler you're using doesn't automatically label WmMain(),
then you will need to look at the startup code to find where WinMain() is being
called. In any case, it's a good way to get started with our examination ofTASKMAN.
Here's how Windows Source shows the startup code for the Windows 3.1 version of
TASKMAN:

C:\SOURCER>winp \windows\taskman.exe

C:\SOURCER>sr taskman.wdf

C:\SOURCER>\dos\edit taskman.lst

start:
1.0489 xor bp,bp
1.0488 push bp
1.04BC call far ptr INITTASK
1.04C1 or ax,ax
1.04C3 jz short loc_0060
1.04C5 add cx,100h
1.04C9 jc short loc_0060
1.04C8 mov data_0009,cx ; (2.0030=0)
1.04CF mov data_0010,si ; (2.0032=0)
1.0403 mov data_0011,di ; (2.0034=0)
1.0407 mov data_0012,bx ; (2.0036=0)
1.040B mov data_0013,es ; (2.0038=485Ah)
1.04DF mov data_0014,dx ; (2.003A=0)
1.04E3 xor ax,ax
1.04E5 push ax
1.04E6 call far ptr WAITEVENT
1.04EB push data_0011 ; (2.0034=0)
1.04EF call far ptr INITAPP
1.04F4 or ax,ax
1.04F6 jz short loc 0060
1.04F8 push data_0011 ; (2.0034=0)
1.04FC push data_0010 ; (2.0032=0)
1.0500 push data_0013 ; (2.0038=4B5Ah)
1.0504 push data_0012 ; (2.0036=0)
1.0508 push data_0014 ; (2.003A=0)
1.050C call WinMain ; (03AE)
1.050F push ax
1.0510 call sub 0003 ; (04A3)
1.0513 loc_0060: ; xref 1.04C3, 04C9, 04F6
1.0513 mov al,OFFh
1.0515 push ax
1.0516 call sub_0003 ; (04A3)

CHAPTER 3 • DISASSEMBLING WINDOWS 105

This is similar to the standard startup code that you will find in nearly every Win
dows program. It calls three almost-undocumented functions: lnitTask(), WaitEvent(),
and InitApp(). These are described in the KERNEL and USER chapters of this book,
and also in the Windows 3.1 SDK Programmer's Reference, Volume 1: Overview, chap
ter 22 (Windows Application Startup).

Ifwe want to see how initially unhelpful-looking disassembled listings can be mas
saged to make them more useful and understandable, though, this is a good example.
Look at the series of MOVs shortly after the call to InitTask():

1.04CB mov data_0009,cx ; (2.0030=0)
1.04CF mov data_0010,si ; (2.0032=0)
1.0403 mov data_0011,di ; (2.0034=0)
1.0407 mov data_0012,bx ; (2.0036=0)
1.040B mov data_0013,es ; (2.0038=4B5Ah)
1.040F mov data_0014,dx ; (2.003A=0)

With another disassembler, the data items might come out not as data_OOXX but
as ds:[OOXX] or even DOOXX. In any case, let's pretend that we didn't already know
what InitTask() does. How would we figure out what these data_OOXX items are and,
therefore, what the CX, SI, DI, etc., registers hold on return from InitTask()?

We need to see where else the data_OOXX items are used in the program. This is
typical of working with disassembled listings: to find out what one block of code
means, you often need to look first at some other block of code. In this example, most
of the data_OOXX variables are used again, a few lines down:

1.04F8 push data_0011 ; (2.0034=0)
1.04FC push data_0010 ; (2.0032=0)
1.0500 push data_0013 (2.0038=4B5Ah)
1.0504 push data_0012 ; (2.0036=0)
1.0508 push data_0014 ; (2.003A=O)
1.050C call W;nMa;n ; (03AE)

Five words are being pushed on the stack as parameters to WinMain(). If only we
knew what those parameters were, we could provide better names than data_OOXX.
But we do know what those parameters are! WinMain(), the function being called
here, always looks like:

int PASCAL W;nMa;n(WORO hInstance, WORD hPrevInstance,
LPSTR lpCmdLine, int nCmdShow);

In the Pascal calling convention, which is used extensively in Wmdows (it pro
duces smaller code than the more flexible cdecl calling convention), arguments are
pushed on the stack in the same order as they appear in a function declaration. Thus,
in our example data_OOII must be hlnstance, data_OOIO must be hPrevlnstance,
data_OOI3:dataOOI2 must be IpCmdLine, and data_OOl4 must be nCmdShow.

What makes this important is that we can now go and replace every occurrence of
data_OOII by a more useful name such as hInstance, every occurrence of data_00I°

106 UNDOCUMENTED WINDOWS

by hPrevInstance, and so on. This will clarify not just this section of the listing, but
every section of the listing that refers to these variables. Such global substitutions of
useful names for placeholder names or addresses is key when working with a disassem
bled listing. Mter applying these changes to the fragment shown earlier, we end up
with something more understandable:

; ...
1.04C8 mov data_0009,cx ; (2.0030=0)
1.04CF mov hPrevlnstance,si ; (2.0032=0)
1.0403 mov hlnstance,di ; (2.0034=0)
1.0407 mov lpCmdLine,bx ; (2.0036=0)
1.0408 mov lpCmdLine+2,es ; (2.0038=485Ah)
1.040F mov nCmdShow,dx ; (2.003A=0)
1.04E3 xor ax,ax
1.04E5 push ax
1.04E6 call far ptr WAITEVENT
1.04E8 push hlnstance ; (2.0034=0)
1.04EF call far ptr INITAPP
1.04F4 or ax,ax
1.04F6 jz short loc_0060
1.04F8 push hlnstance ; (2.0034=0)
1.04FC push hPrevlnstance (2.0032=0)
1.0500 push lpCmdLine+2 ; (2.0038=485Ah)
1.0504 push lpCmdLine ; (2.0036=0)
1.0508 push nCmdShow ; (2.003A=0)
1.050C call WinMain ; (03AE)
;

Thus, if we didn't already know what InitTask() returns in various registers, we
could find out by working backward from the parameters to WinMain(). Conversely, if
we were using a disassembler that didn't locate and label WinMain() for us, we could
use the InitTask() return values to label the parameters pushed on the stack to this
function (which might be labeled sub_0002 or something similarly useless), and real
ize that it had to be WinMain().

WinMQin It was useful to look at the startup code because it illustrated the general
principle of trying to substitute useful names such as hPrevInstance for useless labels
such as data_OOIO. But, generally, the first place we'll look when examining a Win
dows program is WinMain(). Here is how Sourcer presents the code for WinMain() in
the Windows 3.1 TASKMAN:

WinMain
1.03AE
1.03AF
1 .0381
1.0384
1.0385
1.0386
1.0388
1.0388

proc near
push bp
mov bp,sp
sub sp,12h
push di
push si
sub di,di
cmp [bp+OAhJ,di.
je short loc_0047

CHAPTER 3 • DISASSEMBLING WINDOWS 107

; I I

; (2.0010=0)
; (2.0010=0)

; (2.0012=0)
; (2.0012=0)

xref 1.03C9

xref 1.0304

;

;

;

;

;

;

;

; (048E)
xref 1.0388

; (2.0012=0)
xref 1.03F8, 03F8

; (0415)
xref 1.0419

; (2.0010=0)
xref 1.03CE

; (03EE)
xref 1.03F2

sub ax,ax
jmp loc_00s7

loc_0047:
les s;,dword ptr Cbp+6J
cmp byte ptr es:Csi],O
je short loc_00s3
mov Cbp-OEhJ,di
jmp short loc_0049

loc_0048:
cmp byte ptr es:CsiJ,20h
je short loc_OOsO
mov ax,OAh
imul data_OOOs
mov data_0005,ax
mov bx,si
inc s;
mov al,es:Cbx]
cbw
sub ax,30h
add data_OOOs,ax

loc_0049:
cmp byte ptr es:[s;],O
jne loc_0048

loc_OOsO:
cmp byte ptr es:Cs;J,O
je short loc_00s2
inc si
jmp short loc_00s2

loc_00s1:
mov ax,OAh
imul data_0006
mov data_0006,ax
mov bx,si
inc si
mov al,es:CbxJ
cbw
sub ax,30h
add data_0006,ax

loc_00s2:
cmp byte ptr es:CsiJ,O
jne loc_00s1
mov di,Cbp-OEhJ

loc_00s3:
push 29h
call far ptr GETSYSTEMMETRICS
push ax
push ds
push 16h
call far ptr GETPROCAOORESS
mov Cbp-OChJ,ax
mov Cbp-OAhJ,dx
or dx,ax
jz short loc_00s4
push 1
push 1

1.03BO
1.03BF
1.03C2
1.03C2
1.03Cs
1.03C9
1.03CB
1.03CE
1.03DO
1.0300
1.0304
1.0306
1.0309
1.0300
1.03EO
1.03E2
1.03E3
1.03E6
1.03E7
1.03EA
1.03EE
1.03EE
1.03F2
1.03F4
1.03F4
1.03F8
1.03FA
1.03FB
1.03FO
1.03FO
1.0400
1.0404
1.0407
1.0409
1.040A
1.0400
1.040E
1 .0411
1.0415
1.0415
1.0419
1.0418
1 .041 E
1 .041 E
1.0420
1.0425
1.0426
1.0427
1.042A
1.042F
1.0432
1.0435
1.0437
1.0439
1.0438

108 UNDOCUMENTED WINDOWS

1.0455

xref 1.03BF

;*1 entry
; xref 1.0437

;

;*1 entry
; xref 1.0483

dword ptr [bp-OChJcall
loc_0054:

push 4AF6h
push 7Bh
push word ptr [bp+OChJ
call far ptr MAKEPROCINSTANCE
mov si,ax
mov [bp-6J,dx
or dx,ax
jz short loc_0055
push word ptr [bp+OChJ
push °
push OAh
push 0
mov ax,[bp-6J
push ax
push si
mov [bp-12hJ,si
mov [bp-10hJ,ax
call far ptr OIALOGBOX
mov di,ax
push word ptr [bp-10hJ
push word ptr [bp-12hJ
call far ptr FREEPROCINSTANCE

loc_0055: ; xref
mov ax,[bp-OAhJ
or ax,[bp-OChJ
jz short loc_0056
push 1
push 0
call dword ptr [bp-OChJ

loc_0056:
mov ax,di

loc_0057:
pop si
pop di
mov sp,bp
pop bp
retn OAh

endp

1.0430
1.0440
1.0440
1.0443
1.0446
1.0449
1.044E
1.0450
1.0453
1.0455
1.0457
1.045A
1.045C
1.045E
1.0460
1.0463
1.0464
1 .0465
1.0468
1.046B
1.0470
1.0472
1.0475
1.0478
1.0470
1.0470
1.0480
1.0483
1.0485
1.0487
1.0489
1.048C
1.048C
1.048E
1.048E
1.048F
1.0490
1.0492
1.0493

WinMain

In the Pascal calling convention, the callee is responsible for clearing its arguments
off the stack; this explains the RETN OAh return. In this particular case, WinMain() is
being invoked with a NEAR call. As we saw in the startup code, with the Pascal calling
convention, arguments are pushed in "forward" order. Thus, from the perspective of
the called function, the last argument always has the lowest positive offset from BP
(BP+6 in a FAR CALL, and BP+4 in a NEAR call, assuming the standard PUSH BP /
MOV BP,SP function prologue; function parameters have positive offsets from BP,
local variables have negative offsets from BP). In the case ofWinMain in a small-model
program like TASKMAN:

CHAPTER 3 • DISASSEMBLING WINDOWS 109

int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevlnstance,
LPSTR lpCmdLine, int nCmdShow);

nCmdShow word ptr [bp+4J
lpCmdLine dword ptr [bp+6J
hPrevlnstance word ptr [bp+OAhJ
hlnstance word ptr [bp+OChJ

We can now rewrite WinMain like so:

WinMain
, ...

proc near

1.0386 sub di,di
1.0388 cmp hPrevlnstance,di
1.0388 je short loc_0047
1.0380 sub ax,ax
1.038F jmp lac 0057
1.03C2 loc_0047:
1.03C2 les si,dword ptr lpCmdLine
1.03C5 cmp byte ptr es:[siJ,O

, ... etc.
WinMain endp

; [bp+OAhJ

; (048E)
; xref 1.0388
; [bp+6J

We can now see, for example, that WinMain() checks if hPrevInstance is zero (sub
di, di); if it isn't, it immediately exits (jmp loc_0057).

Notice that TASKMAN appears to be inspecting its command line. The Windows
documentation doesn't say anything about command-line arguments to TASKMAN,
so this could be interesting. If you look in the WinMain() code shown earlier, around
the label loc_0048 you will see that TASKMAN appears to be looking for a space
(20h), getting a character from the command line, multiplying it by 10 (OAb), sub
tracting the character '0' (30h), and doing other things that seem to indicate that it's
looking for one or more numbers.

Rather than delve further into the code, it next makes sense to run TASKMAN,
feeding it different numbers on the command line and seeing what it does. (It'S sur
prising how few engineers think of actually going in and running a program before
spending much time looking at its code.) Normally, TASKMAN runs when you type
Ctrl-Esc in Windows, but TASKMAN is just a regular program that can be run, with a
command line, like any Windows program.

Indeed, running "TASKMAN 1" behaves differently from just running "TASK
MAN": it positions the Task List in the upper-left corner of the screen instead of in
the middle. "TASKMAN 666 666" seems to position it in the lower-right corner.
Basically, the arguments seem to represent an (x,y) position for TASKMAN to over
ride its default position in the middle of the screen.

This is no big deal, of course. If we wanted extra TASKMAN features that much,
it probably would take us, as software engineers, less time to write our own version of
TASKMAN than to figure out what hidden "goodies" or "secrets" the existing one
contains. But trying to figure out this undocumented feature will serve as an excellent
example of reading and clarifying disassembled Windows listings.

110 UNDOCUMENTED WINDOWS

Looking back at the code around loc_0048 and loc_OOSl, we can see that the
variables data_OOOS and data_0006 are being manipulated. What are these for? The
answer is not to stare good and hard at this code until it makes sense, but to leave this
area and see how the variables are used elsewhere in the program. Maybe the code
somewhere else will be easier to understand.

In fact, if we search for data_OOOS and data_0006 (or however the disassembler
we're using represents these variables at ds:[IOh] and ds:[l2h]), we find them used as
arguments to a Windows API function:

1.018B mov data_0006,ax ; (2.0012=0)
1.018E push word ptr [bp+OEhJ
1.0191 push data_OOOS ; (2.0010=0)
1.0195 push ax
1.0196 push si
1.0197 push di
1.0198 push 0
1.019A call far ptr MOVEWINDOW

This shows US immediately what data_0006 and data_OOOS are. MoveWindows() is a
documented function, whose prototype appears in the SDK Programmer)s Reference:

void FAR PASCAL MoveWindow(HWND hwnd, int nleft, int nTop, int nWidth,
int nHeight, BOOl fRepaint);

1.018B mov data_0006,ax
1.018E push word ptr [bp+OEhJ ; hwnd
1.0191 push data_OOOS ; nleft
1.0195 push ax ; nTop
1.0196 push si ; nWidth
1.0197 push di ; nHeight
1.0198 push 0 ; fRepaint
1.019A call far ptr MOVEWINDOW

In other words, data_OOOS has to be nLeft, and data_0006 (whose contents have
been set from AX) has to be nTop. You could now do a global search and replace,
changing every data_OOOS in the program (not just the one here) to nLeft, and every
data_0006 to nTop.

A lot ofWindows disassembly is this easy: all Windows programs seem to do is call
API functions, most of these functions are documented (either in the SDK or in this
book), and you can use the documentation to label all arguments to the function.
You then percolate these labels upward to other, possibly quite distant parts of the
program.

In the case of nLeft nee data_OOOS, and nTop nee data_0006, suddenly the code
in WinMain() makes more sense:

1.03C2
1.03C2
1.03CS

loc_0047:
les si,dword ptr lpCmdline
cmp byte ptr es:[siJ,O ; if no cmdline •..

CHAPTER 3 • DISASSEMBLING WINDOWS 111

if not at end of string
get next character

; ax = char
ax -= '0' (char->number)

; nLeft += number

; nLeft *= 10

; go elsewhere

; if space (20h) ...
; go elsewhere

je short loc_0053
mov [bp-OEhJ,di
jmp short loc_0049

loc_0048:
cmp byte ptr es:[siJ,20h
je short loc_0050
mov ax,OAh
imul nLeft
mov nLeft,ax
mov bx,si
inc si
mov al,es:[bxJ
cbw
sub ax,30h
add nLeft,ax

loc_0049:
cmp byte ptr es:[siJ,O
jne loc_0048

1.03C9
1.03C8
1.03CE
1.0300
1.0300
1.0304
1.0306
1.0309
1.0300
1.03EO
1.03E2
1.03E3
1.03E6
1.03E7
1.03EA
1.03EE
1.03EE
1.03F2
; ... etc.

In essence, TASKMAN is performing the following operation here:

static int nLeft, nTop;
II
if (*lpCmdLine != 0)

sscanf(lpCmdLine, "%U %u, &nLeft, &nTop);

Should you want 3.1 TASKMAN to appear in the upper-left of your screen, you
could place the following line in the [boot] section of SYSTEM.INI:

taskman.exe=taskman.exe 1 1

In addition, double-clicking anywhere on the Windows desktop, at least in 3.1, will
bring up TASKMAN, with the (x,y) coordinates for the double-click passed to TASK
MAN on its command line. The WM_SYSCOMMAND handler in USER is responsi
ble for invoking TASKMAN via WinExec() whenever you press Ctrl-Esc or
double-click on the desktop.

What else is going on in WinMain()? Let's look at the following block ofcode:

1.041E push 29h
1.0420 call far ptr GETSYSTEMMETRICS
1.0425 push ax
1.0426 push ds
1.0427 push 16h
1.042A call far ptr GETPROCAOORESS
1 .042 F mov [bp-OChJ,ax
1.0432 mov [bp-OAhJ,dx
1.0435 or dx,ax
1.0437 jz short loc_0054
1.0439 push 1
1.0438 push 1
1.0430 call dword ptr [bp-OChJ ;*1 entry

'12 UNDOCUMENTED WINDOWS

The lines push 29h/call far ptr GETSYSTEMMETRICS, of course, are simply the
assembly-language form of GetSystemMetrics(Ox29). To understand this, we can grep
in WINDOWS.H for SM_ (system metrics) and see what Ox29 is; it turns out to be
SM_PENWINDOWS. Thus, we now have GetSystemMetrics(SMYENWINDOWS). The
3.1 SDK documentation says that this returns a handle to the Pen Windows DLL, if
Pen Windows is installed. As noted earlier, 16-bit return values always appear in the
AX register.

Next, we can see AX-which must be either 0 or a Pen Windows module handle
on the stack along with ds:16h. Looking in the data segment at offset 16h, we see

2.0016 db 'RegisterPenApp', 0

Thus, here is what we have so far:

GetProcAddress(
GetSystemMetrics(SM_PENWINDOWS),
"RegisterPenAppll)

GetProcAddress() returns a four-byte far function pointer (or NULL) in DX:AX. In
the excerpt from WinMain, we can see this being moved into the DWORD at [bp
OCh] (this is 16-bit code, so moving this 32-bit value, of course, requires two
operations) .

Clearly, it would be nice to know what the DWORD at [bp-OCh] is. But actually,
we already do know: it's a copy of the return value from GetProcAddress
(GetSystemMetrics(SM_PENWINDOWS), "RegisterPenApp"). In other words, it's a
far pointer to the RegisterPenApp() function, or NULL if Pen Windows is not
installed. We can now replace all references to [bp-OCh] in this function with refer
ences to something like fpRegisterPenApp. Thus:

FARPROC fpRegisterPenApp;
fpRegisterPenApp = GetProcAddress(

GetSystemMetrics(SM_PENWINDOWS),
"RegisterPenAppfl);

Next, we see OR DX, AX being used to test the GetProcAddress() return value for
NULL. lfnon-NULL, the code twice pushes 1 on the stack (note the use of "PUSH
immediate" here; Windows applications only run on 80286 or higher processors, so
there is no need to first place the value in a register and then push that register), and
then calls through the fpRegisterPenApp function pointer:

1.0435
1.0437
1.0439
1.0438
1.043D

or dx,ax
jz short loc_0054
push 1
push 1
call dword ptr fpRegisterPenApp

CHAPTER 3 • DISASSEMBLING WINDOWS 113

To understand this, we need to look in the Pen Windows SDK documentation and in
PENWIN.H:

#define RPA_DEFAULT

void FAR PASCAL RegisterPenApp(UINT wFlags, BOOL fRegister);

Simply by looking up API calls in the Windows documentation, we can turn the whole
block ofassembly-language code into this:

void (FAR PASCAL *RegisterPenApp)(UINT, BOOL);
RegisterPenApp = GetProcAddress(

GetSystemMetrics(SM_PENWINDOWS),
"RegisterPenAppll);

if (RegisterPenApp != 0)
(*RegisterPenApp)(RPA_DEFAUlT, TRUE);

We can continue in this way with all ofWinMain(). When we're done, the 100
lines of assembly language for WinMain() boil down to the following 35 lines of C
code:

II nleft, nTop used in calls to MoveWindow() in TaskManDlgProc()
static WORD nLeft = 0, nTop = 0;

BOOl FAR PASCAL TaskManDlgProc(HWND hWndDlg, UINT msg, WPARAM wParam,
LPARAM lParam);

int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevInstance,
lPSTR lpCmdline, int nCmdShow)

{

void (FAR PASCAL *RegisterPenApp)(UINT, BOOl);
FARPROC fpDlgProc;

if (hPrevInstance != 0)
return 0;

if (*lpCmdLine != 0)
_fsscanf(lpCmdline, "%u %u, &nleft, &nTop); II pseudocode

RegisterPenApp = GetProcAddress(GetSystemMetrics(SM_PENWINDOWS),
IIRegisterPenApp");

if (RegisterPenApp != 0)
(*RegisterPenApp)(RPA_DEFAUlT, TRUE);

if (fpDlgProc = MakeProcInstance(TaskManDlgProc, hlnstance»
{

DialogBox(hInstance, MAKEINTRESOURCE(10), 0, fpDlgProc);
FreeProcInstance(fpDlgProc);

}

if (RegisterPenApp != 0)

114 UNDOCUMENTED WINDOWS

(*RegisterPenApp)(RPA_DEFAULT, FALSE);

return 0;
}

Examining WndProcs and DialogProcs
After you've found WinMain(), the next places to inspect are the program's window
procedures and dialog procedures. (We're talking about Windows programs here;
DLLs and device drivers need to be tackled from a different angle, discussed later in
this chapter.) These WndProcs and DialogProcs are "callback" procedures; they're
exported from Windows executables, almost as if the program were a DLL, so that
Windows can call them. And because they are exported, these crucial procedures have
names (almost always useful) that are accessible to any decent Windows disassembler.
In TASKMAN.LST, for example, Sourcer clearly identifies TASKMANDLGPROC:

;
;
;

TASKMANDLGPROC

TASKMANDLGPROC proc far
, ...
TASKMANDLGPROC endp

It works out well that the WndProcs and DialogProcs show up so nicely in the
Sourcer listing because, as we know from Windows programming, these subroutines
are "where the action is" in event-driven Windows applications, or at least where the
action begins. Furthermore, we know that these subroutines will most likely be little
more than (possibly very large) message-handling switch/case statements. From any
Windows programming book, we can see that this usually looks something like this:

long FAR PASCAL _export WndProc(HWND hWnd, WORD message,
WORD wParam, LONG lParam)

{

I I ...
switch (message)
(

case WM_CREATE:
II ... handle WM_CREATE message
break;

case WM_COMMAND:
II ... handle WM_COMMAND message
break;

default:
return DefWindowProc(hwnd, message, wParam, lParam);

}

}

Actually, there's no rule that states that a Windows WndProc or DialogProc has to
look like this; it's just that they almost always do. One could easily eliminate the
switch/case statement by instead using a table (WM_USER in size) of function pointers.

CHAPTER 3 • DISASSEMBLING WINDOWS 115

Unfortunately, few Windows programs use this technique, so we're going to be stuck
looking at big switch/case statements in assembly language.

Here's how the parameters to the WndProc or DialogProc will appear in the
assembly-language listing (after the function prologue):

long FAR PASCAL _export WndOrDialogProc(HWND hWnd, WORD message,
WORD wParam, LONG lParam);

lParam = dword ptr [bp+6J
wParam = word ptr [bp+OAhJ
message = word ptr [bp+OChJ
hWnd or hWndDlg = word ptr [bp+OEhJ

With this knowledge, we can replace an otherwise meaningless [bp+OCh] with a
label such as "message," a [bp+OEh] with a "hwnd" or "hwndDlg," and so on, in any
DialogProc and WndProc in any Windows program. The fIXed, almost boilerplate
nature of Windows programming greatly simplifies disassembly. For example, here's
part ofTaskManDlgProc():

TASKMANDLGPROC proc far
, ...
mov si, hWndDlg ; [bp+OEhJ
push s;
push 64h
call far ptr GETDLGITEM
mov di,ax
mov ax, message ; [bp+OChJ
sub ax,1Ch
jz short loc_OOOS
sub ax,OF4h
jz short loc_0009
dec ax
jnz short loc 0003
jmp loc_0019

loc_0003:
sub ax,3S3h
jnz short loc_0004
jmp loc_0042

loc_0004:
jmp loc_0029

loc_OOOS:
cmp word ptr wParam, ° ; [bp+OAhJ
je short loc_0006
jmp loc_0029
, ...

TASKMANDLGPROC endp

The problem, of course, is what to make of all these magic numbers: 64h, 1Ch,
OF4h, and so on. How are we going to figure out what these mean?

116 UNDOCUMENTED WINDOWS

Decoding Magic Numbers When examined via disassembled listings, Windows pro
grams tend to contain a lot of "magic numbers." Of course, the actual source code, if
we had access to it, would probably not contain raw, naked numbers. Instead, it would
#include <windows.h>, #define numeric constants for the various resources (menus,
strings, dialog controls, etc.) that it uses, and so on. Given a disassembled listing, it
should be possible to turn a lot of these seemingly senseless numbers back into some
thing understandable.

Let's start with the number 1Ch in TaskManDlgProc():

mov ax, message
sub ax, 1Ch
jz short lac_ODDS

; Cbp+OChJ

If AX holds the message parameter to TaskManDlgProc(), then the value 1Ch
must be a Windows WM_ message number. Looking in WINDOWS.H, we find that
OxIC is WM_ACTNATEAPP. TaskManDlgProc() is subtracting this value from AX
and then jumping somewhere if the result is O. In other words

message -= WM_ACTIVATEAPP;
if (message == 0)

goto ON_ACTIVATEAPP;

This is an odd way in which to test whether (message == WM_ACTNATEAPP). If
the test fails, and we don't take the jump to ON_ACTIVATEAPP, the message num
ber has had 1Ch subtracted from it. This value has to be added back in to decode the
next set of instructions:

sub ax,OF4h ; Ox1C + OxF4 = Ox110 = WM_INITDIALOG
jz short loc_OO09 ; must be ON_INITDIALOG
dec ax ; Ox110 + 1 = Ox111 = WM_COMMAND
jnz short loc_OO03
jmp loc_OO19 ; must be ON_COMMAND

Fortunately, most WndProcs and DialogProcs you examine will contain straight
forward tests, rather than testing via subtraction. It all depends on how the C
switch(message) { case WM_WHATEVER: }construct has been rendered into assem
bly language by the compiler. Some compilers will even generate jump tables rather
than nests of tests and jumps. TASKMAN itselfappears to have been written in assem
bler, accounting for its small size.

In any case, a WndProc or DialogProc generally contains a collection of handlers
for different messages. In the case ofTaskManDlgProc(), we can see that it's handling
WM_ACTNATEAPP, WM_INITDIALOG, and WM_COMMAND. By itself, this
information is rather boring. However, it tells us what's happening elsewhere in the
function: loc_0005 must be handling WM_ACTIVEAPP messages (so we've called it
ON_ACTIVATEAPP), loc_0009 must be handling WM_INITDIALOG, and
loc_0019 must be handling WM_COMMAND messages.

CHAPTER 3 • DISASSEMBLING WINDOWS 11 7

This same basic technique-find where the [bp+OCh] "message" parameter to the
WndProc or DialogProc is being tested, and from that identify the locations that han
dle various messages-ean be used in any Windows program. Because handling mes
sages is mostly what Windows applications do, once we know where the message
handling is, we pretty much can have our way with the disassembled listing.

Here's what TaskManDlgProc() looks like now:

TASKMANDLGPROC proc far
, ...

; [bp+OChJ
1Ch

; Ox1C + OxF4 = Ox110 = WM_INITDIALOG

; Ox110 + 1 = Ox111 = WM_COMMAND
; some other message

mov ax, msg
sub ax, WM_ACTIVATEAPP
jz short ON_ACTIVATEAPP
sub ax, OF4h
jz short ON_INITDIALOG
dec ax
jnz short DEFAULT
jmp ON_COMMAND

DEFAULT:
sub ax, 353h ; Ox111 + Ox353 = Ox464 =
jnz short ON_PRIVATEMSG ; some private message
jmp loc_0042

ON_PRIVATEMSG:
jmp loc_0029

ON_ACTIVATEAPP:
;; code to handle WM ACTIVATEAPP
cmp word ptr wParam, 0 ; [bp+OAhJ
, ...

ON_INITDIALOG:
;; code to handle WM_INITDIALOG
, ...

ON_COMMAND:
;; *** code to handle WM_COMMAND ***
mov ax, wParam ; [bp+OAhJ
cmp ax, 68h ; HUH?? WHAT'S THIS?!
jne short loc_0020
jmp loc_0040
,

TASKMANDLGPROC endp

This is starting to look pretty reasonable. In particular, once we know where
WM_COMMAND is being handled, we're well on the way to understanding what the
application does.

WM_COMMAND is so important for understanding an application's behavior
because the handler for WM_COMMAND is where it deals with user commands such
as menu selections and dialog push-button clicks, in other words, a lot of what makes
an application unique. If you click on "Cascade" in Task Manager, for instance, it
comes in as a WM_COMMAND; the same occurs if you click on "Tile" or "Switch
To" or "End Task."

118 UNDOCUMENTED WINDOWS

An application can tell which command a user has given it by looking in the
wParam parameter to the WM_COMMAND message. This is what we started to see
at the end of the TaskManDlgProc() excerpt on the previous page:

Ox64

Ox67

Ox65

Ox66

; Ox66 + 1

; Ox64 +

; Ox65 +

; already subtracted 2; Ox62 + 2

; if (wParam==2) goto loc_0043

; 1
; if (wParam==1) "goto loc_0025
; 1 + 1 = 2

ON_COMMAND:
;; *** Since we're handling WM_COMMAND, wParam is idltem,
;; *** a control or menu item identifier
mov ax, wParam ; [bp+OAhJ
cmp ax, 68h ; must be ID number for a dialog control
jne short loc_0020
jmp loc_0040

loc_0020:
jbe short loc_0021
jmp loc_0045

loc_0021:
dec al
jz short loc_0025
dec al
jnz short loc_0022
jmp loc_0043

loc_0022:
sub al, 62h
jz short loc_0028
dec al
jz short loc_0030
sub al, 1
jnc short loc_0023
jmp loc_0045

loc_0023:
sub al, 1
ja short loc_0024
jmp loc_0036
, ...

It's clear that wParam is being compared (in an admittedly odd way again, via sub
traction) to values 1, 2, 65h, 66h, 67h. What is going on?

The values 1 and 2 are standard dialog button IDs:

#define IDOK 1
#define IDCANCEL 2

Thus:

dec a l ; 1 = IDOK
jz short ON_OK ; loc_OO25
dec al ; 1 + 1 = 2 IDCANCEL
jnz short loc_OO22 ; not IDOK or IDCANCEL
jmp ON_CANCEL ; loc_OO43

The numbers 65h, 66h, etc., are specific to Task Manager, however; we're not going
to find them in WINDOWS.H. But what hope then do we have of recovering the

CHAPTER 3 • DISASSEMBLING WINDOWS 119

names of the commands to which these magic numbers correspond? Unless we hap
pen to have a debug version of the program, hasn't all this information been thrown
away in compiling and linking, irretrievably lost?

One of the notable things about Windows is that remarkably little information is
thrown away. In the case of these magic numbers, which seem to correspond in some
way to the different Task Manager push-buttons, it's pretty obvious that there must be
some way of having applications tell Windows what wParam they want sent when one
of their buttons is clicked or when one of their menu items is selected.

Applications almost always provide Windows with this information in their
resources. (It's also possible to define menus and dialog controls dynamically, on the
fly, but few applications take advantage of this.) These resources are part of the NE
executable and are available for our inspection like any other part of the file.

This inspection of the resources in an .EXE file is carried out by the RESDUMP
utility, included with Windows Source, and also provided on the disk accompanying
this book. For example

C:\BIN>resdump \windows\taskman.exe
DIALOG 10 (OAh), "Task List"

LISTBOX 100 (64h), 1111

DEFPUSHBUTTON 1 (01h), "&Switch Toll
PUSHBUTTON 101 (65h), II&End Task ll
PUSHBUTTON 2 (02h), "Cancel"
STATIC 99 (63h), 1111

PUSHBUTTON 102 (66h), "&Cascade"
PUSHBUTTON 103 (67h), "&Tile ll
PUSHBUTTON 104 (68h), "&Arrange Icons ll

Using Resdump

RESDUMP displays information about resources in a Windows executable (EXE,
DLL, DRV, etc.). Detailed information is provided for dialog boxes, controls, menus,
string tables, accelerator tables, and version-information resources. RESDUMP is
required for many disassembly tasks because strings, menus, dialog controls, etc.,
won't show up in the main disassembled listing but are needed to make sense of it.

Resources are presented in a style that is similar, but not identical, to the way
they would be specified in a resource-compiler .RC file. Because menu items and
control IDs may show up as either decimal or hexadecimal "magic numbers" in a
disassembly listing, RESDUMP presents these numbers both ways. For example

C:\BIN>resdump \win31\clock.exe
; ... some details omitted
MENU 65515 (FFEBh)

POPUP "&Settings ll
END

continued

120 UNDOCUMENTED WINDOWS

continued

1 (01h) "&Analog U
2 (02h) "&Digital U
o (OOh)
3 (03h) USet &Font ••. rr

o (OOh)
6 (06h) U&No Title U
a (OOh)
7 (07h) U&Seconds rr

8 (08h) "Da&te ll
o (OOh)
4 (04h) UA&bout Clock .•. 11

END

DIALOG 100 (64h), "Font U
STATIC 1088 (440h), II&Font: 1I

, ...
DEFPUSHBUTTON
PUSHBUTTON
GROUPBOX
STATIC
STATIC

1 (01h), IIOK II
2 (02h), IICancel ll
1073 (431h), IISamplell
1093 (445h), .It.
1092 (444h), IIAaBbYyZzU

STRINGTABLE 1 (01h)
2 (02h) IIClock"
4 (04h) Udata"
6 (06h) UNot enough timing resources for Clock. Close other

applications and try again. 1I

8 (08h) "arial ll
9 (09h) "Always on &Top"
; .•• etc •..•

RESDUMP accepts two command-line options: -verbose will also show the (x,y)
screen location for controls, and -hex will produce a hex-dump for each resource.
RESDUMP is designed for Windows programs; it cannot be used for OS/2-style
resources.•

It is now apparent what the numbers 64h, 65h, etc. mean. Ifwe were writing Task
Manager ourselves and using the conventional way of identifying pieces of the dialog
box, we would write something like this:

#define IDD_SWITCHTO IDOK
#define IDD_TASKLIST Ox64
#define IDD_ENDTASK Ox65
#define IDD_CASCADE Ox66
#define IDD_TILE Ox67
#define IDD_ARRANGEICONS Ox68

CHAPTER 3 • DISASSEMBLING WINDOWS 121

The last excerpt of code we examined now makes a lot more sense:

ON_COMMAND:
;; *** Since we're handling WM_COMMAND, wParam is idltem,
;; *** a control or menu item identifier
mov ax, wParam ; Cbp+OAhJ
cmp ax, 68h ; must be ID number for a dialog control
, ...

; 1 = IDOK = IDD_SWITCHTO
; loc_OO25
; 1 + 1 = 2 = IDCANCEL
; not IDOK or IDCANCEL
; loc_OO43

; Ox62 + 2 Ox64 IDD_TASKLIST
; loc_OO28
; Ox64 + 1 Ox65 IDD_ENDTASK
; loc_OO30
; Ox65 + 1 Ox66 IDD_CASCADE

dec al
jz short ON_SWITCHTO
dec al
jnz short loc_0022
jmp ON_CANCEL

loc_0022:
sub al, 62h
jz short ON_TASKLIST
dec al
jz short ON_ENDTASK
sub al, 1
jnc short loc_0023
jmp loc_0045

loc_0023:
sub al, 1 Ox66 + 1 = Ox67
ja short loc_0024
jmp ON_TILE_OR_CASCADE ; loc_0036
, ...

In this way, we have identified loc_0036 as the place where TASKMAN's "Cas
cade" and "Tile" buttons are handled; we have renamed it ON_TILE_OR...CAS
CADE. Let's examine the code there to ensure that this makes sense:

MDITILE_VERTICAL

= MDITILE_HORIZONTAL

; si

;

; °

ON_TILE_OR_CASCADE:
push hwndDlg
push 0
call far ptr SHOWWINDOW
call far ptr GETDESKTOPWINDOW
mov di, ax ; hDesktopWnd
cmp word ptr wParam, 66h ; IDD_CASCADE
jne short ON_TILE loc_0037
push di ; hDesktopWnd
push 0
call far ptr CASCADECHILDWINDOWS
jmp short loc_0041

ON_TILE:
push di
push 10h
call far ptr GETKEYSTATE
cmp ax, 8000h
jb short loc_0038
mov ax, 1
jmp short loc_0039

loc_0038:
sub ax, ax

122 UNDOCUMENTED WINDOWS

loc_0039:
push ax
call far ptr TILECHILDWINDOWS
jmp short loc_0041

It makes a lot of sense. We have found that the "Cascade" button in Tile Man
ager, after jumping through a lot of switch/case hoops, finally ends up calling the
undocumented Windows API function, CascadeChildWindows(); similarly, the "Tile"
button ends up calling TileChildWindows(). For more information on these functions,
see their descriptions in chapter 6.

TASKMAN Techniques
One thing jumps out at us from the disassembled listing of ON_TILE: the call to
GetKeyState(). Because the Windows User)s Guide says nothing about holding down a
"state" (shift, etc.) key while selecting a button, this sounds like another undocu
mented "goodie" in TASKMAN. Indeed, if you try out the 3.1 TASKMAN, you will
see that clicking on the Tile button arranges all the windows on the desktop side by
side, but if you hold down the Shift key while clicking on the Tile button, the win
dows are arranged in a stacked formation.

To summarize, when the 3.1 TASKMAN Tile button is selected, the code that
runs in response looks like this:

Tile:
ShowWindow(hWndDlg, SW_HIDE); II hide TASKMAN
hDesktopWnd = GetDesktopWindow();
if (GetKeyState(VK_SHIFT) == Ox8000)

TileChildWindows(hDesktopWnd, MDITILE_HORIZONTAL);
else

TileChildWindows(hDesktopWnd, MDITITLE_VERTICAL);

As explained in the USER chapter, TileChildWindows() in 3.0 has only one
parameter (the HWND). Thus, the GetI(eyState() check does not appear in the 3.0
version ofTASKMAN.

Similarly, the Cascade button in 3.1 TASKMAN runs the following code:

Cascade:
ShowWindow(hWndDlg, SW_HIDE); II hide TASKMAN
CascadeChildWindows(GetDesktopWindow(), 0);

We can proceed through each TASKMAN option like this, rendering the assem
bly-language listing into more concise C. We can learn some interesting Windows pro
gramming techniques this way.

The first field to examine in TASKMAN is the Task List itself: how is the "Task
List" list box filled with the names of each running application? What the list box
clearly shows is a title bar for each visible top-level window, and the title bar is
undoubtedly supplied with a call to GetWindowText(). But how does TASKMAN
enumerate all the top-level windows?

CHAPTER 3 • DISASSEMBLING WINDOWS 123

We should have asked ourselves this in chapter 2, when we were using utilities
such as MAPWIN and EXEDUMP to examine TASKMAN, because while the pro
gram exports TASKMANDLGPROC, it does not export an enumeration procedure.
Windows programs typically iterate through all windows by calling EnumWindows().
This function is passed a pointer to an application-supplied enumeration function,
which must be exported. Because something like TASKMANENUMPROC isn't
showing up in its list of exported functions, TASKMAN must not be calling
EnumWindows(). What's it calling then? Quite simply, TASKMAN uses a
GetWindow() loop to fill the "Task List" list box:

Task List:
listbox = GetDlgltem(hwndDlg, IDD_TASKLIST);
hwnd = GetWindow(hwndDlg, GW_HWNDFIRST);
while (hwnd)
{

if «hwnd != hwndDlg) &&
IsWindowVisible(hwnd) &&
GetWindow(hwnd, GW_OWNER»

{

II excludes self from list

char bufCOxSOJ;
GetWindowText(hwnd, buf, OxSO); II get titlebar
SendMessage(listbox, LB_SETITEMDATA,

SendMessage(listbox, LB_ADDSTRING, 0, buf),
hwnd); II store HWND as data to go with titlebar string

}

hwnd GetWindow(hwnd, GW_HWNDNEXT);
}

SendMessage(lb, LB_SETCURSEL, 0, 0); II select first item

The "End Task" button in TASKMAN just sends a WM_CLOSE message to the
selected window, but only if it's not a DOS box. TASKMAN uses the undocumented
IsWinOldApTask() function, in combination with the documented GetWindowTask()
function, to determine if a given HWND corresponds to a DOS box:

End Task:
II .•• boring details omitted ...
if (IsWinOldApTask(GetWindowTask(hwndTarget»)

MaybeSwitchToSelectedWindow(hwndTarget);
if (IsWindow(hwndTarget) &&

(! (GetWindowLong(hwndTarget, GWL_STYLE) & WS_DISABLED»
{

PostMessage(hwndTarget, WM_CLOSE, 0, 0);
}

The "Arrange Icons" button simply runs the documented Arrangelconic
Windows() function:

Arrange Icons:
ShowWindow(hWndDlg, SW_HIDE);
ArrangelconicWindows(GetDesktopWindow(»;

124 UNDOCUMENTED WINDOWS

The "Switch To" button in TASKMAN is also interesting. Like "Tile" and "Cas
cade," it's really just a user-interface covering for an undocumented Windows API
function, in this case SwitchToThisWindow(). Let's walk through the process of
deciphering an unlabeled Windows disassembly listing, turning it into labeled C code.
Here's the code generated by Sourcer for a subroutine within TASKMAN, called from
the IDD_SWITCHTO handling code in TaskManDIgProc():

sub_0002:
1.0010 push bp
1.0011 mov bp,sp
1.0013 push di
1.0014 push si
1.0015 push word ptr [bp+4J
1.0018 push 41Ah
1.0018 push word ptr [bp+4J
1.001E push 409h
1.0021 push 0
1.0023 push 0
1.0025 push 0
1.0027 call far ptr SENDMESSAGE
1.002C push ax
1.002D push 0
1.002F push 0
1.0031 call far ptr SENDMESSAGE
1.0036 mov di,ax
1.0038 push di
1.0039 call far ptr ISWINDOW
1.003E or ax,ax
1.0040 jz short loc 0001
1.0042 push di
1.0043 call far ptr GETLASTACTIVEPOPUP
1.0048 mov si,ax
1.004A push si
1.004B call far ptr ISWINDOW
1.0050 or ax,ax
1.0052 jz short loc 0001
1.0054 push si
1.0055 push OFFFOh
1.0057 call far ptr GETWINDOWLONG
1.005C test dx,800h
1.0060 jnz short loc_0001
1.0062 push si
1.0063 push 1
1.0065 call far ptr SWITCHTOTHISWINDOW
1.006A jmp short loc_0002 ; (0073)
1.006C loc_0001: ; xref 1.0040, 0052, 0060
1.006C push 0
1.006E call far ptr MESSAGEBEEP
1.0073 loc_0002: ; xref 1.006A
1.0073 pop s;
1.0074 pop di
1.0075 mov sp,bp
1.0077 pop bp
1.0078 retn 2

CHAPTER 3 • DISASSEMBLING WINDOWS 125

The RETN 2 at the end tells us that this is a near Pascal function that expects one
WORD parameter, which appears as [bp+4] at the top of the code. Because [bp+4] is
being used as the frrst parameter to SendMessage(), it must be an HWND of some
sort. Finally, we don't see anything being moved into AX or DX near the end of the
function, so it looks as if this function has no return value:

void near pascal some_func(HWND hwnd)

The function starts off with two nested calls to SendMessage(), using the message
numbers 41Ah and 409h. Because these numbers are greater than 400h, they must be
WM_USER+XX values. Windows controls such as edit boxes, list boxes, and combo
boxes all use WM_USER+XX notification codes. However, the only appropriate con
trol in TASKMAN is the list box, so we can just look at the list of LB_XXX codes in
WINDOWS.H. Converting hexadecimal to decimal, 1Ah is 26, so 41Ah is
WM_USER+26, or LB_GETITEMDATA. Similarly, 409h is WM_USER+9, which in
the case of a list box means LB_GETCURSEL. We can look up LB_GETITEMDATA
and LB_GETCURSEL in the Windows Programmer)s Reference. Earlier, we saw that
TASKMAN uses LB_SETITEMDATA to store each window title's associated
HWND. LB_GETITEMDATA will retrieve this hwnd:

hwnd = SendMessage(listbox, LB_GETITEMDATA,
SendMessage(listbox, LB_GETCURSEL, 0, 0), 0);

Notice that now we're calling the parameter to some_func() a listbox, and the
return value from LB_GETITEMDATAis an HWND.

How do we know it's an hwnd? We can see the LB_GETITEMDATA return
value (in DI) immediately being passed to IsWindow():

; IsWindow(hwnd = SendMessage(... »;
call far ptr SENDMESSAGE
mov di, ax
push di
call far ptr ISWINDOW

Next, the hwnd is passed to GetLastActivePopup(), and the HWND that GetLast
ActivePopup() returns is then checked with IsWindow():

; IsWindow(hwndPopup = GetLastActivePopup(hwnd»;
push di ; hWnd
call far ptr GETLASTACTIVEPOPUP
mov si, ax
push si ; hwndPopup
call far ptr ISWINDOW

Next, hwndPopup (in SI) is passed to GetWindowLong(). Here, it's time to look
at WINDOWS.H to figure out what OFFFOh and 800h are supposed to mean:

126 UNDOCUMENTED WINDOWS

; GetWindowLong{hwndPopup, GWL_STYLE) & WS_DISABLED
push si ; hwndPopup
push GWL_STYLE ; OFFFOh = -16
call far ptr GETWINDOWLONG
test dx, 800h ; DX:AX = 800:0000 = WS_DISABLED

Finally, as the whole point of this exercise, assuming the window passes all its tests,
its last active popup is switched to:

; SwitchToThisWindow{hwndPopup, TRUE)
push si ; hwndPopup
push 1
call far SwitchToThisWindow

It's here that all our questions start: because SwitchToThisWindow() is not docu
mented, we don't know the purpose of its second parameter, apparently a BOOL.
More important, we can't really tell why SwitchToThisWindow() is being used, when
SetActiveWindow(), SetFocus(), or BringWindowToTop() might do the trick. And
why is the last active popup, not the window, being switched to?

For now, though, we're done: our function will switch to the window selected in
the Task List if the window meets all the function's many preconditions:

void MaybeSwitchToSelectedWindow{HWND listbox)
{

HWND hwnd, hwndPopup;

II first figure out which window was selected in Task List
if (IsWindow{hwnd = SendMessage{listbox, LB_GETITEMDATA,

SendMessage{listbox, LB_GETCURSEL, 0, 0), 0»)
{

if (IsWindow{hwndPopup = GetLastActivePopup{hwnd»)
{

if {! (GetWindowLong{hwndPopup, GWL_STYLE) & WS_DISABLED»
{

SwitchToThisWindow{hwndPopup, TRUE);
return;

}

}

1* still here error *1
MessageBeep{O);

}

Examining API Functions and Data Structures
Now that we have a good idea of what TASKMAN does (it sure took a long time to
understand those 3IZ bytes of code!), it might be interesting to peer around the other
side of the curtain. We've seen that TASKMAN calls an assortment of undocumented
functions; we can now see how those undocumented functions are implemented and,
at the same time, get a feel for how disassembly of DLLs differs from disassembly of
programs.

CHAPTER 3 • DISASSEMBLING WINDOWS 127

Let's start with the IsWinOldApTask() function in KERNEL. You can use
Sourcer, or another Windows disassembler, to get a listing of one of the KERNEL
modules (KRNL286.EXE or I<RNL386.EXE), just as you can get a listing of a pro
gram like TASKMAN.EXE. Because it's the most commonly used, we'll disassemble
KRNL386.EXE.

The key difference between disassembling a DLL and disassembling a program is
that the DLL will generally contain a larger number of smaller functions and that
these hlnctions will have exported names that are all available to a Windows dis
assembler.

Of course, we can figure out what IsWinOldApTask() does from its name alone:
obviously, it takes an HTASK (a task handle, such as that returned from
GetCurrentTask() or GetWindowTask()) and returns a BOOL indicating whether the
specified task is an "old ap," (Le., a DOS program running under Windows). But let's
see how the function works:

ISWINOLOAPTASK proc far
1.7309 caLL sub_0016
1.730C moves,es:data_0643
1.7311 movax,es:data_0033e
1.7315 and ax,1
1.7318 retf 2

ISWINOLOAPTASK endp

; (4.0060=0)
; (OOOO:0048=OF841h)

In addition to Sourcer, which will make five passes over the code to try to link
everything up, separate code from data, and do many other incredibly useful but
somewhat time-consuming tasks, you might find it helpful to use a simpler dis
assembler such as the one built into NuMega's Soft-ICE/Windows:

:u iswinoLdaptask
KERNEL!ISWINOLOAPTASK
0117:00007309 CALL
0117:0000730C MOV
0117:00007311 MOV
0117:00007315 ANO
0117:00007318 RETF
KERNEL!ISTASK
;

7247
ES,ES:[0060J
AX,ES:[0048J
AX,0001
0002

Let's start by looking at the subroutine that IsWinOldApTask() calls. Sourcer gives
it a label, sub_0016. So what's sub_0016?

sub_0016:
1.7247 mov bx,sp
1.7249 movax,ss:[bx+6J
1.7240 Loc_1101: ; xref 1.7245
1.7240 or ax,ax
1.724F jnz short Loc_1102
1.7251 mov es,word ptr cs:MYCSDS ; (1.0030=0)
1.7256 movax,es:data_0077e ; (0000:0248=0)

128 UNDOCUMENTED WINDOWS

1.725A loc_1102:
1.725A moves,ax
1.725C retn

; xref 1.724F

We can see that sub_0016 has the same parameter as IsWinOldApTask(). Thus,
AX is a probably an HTASK It looks as if sub_0016 checks if the HTASK is 0; if it's
not, it moves the HTASK into ES; ifit is 0, it moves the value of es:data_0077e into
ES. Great, so what is es:data_0077e, which appears to be ds:[248h]? (The name
MYCSDS showed up here because the version of KRNL386.EXE happened to have
some useful CodeView symbols.)

Actually, we didn't have to go looking for es:data_0077e because in reality, by the
time we looked at IsWinOldApTask(), we had already replaced the label data_0077e
with a more useful one. The first thing we did with KRNL386.LST was look for small
functions, any small functions. We figured that ifwe could understand those, it might
help clarify other parts of the code. For example, one place we looked was the small
documented function, GetCurrentTask():

GETCURRENTTASK proc far
1.78F8 push es
1.78F9 mov es,word ptr cs:MYCSDS
1.78FE movax,es:data_0077e
1.7902 mov dx,es:data_0076e
1.7907 pop es
1.7908 retf

GETCURRENTTASK endp

(1.0030=0)
(0000:0248=0)
(0000:0246=0)

Here, we knew that whatever GetCurrentTask() is returning in AX, it must be the
current task. Thus, es:data_0077e (DS:[248h]) is some sort of global variable, holding
the current task. As soon as we saw this, we did a massive global search-and-replace
through the entire one-megabyte KRNL386.LST file, replacing all occurrences of
data_0077e with the new name, CURR_TASK

It's worth noting that GetCurrentTask() has an additional, undocumented return
value in DX, which you can see in the code above. As explained in chapter 5, this value
is the head of KERNEL's linked list of tasks. We did another global search-and
replace, taking all data_0076e and replacing them with FIRST_TASK

Suddenly, the entire KRNL386.LST file was starting to make a lot more sense.
One piece of code that made more sense was sub_0016:

,
1.7251
1.7256
1.725A
1.725A
1.725C

mov es,word ptr cs:MYCSDS
mov ax,es:CURR_TASK ; (ds:[248hJ)

loc_1102:
mov es,ax
retn

CHAPTER 3 • DISASSEMBLING WINDOWS 129

In fact, it's now fairly clear that this function moves a task handle into ES; if the
passed-in task handle is 0, then sub_0016 uses the current task:

GetTasklntoES proc near ; was sUb_0016
mov bx, sp
mov ax, ss:[bx+6J HTASK
or ax, ax
jnz short not_zero
; HTASK is 0
moves, word ptr cs:MYCSDS ; DS stored in code seg
mov ax, es:CURR_TASK ; ds:[248hJ

not_zero:
moves, ax
retn

GetTasklntoES endp

This is no big deal by itself, but we can now replace all calls to sub_0016() with
calls to GetTaskIntoES(). This should again improve the entire listing. In fact, it does;
here's a function whose understandability is a good bit improved by knowing that it
starts off by getting a task handle into ES:

GETTASKQUEUE proc far
1.7268 caLL GetTasklntoES
1.726B movax,es:data_0631
1.726F retf 2

GETTASKQUEUE endp

sUb_0016
; (4.0020=5744h)

We thus know that, in the second line of the function, ES contains a task handle.
We wouldn't have known that without figuring out the true purpose of sub_0016.
But if ES contains a task handle, and if this function returns a task queue, then we
know that at offset 20h of a task there's a handle to a task queue. We might not even
know what these different structures are, and these offsets might differ in various ver
sions of KERNEL, but continuing in this way will help clarify the code. (In fact, the
presence of a task-queue handle at offset 20h in the task structure is quite reliable.)

Another function we looked at was GetCurrentPDB() (PDB is the weird term in
Windows for what is everywhere else called the Program Segment Prefix, or PSP).
Again, we already know what this function does (it's documented), but we figured
that it probably was a small function that did little more than move the contents of
some global variable into AX:

GETCURRENTPDB proc far
; ...

3.0450 mov ds,CURR_TASK
3.0454 mov ax,ds:data_0038e
3.0457 pop ds
3.0458 retf

GETCURRENTPDB endp

; (4.0248=0)
; (0000:0060=9938h)

130 UNDOCUMENTED WINDOWS

Even better! It turned out not to be a global variable, but a field within the task
structure. The code for GetCurrentPDB() gets CURR-TASK into DS, then moves
DS:[60h] into AX. So, offset 60h in the task structure contains a PDB. But that's a
good old PSP! Because it's not a global, we need to be a little more careful in our
search and replace, but we can replace many ds:[60h] or ds:data_0038e references
with ds:[PSP].

With all this activity elsewhere in the file, let's look again at IsWinOldApTask()
and see how our global search-and-replaces have affected it:

ISWINOLOAPTASK proc far
call GetTasklntoES
moves, es:[PSP]
mov ax, es:data_0033e ; psp[48h]
and ax, 1
retf 2

ISWINOLOAPTASK endp

This is a big improvement. In fact, we now know what IsWinOldApTask() does: it
first takes the task you pass in and turns it into a PSP. If you pass in 0, it gets the PSP
out of the current task. From the PSP, it then examines the WORD at offset 48h and
returns the bottom bit. (This undocumented field in the PSP is set by the
WINOLDAP module.)

By itself, this is no big deal. But along the way, we found an undocumented aspect
to GetCurrentTask() (one that let us easily walk the task list; see the KERNEL chap
ter) and located two fields in the task structure: the TAS~QUEUE at offset 20h, and
the PSP at offset 60h. To find other fields in the task structure, or any other structure,
we just continue in this same manner, examining the return value of small functions

I

and doing global search-and-replaces.
For example, we can find another field by looking at this 3.1 function:

; (4558:00FA=OFFFFh)

xref 1.7338;

farproc
mov bx,sp
mov ax,ss:[bx+4]
or ax,ax
jz short loc_1107
lsl bx,ax
jnz short loc_1107
cmp bx,OFCh
jl short loc_1107
mov es,ax
cmp word ptr es:data_0490e,4454h
jne short loc_1107
jmp short loc_ret_1108 ; (733F)

loc_1107: ; xref 1.7323, 7328, 732E, 7339

ISTASK
1.7318
1.7310
1.7321
1.7323
1.7325
1.7328
1.732A
1.732E
1.7330
1.7332
1.7339
1.7338
1.7330
1.7330 xor ax,ax
1.733F loc_ret_1108:
1.733F retf 2

ISTASK endp

CHAPTER 3 • DISASSEMBLING WINDOWS 131

IsTask() is a documented 3.1 function that determines if an arbitrary WORD is a
valid task handle. The code uses the Intel LSL (Load Selector Limit) instruction to
ensure that the segment to which the given handle corresponds is at least OFCh bytes
in length. It then looks at offset OFAh in the segment, hoping to find the value 4454h.
Numbers such as this are usually signatures of some kind: here, 44h is D and 54h is T,
so 4454h is TD (no, not Turbo Debugger: Task Database!). We now have another
field for our Task Database structure: the WORD at offset OFAh must be 4454h, the
TD signature.

There isn't an IsTask() function exported in Windows 3.0 (not even an undocu
mented one), but we now know how to write one, assuming that is, that the Task
Database has the same structure in 3.0 as we've been finding in 3.1.

In fact, it does. Too much relies on this structure for it to change much. In fact,
after disassembling all this, we stumbled across a Microsoft header file for the Task
Database, TDB.INC (it is included with the Windows 3.1 DDK), and found the com
ment "Don't you dare change anything in here or raor [Rao Remala, one of the Win
dows developers] will kill you; OLE depends on this (3/25/91)." A comforting
thought!

Having examined IsWinOldApTask() in KERNEL, let's next look at
GetWindowTask() in USER. As you may recall, it was this function that, given an
HWND, provided TASKMAN with the task handle it needed for IsWinOldApTask().

Again, we can look at this function using either a Windows disassembler, such as
Sourcer, or a debugger, such as Soft-ICE/Windows:

GetWindowTask proc far
; ... param vaLidation
jmp IGetWindowTask

GetWindowTask endp

IGetWindowTask:
; ... get USER LocaL heap into OS ...
xor ax, ax
mov bx, [bp+6J ; hwnd
moves, [bx+18J
mov ax, es:[ZJ

It looks as if GetWindowTask() (IGetWindowTask(), actually) is working with
two different structures: at offset 2 in one structure, there is what obviously must be a
task handle. Obviously, because it's the return value from GetWindowTask(), which
returns a task handle. At offset 18h in what must be a WND structure (the passed-in
HWND is being treated as an offset into USER's local heap), we have a handle to this
first structure.

What is this first structure, a handle to which is stored at offset 18h in the WND
structure, and which in tum contains at offset 2 a TASK handle? Whatever it is, it
forms some sort of link between a WND and a TASK, and so would be useful to fig
ure out.

132 UNDOCUMENTED WINDOWS

Frankly, here it just pays to guess that this is a Task Queue structure and then see
how far you get with this. True, there's little in I<ERNEL that shows a link from a
Task Queue back to a Task Database. Generally you want to go in the other direction,
to get from a Task Database to a Task Queue; as we saw with GetTaskQueue() above,
the Task structure does contain, at offset 20h, a handle to its corresponding Task
Queue.

But why would there be a "back" pointer, in offset 2 of the Task Queue, back to
its corresponding Task Database? KERNEL wouldn't have much of a use for this, but
USER would. The Task Queue, a KERNEL data structure, is where USER posts
WM_ messages. While USER depends on the Task Queue structure, it only rarely
needs a Task handle. Thus, keeping a Task Queue handle in the WND structure, and a
Task Database handle in the Task Queue, makes a lot of sense.

You can watch this look-up happen with Soft-ICE/Windows. As we'll be explain
ing in more detail in the next chapter, Soft-ICE/W uses the built-in debug facilities of
the 80386 to implement real-time memory-access breakpoints. (ICE stands for in
circuit emulator, and Soft-ICE is like a software in-circuit emulator.) Once you have
some Task Queue handle, you can set a memory-access breakpoint (BPM) on offset 2
in the structure and see if, and how, it gets called. Soft-ICE/W provides a TASK com
mand to view the task list; this list includes each task's Task Queue structure:

:task
TaskName ss:sp StackTop Stack80t StackLow TaskOB hQueue Events
ORWATSON 1207:2A92 3B34 1BCA 2324 12FF 12E7 0000
WINFILE 1787:3716 377C 1012 2498 07FF 0687 0000
WINOLOAP 1477:105A 1E82 0818 1508 1487 149F 0000
TASKMAN 1167:13A2 144E 00E4 OE60 118F 1187 0000
SH 134F:38CC 3C54 28EA 34A4 1377 135F 0001
CALLFUNC* 11AF:2BFC 2086 1A4C 2404 121F 1187 0001

For example, we can instruct Soft-ICE/W to break on any (read or write) access
to offset 2 in WINFILE's Task Queue structure:

:bpm 06b7:2 rw

Sure enough, the breakpoint was triggered almost immediately from code in
USER's segment 1, near InSendMessage():

push word ptr es:[2J
call PostEvent

And a second later:

push word ptr es:C2J
call WaitEvent

CHAPTER 3 • DISASSEMBLING WINDOWS 133

PostEvent() is undocumented, but WaitEvent() is partially documented by
Microsoft in its description of Windows startup code (3.1. SDK Programmer)s Refer
ence) Volume 1: Overview, chapter 22). While Microsoft's documentation does not
suggest anything like the use shown here (see the KERNEL chapter in this book for a
proper explanation of WaitEvent() and PostEvent()), it does at least say that Wait
Event() expects a TASK handle. Thus, we are confirmed in our suspicion that offset 2
in the Task Queue structure is a Task Database handle.

How do we know it's a Task Queue structure, though? We know because the
code that calls WaitEvent() is preceded by a few lines with a call to the undocumented
KERNEL function, GetTaskQueueES(), the purpose of which is fairly clear from its
name, and whose implementation in I<ERNEL clears up any remaining doubts:

GetTaskQueueES proc far
moves, cs:MYCSDS
moves, es:CURR_TASK
moves, es:TASK_QUEUE

GetTaskQueueES endp

; ds:[30hJ
; ds:[0228hJ
; task:[20hJ

The Soft-ICE/W breakpoint also found that the SendMessage2() and Reply
Message() functions in USER both use offset 2 of the Task Queue to get a TASK han
dle to pass to SetPriority(), apparently to make sure that the message recipient's task
gets scheduled.

We now have a good understanding of the seemingly simple call, IsWinOld
ApTask(GetWindowTask(hwnd)):

GetWindowTask(HWND):
from HWND, get WND (just treat HWND as offset into USER local heap)
from WND offset 18h, get handle to TASK_QUEUE structure
from TASK_QUEUE offset 2, get handle to TASK_DB structure

IsWinOldApTask(HTASK):
from TASK_DB offset 60h, get selector to PSP (PDB)
from PDB offset 48h, get flags
return flags AND 1

Note how knowing these structures gives us a link from a window handle to a task
queue to a task database to a PSP. If we needed it, for example, we could now write a
GetWindowPSP() function, even though no such function exists in Window. It would
just be a matter of packaging up the structure access:

#define PSP_FROM_HTASK(hTask) \
*«WORD far *) MK_FP(hTask, Ox60»

#define PSP_FROM_HWND(hWnd) \
PSP_FROM_HTASK(GetWindowTask(hWnd»

134 UNDOCUMENTED WINDOWS

For the last two chapters, we have worked almost entirely with Windows files,
using plain-vanilla DOS programs to examine them. For most of this investigation,
Windows didn't even need to be running.

However, this technique has its limitations. Already, we needed to run Soft
ICE/Windows to help with our understanding of GetWindowTask(). Soft-ICE isn't a
Windows application, but it reflects Windows as a dynamic environment, rather than
as a static collection of files on disk. In the next chapter, we will stop looking at mere
files and start examining Windows as it is when loaded into memory and running.

CHAPTER • 4

Tools for Exploring Windows

Up until now, we've been exploring Windows by looking at its files. We've come a
long way-finding undocumented functions, finding applications that call them, disas
sembling the functions, using the disassembly to piece together a picture ofWindows'
internal structures, and so on-but, as long as we look only at files, we have no way of
testing whether our picture of undocumented Windows is an accurate one.

For example, we might disassemble KERNEL and examine the PostEvent() and
WaitEvent() functions. Disassembly is just fue manipulation, so Windows doesn't need
to be running for us to disassemble one of its files, and the disassembler doesn't need
to be a Windows application. By looking at the code for these functions, we could
conclude that they work together to manipulate some sort of semaphore stored at off
set 6 in a Windows task structure. But ifwe don't write a Windows program that actu
ally tries to use these functions, it's all idle speculation.

In this chapter, we finally get around to running Windows. (What a concept!)
We'll present a series of tools that let us try out undocumented Windows functions,
browse its internal data structures, and trap interrupts and undocumented WM_ mes
sages. These tools, and all the sample source code in this book, are written with the
WINIO library, also presented in this chapter (and, along with the tools themselves,
provided in library form on the accompanying disk). WINIO makes it easy to write
Windows applications, with multiple windows, menus, clickable lines, and so on, but
using main() rather than WinMain(), stdio functions such as printf(), and other con
veniences.

Windows Spies, Walkers, and Debuggers
Before we start to develop our own home-brew utilities, though, let's take some time
to survey the existing Windows snooping software.

Even though no longer essential to Windows software development, the
Microsoft Windows Software Development I<it (SDK) comes with several programs

135

136 UNDOCUMENTED WINDOWS

that are useful for exploring Windows: HEAPWALI<, SPY, CodeView for Windows,
WDEB386, and the debug version ofWindows.

HEAPWALK
HEAPWALK (Luke Heapwalker) displays a list of all items in the Windows global
heap. For each item, HEAPWALK shows its handle, linear base address, size in bytes,
allocation flags, the module name of its owner, and, in some cases, its type (such as
"Module Database" "Task" "Code" "DGROUP" and so on) If a globally allo-, " , .
cated item contains a local heap, you can do a LocalWalk on the item, bringing up a
secondary window that displays the local heap.

In the global-wall< window, you can doubleclick on any item to bring up a sec
ondary window with a hex dump of the object (unfortunately, you can't seem to do
this within a local-walk window). For example, double-clicking on any item labeled
"Task" will display a hex dump of a Task Database structure. Without knowing any
thing more about this structure, you can inspect the hex dump and find that the Task
Database includes a directory path, the module name of the task, a TD signature, and
a PT signature.

HEAPWALK does an excellent job of labeling the objects it knows about (it will
even pick up and display segment names from modules that include debug symbol
tables, such as KERNEL, USER, and GDI in the debug version of Windows). How
ever, it displays Task Queue structures merely as "USER Private," doesn't know about
WND structures in the nondebug version of Windows, and, of course, doesn't know
about any selectors that aren't on the Windows global heap (such as PSP selectors).
HEAPWALK has "GDI LocalWalk" and "USER LocalWalk" options, but these work
only on the USER and GDI default local heaps, not on the additional local heaps in
3.1 that help relieve the "free system resources" problem.

Spy
Spy displays information about windows: This part of SPY, as well as the program's
name, is more or less a rip-off of Michael Geary's original SPY program, from the
1987 (yes, Windows has been around for a long time!) IBM special issue of Byte.
When you click on a window in the SDK SPY, it displays the window's HWND han
dle, the module name of its owner, its parent, style, and class name.

For example, SPY will reveal that the main window in WinWord l.x has the class
name "OpusApp," that Visual Basic's class name is "ThunderForm," and that
CoreiDRAW's module name is "waldo." Such strings are important for Windows pro
grams that communicate with other programs. (By the way, for a list of class names,
module names, and DDE server names for key Windows applications, see the DDE
chapter in Woody Leonhard's 'Windows 3.1 Programmingfor Mere Mortals.)

Besides displaying basic information about a window, SPY's main purpose is to
trace WM_ messages, allowing you to see what messages are generated for various
actions. However, the version of Spy that comes with the SDK doesn't show undocu
mented WM_ messages, such as WM_SYNCPAINT (Ox0088), WM_ENTER
MENULOOP (Ox0211), or WM_BEGINDRAG (Ox022C).

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 1 37

Programmers sometimes use Spy or a similar program to determine the menu ID
values used by an application such as Program Manager so that the application can be
subclassed. By examining the wParam values for the WM_COMMAND messages trig
gered by selecting each menu item, you can produce a table of the application's menu
values. However, message-watching utilities like Spy are usually overkill for this task.
These values are almost always part of the program's menu resources, so it is much
easier to get menu ID values by running the RESDUMP program from chapter 3. For
example, the following shows that picking File New in Program Manager will generate
a WM_COMMAND wParam=65h:

C:\BIN>resdump \win31\progman.exe
... some icons ...
MENU 5 (05h)

POPUP n&File n
101 (65h) n&New ... n
102 (66h) n&Open Enter n
103 (67h) n&Move F7 n
104 (6Sh) n© FS"
105 (69h) n&Delete DeL"
106 (6Ah) n&Properties... ALt+Enter"

etc

Thus, it is not necessary to run Spy, or even PROGMAN itself, to learn about an
application's menu structure.

CodeView for Windows
CodeView for Windows (CVW) is a source-level debugger for Windows programs
built with Microsoft C. It is not particularly convenient, but it can be used to do Win
dows snooping if nothing better is available. If your program calls an undocumented
Windows function, you can trace into the function by pressing F8. The u command
will unassemble any Windows API function, including an undocumented one, if you
know the function's address. You can also set a breakpoint on an undocumented API
function, again assuming you know its address. (To find an API function's address,
you can write a simple Windows program that calls GetProcAddress() and prints out
the segment:offset addresses of any API function you're interested in.)

WDEB386
For someone interested in the inner workings of Windows, particularly Enhanced
mode Windows, Microsoft's WDEB386 is a far more interesting debugger than CVW.
All the really good stuff is here! For example, these are some commands supported by
WDEB386:

.dm DispLay ModuLe List

.dq DispLay Task Queue List
dg DispLay GLobaL Descriptor TabLe (GDT)
di DispLay Interrupt Descriptor TabLe (IDT)
dl DispLay LocaL Descriptor TabLe (LDT)

138 UNDOCUMENTED WINDOWS

dp Display 386 page directory and page tables
dt Display 386 Task State Segment (TSS)
dx Display LOADALL buffer
.? Display list of additional commands supported by the

debug version of WIN386.EXE

Unfortunately, WDEB386 requires a second monitor and is awkward to use. Both
problems, and more, are solved by NuMega's Soft-ICE/Windows debugger, described
in detail later in this chapter.

Debug Version of Windows
The key ingredient in the Windows SDK, the one thing it includes that should make
any Windows developer want to get the SDK even if he or she uses none of its other
components, is the debug version ofWindows. This consists of versions ofKRNL286,
KRNL386, USER, GDI, and MMSYSTEM that have been built with CodeView sym
bols. Unfortunately, the most interesting CodeView symbols, for undocumented and
internal functions, have been deliberately mangled in the SDK (see the description of
EXEDUMP -CVBLANKS in chapter 2).

In some cases, internal data structures are slightly larger in the debug than in the
retail version ofWindows. Such differences are indicated in this book's descriptions of
these structures (for example, see the description of the DC structure in chapter 8). A
program can test for the presence of debug Windows with GetSystemMetrics
(SM_DEBUG).

When running under the debug version of Windows, the To01Help library can
provide tools with more information about USER objects such as windows, menus,
and so on. The HEAPWALK utility is more informative when running under debug
Windows, showing segment names for KERNEL, USER, and GDI, and showing
object types for items in USER's local heap. There are also several API functions avail
able in debug Windows that are not in the retail version.

Get the DDK!

As has been noted several times already in this book, the Microsoft Windows
Device Driver Kit (DDK) is another key resource for anyone interested in undocu
mented Windows. To call this a "device driver" kit seriously underestimates its
importance and limits its audience. The DDK actually has remarkably little to do
with device-driver development as such; it's really a collection of additional Win
dows API functions that are lower-level and/or more powerful than the ones that
come with the SDK.

For one thing, one of the key things you can do with the DDK is build
Enhanced mode 32-bit virtual device drivers (VxDs). The .386 files that some appli
cations install in your SYSTEM.INI file are VxDs; WIN386.EXE is a collection of VxDs.
VxDs really aren't device drivers at all, but a different-and extremely powerful-

continued

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 139

continued

type of Windows program. Whenever something appears to be "impossible" in
Windows, the solution often is to write a VxD. In particular, VxDs are essential for
writing applications that tie together DOS and Windows. (If you want to learn a lit
tle bit about VxDs before buying the DDK, read Dan Norton's book, Writing Win
dows Device Drivers.)

Another reason to get the Windows 3.1 DDK is that it includes header files for
many internal aspects of Windows, including:

• an "internal" version of WINDOWS.H, with about 300 items missing from
the SDK version of WINDOWS.H. (This is somewhat like "WINDOWS.H:
The Lost Recordings.")

• WINKERN.INC, with the global and local heap and arena structures
• TDB.lNC, with the Task Database structure
• NEWEXE.INC, with the new-executable (NE) file format (sorry, EXE386.H,

with the linear-executable (LE) format, is not included with the DDK; it cer
tainly ought to be)

• WINNET.H, with the WNet (Windows/Network interface) and LFN (long
filename) functions

• INT2FAPI.INC, with some of the INT 2Fh API for DOS programs running
under Windows

In addition, the DDK includes disk upon disk of C and assembly-language
source code for many (though by no means all) of the device drivers and VxDs that
make up Windows, and includes a debug version of WIN386.EXE that provides
many debugging commands that you can issue from either WDEB386 or Soft
ICE/Windows. •

Other Snooping Utilities
If you have Borland C++, you don't need the SDK to produce and debug Windows
applications. Everything you absolutely require for Windows software development
comes with Borland C++. However, it does not come with the extensive documenta
tion of the 3.1 SDK, and it is missing the extremely valuable debug version of Win
dows and some of the SDK tools such as HeapWalk. Probably the best way to do
Windows development today is to use both Borland C++ and the SDK.

Instead of CVW, Borland C++ of course includes Turbo Debugger for Windows
(TDW). As with CVW, you can unassemble, set breakpoints on, and trace into API
functions, both documented and undocumented. However, as with CVW, you often
have to know the function's segment:offset address beforehand.

140 UNDOCUMENTED WINDOWS

Borland C++ comes with Resource Workshop, an excellent program for exploring,
changing, and creating dialogs, menus, icons, cursors, bitmaps, fonts, and so on,
somewhat similar to ResEdit on the Macintosh.

Borland C++ 3.1 comes with WinSpector, a post-mortem debugger similar, yet
vastly superior, to Microsoft's Dr. Watson. (WinSpector was at one point known as
Dr. Frank.) One of the parts ofWinSpector is the BUILDSYM utility, which can cre
ate a debug .SYM file from an .EXE that has no debug information! BUILDSYM cre
ates this debug information, seemingly "from nothing," using the symbolic
information provided as part of the NE executable file format.

For watching WM_ messages, Borland C++ includes WinSight, which is vastly supe
rior to Microsoft's SPY. WinSight knows about approximately 25 different undocumented
WM_ messages and displays them differently from documented messages so that they
stand out. WinSight will also pick up the names of messages that have been installed with
RegisterWindowMessage(). WmSight uses indenting to show the nesting of messages,
where one message will trigger others. For example, the following shows a
WM_LBUTTONUP triggering a WM_SYSCOMMAND, which in turn triggers a WM_
ENTERMENULOOP (shown in lowercase because this message is undocumented):

17CO "File Manage" WM_LBUTTONUP Dispatched (22,18)
17CO "File Manage" WM_SYSCOMMAND Sent from self KeyMenu+O(Nowhere?) (32,0)

17CO "File Manage" wm_entermenuloop Sent from self 0000 0000:0000
17CO "File Manage" wm_entermenuloop Returns 0
..• etc.: WM_SETCURSOR, WM_INITMENU, WM_INITMENUPOPUP, WM_MENUSELECT ...

Inside RegisterWindowMessage()

RegisterWindowMessageO is a documented function that, for once, behaves exactly
as documented:

WORD FAR PASCAL RegisterWindowMessage(LPSTR lpszMsgName);

Nonetheless, there is something interesting about this function: If you run the
EXEUTIL -DUPES utility from chapter 3 on the Windows 3.1 version of USER.EXE,
you will find that RegisterWindowMessageO and RegisterClipboardFormat() are one
and the same function, Le., one piece of code has been given these two exported
entry points.

If you then examine the code with Windows Source or another Windows dis
assembler, you will find that the function is nothing more than a wrapper around
the KERNEL AddAtom() function. In other words, registered window messages and
registered clipboard formats end up in USER's local atom table (which, incidentally,
is not the same as the global atom table, even though that too is owned by USER).

continued

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 141

continued

A Windows message snooper such as WinSight can use this fact to locate
strings for any messages in the range COOOh through FFFFh. Given that
RegisterWindowMessageO is simply a USER AddAtom(), the message number is no
more and no less than a local atom, for which an associated string can be found
with the GetAtomNameO function.

But there's a catch: These registered messages are actually atoms in USER's
atom table. GetAtomNameO assumes that DS corresponds to the segment contain
ing the atom table of interest, in the same way that LocalAliocO assumes that DS
corresponds to the segment containing your local heap. In your program, OS nor
mally points to your own default data segment-not USER's. However, using a
small wrapper of in-line assembler, you can write a segment-based version of
GetAtomName() that works off any atom table:

WORD FAR PASCAL BasedGetAtomName(WORD wSeg,
WORD wAtom, LPSTR LpszBuf, int cbBuf)

{

WORD retvaL;
_asm push ds
_asm mov ds, wSeg
retvaL = GetAtomName(wAtom, LpszBuf, cbBuf);
_asm pop ds
return retvaL;

}

(This code is almost identical to some commonly available functions for doing
based memory allocation with LocaIAlloc(); see "Porting DOS Programs to Pro
tected-Mode Windows with the WINDOS Library," Microsoft Systems Journal, Sep
tember-October 1991.)

To find names for messages in the range COOOh through FFFFh, you would call
BasedGetAtomName(), passing it USER's default data segment as the wSeg and the
message number as wAtom. For example:

#define GET_USER_DS()\
GetWindowWord(GetDesktopWindow(), GWW_HINSTANCE)

char buf[128J;
BasedGetAtomName(GET_USER_DS(), message, bUf, 128);

Naturally, a clipboard viewer could use the same piece of code to get the name
for a registered clipboard format; after all, RegisterClipboardFormatO and Register
WindowMessage() ·are just two different names for the same thing.

GET_USER_DS() obviously only works with USER; to get the default data seg
ment (DGROUP) for any module in the system, see the GetModuleDgroupO func
tion shown in chapter 5.

To conclude, even a simple, properly documented function such as
RegisterWindowMessageO turns out to have a lot of hidden, useful properties if you
stare at it long enough. •

142 UNDOCUMENTED WINDOWS

A good way to watch undocumented message traffic with WinSight is to select the
"Other" message category. In addition to the undocumented messages that WmSight
knows about, others will be indicated, for example, WM_Ox0032 (for WM_SET
HOTKEY). Interestingly, WM_OTHERWINDOWCREATED and WM_OTHER
WINDOWDESTROYED show up in WinSight in quotes, as "OTHER
WINDOWCREATED" and "OTHERWINDOWDESTROYED," indicating that
these come from RegisterWindowMessage(). Another such message is
"ACTIVATESHELLWINDOW". (See chapter 7 for further details.)

Another collection of Windows snooping utilities is MicroQuill's "Windows
DeMystifiers," written by Jeff Richter, author of the excellent Windows 3: A Develop
er)s Guide (chapter 1 of that book, "Anatomy of a Window," and chapter 6, "Tasks,
Queues, and Hooks," are essential reading). The Windows DeMystifiers are excellent as
enhanced versions ofSPY, HEAPWALK, and so on: VOYEUR is a window-browsing and
message-trapping utility, like Spy and WinSight; COLONEL (get it?) is an enhanced
version of HEAPWALK; MECHANIC displays large amounts of information about
device and driver capabilities, fonts, and objects for a given device or DC; and ECOL
OGIST displays general information about the environment (such as memory avail
ability, how many tasks are running, and the like).

VOYEUR at first seems to not "know" about undocumented messages. However,
the program has a (undocumented!) feature to display these messages: If you hold
down the Shift key while picking Message Selection... from its Messages menu, VOY
EuR adds about 25 undocumented messages to its repertoire.

Soft-ICE/Windows
Soft-ICE/Windows (WINICE), from NuMega Technologies (Nashua, New Hampshire;
603-889-2386), pretty much replaces all of the above tools, and then some. It is the sin
gle, absolutely essential debugger and snooping utility for Windows developers. Here, we
will be using WINICE's snooping capabilities rather than its debugging facilities, because
snooping rather than debugging is the focus for this book. WINICE is a complete debug
ging environment; once you have it, you no longer need CVW, TDW, WDEB386,
HEAPWALK, or Spy. You also no longer need a second debugging monitor, unless you
want one: Unlike WDEB386, or older versions of CVW, WINICE is fully operational,
and seems very stable, running on the same machine as Windows itsel£

WINICE uses the built-in debug hardware of the 80386 and 80486 processors to
provide debugging facilities that might otherwise require external hardware like an in-cir
cuit emulator (ICE): hence the name Soft-ICE. For example, WINICE uses paging and
the 386 debug registers to implement real-time memory-access breakpoints (several other
debuggers do this too), uses 386 virtualization to implement breakpoints on I/O ports,
and so on. WINICE isn't a Wmdows program; it runs before Wmdows. When you run
WINICE from the DOS prompt, it loads Wmdows Enhanced mode (WINICE will not
work with Windows Standard mode). You can go into WINICE any time by pressing its
hot key (Ctrl-D by default). You don't need to be debugging a program to use WIN!CEo

DS,CS:[0030J
DS,[0248J
DS,[0020J

ES
ES,CS:[0030J
AX,ES:[0228J
DX,ES:[0226J
ES

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 143

Disassembly with WINICE
We already saw in chapter 3 that WINICE can be used to quickly unassemble undocu
mented API calls. We've mentioned that, in a pinch, you can do this with CVW or
TDW, too. The difference in WINICE is that it "knows" a huge number of symbols
for all the functions, both documented and undocumented, in KERNEL, USER, and
GDI. For example
:u gettaskqueueds
KERNEL!GETTASKQUEUEDS
011F:00008775 MOV
011F:0000877A MOV
011F:0000877E MOV
011F:00008782 RETF

:u getcurrenttask
KERNEL!GETCURRENTTASK
011F:0000842C PUSH
011F:0000842D MOV
011F:00008432 MOV
011F:00008436 MOV
011F:00008438 POP
011F:0000843C RETF

Because Windows is running and we have a complete debugger at our disposal, we
can, ofcourse, inspect any variables that are used by the code we disassemble.

For example, above we see that GetCurrentTask() has an undocumented return
value in DX. It's probably the beginning of the task list, but let's check. First,
GetCurrentTask() loads ES from a value stored away in CS (yes, even protected-mode
Windows stores data in its code segments), at offset 30h:
:dw 11f:30
011F:00000030 0137 ...

Now we can inspect the value at ES:[226h] and see if it looks as ifit could be a task
handle; assume we've already figured out that a valid task handle will have its module
name at offset F2h, followed by the signature TD at offset FAh, followed by a PSP:
:dw 137:226
0137:00000226 0807 ...

:db 807:f2
0807:000000F2 57 49 4E 46 49 4C 45 00-54 44 00 00 00 00 CD 20 WINFILE.TD

Most excellent! It's definitely a task. Let's see if this is the beginning of a linked list of
tasks, by looking at its first word and seeing if it corresponds to a valid task:
:dw 807:0
0807:00000000 14AF ...

:db 14af:f2
14AF:000000F2 57 49 4E 4F 4C 44 41 50-54 44 00 00 00 00 CD 20 WINOLDAPTD

It does. We can continue in this way until we reach the end of the list:

144 UNDOCUMENTED WINDOWS

:dw 11bf:0
11BF:00000000 0000 ...

With WINICE 1.1, you can load the symbols for any other DLL or driver, such as
SYSTEM, DISPLAY, KEYBOARD, MOUSE, and COMM. A debug version of these
drivers is not required; the symbols come right out of the NE header. (See? The NE
format really does give every single Windows executable the equivalent of a debug
symbol table.) For example, the following shows that, at the base ofWindows timers,
there's just an INT 8 handler, installed with the good old DOS Set Interrupt Vector
function (INT 2Ih AH=25h):

:u enablesystemtimers
SYSTEM!ENABLESYSTEMTIMERS
0157:000002E2
0157:000002E3
0157:000002E8
0157:000002ED
0157:000002EF
0157:000002F4
0157:000002F7
0157:000002F9
0157:000002FD
0157:00000301
0157:00000304
0157:00000305
0157:00000306
0157:00000309
0157:0000030B
0157:0000030C

PUSH
MOV
CMP
JNZ
MOV
MOV
INT
MOV
MOV
MOV
PUSH
POP
MOV
INT
POP
RETF

DS
DS,CS:[OOOOJ
BYTE PTR [005CJ,00
030B
BYTE PTR [005CJ,01
AX,350S
21
[005DJ,BX
[OOSFJ,ES
AX,2S0S
CS
DS
DX,0238
21
DS

EBX,[80012944J

EBX,[S0012948J

In the same way, we can look at the other Windows API: VxD calls, particularly
those provided by the Windows Virtual Machine Manager (VMM). As far as WINICE
is concerned, these are just more Windows API calls; WINICE doesn't make the com
mon mistake of segregating these calls in some special DDK mode, where SDK pro
grammers can't get at them:

:u get_cur_vm_handle
0028:800081AC MOV
0028:800081B2 RET

:u get_sys_vm_handle
0028:800081BC MOV
0028:800081C2 RET

Notice that WINICE handles 32-bit code. By the way, ifyou've been hearing a lot
about the future of 32-bit Windows programming, you might note that you could be
learning about 32-bit programming today, albeit at a somewhat low level, by taking a
close look at VxDs.

Of course, if you are debugging a program, you get to use all of its symbols, too.
WINICE understands both CodeView and Turbo Debugger symbol formats. The
program you debug can be a Windows application, DLL, device driver, VxD, DOS

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 145

program running in the Windows DOS box, or a 16-bit or 32-bit protected-mode
DOS program (for example, a DOS-extended program or DPMI client).

WINICE Breakpoints
So far we've just examined WINICE's disassembly capabilities. Disassembling code
isn't the best use of a debugger, though: Most of what's shown above (including dis
sessembly ofVMM) can be done with a tool such as Windows Source (see chapter 3).
Where WINICE really shines is in its extensive support for breakpoints:

BPX
BMSG
BPINT
BPR
BPRW
BPMB,BPMW,BPMD
BPIO
CSIP

break point on execution
break point on Windows WM_ message
break point on interrupt
break point on memory range read/write
range break point on Windows module or selector
break point on memory byte, word, dword read/write
break point on I/O port access
instruction pointer (CS:IP) qualifier

For example, the following will trap all calls made by USER to the Get
TaskQueueES() function:

:csip user
:bpx gettaskqueuees
:x

Once a breakpoint has been triggered, you can see how it was called by using the
STACK command (if you have a valid stack frame) or simply by browsing through the
code. Many of the questions left unanswered in chapters 2 and 3, such as why USER
shows so many references to MakeObjectPrivate(), or why GDI seems to unlock and
relock objects so frequently, can be answered in this way, by watching the real, live
system in action.

As an another example, in chapter 2 when EXEUTIL -UNDOC ran across calls to
the GetProcAddress() function, it had to issue a warning because it had no way of
knowing to what the program would want to dynamically link at run time (the func
tion name could even be a string typed in by the user, as in our CALLFUNC program
described later in this chapter). With WINICE, however, it's trivial to find out what
GetProcAddress() is being used to link to:

:bpx getprocaddress

Even better, rather than set the breakpoint right on the first instruction in GetProc
Address(), it can be set a few instructions down, after the function has moved its func
tion-name parameter into registers. Using the "display expression" (DEX) command,
you can then instruct WINICE to display the passed-in function name every time the
breakpoint is triggered. It turns out that, in 3.1 at any rate, programs mostly just use

146 UNDOCUMENTED WINDOWS

run-time dynamic linking to get at the Pen Windows RegisterPenApp() function.
(This corresponds with what we saw when disassembling TASKMAN in chapter 3.)

WINICE is indispensable for investigating the behavior of undocumented func
tions. Although a disassembler such as Sourcer provides a detailed view of the code,
that view is by its nature static. To understand how a function behaves, it is sometimes
essential to trace it through at run time. WINICE can provide this dynamic and
behavioral view of a function, particularly when used together with a function-call
interpreter testbed such as CALLFUNC (described later in this chapter).

SysErrorBox() (see chapter 6) is a good example of a function that could have
been difficult to crack. Since it is usually called only in response to a system error, you
might use TDW or CVW to debug a program that deliberately crashed and then trace
through the crash. However, these debuggers trap the crash and abort the program
without allowing the debugging session to continue! And an error within Sys
ErrorBox, you would quickly discover, leaves little option of recovery short of a com
plete machine reset.

From a disassembly listing generated by Sourcer, we can see that the function
returns with RETF OEh, removing seven words from the stack. These seven words
represent the function's parameters (the Pascal calling convention, in which the called
function pops its argument, makes disassembly a little easier). The disassembled listing
for the function is long (some 13 pages), so rather than pore over it looking for clues,
we might take an initial simplistic approach to the argument types and just try them.
This frrst approach will probably be wrong, but it will help us get started toward un
derstanding how the function should be called. Using CALLFUNC, which allows
Windows API functions to be interactively typed in and called, we can formulate an
experimental call, perhaps:

> user syserrorbox a a a a a a a

Before pressing return, we need to set a breakpoint on the function itself so that
we can trace through it. This as simple as pressing WINICE's hotkey and entering:

:bpx syserrorbox
:x

Now, back in CALLFUNC, we can press return, and we are immediately popped
back into the debugger at the beginning of the SysErrorBox function. Pressing FlO
(WINICE's default key assignments are similar to CodeView's), we arrive at the
instructions:

MOV AX, [BP+10J
MOV DX, [BP+12J

These instructions indicate that the parameter at BP+I0h, for a FAR PASCAL
function expecting 14 bytes of parameters on the stack, is either a dword or a far
pointer as the first parameter. Using the R (set register contents) command, we can

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 147

reset IP to an address near the function's return and continue tracing, in order to
return to CALLFUNC without blowing up. We might then try a string in the first
position in another invocation of the function from the CALLFUNC prompt:

> user syserrorbox "Hello world!" 0 0 0 0 0

This time we may be able to trace through a bit further. After another few itera
tions, we will have arrived at a CALLFUNC command line of:

> user syserrorbox "Caption?" "Some text" 1 2 3

At this point the battle is nearly won. For the final results, see the description of
SysErrorBox() in chapter 6.

This approach is a simplistic description of the process, but it serves to show how
tools work together. It is possible to understand and document any undocumented
function using other means, but the above approach, marrying a static listing with a
flexible, stable debugger such as WINICE and a testbed program such as
CALLFUNC, makes the task that much more enjoyable and significantly reduces the
number of times a PC needs to be rebooted along the way!

As an example of a memory-access breakpoint, let's say you want to see whether
any modules other than KERNEL grope Task Database structures. You could use the
TASK command (see below) to get a listing of all rUlUling tasks and then set a mem
ory range access breakpoint (BPR) on some TDB; a Task Database structure is 200h
bytes (including the PSP stuck on the end), and in this example 807h is a valid
HTASK:

:bpr 807:0 807:1ff rw
:csip not kernel
:x

The instant some piece of code other than KERNEL reads or writes anything in
this 200-byte range, we trap to WINICE. Until then, our system is operating at full
speed.

As a final example of WINICE breakpoints, BPINT lets you go exploring in the
netherworld of Windows interrupts. For example, does the reserved DPMI function
INT 31h AX=0701 (Discard Pages) ever get called?

:csip off
:bpint 31 ax=0701
:x
Break Due to BPINT 31 AX=0701 C=01
011F:00003BB6 INT 31

Yes, looks like as if does. But who calls it-that is, where's OllFh?

148 UNDOCUMENTED WINDOWS

:heap 11f
Han./Sel. Address
011F 00018440

Length
0000CC80

Owner
KERNEL

Type
Code

Seg/Rsrc
01

So, I<ERNEL calls this reserved DPMI function.

WINICE System-Information Commands
The HEAP command we just used is one of many commands that WINICE provides
for displaying system information:

HWND
CLASS
TASK
MOD
HEAP
LHEAP
VM
VXD
GOT
LOT
lOT
TSS

PAGE
MAP

Display windows handles
Display window class information
Display Windows task list
Display Windows module list
Display Windows global heap
Display a Windows local heap
Display information about DOS virtual machines
Display a map of virtual device drivers (VxDs)
Display Global Descriptor Table (GOT)
Display Local Descriptor Table (LOT)
Display Interrupt Descriptor Table (lOT)
Display Task State Segment (TSS), including the I/O permission

bitmap, showing virtualized I/O ports
Display page directory and page table information
Display memory map for this virtual machine

For example:

:task
TaskName ss:sp StackTop StackBot StackLow TaskDB hQueue Events
WINOLDAP 146F:1D5A 1E82 OB18 1604 14AF 1497 0000
WINFILE 17AF:3716 377C 1012 2546 0807 06BF 0000
DRWATSON 12CF:2A92 3B34 1BCA 25FA 12F7 12DF 0000
TASKMAN 1207:13A2 144E 00E4 OE48 1217 122F 0000
SH * 1347:3BCC 3C54 28EA 378A 136F 1357 0000

Using the HEAP command shows that Task Databases are owned by themselves

:heap 14af
Han./Sel. Address
14AF 00025940

Length Owner
00000200 WINOLDAP

Type
TaskDB

Seg/Rsrc

but, just as in HEAPWALK, Task Queue structures are shown as USER allocations,
even though most of the code to manipulate them is in KERNEL. This reflects the
lack of a clear division in Windows between KERNEL and USER:

:heap 1497
Han./Sel. Address
1497 00025B40

Length
00000120

Owner
USER

Type
Alloc

Seg/Rsrc

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 149

WINICE's GDT (Global Descriptor Table) command gives us a good idea of the
Windows memory map:

:gdt
GDTbase=800715BC Limit=010F
0008 Code16 Base=000157FO Lim=OOOOFFFF
0010 Data16 Base=000157FO Lim=OOOOFFFF
0018 TSS32 Base=8000DD74 Lim=00002069
0020 Data16 Base=800715BC Lim=OOOOFFFF
0028 Code32 Base=OOOOOOOO Lim=FFFFFFFF
0030 Data32 Base=OOOOOOOO Lim=FFFFFFFF
003B Code16 Base=804A5B20 Lim=000004C7
0043 Data16 Base=00000400 Lim=000002FF
0048 Code16 Base=00013290 Lim=OOOOFFFF
0053 Data16 Base=OOOOOOOO Lim=FFFFFFFF
005B Data32 Base=804A6000 Lim=OOOOOFFF
0060 Code32 Base=80059460 Lim=00001000
0068 Code32 Base=80059451 Lim=00001000
0073 Data16 Base=00000522 Lim=00000100
0078 Code16 Base=0092COOO Lim=00033FFF
0080 Data32 Base=0092COOO Lim=Q0033FFF
0088 LDT Base=80543000 Lim=00001FFF
0093 Data16 Base=OOOOOOOO Lim=FFFFFFFF
009B Data32 Base=805DOOOO Lim=OOOOOFFF
OOAO Reserved Base=OOOOOOOO Lim=OOOOOOOO
... about a dozen more reserved descriptors

DPL=O
DPL=O
DPL=O
DPL=O
DPL=O
DPL=O
DPL=3
DPL=3
DPL=O
DPL=3
DPL=3
DPL=O
DPL=O
DPL=3
DPL=O
DPL=O
DPL=O
DPL=3
DPL=3
DPL=O

P RE
P RW
P B
P RW
P RE
P RW
P RE
P RW
P RE
P RO
P RW
P RE
P RE
P RW
P RE
P RW
P
P RW
P RW
NP

Here, we can see that selector 28h in Windows Enhanced mode is a code selector that
maps the entire linear address space from 0 to 4 gigabytes. Selector 30h is an equiva
lent data selector. Selector 40h (shown here in DPL=3 form as 43h) maps 2FFh bytes
at linear base address 400h; in other words, it's a bimodal selector to the BIOS data
area (linear base address == selector « 4). Selector 20h maps the GDT itself. Selector
88h contains an LDT.

As noted earlier, WINICE can completely replace Microsoft's WDEB386. When
used with the DDK debugging version of WIN386.EXE, WINICE provides instant
access to WIN386 debug commands:

: .?
.VM [#] ------ Displays complete VM status
.VC [#] ------ Displays the current VMs control block
.VH ---------- Displays the current VM handle
.VR [#] ------ Displays the registers of the current VM (Prot mode only)
.VS [#] ------ Displays the current VM's virtual mode stack (Prot mode only)
.VL ---------- Displays a list of all valid VM handles
.T ---------- Toggles the trace switch
.5 [#] ------ Displays short logged exceptions starting at #, if specified
.SL [#] ------ Displays long logged exceptions just #, if specified
.LQ ---------- Display queue outs from most recent
.DS ---------- Dumps the protected mode stack with labels

150 UNDOCUMENTED WINDOWS

.MH [handLe]

.MM [handLe] -

.MV ----------

.MS PFTaddr --

.MF ---------

.MI ----------

.ML LinAddr -

.MP PhysAddr -

.MD ---------

.MO ----------

.VMM --------
•<dev_name>
: .vmm

DispLays Heap information
DispLays Memory information
DispLays VM Memory information
DispLay PFT info
DispLay Free List
DispLay Instance data info
DispLay Page tabLe info for given Linear address
DispLay ALL Linear addrs that map the given PhysAddr
Change debug MONO paging dispLay
Set a page out of aLL present pages
Menu VMM state information
DispLay device specific info

V M M DEB U GIN FOR MAT ION A L
[A] System time
[8] Time-sLice information/profiLe
[C] Dyna-Link service profiLe information
[D] Reset dyna-Link profiLe counts
[E] I/O port trap information
[F] Reset I/O profiLe counts
[G] Turn procedure caLL trace Logging on
[H] V86 interrupt hook information
[I] PM interrupt hook information
[J] Reset PM and V86 interrupt profiLe counts
[K] DispLay event Lists
[LJ DispLay device List
[MJ DispLay V86 break points
[N] DispLay PM break points
[OJ DispLay interrupt profiLe
[P] Reset interrupt profiLe counts
[QJ DispLay GP fauLt profiLe
[R] Reset GP fauLt profiLe counts
[S] ToggLe Adjust_Exec_Priority Log AND DISPLAY
[TJ Reset Adjust_Exec_Priority Log info
[UJ ToggLe verbose device caLL trace
[V] FauLt Hook information

: . v86mmgr
SeLect desired V86MMGR component:

[0] - GeneraL info
[1] - Memory scan info
[2] - EMM driver info
[3] - XMS driver info
[ESC] - Exit V86MMGR debug querry

: .dosmgr
SeLect desired DOSMGR function:

[0] DispLay DOS trace info
[1] Set DOSMGR queue_outs
[ESCJ - Exit DOSMGR debug querry

S E R V ICE S

Some of the .vmm debug options let you profile the actual number of interrupts
and exceptions generated inside Windows as part of its normal activity. The results are
sometimes alarming and make you wonder how Windows could ever accomplish any-

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 151

thing, with all the faults and exceptions that it intentionally generates internally. For
example, Windows generates faults to make privilege-level transitions from Ring 3
(3.1) or Ring 1 (3.0), to Ring 0, and back again (the WINICE manual contains excel
lent discussions of these issues).

WINICE is able to completely take over for WDEB386 and CVW. In the debug
version ofWindows, for example, WINICE catches all RIP (rest in peace) codes, pro
viding you with an opportunity to respond. WINICE does this by handling Windows
INT 41h low-level debug calls. (The INT 41h low-level debug API is discussed briefly
in chapter 5, in the entry for RegisterPtrace.)

Even though some of WINICE's capabilities may appear esoteric, this debugger
gives you access to all of Windows. You can go exploring deep within VMM if you
wish or just use it as a C source-level debugging replacement for CVW and TDW.
Practically every Windows debugging tool, from the most common to the most eso
teric, has been brought together into one program.

The WINIO Library
With the exception of the CORONER sample program in chapter 10, all the sample
Windows programs in this book are written using a library called WINIO (sometimes
also called WINDOS). The WINIO library functions are described in detail in Appen
dix A. As seen from a brief glance at the chapters on KERNEL, USER, and GDI, the
source for these programs looks like old, pre-Windows C code: It uses main() and
stdio functions such as printf(), getchar(), and the like. More than one reader has
asked why we chose to code this entire book in "pseudocode," since obviously these
couldn)t be legitimate Windows programs.

They are legitimate Windows programs. WINIO provides a DOS-like procedural
"cover" over the basic skeleton of an event-driven Windows application. You call
printf() and, somewhere within the WINIO library, it turns into a TextOut(). What's
more, anything you printf() to a window stays there; WINIO handles WM_PAINT
messages automatically. At the same time, you get many of the benefits of Windows:
backward scrolling , menus, and clickable lines (as in HEAPWALK) that can bring up
additional windows. You can even handle WM_ messages without writing a
switch/case statement. For example, the graphic at the top of page 152 shows part of
what the WINWALK program from chapter 10 looks like to a user of the program.

This is a proper Windows application. If there is more data than can fit in a win
dow (which is likely here, since it is a list of every item in the Windows global heap),
the user can scroll through it. The user can resize the window. If part of the window is
obscured by another window that subsequently stops obscuring it, the formerly
obscured portion is properly repainted. In other words, messages such as
WM_PAINT, WM_SIZE, and WM_VSCROLL are being handled properly.

Yet, here is how part of the same program looks to the programmer:
ge.dwS;ze = s;zeof(ge);
ok = GlobalF;rst(&ge, GLOBAL_ALL);

152 UNDOCUMENTED WINDOWS

4AO CONNDLG NODULE TABLE

0000: 4E 45 06 00 11 03 97 14 90 00 iF 04 45 C3 09 00 HE ••••••••••E•••
0010: 00 04 00 00 00 00 08 00 00 00 00 00 09 00 04 00 ••••••••••••••••
002U: C7 U1 4U UU 9A UU DE 02 EF U2 F7 02 B2 04 00 00
0030: 30 00 04 00 00 00 02 08 F7 02 F7 02 90 05 00 03
0040: 7E 01 23 2F 12 01 23 2F 36 15 96 04 CF 59 12 01
0050: DO 59 7E 14 6C UA FF 3E 12 D1 FF 3E 56 14 80 DE
0060: 1E 28 12 D1 iF 28 4E 14 28 11 40 DB 12 D1 40 DB

while (ok)
{

printf(II%04X %5lX %-85 %5\n",
ge.hBlock, ge.dwBlockSize,
GetModuleNameFromHandle(ge.hOwner),
GetGlobalBlockType(ge.wType, ge.wData)
);

ok = GlobalNext(&ge, GLOBAL_ALL);
}

Now imagine how this code would look if it directly called Windows API func
tions. The fact that we're walking the Windows global heap, using ToolHelp, printing
out a description of each object, would be totally obscured by calls to BeginPaint(),
EndPaint(), TextOut(), ScrollWindow(), SetScrollPos(), UpdateWindow(), and a host
of other Windows API functions. WINIO will take care of all that.

All those Windows calls-the standard "boilerplate" needed in almost every Win
dows application-are part of a wonderful API that we can easily see ourselves using
for the next five to ten years. Functions such as BeginPaint() and TextOut() are
becoming part of an "industry standard architecture" much as the DOS INT 2Ih API
has been. But they are best used as a foundation upon which to build higher level
libraries; they are generally too low-level for direct use.

That a Windows application does not have to directly use the Windows API, that
you can put a layer on top of this API, surprises so many Windows programmers that
we could almost claim that this fact is "undocumented." Certainly Microsoft's SDK
manuals never suggest that you could write a Windows application in any way other
than peppering your code with direct calls to TextOut(), BeginPaint(), and so on.

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 153

The idea that a Windows program must contain direct, explicit Windows API
calls-that it's not a "true" Windows application if it isn't descended from the original
GENERIC.C-is part of the same reverence for the Windows API that we seek to
undermine by disassembling this API and looking at the code. It may seem odd to
introduce a way of hiding the Windows API, in a book otherwise devoted to exposing
even lower level portions of it. However, revealing undocumented Windows API calls
and then covering up the existing documented ones are really just two sides of the
same coin: questioning the Windows API, instead of taking it on face value. The API
is just code; we can do with it what we will.

In addition, there's no point in showing you example programs filled with calls to
RegisterClass(), CreateWindow(), GetMessage(), and TextOut(): any Windows pro
grammer has seen those a million times already. What you haven't seen probably are
calls to SetInternalWindowPos() or GlobaIMasterHandle(), or manipulation of the
Task Database or WND structure, and we want these to stand out. WINIO gives us a
way to write many Windows programs without each of them consuming several hun
dred lines of standard, boilerplate code. Although WINIO uses some neglected
aspects of the Windows API, nothing in the implementation of WINIO itself has
much to do with undocumented Windows. Therefore, we will not be discussing the
implementation ofWINIO here; its source code is not even included on the accompa
nying disk. Instead, .LIB files are included, for small-model and medium-model
Microsoft C and Borland C++, and so are the necessary .R files.

Why didn't we just use the QuickWin library that comes with Microsoft C/C++
7.0, or the EasyWin library that comes with Borland C++? Because neither library lets
us do real Windows programming. In particular, Microsoft's documentation states
that a QuickWin program cannot make any Windows API function calls! This immedi
ately rules out QuickWin for anything other than porting DOS programs. EasyWin
also was clearly designed only for porting simple DOS programs to Windows, not for
writing Windows utilities.

If you are interested in how WINIO works, see our article, "Call Standard C I/O
Functions from Your Wmdows Code Using the WINIO Library" (Microsoft Systems
Journal, July 1991). WIN!O has grown considerably since the MSJ article-it now
includes multiple windows, clickable lines, menus, and many other features-but the
basic architecture is the same. There is a further discussion in "Porting DOS Programs
to Protected-Mode Windows with the WINDOS Library" (Microsoft Systems Journal,
September-October 1991). We will discuss the implementation ofWINIO in depth, and
present its source code, in a forthcoming book, DOS Programmer)s Guide to Windows.

An Interactive Command Shell
As our first example of a WINIO program, let's look at a stripped-down command
shell for Windows. The shell supports the commands CD, DIR, and EXIT; you can
change drives; most important, you can run any Windows program by typing its
names, plus any arguments, on the command line. You will be able to see all this in
the figure on top of page 154.

154 UNDOCUMENTED WINDOWS

Command Shell
Eile

l.F46
C:\UNDOCWIN>cd \windows\sysce!l
C:\WINDOWS\SYSTEM>dir *.dll

ER.DLL ~008

COMMDLG.DLL 8~248

DDEML.DLL 36864
TOOLHELP.DLL 1.41.28
LZEXPAND.DLL ~~36

SYSTEM.DLL 61.648
LECLI.DLL 83456
LESVR.DLL 24064

SHELL.DLL 41.600
IN87EM.DLL 1.2800
TM.DLL 1.66828

1.1. File(s) 54~580 ~ces

C:\WINDOWS\SYSTEM>clock
l.F86
C:\WINDOWS\SYSTEM>sh
l.EFE
C:\WINDOWS\SYSTEM>

With WINIO, producing this useful program takes about 80 lines of code. Until
the user exits, the program sits in a loop, each time printing a COMMAND.COM
pg-style prompt, getting a line of input, and then performing some action based on
the input. The action will usually be to pass the command line to WinExec():

1* SH.C -- Command Shell for Windows *1

#include "windows.h"
#include <stdlib.h>
#include <string.h>
#ifdef __BORLANDC__
#define __MSC
#include <dir.h>
#else
#include <direct.h>
#define setdisk(x)
#endif
#include <dos.h>
#include "winio.h"

static HWND hwnd_sh;

int maine)
{

_chdrive«x)+1)

char buf[256J = {a};
char orig[256J = {a};
char *cmd, *args;

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 155

winio_settitle(hwnd_sh, "Command Shell tl);
winio_setfont(hwnd_sh, ANSI_FIXED_FONT);

for (;;)
{

II prompt-read-eval-exec loop

II eval:
break;
chdir(args);
do_dir(args);
== 0»

}

printf(lI%s>lI, getcwd(buf, 255»; II prompt
gets(buf); II read
if «bufCOJ == 1\0 1) I I (bufCO] == I\n l »

continue;
strcpy(orig, buf); II unmodified buffer
cmd = strupr(strtok(buf, II \t ll »;
args = strtok(O, lI\t");
if (strcmp(cmd, "EXIT") == 0)
else if (strcmp(cmd, tlCD") == 0)
else if (strcmp(cmd, IIDIR") == 0)
else if «cmdC1J == I:') && (cmdC2J

setdisk(toupper(sCO]) - IA I);
else if (WinExec(orig, SW_SHOWNORMAL) <= 32) Ilexec

puts("Bad command or file name ll
);

II SetActiveWindow(hwnd_sh);

winio_close(hwnd_sh);
return 0;

}

int do_dir(char *5)
{

struct find_t info;
char wildcardC80J;
unsigned long bytes=O;
unsigned attrib, files=O;
strcpy(wildcard, s);
if (! strchr(wildcard, I.'»

strcat(wildcard, "*.*11);
attrib = _A_NORMAL I _A_SUBDIR I _A_RDONLY;
if (_dos_findfirst(wildcard, attrib, &info) != 0)

return 0;
winio_setpaint(hwnd_sh, FALSE);
do {

if (info.attrib & _A_SUBDIR)
printf("%-13s\t<DIR>\n", info.name);

else
printf(II%-13s\t%9lu\n", info.name, info.size);

files++;
bytes += info.size;

} while (_dos_findnext(&info) == 0);
printf("%5u File(s)\t%lu bytes\n", files, bytes);
winio_setpaint(hwnd_sh, TRUE);
return 1;

}

The for (;;) makes it appear as if this program doesn't let other programs run. But
other programs do run. Inside its versions of gets(), printf(), and other stdio functions,

156 UNDOCUMENTED WINDOWS

WINIO calls the standard Windows message-retrieval functions. This is the key to
writing procedural-looking code that still behaves correctly under Windows.

Note the calls to winio_setpaint() in the do_dir() function. Because WINIO sup
ports backward scrolling, SH can speed up its output by turning off painting, blasting
text to the WINIO buffer (simply by calling printf() with painting turned off), and
then turning painting back on. Even if there are hundreds of file names displayed for a
DIR command, the user can just scroll back to look at them. The result is Windows
output that appears faster than DOS output.

SH.C #includes "winio.h" rather than <stdio.h>. In general, WINIO programs
should use "winio.h" rather than <stdio.h>, not only so that they can access WINIO
extensions such as winio_setpaint(), but also because most versions of <stdio.h> pres
ent getc() and putc() as macros rather than functions; these macros would not get
routed to WINIO.

The SH program is interesting in its own right; Windows makes a fascinating envi
ronment for command shells. SH differs from COMMAND.COM running in a DOS
box because it calls the Windows API function WinExec() and thereby performs
actions that COMMAND.COM cannot, such as launching Windows applications.
Also, because Windows maintains (in the Task Database) a separate current directory
for each task, you can run multiple instances of SH, each with its own separate drive
and directory. Finally, as a command processor for a multitasking environment, SH
does not wait for the Windows programs it executes to complete; WinExec() executes
Windows programs asynchronously. Thus, using SH is sort of like having a Unix shell
with an & automatically tacked on the end ofevery line.

Incidentally, an early version of this program was called SHELL rather than SHe
However, Windows 3.1 already has a module called SHELL, and you cannot load a
module-even one that corresponds to a task rather than a DLL-if there's already a
different one with the same module name. This behavior can drive you crazy if you've
spent hours batlled by why your nice program called "SHELL" (or "SYSTEM" or
"TIMER") simply will not run.

Going Resident
Our next program, even less ambitious than SH, helps make a key point about
WINIO programs (and, in a way, about Windows programs in general). The program
can be built, for example, with Borland c++:

II hello.e
II bee -WS hello.e swindos.lib

#inelude "windows.h"
#inelude "winio.h rl

maine)
{

printf(rlhello world!\n");
}

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 157

With WINIO, this really is a Windows program. You can resize the window, move
it, iconize it, and close it. Most important, you can force it to repaint itself: But what
happens when the program falls off the end ofmain()? Does it exit?

No, the program does not exit at this point. Instead, an atexit() handler installed
by WINIO grabs control and, behind the scenes, puts the program into a conven
tional Windows Get/Translate/DispatchMessage loop. Whenever the window needs
to be repainted, for example, a WM_PAINT handler in WINIO takes care of it.
WINIO similarly handles many other WM_ messages automatically.

What happens, then, is that the WINIO program goes resident. Before main() is
called, WINIO installs handlers for WM_ messages. Even after main() returns, these
handlers are still in place, repainting the window, responding to WM_SIZE messages,
and so on. Double clicking on the window's close box is what makes it exit.

In fact, this is no different from any other Windows program. In a way, all Win
dows programs are memory resident, and the Windows programming model repre
sents the ultimate triumph of the TSR. You install some handlers and leave them to
respond to different events. In a TSR., you wait for a hotkey press or a timer tick; in a
Windows program you wait for a WM_KEYDOWN or a WM_TIMER; there's essen
tially no difference. Only the size of the manuals has changed. "Event-driven" program
ming sounds very new and different, but it's really just good old interrupt handling in
yuppie attire.

Installing Event Handlers
Our next example makes this even clearer. NUMTASKS.C simply keeps track of how
many tasks are running; the way it does this provides a good example of how to do
event-driven programming with WINIO:

II NUMTASKS.C
#include "windows.h"
#include "winio.h"
#include "wmhandlr.h"

static WORD numtasks=O;

long on_time(HWND hwnd, unsigned message, WORD wParam, LONG lParam)
{

WORD num;
if «num = GetNumTasks(» != numtasks)
{

numtasks = num;
winio_clear();
printf("%u tasks running\n", numtasks);

}

return 0;
}

maine)
{

HWND hwnd = winio_current();
wmhandler_set(hwnd, WM_TIMER, on_time);

158 UNDOCUMENTED WINDOWS

if (! SetTimer(hwnd, 1, 1000, NULL» II once a second
fail("can1t create timer");

II go resident by falling off the end of main
}

In main(), NUMTASKS.C uses the documented Windows API function to create
a timer that will go off once every 1000 milliseconds. In other words, once per sec
ond, NUMTASKS's window will receive a WM_TIMER message. NUMTASKS calls
the winio_current() function to get its window handle; before main() is called,
WINIO has already created a window for it in (you guessed it) WinMain().
NUMTASKS then calls the wmhandler_set() function to install a handler, named
on_time(), for these WM_TIMER messages. The name "on_time" is meant to resem
ble the ON TIME GOSUB statement found in some versions of BASIC, because han
dling a WM_TIMER message in Windows is hardly different from writing an ON
TIME GOSUB in BASIC.

NUMTASKS then returns from (actually, it just falls off the end of) main(). But
the on_time() function is still resident. Every second, on_time().will be invoked. The
on_time() function simply calls the Windows GetNumTasks() function to see if the
number of tasks has changed. If it has, on_time() uses the winio_clear() and printf()
functions to display the new number of tasks.

"On_time() will be invoked": the use of passive voice is a tip-off that we've left
something out. There's a WndProc function inside WMHANDLR, which is the event
handling component ofWINIO. This WndProc uses the WM_ message number (such
as Oxl13 in the case of WM_TIMER) as an index into a table of message-handling
functions. Every time it receives a message, the WndProc calls the appropriate function
out of the table.

When NUMTASKS called wmhandler_set(), it was simply changing the value of
wmhandler_table[WM_TIMER]. To use wmhandler_set(), you need to #include
"wmhandlr.h." Programs can change handlers on the fly. wmhandler_set() returns the
value of the previously installed handler, which can be used to chain events. A lot nicer
than a 14-page switch/case statement, no? And notice how we get to combine the
best of both worlds here: linear, procedural programming (such as calling printf()),
where it's convenient, and event-driven programming (installing on_time() to handle
WM_TIMERmessages), where that makes sense.

Naturally, a WINIO program can contain more than one message-handling func
tion. Each WM_ message is handled in its own separate function; each one is installed
with wmhandler_set(). For example:

static WMHANDLER prev_timer=O;
static WMHANDLER prev_size=O;
static WMHANDLER prev_cmd=O;

long on_time(HWND hwnd, unsigned message, WORD wParam, LONG lParam)
{

II do something with WM_TIMER messages

II chain to previous handler, if there is one

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 159

return (prev_time) ? (*prev_time)(hwnd, message, wParam, lParam) 0;
}

long on_size(HWND hwnd, unsigned message, WORD wParam, LONG lParam)
{

II do something with WM_SIZE messages

return (prev_size) ? (*prev_size)(hwnd, msg, wParam, lParam) : 0;
}

long on_cmd(HWND hwnd, unsigned message, WORD wParam, LONG lParam)
{

switch (wParam)
{

II do something with WM_COMMAND messages
}

return (prev_cmd) ? (*prev_cmd)(hwnd, msg, wParam, lParam) 0;
}

II
prev_time = wmhandLer_set(hwnd, WM_TIMER, on_time);
prev_size = wmhandLer_set(hwnd, WM_SIZE, on_size);
prev_cmd = wmhandler_set(hwnd, WM_COMMAND, on_cmd);

Putting together a Windows application as a collection of semi-independent,
cooperating message handlers brings out its true nature far better than a massive, 14
page switch statement. It may well be more efficient, too, given how poorly most
compilers do with switch statements.

This example also shows how a message handler can chain to the previous handler
for the message. WINIO programs should always chain on any messages that WINIO
itself handles (unless the program wishes to deliberately override WINIO's behavior).
WINIO currendy installs handlers for these messages:

WM_CHAR
WM_KEYDOWN
WM_SETFOCUS

WM_COMMAND
WM_KILLFOCUS
WM_SIZE

WM_DESTROY
WM_LBUTTONDBLCLK
WM_VSCROLL

WM_HSCROLL
WM_PAINT

WINIO Menus
Because WINIO applications can handle WM_ messages, they can include many of the
standard components of a Windows application. A program could call the Windows
AppendMenu() function to add to WINIO's built-in menu (which includes a File...
command for saving the contents of the window to a file) and use wmhandler_set() to
install a WM_COMMAND handler for the user's menu selections.

Because this is such a common need, WINIO provides separate functions for menu
handling: winio_hmenumain() retrieves a handle to the built-in WINIO menu, and
winio_setmenufunc() installs a function to handle a menu selection. This approach also
avoids the problem seen in the previous example, where we would have needed to use a
switch statement to deal with the different wParam arguments to the WM_COM
MAND handler. Switch statements are almost always a bad idea; we consider them
harmful. Just as WMHANDLERkeeps a table of message-handling functions, WINIO
keeps a table of menu-handling functions.

160 UNDOCUMENTED WINDOWS

The following, an altered version of the BASEMOVE.C example from chapter 5's
entry on GetSelectorBase{), illustrates how the WINIO menu-handling functions are
used together with the Windows API menu-handling functions. The BASEMOVE.C
example needs to be run alongside some other program, such as HEAPWALK or
SHAKER, that can shake up linear memory; in BASEMOV2.C, below, we give the
program its own "GlobalCompact{-1)" menu selection:

1* basemov2.c -- use GetSelectorBase to show segment movement
within the linear address space *1

#include "windows.h"
#include "winio.h"
#include "wmhandlr.h"

1* in 3.0, undocumented function *1
DWORD FAR PASCAL GetSelectorBase(WORD sel);

static WORD code, data;

void gc(HWND hwnd, int wID)
{

printf("GC(-1) = %lu\n", GlobalCompact(-1L»;
}

long on_time(HWND hwnd, unsigned message, WORD wParam, LONG lParam)
{

static DWORD basecode, basedata;
static DWORD prevcode = -1, prevdata = -1;

if «(basecode = GetSelectorBase(code» != prevcode) I I
«basedata = GetSelectorBase(data» != prevdata»

{

printf("CS (%04x) = %08lx\tDS (%04x)
code, basecode, data, basedata);

prevcode basecode;
prevdata = basedata;

}

return 0;

%08lx\n",

}

#define MENUSTRING_GC
#define IDM_GC

maine)
{

I&GlobalCompact(-1)"
1

HWND hwnd = winio_current();
HMENU hmenu = CreateMenu();
HMENU hmenumain = winio_hmenumain(hwnd);
AppendMenu(hmenumain, MF_STRING I MF_POPUP, hmenu, "&Test");
AppendMenu(hmenu, MF_STRING I MF_ENABLED, IDM_GC, MENUSTRING_GC);
winio_setmenufunc(hwnd, IDM_GC, gc);
DrawMenuBar(hwnd);

_asm mov code, cs
_asm mov data, ds

wmhandler_set(hwnd, WM_TIMER, on_time);

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 161

if (! SetTimer(hwnd, 1, 1000, NULL» II once a second
fail("can't create timer");

}

The result, in 50 lines of code, is a menu-and timer-driven Windows application:

In the BASEMOVE.C example in the I<ERNEL chapter, we used a for (;;) loop to
keep the example going; inside the loop, the program calls wmhandler_yield() to let other
tasks run. This works, but it's better to make the program more explicitly event-driven, as
we did above: The program installs its handlers and falls off the end ofmain().

WINIO Clickable Lines
Our final example shows how to build HEAPWALK-like WINIO programs. As noted
earlier, in Microsoft's HEAPWALK (and in similar programs, such as Jeff Richter's
COLONEL), you can click on a line to bring up a secondary window with more infor
mation about the chosen line. This is an excellent model for browsing/snooping utili
ties, and one we use in many of the larger examples in this book.

The winio_setlinefn() function lets you install a function that will get called when
ever the user doubleclicks on a line in the WINIO window. WINIO calls your line
handling function with the line number and text of the clicked-on line, so you can use
either one to figure out what the user is interested in. A line-handling function can
pop up a new window, using the winio_window() function.

The following example, TASKWLI<2, is an improved version of the TASKWALK
program, used in chapter 5 to illustrate an undocumented return value from the
GetCurrentTask() function. TASKWALK just walks the linked list of tasks once, print
ing out the handle and corresponding module name for each one. TASKWLI<2 camps

162 UNDOCUMENTED WINDOWS

out on a timer, updating the list each time the number of tasks changes. (Rather than
use a timer, TASKWLK2 could instead use the ToolHelp NotifyRegister() function
and watch for NFY_STARTTASK and NFY_ENDTASK; see chapter 10.) The user
can doubleclick on any task in the list to bring up a window with additional infor
mation, which in this case is just the task's present working directory (remember,
Windows maintains multiple PWDs on a per-task basis; they're kept in each Task
Database.) The task walk itself in this version is done using TOOLHELP:
1* TASKWLK2.C *1

#include <string.h>
#include <dos.h>
#include IIwindows.h ll

#include IItoolhelp.h ll

#include IIwinio.h ll

1* 3.1 has doc function IsTask(), but it's not in
3.0, so we use TOOlHELP (which works in 3.0) *1

BOOl IsValidTask(WORD w)
{

TASKENTRY te;
te.dwSize = sizeof(TASKENTRY);
return (TaskFindHandle(&te, w) != 0);

}

1* TOOlHElP doesn't provide this; good example of how
UndocWin can be used in conjunction with TOOLHELP *1

void GetTaskCurDir(HANDlE htask, char *buf)
{

BYTE far *fp = MK_FP(htask, Ox66); II offset of pwd in TDB
bufCO] = *fp - Ox80 + 'A'; II drive Letter
bufC1J = I:';
_fstrncpy(&bufC2J, &fpC1J, Ox44);
bufCOx46] = '\0';

}

static HWND hwnd = 0;
static WORD volatile numtasks = 0;

1* Also printing linear base address for each TDB, to show that they
are always allocated in conventional memory (first megabyte) *1

extern DWORD FAR PASCAL GetSelectorBase(WORD wSeL);

1* returns number of tasks found *1
int taskwalk(void)
{

WORD wNumTasks = 0;

TASKENTRY te;
te.dwSize = sizeof(TASKENTRY);
if (TaskFirst(&te) == 0)

return 0;

winio_clear(hwnd);
winio_setpaint(hwnd, FALSE); II no yieLd whiLe waLking task List
for (;;)
{

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 163

printf(U%04x\t%8s\t%08lx",
te.hTask, te.szModule, GetSelectorBase(te.hTask»;

if (te.hTask == GetCurrentTask(»
printf(" <== current task");

printf("\n");
wNumTasks++;
if (TaskNext(&te) 0)

break;
}

winio_setpaint(hwnd, TRUE);

return wNumTasks;
}

long on_time(HWND hwnd, unsigned message, WORD wParam, LONG lParam)
{

II sometimes task list is in unstable state (TOOLHELP
II does nothing to compensate for this!)
while (numtasks != GetNumTasks(»

numtasks = taskwalk();
return 0;

}

void clickfunc(HWND hwnd, LPSTR line, int linenum)
{

char bufC256J;
HANDLE htask;
_fstrcpy(buf, line);
sscanf(buf, 1%04X", &htask); II figure out which task was clicked on
if (! IsValidTask(htask»
{

winio_warn(FALSE, bUf, "Stale task list: no longer valid");
numtasks = 0; II force a new taskwalk

}

else
{

HWND prev = winio_setcurrent(w;n;o_window(buf, 0, WW_HASMENU»;
GetTaskCurDir(htask, buf);
printfC"Current directory: %s\n", buf);
winio_setcurrent(prev);

}

}

maine)
{

hwnd = win;o_current();
winio_setlinefn(hwnd, clickfunc);
numtasks = taskwalk();
wmhandler_set(hwnd, WM_TIMER, on_time);
if (! SetTimer(hwnd, 1, 1000, NULL» II once a second

fail("can't create timer");
return 0;

}

One of the differences between TASWLK2 and TASKWALK is the call to
winio_setlinefn(), passing in the address of the function clickfunc(). Whenever the user

164 UNDOCUMENTED WINDOWS

doubleclicks on a line in the displayed list of tasks, clickfunc() is called with the line
number and the actual text of the line. clickfunc() uses the text, and the C sscanf()
function, to figure out what task was clicked on. It then sees if this is still a valid task.
(Yes, there's a stale data problem.) If it is, it calls winio_window() to create a new win
dow, calls winio_setcurrent() so that stdout appears in that window, and prints out the
specified task's current directory. The results look like this:

So what's this stale data problem? One of the problems with writing HEAP
WALK-like browsers, where the user is presented with a list of items that can be
clicked on for information, is that the state of Windows could totally change from
when the list was displayed to when the user decides he or she wants to know more.
The item selected might no longer be valid.

HEAPWALK tries to avoid this situation by updating itself in an extremely annoy
ing way. TASKWLK2 also tries to avoid this situation by updating itself, though we
hope the effect is less annoying. TASKWLK2's on_time() function automatically gen
erates a new display whenever the number of tasks changes.

However, KERNEL's task list itself can be in an unstable state when a task is in
the middle of starting or exiting. This is why on_time() runs taskwalk() in a loop until
the number of tasks it finds equals the number returned from the GetNumTasks()
function. Note that this is necessary whether you're using ToolHelp, undocumel1ted
Windows, or (as here) a combination of the two.

The result is that the user should never be able to click on an invalid task. Still, it
never hurts to be sure. In 3.1, we could use the documented IsTask() function to ver
ify that we have a valid task handle, but because this isn't supported in 3.0, we've writ
ten our own. The functions IsValidTask(), GetTaskCurDir(), and GetTaskModule
Name() have been given Windows-like names to suggest their general-purpose useful-

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 165

ness (or what would be their usefulness were they spruced up a bit and given some of
what in 3.1 is called "parameter validation"-i.e., error checking of the sort that
should have existed from the very beginning). General-purpose functions of this type
are presented in HANDLES.C and HANDLES.H, in the introduction to chapter 5.

The point here was to illustrate WINIO. In less than 100 lines of C code, we've
written a moderately useful program, which responds to user mouse input and which
uses multiple windows. Think about what it would require to do this using only direct
calls to the Windows API.

WINIO does have one annoying limitation in this area: The user has no visible
clue that the lines are clickable. Unless you know this user-interface "idiom," or unless
the program actually contains a direction such as "Click here to see more," the output
looks just like a static list, not like something you can interact with.

Windows' built-in list boxes are an improvement here, but WINIO doesn't use list
boxes because they're unsuitable for other things that WINIO does (such as providing
a gets() function with which to produce programs such as SH and CALLFUNC). This
reflects the generally frustrating nature ofWindows' built-in controls: They are almost,
but not quite, what one wants, and frequently it is more work to figure out how to
change their behavior via subclassing than to come up with your own control. WINIO
definitely needs more work in this area, but so does Windows itself; the built-in con
trols need to be more extensible, more customizable, and more "open."

See Appendix A for a user's guide to the WINIO library.

CALLFUNC: Dynamic Linking at Your Fingertips!
Having an "application framework" such as WINIO makes it much more likely that
Windows programmers will experiment with the Windows API, trying things out for
themselves, rather than just cuting and pasting blocks of code from the SDK samples.

However, even with WINIO, it seems like a hassle to have to write a five- or ten
line program, compile and link it, just to try out one or two Windows API calls. True,
five or ten lines is an improvement over the non-WINIO 80 or 100, but it would be
nice if, when you wanted to try out a Windows API call, perhaps even an undocu
mented one, you could just type the call in. Just as you do not have to write, compile,
and link a program whenever you want to add some numbers, you should not have to
write, compile, and link a program when you just want to call a Windows API func
tion to see what it does.

In other words, it would be nice to have a Windows API interpreter: a calculator,
if you will. Actually, there are many Windows programs today that can be used in this
way. You might find this hard to believe, but Microsoft Word for Windows-a word
processor, for heaven's sake-contains a complete programming language, Word
Basic, that includes the ability to call Windows API functions "on the fly," without
writing a program. You can even try out some undocumented Windows API functions
with Word Basic. For example, if you have Word for Windows (or even the free
WinWord "Working Model," which includes the complete Word Basic interpreter),

166 UNDOCUMENTED WINDOWS

you can just type the following few lines into a macro-editing window, press the Start
button, and watch in amazement as the undocumented TileChildWindows() function
gives Windows 3.1 the look and feel ofWindows 1.0:

Declare Sub TileChildWindows Lib "user" (hwnd As Integer, action As Integer)
Declare Function GetDesktopWindow Lib "user" () As Integer
Sub MAIN

TileChildWindows GetDesktopWindow, 1
End Sub

This is basically (sorry) the functionality that Windows programmers need in an API
calculator: just a quick way to type in a few lines and see what they do.

Basic for Windows

Even if you're a C programmer and haven't touched Basic for years, it pays to
become familiar with one or two of the many dialects of Basic for Windows. Basic
has become the de facto Windows macro language. Learning about Basic for Win
dows is useful, not only because it's nice to know a noncompiled macro language
when you just want to tryout three lines of code, but also because the future of
Windows programming may be dominated by the need to communicate with the
"big" Windows applications, all of which have Basic or Basic-like macro languages.

The Microsoft Word for Windows 2.0 "working model," with the complete
Word Basic interpreter, comes with Woody Leonhard's excellent (and extremely
odd) book, Windows 3. 1 Programming for Mere Mortals (Addison-Wesley, 1992).

Another Basic interpreter for Windows, Realizer, has a "limited" version that
comes with Michael Hyman's book, Windows 3.0 for BASIC Programmers (Addison
Wesley, 1991). Like Word Basic, Realizer (even the limited version that comes with
Hyman's book) allows full access to the Windows API, including undocumented
calls.•

Even though Word Basic is in many ways a superb little language, it doesn't quite
fit the bill as a Windows programmer's handy API calculator. Neither do the many
other interpreted Windows languages currently available. While most provide a way to
drop down to the Windows API, this is not their chief purpose. What we want is an
interpreter whose sole purpose is to call Windows API functions on the fly.

CALLFUNC, a program provided on the accompanying disk, is just that: a small
interpreter that lets the user type in Windows API calls. The following is a sample ses
sion using this API calculator:

> user getdesktopwindow
OxOe8c
> user tilechildwindows Oxe8c 0
Ox0001
> kernel getcurrenttask %lx
14af1177

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 167

> user syserrorbox IISystem Error!1I IICaption ll 4 5 6
Ox0001
> user iconsize %Fp
Couldn1t find function
> user 86 %Fp
0020:0020
>

User input follows the> prompt, and the function return value or an error mes
sage follows on the next line. In these few lines, we first called the documented USER
function GetDesktopWindow(), which expects no parameters, and which returned an
HWND ofOxOE8C. We passed that HWND as an argument to the undocumented func
tion TileChildWindows(). The log shows an apparent return ofOxOOOl, but actually the
function returns nothing meaningfUl. However, we could observe the program's side
effect which, as noted earlier, is to make Windows 3.1 look sort of like Wmdows 1.0.

On the following input line, we turn our attention to something entirely different
and call the documented GetCurrentTask() function in I<ERNEL, using the %lx printf
mask to print out its full DWORD return value. Next, we're distracted again and call
the undocumented USER function SysErrorBox(). Note that we have passed several
strings; CALLFUNC does some fairly primitive type assessment of parameters and
passes far addresses to quoted strings if it encounters them.

Notice that the line "user iconsize %Fp" was unsuccessful because the above ses
sion was logged in version 3.1. As the entry for IconSize() in the USER chapter states,
the entry point for the function still persists in 3.1, but it is named BEAR86. The next
input line in the above log shows that calling the function through its ordinal number
(86) was successful. At the end of the line, %Fp specifies the mask to be used to display
the return value. In this case, we use %Fp, not because the function returns a far
pointer, but because the mask provides a convenient way of showing a DWORD split
into its low and high WORD components.

Because of its generality, CALLFUNC can also be used for tasks such as posting
or sending messages to other windows: you just call PostMessage() or SendMessage()
from the CALLFUNC command line. Used in this way, CALLFUNC is similar to the
POSTMAN utility published in Microsoft Systems Journal (May 1991). You have to
look up the WM_ message numbers yourself, though; in the following example,
Oxl02 is the "magic number" for WM_CHAR:

> ! notepad , , launch notepad.exe
> user findwindow Notepad OL , , FindWindow(class name)
Ox1a3c , , notepad hwnd
> user getwindow Ox1a3c 5 , , GetWindow(GW- CHILD)
Ox1a90

"
notepad edit control hwnd

> user postmessage Ox1a90 Ox102 I h OL
"

PostMessage(WM_CHAR)
OxOOc6
> user postmessage Ox1a90 Ox102 I i OL

"
PostMessage(WM_CHAR)

OxOO84

This launches Notepad, locates its main window by passing Notepad's class name
to FindWindow(), calls GetWindow(GW_CHILD) to find HWND of its multiline
edit control, and then sends the characters "h" and "i" which duly appear in Notepad.

168 UNDOCUMENTED WINDOWS

This, of course, is exactly how the SendI<eys() statement, found in every Windows
macro language, is implemented.

In this example, we're sending WM_CHAR messages. Obviously we could send
any other message we wanted, once we looked up its number in WINDOWS.H or
some other handy source ofWindows "magic numbers." We're calling PostMessage(),
but we could as easily call SendMessage(). We're calling a function from USER, but
we could as easily call a function from any other DLL. CALLFUNC really is general
purpose.

In essence, CALLFUNC is no different from the SH program whose source was
shown earlier in this chapter, except that the CALLFUNC prompt is always an > and
that, instead of interpreting its input as a command line to be passed to WinExec(),
CALLFUNC treats each line of input as a function call of the following form, where
<angle brackets> indicate required parameters, [square brackets] indicate optional
parameters, and the I indicates a choice:

<modname> <funcnamelordinal> [args ••• J [%maskJ [!J

The modname can be any valid Windows module name: KERNEL, USER, and
GDI are the most common, but CALLFUNC can link to literally any module. If it's a
DLL that's not already in memory, you need to provide its filename, such as
"STRESS.DLL". CALLFUNC will pass this string off to GetModuleHandle() or
LoadLibrary().

The funcname is any exported function name in the module. As an alternative,
you can specify a decimal (not hexademical) ordinal number. CALLFUNC passes this
string or ordinal off to the GetProcAddress() function.

All args to the function are typed in as strings, of course, but CALLFUNC uses
some dumb rules to determine the actual type of each argument:

if first character of arg is a digit or I_I

and if arg contains'.' then it's a floating-point number
else if last character is an 'L' then it's a long
else it's an unsigned word

else if first character is an apostrophe
it's a single-byte character

else if it's the string @buf
it's a far pointer to a 1k buffer built into CALLFUNC

otherwise
it's a string (if within quotes, single arg)

For example, the following passes two four-byte parameters to the FindWindow()
function in USER:

> user findwindow OL "This is a test"

There are two exceptions to the args typing. First, if one of the arguments is the
string @buf, then it turns into a far pointer to a lK buffer within CALLFUNC. You
can use this whenever you need some memory to be side-effected. For example

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 169

> user getwindowtext Ox1964 @buf 256
Ox24
> dump @buf Ox24
1187:0056 I 43 61 6C 6C 66 75 6E 63 3A 20 64 6C 6C 20 66 75 Callfunc: dll fu
1187:0066 I 6E 63 20 58 61 72 67 73 2E 2E 2E 50 20 58 25 60 nc [args ...] [%m
1187:0076 I 61 73 68 50 ask]

Second, if the first argument is the word "regs," then the next four arguments are
assumed to be values for the AX, BX, CX, and DX registers. For example

> kernel dos3call regs Ox3000 0 0 0
Ox0005
> kernel nohookdoscall regs Ox3000 0 0 0
Ox0005

The optional %mask is any valid printf() mask. If no mask is specified, then the default
"Ox%04x" is used. For example

> kernel getversion
OxOa03
> kernel getversion %lx
5000a03
> kernel getversion Ox%lx
Ox5000a03
> kernel getversion Ox%lXL
Ox5000A03L

If the last argument is the character! then CALLFUNC uses the cdecl calling conven
tion rather than the default Pascal calling convention.

CALLFUNC relies on Windows run-time dynamic linking to turn the module
name/function name pair into a callable far function pointer. Together, the three doc
umented functions LoadLibrary(), GetModuleHandle(), and GetProcAddress() are
sufficient to turn a pair of strings such as ("USER", "TILECHILDWINDOWS") into
a function pointer that the program can call.

This same capability is found in OS/2 (where the functions are named
DosGetModHandle(), DosLoadModule(), and DosGetProcAddr()), and, in fact,
CALLFUNC is the Windows adaptation of all OS/2 program that one of us did sev
eral years ago (see "Linking While the Program Is Running: Run-Time Dynamic Link
ing in OS/2," Dr. Dobb)s Journal, November 1989).

Apart from providing dynamic linking at your fingertips, CALLFUNC has some
other useful features. Before treating an input line as a function call, CALLFUNC
checks to see if it is one of the built-in commands CLS, DUMP, EXIT, INFO,
PRINTF, SEL, or !. CLS need not detain us for long; it does what its DOS namesake
does; that is, it clears the display.

If the return value of a function is a global memory handle or a far pointer,
DUMP is often useful for inspecting the contents of the corresponding memory.
DUMP's syntax is

OUMP xxxx:xxxx [length]

170 UNDOCUMENTED WINDOWS

where xxxx:xxxx is the starting address in hex seg:ofs to dump and the length is
optional. If length is omitted, the DUMP command displays 64 bytes, corresponding
to four lines of display output.

For example, we can use DUMP to follow the linked list of tasks:

> kernel getcurrenttask
Ox1177
> kernel getcurrenttask %lx
14af1177
> dump 14af:00f2 16
14AF:00F2 I 57 49 4E 4F 4C 44 41 50 54 44 00 00 00 00 CO 20 WINOLOAPTO
> dump 14af:0000 2
14AF:0000 I 07 08
> dump 0807:0000 2
0807:0000 I BF 11
> dump 11bf:0000 2
11BF:0000 I 77 11 w.
> dump 1177:0000 2
1177:0000 I 00 00

DUMP uses the VERR and LSL instructions to check the validity of the specified
pointer and length. Instead ofxxxx:xxxx, you can specifY @buf to view the side-effective
buffer built into CALLFUNC.

EXIT terminates CALLFUNC's prompt-read-dynlink-printf loop. The CALL
FUNC window is kept open so you can save a log of your session. The window is
closed by double clicking on its close box; this can also be used instead of EXIT.

INFO displays some Windows handles for this instance of CALLFUNC. Many
functions, especially those in KERNEL, require valid task, instance, or other handles as
parameters. INFO provides a ready source ofsuch handles:

hwnd = Ox19ac
task = Ox11f7
module = Ox1207
instance (OS) = Ox11ce
PSP (POB) = Ox11ef
task q = Ox11df
local heap = Ox2ddO

Here, "hwnd" refers to the window handle of the CALLFUNC main window; the
handle is an offset into USER's default data segment. "Task," "module," "instance,"
"PSP," and "task q" are all global memory handles (see "Handle, handles, every
where... " at the beginning of chapter 5). "Local heap" is the address within DS of the
near heap information structure (see "Instance Data" in chapter 5). For example:

> kernel gettaskqueue Ox11f7
"

get taskq from task
Ox11df "

ok
> kernel getexeptr Ox11ce

"
get modhand from instance

Ox1207 "
ok

> kernel getexeptr Ox11df
"

get modhand from taskq

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 1 71

Ox037f
> kernel getmodulehandle user
Ox037f

" hmm, what's that?
" seem to remember taskq owned by USER?
" yes, taskq owned by USER!

PRINTF corresponds to the printf() function. It is useful when you want to see the
decimal representation of a hex number or examine a far string. For example:

> pr;ntf %Fs @buf
This is a window title

Using the SEL command with a word value allows us to see if it corresponds to a
valid selector. If it does, SEL also tells us a little more about it:

> sel Ox18d7
sel=Ox18D7 size=512 data read/write

This tells us that Ox18d7 is indeed a valid selector, that the segment is 512 (decimal)
bytes long, that it is a data rather than code segment, and that it is valid for reading
and writing. Passing SEL a random value (almost always!) provokes the response
"Invalid selector."

The ! is used as a convenient way to start other Windows programs from within
CALLFUNC. Anything after the ! is treated as a command line to be passed to
WinExec(). For example, the following commands both run CONTROL.EXE:

> ! control.exe

> kernel winexec control.exe 1
Ox116e

CALLFUNC GP Fault Handling
CALLFUNC has one major limitation: It does not know anything about the functions
you are calling. It just uses run-time dynamic linking to get a function pointer, pushes
your arguments (converted to their appropriate types) on the stack, calls the function,
and then uses the printf mask to display the return value in AX or DX:AX. By itself,
this is not a limitation but a benefit: This ignorant pass-through design means that
CALLFUNC will work with any API in a DLL, even one that may not have existed at
the time CALLFUNC was compiled. This "late binding" is one of the great benefits
of run-time dynamic linking.

However, precisely because CALLFUNC is just a pass-through mechanism, it
can't help you with passing the correct number, or type, of arguments. Because almost
all Windows API functions use the Pascal calling convention, in which the API func
tion itself pops your arguments off the stack, passing in the wrong number of bytes
will generally cause a (hopefully benign) general protection (GP) fault.

CALLFUNC uses the ToolHelp InterruptRegister() function to install a GP fault
handler. If a GP fault occurs while CALLFUNC is in the middle of making your
function call, it will attempt to recover by doing a Throw() to a Catch() that is

172 UNDOCUMENTED WINDOWS

located just before the top of CALLFUNC's prompt-read-dynlink-printf loop. The
code looks like this:

CATCHBUF catchbuf = {O} ;
char *err_msg = 0;
BOOl in_dynLink = 0;
unsigned caLLfunc_ss = 0;

void _export far FauLtHandLer(void)
{

static unsigned intnum, fauLt_ss;

_asm mov ax, word ptr [bp+8J
_asm mov intnum, ax
_asm mov ax, word ptr Cbp+14hJ
_asm mov fauLt_55, ax

if «in_dynLink) && (intnum
{

13) && (fauLt_55 caLLfunc_ss»

err_msg = uGP fauLt!U;
Throw(catchbuf, 1); II Longjmp off the interrupt caLLback

}

eLse
return; II it's something other than a GP fauLt in CALlFUNC

}

maine)
{

char bufC256J;
FARPROC procinst_fauLthandLer;

_asm mov caLLfunc_ss, 55
procinst_fauLthandLer =

MakeProcInstance«FARPROC) FauLtHandLer, __hInst);
if (! InterruptRegister(O, procinst_fauLthandLer»

puts(UCan't register GP fauLt handLer!U);

if (Catch(catchbuf) != 0)
puts(err_msg);

for (;;)
{

Ilsetjmp: come here with errors

put cha r (, > '); put cha r (' I); I I prom pt
gets(buf); II read
II Look for buiLt-in commands, such as DUMP, SEL, etc.,
II or for EXIT, which breaks out of Loop
in_dynLink++;
do_dynLink(buf); II dynLink, printf
in_dynlink--;

}

FreeProclnstance(procinst_faulthandler);
}

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 173

IfWINICE is also running, it will get the GP fault before CALLFUNC does. Just
type "c" (continue) and CALLFUNC will then get to handle the fault; it will display
a low-key "GP fault!" message and then await further input.

If Dr. Watson, WinSpector, or a similar interrupt-trapping program (such as our
own CORONER) was running before you started CALLFUNC, once again it will get
first crack at the fault before CALLFUNC (see the description of InterruptRegister()
in chapter 10). Again, however, CALLFUNC will generally still be able to recover
from the fault.

Giving programs the ability to handle their own GP faults is one of the great fea
tures of ToolHelp. Before ToolHelp, and in Microsoft's previous operating-system
experiments (OS/2 l.x), trying to catch GP faults was a major chore (see, for exam
ple, "Stalking GP Faults," Dr. Dobb)s Journal, January 1990 and February 1990).
With ToolHelp, as the above code fragment shows, it is relatively simple and straight
forward. Thanks, Microsoft!

Watching Undocumented WM_ Messages with SNOOP

Having taken a look at an API call interpreter, next up in our whirlwind tour ofWin
dows diagnostic tools are the two event logging/tracing programs included with the
book: SNOOP, which watches WM_ messages, including undocumented ones, and
WISPy (I Spy for Windows), which watches interrupts and which is sort of a cheap
Windows version of the popular INTRSPY program from Undocumented DOS.

In the world of networking, programs like Spy or SNOOP are called protocol
analyzers or "sniffers." They report on various aspects of traffic on the net. Given that
Windows is a message-based system, it is hardly surprising that it should require the
same sort of traffic-reporting diagnostic tools as a network. Besides, there is a tremen
dous amount of "hook" functionality in the Windows API that practically begs to have
this type of logging/tracing utility built on top ofit. The existence of such API calls as
SetWindowsHook() and SetWindowsHookEx(), or the ToolHelp function Notify
Register(), sometimes seems like a solution in search of a problem. The problem then
turns out to be how to write a Windows "sniffer."

Similar to the SDK Spy program, Borland's WinSight, and Richter's VOYEUR
program, SNOOP reports on the WM_ messages received by one or more windows.
Perhaps it should have been called YASP (Yet Another Spy Program). However,
SNOOP differs from these other programs in a number ofways:

• Although able to report on any WM_ message, SNOOP is specially tailored for
investigating undocumented messages. It works off two data files,
WM_MSG.DAT and (by default) WM_UNDOC.DAT. When used with
WM_UNDOC.DAT, SNOOP shows any messages, documented or undocu
mented, that are triggered during the processing ofan undocumented message.

174 UNDOCUMENTED WINDOWS

• The SNOOP data files can be customized, to tell SNOOP about WM_USER+
messages, about messages created with RegisterWindowMessage(), or about
additional undocumented messages.

• SNOOP's "trace" option reports on which USER built-in WndProcs process a
message. If a message arrives at DetWindowProc() or EditWindowProc(), for
example, SNOOP can tell you.

• SNOOP uses an undocumented aspect of InSendMessage() (described in
chapter 6) to locate the origin of sent messages.

• The effect and behavior of messages can be analyzed by filtering them out,
i.e., not allowing them to reach either the target window or the default win
dow procedures, and watching the resultant effect. In other words, SNOOP
can be run in a massively intrusive "Heisenberg" mode.

• SNOOP devotes a separate tracing window to each window you are watching,
making it useful as a tool for investigating undocumented inter-window pro
tocols such as "drag and drop" in 3.0 and 3.1.

When SNOOP starts up, it shows an indented list of the window hierarchy. A
menu item lets you "refresh" the list at any time (SNOOP does not automatically do
this refresh, in the cool but slightly disconcerting way that WinSight does).

Double-clicking on any window in this display brings up another window in which
messages will be logged. As noted above, you can watch message traffic for multiple
windows at the same time; each one will get its own message-logging window. For
example:

Windows Message Snoo
file Befreshl .Help...

271C
15F4
167C Collage

16DC Filespec:
1724
176C Options
18E4 AutoIncrement
1928 Active Window
196C Crop Image
1980 Include Pointer
19F4 Show Progress
1A38 Audible Countdown
1A7C Transformations
1ACO Flip Uertical
1804 Flip Horizontal
1848 Reverse Colors
188C Image Settings
18DO Forlllat:
1C18
1C 8 T e:

file ,Clearl .Qptions
[00011] WM_EXITSIZEMOUE(0232) 0000 0 ~:

[00012] WM_EHTERMEHUlOOP(0211) OOOO"*~

[00013] WM_EXITMEHUlOOP(0212) 0000 0
[00014] WM_PAIHTICOH(0026) 0001 0000
[00015] WI'CPAIHTICOH(0026) 0001 0000' ~

[00016] WM_EHTERSIZEMOUE(0231) 0000 .f
[00017] WM_EHTERMEHULOOP(0211) 0000 'I
[00018] WM_EXITMEHULOOP(0212) 0000 0 i
[00019] WM_SETUISIBLE(0009) 0000 000--

" 3.1 DDK says WM_UNUSED0036

" drag & drop
" drag & drop
" drag & drop
" drag & drop
" drag & drop
" drag & drop

;; Documented in version 2.1 SDK
;; Documented in version 2.1 SDK
;; 3.1 DDK WINDOWS.H - doc in Win32 API
" ditto
" ditto -- doc in Win32 API
" ditto -- doc in Win32 API
" cf. KERNEL FileCdr()

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 175

The messages that SNOOP logs to this window are determined by the contents of
a data file. By default, SNOOP uses the file WM_UNDOC.DAT, to show all undocu
mented messages:
;; WM_UNDOC.DAT Undocumented Windows messages
WM_SIZEWAIT 0004
WM_SETVISIBLE 0009
WM_SYSTEMERROR 0017
WM-PAINTICON 0026
WM_ALTTABACTIVE 0029
WM_SETHOTKEY 0032
WM_GETHOTKEY 0033
WM_FILESYSCHANGE 0034
WM_ISACTIVEICON 0035
WM_QUERYPARKICON 0036
WM_QUERYSAVESTATE 0038
WM_??? 003A 003F
WM_TESTING 0040
WM_OTHERWINDOWCREATED 0042" Win32 WINUSER.H -- also RegisterWM
WM_OTHERWINDOWDESTROYED 0043 "Win32 WINUSER.H -- also RegisterWM
;; possibly WM_ACTIVATESHELLWINDOW 0044 ;; SetWindowsHook WH_SHELL
WM_HOTKEYEVENT 0045 ;; Win32 WINUSER.H; not same as WM_HOTKEY
WM_??? 0049 0080
WM_SYNCPAINT 0088 "cf. OS/2 PM CS_SYNCPAINT
WM_SYNCTASK 0089 "WINUSER.H: ST_BEGINSWP, ST_ENDSWP
WM_??? 008A 009F
WM_??? OOAA OOFF
WM_YOMICHAR 0108 "Japan
WM_CONVERTREQUEST 010A" Japan
WM_CONVERTRESULT 010B" Japan
WM_INTERIM 010C "Korea
WM_??? 0109 010F
WM_SYSTIMER 0118 "USER CreateSystemTimer()
WM_??? 0119 011E
WM_??? 0122 0130
WM_LBTRACKPOINT 0131
WM_??? 0132 01FF
WM_??? 020A 020F
WM_ENTERMENULOOP 0211
WM_EXITMENULOOP 0212
WM_NEXTMENU 0213
WM_??? 0214 021F
WM_DROPOBJECT 022A
WM_QUERYDROPOBJECT 022B
WM_BEGINDRAG 022C
WM_DRAGLOOP 022D
WM_DRAGSELECT 022E
WM_DRAGMOVE 022F
WM_ENTERSIZEMOVE 0231
WM_EXITSIZEMOVE 0232
WM_??? 0234 027F
WM_KANJIFIRST 0280
WM_KANJI??? 0281 029E
WM_KANJILAST 029F

1 76 UNDOCUMENTED WINDOWS

WM_???
WM_INTERNAL_COALESCE ??
WM_INTERNAL_OOE_??

WM_CBT_RESERVEO_??
WM_USER

02AO 02FF
0390 039F
03EO 03EF

03FO 03FF ;; CBr = "computer-based training"
0400 FFFF

;; Undocumented in 2.1, 3.x

0100
0101
0102
0103
0104
0105
0106
0107
010S

Rather than watch undocumented messages, you can watch other message catego
ries simply by specifying a different .DAT file on the SNOOP command line. For exam
ple, you might create a WM_KEY.DAT file, to watch all keyboard-related messages:

; WM_KEY.OAT
WM_KEYOOWN
WM_KEYUP
WM_CHAR
WM_OEAOCHAR
WM_SYSKEYOOWN
WM_SYSKEYUP
WM_SYSCHAR
WM_SYSOEAOCHAR
WM_YOMICHAR

This shows the syntax of each line in the file. Comments start with a semicolon in
any position and are terminated by the end of the line, and blank lines are ignored.
Each line describes a range of messages in the form "WM_name start-value [end
value]," where start-value and the optional end-value specify, in hex, the start and end
of a range of values associated with WM_name. If an end-value is not specified, the
entry describes a single value. WM_UNDOC.DAT has a number of lines designated
WM_??? that use a range to describe values for which no messages names are currently
known to exist. SNOOP uses the contents of this file as the list of messages to be dis
played. If used to sniff out undocumented messages sent or posted to File Manager,
for example, here is what SNOOP might find:

[00001J WM_GETHOTKEY(0033) 0000 00000000
Sent by WINOA3S6

[00002J WM_SYNCPAINT(008S) 0017 00000000
Sent by SNOOP

[00003J WM_SYNCPAINT(OOSS) 0017 00000000
Sent by SNOOP

[00004J WM_ENTERMENULOOP(0211) 0000 00000000 Posted
[00005J WM_EXITMENULOOP(0212) 0000 00000000 Posted
[00006J WM_ENTERMENULOOP(0211) 0000 00000000 Posted
[00007J WM_EXITMENULOOP(0212) 0000 00000000 Posted
[OOOOSJ WM_SYNCPAINTC008S) 0017 00000000

Sent by SNOOP
[00009J WM_FILESYSCHANGE(0034) S056 00003094 Posted
[00010J WM_FILESYSCHANGE(0034) 8043 000030CC Posted
[00011J WM_FILESYSCHANGE(0034) S056 00003094 Posted
[00012J WM_FILESYSCHANGE(0034) 8043 000030CC Posted
[00013J WM_GETHOTKEY(0033) 0000 00000000

Sent by WINOA386
[00014J WM_GETHOTKEY(0033) 0000 00000000

Sent by WINOA386

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 1 77

For further details on WM_GETHOTKEY, WM_SYNCPAINT, WM_ENTERj
EXITMENULOOP, and WM_FILESYSCHANGE, see chapter 7.

As the preceeding example shows, when a message has been issued with
SendMessage() rather than with PostMessage(), SNOOP displays an additional line
indicating where the message came from. The phase "Sent by" is somewhat mislead
ing because, for example, SNOOP did not send File Manager a WM_SYNCPAINT
message. However, SNOOP was the active task when some DLL (undoubtedly
USER) sent File Manager a WM_SYNCPAINT; this message was generated when a
SNOOP window was moved, revealing a previously obscured portion ofFile Manager.

How does SNOOP know what task was active at the time a message was sent? As
is explained in chapter 6, the return value of the documented InSendMessage() func
tion, if not zero, is actually the Task Queue handle of the task that sent the current
message; this value comes straight out of a field in the Task Queue structure. This
opens up the possibility of tracing back through the chain of SendMessage() calls.
SNOOP uses essentially the following code:

#define TaskFromTaskQueue(tq) *«WORD far *) MK_FP(tq, 2»

#define ModuleNameFromTask(t) «char far *) MK_FP(t, OxF2»

#define TaskQueueOfSender(tq) *«WORD far *) MK_FP(tq, Ox3A»

void PrintSenderChain(void)
{

sender_taskq = InSendMessage();
while «sender_taskq != 0) && (sender_taskq != my_taskq»
{

sender_task = TaskFromTaskQueue(sender_taskq);
printf("Sent by %.8Fs\n", ModuleNameFromTask(sender_task»;
sender_taskq = TaskQueueOfSender(sender_taskq); II follow chain

}

}

Tracing Messages Through WndProc Calls
Selecting the Trace option from the SNOOP Options menu will produce a more
detailed look at undocumented messages. Rather than just print the messages sent or
posted to the window, SNOOP follows their progress through to Windows' built-in
window procedures.

For example, here SNOOP is watching the same set of undocumented messages
delivered to File Manager as before, but this time the Trace option is on:

[00018J WM_SYNCPAINT(0088) 0017 00000000
Sent by SNOOP

->DefFrameProc h=1680 m=WM_SYNCPAINT(0088) w=0017 l=OOOOOOOO
->MDIClientWndProc h=1680 m=WM_NCPAINT(008S) w=0001 l=OOOOOOOO
<-MDIClientWndProc ret 00000000 (h=1680 m=WM_NCPAINT)
->MDIClientWndProc h=1680 m=WM_ERASEBKGND(0014) w=OBB6 l=OOOOOOOO
<-MDIClientWndProc ret 00000001 (h=1680 m=WM_ERASEBKGND)
->DefMDIChildProc h=1774 m=WM_NCPAINT(008S) w=0001 l=OOOOOOOO

178 UNDOCUMENTED WINDOWS

<-DefMDIChildProc ret 00000000 Ch=1774 m=WM_NCPAINT)
->DefMDIChildProc h=1774 m=WM_ERASEBKGND(0014) w=OBAE l=OOOOOOOO
<-DefMDIChildProc ret 00000001 Ch=1774 m=WM_ERASEBKGND)

<-DefFrameProc ret 00000000 Ch=1680 m=WM_SYNCPAINT)
[00019] WM_GETHOTKEY(0033) 0000 00000000

Sent by WINOA386
->DefFrameProc h=1680 m=WM_GETHOTKEY(0033) w=OOOO l=OOOOOOOO
<-DefFrameProc ret 00000000 Ch=1680 m=WM_GETHOTKEY)
etc ...

[00024] WM_ENTERSIZEMOVE(0231) 0000 00000000 Posted
->DefFrameProc h=1680 m=WM_ENTERSIZEMOVE(0231) w=OOOO l=OOOOOOOO
<-DefFrameProc ret 00000000 Ch=1680 m=WM_ENTERSIZEMOVE)

[00025] WM_EXITSIZEMOVE(0232) 0000 00000000 Posted
->DefFrameProc h=1680 m=WM_EXITSIZEMOVE(0232) w=OOOO l=OOOOOOOO
<-DefFrameProc ret 00000000 Ch=1680 m=WM_EXITSIZEMOVE)

[00026] WM_ENTERMENULOOP(0211) 0000 00000000 Posted
->DefFrameProc h=1680 m=WM_ENTERMENULOOP(0211) w=OOOO l=OOOOOOOO
<-DefFrameProc ret 00000000 Ch=1680 m=WM_ENTERMENULOOP)

[00027] WM_EXITMENULOOP(0212) 0000 00000000 Posted
->DefFrameProc h=1680 m=WM_EXITMENULOOP(0212) w=OOOO l=OOOOOOOO
<-DefFrameProc ret 00000000 (h=1680 m=WM_EXITMENULOOP)

From this, we can see that the File Manager main window passes on WM_SYNC
PAINT, unchanged, to DefFrameProc(), which then turns it into WM_NCPAINT
and WM_ERASEBKGRND messages for MDIClientWndProc() and DetMDI
ChildProc(). The other undocumented messages-WM_GETHOTKEY, WM_ENT
ERSIZEMOVE, and so on-are all passed, unchanged, to DetFrameProc(), which
appears to "eat" them.

SNOOP knows about the following window procedures:

(dialogs)
(MDI)
(MDI)

EDIT
BUTTON
COMBOBOX
LISTBOX
MDICLIENT

BEAR306)
SCROLLBAR
STATIC

DefWindowProc
DefDlgProc
DefMDIChildProc
DefFrameProc
DesktopWndProc
EditWndProc
ButtonWndProc
ComboBoxCtlWndProc
LBoxCtlWndProc
MDIClientWndProc
MenuWndProc (3.1
SBWndProc
StaticWndProc

To trace the course of a message through these WndProcs, SNOOP needs to have
names, not only for the messages it is explicitly watching (generally the undocumented
messages in WM_UNDOC.DAT), but for all messages. For example, SNOOP
showed above that a WM_SYNCPAINT "becomes" a WM_NCPAINT and a WM_
ERASEBKGRND. To show this, it has to know that message 85h is WM_NCPAINT
and that 14h is WM_ERASEBKGND. SNOOP gets these "secondary" message num
bers (i.e., messages it will display only during a trace) from the file WM_MSG.DAT.
Like WM_UNDOC.DAT, this file can be changed by the user. Unlike

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 1 79

WM_UNDOC.DAT, though, you cannot specify a different file; you must have
WM_MSG.DAT.

How does SNOOP intercept calls to functions like DefWindowProc() and
EditWndProc()? Subclassing, using SetWindowsHookEx(WH_CALLWNDPROC)
and/or SetWindowsHookEx(WH_GETMESSAGE), makes it relatively simple to
intercept WM_ messages in Windows. (This is one reason why so many Spy programs
have been written!)

Unfortunately, Windows hooks do not provide a way to see the return from a
message. Without this, a message spy can't keep track of the nesting of messages. For
this reason, message spies, including SNOOP, generally use window subclassing
instead of, or in addition to, windows hooks. The term "subclass" isn't quite accurate
here, because the window's messages are being passively intercepted, without chang
ing the window's behavior (but, see the SNOOP Filter option below). Like subclass
ing, however, message spies use SetWindowLong(hwnd, GWL_WNDPROC).

To intercept calls to a built-in WndProc, SNOOP pretends to be a debugger: It
puts INT 3 breakpoints (char OCCh) on the first instruction of the WndProc. This
same INT 3 technique is used by other programs that trap API calls, to do for func
tion calls what programs like Spy and SNOOP do for WM_ messages. The BPX com
mand in WINICE can also be used for the same purpose. For a slightly different
approach, see the article "Intercepting DLL Function Calls" by Timothy Adams
(Windows/DOS Developer)sJournal, June 1992).

The ToolHelp InterruptRegister() function lets a Windows application handle
INT 3; likewise, you can use DPMI to install a breakpoint handler. However, SNOOP
has to get the opcode there in the first place. There are two issues here. First, because
we are putting a breakpoint on a nonwritable code segment, we need a writable data
alias for the segment. SNOOP uses the AllocCStoDSAlias() function (see chapter 5).
Second, the code that we are attempting to modify may not even be in physical mem
ory at the time! Happily, Windows provides a documented function that solves this
problem-GetCodeHandle(), whose primary purpose is to provide information about
the code segment in which a function resides, but which has the useful side effect of
loading the code segment and marking it as recently used.

In order to better understand the nesting of events, SNOOP needs to record
when one of these functions returns, as well as when it's called. When a SNOOP
breakpoint is hit, at the same time that it gets ready to restart the call with the break
point temporarily removed, SNOOP fiddles with the return address on the stack so
that the intercepted function will return to SNOOP rather than to the function's
actual caller. In this way, SNOOP not only gets to reinsert its breakpoint, but, equally
important, gets to track function exit as well as entry.

Deliberately-Intrusive Debugging
SNOOP's "Filter" option has no parallel in any other spy program that we know. If
"Filter" is enabled from the SNOOP menu, the "primary" messages (that is, the ones
specified in WM_UNDOC.DAT or in a different .DAT file you specify on the
SNOOP command line) are filtered out, i.e., not allowed to reach the intended

180 UNDOCUMENTED WINDOWS

WndProc! Such an option sounds ridiculous, but it is sometimes easy to deduce the
behavior provoked by a particular message by seeing what happens if the message is no
longer generated. SNOOP filtering certainly helped find the purpose of some of the
undocumented messages described in chapter 7.

Watching Interrupts with WISPY
Our other traffic-reporting logging/tracing program is WISPY, the Interrupt Spy (or I
Spy) for Windows. Although not script-driven like the popular INTRSPY program
from Undocumented DOS, WISPY serves the same purpose: to report on software
interrupts. Even though a list of software interrupts sounds as if it would contain
nothing more than a lot of meaningless-looking hex dumps of the CPU registers, if
formatted properly it can tell you what files have been opened, what programs have
been executed, and so on.

Although the constraints of DOS TSR programming made INTRSPY a mostly
noninteractive program that produces a log file, in Windows an interrupt spy can pres
ent its results in a window, in more-or-Iess real time, in much the same way that
SNOOP shows WM_ messages.

On its command line, WISPY takes one or more numbers in decimal or C-style
hex; these specify the interrupts to be watched. WISPY has built-in knowledge of spe
cific functions, including some undocumented ones, that use INT 2Ih (DOS), INT
2Fh (multiplex), and INT 3Ih (DPMI). For other functions, WISPY will just show a
register dump. For example:

file Interrupts
<TASKMAN> Int 2Fh (4003) ENTER CRITICAL SECTION
<TASKMAN> Int 2Fh (4004) EXIT CRITICAL SECTION
<TASKMAN> Int 2Fh (4003) ENTER CRITICAL SECTION
<TASKMAN> Int 2Fh (4004) EXIT CRITICAL SECTION
<TASKMAN> Int 31h (0005) (RESERUED) UNLOCK SEL 118fh
<TASKMAH> Int 31h (0202) GET EXCEPT UEC 06h
<TASKMAN> Int 31h (0203) SET EXCEPT UEC 06h 011f:196ch
<TASKMAN> Int 31h (0203) SET EXCEPT UEC 06h 011f:5fb1h
<TASKMAN> Int 21h (50) SET PSP 117f
<TASKMAN> Int 21h (00) AX=0001 BX=117f CX=119f DX=OOOO DS=111f
<TASKMAN> Int 21h (3e) CLOSE 11
<TASKMAN> Int 31h (0703) DISCARD PAGES Q806070eO nbytes=06f20h
<TASKMAN> Int 31h (0103) DISCARD PAGES Q806070eO nbytes=06f20h
<TASKMAH> Int 21h (50) SET PSP OOaf
<TASKMAN> Int 31h (0005) (RESERUED) UNLOCK SEL 119fh
<WINFILE> Int 2Fh (1689) W386_WIN_KERNEL_IDLE
<WINFILE> Int 2Fh (1689) W386 WIN KERNEL IDLE
<WINFILE> Int 2Fh (1689) W386=WIN=KERHEL=IDLEI

Ifyou've used INTRSPY or any other DOS-based interrupt-watching utility (IBM
once sold a nice one called PCWATCH), you may ask the obvious question, Why do

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 181

we need WISPy at all? Why not just run INTRSPY before Windows and then inspect
its log file after you leave Windows? After all, Windows is just another DOS program,
right?

Aside from the obvious user-interface limitations of this approach, and the fact
that some of us simply do not leave Windows (not without turning the machine off,
anyhow), there's a more fundamental reason why a Windows-hosted interrupt spy is
often useful for watching interrupts in Windows.

As an example, we can load INTRSPY before Windows and have it watch the
DOS File Open (INT 2Ih AH=3Dh) and EXEC (INT 2Ih AH=4Bh) calls. We can
then start Windows and run some program, such as Control Panel (CON
TROL.EXE). When we exit from Windows and look at the INTRSPY log, the portion
relating to CONTROL looks something like this:

Open C:\WIN31\CONTROL.EXE
Open C:\WIN31\CONTROL.INI
Open C:\WIN31\SYSTEM\MAIN.CPL
Open C:\WIN31\SYSTEM\VER.DLL
Open C:\WIN31\SYSTEM\LZEXPAND.DLL
Open C:\WIN31\SYSTEM\COMMDLG.DLL
Open C:\WIN31\SYSTEM\SETUP.INF
Open C:\WIN31\SYSTEM\MOUSE.DRV

Actually, there's a lot more than this, since the Control Panel in Windows 3.1 is
customizable with CPApplets; the INTRSPY log also shows CONTROL opening
every. CPL file it can find: CPWIN386.CPL, DRIVERS.CPL, and so on. These .CPL
fues are actually DLLs, and it seems a little odd to see them being opened rather than
... well, what is the DOS equivalent of a LoadLibrary()?

Seeing a LoadLibrary() at the Windows level turn into a File Open at the DOS
level makes sense. But look at CONTROL.EXE in the INTRSPY log: It too appears,
not as an EXEC, but as an OPEN. In fact, any Windows operation involving a file is,
at the DOS level, going to look like a File Open. (If it gets to that level at all; in the
future, we may see increased use of Microsoft's 32-bit FastDisk, which bypasses DOS
altogether.)

But, if we run a Windows-hosted interrupt spy and then run CONTROL again, it
shows up as an EXEC, just as one would have expected. Similarly, we could set an
interrupt breakpoint in WINICE, using the expression BPINT 21 AH=4B, and it
would catch the tail-end of every WinExec() call. In other words:

• WinExec() calls turn into INT 2Ih AH=4Bh (EXEC) calls, which can be
caught by a Windows-hosted INT 2Ih spy.

• To a DOS-hosted INT 2Ih spy, these same WinExec() calls look like INT 2Ih
AH=3Dh (OPEN) calls.

What's going on here? First, Windows is a protected-mode DOS extender. This
means that it supports INT 2Ih services in protected mode. The DOS extender
(WIN386 in Enhanced mode and DOSX in Standard mode) provides its own imple
mentation for EXEC because MS-DOS unfortunately does not know how to EXEC

182 UNDOCUMENTED WINDOWS

protected-mode programs. The DOS extender's EXEC uses real-mode DOS's file ser
vices just to load (open, read, and close) the executable file into memory. DOS's
EXEC services are unfortunately not useful for launching protected-mode applications.
This is part of the reason why a Windows WinExec(), turned into a protected-mode
INT 2Ih AH=4Bh, appears to DOS as a real-mode INT 2Ih AH=3Dh (OPEN).
DOS also sees the WinExec() call's underlying file read and close calls, which the
INTRSPY script happened not to be printing.

There's a second reason for the discrepancy between the Windows view and the
DOS view. Even in the bad old days of real-mode Windows, we would have seen Win
dows EXECs turned into DOS OPENs. As we discussed in chapter 2, Windows uses
the New Executable (NE) file format rather than the old DOS Mark Zbikowski (MZ)
executable file format. DOS doesn't understand the NE format, so Windows has to
take care of loading it (that's largely what Windows is for!). Windows relies on DOS
for file services, so to implement its own NE-Ioading EXEC, it calls on DOS open,
read, and close.

Because Windows and its underlying DOS substrate view the exact same opera
tion in such different ways, we need a Windows-hosted, protected-mode interrupt
spy. If we're watching interrupts from real mode, we're going to miss a lot of the
action. Not only do we see DOS calls at too Iowa level, but some interrupts, such as
DOS Protected-Mode Interface (DPMI) INT 3Ih calls, we're not going to see at alL

(On the other hand, while running INTRSPY before Windows isn't a good way to
track Windows interrupts, it is an excellent way to find how Windows is booted on top
of DOS in its various modes. It's also better than WISPy if you just want a log of all
the files touched by Windows.)

WISPy helps provide an understanding of the software interrupts behind some
familiar operations in Windows. We already saw that a WinExec() ofCONTROL.EXE
becomes a protected-mode INT 2Ih AH=4Bh call. But what else is going on? Ifwe
configure WISPy to watch not only INT 2Ih, but INT 2Fh (multiplex) and INT 3Ih
(DPMI) as well, here's a small portion of what we see when CONTROL is being
loaded from File Manager (WINFILE):

<WINFILE> Int 2Fh (1689) W386_WIN_KERNEL_IDLE
<WINFILE> Int 2Fh (1689) W386_WIN_KERNEL_IDLE
<WINFILE> Int 2Fh (1689) W386_WIN_KERNEL_IDLE
<WINFILE> Int 21h (4b) EXEC C:\WIN31\CONTROL.EXE
<WINFILE> Int 31h (0703) DISCARD PAGES @807c4bOO nbytes=055cOh
<WINFILE> Int 31h (0004) (RESERVED) LOCK SEL 11dfh
<WINFILE> Int 21h (55) (UNDOC) MK PSP 1effh size=0100h
<WINFILE> Int 21h (19) GET DISK
<WINFILE> Int 21h (47) GET CURR DIR
<WINFILE> Int 21h (19) GET DISK
<WINFILE> Int 21h (47) GET CURR DIR
<CONTROL> Int 31h (0004) (RESERVED) LOCK SEL 121fh
<CONTROL> Int 21h (25) SET VECT OOh 0377:1d17
<CONTROL> Int 21h (2f) GET DTA
<CONTROL> Int 21h (1a) SET DTA 11BF:2960
<CONTROL> Int 21h (4e) FIND FIRST·C:\WIN31\CONTROL.INI

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 183

<CONTROL> Int 21h (1a) SET DTA 1EFF:0080
<CONTROL> Int 31h (0009) SET DESC ACCRGTS OOaeh 00f3h
..• keep setting descriptor access rights
<CONTROL> Int 31h (0703) DISCARD PAGES @80685620 nbytes=Oac20h
<CONTROL> Int 31h (0004) (RESERVED) LOCK SEL 1f3fh
<CONTROL> Int 31h (0703) DISCARD PAGES @80685620 nbytes=Oaa40h
<CONTROL> Int 31h (0005) (RESERVED) UNLOCK SEL 1f3fh

On the left, WISPy shows the module name of the current task at the time of the
interrupt. It gets this using the expression MK_FP(GetCurrentTask(), Oxt2); see chap
ter 5 for details. This is not necessarily who issued the interrupt, since DLLs (which
are not tasks) can issue interrupts. However, in this example it shows a clear transition
from WINFILE (File Manager) to CONTROL, soon after the EXEC call.

Why do we see this sharp transition from WINFILE to CONTROL? Given Win
dows multitasking, shouldn't we see a mix of tasks running? The answer is that we
should, and usually do, see such a mix in the WISPy trace. However, we're showing a
very small block of time here: 30 interrupts out of about 300 that were logged while
loading CONTROL. Furthermore, the experience of running Windows indicates that
task-switching is effectively halted during task-loading, so the sharp transition here is
(unfortunately) not at all surprising.

Wait a minute! Why doesn't WISPy itself always appear as the current task? After
all, WISPy has to be the current task while it's displaying these lines on the screen.
However, it is not necessarily the current task when its interrupt handler gets control.
This interrupt handler (which is generic enough to handle any interrupt you mention
on the WISPy command line) merely queues up information about the interrupt,
including the name of the active task at the time, posts a message to WISPY's window,
and then chains the interrupt. Sometime later, WISPY's GetMessage() call returns
because of the posted message, and the information is pulled out of the queue and dis
played. Any interrupts related to WISPy itself are discarded.

Let's examine the preceding WISPy log. Just before the EXEC call that launched
CONTROL, KERNEL was twiddling its thumbs, issuing "KERNEL idle" calls (INT
2Fh AX=1689h). These are similar to the DOSINT 28h IDLE call. We will discuss
IDLE calls in more detail below.

Shortly after the EXEC, someone, probably KERNEL (WINFILE was just the
active task at the time), called the DPMI INT 31h AX=4 function. If you look in a
copy of the DPMI specification, you will see this listed as "reserved and should not be
called." Hmm, someone at Microsoft don't listen too good. There are actually four
such reserved INT 31h functions, and Windows calls all of them:

RESERVED DPMI INT 31h FUNCTIONS
AX=0004h BX=selector to lock (won't be paged)
AX=0005h BX=selector to unlock
AX=0700h BX:CX=starting linear page number to mark as paging candidates

SI:DI=number of pages to mark
AX=0701h BX:CX=starting linear page number to discard

SI:DI=number of pages to discard

184 UNDOCUMENTED WINDOWS

Actually, there are documented DPMI calls that do the same things as these func
tions. Windows probably just calls the reserved ones for what are usually called "his
torical reasons."

In any case, selector IIDFh is being locked. This selector, it turns out (we hap
pened to see it in a WINICE display of tasks), is the Task Database for CONTROL.
Thus, we found by accident what we probably could have guessed: A Task Database in
Windows always uses locked memory. We can see this taking place in the trace pro
duced by WISPY.

We can also see that someone, again probably KERNEL, is calling the undocu
mented DOS Create PSP function (INT 2lh AH=55h). This is interesting because a
Task Database (like the one that was just locked) already includes a PSP. Actually,
using WINICE (again!) to display information about both this IEFFh PSP selector
and the IIDFh Task Database selector shows that, in fact, the PSP that's being cre
ated is the one that sits on the end of the Task Database: WINICE's LDT command
shows the linear base address for any selector, and here it showed us that the PSP's
base address is 100h bytes higher than the Task's. In other words, we're watching the
Task Database, including its embedded PSP, being created!

We could keep going like this, looking at the WISPY trace and trying to make
sense of it. But one thing already clear is that, with interrupts just as with API calls,
there are plenty of obscure and undocumented functions to contend with. WISPY
provides details on any that it knows.

What's most impressive about the WISPy log is the sheer number of interrupts
that fly around in Windows. The 30 lines shown previously are a small fraction ofwhat
WISPY logs for the few seconds it takes to load CONTROL. Furthermore, for reasons
that will be explained below, WISPY misses many, many interrupts. No wonder Win
dows has been called not just an event-driven operating system, but an interrupt
driven operating system.

In fact, Windows Enhanced mode deliberately generates many faults as part of its
normal mode of operation, to move between privilege levels. When you add this
steady three-degree-background-radiation of faults to the already enormous number
of interrupts, the results are almost frightening. The debug version of WIN386 has a
debug command (accessible via WINICE) to view interrupt and fault profiles; again,
the results are not a pretty sight! It's a wonder that Windows gets anything done at all.
The only possible explanation for the fact that Windows does manage to accomplish
something is that it is run on very fast machines.

Starting a DOS Box
An interesting use for WISPY is to figure out what goes on when you start a DOS box
in Enhanced-mode Windows. What pieces come together to produce a DOS box?
Without going into the full details, here is WISPy Ox2F's part of the picture:

<WINFILE> Int 2Fh (1689) W386_WIN_KERNEL_IDLE
<WINFILE> Int 2Fh (1689) W386_WIN_KERNEL_IDLE
<WINOLDAP> Int 2Fh (1600) W386_GETVERSION
<WINOLDAP> Int 2Fh (1683) W386_GET_CUR_VMID

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 185

<WINOLDAP> Int 2Fh (1684) W386_GET_DEVICE_API dev=OxOO17
<WINOLDAP> Int 2Fh (1684) W386_GET_DEVICE_API dev=OxOOOc
<WINOLDAP> Int 2Fh (1684) W386_GET_DEVICE_API dev=OxOOOd
<WINOLDAP> Int 2Fh (1684) W386_GET_DEVICE_API dev=OxOOOa
<WINOLDAP> Int 2Fh (1684) W386_GET_DEVICE_API dev=OxOOOa
<WINOLDAP> Int 2Fh (1684) W386_GET_DEVICE_API dev=OxOOOa
<WINOLDAP> Int 2Fh (4001) NOTIFY BACKGROUND SWITCH
<WINOLDAP> Int 2Fh (4002) NOTIFY FOREGROUND SWITCH

WINOLDAP (which is a task, not a DLL) makes a series of INT 2Fh calls. The
interesting ones here are the 2F/1684 calls, which WINOLDAP uses to access the
protected-mode APIs provided by four different Windows virtual device drivers.
Which ones? We have to look up these device numbers in the VMM.INC file included
with the DDK:

VDD_Device_ID
VMD_Device_ID
VKD_Device_ID
SHELL_Device_ID

EQU OOOOAh
EQU OOOOCh
EQU OOOODh
EQU 00017h

; Virtual Display Device
; Virtual Mouse Device
; Virtual Keyboard Device
; SHELL Device

Add these to a grabber (such as V7VGA.3GR) and WINOLDAP (such as WIN
OA386.MOD), and starting a DOS box turns out to be a major piece of baroque
orchestration.

Fixing WINIO
So far, we just wowed ourselves with the level of activity that WISPy reveals. But
WISPy is genuinely useful 011 occasion. For example, the program helped us test a
major change in the WINIO library, from which WISPy itself is built. The original
version of the wmhandler_yield() function that we've used in this chapter once looked
something like this:

void wmhandler_yield(void)
{

MSG msg;
while (PeekMessage(&msg, NULL, NULL, NULL, PM_REMOVE»
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

}

When a WINIO program returns from or falls off the end of main(), it goes into
the following loop:

for (;;)
wmhandler-yield();

This conforms to Windows programming conventional wisdom about using a
PeekMessage() loop in programs that need to do "background processing." However,

186 UNDOCUMENTED WINDOWS

we then read four Microsoft KnowledgeBase articles that completely convinced us that
using PeekMessage() in this way was an antisocial act:

• "DOS Idle Interrupts and Word for Windows" (Q69545)
• "Idle Interrupt (INT 28h) Under Windows 3.0" (Q75536)
• "Power-Friendly Applications"s (Q74528)
• "How to Use PeekMessage Correctly" (Q74042)

These Microsoft articles show that, during a PeekMessage() loop, the whole sys
tem is effectively parked inside your application. With GetMessage(), in contrast, when
there are no messages for you, your application is parked inside the system. If there is
nothing happening, the Reschedule() function in KERNEL can issue INT 28h (Idle)
and INT 2Fh AH=1689 (Kernel Idle) calls, which can be used by TSRs or by power
management on a notebook computer with a 386SL chip. We decided to rewrite
wmhandler_yield() in this way:

void wmhandler_yield(void)
{

MSG msg;
if (InSendMessage(» II yielding control during

return; II SendMessage can lead to deadlock
for (;;)
{

if (! GetMessage(&msg, NULL, 0, 0»
break;

TranslateMessage(&msg);
DispatchMessage(&msg);
if (! PeekMessage(&msg, NULL, NULL, NULL, PM_NOREMOVE»

break;
}

}

Notice the change from while (PeekMessage()) to if (GetMessage()). (The addition of
InSendMessage() was just another, unrelated addition that we realized was needed at
the same time.)

WISPy provided the perfect vehicle for testing this change. Using a version com
piled with the old WINIO, we ran WISPY Ox28, kept our hands off the keyboard, and
waited to see if any INT 28h calls would be logged; none were. We then recompiled
WISPy with the new, GetMessage-based WINJO, and again ran WISPY Ox28. The
logged INT 28h calls poured forth in a torrent!

We then ran a similar test with WISPy Ox2F to see if the Kernel Idle call was get
ting through. Sure enough, with the new WINIO it was. In fact, since WISPy Ox2F
will generally be used for purposes other than watching Kernel Idle calls, we had to
introduce a -NOIDLE command-line option that suppresses these, so you can see the
INT 2Fh calls you are interested in.

CHAPTER 4 • TOOLS FOR EXPLORING WINDOWS 1 87

WISPy gives the Windows programmer a different perspective on what goes on in
Windows. In some ways, WISPY's purpose is to make Windows a little less familiar
looking to the Windows programmer (though perhaps more familiar-looking to a
DOS habitue). WinExecs show up as 2I/4B calls; DPMI suddenly appears as a major
player; all sorts of things you didn't want to even think about come into view. Who
would have thought that the difference between GetMessage() and PeekMessage()
was an intimate connection with the DOS INT 28h Idle interrupt? Actually, the
Microsoft KnowledgeBase articles alerted us to this connection between message
retrieval and INT 28h, but with WISPy we can see the difference between doing mes
sage retrieval the wrong way and doing it the right way.

All this serves to reinforce the fact that, for all its perceived differences, Windows
is essentially a big DOS extender application, still dependent on DOS services to
function.

Having sung the praises of WISPY, we have to note that the program as it stands
now has a number of crushing limitations:

• It isn't script-driven like INTRSPY, so you cannot select what it displays at any
granularity finer than the interrupt number. This is why the -NOIDLE hack
was needed. Similarly, if you run WISPy Ox2I and the Windows Clock is run
ning, all you ever see are DOS Get Date and Get Time calls. There's currently
no way to write a script that filters these out, so watching INT 2Ih while
Clock is running is a useless exercise.

• During the lag between when an interrupt occurs and when WISPy pulls it
out of its queue for display, the contents of memory can change. Occasionally,
WISPy displays stale data, or even garbage, in DS:DX.

• WISPy only traps interrupts on entry and then chains to the previous han
dler, using the _chain_intr() function provided with Microsoft C and Borland
C++ 3.0. As a result, WISPy doesn't see interrupt returns and therefore can't
present a hierarchy of interrupts, in the way that SNOOP does with WM_
messages.

• WISPy doesn't intercept the Windows Dos3Call() function. This function
does not do an INT 2Ih; disassembly reveals that it directly calls KERNEL's
INT 2Ih handler, using a PUSHF simulated interrupt. WISPy misses all
Dos3Calls. In particular, every time a task terminates, it does so via the INT
2Ih AH=4Ch exit call; this call is made with Dos3Call() rather than with an
actual INT 2Ih, so WISPY doesn't see it. You can, of course, watch
Dos3Call() with WINICE:

:bpx Dos3Call
:dex 0 ds:dx

• Even more important, most of the code in KERNEL does not go through
Dos3Call() or INT 2Ih at all. It just calls the INT 2Ih handler directly, with a
simulated interrupt. Rather than pointing an interrupt at itself (WISPy uses

188 UNDOCUMENTED WINDOWS

the DOS Set Vector function), WISPy should just slap a breakpoint on the
first instruction of the currently installed handlers for whatever interrupts it's
supposed to be watching. That would get everything. You can do this today in
WINICE:

:idt 21
0021 TrapG16 011F:00001834 DPL=3 P
:bpx 11f:1b34
:dex 0 ds:dx

Stop the Presses!

Just as this book was going to press, we corrected this major limitation of WISPY.
All it took was a call to the undocumented GetSetKernelDOSProcO function, which
is described in chapter 5. Now WISPY hooks INT 21 h differently from other inter
rupts: Instead of using the DOS Set Vector function (INT 21 h AH=25h), it uses
GetSetKerneIDOSProc(). This one little undocumented call makes an enormous dif
ference to WISPY's usability. For example, this version of WISPY helps investigate
the Windows PSP problem, discussed in the chapter 5 entry on the PSP.•

This completes our inspection tour of Windows logging/tracing programs. Basi
cally, such a program sets up a series of semi-permanent breakpoints and prints some
thing whenever the breakpoint is triggered. Other noninteractive debuggers like this
are DDE watchers (these really seem like "protocol analyzers"), API call watchers, and
programs that hang off the TOOLHELP NotifyRegister() function. Three such pro
grams are the DBWIN application that comes (with source code) with the 3.1 SDK,
the DRWATSON program, and our own CORONER, presented (with source code)
in chapter 10. Like DRWATSON, CORONER uses NotifyRegister() to camp out on
INT ODh, waiting for a GP fault to happen. Both programs log the "state of the
world" at the time of the GP fault to a file. Clearly, there's room for additional utilities
that do similar things with events other than UAEs.

Windows Browsers
Another type of tool for exploring Windows is the browser; HEAPWALK is the
model for all such programs (HEAPWALK itself appears to be modeled on Macin
tosh programs such as "Uriah Heap"). Numerous programs of this kind appear, with
source code, elsewhere in this book. In particular, check out the GDIWALI(and
USERWALK programs in chapters 6 and 8, the WINWALK program in chapter 10
and the MODWALKand TASKWALKprograms in chapter 5.

CHAPTER • 5

KERNEL: Windows System Services

KERNEL is the Windows module responsible for the traditional operating-system ser
vices: memory management (which in Windows includes resource and atom-table
management), loading of programs (which in Windows includes dynamic linking),
scheduling of tasks, and so on. While Windows programs cooperate in Windows
scheduling by calling USER functions such as GetMessage() and PeekMessage(), the
scheduler itself lives in KERNEL.

One key component of any standalone operating system-file management-is not
really performed by KERNEL, but instead is passed off to MS-DOS via INT 21h calls.
The Windows DOS interface is located in KERNEL, and KERNEL performs a large
amount of DOS Program Segment Prefix (PSP) manipulation so that multiple Win
dows tasks can safely do file I/O while running above a single copy of MS-DOS.

In other words, KERNEL provides the many operating-system services one would
like to see in a protected-mode version of MS-DOS, but which DOS does not pro
vide. KERNEL also provides the Windows interface to those few services (file I/O,
PSP management) that DOS does provide.

Versions of KERNEL

Whereas the USER module is contained in the USER.EXE dynamic link library
(DLL) USER.EXE and the GDI module is contained in GDI.EXE, the KERNEL
module is not necessarily contained in KERNEL.EXE. A file name in Windows need
not match the module name (see the explanation of the segmented-executable NE
header in chapter 2). In fact, KERNEL.EXE is used only in the defunct Windows 3.0
real mode. Another version of the KERNEL module, the Windows 3.0 SDK file
SKERNEL.EXE, operates only in 3.0 real mode and therefore can, like KER
NEL.EXE, be safely ignored.

The two important versions of KERNEL are KRNL286.EXE and KRNL
386.EXE. KRNL286.EXE is used in Windows 3.0 and 3.1 Standard mode. The file

189

190 UNDOCUMENTED WINDOWS

KRNL386.EXE is used in Windows 3.0 Enhanced mode and, in Windows 3.1, either
in Enhanced mode or when running Standard mode on a 386 or higher processor. In
other words, Windows 3.0 provides mode-specific versions of the KERNEL module;
3.1 provides processor-specific versions.

In addition to processor and Windows mode differences, it is important to note
that there are both retail and debug versions of KRNL286.EXE and KRNL386.EXE.
Thus, any use of undocumented features in KERNEL, particularly data structures,
should keep track of the following differences:

• Windows 3.0 vs. 3.1
• Windows 3.0 Standard mode vs. Enhanced mode (real mode can be safely

ignored)
• Windows 3.1 on an 80286 processor vs. an 80386+ processor
• Retail vs. debug

Spelling out the possibilities in gory detail, we get this list:

• Windows 3.0 Standard mode retail
• Windows 3.0 Standard mode debug
• Windows 3.0 Enhanced mode retail
• Windows 3.0 Enhanced mode debug
• Windows 3.1 286 retail
• Windows 3.1 286 debug
• Windows 3.1 386+ (Standard and Enhanced) retail
• Windows 3.1 386+ (Standard and Enhanced) debug

The combination of Windows 3.1 Standard mode on an 80386 or higher proces
sor is particularly confusing. For example, the string displayed by the following code
fragment contains "KRNL386.EXE," not "KRNL286.EXE":

char bufC128J;
WORD wVersion = GetVersion();
LONG lFlags = GetWinFlags();
GetModuleFileName(GetModuleHandle(IIKERNELII), buf, 128);
if (wVersion == OxOa03) II Windows 3.1

if (lFlags & WF_STANDARD) II Standard mode
if (! (lFlags & WF_CPU286» II must be on an 80386 or higher

display(buf); II IIKRNL386.EXE II

This code implies that a feature of Windows 3.0 Enhanced mode may also be
found in Windows 3.1 in Standard mode; for an example, see the entry on the Global
Heap later in this chapter.

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 191

To check for a debug version ofWindows, use the GetSystemMetrics() function:

if (GetSystemMetrics(SM_DEBUG) != 0)
display(IIThis is a Debug version of Windows");

KERNEL Data Structures

These differences affect undocumented data structures rather than undocumented
functions. Using undocumented data structures is thus much more risky than using
undocumented functions. Wherever possible, you should see if the documented
ToolHelp interface (described in chapter 10) provides the information you need.

The key structures discussed in this chapter are these:

• Atom table
• Global heap and arena (also see GlobalMasterHandle)
• Instance data
• Local heap and arena
• Module table
• Task database
• Task queue structure (also see GetTaskQueue)

These structures are accessed by both documented and undocumented KERNEL
functions. For instance, the undocumented GlobalMasterHandle() function returns a
selector to the undocumented global heap structure; the documented Get
CurrentTask() function returns a selector to a task database whose structure is undoc
umented.

It is, of course, entirely appropriate that internal data structures such as these be
undocumented; this is what the structured programming methodology of "informa
tion hiding" is all about. Programmers can call an interface function such as
GlobalAlloc() or LocalAlloc() without having to know about the layout of the global
and local heap and arena structures. You can use the atom-table functions without
knowing, or caring, whether Windows resolves hash-table collisions using buckets or
linear probing. Leaving these structures undocumented also allows Microsoft to
change (and possibly even improve) the internals of future Windows versions.

Furthermore, a key programming principle is the ability to use a handle without
knowing what the handle is. If one function returns a module handle and another
function expects a module handle, your program should be able to act as a pipe, pass
ing the handle (also known as a "magic cookie") from one function to the next, with
out knowing what this handle is.

In this chapter, though, we will tell you exacdy what all these handles are, (that is,
what data structures they point to). We think this is important for two main reasons:

192 UNDOCUMENTED WINDOWS

1. The whole "you can use a handle without knowing what it points to"
perspective (which we might call The Magic Cookie Philosophy) has to
some extent backfired because programmers who don't know what
these handles are inevitably get them confused. Even Microsoft has ac
knowledged that this is a problem in Windows programming, and it has
issued an excellent technical note written by Bob Gunderson called
"Modules, Instances, and Tasks" that tries to sort out what these han
dles are and how they relate.

2. The undocumented KERNEL data structures contain a wealth ofinfor
mation often unavailable elsewhere. A brief glance at this chapter's
entries for the Task Database and Task Queue structures will probably
convince you that, even though the principle of information hiding
quite rightly holds that it is generally better not to know about some
thing than it is to know about it, in the case of these Windows internal
data structures, it is much better to know about these structures than to
not know about them.

For example, let's say you are using the documented IsTask() function provided
by Windows 3.1, and you would like to have equivalent functionality when running
under Windows 3.0. You could play by the rules, see that there is no such function in
Windows 3.0, and just give up. But once you know that the Task Database structure
contains a 'TD' (4454h) signature at offset OFAh, it is easy to write your own IsTask()
that works under Windows 3.0.

#define TD_SIGN Ox4454 /* 'TD' = Task Database */
#define OFS_TD_SIGN OxFA /* location of 'TD' signature in Task DB */

extern DWORD FAR PASCAL GetSelectorLimit(WORD w);

BOOl IsValidTask(WORD w)
{

WORD far *lpwMaybeTask;
if (! w)

return FALSE;
if (GetSelectorlimit(w) < (OFS_TD_SIGN + 2»

return FALSE;
lpwMaybeTask = (WORD far *) MK_FP(w, OFS_TD_SIGN);
return (*lpwMaybeTask == TD_SIGN);

}

This, in fact, is what KERNEL itself does in Windows 3.1, except that KERNEL
uses the LSL instruction rather than the GetSelectorLimit function (note that there is
still a danger of getting a segment not-present fault if a totally random bogus number
is passed in).

ISTASK:
mov ax, _w

; fail if less than OFCh bytes

; 0 is not a valid task handle
; get the limit (size-1) of w
; fail if not even a valid selector

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 193

or ax, ax
je fail
lsl bx, ax
jne fail
cmp bx, OFCh
jl fail
moves, ax
cmp word ptr es:[OFAhJ, 4454h
jne fail ; fail if no ITD I signature at offset OFAh
jmp short success

fai l:
xor ax, ax

success:
retf 2

Thus, taking a two-byte number, seeing if it is a valid selector to a segment with
at least OFCh bytes, and seeing if it has the TD signature at offset OFAh really is
equivalent to calling IsTask() and can be extremely useful when IsTask() itself isn't
available. So much for information hiding. Of course, if you don't care about 3.0
compatibility (you probably should, though), there is absolutely no reason to jump
through these hoops.

Handles, Handles Everywhere

KERNEL functions return and expect several different types of handles, and as
noted earlier it is easy to get them confused. Microsoft's documentation does not
clearly spell out how they all interrelate. The major handles, with an example func
tion that returns the handle, an example function that expects it as a parameter, and
the data structure it corresponds to (explained in detail elsewhere in this chapter), are
as follows:

hModule
hTask
hInstance
hPDB
hTaskQ

RETURNED FROM

GetModuleHandle
GetCurrentTask
WinExec
GetCurrentPDB
InsendMessage

EXPECTED BY

GetProcAddress
EnumTaskWindows
MakeProcInstance

SELECTOR TO

Module Table
Task Database
Instance Data (DGROUP)
Program Segment Prefix (PSP)
Task Queue

Given one kind of handle, it is often important to know how to get a different kind.
The following set of macros, functions, and comments attempts to present The Official
Undocumented Windows Magic Handle Decoder Ring in handy two-dimensional
form; in addition to showing the KERNEL handles, the USER hWnd handle is
included, too. Note that some of these conversions are not true functions because, for
example, a task can have more than one window or a module can have more than one
task.

194 UNDOCUMENTED WINDOWS

1*
HANDLES.H -- KERNEL-related handles

Macros and functions (see HANDLES.C) for:
Task Database handles (HTASK)
Task Queue handles
Module Database handles (HMODULE)
Instance (DGROUP) handles
Window handles (HWND)
PSP/PDB
Selector validation

from "Undocumented Windows" by Schulman et al. (Addison-Wesley, 1992)
Chapter 5: KERNEL
Copyright (c) Andrew Schulman and Matt Pietrek 1992
*1

#ifdef __cplusplus
extern "C" {
#endif

#ifndef MK_FP
#define MK_FP(s,o) «void far *) «(DWORD) (s) « 16) I (0»)
#endif
1* Convert a handle to a selector *1
WORD HandleToSel(HANDLE h);

1* Turn hTask into hModule: use WORD at offset 1Eh in the Task
Database (TDB) *1
#define HMODULE_FROM_HTASK(hTask) \

*«WORD far *) MK_FP(hTask, Ox1E»

1* Get module handle for current task *1
#define GetCurrentModule() \

HMODULE_FROM_HTASK(GetCurrentTask(»

1* Turn hTask into hInstance: use WORD at offset 1Ch in the TDB *1
#define HINSTANCE_FROM_HTASK(hTask) \

*«WORD far *) MK_FP(hTask, Ox1C»

1* Turn hTask into hWnd: a task can have more than one window;
use the documented EnumTaskWindows() function *1

1* Turn hTask into PSP: use WORD at offset 60h in the TDB *1
#define PSP_FROM_HTASK(hTask) \

*«WORD far *) MK_FP(hTask, Ox60»

1* Turn hTask into hTaskQ: use the undocumented GetTaskQueue()
function *1

1* Turn hInstance into hModule: use the GetInstanceModule()

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 195

macro provided with the Windows 3.1 SDK (WINDOWSX.H), or use the
undocumented GetExePtr() function. Remember that hlnstance is
just a task's default data segment (DGROUP). */
#define HMODULE_FROM_HINSTANCE(hlnstance) \

GetModuleHandle(MK_FP(O, hlnstance»

/* Turn hlnstance into hTask */
WORD hTask_from_hlnstance(WORD hlnstance);

/* Turn hlnstance into hWnd: use the "Turn hlnstance into an
hTask" technique, then the uhTask into hWnd u technique */

/* Turn hlnstance into PSP: get hTask from hlnstance, then PSP
from hTask */
#define PSP_FROM_HINSTANCE(hlnstance) \

PSP_FROM_HTASK(hTask_from_hlnstance(hlnstance»

/* Turn hModule into hlnstance: though note that this
is a true function only for DLLs (see IsModuleDLL(» */
WORD hlnstance_from_hModule(WORD hModule);

/* a useful synonym */
#define GetModuleDgroup(hModule) \

hlnstance_from_hModule(hModule)

/* Turn hModule into hTask: not always possible, as multiple tasks
can share the same module table (see hModule into hlnstance, above),
and because DLL modules do not have an hTask. If the load count at
offset 2 in the module table is 1, i.e., *«WORD far *)

MK_FP(hModule, 2» == 1, the hTask can be obtained by first getting
the hlnstance for the module (see IIhModule into hlnstance,u above),
then getting the hTask from the hlnstance (see IIhlnstance into
hTask," above) */

/* Turn hModule to hWnd: To obtain a list of windows associated with
an hModule, first use the IIhModule into hTask ll technique above, then
use the documented EnumTaskWindows() function to list the top-level
windows */

/* Turn hWnd into hTask: use the documented GetWindowTask() function */

/* Turn hWnd into hModule: get hTask from hWnd, then hModule
from hTask */
#define HMODULE_FROM_HWND(hWnd) \

HMODULE_FROM_HTASK(GetWindowTask(hWnd»

/* Turn hWnd into hlnstance: use the documented GetWindowWord(hwnd,
GWW_HINSTANCE) call */

/* Turn PDS (PSP) into hTask */
HANDLE hTask_from_PSP(WORD wPSP);

/* Turn PDS into hModule, hlnstance, or hWnd: follow "PDS into hTask ll

instructions above, then convert hTask */
#define HMODULE_FROM_PSP(wPSP) \

196 UNDOCUMENTED WINDOWS

#define HINSTANCE_FROM_PSP(wPSP) \
HINSTANCE_FROM_HTASK(hTask_from_PSP(wPSP»

1* Turn hTaskQ into hTask *1
#define HTASK_FROM_HTASKQ(hTaskQ) \

*«WORD far *) MK_FP(hTaskQ, 2»

1* Turn hTaskQ into hlnstance, but don't use hInstance field in
Task Queue structure, which moves from 3.0 to 3.1 *1
#define HINSTANCE_FROM_HTASKQ(hTaskQ) \

HINSTANCE_FROM_HTASK(HTASK_FROM_HTASKQ(hTaskQ»

1* Turn hTaskQ into hModule: Useful for getting name of sender
from InSendMessage() *1
#define HMODUlE_FROM_HTASKQ(hTaskQ) \

HMODUlE_FROM_HINSTANCE(HINSTANCE_FROM_HTASKQ(hTaskQ»

1* Is handle for a Dll rather than a task? *1
BOOl IsModuleDll(HANDlE hModule);

1* C interface to protected-mode instructions; must compile
with 286 instructions (Borland -2, Microsoft -G2) *1
BOOl verr(WORD wSel); II verify for reading
BOOl verw(WORD wSel); II verify for writing
WORD lsl(WORD wSel); II load segment limit
WORD lar(WORD wSel); II load access rights

1* for use with lAR *1
#define CODEDATA_MASK 8
#define CODE 8
#define DATA 0

1* Are we using the 16-bit or 32-bit KERNEL?
Returns 16 for KRNl286, 32 for KRNl386, 0 for real mode *1
int Kernel1632(void);

1* Does the far pointer point to a valid local heap info struct? *1
BOOl IsValidlocalHeap(BYTE far *fp);

1* Is this handle for a Module Database? *1
BOOl IsValidModuleHandle(HANDlE h);

1* Is this handle for a DOS Program Segment Prefix (PSP; alias PDB)? *1
BOOl IsValidPSP(HANDlE h);

1* Is this handle for a Task Database? 3.1 has documented
IsTask(), but it's not in 3.0, so do our own *1
BOOl IsValidTask(HANDlE h);

1* Not perfect, but a reasonable test: a Task Queue
contains a valid task handle at offset 2 *1
#define IsTaskQueue(h) \

IsValidTask(HTASK_FROM_HTASKQ(h»

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 197

#ifdef __cplusplus
}

#endif

1*
HANDLES.C -- KERNEL-related handles
from "Undocumented Windows" by Schulman et al. (Addison-Wesley, 1992)
Chapter 5: KERNEL
Copyright (c) Andrew Schulman and Matt Pietrek 1992
*1

#include <dos.h>
#include "windows.h"
#include "handles.h"

extern DWORD FAR PASCAL GetSelectorBase(WORD wSel);
extern DWORD FAR PASCAL GetSelectorLimit(WORD wSel);
extern WORD FAR PASCAL SetSelectorBase(WORD wSel, DWORD dwBase);
extern WORD FAR PASCAL SetSelectorLimit(WORD wSel, DWORD dwLimit);

1* Convert a handle to a selector, just the way ToolHelp
does. See WINMOD.C for explanation *1

WORD HandleToSel(HANDLE h)
{

static WORD wVers = 0;
if (! wVers) II one-time initialization

wVers = (WORD) GetVersion();
if (wVers == 3) II 3.0: handles = selectors+1

return «h & 2) == 2) ? h-1 : h;
else II 3.1++: handles = selectors-1

return (h I 1);
}

1* Turn hlnstance into hTask: walk the task list (see sample
code in the entries for GetCurrentTask() and the Task Database),
searching for a TDB whose WORD at offset 1Ch matches the hlnstance,
i.e., where HINSTANCE_FROM_HTASK(hTask) == hlnstance *1
WORD hTask_from_hlnstance(WORD hlnstance)
{

DWORD (FAR PASCAL *GetCurrentTaskD)(void) = GetCurrentTask;
DWORD dwTask GetCurrentTaskD();
HANDLE hTask = HIWORD(dwTask); II get base of linked list
for (;;)
{

if (HINSTANCE_FROM_HTASK(hTask)
return hTask;

hlnstance)

1* Get handle of the next task from offset 0 in the Task DB *1
if «hTask = *«WORD far *) MK_FP(hTask, 0») == 0)

brea k;
}

1* still here -- didn't find it *1
return 0;

}

198 UNDOCUMENTED WINDOWS

1* Turn PDB (PSP) into hTask: this is for the truly masochistic. Use
GetSelectorBase() to obtain the linear address of the PSP. Subtract
100h, and create a new selector with the resulting base address. This
new selector points at the TDB, and the hTask can be found at offset
OCh. It would be wise to "sanity check" by making sure that the WORD
at offset OFAh is 'TO' *1
HANDLE hTask_from_PSP(WORD wPSP)
{

WORD hTask, hMyTask, wDS;
_asm mov wDS, ds
hMyTask = AllocSelector(wDS); II use OS as model
SetSelectorBase(hMyTask, GetSelectorBase(wPSP) - Ox100);
SetSelectorLimit(hMyTask, Ox100);
if (*«WORD far *) MK_FP(hMyTask, OxFA» != Ox4454) II 'TO'
{

FreeSelector(hMyTask);
return 0; II no 'TO' signature: something wrong

}

hTask = *«WORD far *) MK_FP(hMyTask, OxOc»; II canonical hTask
if (*«WORD far *) MK_FP(hTask, OxFA» != Ox4454) II 'TO'

hTask = 0; II no 'TO' signature: something wrong
FreeSelector(hMyTask);
return hTask;

}

1* Turn hModule into hInstance: a module can have more than one
instance, unless if it's a DLL. Use offset OEh in the Module Table,
i.e., *«WORD far *) MK_FP(hModule, OxOe», to obtain the logical
segment number (1, 2, etc.) of the DGROUP for the module. Then, look
up the actual DGROUP selector in the segment portion of the module
table. Treat this DGROUP as the hInstance. If the module is for a
task rather than a DLL, the hInstance is for the most recent task
that's still using the module table, and is not correct for the
other invocations of the program.

But a much simpler way ;s to get the hInstance returned from
LoadLibrary(). This is used in hInstance_from_hModule *1
WORD hInstance_from_hModule(WORD hModule)
{

char buf[128J;
WORD hInstance;
GetModuleFileName(hModule, buf, 128);
1* remember, module is already loaded *1
hInstance = LoadLibrary(buf); II ref++
FreeLibrary(hInstance); II ref--
return HIWORD«DWORD) GlobalLock(hInstance»;

}

#define NEMAGIC Ox454E
#define NEFLAGS_OFS OxOc
#define DLL_FLAG Ox8000

1* new EXE magic id: 'NE' *1
1* offset of flags in NE header *1
1* is module a DLL? *1

1* Is handle for a DLL rather than for a task? Use the flags at
offset OCh in the Module Database *1

1* workaround 386 bug: Hummel, p.448 *1

1* workaround 386 bug: Hummel, p.471 *1

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 199

BOOl IsModuleDll(HANDlE hModule)
{

if (*«WORD far *) MK_FP(hModule, 0» != NEMAGIC)
return FALSE; II it's not even a module, much less a Dll

else
return (*«WORD far *) MK_FP(hModule, NEFlAGS_OFS» & Dll_FlAG);

}

1* C interface to protected-mode instructions; must compile
with 286 instructions (Borland -2, Microsoft -G2) *1

1* Verify for Reading (VERR) instruction *1
BOOl verr(WORD wSel)
{

if (! wSel) return 0; 1* workaround 386 bug: Hummel, p.584 *1
_asm verr word ptr wSel
_asm je short ok
return 0; II not valid for reading

ok: return 1; II is valid for reading
}

1* Verify for Writing (VERW) instruction *1
BOOl verw(WORD wSel)
{

if (! wSel) return 0; 1* workaround 386 bug: Hummel, p.585 *1
_asm verw word ptr wSel
_asm je short ok
return 0; II not valid for writing

ok: return 1; II is vaLid for writing
}

1* C interface to protected-mode load Access Rights (lAR) instruction *1
WORD lar(WORD wSel)
{

if (! wSel) return 0;
_asm Lar ax, wSel
_asm jne short error
_asm shr ax, 8
_asm jmp short no_error; 1* value in AX *1

error:
return 0;

no_error:;
}

1* C interface to lSl (load Segment limit) instruction *1
WORD Lsl(WORD wSel)
{

if (! wSel) return 0;
_asm lsl ax, wSel
_asm jne short error
_asm jmp short no_error; 1* vaLue in AX *1

error:
return 0;

no_error:;
}

200 UNDOCUMENTED WINDOWS

1* Are we using the 16-bit or 32-bit KERNEL?
Returns 16 for KRNL286, 32 for KRNL386, 0 for real mode *1

int Kernel1632(void)
{

lONG lFlags = GetWinFlags();
if (GetVersion() == Ox0003) II Windows 3.0: mode-dependent
{

if (lFlags & WF_STANDARD)
else if (lFlags & WF_ENHANCED)
else 1* yuk! real mode! *1

return 16;
return 32;
return 0;

}

else II Windows 3.1+: processor-dependent
return (lFlags & WF_CPU286) ? 16 : 32;

}

#define lHMAGIC Ox484C 1* I lH I signature for local Heap *1
#define NEMAGIC Ox454E 1* new EXE magic id: 'NE ' *1
#define PSPMAGIC Ox20CD 1* INT 20h instruction *1
#define TDBMAGIC Ox4454 1* lTD I signature for Task *1

1* Does the far pointer point to a valid local heap info struct? *1
BOOl IsValidlocalHeap(BYTE far *fp)
{

WORD wMagicOffset = (Kernel1632() == 16) ? Ox22 : Ox28;
return (*«WORD far *) &fp[wMagicOffsetJ) == lHMAGIC);

}

1* Is this handle for a Module Database? *1
BOOl IsValidModuleHandle(HANDlE h)
{

WORD far *fp;
; f (! ve r r (h))

return 0;
fp = MK_FP(h, 0);
return (*fp == NEMAGIC); II make sure starts with 'NE ' signature

}

1* Is this handle for a DOS Program Segment Prefix (PSP; alias PDB)? *1
BOOl IsValidPSP(HANDlE h)
{

WORD far *fp;
if (! verr(h»

return 0;
fp = MK_FP(h, 0);
return (*fp == PSPMAGIC); II make sure starts with INT 20h

}

1* Is this handle for a Task Database? 3.1 has documented
IsTask(), but it's not in 3.0, so do our own *1

BOOl IsValidTask(HANDlE h)
{

WORD far *fp;
if (! verr(h»

return FALSE;
if (GetSelectorlimit(h) < OxFC)

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 201

return FALSE;
fp = MK_FP(h, OxFA);
return (*fp == TDBMAGIC);

}

The following sample program exercises the handle-conversion macros and func
tions and can be used as the basis for an undocumented Windows "compatibility
suite" to test out new or oddball versions ofWindows. This program, like all the sam
ple programs in this chapter, uses the WINIO library from chapter 4:

1*
TESTHAND.C -- test driver for HANDLES.H, HANDLES.C
from "Undocumented Windows" by Schulman et al. (Addison-Wesley 1992)
Chapter 5: KERNEL
*1

#include <stdlib.h>
#include <assert.h>
#include "windows.h"
#include "winio.h"
#include "handles.h"

main()
{

extern HANDLE --.hInst; II in ARGCARGV.C
HANDLE hTask, hModule, hModule2, hInstance, PSP;

printf("Windows %d.%02d %s mode (%s)\n",
LOBYTE(GetVersion(», HIBYTE(GetVersion(»,
(GetWinFlags() & WF_STANDARD) ? "Standard" : "Enhanced",
(GetSystemMetrics(SM_DEBUG» ? "DEBUG" : "RETAIL");

hTask = GetCurrentTask();
printf("hTask = %04x\n", hTask);

hInstance = HINSTANCE_FROM_HTASK(hTask);
printf("hInstance = %04x\n", hInstance);
assert(hInstance == --.hInst);

hModule = HMODULE_FROM_HTASK(hTask);
hModule2 = HMODULE_FROM_HINSTANCE(hInstance);
printf("hModule = %04x\n", hModule);
assert(hModule == hModule2);

PSP = PSP_FROM_HTASK(hTask);
printf("PSP = %04x\n", PSP);
assert(PSP == GetCurrentPDB(»;

assert(hTask_from_hInstance(hInstance) == hTask);
assert(PSP_FROM_HINSTANCE(hInstance) == PSP);
assert(hTask_from_PSP(PSP) == hTask);
assert(HINSTANCE_FROM_PSP(PSP) == hlnstance);

202 UNDOCUMENTED WINDOWS

assert(IsValidModuleHandle(GetCurrentModule(»);
assert(IsValidPSP(GetCurrentPDB(»);
assert(IsValidTask(GetCurrentTask(»);

return 0;
}

If all goes well, the program will do nothing more than display its own hTask,
hInstance, hModule, and PSP. In the event of an error, an assert will be displayed.

KERNEL Exports and Imports

In Windows 3.0, KERNEL exports over 200 items; in 3.1, it exports over 400. Of
these, about 100 are undocumented and are discussed at length in this chapter. Most
of the exports from KERNEL are functions, but there are also several important con
stants (such as _AHINCR) and protected-mode selectors (such as _OOOOH).

As one would hope from a "kernel," KERNEL is considerably smaller than the
other two key components of Windows. Whereas the retail (i.e., nondebug)
USER.EXE is about 270K and GDI.EXE is about 160K, KRNL286.EXE is about
60K and KRNL386.EXE is about 90K. KERNEL is built from about sixty .OBJ
modules.

In one sense, though, KERNEL is not a "kernel" at all. As noted in chapters 1
and 2, examination of the executable header for KERNEL makes it seem as if this
module depends on no other modules. This is precisely what one expects from an
operating-system kernel. However, in Windows there are documented functions,
LoadLibrary() and GetProcAddress(), that allow a program or DLL to link to other
modules it is running; these functions live in KERNEL and are used internally, by
KERNEL itself, to tie into other parts of Windows, particularly USER. For example,
the scheduler in KERNEL calls the IsUserIdle() function in USER; the undocu
mented DoSignal() function in KERNEL calls functions in USER, such as GetFo
cus(), IsWindow(), and GetWindowTask(); and the global-heap compacter in
KERNEL calls the USER PostMessage() function to issue WM_COMPACTING
messages.

In other words, KERNEL knows about WM_ messages and window handles! This
is somewhat unavoidable, but the kernel's dependencies on other modules nonetheless
makes Windows a lot less modular than one might like. It also shows that encapsulation
is a lot harder to achieve in a large system, built over a long period of time (Windows
has, after all, been under construction for at least seven years), than one might like.

KERNEL Initialization

Many of KERNEL's references to other modules are necessary to bootstrap Windows.
Like all DLLs, KERNEL has a library-initialization entry point; when KERNEL is first

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 203

loaded, this library-initialization routine runs. The entry point for KERNEL is in
LDBOOT.OBJ and is called, not surprisingly, BOOTSTRAP. BOOTSTRAP and its
helper routines load several Windows device drivers (the exact names for the drivers
come from settings such as system.drv= and keyboard.drv= in the [boot] section of
SYSTEM.INI). BOOTSTRAP also loads a "bootapp" whose default name is PROG
MAN.EXE; interestingly, the loading of "bootapp" is bypassed if the value of a vari
able "graphics" is zero (USER, KEYBOARD, GDI, and DISPLAY weren't loaded).

All of the modules loaded by the KERNEL BOOTSTRAP routine are, of course,
segmented-executable NE files. Because KERNEL itselfis also a segmented-executable
NE and contains the dynamic-linking module loader that knows about the NE format,
how is KERNEL itself loaded? After all, MS-DOS only knows how to load MZ exe
cutables and .COM files.

As explained in chapter 2, the NE format is a superset of the MZ format; every NE
file also contains an MZ stub. When an NE file such as KRNL286.EXE or
KRNL386.EXE is run under MS-DOS, it is the old-style MZ stub that runs. Nor
mally, the old-style MZ stub prints out a message such as "This program requires
Microsoft Windows."

In KRNL286.EXE and KRNL386.EXE, however, the stub (called KERNSTUB)
opens the executable file (what would be argv[O] in a C program), reads in the MZ
header, locates the NE header, and, within the NE header, locates the field that con
tains the library-initialization entry point CS:IP. It sets the AX register to the value
'OK' (4B4Fh), pushes the entry-point IP on the stack (the initial KERNEL segment is
loaded into memory by the DOS loader, which has no idea that the segment is going
to turn itself into a butterfly!), and RETFs to it; at this point, BOOTSTRAP starts
running. In other words, the old-style MZ stub contains the absolute minimum neces
sary to start the segmented-executable loader process rolling.

Of course, there is a lot more to KERNEL initialization than the bootstrap load
ing of the dynamic-linking module loader. In particular, how does Windows get into
protected mode? In Windows 3.0, this is taken care of by DOSX.EXE (Standard
mode) or WIN386.EXE (Enhanced mode); when KRNL286.EXE or KRNL386.EXE
starts running, the system is already in protected mode. DOSX.EXE and
WIN386.EXE both contain DOS Protected-Mode Interface (DPMI) setvers; one of
the DPMI services is a function that switches the machine into protected mode, and
the address of this function is retrieved by calling INT 2Fh AX=1687h. In Windows
3.0, not only is the DPMI server located in DOSX.EXE and WIN386.EXE, but so is
the code that calls the DPMI mode-switch function. In Windows 3.1, on the other
hand, KERNEL starts up in real (or virtual-8086) mode, and its BOOTSTRAP rou
tine is responsible for calling the DPMI mode-switch function to put the system into
protected mode. The mode-switching code itself, of course, continues to reside in
DOSX.EXE and WIN386.EXE.

BOOTSTRAP also saves old interrupt vectors and DPMI exception vectors and
installs new ones. The interrupts and exceptions handled by KERNEL include 0, 2, 4,
6, 7, OBh, OCh, ODh, OEh, 2Ih, 24h, 2Fh, 3Eh, 3Fh, and 75h.

204 UNDOCUMENTED WINDOWS

Since the Windows DOS extender resides outside of KERNEL, in either
DOSX.EXE (Standard mode) or WIN386.EXE (Enhanced mode), it may initially not
be clear why KERNEL hooks INT 21h. After all, the DOS extenders in DOSX and
WIN386 are responsible for catching protected-mode TNT 21h calls generated by
Windows programs and DLLs and translating them as appropriate into terms under
standable by real-mode MS-DOS. But KERNEL needs an TNT 21h handler to main
tain PSPs for multiple Windows tasks and to track file-system changes (see the
FileCdr() function).

Undocumented KERNEL Functions

As noted earlier, KERNEL exports about 100 undocumented functions and selectors;
these can be divided into a number of rough categories.

SELECTOR MANAGEMENT

KERNEL.183
KERNEL.193
KERNEL.173
KERNEL.172
KERNEL.170
KERNEL.206
KERNEL.I86
KERNEL.188
KERNEL.345
KERNEL.180
KERNEL.321
KERNEL.196
KERNEL.187
KERNEL.I89

_OOOOR
_0040R
_ROMBIOS
AllocAlias
AllocCStoDSAlias
AllocSelectorArray
GetSelectorBase (documented in 3.1)
GetSelectorLimit (documented in 3.1)
IsSharedSelector
LongPtrAdd
PrestoChangoSelector (documented in 3.1)
SelectorAccessRights
SetSelectorBase (documented in 3.1)
SetSelectorLimit (documented in 3.1)

TASK AND TASK QUEUE MANAGEMENT

KERNEL.1SO DirectedYield (documented in 3.1)
KERNEL.155 GetTaskDS
KERNEL.35 GetTaskQueue
KERNEL.118 GetTaskQueueDS
KERNEL.199 GetTaskQueueES
KERNEL.33 LockCurrentTask
KERNEL.122 IsTaskLocked
KERNEL.158 IsWinOldApTask
KERNEL.II7 OldYield
KERNEL.31 PostEvent
KERNEL.32 SetPriority
KERNEL.34 SetTaskQueue
KERNEL.38 SetTaskSignalProc

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 205

KERNEL.30 WaitEvent (partially documented in 3.1)

_GP
HasGPHandler

DEBUGGING, DIAGNOSTICS, TOOLHELP ASSIST

KERNEL.205 CVWBreak
KERNEL.314 DebugDefineSegment
KERNEL.329 DebugFillBuffer (K329)
KERNEL.328 _DebugOutput (K328)
KERNEL.340 DiagOutput
KERNEL.339 DiagQuery
KERNEL.327 HandleParamError (K327)
KERNEL.202 RegisterPtrace
KERNEL.332 THHook
KERNEL.341 ToolHelpHook

GP FAULT HANDLING

KERNEL.342
KERNEL.338

RESOURCE MANIPULATION

KERNEL.168

MODULE MANAGEMENT

KERNEL.354
KERNEL.133
KERNEL.I05
KERNEL.167

DOS INTERFACE AND WINOLDAP

KERNEL.76
KERNEL.42
KERNEL.41
KERNEL.130
KERNEL.319
KERNEL.313
KERNEL.98
KERNEL.99
KERNEL.311
KERNEL.344
KERNEL.101
KERNEL.75
KERNEL.343
KERNEL.151
KERNEL.315

MEMORY MANAGEMENT

KERNEL.403

DirectResAlloc

GetAppCompatFlags
GetExePtr
GetExeVersion
GetExpWinVer

DeletePathName
DisableDOS
EnabieDOS
FileCdr
FlushCachedFileHandle
GetLastCriticalError
GetLastDiskChange
GetLPErrMode
GetSetKernelDOSProc
GetWinOldApHooks
NoHookDOSCall
OpenPathName
RegisterWinOldApHook
WinOldApCall
WriteOutProfiles

FarSetOwner (K403)

206 UNDOCUMENTED WINDOWS

KERNEL.404
KERNEL.3I 6
KERNEL.13B
KERNEL.26
KERNEL. I 59
KERNEL.2B
KERNEL.161
KERNEL.3I 0
KERNEL.162
KERNEL.14
KERNEL.126

INITIALIZATION

KERNEL.116
KERNEL.91
KERNEL.14I

KERNEL MANIPULATION

KERNEL.125
KERNEL.124
KERNEL.2

NOP

KERNEL.165
KERNEL.160
KERNEL.157
KERNEL.123

ROM WINDOWS

KERNEL.326
KERNEL.323

MISCELLANEOUS

KERNEL.35 1
KERNEL.53
KERNEL.139
KERNEL.3IB
KERNEL.201
KERNEL.140
KERNEL.120

FarGetOwner (K404)
GetFreeMeminfo
GetHeapSpaces
GlobalFreeAlI
GlobalHandleNoRIP
GlobalMasterHandle
LocalCountFree
LocalHandleDelta
LocalHeapSize
LocalNotify
MemoryFreed

lnitLib
lnitTask (partially documented in 3.1)
lnitTaskl

DisableKernel
EnableKernel
ExitKernel

A20Proc
EMSCopy
GetCurPID
KbdRst

IsRomFile
IsRomModule

Bunny_35I
CallProcInstance
DoSignal
FatalExitHook
ReplaceInst
SetSigHandler
UndetDynlink

In addition to these undocumented functions, and the undocumented data struc
tures discussed earlier, this chapter also covers documented functions whose true
parameters and/or return value differ in some way from the documentation. For

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 207

example, the GetCurrentTask() and GetModuleHandle() functions actually return two
values packed into a DWORD, rather than a single WORD. Likewise, most functions
that expect an hModule parameter can also be passed an hInstance, functions that
expect an hTask parameter can instead be passed 0 to indicate the current task, and
so on.

Using the Undocumented Functions

In addition to the general tips elsewhere in this book about using (and not using!)
undocumented functions, a few points specifically about KERNEL are worth noting.

To use any of the selector-manipulation functions, you will need to remember that
Windows is a protected-mode DOS extender and understand the connection between
selectors and descriptors. For an introduction to this subject, we recommend the book
Extending DOS (Second Edition), edited by Ray Duncan (see the bibliography).

In a number of cases undocumented I<ERNEL functions have the same
functionality as DOS Protected-Mode Interface (DPMI) INT 31h calls. Microsoft
documents only a handful of DPMI calls for use by Windows programs, but the
DPMI INT 31h API, as documented in the 0.9 specification from Intel (again, see the
bibliography) is available to the Windows programmer. You may want to consider
using a documented DPMI 0.9 function rather than an equivalent undocumented
Windows function.

The KERNEL itself uses DPMI and so, in several cases, an undocumented Win
dows function will be equivalent to a documented DPMI function. (On the other
hand, there is plenty of code in both the 3.0 and 3.1 I<ERNEL that directly bangs on
the Global Descriptor Table [GDT] and Local Descriptor Table [LDT], even where
an equivalent DPMI function was available. These kids!)

As one example of the near-equivalence of DPMI and some undocumented KER
NEL functions, the AllocSelectorArray() function described later works perfectly well
in both Windows 3.0 and 3.1, but it is undocumented so you may want to consider
using the documented DPMI INT 31h AX=O (Alloc LDT Selectors) function instead.
On the other hand, undocumented Windows functions are generally easier to use than
DPMI functions, and many of the most useful DPMI calls don't appear in Microsoft's
list of approved DPMI functions and/or may be unavailable in Standard mode.

In the following entries on undocumented I<ERNEL functions, you will some
times note many different ways of performing the same operation. For example, there
seem to be half a dozen different ways to create code/data aliases in Windows. You
can call AllocCStoDSAlias(), for instance, or SelectorAccessRights(), or PrestoChango
Selector(), or ChangeSelector().

Finally, remember that the KERNEL sits on top of and relies on lower-level ser
vices from the Windows DOS extenders. In Enhanced mode, if something you need
seems like a low-level system service that should be in KERNEL but isn't, remember
to look at the virtual device driver (VxD) documentation, which comes with the Win
dows Device Driver Kit (DDK) and which is also described in Dan Norton's book,

208 UNDOCUMENTED WINDOWS

Writing Windows Device Drivers. For example, documented memory management and
scheduling services that are available at the VxD layer are not available even in the
undocumented functions provided by KERNEL. Remember also to look at the DPMI
0.9 specification when hunting for kernel-like functions. Unlike the VxD API, these
are also available in Windows Standard mode. Another place to look is the protected
mode 80x86 instruction set: in particular, look at LAR, LSL, SGDT, SIDT, SLDT,
VERR, and VERW. Finally, and most important, check to see if the documented
ToolRelp interface provides what you need; chapter 10 of this book provides an in
depth look at ToolHelp.

_OOOOH

EXTRN __OOOOH:ABS

KERNEL.183

OOOOR is not a function, but a two-byte selector exported by the Windows KERNEL.
This protected-mode selector maps the 64K at absolute memory location zero. That
is, you would use the value of _OOOOR, rather than 0, to create a far pointer to the
first 64K of memory. A number of useful variables and data structures are kept by the
ROM BIOS and MS-DOS in this area of memory, and these can be accessed from a
protected-mode Windows program using _OOOOR. (For more information, see the
"Absolute Memory Locations" section of the INTRLIST.EXE database on the disks
accompanying Undocumented DOS.)

While most other KERNEL selectors (such as _B800R and _FOOOH) are docu
mented by Microsoft, the extremely useful_OOOOR and _0040H are not.

The KERNEL selectors are necessary because Windows programs run in protected
mode, where memory locations can't be addressed simply by creating a far pointer. To
create a far pointer to real-mode address 0000:0522 (absolute memory location
522h), you cannot simply move zero into a segment register because this would cause
a general-protection violation (UAB) in Windows Standard and Enhanced modes. Any
pointer with a selector of zero is, by definition, a NULL pointer in protected mode.
Instead, you can move the value of _OOOOR into a segment register, as shown in the
next example.

According to the Microsoft Windows Guide to Programming, KERNEL selectors
can be called only from an assembly-language module, where they must be declared
with a statement such as EXTRN _OOOOR:ABS. As shown in the following example,
however, a Windows program written in C or another high-level language can also
access these selectors.

The value of _OOOOR will be some number such as 100Dh; this is a protected
mode selector whose corresponding descriptor has a linear base address of zero. Note
that this is a linear, not a physical, address, but that these addresses are generally
equivalent for at least the first 64K of memory. In 3.0, Enhanced mode memory
below 64Kis mapped 1:1 due to a 386 bug ("errata") that causes the paging hardware
to fail in the first 64K. WINA20.386 checks for the presence of this errata, and in its

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 209

absence hooks and replaces certain VMM services (such as MapIntoV86) so that map
ping buffers for DPMI can be allocated below page lOh. Beyond the first 64K, virtual
memory means that, in general, linear != physical addresses.

The size of the segment mapped by _OOOOR is 64K; this can be verified by using
GetSelectorLimit(), which returns the maximum valid byte offset (size minus 1), as
shown in the following conversation with the CALLFUNC program from chapter 4.
This example also shows how to get the value of _OOOOR by discarding the
RIWORD of the return value from GetProcAddress.

> kerneL getmoduLehandLe KERNEL
OxOOfd
> kerneL getprocaddress Oxfd __OOOOH %Fp
FFFF:100D
> kerneL getseLectorbase Ox100d %Lx

°> kerneL getseLectorLimit Ox100d %Lx
ffff

In other words, if you need to access data past the first 64K of the linear address
space, you cannot use _OOOOR.

As an alternative to _OOOOR, you could allocate a selector and set its base address
to zero, using either the undocumented SetSelectorBase() function or the DPMI Set
Segment Base Address function (INT 3lh AX=0007h).

Support: 3.0, 3.1
U sed by: SIW (Norton System Information for Windows)
ASM example: Real-mode code such as the following, which intends to retrieve two
bytes from the disk parameter table at real-mode address 0000:0522, would cause a
general-protection fault (UAE) under Windows Standard or Enhanced mode:

xor ax, ax ; ax = °
moves, ax
mov ax, es:[0522hJ

Instead of moving zero into a segment register, move the value of _OOOOR; the
actual value of_OOOOR need not concern the program.

extern __OOOOH:abs

moves, _OOOOH
mov ax, es:[0522hJ

C example: Real-mode code such as the following would cause a general-protection
fault (UAE) under Windows Standard or Enhanced mode:

#define MK_FP(seg, ofs) \
«void far *) «(unsigned Long) (seg) « 16) I (ofs»)

210 UNDOCUMENTED WINDOWS

unsigned char far *fp = MK_FP(O, Ox522);
unsigned char foo = *fp;

Instead of using 0 as the segment, use the value of _OOOOH. One way to access
_OOOOR is shown below, in a technique adapted from Dan Norton's Writing Win
dows Device Drivers. Note that the M~FP() (make far pointer) macro remains valid in
protected mode, so long as you pass in protected-mode selectors such as _OOOOR
rather than real-mode paragraph addresses such as O.

extern WORD _near _OOOOH;
WORD __OOOOH = (WORD) (&_OOOOH);
unsigned char far *fp = MK FP(__OOOOH, Ox522);
unsigned char foo = *fp;

Another way to access Windows variables such as _OOOOH from C is with
GetProcAddress(). For example

#define GET_SEL(name) \
«WORD) (LOWORD(GetProcAddress(GetModuleHandle("KERNEL"), name»»

II ...
WORD __OOOOH = GET SEL("__OOOOH");
unsigned char far *fp = MK FP(__OOOOH, Ox522);
unsigned char foo = *fp;

Because the GET_SEL() macro discards the HIWORD of the four-byte return
value from GetProcAddress(), the compiler may warn about "loss of segment." This is
benign.

See also: SetSelectorBase, _0040H, _ROMBIOS

__0040H

EXTRN __0040H:ABS

KERNEL.193

_0040H is not a function but a two-byte selector exported by the Windows KER
NEL. This protected-mode selector maps the BIOS data area in the 2FFh bytes at
absolute memory location 400h, or real-mode addresses 0000:0400, 0040:0000, etc.
You can use the value of _0040H, rather than paragraph 40h, to create a far pointer
to the BIOS data area. A number of useful variables and data structures are kept in the
BIOS data area, and these can be accessed from a protected-mode Windows program
using either _0040H or _OOOOH.

Most of the remarks in the entry for _OOOOH also apply to _0040H. In particu
lar, note that _0040H is superfluous because you can always use MK_FP(_OOOOH,
Ox400). However, there are several important additional points about _0040H:

_0040H

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 211

In Windows 3.0 and 3.1, accessing the BIOS data area with C code such as
MK_FP(Ox40, 0) does not cause a GP fault; neither does the following assembly
language fragment:

mov ax, 040h
moves, ax
mov ax, es:[OC2hJ

This code works in protected-mode Windows because selector 40h is transparent
or bimodal. A bimodal selector is one in which the value of the selector is identical to
its own base address, shifted right by 4:

sel == sel_base(sel) » 4

Selector 40h is the only such bimodal selector in Windows. Because all bimodal
selectors of interest would wind up in the GDT, bimodal selectors are almost always
avoided in DPMI-compliant DOS extenders; the use of 40h in Windows is a very rare
exception. Apparently, it persists because Rational Systems' DOS extender used in
Lotus 1-2-3 ReI. 3.x relies on it.

It is a common mistake to think that because 0040:0000 correctly accesses the
BIOS data area in protected-mode Windows, so must other segment:offset pairs that
in real mode would be equivalent, such as 0000:0400. However, in protected mode
0040:0000 and 0000:0400 are not equivalent; although dereferencing the first does
happen to work in Windows, dereferencing the second will cause a general-protection
violation (UAE).

In Windows 3.0 only, the value of _0040H is itself 40h. In Windows 3.1,
although selector 40h continues to be supported, the value of_0040H is not 40h, but
merely some selector such as 101Fh whose value need not concern the application.

The size of the segment corresponding to _ 0040H is not 64K, as witl £ the other
KERNEL selectors; instead, it is 2FFh bytes, about the size of the BIOS data area
itself. The Intel 80x86 LSL (load segment limit) instruction can be used to verify the
size of the _0040H segment; the limit is the legal valid byte offset within the seg
ment, or the size minus 1:

unsigned lsl(unsigned short sel)
{

_asm xor ax, ax
_asm lsl ax, word ptr sel

}

II
unsigned short _0040H = GET_SEL(I_0040H");
unsigned size_0040H = lsl(__0040H) + 1;

The undocumented GetSelectorLimit() function can't be used to query the size
of the _0040H selector because the bottom three bits of the number 40h are zero,

212 UNDOCUMENTED WINDOWS

placing the corresponding descriptor in the Global Descriptor Table (GDT) rather
than in the Local Descriptor Table (LDT). As described in the entry for this function,
GetSelectorLimit() forces its parameter to be an LDT selector; using GetSelect
orLimit(_0040H) will therefore produce incorrect results.

Support: 3.0, 3.1
Used by: NBWIN (Norton Backup for Windows), SIW (Norton System Information
for Windows)
See also: _OOOOH, _ROMBIOS
Example: See the entry for _OOOOH

__AHINCR
__AHSHIFT

KERNEL.113
KERNEL.114

These constants exported from KERNEL are not undocumented, even though they
are not listed in the Microsoft Windows Programmer)s Reference or in WINDOWS.H.
Instead, they are documented in the Windows Guide to Programming. These con
stants are used to move from one selector to the next in a "huge" (>64K) segment:
_AHINCR is added to one selector to find the next selector; its value is simply 1
shifted left by _AHINCR (in C, _AHINCR == 1 « _AHSHIFT). In Windows
3.x, _AHSHIFT is always 3 and ~INCRis thus always 8.

For a sample use of_AHINCR, see the entry for AllocSelectorArray().

KERNEL.342

GP is not a function. Instead, it is a far pointer to a table of structures that appear in
certain Windows 3.1 modules that perform parameter validation. The structures in the
table are of this form:

WORD
WORD
WORD
WORD

segment selector
low offset
high offset
offset within segment of recovery function

When a GP fault occurs in a module that has a _GP table (GDI, USER, I<ER
NEL, PENWIN, DISPLAY, and MMSYSTEM are the only modules that are
checked), the GP fault handler iterates through the table (the end of the table is
marked with a °segment), checking to see if the faulting address is contained within
the range specified by the segment and low/high offsets. If it is, then it assumed to be
a recoverable parameter-validation fault, rather than an unrecoverable application error
(UAE). The recovery address is where execution will resume after encountering a
parameter validation fault. For example, the IsBadXXX() functions in the 3.1 KER
NEL contain GP handlers.

_AHINCR

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 213

Support: 3.1
See also: HasGPHandler, IsBadXXX
Example:

1* gp.c *1

#include IIwindows.h ll

#include IIwinio.h ll

typedef struct {
WORD seg, low, high, func;
} GPTAB;

main{int argc, char *argv[J)
{

GPTAB far *_GP;
GPTAB far *p;
char *modname;

modname = (argc < 2) ? "KERNEL" : argv[1J;

II MUST use GetProcAddress, because _GP in more than one module
if {! (_GP = GetProcAddress{GetModuleHandle{modname), II_GP"»)

fail{IICannot locate _GP in module ll
);

printf{"GP fault handling in %s\n", modname);
for (p=__GP; p->seg; p++)

printf{IIGP faults in %04x:%04x-%04x handled by %04x:%04x\n ll
,

p->seg, p->low, p->high, p->seg, p->func);
return 0;

}

This example merely prints out the _GP table, by default in KERNEL (USER
and GDI also have _GP tables). The output is quite boring and looks like this:

GP fault handling in KERNEL
GP faults in 0127:0137-0141 handled by 0127:0143
GP faults in 0117:0752-078d handled by 0117:0790

ROMBIOS

EXTRN __ROMBIOS:ABS

KERNEL.173

This protected-mode selector maps 64K at absolute memory location OFOOOOh (real
mode address FOOO:OOOO). It is identical to the selector _FOOOH, documented in the
SDK Guide to Programming.

Support: 3.0, 3.1
See also: _OOOOH, _0040H

_ROMBIOS

214 UNDOCUMENTED WINDOWS

__WINFLAGS

EXTRN __WINFLAGS:ABS

KERNEL.178

This two-byte value exported from the Windows KERNEL is identical to the return
value from the documented GetWinFlags() function.

In ROM (read-only memory) versions of Windows, however, _WINFLAGS
might differ from GetWinFlags(): in ROM Windows, _WINFLAGS is statically fixed
up in the ROM image, and bits other than WF_PMODE may be incorrect (see "Writ
ing ROM Executables," Microsoft Windows Knowledge Base article Q75497).

Support: 3.0, 3.1
Example:

EXTRN __WINFLAGS:ABS
, ...
mov ax, __WIN FLAGS
test ax, WF_PMODE
jz short no-pmode ;No pmode? 1 1 m outta here!

A20Proc KERNEL.165

In Windows 3.1 and 3.1, A20Proc performs no operation, but it expects one WORD
argument (RETF 2). There is a similar NOP function, A20_Proc, in SYSTEM.DRV.
The A20 line (which enables or disables access to memory above one megabyte,
including the high memory area (HMA)) is handled elsewhere, for example, in
HIMEM.SYS.

AllocAlias

WORD FAR PASCAL AllocAlias(sel);
WORD sel; /* protected-mode selector */

KERNEL.172

This function is identical to the undocumented AllocCStoDSAlias() function; for
more information, see the entry for AllocCStoDSAlias(). In Windows 3.0, the two
functions even share a single entry point:

HANDLE kernel = GetModuleHandle("KERNEL");
if (GetProcAddress(kernel, "ALLOCALIAS") ==

GetProcAddress(kernel, "ALLOCCSTODSALIAS"»
msg(IIThe functions are equivalent");

See also: AllocCStoDSAlias

_WINFLAGS

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 215

AllocCStoDSAlias

WORD FAR PASCAL AllocCStoDSAlias(sel);
WORD sel; /* protected-mode selector */

KERNEL.170

This function creates a "DS alias," a writeable data selector with the same base address
and limit as a nonwriteable code selector. This provides a way to have self-modifying
code in protected mode: the code can be modified using the allocated DS alias and
executed using the original code selector.

The AllocDStoCSAlias() function, which creates an executable alias for a writeable
data selector and which therefore can be used for executable data in protected mode,
is documented by Microsoft. However, this seemingly quite similar Alloc
CStoDSAlias() function is not documented, and its use is discouraged in Microsoft
KnowledgeBase article Q67165, "AllocCStoDSAlias() Not Documented and Not
Supported":

"The AllocCStoDSAlias() function is used in the Windows version 3.00 COMM
driver. This function is not documented and will not be supported in future versions
ofWindows.

The proper method for creating a code or data selector for a block of memory is
to use the ChangeSelector() function. This function is documented in the Windows
Software Development !(it Reference Volume 1 version 3.0."

Unfortunately, while ChangeSelector() is documented in Windows 3.0, it is not
actually available; you must instead use PrestoChangoSelector(), which was not docu
mented until Windows 3.1.

Why is AllocCStoDSAlias() not documented, when the seemingly symmetrical
function AllocDStoCSAlias() is? One possible reason is that these two functions actu
ally aren't quite symmetrical. In Windows, code segments can be discarded and shared
between multiple instances of an application; code is therefore supposed to be pure.
The rules of protected mode forbid writing into a code segment using a code selector,
but a DS alias obviously circumvents this protection. If an application uses a DS alias
to modify a code segment, the Windows I<ERNEL has no way of knowing this has
happened; modifications may be discarded, overwritten by another instance of the
same program, or unintentionally shared with allother illstance. In contrast, creating
CS aliases for data segments does not interfere with the sharing or discarding of code
segments. (Note that OS/2 similarly has DosCreateCSAlias(), but no DosCreate
DSAlias() function.)

The DPMI Create Code Segment Alias Descriptor function (TNT 3Ih
AX=OOOAh) also creates a data descriptor with the same base and limit as a specified
code segment descriptor. The DPMI 0.9 specification notes that the alias "will not
track changes to the code descriptor. In other words, if an alias descriptor is created,
and then the base or limit of the code segment is changed, the alias descriptor's base
or limit would not change." This presents the same problem as AllocCStoDSAlias, as
indicated by the following session with. the CALLFUNC interpreter from chapter 4:

,AllocCStoDSAlias

216 UNDOCUMENTED WINDOWS

> kernel getselectorbase Ox855 %lx II Ox855 is program1s code seg
7dOcO
> kernel alloccstodsalias Ox855 II get a DS alias
Ox9d5
> kernel getselectorbase Ox9d5 %lx
7dOcO II it has the same base address
> kernel globalcompact -1L
;; lots of hard disk activity here
> kernel getselectorbase Ox855 %lx
5e920 II it moved in linear addr space
> kernel getselectorbase Ox9d5 %lx
7dOcO II oops: the alias didn1t move!!
> kernel freeselector Ox9d5
OxOOOO

Thus, to create reliable aliases under Windows, one must lock the original segment
in the linear address space, using the documented GlobalPageLock() function. The
Windows programmer's reference states that GlobaIPageLock() is intended only for
interrupt handlers, and for this reason, "must only be called from a DLL," but this
isn't quite true (see the following example). GlobaIPageLock() uses the undocu
mented DPMI Lock Selector Memory (INT 31h AX=0004h) function. The LockSeg
ment() function sounds as if it would work, but it merely prevents the segment from
being discarded and will not keep it from being moved about in the linear address
space.

If locking the segment is unacceptable, your code will have to carefully manage
the aliases itself. For example, a debugger might use AllocCStoDSAlias() to write
breakpoints into a code segment. But the code segments may be discarded!
WinDebug solves this problem with a cache that is used to rewrite breakpoints when
ever a discarded segment comes back in. An interesting side effect is that this imposes
an upper limit of 512 breakpoints when using a WinDebug-based debugger, such as
CVWorTDW.

How about freeing the selector when done? According to a Microsoft Knowledge
Base article (Q70810), "UAE Caused from Releasing Aliased Selector," you should
not call FreeSelector() to release an aliased selector; Wmdows will supposedly free the
selector automatically when the application terminates. This makes no sense at all and
is not true. The confusion is further compounded in the Windows 3.1 SDK Program
mer's Reference. The entry for FreeSelector() says that this function frees a selector
originally allocated by AllocSelector() or AllocDStoCSAlias(). But, turning to the
entry for AllocDStoCSAlias(), we fmd that "The application should not free the new
selector by calling the FreeSelector function. Windows will free the selector when the
application terminates." The two entries are in direct contradiction, and the one for
AllocDStoCSAlias() is certainly wrong: Windows absolutely does not free selectors cre
ated with AllocDStoCSAlias() or AllocCStoDSAlias() when the application exits. You
must call FreeSelector() before the application exits, or you will consume selectors.
Heeding Microsoft's advice will merely turn your program into an unwitting clone of
the STRESS program.

AllocCStoDSAlias

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 217

Support: 3.0, 3.1
Example: The following program, CODEDAT2.C, uses AllocCStoDSAlias() to
demonstrate self-modifying code in protected-mode Windows (this is different from
executable data, which is demonstrated in the CODEDATA.C example for the entry
on PrestoChangoSelector()). Because Windows does not track changes to selector
aliases, GlobalPageLock() must be used to lock the data segment down in the linear
address space; in the sample program, GlobalCompact(-1) is used to try to shake it
loose. All Windows-specific code is inside #ifdef WINDOWS; without this code, the
program can also be run in real-mode DOS.

Note that the following code does not handle multiple instances properly; the
code segment remains shareable, and subsequent instances of CODEDAT2.EXE will
get incorrect values. This demonstrates that AllocCStoDSAlias(), or Presto
ChangoSelector(cs,ds) (as opposed to AllocDStoCSAlias() or PrestoChangoSelec
tor(ds,cs)) should really be used only in a DLL or device driver, where there is only
one instance.

/* CODEDAT2.C -- demonstration of self-modifying code */

#include <stdlib.h>
#ifdef WINDOWS
#include <dos.h>
#include windows.h"
#include "winio.h"

/* undocumented function */
WORD FAR PASCAL AllocCStoDSAlias(WORD code_sel);
#else
#include <stdio.h>
#endif

/* opcodes -- oper ax, addr */
#define ADD Ox03
#define OR OxOb
#define AND Ox23
#define SUB Ox2b
#define XOR Ox33
#define CMP Ox3b

static unsigned char far *oper_byte = 0;

short math2(short oper, short op1, short op2)
{

*oper_byte = oper;

go:;
_asm jmp short go; /* clear instruction prefetch! */

}

_asm mov ax, op1 /* if need to set debug breakpoint, do here */
asm xor ax, op2 /* will be modified! */

/* return result in AX */

AllocCStoDSAlias

218 UNDOCUMENTED WINDOWS

main()
{

#ifdef WINDOWS
WORD code_sel, data_sel;
code_sel = FP_SEG«void far *) math2);
GlobalPageLock(code_sel); II still shareable!
data_sel = AllocCStoDSAlias(code_sel);
oper_byte = MK_FP(data_sel, FP_OFF«void far *) math2»;

1* now try to shake it loose *1
GlobalCompact(-1);

#else
oper_byte = (unsigned char far *) math2;

#endif
while (*oper_byte != XOR)

oper_byte++;

#ifdef WINDOWS
if (math2(AND, 1, 3) != 1)
{

extern HANDLE _hprevinst; II ARGCARGV.C
if (_hprevinst)

return fail(UDoesn't work with multiple instances!U);
else

return fail(UInexplicable math failure!U);
}

#endif

printf(U1 && 3 ==> %d\n U, math2(AND, 1, 3»;
printf(U1 II 3 ==> %d\n U, math2(OR, 1, 3»;
printf(U1 A 3 ==> %d\n U, math2(XOR, 1, 3»;
printf(U1 + 3 ==> %d\n U, math2(ADD, 1, 3»;
printf(U1 - 3 ==> %d\n U, math2(SUB, 1, 3»;

#ifdef WINDOWS
GlobalPageUnlock(code_sel);
FreeSelector(data_sel); II important to undo AllocCStoDSAlias()!
II Win 3.1 QH says *NOT* to call FreeSelector. Huh?!

#endif

return 0;
}

See also: AllocAlias, PrestoChangoSelector

AllocSelectorArray

WORD FAR PASCAL AllocSelectorArray(nSel);
WORD nSel; 1* number of selectors *1

AllocSelectorArray

KERNEL.206

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 219

This function allocates a contiguous array ofsegment descriptors and returns a selector
to the first descriptor in the array. It is equivalent to the DPMI Allocate LDT descrip
tors (INT 31h AX=O) function. The documented AllocSelector() function is simply
the degenerate case ofAllocSelectorArray(1).

The documented Windows constant _AHINCR (huge increment) can be used to
move from one selector in the array to the next. The descriptors can be filled in with
the SetSelectorBase() and SetSelectorLimit() functions, described later in this chapter.

There is no corresponding FreeSelectorArray() function. You must iterate over the
individual selectors, as in the sample program below.

Support: 3.0, 3.1
Used by: WINMEM32.DLL
Example: The following program uses AllocSelectorArray() to create an array of far
pointers, megl, that maps the first megabyte of linear memory. Note that _AHINCR
is used to move from one selector to the next, that SetSelectorBase/Limit are used to
give each selector a linear base address and size, and that when finished the program
deallocates the selector array by passing each element individually to the documented
FreeSelector() function.

/* selarray.c */

#include <dos.h>
#include "windows.h"
#include "winio.h"

void fail(char *s) { puts(s); exit(1); }

#define NUM_SEL (1024 / 64)

extern WORD FAR PASCAL AllocSelectorArray(WORD wSel);
extern DWORD FAR PASCAL GetSelectorBase(HANDLE h);
extern DWORD FAR PASCAL GetSelectorLimit(HANDLE h);
extern void FAR PASCAL SetSelectorBase(HANDLE h, DWORD dwBase);
extern void FAR PASCAL SetSelectorLimit(HANDLE h, DWORD dwLimit);

maine)
{

BYTE far *meg1[NUM_SEL];
HANDLE first_sel, sel;
WORD _AHINCR;
i nt i;

if «first_sel = AllocSelectorArray(NUM_SEL» == 0)
fail(" ran out of selectors");

_AHI NCR = LOWORD (Get ProcAddress (GetModu l eHand l e ("KERNEL"),
"_AHINCR"»;

for (i=O; i<NUM_SEL; i++)
{

AllocSelectorArray

220 UNDOCUMENTED WINDOWS

sel = first_sel + (i * __AHINCR);
SetSelectorBase(sel, 64L * 1024L * i);
SetSelectorLimit(sel, OxFFFFL);
meg1[i] = MK_FP(sel, 0);

}

for (i=O; i<NUM_SEL; i++)
printf(II%Fp\t%08lx\t%08lx\n ll

,

meg1[i],
GetSelectorBase(FP_SEG(meg1[i]»,
GetSelectorLimit(FP_SEG(meg1[i]»);

/* here, could browse memory */

for (i=O; i<NUM_SEL; i++)
if (FreeSelector(FP_SEG(meg1[i]» != NULL)

fail(IIFreeSelector failed lf
);

return 0;
}

This program does nothing with the allocated selector array besides displaying it:

081F:0000
0827:0000
082F:0000

088F:0000
0897:0000

00000000
00010000
00020000

OOOeOOOO
OOOfOOOO

OOOOffff
OOOOffff
OOOOffff

OOOOffff
OOOOffff

See slso: SetSelectorBase/Limit

Atom Table

The Windows atom manager provides a mechanism for converting an ASCII string
(atom name) into a 16-bit word (atom) that can be used as a more compact way to
represent the string. Repeated calls to add the same string return the same ATOM
handle. In addition to obvious functions such as AddAtom() and GlobalAddAtom(),
the RegisterClass(), RegisterWindowMessage(), and RegisterClipboardFormat() func
tions also return ATOM handles. Both Dynamic Data Exchange (DDE) and Object
Linking and Embedding (OLE) rely heavily on the atom-management API functions.

An ATOM is a representation of a near pointer to an ATOMENTRY structure
(the C definition for which appears in the SDK include file WINEXP.H):

00 WORD
02 WORD
04 BYTE
05 BYTE[len]

next -- pointer to next atom, or NULL
reference count
length of string
ASCIIZ string

Atom Table

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 221

However, a string atom is always is the range COOOh-FFFFh and isn't identical to
its corresponding near pointer. The relationship between a string atom and its under
lying near pointer is defined by the documented (but discouraged) GetAtomHandle()
function. The existence of this function, a holdover from Windows 2.x, probably
explains the presence of atom-manager structures in WINEXP.H; it's hard to use
GetAtomHandle() without knowing the ATOMENTRY structure. Disassembly shows
that GetAtomHandle() is an amazingly simple function:

GetAtomHandle proc far
, ...
mov ax, _atom
cmp ax, OCOOOh
jb error
shl ax, 1
shl ax, 1
jmp done

error:
xor ax, ax

done:
, ...

GetAtomHandle endp

; [bp+6J

That's it! GetAtomHandle() takes any number greater than or equal to COOOh,
and shifts it left by two: the inevitable overflow results in a near pointer to the atom.
Or, if an invalid parameter is passed in, it results in garbage that resembles a near
pointer to an atom. No parameter validation is performed.

GetAtomHandle() checks for a value >= COOOh because Windows, like OS/2 Pre
sentation Manager, can have integer atoms which do not appear in an atom table. For
example:

AddAtom(II#12345 11) -> Ox3039
GetAtomName(Ox3039, buf, 128) -> 11#12345 11

These integer atoms are used by built-in window classes that have names such as
"#32769" (the desktop window class). For more information on integer atoms (which
are not documented in the Windows SDK), see the chapter on atom tables in
Microsoft OS/2 Programmer)s Reference, Volume 1. Since integer atoms do not appear
in the atom table, the remainder of this discussion assumes string atoms.

One can easily move between string atoms and near pointers:

/* similar to documented (but discouraged) GetAtomHandle(); assumes
string atom; doesn't work with integer atoms */

#define AtomToHandle(atom) «WORD) (atom) «2) /* overflow */

#define HandleToAtom(handle) (OxCOOO I «handle) » 2»

Thus, we know that string atoms represent near pointers to ATOMENTRY struc
tures. But, near pointers into what? Into a segment that contains an atom table. An

Atom Table

222 UNDOCUMENTED WINDOWS

atom table in Windows is created with the InitAtomTable() function. If you call one
of the atom-management functions and an atom table does not already exist in the DS
segment, these functions will automatically call InitAtomTable() to create one.

An ATOMTABLE is nothing more than a hash table. Each entIy in the hash table
is a near pointer to an ATOM, or NULL. The ATOMs themselves are merely items in
the local heap (any segment with an atom table must also contain a local heap, created
with LocaIInit()). The ATOMTABLE starts with a WORD containing the size of the
hash table, which should be a prime number:

00 WORD size; number (prime) of entries in hash table
02 (size * 2) hash table; each entry an ATOMENTRY near*

Or, in pseudocode which is almost, but not quite, valid C:

typedef struct atomentry {
struct atomentry near *next;
WORD usage;
BYTE len;
BYTE name[len];
} ATOMENTRY;

typedef struct {
int numEntries;
ATOMENTRY near *hashtab[numEntries];
} ATOMTABLE;

In other words, ATOMTABLE is a prime number, numEntries, followed by the
hash table itself, which has numEntries slots. Each slot holds zero or a near pointer to
an ATOMENTRY. If more than one atom hashes to the same address, they are
chained together to form a bucket, using ATOMENTRY's next field. For further
details on hash tables, buckets, why the table size should be a prime number, and so
on, see Donald Knuth, Art of Computer Programming, Volume 3 (Searching and
Sorting), section 6.4 (Hashing). Windows uses a hash function based on the division
method (hence the prime number) and does collision resolution by chaining (as
opposed to linear probing or some other open-addressing scheme).

The default size of an atom table is 37 entries. Of course, the table can manage
more than 37 strings. Let's say that a given table is currently managing about 100
atoms. On average, each entIy in the hash table will contain a near pointer to an atom,
which will be the first in a chain of about three atoms. The hash function used by
Windows seems to do a good job of keeping each chain at about the average (number
of strings / size of hash table) length. It also keeps similar items, such as "foobar" and
"foboar", or "foobar" and "foobag", from hashing to the same address and thus
winding up in the same bucket. FindAtom() searches should thus be relatively fast.

Unfortunately, as can be seen from the ATOMTABLE structure above, atom
tables have no "signature." This probably explains, for example, why ToolHelp has no

Atom Table

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 223

atom table-walking functions. However, there are a number of things about atom
tables that make it possible to identify them in memory:

• Any segment containing an atom table will contain, at offset 8, a near pointer
to the ATOMTABLE structure. (See Instance Data, later in this chapter.)

• Any segment containing an atom table must also contain a local heap (an indi
vidual ATOMENTRY is an item in the local heap; the ATOMTABLE just
contains pointers to these items). Local heaps do have signatures (see Local
Heap, later in this chapter).

In addition to local atom tables, Windows also has a global atom table, manipu
lated by documented functions such as GlobalAddAtom(). The global atom table,
however, is really no different from a local atom table: USER's GlobalAddAtom()
quickly turns into KERNEL's AddAtom(). The global atom table is located not in
USER's default data segment (there's another, regular, non-global heap there), but in
USER's global atom and text heap (see the discussion of DSER heaps in the introduc
tion to chapter 6).

Just like their related local-heap functions, all the atom-management functions in
Windows work with near pointers; it is assumed that DS points to a segment contain
ing an atom table. At fIrst sight, this seems to indicate that you can only access one
atom table, in your own default data segment. However, you can both create addi
tional atom tables and access someone else's, merely by setting up DS around any calls
to the atom-management functions; this is all that the global-atom functions in USER
do. This is similar to the based-pointer scheme for suballocating out of multiple local
heaps. For example, see the BasedGetAtomName() function in chapter 4's sidebar on
RegisterWindowMessage(). Another example, BasedFindAtom(), appears in the
ATOMWALK sample program below. Using these based atom functions merely
requires that you know the segment for some existing atom table, or that you create a
new one with a BasedInitAtomTable() function.

Support: 3.0, 3.1
See also: lnitAtomTable, Instance Data, Local Heap
Example: The following program, ATOMWALK.C, enumerates the handle and string
for each atom, in each atom table on the system. The global atom table is identified. A
high-level view of the code looks like this:

For each global-heap entry reported by ToolHelp
If it contains an atom table <--- this is the hard part!

If it's the Global Atom Table, identify it
For each entry in hash table

If entry is in use
Maybe show entry number
For each atom in this bucket

Print atom handle, atom string

Atom Table

224 UNDOCUMENTED WINDOWS

The output looks like this:

06a7 (C:\WIN31\SYSTEM\USER.EXE)
c4ae winio_wcmain
c354 ComboLBox
c43c OTHERWINDOWCREATED
c473 WOAFontPreview
c58b WFS_Search
c455 tty
c493 ACTIVATESHELLWINDOW
••• etc

37 hashtab entries, 40 atoms

0501 (C:\WIN31\SYSTEM\GDI.EXE)
c056 Small Fonts
c127 MGXWMF.DRV
c06b Zapf Dingbats
••• etc.

101 hashtab entries, 76 atoms

GLOBAL ==> 0287 (C:\WIN31\SYSTEM\USER.EXE) 37 entries
c02a SysCP
c02e SysBW

37 hashtab entries, 2 atoms

The program can be run with -BUCKET command-line switch to group together
all atoms that hash to the same entry in the hash table. For example:

tty

ComboLBox

ACTIVATESHELLWINDOW
WFS_Dir

OTHERWINDOWCREATED
WOAFontPreview
WFS_Search

06a7 (C:\WIN31\SYSTEM\USER.EXE)
Bucket 1

c4ae
Bucket 4

c354
Bucket 5

c43c
c473
c58b

Bucket 6
c455

Bucket 8
c493
c57c

••• etc.
37 hashtab entries, 40 atoms

The source code follows:

1* ATOMWALK.C -- show all atoms *1

#include <stdlib.h>
#include <dos.h>
#include "windows.h u

#include "toolhelp.h"

Atom Table

1* Atoms are usage counted. *1
1* Length of ASCIZ name string *1
1* beginning of ASCIZ name string *1

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 225

#include "winio.h"
#include "handles.h"

#pragma pack(1)

1* from WINEXP.H *1
1* atom manager internals *1
#define ATOMSTRUC struct atomstruct
typedef ATOMSTRUC *PATOM;
typedef ATOMSTRUC {

PATOM chain;
WORD usage;
BYTE len;
BYTE name;

} ATOMENTRY;

typedef struct {
int . numEntries;
PATOM pAtom[1 J;

} ATOMTABLE;

1* identicaL to documented (but discouraged) GetAtomHandLe() *1
#define AtomToHandLe(atom) «WORD) (atom) «2) 1* overflow *1

#define HandleToAtom(handle)
1* NULL segment at offset 0 in

atom table or local heap *1
typedef struct {

WORD wMustBeZero;
DWORD dwOldSSSP;
WORD pLocalHeap;
WORD pAtomTable;
WORD pStackTop;
WORD pStackMin;
WORD pStackBottom;
} INSTDATA;

(OxCOOO I «handle) »
a data segment with

2»

1* There is no signature for atom tables, so seeing if you found one
is tricky, and perhaps only probabilistically correct. To be
an atom tabLe, there _must_ be a local heap (the atoms themseLves
are items in the LocaL heap). We can test for a correct LocaL
heap. There must aLso be a valid NULL segment bLock at offset 0 *1

ATOMTABLE far *GetAtomTabLe(GLOBALENTRY *pge)
{

extern DWORD FAR PASCAL GetSeLectorLimit(WORD seL);
if «pge->wType GT_DGROUP) I I

(pge->wType GT_DATA) I I
(pge->wType GT_UNKNOWN» II GlobalALlocs are GT_UNKNOWN

{

WORD seL = GLobaLHandLeToSeL(pge->hBLock);
INSTDATA far *LpInstData = MK_FP(seL, 0);
DWORD limit = GetSeLectorLimit(seL);
if (verr(sel) &&

(Limit > 16) &&
(LpInstData->wMustBeZero 0) &&

Atom Table

226 UNDOCUMENTED WINDOWS

(lpInstData->plocalHeap != 0) &&
(lpInstData->pLocalHeap < limit) &&
(lpInstData->pAtomTable != 0) &&
(lpInstData->pAtomTable < limit) &&
IsValidlocalHeap (MK_FP (sel, lpInstData->plocalHeap»)

{

return MK_FP(sel, lpInstData->pAtomTable);
}

}

1* still here *1
return Ol;

}

ATOM BasedFindAtom(WORD wSeg, lPSTR lpsz)
{

ATOM retval;
_asm push ds

asm mov ds, wSeg
retval = FindAtom(lpsz);
_asm pop ds
return retval;

}

static BOOl show_bucket = FALSE;

WORD print_bucket(WORD hash, ATOMENTRY far *pa)
{

WORD num_atoms = 0;
WORD seg = FP_SEG(pa);
WORD ofs = FP_OFF(pa);
if (show_bucket)

printf("Bucket %u\n", hash);
for (;;) II print everything that hashes to this bucket
{

num_atoms++;
printf(" %04x %Fs\n", HandleToAtom(FP_OFF(pa», &pa->name);

#ifdef PARANOID
if (HandleToAtom(ofs) != BasedFindAtom(seg, &pa->name»

fail("Something wrong!");
#endif

if «ofs = pa->chain) != 0)
pa = MK_FP(seg, ofs);

else
break;

}

return num_atoms;
}

main(int argc, char *argv[])
{

ATOMTABLE far *lpAtomTable;
GlOBALENTRY ge;
HANDLE hUser;
WORD num_atoms;

II follow linked list

Atom Table

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 227

i nt ok;

if (argc >= 2)
if (strcmp(strupr(argv[1J), II-BUCKET II) 0)

show_bucket = TRUE;

hUser = GetModuleHandle(IIUSER II);
ge.dwSize = sizeof(ge);
winio_setbusy();
winio_setpaint(__hMainWnd, FALSE); II don't yield
ok = GlobalFirst(&ge, GLOBAL_ALL);
while (ok)
{

II for Atom Table structure, see WINEXP.H
if (lpAtomTable = GetAtomTable(&ge»
{

char owner[128J;
int i;
PATOM far *pa;
WORD sel = FP_SEG(lpAtomTable);
GetModuleFileName(ge.hOwner, owner, 128);
if «ge.hOwner == hUser) && (ge.wType != GT_DGROUP»

printf(IIGLOBAL ==> II); II identify Global Atom Table
printf(II%04x (%s)\n ll

, sel, owner);
num_atoms = 0;
for (i=O, pa=&lpAtomTable->pAtom;

i<lpAtomTable->numEntries;
i++, pa++)

{

if (*pa != 0)
nurn_atoms += print_bucket(i, MK_FP(sel, *pa»;

}

printf(lI%u hashtab entries, %u atoms\n\n",
lpAtomTable->numEntries, num_atoms);

printf(lI\n");
}

ok = GlobalNext(&ge, GLOBAL_ALL);
}

winio_setpaint(__hMainWnd, TRUE);
winio_resetbusy();
return 0;

}

KERNEL.351

void FAR Bunny_351(void);

Bunny_351() simply sets the KERNEL fault handler address to a different routine
during the shutdown of Windows. The function is called when Windows shuts down

228 UNDOCUMENTED WINDOWS

and no more tasks are left. Apparently the function is a workaround for some bugs in
applications that would otherwise cause the system to crash.

Perhaps of more interest than the details of the function itself are the origins of its
name. Apparently a cast of stuffed animals lives among the Windows developers at
Microsoft. Rumor has it that Bunny went to the "Land of Bug-Free Code" via a paper
shredder. Besides Bunny, there's also Bear (see the USER BearNNN functions in
chapter 6).

Support: 3.1

Burgermaster

See: GlobalMasterHandle, Global Heap

CallProclnstance

206-827-9566

KERNEL.53

LONG FAR PASCAL CaLLProcInstance(HWND hWnd, WORD wMessage,
WORD wParam, LONG LParam); /* ES:BX set to hInstance/LpfnWndProc */

This function is used internally by Windows 3.0 in the USER CallWindowProc(), Dis
patchMessage(), and SendMessage() functions; it thus is called constantly in the Win
dows 3.0 main loop. In Windows 3.1, CallProcInstance() still exists, but it appears to
be unused (a function internal to USER, ValidateMessage(), is used instead). It's not
clear why such a USER-dependent function resides in KERNEL in the first place.

CallProcInstance() expects to be called with ES:BX pointing to the hInst
ance/lpfnWndProc fields in a WND structure (at offset 38h in 3.0). The parameters
on the stack are identical to the parameters expected by a WndProc. CallProcInstance
sets DS to the hInstance and does a far jump to the IpfnWndProc.

Support: 3.0, 3.1 (not used in 3.1?)
See also: WND structure (USER)

CVWBreak

void FAR _interrupt CVWBreak(void);

KERNEL.205

CVWBreak() is used as part of the Windows debugging interface. The KEYBOARD
function, EnableKBSysReq(), documented in the Windows Device Driver Kit (DDIZ),
controls whether hitting Ctrl-Alt-SysReq will trigger a call to CVWBreak(). CVW
Break(), in turn, generates an INT 1, which can be caught by WINDEBUG.DLL
(which in turn notifies Code View for Windows (CVW) or Turbo Debugger for Win-

Burgermaster

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 229

dows (TDW)), or by a debugger such as Soft-Ice for Windows (if the I1HERE ON
option is specified). Alternatively, a Ctrl-Alt-SysReq can trigger an NMI (!NT 2).

There should be no need to call CVWBreak() directly. Use the documented
DebugBreak() function instead.

Support: 3.0, 3.1
Used by: KEYBOARD.DRV (see DDK source code \keyboard\enable.asm and \key
board\trap.asm)

DebugDefineSegment KERNEL.314

void FAR PASCAL DebugDefineSegment(lpName, wLogSeg, wSeg, wUnknown, wFlag)
LPSTR lpName; /* module name of the segment owner, from task database */
WORD wLogSeg; /* logical segment number from .EXE (O-based) */
WORD wSeg; /* segment or selector value */
WORD wUnknown;
WORD wFlag; /* data=1, code=O */

This function is used by the memory management in KERNEL to provide segment
information to an external debugger such as WDEB386 or Soft-Ice for Windows; it is
little more than a C interface to one of the many INT 41h functions in the Windows
low-level debug API (see RegisterPtrace); DebugDefineSegment() corresponds to the
INT 41h Define Segment function:

AX SOh
BX = wLogSeg
CX = wSeg
S1 = wFlag
ES:(E)DI = lpName
INT 41h

Support: 3.1
See also: RegisterPtrace

DebugFillBuffer KERNEL.329

void FAR PASCAL DebugFillBuffer(LPSTR lpBuffer, WORD wBytes);

The actual name of this export is K329. If the documented Windows 3.1
SetWinDebuglnfo() DBO_BUFFERFILL option is set, this function is called to fill all
of the buffer at IpBuffer with the byte OF9h. The buffer is one that has been passed to
a Windows API function such as GetWindowText(); DebugFillBuffer() helps ensure
that all of the supplied buffer is writeable.

The 3.1 DDK version ofWINDOWS.H contains the following definitions:

#define DBGFILL_ALLOC OxFD

DebugDefineSegment

230 UNDOCUMENTED WINDOWS

#define
#define
#define

DBGFILL_FREE
DBGFILL_BUFFER
DBGFILL_STACK

OxFB
OxF9
OxF7

Support: 3.1

DeletePathName KERNEL.76

WORD FAR PASCAL DeletePathname(lpPathName);
LPSTR lpPathName; 1* path name of file to delete *1

This function appears in some versions of WINDOWS.H and WINEXP.H, but it is
not documented-perhaps because it is so self-explanatory that it requires no docu
mentation! The function sets AX=4100h and falls into the OpenPathname() function.
The function deletes the named file; if it can't be deleted (file does not exist, or access
denied), it returns -1.

Support: 3.0, 3.1

DiagOutput

void FAR PASCAL DiagOutput(char far *msg);

KERNEL.340

If Windows 3.1 has been started with the WIN /B boot-log option, this function
writes a string to the BOOTLOG.TXT file; otherwise, it does nothing (thus, it is not
necessary to call DiagQuery() before calling this function). Each time DiagOutput() is
called, it opens BOOTLOG.TXT, writes out the string, and then closes
BOOTLOG.TXT; thus, the log file may be useful for troubleshooting even if Win
dows has crashed.

Device drivers and DLLs that call DiagOutput() should generally output one
"LoadStart = " message as soon as their initialization routine is called, and one
"LoadSuccess = " or "LoadFailure = " message just before the initialization routine
returns. Programs that intend to be run from the WIN.INI LOAD= or RUN= com
mand line, or from the SYSTEM.INI SHELL= command line, should perhaps also call
DiagOutput() in their initialization routine.

Support: 3.1
See also: DiagQuery
Example:

extern void FAR PASCAL DiagOutput(char far *msg);
char buf[128J;
I I ...
GetModuleFileName(hInstance, buf, 128); II can pass hInstance
DiagOutput(flLoadStart = II); DiagOutput(buf); DiagOutput(l\n");

DeletePathName

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 231

II ... now do all the work of initializing ...
DiagOutput(success? "loadSuccess = II : "LoadFailure II);

DiagOutput(buf); DiagOutput("\n");

DiagQuery KERNEL.339

BOOl FAR PASCAL DiagQuery(void);

This function returns TRUE if Windows 3.1 has beel1 started with the WIN /B flag
and FALSE otherwise. WIN /B enables boot log tracing, creating a file
BOOTLOG.TXT with diagnostic boot-time messages such as "LoadStart = SYS
TEM.DRV" and "LoadSuccess = SYSTEM.DRV." This fde can be used to trouble
shoot Windows boot problems.

DiagQuery() merely returns the value of an internal KERNEL variable,
FDIAGMODE, which is set by an internal Diaglnit() function.

Support: 3.1
See also: DiagOutput

DirectedYield

void FAR PASCAL DirectedYield(hTask);
HANDLE hTask; 1* Handle to a Task Database *1

KERNEL.150

DirectedYield() is similar to the documented Yield() function, but it takes a parameter
that specifies the handle of a task to which it yields. Thus, the calling application
decides which Windows task gets to run next, rather than leaving this up to the Win
dows scheduler. The function could probably be used to implement coroutines in
Windows, but it is generally used by Windows debuggers and development environ
ments; it is called both by WINDEBUG.DLL and by Quick C for Windows (QC/W).

DirectedYield() is documented in Windows 3.1, but not in 3.0, where it also
exists.

DirectedYield() is just a wrapper around the function OldYield(); the two func
tions communicate via a field at offset OAAh in the Task Database.

To ensure that the task to which you are DirectedYielding runs make sure that it
has a message in its queue. This, in turn, means ensuring that it has a queue in the first
place (i.e., that it isn't still in the middle of executing its startup code). For example:

HANDLE hTask;
II
if (GetTaskQueue(hTask) != 0)
{

PostAppMessage(hTask, WM_NUll, 0, Ol);
DirectedYield(hTask);

}

DiagQuery

232 UNDOCUMENTED WINDOWS

In a debugger that uses WmDebug, you can use the Pid (process id) field in the
WINDEBUG_BUF structure:

WINDEBUG_BUF wdbg;
/ / ...
PostAppMessage(wdbg.pid, WM_NULL, 0, OL);
DirectedYield(wdbg.pid);

Support: 3.0, 3.1
See also: GetTaskQueue, OldYield, Task Database

DirectResAlloc KERNEL.168

HANDLE FAR PASCAL DirectResAlloc(HANDLE hInstance, WORD wType,
WORD wSize);

Whereas the documented AllocResource() function expects a resource identifier
returned from FindResource(), which in turn expects to find resources in executable
files, the undocumented DirectResAlloc() function is instead used when creating
resources on the fly.

As part of this process, one obviously needs to allocate a block of global memory
and copy the resource data into it; the documented GlobalAlloc() function is normally
used to allocate global memory in Windows. However, when memory is allocated with
GlobalAlloc(), it (with one important exception, noted below) becomes associated
with the calling instance and is automatically freed when the instance terminates.
Because resources are shareable among all instances of an application, they must be
allocated differently: the memory must be associated, not with an instance, but with a
module; it should only be freed when the very last instance of the module terminates,
not when the instance that happened to allocate it terminates.

That in essence is what DirectResAlloc() does: provide a way to allocate global
memory that is associated with a module rather than with an instance. Oddly enough,
DirectResAlloc() nonetheless takes an hInstance as its first parameter; it automatically
converts this to an hModule, using the undocumented GetExePtr() function
(described later in this chapter).

It is not known what the second parameter is. The CreateCursorIconIndirect()
function in USER passes in a wType ofOxlO.

If successful, DirectResAlloc() returns a HANDLE, just like GlobaWloc(). The
calling function is expected to lock the handle with GlobalLock() and then copy the
resource data into the resulting pointer. The handle can then be unlocked and sub
sequently treated like a normal resource that had been loaded out of an executable file.

Applications should generally not need to use DirectResAlloc() because
GlobaWloc() can also be made to do hModule- rather than hlnstance-based alloca
tion by using the (somewhat misnamed) GMEM_DDESHARE flag. A good discus-

DirectResAlloc

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 233

sion of this appears in Paul Yao's article, "Careful Windows Resource Allocation and
Cleanup Improves Application Hygiene" (Microsoft Systems Journal) September 1991).

In addition, the owner of a memory block can be manipulated with the
FarGetOwner() and FarSetOwner() functions, described later in this chapter. Interest
ingly, hInstance-based allocations seem to be stored with a PSP, rather than an actual
hInstance, owner.

Support: 3.0, 3.1
Used By: USER, SHELL (3.1), PROGMAN (3.0 only), WINHELP
See also: FarSetOwner, CreateCursorIconIndirect (USER)

DisableDOS

void FAR PASCAL OisableOOS(void);

KERNEL.42

In Windows 3.0, after calling this function, any DOS INT 2Ih call, from any Win
dows application, will fail. Many existing applications will continue to work just fine,
but you won't be able to start any new ones (the WinExec call requires DOS file
I/O), and operations that require DOS, such as opening or saving files, will fail. DOS
access can be turned back on with a call to EnableDOS().

DisableDOS() is used as part of normal Windows termination by the Dis
ableKernel() function. DisableDOS() reinstalls the original interrupt handlers that
KERNEL replaces as part of its startup: INT 0, 2, 4, 6, 7, 2Ih, 24h, 2Fh, 3Eh, and
75h.

There seems to be little reason to use this call, except perhaps to test the extent to
which one's application is cut off, or dependent, on DOS.

In Windows 3.1, this function immediately returns. Much of its functionality
appears to be present in DisableKernel(), however.

Support: 3.0
See also: DisableKernel, EnabieDOS

DisableKernel KERNEL.125

In Windows 3.0, this function calls DisableDOS(). In Windows 3.1, DisableKernel()
executes the code described above for DisableDOS() in 3.0. However, EnableKernel()
is a NOP in 3.1, so KERNEL can't be reenabled.

DoSignal

VOID FAR PASCAL DoSignaL(void);

DisableDOS

KERNEL.139

234 UNDOCUMENTED WINDOWS

DoSignal() is used by KEYBOARD.DRVas a way of sending a Ctrl-Break to the task
that has the focus window. Rather than generate an INT IBh, however, DoSignal()
uses the signal handle stored at offset 26h in the Task Database (and settable via the
SetSigHandler() function). Most Windows applications do not install signal handlers;
the default signal handler points to an RETF instruction inside KERNEL.

Internally, DoSignal() uses the GetProcAddress() function to call several functions
inside USER (KERNEL depends on non-KERNEL functionality). These functions are
GetFocus() (to determine which window the Ctrl-Break belongs to), IsWindow() (to
verify that this HWND is correct), and GetWindowTask() (to obtain the hTask corre
sponding to the focus HWND). With the hTask in hand, DoSignal() pushes 1 and 0
and calls through the function pointer stored in the task database. Most registers are
saved around the call.

Support: 3.0, 3.1
Used by: KEYBOARD.DRV (see DDKsource code \keyboard\trap.asm)
See also: SetSigHandler, Task Database
Example: If the following program is run without a command-line argument, it calls
DoSignal(), and the signal is caught by a function installed with SetSigHandler(). If
the program is run with a command-line argument (e.g., BREAK FOO), pressing
Ctrl-Break terminates the program. The signal-handler function sets a global flag that
is checked periodically within the program's main loop. Calling Windows API func
tions such as MessageBox() from within the signal handler will generally cause a pro
tection violation if a genuine Ctrl-Break has been hit (as opposed to calling DoSignal),
so the program calls MessageBox outside the signal-handling function.

1* break.c *1

#include "windows.h"
#include "winio.h"

WORD (FAR PASCAL *SetSigHandler)(FARPROC newSignalHandler,
DWORD FAR * lpOldSignalHandlerAddress,
WORD FAR *lpOldSignalType, WORD signalType, WORD mustBeOne);

void (FAR PASCAL *DoSignal)(void);

int volatile do_abort = 0;

WORD FAR PASCAL _export ctrl_break_handler(WORD a, WORD b)
{

MessageBeep(O); II seems ok to call, though most APIs aren't
do_abort++;

}

main(int argc, char *argv[])
{

FARPROC ctrl_break;
DWORD dwOldProc;
WORD wOldType;

DoSignal

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 235

int do_dosignal = (argc < 2) ;
HANDLE hKernel = GetModuleHandle("KERNEL");
if (do_dosignal)

if (! (DoSignal = GetProcAddress(hKernel, "DOSIGNAL"»)
fail("Can't find DoSignal");

if (! (SetSigHandler = GetProcAddress(hKernel, "SETSIGHANDLER"»)
fail("Can't find SetSigHandler");

ctrl_break = MakeProcInstance«FARPROC) ctrl_break_handler,
_hInst)i

SetSigHandler«FARPROC) ctrl_break,
&dwOldProc, &wOldType, 2, 1); II install handler

for (ii)
{

if (do_dosignal)
{

puts("This is a test of DoSignal!")i
DoSignal();

}

else
puts("Hit Ctrl-Break!");

if (do_abort)
{

II signal handler was called

if (MessageBox(NULL, "Ctrl-Break Pressed",
"Test of SetSigHandler",
MB_ABORTRETRYIGNORE) == IDABORT)
break; II abort

else
do_abort = 0; II retry, ignore

}

}

FreeProcInstance(ctrl_break);
puts("Program aborted");
return 0;

}

DOS3Caii

void FAR Dos3Call(void)i

KERNEL.l02

Dos3Call() can be used as a direct replacement for INT 21h DOS calls; the function
expects that all registers have been set up for an INT 21h. Dos3Call() is not undocu
mented, but the Microsoft Windows Programmer)s Reference claims that "an application
can call this function only from an assembly-language routine," which is certainly not
true. For example:

WORD wDosVers;
void FAR Dos3Call(void)

GetProcAddress(GetModuleHandle("KERNEL"), "DOS3CALL");
I I ...
_asm mov ax, 3000h

DOS3Cail

236 UNDOCUMENTED WINDOWS

#ifdef OLDCODE
_asm mov int 21h
#else
Dos3Call();
#endif
_asm mov wDosVers, ax

While performing the same function as an INT 21h instruction, a call to
Dos3Call() is considered more portable. On the other hand, DOS calls made with
Dos3Call() will not be caught by an interrupt-snooping debugger such as this book's
WISPy (I-Spy for Windows) or the BPINT (breakpoint on interrupt) command in
Soft-ICE for Windows.

Support: 3.0, 3.1
See also: NoHookDosCall

EMSCopy KERNEL.160

This function, a holdover from Windows 2.x expanded-memory support, does nothing
in Windows 3.x. It expects to be called with 14 bytes worth of parameters.

EnabieDOS

void FAR PASCAL EnableDOS(void);

KERNEL.41

In Windows 3.0, this function installs (or reinstalls) Windows interrupt handlers for
INT 0, 2, 4, 6, 7, 21h, 24h, 2Fh, 3Eh, and 75h. After this function has been called,
Windows applications can make DOS INT 21h calls; this undoes the effect of Dis
ableDOS(), described earlier in this chapter. In Windows 3.1, the function immedi
ately returns.

Support: 3.0
See also: DisableDOS, EnableKernel

EnableKernel KERNEL.124

In Windows 3.0, this function undoes the work of DisableKernel(). In 3.1, it immedi
ately returns.

ExitKernel KERNEL.2

void FAR PASCAL ExitKernel(WORD wCode, WORD wReturnCode);

ExitKernel() is called by the documented ExitWindows() function and is used to shut
down (and possibly restart) Windows. ExitKernel(), in turn, calls the KEYBOARD and

EMSCopy

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 237

MOUSE Disable() functions and the SYSTEM DisableSystemTimers() function; it
calls them through function pointers returned from GetProcAddress().

The second parameter to ExitKernel() is the same as the second parameter to
ExitWindows(). The first parameter indicates whether Windows is supposed to exit
and restart, or merely exit (in Windows 3.1, Microsoft documented that
ExitWindows() can be passed the value EW_RESTARTWINDOWS (Ox42) or
EW_REBOOTSYSTEM (Ox43)).

Support: 3.0, 3.1

FarGetOwner

WORD FAR PASCAL FarGetOwner(HANDLE h);

KERNEL.404

This function, available only in Windows 3.1, returns the owner of an item on the
Windows global heap. The owner is sometimes a protected-mode PSP (PDB), and
sometimes an hModule. In the case of blocks allocated with GlobalAlloc() (except
when GMEM_DDESHARE is used), the owner is the protected-mode PSP. The
return value of this function thus differs from that of GetExePtr(), which calls GetOw
ner() but which returns the corresponding hModule even where FarGetOwner()
returns a PSP. The return value is 0 if the handle is invalid.

In Windows 3.0, the same functionality as FarGetOwner() is available by directly
peeking at a Global Arena structure; this is all that FarGetOwner() does in Windows
3.1. In Standard mode, it returns the WORD at offset 1 in the Global Arena structure;
in Enhanced mode, it returns the WORD at offset 12h. These same values can be used
in Windows 3.0 (see the Global Arena entry).

Because this function is exported from KERNEL by ordinal only, it must also be
imported by ordinal. For example:

WORD (FAR PASCAL *FarGetOwner)(HANDLE h);
/ / ...
FarGetOwner = GetProcAddress(hKerneL, "#404");
printf("%04x owned by %04x\n", h, FarGetOwner(h»;

Support: 3.1 only (unnamed export)
See also: FarSetOwner, GetExePtr, Global Arena

FarSetOwner KERNEL.403

void FAR PASCAL FarSetOwner(HANDLE h, WORD wOwnerPSP);

Like FarGetOwner(), the FarSetOwner() function is available only as an unnamed
export from Windows 3.1. It can be used to change the owner of a block on the

FarGetOwner

238 UNDOCUMENTED WINDOWS

Windows global heap, for example, to pass ownership of a block from one task to
another. The owner is specified using a protected-mode PSP, such as returned from
the documented GetCurrentPDB() function, or as found at offset 60h in the Task
Database.

When a task exits, Windows releases all the memory that the task allocated via
GlobaWloc(). However, ifFarSetOwner() is used to pass ownership off to some other
task, then the memory is not released until that task exits.

Support: 3.1 only (unnamed export)
See also: DirectResAlloc, FarGetOwner, GetExePtr, Global Arena

FatalExitHook

FARPROC FAR PASCAL FatalExitHook(FARPROC HookProc);

KERNEL.318

FataIExitHook() allows an application to install a system-wide hook that will be called
whenever an application calls the documented FataIExit() function. If the address
passed to FatalExitHook is OL, it disables future callbacks. The return value is the
address of the previous handler.

This function is new for Windows 3.1, and it appears to have been added to aid
TOOLHELP.DLL in cleaning up programs that have called NotifyRegister() or
InterruptRegister(). See chapter 10 on ToolHelp for further details.

The callback function is prototyped as follows:

BOOl FAR PASCAL FatalExitHookCallback(WORD exitCode);

Support: 3.1

FileCdr KERNEL.130

DWORD FAR PASCAL FileCdr(FILECDRPROC lpfnNotifyProc);

FileCdr installs a callback function that will be called whenever there are changes to
the fIle system, such as a file being created or deleted. The only known user of FileCdr
is the Windows File Manager (WinFile). FileCdr will not install a new callback func
tion if there is already a callback installed and the current hTask does not match the
hTask of the program that called FileCdr originally. In other words, ifWmFile is run
ning, you can't use FileCdr-but there's more than one way to skin this cat, as we
shall see.

Call FileCdr by passing in the far address of the callback function to be installed,
or a NULL to deinstall the callback function that you have previously installed. The
function returns a BOOL in the low-order WORD of the DWORD return indicating

FatalExitHook

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 239

whether it performed the requested operation, i.e., there were no hTask clashes, and
the high-order WORD is undefined. In version 3.1, if -lL is passed to the function,
the address of the current callback function is returned. This provides an inquiry mode
for the function, but note that this is not present in 3.0.

The callback function is prototyped as follows:

void FAR PASCAL FileCdrProc(WORD wActionCode, LPSTR lpszPath);

The wActionCode parameter identifies what has occurred, and IpszPath specifies
the fde or directory that it has occurred to. The action codes are AX values from the
DOS INT21h functions that generated during file system operations; the following
INT 21h functions are in the list of those that cause change, and therefore callbacks:

Ox3C Create file
Ox39 Create directory
Ox3A Delete directory
Ox41 Delete file
Ox43 Get/set file attrs
Ox56 Rename file/directory
OxS7 Set file date/time
OxSA Create unique file
OxSB Create new file
Ox6C Extended open

Upon receiving one of these callbacks, WinFile allocates space to hold a copy of
the passed string and copies the string into the local buffer. It then posts the undocu
mented WM_FILESYSCHANGE message (Ox34, see chapter 7) to one of its win
dows. By using FileCdr, WinFile automatically tracks any file-system changes by
Windows applications. In Standard Mode, WinFile has no way of tracking file system
changes in the DOS box. To track changes by non-Windows applications running in
Enhanced Mode DOS boxes, it must rely on the DOSMGR and DOSNET virtual
device drivers in WIN386.EXE. This causes a sufficiently large performance hit that
such tracking (enabled with the 'FileSysChange=ON' entry in the [Enhanced] section
of SYSTEM.INI) is disabled by default, and the user must manually refresh the WinF
ile display by pressing F5 to pick up DOS-box changes.

FileCdr in both 3.0 and 3.1 is a very simple function in its implementation; this
implementation provides all the information one needs to solve the problem men
tioned at the end of the first paragraph. We present here a replacement for FileCdr()
that can be used by one or more applications such that they can all receive notification
of file system changes, even ifWinFile is already running.

In essence, the pseudocode in KERNEL for FileCdr is:

static FARPROC lpfnFileCdrNotify = (FARPROC) 0;
static HANDLE hTaskFileCdr;

BOOL/FARPROC FileCdr(FARPROC lpfnNotifyNew)
{

FileCdr

240 UNDOCUMENTED WINDOWS

#if CWINVER >= OxOa03)
if ClpfnNotifyNew == -1)

return lpfnFileCdrNotify;
#endif

if ClpfnFileCdrNotify && ChTaskFileCdr != GetCurrentTaskC»)
return FALSE;

lpfnFileCdrNotify = lpfnNotifyNew;
hTaskFileCdr = GetCurrentTaskC);
return TRUE;

}

where IpfnFileCdrNotify and hTaskFileCdr are static data items in KERNEL's
DGROUP. These items may be accessed from the THHOOK_STRUCT described in
the THHook entry later in this chapter. IpfnFileCdrNotify is at THHOOK_STRUCT
offset Ox0185 in 3.0, and OxOOFE in 3.1; hTaskFileCdr is at THHOOK.-STRUCT
offset Ox0189 in 3.0, and OxOl02 in 3.1.

Armed with the known offsets relative to THHOOK.-STRUCT in KERNEL's
DGROUP of the callback function address and the handle of the task that owns the
callback function, our implementation simply removes the task-matching performed
by FileCdr, and uses side-effecting parameters, as in this pseudocode:

void GetSetFileCdrCbSet, *p_lpfnNotify, *p_hTask)
{

FARPROC far *p_lpfnFileCdrNotify;
HANDLE far *p_hTaskFileCdr;

1* Get lpfnFileCdrNotify and hTaskFileCdr in KERNEL's
1* DGROUP, into p_lpfnFileCdrNotify, p_hTaskFileCdr

if CbSet)
{

*p_lpfnFileCdrNotify = *p_lpfnNotify;
*p_hTaskFileCdr = *p_hTask;

}

else
{

*p_lpfnNotify = *p_lpfnFileCdrNotify;
*p_hTask = *p_hTaskFileCdr;

}

}

The following program, STEALCDR, has a full implementation of the above. It
saves away the current callback address and owning task handle, and plugs in its own.
Whenever STEALCDR's callback function is called, it prints out the event that has
taken place and chains to the previous, saved callback function. Other applications
wishing to use GetSetFileCdr should also use this interrupt-chaining-like technique.

FileCdr

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 241

If WinFile was already loaded, it will continue to update its directory list boxes,
because STEALCDR will "pass on" the notification. The only problem with this
implementation is that, ifWinFile is loaded after STEALCDR, WinFile will not receive
file system change notifications. However, this would also have been the case had
STEALCDR relied only on FileCdr.

STEALCDR's output simply logs file system changes as follows:

Module WINFILE, Delete file: C:\UNDOCWIN\TMP\AAA.AAA
Module WINFILE, Rename file: C:\UNDOCWIN\TMP\AAA.AAB
Module WINFILE, Get/set file attrs: C:\UNDOCWIN\TMP\AAA.AAA
Module WINFILE, Rename file/directory: C:\UNDOCWIN\TMP
Module NOTEPAD, Create file: C:\WIN31\TEMPRARY.TXT
Module NOTEPAD, Delete file: C:\WIN31\TEMPRARY.TXT
Module NOTEPAD, Create file: C:\WIN31\TEMPRARY.TXT
Module NOTEPAD, Create unique file: C:\UNDOCWIN\FOO\BDBKAACJ
Module NOTEPAD, Delete file: C:\UNDOCWIN\FOO\BDBKAACJ
Module WINFILE, Rename file/directory: C:\UNDOCWIN\FOO
Module STEALCDR, Create file: C:\UNDOCWIN\TMP\STEALCDR.LOG

STEALCDR operates identically in both 3.0 and 3.1. Note, too, that STEALCDR
does not impact WinFile's Enhanced Mode ability to track file system changes in DOS
boxes. Even ifWinFile is loaded later, and therefore cannot track changes by Windows
Apps, it will record DOS box file system changes.

Support: 3.0, 3.1
See also: THHook, WM_FILESYSCHANGE (chapter 7)
Example: STEALCDR takes over the file-system change notification hook, logs file
system change events, and chains on to the previous notification function:

/* STEALCDR.C */

#include <windows.h>
#include <toolhelp.h>
#include <dos.h>
#include "winio.h"
#include IIhandles.h ll

typedef void (FAR PASCAL *FILECDRPROC)(WORD wActionCode,
LPSTR lpszPath);

void GetSetFileCdr(BOOL bSet, FILECDRPROC *lpfn, HANDLE *ph);
WORD far *GetTHH(void);

FILECDRPROC lpfnCallbackPrev = NULL;
FILECDRPROC lpfnCallbackOurs;
HANDLE hTaskPrev = NULL;
HANDLE hTaskOurs;
LPVOID lpTHH;

typedef struct { BYTE byAction; LPSTR szAction; } ACTION;

FileCdr

242 UNDOCUMENTED WINDOWS

ACTION action[J = {
{ Ox3C, flCreate file fl },
{ Ox39, "Create directory" },
{ Ox3A, "Delete directory" },
{ Ox41, flDelete file" },
{ Ox43, "Get/set file attrs" },
{ OxS6, flRename file/directory" },
{ OxS7, "Set file date/time" },
{ OxSA, "Create unique file" },
{ OxSB, flCreate new file" },
{ Ox6C, flExtended open" },
{ 0, 0 } };

#define THH OFS_FILECDR_30
#define THH_OFS_FILECDR_31

Ox018S
OxOOFE

void GetSetFileCdr(BOOL bSet, FILECDRPROC *lpfn, HANDLE *ph)
{

LPVOID lp = lpTHH;

(DWORD) lp += (GetVersion() >= OxOa03) ?
THH_OFS_FILECDR_31 : THH_OFS_FILECDR_30;

if (bSet)
{

*«FILECDRPROC FAR *) lp)++ *lpfn;
*«HANDLE FAR *) lp) = *ph;
}

else
{

*lpfn = *«FILECDRPROC FAR *) lp)++;
*ph = *«HANDLE FAR *) lp);
}

}

void PutBackPrev(HWND hwnd)
{

II Deinstall our callback function and reinstall whoever was
II there before if they are still there
if (! IsValidTask(hTaskPrev»

{

lpfnCallbackPrev = NULL;
hTaskPrev = NULL;
}

GetSetFileCdr(TRUE, &lpfnCallbackPrev, &hTaskPrev);

FreeProcInstance(lpfnCallbackOurs);
}

char *GetModuleNameFromTask(HANDLE handle)
{

TASKENTRY te;
static char name[40J;

te.dwSize = sizeof(te);

FileCdr

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 243

if (TaskFindHandLe(&te, handLe)
{

Lstrcpy(name, te.szModuLe);
return name;
}

Lstrcpy(name, "**UNKNOWN**");
return name;
}

void FAR PASCAL _export FiLeSysChange(WORD wActionCode, LPSTR LpszPath)
{

i nt i;
static char buf[128J;

II Locate string representation of action code
for (i = 0; action[iJ.byAction; i++)

if (HIBYTE(wActionCode) == action[iJ.byAction) break;

II We can't caLL anything that wiLL use vsprintf, since it
II reLies on SS == OS which is not true in SMALL model
wsprintf(buf,

action[iJ.byAction ?
"ModuLe %s, %s: %s"

"ModuLe %s, %04LX: %s",
(LPSTR) GetModuLeNameFromTask(GetCurrentTask(»,
action[iJ.byAction ?

(DWORD) action[iJ.szAction
(DWORD) wActionCode,

LpszPath);
puts(buf);

II Try to be generous by chaining to previous
if (lpfnCaLlbackPrev)

if (IsVaLidTask(hTaskPrev»
(*lpfnCaLLbackPrev)(wActionCode, LpszPath);

eLse
{

LpfnCaLLbackPrev = NULL;
hTaskPrev = NULL;
}

}

int maine)
{

LpfnCaLLbackOurs = (FILECDRPROC)
MakeProclnstance«FARPROC) FiLeSysChange, __hlnst);

hTaskOurs = GetCurrentTask();

if (! (LpTHH = GetTHH(»)
faiL("CouLd not Locate KERNEL's DGROUP.");

GetSetFiLeCdr(FALSE, &LpfnCaLLbackPrev, &hTaskPrev);
if (lpfnCallbackPrev != NULL)

printf("Someone already had FiLeCdr; chaining\n");

FileCdr

244 UNDOCUMENTED WINDOWS

pr i nt f (II Ins tall i n9 0 urca II ba ck fun ct i 0 n.\ nil) ;
GetSetFileCdr(TRUE, &lpfnCallbackOurs, &hTaskOurs);

winio_onclose(__hMainWnd, (DESTROY_FUNC) PutBackPrev);
return 0;
}

Ox10

WORD far *GetTHH(void)
{

HANDLE hMod = GetModuleHandle(IIKERNEL II);

return (GetVersion() >= OxOa03) ?
(WORD far *) GetProcAddress(hMod, IITHHOOK tr

)

MK_FP(GetModuleDgroup(hMod), THH_OFS_3_0);
}

FlushCachedFileHandle KERNEL.319

VOID FAR PASCAL FlushCachedFileHandle(HANDLE hModule);

To improve the response time ofWindows, KERNEL maintains a cache of file handles
to the most recently used executables (the cache size is controlled by the
CachedFileHandles= setting in the [boot] section of SYSTEM.1NI). This cache con
tains module handles with their associated DOS file handles. FlushCachedFileHandle()
searches in this cache for the specified hModule and, if found, passes the associated file
handle to the DOS Close File function (INT 21h AH=3Eh). This function is used by
internal KERNEL routines such as LoadSegment(), SlowBoot(), and DeIModule().

Support: 3.1

GetAppCompatFlags

DWORD FAR PASCAL GetAppCompatFlags(HANDLE hTask);

KERNEL.354

This function returns the Windows 3.1 "compatibility" flags for a given task (0 speci
fies the current task; GetAppCompatFlags(O) is equivalent to GetAppCompat
Flags(GetCurrentTask()). If the task's module was built to target Windows 3.1, the
compatibility flags will always be zero; only modules that target 3.0 can have nonzero
compatibility flags. These are identical to the flags stored in the [Compatibility] sec
tion ofWIN.IN1:

[Compatibility]
TURBOTAX=Ox00080000

FlushCachedFileHandle

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 245

W4GLR=Ox4000
W4GL=Ox4000
NETSET2=Ox0100
GUIDE=Ox1000
EXCEL=Ox1000

Because this section is not documented in either the WININI.WRI file that comes
with 3.1 or the (otherwise excellent) Microsoft Windows Resource Kit for 3.1, the
meaning of these flags will be discussed below.

All GetAppCompatFlags() does is return the dwCompatFlags field from offset
4Eh in the Task Database for the specified task. That field is set by the function
InitTask(), which calls GetProfileInt("compatibility", IpModuleName, 0); IpModule
Name comes from offset F2h in the Task Database; see the description of offsets 4Eh
and F2h in the discussion of the Task Database later in this chapter. Thus,
GetAppCompatFlags() simply retrieves exactly the same value as would the
GetProfileInt() call, but it is much faster and works off the task handle rather than the
module name. Note too that GetAppCompatFlags() returns a DWORD, whereas
GetProfileInt() really returns only a WORD.

It needs to be fairly fast because GetAppCompatFlags() is used internally by Win
dows (though some functions inside Windows simply bypass the function, pulling the
information directly out from offset 4Eh in the Task Database). For example,
GlobaWloc() in 3.1 calls the following code:

push 0 ; hCurrentTask
nop
push cs ; far call translation
call GETAPPCOMPATFLAGS
test al, 1 ; GACF_IGNORENODISCARD (see below>
mov ax, Cbp+OAhJ ; alloc flags
jz skip
and al, ODFh ; GMEM_NODISCARD
ski p: ;

In other words, if the bottom bit of the compatibility flags is set for a given task's
module, then GlobalAlloc() will mask off and ignore any GMEM_NODISCARD
requests from that task.

While not documented in Windows or in the Windows Resource Kit, the [com
patibility] flags appear in Microsoft KnowledgeBase article Q82860, from which the
following is adapted:

The purpose of the compatibility flags is to work around problems that Windows
applications built for 3.0 have under 3.1. Compatibility bits are predefined during
Windows setup for the following applications: Publisher, MS Money, MS Works,
WordPerfect, Freelance, CC Mail, Visual Basic, Ami Pro, Pixie, ObjectVision, Cricket
Presents, Just Write, ExploreNet, Aporia, Packrat, Microcourier, Guide, Excel,
Ascend, MGX Draw, AccPack, Charisma, Persuasion, Ingress, Lotus Notes, MS Draw,
and Turbo Tax.

GetAppCompatFlags

246 UNDOCUMENTED WINDOWS

Compatibility flags do not affect applications that target 3.1, only applications for
3.0 or earlier. As noted above, InitTask() in 3.1 checks the version and module name
and, if the application targets 3.0, determines if any bits are defined for that name. If
there are, these are stored in the Task Database, and then, at run time, each API func
tion that has compatibility bits associated with it calls GetAppCompatFlags() or
directly gropes the Task Database to see if these are in effect for the module of the
calling task. Note that compatibility bits are only checked against application module
names, not .DLL module names.

The following list of GACFs (GetAppCompatFlags) is revealing for several rea
sons. First, every application listed was in some sense doing something "wrong," or at
least not following Microsoft recommendations to the letter (sometimes for good rea
son). In one sense, this list (like the [compatibility] section in WIN.INI itself) seems
like a "hall of shame."

But in a complex environment such as Windows, such errors, assumptions, or
workarounds are inevitable. In particular, some applications were working around
bugs in 3.0, and now these applications would fall over in 3.1 because the bug has
been fixed. Compatibility flags can be used to intentionally reinstate the 3.0 bug, as it
were, on a per-module basis so that the application runs.

The entire [compatibility] scheme is also quite interesting because it shows the
extent to which Microsoft is committed to running existing programs, even when their
developers break rules, do things improperly, include workarounds, rely on undocu
mented behavior, and so on. The following point, from Gordon Letwin's Inside OS/2,
seems appropriate here: "It may seem that if a popular application 'pokes' the operat
ing system and otherwise engages in unsavory practice that the authors or users of the
application will suffer because a future release ... may not run the application cor
rectly. To the contrary, the market dynamics state that the application has now set a
standard, and it's the operating system developers who suffer because they must sup
port that standard. Usually, that 'standard' operating system interface is not even
known; a great deal of experimentation is necessary to discover exactly which undocu
mented side effects, system internals, and timing relationships the application is de
pendent on."

These flags appear, though without any explanation, in the 3.1 DDK version of
WINDOWS.H.

Bit 0 (1) GACF_IGNORENODISCARD

This bit ignores NODISCARD flag ifpassed to GlobaWloc(). The Microsoft C 6.x run
time install library allocates global memory improperly by incorrectly specifYing the
GMEM_NODISCARD bit.

Bit 1 (2) GACF_FORCETEXTBAND

This bit separates text band from graphics band. It forces a separate band for text, disal
lowing 3.1 optimization where text and graphics are printed in the same band. Word
Perfect assumed text had to go in the second band; Freelance couldn't print presentation
(.PRE) files.

GetAppCompatFlags

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 247

Bit 2 (4) CACF_ONELANDCRXBAND

This bit allows one only graphics band and only one Landscape graphics band. Take as
much memory as possible for this band; what doesn't fit in that band doesn't print. The
compatibility switch doesn't completely fix the problem, only for certain memory configu
rations.

Bit 3 (8) CACF_ICNORETOPMOST

This bit ignores topmost windows for GetWindow(HWND,GW_HWNDFIRST). CCMail
would GP fault when running any Windows applet from CCMail because it assumed the
applet it starts will be at the top of the window list when WinExec returns. Because of the
addition of "topmost" windows in Windows 3.1, this isn't necessarily the case. The com
patibility bit fIXes this so GetWindow doesn't return a topmost window.

Bit 4 (10h) CACF_CALLTTDEVICE

This bit sets the DEVICE_FONTfYPE bit in the FontType for TrueType fonts returned
by EnumFonts(). AmiPro and WordPerfect assumed that TrueType fonts enumerated by
the printer would have the device bit set, but TrueType fonts aren't device fonts. The com
patibility bit fixes this by claiming that they are.

Bit 5 (20h) CACF_MULTIPLEBANDS

This bit forces graphics output into more than one band when printing. Freelance
wouldn't print graphics when there was enough memory, and DniDrv used only one band
for printing. If the first band was the entire page, it didn't issue any graphics calls, thinking
it was the text-only band. This bit forces DniDrv to use multiple bands.

Bit 6 (40h) CACF_ALWAYSSENDNCPAINT

SetWindowPos() must send a WM_NCPAINT message to all children, disallowing the 3.1
optimization where this message is only sent to windows that must be redrawn. Some 3.0
applications used WM_NCPAINT to determine that they needed to reposition themselves
at the top of the list. The bit is enabled for ObjectVision, Cricket Presents.

Bit 7 (80h) CACF_EDITSETTEXTMUNCE

When this bit is set, strings that are passed to edit controls by WM_SETIEXT are forced
to upper case. This would happen in 3.0 because of a bug; some applications worked
around the bug and then broke in 3.1 when the bug was fixed. Essentially, this compatibil
ity bit emulates the 3.0 bug so that the affected applications can work around it.

Bit 8 (100h CACF_MOREEXTRAWNDWORDS

This bit adds four to the extra bytes (CBWNDEXTRA) in the window instance and class
instance structures. In Windows 3.0, even ifyou didn't allocate extra window/class words,
you could still access them and corrupt Windows internally. Windows 3.1 doesn't allow
you to access extra words you didn't allocate. This switch forces extra words for all
classes/windows created by the given application, because some applications relied on the
ability to access the nonallocated bytes. For example, Aporia in RegisterClass() asks for

GetAppCompatFlags

248 UNDOCUMENTED WINDOWS

one extra byte, then does a SetWindowWord() (two bytes), then a GetWindowLong (four
bytes).

Bit 9 (200h) GACF_TTIGNORERASTERDUPE

Don't enumerate duplicate bitmap fonts for TrueType fonts. Some applications (including
WordPerfect and Visual Basic) get confused when fonts are enumerated for the same sizes
as both bitmap and TrueType fonts.

Bit 10 (400h) GACF_HACKWINFLAGS

Setting this compat flag causes GetWinFlags() to clear the WF_PAGING setting. How
ever, no application seems to require this hack.

Bit 11 (800h) GACF_DELAYHWHNDSHAKECHK

Don't check hardware handshaking (CTS and DSR) on SetCommState(); this reverts to
(buggy) 3.0 behavior on which some applications (including Packrat) depended.

Bit 12 (1000h) GACF_ENUMHELVNTMSRMN

This bit enumerates TmsRmn and Helv. Some applications break under 3.1 because they
relied on the presence in 3.0 of the fonts "Helv" and "Tms Rmn" (such applications
apparently include Spinnaker, Guide, Excel, and WordPerfect). Font substitution covers
much of these problems, but Microsoft cannot legally enumerate the names "Relv" and
"Tms Rmn" for future applications, so it was dropped. (Helvetica and Times Roman are
registered trademarks of Linotype AG.) Windows 3.1 still has the exact same fonts, but
under the names MS Sans Serifand MS Serif, and will enumerate them as Relv and Tms
Rmn when this bit is set. Microsoft is allowed to do this, but solely for backward compati
bility with existing 3.0 applications.

Bit 13 (2000h) GACF_ENUMTTNOTDEVICE

This bit turns offDEVICE_FONTTYPE. Some applications (including PageMaker,
Designer 3.1, MGXDraw, and Persuasion) fail to enumerate more than one size ofTrue
Type fonts because they interpret the DEVICE_FONTfYPE flag incorrectly. They
assume the font must be device resident and disregard the case where the font is
downloaded (as TrueType can be). Therefore, when TrueType is correctly enumerated
with the device bit set, the apps check the device capabilities to see if the printer can scale
fonts. If the device cannot, the application assumes one size for the current font. This
problem is not seen on PostScript printers, which can download and scale fonts, or on dot
matrix printers, which cannot download fonts. This compatibility bit simply checks all the
above conditions and selectively turns the DEVICE_FONTTYPE off.

Bit 14 (4000h) GACF_SUBTRACTCLIPSIBS

This flag affects the way window invalidation works for non-WS_CLIPSIBLINGS parent
windows and their children (e.g., dialog boxes and dialog controls). Normally, if two chil
dren ofa non-WS_CLIPSIBLING parent overlap, and an area that contains both of those
windows is invalidated (either by a call to InvalidateRect or through window rearrange
ment), both of the windows will get invalidated, even if one or both are WS_CLIP
SIBLINGS. With GACF_SUBTRACTCLIPSIBS, any sibling window underneath a

GetAppCompatFlags

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 249

WS_CLIPSIBLINGS window will not be invalidated in the part of the window that is
beneath the WS_CLIPSIBLINGS window. This situation arises most commonly when
windows that are supposed to appear overlapped don't seem to overlap properly. Applica
tions that implement dropdown combo boxes as child windows of dialog boxes will
exhibit this problem (e.g., Lotus Notes 2.1 drive dropdowns). It's often hard to tell
whether a dropdown is implemented as a top-level window (e.g., the Windows system
combo boxes) or as a child window-if there seem to be overlapping problems, then
GACF_SUBTRACTCLIPSIBS could be the solution.

Bit 15 (8000h) GACF_FORCETTGRAPHICS

Freelance wouldn't print TrueType unless "print TrueType as graphics" was selected.

Bit 16 (10000h) GACF_NOHRGN1

This bit affects applications that depend on a bug in the 3.0 GetUpdateRect() function.
Under 3.0, GetUpdateRect would not always return the rectangle in logical DC coordi
nates: if the entire window was invalid, the rectangle was instead sometimes returned in
window coordinates. This bug was fixed for 3.0 and 3.1 apps in Windows 3.1: coordinates
are always returned in logical coordinates. This bit intentionally reintroduces the bug in
GetUpdateRect() for those applications such as Microsoft Draw that depend on this
behavior.

Bit 17 (20000h) GACF_NCCALCSIZEONMOVE

3.1 optimizes WM_NCCALCSIZE ifa window was just moving, where 3.0 always sent it.
This bit causes it to be sent always, as in 3.0, for applications such as Lotus Notes that
depend on this behavior.

Bit 18 (40000h) GACF_SENDMENUDBLCLK

This bit passes double-clicks on a menu bar to the app. With this bit set, if the user double
clicks on the menu bar when a menu is visible, Windows ends processing of the menu and
passes the double-click message on to the application. This allows JustWrite to detect dou
ble-click on the system menu of a maximized MDI child. The normal (and expected)
behavior is for Windows to detect the double click on a sys menu of a maximized child
and send the app a WM_SYSCOMMAND SC_CLOSE message, which is what happens
with a nonmaximized MDI child window.

Bit 19 (80000h) GACF_30AVGWIDTH

This bit changes the way Windows calculates average character width, so that 1040 forms
from TurboTax will print correctly with a PostScript driver. When this bit is set, all fonts
are scaled by 7/8. TurboTax has hardcoded the average widths it uses for selecting fonts;
this broke when Windows changed the way it calculates average widths to match True
Type, resulting in an inability to print 1040 forms (when telling the IRS why your tax
return is late, this one could possibly serve as the Windows equivalent of "the dog ate it").

GetAppCompatFlags

250 UNDOCUMENTED WINDOWS

With all of these compatibility workarounds, if/when the application changes its
behavior, it can mark itself as a 3.I-targeted application, so that the compatibility bits
will no longer be used. If the application wants to continue to run in 3.0, WIN.INI
can be edited or the application can change its module name (the compatibility set
tings work off the module name).

Support: 3.1 (for 3.0 apps only)
See also: InitTask, Task Database

GetCodeHandle KERNEL.93

DWORD FAR PASCAL GetCodeHandle(lpProc);
FARPROC lpProc; /* A procedure-instance address; but see below */

While documented, GetCodeHandle() has a variation that is undocumented: rather
than pass it a far procedure-instance address, GetCodeHandle() can be called with a
far pseudo-pointer containing a module handle and a logical segment number, for
example, MK_FP(hModule, wSeg). Furthermore, while documented as returning only
a WORD, GetCodeHandle() in fact returns a DWORD, with a segment handle in its
LOWORD (AX) and a segment selector in its HIWORD (DX). This variation on
GetCodeHandle() is used by WinDebug to convert logical segment numbers (1, 2, 3,
etc.) into callable selectors.

One possible drawback is that, in a fine illustration of the so-called Heisenberg
Principle (that is, merely looking at things changes them), after using GetCodeHan
dle() to convert a logical segment number into a selector, the segment will be loaded
into memory if it wasn't there already.

Support: 3.0, 3.1
Example: The following program displays information about each segment (CODE
or DATA) in a Windows module (the name of the module can be specified on the
command line). GetCodeHandle() is passed the module handle and logical segment
numbers, and it returns in its HIWORD a protected-mode selector to the segment.
The number of segment numbers is established from offset ICh in the Module Table
(see the description of the Module Table later in this chapter). The GetCodeInfo()
function is used to get additional information about the segment; although docu
mented, GetCodeInfo() is certainly poorly documented. (For more information, see
the Microsoft Developer Knowledge Base article Q67650, "GetCodeInfo() Docu
mented Incorrectly.")

/* walksegs.c */

#include <dos.h>
#include "windows.h"
#include "winio.h"

GetCodeHandle

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 251

DWORD (FAR PASCAL *GetCodeHandleD)(WORD hMod, WORD wSeg);

/* GetCodeInfo is documented, but not very well */
typedef struct {

WORD wOfs, wLen, wFlags, wAlloc, wHandle, wShift, wReserved[2J;
} CODEINFO;

main(int argc, char *argv[J)
{

char *modname;
HANDLE hMod;
WORD wSeg;
WORD cSeg;
DWORD dwCode;

GetCodeHandleD = GetCodeHandle;

modname = (argc < 2) ? "KERNEL" : argv[1J;
if (! (hMod = GetModuleHandle(modname»)

fail("Cannot locate module");

/* Get number of segments from offset 1Ch in Module Table */
cSeg = *«WORD far *) MK_FP(hMod, Ox1c»;

printf("%s %04x\n", modname, hMod);
for (wSeg=1; wSeg<=cSeg; wSeg++)

if «dwCode = GetCodeHandleD(hMod, wSeg» < 32)
printf(" Seg #%d\tError!!\n", wSeg);

else
{

CODEINFO codeinfo;
WORD wSel = HIWORD(dwCode); // code selector
/* this alternate form of GetCodeInfo is documented */
GetCodeInfo«FARPROC) MK_FP(hMod, wSeg), &codeinfo);
printf(" Seg #%d\t%04x\tLen=%04xh\t%s\n",

wSeg, wSel,
codeinfo.wLen,
(codeinfo.wFlags & 1) ? "DATA" "CODE");

}

return 0;
}

The program displays a list of segments such as the following:

GDI 0367
Seg #1 037f Len=845eh CODE
Seg #2 0387 Len=10aeh CODE
Seg #3 038f Len=2f9fh CODE

Seg #47 04ef Len=04bOh DATA
Seg #48 04f7 Len=Ob52h DATA

GetCodeHandle

252 UNDOCUMENTED WINDOWS

GetCurPID

DWORD FAR PASCAL GetCurPID(DWORD dw);

KERNEL.157

This function, a holdover from Windows 2.x, simply returns zero in Windows 3.x. It
was designed for use with the (also defunct) EmsCopy() function. Windows applica
tions needing a process ID should call GetCurrentTask() or GetCurrentPDB().

GetCurrentPDB

DWORD FAR PASCAL GetCurrentPDB(void);

KERNEL.37

Although the GetCurrentPDB() function is documented, its return value is specified
as a WORD containing the current DOS Program Data Base (PDB), better known as
the Program Segment Prefix (PSP). In fact, GetCurrentPDB() returns a DWORD,
with the current PDB in the LOWORD (AX) and the value TOPPDB in the
HIWORD (DX); TOPPDB (KERNEL's protected-mode PSP) is also contained in the
THHOOK data structure, described later in this chapter. The current PDB is
extracted from offset 60h of the current Task Database (CURTDB), also contained in
the THHOOK structure.

Just as in plain-vanilla DOS, the PSP plays a crucial role in task management (such
as it is) in Windows. For example, the file-handle table for each Windows task is kept
in its PSP, just as in DOS. Similarly, memory allocations belong to a given PSP.
Whenever a task is scheduled to run in Windows (i.e., becomes the current task), its
PSP becomes the current PDB.

Because Windows is a protected-mode DOS extender, the PSP is, of course, a
protected-mode data structure. The PSP handle itself is a protected-mode selector,
and any addresses contained in the PSP are likewise protected-mode selectors or point
ers. For example, the environment segment kept at offset 2Ch is actually a protected
mode selector, and the Job File Table (JFT) pointer at offset 34h is likewise a
protected-mode selector:offset. Once you make these adjustments, the PSP structure
given in Undocumented DOS (see the reference entry for INT 21h Function 26h (Cre
ate PSP) can be applied to Windows programs.

Windows uses some previously unused fields in the PSP. For example, offset 48h
contains a flag whose bottom bit indicates whether the task is an old app (that is, a
non-Windows DOS program; see the IsWinOldApTask() function described later in
this chapter).

Support: 3.0, 3.1
See also: IsWinOldApTask, Task Database

GetCurPID

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 253

GetCurrentTask

DWORD FAR PASCAL GetCurrentTask(void);

KERNEL.36

Although the GetCurrentTask() function is documented, its return value is specified as
a WORD containing (as its name implies) a handle to the current task. In fact,
GetCurrentTask() returns a DWORD, with the current task (CURTDB) in the
LOWORD (AX) and the head of the task list (HEADTDB) in the HIWORD (DX).
As shown in the following example, the value ofHEADTDB is used to initiate a walk
of the Windows task list. GetCurrentTask() does nothing more than retrieve the value
of CURTDB and HEADTDB from the THHOOK data structure, described later in
this chapter.

Furthermore, even though the GetCurrentTask() function is documented, its
return value is described merely as "the handle of the currently executing task," with
out specifying exactly (or even vaguely) what it is a handle to. A task handle is, in
fact, a selector to a Task Database structure, explained in detail later in this chapter.
The Task Database also includes a protected-mode Program Segment Prefix (PSP)
structure.

The handle of the current task is particularly useful to Windows DLLs (to find out
who called it) and interrupt handlers (to find out who it interrupted). Calling this
function from within a normal application will, of course, merely return the applica
tion's own task handle. This is generally useful only if the task handle is then used to
access the Task Database or if the HIWORD of the GetCurrentTask() return value is
used to access the entire task list.

There is no SetCurrentTask() function to match GetCurrentTask(). However, one
could be created by setting (instead of just getting) the CURTDB field in the
THHOOK structure. Even better, ToolHelp provides a documented function,
TaskSwitch(), which does essentially the same thing as would SetCurrentTask(). As
explained in chapter 10, TaskSwitch() enables an arbitrary section of code to be exe
cuted while running as an arbitrary task; code in one program can be executed while
the current task belongs to some other program. Any DOS programmer who has used
the Set PSP call (INT 21h AH=50h) will see why this could be useful.

Support: 3.0, 3.1
See also: Task Database, THHOOK
Example: This program walks the Windows task list, which is a linked list: as explained
in the Task Database entry, the first WORD of each Task Database contains a selector
to the next task in the list or 0 to indicate the end of the list. It is important not to
change the state of the system while walking the list; the following program uses
winio_setpaint(FALSE) to avoid any calls to PeekMessage() or Yield() that could alter
the list. When done, the program verifies the number of tasks found against the docu
mented GetNumTasks() function.

/* taskwalk.c */

GetCurrentTask

254 UNDOCUMENTED WINDOWS

#include <dos.h>
#include "windows.h"
#include "winio.h"

1* GetCurrentTask is documented, but only with WORD retval *1
DWORD (FAR PASCAL *GetCurrentTaskD)(void);

maine)
{

DWORD dwTask;
WORD wFirstTask, wNextTask;
WORD wNumTasks;
HWND hwnd;

GetCurrentTaskD = GetCurrentTask;

dwTask = GetCurrentTaskD();
wFirstTask = HIWORD(dwTask); II get base of linked list
wNextTask = wFirstTask;
wNumTasks = 0;
hwnd = winio_current();
winio_setpaint(hwnd, FALSE); II so we donlt yield while walking task list!
for (;;)
{

1*
See the description of the Task Database data structure
for an explanation of offsets 0 and OF2h.

*1
char far *fp;
char modname[9J, *p=modname;
i nt i;
1* Copy the modname name at offset OF2h in the Task Database *1
for (i=O, fp=MK_FP(wNextTask,Oxf2); i<8; i++, p++, fp++)

*p = *fp;
*p = 1\0 1;
printf("%04x %5", wNextTask, modname);
if (wNextTask == GetCurrentTask(»

printf(" <== current task");
printf("\n ll

);

wNumTasks++;
1* Get the handle of the next task from offset 0 in the Task DB *1
wNextTask = *«WORD far *) MK_FP(wNextTask, 0»;
if (wNextTask == 0)

break;
}

winio_setpaint(hwnd, TRUE);
if (wNumTasks != GetNumTasks(»

fail("Wrong number of tasks!");
return 0;

}

The program prints out a simple list of task handles and names; for example:

113F CLIPBRD
179F WINFILE

GetCurrentTask

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 255

141F WINOLDAP
11E7 CLOCK
108F TASKWALK <== current task

Many other programs that walk the Windows task list appear elsewhere in this
book: the WINTASK program later in this chapter (see Task Database) provides far
more information than TASKWALK The WINWALK program in chapter 10 has a
Task Walk that uses ToolHelp. The TASKWLK2 program in chapter 2 uses ToolHelp,
and hangs off a timer, waiting for GetNumTasks() to change; at these times, the task
list can be unstable (the number of tasks found by talking the task list is not the same
as the number of tasks returned from GetNumTasks(), because the Windows sched
uler is in the middle of rearranging the tasks in priority order; see Matt Pietrek's article
"Inside the Windows Scheduler," Dr. DobbJsJournal, August 1992).

GetExePtr

WORD FAR PASCAL GetExePtr(HANDLE h);

KERNEL.133

GetExePtr() accepts handles of several different types and returns the corresponding
module handle. Among the handles accepted by GetExePtr() are hModules (it simply
returns the same hModule), hInstances, and global-heap handles returned from
GlobalAlloc(). In other words, given an arbitrary handle to a global-heap item,
GetExePtr() can return the module handle of the block's owner. Note that multiple
instances of an application share a single module handle, so the value returned from
GetExePtr() does not distinguish between multiple instances.

This is somewhat different from the value stored in the owner field of the Global
Arena structure and returned from the undocumented FarGetOwner() function.
GetExePtr() uses GetOwner() to get the owner PSP (PDB) for global heap items and
then walks the task-database list, searching for the matching PSP.

GetExePtr() does not appear to accept either hTasks (which cause a debug break
and return 0) or PSPs. Passing a Task Queue handle to GetExePtr() returns USER's
module handle.

GetExePtr() is used extensively within KERNEL itself, for example, by the
GetProcAddress(), DirectResAlloc(), and IsSharedSelector() functions. Functions that
expect an hModule can generally also be passed an hInstance; the function will call
GetExePtr() to convert the hlnstance into an hModule.

Support: 3.0, 3.1
See also: FarGetOwner, Global Arena, Task Database
Example: The following rather feeble example uses WinExec() to launch two copies of
the Windows Notepad. WinExec() returns an hlnstance, which is then converted to an
hModule, using GetExePtr(). Whereas multiple copies of an application obviously
have different hInstances, they share the same hModule.

GetExePtr

256 UNDOCUMENTED WINDOWS

1* exeptr.c *1

lIinclude IIwindows.h ll

lIinclude IIwinio.h fl

1* undocumented function *1
WORD FAR PASCAL GetExePtr(HANDLE h);

maine)
{

char buf[128J;
HANDLE hlnst1, hlnst2, hMod1, hMod2;

if «hlnst1 = WinExec(lInotepad.exe fl , SW_NORMAL» < 32)
fail(IICan't exec lI);

if «hInst2 = WinExec(flnotepad.exe fl , SW_NORMAL» < 32)
fail(IICan't exec fl);

hMod1 = GetExePtr(hInst1);
GetModuleFileName(hMod1, buf, 128);
printf(lIhInst=%04x hMod=%04x %s\n", hInst1, hMod1, buf);

hMod2 = GetExePtr(hInst2);
GetModuleFileName(hMod2, buf, 128);
printf(lIhInst=%04x hMod=%04x %s\n ll

, hInst2, hMod2, buf);

1* Multiple instances have same module handle *1
if «hInst1 == hInst2) II (hMod1 != hMod2»

fail(IISomething strange!II);

return 0;
}

The output from the program looks like this:

hInst=11fe hMod=11e7 C:\WINDOWS\NOTEPAD.EXE
hInst=110e hMod=11e7 C:\WINDOWS\NOTEPAD.EXE

CietExeVerslon KERNEL.105

WORD FAR PASCAL GetExeVersion(void);

This function returns the expected Windows version for the currently executing task; it
merely returns the value from offset lAh in the Task Database of the current task:
*((WORD far *) MK....FP(GetCurrentTask(), OxlA)). The version number is returned
in the same minor-major order as used by GetVersion() (for example, Windows 3.1 is
OxOA03h).

Support: 3.0, 3.1
See also: Task Database, GetExpWmVer

GetExeVersion

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 257

GetExpWinVer

WORD FAR PASCAL GetExpWinVer(HANDLE hModule);

KERNEL.167

This function returns the version number of Windows that the given module expects
(requires as a minimum). This function can be used to distinguish among applications
built for Windows 3.0, 3.1, or even 2.0. This value comes straight from offset 3Eh in
the segmented-executable NE header (Module Table), so GetExpWmVer() strictly
isn't necessary.

Unlike the documented GetVersion() function, which returns the Windows ver
sion number in minor/major order (for example, Windows 3.1 is OA03h),
GetExpWinVer() returns the expected Windows version in major/minor order (for
example,030Ah).

GetExpWinVer() and GetExeVersion() differ in that, while GetExpWinVer() gets
the expected Windows version for an arbitrary module in the system, GetExeVersion()
just gets it for the current task. Also, GetExpWinVer(GetCurrentModule()) (where
GetCurrentModule() is a macro in HANDLES.H, in the introduction to this chapter)
differs from GetExeVersion() in that one uses minor-major order and the other uses
major-minor order. (Yawn!)

Support: 3.0, 3.1
See also: Module Table, GetExeVersion

GetFreeMemlnfo

DWORD FAR PASCAL GetFreeMemlnfo(void);

KERNEL.316

This function returns the number of unlocked and free pages; the information
returned is a subset of that provided by the DPMI Get Free Memory Information
(INT 31h AX=0500h) function. Unlike the underlying DPMI call, however,
GetFreeMemInfo() is only available in Windows 3.1 on 80386 and higher processors
(when using KRNL286.EXE, it simply returns OFFFFFFFFh). It therefore makes
more sense to use the DPMI call. Rather than directly call DPMI, you can also use the
ToolHelp MemManInfo() function.

The DWORD returned from GetFreeMemInfo() contains the total number of
unlocked pages in its LOWORD (AX) and the total number of free pages in its
HIWORD (DX). Each page is 4K bytes.

Support: 3.1
See also: MemManInfo (TooIHelp)
Example: The following program uses both GetFreeMemInfo() and DPMI to report
on available virtual memory:

GetExpWinVer

258 UNDOCUMENTED WINDOWS

1* meminfo.c *1

#include IIwindows.h ll
#include IIwinio.h ll

DWORD (FAR PASCAL *GetFreeMemlnfo)(void);

typedef struct {
DWORD dwLargestBlockBytes;
DWORD dwMaxUnlockedPages;
DWORD dwMaxLockedPages;
DWORD dwLinAddrSpacelnPages;
DWORD dwUnlockedPages;
DWORD dwFreePages;
DWORD dwPhysPages;
DWORD dwFreelinPages;
DWORD dwPagingFilePages;
BYTE reservedrOxOcJ;
} DPMI_FREEMEM;

BOOl get_dpmi_freemem(DPMI_FREEMEM far *fpbuf)
{

_asm push di
_asm les di, fpbuf
_asm mov ax, OSOOh
_asm int 31h
_asm pop di

asm jc error
return 1;

error:
return 0;

}

#define SHOW(str, dw) \
if (dw != -1l) \

printf(str ## II. %lu bytes\n ll , dw)

maine)
{

DWORD dwlnfo;
WORD wTotalUnlocked;
WORD wFreePages;

DPMI_FREEMEM mem;
if (get_dpmi_freemem(&mem»
{

II only first value is meaningful in Standard mode
SHOW(IILargest available free block ll , mem.dwLargestBlockBytes);
SHOW(IILinear address space ll , mem.dwLinAddrSpacelnPages * 4096);
SHOW(IIFree address space ll , mem.dwFreeLinPages * 4096);
SHOW(IISize of paging file ll , mem.dwPagingFilePages * 4096);
SHOW(IIPhysical memoryll, mem.dwPhysPages * 4096);

}

GetFreeMemlnfo GetProcAddress(GetModuleHandle(IIKERNEl lI
),

GetFreeMeml nfo

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 259

"GETFREEMEMINFO");
if (! GetFreeMemlnfo)

fail(IIThis program requires Windows 3.1 or higher");
dwlnfo = GetFreeMemlnfo();
if (dwlnfo == -1L)

fail(IIGetFreeMemlnfo doesn't apply in Standard mode");
wTotalUnlocked = LOWORD(dwlnfo);
wFreePages = HIWORD(dwlnfo);
printf("Total Unlocked Pages = %04xh (%lu bytes)\n",

wTotalUnlocked, (long) wTotalUnlocked * 4096L);
printf("Total Free Pages = %04xh (%lu bytes)\n",

wFreePages, (long) wFreePages * 4096L);
return 0;

}

On a machine with 5 megabytes of physical memory and a permanent swap file of
over 4 megabytes, sample output from the program looked like the following; note
that Windows consistently reports the total linear address space as four times the avail
able physical memory, regardless of the amount of disk space or the size of the perma
nent swap file:

Largest available free block: 14077952 bytes
Linear address space: 16105472 bytes
Free address space: 14221312 bytes
Size of paging file: 4993024 bytes
Physical memory: 4378624 bytes
Total Unlocked Pages: 0338h (3375104 bytes)
Total Free Pages: 01e1h (1970176 bytes)

GetHeapSpaces KERNEL.138

DWORD FAR PASCAL GetHeapSpaces(hModOrlnst)
HANDLE hModOrlnst; /* an hModule or an hlnstance */

GetHeapSpaces() is the undocumented function that most applications use to com
pute free system resources, (i.e., the percentage of the USER and GDI heaps that
remains unused). Chapter 1 of this book discusses the Saga of Free System Resources
in detail.

Given a module handle or instance handle (the function figures out which is which
by checking for an NE signature, in which case it knows it has a module handle),
GetHeapSpaces() returns a DWORD whose HIWORD contains the total number of
bytes in the module's local heap, and whose LOWORD contains the number of free
bytes. This can be done for any module in the system that has a local heap (KERNEL
doesn't). The free system resources percentage displayed by Program Manager and
other Windows programs is the percentage free (free * 100 / total) for USER or GDI,
whichever is smaller.

GetHeapSpaces

260 UNDOCUMENTED WINDOWS

Windows 3.1 provides a documented GetFreeSystemResources() function. How
ever, because this function is available only in 3.1, because it returns less information
than GetHeapSpaces(), and because no one wants to change code that already works,
most applications continue to use GetHeapSpaces(). Note, however, that
GetHeapSpaces() produces a number that may be slightly off in 3.1 because, fortu
nately, some resources (menus in particular) have been moved out of USER's default
local heap. Thus, GetHeapSpaces() in 3.1 may miscalculate the free percentage; on the
other hand, the exact number generally isn't all that important, and the percentage of
free resources may, in general, be a little less important in 3.1 anyway.

GetHeapSpaces() itself is implemented using an undocumented function:
LocaICountFree(), described later in this chapter. GetHeapSpaces() gets the
HIWORD of its return value from the documented GlobalSize() function and the
LOWORD of its return value (the number of free bytes) from LocaICountFree().

push ds
mov ds, ax
call far ptr LocalCountFree

Example: The following program, SYSTRES, uses the GetHeapSpaces() function
to compute Free System Resources. In 3.1, it also uses the documented GetFree
SystemResources() function. Interestingly, the results returned by the two different
functions never seem to be off by more than 1%:

1* SYSTRES.C -- System Resources *1

#include "windows.h"
#include "winio.h"

1* undocumented Windows call to use in 3.0 *1
extern DWORD FAR PASCAL GetHeapSpaces(WORD hModule);

1* Windows 3.1 function may not be in WINDOWS.H *1
WORD FAR PASCAL (*GetFreeSystemResources)(WORD wNum);

void heap_info(char *module, WORD *pfree, WORD *ptotal, WORD *ppercent)
{

DWORD info = GetHeapSpaces(GetModuleHandle(module»;
*pfree = LOWORD(info);
*ptotal = HIWORD(info);
*ppercent = (WORD) ((((DWORD) *pfree) * 100L) I ((DWORD) *ptotal»;

}

maine)
{

WORD user_free, user_total, user_percent;
WORD gdi_free, gdi_total, gdi-percent;
WORD min_percent, diff;
WORD vers = (WORD) GetVersion(); II returns DWORD in 3.1

heap_info(IUSER", &user_free, &user_total, &user_percent);

. GetHeapSpaces

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 261

printf(flUsing GetHeapSpaces:\n");
printf(flUSER heap: %u bytes free out of %u (%u%% free)\n",

user_free, user_total, user_percent);
printf(flGDI heap: %u bytes free out of %u (%u%% free)\n",

gdi_free, gdi_total, gdi_percent);
min-percent = min(user_percent, gdi-percent);
printf("Free system resources: %u%%\n", min-percent);

if «LOBYTE(vers) >= 3) && (HIBYTE(vers) >= OxOa» II 3.1+
{ II What's this function doing in USER?!

GetFreeSystemResources = GetProcAddress(GetModuleHandle(flUSER fI),
IIGETFREESYSTEMRESOURCES");

puts(fI\nUsing GetFreeSystemResources: fI);
printf("USER heap: %u%% free\n", GetFreeSystemResources(2»;
printf("GDI heap: %u%% free\n", GetFreeSystemResources(1»;
printf(IIFree system resources: %u%%\n",

GetFreeSystemResources(O»;

printf("\n");
if (diff = GetFreeSystemResources(2) - user-percent)

printf("USER off by %u%%\n", abs(diff»;
if (diff = GetFreeSystemResources(1) - gdi_percent)

printf(IIGDI off by %u%%\n", abs(diff»;
if (diff = GetFreeSystemResources(O) - min_percent)

printf(flFSR off by %u%%\n fl , abs(diff»;
II no matter what, never find it off by more than 1%

}

return 0;
}

GetLastDlskChange

BYTE GetLastDiskChange(void);

KERNEL.98

This function, used by the defunct MSDOS.EXE shell, was apparently intended to
report the current state of a removable drive. It returns the value of a KERNEL inter
nal variable, but in Windows 3.0 and 3.1 this variable appears to never be set. Ifyou
need disk-change information, use the BIOS Get Disk Change Status function (INT
13h AH=16h).

GetLpErrMode

LPBYTE FAR PASCAL GetLpErrMode(void);

KERNEL.99

This function returns a long pointer to a byte inside of KERNEL's data segment; the
byte indicates whether Windows is currently in error mode (that is, handling an INT

GetLastDiskChange

262 UNDOCUMENTED WINDOWS

24h critical error). This is analogous to the critical-error flag that DOS TSRs often
check (see Undocumented DOS, chapter 5). For example, the byte is 1 when a "System
Error: cannot read from drive A:" message box is displayed. You can call the function
once, and just dereference its returned pointer whenever you need the error mode:

BYTE far *lpErrMode = GetLpErrMode();
if (*lpErrMode == 1)

II there's a critical error

Support: 3.0, 3.1
See also: SetErrorMode (documented)

GetModuleHandle KERNEL.47

DWORD FAR PASCAL GetModuleHandle(lpModName);
LPSTR lpModName; 1* a module name such as "KERNEL," but see below *1

Even though the GetModuleHandle() function is documented, it has several impor
tant aspects that are not documented. The return value is actually a DWORD, not a
WORD. The HIWORD (DX) of the return value contains the handle of the first
module in the system (usually KERNEL). This can be used to walk the Windows
module-table list (see the following example); WinDebug uses GetModuleHandle() in
this way. This undocumented DWORD return value from GetModuleHandle() is sim
ilar to GetCtirrentTask(), described earlier in this chapter. The HIWORD of the
return value from GetModuleHandle() is identical to the HEXEHEAD field in the
THHOOK structure, described later in this chapter.

In addition to making a call such as GetModuleHandle("FOO"), where "FOO" is
a far pointer to an ASCIIZ string, it can also be called with a DWORD whose
LOWORD is °and whose HIWORD contains an hInstance (or, in fact, any handle
decipherable by the undocumented GetExePtr() function, described elsewhere in this
chapter, which GetModuleHandle() uses). For example, GetModuleHandle
(MK_FP(O, hInstance)) returns the same value as calling GetExePtr(hInstance)
directly. In Windows 3.1 (WINDOWSX.H), the macro GetInstanceModule() is pro
vided for turning an hInstance into an hModule:

#define GetlnstanceModule(hlnstance) \
GetModuleHandle«LPCSTR) MAKELP(NULL, hlnstance»

In fact, many KERNEL functions that expect an hModule can also be called with
an hInstance. A Microsoft Technical Note by Bob Gunderson, "Modules, Instances,
and Tasks," provides a good explanation of this:

At this point you may be asking, "If an instance handle can be used in
place of a module handle, why have module handles at all? Why not just

GetModuleHandle

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 263

have instance handles and be done with it?" Good question. The answer is
that it really doesn't matter. You can simply write applications using
instance handles rather than module handles . . . This is good news because
instance handles are much easier to obtain than module handles. For exam
ple, calling GetWindowWord with GWW_HINSTANCE obtains the
instance handle of the application or the DLL that created a window. This
instance handle can then be used to determine the module file name of the
application that created the window. No equivalent way exists to do this
using module handles.

Actually, module handles have a real use. Internally, Windows uses
module handles to tag certain resources, such as window classes and hooks,
that are associated with a module and not with a particular instance of a
module. These resources are not freed until the last instance of the module
is freed.

For a more complete explanation of the differences between modules, instances,
and tasks, see the Task Database entry, which appears later in this chapter. For code
that moves between these various handles, see HANDLES.H and HANDLES.C in the
introduction to this chapter.

The Microsoft documentation describes the GetModuleHandle() return value
merely as a module handle, without specifying really what this is a handle to. Of
course, the whole point of handles is that they are "magic cookies," that one can use
them without knowing what they point to. However, it is often useful to know that a
module handle is a selector to a Module Table. See the entry on the Module Table
data structure, later in this chapter.

The module-walking functions from ToolHelp provide equivalent, documented
functionality; see chapter 10.

Support: 3.0, 3.1
See also: GetExePtr, Module Table
Example: This program walks the Windows module list, which is a linked list: as
explained in the Module Table entry, offset 6 of each Module Table contains a selec
tor to the next module in the list or 0 to indicate the end of the list. It is important
not to change the state of Windows while walking the list, so the program below uses
winio_setpaint(FALSE) to avoid any calls to PeekMessage() or Yield() until it has
reached the end of the list. The program also checks for an NE signature at offset 0 in
each supposed module table and uses the documented GetModuleFileName() func
tion to retrieve its path name.

1* modwalk.c *1

#include <dos.h>
#include "windows.h"
#include flwinio.h fl

GetModuleHandle

264 UNDOCUMENTED WINDOWS

1* GetModuleHandle is documented, but only with WORD retval *1
DWORD CFAR PASCAL *GetModuleHandleD)CLPSTR lpModName);

mainC)
{

extern WORD __hlnst;
DWORD dwModi
WORD wFirstMod, wNextMod;
WORD wNumMods;
WORD wThisModi
HWND hwnd;

GetModuleHandleD = GetModuleHandle;

dwMod = GetModuleHandleDCIiKERNEL II);
wFirstMod = HIWORDCdwMod)i" II get base of module linked list
wNextMod = wFirstModi
wNumMods = 0;
wThisMod = GetModuleHandleCMK_FPCO, __hlnst»; II same as GetExePtr
hwnd = winio_currentC);
winio_setpaintChwnd, FALSE); II so we don't yield while walking mod list!
for C;i) II walk linked list
{

1*
For an explanation of offsets 0 and 6, see the description
of the Module Table data structure

*1
char filenameC128J;
BYTE far *fpMod = MK_FPCwNextMod, 0);
if CfpModCOJ != 'N' II fpModC1J != 'E') II check 'NE' signature

failCUNot a module!U);
GetModuleFileNameCwNextMod, filename, 128);
printfCII%04x %SU, wNextMod, filename);
if CwNextMod == wThisMod)

printfCU <== this module U);
printfCU\n U);
wNumMods++;
1* Get the handle of the next Mod from offset 6 in the ModTbl *1
wNextMod = *CCWORD far *) MK_FPCwNextMod, 6»i
if CwNextMod == 0)

break;
}

winio_setpaintChwnd, TRUE);
printfCU%d modules\n U, wNumMods);
return 0;

}

The program prints out a simple list of module handles and names; for example:

010F C:\WINDOWS\SYSTEM\KRNL386.EXE
013F C:\WINDOWS\SYSTEM\SYSTEM.DRV
0147 C:\WINDOWS\SYSTEM\KEYBOARD.DRV
015F C:\WINDOWS\SYSTEM\MOUSE.DRV
01BF C:\WINDOWS\SYSTEM\VGAMONO.DRV

GetModuleHandle

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 265

1187 C:\WINDOWS\SYSTEM\MODWALK.EXE <== this module
49 modules

Also see the WINMOD example later in the chapter, and the WINWALK pro
gram in chapter 10.

GetProcAddress KERNEL.50

FARPROC FAR PASCAL GetProcAddress(HANDLE hModule, LPSTR lpProcName);

This function is documented, but one way to call it is not: rather than pass in an
IpProcName such as "FOO" or a decimal ordinal number such as MK_FP(O, 123),
you can pass in a decimal ordinal number in string form such as "#123," as shown
here:

void (FAR PASCAL *FooFunc)(WORD x); II FOOBAR.123
HANDLE hFoobar = LoadLibrary(IFOOBAR");
FooFunc = GetProcAddress(hFooBar, "#123");

This matches the behavior of the DosGetProcAddr() function in OS/2. This tech
nique is used extensively within KERNEL itself to call functions in other Windows
modules (KERNEL isn't a self-contained unit; it depends on other, supposedly higher
level modules).

In addition, the hModule parameter, as with most Windows functions that expect
an hModule, can instead be supplied with any handle, such as an hInstance, that KER
NEL can resolve to an hModule via the undocumented GetExePtr() function. Like
many other KERNEL functions, specifying 0 as the handle will cause the hModule of
the current task to be used.

While GetProcAddress would appear to be an imposing piece of code, the divide
and-conquer approach makes its internal workings fairly simple. Since GetProcAddress
can be passed either a function name, or an entry ordinal, the first order of business is
to convert whatever the second parameter is, into a common form. Because every
exported entry point in an EXE/DLL has an ordinal assigned to it, but not every
entry point has a name, the common form is the ordinal value. The linker will assign
ordinal values, even ifyou export by name.

If the entry-point parameter is either the function name, or a "#xxx" string, then a
function that returns an ordinal value from either type of string is called. If the string is
the "#xxx" integer-atom type, then the '#' is stripped off, and the string is converted
to its binary value. Otherwise, the Resident names table in the module table is
searched. If the name is not in the Resident names table, then the Non-Resident
names table is loaded from disk (its file offset and size are stored in the ne_nrestab and
ne_cbnrestab fields of the NE header/Module table) and is also searched. The passed
in function name string is uppercased during the search process.

GetProcAddress

266 UNDOCUMENTED WINDOWS

After fmding the ordinal value of the entry, it is necessary to find the correspond
ing address in memory. The function that performs this task searches through the
entry table portion of the module table until the correct entry is found, or the end of
the table is reached. (See the description of the Module table elsewhere in this chap
ter.) Upon finding the entry, the logical segment value is converted to an actual selec
tor by looking it up in the segment table. If the segment is FIXED, but not yet
loaded, it's brought in from the disk image.

Support: 3.0, 3.1

GetSelectorBase

DWORD FAR PASCAL GetSelectorBase(WORD wSel);

KERNEL.186

GetSelectorBase() returns the linear base address of a protected-mode selector. For
example, a Windows program might access a data item through the pointer
11FF:0004; the value 11FFh is not a physical address, but essentially a table-lookup
index. To get the underlying (though still not necessarily physical) address to which
this pointer corresponds, you can use GetSelectorBase():

void far *fp;
II ...
dwBase = GetSelectorBase(FP_SEG(fp» + FP_OFF(fp);

The selector you pass in must be located in the Local Descriptor Table (LDT).
Selectors whose third bit is set (wSel & 4) are located in the LDT; if the third bit is
clear (! (wSel & 4)), then the selector is in the Global Descriptor Table (GDT) and
cannot be accessed via any function in the Get/SetSelectorBase/Limit family. For
example, selectors 28h, 30h, and 40h cannot be accessed in this way. If you really
need to access descriptors in the GDT, your best bet is probably to map the GDT into
your address space and direcdy peek at the descriptors; a partial example is provided
with the SetSelectorBase() function later in this chapter.

In Windows Standard mode, the base address will usually be within the range of
physical memory installed. In Enhanced mode (or whenever paged virtual memory is
supported), the base address returned from GetSelectorBase is not a physical address,
but a "linear" address based on page tables. It is common to get addresses in the
range of 2 gigabytes (e.g., 80673000h). Paging allows for a sparse address space, so
this does not imply that you have 800 megabytes of virtual memory! (In fact, present
versions ofWindows don't support more than 64 megabytes ofvirtual memory: maxi
mum Windows virtual memory is 4 * physical memory; the maximum physical memory
is 16 megabytes; however, the XMS 3.0 specification does provide for "super
extended memory" beyond 16 megabytes.)

GetSelectorBase
I

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 267

While protected-mode programs can generally remain ignorant of the underlying
addresses of their pointers, there are several important uses for linear-based addresses.
For example, in Enhanced mode one interesting use that a Windows application might
have for GetSelectorBase() is to share memory with a non-Windows application run
ning in a DOS box. In Enhanced mode, each DOS box runs in its own virtual
machine, with a separate address space from that used by the virtual machine in which
Windows applications run. For example, IlFF:0004 in a Windows application has no
relation to IlFF:0004 in a DOS box. But Windows applications and DOS boxes do,
except for the first 64K, share a common linear address space. Thus, a Windows appli
cation might GlobaWloc() a block of memory, GlobalPageLock() it, use
GetSelectorBase() to find its linear address, and then pass the linear address (for exam
ple, on a WinExec() command line) to a DOS application. However, this application
would need to be a protected-mode DOS application so that it could access linear
addresses above 1 megabyte.

Even though documented in Windows 3.1, GetSelectorBase() was not docu
mented in 3.0. Though it corresponds in functionality to DPMI function INT 31h
AX=0600h, in Windows 3.0 GetSelectorBase() direcdy accesses the LDT:

GETSELECTORBASE proc far
ENTER
SAVE ds
mov ds, cs:WIN_LDT
mov bx, wSel ; [bp+6J
and bx, OFFF8h ; mask off bottom 3 bits, turning wSel into

; a byte offset into the LDT
mov ax, [bx+2J
mov dl, [bx+4J
mov dh, [bx+7J
RESTORE ds
LEAVE 2

GETSELECTORBASE endp

Support: 3.0, 3.1
See also: GetSelectorLimit, SetSelectorBase
Example: The following program, BASEMOVE.C, uses GetSelectorBase to
demonstrate that, even though the protected-mode selectors a program uses don't
change, segments still move in the linear address space. GetSelectorBase() is called in a
loop; whenever the base address for the program's CS or DS changes, the new value is
displayed.

1* basemove.c -- use GetSelectorBase to show segment movement
within the linear address space *1

#include IIwindows.h ll

#include IIwinio.h ll

#include IIwmhandlr.h ll

1* undocumented function *1

GetSelectorBase

268 UNDOCUMENTED WINDOWS

DWORD FAR PASCAL GetSelectorBase(WORD sel);

maine)
{

DWORD basecode, basedata;
DWORD prevcode = -1, prevdata -1;
WORD code, data;

_asm mov code, cs
_asm mov data, ds

for (;;)
{

basecode = GetSelectorBase(code);
basedata = GetSelectorBase(data);
if (basecode != prevcode I I basedata != prevdata)

printf(IfCS (%04x) @ %08lx\tDS (%04x) @ %08lx\n lf
,

code, basecode, data, basedata);
prevcode = basecode;
prevdata = basedata;
wmhandler_yield();

}

}

BASEMOVE can be run with the Shaker program from the Windows SDK; if the
Shaker "allocation granularity" is set to a high number such as 10K, BASEMOVE's
CS and DS base addresses will change (of course, the values of CS and DS themselves
never change in protected mode). Alternatively, BASEMOVE can be run while
another program calls GlobalCompact(-1) in a loop or with the Windows 3.1 STRESS
application. Output will look something like this:

CS (1207) @ 806907aO
CS (1207) @ 80Sb6e40
CS (1207) @ 80Sb3080

GetSelectorLlmlt

DS (11ff) @ 80673000
DS (11ff) @ 00078380
DS (11ff) @ 00078380

KERNEL.188

DWORD FAR PASCAL GetSelectorLimit(WORD wSel);

GetSelectorLimit() returns the limit of a protected-mode selector; this limit is the last
legal offset within the corresponding segment. Except in the unlikely event that the
segment has page (4K) granularity, this will be the last legal byte offset, so the limit is
one byte less than the size of the segment.

While documented to some extent in Windows 3.1, this function was undocu
mented in 3.0. It corresponds in functionality to the Intel LSL (load selector limit)
instruction, except that with GetSelectorLimit() 16-bit applications can still retrieve a
limit greater than 64K, because in Enhanced mode GetSelectorLimit() itself uses 32
bit instructions.

GetSelectorLimit

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 269

GETSELECTORLIMIT proc far
, ...
xor eax, eax
lsl eax, wSel
mov edx, eax
shr edx, 10h
, ...

GETSELECTORLIMIT endp

The selector you pass in must be located in the Local Descriptor Table (LDT).
Selectors whose third bit is set (wSel & 4) are located in the LDT; if the third bit is
clear then the selector is in the Global Descriptor Table (GDT) and cannot be
accessed via the Get/SetSelectorBase/Limit family. For example, selectors 28h, 30h,
and 40h cannot be accessed in this way; use a check such as the following:

if «sel & 4) != 0)
it's an LDT selector: okay to use Get/SetSelectorBase/Limit

else
it's a GDT selector

If you really need to access descriptors in the GDT, your best bet is probably to
map the GDT into your address space and directly peek at the descriptors; a partial
example is provided with the SetSelectorBase() function later in this chapter.

Dan Norton's book Writing Windows Device Drivers points out that USE32 seg
ments might have page rather than byte granularity, and so the selector limit may indi
cate the size not in bytes but in 4K pages. It is thus safest to check the granularity bit,
using a function such as SelectorAccessRights(); see the MyGetSelectorSize() function
in the example below.

Support: 3.0, 3.1
See also: GetSelectorBase, SetSelectorLimit
Example: The following program uses GetSelectorLimit() to find the actual size in
bytes ofvarious KERNEL data structures:

1* sellimit.c *1

#include <stdlib.h>
#include <dos.h>
#include II windows.h"
#include II winio.h"
#include IIhandles.h" Ilfor lar()

extern DWORD FAR PASCAL GetSelectorLimit(WORD wSel);
extern DWORD FAR PASCAL GetSelectorBase(WORD wSel);
static WORD (FAR PASCAL *GetTaskQueue)(WORD hTask);
extern WORD FAR PASCAL SelectorAccessRights(WORD wSel,

WORD wFlag, WORD wParam);

GetSelectorLimit

270 UNDOCUMENTED WINDOWS

DWORD MyGetSelectorSize(WORD wSel)
{

DWORD dwSize;
WORD wRights;

1* The Windows Get/SetSelectorBase/Limit functions can't
handle selectors in the GDT *1

if «wSel & 4) == 0)
return OL; II not an LDT selector

1* Unfortunately, SelectorAccessRights() does not check the Zero
flag after doing a LAR, so it can't be used to check if a
selector is valid -- we'll use LAR ourselves to check *1

if «wRights = lar(wSel» == 0)
return OL; II invalid selector

1* Add one to limit to get size *1
dwSize = GetSelectorLimit(wSel) + 1;

1* Now we can use SelectorAccessRights to see if this (valid)
selector has Page granularity *1

wRights = SelectorAccessRights(wSel, 0, 0);
if (wRights & (1 «15» II page granularity bit set

dwSize *= 4096; II size w~s pages; turn into bytes

return dwSize;
}

show_size(char *msg, HANDLE h)
{

DWORD dwSize;
if «dwSize = MyGetSelectorSize(h» == 0)

printf("%s INVALID OR NOT IN LDT\n", msg);
else
{

DWORD dwBase = GetSelectorBase(h);
printf("%s size=%lu bytes @ %lxh\n ll , msg, dwSize, dwBase);

}

}

main(int argc, char *argv[J)
{

extern WORD __hInst;

HANDLE h = GlobalAlloc(GMEM_MOVEABLE, 1);
char far *fp = GlobalLock(h);
show_size("GlobalAlloc=1 byte; actuallyll, FP_SEG(fp»;
GlobalUnlock(h);
GlobalFree(h);

show_size(IITask Database", GetCurrentTask(»;

show_size("PSP (PDB)II, GetCurrentPDB(»;

GetTaskQueue = GetProcAddress(GetModuleHandle("KERNEL II), "GETTASKQUEUE");

GetSelectorLimit

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 271

show_size(IITask Queue ll
, GetTaskQueue(O»; II q for current tasknnnn

show_size(IIModule Table",
GetModuleHandle(MK_FP(O, __hlnst»); II hModule from hlnstance

return 0;
}

Under Windows 3.1 Enhanced mode, output from the program looked like this
(note, by the way, that all these key data structures have been allocated in conven
tional memory, below 1 megabyte):

GlobalAlloc=1 byte; actually size=32 bytes @ 2bdcOh
Task Database size=512 bytes @ 2baaOh
PSP (PDB) size=512 bytes @ 2bbaOh
Task Queue size=288 bytes @ 2bcaOh
Module Table size=256 bytes @ 2bfeOh

Even though a single byte is allocated with GlobalAlloc(), GetSelectorLimit()
shows that the resulting global-heap block is actually 32 bytes in size. A task handle
corresponds to a 512-byte block of memory; this block overlaps the first 256 bytes of
a PSP (PDB), which in Windows actually has 512 bytes allocated for it, though unfor
tunately only the first 256 are useful (thus, we're still stuck with command lines whose
maximum length is 128 bytes).

CietSetKernelDosProc KERNEL.311

FARPROC FAR PASCAL GetSetKernelDOSProc(FARPROC DosProc);

This function allows you to change the address of the INT 21h handler that Windows
calls from such functions as Dos3Call() and NoHookDosCall(). The return value is
the address of the previous handler. Both the function passed in, and the value
returned, are protected-mode addresses.

Any Windows calls to Dos3Call() and NoHookDosCall() are not caught by an
INT 2Ih handler (such as BPINT 21 in Soft-Ice for Windows). Therefore,
GetSetKerneIDosProc() is important for "spy" programs and other debuggers that
want to catch all DOS calls made by Windows applications, even DOS calls made via
Dos3Call() rather than via a direct INT 21h.

Support: 3.1
See also: Dos3Call, NoHookDosCall
Example: The following code fragment is excerpted from the source code for the
WISPy (I Spy for Windows) sample program from chapter 4. If GetSet
KerneIDosProc() is available, and the user asks to intercept INT 21h, then

GetSetKernelDosProc

272 UNDOCUMENTED WINDOWS

GetSetKernelDOSProc() is used to hook the interrupt; otherwise the DOS Set Vector
function (INT 2Ih AH=25h) is used:

/* excerpted from WISPY.C */

FARPROC (FAR PASCAL *GetSetKernelDosProc)(FARPROC DosProc) = 0;

typedef void (_interrupt _far *INTRFUNC)();

INTRFUNC get_vect(unsigned intno)
{

if «intno == Ox21) && GetSetKernelDosProc)
{

_asm cli
FARPROC dos = GetSetKernelDosProc(O);
GetSetKernelDosProc(dos);
_asm sti
return dos;

}

else
{

return _dos_getvect(intno);
}

}

int set_vect(unsigned intno, INTRFUNC handler)
{

if «intno == Ox21) && GetSetKernelDosProc)
{

puts(flUsing GetSetKernelDosProc fl);
GetSetKernelDosProc«FARPROC) handler);
return TRUE;

}

else
{

_dos_setvect(intno, handler);
return (get_vect(intno) == handler);

}

}

typedef struct {
#ifdef BORLANDC

unsigned bp,di,si,ds,es,dx,cx,bx,ax;
#else

unsigned es,ds,di,si,bp,sp,bx,dx,cx,ax; /* same as PUSHA */
#endif

unsigned ip,cs,flags;
} REG_PARAMS;

void _interrupt _far IntHandler(REG_PARAMS r)
{

HANDLE task = GetCurrentTask();

if (task != wispy_task) /* don't show my own ints *1

GetSetKernelDosProc

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 273

II ...

cha;n;ntr(old[;ntno]);
}

ma;n(;nt argc, char *argv[])
{

II ...
GetSetKernelDosProc = GetProcAddress(GetModuleHandle(IIKERNEL II),

"GETSETKERNELDOSPROC II);

for (;=1; ;<argc; ;++)
{ II pseudocode: WISPY ;5 actually a lot more complicated

intno = atoi(argv[i]);
old[intno] = get_vect(intno);
set_vect(;ntno, IntHandler);

}

GetTaskDS

WORD FAR PASCAL GetTaskDS(void);

KERNEL.155

This function returns the hInstance (default data segment, or DGROUP) of the cur
rently executing task. It only makes sense to call this function from a DLL or an inter
rupt handler; otherwise, an application is merely inquiring after its own hInstance,
which is already available as one of the parameters to WinMain().

Support: 3.0, 3.1
Example: The following macro passes the return value from GetTaskDS() to
GetExePtr(), turning the hInstance into an hModule:

#def;ne GetCurrentModule()

GetTaskQueue

(GetExePtr(GetTaskDS(»

KERNEL.35

WORD FAR PASCAL GetTaskQueue(HANDLE hTask);

This function returns a handle to the Task Queue structure for the specified task (or, if
hTask is 0, for the current task). Each task has a Task Queue containing pending mes
sages; since each message contains an HWND, a WM_ message number, and so on, it
is clear that KERNEL knows about such USER constructs.

For more information, see the entry on the Task Queue structure later in this
chapter. In addition to getting the Task Queue belonging to a specified task, a task's
Task Queue can be changed, using the SetTaskQueue function.

Support: 3.0, 3.1

GetTaskDS

274 UNDOCUMENTED WINDOWS

See also: GetTaskQueueDS, GetTaskQueueES, SetTaskQueue, Task Queue
Example: The following short sample program will print the number ofpending mes
sages (usually zero!) for either the program itself, or for some other program whose
window title you specify on the command line: FindWindow() returns an HWND,
which GetWindowTask() turns into an HTASK, which GetTaskQueue() turns into a
Task Queue handle:

1* taskq.c *1

#include <stdlib.h>
#include <dos.h>
#include "windows.h"
#include "winio.h"

typedef struct {
WORD wNext;
HANDLE hTask;
WORD wSize;
WORD wNumMsgs;
II •.. other fields: see Task Queue ...
} TASKQ;

WORD FAR PASCAL GetTaskQueue(HANDLE hTask);

main(int argc, char *argv[J)
{

HANDLE hTaskQ;
TASKQ far *fpTaskQ;

if (argc < 2)
hTaskQ = GetTaskQueue(O);

else
hTaskQ = GetTaskQueue(GetWindowTask(FindWindow(OL, argv[1J»);

if (! hTaskQ)
fail("Can't locate Task Queue");

fpTaskQ = MK_FP(hTaskQ, 0);
printf("Task: %04x\n", fpTaskQ->hTask);
printf(IINumber of pending messages: %u\n", fpTaskQ->wNumMsgs);
return 0;

}

A far more detailed example is provided in WINTASK.C, presented with the Task
Database and Task Queue structures later in this chapter.

GetTaskQueueDS

void FAR PASCAL GetTaskQueueDS(void);

KERNEL.118

GetTaskQueueDS() moves a selector to the Task Queue for the current task into the
DS segment register. (The Task Queue structure is explained later in this chapter.)

GetTaskQueueDS

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 275

This function is heavily used internally by I<ERNEL and by the message routines in
USER. Because its purpose is to alter DS, DS must be saved and restored around calls
to the function, as shown in the following example:

push ds
call far ptr GETTASKQUEUEDS
; ..• access the task queue
pop ds

In general, it makes more sense to use the GetTaskQueue function.

Support: 3.0, 3.1
Used by: KERNEL, USER
See also: Task Queue, GetTaskQueue, GetTaskQueueES

GetTaskQueueES

void FAR PASCAL GetTaskQueueES(void);

KERNEL.119

GetTaskQueueES() moves a selector to the Task Queue for the current task into the
ES segment register. (The Task Queue structure is explained later in this chapter.) The
message routines in USER all call this function.

Support: 3.0, 3.1
U sed by: USER
See also: Task Queue, GetTaskQueueDS

GetWinOldApHooks

FARPROC FAR *GetWinOldApHooks(void);

KERNEL.344

This function simply returns whatever value is set with RegisterWinOldApHook().
The only known code that calls this is WINOLDAP.MOD, which in 3.1 is the Stand
ard mode program that runs DOS executables ("old apps"). WinOldApHook appears
to be a mechanism for hooking the WinExec of "old" DOS applications.

Support: 3.1
See also: RegisterWinOldApHook

Global Arena Header

Each object allocated on the Windows global heap has a corresponding block ofmem
ory containing information about the block: its size, owner, GMEM_ flags, and so on.
KERNEL uses this information to manage the global heap and to support API func
tions such as GlobalSize() and GlobalFlags(). This information structure is essentially a
header for the actual data object and is called the Global Arena header.

GetTaskQueueES

276 UNDOCUMENTED WINDOWS

You might think at first that such an arena header is unnecessary because in
protected-mode Windows each global memory object has a corresponding descriptor
in the Local Descriptor Table (LDT). However, the layout of protected-mode descrip
tors is fixed, is limited to 8 bytes, and does not include room for such Windows-specific
information as the GMEM_ flags or the block's owner. Protected-mode descriptors
include nothing more than a selector's base address, size, and access rights; Windows
needs to keep around a lot more information about each block than that.

In a typical Windows session, there might be 400 to 600 of these Global Arena
structures. They are chained together in a doubly linked list, with the first and last
arena headers reachable from the Global Heap information structure (Burgermaster;
see following description). The first and last arena headers are always "sentinels" used
to make walking the linked list a little easier for the memory-management rover inside
KERNEL. (For background reading in dynamic memory allocation, see Donald
I<nuth, The Art ofComputer Programming, 2nd edition, Vol. I, section 2.5, "Dynamic
Storage Allocation"; and Brian Kernighan and Dennis Ritchie, The C Programming
Language, 2nd edition, section 8.7, "Example-A Storage Allocator.")

The structure of the Global Arena Header differs completely between the 16-bit
KERNEL (KRNL286) and the 32-bit KERNEL (KRNL386).

In KRNL286, each Global Arena Header gets a separate selector. Thus, every time
you do a GlobaWloc() in Standard mode, two selectors must be allocated: one for
your data and one for the arena header. As the following example shows, the arena
header has a base address that is 16 bytes lower than that of the memory it controls;
this example also illustrates the basics of accessing the Global Arena linked list off the
Global Heap structure in the 16-bit I<ERNEL.

II KRNL286
WORD wGlobalHeap = HIWORD(GlobalMasterHandle(»; II selector to Burgermaster
HEAPINFO far *lphi = MK_FP(wGlobalHeap, 0); II far ptr to Burgermaster
WORD wGlobalArena = lphi->first; II sel to first Global Arena in list
GLOBAL_ARENA far *lpga = MK_FP(wGlobalArena, 0); II far ptr to ditto
BYTE far *lpData;
HANDLE h;
II skip past first item in list, which is just a SENTINEL
II second item in list is sometimes Global Arena for BURGERMASTER itself
wGlobalArena = lpga->next; II walk to next item in list
lpga = MK_FP(wGlobalArena, 0); II far pointer to Global Arena
h = lpga->handle; II extract handle from Global Arena
assert(GetSelectorBase(wGlobalArena) + 16 == GetSelectorBase(h»;
lpData = GlobalLock(h); II the data itself

In KRNL386, each Global Arena is just a block within the Global Heap informa
tion structure, so there is clearly no relationship between the location of a global
memory object and the location of its corresponding arena header. (A separate data
structure, the Selector Table, is used to get from an object to its arena header; see
below.) The following example shows the basics of accessing the Global Arena linked
list off the Global Heap structure in the 32-bit KERNEL.

Global Arena Header

II skip past first item (SENTINEL)
II far pointer to a Global Arena
II extract handle from a Global Arena
II the data itself

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 277

II KRNL386
WORD wGlobalHeap = HIWORD(GlobalMasterHandle(»; II selector to Burgermaster
HEAPINF032 far *lphi32 = MK_FP(wGlobalHeap, 0); II far ptr to Burgermaster
DWORD dwGlobalArena = lphi32->first; II offset of first Global Arena
II fortunately, dwGlobalArena always seems < OxFFFF
GLOBAL_ARENA_32 far *lpga32 = MK_FP(wGlobalHeap, dwGlobalArena);
BYTE far *lpData;
HANDLE h;
dwGlobalArena = lpga32->next;
lpga32 = MK_FP(dwGlobalArena, 0);
h = lpga32->handle;
lpData = GlobalLock(h);

Regardless ofwhere it's located, the Global Arena plays a role somewhat similar to
that of Memory Control Blocks (MCBs) in MS-DOS. In fact, MCBs in DOS are
sometimes also called "Arena Headers"; the blocks of memory themselves are the are
nas. This term doesn't quite work in Windows because, as noted previously, in the 32
bit Windows KERNEL the arena and its header are not contiguous.

The documented GLOBALENTRY structure in ToolHelp (see chapter 10) is an
idealization of the Global Arena structure. ToolHelp is much easier and more reliable
to work with than the actual Global Arena structures and should be used wherever
possible.

KRNL286 Global Arena (size 10h bytes)

OFFSET

00
01

03
05

06

SIZE

BYTE
WORD

WORD
BYTE

WORD

DESCRIPTION

Lock count for movable blocks
Owner of the block: a module handle, task handle, PSP, or
special. Special blocks:
o free block
-1 (FFFFh) sentinel block
-3 (FFFDh) Burgermaster itself (KRNL286 only)
-4 (FFFCh) "not there" (mapped to hardware)
-5 (FFFBh) "phantom" (defunct EMS type?)
-6 (FFFAh) "wraith" (?)
-7 (FFF9h) "bogus" (temporarily allocated)
Size in 16-bit paragraphs (not bytes)
Flags (note that the handle itselfencodes whether the block is
fixed or movable; see offset OAh below):
04h DGROUP
08h Discardable
Selector to previous Global Arena in doubly linked list; first
(SENTINEL) points to self

Global Arena Header

278 UNDOCUMENTED WINDOWS

08

OA

OC

OE

WORD

WORD

WORD

WORD

Selector to next Global Arena in doubly linked list; last
(SENTINEL) points to self
Handle to this arena's memory object; the bottom two bits
mark whether the block is fixed or movable:

01 fixed (Windows 3.0: Ring 1)
10 movable
11 fixed (Windows 3.1: Ring 3)

Selector to previous Global Arena in LRU (least recently used)
chain
Selector to next Global Arena in LRU chain

OFFSET SIZE

00 DWORD

04 DWORD

08 DWORD
OC DWORD
10 WORD

12 WORD

14 BYTE
15 BYTE

16 BYTE
17 BYTE
18 DWORD

lC DWORD

KRNL386 Global Arena (size 20h bytes)

DESCRIPTION

Offset ofprevious Global arena in doubly linked list; first
(SENTINEL) points to self
Offset of next Global area in doubly linked list; last
(SENTINEL) points to self

Linear base address of block (see GetSelectorBase())
Size of block in bytes (not paragraphs)
Handle to this arena's memory object; the bottom two bits
mark whether the block is fixed or movable (see offset OAh
for KRNL286 for bit patterns)

Owner of the block; a module handle, task handle, PSP, or
special. See KRNL286 offset 01 for special block IDs.
Lock count for movable blocks
Number of times page locked (GlobalPageLock())
Flags; see KRNL286 offset 05.

Number ofselectors required (used with huge blocks> 64K)
Offset ofprevious Global Arena in LRU (least recently
used) chain
Offset ofnext Global Arena in LRU (least recently used) chain

If the handle specified as the owner of a block is identical to the handle of the
block itself, then the handle is an HTASK and the block is a Task Database:

if (arena->owner == arena->handle)
assert(IsTask(arena->handle»;

Global Arena Header

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 279

Blocks allocated with GlobalAlloc() are usually marked with an owner correspond
ing to the Program Segment Prefix (PSP) of the task that called GlobalAlloc().

The KRNL286 Global Arena does not include the base address of the block, sim
ilar to offset 08 in the KRNL386 Global Arena structure; use GetSelectorBase
(arena->handle) instead.

The flags field is not in the same form as the GMEM_ options passed to
GlobalAlloc() or returned from GlobalFlags(). It is much easier to pass the handle to
GlobalFlags() than to try to use the flags field.

The flags do not include a CODE vs. DATA indicator; use the LAR (Load Access
Rights) instruction, or the undocumented SelectorAccessRights() function.

The Global Arena structure appears in the file WINKERN.INC, included with the
Windows 3.1 DDK.

Support: 3.0, 3.1
See also: Global Heap, GlobalMasterHandle, Local Arena, Selector Table
Example: See COUNTMEM.C in description of Global Heap; the following struc
tures are extracted from COUNTMEM.C.

#pragma pack(1) 1* align on BYTE boundaries, not WORD *1

typedef struct {
BYTE count;
WORD owner;
WORD paragraphs;
BYTE flags;
WORD prev;
WORD next;
WORD handle;
WORD lruprev;
WORD lrunext;
} GLOBAL_ARENA;

typedef struct {
DWORD next;
DWORD prev;
DWORD base;
DWORD bytes;
WORD handle;
WORD owner;
BYTE count;
BYTE pglock;
BYTE flags;
BYTE selcount;
DWORD lruprev;
DWORD lrunext;
} GLOBAL_ARENA_32;

II 0
II 1
II 3
II 5
II 6
II 8
II OA
II OC
II OE

II a
II 4
II 8
II OC
II 10
II 12
II 14
II 15
II 16
II 17
II 18
II 1C

Global Arena Header

280 UNDOCUMENTED WINDOWS

GlobalFreeAl1

void FAR PASCAL GlobalFreeAll(WORD wPSP);

KERNEL.26

This function is used by KERNEL when a task terminates to free all global memory
remaining owned by the task at the time it exited. The task is specified by its PSP (or
0, to indicate the PSP of the current task). Any global memory allocated by the task
but owned by the module (e.g., memory allocated with DirectResAlloc() or with
GlobaWloc(GMEM_DDESHARE)) is, of course, not deallocated.

Support: 3.0, 3.1
See also: DirectResAlloc

GlobalHandleNoRIP

DWORD FAR PASCAL GlobalHandleNoRIPCWORD wMem);

KERNEL.159

" (couldn1t find any nearby symbols)
" ignore

GlobaIHandleNoRIP() is a wrapper around the documented GlobalHandle() func
tion. Like GlobalHandle(), it returns the handle of a global memory object whose
selector is specified by the wMem parameter. However, it does this without running
the risk of generating a Windows fatal exit or RIP ("rest in peace") code Ox280.
GlobalHandleNoRIP() simply returns 0 if the parameter is invalid. The following
shows the difference between the behavior of GlobalHandle() and GlobalHandle
NoRIP() when running under a debug version ofWindows:

> kernel globalhandle Ox1234 "pass in a totally bogus selector
gdref: invalid handle 0000:1234 " internal gdref() function in KERNEL
FatalExit code = Ox0280 ;; GMEMHANDLE: Invalid global handle
Stack trace:
KERNEL:DEBUGBREAK+0184
KERNEL:ALLOCDSTOCSALIAS+0539
Abort, Break or Ignore?
OxOOOO

> kernel globalhandlenorip Ox1234
OxOOOO

Thus, GlobalHandleNoRIP() can be used to test the validity of handles without
causing a FatalExit for ones that prove to be invalid.

Support: 3.0, 3.1
Used by: WINDEBUG

GlobalFreeAIi

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 281

Global Heap

Information about the Windows global memol)' heap is kept in a structure known as
Burgermaster. (Burgermaster is also the name of a hamburger restaurant in Red
mond.) The Global Heap information structure keeps a count of the number of items
in the global heap (typically between 400 and 600), pointers to the first and last
entries in the doubly-linked list of Global Arena structures, and so on. In the 32-bit
KERNEL (KRNL386), the segment containing Burgermaster also contains the Global
Arena headers themselves (see Global Arena).

A selector to the Global Heap information structure (this is getting long-winded,
so let's just call it Burgermaster from here on) is returned from the undocumented
GlobalMasterHandle() function; the undocumented THHOOK structure also
includes a selector to Burgermaster.

It is sometimes claimed that, in protected mode, the Burgermaster goes away
because its job is taken over by the protected-mode descriptor tables. This is not true;
Burgermaster still exists in protected mode, and reports of its demise are very much
exaggerated. Protected-mode descriptor tables do not include room for the sort of
information that Windows needs. In addition to its protected-mode descriptor, each
object on the Windows global heap has a lot of additional associated information, kept
in its Global Area header; Global Arenas are reached via the fields named "first" and
"last" in Burgermaster (or by using the Selector Table; see below).

The structure of Burgermaster is fundamentally the same in KRNL286 and
KRNL386, except that the size of some fields, such as "first" and "last," changes from
16 bits in KRNL286 to 32 bits in KRNL386. As noted in the description of the
Global Arena header earlier in this chapter, first and last are selectors in KRNL286,
and 32-bit offsets in the Burgermaster segment in KRNL386.

The ToolHelp API (see chapter 10) provides a documented interface for walking
the Global Heap; the idealized interface provided by ToolHelp should be used wher
ever possible rather than walking the actual Windows Global Heap structure described
here.

In addition to objects in the global heap, Windows also maintains several selectors
in the Global Descriptor Table (GDT). You can use a debugger with GDT-walking
capabilities, such as Soft-ICE/Windows, to view the GDT. In addition to its GDT
command, Soft-ICE also has an LDT command; this presents a different, worm's-eye,
view of the Windows global heap from its HEAP command. For example:

:heap OOae
Han./Sel. Address Length Owner Type Seg/Rsre
OOAE 0002A820 00000100 KERNEL Alloe
:ldt OOae
OOAF Data16 Base=0002A820 Lim=OOOOOOFF DPL=3 P RW

Each local heap has an associated information structure that closely resembles
Burgermaster; see Local Heap.

Global Heap

282 UNDOCUMENTED WINDOWS

The Global Heap structures are defined in the file WINKERN.INC, included with
the Windows 3.1 DDK

BURCiERMASTER:

00 WORD

02 WORD
04 WORD

-- KRNL286 --
06 WORD

08 WORD

OA BYTE

OB BYTE

OC WORD

OE WORD

10 WORD

12 WORD

14 WORD

16 WORD

18 WORD

lA WORD

lC WORD

IE WORD
20 WORD

22 WORD

-- KRNL386 --
06 DWORD

OA DWORD

E BYTE
OF BYTE

10 DWORD

14 WORD

16 WORD

18 WORD

Non-zero enables heap checking (defunct?)

Freeze: non-zero prevents heap compaction

Number ofentries in global heap (length of linked list)

Selector offirst Global Arena in doubly-linked list (the first
entry is always a SENTINEL)

Selector oflast Global Arena in doubly-linked list (the last entry
is always a SENTINEL)
Number ofheap compactions; see MemoryFreed()

Current discard level

Total bytes discarded so far; see MemoryFreed()

Head of handle table list

Head of free handle table list

Delta: number of handles to allocate each time (MoreMasters)

Address of near procedures to expand handles

Address ofstatistics table (or zero)

Lock-out access to LRU chain from interrupt level (huh?)

First handle in LRU chain (head ofLRU chain is most recently
used)

Number ofentries in LRU chain

Number ofparagraphs to reserve for discardable code
Fence for discardable code

Number ofFREE blocks

Offset within Burgermaster of first Global Arena in doubly
linked list
Offset within Burgermaster of last Global Arena in doubly
linked list

Number ofheap compactions; see MemoryFreed()
Current discard level

Total bytes discarded so far; see MemoryFreed()
Always zero? (supposed to be handle table list head)
Always zero? (supposed to free handle table list head)
Always zero? (supposed to be handle delta)

Global Heap

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 283

IA WORD
Ie WORD
IE WORD
20 DWORD

24 WORD
26 DWORD
2A DWORD
30 WORD

Always zero? (supposed to be near procedure to expand handles)

Always zero? (supposed to be handle to statistics table)

Lock-out access to LRU chain from interrupt level (huh?)
Offset within Burgermaster of first handle in LRU chain (head
ofLRU chain is most recently used)

Number ofentries in LRU chain

Number ofparagraphs to reserve for discardable code
Fence for discardable code

Number ofFREE blocks

BURGERMASTER
SENTINEL
C:\WIN31.B2\SYSTEM\KRNL386.EXE
C:\WIN31.B2\SYSTEM\GDI.EXE
C:\WIN31.B2\SYSTEM\MMSYSTEM.DLL
C:\WIN31.B2\SYSTEM\WINOA386.MOD
C:\WIN31.B2\SYSTEM\USER.EXE
C:\WINWORD\WINWORD.EXE
C:\WIN31.B2\WINFILE.EXE

. C:\WIN31.B2\DRWATSON.EXE
C:\WINDOS\COUNTMEM.EXE
FREE
C:\WIN31.B2\SYSTEM\VGAMONO.DRV
C:\WIN31.B2\SYSTEM\SHELL.DLL
C:\WIN31.B2\SYSTEM\SYSTEM.DRV
C:\WIN31.B2\SYSTEM\KEYBOARD.DRV
C:\WIN31.B2\SYSTEM\MOUSE.DRV

Support: 3.0, 3.1
See also: Global Arena, GlobalMasterHandle, Local Heap
Example: The following sample program, COUNTMEM.C, walks the Windows
global heap, keeping a tally of the number of bytes and selectors allocated by each
module. Mter walking the global heap, COUNTMEM displays the total allocation for
each module, plus some grand totals. For example:

Sel Bytes (Discardable)
1 153920 0
2 64 0
8 83552 22976
52 175168 89920
6 21312 13568
28 50944 38592
77 270304 178912
128 1228128 280192
59 120384 96800
6 32960 352
10 86176 17632
46 176768 0
27 27552 10976
12 21024 18560
3 1504 0
8 5280 1344
3 9152 7712

2
2
10
2
3
3
26

5760
4256

43296
4512
9984

12992
832

5472
3968

36000
4224
9600

o
o

C:\WIN31.B2\SYSTEM\VGASYS.FON
C:\WIN31.B2\SYSTEM\COURE.FON
C:\WIN31.B2\SYSTEM\COMMDLG.DLL
C:\WIN31.B2\SYSTEM\VGAOEM.FON
C:\WIN31.B2\SYSTEM\SSERIFE.FON
C:\WIN31.B2\SYSTEM\TOOLHELP.DLL
NOT_THERE

Total:
Discardable:
Free:
Low memory:
Code:
Data:

2497632 bytes (592 selectors)
893152 bytes
176768 bytes
703648 bytes

1011648 bytes
1643808 bytes

Global Heap

284 UNDOCUMENTED WINDOWS

There are some interesting results here. For example, Microsoft Word for Win
dows (WINWORD) occupied over one megabyte of memory, less than one-quarter of
it discardable. The core Windows DLLs-KERNEL, USER, and GDI-occupied a lit
tle over 500k, over half of it discardable. We also see that COUNTMEM.EXE itself is
a pig, taking up more room (with less of it discardable!) than the KERNEL itself; this
is largely because the default size ofa WINIO buffer is 32k (oink! oink!).

The total "Free" memory displayed by COUNTMEM requires some explanation:
this is merely the amount of free memory currently managed in the Global Heap; that
is, memory that was at one point allocated and then freed. The Global Heap can grow;
this is not reflected in the "Free" count. I<ERNEL grows the Global Heap byallocat
ing memory via the DOS Protected-Mode Interface (DPMI) Allocate Memory call
(INT 3lh AX=050l). Watching DPMI calls with the WISPY utility from chapter 4,
we can see that Windows grows the heap l28k (20000h) bytes at a time.

So much for what COUNTMEM does; how does it work? In main(), COUNTMEM
uses HIWORD(GlobalMasterHandle()) to get a selector to Burgermaster. It also calls
the function Kernell632() to determine whether KRNL286 or KRNL386 is active;
this will affect which structures the program uses later and how it walks the list of
Global Arenas. Finally, main() calls walk_heap().

The walk_heap() function walks the linked list of Global Arenas, using a tight loop
which does not yield control to other tasks. This is crucial, because if other tasks could
run while COUNTMEM was walking the list, those other tasks could allocate
memory and thereby change the list out from under us! Given that Windows has
non-preemptive multitasking, all we need to do is simply forget to yield control; with
preemptive multitasking, we would need to enter a critical section. By the way, this
point about not yielding control while walking the heap is important even if you're
using the ToolHelp GlobalFirst() and GlobaINext() functions. See the WINWALK
program in chapter 10.

The code for walking the linked list of Global Arenas differs totally for the 16-bit
and 32-bit versions of KERNEL. Not only do the Global Arena headers themselves dif
fer, but, depending on the flavor of KERNEL, COUNTMEM must interpret the
"first" field in Burgermaster and the "next" fields in the Global Arena headers differ
ently.

For each Global Arena in the linked list, wallc_heap() calls add(). The add() func
tion uses the handle, owner, and size fields from the arena header to keep a rulll1ing
total. If the owner of a block is not a module handle, then the owner (either a task or
PSP) is converted to a module handle, using hTask_from_PSP() and HMODULE_
FROM_HTASK() from HANDLES.H in the introduction to this chapter.

The add() function passes the handles to GlobalFlags() and GetSelectorBase(),
and uses the Intel LAR and VERR instructions on them as well. This shows that the
arena->handles produced by walking the global heap can be used just like any other
handles; you're not stuck getting all your information from the Global Arena headers
themselves.

Global Heap

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 285

To try to produce an true picture of the memory consumption, COUNTMEM
adds in the memory used by the Global Arena header itself. With KRNL286, it also
remembers to add in the extra selector that's consumed by each Global Arena header:

1* COUNTMEM.C -- Totals memory consumption (bytes and selectors)
of Windows modules, by walking Windows global heap

The point of this code is to illustrate the arrangement of the
Windows global heap info structure and arenas. If you actually
want to walk the heap in commercial code, use ToolHelp, ok? Please?

In ToolHelp, it's as simple as:
GLOBALENTRY ge;
BOOL ok;
ge.dwSize = sizeof(ge);
II don't yield until done
ok = GlobalFirst(&ge, GLOBAL_ALL);
while (ok)
{

add(ge.hBlock, ge.hOwner, ge.dwBlockSize);
ok = GlobalNext(&ge, GLOBAL_ALL);

}

II okay to yield control again

On the other hand, with ToolHelp it is too easy to forget to add
in the size of the arenas themselves; in fact ToolHelp doesn't
tell you the size of the arenas. For an example of where ToolHelp
falls short, see the code in add() below with the comment Ifadd
this Global Arena to the totals for this owner. 1f It would be nice
if ToolHelp took this sort of thing into account.

Andrew Schulman, March 1992; revised May 1992 *1

#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <dos.h>
#include "windows.h"
#include "winio.h"
#include Ifhandles.h"

static DWORD (FAR PASCAL *GlobalMasterHandle)(void);
static DWORD (FAR PASCAL *GetSelectorLimit)(WORD wSel);

#define GETPROC(modname, funcname) \
GetProcAddress(GetModuleHandle(modname), (funcname»

#pragma pack(1)

1* The only difference between HEAPINFO and HEAPINF032
is the size of fields such as "first" and "last". The
following is borrowed from the Windows 3.1 DDK include
file WINKERN.INC. However, not all of these fields
appear to actually be used! *1

Global Heap

286 UNDOCUMENTED WINDOWS

#define DEFINE_HEAPINFO_STRUCT(STRUCTNAME, WORDDWORD) \
typedef struct { \

WORD check; \
WORD freeze; \
WORD count; \
WORDDWORD first; \
WORDDWORD last; \
BYTE ncompact; \
BYTE dislevel; \
WORDDWORD distotal; \
WORD htable; \
WORD hfree; \
WORD hdelta; \
WORD hexpand; \
WORD pstats; \
WORD lrulock; \
WORDDWORD lruchain; \
WORD lrucount; \
WORDDWORD reserve; \
WORDDWORD disfence; \
WORD free_count;
} STRUCTNAME;

DEFINE_HEAPINFO_STRUCT(GLOBAL_HEAP, WORD);
DEFINE_HEAPINFO_STRUCT(GLOBAL_HEAP_32, DWORD);

/* The Global Arena structures are totally different
for 16-bit and 32-bit KERNEL. */

typedef struct {
BYTE count;
WORD owner;
WORD paragraphs;
BYTE flags;
WORD prev;
WORD next;
WORD handle;
WORD lruprev;
WORD lrunext;
} GLOBAL_ARENA;

typedef struct {
DWORD next;
DWORD prev;
DWORD base;
DWORD bytes;
WORD handle;
WORD owner;
BYTE count;
BYTE pglock;
BYTE flags;
BYTE selcount;
DWORD lruprev;
DWORD lrunext;
} GLOBAL_ARENA_32;

Global Heap

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 287

1* special owner types;
#define SENTINEL
#define BURGERMASTER
#define NOT_THERE
#define PHANTOM
#define WRAITH
#define BOGUS
#define FREE

otherwise owner is module, task, or PSP *1
(-1)
(-3)
(-4)
(-5)
(-6)
(-7)
(0)

void walk_heap(WORD wGlobalHeap);
char *owner_name(WORD wOwner);
void add(HANDLE h, WORD wOwner, DWORD dwBytes);
void print_totals(void);

static HWND main_hwnd;
static WORD wGlobalHeap;
static int k1632;
static int arena_size;

maine)
{

1* Burgermaster *1

main_hwnd = winio_current();

k1632 = Kernel1632();
if (k1632 == 16)

arena_size
else

arena_size

sizeof(GLOBAL_ARENA);

GlobalMasterHandle = GETPROC(IIKERNEL II , IIGLOBALMASTERHANDLE II);
GetSelectorLimit = GETPROC(IIKERNEL II , IIGETSELECTORLIMIT II);

II use HIWORD: take selector, not handle
if (wGlobalHeap = HIWORD(GlobalMasterHandle(»)

walk_heap(wGlobalHeap);
else

fail(IICannot find Windows global heapll);

return 0;
}

void walk_heap(WORD wGlobalHeap)
{

HWND hwnd;
i nt i;

1* in 3.1+, BURGERMASTER itself is not in the linked list *1
if (GetVersion() >= OxOa03)

add(wGlobalHeap, BURGERMASTER,
GetSelectorLimit(wGlobalHeap)+1);

1* Turn off WINIO display while walking the global heap.
WINIO yields when it displays, and we don't want to yield

Global Heap

288 UNDOCUMENTED WINDOWS

here, because then other tasks might go and change the
state of the global heap while we're in the middle of
the walk. Actually, we're not doing output here, but it's
important to understand that YOU CANNOT YIELD IN THIS LOOP! *1

winio_setpaint(main_hwnd, FALSE);

if (k1632 == 16)
{

II 16-bit KERNEL

GLOBAL ARENA far *lpga;
GLOBAL_HEAP far *lphi = MK_FP(wGlobalHeap, 0);
WORD wSel = lphi->first; II first entry
WORD wCount = lphi->count; II number of entries

for (i=O; i<wCount; i++)
{

1* In 16-bit KERNEL, lphi->first and lpga->next
are selectors to arenas. *1

lpga = MK_FP(wSel, 0);
add(lpga->handle, lpga->owner,

(long) lpga->paragraphs « 4);
wSel = lpga->next; II follow linked list

}

}

else II 32-bit KERNEL
{

GLOBAL_ARENA_32 far *lpga32;
GLOBAL_HEAP_32 far *lphi32 = MK_FP(wGlobalHeap, 0);
DWORD dwOffset = lphi32->first; II first entry
WORD wCount = lphi32->count; II number of entries

for (i=O; i<wCount; i++)
{

1* In 32-bit KERNEL, lphi32->first and lpga32->next
are not selectors, but offsets into the master table *1

lpga32 = MK_FP(wGlobalHeap, dwOffset);
add(lpga32->handle, lpga32->owner, lpga32->bytes);
dwOffset = lpga32->next; II follow linked list
if (dwOffset > OxFFFFUL)

fail("Can't access all of heap from 16-bit code");
}

}

winio_setpaint(main_hwnd, TRUE);

print_totals();
}

typedef struct {
WORD owner;
WORD items;
DWORD total;
DWORD discard_total;
DWORD code_total;
} TOTAL;

#define MAX_TOTAL 1024

Global Heap

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 289

static TOTAL totalsCMAX_TOTALJ = {O} ;
static int num_totals = 0;
static DWORD low_total = 0; 1* amount below 1 megabyte *1
static DWORD code_total 0;
static DWORD data_total = 0;

1* Add a Global Arena to the running total *1
void add(HANDLE h, WORD wOwner, DWORD dwBytes)
{

extern DWORD FAR PASCAL GetSelectorBase(WORD wSel);
TOTAL *t;
WORD wFlags;
int i;
1* If owner is a PSP or a task handle,

find the corresponding module handle *1
if (lsValidPSP(wOwner»
{

HANDLE hTask;
if (hTask = hTask_from PSP(wOwner»

wOwner = HMODULE_FROM_HTASK(hTask);
}

else if (lsValidTask(wOwner»
wOwner = HMODULE_FROM_HTASK(wOwner);

1* Find the owner in the table *1
for (i=O, t=totals; i<num_totals; i++, t++)

if (t->owner == wOwner)
break;

if (i == num_totals) II not in table yet
{

if (num_totals >= MAX_TOTAL)
fail(Utotals overflow!U);

t = &totalsCnum_totalsJ;
t->owner = wOwner;
num_totals++;

}

1* add this Global Arena to the totals for this owner *1
t->total += dwBytes;
t->total += arena_size; II count the arena as part of total
if (k1632 == 16)

t->items += 2; II 16-bit KERNEL requires two selectors/block
else

t->items++;

1* We could of course pull the flags right out of the Global
Arena structure. But taking the handles produced by
walking the Global Heap, and passing them to GlobalFlags(),
shows that walking the heap could be used simply as a way to
enumerate handles, leaving everything else to documented
functions. *1

if (verr(wOwner» II ensure has genuine owner before do GlobalFlags
if (wFlags = GlobalFlags(h»

if (wFlags & GMEM_DISCARDABLE)

Global Heap

290 UNDOCUMENTED WINDOWS

t->discard_total += dwBytes;

/* To find out if it's CODE or DATA, we use the Intel LAR (Load
Access Rights) instruction. We could also use the undocumented
Windows SelectorAccessRights() function. */

if «lar(h) & CODEDATA_MASK) == CODE)
code_total += dwBytes;

else
data_total += dwBytes;

/* To find its linear base address, we use the undocumented
Windows GetSelectorBase() function. If the base address is
less than one megabyte, it's low memory (equivalent to a
GlobalDosAlloc(» */

if (GetSelectorBase(h) < Ox100000L)
low_total += dwBytes;

}

void print_totals(void)
{

TOTAL *t;
DWORD total=O, discard=O, free_total=O;
WORD items=O;
i nt i;

printf("# Sel\tBytes (Discardable)\n");

for (i=O, t=totals; i<num_totals; i++, t++)
{

printf("%d\t%7lu %7lu\t%s\n",
t->items, t->total, t->discard_total,
owner_name(t->owner»;

/* get the grand total */
if (t->owner == FREE)

free_total = t->total;
else

{

total += t->total;
discard += t->discard_total;
items += t->items;

}

}

%8lu bytes (%d selectors)\n ll
, total, items);

%8lu bytes\n", discard);
%8lu bytes\n", free_total);
%8lu bytes\n", low_total);
%8lu bytes\n", code_total);
%8lu bytes\n", data_total);

/* display the grand total */
printf("\n");
printf("Total:
printf("Discardable:
printf("Free:
printf(IILow memory:
printf(IICode:
printf(IIData:

}

Global Heap

return "SENTINEL";
return "BURGERMASTER";
return "NOT_THERE";
return "PHANTOM";
return "WRAITH";
return "BOGUS";
return "FREE";

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 291

char *owner_nameCWORD wOwner)
{

static char buf[128J;

switch CwOwner) II assumed to be module handle or special
{

case SENTINEL:
case BURGERMASTER:
case NOT_THERE:
case PHANTOM:
case WRAITH:
case BOGUS:
case FREE:
default:

if CIsValidModuleHandleCwOwner»
{

1* To get short name, could use
GetModuleNameFromHandleC) in WINMOD.C *1

GetModuleFileNameCwOwner, buf, 128);
return buf;

}

}

}

else
return II??"... ,

GlobalMasterHandle

DWORD FAR PASCAL GlobalMasterHandleCvoid);

KERNEL.28

GlobalMasterHandle() returns both a handle and a selector to the Global Heap infor
mation structure, also known as Burgermaster. The selector (pGlobalHeap) is returned
in the HIWORD (DX) and is generally more useful than the handle (hGlobalHeap),
returned in the LOWORD (AX); sometimes, though, the selector and the handle are
identical. The values returned by GlobalMasterHandle() are identical to the fields
pGlobalHeap and hGlobalHeap in the THHOOK structure (see below). In fact, all
GlobaIMasterHandle() does is return these values:

GlobalMasterHandle proc far
mov ax, hGlobalHeap ; THHOOK+O
mov dx, pGlobalHeap ; THHOOK+2
retf

GlobalMasterHandle endp

The return value from this function is used for walking the Windows global heap.
However, ToolHelp (see chapter 10) provides documented functions (Global Info(),
GlobalFirst(), and GlobalNext()) that generally should be used in preference to walk
ing the actual, live Windows global heap. On the other hand, different versions of the

GlobalMasterHandle

292 UNDOCUMENTED WINDOWS

Windows SDK HEAPWALK utility (Luke Heapwalker), the WINDEBUG library, and
indeed, ToolHelp itself all rely on GlobalMasterHandle().

Walking the global heap is discussed at length in the descriptions earlier in this
chapter for the Global Heap and Global Arena data structures. Briefly,
GlobalMasterHandle() is used like this:

DWORD (FAR PASCAL *GlobalMasterHandle)(void);
WORD pGlobalHeap;
GlobalMasterHandle = GET_PROC("KERNEL", "GLOBALMASTERHANDLE");
if (pGlobalHeap = HIWORD(GlobalMasterHandle(»)

walk(MK_FP(pGlobalHeap, 0»;

pGlobalHeap is a selector to a structure, the Global Heap information structure or
Burgermaster, that changes from KRNL286 to KRNL386 (see Global Heap).

Support: 3.0, 3.1
Used by: HEAPWALKEXE, WINDEBUG.DLL, \QCWIN\WINDBG.DLL,
TOOLHELP.DLL
See also: Global Arena, Global Heap
Example: See COUNTMEM.C in description of Global Heap

HandleParamError KERNEL.327

The function K327(), exported from KERNEL in Windows 3.1, has the internal, non
exported name HandleParamError(). Some _GP handlers jump to it.

Support: 3.1
See also: _ GP

Handle Table

Handle Tables and the function DefineHandleTable() were present in Windows 2.x,
but they were not documented by Microsoft until Windows 3.0, where they promptly
became useless.

The definitive documentation on handle tables is the two-part article by Tim
Paterson and Steve Flenniken, "Managing Multiple Data Segments Under Microsoft
Windows," Dr. Dobb)s Journal, February 1990 and March 1990. Microsoft's docu
mentation for DefmeHandleTable() is inadequate; to actually use the function, you
would need the Dr. Dobb)s articles. However, handle tables are relevant only in Win
dows real mode, which is not present in Windows 3.1 and not useful in Windows 3.0,
where it is present. Those unfortunate souls needing to support Windows real
mode should (a) really reconsider whether they need to support Windows real

HandleParamError .

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 293

mode; (b) refer to the Dr. DobbJs article; and (c) really reconsider whether they need
to support Windows real mode.

HasGPHandler

WORD FAR PASCAL HasGPHandler(DWORD 9pAddress);

KERNEL.338

This function is called with the address of a faulting instruction. The function returns
TRUE if the fault was caused by parameter validation; for example, the Windows 3.1
parameter-validation routines (the IsBadXXX() functions) signal error by causing a GP
fault.

Using the CS component of the specified address, HasGPHandler() looks up the
owning module of the code segment. It then compares the owner's module name to
an internal table of names. The internal table contains the names of the Windows
modules that have _GP tables defmed (see _GP). If the owner of the faulting code
segment is found in the table, then the address for _GP in that module is looked up.

Next, HasGPHandler() walks the _GP table, comparing the faulting CS:IP in
gpAddress with each address range in the table. If the CS:IP is within one of the
address ranges, then the address where execution should resume is returned; this
WORD return value is an offset into the same segment as CS in the gpAddress param
eter. If a handler cannot be found, the function returns O.

In other words, HasGPHandler does roughly the following:

HasGPHandler(addr)
{

hModule = owner(FP_SEG(addr»;
if (_GP = GetProcAddress(hModule, II Gp lI »

if (handler_ofs = in_9P(_GP, addr»
return handler_ofs;

1* still here *1 return 0;
}

and would be used in roughly the following way:

if (handler_ofs = HasGPHandler(fault_addr»
{

handler = MK_FP(FP_SEG(fault_addr), handler_ofs);
(*handler)();

}

Support: 3.1
See also: _ GP, IsBadXXX

HasGPHandler

294 UNDOCUMENTED WINDOWS

InitAtomTable

WORD FAR PASCAL InitAtomTable(int size);

InitAtomTable() is documented as returning a BOOL; in fact, it returns a WORD that
can be interpreted as a BOOL: a near pointer to the newly created atom table, or 0 if
one couldn't be created. This return value is identical to the pAtomTable variable at
offset 8 in the NULL segment (see Instance Data).

If pAtomTable is 0 when AddAtom() is called, then KERNEL automatically calls
InitAtomTable().

Support: 3.0, 3.1
See also: Atom Table

InitLib

void FAR PASCAL InitLib(void);

KERNEL.116

InitLib() appears to be a relic from the Windows past. It was present in Windows 2.1,
but it is not called in Borland's DLL startup code (COD.ASM), nor in any known
Windows 3.x DLL from Microsoft. For what it's worth, the function calls LocaIInit(),
passing 0 as the segment. This causes LocaIInit() to assume that it should initialize
whatever DS is currently pointing to. Windows 3.x DLLs typically call LocalInit()
themselves, rather than relying on InitLib() to do this for them. InitLib() also sets ES
to the KERNEL data segment.

InitTask

EXTRN INITTASK:FAR

KERNEL.91

InitTask() is the first function called in the startup code for a Windows application.
For years undocumented, InitTask() and the other functions necessary for Windows
startup code were finally documented by Microsoft as part of its "Open Tools" strat
egy; documentation for InitTask() now appears in the 3.1 SDK Overview article,
"Windows Application Startup."

WinMain() is only the perceived entry point for a Windows program. The actual
entry point for the program is specified in the ne_csip (initial CS:IP) field at offset 14h
in the module's NE header (see Module Table). This initial CS:IP generally belongs to
startup code supplied by the compiler. On entry to this code, the CPU registers con
tain the following information:

InitAtomTable

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 295

BX Stack size
CX Heap size
01 hlnstance
SI hPrevlnstance
ES PSP

To turn itself into a legitimate Windows task, the first thing a Windows program's
startup code must do is call InitTask(). For example, the following comes from the
Borland C++ Windows startup code (which Borland provides in source code as
COW.ASM).

extrn INITTASK:far
, ...
ca II INITTASK
or ax, ax
jnz ok

InitTask() takes no explicit parameters, but the registers must be in the startup
state shown above. On failure, InitTask() returns 0 in the AX register. On success, it
sets up the registers with information to be passed on the stack to WinMain():

AX 1
CX Stack limit in bytes
OX nCmdShow parameter to WinExec() that started this task
ES:BX lpCmdLine (ES = PSP, BX = BOh)
SI hPrevlnstance
01 hlnstance

InitTask() also initializes the pStackTop, pStackMin, and pStackBottom fields in
the calling task's Instance Data area (NULL segment); see the description of Instance
Data.

Dynamic link libraries (DLLs) are not tasks, so their startup code will not call
InitTask().

In addition to calling InitTask(), a task's Windows startup code must also call the
USER InitApp() function to create a message queue for itself: C startup code must ini
tialize the C run-time library; C++ startup code must call any static constructors (it
had better do this after calling InitTask() and InitApp(), by the way). Eventually, the
startup code calls the application's WinMain() function, pushing the parameters
expected by WinMain() on the stack.

Support: 3.0, 3.1
See also: InitApp (chapter 6), Instance Data, WaitEvent

InitTaskl KERNEL.141

void FAR PASCAL InitTask1(FARPROC fpOressedforSuccess);

InitTaskl() sets the value of a function pointer, DressedForSuccess, which in turn
would, if non-NULL, be called as part of task initialization. This function may be left

InitTaskl

296 UNDOCUMENTED WINDOWS

over from experimentation involving the running ofWindows applications under other
operating environments.

Instance Data

An instance handle (hInstance) is actually a selector to a task's or DLL's default data
segment (DGROUP). Although code and resources are shared between multiple
instances of the same program, each instance gets its own DGROUP. It is therefore
natural to use the DGROUP selector as a unique identifier for each instance. DLLs are
not tasks and do not have multiple instances, but each DLL does have its own
DGROUP, so here too the DGROUP selector can be used as a unique identifier for a
module.

DGROUP is where the task's or DLL's near data (statics and consts), default local
heap, and stack are kept. In addition, the first 16 (lOh) bytes of DGROUP are
reserved; they are generally formatted in the following way:

At offset a in
OOh WORD
02h DWORD
06h WORD
OSh WORD
OAh WORD
OCh WORD
OEh WORD

default data segment:
OOOOh
dwOldSSSP
pLocalHeap
pAtomTable
pStackTop
pStackMin
pStackBottom

This structure is sometimes referred to as the NULL segment; the names of these
fields often show up in CodeView debugging information in Windows executable files.

Not all default data segments in Windows have this structure. If the WORD at off
set zero is not 0, then structure is not present. Similarly, if the WORD at offset 6 does
not point to a valid Local Heap, then the structure is not present. Windows device
drivers such as DISPLAY, KEYBOARD, and SYSTEM do not have NULL segments.

On the other hand, globally-allocated non-DGROUP blocks may also contain
parts of the Instance Data structure, if the blocks have been treated with lnitAtom
Table() or LocaIInit(); see offsets 6 and 8 below.

Bob Chiverton's article, "Shed Some Light on Your Windows Application's
Default Data Segment with HeapPeep" (Microsoft Systems Journal, January/February
1992) contains an in-depth examination of the NULL segment.

OOh WORD wMustBeZero

If the first WORD in the data segment is not zero, then the NULL segment structure is
not present (however, pLocalHeap may still be present at offset 6; see below). See the
function IsValidNULLSegment() in the following example.

Instance Data

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 297

02h DWORD dwOldSSSP

If the documented SwitchStackTo() function is called, the current SS:SP stack pointer is
stored here, for later restoration by SwitchStackBack(). At other times, this field contains
the number 5, left over from the C compiler's _rsrvptrs variable (the number of reserved
pointers).

06h WORD pLocalHeap

This is a near pointer to a Local Heap information structure. Unfortunately, Windows
modules that omit a local heap often fail to zero out this field. When using this field to
locate a local heap, always look for the LH signature at offset 22h (Standard mode) or 28h
(KRNL386) in the presumed local heap. See the IsValidLocalHeap() function in the fol
lowing example, and the discussion of the Local Heap information structure later in this
chapter.

IfLocalInit() is used to carve a local heap out of a globally allocated object (for exam
ple, as part of a suballocation scheme, then the WORD at offset 6 in the global object will
contain a near pointer to the Local Heap information structure, even though other fields
from the Instance Data (NULL segment) structure are not present. If multiple local heaps
are created from a single globally allocated block, then offset 6 contains the address of the
most recently created local heap's information structure.

08h WORD pAtomTable

This field will be zero until InitAtomTable() is called either directly by the task or indi
rectly by calling AddAtom() for the first time, at which point the field contains the same
value as returned by InitAtomTable(): a near pointer to the task's atom table. See
lnitAtomTable() and Atom Table, elsewhere in this chapter.

IfInitAtomTable() is used to create an atom table in a globally-allocated, non
DGROUP block, then the WORD at offset 8 in the global object will contain a near
pointer to the Atom Table, even though other fields from the NULL segment structure
may not be present. Because atoms are items in the local heap, an atom-table pointer at
offset 8 will always be accompanied by a local-heap pointer at offset 6.

OAh WORD pStackTop

This is a near pointer to the end of the stack. The stack grows "down" (higher to lower
address), so pStackTop is at a lower address than pStackBottom. This field will be zero in
a DGROUP belonging to a DLL.

OCh WORD pStackMin

This field is the "high-water mark" of actual stack use. Amount of stack used so far equals
pStackBottom - pStackMin. This field will be zero in a DGROUP belonging to a DLL.

OEh WORD pStackBottom

This field is a near pointer to the beginning of the stack. Maximum size of the stack equals
pStackBottom - pStackTop. This field will be zero in a DGROUP belonging to a DLL.

Support: 3.0, 3.1

Instance Data

298 UNDOCUMENTED WINDOWS

See also: InitTask, Local Heap
Example: The following program, NULLSEG, tries to examine the NULL segment
corresponding to any module name specified on the command line. For example,
NULLSEG USER displays the address of USER's default local heap and atom table
(USER's local heap plays a major role in the notorious Windows "free system
resources" problem; see GetHeapSpaces()).

If the specified module is not a DLL, then the program displays the NULL seg
ment for only the fIrst instance. This is just pure laziness: getting the DGROUP for a
given task would involve nothing more than using the HINSTANCE_FROM_TASK()
macro in HANDLES.H.

In any case, once the program has a DGROUP, it verifies that the DGROUP
really contains a NULL segment. If it does, the fields in the structure are displayed.
Note that DLLs do not have their own stacks, so the three stack-related fields in the
NULL segment should be zero for DLLs.

/* nullseg.c */

#include <stdlib.h>
#include <dos.h>
#include "windows.h"
#include "winio.h"
#include IIhandles.h"

typedef struct {
WORD wMustBeZero;
DWORD dwOldSSSP;
WORD pLocalHeap;
WORD pAtomTable;
WORD pStackTop;
WORD pStackMin;
WORD pStackBottorn;
} INSTDATA;

extern DWORD FAR PASCAL GetSelectorLimit(WORD sel);

main(int argc, char *argv[])
{

INSTDATA far *lplnstData;
BYTE far *lpLocalHeap;
HANDLE hModule, hDGroup;
char *modname = (argc < 2) ? "NULLSEG" : argv[1] ;

if (! (hModule = GetModuleHandle(modname»)
fail(IICan't locate %Sll, modname);

if (! (hDGroup = GetModuleDGroup(hModule, TRUE»)
fail(IICan't locate %s's DGROUp lI , modname);

if (! IsValidNULLSegment(hDGroup»
fail(lI%s's DGROUP doesn't have a NULL segment", modname);

lplnstData = MK_FP(hDGroup, 0);
printf(lIdwOldSSSP = %Fp\n", lplnstData->dwOldSSSP);

Instance Data

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 299

if (lplnstData->pLocalHeap)
{

lpLocalHeap = MK_FP(hDGroup, lplnstData->pLocalHeap);
printf(lfpLocalHeap = %Fp\n lf , lpLocalHeap);
if (! IsValidLocalHeap(lpLocalHeap»

printf(IfNot a valid local heap!\n lf);
}

else
printf(IfNo local heap\n");

if (lplnstData->pAtomTable)
{

II for Atom Table structure, see WINEXP.H
WORD far *lpAtomTable = MK_FP(hDGroup, lplnstData->pAtomTable);
printf(lfpAtomTable = %Fp (%u atoms)\n lf , lpAtomTable,*lpAtomTable);

}

else
printf(IfNo atom table\n lf);

printf("pStackTop %04x\n lf , lplnstData->pStackTop);
printf(lfpStackMin %04x\n", lplnstData->pStackMin);
printf(lIpStackBottom %04x\n lf , lplnstData->pStackBottom);
if (ModuleIsDLL(hModule»
{

if (lplnstData->pStackTop I I lplnstData->pStackBottom I I
lplnstData->pStackMin)
printf(IfError - DLLs don't have stacks!\n ll

);

else
printf(IIDLL - no stack\n ll

);

}

else
{

printf("Stack used = %04x\n lf ,
lplnstData->pStackBottom - lplnstData->pStackMin);

printf(IIStack size = %04x\n",
lplnstData->pStackBottom - lplnstData->pStackTop);

}

return 0;
}

BOOL IsValidNULLSegment(HANDLE h)
{

INSTDATA far *lplnstData;
WORD pLocalHeap;
if (! verr(h»

return FALSE;
if (GetSelectorLimit(h) < 16)

return FALSE;
lplnstData = MK_FP(h, 0);
if (lplnstData->wMustBeZero != 0)

return FALSE;
if (lplnstData->pLocalHeap == 0)

Instance Data

300 UNDOCUMENTED WINDOWS

return TRUE; II itls ok to not have a local heap!
return IsValidLocalHeap(MK_FP(h, lplnstData->pLocalHeap»;

}

NULLSEG reveals the following about several Windows modules:

• KERNEL-no local heap or atom table; stack fields are nonzero
• USER-has local heap and atom table; no stack; in 3.1, USER has multiple

local heaps, only one of which resides in DGROUP
• GDI-no atom table in default data segment or stack; in 3.1, GDI can have

multiple local heaps, only one of which resides in DGROUP
• KEYBOARD, DISPLAY, SYSTEM-no NULL segment
• WINFILE-stack about 10K bytes

IsBadReadPtr KERNEL.334

BOOl FAR PASCAL IsBadReadPtr(BYTE far *fp, WORD wLen);

This function determines whether a block of memory is readable. The code for
IsBadReadPtr() actually tries to read the byte at fp[wLen], and can generate a GP
fault, which will be caught and handled by an _GP handler, without causing a UAB.
For most purposes, the Intel VERR (verify for reading) and LSL (load selector limit)
instructions are a better choice, particularly because IsBadReadPtr() is not supported
in Windows 3.0; it can be defined using VERR and LSL:

BOOl MyIsBadReadPtr(BYTE far *fp, WORD wlen)
{

WORD wSel = FP_SEG(fp);
if (! (wSel && verr(wSel») I/verr() and lsl() in HANDLES.C

return TRUE;
else

return (lsl(wSel)+1 < wLen);
}

Interestingly, the IsBadXXX() functions can still get an occasional UAB, due to
segment-not-present (!NT lIh) faults.

Support: 3.1
See also: _ GP

IsBadStringPtr
BOOl FAR PASCAL IsBadStringPtr(BYTE far *fp);

KERNEL.337

IsBadStringPtr() determines whether a far pointer corresponds to a NULL-terminated
(ASCIIZ) string. It scans up to OFFFFh bytes for the 0 termination byte, using
REPNE SCASB. This function can cause a GP fault, which will then be caught by an

IsBadReadPtr

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 301

internal _GP handler without causing a UAE; the function will return TRUE if the
passed-in parameter caused a GP fault.

Support: 3.1
See also: _ GP

IsBadWrltePtr KERNEL.335

BOOl FAR PASCAL IsBadWritePtr(BYTE far *fp, WORD len);

This function determines whether a block of memory is writeable. To do this, it clev
erly writes to the last byte of the supposed block, without actually changing anything:
fp[len-l] 1= o. If the pointer is bad, this will generate a GP fault, which is caught by an
internal _GP handler, without causing a UAE. For most purposes, the Intel VERW
(verify for writing) and LSL (load selector limit) instructions are better suited for such
tests, particularly because IsBadWritePtr() is not supported in Windows 3.0.

IsBadWritePtr() is used within the 3.1 KERNEL by the lstrcpy() and lstrcat()
functions.

Support: 3.1
See also: _ GP

IsROMFile KERNEL.326

BOOl FAR PASCAL IsROMFile(HANDlE h);

This function returns FALSE in non-ROM versions of Windows. In ROM versions of
Windows, the return value determines whether the specified file is ROM- or disk
based.

Code patching would, of course, be unavailable in a ROM-based file. For more
information, see the Microsoft Developer Knowledge Base article Q75497, "Writing
ROM Executables."

Support: 3.1
See also: IsROMModule

IsROMModuie

BOOl FAR PASCAL IsROMModule(HANDlE h);

See the description of IsROMFile().

Support: 3.1
See also: IsROMFile

IsBadWritePtr

KERNEL.323

302 UNDOCUMENTED WINDOWS

IsSharedSelector

BOOl FAR PASCAL IsSharedSelector(WORD wSel);

KERNEL.345

This function determines whether a selector is shared, that is, whether the selector
belongs to a dynamic link library (DLL). It uses the undocumented GetExePtr() func
tion (see above) to find the module handle to which the selector corresponds and then
tests a flag word in the Module Table to see if it is a DLL rather than a task.

IsSharedSelector proc far
push _wSel
call GetExePtr
or ax, ax
je done
moves, ax
xor ax, ax
test word ptr es:[OChJ, BOOOh
je done
inc ax

done:
retf 2

IsSharedSelector endp

The function is provided only in Windows 3.1, but its functionality can be dupli
cated in Windows 3.0 using the above code, which, in turn, is simply Mod
uleIsDLL(GetExeptr(wSel)) (ModuleIsDLL() appears in HANDLES.H).

Support: 3.1
See also: GetExePtr, Module Table

IsTask

BOOl FAR PASCAL IsTask(HANDlE h);

This useful function, which determines whether the specified handle is actually a task
handle (HTASK), that is, whether it is a selector to a valid Task Database, is docu
mented in Windows 3.1, but it is not provided in Windows 3.0. However, it is easy to
produce an implementation of this function that works under both Windows 3.0 and
3.1. The following is extracted from HANDLES.C:

#define TDBMAGIC_OFS
#define TDBMAGIC

OxFA II Offset of ITD I signature
Ox4454 II ITD I signature for Task Database

BOOl IsValidTask(HANDlE h)
{

WORD far *fp;
if (! verr(h»

IsSharedSelector

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 303

return FALSE;
if (GetSelectorlimit(h) < OxFC)

return FALSE;
fp = MK_FP(h, OxFA);
return (*fp == TDBMAGIC);

}

assert(IsValidTask(GetCurrentTask(»;

See also: Task Database

IsTaskLocked

WORD FAR PASCAL IsTasklocked(void);

KERNEL.122

IsTaskLocked() determines whether the current task is locked, that is, whether it is the
only one in the system that will be scheduled. The function returns °if the current
task is unlocked; otherwise it returns the task handle of the locked task. Tasks are
locked with the undocumented LockCurrentTask() function (see below).
IsTaskLocked() merely retrieves the value ofa variable in KERNEL; this value is set by
LockCurrentTask().

In Windows 3.1, the documented GetSystemDebugState() function can return
SDS_TASKLOCKED; tasks can be locked in 3.1 with the documented Locklnput()
function.

Used by: WINDEBUG
Support: 3.0, 3.1
See also: LockCurrentTask

IsWlnOldApTask

BOOl FAR PASCAL IsWinOldApTask(HANDlE hTask);

KERNEL.158

IsWinOldApTask() determines if a task belongs to the Windows WINOLDAP mod
ule, that is, if it is a DOS ("old") application. The task handle parameter can be cre
ated from a window handle, using the documented GetWmdowTask() function. Thus,
an IsDOSWindow() or IsDOSBox() function can easily be synthesized, as shown in
the following example.

The value returned by IsWinOldApTask() is extracted from the PSP: WINOLDAP
sets the bottom bit of the byte at offset 48h for "old apps."

Used by: TASKMAN
Support: 3.0, 3.1

IsTaskLocked

304 UNDOCUMENTED WINDOWS

Example:

#include "windows.h"

extern BOOl FAR PASCAL IsWinOldApTask(HANDlE hTask);

BOOl IsDOSBox(HWND hWnd)
{

return IsWinOldApTask(GetWindowTask(hWnd»;
}

K327-see HandleParamError
K328-see _DebugOutput
K329-see DebugFlllBuffer
K403-see FarSetOwner
K404-see FarGetOwner

KbdRst

void FAR PASCAL KbdRst(void);

KERNEL.123

In Windows 3.x Standard and Enhanced modes, KbdRest() simply returns, without
doing anything. The function is called from the INT 9 handler in KEYBOARD.DRV,
and according to the source code for KEYBOARD provided with the Windows DDK
(see \KEYBOARD\TRAP.ASM), the function has something to do with extended
memory reset.

KlllTask

A function with the prototype BOOL FAR PASCAL KillTask(HANDLE) appears in
the Windows 3.0 SDK file WINEXP.H under the heading "scheduler things that the
world knows not." However, no such function is exported from KERNEL (the other
two "scheduler things that the world knows not," WaitEvent() and PostEvent(), are
genuine and are described later in this chapter).
To kill an application under Windows, you can PostMessage(hwnd, WM_QUIT) or
PostAppMessage(hTask, WM_QUIT), depending on what kind of handle to the
application you have. If a task does not respond, you can use the ToolHelp Ter
minateApp() function, which in effect does a SetCurrentTask followed by a
FatalAppExit (see chapter 10).

K327-see HandleParamError

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 305

LocalAlloc

HANDLE FAR PASCAL LocalAlloc(WORD wFlags, WORD wBytes);

Even though this function is documented, several aspects of LocalAlloc() are not doc
umented:

LocalAlloc()'s return value appears not only in the AX register, but also in CX. We
wouldn't think to mention this except that some Windows API functions (such as
SetDCState() in GDI) rely on this behavior, so that LocalAlloc()'s return value can be
tested with JCXZ. In fact, most LocalXXX() functions in Windows quite deliberately
place their return value in CX as well as AX. Testing with JCXZ saves a few bytes, and
a few nanoseconds, over the usual test with something like ORAX,AX/JNE.

More important, when (wFlags & LMEM_MOVEABLE), the HANDLE
returned from LocalAlloc() takes on special meaning: instead ofa "magic cookie" style
HANDLE as used elsewhere in Windows, it is a HANDLE in the Macintosh sense: a
doubly dereferenceable master pointer. In other words, LocalAlloc(LMEM_MOVE
ABLE, x) returns a pointer to a pointer to a block of memory:

HANDLE h = LocalAlloc(LMEM_MOVEABLE, wSomeSize);
II test return value (with JCXZ if you want to get cute)
I I ...

#define PTR_FROM_LMEM_MOVEABLE(h) \
*«BYTE **)(h»)

strcpy(PTR_FROM_LMEM_MOVEABLE(h), "This is a test");

Given the structure of movable handles (see Local Arena Header on the next
page), it should be obvious how this works.

Code in USER, particularly for edit controls (and in Windows 3.0, for menu han
dles too), frequently uses this knowledge of how movable local handles are imple
mented. Instead of LocalLock/Unlock, one will instead see code like this:

mov bx, hMenu
mov bx, [bxJ ; local movable handle -> pointer
mov ax, [bx+SOME_OFFSETJ

On the other hand, this particular block of code (lifted from the simple USER
function GetMenuItemCount()) appears in 3.0 but not in 3.1. It's replaced in 3.1 by
something quite a bit more complicated. Why? Due to the notorious free system
resources problem, something needed to be moved out of USER's default data seg
ment; menus were a perfect choice. In 3.1, therefore, the 64K barrier is less of a
problem. However, note that something has been given up (as something always
must be): keeping menus in USER's default data segment meant fast access, particu
larly with the PTR_FROM_LMEM_MOVEABLE() trick. Now system resources are

LocalAlloc

306 UNDOCUMENTED WINDOWS

less constrained, but access to things like menus is therefore necessarily less direct (see
the discussion of USER heaps in the introduction to chapter 6).

Local Arena Header

Items in a Windows local heap are preceded by a four-byte arena header. For example,
if LocalAlloc(LMEM_FIXED, x) returns the handle 3140h, you would find an arena
header at 313Ch. The arena header simply contains pointers to the previous and next
arena headers in the doubly linked list that makes up a local heap. The start and end of
the linked list are pointed to by the fields "first" and "last" in the Local Heap informa
tion structure (see below).

Having said that a local arena header merely contains "previous" and "next"
pointers, it's actually a little more complicated than that because the field holding the
"previous" pointer does double duty, also encoding whether the arena is free or in
use:

Local Arena Header

OFFSET

00

02

SIZE

WORD

WORD

DESCRIPTION

Near pointer to previous Local Arena in list; first arena in list
points to self; EXCEPT, bottom bit ofprevious pointer
encodes whether the current arena is free or in use. Thus,
to get a pointer to the previous arena, you actually must
mask off the bottom bit:

BOOl in_use = arena->prev & 1
WORD wPrev = arena->prev & -1

Near pointer to next Local Arena in list; last arena in list
points to self.

The handle corresponding to a given arena is simply the address of the arena, plus
four (the size of a local arena header). For example, using an arena at 313Ch,
LocalAlloc() would return 3140h.

The size of a block is the next pointer, minus the handle. In other words

typedef struct { WORD wPrev, wNext; } LOCAL_ARENA;

BOOL IN_USE(LOCAL_ARENA *La) { return La->wPrev & 1; }
WORD PREV(LOCAL_ARENA *La) { return La->wPrev & -1; }
WORD NEXT(lOCAl_ARENA *La) { return La->wNext; }
WORD LOC_HANDLE(LOCAL_ARENA *La) { return «WORD) La) + sizeof(LOCAL_ARENA); }
WORD LOC_SIZE(LOCAL_ARENA *La) {return NEXT(La) - LOC_HANDLE(La); }

Local Arena Header

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 307

Free arenas contain additional information in the data area immediately following
the arena header; these free arenas are chained together in a free list:

Free Local Arena

OFFSET

00 (header+04)
02 (header+06)
04 (header+08)

SIZE

WORD
WORD
WORD

DESCRIPTION

Size of the free block, in bytes
Previous block in free list
Next block in free list

How do you get to the start of the free list? A look at the code for
LocalCountFree() (see below) shows how: the root of the free list is contained in the
data area for the very first local arena, which is always formatted in the following way:

First Local Arena

OFFSET

00 (header+04)

02 (header+06)
04 (header+08)

SIZE

WORD

WORD
WORD

DESCRIPTION

Number of items (repeat of field at offset 4 in Local
Heap information structure?)
First item in list
First item in free list (see LocalCountFree())

The preceding all assume LMEM_FIXED allocations. LMEM_MOVABLE alloca
tions have an additional level of indirection. If LocalAlloc(LMEM_MOVABLE, x)
returns you the handle 3212h, then at offset 3212h in the data segment you will find
the following four-byte structure:

Movable Handle

OFFSET

00

02
03

SIZE

WORD

BYTE
BYTE

DESCRIPTION

Near pointer to data area. See LocaWloc() above for the
implications of this.
Flags
Lock count (FFh =entry unused)

There is a table of these movable handles; the beginning of the table, and the next
available slot, are pointed at from fields in the Local Heap information structure (see
below). The first WORD in the table is the size of the table; LocalHandleDelta()
determines the size of the table. The table resides in a normal LMEM_FIXED block;
this block is not allocated until the first LMEM_MOVABLE request.

ToolHelp provides functions for walking idealized Local Heaps; these functions
(LocaIInfo(), LocalFirst(), and LocalNext(); see chapter 10) should be used in prefer
ence to walking real, live local heaps.

Local Arena Header

308 UNDOCUMENTED WINDOWS

Support: 3.0, 3.1
See also: Global Arena, LocalAlloc, LocalCountFree, LocalHandleDelta, Local Heap
Example: The following program, LOCAL, displays either its own local heap or the
local heap contained in a segment specified on the command line. For example:

Local Heap at 1097:2000
13 items in heap
2dc4 (2dcO) 0008 bytes p=2dcO n=2dcc USE
2ddO (2dcc) 004c bytes p=2dcO n=2e1c USE
2e20 (2e1c) 0200 bytes p=2dcc n=3020 USE
3024 (3020) 0080 bytes p=2e1c n=30a4 USE
..........
39bO (39ac) 0404 bytes p=3942 n=3db4 USE
3db8 (3db4) 0000 bytes p=39ac n=3db4 USE

Movable handle table: 3140, next=314e
32 movable handles
1097:3142 ==> 39b2 lock=2
1097:3146 ==> 3946 lock=1
1097:314A ==> 34e6 lock=O

LOCAL.C uses the pLocalHeap variable at offset 6 in the NULL segment to try
to fmd the Local Heap information structure. In turn, it uses the Local Heap informa
tion structure (Burgerjunior?) to find the beginning and end of the linked list of Local
Arenas. LOCAL.C detects whether it is running under KRNL286 or KRNL386 and
uses the appropriate Local Heap information structure. LOCAL.C chases next point
ers to walk the linked list of Local Arenas, unpacking each arena header's contents and
passing them to show(). Mter walking the list of Local Arenas, LOCAL.C next works
the movable handle table, printing each movable handle and its corresponding
pointer:

1* local.c *1

#include <stdlib.~>

#include <dos.h>
#include "windows.h"
#include "winio.h"
#include "handles.h"

#pragma pack(1)

1* Local Heap information structure -- similar to Global
Heap information structure (Burgermaster). The KRNL286 and
KRNL386 versions differ only in the size of the "first",
"last", and "disctotal" fields *1

#define DEFINE_LOCALHEAPINFO_STRUCT(STRUCTNAME, W_OR_DW) \
typedef struct { \

WORD check; \
WORD freeze; \
WORD items; \
W_OR_DW first; \

Local Arena Header

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 309

W_OR_DW last; \
BYTE numcompact; \
BYTE disclevel; \
W_OR_DW disctotal; \
WORD movable_tbl; \
WORD movable_next; \
WORD delta; \
WORD hexpand; \
WORD pstats; \
DWORD notifyfunc; \
WORD semi \
WORD mingrow; \
WORD minsize; \
WORD signature; \

} STRUCTNAME;

DEFINE_LOCALHEAPINFO_STRUCT(LOCAL_HEAP, WORD);
DEFINE_LOCALHEAPINFO_STRUCT(LOCAL_HEAP_32, DWORD);

1* Local Arena header is same for KRNL286 and KRNL386 *1
typedef struct {

WORD prey; II includes USED/FREE in bottom bit
WORD next;
} LOCAL_ARENA;

typedef struct {
WORD handle;
BYTE flags;
BYTE lock;
} MOVABLE_HANDLE;

void show(WORD h, WORD size, WORD prey, WORD next, WORD in_use);
int axtoi(char *s);

main(int argc, char *argv[])
{

extern WORD __hlnst;
LOCAL_ARENA far *lpla;
WORD next, last, items, wMoveTab, wMoveNext, wMoveNum;
WORD seg = HandleToSel«argc < 2) ? __hlnst : axtoi(argv[1]»;
WORD heap = *«WORD far *) MK_FP(seg, 6»;
BYTE FAR *lpHeap = MK_FP(seg, heap);

if (! IsValidLocalHeap(lpHeap»
fail(flNot a valid local heap!fI);

printf(flLocal Heap at %Fp\n", lpHeap);

if (Kernel1632() == 16)
{

LOCAL_HEAP far *lplh lpHeap;
next = lplh->first;
last = lplh->last;
items = lplh->items;
wMoveTab = lplh->movable_tbl;
wMoveNext = lplh->movable_next;

Local Arena Header

II far pointer to arena header
II handle for this item (skip header)
II size = next - this
II prey (mask off USED/FREE bit)
II next
II IN USE or FREE (bottom bit of prey)

310 UNDOCUMENTED WINDOWS

}

else
{

LOCAL_HEAP_32 far *lplh32 = lpHeap;
next = lplh32->first; II truncate to 16 bits
last = lplh32->last;
items = lplh32->items;
wMoveTab = lplh32->movable_tbl;
wMoveNext = lplh32->movable_next;

}

printf("%d items in heap\n", items);

II show LMEM_FIXED allocations and FREE blocks
while (last - next)
{

lpla = MK_FP(seg, next);
show(next+4,

lpla->next - (next+4),
lpla->prev & -1,
lpla->next,
lpla->prev & 1);

n~xt = lpla->next;
}

lpla = MK_FP(seg, last);
show(last+4, 0, lpla->prev & -1, lpla->next, lpla->prev & 1);

II show LMEM_MOVABLE allocations
printf("\nMovable handle table: %04x, next=%04x\n",

wMoveTab, wMoveNext);
wMoveNum = *«WORD far *) MK_FP(seg, wMoveTab»;
printf("%d movable handles\n", wMoveNum);
if (wMoveNum)
{

MOVABLE_HANDLE far *tab = MK_FP(seg, wMoveTab+2);
MOVABLE_HANDLE far *fp;
int i;
for (i=O, fp=tab; i<wMoveNum; i++, fp++)

if (fp->lock != OxFF)
printf("%Fp ==> %04x lock=%d\n", fp, fp->handle,fp->lock);

}

}

void show(WORD h, WORD size, WORD prey, WORD next, WORD in_use)
{

printf("%04x (%04x)\t%04x bytes\tp=%04x n=%04x\t%s\n",
h, h-4, size, prey, next, (in_use) ? "USE" : "FREE");

}

int axtoi(char *s)
{

if (S[O]==IOI && S[1]==I X I)
{

int ret;

Local Arena Header

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 311

sscanf(s+2, II%X", &ret);
return ret;

}

else
return atoi(s);

}

LocalCountFree

void FAR PASCAL LocalCountFree(void);

KERNEL.161

/* DS = local heap */

LocalCountFree() returns the number of bytes free in the local heap specified in the
DS register. This function is called by the (also undocumented) GetHeapSpaces()
function (see above). Because the local heap is specified in DS, this function will nor
mally return the number of bytes free in the current local heap. However, like other
LocalXXX functions in Windows, LocalCountFree() can be forced to operate on other
heaps (such as USER's, GDI's, and so on.) by setting and restoring DS around the
function call. This is exactly what GetHeapSpaces() does:

push ds
mov ds, wSomeOtherLocalHeap
call far ptr LocalCountFree
pop ds
mov wFreeBytes, ax

To get the correct value of DS for other modules, see the GetModuleDgroup()
function in HANDLES.C. Given DS, LocaICountFree() (like all LocalXXX functions)
can find the Local Heap from offset 6 in Instance Data structure.

LocalCountFree() finds the number of free bytes by walking the given local heap's
free list (see Local Arena Header, above):

LH_SIG equ 484ch
P_FIRST equ 6
P_FREELIST equ 8
list

IFDEF KRNL286
SIG_OFFSET equ 22h
P_LAST equ 8
ELSE
SIG_OFFSET equ 28h
P_LAST equ OAh
ENDIF

LocalCountFree proc far
mov di, [6]

; 'LH'
; offset of ptr to first item in heap
; offset of ptr in first Arena to free

; offset of 'LH' signature in Local Heap info
; offset of ptr to last item in heap

; DS:[6] is pLocalHeap (see Instance Data)
; DI now holds ptr to Local Info structure

LocalCountFree

312 UNDOCUMENTED WINDOWS

; return value in AX

HAVE ADDITIONAL INFO IN DATA AREA!
; at end of list?
; if so, return value in AX
; SIZE
; subtract size of header itself
; DI = ptr to next item in free list
; get next item

xor ax, ax , set up return value of a
cmp word ptr [di+SIG_OFFSET], LH_SIG ; check for 'LH ' signature
jne done ; not a local heap -- return a
mov si, [di+P_LAST] ; SI = ptr to last item in heap
mov di, [di+P_FIRST] ; DI = ptr to first item in heap

; DI now hold ptr to first Local Arena
SPECIAL; CONTAINS INFO IN DATA AREA

; DI = ptr to first item in free list
;;;; FIRST LOCAL ARENA IS
mov di, [di+P_FREELIST]

loop:
;;;; FREE BLOCKS
cmp di, si
je done
add ax, [di+4]
sub ax, aah
mov di, [di+8]
jmp loop

done:
retf

LocalCountFree endp

Support: 3.0, 3.1
See also: GetHeapSpaces, Instance Data, Local Arena, LocalHeapSize

LoealHandleDelta KERNEL.310

short FAR PASCAL LocalHandleDelta<int nNewDelta);

This function was documented in Windows 2.x; it sets the number ofmovable handle
table entries to be allocated. (Each movable object in the local heap requires a four
byte handle-table entry; see Local Arena Header above.) Macintosh programmers will
detect a similarity here to MoreMasters(). The function sets and returns the current
handle delta from offset 12h or 18h in the Local Heap information structure; if
nNewDelta is zero, the function returns the delta without setting a new one. The
default handle delta is 20h.

Support: 3.1 (function was not exported from 3.0)
See also: Local Heap

Loeal Heap

Any task or DLL in Windows can have a local heap residing in its default data segment
(DGROUP). In addition, any globally allocated block can be suballocated by turning
it into a local heap, via a call to the documented LocaIInit() function. In 16-bit Win
dows, the maximum size for a local heap is 64K bytes.

The location of a task or DLL's default local heap is specified by the variable
pLocalHeap at offset 6 in the Instance Data area (see above). This variable points to a

LocalHandleDelta

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 313

Local Heap Information Structure, very similar to Burgermaster. The linked list of
Local Arenas that makes up the local heap can be reached from "first" and "last"
pointers located in this information structure.

Like Burgermaster, the Local Heap information structure (Burgerjunior?) shares
roughly the same structure in KRNL286 and KRNL386, except that the "first,"
"last," and "disctotal" fields are WORDS in KRNL286 and DWORDs in KRNL386
(perhaps to allow the possibility of Local Heaps whose size is greater than 64K). One
way that the Local Heap information structure differs from Burgermaster is that it
contains an 'LH' signature at its end; this signature is used in the IsValidLocaIHeap()
function, used in the sample programs in other parts of this chapter.

The Local Heap structure appears in the file WINKERN.INC, included with the
Windows 3.1 DDK.

ToolHelp (see chapter 10) provides documented functions for walking an idealiza
tion of the Local Heap; LocalInfo(), LocalFirst(), and LocalNext() should generally be
used in preference to walking a real, live Local Heap.

Local Heap Information strudure

OFFSET

00
02

04

SIZE

WORD
WORD

WORD

DESCRIPTION

Non-zero enables heap checking (defunct?)
Freeze: non-zero prevents heap compaction (set and cleared
by the extinct 2.x LocalFreeze() and LocalMelt() functions)
Number of items in heap: increases with every LocaWloc()
or AddAtom() (atoms are items in the local heap); LocalInit()
initializes to four items

WORD Handle (see LocaWloc(), above)

-KRNL286-
06 WORD

08 WORD

OA BYTE
OB BYTE
OC WORD
OE WORD

Near pointer to frrst Local Arena in list; format ofdata in
first item is special

Near pointer to last Local Arena in list (heap size = last - first;
see LocalHeapSize())
Number of heap compactions
Current discard level
Total bytes discarded so far
Near pointer to beginning of movable handle table, or zero
ifno movable handles allocated yet.

MOVABLE HANDLE TABLE

00 WORD Number ofentries in table
Followed immediately by entries:

EACH ENTRY

00

Local Heap

314 UNDOCUMENTED WINDOWS

10 WORD

12 WORD
14 WORD
16 WORD
18 DWORD
lC WORD
IE WORD
20 WORD
22 WORD

-KRNL386-
06 DWORD

OA DWORD

OE BYTE

OF BYTE
10 DWORD
14 WORD

16 WORD

18 WORD
lA WORD
lC WORD
IE DWORD

22 WORD
24 WORD
26 WORD
28 WORD

02 BYTE flags
03 BYTE lock count (FFh if entry unused)
Next available movable handle table entry (see Local Arena);
can be zero
Local handle delta; default 20h (see LocalHandleDelta())
Near pointer to expand function

Near pointer to statistics table, or zero
Far pointer to LocalNotify function (see LocalNotify())
Semaphore used internally by LENTER and LLEAVB

Minimum amount to grow DS by; initialized by LocalInit() to 200h
Minimum size ofheap
'LH' signature (484Ch)

Near pointer to first Local Arena in list; format ofdata in first
item is special
Near pointer to last Local Arena in list (local heap size =

last - first; see LocalHeapSize())
Number ofheap compactions

Current discard level
Total bytes discarded so far
Near pointer to beginning of movable handle table; see
KRNL286 offset OE above; can be zero
Next available movable handle table entry (see Local Arena);
can be zero
Local handle delta; default 20h (see LocalHandleDelta())
Near pointer to expand function
Near pointer to statistics table, or zero
Far pointer to LocalNotify function (see LocalNotify())
Semaphore used internally by LENTER and LLEAVB
Minimum amount to grow DS by; initialized by LocalInit() to 200h
Minimum size ofheap
'LH' signature (484Ch)

Support: 3.0, 3.1
See also: Global Heap, Local Arena, LocalHandleDelta, LocalHeapSize, LocalNotify
Example: See the function IsValidLocalHeap() in HANDLES.C; see LOCAL.C in
the entry for the Local Arena structure.

Local Heap

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 315

LoealHeapSize

WORD FAR PASCAL LocalHeapSize(void)i

KERNEL.162

1* DS = local heap *1

LocalHeapSize() returns the number of bytes (both allocated and free) in the local
heap specified in the DS register. This function is called by the (also undocumented)
GetHeapSpaces() function (see above). The function takes no parameters because it
gets the caller's local heap from DS:[6]. Because the local heap is assumed to be speci
fied in DS, this function will normally return the number of bytes free in the current
local heap. However, like other LocalXXX functions in Windows, LocalHeapSize() can
be forced to operate on other heaps (such as USER's, GDI's, etc.) by setting and
restoring DS around the function call. This is exactly what GetHeapSpaces() does:

push ds
mov ax, some_local_heap
mov ds, ax
call far ptr LOCALHEAPSIZE
pop ds
mov heap_size, ax

LocalHeapSize() computes its return value by subtracting the value of the first
entry in the local heap from the value of the last entry:

P_LOCALHEAP equ 6 i offset in Instance Data (DS) of ptr to Local Heap info
P_FIRST equ 6 i offset in Local Heap info struct of ptr to first
IFDEF KRNL286
P_LAST equ 8 i offset in Local Heap info struct of ptr to last
ELSE
P_LAST equ OAh
ENDIF

LOCALHEAPSIZE proc far
mov bx, dS:[P_LOCALHEAP]
mov ax, [bx+P_LAST]
sub ax, [bx+P_FIRST]
retf

LOCALHEAPSIZE endp

Support: 3.0, 3.1
See also: GetHeapSpaces, LocalCountFree, Local Heap

LoealNotify KERNEL.14

FARPROC FAR PASCAL LocalNotify(FARPROC lpNotifyFunc)i

This function was documented in Windows 2.x, but it is not documented in Windows
3.x, probably because the way that local heaps are generally used has changed, now

LocalHeapSize

316 UNDOCUMENTED WINDOWS

that Windows (thanks to the incorporation of a DOS extender) usually has megabytes
of memory available in the global heap.

LocalNotify() does nothing more than set the address of the local-heap notifica
tion handler in the Local Heap structure and (using XCHG) return the previous
address:

; offset in Local Heap info struct of ptr to lpNotifyFunc
IFDEF KRNL286
P_NOTIFYFUNC equ 18h
ELSE
P_NOTIFYFUNC equ 1Eh
ENDIF

LOCALNOTIFY proc far
mov bx, sp
mov ax, ss:[bx+4J ; lpNotifyFunc
mov dx, ss:[bx+6J ; lpNotifyFunc+2
mov dx, ds:[6J ; PLOCALHEAP
xchg ax, [bx+P_NOTIFYFUNCJ
xchg dx, [bx+P_NOTIFYFUNC+2J
retf 4

LOCALNOTIFY endp

The local-heap notification handler is called by KERNEL when certain actions
occur, such as a request to increase the size of the local heap. According to the Win
dows 2.x documentation, this callback function must have the following form (before
passing it to LocalNotify, the callback function must of course be "prepared" with
MakeProcInstance() or you need to be using "smart callbacks"):

BOOL _export FAR PASCAL NotifyFunc(WORD wMsg, HANDLE hMem, WORD wArg);

The wMsg is a notification message (see below), hMem identifies the local mem
ory object that generated the notification, and wArg supplies an argument to wMsg.
According to some ancient "Microsoft University" course notes that one of the
authors dug out from his basement, the wMsg notifications are as follows:

#define LN_OUTOFMEM a /* wArg #bytes needed */
#define LN_MOVE 1 /* hMem handle; wArg old location */
#define LN_DISCARD 2 /* hMem handle; wArg = discard flags */

Support: 3.0, 3.1
See also: Local Heap

LockCurrentTask

WORD FAR PASCAL LockCurrentTask(BOOL bLock);

KERNEL.33

This function either locks (block is nonzero) or unlocks (bLock is zero) the current
task. "Locking" means that no other tasks can receive messages or get scheduled; the

LockCurrentTask

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 317

current application becomes "system modal." This behavior is clear in the following
session with the CALLFUNC interpreter from chapter 4:

> kernel istasklocked
DxDDDD
> kernel getcurrenttask
Dx84d
> kernel lockcurrenttask
Dx84d
> kernel istasklocked
Dx84d
;;; clock stops running; can't switch away to other apps; but
;;; CALLFUNC program is still fully operational
> kernel lockcurrenttask 0
OxOODD
;;; clock jumps ahead to correct time; can switch away
> kernel istasklocked
OxOODD

Note that it is not only user input to other tasks that is locked out, but all mes
sages. This function is called by USER as part of system-modal MessageBox handling
and by WINDEBUG (which in turn is used by Windows debuggers such as CVW and
TDW).

Windows 3.1 has the documented LockInput() function; also documented in 3.1
is the GetSystemDebugState() function, one of whose return values is
SDS_TASKLOCKED.

Support: 3.0, 3.1
Used by: USER, WINDEBUG
See also: IsTaskLocked

LongPtrAdd KERNEL.180

void FAR PASCAL LongPtrAdd(DWORD dwLongPtr, DWORD dwAdd)

LongPtrAdd modifies the base address of a far pointer by adding its second parameter
onto the current base address of the selector of the first parameter. The function is
thus a base-relative variant of the SetSelectorBase() function (see discussion later in
this chapter):

void MyLongPtrAdd(DWORD dwLongPtr, DWORD dwAdd)
(

WORD wSel = FP_SEG(dwLongPtr);
SetSelectorBase(wSel, GetSelectorBase(wSel) + dwAdd);

}

LongPtrAdd

318 UNDOCUMENTED WINDOWS

While similar functionality to LongPtrAdd is thus available elsewhere, setting a
breakpoint on the function reveals that it is called frequently by the loader in KER
NEL; it might be useful for segment arithmetic.

Support: 3.0/3.1
Example:

1* longptr.c *1

#include <dos.h>
#include <assert.h>
#include <windows.h>
#include II winio.h ll

extern void FAR PASCAL LongPtrAdd(DWORD fp, DWORD size);
extern DWORD FAR PASCAL GetSelectorBase(WORD sel);

#define ADD Ox30000L

main()
{

WORD h = GlobalAlloc(GMEM_MOVEABLE, Ox1000L);
void far *fp = GlobalLock(h);
DWORD before, after;
before = GetSelectorBase(FP_SEG(fp»;
LongPtrAdd(fp, ADD);
after = GetSelectorBase(FP_SEG(fp»;
assert(after - before == ADD);
GlobalUnlock(h);
GlobalFree(h);
return 0;

}

MemoryFreed

WORD FAR PASCAL MemoryFreed(WORD wAmount);

KERNEL.126

MemoryFreed() manipulates compaction/discarding fields in the Global Heap infor
mation structure (Burgermaster). If the 010th bit of [KERNEL_FLAGS+l] is turned
off, the MemoryFreed() function returns O. If the bit is turned on, the wAmount
parameter comes into play. When wAmount is zero, the function simply returns the
value in the low word of the discard_total field in Burgermaster (see Global Heap,
above). IfwAmount is nonzero, it is subtracted from the value in discard_total. Addi
tionally, bit 0 of the ncompact field in Burgermaster is turned on. If the new dis
card_total falls below or equals zero, then the 010 bit is set. In other words:

MemoryFreed(wAmount)
{

MemoryFreed

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 319

if (KERNEL_FLAGS+1 bit 010 is OFF)
return 0;

else if (wAmount == 0)
return Burgermaster.distotal;

else
{

if «Burgermaster.distotal -= wAmount) <= 0)
Burgermaster.ncompact 1= 2;

Burgermaster.ncompact 1= 1;
}

}

In other words, MemoryFreed() is related to global heap compaction.

Support: 3.0, 3.1
See also: Global Heap

Module Table

A module handle, returned from a KERNEL function such as GetModuleHandle(),
GetExePtr(), or LoadModule(), is actually a handle to a data structure called the Mod
ule Table. The Module Table is essentially an in-memory version of the "new" seg
mented-executable (NE) file header and contains the information necessary to do
dynamic linking. The NE file header is documented in Ray Duncan's Advanced OS/2
Programming (it's essentially the same in Windows and OS/2 l.x), and in the Wm
dows 3.1 SDK Programmer)s Reference) Volume 4: Resources, chapters 6 and 7.

There are a number of key differences between the Module Table and the NE
header, and the Module Table stands on its own as one of the key KERNEL internal
data structures. In general, the organization of the Module Table is more straightfor
ward than that of the NE header. Where the on-disk NE header appears to have been
optimized (or is it pessimized?) to conserve disk space, the Module Table has been
optimized for quick access.

With one exception in Windows 3.0 debug (see below), the structure of the Mod
ule Table has stayed unchanged from Windows 3.0 to Wmdows 3.1, making it rela
tively safe for programmers to use.

The Module Table is the central repository for anything related to an .EXE or
.DLL that's currendy in memory. Information about code and data segments,
resources, the module filename, you name it, is in here. For application, the Module
Table contains information that can be shared across multiple instances (though DLLs
don't have multiple instances); per-instance information is kept in the Task Database.

For the purposes of this discussion, a module will refer to anything in the seg
mented-executable or new-executable format. When working with the Module Table,
it is important to be familiar with the NE format. (See the discussion in chapter 2 and
in the 3.1 SDK)

Module Table

320 UNDOCUMENTED WINDOWS

The most common modules you'll encounter are programs (.EXE), dynamic link
libraries (.DLL), drivers (.DRV), and fonts (.FON). Other extensions, including
.MOD, .CPL, and .IW, can also be used for modules. The important thing is that the
file is in the NE format.

For programs and most DLLs, the Module Table is mainly used to keep track of
the code and data segments and what selectors have been assigned to them. When
KERNEL loads a program, and the program contains dynamic links to functions in a
module that is already loaded (such as KERNEL itself), the information in the already
loaded module table is used to find the selector values assigned to the module's code
segments. The KERNEL segment relocator patches these selector values into the
newly loaded program's code, so that dynamic links become far calls that go direcdy
to the module's code. This is a much cleaner interface than that of MS-DOS, which
used interrupts and register values to connect the program to the operating system (of
course, Windows still makes pretty heavy use of the interrupt calling convention too,
for example, to call DOS and DPMI).

Other modules (.FON files in particular) exist purely to provide resources. The
module table serves as an in-memory storage area for file offsets to resources, as well as
to other tables in the NE file. If you're looking at a listing of all the modules in the
system, don't be surprised to see some modules that have no code or data segments.
On the other hand, there is the case ofa well-known debugger that attempted to hide
some critical code by placing it into a font file!

The Module Table is sometimes called a Module Database.

Module Table format

OFFSET SIZE DESCRIPTION

0 WORD NE signature (454Eh)

2 WORD load count of module

4 WORD near * to entry table

ENTRY TABLE

WORD First entry ordinal in bundle - 1

WORD Last entry ordinal in bundle
(nEntries = last - first)

WORD near ptr to next bundle

EACH ENTRY

BYTE type (actual number for fixed seg, or OFFh
for movable)

BYTE flags (1 = exported, 2 = shared data entry)

BYTE segNum (logical segment for entry)

WORD offset (offset of entry in segment)

6 WORD selector of next module table. 0 indicates end oftist

Module Table

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 321

BYTE
BYTE

8
OA

OC

WORD
WORD

WORD

near * to segment entry for DGROUP
near * to load file information

LOAD FILE INFO

length of load file info section, not counting itself
flag: Bit 0 on in WIN 3.0 ifloaded after ProgMan
(inclusive)?

WORD unknown
WORD File date, in MS-DOS date format
WORD File time, in MS-DOS time format
BYTE file name in ASCIIZ format
module flags (based on NE file flags)

OOOlh

FLACS

8000h
0800h
0300h
0040h
0010h
0002h

Library module (O=task I=DLL)
A self-loading application
Uses Windows display API services
Private allocation of memory
Will use LIM 3.2 EMS
Each instance of this module gets its own
DGROUP (Le., a task)
Each instance of this module shares the
DGROUP (Le., a DLL)

OE WORD logical segment number ofDGROUP (1 based)
10 WORD initial local heap size
12 WORD initial stack size
14 DWORD starting CS:IP (as a logical address)
18 DWORD starting SS:SP (as a logical address)
lC WORD count of segments in the segment table
IE WORD count ofentries in module reference table
20 WORD size of nonresident names table on disk (see GetProcAddress)
22 WORD near * to segment table
Segment table consists of a series ofentries. The number is given by the WORD at offset
1Ch. Entries are sequentially numbered, starting at 1.

Format ofa segment table entry is similar to the segment table entry in the NE file,
but with the addition ofa WORD at the end ofeach entry:

SECMENT TABLE ENTRY

WORD offset of segment within file on disk: shift left
by align size at offset 32h

WORD Size of segment on disk. 0 = 64K

I

Module Table

322 UNDOCUMENTED WINDOWS

0008h
0010h
0020h

flags: (bitfield)
0001h

WORD

DATA segment (0 indicates
CODE)

iterated segment
movable
shareable (should not be
modified)

0040h preload
0080h read only
0100h has relocations
1000h discardable

Initial size ofsegment when loaded (0 = 64K)
Handle or selector ofsegment in memory.
(For fixed segments, a selector; else a handle.
Zero indicates segment not loaded.)

near * to resource table.

WORD
WORD

WORD24

RESOURCE TABLE FORMAT

WORD alignment shift. (4 = 16 byte alignment,
9 = 512 byte alignment)

Immediately followed by:

FORMAT OF THE RESOURCE TYPE STRUCTURE

WORD ID
WORD number ofinfo structs following this Struct
WORD far * to function containing resource handler

If the high bit of ID is set, this is an ordinal resource, and the bottom 8 bits indicate the
type of the resource (an RT_ constant from WINDOWS.H):

Cursor

Bitmap
Icon
Menu
Dialog
String table
Font directory

Font
Accelerator
RC data
Error table

1

2
3
4
5
6
7
8
9
10 (user data)
11

Module Table

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 323

Group cursor
Unknown
Group icon
Name table
Version info
TrueType font

12
13
14
15 (eliminated in 3.1 NE files)
16 (3.1)

204 (CCh)

If the high bit is not set, a named resource; the value is an offset
into the resource table.

FORMAT OF THE RESOURCE INFO STRUCT

WORD offset in file, before alignment shift applied
WORD length in file, before alignment shift applied

WORD flags

WORD
WORD

WORD

WORD

36

34

1000h Discardable
040h preload
0020h read only
0010h movable
0004h loaded in memory

resource number
handle to segment containing the resource
in memory

WORD usage count
26 WORD near * to resident name table
A series of Pascal-style (counted) strings, one after the other. Get total length by subtract
ing the resident-names table offset from the module-reference table offset
28 WORD near * to module reference table
Module reference table is an array ofWORD's, each the module handle of the module to
which it refers; access to the array is one-based
2A WORD near * to imported names table
This always points to a 0 byte, which should indicate the end of the table. However, for
some llllknown reason, the imported-name table always starts with a 0 byte, and then fol
lows with Pascal-style (counted) strings
2C DWORD NE file offset of nonresident name table (see GetProcAddress)
30 WORD count of movable entries
32 WORD Sector alignment (i.e, 4 = segments in .EXE file aligned on

16-byte boundaries; 9 = aligned on 512-byte boundaries)
Always 0 in 3.0. In 3.1, set to 2 if a TrueType font. (In NE
header, this field would be resource count.)
BYTE at offset 36h is operating-system flags (as in NE file)

Module Table

324 UNDOCUMENTED WINDOWS

38

3A
3C

3E

WORD

WORD
WORD
WORD

o unknown
1 OS/2
2 Windows
3 European DOS 4
4 WIN386
BYTE at offset 37h is "other flags" (as in NE file):
0001 long file names
0002 Win 2.x app o.k. for protected mode
0004 Win 2.x app o.k. for proportional font
0008 File has gangload area (Le., area with all preload

code segments ganged together, so they can be
loaded in one shot)

EXCEPT in Win 3.0 Debug, WORD at offset 36h is same
as WORD at offset 38h

Contains the same value as offset 2Ah (Imported Names Table)
EXCEPT in Win 3.0 Debug, contains near * to "other"
segment table

"OTHER" SEGMENT TABLE FORMAT

WORD unknown
IfCODE segment: 0 means not present,
otherwise present
if DATA segment: always 0

WORD Always set to 0
Always seems to hold the same value as offset 38h, except KERNEL
Unknown; this field is the swap area size in NE header
Expected windows version, as in NE file

Comments:

o WORD

Like the module table in the NE file, the frrst two bytes contain the ASCII representation
ofNE; interpreted as a WORD, this is 454Eh. Internally, Windows uses these bytes as a
signature to verify that it is looking at a valid module table.

2 WORD

The number ofother modules that have references to this module. Usually KERNEL is
the most popular module, with USER and GDI following close behind. When this value
decrements to 0, Windows will remove the module from memory.

Module Table

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 325

4 WORD

This is a near pointer (relative to the module handle/selector) to the Entry Table for the
module. The Entry Table in the module table bears little resemblance to the rather cryptic
Entry Table found in the NE file. It appears that the in-memory Entry Table is optimized
for quick lookup. All NULL bundle entries have been removed, and bundles with contigu
ous entry ordinals are combined. The bundles are organized as a null-terminated linked
list. Each list node has a header that specifies the first and last entry ordinal in the node
and a pointer to the next node. Once the appropriate node is found, the desired entry can
quickly be found, as entries are contained in an array of fixed-sized structures that follows
the node header. One frustrating note is that the segment portion of the entry point
address is stored as a byte and is the logical segment number, rather then the actual selec
tor in use. As a result, it is not possible to patch in another far address, from another mod
ule, for a given entry point. This makes it impossible to use the Entry Table to implement
that badly-needed function in Windows, SetProcAddress().

6 WORD

This is the handle of the next module table. A value of 0 indicates that this is the last mod
ule in the list. TooIHeip uses this in its ModuleNext() function. The start of the Module
Table linked list can be found by an undocumented use of GetModuleHandle() (see
GetModuleHandle(), discussed previously).

8 WORD

For modules with a DGROUP, this contains a near pointer to the segment table entry for the
DGROUP segment. The segment table is described in the discussion below ofoffset 22h.

OA WORD

By passing GetModuleFilename() a module handle, you can get back the complete DOS
file specification for the module's NE file. By using the information at this offset, you can
get back a little more. Offset OAh is a near pointer to a block ofmemory that contains the
file name, as well as its DOS date and time stamp. The first byte in the block contains the
length of the remainder of the block, not counting itself. Offset 3 and 5 in the block con
tains the NE files date and time respectively, in the DOS bit encoded format. Presumably,
this information is kept around so that Windows can verify that the NE file hasn't been
changed since it was frrst loaded. Bringing up the rear is the fully qualified DOS file name.
It appears that the data here is loosely modeled after the documented OFSTRUCT struc
ture.

OC WORD

Module flags: In general, these match the module flags that appear at the same offset in
the NE file. It does appear that some bitfields are used for runtime flags that don't match
up to anything in the on-disk NE header.

22 WORD

A near pointer to the segment table. The segment table contains not only attributes and
file offsets for the code/data in the NE flie, but also holds the handle that Windows has

Module Table

326 UNDOCUMENTED WINDOWS

assigned to that segment. In short, this is where the correlation between a logical address
and a selector is kept. If fact, Windows functions such as GetCodeHandle and
GetCodeInfo use this table.

The CODE segments in a module are shared between all instances of the module. But
what about non-shared segments, especially DGROUP? Each task (each instance of the
module; for DLLs this is a non-issue) has its own DGROUP. The DGROUP's logical seg
ment number ifstored at offset OEh in the Module Table header, and this remains
unchanged for each instance of the module. However, the actual selector value for
DGROUP does change for each instance; this in fact is precisely what the hInstance is.
Here, the segment table entry contains the value of the last (most recently loaded)
DGROUP that was loaded for the module. Ifyou close the second instance ofan app, the
DGROUP value is set back to its previous value (hPrevInstance). This implies that there is
a DGROUP chain.

Segments are numbered starting at 1, so the logical segment 7 refers to the seventh
entry in the segment table. Each segment table entry is 10 bytes in length. The first 8
bytes are identical to the segment table in the NE flie. The remaining WORD is used for
the global memory handle (or, for fixed segments, a selector) to the code/data. A value of
oindicates that the segment has not been loaded yet; A nonzero value does not mean that
the segment is present, though. To test for this, the LAR instruction should be used.

24 WORD

To quickly find resources, a condensed index of the resources in the NE file is kept in the
Module Table. The WORD at this location is a near pointer to the resource table. Like the
in-memory entry table, the resource table fortunately does not bear much resemblance to
what's in the NE file. The first byte in the resource table is the alignment count. (See the
NE file description for more information). The actual data for the resource index is then
stored end to end, with no padding. For each collection of resource types (Icons, for
instance), there is a fixed length header that identifies the resource type and tells how
many individual resources are to follow. Immediately after the header is an array of fixed
length structures, one per instance of the resource type. The end of the table is indicated
by a zero value where the next resource type structure would otherwise be.

26 WORD

This is a near pointer to the resident names table; it is an exact duplicate of the table in the
NE file.

28 WORD

Whereas the module reference table in the on-disk NE flie contains offsets into the
imported names table (to obtain the name of the fourth imported module, you'd look up
the fourth word in the module reference table and add that to the base of the imported
names table), in memory, the module reference table is much simpler. Instead of contain
ing offsets, it contains the actual module handles of the imported modules.

Module Table

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 327

2A WORD

This is a near pointer to the imported names table. For some reason (even in the NE file),
the imported names table always starts with a 0 byte. According to the NE specification,
this would indicate the end of the table. However, ifyou pretend that the next byte is the
first byte, then everything appears as expected.

32 WORD

The align-shift value is used to compute offsets of the segments within the file. The seg
ment table contains only a WORD to hold the file offset of a segment, yet the file, and the
offset of the segment within the file, may be greater than 64k. The value at this field is
used to shift-left segment file offsets; the shift is generally 4 or 9.

34 WORD

This WORD value is always set to 0 except when the module is a TrueType font under
Windows 3.1. In this case, the value is 2.

36 WORD or BYTE[2]

In general, offsets 36h and 37h correlate to the "OS-type" and "other flags" fields of the
NE file. However, under the debugging version ofWindows 3.0, the two bytes are used as
a near pointer to an undocumented table. This table parallels the segment table, but with
the entries only two bytes in length. The low-order word is always 0, unless it is a code seg
ment and the corresponding segment is present in memory. It is not known what the non
zero values are supposed to indicate. The high-order word is always O.

38 WORD

If running under the Windows 3.0 debug version, this WORD points to the same table
that the WORD at offset 36h points to. When running under the Window 3.0 retail ver
sion, or under 3.1, it contains the same value as offset 2Ah contains, namely the offset of
the imported names table.

3C WORD

This field always seems to contain a power of2, and may actually be the maximum swap
area size. This would correspond to the file-based NE image.

Support: 3.0, 3.1
See also: GetExePtr, GetModuleHandle
Example: The following sizable sample program, WINMOD, written using the
WINIO library from chapter 4, demonstrates the use of the Module Table information
presented above. First, WINMOD displays a list of all modules present in the system:

MODULE
KERNEL
SYSTEM
KEYBOARD
MOUSE
DISPLAY

HANDLE
00F7
013F
0147
015F
01BF

Module Table

328 UNDOCUMENTED WINDOWS

CALLFUNC 11C7
WINMOD 119F

The user can click on any module name to bring up a window with additional
information about the module. Note that this shows the module in memory, rather
than the image on disk that an EXEDR-type program would show. For example, click
ing on DISPLAY above creates a new window with the following information:

File C:\WIN31.B2\SYSTEM\VGAMONO.DRV 12-17-91 3:10
Usage count DODD
DGROUP segment 0008
Initial heap size 0000
Initial stack size 0000
Starting CS:IP 0002:02C1
Starting SS:SP 0000:0000
Minimum Windows version 3.10
Flags LIBRARY USES_WINAPI SHARED_DATA
Non-res names offset 00584
Non-res names size 01B2

Segments:
HNDL

01 01E7
02 01EE

FILE_SIZE
333D
02F5

ALLOC_SIZE
333D
02F5

TYPE
CODE PRESENT
CODE PRESENT

Resources:
ID: 800C Group Cursor

ID: 8002 Bitmap

Referenced modules:
HNDL NAME
0147 KEYBOARD
00F7 KERNEL

Resident names:
ORDN NAME
0000 DISPLAY

OOOB entries fn(): 0117:7DF4

001E entries fn(): 0117:7DF4

The program has one include file, MODTABLE.H:

II modtable.h
typedef struct {

int segment_type
int unknown
int iterated
int movable
int pure
int preload
int read_only

1; 1* Segment type identification *1
2; 1* used by Windows for something*1
1; 1* Segment is iterated *1
1; 1* Segment is movable *1
1; 1* Segment is shareable *1
1; 1* Segment is preload *1
1; 1* Segment is read-only *1

Module Table

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 329

int reloc info 1 · 1* Segment has reloc info- ,
int u1 3;
int discardable 1; 1* Discardable flag.
int u2 3;

} SEG- BITFIELD_FLAGS;

*1

*1

typedef struct {
WORD sector_offset;
WORD segment_length;
SEG_BITFIELD_FLAGS flags;
WORD alloc_size;
WORD handle;

} MODULE_TABLE_SEGMENT_RECORD;

1* Offset to logical sector
1* Size in bytes of segment
1* flags for segment
1* Segment allocation size

*1
*1
*1
*1

*1
*1
*1

1* Segment type constants
1* Code segment type
1* Data segment type

typedef enum {
CODE = OxOOOO,
DATA = Ox0001,

} SEGMENT_TYPES;

typedef struct {
WORD ne_signature;
WORD ne_usage;
WORD ne_penttable;
WORD ne_pnextexe;
WORD ne_pautodata;
WORD ne_pfileinfo;
WORD ne_flags;
WORD ne_autodata;
WORD ne_heap;
WORD ne_stack;
DWORD ne_csip;
DWORD ne_sssp;
WORD ne_cseg;
WORD ne_cmod;
WORD ne_cbnrestab;
WORD ne_segtab;
WORD ne_rsrctab;
WORD ne_restab;
WORD ne_modtab;
WORD ne_imptab;
DWORD ne_nrestab;
WORD ne_cmovent;
WORD ne_align;
WORD ne_cres;
unsigned char ne_exetyp;
unsigned char ne_flagsother;
union {

WORD ne-pretthunks; 1* offset to return thunks *1
WORD ne_gang_start; 1* start of gangload area *1

} x;
union {

WORD ne_psegrefbytes; 1* offset to segment ref. bytes *1
WORD ne_gang_length; 1* length of gangload area *1

} y;
WORD ne_swaparea;
WORD ne_expver;

1* minimum code swap area size *1
1* expected windows version num *1

Module Table

330 UNDOCUMENTED WINDOWS

} MODULE_TABLE;

typedef struct _BUNDLE_HEADER {
WORD firstEntry;
WORD lastEntry;
WORD nextBundle;

} BUNDLE_HEADER;

typedef struct _ENTRY {
BYTE segType;
BYTE flags;
BYTE segNumber;
WORD offset;

} ENTRY;

typedef struct _RESOURCETYPE {
WORD ID;
WORD count;
DWORD function;

}RESOURCETYPE;

typedef struct RESOURCEINFO {
WORD offset;
WORD length;
WORD flags;
WORD ID;
WORD handle;
WORD usage;

}RESOURCEINFO;

#define NENOTP Ox8000 1* Not a process (i . e. a library module)
*1
#define NESELFLOAD Ox0800 1* Self loading .EXE file *1
#define NEAPPTYP Ox0700 1* Application type mask *1
#define NEWINAPI Ox0300 1* Uses windowing API *1
#define NEWINCOMPAT Ox0200 1* Compatible with windowing API *1
#define NENOTWINCOMPAT Ox0100 1* Not compatible with windowing API *1
#define NENONRES OxOO80 1* Contains nonresident code segments *1
#define NELIM32 OxOO10 1* Uses LIM 3.2 API *1
#define NEPROT OxOOO8 1* Runs in protected mode only *1
#define NEPPLI OxOOO4 1* Per-Process Library Initialization *1
#define NEINST OxOOO2 1* Instance data *1
#define NESHARED OxOOO1 1* Shared data *1

II Target operating systems
#define NE_UNKNOWN 0
#define NE_OS2 1
#define NE_WINDOWS 2
#define NE_DOS4 3
#define NE_DEV386 4

1* Microsoft/IBM OS/2 I
1* Microsoft Windows *1
1* Microsoft European MS-DOS 4.x *1
1* Microsoft Windows 386 *1

WINMOD.C is presented below. The main() entry point (remember, WINIO
applications use main(), not WinMain()) installs the function DumpModule() as a
WINIO clickable-line handler; main() then calls the function ModuleWalk(). Module-

Module Table

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 331

Walk() uses an undocumented feature of GetModuleHandle() (see elsewhere in this
chapter) to get a handle to the first module in the system. It then walks the linked list
of Module Tables, printing the handle and name of each one, until it gets to the end
of the list.

At this point, WINMOD returns from main(), where WINIO takes over, interact
ing with the user and calling the installed DumpModule() function whenever a mod
ule name is clicked. DumpModule() creates a new window and calls DisplayModule(),
which in turn does most of the work ofprinting out the contents of the Module Table
structure for the module that was clicked on. DisplayModule() calls DoSegment
Table(), DoResourceTable(), and DoResidentNamesTable() to each take care of their
own part.

11=================================
II WinMod by Matt Pietrek, 1992
II File: WINMOD.C
11=================================
#include <windows.h>
#include <stdio.h>
#include <string.h>
#include <dos.h>
#include II winio.h ll
#include II modtable.h ll

#define NE_SIGNATURE Ox454E

WORD WinVersion;

char *ResourceNames[] {
IIUnknown ll ,
IICursor ll , II 1
IIBitmap ll, II 2
IIIcon ll , II 3
IIMenu ll , II 4
IIDialog ll , II 5
IIString Table ll , II 6
IIFont Directoryll, II 7
IIFont ll , II 8
IIAccelerator ll , II 9
IIRC Data ll , 1110
IIError Table ll , 1111
IIGroup Cursor ll , 1112
IIUnknown", 1113
IIGroup Icon ll , 1114
rrName Table ll , 1115
IIVersion info rr 1116
};

11---
II Converts a global handle to a selector value.
II The proper way would be to use GlobalLock, but
II GlobalLock will RIP on certain selectors.
II ToolHelp does it like this, so •••

Module Table

332 UNDOCUMENTED WINDOWS

//---
WORD HandleToSel(HANDLE h)
{

// In 3.1, handles = (selectors-1)
// Valid selectors end in a 7 or a F
// Thus, we can simply make sure the
// lowest bit is turned on.
//
// In 3.0, handles = (selectors+1)
// Valid selectors end in a 5 or a D
// Decrement the handle if it's an
// even value.

if (WinVersion == Ox030A)
h 1= Ox0001;

else if (W;nVers;on < Ox030A)
if ((h & Ox0002) == Ox0002

h--;

return h;
}

//---
// Given a module handle, return the
// name of the module.
//---
char *GetModuleNameFromHandle(HANDLE handle)
{

static char nameC129J;
char far *moduleTablePtr;
WORD residentNamesOffset;
BYTE cbModuleName;

nameCOJ = 0; // Null out the return string

// create a pointer to the module table
moduleTablePtr = GlobalLock(handle);
GlobalUnlock(handle);
if (!moduleTablePtr)

return name;

// Verify that we're really looking at a module table, by
// looking for the NE signature. If we are, get the
// module name out of the resident names table.
if (*(WORD far *)moduleTablePtr == NE_SIGNATURE)
{

// Obtain the resident names table offset, and point to it
residentNamesOffset = *(WORD far *)(moduleTablePtr + Ox26);
moduleTablePtr += residentNamesOffset;

// Get the length of the first entry, which is always
// the module name.
cbModuleName = *(BYTE far *)moduleTablePtr;
moduleTablePtr++;

Module Table

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 333

// Use the far string copy to move the name to our local
// buffer. Then null terminate the local buffer copy.
_fstrncpy(name, moduleTablePtr, cbModuleName);
name[cbModuleName] = 0;

}

return name;
}

//---
// Display each entry in the resource table
//---
void DoResourceTable(char far *ptr)
{

RESOURCETYPE far *type;
RESOURCEINFO far *info;
WORD align;
char *resourceTypeName;
WORD i;

printf("Resources:\n");

// Calculate the resource file alignment size
align = 1 « (*(WORD far *)ptr);

// Point past the alignment size field, to the first entry
(char far *)type = ptr+2;

// A resource type ID of 0 indicates the end of the list
while (type->ID != 0)
{

// Determine what type this resource is
if ((type->ID & Ox7FFF) <= 16)

resourceTypeName = ResourceNames[type->ID & Ox7FFF];
else if (type->ID == Ox80CC)

resourceTypeName "TrueType font";
else

resourceTypeName "Unknown";

// Display information common to all entry of this type
printf(" ID: %04X %-20s %04X entries fn(): %Fp\n",

type->ID, resourceTypeName, type->count, type->function);

// C pointer arithmatic at work here!!!
(RESOURCETYPE far *)info = type+1;

// Now iterate and display all the entries for this resource type.
// The "info" pointer always points to the next resource instance
// to be displayed and is updated with 'c' pointer arithmetic.
for (i=O; i < type->count; i++)
{

printf(" Offs: %OSlX Len: %04lX Flags: %04X"
Handle: %04X Usage: %04X\n",

info->offset * (DWORD)align, info->length*(DWORD)align,
info->flags, info->handle, info->usage);

Module Table

334 UNDOCUMENTED WINDOWS

info++;
}

printf("\n");

II The next resource type immediately follows the end
II of the preceding resource. Use this info to point
II to the next resource type section.
type = (RESOURCETYPE far *)info;

}

printf("\n");
}

1/---
1/ Display information about each segment in
II the modules segment table.
11---
void DoSegmentTable(void far *a, WORD count)
{

MODULE_TABLE_SEGMENT_RECORD far *st = a;
WORD segSel;
WORD i;

printf(ISegments:\n");
printf(" # HNDL FILE_SIZE ALLOC_SIZE TYPE\n");

for (i=1;
{

<= count; i++, st++)

printf
(

%02X %04X %04X %04X %S",
i,
st->handle, st->segment_length, st->alloc_size,
st->flags.segment_type ? "DATA" : "CODE"

);

if (st->handle == 0)
goto not_present;

II Determine is the "present" bit is set in the
II descriptor, and report accordingly
segSel = HandleToSel(st->handle);
asm lar ax, [segSelJ
asm test ax, 08000h
asm jz not_present

printf(" PRESENT");
asm jmp done

not.J)resent:
done:

}

printf("\n");

printf(" NON-PRESENT");
printf("\n");

Module Table

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 335

}

//---
// Displays all the modules that are
// implicitly linked to.
//---
void DoModuleTable(HANDLE far *modtab, WORD count)
{

WORD i;

printf(IIReferenced modules:\n ll
);

printf(" HNDL NAME\n");

for(i=O; i < count; i++)
printf(1I %04X %s\n", modtab[iJ,

GetModuleNameFromHandle(modtab[iJ»;

printf("\n");
}

//---
// Displays the resident names table. This
// table always contains the module name.
// DLLs should have WEPs in this table,
// and any function that is exported by name
// will appear in this table.
//---
void DoResidentNamesTable(char far *t)
{

char buffer[129J;
WORD ordinal;
BYTE length;

printf("Resident names:\n");
printf(1I ORDN NAME\n");

// A 0 byte indicates the end of the table.
// Entries are a length byte, followed by
// the string, followed by the entry ordinal
while (*t)
{

// Obtain the length of this name
length = *(BYTE far *)t;

II Copy the string to a local buffer,
II and null terminate it.
_fstrncpy(buffer, t+1, length);
buffer[lengthJ = 0;

// The entry ordinal is a WORD immediately
// following the name
ordinal = *(WORD far *)(t + length + 1);
printf(" %04X %s\n", ordinal, buffer);

1/ bump up the pointer to point to

I

Module Table

336 UNDOCUMENTED WINDOWS

// the next entry.
t+= (length + 3);

}

printf("\n");
}

//---
// High level function to display information
// about a module, based upon information in
// the module table
//---
void DisplayModule(HANDLE hModule)
(

int width = 25;
MODULE_TABLE far *mt;
WORD fileDate, fileTime;
WORD sel = HandleToSel(hModule);
unsigned char far *ptr = (unsigned char far *)mt

// Perform some weird contortions to extract the
// filename and date/time. Date/Time fields
// are in MS-DOS bit encoded format.
printf("%-*s", width, "File ll

);

fileDate *(WORD far *)(ptr+mt->ne-pfileinfo+4);
fileTime = *(WORD far *)(ptr+mt->ne-pfileinfo+6);
printf
(

"%Fs %02u-%02u-%02u %2u:%02u\n ll
,

(ptr+mt->ne-pfil einfo+8),
(fileDate » 5) & OxF, (fileDate & Ox1F), (fileDate » 9) + 80,
(fileTime » 11), (fileTime » 5) & Ox3F

);

printf("%-*s%04X\n", width, "Usage count", mt->ne_usage);
printf("%-*s%04X\n", width, "DGROUP segment", mt->ne_autodata);
printf("%-*s%04X\n", width, IIInitial heap size ll

, mt->ne_heap);
printf(II%-*s%04X\n ll

, width, "Initial stack size", mt->ne_stack);
printf("%-*s%Fp\n", width, "Starting CS:Ip lI

, mt->ne_csip);
printf("%-*s%Fp\n ll

, width, "Starting SS:SP", mt->ne_sssp);
printf("%-*s%u.%02u\n", width, "Minimum Windows version",

HIBYTE(mt->ne_expver), LOBYTE(mt->ne_expver»;

printf("%-*s", width, "Flags");
if (mt->ne_flags & NENOTP)
if (mt->ne_flags & NESELFLOAD
if ((mt->ne_flags & NEAPPTYP)
if ((mt->ne_flags & NEAPPTYP)
if ((mt->ne_flags & NEAPPTYP) -
if (mt->ne_flags & NENONRES)
if (mt->ne_flags & NELIM32)
if (mt->ne_flags & NEPROT)
if (mt->ne_flags & NEPPLI)

II);
if mt->ne_flags & NEINST)

Ox100
Ox200
Ox300

printf("LIBRARY II);
printf(IISELF_LOAD II);
printf(IINON_WIN_API II);
printf("API_COMPAT II);
printf("USES_WINAPI II);
printf(IINON_RES_CODE II);
printf("LIM32 II);

printf("PROT_MODE II);
printf("PER_PROCESS_INIT

printf("INSTANCE_DATA II);

Module Table

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 337

if (mt->ne_flags & NESHARED)
printf("\n");

printf(IISHARED_DATA II);

printf(I%-*s%OSlX\n", width,"Non-res names offset", mt->ne_nrestab>;
printf(I%-*s%04X\n", width, "Non-res names size", mt->ne_cbnrestab);

printf(lI\n");

II Only dump segment table if there are segments
if (mt->ne_cseg)

DoSegmentTable(MK_FP(sel, mt->ne_segtab), mt->ne_cseg);

II Calculate length of resource table. Only dump it if
II it is a nonzero length
if (mt->ne_restab - mt->ne_rsrctab)

DoResourceTable(MK_FP(sel,mt->ne_rsrctab»;

II Only dump module table if one or more entries
if (mt->ne_cmod)

DoModuleTable(MK_FP(sel,mt->ne_modtab>, mt->ne_cmod);

DoResidentNamesTable(MK_FP(sel, mt->ne_restab));
printf(lI\n">;

}

1/---
1/ Walks the list of modules in the system,
II calling DisplayModule to dump each one
II out in turn
11---
void ModuleWalk(void)
{

HANDLE
WORD
WORD

thisModule;
hlnstance;
far *signature_word;

II Get our instance handle, which is also our DS.
II Hint: You can also obtain this value by using
II the hlnstance passed to WinMain. Also, some
// compilers store the hlnstance in a global
II variable that is accessible to your code.
asm mov [hlnstance], DS

II An undocumented use of GetModuleHandle. The
/1 module handle associated with the passed-in
II OS is returned in AX. The handle of the first
II module in the system (KERNEL) is returned in OX
GetModuleHandle(MK_FP(O, hlnstance) >;
asm mov [thisModule], OX

1/ Turn off repainting while we blast out the info
winio_setbusy();
winio_setpaint(winio_current(), FALSE);

printf("Double-Click on any line for detailed view\n\n");

Module Table

338 UNDOCUMENTED WINDOWS

printfC"MODULE HANDLE\n");

II The list is terminated by a NULL next module handle
while C thisModule)
{

II Create a far pointer to the module table.
1/ Verify that we have a valid table by
II looking for the NE signature. Abort
1/ if not found
signature_word = MK_FPCthisModule, 0);
if C *signature_word != NE_SIGNATURE)
{

printfC"Error in following module chain\n");
break;

}

printf
C

"%-8s %04X\n",
GetModuleNameFromHandleCthisModule),
thisModule

) .,
II The next module handle is at offset 6
II in the module table
thisModule = *CHANDLE far *)MK_FPCthisModule, 6);

}

II Turn the repainting back on, and position to the top of the list
winio_setpaintCwinio_currentC), TRUE);
winio_resetbusyC);
winio_homeCwinio_currentC»;

}

#pragma argsused

void DumpModuleCHWND hwnd, LPSTR line, int i)
{

char moduleName[80J;
char buffer[80J;
HANDLE hModule;
int returnCode;
HWND newWindow;

_fstrcpyCbuffer, line);
returnCode = sscanfCbuffer, "%s %x", moduleName, &hModule);

if C returnCode != 2
{

MessageBoxCNULL, "Not a valid line", "Error",
MB_OK I MB_ICONEXCLAMATION);

return;
}

if C GetModuleHandleCmoduleName) != hModule)

Module Table

ah, al
[WinVersion], ax

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 339

{

MessageBox(NULL, "Module no longer exists", "Error",
MB_OK I MB_ICONEXCLAMATION);

return;
}

sprintf(buffer, "WinMod: %s", moduleName);

newWindow = winio_window(buffer, Ox4000, WW_HASMENU);
w;n;o_setcurrent(newW;ndow);

II Turn off repaints while blasting out the data
winio_setbusy();
winio_setpaint(winio_current(), FALSE);

DisplayModule(hModule);

II Turn repaints back on, and position to the top of the info
w;n;o_setpaint(winio_current(), TRUE);
winio_resetbusy();
winio_home(newWindow);

}

int maine)
{

II GetVersion returns in AX register. Flip the byte registers to
II produce a sensible version, with the major revision in ah, and
II the minor revision in AL. When done, store away in WinVersion.
GetVersion();
asm xchg
asm mov

II Create the list of modules for the user to click on
ModuleWalk();

II Install a double click handler
winio_setlinefn(winio_current(), DumpModule);

return 0;
}

NoHookDOSCal1

void FAR PASCAL NoHookDOSCall(void);

KERNEL.l0l

NoHookDOSCall() is almost identical to the documented function DOS3Call(): it is
used to make DOS INT 21h calls, without putting an actual INT 21h instruction in
your code. Both DOS3Call() and NoHookDOSCall() directly call the !NT 21h han
dler inside KERNEL, without generating a software interrupt. Thus, these calls are
slightly faster than a hard-wired INT 21h.

NoHookDOSCal1

340 UNDOCUMENTED WINDOWS

How is NoHookDOSCall() different from DOS3Call()? Before calling the internal
KERNEL function Real_DOS(), DOS3Call() calls the WriteOutProfiles() function;
NoHookDOSCall() does not. When the KERNEL DOS translation layer has been
disabled via a call to DisableDOS(), then NoHookDOSCall() and DOS3Call() behave
essentially identically. The one remaining difference is that NoHookDOSCall() pre
serves the DS register across the DOS invocation.

Support: 3.0, 3.1
Used by: SYSTEM.DRV
See also: DisableDOS, DOS3Call, GetSetKernelDOSProc

NULL Segment-See Instance Data

OldYield

void FAR PASCAL OldYield(void);

KERNEL.117

OldYield() is the back end to the Yield() and DirectedYield() functions.
DirectedYield(hTask), discussed earlier in this chapter, fudges with the stack, puts the
passed hTask into the field at offset OAAh in the Task Database (TDB), and JMPs to
OldYield().

Yield() puts a zero in the same TDB field, checks to make sure there's a message
queue for the task, and (if there is) JMPs to OldYield(). (If there is no message queue,
for example, if the task's startup code hasn't yet called InitApp(), then Yield() calls
through a function pointer to UserYield(); see chapter 6.)

In most cases, you could get away with calling OldYield(), instead ofYield(), but
there seems litde reason to do so. On the other hand, many routines in USER appear
to deliberately call OldYield() rather than Yield().

OldYield() checks to make sure that Windows is not already running the sched
uler. It then increments the "waiting system event count" field at offset 6 in the TDB
(this is the same field that PostEvent and WaitEvent use as a semaphore), calls the
KERNEL scheduler, and then decrements the event count.

In other words, the code looks something like this:

DirectedYield proc far
, ...
imp OldYield

Yield:
mov ds, ds:CURR_TASK
cmp ds:TASK_QUEUE, 0
jz OldYield
jmp pYieldProc ; UserYield(): only called if no task queue

OldYield:
, ...
mov ds, ds:CURR_TASK
inc ds:NEVENTS

NULL Segment-See Instance Data

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 341

moves, 0
mov 1s, 0
mov gs, 0
call Reschedule
dec ds:NEVENTS
mov ax, FFFFh

DirectedYield endp

; the KERNEL scheduler

For more information on OldYield(), see Matt Pietrek's article "Inside the Wm
dows Scheduler," Dr. Dobb)sJournal, August 1992.

Support: 3.0, 3.1
See also: DirectedYield, PostEvent, Task Database, UserYield (USER), WaitEvent

OpenPathName KERNEL.75

int FAR PASCAL OpenPathName(LPSTR lpPathName, int iAccessMode);

This uninteresting function has a function prototype in the Wmdows 3.0 SDK include
file WINEXP.H, but it is otherwise undocumented-perhaps because its operation is
so self-evident that no documentation is needed. Needless to say, OpenPathName()
attempts to open the file IpPathName with the specified access mode. The function is
essentially just a front-end to the DOS Open File function (!NT 21h AH=3Dh); how
ever, if the KERNEL internal variable fNovell is set, the function also calls INT 21h
AX=4300 to get file attributes.

The proper way to open a file in Windows is with the OpenFile() function, or with
your compiler's standard library functions such as open(), fopen(), or sopen(), or with
DOS INT 21h AH=3Dh. There should be no reason to call OpenPathName(), which
is included here only for completeness.

Support: 3.0, 3.1
See also: DeletePathName

PatchCodeHandle KERNEL.ll0

void FAR PASCAL PatchCodeHandle(WORD hSeg);

PatchCodeHandle() was used in some versions of Microsoft Excel and Word for Wm
dows as part of a mechanism to load themselves to run under Windows. Normally,
KERNEL takes care of all the details of loading a Windows application or DLL once
WinExec(), LoadLibrary(), or LoadModule() is called. However, some Windows
applications bypass the KERNEL loader and take responsibility for loading themselves
into memory.

Generally this is done to work around bugs in the KERNEL loader. Appar
ently, Excel contained a segment whose size was exactly right to trigger a boundary
condition bug in the Windows 3.0 loader. As another example, the Wmdows 3.0

OpenPathName

342 UNDOCUMENTED WINDOWS

loader does not properly load programs with huge (that is, greater than 64K) arrays.
Huge arrays in 16-bit programs are composed of multiple 64K segments that must be
loaded contiguously. Either Windows 3.0 does not do this contiguous loading or the
Microsoft linker does not properly mark the segments as contiguous, or both, but in
any case there's a problem. FORTRAN programs are highly likely to contain huge
static arrays, and so the Microsoft FORTRAN QuickWin library is self-loading and
includes calls to PatchCodeHandle().

In addition to working around bugs in the KERNEL loader, one might also have
a self-loading Windows application to use a somewhat different (for example, com
pressed) executable fue format from the segmented-executable (NE) one that Win
dows understands. Early versions of Word for Windows included "compressed
relocation records." Just as compressed executables under MS-DOS (such as EXE files
generated by PKLITE or by the shareware program LZEXE) must include their own
loader that bypasses the DOS EXEC (!NT 21h AH=4Bh) loader, compressed Win
dows executables would need to bypass the normal WinExec() loader.

The mechanism for producing self-loading Windows applications, including
PatchCodeHandle(), was undocumented in Windows 3.0. However, it was part of
Microsoft's "Open Tools" strategy and was documented in Windows 3.1 in an Pro
grammer)s Reference Overview article on "Self-Loading Windows Applications." Most
of the self-loading Windows application mechanism involves functions that the appli
cation itself supplies; PatchCodeHandle() is supplied by KERNEL.

PatchCodeHandle(hSeg) walks the specified segment and patches function pro
logs. Any PUSH DS/pOP AX/NOP sequence is patched to become either MOV AX,
DGROUP or MOV AX, DS/NOP. This is the same fUnction that the normal KER
NEL segment loader uses. See the "Self-Loading Windows Applications" overview in
the 3.1 SDK for more details.

PostEvent

BOOL FAR PASCAL PostEvent(HANDLE hTask);

KERNEL.30

This fUnction, whose prototype appears in the SDK WINEXP.H as part of "scheduler
things that the world knows not," wakes up the specified task (as with most functions
that expect an hTask, zero can be used to indicate the current task). It does this simply
by incrementing the event-count field at offset 6 in the Task Database:

POSTEVENT proc far
call MOVE_HTASK_INTO_ES
inc es:[6J
retf 2

POSTEVENT endp

; ES = (hTask) ? hTask : GetCurrentTask()
; incr event counter (ofs 6) in TASK_DB

PostEvent

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 343

A task blocks on an event by calling WaitEvent(); the WORD at offset 6 in the
Task Database thus acts as a semaphore. This mechanism is used during the startup of
a Windows application; see the description ofWaitEvent() for details.

Support: 3.0, 3.1
See also: Task Database, WaitEvent
U sed by: PostMessage() and SendMessage() in USER
Example: See SEMTEST.C in the example for WaitEvent()

PrestoChangoSelector KERNEL.177

WORD FAR PASCAL PrestoChangoSelector(WORD wSelSource, wSelDest);

Like the documented ChangeSelector() function, PrestoChangoSelector() generates a
code selector that corresponds to a given data selector, or a data selector that corre
sponds to a given code selector. For example:

WORD wData, wCode;
I I ...
wCode = AllocSelector(wData); II both are DATA right now
PrestoChangoSelector(wData, wCode); II now wCode is CODE
assert(verw(wData) && ! verw(wCode»; II wData writeable, wCode not

In Windows 3.0, Microsoft documented ChangeSelector(), but the documenta
tion mistakenly reversed the order of the wSelSource and wSelDest parameters, and,
even worse, ChangeSelector() was mistakenly not exported from KERNEL. Thus,
applications needing this functionality (or thinking they needed it, since
AllocCStoDSAlias() and AllocDStoCSAlias() are almost always better choices) had to
use the undocumented and curiously named PrestoChangoSelector().

In Windows 3.1, ChangeSelector() is documented correctly and is properly
exported from KERNEL. PrestoChangoSelector() is identical to ChangeSelector(),
but without parameter validation. In fact, the ordinal number KERNEL.I77 now
belongs to ChangeSelector(), so ifyour application calls PrestoChangoSelector() but is
built with a 3.0 import library, you will end up getting the correct ChangeSelector() in
3.1. Explicitly calling ChangeSelector() will result in errors in Windows 3.0. Thus, if
you want your application to run in both Windows 3.0 and 3.1, call Presto
ChangoSelector() rather than ChangeSelector(). Better yet, use AllocDStoCSAlias() or
AllocCStoDSAlias().

The seemingly silly name PrestoChangoSelector() actually makes complete sense
once you see the function's implementation in Windows 3.0. The "presto chango"
part is the use of XOR to flip a single bit in the access-rights field of the protected
mode descriptor:

PRESTOCHANGOSELECTOR proc far

PrestoChangoSelector

344 UNDOCUMENTED WINDOWS

ENTER
SAVE ds, si, di
mov ds,cs:WIN_LDT
mov es,cs:WIN_LDT
mov si, wSourceSelector
mov di, wDestSelector
and si,OFFF8h
and di,OFFF8h
mov ax,di
mov cx,4
cld
rep movsw
xor byte ptr [di-3J,8
MOVes, 0
or al,S
RESTORE di, si, ds
LEAVE 4

PRESTOCHANGOSELECTOR endp

; [bp+8J
; [bp+6J
; turn selector into LDT offset
; ditto

; copy the 8-byte descriptor
; presto chango: flip the code/data bit
; push 0 1 pop es

Another trick employed in the above code is the transformation of a selector into a
descriptor-table byte offset by ANDing the selector with OFFF8h: descriptors are 8
bytes each, and the top 13 bits of a selector are an index into a descriptor table, so
(wSel & -8) does the trick. In Windows 3.1, KERNEL relies more (though by no
means entirely) on DPMI calls, so PrestoChangoSelector() is more sedate:

PRESTOCHANGOSELECTOR proc far
dpmi ca II GET_DE-SC, [bp+8J
xor byte ptr [bp-3J, 8
dpmicall SET_DESC, [bp+6J

PRESTOCHANGOSELECTOR endp

; 31/08
; change the bit code<==>data
; 31/0C

Support: 3.0, 3.1
See also: AllocCStoDSAlias, SelectorAccessRights
Example: The following program, CODEDATA.C, uses PrestoChangoSelector() to
demonstrate how data can be executed in protected-mode Windows (this is different
from self-modifying code, which is demonstrated in the example for the entry on
AllocCStoDSAlias()). Because Windows does not track changes to selector aliases,
GlobalPageLock() must be used to lock the data segment down in the linear address
space; in the sample program, GlobalCompact(-1) is used to try to shake it loose. All
Windows-specific code is inside #ifdef WINDOWS; without this code, the program
can also be run in real-mode DOS.

1* CODEDATA.C -- demonstration of executable data *1

#include <stdlib.h>
#ifdef WINDOWS
#include <dos.h>
#include "windows.h"
#include "winio.h"

PrestoChangoSelector

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 345

1* undocumented functions *1
void FAR PASCAL PrestoChangoSelector(WORD sel1, WORD sel2);
DWORD FAR PASCAL GetSelectorBase(WORD sel);
#else
#include <stdio.h>
#endif

unsigned char data[] = {
Oxb8, OxOO, OxOO, 1* mov ax, 0000 *1
OxOO, OxOO, OxOO, 1* oper ax, immed *1
Oxcb, 1* retf *1
} ;

#define OPER
#define AX_LO
#define IMMED_LO

3
1
4

1* offset in data of operation byte *1
1* ax operand lo byte *1
1* immediate operand lo byte *1

1* opcodes *1
#define ADD OxOS
#define OR OxOd
#define AND Ox2S
#define SUB Ox2d
#define XOR Ox3S
#define CMP Ox3d

void (far *code)(void);

short math(short oper, short op1, short op2)
{

1*
Compile code on the fly. For example, math(AND, 1, 3)
becomes:

B8 01 00
25 03 00
CB

mov ax, 0001
and ax, 0003
retf

Code is compiled by putting values in data[] array; it is
then immediately executed by calling (*code)() function ptr.

*1

*«short *) &data[AX_LO]) = op1;
*«short *) &data[IMMED_LO]) = op2;
data[OPER] = oper;
(*code)();
1* return result in AX *1

}

main()
{

#ifdef WINDOWS
WORD data_sel, code_sel;

data sel = FP SEG«void far *) data);
GlobalPageLock(data_sel); II Windows will not track changes for aliases!!

PrestoChangoSelector

346 UNDOCUMENTED WINDOWS

code_sel = AllocSelector(data_sel);
PrestoChangoSelector(data_sel, code_sel);
code = MK_FP(code_sel, FP_OFF«void far *) data»; II Borland macros

1* Now try to shake code & data loose by moving memory *1
GlobalCompact(-1L);

if (GetSelectorBase(FP_SEG(code» !=
GetSelectorBase(FP_SEG(data»)

return fail(IISelectors out of sync!II);
#else

code = (void far *) data;
#endif

printf(1I1 && 3 ==> %d\n ll
, math(AND, 1, 3»;

printf(1I1 II 3 ==> %d\n ll
, math(OR, 1, 3»;

printf(1I1 A 3 ==> %d\n ll
, math(XOR, 1, 3»;

printf(1I1 + 3 ==> %d\n ll
, math(ADD, 1, 3»;

printf(1I1 - 3 ==> %d\n ll
, math(SUB, 1, 3»;

#ifdef WINDOWS
GlobalPageUnlock(data_sel);
FreeSelector(code_sel);

#endif

return 0;
}

Program Data Base (PDB)

The Windows PDB is really just a protected-mode DOS Program Segment Prefix
(PSP). Each task's PDB is stored at offset 60h in its Task Database. See
GetCurrentPDB(), discussed earlier in this chapter, and the description of the Task
Database to follow.

The layout of the PSP (including undocumented fields) is given in Undocumented
DOS, in the reference entry for INT 21h Function 26h (Create PSP).

There is one odd aspect of the behavior of the PSP under Windows: the scheduler
in KERNEL doesn't switch PSPs when it switches tasks. According to a Microsoft
KnowledgeBase article ("Passing File Handles from a TSR to a Windows Application,"
Q75257, 1 October 1991), the only time that a Windows application's PSP is selected
as the current PSP is when the application actually makes a DOS call. Thus, a Wm
dows program cannot assume that its PSP is the current PSP. If a program needs to
force its current PSP to be the active PSP, it simply needs to make a DOS call, any
DOS call (even Get Version or Get PSP will work; in other words, to do a Set PSP,
you can do a Get PSP!).

It is difficult to demonstrate this behavior in a program. The Window
GetCurrentPDB() function will always retrieve the current task's PDB, because it
merely extracts the WORD from offset 60h in the current task, making it appear as if

Program Data Base (PDB)

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 347

the current PSP is always correct. Similarly, calling the DOS Get PSP function (INT
2lh AH=62h) involves a DOS call, and so switches to the correct PSP.

However, this behavior is confirmed by the WISPy program from chapter 4: you
do not see the DOS Set PSP function (INT 21h AH=50h) called for a Windows pro
gram until the program makes some other DOS INT 2lh call.

ReglsterPtrace KERNEL.202

void FAR PASCAL RegisterPtrace(FARPROC lpWinNotify);

This function installs a notification-handling function that will be called when interest
ing events occur. "Ptrace" means "process trace" and comes from the name of the key
debugging interface in Unix. The Windows protected-mode debug interface,
WinDebug(), is a hacked version of the DosPTrace() function from OS/2 l.x;
WinDebug() uses RegisterPtrace(). The TooIHelpHook() function in Windows 3.1 is
intended as a replacement for RegisterPtrace(). While RegisterPtrace() still persists in
Windows 3.1, it is better to use TooIHelpHook() or, better yet, the documented noti
fication functions provided in ToolHelp (see chapter 10).

Note that RegisterPtrace() does not return the address of the previously installed
callback function. This makes it impossible to chain callbacks with RegisterPtrace().
Under Windows 3.0, this causes a problem between TOOLHELP and WINDEBUG:
if WINDEBUG is already running (for example, you're using CVW or TDW), any
calls to the ToolHelp RegisterNotify() function will fail.

Pass in OL to remove the current handler.
The callback function receives notifications as follows, with all parameters passed

in registers rather than on the stack:

void FAR Callback(void);

On entry:

AX = function number; these function numbers are the same as those used in the Win
dows INT 41h low-level debug interface. (For example, INT 41h AH=51h is the Move
Segment notification function.)

OOh Output char (KERNEL wants you (the debugger) to output a char)

DS:DX = char far *

01 h Input char (KERNEL wants you to get a character from the user)

On exit: return character is placed in AL

ODh Task going out

No args; call GetCurrentTask() to get its hTask

RegisterPtrace

348 UNDOCUMENTED WINDOWS

OEh Task coming In

No args; call GetCurrentTask() to get its hTask

12h Output string (KERNEL wants you to output a string)

(3.0) DS:S1 = far * to string
(3.1) ES:S1 = far * to string

50h Load segment (see DebugDeflneSegment(»

BX = segment number
CX = selector
DX = hInstance
S1 = segment flags
ES:D1 = module name

51 h Move segment

52h Free segment

BX = freed selector

59h Load task

CX:BX = CS:IP of start ofnew task

5Ch Free segment

Same as 52h, except called only when KERNEL starts up. Called once for CS, and once
for DS alias to CS.

60h End of segment load

61h End of segment discard

62h App terminating

byte ptr [SP+06] = exit code

63h Async stop (Ctrl-Alt-SysReg

64h DLLloaded

CX:BX = CS:IP entry point
SI = Module Handle

65h Module removed

ES = module handle

Support: 3.0, 3.1
See also: DebugDefineSegment, ToolHelpHook, ToolHelpNotifyRegister (chapter
10)

RegisterPtrace

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 349

RegisterShleld

void FAR PASCAL RegisterShield(FARPROC fpShield);

KERNEL.210

RegisterShield() is present only in the IBM OS/2 2.x version of Standard mode KER
NEL (OS2K286.EXE). The function takes a far pointer to a callback "shield" func
tion, which will be called whenever a task starts or stops. OS/2 uses this for
"autotermination" of virtual machines: rather than use a translation layer, OS/2 runs
Windows applications using an actual copy of Standard mode Windows (WIN-OS/2)
that runs in its own virtual machine (VM). This VM is automatically disappears when
the last Windows task exits. IBM uses the shield function to find when the last Wm
dows task exited; basically, it is used for task counting.

RegisterShield() can be called with a NULL pointer to reregister the shield call
back function.

Since it is built right into the OS/2 version of KERNEL, RegisterShield() can, in
addition to its intended use by IBM, be used as a WIN-OS/2 detection method (a
Windows application running on the OS/2 Presentation Manager desktop might do
DDE with PM applications, for example):

BOOl IsWinOS2(void)
{

HANDLE hKernel = GetModuleHandle(IKERNEl");
return (GetProcAddress(hKernel, IREGISTERSHIElD") != 0);

}

Normally, the DOS version number would be used for OS/2 detection (OS/2
2.0 presents itself as DOS version 20.0, so INT 2Ih AH=30h would return I4h (20)
in an OS/2 2.0 DOS box). However, the DOS version number can be changed on a
case-by-case basis, so the IsWinOS2() function above might be worthwhile as an alter
nate check.

Support: WIN-OS/2

ReglsterWlnOldApHook KERNEL.343

BOOl FAR PASCAL Reg;sterW;nOldApHook(FARPROC FAR * newHooks, WORD fPrev;ous);

This function is passed a pointer to an array of function pointers. If fPrevious is non
zero, then the pointer containing the array addresses is overwritten with the previous
value. If called in Standard mode, it always returns TRUE. If called in Enhanced
mode, it always returns FALSE.

The passed-in function pointers are called by WIN0A286.MOD in Windows 3.0,
and by WINOLDAP.MOD in Wmdows 3.1. These are the Standard mode managers
for DOS executables. But exactly what these functions are for is not known, as

RegisterShield

350 UNDOCUMENTED WINDOWS

RegisterWinOldApHook() itself doesn't appear to be called from anywhere. Since
RegisterWinOldApHook() is in the WINEXEC module of KERNEL, perhaps it is
used to hook the WinExec() of "old apps" in Standard mode.

Support: 3.1

Replacelnst KERNEL.201

In Windows 3.x Standard and Enhanced modes, this function performs no operation
besides returning with a RETF 6.

Reserved1
Reserved2
Reserved3
Reserved4
Reserved5

KERNEL.77
KERNEL.78
KERNEL.79
KERNEL.SO
KERNEL.87

In Windows 2.1, five ANSI-character handling functions were located in KERNEL:
AnsiNext(), AnsiPrev(), AnsiUpper(), AnsiLower(), and lstrcmp(). In Windows 3.0,
these documented functions were moved to the Windows USER module. To avoid
breaking existing Windows 2.1 applications, however, these functions were left behind
in KERNEL, though with their names changed to discourage any new use of the ver
sions in KERNEL. The EXEUTIL -DIFFHDR program from chapter 2 reveals the
following:

2.1 KERNEL.77 was AnsiNext; 3.0+ KERNEL.77 is Reserved1
3.0+ USER.472 is AnsiNext

2.1 KERNEL.78 was AnsiPrev; 3.0+ KERNEL.78 is Reserved2
3.0+ USER.473 is AnsiPrev

2.1 KERNEL.79 was AnsiUpper; 3.0+ KERNEL.79 is Reserved3
3.0+ USER.431 is AnsiUpper

2.1 KERNEL.80 was AnsiLower; 3.0+ KERNEL.80 is Reserved4
3.0+ USER.432 is AnsiLower

2.1 KERNEL.87 was lstrcmp; 3.0+ KERNEL.87 is ReservedS
3.0+ USER.430 is lstrcmp

SelectorAccessRights KERNEL.196

WORD FAR PASCAL SelectorAccessRights(WORD wSel, WORD wOp, WORD wParam);

Replacelnst

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 351

SelectorAccessRights() gets or sets access rights and related information for a given
protected-mode selector. Access rights include the code/data and read/write permis
sion bits.

#define AR_GET 0
#define AR_SET 1

If (wOp == AR..-GET) then wParam is an ignored dummy value, and
SelectorAccessRights() returns the current access rights. If (wOp == AR..-SET) then
wParam holds new access rights, and the function returns zero.

The access rights returned from this function are a slight variation on those found
in a protected-mode descriptor and returned by the LAR (Load Access Rights)
instruction (the following description comes from Dan Norton's book Writing Win
dows Device Drivers):

BIT

o
1
2
3
4
5-11
12
13
14
15

MASK

1

2
4
8
10h

1000h
2000h
4000h
8000h

DESCRIPTION

(ignored) segment has been accessed
bit ON = if data, writeable; ifcode, readable
bit ON = if data, expand-down (stack); if code, conforming
bit ON = code; OFF = data
bit ON = not a system descriptor (e.g., call gate)
(ignored)
(unused)
(ignored)
if expand-down, must match bit 15
bit ON = limit has page granularity; OFF = byte granularity

For example:

#define RIGHTS(wSel)
#define IS_CODE(wSel)
#define IS_WRITEABLE(wSel)

(SelectorAccessRights«wSel), 0, 0»
(RIGHTS(wSel) & 8)
«! IS_CODE(wSel» && (RIGHTS(wSel) & 2»

Unfortunately, SelectorAccessRights() only tells you something about a selector
once you know that the selector itself is valid. SelectorAccessRights() is not useful for
verifying ifa specified selector is valid because the implementation in some versions of
KERNEL uses the LAR instruction without checking the Zero flag aftetward, thus
causing completely bogus access rights to be returned. For example,
SelectorAccessRights(1234, 0, 0) might return 4, whereas (assuming 1234 is an
invalid selector) you would want it to return 0; 4 is returned because it happens to be
sitting around in the AX register.

SelectorAccess Rights

352 UNDOCUMENTED WINDOWS

Validation of selectors should be done by directly using the LAR instruction and
checking the Zero flag (see the lar() function in HANDLES.C), or by using the Wm
dows 3.1 IsBadXXX functions.

Because other KERNEL functions (AllocCStoDSAlias, AllocDStoCSAlias, and
PrestoChangoSelector) are dedicated to aliasing code segments into data and data seg
ments into code, SelectorAccessRights() is probably best reserved for changing the
read/write permission of segments: it can be used to make data segments read-only or
code segments execute-only (no read). Also, the page/byte granularity bit may be of
interest as 32-bit Windows programs become more prevalent.

Support: 3.0, 3.1
See also: AllocCStoDSAlias, AllocDStoCSAlias, GetSelectorLimit, IsBadXXX, Pre
stoChangoSelector
Example: See the example for GetSelectorLimit; the example uses Selector
AccessRights() to get the byte/page granularity bit

Selector Table

Given a global memory handle, how do you find its corresponding Global Arena
structure? You could, of course, walk the linked list of Global Arenas each time, look
ing for one whose handle field (that is, the value at offset OAh in KRNL286 and 10h
in KRNL386) is identical to the handle you're holding. This would work, but it would
be very slow, and it certainly can)t be the method KERNEL itself uses; not even Win
dows is that ... (okay, we won't say it).

With KRNL286, given a global memory handle, you can get to its Global Arena
by taking the base address of the handle, subtracting 10h (the size of a Global Arena
header in KRNL286) from it, and creating a new selector that would point to the
Global Arena header. But this only works for the 16-bit KRNL286.

The 32-bit KRNL386 uses another data structure, called the Selector Table, to
make it easy to find the Global Arena for a given selector; the Selector Table essentially
contains a backlink from each selector to its Global Arena.

The Selector Table is located inside the Burgermaster segment; the KERNEL vari
able SelTableStart provides its address as a 32-bit offset into Burgermaster; this address
will generally be greater than 64K In Windows 3.1, SelTableStart and SelTableLen
are available as fields in THHOOK (see later discussion); in Windows 3.0, SelTableSt
art is the DWORD located at offset 326h in KRNL386's default data segment,
SelTableLen in the WORD at offset 324h. These values are hard-wired into
TOOLHELP.DLL and are therefore reliable.

Most of the code below just sets up IpSelTab as a far pointer to the selector table;
after that, the ARENA_FROM_SEL() macro takes a selector, masks the bottom three
bits, divides by two, and uses the resulting value as an index into the Selector Table.

Selector Table

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 353

II KRNL386 onLy
BYTE far *LpSeLTab;
WORD seL;
WORD SeLTabLeLen;
DWORD SeLTabLeStart;
WORD pGLobaLHeap;

if (GetVersion()
{

Ox0003) II Windows 3.0

extern DWORD FAR PASCAL GLobaLMasterHandLe(void);
II GetModuLeDGroup() -- see NULLSEG.C
WORD wKerneLDGroup = GetModuLeDGroup(GetModuLeHandLe(IKERNEL"), 0);
SeLTabLeLen = *«WORD far *) MK_FP(wKerneLDGroup, Ox324));
SeLTabLeStart = *«DWORD far *) MK_FP(wKerneLDGroup, Ox326));
pGlobaLHeap = HIWORD(GLobaLMasterHandLe());

}

else II Windows 3.1+
{

BYTE far *THHOOK = GetProcAddress(GetModuLeHandLe(IKERNELI),ITHHOOK");
SeLTableLen = *«WORD far *) &THHOOK[Ox16]);
SeLTabLeStart = *«DWORD far *) &THHOOK[Ox18]); II 32-bit offset
pGlobalHeap = *«WORD far *) &THHOOK[2]); II HIWORD(GlobalMasterHandle())

}

II SeLTabLeStart is a 32-bit offset into Burgermaster (pGLobalHeap).
II It wouLd be nice to say LpSeLTab = MK_FP(pGLobaLHeap, SeLTabLeStart),
II but most Windows code is 16-bit. So we instead alLocate a new
II seLector with the same base and Limit as the seLector tabLe
_asm mov seL, ds
seL = AllocSelector(seL);
SetSeLectorBase(seL, GetSeLectorBase(pGLobaLHeap) + SeLTabLeStart);
SetSeLectorLimit(seL, SeLTabLeLen);
LpSeLtab = MK_FP(seL, 0);
II LpSeltab is now far* to seLector table

II
#define ARENA FROM SEL(wSeL) \

*«DWORD far *) &LpSeLtab[(wSeL & OxFFF8) » 1])

II
DWORD dwArena = ARENA_FROM SEL(wSeL)
GLOBAL_ARENA_32 far *Lpga32 = MK_FP(dwArena, 0);
assert(wSeL == Lpga32->handLe);

Support: 3.0, 3.1
See also: Global Arena, Global Heap, THHOOK

SetPriority KERNEL.32

int FAR PASCAL SetPriority(HANDLE hTask, WORD wPriority);

SetPriority

354 UNDOCUMENTED WINDOWS

SetPriority() sets the "priority" field at offset 8 in the Task Database. Priority levels
range from -32 to 15. The Task Database list is kept sorted in priority order.

In practice, it appears that SetPriority(hTask, 0) forces the task to run next. Low
priority is 1, and seems to mean that the task almost never gets scheduled. For exam
ple SetPriority(GetCurrentTask(), 1) (actually, we could just say SetPriority(0, 1) since
oalways works to specify the current task) will completely lock up the system until you
either reboot, or pop into a debugger such as Soft-Ice for Windows and manually reset
the word at offset 8 in the given Task Database back to zero.

Support: 3.0, 3.1
See also: Task Database

SetSelectorBase KERNEL.187

WORD FAR PASCAL SetSelectorBase(WORD wSel, DWORD dwBase);

SetSelectorBase() is documented in Windows 3.1 but not in 3.0, where it also is pro
vided; it sets the linear base address of a specified protected-mode selector. Even
though the function has no useful return value, it is prototyped in the 3.1 WIN
DOWS.H as returning a WORD.

SetSelectorBase() is used, in conjunction with the SetSelectorLimit() and
AllocSelector() functions, to "map" memory into the address space of a protected
mode Windows program. For example, where a real-mode program could access
memory at location FFFF5h simply by forming the pointer FFFF:0005, a protected
mode Windows program must instead use a selector whose corresponding descriptor
has a base address and limit that includes the desired address. SetSelectorBase() pro
vides one very handy way to accomplish this. See the example that follows.

This function direcdy manipulates the Local Descriptor Table (LDT) and per
forms no error checking or validation of the selector you pass in; passing an invalid
selector (or even a valid GDT selector) can crash the machine. To understand the
implementation of SetSelectorBase(), it helps to know the layout of a protected-mode
descriptor (the LDT and GDT are just arrays of these descriptors):

o
2
4
5
6
7

WORD
WORD

BYTE
BYTE
BYTE
BYTE

limit 0..15
base 0 ..15
base 16..23
access rights
limit 16.. 19, rights (reserved 0 on 286)
base 24.. 31 (reserved 0 on 286)

Because each descriptor is eight bytes, and because the bottom three bits of a
selector are used to specify the privilege level (0-3) and the table (bit 2 ON means

SetSelectorBase

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 355

LDT, OFF means GDT), these bottom three bits can be masked off to turn the selec
tor into a descriptor-table offset:

SetSelectorBase proc far
, ...
push OS
mov ds, WIN_LOT
mov bx, wSel
and bx, -8
mov ax, word ptr dwBase
mov [bx+2J, ax
mov ax, word ptr dwBase+2
mov [bx+4J, al
mov [bx+7J, ah
mov ax, wSel
pop OS
, ...

SetSelectorBase endp

directly manipulate LOT
; wSel assumed correct
; turn selector into offset

; base 0 .. 15

; base 16 .. 23
; base 24 .. 31
; returns passed-in selector (yawn)

Thus, this function can only be used to set the base address for selectors belonging
to the LDT; it does not work with GDT selectors. Again, bit 2 is OFF in GDT selec
tors and ON in LDT selectors; for example, 0040h is a GDT selector and 0044h is an
LDT selector.

The specified base address is linear, not physical; if paging is on (either in Win
dows Enhanced mode or because a 386-based memory manager such as EMM386 is
present), linear addresses will not be equivalent to physical addresses. Use the Virtual
DMA Services (VDS; INT 4Bh) to access physical memory locations.

For most purposes, SetSelectorBase is functionally equivalent to the DPMI Set
Segment Base Address function (INT 31h AX=0007h), but it is easier to use from a
Windows program and possibly more portable (though it appears that all selector
manipulation functions, even documented ones, will be omitted from Win32).

Where possible, the Windows hard-wired selectors such as undocumented
_OOOOH or documented _B800H should be used instead of allocating a new selec
tor and setting its base with SetSelectorBase.

When fInished with the selector, you should free it with the documented
FreeSelector function.

Support: 3.0, 3.1
Used by: HEAPWALKEXE, WINDEBUG.DLL, WINMEM32.DLL
See also: AllocSelector (documented), FreeSelector (documented), SetSelectorLimit,
GetSelectorBase, _OOOOH
Example: The following program uses AllocSelector(), SetSelectorBase(), and
SetSelectorLimit() to map the Global Descriptor Table (GDT) into the program's
address space. Once mapped, the GDT can be mapped like any other block of data:

/* SETSBASE.C */

#include <windows.h>

SetSelectorBase

356 UNDOCUMENTED WINDOWS

#include IIwinio.h ll

#ifndef MK_FP
#define MK_FP(s,o) «void far *) «(DWORD) (s) « 16) I (0»)
#endif

/* undocumented functions */
extern WORD FAR PASCAL SetSelectorBase(WORD sel, DWORD base);
extern WORD FAR PASCAL SetSelectorLimit(WORD sel, DWORD limit);

typedef unsigned char DESCRIPTOR[8J; /* just for purposes of this sample */

typedef struct { WORD limit; DWORD base; } GDTR;

/* C wrapper for the Intel SGDT instruction; must compile with
286 instructions (-G2 in Microsoft C; -2 in Borland C++).
Places the Global Descriptor Table (GDT) base and limit into
the six-byte (FWORO PTR) structure pointed to by pgdtr */

void sgdt(GDTR far *pgdtr)
{

_asm les bx, pgdtr
_asm sgdt fword ptr es:[bxJ

}

main()
{

DESCRIPTOR far *gdt;
GDTR gdtr;
WORD sel;

1* get the linear base address and size (limit) of the Global
Descriptor Table (GDT), using the Intel SGDT instruction */

sgdt(&gdtr);

/* allocate a selector similar to our current DS
(i.e., a data selector) */

_asm mov sel, ds
if «sel = AllocSelector(sel» == 0)

fail(IICannot allocate a selector!II);

/* set the base and limit of the new selector */
SetSelectorBase(sel, gdtr.base);
SetSelectorLimit(sel, gdtr.limit);

/* we now have a selector that maps the GOT into our address
space; create a far pointer from this selector */

gdt = MK_FP(sel, 0);

/* the program now has a far pointer to the GDT and could
manipulate it just like any other data. Here, weill just
print out some values */

printf(IIGDT base=%08lx limit=%04x\n ll
, gdtr.base, gdtr.limit);

printf(IIGDT mapped as %Fp\n ll
, gdt);

SetSelectorBase

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 357

1* when done, free the selector! *1
FreeSelectorCsel);
return 0;

}

Running under Windows 3.0 Enhanced mode, the program produced the follow
ing output, indicating that the OllOh bytes (OlOFh + 1) at linear address 8010011Ch
were mapped in, and accessible to the program, with far pointer 14ED:OOOO:

GDT base=8010011c limit=010f
GDT mapped as 14ED:0000

SetSelectorLimit KERNEL.189

WORD FAR PASCAL SetSelectorLimitCWORD wSel, DWORD dwLimit);

SetSelectorLimit() is somewhat documented in Windows 3.1, but not in 3.0; it sets
the limit (last valid offset) for a specified protected-mode selector. Even though the
function has no useful return value, it is prototyped in the 3.1 WINDOWS.H as
returning a WORD. SetSelectorLimit() should be used in conjunction with
SetSelectorBase() and AllocSelector(); the same limitations noted for SetSelectorBase()
apply to SetSelectorLimit(), too.

This specified limit will almost always be a BYTE limit, that is, the offset of the last
valid BYTE within the segment. For example, if for some reason you want to be able
to *((WORD *) OxFFFF) on a segment, then you will need to give it a limit of
10000h; *((DWORD *) OxFFFF) would require a limit of 10002h. If somehow you
have a segment with PAGE (4K) rather than BYTE granularity (see Get
SelectorLimit() and SelectorAccessRights()), then the limit specified is of course a
PAGE limit.

The limit specified can be greater than 64K; however, there is an upper bound of
one megabyte, which you can verify by doing a SetSelectorLimit(wSel,
OxFFFFFFFFL) and then doing a GetSelectorLimit(wSel); the returned limit will be
OxFFFFOL. This upper bound is imposed by the format of a protected-mode descrip
tor, which only contains 20 bits of addressing. Segments greater than one megabyte in
size must have PAGE granularity. (See Extending DOS, chapter 1 for a more detailed
explanation.) -----

Some implementations of SetSelectorLimit() look like this (see the descriptor of
SetSelectorBase() for an explanation):

SetSelectorLimit proc far
, ...
push ds
mov ds, cs:WIN_LDT
mov bx, wSel
and bx, OFFF8h ; turn wSel into LDT offset

SetSelectorLimit

358 UNDOCUMENTED WINDOWS

mov ax, word ptr dwLimit
mov [bxJ, ax ; limit 0 •. 15
mov ax, word ptr dwLimit+2
and al, OFh ; truncate
and byte ptr [bx+6J, OFOh
or [bx+6J, al ; limit 16 .. 19
pop ds
, ...

SetSelectorLimit endp

In Windows 3.1, SetSelectorLirnit() instead uses the DPMI Get Descriptor (INT
31h AX=OBh) and Set Descriptor (INT 31h AX=OCh) functions. SetSelectorLirnit()
should be equivalent in functionality to the DPMI Set Segment Limit (INT 31h
AX=08h) function. However, KERNEL seems almost never to rely on one docu
mented DPMI function, when multiple DPMI functions, or avoiding DPMI alto
gether, will do. Go figure.

Support: 3.0, 3.1
See also: GetSelectorLimit, SelectorAccessRights, SetSelectorBase
Example: See SETSBASE.C in the example for SetSelectorBase

SetSigHandler KERNEL.140

WORD FAR PASCAL SetSigHandler(FARPROC newSignalHandler,
DWORD FAR * lpOldSignalHandlerAddress, WORD FAR * lpOldSignalType,
WORD signalType, WORD mustBeOne);

SetSigHandler() installs or removes a signal handler function for the currently running
task. This signal handler is not the same as the "task signal handler" installed by
SetTaskSignalProc. Instead, it is essentially a Ctrl-Break handler. See DoSignal() for a
description ofhow the SetSigHandler() installed callback is invoked.

The fourth parameter to SegSigHandler (called signalType here), determines how
the other parameters will be used. If signalType is 0, then the signal handler for the
task will point to a default signal handler that simply RETFs. If signalType is 2, then a
different handler is being installed.

Support: 3.0, 3.1
See also: DoSignal()
Example: See BREAK.C in the entry for DoSignal()

SetTaskQueue

HANDLE SetTaskQueue(HANDLE hTask, HANDLE hQueue);

SetSigHandler

KERNEL.34

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 359

SetTaskQueue() associates a specified Task Queue structure with a specified task; it
does this simply by placing its hQueue parameter in the hQ field at offset 20h in the
Task Database structure indicated by its hTask parameter. (If hTask is 0,
SetTaskQueue() operates on the current task.) The function uses XCHG to return the
previous value of the hQ field (or perhaps XCHG is just used to save a byte over
MOV, and returning the previous value is a side effect).

This function is used indirectly by the documented SetMessageQueue() function
in USER.

The calling function is responsible for preserving the linked list ofTask Queues (see
the wNext field at offset 0 in the Task Queue structure), and for setting the hTask field
at offset 2 in the Task Queue. SetTaskQueue() does not take care of these for you.

Support: 3.0, 3.1
Used by: InitApp (USER)
See also: GetTaskQueue, Task Database, Task Queue

SetTaskSignalProc KERNEL.38

FARPROC SetTaskSignaLProc(HANDLE hTask, FARPROC LpSignaLProc);

SetTaskSignalProc() allows an application to install a callback function for significant
events in the life of a task. That is, the callback function is called when the task is
about to be terminated (either willingly or unwillingly) and when a module is being
loaded or unloaded.

The hTask parameter specifies the task the callback is installed for (as in all KER
NEL functions that expect an hTask, zero can be used to specify the current task). The
other parameter is the far address of the new callback function. SetTaskSignalProc()
simply moves its IpSignalProc parameter into DX:AX and then does an XCHG with
the DWORD at offset 2Ah in the Task Database. The return value, if nonzero, will
thus be the address of the previous callback function; you can use this to "chain" from
your handler to the previous one.

The callback function will be called with an event code in the BX register. The
callback function is prototyped as:

void FAR PASCAL TaskSignaLCaLLback(
HANDLE hTaskOrModuLe,
WORD wCode, II Same as ex; see beLow
WORD unknown,
HANDLE hlnstance,
HANDLE hQueue
);

Known vaLues for ex and wCode:
0020h task is being terminated
0040h Library is being Loaded (CaLL to USER SignaLProc directLy)

SetTaskSignalProc

360 UNDOCUMENTED WINDOWS

OOSOh module is being unloaded <Call to USER SignalProc directly)
0666h task is terminating "violently" <i.e., a UAE)

For wCode 40h and BOh, only the hTaskOrModule parameter is significant; it
holds a handle to the module being loaded. Also in these two cases, the signal handler
installed by SetTaskSignalProc() is ignored, and the default signal procedure
(SignalProc() in USER) is always called (KERNEL does a GetProcAddress() for
SignalProc(), and then calls it direcdy!).

The fault handler in KERNEL contains the following code:

HANDLEFAULT:
, ...
moves, TASK_Q
cmp word ptr es:[SIGNAL_PROC+2J, a
je short no_sig-proc
mov bx, 666h
mov di, OFFFFh
push es
push bx
push di
push word ptr es:TASK_DS
push word ptr es:TASK_QUEUE
call word ptr es:SIGNAL_PROC

no_sig_proc:
mov ax, 4CFFh ; exit program
int 21h

ToolHelp uses a signal proc to watch for the beasdy wCode of 666h. When the
signal proc is called, ToolHelp closes down any notify and interrupt handlers belong
ing to the faulting task.

Support: 3.0, 3.1
See also: SignalProc (USER), Task Database

Task Database (TDB)

A task handle, such as that returned from the GetCurrentTask() function, is a handle
to a segment that contains information relevant to a particular instance of a program.
This segment is the Task Database, or TDB for short. Among the vital information
stored in a TDB is the current SS:SP of a nonactive task, the current state of the DOS
file I/O structures, and a protected-mode DOS Program Segment Prefix (PSP; per
versely called a Program Database or PDB in Windows). Because Wmdows is a multi
tasking system, each task must have its own "context." For example, it wouldn't do to
have one application change the current directory behind another program's back, so
KERNEL keeps multiple current directories, one per task. Where does it keep them?
In the Task Database.

Task Database (TOB)

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 361

The structure of the Task Database has proved remarkably consistent between
Windows 3.0 and 3.1, making it something that programmers can rely on relatively
safely.

A constant source of confusion among Windows programmers is the distinction
between a module handle, a task handle, and an instance handle. A module handle is a
handle to a Module Table; the Module Table contains information that can be shared
across multiple instances of an application. The Task Database, on the other hand,
contains information specific to each instance of the application. If you run four copies
of the Windows Notepad program, there will be one Module Table, but four different
TDBs, each with its own current directory, open files, and more.

Not every module table has associated Task Databases. Windows DLLs, such as
USER, KRNL386, GDI, and any other DLLs, have module tables, but they are not
tasks. DLLs are simply application code that didn't get linked until run time. If you
open a file while running in a DLL, the fue is actually being opened by the task that
called the DLL. Hence, the file handle is stored in the TDB for the calling task. If
another task uses the same DLL, there will be a different TDB in use, so the file han
dles from the first TDB are not available. (Alert readers might now be saying, "But file
handles are stored in the PSP!" Never fear. We'll come to that.)

An instance handle refers to a segment containing a DGROUP. In the case of a
DLL, there is only one DGROUP, no matter how many tasks access the DLL. On the
other hand, each running task has its own DGROUP (sometimes known as "instance
data," hence the name). As aresult, an hInstance is neither a task handle nor a module
handle. For tasks, the hInstance is stored as part of the TDB. For DLLs, the hInstance
is stored in the module table. In the previously mentioned Notepad example, there
will be four hInstances, each stored in a separate TDB.

As a side note, resources are shared across multiple instances of a task (via the
module table). Unfortunately, Microsoft chose to ask for an instance handle in its
resource using functions [DialogBox(), etc.] rather than a module handle. No infor
mation about resources is stored in the DGROUP or the Task Database. The Win
dows internals have to take the passed-in hlnstance and convert it to a module handle
before it can access the resources.

The Task Database is always allocated in conventional (low) memory, using
GlobaIDosAlloc(), because each TDB contains a DOS Program Segment Prefix (PSP;
called the PDB in Windows), which DOS can only access in the first megabyte of
memory. The PSP is formatted with the undocumented DOS Create PSP function
(INT 2Ih AH=55h). In Enhanced mode, the TDB is locked with the reserved DPMI
function INT 31h AX=4, so that it won't be paged out of memory. (The WISPy pro
gram in chapter 4 was used to watch KERNEL as it creates a TDB.) Note that the
TDB is created before a task starts running; the lnitTask() function (discussed else
where in this chapter) does not create the TDB.

All Task Databases are kept in a singly-linked list, whose root is returned in the
undocumented DX return value of the GetCurrentTask() function. The scheduler in
KERNEL appears to maintain this task list sorted in priority order (see SetPriority()).
When new tasks are being inserted into the list, there is a brief time during which it is

Task Database (TOR)

362 UNDOCUMENTED WINDOWS

unstable: the number of tasks found by walking the list does not equal the value
returned from the documented GetNumTasks() function (see the TASKWLK2 pro
gram in chapter 4).

The structure of the TDB appears in the header file TDB.INC, included with the
Windows 3.1 DDK. The Struct in TDB.INC contains some thread-related fields that
we haven't seen referenced; these appear as "Unknown" in the structure below. That
TDB.INC is included with the publicly-available DDK indicates that this structure is
unlikely to change. This impression is also left by the remark in TDB.INC, "Don't
you dare change anything in here or raor [Rao Remala?] will kill you; OLE depends
on this." (In 3.0, OLE has to know if a task died; in 3.1, it uses the documented
IsTask() function.) "

It is often claimed that the TDB Ic"ontains the CPU registers for a non-current
task, but this is not true. The TDB does however contain (at offset 2) the SS:SP stack
pointer from when the task was last switched away from, and the stack frame for a
non-current task contains the switched-away CS:IP, used by the ToolHelpStack
TraceFirst/Next functions (see chapter 10). The TDB does also contain (at offset
14h) the 80x87 control word.

Task Database format (Windows 3.0 and 3.1)

OFFSET

o
2
6

8
08
OA
OC
OE

14
16

18
lA
lC
IE
20
22
24
26

SIZE

WORD
DWORD
WORD
WORD
WORD
WORD
WORD
BYTE[6]

WORD
WORD

WORD
WORD
WORD
WORD
WORD
WORD
WORD
DWORD

DESCRIPTION

Selector ofnext task. 0 = end of list
SS:SP of the task when last switched away from
Semaphore (event count) used by PostEvent/WaitEvent
Priority
Priority

Unknown; always 0; TDB.INC says "next thread"
Selector for this TDB
Unknown; always 0; TDB.INC says "thread_list," "thread_free,"
and "thread_count"
80x87 control word (FLDCW/FSTCW)
TDB.INC says "task flags", with WINOLDAP=I, OS2APP=8,
and Win32s=10h (Win32s is Wind32 on top of 3.1)
Error mode; bit 1 (2h) indicates no "Display_Box_Of_Doom"
Expected Windows version for task
Instance handle for task
Module handle for task
Selector of the task message queue
Selector ofTDB ofparent task
Some sort of flag relating to SetSigHandler
SetSigHandler proc for task

Task Database (TOR)

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 363

2A DWORD Task signal proc
2E DWORD GlobalDiscard notification proc

32 DWORD Interrupt 0 handler address

36 DWORD Interrupt 2 handler address
3A DWORD Interrupt 4 handler address

3E DWORD Interrupt 6 handler address
42 DWORD Interrupt 7 handler address
46 DWORD Interrupt 3Eh handler address

4A DWORD Interrupt 75h handler address
4E DWORD Result ofGetProfile~t(modName, "Compatibility", 0) (3.1)
52 BYTE[OEh] Unknown
60 WORD Selector to PSP (PDB)
62 DWORD Far ptr to Disk Transfer Area (DTA) or cmdline in PSP
66 BYTE Current drive for task + 80h (80 =A:, 81 = B:, etc.)

67 BYTE[43h] Current path for task (see previous field for drive letter)
AA WORD hTask of task that is being DirectedYield()'ed to

AC WORD Selector for segment containing referenced DLL list.
Exists only before InitTask has been called.

AE WORD Offset of the DLL list in above segment.

BO WORD Code segment alias selector for this task database
B2 WORD Selector to segment with additional MakeProcInstance()

thunks; 0 if no segment necessary. Segment has the same basic
format as offsets B2h - Flh.

B4 WORD 'PT' (5450h) signature for MakeProcInstance thunks

B6 WORD Unknown; always 0
B8 WORD Next available slot for MakeProcInstance() thunk. Subtract

6 from this value to get the actual offset where the next thunk
will be stored.

BA BYTE[38h] Space for up to seven MakeProcInstance() thunks. Each thunk
contains the original parameters to MakeProcInstance:

mov ax, hlnstance
jmp far lpProc

F2 BYTE[08h] Module name for task. No terminating 0 character if the
module name is eight bytes in length

FA WORD 'TD' (4454h) Task Database signature

100 BYTE[IOOh] PSP for task. Word at offset 60h is a selector that points here.

Task Database (TOR)

364 UNDOCUMENTED WINDOWS

Comments:

o WORD

This is the selector of the next TDB in the system. Use the DWORD return value from
GetCurrentTask() to get the first TDB, and then use this field to traverse the system walk
list. A zero in this field marks the last task in the list. See GetCurrentTask(), discussed ear
lier in this chapter.

2 DWORD

Each task in the system has its own stack. Whenever Windows switches to a new task, the
stack registers are loaded from this DWORD.

6 WORD

This field is the number ofwaiting events for this task in the system message queue. This
field is not the same as offset 6 in the Task Queue. Instead, it can be thought of as a count
ing semaphore used between PostEvent() and WaitEvent(). See the entries in this chapter
for PostEvent() and WaitEvent().

8 WORD

This field is the task priority, manipulated with the SetPriority() function. Priorities can
range from -32 to 15, with lower numbers indicating higher priority. See the description
ofSetPriority(), discussed elsewhere in this chapter.

OC WORD

This field is the selector value for this Task Database. Because you already know this value
ifyou are reading this data, we presume it exists for sanity checks.

14 WORD

This contains the 80x87 control word (FLDCW) for the task. For a detailed discussion,
see Paul Bonneau's "Q&A" on floating-point exceptions, in Windows/DOS Developer}s
Journal, May 1992, pp. 55-59.

lA WORD

This field is the minimum Windows version under which a task expects to be running.
This information can also be found in the module table with which the task is associated.
It is in the same format as the return value from GetVersion().

lC WORD

This field is the instance handle (also known as the hInstance, or DGROUP) for the task.
The format of the DGROUP segment is covered earlier in this chapter, in the description
of the Instance Data structure.

lE WORD

The module handle (or hModule) for this hTask. As mentioned previously, it is possible
for multiple TDBs to contain the same hModule in this field.

Task Database (TDB)

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 365

20 WORD

Very early in the creation of a task, a Task Queue is created for it by a call to InitApp().
The message queue exists in a segment set up just for that purpose. This WORD contains
the selector for this segment. The message queue, among other things, stores the mes
sages that an application will be retrieving via GetMessage() or PeekMessage(). See the sec
tion on GetTaskQueue(), as well as the Task Queue description that follows.

22 WORD

The task handle for the "parent" of the task is stored here. Usually, the parent task is PRO
GMAN.EXE or another Wmdows shell. However, if a program uses WmExec() or
LoadModule() to run another program, the program will be listed as the parent task.
(What if the parent of a program such as PROGMAN that has been loaded via the
SHELL= statement? This is a special case; the parent task is a selector to a segment that
was allocated by KERNEL at startup time.) See the description ofWmExec() later in this
chapter for a sample use. Note that a parent task can terminate before its children; in this
case, the hParent field is no longer a valid task ill.

24 WORD

This field is some sort of "flag" value for the SetSigHandler() (whose address is stored at
offset 26h). If this value is not 2, the handler is not called.

26 DWORD

This field contains the address of a signal handler. This address can be changed via
SetSigHandler(), and the handler can be invoked via DoSignal(). The only known use of
this signal is by KEYBOARD.DRV, which uses it for sending a CTRL-BREAK. to an appli
cation. The default handler is in KERNEL and simply RETFs. Ctrl-Break handling can be
installed by calling SetSignHandler(); see the descriptions ofDoSignal() and
SetSigHandler() elsewhere in this chapter.

2A DWORD

Contains the address of a signal handler that's called when an application is about to be
terminated and during library loads/unloads. The address can be set via
SetTaskSignalProc(). Windows 2.x also had undocumented SetTaskSwitchProc() and
SetTaskInterchange() functions.

32-4A DWORD

Starting at offset 32h, there is a series of far function pointers that point to routines for
handling selected interrupts. The interrupts are:

o (Divide by 0)
2 (NMI, or nonmaskable interrupt)
4 (INTO)
6 (Invalid opcode)
7 (Coprocessor not available)

Task Database (TOR)

366 UNDOCUMENTED WINDOWS

3E (Used by floating point emulators)
75 (Coprocessor error)

The INT 0 handler usually points to a routine in USER that displays a message
box and then calls FatalAppExit. Programs that use WINS7EM will usually have the
INT 3Eh handler pointing into one of their code segments. In the rest of the cases,
the interrupt handlers point to a special segment belonging to KERNEL. This seg
ment is a code segment, but it is just a table of identical instructions (such as HLT),
one for each possible interrupt. The instruction is selected to force a transition to a
handler in Windows.

4E WORD

This field is only used in Windows 3.1. In the application's startup code, during the call to
lnitTask(), the field at offset 1Ah (the expected minimum Windows version) is examined.
If the value is 0300h (meaning that the application targets Windows 3.0), then the follow
ing call is made:

GetProfilelnt(moduleName, "Compatibility", 0)

The result of this call is stored in the field at offset 4Eh. The module name is extracted
from the module name field at offset F2h. See GetAppCompatFlags(), above.

60 WORD

This field contains the selector for one ofour favorite (and familiar) data structures.
Microsoft calls it the Program Database, but it is more familiarly known as the PSP, or Pro
gram Segment Prefix. It is essentially the same PSP that you'll encounter with a DOS pro
gram, including the file handle tables. However, fields in the PSP that contain segment
values under real-mode DOS contain protected-mode selector values here. As long as you
don't play games with segment arithmetic, or try to use the selector values with real mode
code, it's the same PSP you know and love (?!) from MS-DOS programming.

So where is the PDB itselfstored in memory? It never shows up in HeapWalker, but if
you look at TDBs, you'll notice that it's 200h bytes in size. The first 100h bytes are used
by the data fields being discussed here. The second half of the TDB contains the PSP
itsel£ The selector at offset 60h is just a selector with a base address IOOh higher than the
TDB's base address. Looking back, it seems like a pretty obvious place to put it.

62 DWORD

Contains a far pointer to the MS-DOS Disk Transfer Area (DTA). The default location for
the DTA is at offset SOh in the PDB (see offset 60h). This is identical to the default loca
tion of the DTA in DOS.

66 BYTE[44h]

Starting at offset 66h is the current default drive/directory. The first BYTE contains the
logical drive number, plus 80h. Thus, A: is 80h, B: is 8IH, etc. The drive is immediately

Task Database (TDB)

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 367

followed by the current path and is NULL-terminated. This is one of two places where
Wmdows maintains multiple current directories, on top ofa single copy ofMS-DOS. (The
other place is in Enhanced mode, where each virtual machine has its own complete virtual
DOS state.)

AA WORD

If a task calls DirectedYield(), the hTask to which it is yielding is stored in this WORD. If
a task does a normal Yield(), the value 0 is stored here. Don't look for this value to ever be
nonzero unless you're debugging the KERNEL scheduler. It's always set back to 0 before
the scheduler code exits.

AC DWORD

This field is only valid when the task has just been created and is zeroed out by the call to
InitTask(). It contains a selector:offset to a NULL-terminated list of module handles.
These module handles are for all the DLLs that this task is causing to be loaded. A helper
function called by InitTask() iterates through each of the module handles, calls routines to
find the entry point, and subsequently calls the DLL's initialization code. Ifany of the
DLLs cannot load, the task is terminated by a call to DOS EXIT (INT 2Ih AH=4Ch),
with a return code ofFOh. After all the DLLs have been loaded, the segment containing
the module handle list is GlobalUnlocked and GlobalFreed.

BO WORD

This field is a code segment alias for the TDB. Why a code segment alias? A good ques
tion, with a good answer. When a program calls MakeProcInstance() to create an
"instance thunk," the thunk is created in the TDB; to call the thunk, a code-segment alias
is necessary (protected mode, remember?).

B2 WORD

This field is a selector for a segment with additional MakeProcInstance() thunks. There is
a fixed amount ofspace for thunks in the TDB. If more thunks are requested than will fit
in the TDB, an additional segment is allocated, and the thunks are continued in the new
segment. The format of this segment is the same as the thunk section of the TDB (offsets
B2h-FIh). This field is 0 ifno segment has been allocated.

B4 WORD

As with many other Windows data structures, the MakeProcInstance() thunk portion of
the TDB has a signature byte to allow for sanity checking. The WORD value at this
address always contains 5450h, which appears as 'PT' when read as ASCII characters. Pre
sumably, this stands for something like "Procedure Thunks" or "Process Thunks."

B8 WORD

Ifyou subtract 6 from this WORD value, you'll have the offset where the next
MakeProcInstance() thunk will be placed. If this location contains 0, than all available
thunk spaces have been taken up. In this case, you must follow the linked list of
MakeProcInstance() thunk segments, the head ofwhich is given in offset B2h.

Task Database (TOR)

368 UNDOCUMENTED WINDOWS

A BYTE[38h]

At this location we find room to store seven MakeProcInstance() thunks. The thunks have
the following form:

MOV AX, hlnstance_value
JMP FAR lpfnProgramProcedure

; Second parameter to MakeProclnstance()
; First parameter to MakeProclnstance()

F2 BYTE[8]

This field is the name of the module from which the task was loaded. If the module name
is less than eight characters, the unused characters are NULL. Otherwise there is no
NULL terminator. A DLL or interrupt handler that wants to know what program it was
called from can call GetCurrentTask() and use this field to obtain the module name. Ifa
module handle is desired, the WORD at offset IEh can be used.

FA WORD

Here we find the WORD signature for a TDB. The value is 4454h, which, if read as
ASCII characters, displays as TD, for "Task Database" (or maybe someone at Microsoft is
a secret admirer of "Turbo Debugger").

100 BYTE[l00h]

Starting at offset IOOh is the full and complete PSP (PDB) for the task. This region can
also be accessed via the selector contained in the WORD at offset 60h. For the structure of
the PSP itself, see Undocumented DOS, particularly the entry for INT 2Ih AH=26h (Cre
ate PSP). Just remember that in Wmdows, it's a protected-mode PSP. See also Program
Database (PDB), in this chapter.

Example: The following program, WINTASK, illustrates both the Task Database and
Task Queue structures. WINTASK starts by displaying the handle and name of each
task running. More than one task can have the same name because each instance of a
running application, such as NOTEPAD below, has its own separate Task Database:

TASK HNDL
NOTEPAD 126F
WINFILE 179F
DRWATSON 1267
NOTEPAD 11AF
SH 12D F
WINOLDAP 141F
WINTASK 2007

If the user double clicks on any of these tasks, WINTASK brings up an additional
window with more information on the task. For example, clicking on WINFILE above
brings a window with additional information on the task running File Manager
(because it was started from the SHELL= statement, its hParent field has no associated
name and is not a valid task):

Task Database (TD8)

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 369

hTask
hlnstance
hModule
PD8/PSP
hParent
Current directory
SS:SP
Waiting system events
Priority
Expected Win version
SetSigHandler flag
SetSigHandler Proc
Signal Proc
Int 00 handler
Int 02 handler
Int 04 handler
Int 06 handler
Int 07 handler
lnt 3E handler
Int 75 handler

179F
16EE
053F (WINFILE)
1797 <- Double-click here for PSP display
0137 ()
C:\WINDOS
16EF:36EC
0000
0000
3.10
0000
0117:66A9
036F:09DE
036F:1E6F
0038:0004
0038:0008
0038:000C
0038:000E
0038:007C
003B:OOEA

Message Queue:
hQueue 0687
Queue Size 0008 messages
Message Size 0016
Waiting messages 0000
Next Message offset 00F2
Next Free message offset 00F2

Messages:
OFFS HWND
006E OFE4
0084 OFE4
009A OFE4
0080 17DC
00C6 17DC
OODC OFE4
00F2 OFE4
0108 OFE4

MSG
0118
0118
0118
0034
0113
0118
0118
0118

WPAR
FFFD
FFFD
FFFD
803C
0001
FFFD
FFFD
FFFD

LPARAM
036F36D8
036F36D8
036F36D8
00003898
00000000
036F36D8
036F36D8
036F36D8

TIME
0021F719
00221E5C
002245AO
00224DC7
00225248
00226CE3
0021A892
0021CFD6

POINT
314.237
314.237
314.237
314.237
314.237
92.218

314.237
314.237

Finally, clicking on the PSP in this window brings up yet another window with
some PSP information:

File handle count 001E
File handles:
27 15 01 00 02 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...

Command line ???

WINTASK.C uses three include files: TASKDB.H, TASKQ.H, and PSP.H. The
file TASKQ.H is presented later in this chapter, with the description of the Task
Queue structure.

Task Database (TOR)

370 UNDOCUMENTED WINDOWS

typedef struct
{

WORD next; II 0
DWORD sssp; II 2
WORD nevents; II 6
WORD priority; II 8
WORD unknown1; II A
WORD hTask; II C
WORD unknown2[3J; II E
WORD fpcw; II 14
WORD flags; II 16
WORD errmode; II 18
WORD expWinVer; II 1A
WORD hlnstance; II 1C
WORD hModule; II 1E
WORD hQueue; II 20
WORD hParent; II 22
WORD SetSigHandlerFlag; II 24
DWORD SetSigHandlerProc; II 26
DWORD signalProc; II 2A
DWORD gdiscardProc; II 2E
DWORD intOProc; II 32
DWORD int2Proc; II 36
DWORD int4Proc; II 3A
DWORD int6Proc; II 3E
DWORD int7Proc; II 42
DWORD int3EProc; II 46
DWORD int75Proc; II 4A
DWORD Comptability; II 4E
char unknown4[OxOEJ; II 52
WORD pdb; II 60
DWORD dta; II 62
BYTE currDrive; II 66
char currDir[Ox43J; II 67
WORD directedYieldHTask; II AA
WORD libraryListSeg; II AC
WORD libraryListOffset; II AE
WORD codeAlias; II BO
WORD moreProcThunks; II B2
WORD procThunksSig; II B4
WORD unknown6; II B6
WORD nextAvailableThunk; II B8
char procThunkData[Ox38J; II BA
char moduleName[8J; II F2
WORD signature; II FA

} TASK_DB;

II psp.h
typedef struct - PSP
{

WORD signature;
WORD lastBlock;
BYTE r1;
BYTE dispatch[5J;
DWORD int22;

Task Database (TOR)

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 371

DWORD
DWORD
WORD
BYTE
WORD
DWORD
WORD
DWORD
DWORD
BYTE
BYTE
BYTE
BYTE
BYTE
DWORD
BYTE
char

}PSP;

int23;
int24;
parent;
handles[20J;
environment;
saveStack;
handleCount;
handleTablePtr;
sharePrevPSP;
r3[20J;
int21Dispatch[3J;
r4[9J;
fcb1[16J;
fcb2[16J;
r5;
argLen;
args[127J;

// wintask.c
//=================================
// WinTask, by Matt Pietrek, 1992
// File: WINTASK.C
//=================================

#include <windows.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <dos.h>
#include "winio.h"

#include "taskdb.h"
#include "taskq.h"
#include "psp.h"

#define NE_SIGNATURE
#define TDB_SIGNATURE
#define TDB_SIGNATURE_OFFSET
#define TDB_MODULE_NAME_OFFSET
#define PSP_LENGTH
#define PSP_SIGNATURE

WORD WinVersion;

Ox454E
Ox4454
OxOOFA
OxOOF2
Ox0100
Ox20CD

//---
// Returns a BOOL indicating whether the passed
// in handle is an HTASK. In Windows 3.1, you
// could call IsTask()
//---
BOOL IsATask(HANDLE hTask)
{

WORD segLen;
BOOL segOK=FALSE;
WORD far *signature;

Task Database (TOR)

372 UNDOCUMENTED WINDOWS

II Make sure that it's ok to read from the passed in handle/selector
asm {

mov ax, [hTaskJ
cmp ax, 0
je mylabel
lsl bx, ax
jnz mylabel
mov [seglenJ, bx
mov [segOKJ, 1

}

myLabel:

II Make sure that the segment is Long enough, and then
II look for the TO signature
if (!segOK I I (seglen < TDB_SIGNATURE_OFFSET+2)

return FALSE;

signature = MK_FP(hTask, TDB_SIGNATURE_OFFSET);
return (*signature == TDB_SIGNATURE) ? TRUE : 0;

}

BOOl IsAPSP(HANDlE hPSP)
{

WORD seglen;
BOOl segOK=FAlSE;
WORD far *signature;

II Make sure
asm {

mov
cmp
je
lsl
jnz
mov
mov

}

that it's ok to read from the passed in handle/seLector

ax, [hPSPJ
ax, 0
mylabeL
bx, ax
mylabeL
[seglenJ, bx
[segOKJ, 1

myLabeL:
II Make sure that the segment is Long enough, and then
II Look for the TO signature
if (!segOK I I (segLen < PSP_LENGTH)

return FALSE;

signature = MK_FP(hPSP, 0);
return (*signature == PSP_SIGNATURE) ? TRUE 0;

}

11---/1 Given a moduLe handle, return the name
II of the module.
//---
char *GetModuleNameFromHandle(HANDlE handle)
{

Task Database (TDB)

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 373

static char name[129J;
char far *moduleTablePtr;
WORD residentNamesOffset;
BYTE cbModuleName;

name[OJ = 0; // Null out the return string

// create a pointer to the module table
moduleTablePtr = GlobalLock(handle);
GlobalUnlock(handle);
if (!moduleTablePtr)

return name;

// Verify that we're really looking at a module table, by
// looking for the NE signature. If we are, get the
// module name out of the resident names table.
if (*(WORD far *)moduleTablePtr == NE_SIGNATURE)
{

// Obtain the resident names table offset, and point to it
residentNamesOffset = *(WORD far *)(moduleTablePtr + Ox26);
moduleTablePtr += residentNamesOffset;

// Get the length of the first entry, which is always
// the module name.
cbModuleName = *(BYTE far *)moduleTablePtr;
moduleTablePtr++;

// Use the far string copy to move the name to our local
// buffer. Then null terminate the local buffer copy.
_fstrncpy(name, moduleTablePtr, cbModuleName);
name[cbModuleNameJ = 0;

}

return name;
}

//---
// Given a task handle, return back the name
// of the module that it's an instance of
//---
char *GetModuleNameFromTaskHandle(HANDLE hTask)
{

static char buffer[10J;
buffer[OJ = 0;
if (IsATask(hTask))
{

_fstrncpy(buffer, MK_FP(hTask, TDB_MODULE_NAME_OFFSET), 8);
buffer[8J = 0;

}

return buffer;
}

void DisplayMessage(MSG far *msg)
{

WORD offset = FP_OFF(msg);

Task Database (TOR)

374 UNDOCUMENTED WINDOWS

II If Win 3.1, adjust the offset to display the true
II start of the message
if (WinVersion == Ox030A)

offset -= 4;

printf("%04X %04X %04X %04X %08lX %08lX %4d.%d\n",
offset,
msg->hwnd, msg->message,
msg->wParam, msg->lParam,
msg->time, msg->pt.x, msg->pt.y);

}

#define WIDTH 25

void DoTaskQueue(HANDlE hQueue)
{

MESSAGEQUEUE far *mq;
WORD sel;
WORD msgCount;
MSG far *firstMsg;
char far *currMsgOffset;
BOOl win31=FAlSE;
WORD i;

if WinVersion > Ox030A)
{

printf("Cannot dump task queue. Windows version is too new\n");
return;

}

win31 = (WinVersion Ox030A)? TRUE FALSE;
sel = hQueue;
mq = MK_FP(sel, 0);
firstMsg MK_FP(sel, (win31) ? Ox6E : Ox5A);
msgCount = (mq->endOfQueue - FP_OFF(firstMsg» I mq->msgSize;

printf("%-*s%04X messages\n", WIDTH, "Queue Size n
, msgCount);

printf(I%-*s%04X\n", WIDTH, "Message Size ll
, mq->msgSize);

printf(II%-*s%04X\n ll
, WIDTH, "Waiting messages", mq->msgCount);

printf(II%-*s%04X\n", WIDTH, "Next Message offset", mq->nextMessageOffset);
printf("%-*s%04X\n", WIDTH,

"Next Free message offset", mq->nextFreeMessageOffset);
printf("\n");
printf("Messages:\n ll

);

printf(IIOFFS HWND MSG WPAR LPARAM TIME POINT\n");

currMsgOffset = (char far *)firstMsg;
if (win31)

currMsgOffset += 4;

for (;=0; i < msgCount; i++
{

DisplayMessage((MSG far *)currMsgOffset);
currMsgOffset += mq->msgSize;

}

Task Database (TOB)

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 375

printf("\n");
}

void DisplayTask(HANDLE hTask)
{

WORD sel = hTask;
TASK_DB far *tdb = MK_FP(sel, 0);

printf(It%-*s%04X\n", WIDTH, "hTask", tdb->hTask);
printf("%-*s%04X\n", WIDTH, "hInstance", tdb->hInstance);
printf("%-*s%04X (%s)\n", WIDTH, "hModule",

tdb->hModule, GetModuleNameFromHandle(tdb->hModule»;

printf("%-*s%04X <- Double-click here for PSP display\n",
WIDTH, "PDB/PSP", tdb->pdb);

printf("%-*s%04X (%s)\n", WIDTH, "hParent lt ,
tdb->hParent, GetModuleNameFromTaskHandle(tdb->hParent»;

printf("%-*s%c:%Fs\n", WIDTH, "Current directory",
(tdb->currDrive-Ox80) + IA I , tdb->currDir);

printf("%-*s%Fp\n", WIDTH, "SS:SP", tdb->sssp);
printf(II%-*s%04X\n", WIDTH, "Waiting system events", tdb->nevents);
printf("%-*s%04X\n", WIDTH, Itprioritylt, tdb->nevents);

printf(It%-*s%u.%02u\n", WIDTH, ItExpected Win version lt ,
HIBYTE(tdb->expWinVer), LOBYTE(tdb->expWinVer));

printf("%-*s%04X\n", WIDTH, "SetSigHandler flag", tdb->SetSigHandlerFlag);
printf(It%-*s%Fp\n", WIDTH, ItSetSigHandler Proc", tdb->SetSigHandlerProc);
printf("%-*s%Fp\n", WIDTH, ItSignal Proclt, tdb->signalProc);

printf(It%-*s%Fp\n lt , WIDTH, Itlnt 00 handler lt , tdb->;ntOProc);
printf(It%-*s%Fp\n", WIDTH, ItInt 02 handler", tdb->int2Proc);
printf("%-*s%Fp\n", WIDTH, "Int 04 handler", tdb->int4Proc);
printf("%-*s%Fp\n", WIDTH, "Int 06 handler", tdb->int6Proc);
printf("%-*s%Fp\n", WIDTH, "Int 07 handler", tdb->int7Proc);
printf("%-*s%Fp\n", WIDTH, "Int 3E handler", tdb->int3EProc);
printf("%-*s%Fp\n", WIDTH, "Int 75 handler", tdb->int75Proc);

printf("\nMessage Queue:\n");
if (tdb->hQueue)
{

printf("%-*s%04X\n", WIDTH, "hQueue", tdb->hQueue);
DoTaskQueue(tdb->hQueue);

}

else
printf("No message queue for task\n");

}

void DisplayPSP(HANDLE hPSP)
{

WORD i;
char c;
WORD sel hPSP;

Task Database (TDB)

376 UNDOCUMENTED WINDOWS

PSP far *psp = MK_FP(sel, 0);

printf(U%-*s%04X\n", WIDTH, IIFile handle count ll , psp->handleCount);

printf(IIFile handles:\n ll);
for (i = 0; (i < psp->handleCount) && (i < 20); i++)

printf(1I %02X II , psp->handles[iJ);
printf(lI\n ll);

, ,.. ,,. ')

printf("%-*sll, WIDTH, IICommand line", psp->handleCount);
if (psp->argLen == 0)

printf(lI<none>II);
else

for = 0; i < psp->argLen; i++)
{

c = psp->args[iJ;
c isascii(c)? (isprint(c) ? c
printf(lI%c", c);

}

printf("\n");
}

void TaskWalk(void)
{

HANDLE thisTask;
WORD far *signature;

II Undocumented way to get the first task in the system
GetCurrentTask();
asm mov [thisTaskJ, DX
if (!thisTask)

return;

II Turn off repaints while we output the info
winio_setbusy();
winio_setpaint(winio_current(), FALSE);

printf(IIDouble-Click on any line for detailed view\n\n ll);
printf(IITASK HNDL\n ll);

while (thisTask
{

II Verify that we're looking at a valid TDB
signature = MK_FP(thisTask, OxFA);
if (*signature != TDB_SIGNATURE)
{

printf(IIError in following task chain\n ll);
break;

}

printf(II%-8s %04X\n ll ,
GetModuleNameFromTaskHandle(thisTask), thisTask);

II Extract the next task in the linked list
thisTask = *(HANDLE far *)MK_FP(thisTask, 0);

Task Database (TDB)

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 377

}

II Turn the repaints back on
winio_resetbusy();
winio_home(winio_current(»;

}

void DumpPSP(HWND hwnd, LPSTR line, int i)
{

char moduleName[80J;
char buffer[80J;
HANDLE hPSP;
int returnCode;
HWND newWindow;

II Make a local copy of the line, and then extract the
II relevant info from the line.
_fstrcpy(buffer, line);
returnCode = sscanf(buffer, "PDB/PSP %x", &hPSP);

II Make sure that a valid line was pressed, and that the
II task still exists. Get out if either is not true
if (returnCode != 1)
{

MessageBox(NULL, "Not a valid line", "Error",
MB_OK I MB_ICONEXCLAMATION);

return;
}

if (!IsAPSP(hPSP))
{

MessageBox(NULL, "Task/PSP no longer exists", "Error",
MB_OK I MB_ICONEXCLAMATION);

return;
}

II Create the window for the PSP display. Give it
II an appropriate title.
GetWindowText(hwnd, buffer, sizeof(buffer»;
sscanf(buffer, "WinTask: %s", moduleName);
sprintf(buffer, "WinTask PSP: %S", moduleName);
newWindow = winio_window(buffer, Ox0400, WW_HASMENU);
winio_setcurrent(newWindow);

II Turn off repaints
winio_setbusy();
winio_setpaint(winio_current(), FALSE);

DisplayPSP(hPSP);

II Turn repaints back on, and position at the top of the info
winio_setpaint(winio_current(), TRUE);
winio_resetbusy();
winio_home(newWindow);

}

Task Database (TOR)

378 UNDOCUMENTED WINDOWS

void DumpTaskCHWND hwnd, LPSTR line, int i)
{

char moduleName[80];
char buffer[80];
HANDLE hTask;
int returnCode;
HWND newWindow;

II Make a local copy of the line, and then extract the
II relevant info from the line.
_fstrcpyCbuffer, line);
returnCode = sscanfCbuffer, II%S %x lI

, moduleName, &hTask);

II Make sure that a valid line was pressed, and that the
II task still exists. Get out if either is not true
if C returnCode != 2)
{

MessageBoxCNULL, IINot a valid linell, IIError ll ,
MB_OK I MB_ICONEXCLAMATION);

return;
}

if C !IsATaskChTask)
{

MessageBoxCNULL, IITask no longer exists ll , IIError ll ,
MB_OK I MB_ICONEXCLAMATION);nnnn

return;
}

II Create the window for the new task display. Give it
II an appropriate title.
sprintfCbuffer, IIWinTask: %Sll, moduleName);
newWindow = winio_windowCbuffer, Ox1000, WW_HASMENU);
winio_setcurrentCnewWindow);

II Turn off repaints
winio_setbusyC);
winio_setpaintCwinio_currentC), FALSE);

DisplayTaskChTask);

II Turn repaints back on, and position at the top of the info
winio_setpaintCwinio_currentC), TRUE);
winio_resetbusyC);
winio_homeCnewWindow);

winio_setlinefnCwinio_currentC), DumpPSP);
}

int mainCint argc, char *argv[])
{

II GetVersion returns in AX register. Flip the byte registers to
II produce a sensible version, with the major revision in ah, and
II the minor revision in AL. When done, store away in WinVersion.
GetVersionC);

Task Database (TDB)

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 379

asm
asm

xchg
mov

ah, al
rWinVersionJ, ax

II Create the list of tasks for the user
II to double click on.
TaskWalk();

II Install a double click handler
winio_setlinefn(winio_current(), DumpTask);

return 0;
}

WINTASK is structured much like the WINMOD program shown earlier in this
chapter in the Module Table example; WINTASK too is a WINIO program with
clickable-line handlers. The program's main() entry point installs DumpTask() as a
clickable-line handler, and calls TaskWalk() to print out a list of task names and han
dles. When main() returns, WINIO takes over. Any time the user clicks on a task, the
function DumpTask() is called.

DumpTask() verifies that the task still exists, creates a new window, calls Dis
playTask(), and installs DumpPSP() as a handler for a clicked-on PSP field. Dis
playTask() displays information on the selected Task Database. It calls DoTask
Queue() to display information on the associated Task Queue; for each message in the
queue, DoTaskQueue() calls DisplayMessage(). If the user clicks on a PSP,
DumpPSP() calls DisplayPSP() to show the PSP's file handles and command line.

Task Queue

Windows is often referred to as an "event driven" operating system (it's also referred
to as a lot of other things, but they're not printable). The events are in the form of
messages that are dispatched to window procedures. Messages can be delivered with
SendMessage(), which directly calls the appropriate window procedure (switching
tasks if needed), or with PostMessage(), which puts the message in a task's message
queue. Actually, SendMessage() can be a lot more complicated than a simple call, and
also uses the task queue; see below. This message queue resides in the Task Queue
structure, maintained by KERNEL.

Very early in the life of each task, a Task Queue is created when its startup code
calls the USER function InitApp(). The Task Queue resides in its own segment; the
WORD at offset 20h in the Task Database contains a selector to the Task Queue seg
ment. Functions such as GetTaskQueue() in KERNEL and InSendMessage() in
USER return a handle to a Task Queue.

A task dispatches messages to its various window procedures by calling the docu
mented USER function DispatchMessage(). The messages themselves thus originally
go to the task, not to the windows. In fact, you can get messages without even having
a window: the documented PostAppMessage() function posts messages by specifying

Task Queue

380 UNDOCUMENTED WINDOWS

an hTask rather than an hWnd. (While you can post messages to a task, though, you
can't send messages; that requires an hWndon the receiving end.)

Because messages are really posted to a task, not a window, it makes sense that the
Task Queue itself is a KERNEL rather than a USER data structure. On the other
hand, many routines inside USER have intimate knowledge of the Task Queue struc
ture; these include ReplyMessage(), InSendMessage(), GetMessageTime(),
GetMessagePos(), and PostQuitMessage(). In fact, some of the Task Queue fields
seem to belong exclusively to these USER functions. For example, one field (offset
28h in Windows 3.0, and 2Ch in 3.1) belongs to the PostQuitMessage() message
function.

Actually, it is difficult to decide whether the Task Queue is a KERNEL or a USER
data structure. Really, it's shared between the two modules, and in fact provides most
of the glue between KERNEL and USER. The GetTaskQueue() and SetTaskQueue()
functions are in KERNEL, but the Task Queue itselfis created by the InitApp() func
tion in USER (see chapter 6), so that GetExePtr(hTaskQ) == GetModuleHan
dle("USER").

Unlike the Task Database and other structures in Windows, the Task Queue does
not contain a "signature." This makes it difficult to write a fully-reliable IsTask
Queue() function. However, every Task Queue contains (at offset 2) a back pointer to
its Task Database, so this, along with the fact that Task Queues are owned by USER,
can be used to write a function that works well in practice:

BOOl IsTaskQueue(HANDLE h)
{

if (h == 0)
return FALSE;

if (GetExePtr(h) != GetModuleHandle("USER"»
return FALSE;

return (IsTask(*«WORD far *) MK_FP(h, 2»»;
}

Messages cannot be posted to a task which does not yet have a Task Queue, that
is, whose startup code has not yet reached the call to InitApp(). The GetTaskQueue()
function can be used to determine if a task's queue exists yet. In Windows 3.1, the
documented function GetSystemDebugState() can return the value SDS_NO
TASKQUEUE if the current task's queue does not yet exist.

All Task Queue segments are linked together in a list (see offset 0 in the struc
ture), and the root of the list is stored in USER's fixed (not DGROUP) data segment
(at offset E6h in 3.1). Task Queues are always allocated in low memory.

By default, the Task Queue can hold eight messages. However, this can be changed
with an undocumented (and not very useful) DefaultQueueSize= setting in WIN.INI.

The Task Queue segment contains not only the space for messages themselves to
be stored, but also other message-related information. For example, the documented
GetMessageTime() and GetMessagePos() functions produce their return values by
simply retrieving them from fields in the Task Queue. Windows API functions dealing

Task Queue

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 381

with messages can get most of what they need right from this structure; they don't
need much "outside" information. Any C++ programmer would instandy recognize
the Task Queue structure and code as an object just waiting to happen.

Each Task Queue includes near pointers that point into the actual message storage
area of the queue segment. The message storage area is very similar in concept to the
circular keyboard buffer maintained by the ROM BIOS. The near pointers in the mes
sage queue are vital to maintaining the correct message order and ensuring that the
buffer does not overflow.

If SendMessage() is called for a window that's in the same task, the message does
not go into the message queue; instead, Windows direcdy calls the appropriate Wm
dow procedure. However, when a SendMessage call needs to switch between two
tasks, the message parameters are stored in the message queue, though in an area sepa
rate from the queue ofposted messages.

Certain messages (such as mouse movement messages) are not stored in the task's
message queue. Instead, they are stored in a system-wide hardware-event queue man
aged by USER and are retrieved by the message functions when there are no events
left in the task's message queue. The system queue is set up and maintained by the
same code that handles the task queues, but the format of messages in the system
queue is different. (See System Message Queue in chapter 6.)

In the following list of the Task Queue fields, note that the structure splits at off
set lAh between Wmdows 3.0 and 3.1; also, fields whose use is unknown are not
listed.

Task Queue format

OFFSET

00
02
04

06
08
OA
OC
OE
12
16
18

SIZE

WORD
WORD
WORD

WORD
WORD
WORD
WORD
DWORD
DWORD
WORD
DWORD

DESCRIPTION

Selector ofnext message queue
hTask of task that owns this queue
Size of a message in this queue

Number ofmessages waiting to be retrieved

Offset ofnext message to be retrieved
Offset ofnext available message slot

Offset of the end of the queue
Value returned by GetMessageTime()
Value returned by GetMessagePos()

Reserved? Sometimes the offset of the last message retrieved
Information returned by GetMessageExtraInfo() in 3.1

-Win 3.0-
lA DWORD
IE WORD
20 WORD

SendMessage() IParam

SendMessage() wParam
SendMessage() msg

Task Queue

382 UNDOCUMENTED WINDOWS

22
28
2A
36
38
3A
3C
3E
42
44
5A

WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD

SendMessage() hWnd
PostQuitMessage has been sent flag-wPostQMsg
PostQuitMessage exit code-wExitCode
hInstance of task
Expected Windows version from NE file
InSendMessage return value (Task Queue ofsender, not BaaL)
Task Queue handle ofnext sender to reply to
Task Queue handle ofnext sender to be serviced
Queue status (see GetQueueStatus(), chapter 6)
Queue state flags
Start ofmessage area in Windows 3.0

-Wm3.1-
IE DWORD
22 WORD
24 WORD
26 WORD
2C WORD
2E WORD
36 WORD
38 WORD
3A WORD
3C WORD
44 WORD
42 WORD
6E WORD

Comments:

SendMessage() IParam
SendMessage() wParam
SendMessage() msg
SendMessage() hWnd
PostQuitMessage has been sent flag-wPostQMsg
PostQuitMessage exit code-wExitCode
Expected Windows version from NE file in Windows 3.1
InSendMessage return value (Task Queue ofsender, not BOOL)
Task Queue handle ofnext sender to reply to
Task Queue handle of next sender to be serviced
Queue status (see GetQueueStatus(), chapter 6)
Queue state flags
Start ofmessage area in Windows 3.1

00 WORD

This is the selector value for the next message queue. New entries are added to the list by
adding the queue to the front of the list.

02 WORD

Contains the TDB selector of the task that owns this queue. From KERNEL's perspective,
this seems silly because, to get a task queue, you need to have a TDB in the first place.
However, for USER this field plays a crucial role: the WND structure (chapter 6) contains
an hTaskQ, but not an hTask. Thus, to get the TDB corresponding to a WND (Le., the
operation of the documented GetWmdowTask() and undocumented
GetTaskFromHwnd() functions), the Task Queue itself must contain a backlink to its
TDB. Furthermore, InSendMessage() returns an hTaskQ, so *((WORD far *)

Task Queue

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 383

InSendMessage(), 2) gets the hTask of the sender. The SendMessage2() and ReplyMess
age() functions in USER use offset 2 in an hWnd's hTaskQ to get a TDB to pass to the
SetPriority() function. In other words, this field represents one of the crucial links in Win
dows.

04 WORD

This is the size of a message in this queue, in bytes. In windows 3.0, this size is 12h bytes,
which is exactly enough to contain a MSG structure (defined in WINDOWS.H). Under
Wmdows 3.1, this field contains 16h, with four unknown bytes, perhaps for
GetMessageExtraInfo(). In the System Message Queue (see chapter 6), this holds the size
ofan EVENTMSG structure (plus, in 3.1, the same four additional bytes).

06 WORD

This field contains the number of messages in the queue that have not been retrieved yet.
Note that this is completely different from the field at offset 6 in the Task Database struc
ture.

08 WORD

This field is the offset of the next message that will be retrieved by a GetMessage or
PostMessage. Every time a message is retrieved, this value is incremented by the WORD
value at offset 4. When this value reaches the end of the queue (see offset OCh), then it is
"wrapped" around to the lowest message slot offset.

OA WORD

This WORD contains the offset of the next available message slot in the queue. The mes
sage code inside of KERNEL will fail a call to PostMessage ifputting a message in the
queue would overwrite an earlier message that hasn't been retrieved yet.

OC WORD

This WORD points to the address immediately after the message storage area. By using
this value, along with the offset of the first message slot and the message size, it is possible
to figure out how many messages this queue can hold. The default is eight messages, but
it can be altered with SetMessageQueue() (which, in turn, calls SetTaskQueue() to create
a new Task Queue structure).

16h WORD

This meaning of this value is currently unknown, but in some queues it contains the offset
of the last message that was retrieved. At other times, it contains 0 or 1.

1Ah(J.0),1Eh(J.1) WORD

At this address, you'll find the parameters of the last SendMessage() to this task. The twist
is that the parameters appear in reversed order: IParam, wParam, msg, hWnd. When using
these values, bear in mind that SPY-like programs have a tendency to execute
SendMessages in a DLL hook procedure. In this case, the SendMessage() would be com
ing from the hooked windows task, rather then from the Spy task. Thus, it is possible to

Task Queue

384 UNDOCUMENTED WINDOWS

see values in this field that you wouldn't ordinarily expect to see coming from the applica
tion.

JAh (3.0), 31h (3.1) WORD

The InSendMessage() function is documented as returning a BaaL, but in fact it returns
a HANDLE: the Task Queue of the sender (see chapter 6). That is, the message recipi
ent's Task Queue contains the Task Queue of the message's sender. This can be used to
chase down the ultimate origin ofsent messages. (See SNOOP in chapter 4.)

3Ch (3.0), 3Ah (3.1) WORD

JEh (3.0), 3Ch (3.1) WORD

These fields also relate to SendMessage(). SendMessage() is often described as involving
just a simple far call to a WndProc, in contrast to the queueing mechanism used by
PostMessage(). But this simplicity is only present when a task calls SendMessage() to send
a message to a window in the same task. If sending messages to another task's window,
SendMessage() will involve a task switch, and will make heavy use of the Task Queue.

SendMessage() saves the task queue handle in the field at 3C/3A (task queue handle
ofnext sender to reply to) in the receiver's (send-to) task queue, then sets that field to the
current task queue handle; then it sets the field at offset 3E/3C (task queue handle ofnext
sender to be serviced) in the current (sent-from) task queue structure to the saved task
queue handle. This constitutes a LIFO queue for SendMessage calls. SendMessage() also
sets the field at offset 38/3A (task queue handle ofsender) in the receiver's structure.

42h (3.0), 44h (3.1) WORD

This field appears to contain a copy ofmany of the flags below (at offset 44h in 3.0 and
42h in 3.1), but it is reset to zero (using XCHG) when either GetInputState() or
GetQueueStatus() is called (GetInputState == GetQueueStatus & 5). The field would
therefore appear to signifY what has changed since either of the last of these was called. See
GetQueueStatus() in chapter 6.

44h (3.0), 42h (3.1) WORD

Queue state flags, indicating in shorthand, the types ofmessages in the queue, and other
information about the state of the task queue structure. The following bits are known:

QS_MSEWAITING (Ox0001).
QS_KBDWAITING (Ox0002).

QS_MSGPOSTED (Ox0004).
QS_TMRWAITING (Ox0008).

QS_PNTWAITING (Ox0010).

QS_NULWAITING (Ox0020).

A Mouse message is present in the queue.
A Keyboard message is present in the queue.

A Posted message is present in the queue.
A WM_TIMER or WM_SYSTIMER (see the entry in
chapter 7, and SetSystemTimer in chapter 6) message is
present in the queue.
A WM_PAINT message is present in the queue.
A WM_NULL message is present in the queue. See
DirectedYield() for an example ofwhy this message may
be present.

Task Queue

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 385

QS_SNDWAITING (Ox0040). The field at offset 3Ch is non-NULL, Le., a
SendMessage is pending.

QS_SNDCOMPLETE (Ox0080). SendMessage appears to wait until this flag is set
before returning.

QS_PARAMAREAFREE (OxOlOO). SendMessage appears to wait until this flag is set
before placing the message and parameters in the
receiver's task queue structure message area.

Support: 3.0, 3.1
See also: GetTaskQueue, SetTaskQueue, Task Database, GetQueueStatus (chapter
6), GetTaskFromHwnd (chapter 6), InSendMessage (chapter 6)

Example: See WINTASK.C in entry for Task Database. That program relies on the
following include file, TASKQ.H. Note that this structure only includes the fields
unchanged between Windows 3.0 and 3.1:

II taskq.h -- common fields for Windows 3.0, 3.1
typedef struct
{

WORD Next; II 0
WORD hTask; II 2
WORD msgSize; II 4
WORD msgCount; II 68
WORD nextMessageOffset; II 8
WORD nextFreeMessageOffset; II OA
WORD endOfQueue; II OC
DWORD GetMessageTimeRetval; II OE
DWORD GetMessagePosRetval; II 12
WORD messageQueueStart; II 16

} MESSAGEQUEUE';

THHook

THHOOK_STRUCT far *THHOOK;

KERNEL.332

THHOOK is not a callable function, but a far pointer to a structure ill KERNEL's
data segment. In a way, THHOOK is analogous to the MS-DOS List of Lists (INT
2Ih AH=52h, described in Undocumented DOS). Like the List of Lists, THHOOK
provides direct access to the system's internal variables.

"TH" stands for ToolHelp, which uses this entry point to access several key KER
NEL variables; this is the only thing it has in common with TooIHelpHook().

A program wishing to use THHOOK can use GetProcAddress to obtain the base
address of the structure:

THHOOK = GetProcAddress(GetModuleHandle(IKERNEL"), "THHOOK");

THHook .

386 UNDOCUMENTED WINDOWS

This function was not available in Windows 3.0, but don't despair just yet: in Wm
dows 3.0, this same structure exists at offset 10h in the KERNEL data segment. As
shown in the example that follows, in Windows 3.0, you can thus use
GetModuleHandle() and the hlnstance field in the module table to obtain the corre
sponding address in Windows 3.0.

Once your program has the THHOOK pointer, it can use the following offsets to
obtain the desired information. Most of the values in the THHOOK structure either
are available elsewhere or have a purpose that is unknown (the names comes from
CodeView symbols in a debug version of KERNEL from the Windows SDK):

OOh hGlobalHeap

This is the handle to the Global Heap information structure (BURGERMASTER). It is
identical to the LOWORD of the return value from GlobalMasterHandle().

02h pGlobalHeap

This is the selector of the Global Heap information structure (BURGERMASTER). It is
identical to the HIWORD of the return value from GlobalMasterHandle().

04h hExeHead

This is the handle to first Module Table in linked list of modules. It is identical to the
HIWORD of the return value from GetModuleHandle().

06h hExeSweep

This offset is unknown and doesn't appear to be used.

08h TopPDB

KERNEL's protected-mode PDB (PSP). It is identical to the HIWORD of the return
value from GetCurrentPDB().

OAh HeadPDB

This is a handle to the first PDB (PSP) in the list.

OCh TopSlzePDB

This offset is unknown and does not appear to be used; value o.
OEh HeadTDB

This is a handle (hTask) to first Task Database (TDB) in linked list of tasks. It is identical
to the HIWORD of the return value from GetCurrentTask().

10h CurTDB

This is a handle (hTask) to current Task Database (TDB). It is identical to the LOWORD
of the return value from GetCurrentTask().

12h LoadTDB

This offset is unknown and does not appear to be used, but it value is usually o.

THHook

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 387

14h LockTDB

This is a handle to locked task, or zero. It is identical to return value from IsTaskLocked().

16h SelTableLen (3.1)

This is the length of the selector lookup table (see Selector Table). In 3.0, this variable is
not located in THHOOK: instead, it is at KERNEL_DGROUP+324.

18h SelTableStart (3.1)

This DWORD is the address of the selector lookup table (see Selector Table), as a 32-bit
offset within the Burgermaster segment. In 3.0, this variable is not located in THHOOK:
instead, it is at KERNEL_DGROUP+326.

There are many other variables located further on in the table, but only the above
have been verified for both Windows 3.0 and 3.1. Other interesting variables in 3.1
include these:

20h WORD wWinVer useful for sanity checking
28h WORD hGDI
2Ah WORD hUSER
2Ch WORD hShell definitely 3.1 specific!

34h BYTE Graphics USER, KEYBOARD, GDI, DISPLAY
loaded?

44h DWORD Dressed_for_Success see InitTask1
48h WORD InDOS
5Ah WORD CurDTA Disk Transfer Area
5Eh WORD Cur_DOS_PDB
60h WORD Win_PDB for PSP switching
66h BYTE DOS_Version useful for sanity checking
67h BYTE DOS_Revision useful for sanity checking
69h BYTE !Novell Running under Novell
73h DebVar debug variables?
9Bh BYTE fFarEast Asian version ofWindows?

The above variables can change at any moment, perhaps even with minor slip
stream releases of Windows, and are probably highly unreliable. Some of the known
values (such as wWinVer, hGDI and hUSER, DOS_Version and DOS_Revision)
could perhaps be used to check if the offsets are moderately reliable. For example, if
pulling wWinVer out of the table produces different results from calling GetVersion(),
then everything in the table is clearly unreliable.

The FileCdr() function uses two variables which can be expressed as offsets from
THHOOK: see the description ofFileCdr() earlier in this chapter.

I

THHook

388 UNDOCUMENTED WINDOWS

Support: 3.1 (but see note and example for 3.0)
See also: GetCurrentTask, GetCurrentPDB, GetModuleHandIe, GlobalMasterHan
dIe, IsTaskLocked, Selector Table
Example:

1* THHOOK.C *1

#include <stdlib.h>
#include <dos.h>
#include IIwindows.h ll

#include ffwinio.h ff
#include IIhandles.h ll

typedef struct {
WORD hGlobalHeap;
WORD pGlobalHeap;
WORD hExeHead;
WORD hExeSweep;
WORD TopPDB;
WORD HeadPDB;
WORD TopSizePDB;
WORD HeadTDB;
WORD CurTDB;
WORD LoadTDB;
WORD LockTDB;
WORD SelTableLen;
DWORD SelTableStart;
} THHOOK_STRUCT;

maine)
{

II 0
II 2
II 4
II 6
II 8
II Oa
II Oc
II Oe
II 10
II 12
II 14
II 16
II 18

THHOOK_STRUCT far *THHOOK;
WORD wVers;

wVers = GetVersion();
if (wVers == Ox0003)
{

II 3.0

WORD wKernel, wKernelDgroup;
wKernel = GetModuleHandle(IIKERNEL II);
printf(IIKERNEL = %04x\n ll

, wKernel);
if (! (wKernelDgroup = GetModuleDGroup(wKernel»)

fail(IICan't get KERNEL DGROUplI);
THHOOK = MK_FP(wKernelDgroup, Ox10);

}

else II 3.1+
{

THHOOK = GetProcAddress(GetModuleHandle(ffKERNEL ff), IITHHOOK ff);
if (! THHOOK)

fail(IICan't locate THHOOKff);
}

THHook

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 389

printf(tlhGlobalHeap = %04xh\n tl , THHOOK->hGlobalHeap);
printf(tlpGlobalHeap = %04xh\n", THHOOK->pGlobalHeap);
printf("hExeHead = %04xh\n", THHOOK->hExeHead);
printf(lIhExeSweep = %04xh\n U, THHOOK->hExeSweep);
printf(UTopPDB = %04xh\n U, THHOOK->TopPDB);
printf(UHeadPDB = %04xh\n U, THHOOK->HeadPDB);
printf(tlTopSizePDB = %04xh\n", THHOOK->TopSizePDB);
printf(IIHeadTDB = %04xh\n", THHOOK->HeadTDB);
printf(IICurTDB = %04xh\n ll

, THHOOK->CurTDB);
printf(IILoadTDB = %04xh\n U, THHOOK->LoadTDB);
printf(IILockTDB = %04xh\n ll

, THHOOK->LockTDB);
printf("Se lTableLen = %04xh\n ll

, THHOOK->SelTableLen);
printf("S e lTableStart = %08lxh\n U, THHOOK->SelTableStart);

return 0;
}

Thunk

Windows programming books generally devote several pages to the subject of
"thunks." Unfortunately, these discussions were originally written for Wmdows real
mode and have not, in general, been adequately updated for protected mode. Fortu
nately, all that's required to bring these discussions up to date is to remove a lot of
material (protected mode has really simplified Windows programming by vastly reduc
ing the amount you need to understand about its internals).

There are three kinds of thunks; only one kind matters anymore. "Call thunks"
and "return thunks" are gone in protected mode; good riddance. Call thunks were
really just overlays with a fancy name and, in fact, used the exact same INT 3Fh mech
anism as the Microsoft linker's overlay manager. This is not necessary in protected
mode because the processor provides a Segment Not Present fault (INT OBh).

All that's left in protected-mode Windows are "instance thunks," created with a call
to MakeProclnstance(). Even these are less important now, as compilers such as Bor
land C++ have "smart callbacks" that make it unnecessary to call MakeProclnstance().
In fact, as we'll see on the following page, instance thunks were never necessary.

Multiple instances of a Windows program can be running at the same time. Each
has its own default data segment (DGROUP); the hInstance identifier is, in fact, noth
ing more than the value ofDGROUP for a given instance. Some mechanism is needed
so that, when Windows invokes a callback function (that is, uses your application as if
it were a subroutine library), the function can access the default data segment. But
we've just said that this data segment will differ for each instance of the program!

Compilers such as Microsoft C have a keyword _loadds that sounds as if it would
work in this situation: the DS register is automatically loaded with the value of
DGROUP on entry to the function; the value ofDGROUP is stored right in the code
as part of a MOV DS, SOME_CONSTANT instruction. But code in Windows is
shared between multiple instances, so having the value of DGROUP embedded right

Thunk·

390 UNDOCUMENTED WINDOWS

in the code segment obviously won't work; being in protected mode doesn't solve the
problem.

This is the problem that MakeProcInstance() is designed to solve. MakeProcInst
ance() has the following function prototype:

FARPROC MakeProcInstance(FARPROC lpProc, HANDLE hInstance);

The function takes a function pointer and an hInstance (the value of DGROUP
for a particular instance of a program) and returns an "instance thunk," which is
another function pointer, but one that somehow ties the passed-in procedure, IpProc,
to a particular instance of the calling program. How it does this is quite simple: an
"instance thunk" is eight bytes of code that contain the original parameters to
MakeProcInstance():

MOV AX, hlnstance
JMP FAR lpProc

The original function pointed to by IpProc must help too, by doing a PUSH
DS/MOV DS, AX in its prolog. (See the Microsoft SDK overview article, "Windows
Prologs and Epilogs.")

As noted earlier in this chapter, instance thunks are stored in the Task Database.
See the discussion of the Task Database, particularly offsets B2h, B4h, B8h, and BAh.

All the above sounds quite necessary: MakeProcInstance() is needed so that each
instance gets its own unique little header that Windows can patch. But as Michael
Geary explained in his documentation for FIXDS 2.0 (April 1989), these instance
thunks were never necessary!

So, all that work is necessary, right? Wrong. Despite all the work that
MakeProcInstance() and EXPORTS go through to put the correct value
into the DS register, THAT VALUE WAS JUST SITTING IN
ANOTHER REGISTER WAITING TO BE USED. Which register? SSe

Remember that in a Windows application, SS == DS. Let me repeat
that, SS == DS. Now, does any of the function prolog code or the instance
thunk code do anything to SS? Nope. Whenever any of your application
code is running, and whenever Windows calls one of your window func
tions or callback functions, 5S contains your data segment address. The
prolog code and instance thunks don't have anything to do with this; Win
dows' task manager puts the right value into SS before it lets your task run.
If it didn't, the SS == DS assumption would be violated.

You can probably guess by now what FIXDS does. It patches all FAR
function prologs to look like this:

mov ax, ss
nop
inc bp

Thunk

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 391

push bp
mov bp, sp
push ds
mov ds, ax

Now this prolog works for *all* FAR functions. Since SS, by definition,
always has the correct data segment value, this prolog will put the correct
value into DS. It doesn't matter whether it's a function you call directly or
whether it is called back from Windows....

The folks at Microsoft didn't believe me when I told them about the
technique that FIXDS uses. After studying it a bit, they realized that of
course it works. If it didn't, every application that's been compiled with the
SS == DS assumption would have failed. Perhaps there's hope that a future
version ofWindows or the C compiler will have something like this built in.

FIXDS is what you get when you use Borland C++ "smart callbacks." Essentially,
the value ofSS is copied into DS. Wouldn't it be nice ifWindows just did this to begin
with? MakeProcInstance() could just become an undocumented function, and new
Windows programmers wouldn't have to initiated into its mysteries.

All that's left is to explain the term "thunk" itself. While discussions of thunks can
be found in most books on programming-language theory and in books on Lisp (such
as the superb Structure and Interpretation ofComputer Programs by Abelson and Suss
man), the best definition of the term appears in Eric Raymond's New Hacker)s Dictio
nary (MIT Press, 1991).

ToolHelpHook KERNEL.341

FARPROC FAR PASCAL ToolHelpHook(FARPROC lpfnNotifyHandler);

This function is essentially a 3.1 replacement for RegisterPtrace(). Like
RegisterPtrace(), this function installs a notification-handling function that will be
called when interesting events occur. ToolHelp, which provides documented notifica
tion services, attempts to use TooIHelpHook(); only if it can't (3.0), does it call
RegisterPtrace().

RegisterPtrace() continues to exist alongside TooIHelpHook() in Windows 3.1,
but there are a few differences between the two worth noting. TooIHelpHook()
returns the address of the previously installed handler; RegisterPtrace() does not. This
allows a program to tap into the "notification stream," and, when it's done, restore
the previous notification handler.

Second, there are two new notifications specific to Windows 3.1 that can be
received:

ToolHelpHook

392 UNDOCUMENTED WINDOWS

66h - Log error
CX = Error code
DX:BX = pointer to error code dependent info

67h - Log param error
ES:BX = pointer to error structure
Error Structure :

WORD ErrorCode
DWORD lpfnErrorAddress
DWORD lpBadParameter

; NOTE: This is the NFYLOGPARAMERROR struct without size DWORD

For other notifications, see the description ofRegisterPtrace() earlier in this chapter.
Internally, KERNEL maintains two function pointers, one set via RegisterPtrace(),

the other set via TooIHelpHook(). Additionally, two flags are used to tell whether
RegisterPtrace() and ToolHelpHook have been called with nonzero parameters; call
ing RegisterPtrace() and TooIHelpHook() with a OL disables further notifications.

If both NotifyRegister() and ToolhelpHook() have been called, the order of call
ing the notification callback function varies. In most cases, the TooIHelpHook() call
back function is called, and the RegisterPtrace() function is not. However, for a
task-load notification (59h), both callbacks are called, and for an Asynch Stop notifica
tion (63h), the RegisterPtrace() callback is called instead of the TooIHelpHook() call
back.

Support: 3.1
See also: RegisterPtrace, ToolHelp (chapter 10)

UndefDynllnk KERNEL.120

If a Windows executable (application or DLL) contains a module.ordinal dynlink link
that can't be resolved, the KERNEL segment relocator calls UndefDynlink().
UndefDynlink(), in turn, calls FataIExit(), generating RIP ("rest in peace") code
404h.

For example, ifyour application contains a hard-wired (load-time) dynamic link to
a Windows 3.1 function but is run under Windows 3.0, UndetDynlink() will be called,
and your application will be terminated. This is a hazard of load-time dynamic linking.
Note that calling GetVersion(), and only calling the function if the appropriate version
of Windows is present, won't help: the problem isn't the actual call to the function,
but the dynamic link to it that's embedded inside the executable file.

To avoid calling functions that aren't present, and thereby avoid a possible
UndetDylink FatalExit, the solution is to use run-time dynamic linking:

#ifdef NOT_VERY_DYNAMIC
II use load-time dynamic linking; risk UndefDynlink FatalExit
extern WORD FAR PASCAL SomeWindowsAPIFunction(WORD wParam);
#else

UndefDynlink

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 393

II use run-time dynamic Linking; if functions return 0, handLe
II the probLem myseLf, or ask user what to do, etc.
static WORD (FAR PASCAL *SomeWindowsAPIFunction)(WORD wParam) = 0;
II
if (SomeWindowsAPIFunction == 0) II one-time initiaLization
{

HANDLE hModuLe = GetModuLeHandLe(LpSomeModuLeName);
if (hModuLe == 0) II not aLready Loaded; try to Load

hModule = loadLibrary(lpSomeModuLeName);
if (hModuLe == 0) II reaLLy can't find it

II can't find moduLe -- do something inteLLigent
SomeWindowsAPIFunction = GetProcAddress(hModuLe, LpSomeFunctionName);
if (SomeWindowsAPIFunction 0)

II can't find function -- do something inteLLigent
}

#endif
II •••
WORD wRet = SomeWindowsAPIFunction(wArg); II f(> equiv to (*f)()

Support: 3.0, 3.1

WaltEvent

BOOl FAR PASCAL WaitEvent(HANDlE hTask);

KERNEL.30

WaitEvent() is one of three functions that Windows application startup code must call;
the other two are InitApp() in USER and InitTask() in KERNEL. This startup code is
supplied by compilers for Windows, and is responsible for calling an application's
WinMain() function.

Though crucial to running applications under Windows, all three startup functions
(including WaitEvent()) were undocumented through Windows 3.0; they are now
documented in a 3.1 SDK Programmer)s Reference overviews article titled "Windows
Application Startup." A function prototype for WaitEvent() however, did, appear
(along with PostEvent() and the non-existent KillTask()) in the Windows 3.0 SDK
header file WINEXP.R, under the heading "scheduler things that the world knows
not." In addition, Borland c++ includes commented Windows startup code in the file
\BORLANDC\LIB\STARTUP\COW.ASM.

WaitEvent() checks if an event has been posted to the specified task (0 is used to
indicate the current task). If an event has been posted (see PostEvent(), described ear
lier in this chapter), WaitEvent() clears the event and returns control to the applica
tion. If no event has been posted (Le., the event counter at offset 6 in the Task
Database is zero), the function suspends execution of the application by calling the
internal KERNEL function Reschedule(), which is the Windows task scheduler.
WaitEvent() returns nonzero if Reschedule() scheduled another application; othelWise,
it returns zero:

WaitEvent

394 UNDOCUMENTED WINDOWS

extrn WAITEVENT:far
, ...
push 0
call WAITEVENT
or ax, ax
jnz resched ; nonzero if rescheduled (Open Tools)

WaitEvent() is used in startup code to clear the initial event that started the task. It
can also be used in conjunction with PostEvent(), as shown in the example below.
Note, however, that if you call WaitEvent() from an application that has the input
focus, do not expect to be able to manually switch away to another application so it
can call PostEvent(). Once an application is waiting, it really waits. The code that calls
PostEvent() must already be running in the background.

The "event" referred to here is really just the signaling of a semaphore, and it has
no relation to Windows messages; the semaphore is the WORD at offset 6 in the Task
Database. WaitEvent(), together with a timer, could be used as the basis for a Win
dows implementation of the OS/2 DosSemWait() function; PostEvent() could be
used to build something like DosSemWake().

For more information on WaitEvent() and PostEvent(), see Matt Pietrek's article
"Inside the Windows Scheduler," Dr. DobbJsJournal, August 1992.

Support: 3.0, 3.1
See also: PostEvent, Task Database
Example: The first instance of the following program, SEMTEST, starts up a second
instance using WinExec(argv[O]). The second instance blocks at random times by call
ing WaitEvent(); the first instance at random wakes the second instance at random
times by calling PostEvent().

1* semtest.c *1

#include <stdlib.h>
#include <time.h>
#include "windows.h"'
#include "winio.h"
#include "handles.h"

1* from WINEXP.H -- "scheduler things that the world knows not" *1
BOOl far PASCAL WaitEvent(HANDlE);
BOOl far PASCAL PostEvent(HANDlE);

void waste_time()
{

II waste a random amount of time

static time_t t = 0;
int i;

if (t == 0) II one-time initialization
srand(time(&t»;

for (i=rand(); i--;)

WaitEvent

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 395

GetVersion();
}

main(int argc, char *argv[])
{

extern HANDLE __hPrevInst; II in ARGCARGV.C
HANDLE hSecondInst, hSecondTask;
i nt i;

if (! __hPrevInst)
{

winio_settitle(winio_current(), IISEMTEST - First Task");
if «hSecondInst = WinExec(argv[O], SW_NORMAL» < 32) II fork

fail("Could not EXEC second task");
hSecondTask = hTask_from_hInstance(hSecondInst);
for (i=10; i--;)
{

waste_time();
puts(III'm about to wake second task ll

);

PostEvent(hSecondTask);
puts(III woke second task");

}

}

else II I must be the second task
{

winio_settitle(winio_current(), IISEMTEST - Second Task");
for (i=10; i--;)
{

waste_time();
puts("I'm about to wait ll

);

WaitEvent(O);
puts(IIThanks, I needed that ll

);

}

}

puts(lIdone");
return 0;

}

WinExec

WORD FAR PASCAL WinExec(LPSTR lpCmdLine, int nCmdShow);

Although WinExec() is, of course, documented (it would be difficult to get much
done in Windows if it wasn't), its return value is documented merely as a success/fail
ure indicator. In fact, ifWinExec() returns a number greater than 32, the number is
the DGROUP (hInstance) of the EXECed program. If WinExec() is used to start a
DOS program, the return value is an hInstance for WinOldAp. (For this reason,
WinExec() can return a value greater than 32 even if the DOS program did not suc
cessfully start: it still probably succeeded in starting the WINOLDAP program, and
this is what the WinExec() return value reflects.)

WinExec

396 UNDOCUMENTED WINDOWS

For example, Windows programs that EXEC other programs could possibly use
this return value to periodically check (once a second on a WM_TIMER, for example)
to see if the EXECed program has terminated; use the WinExec() return value along
with GetNumTasks(). Note, however, that hInstances can get reused in Windows.
Microsoft has a technical note ("How to Determine When Another Application Has
Finished," Q67673) that proposes several other, equally dubious techniques. A better
approach is provided by Walt Oney's ExecWait() function, which uses the ToolHelp
NotifyRegister() function to wait for NFY_EXITTASK (see "Parlez-vous Windows?,"
Windows Tech Journal, April 1992).

In any case, there are other uses for the WinExec() return value. Windows pro
grams that trap interrupts can call GetCurrentTask() at the time the interrupt occurs
(given the utter simplicity of GetCurrentTask(), it can safely be called at interrupt
time), and then use the HINSTANCE_FROM_HTASK() macro in the introduction
to this chapter to compare against the WinExec() return value. For example:

HANDLE hInstanceOfSomeApp = WinExec(ISomeApp", SW_NORMAL);
II ...
void interrupt far some_interrupt_handler(REGS r)
{

if (HINSTANCE_FROM_HTASK(GetCurrentTask(» hInstanceOfSomeApp)
II we are interested in handling this interrupt
do_something(&r);

else
II this is from some other app we don't care about
_chain_intr(previous_handler);

}

In summary, the WinExec() return value provides a handle to whom you
EXECed. Ifyou need a handle ofwho EXECed you, check out the hParent field at off
set 22h in the Task Database, described earlier in this chapter. For example:

1* error checking omitted for brevity *1
#define GetParentTask(hTask) \

(*«WORD far *) MK_FP(hTask, Ox22»)

GetTaskName(HANDLE hTask, char *buf)
{

_fstrncpy(buf, MK_FP(hTask, OxF2), 8);
buf[8J = '\0';

}

II who EXECed me?
char buf[9J;
GetTaskName(GetParentTask(GetCurrentTask(», name);
printf("My parent is %s\n", buf);

Note, however, that a parent task can exit before its children, making the hParent
field invalid. You really do need to check for this to make any of the above meaningful:
see the IsValidTask() function in HANDLES.C.

WinExec

CHAPTER 5 • KERNEL: WINDOWS SYSTEM SERVICES 397

WlnOldApCal1

void FAR PASCAL WinOldApCall(WORO wMode);

KERNEL.151

"Old apps" is what Microsoft has called DOS applications since the mid-1980s (funny,
DOS still hasn't disappeared!). WinOldApCall() is called by the Wmdows
WINOLDAP module; it is not a routine to call WINOLDAP. WinOldApCall() is
called by the Standard mode version of WINOLDAP, WIN0A286.MOD (3.0) or
WINOLDAP.MOD (3.1), but not by the Enhanced mode version, WINO
A386.MOD.

IfwMode is nonzero, all cached files currently open are closed. IfwMode is zero,
then several KERNEL internal variables are loaded into registers before returning.
Aside from WmOldApCall() itself, the names in the following pseudo-disassembly are
not exported from KERNEL; they are available only in debug versions of KERNEL
with CodeView symbols:

WINOLOAPCALL proe far
, ...
cmp word ptr wMode, 0
je short load_regs
push WIN_POB
push TOPPOB
call far ptr CLOSECACHEDFILES
pop WIN_POB
jmp short done

load_regs:
mov ax, SELLOWHEAP ; selector to lower-640k heap?
mov bx, CPLOWHEAP
mov ex, SELHIGHHEAP
mov dx, SELWOAPOB ; PSP for use by WINOLDAP?
mov di, FILEENTRYSIZE

done:
, ...

loc_2747:
pop ds
retf 2

WINOLDAPCALL endp

The values of the returned variables are meaningful only in Standard mode.

Support: 3.0, 3.1

WrlteOutProfiles

void FAR PASCAL WriteOutProfiles(void);

KERNEL.315

WriteOutProfiles() flushes .INI (profile file) changes out to disk. This function is
called in the KERNEL INT 21h handler, during a task switch and inside the

WinOldApCall

398 UNDOCUMENTED WINDOWS

ExitKernel() function. Note that it is not called from WriteProfileString(); thus, .INI
file changes are momentarily cached. Note also that WriteOutProfiles() is called by
DOS3Call(), but not by NoHookDOSCall().

Support: 3.1
See also: NoHookDOSCall

WriteOutProfiles

CHAPTER • 6

USER: Microsoft Windows User Interface

USER is the largest of the core modules ofWindows. Probably close to two-thirds of
the functions called from a typical application are exported from USER. It contains
the window manager and the messaging subsystem, on which applications that run in
the Windows environment are founded. It also manages menus, controls, dialog
boxes, timers, and many other general services of mundane but central interest to all
application programs.

The USER.EXE module is shipped in a debug version with the Microsoft SDK
This is considerably larger and slower than the retail module, as are the debug versions
of KERNEL and GDI, but unlike those modules, USER data structures do not
change in the debug version. Nor do any of the undocumented features of USER
need any direct awareness of either processor or mode, a logical development for a
module that presents an interface at this level. However, some structures have been
altered between versions 3.0 and 3.1; therefore, the same general caveats concerning
direct manipulation of undocumented structures apply here, as in the introduction to
the previous chapter, though to a lesser extent. And again, you will see in some of
these structures a gold mine of information unavailable from any other source that
may make it worthwhile or essential that you use them.

USER Data Structures
Behind each of the many types of documented and undocumented handles that
USER recognizes is an internal, undocumented structure. As in the other modules,
the handles are returned by documented functions and are the means by which struc
tures are hidden. The classic example in USER is the CreateWindow function that
returns an HWND, perhaps the most universal ofWindows currencies. The structure
for which the HWND is a handle (which we have dubbed, perhaps unsurprisingly,
the WND) is not documented, and it is the only USER structure that has changed

399

400 UNDOCUMENTED WINDOWS

extensively between versions 3.0 and 3.1. Microsoft could not have changed a docu
mented structure in that way for version 3.1 and still allowed 3.0 applications to run.

As an example of the norm, however, the undocumented DragObject function
sends messages to accepting windows with a handle to an undocumented structure
(DRAGINFO) as its wParam. Even though the drag-and-drop protocol is superseded
in version 3.1 by one that uses a documented function and handle interface, the 3.0
protocol, and its undocumented structure, continue to be supported, virtually
unchanged, in version 3.1.

These are some of the most important structures covered in this chapter:

• Window information and state structure (WND)
• Class information for a window instance (CLASS)
• Menu and item structures (MENU)
• Drag-and-drop information in 3.0 (DRAGINFO)
• Drop data used in documented 3.1 drag-and-drop (DROPINFO)
• Cursor and icon in-memory resource information (CURSORICONINFO)

USER Heaps

As will be described in greater depth in the USER Objects entry, USER handles fall
into two groups: those that are essentially global memory handles, such as HICON
and HCURSOR, which are allocated using GlobalAlloc or DirectResAlloc; and those,
such as HWND and HMENU and the undocumented HCLASS (see the WND entry
later in the chapter) that are near pointers to blocks of memory in USER's local heap
containing the associated object structures, allocated using LocalAlloc. By default, a
Windows executable has a single default heap segment. It is a 16-bit segment, so it can
be a maximum of 64K in size. Since Window and Menu structures, as we will see, are
the most frequently needed USER objects, and since their handle types are pointers
into this one 64K segment, it is not difficult to imagine how a few resource-intensive
applications could quickly· consume USER's heap.

In version 3.0, as can be verified by using the USERWALK program described
later, USER actually has two heap segments. The default heap is used for storage of
USER objects, as described above, and the second is used for the Global Atom table
and USER string storage. The documented GlobalAddAtom, GlobalDeleteAtom, and
GlobalFindAtom functions operate on this alternate heap segment. Within USER,
however, there is also a set of unexported Textxxx functions that operate on this sec
ondary heap. TextAlloc and TextFree (these names are presumed, not known) switch
DS to this alternate heap segment before calling the KERNEL LocalAlloc and
LocalFree functions, respectively.

It is obvious that this shared use of the Global Atom segment was intended to
remove the possibility of a system resource crunch. It is also apparent from the addi
tion of two more heap segments in version 3.1 that it did not remove the problem but
simply eased or delayed it a little.

CHAPTER 6 • USER: WINDOWS USER INTERFACE 401

The USERWALKprogram's Analyze Heap option, when run in version 3.0, shows
why at least one object type has been broken out into its own heap in version 3.1:

User Heap Analysis
Heap at 06F5 is 31526 bytes:

NORMAL Total: 3658 bytes (11%)
Class Total: 1852 bytes (5%)
Window Total: 8116 bytes (25%)
Menu Total: 10292 bytes (32%)
FREE 7608 bytes (25%)

Heap at 07E5 is 4208 bytes:
NORMAL Total: 4184 bytes (99%)
FREE 24 bytes (1%)

Total USER memory in heaps is 35734 bytes

In the above display, the first heap is the default heap, and the second is the
Global Atom/Text heap. Microsoft Word for Windows, File Manager, Program Man
ager, and the SDK Dialog Editor were all loaded. Menus account for more of the
USER heap than Window and Class structures combined. This is especially astonishing
in that the Program Manager configuration that was running contained several pro
gram group windows, each of which had more than 20 applications in it. In version
3.0, Program Manager allocates a window for every program icon in every active (not
minimized) program group.

As a result, in version 3.1 menu structures are stored in a separate heap, greatly
improving system resource availability. Note that the corresponding USERWALK
Heap Analysis display for version 3.1, with the same applications running as above,
appears to show a small part of the menu heap being used by menus:

User Heap Analysis
Heap at 0790 is 8588 bytes:

NORMAL Total: 1716 bytes (19%)
Class Total: 1416 bytes (16%)
Window Total: 2628 bytes (30%)
FREE 2828 bytes (33%)

Heap at 0200 is 3476 bytes:
NORMAL Total: 3412 bytes (98%)
FREE 64 bytes (2%)

Heap at 0310 is 1296 bytes:
NORMAL Tota l : 376 bytes (29%)
FREE 920 bytes (71%)

Heap at 0325 is 9536 bytes:
NORMAL Total: 7440 bytes (78%)
Menu Total: 908 bytes (9%)
FREE 1188 bytes (13%)

Total USER memory in heaps is 22896 bytes

402 UNDOCUMENTED WINDOWS

This is due to the fact that, in version 3.1, the menu item structure array has been
broken out into a separate allocation (see the Menu object entry later in this chapter),
and only the menu header structure is identifiable. In fact, the whole of that heap is
used for menu structures.

Another indication of the resource appetite of menus is the separating out of
menu item strings into their own heap in version 3.1, bringing the heap total to four.
This menu strings heap, at 2DDh in the previoua display, contains only menu item
strings and is responsible for 3.4k of the total 18k allocated heap space.

It should be noted that a fifth USER heap segment has also been seen while run
ning USERWALK. Although it is not known what it is used for, it never contains any
of the currently recognized USER object types and is transient in nature; it is often
not present but may be allocated, used, and then freed.

USER Objects

USER has a number of important structures that are undocumented but accessible.
These include the window class, window instance, property, menu, menu item, cursor,
icon, drag-and-drop, and the system message queue. There are certainly others, but
they are less important and less accessible.

The structures listed above fall into two categories: those that reside in the global
heap and those that reside in a USER local heap segment.

C/obal Heap Objects
What char!lcterizes these structures is that they are relatively stable; they are not fre
quendy allocated and freed. Their location on the Global Heap avoids any problems
associated with local-heap overload.

Cursors, Icons Described in the CURSORICONINFO structure entry
(CURSICON.H). Examples ofits use are given in the
CreateCursor, IconIndirect, and DumpIcon entries.

Drag and Drop Described in the DRAGINFO and DROPINFO structure
entries (DRAGDROP.H). Examples of their use are given in
the DragObject entry.

Message Queue Described in the Task Queue structure entry in the KERNEL
chapter (TASKQ.H).

System Message Queue Described in the System Message Queue entry.

User Local Heap Objects
Structures stored in USER's local heap space are an essential element in what are
termed System Resources, which were discussed at some length in chapter 1. Free Sys
tem Resource availability has been perceived by Microsoft as being a problem that lies
mainly in USER; between versions 3.0 and 3.1, USER grew at least two extra heap

CHAPTER 6 • USER: WINDOWS USER INTERFACE 403

segments. Many of the structures stored in USER's local heaps, though by no means
all, are frequently created and destroyed, and are required to be always quicklyaccessi
ble in order for Windows performance to remain acceptable.

Class described in the CLASS structure entry
Windows and Properties described in the WND structure entry
Menus and Items described in the MENU structure entry

All the above structures and associated constants and flags are available in USER
OBJ.H:

1* WND.H *1

#define
#define

CLASS_MAGIC
MENU_MAGIC

Ox484E
Ox554D

II NK
II MU

1* === UNDOCUMENTED STRUCTURES === *1

II Window class structure held in USER's near heap

typedef struct {
HANDLE hcNext;
WORD wSig;
ATOM atomCls;
HANDLE hDCE;"
WORD cClsWnds;
WNDCLASS wCi
WORD eExtra[1J;
} CLASS, NEAR * HCLASS;

II OOh Next entry in the class linked list
II 02h Should contain Ox4b4e ("NK")
1/ 04h Atom for class name string (USER heap)
1/ 06h Handle to DCE when CS_CLASSDC, or NULL
II 08h Count of windows with this class
II OAh Incomplete copy from RegisterClass
// 24h Class extra user data from here

// Window structure for 3.0 held in USER's local heap

typedef struct {
HWND hwndNexti
HWND hwndChild;
HCLASS hClass;
HANDLE hProPi
HWND hwndLastActive;
HANDLE hScroll;
HANDLE hmemTaskQi
HRGN hrgnUpdate;
HANDLE hDCE;
HMENU hmenuSystemi
HWND hwndOwner;
RECT rectWindowi
RECT rectClienti
HPALETTE hPalettei
WORD wFlagsi
DWORD rgfExStyle;
DWORD rgfStylei
WORD wID_Menui
HANDLE hText;

II DOh Next in top level window linked list
II 02h first child window
1/ 04h Class info for this window
II 06h Handle of property list
1/ 08h hwnd of last active popup
// OAh USER local handle used for scrolling?
// OCh Window task/application message queue
II OEh Current invalid region for window
II 10h handle to DCE when CS_OWNDC, or NULL
1/ 12h System menu handle
II 14h Owning application window
II 16h Non-client window coordinates
II 1Eh Client window coordinates
II 26h Logical palette used during paint
II 28h bits 9/10 used in WM_USER+260 drag/drop
II 2Ah
II 2Eh
II 32h ID if control otherwise menu handle
1/ 34h handle of window text in text heap

404 UNDOCUMENTED WINDOWS

HWND hwndParent;
HANDLE hInstance;
FARPROC lpfnWndProc;

II 36h for child windows
II 38h application instance handle
II 3Ah ProcInstance of WndProc for window
II 3Eh user data area (array size >= 0)

} WND_3_0 1* , NEAR * HWND *1 ;

II Window structure for 3.1 held in USER's local heap
II Note that, for no apparent reason, all fields in the structure
II apart from the first two, which provide navigation through the
II window hierarchy, have changed position, including those accessible
II by GetWindowWord/GetWindowLong.

II OOh Next in top level window linked list
II 02h first child window
II 04h
II 06h for child windows
II 08h Non-client window coordinates
II 10h Client window coordinates
II 18h Window tasklapplication message queue
II 1Ah
II 1Ch Class info for this window
II 1Eh application instance handle
II 20h ProcInstance of WndProc for window
II 24h
II 28h
II 2Ch
II 30h ID if control otherwise menu handle
II 32h handle of window text in text heap
II 34h USER local handle used for scrolling
II 36h handle of property list
II 38h hwnd of last active popup
II 3Ah System menu handle
II 3Ch user data area
* HWND *1 ;

struct {
hwndNext;
hwndChild;
hwndParent;
hwndOwner;
rectWindow;
rectClient;
hmemTaskQ;
hrgnUpdate;
hClass;
hInstance;
lpfnWndProc;
dwFlags;
rgfStyle;
rgfExStyle;
wID_Menu;
hText;
hScroll;
hProp;
hwndLastActive;
hmenuSystem;

typedef
HWND
HWND
HWND
HWND
RECT
RECT
HANDLE
HRGN
HCLASS
HANDLE
FARPROC
DWORD
DWORD
DWORD
WORD
HWND
HANDLE
HANDLE
HWND
HMENU

II Menu item substructure valid for 3.0 and 3.1
typedef struct {

WORD wFlags; II OOh Flags
WORD hIDorPopup; II 02h Item ID or popup menu handle
RECT rectCapture; II 04h Item area in screen coords.
WORD xTab; II OCh tab position in string
HANDLE hCheckedBmp; II OEh Bitmap to use for checked
HANDLE hUncheckedBmp; II 10h Bitmap to use for unchecked
HANDLE hStrOrBmp; II 12h Handle to string or bitmap
WORD xULStart; II 14h Start of underline
WORD cxULLen; II 16h Length of underline (width of char)
WORD cbItemLen; II 18h Length of item if string or NULL
} ITEM, FAR *LPITEM; II 1Ah Total

II Menu structure
typedef struct {

WORD wFlags; II OOh flags
WORD iCurrSel; II 02h Currently selected item or -1

CHAPTER 6 • USER: WINDOWS USER INTERFACE 405

WORD iCurrPopup; II 04h Current popup or -1 if curr not popup
WORD cbMenu; II 06h Size of this structure + items
WORD cXWidth; II OSh Menu width in pixels
WORD cyHeight; II OAh Menu height in pixels
WORD cItems; II OCh Count of items following
HWND hwndOwner; II OEh Owning window

II 10h start of array of ITEMs
} MENU_3_0 1* , *HMENU *1 ;

typedef struct {
HMENU hmenuNext;
WORD wFlags;
WORD wMagic;
HANDLE hTaskQ;
WORD cxWidth;
WORD cyHeight;
WORD cItems;
HWND hwndOwner;
HANDLE hItems;
WORD w12;

II OOh Next in linked list of menus
II 02h flags
II 04h Signature/magic (Ox554D == 'MU ' >
II 06h Owning task queue handle ???
II OSh Width (0 if Sys Menu box>
II OAh Height (0 if Sys Menu box>
II OCh Count of items
II OEh Owning window
II 10h hItems
II 12h ??? (Usually 0>
II 14h Total

} MENU_3_1 1* , *HMENU *1 ;

typedef void FAR *LPMENU;

II OOh Atom containing property identifier
II 02h User supplied data handle
II 04h Flags:
II OxOOOB Always set ••.
II Ox0010 = Internal property
II Ox0100 Identifier was string
II not atom

II Window Properties structures
typedef struct {

ATOM atomID;
HANDLE hData;
WORD wFlags;
} PROPERTY;

typedef struct {
WORD cProps;

} PROPLIST;

II OOh Count of properties in array at 02h
II 02h Start of array of PROPERTY structures

II USER DC Entry structure
typedef struct {

HANDLE hdceNext; II OOh Next in linked list of DCEs
HWND hwnd; II 02h Currently owning window
HDC hDC; II 04h HDC that this entry refers to
BYTE byFlags; II 06h Flags:

II Ox01 - For client area use
II Ox02 - For window area use
II Others ???

BYTE byInUse; II 07h o = free, 1 = in use
BYTE byDirty; II OSh 1 = window needs update, 0 = does not
BYTE byOA; II 09h ???
WORD xOrigin; II OAh DC Origin X
WORD yOrigin; II OCh DC Origin Y
HWND hwndTop; II OEh Parent window (also using this entry?>
HRGN hVisRgn; II 10h Visible region

} DCE, *HDCE; II 12h TOTAL

406 UNDOCUMENTED WINDOWS

USERWALK

USERWALK is a program that walks the USER heap segments and lists all the entries
in each. Using the technique already seen in many of the utilities and example pro
grams that accompany this book, double-clickable lines allow navigation through the
structures in the heap.

The source code for USERWALK is too large to be included here, although it is
available on the accompanying disk. It is worth discussing one or two points that arose
during its development and that are brought out by its use.

USERWALK starts with a display listing local memory handles within the default
USER local heap and then lists the handles in any other USER heaps. The following is
an excerpt (unabridged, it would run to five pages) from the display generated using
the retail version of Wmdows 3.1 in 386 Enhanced mode with one DOS box, Pro
gram Manager and Word for Wmdows loaded:

USER heap in segment 079dh:
(Double-click to view a block)
HANDLE ADDR SIZE TYPE
OAC8 OAC8 0008 NORMAL
OAD4 OAD4 002C NORMAL
OB04 OB04 0010 NORMAL
OB18 OB18 0010 NORMAL
OB2C OB2C 0010 NORMAL
0840 0840 0010 NORMAL
0854 OB54 0010 NORMAL
0868 OB68 0024 Class
OB90 OB90 004C NORMAL

2694 2694 003C Window
26D4 26D4 0044 NORMAL
0000 271C 0504 FREE
2C24 2C24 0048 Window
2C70 2C70 0048 Window
2CBC 2CBC 0048 Window
2D08 2D08 0048 Window
0000 2D54 0960 FREE

USER heap in segment 02ddh:
(Double-click to view a block)

HANDLE ADDR SIZE TYPE
0018 0018 0008 NORMAL
0024 0024 002C NORMAL
0054 0054 OOOC NORMAL
0064 0064 0008 NORMAL

110C 110C OOOC NORMAL
111C 111C OOOC NORMAL
112C 112C OOOC NORMAL

CHAPTER 6 • USER: WINDOWS USER INTERFACE 407

113C 113C 0014 NORMAL
1154 1154 0010 NORMAL
1168 1168 0010 NORMAL
117C 117C 0018 NORMAL
1198 1198 0014 NORMAL
11BO 11BO 0018 NORMAL
11CC 11CC 0014 NORMAL
11E4 11E4 0010 NORMAL
11F8 11F8 0014 NORMAL
1210 1210 0010 NORMAL
1224 1224 OOOC NORMAL
0000 1234 0320 FREE

USER heap in segment 031dh:
<Double-click to view a block)
HANDLE ADDR SIZE TYPE
001C 001C 0008 NORMAL
0028 0028 002C NORMAL
0058 0058 004C NORMAL
00A8 00A8 OOOC NORMAL
00B8 00B8 OOOC NORMAL
00C8 00C8 0010 NORMAL

01CC ·01CC 001C NORMAL
01EC 01EC 0020 NORMAL
0000 0210 0624 FREE

USER heap in segment 0325h:
<Double-click to view a block)
HANDLE ADDR SIZE TYPE
0018 0018 0008 NORMAL
0024 0024 002C NORMAL
0054 0054 0014 Menu
006C 006C 0014 Menu
0084 0084 OOEC NORMAL

0000 1A8C 0034 FREE
1AC4 1AC4 0014 Menu
0000 1ADC 0018 FREE
1AF8 1AF8 0104 NORMAL
1COO 1COO 0188 NORMAL
1D8C 1D8C 0154 NORMAL
1EE4 1EE4 0154 NORMAL
203C 203C 0138 NORMAL
2178 2178 0120 NORMAL
229C 229C OOEC NORMAL
238C 238C 0034 NORMAL
23C4 23C4 0084 NORMAL
0000 244C 0044 FREE
2494 2494 0068 NORMAL
0000 2500 0394 FREE

408 UNDOCUMENTED WINDOWS

This is the bleak view of the heap. Hundreds upon hundreds of entries, with the
only break in the NORMALs being the occasional Class, Wmdow, or Menu entry.
Indeed, in the unabridged list, 90% of the lines listed are type NORMAL. The reason for
this is that USER in the retail version of3.0 only gives a signature to the ClASS struc
ture. In the retail 3.1 version, t\Vo structures, CLASS and MENU, have signatures. No
other object types, including WND structures, have any intrinsic form ofidentification.

Since a window is always an instance of a window class, however, every WND
structure must contain a valid hClass field. By testing whether a block of memory con
tains a handle to a valid CLASS structure, which can at least be identified, at the
appropriate offset (Le., the offset of the WND structure hClass field) we can validate,
indirecdy, whether it is a window structure, even though it has no signature.

By contrast, in both 3.0 and 3.1 debug versions, blocks of memory in the default
USER heap are allocated not by LocalAlloc but by UserLocalAlloc, which is an
undocumented, unexported cover function over LocalAlloc. In addition to the wFlags
and wSize parameters passed to LocalAlloc, UserLocalAlloc takes a byBlockType
parameter that contains one of the ToolHelp documented User object type constants.
UserLocalAlloc adds 4 to the size of the allocation before passing the call through to
LocalAlloc and, upon return, uses the first of these extra four bytes as storage for the
byBlockType. (As a side note, it does not appear to use any of the other three bytes.)
In the debug version, then, the object type is stored with the object in a way that
ToolHelp can use it. For this reason, the display under the debug version of 3.0 or 3.1
shows a much richer variety of block types in the heaps.

Back with USERWALK, double clicking on any of the lines in the above list will
generate a window containing a formatted display of the local block that the line
describes. For example, double clicking on one of the Wmdow entries in the default
heap would generate a window that might look like this:

Window handle 261C @ 079D:261C for 68 bytes

Lines marked 1_>1 may be double clicked
for expansion

Window Title: USER Heap Walker: Heap Segments
Window Class: winio_wcmain

WND:

->
->
->
->

->

hwndNext
hwndChild
hwndParent
hwndOwner
rectWindow
rectClient
hTaskQ
hrgnUpdate
hClass
hlnstance

22D8
0000
OE8C
0000
(100, 75, 700, 525)
(106, 119, 678, 503)
2557
0000
2290
2546

CHAPTER 6 • USER: WINDOWS USER INTERFACE 409

->

->
->
->

lpfnWndProc
dwFlags
rgfStyle
rgfExStyle
wID_Menu
hText
hScroll
hProp
hwndLastActive
hmenuSystem

2487:34BB
OOOOOOOF
14FFOOOO
00000000
1150
01EC
2330
0000
261C
0000

As you can see, the display is an exact dump of the structure as defined in the
WND entry in this chapter. Further, the lines in the display that start with '->' may
again be, you guessed it, double-clicked. This will produce a formatted display of the
object in the line that has been selected. In the new display there may be more double
clickable lines. This makes it very easy to follow the relationship between stmctures.
The only limit to this journey is the availability of Free System Resources required for
each window.

In the main heap display, double clicking on a NORMAL block generates a raw
hex-dump window. NORMAL indicates that we don't really know what the block is.

From the main menu bar, the View menu allows the selection of an alternative
route into USER's heaps. Selecting Window Hierarchy from the View menu brings up
a display similar to that used by the SNOOP program discussed in chapter 4. It is a
hierarchy ofall the windows in the system:

OE8C [#32769J
OFOC [#32768J
OECC [#32771J
271C [#32772J
261C USER Heap Walker: Window Hierarchy [winio_wcmainJ
22D8 [#32772J
1C84 Microsoft Word - CHAP6.DOC [OpusAppJ

1D30 [OpusPmtJ
1F34 [a_sdm_Microsoft Wor]

2CBC [savebits_lbox_MicroJ
2D08 [ScrollBar]

1F78 [OpusFedtJ
1FBC [OpusFedt]
2C24 [savebits_lbox_MicroJ

2C70 [ScrollBarJ
1CE8 [OpusIcnBar]
2000 [OpusStatJ
2040 [OpusDeskJ

18E8 CHAP6.DOC [OpusMwdJ
2398 [a_sdm_Microsoft WorJ

2108 [savebits_lbox_MicroJ
2154 [ScrollBarJ

23DC [OpusFedtJ
24AC [OpusRSB]
2460 [OpusRSBJ
2080 [OpusWwd]

410 UNDOCUMENTED WINDOWS

2354 [OpuslcnBarJ
2420 [OpusRulJ

2694 [#32772J
1168 Program Manager [ProgmanJ

11DC [MDIClientJ
OF78 UndocWin tools [PMGroupJ
12DO [#32772J
16A8 [#32772J
1640 Games [PMGroupJ
1600 [#32772J
1598 StartUp [PMGroupJ
1558 [#32772J
14FO Other Development [PMGroupJ
1360 [#32772J
1310 Undocwin Examples [PMGroupJ
14BO [#32772]
1448 Accessories [PMGroupJ
1408 [#32772J
13AO SDK Tools [PMGroupJ
24F8 [#32772J
16E8 Main [PMGroupJ

20C8 [#32772J
1818 DOS Prompt [ttyJ
OFF8 [#42J

In the Window Hierarchy display, which progressively increases the level ofinden
tation for each level of child window that USERWALK encounters, each window han
dle is displayed along with its window caption, if it has one, and its window class next
to it within square brackets. From any window entry in the display, the trusty double
click mechanism launches us into the same heap navigation capabilities that we had
from the Heap Segments display.

The Refresh main menu selection regenerates the current view. Ifyou double click
on an item and a message box pops up to tell you that the handle you have just
selected is no longer valid, it is time to use the Refresh option. Many of the object
types in USER's heaps are allocated with the LMEM_MOVEABLE flag, and peri
odically the heap will be compacted as blocks are freed and allocated, changing the
location of other blocks and possibly invalidating information currently held inside
USERWALK

The other important option from the main menu bar is Analyze Heaps. Earlier, we
used the Analyze Heaps window to understand how USER heap usage contributed to
the Windows Free System Resources problem. Choosing Analyze Heaps causes a win
dow to be created that contains a breakdown ofheap usage by heap segment (so there
will be two subheads in the display in version 3.0, and four or more subheads in ver
sion 3.1). This report aggregates memory block sizes by object type within heap seg
ment, and displays the heap consumption for each object type represented in terms of
bytes and as a percentage of the heap segment size.

The report is intended to give a feel for what proportion ofwhich heaps are taken
by what sorts of system resource.

CHAPTER 6 • USER: WINDOWS USER INTERFACE 411

USER Exports and Imports
USER is made of approximately 150 object modules containing a total of more than
3,000 exported and internal (nonexported) functions. These fall into the following
rough groups, in no particular order:

• Window and desktop management
• Dialog and control management
• Resource management
• Menu and accelerator management
• Task management and messages
• Window class maintenance
• Clipboard management
• Device drivers and timer management
• Network API
• CommsAPI
• Language and ANSI support
• USER initialization and exit routines
• String and other miscellaneous functions

As with KERNEL, most of the object modules that compose USER are hidden. In
fact, in version 3.1 almost all of the documented exports are exported from a single
object module, LAYER.OBJ. This presents an apparently neat and tightly controlled
exported function interface.

USER Undocumented Functions

USER's undocumented functions in 3.0 and 3.1 can be roughly categorized as follows:

WINDOW AND DESKTOP MANAGEMENT

CalcChildScroll PaintRect
CascadeChildWidows RepaintScreen
CompUpdateRect ScrollChildren
CompUpdateRgn SetDesktopPattern
ControlPanelInfo SetDeskWallpaper
DragDetect SetGridGranularity
DragObject SetInternalW"mdowPos
FillWindow SetWC2
GetDesktopHwnd SnapWindow
GetIntemalWmdowPos SwitchToThisWindow
GetNextQueueWindow TileChildWindows
GetWC2

LoadCursorIconHandler
LoadDIBCursorHandler
LoadDIBlconHandler
LoadIconHandler

412 UNDOCUMENTED WINDOWS

DIALOG AND CONTROL MANAGEMENT

ContScroll GetFilePortName
GetControlBrush SysErrorBox

RESOURCE MANAGEMENT

CreateCursorIconIndirect
DumpIcon
GetIconID
IconSize

MENU AND ACCELERATOR MANAGEMENT

EndMenu MenuItemState
LookupMenuHandle SetSystemMenu

TASK MANAGEMENT AND MESSAGES

BroadcastMessage PostMessage2
GetMessage2 SendMessage2
GetQueueStatus SignalProc
GetTaskFromHwnd UserYield
IsUserIdle WinOldAppHackOMatic
LockMyTask

DEVICE DRIVERS AND TIMER MANAGEMENT

Disable0 EMLayer KillTimer2
Enable0 EMLayer SetEventHook
GetMouseEventProc SetGetKbdState
GetTimerResolution SetSystemTimer
KillSystemTimer SetTimer2

USER AND APPLICATION INITIALIZATION AND EXIT ROUTINES

FinalUserInit OldExitWmdows
InitApp

STRING AND OTHER MISCELLANEOUS FUNCTIONS

IsTwoByteCharPrefix _wsprintf
StringFunc XCStoDS
TabTheTextOutForWimps

USER Composition

In version 3.0, USER exports are fairly evenly distributed among its object files. In 3.1
however, most of the API exports of USER are now in a single LAYER.OBI. Using the
same model as KERNEL, parameter validation is performed in LAYER, and then code
in the appropriate object file is called. Not all of the exports have been moved into
LAYER-it is as if the exercise ofmoving the entry points could not be finished in time.

CHAPTER 6 • USER: WINDOWS USER INTERFACE 413

Using Undocumented USER Functions
Most undocumented USER functions appear to be no more and no less resilient to
parameter abuse than their legitimate siblings and, with the exception of
CascadeChildWindows and TileChildWindows, have not changed in either parameter
usage or function between versions 3.0 and 3.1.

Many of the examples in this chapter use the function CheckOrdName() to verify
that the named function exists in the expected module at the expected ordinal number:

1* CHECKORD.C *1

BOOl CheckOrdName(char *szFunction, char *szModule, int nOrdinal)
{

HANDLE hModule;
FARPROC lpfnByName;
FARPROC lpfnByOrd;
char achTitle[SOJ;

sprintf(achTitle, "%s() [%s.%dJ", szFunction, szModule, nOrdinal);
winio_settitle(__hMainWnd, achTitle);
hModule = GetModuleHandle«LPSTR) szModule);
lpfnByName = GetProcAddress(hModule, (LPSTR) szFunction);
lpfnByOrd = GetProcAddress(hModule, (lPSTR) «DWORD) nOrdinal»;
printf("hModule = %04X, by name = %Fp, by ord = %Fp\n\n",

hModule, lpfnByName, lpfnByOrd);
if (hModule == NULL)

printf("Module %5 not loaded!\nAborting\n ll
, szModule);

else if (lpfnByName == NULL)
printf("Function %5 not found in module %s!\n"

"Aborting\n", szFunction, szModule);
else if (lpfnByOrd == NULL)

printf("Ordinal %d not found in module %s!\n"
"Aborting\n", nOrdinal, szModule);

else if (lpfnByName != lpfnByOrd)
printf("Function %5 not found at ordinal %d!\n"

"Aborting\n", szFunction, nOrdinal);
else

return TRUE;

return FALSE;
}

BearNNN Lore

In some cases, indicated in the individual entries, a function that had a sensible name
in version 3.0 has been renamed in version 3.1 to BearNNN where NNN is the ordi
nal number of the entrypoint. The underlying function, however, has usually not
changed and, when referenced using the ordinal value, works as in version 3.0. Other

BearNNN

414 UNDOCUMENTED WINDOWS

functions have never had any other name than Bear-something. But where does the
prefix 'Bear' come from?

Bear (and Bunny in KERNEL) immortalize a couple of stuffed productivity
enhancements in one developer's office, which apparendy acted as problem-solving
aids by providing punchbag-style psychological relief at times ofstress.

See also: SetSystemTimer, GetSystemTimer, IconSize, IsTwoCharPrefix,
SetDeskWallPaper

BozosLlveHere

long FAR PASCAL BozosLiveHere(HWND, WORD, WORD, DWORD)
HWND hwndi
WORD wMs9i
WORD wParami
DWORD wParami

USER.301

This function in version 3.1 has the same ordinal entry point as the function
EditWndProc in 3.0. It is apparendy never intended to be called, since it outputs the
string "USER: Invalid function called. System state potentially trashed," but then
passes control to an internal edit class window procedure function. Since none of the
other built-in class window procedure functions is exported in 3.1, it is unclear why
this one alone received the special treatment (and name).

BroadcastMessage USER.355

void FAR PASCAL BroadcastMessage(HWND, WORD, WORD, DWORD)
HWND hwndi 1* hwnd of window sending message *1
WORD wMessagei 1* Message *1
WORD wParami 1* additional message info *1
DWORD lParami 1* additional message info *1

This function allows an application to post a message to all current top-level windows.
It provides no more and no less functionality than PostMessage with the hwnd param
eter set to OxFFFF; PostMessage tests for this condition and branches to Broadcast
Message.

BroadcastMessage special cases two messages, WM_WININICHANGE and
WM_DEVMODECHANGE. For these two, it replaces the lParam parameter, which
it expects to receive containing an LPSTR pointing at a WIN.INI string, with a
HANDLE to a block of global memory containing a copy of the string. (It is inter
esting, incidentally, that the documentation for these two messages does not mention
that this is a possibility.)

BozosLiveHere

CHAPTER 6 • USER: WINDOWS USER INTERFACE 415

After the special casing, BroadcastMessage does a PostMessage from a callback
function passed to EnumWindows.

Support: 3.0, 3.1
Example: The following would minimize all windows on the desktop:

8roadcastMessage{my_hwnd, WM_SYSCOMMAND, SC_ICON, 0);

CalcChildScrol1 USER.462

void FAR PASCAL CalcChildScroll{HWND, WORD)
HWND hwnd; 1* Window to calculate for *1
WORD wScroll; 1* Combination of S8_HORZ and S8_VERT *1

This function sets scroll bars in an MDI application parent window as a result of the
movement of child windows or the resizing of the parent. It will remove the scroll bars
if all the children fit within the parent client area or add scrollbars if a child is moving
horizontally or vertically out of the parent client area.

The wScroll parameter must contain one or both of the documented constants
SB_HORZ and SB_VERT, and determines which direction scrolling is to be calcu
lated. It is called by the undocumented function ScrollChildren, and directly from
within the MDIClientWndProc function.

Support: 3.0, 3.1

CascadeChildWlndows USER.198

void FAR PASCAL CascadeChildWindows{HWND [, WORD])
HWND hParent; 1* Window whose children are to be cascaded *1
WORD wAction; 1* How to cascade [3.1 only] *1

This function arranges the positions of child windows of the specified parent into a
cascaded formation. CascadeChildWindows() was apparently written for MDI and is
called by PROGMAN.EXE and FILEMAN.EXE. It takes the window handle of the
owning, or parent, target window as its first, and in 3.0 only, parameter.

Note that an attempt, under version 3.0, to

CascadeChildWindows{FindWindow{NULL, rrprogram Manager"»;

will not achieve the expected result, as the Program Group windows are not actually
direct child windows of the Program Manager main window but rather MDI client
windows. The above statement with Microsoft Word for Windows as the target appli
cation, however, leads to interesting results! Many of the characteristic pieces of the

CalcChiidScroll

416 UNDOCUMENTED WINDOWS

Word main document window are forced into positions and shapes that they were
obviously never intended to assume.

The second parameter is only present in 3.1 and affects whether disabled windows
are cascaded. If the wAction parameter is set to MDITILE_SKIPDISABLED
(Ox0002), defined in the 3.1 WINDOWS.H, only child windows of the currently active
child window of the specified hParent are cascaded. Note that although the wAction
field may contain either MDITILE_HORIZONTAL or MDITILE_VERTICAL, these
have no effect with CascadeChildWmdows.

CascadeChildWmdows, like all window-positioning functions, is implemented using
the BeginDeferWindowPos, DeferWindowPos, and EndDeferWindowPos functions.

Support: 3.0, 3.1 (see notes)
Note: The second parameter is not present in 3.0.
Used by: PROGMAN.EXE, FILEMAN.EXE
See MSO: TileChildWindows
Example: Cascades the windows on the desktop. When run in 3.1, alternately cascades
horizontally and vertically:

CASCCHLD.C *1

lIinclude <windows.h>
#include "winio.h"

1* undocumented function -- no function prototype
because it differs between 3.0 and 3.1 *1

extern void FAR PASCAL CascadeChildWindows();

lIinclude "checkord.c"

int maine)
{

WORD wVer = (WORD) GetVersion();

if (! CheckOrdName(IICascadeChildWindows lI
, "USER", 198»

return 0;

winio_setecho(winio_current(), FALSE);

for (;;)
{

puts(IIPress a key to cascade the desktop");
getchar();

if (wVer == Ox0003)
CascadeChildWindows(GetDesktopWindow(»;

else
CascadeChildWindows(GetDesktopWindow(), 0);

}

}

CascadeChildWindows

CHAPTER 6 • USER: WINDOWS USER INTERFACE 417

CLASS Structure

The Class Instance structure is referenced by the hClass field of the WND structure.
Unlike the WND structure, the CLASS structure did not change between versions 3.0
and 3.1.

tagCLASS {
hcNext;
wSig;
atomCls;
hDCE;
cClsWnds;
wei
wExtra[1J;

NEAR * HCLASS;

typedef struct
HANDLE
WORD
ATOM
HANDLE
WORD
WNDCLASS
WORD
} CLASS,

The above structure contains the following known fields. Fields not described here
are not yet understood.

FIELD

hcNext

wSig

atomCIs

hDCE

cClsWnds

wc

wExtra

DESCRIPTION

A list of ClASS structures is maintained in USER's default heap
segment. This field provides linkage to the next entry in the list,
which is terminated by a value ofNULL.
A signature identifying the structure type. Sometimes known as
"magic," this field is used for validation and should always contain
Ox4b4e ("NK"), presumably the initials of the developer (Neil
Konzen?).
A local USER atom containing the window class name.

Handle of the DCE structure used by the class ifCS_CLASSDC is
specified, NULL otherwise. See the DCE structure entry later in
this chapter.
The number ofwindows of this class in existence.

An incomplete copy of the WNDCLASS structure passed to the
RegisterClass function when the class was registered; the
IpszMenuName and IpszClassName fields are both always NULL.
Start ofthe instance data for the class instance, as specified in the
documented WNDCLASS structure passed to the RegisterClass call.

Selecting the "Class Walk" option from the WINWALK program in chapter 10
(or doing an equivalent ToolHelp class walk with the ClassFirst() and ClassNext()
functions) shows that USER has the following built-in window classes:

CLASS

418 UNDOCUMENTED WINDOWS

Button
ComboBox
ComboLBox
Edit
ListBox
MDIClient
ScrollBar
Static
#32768(Popup~enu)

#32769 (Desktop)
#32770 (Dialog)
#32771 (WinSwitch)
#32772 (IconTitle)

When a class has a name such as #32XXX, the name is an integer atom (see the
Atom Table entry in chapter 5). The string names provided for these in the list above
come from the excellent WinSight program that comes with Borland C++ 3.0.

Note: Along with many other USER structures, the USERWALK program may be
used to show the contents of CLASS structures. The WINWALK program in chapter
10 uses ToolHelp to walk the linked list of classes.
See also: DCE, WND

CompUpdateRect USER.316

void FAR PASCAL CompUpdateRect(HWND, lPRECT, BOOl, WORD)
HWND hwnd; /* window handle */
LPRECT lpRect; /* pointer to RECT to adjust update region with */
BOOl bErase; /* erase the background upon repaint */
WORD wType; /* type of operation to perform */

This function adds or subtracts the specified rectangular region to or from the win
dow's update region. It is the engine behind the documented InvalidateRect/
ValidateRect functions. The wType field accepts a number of bit flags:

(Ox8000)

The specified rectangle is to be subtracted from the update region (i.e., validated,
as by ValidateRect). If this flag is zero, the rectangle is added to the update region
(i.e., invalidated, as by InvalidateRect).

CUR_??? (Ox4000)
CUR_CHILDREN (Ox0004)

Add/subtract the specified rectangle to child window update regions, except as
defined by CUR-NOTCLIPCHILDREN.

CompUpdateRect

CHAPTER 6 • USER: WINDOWS USER INTERFACE 419

CUR_NOTClIPCHIlDREN (Ox0001)

If the window style includes WS_CLIPCHILDREN, do not change their update
region.

Because CompUpdateRect performs the functionality of ValidateRect/Invalidate
Rect, and because it is not exported in 3.1, there does not appear to be any good rea
son to call this function directly.

Support: 3.0
See also: CompUpdateRgn

CompUpdateRgn USER.317

void FAR PASCAL CompUpdateRgn(HWND, HRGN, BOOl, WORD)
HWND hwnd; /* window handle */
HRGN hRgn; /* handle of region to adjust update region with *1
BOOl bErase; 1* erase the background upon repaint *1
WORD wType; 1* type of operation to perform */

This function adds or subtracts the specified region to or from the window's update
region; it is the engine behind the documented InvalidateRgnjValidateRgn functions.
The wType field accepts a number ofbit flags, only one ofwhich is currently understood:

(Ox8000)

The specified region is to be subtracted from the update region (i.e., validated, as
by ValidateRgn). If this flag is zero, the region is added to the update region (invali
dated, as by InvalidateRgn).

CUR_???
CUR_CHILDREN

(Ox4000)
(Ox0004)

Add/subtract the specified region to child window update regions, except as
defined by CUR_NOTCLIPCHILDREN.

CUR_NOTClIPCHIlDREN (Ox0001)

If the window style includes WS_CLIPCHILDREN, do not change their update
region.

Because it performs the functionality of ValidateRgn/lnvalidateRgn, and because
it is not exported in 3.1, there does not appear to be any good reason to call this func
tion direcdy.

CompUpdateRgn

420 UNDOCUMENTED WINDOWS

Support: 3.0
See also: CompUpdateRect

ControlPanellnfo USER.273

void FAR PASCAL ControlPanellnfo(int, WORD, LPSTR)
int nlnfoType; 1* Control panel setting number *1
WORD wData; 1* Update data for some settings *1
LPSTR lpBuffer; 1* Buffer for control panel setting data *1

This function, called by CONTROL.EXE in Windows 3.0 to get/set six settings,
allows certain desktop Control Panel settings to be queried and updated. The settings
that can be modified by this function are not closely related. They are (with the names
of the corresponding icons in Control Panel) as follows:

• Warning beep ON/OFF (Sound)
• Mouse tracking speed (Mouse)
• Window border width (Desktop)
• Key repeat rate (Keyboard)
• Language driver (International)
• Icon spacing (Desktop)

The setting and the action (set/get) is defined by the nInfoType parameter. The
value of this parameter takes one of the following values, and behaves as described:

CPI_GETBEEP (1)

treats the two bytes pointed to by IpBuffer as a BaaL and sets its value to TRUE or
FAlSE depending on whether warning beeps are enabled or not. wData is ignored.

uses the value of wData (which should be TRUE or FAlSE) to enable or disable
warning beeps. IpBuffer is ignored.

CPI_GETMOUSE (3)

treats the six bytes pointed to by IpBuffer as an array ofthree WORDs which represent the
mouse tracking speed. The Control Panel dialog controlling this setting uses a horizontal
scrollbar with seven possible positions. The algorithm linking the Control Panel's seven
speeds and the values of the three words works as follows. At the lowest speed, all three
words are set to O. For the next three 'notches' (n=l, 2, and 3), the third word is set to a
1, the second to a 0, and the first is set to the value of 13 - (3 * n). For the last, fastest

ControlPanellnfo

CHAPTER 6 • USER: WINDOWS USER INTERFACE 421

notches (n=4, 5, and 6), the third word is set to 2, the first to 4, and the second to 24
- (3 * n).. ! wData is ignored.

CPI_SETMOUSE (4)

treats the six bytes pointed to by IpBuffer as an array of three WORDs, as above,
which should contain values as described in the above formula. wData is ignored. The
update takes immediate effect.

CPI_GETBORDER (5)

treats the two bytes pointed to by IpBuffer as a WORD and sets its value to the cur
rendy established window border width in pixels. wData is ignored.

CPI_SETBORDER (6)

updates (all windows are updated immediately) the window border width from wData.
The value is coerced into the range 1 - 50 before being used. IpBuffer is ignored.

CPI_GETKEYBOARDSPEED (10)

treats the two bytes pointed to by IpBuffer as a WORD and sets its value to the cur
rent keyboard typematic repeat rate. wData is ignored.

CPI_SETKEYBOARDSPEED (11)

updates keyboard typematic repeat rate from wData. The value is coerced into the
range 1 - 32 before being used. IpBuffer is ignored.

CPI_LANGDRIVER (12)

loads the language driver DLL whose name is specified in IpBuffer. wData is ignored.

CPI_ICONSPACING (13)

either gets or sets the desktop icon spacing used for arranging the desktop and Pro
gram Manager group windows. If the IpBuffer parameter is not NULL, the call is
assumed to be a 'get,' and the two bytes pointed to by IpBuffer are treated as a
WORD whose value is set to the current icon spacing in pixels. For a 'get,' wData is
ignored. If the IpBuffer parameter is NULL, the call is assumed to be a 'set,' and the
value ofwData is used to set the new icon spacing. Note, however, that a NULL value
ofwData is ignored.

ControlPanelinfo

422 UNDOCUMENTED WINDOWS

Support: 3.0, 3.1
Note: Although this function is exported in versions 3.0 and 3.1, it has been super
seded in 3.1 by the much more comprehensive, and documented, System
ParametersInfo function.
Example: The following example shows the use ofsome of the function's options.

1* CPNLINFO.C *1

#include <windows.h>
#include <ctype.h>
#include <stdlib.h>
#include Uwinio.h U

1* undocumented function *1
extern WORD FAR PASCAL ControlPanellnfo(int nlnfoType,

WORD wData, LPSTR lpBuf);

#define CPI_GETBEEP 1
#define CPI_SETBEEP 2
#define CPI_GETMOUSE 3
#define CPI_SETMOUSE 4
#define CPI_GETBORDER 5
#define CPI_SETBORDER 6
#define CPI_GETKEYBOARDSPEED 10
#define CPI_SETKEYBOARDSPEED 11
#define CPI_LANGDRIVER 12
#define CPI_ICONSPACING 13

#include ucheckord.c u

int maine)
{

WORD wBufC3J;
char bBufC80J;
int n;

/1 Ord/name check
if C! CheckOrdNameCuControlPanellnfou, uUSER u, 273»

return 0;

for(;;){
ControlPanellnfo(CPI_GETBEEP, 0, (LPSTR) &wBuf);
printf(U\nWarning beeps : %s\n U,

wBufCOJ ? uEnabled u : uDisabled U);

ControlPanellnfo(CPI_GETMOUSE, 0, (LPSTR) &wBuf);
printf(UMouse speed %d (%d %d %d)\n U,

wBufC2J O? 1 :
wBufC2J == 1 ? (16 - wBufCOJ) I 3
wBufC2J == 2 ? (27 - wBufC1J) I 3 -1,
wBufCOJ, wBufC1J, wBufC2J);

ControlPanellnfo(CPI_GETBORDER, 0, (LPSTR) &wBuf);
printfCUBorder Width : %d pixels\n U, wBufCOJ);

ControlPanelinfo

CHAPTER 6 • USER: WINDOWS USER INTERFACE 423

ControlPanellnfo(CPI_GETKEYBOARDSPEED, 0, (LPSTR) &wBuf);
printf("Key repeat rate : %d\n", wBufCO]);

ControlPanellnfo(CPI_ICONSPACING, 0, (LPSTR) &wBuf);
printf(IIIcon spacing : %d\n", wBufCO]);

printf("enter type to set (w, m, b, k, i): II);

switch (toupper(getchar(»)
(

case 'WI :
printf("\nToggling Warning Beep switch.\n ll

);

ControlPanelInfo(CPI_GETBEEP, 0, (LPSTR) &wBuf);
wBufCO] A= 1;
ControlPanelInfo(CPI_SETBEEP, wBufCO], NULL);
break;

case 'B' :
printf(lI\nEnter border width in pixels (1-50) : II);
gets(bBuf);
ControlPanelInfo(CPI_SETBORDER, atoi(bBuf), NULL);
break;

case 'M' :
printf("\nEnter speed (1-7) : II);
gets(bBuf);
if «n = atoi(bBuf» == 0) n = 1;
else
if (n > 7) n = 7;
if (n == 1)

{ wBufC2] = 0; wBufC1] 0; wBufCO] O;}
else
if (n < 5)

{ wBufC2] = 1; wBufC1] = 0; wBufCO] = 16 - (3 * n); }
else

{ wBufC2] = 2; wBuf[1J = 27 - (3 * n); wBufCOJ = 4; }
ControlPanellnfo(CPI_SETMOUSE, 0, (LPSTR) &wBuf);
break;

case 'K' :
printf("\nEnter keyboard typematic repeat rate (1-31) : II);
gets(bBuf);
ControlPanelInfo(CPI_SETKEYBOARDSPEED, atoi(bBuf), NULL);
break;

case 'I' :
printf("\nEnter desktop icon spacing in pixels: II);
gets(bBuf);
ControlPanellnfo(CPI_ICONSPACING, atoi(bBuf), NULL);
break;

default :
printf("\n");

}

}

return 0;
}

ControlPanelinfo

424 UNDOCUMENTED WINDOWS

ContScrol1

void FAR PASCAL ContScroll(HWND, WORD, WORD, DWORD)
HWND hwnd; 1* window owning scrollbars *1
WORD wMsg; 1* unreferenced *1
WORD wParam; 1* unreferenced *1
DWORD lParam; 1* unreferenced *1

USER.310

This is the function which implements continuous scrolling when the user presses the
left mouse button over the arrow button at either end of a scrollbar and holds it
down.

This function is called from within the default scrollbar WndProc. When the left
mouse button is initially pressed, a WM_VSCROLL or WM_HSCROLL message (as
appropriate) is sent, and a timer is set up with a period of 200 milliseconds using the
undocumented function SetSystemTimer. The callback function installed for the timer
is ContScroll. Unless the user releases the left mouse button, in which case the timer is
cancelled, ContScroll receives control.

It then resends the WM_xSCROLL message, and resets the timer frequency to 50
ms. The initial delay before repeat of 200 ms, and the repeat rate of 50 ms are hard
coded constants. Releasing the left mouse button discontinues the repeating action.

Support: 3.0

CreateCursorlconlndlrect USER.408

1* pointer to bitmap info *1
1* pointer to bitmap data *1
1* pointer to masking bits *1

HANDLE FAR PASCAL CreateCursorlconlndirect(HANDLE, LPCURSORICONINFO,
LPSTR, LPSTR)

HANDLE hlnstance;
LPCURSORICONINFO lplnfo;
LPSTR lpANDBits;
LPSTR lpXORBits;

This function creates a bitmap resource to be associated with the specified instance.
This function is called by the documented CreateCursor and CreateIcon functions,

and it can be used to create both cursors and icons on the fly. It returns a HANDLE
that can be used as an RICON or an RCURSORas appropriate.

Rather than use GlobaWloc to allocate the memory for storage of the binnap, the
function uses the undocumented KERNEL function DirectResAlloc (see chapter 5).
This allows the icon or cursor to be shared by multiple instances of a task. This is nec
essary for class icons and cursors and ensures that the memory is not freed on termina
tion ofhinstance as would happen ifGlobaWloc were used.

Use of this function is not recommended, because it affords no more capability
than the CreateCursor and CreateIcon functions, and it requires the use of the undocu
mented CURSORICONINFO structure. This structure is the header for both Cursor

ContScroll

CHAPTER 6 • USER: WINDOWS USER INTERFACE 425

and Icon resources in memory, and is described in more detail In the
CURSORICONINFO enny in this chapter:

/* CURSICON.H */

typedef struct {
POINT pntHotSpot;
WORD nWidth;
WORD nHeight;
WORD nWidthBytes;
BYTE byPlanes;
BYTE byBitsPix;
} CURSORICONINFO, FAR

/* Cursor hot spot (ignored for icon) */
/* Width of bitmap in pixels */
/* Height of bitmap in pixels */
/* width of bitmap in bytes */
/* number of bit planes */
/* number of bits per pixel */

*LPCURSORICONINFO;

Return: If successful, returns a non-NULL HANDLE that may be cast to an HICON
or an HCURSOR; if unsuccessful, returns NULL.
See also: CURSORICONINFO, DumpIcon
Example: Creates a gunsight cursor on the fly from a monochrome bitmap using
CreateCursorIconIndirect:

/* CICONIND.C */

#include <windows.h>
#include "wmhandlr.h"
#include "winio.h"

/* undocumented CURSORICONINFO structure */
#include "cursicon.h"

WORD awANDBits[64J = /* AND bit mask for gunsight cursor */
{ Ox0100, Oxffff, Oxfd7e, Oxffff,

Oxfd7e, Oxffff, OxOd60, Oxffff,
Oxed6e, Oxffff, Oxed6e, Oxffff,
Ox6d6c, Oxffff, Ox0101, Oxffff,
Ox6d6c, Oxffff, Oxed6e, Oxffff,
Oxed6e, Oxffff, OxOd60, Oxffff,
Oxfd7e, Oxffff, Oxfd7e, Oxffff,
Ox0100, Oxffff, Oxffff, Oxffff,
Oxffff, Oxffff, Oxffff, Oxffff,
Oxffff, Oxffff, Oxffff, Oxffff,
Oxffff, Oxffff, Oxffff, Oxffff,
Oxffff, Oxffff, Oxffff, Oxffff,
Oxffff, Oxffff, Oxffff, Oxffff,
Oxffff, Oxffff, Oxffff, Oxffff,
Oxffff, Oxffff, Oxffff, Oxffff,
Oxffff, Oxffff, Oxffff, Oxffff};

WORD awXORBits[64J = {a}; /* no XOR bits needed for gunsight cursor */

/* undocumented function */
extern HANDLE FAR PASCAL CreateCursorlconlndirect(HANDLE hlnstance,

CreateCursorlcon Indirect

426 UNDOCUMENTED WINDOWS

LPCURSORICONINFO lplnfo, LPSTR lpANDbits, LPSTR lpXORbits);

#include "checkord.c"

HANDLE hNewCursor, hOldCursor;
WMHANDLER prev_lbuttondown, prev_lbuttonup;
CURSORICONINFO iconinfo;

long my_lbuttondown(HWND hwnd, WORD wMsg, WORD wParam,
DWORD l Pa ram)
{

printf("Changing the cursor to a 'rifle sight'.\n");
hOldCursor = SetClassWord(winio_current(), GCW_HCURSOR, hNewCursor);
SetCapture(hwnd);
SetCursor(hNewCursor);
return (*prev_lbuttondown)(hwnd, wMsg, wParam, lParam);
}

long my_lbuttonup(HWND hwnd, WORD wMsg, WORD wParam,
DWORD lParam)
{

printf("Changing back to the regular cursor.\n");
SetClassWord(hwnd, GCW_HCURSOR, hOldCursor);
ReleaseCapture();
SetCursor(hOldCursor);
return (*prev_lbuttonup)(hwnd, wMsg, wParam, lParam);
}

int main()
{

II Ord/name check
if (! CheckOrdName(ICreateCursorlconlndirect", "USER", 408»

return 0;

iconinfo.pntHotSpot.x 7;
iconinfo.pntHotSpot.y 7;
iconinfo.nWidth = 32;
iconinfo.nHeight = 32;
iconinfo.nWidthBytes = 4;
iconinfo.byPlanes = 1;
iconinfo.byBitsPix = 1;

II Create a cursor
if «hNewCursor = CreateCursorlconlndirect(__hlnst, &iconinfo,

(LPSTR) &awANDBits, (LPSTR) &awXORBits» == NULL)
{

printf("Could not create a cursor.\n");
return 0;
}

prev_lbuttondown = wmhandler_set(winio_current(),
WM_LBUTTONDOWN, (WMHANDLER) my_lbuttondown);

prev_lbuttonup = wmhandler_set(winio_current(),
WM_LBUTTONUP, (WMHANDLER) my_lbuttonup);

CrealeCu rsorleon Ind i reel

CHAPTER 6 • USER: WINDOWS USER INTERFACE 427

printf("Press the Left mouse button to use a\n"
"cursor created by CreateCursorIconIndirect().\n"
"ReLease the buttor' to restore the reguLar cursor\n\n"
"CLose the window to eXit\n\n");

return 0;
}

CURSOR Structure

A cursor is a global memory resource, and the HCURSOR associated with it is a
global memory handle. The global memory block it refers to contains a monochrome
bitmap with an undocumented CURSORICONINFO header structure. See the
CURSORICONINFO and DumpIcon entries in this chapter.

CURSORICONINFO Structure

This structure (included in CURSICON.H, used in the CreateCursorIconIndirect and
DumpIcon example programs in this chapter) is the header of the resource format
used to store both cursors and icons in memory. It is different from the file-based
resource header structures principally because, once loaded, the bitmap has been pro
cessed from a possibly Device Independent Bitmap (DIB) format into a device de
pendent format.

It is located at offset 0 of a global memory block and is immediately followed by
the bits of the device dependent bitmap as documented in the BITMAP structure
entry in the SDK Reference Vol. 2.

The handle to the block is an RICON or an RCURSOR.

typedef struct {
POINT pntHotSpot;
WORD nWidth;
WORD nHeight;
WORD nWidthBytes;
BYTE byPLanes;
BYTE byBitsPix;
} CURSORICONINFO, FAR *LPCURSORICONINFO;

The structure contains the following fields:

FIELD

pntHotSpot

nWidth

DESCRIPTION

If the bitmap is to be used as a cursor, this field contains the pixel
coordinates within the bitmap of the "hotspot," or the focal point of
the cursor. If the structure refers to an icon this field is ignored.
Width of the bitmap in pixels

CURSOR

428 UNDOCUMENTED WINDOWS

nHeight

nWidthBytes

byPlanes

byBitsPix

Height of the bitmap in pixels
Width of the bitmap in bytes

Number of bit planes in the bitmap. For a cursor, which must be
monochrome, this will always be 1.
Number ofconsecutive bits representing one pixel. For a cursor, this
will always be 1.

Support: 3.0, 3.1
See also: CreateCursorIconIndirect, DumpIcon, LoadCursorIconHandler

DeE Structure

DC Origin X
DC Origin Y
Parent window (also using this entry?)
Visible region
TOTAL

Next in linked list of DCEs
Currently owning window
HDC that this entry refers to
Flags:

Ox01 - For client area use
Ox02 - For window area use
Others ???

o = free, 1 = in use
1 = window needs update, 0 = does not
???

07h
OSh
09h
OAh
OCh
OEh
10h
12h

II OOh
II 02h
II 04h
II 06h
II
II
II
II
II
II
II
II
II
II
II

byInUse;
byDirty;
byOA;
xOrigin;
yOrigin;
hwndTop;
hVisRgn;

*HDCE;

BYTE
BYTE
BYTE
WORD
WORD
HWND
HRGN
} DCE,

The DCE (DC Entry) is used by USER to track one of a number of DCs that USER
shares among applications. At startup, USER calls the GDI function CreateDC() five
times, to obtain five DCs, and initializes a DCE for each. The key GetDC(),
GetWindowDC(), and BeginPaint() functions (which are in USER, not GDI) all
return a DC recorded in one of the DCEs.

For windows created with the CS_OWNDC or CS_CLASSDC class styles, addi
tional DCs are obtained and corresponding DeEs created as needed.

That the structure t\as the name DCE is confirmed by the documentation for the
TOOLHELP LOCALENTRY structure, which recognizes it as LT_USER...DCE of
the USER local heap object types. The assumption that the E in DCE stands for
Entry, however, may well be erroneous since the five DCEs are maintained (in both
3.0 and 3.1) as a singly linked list in USER's default local heap, rather than, as the
word "entry" might suggest, in a static array.
typedef struct {

HANDLE hdceNext;
HWND hwndCurr;
HDC hDC;
BYTE byFlags;

The structure contains the following known fields:

FIELD

hdceNext

DESCRIPTION

Pointer to the next DeE in the linked list. The list is terminated by
a NULL in this field.

DeE

hwndCurr

hDC

byFlags

OxOl
Ox02

byInUse

byDirty

xOrigin

yOrigin

hwndTop

hVisRgn

CHAPTER 6 • USER: WINDOWS USER INTERFACE 429

Wmdow that is using the DC, or NULL

DC for the entry (see chapter 8)

These bit flags appear to describe the use to which the DC is being
put. Only two bits are known:
DC used for Client area

DC used for Wmdow area
Others are known to be used but are not currently understood.
This flag indicates whether this DCE is in use (1) or free (0)

If this field contains 1, the associated region needs updating, Le., is
invalid
Appears to be the x-coordinate of the top left of the window/client
area.
Appears to be the y-coordinate of the top left of the window/client
area.
Top level window ofhwndCurr

Visible region ofwindow

Support: 3.0, 3.1
See also: WND and CLASS structures in this chapter, DC in chapter 8

DCHook

BOOl FAR PASCAL DCHook(HDC, WORD, DWORD, DWORD)
HDC hDC; /* display context */
WORD code; /* DC hook callback code */
DWORD data; /* DC hook data */
DWORD lParam; /* DC hook lParam *1

USER.362

This is a hook function that USER installs with the GDI SetDCHook() function.

Support: 3.1
See also: SetDCHook (chapter 8)

DisableOEMLayer

void FAR PASCAL DisableOEMLayer(void);

USER.4

This function disables the Windows OEM device interface. It disables the key
board, mouse and display drivers, and the system timer and restores the prior
(probably non-graphics) video mode with a screen clear. In addition, it uses an
internal call, InternalBroadcastDriverMessage, to signal to all system drivers that the

DCHook

430 UNDOCUMENTED WINDOWS

OEM layer is going down. If there is a network driver present, it too is notified. This
effectively leaves the machine in "raw" DOS but still in protected mode.

See the discussion in EnableOEMLayer for more information.

Used by: WINOLDAP.MOD, WIN0A286.MOD but not WINOA386.MOD
Support: 3.0, 3.1
See also: EnableOEMLayer, and Death, Resurrection (chapter 8)
Example: See EnableOEMLayer

DragDetect USER.465

BOOl FAR PASCAL DragDetectCHWND, lPRECT)
HWND hwnd; /* window handle */
lPPOINT lpPoint; 1* POINT from which to test drag */

This function can be used in a window function to determine whether a "drag" has
taken place.

It should be called from within the handling of a WM_LBUTfONDOWN mes
sage. The function creates a small rectangular area surrounding the coordinates pointed
at by IpPoint and then captures the cursor using SetCapture. Using a PeekMessage
(WM_MOUSEXXX) loop, it then waits for one of two conditions to be met: if the
user moves the mouse out of the small rectangle without releasing the left button, the
function releases the capture and returns TRUE (drag in progress); if, however, the
left mouse button is released while the mouse is still within the rectangle, the function
returns FAlSE (no drag).

The rectangular area is created by creating a rectangle of zero size at the coordi
nates of IpPoint and then calling InflateRect to inflate it to twice the width of a win
dow border in both dimensions.

Within USER, DragDetect is called from one place: if a listbox control is created
with an extended style ofWES_NOTIFYDRAG (see the rgfExStyle field of the WND
structure in this chapter), the listbox class window procedure calls DragDetect from
within its WM_LBUTfONDOWN handling as part of a decision as to whether to
send a WM_BEGINDRAG message (see chapter 7) to its parent widow.

Interestingly enough, it is not called by either Program Manager or File Manager.
One might have expected them to call this function in preparation for a drag-and-drop
session (see DragObject in this chapter).

Return: TRUE if the mouse is being dragged, otherwise FAlSE
Support: 3.0, 3.1
See also: DragObject, WM_BEGINDRAG (chapter 7)

DragDetect

DRAGINFO

CHAPTER 6 • USER: WINDOWS USER INTERFACE 431

Structure

The DRAGINFO structure (included in DRAGDROP.H, which is used in the
DragObject example programs in this chapter) is a major component of the 3.0 drag
and-drop protocol. It contains information about the dragged "object," and a far
pointer to it is passed to a receiving application window in the IParam parameter of the
undocumented WM_DRAGQUERYACCEPT and the WM_DRAGDROP messages
(see chapter 7).

typedef struct {
HWND hwndSource;
HANDLE h1;
WORD wFlags;
HANDLE hList;
HANDLE hOfstruct;
int x, y;
long lUnknown;
} DRAGINFO, FAR * LPDRAGINFO;

The structure contains the following fields:

FIELD

hwndSource

wFlags

hList

DESCRIPTION

The window from which the object is being dragged

One ofthe following undocumented constants (defined in
DRAGDROP.H) indicating the type ofobject being dragged:

DRAGOBJ_PROGRAM (OxOOOl) single file name whose exten
sion is among those listed in the 'Programs=' entry in the [Wm
dows] section in WIN.INI

DRAGOBJ_DATA (Ox0002) single file name that is not a program
DRAGOBJ_DIRECTORY (Ox0003) a single subdirectory name

DRAGOBJ_MULTIPLE (Ox0004) two or more of any combina
tion of the above three types

As well as one of the above values, the wFlags field will contain
the DRAGOBJ_EXTERNAL (Ox8000) flag, if the window that
receives one of the above messages is not owned by the same
application instance as the sending application.

A fixed local memory handle (near pointer) in the source window
application data segment to a string containing the list ofobjects
being dragged

DRAGINFO

432 UNDOCUMENTED WINDOWS

hOfstruct A global memory handle to a documented OFSTRUCT structure if
a single file is being dragged and if the filename extension has an
association. Otherwise, this field contains NULL

Support: 3.0, 3.1
See also: DragObject

DragObJect USER.464

DWORD FAR PASCAL DragObject(HWND, HWND, WORD, WORD, NPSTR, HCURSOR)
HWND hwndScope; /* Scope in which dragging can occur */
HWND hwndObji /* Window initiating the DragObj call */
WORD wObjType; /* One of the DRAGOBJ_ constants (see below) */
WORD hOfstruct; /* handle to global OFSTRUCT or NULL */
NPSTR sZList; /* list of file/dir objects */
HCURSOR hDragCursori /* cursor or icon to be used during drag */

This function implements the server component of drag-and-drop in 3.0. It is called
by both Program Manager and File Manager. An object is an executable file, a non
executable (data) file, a directory name, or a list ofany combination of these.

Drag-and-drop is a documented feature for 3.1 applications wishing to be "clients"
(that is, to receive dragged objects) and is implemented cleanly in its approved guise.
However, the requirements of an application wishing to be a server (that is, provide
the user objects to drag) still are not documented. This function provides the means
by which both the documented protocol in 3.1, and the undocumented protocol in
both 3.0 and 3.1 described below, are implemented.

A drag-and-drop server application calls this function in response to a user initi
ated drag operation, usually from within the window procedure's WM_LBUTTON
DOWN handling. That a drag is in progress can be determined using the
undocumented DragDetect function (see the DragDetect entry in this chapter).

The hwndScope parameter appears to limit which windows in the window hierar
chy will be notified that there is a drag in progress and asked whether they want to
accept a drop. Passing the return from the documented GetDesktopWindow() func
tion will ensure that all windows have the opportunity to become a client for the drop.
The hwndObj parameter is the handle of the window initiating the drag and from
which the object is being dragged.

If the object being dragged is a single file, as defined in the following paragraph,
the caller may provide an hOfstruct parameter containing a global memory handle to a
block of memory containing a documented OFSTRUCT structure describing the file.
Otherwise this parameter should be NULL.

The wFlags parameter is used to specify the type of object that is being dragged
and whether the messages should be sent to external applications. Only if the high bit
of this parameter is set can another application be notified of the drag and accept the
drop. If the high bit is not set, the drag is for internal consumption only; Program

DragObject

CHAPTER 6 • USER: WINDOWS USER INTERFACE 433

Manager always issues the call with the high bit set off, so drags from it are never noti
fied to other applications. wFlags should contain one of the following constants ORed
with DRAGOBJ_EXTERNAL (Ox8000) to allow dragging outside the source applica
tion.

DRAGOBJ_PROGRAM (OxOOOl) The object is a single executable file (.EXE, .COM,
.DLL or .BAT).

DRAGOBJ_DATA (Ox0002) The object is a single flie other than an executable.

DRAGOBJ_DIRECTORY (Ox0003) The object is a fully qualified directory name.

DRAGOBJ_MULTIPLE (Ox0004) The object is a list offiles and directories.

As the user drags the "object," the function sends an undocumented message,
WM_QUERYDROPOBJECT (see chapter 7), to the window under the current cur
sor position, Le., the potential client. De&mdowProc, which normally handles this
message, returns O. As long as the underlying window returns 0 to this message, the
cursor remains the "no-entry" type. The client window function may return 1 to the
message, however, signaling acceptance of the dragged object. The message provides
information to assist in deciding whether to accept. First, the wParam parameter
contains a 1 if the current dragged position is over a nonclient area and a 0 if it is
over the client area. Second, the IParam parameter contains a pointer to an undocu
mented DRAGINFO structure, described earlier. From this structure, the window can
determine

• what type of object is being offered (program or data file, directory, or multi-
ple file selection, as defined in the wFlags parameter to the DragObject call),

• the list of file/directory names,
• if a file, whether an association exists for it
• if a file, the full qualified file name.

In addition, in 3.0, another undocumented message, WM_USER+260, is repeat
edly sent to the window under the cursor. The purpose of the message is unclear
(wParam and lParam are always both 0). Because this message is not used in 3.1, and
because not accepting it in 3.0 does not affect the operation of the protocol, it appears
safe to ignore.

Upon receipt of the acceptance, DragObject now sends the undocumented
WM_DRAGSELECT message to the client, signaling that conditions are go for a
drop. This message acts as a flip-flop if the user drags the object out of the window;
the window will receive another WM_DRAGSELECT, this time signaling that the
drag-drop is off. If the user brings the object back into the window, yet another
WM_DRAGSELECT is sent to it, signaling that the drag-drop is on again.

DragObject

434 UNDOCUMENTED WINDOWS

After acceptance, and as the object is dragged, the function continues to send the
WM_QUERYDROPOBJECT messages, but now it also sends undocumented
WM_DRAGMOVE messages. (See chapter 7.)

Finally, when the user releases the left mouse button, "dropping" the file(s), the
undocumented WM_DRAGDROP message is sent to the window. The wParam indi
cates the window that issued the DragObject() call, and the lParam parameter again
holds the DRAGINFOPTR pointer.

The DRAGINFO structure, described in the DRAGINFO entry, contains a han
dle at offset 2 that should be a near pointer into the server application's near heap.
This points at a null terminated string containing a list of one or more files and direc
tories, each with a trailing space, composing the list of objects being dragged. Note
that when File Manager is the server, directories in the list are fully qualified, but that
files are simple file names without paths. The files and directories can be extracted
from the list by simple parsing, using the separating space characters as delimiters.

The only way for a client to derive the path to the files in a list from File Manager
appears to rely on knowledge that the window from which the user has dragged the
objects has the directory and file spec in the caption bar; thus, we can get hold of it by
calling GetWindowText on the hwndSource field of the DRAGINFO structure and
parsing the directory from the returned string. In order to remain compatible with File
Manager, other server applications appear to have to emulate this characteristic. This is
illustrated in the example programs that follows. It is likely that there is a more practi
cal and elegant solution to the problem, but it is not currently known.

In version 3.1, DragObject also sends a documented message, WM_DROPFILES,
to the client window when the left mouse button is released. The wParam to the mes
sage is described in the version 3.1 SDK as a handle to a reserved structure. That
structure is documented in the DROPINFO entry in this chapter.

An interesting feature that DragObject displays is hidden in the last parameter it is
called with and that was not described above. The hDragCursor parameter accepts a
handle to a cursor or an icon! If an icon, an internal routine, sadly not exported even
by ordinal (it shows up in some CodeView symbol tables for debug versions of
USER), called ColorToMonoIcon, generates a cursor-compatible monochrome
bitmap from the supplied, color, icon. The DRAGOBJ example program uses the class
icon for WINIO applications as the drag "cursor."

Note that the cursor that is used within the function to signify that a drag has not
been accepted, the 'No Entry' universal-no sign, is a resource that can be accessed
from within applications. It is, in versions 3.0 and 3.1, a USER.EXE resource with ID
100. Thus, a handle to it can be obtained by code similar to

hcrsNoEntry = LoadCursor(GetModuleHandle("USER.EXE"), MAKEINTRESOURCE(100»;

The two example programs in this entry both make extensive use of the
DRAGDROP.H file, which follows. The structures defined are described in the
DRAGINFO and DROPINFO entries in this chapter; the messages are described in
chapter 7.

DragObject

CHAPTER 6 • USER: WINDOWS USER INTERFACE 435

1* DRAGDROP.H *1

1* === UNDOCUMENTED MESSAGES === *1

#define WM_DROPOBJECT
#define WM_QUERYDROPOBJECT

Ox022A
Ox022B

#define WM_BEGINDRAG Ox022C
#define WM_DRAGLOOP Ox022D

#define WM_DRAGSELECT Ox022E
#define WM_DRAGMOVE Ox022F

#ifndef WM_DROPFILES
#define WM_DROPFILES Ox0233
#endif

1* === UNDOCUMENTED CONSTANTS === *1

II Used in the wFlags field of the DRAGINFO sructure
#define DRAGOBJ_PROGRAM Ox0001 II A single executable
#define DRAGOBJ_DATA Ox0002 II A single 'other' file
#define DRAGOBJ_DIRECTORY Ox0003 II A single pathed directory
#define DRAGOBJ_MULTIPLE Ox0004 II Any combination 2 or more
#define DRAGOBJ_EXTERNAL Ox8000 II ORed with one of the above

II Used as the return to the source <caller of DragObject)
#define DRAG_PRNT Ox544e5250 II'PRNT'
#define DRAG_FILE Ox454c4946 II'FILE'

1* === UNDOCUMENTED STRUCTURE --- *1

II File Manager window that owns source listbox
II Handle of drag icon 111
II One of the DRAGOBJ constants below. They
II include a top bit set, indicating drag
II is allowed outside source app (FileMan).
II near pointer to list of files.
II handle to a global OFSTRUCT. If a list, or
II file has no association, FileMan sets
II this to NULL.
II Position of cursor in client coords at drop
II 1111
LPDRAGINFO;

int x, y;
long lUnknown;
} DRAGINFO, FAR *

char *szList;
HANDLE hOfstruct;

II Structure pointed at by lParam of WM_DRAGDROP
typedef struct {

HWND hwndSource;
HANDLE h1;
WORD wFlags;

II Offset of the first filename in the block
II X coordinate of the drop point
II Y coordinate of the drop point
/1 1 if Dropped on client area, 0 if NonClient

/1 Structure in global memory - handle in wParam of WM_DROPFILES in 3.1
typedef struct {

WORD wOfsFirst;
WORD xDrop;
WORD yDrop;
BOOL bClient;

DragObject

436 UNDOCUMENTED WINDOWS

char chBuffer[1J; II Buffer with null-terminated list
II of null-terminated strings

} DROPINFO, FAR * lPDROPINFO;

Return: In 3.0, the return is either 1, indicating that the drop was successful, i.e., a
client application accepted the dragged objects, or 0, indicating that the objects were
not accepted by a client. In 3.1, the return is either one of the DRAG_PRNT or
DRAG_FILE constants defined in the preceeding file, or 1 if the drop was not
accepted by a client.
Support: 3.0, 3.1
See also: DRAGINFO, DROPINFO, and chapter 7
Note: For additional information on undocumented aspects of both client and server
ends of the 3.1 drag-and-drop protocol, see Jeff Richter, "Drop Everything: How to
Make Your Application Accept and Source Drag-and-Drop Files," Microsoft Systems
Journal (May-June, 1992).
Example A: The following drag-and-drop "client" program accepts all object types
and lists the names of those dropped on it. It responds to both 3.0 and 3.1 drag-and
drop protocols:

1* DDCLIENT.C *1

#include <windows.h>
#include <string.h>
#include IIwmhandlr.h ll

#include IIwinio.h ll

#include IIdragdrop.h ll

#ifndef __BORlANDC__
#define MK_FP(a,b) «void far *)«(unsigned long)(a) « 16) I (b»)
#endif

#define AboutBoxString \
IIDDClient\n\nDragObject client example program ll

BOOl tInClientArea = FALSE;

II We also get documented drag-and-drop in 3.1
II Here we don't use the documented API, but rather manipulate the
II undocumented DROPINFO structure directly.
long my_dropfiles(HWND hwnd, WORD wMsg, WORD wParam, DWORD lParam)

{

lPDROPINFO lpDropInfo;
int i = 0;
lPSTR lpszFile;

printf(IIWM_DROPFILES received\n ll
);

lpDropInfo = (lPDROPINFO) GlobalLock(wParam);
lpszFile = (lPSTR) &lpDropInfo->chBuffer;

while (*lpszFile)
{

DragObject

CHAPTER 6 • USER: WINDOWS USER INTERFACE 437

i++;
printf("%02d File name: %Fs\n U, i, lpszFile);
lpszFile = (LPSTR) «DWORD) lpszFile + lstrlen(lpszFile) + 1);
}

GlobalUnlock(wParam);

II Replicates the functionality of DragFinish!
GlobalFree(wParam);

return 1;
}

II Handles WM_DROPOBJECT - Sent when user releases left button
II inside our client area.
long drop_handler(HWND h, WORD wMsg, WORD wParam, DWORD lParam)

{

LPOFSTRUCT lpofstruct;
LPDRAGINFO lpDragInfo;
LPSTR lpTail, lpHead, lpFileName;
WORD wSourceDS;
int i = 0;
char szPath[120J;
char *szFile;
BOOL bPath;
static const char *szObjType[J = {"executable", "data/text file",

"directory", "multiple files/dirs"};

II Reset ready for next drag/drop
tInClientArea = FALSE;

lpDragInfo = (LPDRAGINFO) lParam;

II Get source app (File Manager, presumably) DS
wSourceDS = (GetWindowWord(lpDragInfo->hwndSource, GWW_HINSTANCE)

& Oxfffc) I 1;

II Use wFlags field (without top bit, and decremented to
II zero-base) as index to get object type string.
printf(UDrop in progress ••. \n"

ff \ n'f

"Object type : %s\n",
sZObjType[(lpDragInfo->wFlags - 1) & 3J);

II hOfstruct only non-NULL when a single file, and
II extension has association
if (lpDragInfo->hOfstruct)

(

lpofstruct = (LPOFSTRUCT) MK_FP(lpDragInfo->hOfstruct, 0);
printf("01 File name: %Fs\n\t(Extension has association)\n"

,,------------------------------ \ n ff

"Drop completed successfully\n\n",
lpofstruct->szPathName);

return DRAG_FILE;

DragObject

438 UNDOCUMENTED WINDOWS

}

II This returns a list of files and complete directory paths
II by forming a far pointer into the source application's near
II heap and parsing to space characters. If a list item has no
II path, we assume that the source app is or emulates FileMan,
II and use the source window title to obtain the directory.
II This technique is not only a hack, but it only works in v3.0!
II In 3.1 we can use the documented API.

if «GetWindowText(lpDragInfo->hwndSource,
(LPSTR) sZPath, sizeof(szPath») I I

(GetWindowText(GetParent(lpDragInfo->hwndSource),
(LPSTR) sZPath, sizeof(szPath»»

{

szFile = szPath + strlen(szPath);
while (szFile && (*szFile != '\\1» szFile--;
++szFile;
}

else
szFile = sZPath;

lpTail = (LPSTR) MK_FP(wSourceDS, (WORD) (lpDragInfo->szList»;

do {
II Separate out next 'token', record whether it contains a path
lpHead = lpTail;
bPath = FALSE;
while (*lpTail != 1 I)

if (*lpTail++ == 1\\')
bPath = TRUE;

*lpTail = 0;

II if list item has no path, use sZPath.
if (! bPath)

{

lstrcpy«LPSTR) szFile, lpHead);
lpFileName = (LPSTR) &szPath;
}

else
lpFileName = lpHead;

printf(fI%02d %s : %Fs\n",
++i,
bPath ? nDirectory" flFile name",
lpFileName);

* l pTa i l ++ = ' ';

} while (*lpTail);

printf(fI-----------------------------\n"
"Drop completed successfully\n\n fl);

DragObject

DRAGOBJ_PROGRAM) I I
DRAGOBJ_DATA) II
DRAGOBJ_DIRECTORY) I I
DRAGOBJ_MULTIPLE) I I
!= NULL»

CHAPTER 6 • USER: WINDOWS USER INTERFACE 439

return DRAG_FILE;
}

II Handles WM_QUERYDROPOBJECT - Sent whenever the object being
II dragged moves over our window.
long query_handler(HWND h, WORD w, WORD wParam, DWORD lParam)

{

LPDRAGINFO lpDragInfo;

lpDragInfo = (LPDRAGINFO) lParam;

II Dragged icon has reached client area (wParam == 0).
II Since lParam is a DRAGINFOPTR, we can decide whether we
II want to accept on the basis of file-type, and whether or
II not 'associated ' • This code is only here to illustrate
II the point, and is a pointless and redundant test,
1/ and accepts all object types.
if «wParam == 0) &&

(lpDraglnfo->wFlags
(lpDraglnfo->wFlags -
(lpDraglnfo->wFlags -
(lpDraglnfo->wFlags
(lpDraglnfo->hOfstruct
return 1;

else
return 0;

}

II Handles WM_DRAGSELECT - Sent whenever the object being
1/ dragged moves into or out of our client area. We don't actually
II need to handle this one.
long select_handler(HWND h, WORD w1, WORD w2, DWORD l)

{

printf("Drag %s\n",
(tlnClientArea A= 1) ? "in progress" "suspended");

return 1;
}

II Handles WM_DRAGMOVE - Sent whenever the object being
1/ dragged is dragged after we have signaled acceptance of it.
1/ We don't actually need to handle this one, either.
long move_handler(HWND h, WORD w1, WORD w2, DWORD l)

{

return 1;
}

int maine)
{

winio_settitle(_hMainWnd, "Drag1nlDrop Client");
winio_about(AboutBoxString);

wmhandler_set(__hMainWnd, WM_DROPOBJECT,
(WMHANDLER) drop_handler);

DragObject

440 UNDOCUMENTED WINDOWS

wmhandler_set(__hMainWnd, WM_QUERYDROPOBJECT,
(WMHANDLER) query_handler);

wmhandler_set(__hMainWnd, WM_DRAGSELECT,
(WMHANDLER) select_handler);

wmhandler_set(__hMainWnd, WM_DRAGMOVE,
(WMHANDLER) move_handler);

wmhandler_set(__hMainWnd, WM_DROPFILES,
(WMHANDLER) my_dropfiles);

printf(IIWaiting for drag'n'drop messages ••• \n\n ll
);

return 0;
}

Example B: The following drag-and-drop "server" program allows input of one or
more file names as a list of objects. Dragging from any position in the window allows
the currently defined set of objects to be dragged over, and dropped on, a drag-and
drop client.

/* DDSERVER.C */

#include <windows.h>
#include <string.h>
#include "wmhandlr.h ll

#include IIwinio.h ll

#include IIdragdrop.h ll

#ifndef __BORLANDC__
#define MK_FP(a,b) «void far *)«(unsigned long)(a) « 16) I (b»)
#endif

/* Compile with 3.0 SDK, run with 3.0/3.1 */
extern DWORD FAR PASCAL DragObject(HWND hwndScope, HWND hwndOwner,

WORD wFlags, WORD hOfstruct, char *szList, HCURSOR hDragCursor);

char filelist[128J;
char szSaveTitle[128J;
WMHANDLER prev_lbuttondown, prev_lbuttonup, prev_mousemove;
HCURSOR hDragCursor;
BOOL bDrag = FALSE;
WORD wDragType;
HANDLE hOfstruct = 0;
LPOFSTRUCT lpof;
int cObjs;
char *szArgvO;

#include IIcheckord.c ll

BOOL do_DragObject(void)
{

DWORD lRet;

puts(IIDragging ..• II);
GetWindowText(__hMainWnd, szSaveTitle, sizeof(szSaveTitle»;

DragObject

CHAPTER 6 • USER: WINDOWS USER INTERFACE 441

lRet = DragObject(GetDesktopWindow(), __hMainWnd, wDragType,
hOfstruct, (char *) &filelist, hDragCursor);

SetWindowText(__hMainWnd, szSaveTitle);
printf("Returned %08lX\n", lRet);

switch (lRet)
{

case DRAG_PRNT :
printf("Dropped onto a print oriented app.\n"); break;

case DRAG_FILE :
printf(IIDropped onto a file oriented app.\n"); break;

case 1 :
printf(IIDrop accepted (rejected if v3.1).\n ll

); break;
default :

printf("Drop not completed.\n ll
); return FALSE;

}

return TRUE;
}

void do_31Protocol(void)
{

DWORD pntDrop;
HANDLE hDropInfo;
DWORD dwSizeBlk;
LPDROPINFO lpDropInfo;
i nt i;
LPSTR lpsz;
char *sz;
char szBuf[80J;
HWND hwndDrop;

pntDrop = GetMessagePos();

II Estimate size of allocation needed. This should be plenty.
dwSizeBlk = (DWORD) cObjs * 128;

hDropInfo =
GlobalAlloc(GMEM_DDESHARE I GMEM_ZEROINIT, dwSizeBlk);

lpDropInfo = (LPDROPINFO) GlobalLock(hDropInfo);

lpDropInfo->wOfsFirst = 8;
lpDropInfo->xDrop = LOWORD(pntDrop);
lpDropInfo->yDrop = HIWORD(pntDrop);
lpsz = (LPSTR) &lpDropInfo->chBuffer;

II WinFile emulation!
lstrcpy«LPSTR) &szBuf, szArgvO);

II remove filename to leave \ terminated path
*(strrchr(szBuf, 1\\1) + 1) 0;
sz = filelist;

II copy in complete pathed filenames
for (i = 0; i < cObjs; i++)

DragObject

, ,.,

442

for

UNDOCUMENTED WINDOWS

{

lstrcpy(lpsz, (lPSTR) &szBuf);
lstrcat(lpsz, (LPSTR) strtok(sz, " "»;
lpsz = (lPSTR) «DWORD) lpsz + lstrlen(lpsz) + 1);
sz = NULL;
}

(; i > 0; i --)
filelist[strlen(filelist)J

GlobalUnlock(hDroplnfo);

II Find out who to send WM_DROPFIlES to
hwndDrop = WindowFromPoint(MAKEPOINT(pntDrop»;

SendMessage(hwndDrop, WM_DROPFILES, hDroplnfo, Ol);

II In case the client app doesn't follow the rules
GlobalFree(hDropInfo);
}

BOOl free_sel(HWND hwnd)
{

GlobalFree(hOfstruct);
return TRUE;
}

long my_lbuttondown(HWND hwnd, WORD wMsg, WORD wParam,
DWORD l Pa ram)
{

II Only allow dragging if there is something to drag
if (filelist[OJ)

bDrag = TRUE;
return (*prev_lbuttondown)(hwnd, wMsg, wParam, lParam);
}

long my_lbuttonup(HWND hwnd, WORD wMsg, WORD wParam,
DWORD lParam)
{

bDrag = FALSE;
return (*prev_lbuttonup)(hwnd, wMsg, wParam, lParam);
}

long my_mousemove(HWND hwnd, WORD wMsg, WORD wParam,
DWORD lParam)
{

if (bDrag)
{

II Avoid 'reentrancy'
bDrag = FALSE;
if (do_DragObject(»

do_31Protocol();
}

return (*prev_mousemove)(hwnd, wMsg, wParam, lParam);
}

DragObject

CHAPTER 6 • USER: WINDOWS USER INTERFACE 443

int main(int argc, char *argv[])
{

i nt i;
char *sz;

if (! CheckOrdName(IDragObject", "USER", 464»
return 0;

II for later WinFile emulation (!)
szArgvO = argv[O];

prev_lbuttondown = wmhandler_set(__hMainWnd, WM_LBUTTONDOWN,
(WMHANDLER) my_lbuttondown);

prev_lbuttonup = wmhandler_set(__hMainWnd, WM_LBUTTONUP,
(WMHANDLER) my_lbuttonup);

prev_mousemove = wmhandler_set(__hMainWnd, WM_MOUSEMOVE,
(WMHANDLER) my_mousemove);

winio_onclose(__hMainWnd, (DESTROY_FUNC) free_sel);

II Use the class icon for the drag cursor
hDragCursor = GetClassWord(__hMainWnd, GCW_HICON);

II Allocate ourselves a global block for a single file
hOfstruct = GlobalAlloc(GMEM_DDESHARE, sizeof(OFSTRUCT»;

while (TRUE)
{

printf("Enter file(s) and/or dir(s)\n"
"separated by a single space:\n");

gets(filelist);
strupr(filelist);

II Ensure it is space char terminated
if (filelist[strlen(filelist) - 1] != ' ')

strcat(filelist, II II);

printf("List is <%s>\n", filelist);
for (i = 0, cObjs = 0; filelist[i]; i++)

if (filelist[i] == ' ') cObjs++;

II Detect the 'object' type
if (cObjs > 1)

wDragType = DRAGOBJ_MULTIPLE;
else
if (filelist[strlen(filelist) - 2] '\\')

wDragType = DRAGOBJ_DIRECTORY;
else

{

lpof = (LPOFSTRUCT) GlobalLock(hOfstruct);
OpenFile«LPSTR) &filelist, lpof, OF_PARSE);
printf("Filename parsed to: %Fs\n",

(LPSTR) &lpof->szPathName);
if «sz = strchr(filelist, '.'» &&

«strncmp((char *) (sz+1), "EXE", 3) == 0) II
(strncmp«char *) (sz+1), "BAT", 3) 0) I I
(strncmp«char *) (sz+1), "COM", 3) == 0»)
wDragType = DRAGOBJ_PROGRAM;

DragObject

444 UNDOCUMENTED WINDOWS

else
wDragType = DRAGOBJ_DATA;

wDragType 1= DRAGOBJ_EXTERNAl;
GlobalUnlock(hOfstruct);
}

}

return 0;
}

DROPINFO Structure

A drag-and-drop client protocol is qocumented in version 3.1 for those applications
that want to accept files dragged by the user from File Manager. The documented
WM_DROPFILES message passes to the receiving application a handle to an W1docu
mented, "internal" structure in the global heap. This DROPINFO structure contains
information about the file/directories that are being dropped, together with the coor
dinates in the window at which the object(s) were dropped, and is acted upon by the
documented DragFinish and DragQueryFiles functions. It is created by the
DragObject function in version 3.1.

The DROPINFO structure, described below, is created by the W1documented
DragObject function in version 3.1 at the same time as it creates the W1documented
DRAGINFO structure described elsewhere in the chapter. In the same way as the
DRAGINFO structure is referenced via the lParam of the undocumented
WM_QUERYDROPOBJECT and WM_DROPOBJECT messages (see chapter 7), a
handle to the DROPINFO structure is passed via the wParam of the documented
WM_DROPFILES message.

typedef struct {
WORD wOfsFirst;
WORD xDrop;
WORD yDrop;
BOOl bClient;
char chBufferC1J;
} DROPINFO, FAR * lPDROPINFO;

The structure contains the following fields:

FIELD

wOfsFirst

xDrop

yDrop

bClient

chBuffer

DESCRIPTION

The offset in the structure of the first file name string. Viewed alter
natively, it is the length of the header.
Client window X coordinate of the drop point

Client window Y coordinate of the drop point

TRUE (1) if drop was in client area ofwindow, FALSE (0) if not.

Variable length buffer containing a list ofnull terminated strings.
The list is terminated by a final, NULL string.

DROPINFO

CHAPTER 6 • USER: WINDOWS USER INTERFACE 445

Support: 3.1
See also: DRAGINFO, DragObject

Dumplcon USER.459

DWORD FAR PASCAL DumpIcon(LPCURSORICONINFO, WORD FAR *,
LPSTR FAR *, LPSTR FAR *)

LPCURSORICONINFO lpInfo; 1* Pointer to Cursor/Icon info *1
WORD FAR *lpLen; 1* Pointer to header length w~ord *1
LPSTR FAR *lpXORBits; 1* Receives pointer to buffer *1
LPSTR FAR *lpANDMask; 1* Receives pointer to buffer *1

DumpIcon dissects the structure pointed to by IpInfo and returns ("dumps") informa
tion about it.

This function works with both cursor and icon resources. The word pointed to by
the IpLen parameter is fuled with the length of the CURSORICONINFO structure;
the pointer pointed to by the IpXORBits parameter is set to the address of the XOR
bitmap; and the pointer pointed to by the IpANDBits parameter is set to the address
of the AND bitmap.

Return: On failure, the function returns O. Otherwise, the low word of the return
specifies the size in bytes of a single plane of the bitmap. The high word specifies the
size in bytes of the entire bitmap. In the case of a cursor, which can currently be only
black and white, these will always be the same. In the case of an icon, the high word
will be bPlanes * lowWord.
Support: 3.0, 3.1
Used by: Program Manager
Note: Uses the undocumented CURSORICONINFO structure.
See also: CreateCursorIconIndirect, CURSORICONINFO
Example: Uses DumpIcon to display information about the WINIO class icon and
cursor.

1* DUMPICON.C *1

#include <windows.h>
#include "winio.h"

1* undocumented structure--see CURSORICONINFO *1
#include "cursicon.h"

1* undocumented function *1
extern DWORD FAR PASCAL DumpIcon(LPCURSORICONINFO lpInfo,

WORD FAR *lpLen, II Length of header

Dumplcon

446 UNDOCUMENTED WINDOWS

LPSTR FAR *lpXORBits,
LPSTR FAR *lpANDMask
);

#include tlcheckord.c tl

int maine)
{

DWORD dwSize;
WORD wHdrLen;
LPSTR lpXOR;
LPSTR lpAND;

II Pointer to XOR bits
II Pointer to AND bits

II Ord/name check
if (! CheckOrdName(tlDumplcon tl , tlUSER tI

, 459»
return 0;

if «dwSize = Dumplcon(
(LPCURSORICONINFO) LockResource(

(HANDLE) GetClassWord(winio_current(), GCW_HCURSOR»,
(WORD FAR *) &wHdrLen,
(LPSTR FAR *) &lpXOR,
(LPSTR FAR *) &lpAND» == 0)

{

printf(tlCould not Dumplcon the class cursor.\n tl);
return 0;
}

FreeResource«HANDLE) GetClassWord(winio_current(), GCW_HCURSOR»;

printf(tlDump of the winio_app class CURSOR\n tl
II \n II

tlHeader length %d bytes\n"
"Single plane size %d\n"
tI Fu II bi tmap si ze %d\n tl
tlXOR bi tmap address %Fp\n tl
tlAND bitmap address %Fp\n\n tl ,

wHdrLen, (WORD) dwSize,
(WORD) (dwSize » 16), lpXOR, lpAND);

if «dwSize = Dumplcon(
(LPCURSORICONINFO) LockResource(

(HANDLE) GetClassWord(winio_current(), GCW_HICON»,
(WORD FAR *) &wHdrLen,
(LPSTR FAR *) &lpXOR,
(LPSTR FAR *) &lpAND» == 0)

{

printf(tlCould not Dumplcon the class icon.\n tl);
return 0;
}

FreeResource«HANDLE) GetClassWord(winio_current(), GCW_HICON»;

printf(tlDump of the winio_app class ICON\n tl
II \ nil

Dumplcon

CHAPTER 6 • USER: WINDOWS USER INTERFACE 447

"Header length %d bytes\n"
"Single plane size %d\n"
"Fu II bi tmap si ze %d\n"
"XOR bitmap address %Fp\n"
"AND bi tmap address %Fp\n\n",

wHdrLen, (WORD) dwSize,
(WORD) (dwSize » 16), lpXOR, lpAND);

printf("Program terminated");
return 0;
}

EnableOEMLayer

void FAR PASCAL EnableOEMLayer(void);

USER.3

This function enables the Windows OEM device interface, i.e., the interface between
the Windows device independent API and BIOS and DOS device drivers. While the
OEM layer is disabled, access to devices is not available from the messaging interface;
any application that disables the OEM layer must use traditional interrupts for console
communication, for example.

When the OEM layer is reenabled, the screen is restored to graphics mode and the
OEM layer takes over control of device management. Specifically, the GDI layer is
resurrected with a call to the undocumented Resurrection function, and then input
from the mouse, keyboard, and system timer is reenabled. System device drivers are
notified that the OEM layer is coming up using a call to InternalBroadcastDriverMess
age, (which is not exported). If there is a network device driver, it too is notified.
Finally, the desktop is repainted; the message interface again becomes the means by
which applications communicate with devices.

In real mode (Windows 3.0 only) and Windows standard mode, which runs in the
286 protected mode of the 80286/80386 processors, this is the means by which the
Windows "Old App" (DOS) control application (WIN0 LDAPjWIN0A286) dis
ables/enables the Windows device layer to allow traditional DOS applications to run.

In 386 Enhanced mode, where Windows runs in the V86 mode of the 80386 pro
cessor, DOS applications run in separate virtual machines (VM) and can be
"windowed" and preemptively multitasked. In this mode, the control program
(WINOA386) does not use Enable/DisableOEMLayer(), which do, however, still
work.

Used by: WINOLDAP.MOD, WIN0A286.MOD, but not WINOA386.MOD
Support: 3.0, 3.1.
See also: DisableOEMLayer, and Death, Resurrection (chapter 8)
Example: Uses DisableOEMLayer and EnableOEMLayer to switch into full screen
text mode from within a Windows application.

EnableOEMLayer

448 UNDOCUMENTED WINDOWS

1* OEMLAYER.C *1

#incLude <windows.h>
#incLude <dos.h>
#incLude IIwinio.h ll

1* undocumented functions *1
extern void FAR PASCAL EnabLeOEMLayer(void);
extern void FAR PASCAL DisableOEMLayer(void);

#incLude IIcheckord.c ll

void b800dispLay(char *szDispLay)
{

unsigned lineofs = 0, charofs = 0, scrseL;

printf(IIScreen SeLector is %04x\n",
scrseL = (WORD)

GetProcAddress(GetModuLeHandLeCIIKERNELII), "_B800h ll »;

for (; *szDispLay; szDispLay++)
switch C*szDispLay) {

case '\r' charofs = 0; break;
case '\n' : l i neofs += 160; break;
default :

*(WORD FAR *) MK_FP(scrseL, lineofs+charofs) =
OxeOO I *szDispLay;

charofs += 2;
}

}

;nt maine)
{

II Ord/name check
if (! CCheckOrdName(IIEnabLeOEMLayer ll

, "USER II , 3» &&
(CheckOrdNameCIIDisabLeOEMLayer", IIUSER II , 4»)

return 0;

O;sableOEMLayer();
b800display(lI\n ll

liThe OEM layer has been disabLed, and normaL Windows\r\n"
IIkeyboard and dispLay handLing have been suspended.\r\n ll

IIDirect writes to b800:0 are being used to dispLay this,\r\n ll

lIand a caLL to Int 16h wiLL be used to get your keystroke.\r\n ll

lI\r\n ll

IIPress a key to return. II);

_asm {
mov ah, 0
i nt 16h
}

EnabLeOEMLayer();

printf("\n\nProgram terminated ll
);

EnableOEMLayer

CHAPTER 6 • USER: WINDOWS USER INTERFACE 449

return 0;
}

EndMenu

void FAR PASCAL EndMenu(void);

USER.187

EndMenu allows an application to take down the current user menu or ensure that
there is no currently active menu. It can be used by applications to take down a menu
when an event occurs that requires attention. The function releases captives, inverts
bits, kills timers, and does whatever else is needed to get Windows out of menu
"mode."

The following example uses a timer event to cancel the current menu. Note that
EndMenu does not take any HWND or HMENU parameters. It ends the current
menu active in the system, independent of application, as shown by running the exam
ple program and minimizing it. Any subsequent application or system menu activated
in any application on the desktop will be taken down from the timed calls to
EndMenu.

This function is called extensively by Microsoft's own Windows applications,
although it is not known why. It is also called by Det\VmdowProc().

U sed by: Excel, VisualBasic, WinWord
Support: 3.0, 3.1
Example:

/* ENDMENU.C */

#include <windows.h>
#include IIwinio.h ll

/* undocumented function */
extern void FAR PASCAL EndMenu(void);

#include IIcheckord.c ll

HANDLE hTimer;
FARPROC lpfnTimerFunc;

WORD FAR PASCAL TimerFunc(HWND hwnd, WORD wMsg,
int nIDEvent, DWORD dwTime)
(

EndMenu();
return 1;
}

BOOl CleanUp(HWND hwnd)
{

FreeProclnstance(lpfnTimerFunc);

EndMenu

450 UNDOCUMENTED WINDOWS

KillTimer(winio_current(), hTimer);
return TRUE;
}

int maine)
{

HMENU hMenu, hPopup;

II Ord/name check
if (! CheckOrdName(IEndMenu", "USER", 187»

return 0;

lpfnTimerFunc = MakeProclnstance«FARPROC) TimerFunc, __hlnst);

hPopup = CreateMenu();
AppendMenu(hPopup, MF_GRAYED I MF_STRING,

1, "Watch me disappear ••• ");
AppendMenu(hPopup, MF_GRAYED I MF_STRING,

2, " .. within 3 seconds.");

hMenu = winio_hmenumain(winio_current(»;
AppendMenu(hMenu, MF_ENABLED I MF_STRING I MF_POPUP,

hPopup, "Click Me");

hTimer = SetTimer(winio_current(), 10, 3000, lpfnTimerFunc);

winio_onclose(winio_current(), (DESTROY_FUNC) CleanUp);

printf("\nClick once on the menu selection \"Click Me\" above,\n"
"leaving the popup visible. Within a couple of seconds\n"
lithe popup will disappear by itself. This is caused by\n"
"a call to EndMenu() within a timer event handler.\n\n"
"Close the window to exit.");

return 0;
}

FarCallNetDrlver USER.500

void FAR FarCallNetDriver(void);
II takes function pointer offset in ex
II all parameters to WNet* function are already on stack

Most of the WNet* functions in USER, which are documented in the Windows
Device Driver Kit (DDK) Device Driver Adaptation Guide, use the FarCallNetDriver()
function to call through to the actual WNet* functions in a network device driver
(such as NElWARE.DRV, MSNET.DRV, or LANMAN.DRV). This function is used
in both 3.0 and 3.1, but is only exported in 3.0.

USER links to the network driver at run-time, using GetProfileString() to get the
driver name from the network.drv= setting in the [boot] section of SYSTEM.IN!,

FarCallNetDriver

CHAPTER 6 • USER: WINDOWS USER INTERFACE 451

LoadLibrary() to turn the driver name into a module handle, and GetProcAddress() to
get a far function pointer for each WNet* function supported by the driver. The func
tions supported by the driver are returned from its WNetGetCaps() function, which
USER calls. The function pointers are placed in a table which FarCallNetDriver() uses
to JMPF to the appropriate function in the driver:
0x
OOh IWNETOPENJOB

~ 04h IWNETCLOSEJOB
J 08h IWNETABORTJOB
~ OCh IWNETHOLDJOB
) 10h IWNETRELEASEJOB
~. 14h IWNETCANCELJOB
) 18h __ IWNETSETJOBCOPIES
~ 1Ch IWNETWATCHQUEUE
i 20h IWNETUNWATCHQUEUE
i/ 24h IWNETLOCKQUEUEDATA
Ii 28h IWNETUNLOCKQUEUEDATA

(2 2Ch IWNETGETCONNECTION
1):5~ WNETGETCAPS2--
I~~~) IWNETDEVICEMODE
Ir 38h IWNETBROWSEDIALOG
I~ 3Ch IWNETGETUSER
I~ 40h IWNETADDCONNECTION
{? 44h IWNETCANCELCONNECTION
/148h IWNETGETERROR

oLl> 4Ch IWNETGETERRORTEXT _ rt/f:~"t~
2·(SOh WNETENABLE
22 S4h WNETDISABLE

/)..cJl__~TWRITEJOB ' --::::::::-.:---- kfb I"
-2-l(~ ~NETCONNE~_!~IA_LO~ __~:\ IL~d.8..l 'I"-+-/> S

64 h WN~Tl)rS-C'O"NNEe T0 I ALO G
68h WNETCONNECTIONDIALOG
6Ch WNETVIEWQUEUEDIALOG
70h WNETPROPERTYDIALOG
74h WNETGETDIRECTORYTYPE
78h WNETDIRECTORYNOTIFY
7Ch WNETGETPROPERTYTEXT

Functions prefaced IWNET* rather than WNET* are "internal" versions of the
exported functions. In 3.1, the exported function (in LAYER) does parameter valida
tion, and then (assuming all parameters are kosher) jumps to the internal version.
Thus, those functions marked WNET* rather than IWNET* above do not have the
parameter-validation layer.

WNet* functions not appearing at all in this table are implemented by USER
itself. These include the undocumented WNetErrorText() function and the docu
mented WNetRestoreConnection() function. IfWNetRestoreConnection() is called in
a funny way (described in the DDK) by the 3.1 File Manager, WNet
RestoreConnection() performs initialization.

Support: 3.0 (also present in 3.1, but not exported)
See also: WNetErrorText

FarCaliNetDriver

452 UNDOCUMENTED WINDOWS

FFFE_FarFrame USER.341

FFFE_FarFrame proc far
;; cs:ip on the stack points to two bytes:
" first is count of words of local stack space needed by function
;; second is count of words of function parameters expected on the stack

FFFE_FarFrame appears to be a special case of the WmFarFrame function (see the
WinFarFrame entry) for a special YFFE code segment in USER.EXE. As with
WinFarFrame there is a corresponding set of three routines, which are not exported
but which might be named FFFE_NearFrame, FFFE_FarFrameUndo, and
FFFE_NearFrameUndo.

_FFFE appears to be a segment that is relocated to high memory in real mode.

Support: 3.0
See also: WinFarFrame

FillWindow USER.324

void FAR PASCAL FillWindow(HWND, HWND, HDC, HANDLE)
HWND hwndParent; /* handle of parent or NULL */
HWND hwnd; /* handle of target window */
HDC hDC; /* window display context */
HANDLE hBrush; /* handle of brush to fill with */

/* OR CTLCOLOR_ constant */

FillWindow paints the window specified by hwnd using hBrush. If hwndParent is not
NULL, the hBrush parameter may specify one of the documented CTLCOLOR.
control type constants for the child window, in which case a WM_CTLCOLORis sent
to the parent window to allow it to set the brush type that is to be used.

This function is used extensively within USER itself. Calls to FillWindow can be
seen in the sources for De&mdowProc (DEFWND.C) and DefDIgProc (DEFDLG.C),
supplied with the SDK, in the handling of WM_ERASEBKGND and WM_ICON
ERASEBKGND messages, and appears to be used for a similar purpose, namely to
paint backgrounds, in other built-in window class WndProcs. FilIWindow() calls the
undocumented PaintRect() function, which in turn calls the documented FillRect()
function.

Support: 3.0, 3.1
Note: If the hBrush parameter specifies a CTLCOLOR.- constant and the hwndParent
parameter is NULL, the function fails benignly, but with no indication.

FFFE_FarFranne .

CHAPTER 6 • USER: WINDOWS USER INTERFACE 453

Example:

1* FILLWIND.C *1

#include <windows.h>
#include "wmhandlr.h"
#include "winio.h"

1* undocumented function *1
extern void FAR PASCAL FillWindow(HWND hwndParent, HWND hwnd,

HDC hDC, HANDLE hBrush);

#include "checkord.c"

long dblclk(HWND hwnd, WORD wMsg, WORD wParam, DWORD lParam)
{

HDC hDC = GetDC(hwnd);
FillWindow(NULL, hwnd, hDC, GetStockObject(DKGRAY_BRUSH»;
ReleaseDC(hwnd, hDC);
puts("The rest of the window should now be dark gray");
puts("Double click on a text line to do it again");
return 1;
}

int maine)
{

II Ord/name check
if (! CheckOrdName("FillWindow", "USER", 324»

return 1;

wmhandler_set(winio_current(),
WM_LBUTTONDBLCLK, (WMHANDLER) dblclk);

puts("Double click on a text line to turn the window dark gray");
puts("Close the window to exit");

return 0;
}

FlnalUserlnlt

void FAR PASCAL FinalUserlnit(void);

USER.400

Called by KERNEL, this function allows USER to create the desktop background at
the end of the Windows initialization process and before the shell, such as Program
Manager, is loaded. FinalUserlnit calls various GDI functions to create the desktop
bitmap and paint the initial background, and then calls the apparent GDI parallel of
this function, FinalGdiInit, as the last step.

Support: 3.0, 3.1
Called by: KERNEL

FinalUserlnit

454 UNDOCUMENTED WINDOWS

GetControlBrush USER.326

HANDLE FAR PASCAL GetControlBrush(HWND, HDC, WORD)
HWND hwnd; 1* Window owning the control */
HDC hDC; /* Device context to use *1
WORD wControlType; /* Control type (static, button, edit, etc) *1

This function retrieves the handle of the brush in use for the given control type within
the specified device context of the specified window. The function is implemented
using SendMessage (WM_CTLCOLOR).

The wControlType parameter expects values from the CTLCOLOR_ series of
documented constants.

Return: A HANDLE to the brush, or NULL if any of the parameters is invalid or not
found
Support: 3.0, 3.1
U sed by: Excel

GetDesktopHwnd

HWND FAR PASCAL GetDesktopHwnd(void);

USER.278

GetDesktopHwnd is an undocumented alias for the documented GetDesktopWindow
function.

Return: the HWND of the desktop window.
Support: 3.0, 3.1

GetFllePortName USER.343

WORD FAR PASCAL GetFilePortName(LPOFSTRUCT)
LPOFSTRUCT lpofstruct; /* OFSTRUCT buffer for user specified file */

This function displays a "Print to File" dialog box and returns the user-specified file
information into the OFSTRUCT pointed at by the lpofstruct parameter.

In the Connect dialog box in the Printers section of the Control Panel, a list of
Ports is available to which a printer driver can be connected. After others, recognizable
as actual PC hardware ports, such as LPT:, LPT2:, COM1: etc., is listed the FILE:
port. The printer driver itself does not need to know about the port through which its
output is to be sent, and the FILE: port is treated no differently at this stage than the
others, even though the destination of output is a file, not a device. Instead, the port
to be used for output is passed by the driver in its call to the GDI OpenJob function

GetControlBrush

CHAPTER 6 • USER: WINDOWS USER INTERFACE 455

when an application initiates a print job. OpenJob calls GetFilePortName through a
far pointer initialized presumably at GDI startup time. (So, GDI does call into USER,
at least for this one case.)

The function creates the user-specified file if it does not already exist; if it does
exist, the user is presented with an "Overwrite File" dialog box soliciting permission
for the file to be truncated. If the user cancels the operation, the function returns the
documented constant SP_USERABORT; otherwise it returns TRUE.

Return: TRUE (1) if the user completes the operation, SP_USERABORT(-3) if the
Cancel button is pressed or the user presses Escape
Support: 3.1
Example: The following program uses GetFilePortName to obtain a print file name:

1* FPRTNAME.C *1

#include <windows.h>
#include <string.h>
#include "winio.h"

1* undocumented function *1
extern WORD FAR PASCAL GetFilePortName(LPOFSTRUCT lpofstruct);

#include " checkord.c"

int maine)
{

WORD wRet;
OFSTRUCT ofstruct;

if (! CheckOrdName(IIGetFilePortName", "USER", 343»
return 0;

printf("This program demonstrates the\n"
"GetFilePortName function which\n"
"puts up a \"Print to File\" dialog box.\n\n");

winio_setecho(winio_current(), FALSE);

for (;;)
{

wRet = GetFilePortName«LPOFSTRUCT) &ofstruct);

printf("GetFilePortName returned %d\n lf
, wRet);

if (wRet == 1)
printf(

"In the OFSTRUCT:\n lf

"structure length: %d\n"
"fixed disk file %s\n lf

"dos error code %d\n lf

Iffull file name %s\n",
ofstruct.cBytes,

ofstruct.fFixedDisk ? "Yes" "No",
ofstruct.nErrCode,

GetFilePortName

456 UNDOCUMENTED WINDOWS

ofstruct.szPathName);

printf("\nPress a key to do it again\n"
"or close the window to eXit\n\n");

getchar();
}

return 0;
}

GetlconlD USER.455

WORD FAR PASCAL GetIconID(HANDLE, DWORD)
HANDLE hResource; 1* Resource handle of cursor/icon */
DWORD dwResType; /* 1 (cursor) or 3 (icon) */

This function returns the ID number of the selected icon or cursor resource in the
resource directory of the associated program file. It is called from within the docu
mented LoadIcon function and by the Windows 3.1 Object Packager.

This function was present in 3.0 but not exported. It appears that it has been
exported specifically for Object Packager as a means for it to relate an HICON back to
the id that the icon has in the owning application's resource table.

Return: ID number of the specified resource in the program file resource directory
U sed by: PACKAGER.EXE
Support: 3.1

GetlnternalWlndowPos USER.460

WORD FAR PASCAL GetInternalWindowPos(HWND, LPRECT, LPPOINT)
HWND hwnd; /* window to get info on */
LPRECT lprectWnd; /* RECT to receive window coords */
LPPOINT lppointIcon; /* POINT to receive icon position */

This function returns information about the specified window's active coordinates, its
icon position when iconized, and its current state. Specifically, the IprectWnd parame
ter points to an application-supplied RECT buffer that the function fills with the cur
rent screen coordinates that the window occupies when it is not iconized or
maximized. The IppointIcon points to an application-supplied POINT buffer that the
function fills with the top left screen coordinates of the icon position that the window
occupies when minimized. The function return indicates the window's current state
(hidden, normal, minimized, or maximized).

Note that in Windows 3.1 the documented GetWindowPlacement function,
together with the WINDOWPLACEMENT structure, provides the same capability
through a slighdy different interface. However, since most Program Manager replace-

GetlconlD

CHAPTER 6 • USER: WINDOWS USER INTERFACE 457

ments written for Windows 3.0 rely on GetInternalWindowPos, it continues to exist,
still undocumented, in version 3.1 and even, it appears, in the Win32 NT version of
USER.

Return: One of the ShowWindow constants, reflecting the current state of
the window (SW_HIDE, SW_SHOWNORMAL, SW_SHOWMINIMIZED,
or SW_SHOWMAXIMIZED)
Support: 3.0, 3.1
Notes:

1. Until a window has been iconized, its icon position will be reported as
(-1, -1) . Similarly, until a window has been activated, its window coordi
nates will be reported as (-1, -1, -1, -1).

2. The function has no way of reporting an invalid hwnd parameter other
than to return 0, or SW_HIDE.

D sed by: PROGMAN.EXE, Norton Desktop
See also: SetInternalWindowPos
Example: See SetInternalWindowPos later in this chapter for an example illustrating
both GetInternalWindowPos and SetIntemalWindowPos.

GetMessage2 USER.323

BOOl FAR PASCAL GetMessage2(lPMSG, HWND, WORD, WORD, WORD, BOOl)
LPMSG lpMsg; 1* message structure to receive available message *1
HWND hwnd; 1* window for which message is being retrieved *1
WORD wFilterMin; 1* lowest message to be retrieved *1
WORD wFilterMax; 1* highest message to be retrieved *1
WORD wRemove; 1* Remove andlor yield, or neither (PM_ constants) *1
BOOl bWait; 1* wait if no messages or return immediately *1

This function is the back end to the documented PeekMessage and GetMessage func
tions. The PeekMessage function pushes an extra FALSE (do not wait) bWait parame
ter onto the stack and then jumps to this function; GetMessage pushes a
PM_REMOVE wRemove parameter and a TRUE (wait for a message) bWait parame
ter and falls through to this function.

It is neither recommended nor necessary to use this function; it is included here
only for completeness.

Return: If bWait was FALSE, returns TRUE if a message was waiting in the task mes
sage queue in the specified range, for the specified window. If bWait was TRUE,
returns FALSE unless the message retrieved was WM_QUIT, in which case it returns
TRUE! Alternatively, and more legibly, in pseudocode:

GetMessage2

458 UNDOCUMENTED WINDOWS

if (bWait)
return bMessageWaiting;

else
return (msg == WM_QUIT);

Support: 3.0

GetMouseEventProc

FARPROC FAR PASCAL GetMouseEventProc(void);

USER.337

This function returns the address of the mouse interrupt handler, Mouse_Event
(described later in this chapter). The mouse interrupt handler is called asynchronously,
directly in response to mouse moves and mouse button presses.

To be strictly accurate, Mouse_Event is not an interrupt handler but is called from
the interrupt handler in MOUSE.DRV. It is possible, as shown in the example below,
to feed or simulate mouse events by calling the function directly. (The 3.1 SDK says
that you can't use the documented hardware_event() function to do this.) An assem
bler procedure header for the MouseEventProc is shown below. It takes parameters
passed in registers:

MouseEventProc proc far
" AX: Event type - may contain one or other or both (ORed) of ME MOVE
" and one of the ME_ button constants
" BX: relative horizontal mouse movement if (AX & ME_MOVE), signed.
" CX: relative vertical mouse movement if (AX & ME_MOVE), signed.
" DX: unknown. always contains 2.

If synchronous event generation into a specific window is sufficient, using
SendMessage to generate mouse movements is the recommended course. This func
tion, however, enables the asynchronous generation of mouse events, without regard
to the window that will receive them. The events go into the System Message Queue.

It is interesting that there is no parallel function for obtaining the USER keyboard
event handler, Keybd_Event, described later in this chapter. However,

lpKbdEventProc =
GetProcAddress(GetModuleHandle(IIUSER II), "KeYbd_Event ll

);

appears to work, and

lpMseEventProc =
GetProcAddress(GetModuleHandle(IIUSER"), "Mouse_Event ll »;

appears to be functionally equivalent to GetMouseEventProc.

GetMouseEventProc

CHAPTER 6 • USER: WINDOWS USER INTERFACE 459

Return: A FARPROC address of the USER mouse event handler
Support: 3.0, 3.1
See also: SetEventHook, IZeybd_Event, Mouse_Event, System Message Queue
Example: Moves the mouse in a rectangular path using GetMouseEventProc.

1* GTMSEVNT.C *1

#include <windows.h>
#include Ifwinio.h lf

#ifdef __BORLANC__
#define _asm asm
#endif

#define ME_MOVE Ox01
#define ME_LDOWN Ox02
#define ME_LUP Ox04
#define ME_RDOWN OxOS
#define ME_RUP Ox10

FARPROC lpfnMouseEventProc;
FARPROC lpfnTimerFunc;
i nt i;
int xlnc;
int ylnc;
HANDLE hTimer;

1* undocumented function *1
extern FARPROC FAR PASCAL GetMouseEventProc(void);

#include Ifcheckord.c lf

BOOl StopMoving(HWND hwnd)
{

KillTimer(winio_current(), hTimer);
FreeProclnstance(lpfnTimerFunc);
return TRUE;
}

WORD FAR PASCAL TimerFunc(HWND hwnd, WORD wMsg, int id, DWORD dwTime)
{

if (++i & 7)
{

II This trickery simply moves the mouse in a rectangular path
if «xlnc = 32 - «(i » 3) & 3) * 16» 32)

xlnc = 0;
if «ylnc = 32 - ««i + 24) » 3) & 3) * 16» 32)

ylnc = 0;
}

GetAnouseEventProc

460 UNDOCUMENTED WINDOWS

_asm {
mov ax, ME_MOVE;
mov bx, xlnc;
mov cx, yInc;
mov dx, 2;
call dword ptr ElpfnMouseEventProc];
}

return 1;
}

int maine)
{

II Ord/name check
if (! CheckOrdName(IIGetMouseEventProc ll

, IIUSER II , 337»
return 0;

lpfnTimerFunc = MakeProcInstance«FARPROC) TimerFunc, __hlnst);

printf(IIMouse event proc is at %Fp\n ll
,

lpfnMouseEventProc = GetMouseEventProc(»;

printf(IIThe mouse will now move as if by magic!\n\n ll
);

hTimer = SetTimer(winio_current(), 1, 30, lpfnTimerFunc);

winio_onclose(w;n;o_current(), (DESTROY_FUNC) StopMov;ng);

printf(lI\nClose window to exit! (Use F4)1I);

return 0;
}

CietNextQueueWlndow USER.274

HANDLE FAR PASCAL GetNextGueueWindow(HWND hwnd, int nWhichWay);
HWND hwnd; 1* relative to this window *1
int nWhichWay; 1* Next(O)/Prev(> 0) queued window *1

The USER window manager maintains all application and unowned windows in the
system in what is known as Z order. This list reflects a window's position 'down' from
the top of the desktop. The z order is primarily controlled by the documented
SetWindowPos function, which appears to be called in response to any window rear
rangement operation, including calls of documented functions such as Bring
WmdowToTop and ShowWindow, and user operations such as the use of the Alt-Tab
keystroke.

GetNextQueueWindow returns the last active window in the hierarchy ofwindows
from the next (lower, or further from the desktop) or previous (higher, or closer to
the desktop) top-level application window in the z order, using the hwndLastActive

GetNextQueueWindow

CHAPTER 6 • USER: WINDOWS USER INTERFACE 461

field of the WND structure, described elsewhere in this chapter, and a GetWindow
(GW_HWNDPREV/NEXT) loop.

The example program below uses another undocumented function, Switch
ToThisWindow, to activate the next or previously queued window.

Retu.m: HWND of the next/previous active window
Support: 3.0
Used by: WINOA386.MOD
Example: Uses SwitchToThisWindow to activate the window returned by GetNext
QueueWmdow.

1* GETNEXTQ.C *1

#include <windows.h>
#include <ctype.h>
#include IIwinio.h ll

1* undocumented functions *1
extern HANDLE FAR PASCAL GetNextQueueWindow(HWND hwnd, int nWhichWay);
extern void FAR PASCAL SwitchToThisWindow(HWND hwnd, BOOl tRestore);

#define GNQW_PREVIOUS 1
#define GNQW_NEXT 0

#include IIcheckord.c ll

int maine)
{

II Ord/name check
if (! CheckOrdName(IIGetNextQueueWindow ll

, IIUSER II , 274»
return 0;

printf(IIAbout to use SwitchToThisWindow() to\n"
IIswitch to the next/previous queued window\n ll

);

printf("Press N or P for Next or Previous window: II);

SwitchToThisWindow(
GetNextQueueWindow(winio_current(),

toupper(getchar(» == IN I ? GNQW_NEXT GNQW_PREVIOUS,
TRUE);

printf(lI\n\nProgram terminated ll
);

return 0;
}

GetQueueStatus

WORD FAR PASCAL GetQueueStatus(void);

GetQueueStatus

USER.334

462 UNDOCUMENTED WINDOWS

This function returns the queue status flags at offset 42h (3.0) or 44h (3.1) in the call
ing task's Task Queue structure (see the Task Queue entry in chapter 5).

GetQueueStatus is almost identical to the documented GetInputState function;
GetQueueStatus returns the entire QueueStatus word, where GetInputState masks off
all but the QS_MSEKBDWAITING and QS_TIMERWAITING bits. GetInputState
is implemented as GetQueueStatus() & 5.

The documented GetInputState has been touted as a way to significantly improve
system performance (see Microsoft's Knowledge Base article, "Use of GetInputState()
Is Faster Than Using PeekMessage"). Normally, an application that needs to perform
some processing while waiting for a message will use the PeekMessage function.
GetInputState, which is a very small and efficient function, provides a very cheap way
to determine if there are any user input or timer messages waiting, instead of using the
more processor-intensive PeekMessage function.

GetQueueStatus appears to offer the same advantages as GetInputState, and more.
Instead of the subset of messages notified by GetInputState, GetQueueStatus reports
on all waiting messages.

Return: The application task's QueueStatus word
Support: 3.0, 3.1
See also: Task Queue structure in chapter 5

GetTaskFromHwnd

HANDLE FAR PASCAL GetTaskFromHwnd(HWND)
HWND hwndi 1* window *1

USER.117

GetTaskFromHwnd is functionally identical to the documented GetWindowTask(); it
returns the task handle of the task owning the specified window. Because Get
WindowTask is documented, is supported in Windows 3.1, and appears internally to
be a simpler implementation, there is little point in using GetTaskFromHwnd.

Both functions work by following a chain of handles back from the WND struc
ture of the supplied window handle. The hmemTaskQ field of the WND structure is
used to locate the task queue structure for the task. At offset 2 in that structure (see
the Task Queue structure in chapter 5) is the Task Database handle, otherwise known
as the task handle.

Return: The HANDLE of the task owning the specified window
Support: 3.0

GetTImerResolutlon

DWORD FAR PASCAL GetTimerResolution(void)i

USER.14

The return value indicates the number of microseconds per timer tick. The number
returned in versions 3.0 and 3.1 is 1000, suggesting that events may be timed to 1

GetTaskFromHwnd

CHAPTER 6 • USER: WINDOWS USER INTERFACE 463

millisecond. In practice, of course, timer ticks occur no more frequently than
18.2 times per second, as dictated by the PC clock, unless the timer chip has been
reprogrammed.

For more information on the clock in Windows, see chapter 9.

Return: The number ofwishful-thinking microseconds per timer tick
Support: 3.0, and documented in 3.1
U sed by: Excel

CetUserLocalObjType

WORD FAR PASCAL GetUserLocalObjType(HANDLE)
HANDLE hObj; /* handle to object */

USER.480

In the debug version ofUSER.EXE, this function returns the type of the object whose
handle is specified. The object types appear to be those that are defined in
TOOLHELP.H, i.e.:

#define LT_USER_CLASS 1
#define LT_USER_WND 2
#define LT_USER_STRING 3
#define LT_USER_MENU 4
#define LT_USER_CLIP 5
#define LT_USER_CBOX 6
#define LT_USER_PALETTE 7
#define LT_USER_ED 8
#define LT_USER_BWL 9
#define LT_USER_OWNERDRAW 10
#define LT_USER_SPB 11
#define LT_USER_CHECKPOINT 12
#define LT_USER_DCE 13
#define LT_USER_MWP 14
#define LT_USER_PROP 15
#define LT_USER_LBIV 16
#define LT_USER_MISC 17
#define LT_USER_ATOMS 18
#define LT_USER_LOCKINPUTSTATE 19
#define LT_USER_HOOKLIST 20
#define LT_USER_USERSEEUSERDOALLOC 21
#define LT_USER_HOTKEYLIST 22
#define LT_USER_POPUPMENU 23
#define LT_USER_HANDLETABLE 32

The streamlined code for the retail version, however, as follows, suggests a uniform
type for all USER objects:

XOR AX, AX
RETF 2;

GetUserLocalObjType

464 UNDOCUMENTED WINDOWS

Although it would seem logical that it would, this function does not get called
during an iteration over the USER heap (see chapter 10), indicating perhaps that
ToolHelp performs its own detective work on USER heap block types.

In fact, ToolHelp's detective powers are only marginally better than
GetUserLocalObjType in the retail version. This is borne out in the examples of dis
play logs· from the USERWALK program presented in the USER Objects entry in this
chapter.

The reason for ToolHelp's object-type blindness, the unresponsiveness of the
GetUserObjType function in the retail version, and the richness of their output in the
debug version lies in the way that memory for objects is allocated in USER.. In the 3.1
debug version of USER, memory allocations are made using UserLocalAlloc, a func
tion that is not exported and not present in the retail version. UserLocaWloc is a
cover over LocaWloc but with an additional parameter, which is the object type to be
allocated. UserLocalAlloc allocates four bytes more than it is asked to and stores the
object type as the first of these. (The other three do not appear to be used currendy.)

In the retail version, by way of contrast, the objects themselves (except in the
cases of the CLASS and MENU structures) contain no signature or magic by which
an application might validate them or tell them apart. Compare this with the broad
support for object types provided for GDI in both the retail and debug versions (see
chapter 8).

Return: Always 0 in the retail version, or an object type as defined in TOOLHELP.H
in the debug version
Support: 3.1
See also: USERWALK, GDIWALK

GetWC2 USER.318

DWORD FAR PASCAL GetWC2(HWND, int>
HWND hwnd; 1* window handle *1
int nOffset; 1* offset from end of WND or WNDCLASS structure *1
II CL contains bits indicating Class or Window, WORD or DWORD

This function is the engine behind GetWindowLong, GetWindowWord, Get
ClassWord, and GetClassLong. Those functions present two entry points that set bits
in CL (Ox80 indicates get from class structure, not window structure; Ox01 indicates
DWORD required, not WORD, although this bit is ignored) before falling through to
GetWC2. They present only two entry points because GetWindowWord and
GetWindowLong are aliases for the same entry point, as are GetClassWord and
GetClassLong; the WINDOWS.H prototypes for the four functions define the respec
tive return types, although there is always a full DWORD returned in DX:AX.

GetWC2

CHAPTER 6 • USER: WINDOWS USER INTERFACE 465

Return: DWORD from the offset within either the window or class structure for the
window
Support: 3.0

ICON Structure

An icon is a global memory resource, and the RICON associated with it is a global
memory handle. The global memory block that it refers to contains a device-dependent
color bitmap with an undocumented CURSORICONINFO header structure. See the
CURSORICONINFO and DurnpIcon entries in this chapter, and the USERWALK
program.

IconSize

DWORD FAR PASCAL IconSize(void);

USER.86

This function returns the width and height of an icon in pixels as defined by the dis
play resolution and driver. These values are identical to GetSystemMetrics
(SM_CXICON) and GetSystemMetrics (SM_CYICON). They come from the display
driver's OEMBIN structure.

Return: Double word containing, in the high and low words, the width and height
respectively of an icon in pixels
Note: In 3.1, the entry point still exists, but it is named BEAR86.
Support: 3.0, 3.1 (see Note)
See also: BearNNN

InltApp USER.5

BOOL FAR PASCAL InitApp(HANDLE)
HANDLE hInstance; /* Instance handle of uninitialized module */

Called from within the compiler's startup code, lnitApp performs the Windows task
manager checks and initializations for the new application instance, including loading
resource handlers (such as LoadCursorIconRandler, described later in this chapter),
setting the SignalProcs for the task, creating the task queue, and inserting the task into
the task manager's list.

Note: This function is covered in the Open Tools documentation for 3.1 and is the
subject of a Microsoft overview article on Windows Startup.

ICON

466 UNDOCUMENTED WINDOWS

Return: TRUE (1) if successful or FALSE (0) if not, in which case the application
instance fails to load. If successful, the application start time is returned in the DX:CX
register pair.
Support: 3.0, 3.1
See also: InitTask, Task Queue structure (both in chapter 5), LoadCursorIcon
Handler

InSendMessage

HANDLE FAR PASCAL InSendMessage(void);

USER.192

This function is documented in both versions 3.0 and 3.1 of the SDK as returning a
BOOL indicating whether the current processing is within a SendMessage call, rather
than, for example, a PostMessage call.

The documentation is not complete, however. The documented return value actu
ally holds the Task Queue handle of the application that issued the SendMessage. The
function calls the undocumented GetTaskQueueES function (see chapter 5) to obtain
the task queue handle of the currently executing task and returns the value at offset
3Ah (version 3.0) or 38h (version 3.1) within that Task Queue structure.

Return: Task Queue handle of task that sent message, or NULL ifnot in SendMessage.
See also: Task Queue (chapter 5)

IsTwoByteCharPreflx

BOOl FAR PASCAL IsTwoByteCharPrefix(char)
char cChar; 1* character to test *1

USER.51

This function returns TRUE if the specified character is a two-byte (e.g., Unicode)
character prefix code. This function will only return TRUE when a language driver
that supports Unicode or some other two-byte character set is installed.

IsTwoByteCharPreflX() tests the passed-in character against the Begin/End_First
/Second_range fields in the keyboard driver's KBINFO structure (which is docu
mented in the DDK).

Note: In 3.1, the entry point still exists, but it is named BEAR51. The function entry
point should therefore be obtained by ordinal rather than by name in applications
intended to work in Windows 3.0 and 3.1. The following code fragment will achieve
this:

{

BOOl (FAR PASCAL *lpfnIsTwoByteCharPrefix)(char);

InSendMessage

CHAPTER 6 • USER: WINDOWS USER INTERFACE 467

char cTest;
BOOl bIsTwoByteCharPrefix;

lpfnIsTwoByteCharPrefix =
GetProcAddr(GetModuleHandle("USER"), (lPSTR) (DWORD) 51);

bIsTwoByteCharPrefix = (*lpfnIsTwoByteCharPrefix)(cTest);

}

Support: 3.0, 3.1 (see Note)
See also: IsDBCSLeadByte (documented), BearNNN

IsUserldle

BOOl FAR PASCAL IsUserldle(void);

USER.59

This function, which indicates the level of end-user keyboard and mouse activity, is
called (via a function pointer returned from GetProcAddress) from the KERNEL
scheduler. It allows Windows to perform housekeeping while the user is not typing or
using the mouse. The KERNEL scheduler uses the return value from IsUserIdle() to
determine whether to set the Win_Idle_Mouse_Busy_Bit when calling the Wm_Ker
nel_Idle (INT 2Fh AX=1689h) function (see INT2FAPI.INC in the DDK).

IsUserIdle() can be called asynchronously, for example, from within a Create
SystemTimer callback function (see chapter 9).

In 3.1, this function is responsible for triggering screen-saver applications. When
no activity is detected (IsUserldle() returns TRUE), and the duration since the time of
last activity exceeds that specified in the ScreenSaveTimeOut= entry in WIN.INI, a
WM_SYSCOMMAND with wParam=SC_SCREENSAVE is sent to the screen-saver
application window. If, on the other hand, activity is detected, the time of last activity
is reset to the current time. (For more on screen savers, see chapter 14 of the 3.1 SDK
Overviews manual.)

Return: FALSE if input is pending; TRUE if no input
Support: 3.0, 3.1

USER.289

Keybd_Event proc far
;; AX = Virtual Key code
"BLOEM Scan code
;; BH = 1 if Enhanced key

IsUserldle

468 UNDOCUMENTED WINDOWS

This function is the handler for keyboard events, invoked by the keyboard driver's
INT 9 hardware interrupt handler. It generates a System Message Queue entry for key
press/release events.

While there does not appear to be a comparable function to GetMouseEventProc
for the keyboard, this function can be called in 3.1 to generate system-level keystroke
events. If there is a direct equivalent in version 3.0, it is not exported.

This function is described, though without a name, in the Keyboard Drivers chap
ter of the DDK. The address of Keybd_Event is passed to a keyboard driver when its
Enable() function is called.

Support: 3.1
See also: Mouse_Event, GetMouseEventProc, System Message Queue
Example: Uses Keybd_Event to generate AIt-Tab keystrokes, causing a cycling
through the active windows.

/* KBDEVENT.C */

#include <windows.h>
#include "winio.h"
#ifdef __BORLANDC__
#define _asm asm
#endif

HANDLE hTimer;

#define KE_RELEASE Ox8000

/* undocumented function */
extern void FAR PASCAL Keybd_Event(void);

FARPROC lpfnTimerFunc;

#include "checkord.c"

BOOL StopCycling(HWND hwnd)
{

FreeProclnstance(lpfnTimerFunc);
KillTimer(winio_current(), hTimer);
return TRUE;
}

WORD FAR PASCAL TimerFunc(HWND hwnd, WORD wMsg, int id, DWORD dwTime)
{

_asm mov ax, VK_MENU;
asm xor bx, bx;

Keybd_Event();
_asm mov ax, VK_TAB;
_asm xor bx, bx;
Keybd_Event();
_asm mov ax, VK_TAB + KE_RELEASE;
_asm xor bx, bx;

CHAPTER 6 • USER: WINDOWS USER INTERFACE 469

Keybd_Event();
_asm mov ax, VK_TAB;
_asm xor bx, bx;
Keybd_Event();
_asm mov ax, VK_TAB + KE_RElEASE;
_asm xor bx, bx;
Keybd_Event();
_asm mov ax, VK_MENU + KE_RElEASE;
_asm xor bx, bx;
Keybd_Event();

return 1;
}

int maine)
{

II Ord/name check
if (! CheckOrdName("Keybd_Event", "USER", 289»

return 0;

lpfnTimerFunc = MakeProclnstance«FARPROC) TimerFunc, __hlnst);
printf("We will now cycle through the Windows tasks •.. \n\n");
hTimer = SetTimer(winio_current(), 1, 2000, lpfnTimerFunc);
winio_onclose(winio_current(), (DESTROY_FUNC) StopCycling);
printf("\nClose window to exit. II);

return 0;
}

KlllSystemTlmer USER.182

BOOl FAR PASCAL KillSystemTimer(HWND, WORD)
HWND hwnd; 1* Window owning timer *1
WORD wTimer; 1* timer returned by SetSystemTimer *1

This function kills a system timer created using SetSystemTimer(). It operates in
exacdy the same way as the documented function KillTimer(), except that it only kills
system (reserved) timers. See the discussion ofSetSystemTimer().

Return: TRUE (1) if the timer was successfully killed, otherwise FAlSE (0).
Note: In 3.1, the entry point still exists, but it is named BEARI82. The function entry
point should therefore be obtained by ordinal rather than by name in applications
intended to work in Windows 3.0 and 3.1. The example program for SetSystemTimer
illustrates this.
Support: 3.0, 3.1 (see Note)
See also: SetSystemTimer, BearNNN
Example: See the example for SetSystemTimer.

KiliSystemTimer

470 UNDOCUMENTED WINDOWS

KillTlmer2

BOOl FAR PASCAL KillTimer2(HWND, WORD)
HWND hwnd; 1* window owning timer *1
WORD wIDEvent; 1* timer event id *1
II CX contains BOOl bSystem

USER.327

This function is the back end to the documented KillTimer and undocumented
KillSystemTimer functions.

KilITimer sets CX to 0 and jumps to this function; KillSystemTimer sets CX to 1
and falls through to this function. The bSystem parameter in ex specifies whether the
timer was created using CreateTimer (bSystem == FALSE) or SetSystemTimer
(bSystem == TRUE).

It is neither necessary nor recommended to call this function; it is included here
only for completeness.

Return: TRUE (1) if the timer event was killed or FALSE (0) ifnot
Support: 3.0
See also: SetTimer2, KillSystemTimer

LoadCursorlconHandler USER.336

HANDLE FAR PASCAL loadCursorlconHandler(HANDLE, HANDLE, HANDLE)
HANDLE hGlobMem; 1* global memory to use or NUll *1
HANDLE hlnstance; 1* instance whose file contains resource *1
WORD wReslndex; 1* index of resource in the file *1

Loads an old-style 16-color bitmap from the resource file associated with the specified
application instance and returns an HICON or HCURSOR depending on resource
type. If a cursor, the bitmap is converted to monochrome. If hGlobMem is NULL,
the function allocates memory for the resource. If the memoty allocated to
hGlobMem is not sufficient for the bitmap, the function reallocates the block.

This function is installed by InitApp at application startup using the documented
SetResourceHandler function in KERNEL as the resource load handler for cursor and
icon resources for instances of applications built for Windows versions earlier than 3.0.
When the application makes a call to LoadCursor or LoadIcon to load a cursor or
icon, the handler is invoked. (See the documentation for SetResourceHandler.)

Return: An HICON or HCURSOR, depending on the type of resource loaded, if
successful; NULL if not
Support: 3.0, 3.1
See also: InitApp, LoadDIBIconHandler, LoadDIBCursorHandler

KiliTimer2

CHAPTER 6 • USER: WINDOWS USER INTERFACE 471

LoadDIBCursorHandler USER.356

HANDLE FAR PASCAL LoadDIBCursorHandler(HANDLE, HANDLE, HANDLE)
HANDLE hGlobMem; /* global memory to use or NULL *1
HANDLE hlnstance; /* instance whose file contains resource *1
WORD wReslndex; /* index of resource in the file *1

Loads a new-style device independent bitmap (DIB) cursor from the resource file asso
ciated with the specified application instance and returns an HCURSOR. If
hGlobMem is NULL, the function allocates memory for the resource. If the memory
allocated to hGlobMem is not sufficient for the bitmap, the function reallocates the
block.

This function is installed by InitApp at application startup using the documented
SetResourceHandler function in KERNEL as the resource load handler for cursor
resources for instances of applications built for Windows versions 3.0 and later. When
the application makes a call to LoadCursor, the handler is invoked.

Return: An HCURSOR if successful; NULL if not
Support: 3.0, 3.1
See also: InitApp, LoadCursorIconHandler, LoadDIBIconHandler

LoadDIBlconHandler USER.357

HANDLE FAR PASCAL LoadDIBlconHandler(HANDLE, HANDLE, HANDLE)
HANDLE hGlobMem; /* global memory to use or NULL *1
HANDLE hlnstance; /* instance whose file contains resource *1
WORD wReslndex; /* index of resource in the file */

Loads a new-style device independent bitmap (DIB) icon from the resource file associ
ated with the specified application instance and returns an HICON. If hGlobMem is
NULL, the function allocates memory for the resource. If the memory allocated to
hGlobMem is not sufficient for the bitmap, the function reallocates the block.

This function is installed by InitApp at application startup using the documented
SetResourceHandler function in KERNEL as the resource load handler for cursor
resources for instances of applications built for Windows versions 3.0 and later. When
the application makes a call to LoadCursor, the handler is invoked.

Return: An HICON if successful or NULL if not
Support: 3.0, 3.1
See also: InitApp, LoadCursorIconHandler, LoadDIBIconHandler

LoadIconHandler USER.456

HICON FAR PASCAL LoadlconHandler(HANDLE, BOOL)
HANDLE hResource; /* resource containing icon bitmap */
BOOL bNew; /* device independent icon bitmap *1

loadDIBCursorHandler

472 UNDOCUMENTED WINDOWS

This function appears to turn an old- or new-style (device dependent or independent)
bitmap into a 16-color bitmap suitable for use as an icon; note that it converts the
bitmap in place, reallocating global memory for the bitmap if appropriate.

Program Manager, for example, uses this function to obtain icons from executable
files without regard to the icon type.

LoadIconHandler is a very small function. It simply passes control to one of two
local, unexported functions depending on the value of bNew. If bNew is FAlSE, the
function called is the back end of the processing of the undocumented
LoadCursorIconHandler function; otherwise, it calls a function that is shared by the
undocumented LoadDIBIconHandler and LoadDIBCursorHandler functions. Either
way, these back-end functions convert a loaded resource into the appropriate format
for the display device, looking after such things as converting a 32 x 32 icon into a 32
x 16 icon on low-resolution systems, and converting a color bitmap into monochrome
cursor.

Return: HICON of a device-dependent icon if successful or NULL if not
Used by: PROGMAN.EXE, SHELL.DLL, WINHELP.EXE
Support: 3.0, 3.1

LockMyTask

void FAR PASCAL lockMyTask(BOOl>
BOOl block; 1* TRUE = lock, FALSE = Unlock *1

USER.276

This function locks the specified task. LocJeMyTask is essentially a cover on the undoc
umented Kernel function LockCurrentTask, which it calls as its first action. Having
called the Kernel routine to unlock the task, the function unlocks the System Messsage
queue (see the System Message Queue entry in this chapter).

Support: 3.0, 3.1
See also: LockCurrentTask (chapter 5), SystemMessageQueue

LookupMenuHandle

HMENU FAR PASCAL lookupMenuHandle(HMENU, int>
HMENU hMenu; 1* Root level menu handle *1
int nlD; 1* Menu item id *1

USER.217

This function returns the handle of the menu in which the specified item can be
found. It searches down a tree of popup menus from the supplied menu handle, look
ing for specified menu item ide

LockMyTask

CHAPTER 6 • USER: WINDOWS USER INTERFACE 473

Return: HMENU of the owning menu or NULL if the id cannot be found
Note: Under 3.0, no checking is done on the supplied menu handle other than for
NULL. Specifying a nonzero invalid menu handle will cause a UAB.
Support: 3.0, 3.1
See also: MENU structure

MENU Structures

The MENU structure is where USER keeps information about a top-level or popup
menu. In version 3.0, the structure stores information about the menu and its associ
ated component items (with one important exception, which will be clarified in a
moment) as a single contiguous block in the default USER local heap segment. The
documented HMENU handle is in that version, therefore, a near pointer to a single
block of memory in the default USER heap segment. This is the handle returned by
the documented CreateMenu function and acted upon by the AppendMenu,
InsertMenu, DeleteMenu, DestroyMenu, etc., functions.

The exception mentioned above relates to the storage of the menu item strings.
These are stored in a separate heap reserved for the Global Atom table and USER
strings. In version 3.0, this heap is used almost exclusively for menu item strings, and
in version 3.1 the menu strings are in a separate heap segment.

In version 3.1 there are three main differences in the way that menus and their
associated structures are treated by USER. First, menu structures are now in their own
local heap segment (see the discussion of USER local heaps in the introduction to this
chapter).

Secondly, the array of ITEM structures associated with a MENU structure (both
structures are shown below) are now stored separately, although within the same heap
segment.

Finally, the MENU structure in version 3.1 contains a signature 'MU'; there is no
signature or magic in the 3.0 structure and therefore no easy way of validating an
HMENU. The lack of a signature was presumably an oversight in 3.0; the addition of
this field and the appearance in version 3.1 of the documented IsMenu function is
obviously no coincidence. However, it is possible to use the properties of the 3.0
menu structure to validate HMENUs, and this is how the USERWALK program rec
ognizes menus in version 3.0.
II Menu item substructure valid for 3.0 and 3.1
typedef struct {

WORD wFlags;
WORD wIDorPopup;
RECT rectltem;
WORD xTab;
HANDLE hCheckedBmp;
HANDLE hUncheckedBmp;
HANDLE hAtomOrBmp;
WORD xULStart;
WORD cxULLen;
WORD cbltemLen;
} ITEM, NEAR * HITEM;

LookupMenuHandle

474 UNDOCUMENTED WINDOWS

The structure contains the following fields:

FIELD

wFlags

wIDorPopup

rectItem

xTab

hCheckedBmp

hlJncheckedBmp

hAtomOrBmp

xlJLStart

xlJLLen

cbItemLen

DESCRIPTION

Flags describing the item. These are MF_ constants present
in WINDOWS.H, some of which are not documented:

MF_SEPARATOR
MF_ENABLED
MF_GRAYED
MF_DISABLED
MF_UNCHECKED
MF_CHECKED

MF_lJSECHECKBITM
MF_STRING
MF_BITMAP
MF_OWNERDRAW
MF_POPlJP

MF_MENlJBARBREAK
MF_MENlJBREAK
MF_lJNHILITE
MF_HILITE

The menu item ID as specified in the wIDNewItem parame
ter to the InsertMenu function, or, if for a popup menu, the
popup's menu handle
The position and size of the items rectangle in the menu in screen
coordinates
The tab position in effect for the item

Handle of the 'checkmark' bitmap

Handle of the bitmap to be used when the item is not checked.
This is normally NlJLL.
Normally an atom handle for the menu item string, but may be the
handle ofa bitmap for owner-draw
Ifa string item, and an AIt key accelerator is in effect for the item,
the x coordinate relative to the left of the item of the beginning of
the underline
The length of the underline. This will be the width of the under
lined character.
Length of the item string

LookupMenuHandle

CHAPTER 6 • USER: WINDOWS USER INTERFACE 475

II Menu structure for 3.0
typedef struct {

WORD wFlags;
WORD iCurrSel;
WORD iCurrPopup;
WORD cbMenu;
WORD cxWidth;
WORD cyHeight;
WORD iMaxItems;
HWND hwndOwner;
ITEM item[1J;
} MENU_3_0, NEAR * HMENU;

IIMenu structure for 3.1
typedef struct {

HMENU hmenuNext;
WORD wFlags;
WORD wSig;
HANDLE hTaskQ;
WORD cxWidth;
WORD cyHeight;
WORD cItems;
HWND hwndOwner;
HANDLE hItems;
WORD w12h;
} MENU_3_1, NEAR * HMENU;

The above structures contain the following fields. Any field that does not appear
below is not currendy understood:

FIELD

hmenuNext

wFlags

wSig

iCurrSel

DESCRIPTION

This field only appears in the 3.1 MENU structure. A list of
MENU structures is held in the version 3.1 USER menu heap (see
the introduction to this chapter) and the hmenuNext field points to
the next menu in the list. The list is tenninated by a value ofNULL in
this field.

Contains one or more of the following MF_ flags. These are pres
ent in WINDOWS.H, but not documented:

MF_SYSMENU

MF_HELP
MF_MOUSESELECT

Only present in version 3.1, this field contains Ox554D ("NK"),
presumably the initials ofNeil Konzen, as the signature, or magic,
for the structure.

Only present in version 3.0, this field contains the index of the last
ITEM structure selected from the menu, or -1 ifno selection has
yet been made.

LookupMenuHandle

476 UNDOCUMENTED WINDOWS

iCurrPopup

hTaskQ

cbMenu

cxWidth

cyReight

iMaxItem

cItems

hwndOwne

hItems

Only present in version 3.0, this field contains the index of the
ITEM structure for the last active popup submenu, or -1 ifnone
has yet been active.
Only present in version 3.1, this field contains the Task Queue han
dle of the task that owns the menu.
Only present in version 3.0, this field contains the combined size of
the MENU structure and all the ITEM structures that follow it.
The width of the bounding rectangle that surrounds the menu, in
pixels.
The height of the bounding rectangle that surrounds the menu, in
pixels.
Only present in version 3.0, but in the same location as the similar
cItems field present in the version 3.1 structure, this field contains
one less than the number ofelements in the array of ITEM struc
tures associated with the menu, Le., the maximum index into the
array. This property together with the contents of the cbMenu field
is relied upon by the validation used by the USERWALK program
to identify a MENU in version 3.0. The program assumes that if
(cbMenu == ((iMaxItem + 1) * sizeof(ITEM))) the structure is a
MENU. This appears to be a reliable identification test.
Only present in version 3.1, this field contains the number ofele
ments in the array of ITEM structures associated with the menu.
The window that owns this menu

Only present in version 3.1, this field contains the menu heap han
dle of the block ofmemory containing the array of ITEM structures
associated with the menu.

See also: USER Objects

MenultemState

WORD FAR PASCAL MenultemState(HMENU, WORD, WORD)
HMENU hmenu; /* menu handle */
WORD wIDItem; /* menu item/position */
WORD wFlags; /* combination of MF_ flags */
// CL contains mask to filter MF_ flags

USER.329

This function changes the state of the specified menu item as specified by the wFlags
parameter and flltered by the mask in CL, and it returns the previous state of the
masked bits.

MenultemState

CHAPTER 6 • USER: WINDOWS USER INTERFACE 477

This function is called by the documented functions EnableMenuItem and
CheckMenuItem. They effectively act as different prologs to MenuItemState, simply
setting different masks into CL on the way in to that function.

EnableMenultem sets CL = 3, masking the MF_ENABLED and MF_GRAYED
bits. CheckMenultem sets CL = 8, masking the MF_CHECKED bit. Note that both
mask out the MF_BYPOSITION bit, which cannot be set but controls interpretation
of the wIDItem parameter.

The function operates on the wFlags field of the ITEM structure indexed (if
MF_BYPOSITION), or identified (if not), by the wIDItem parameter in the array
associated with the MENU structure pointed to by the hmenu parameter.

Return: The previous state of the flags masked by CL
Support: 3.0
See also: MENU and ITEM structures

USER.299

Mouse_Eventproc far
II AX = mouse event
II ax horizontal displacement if (AX & ME_MOVE)
;; ex vertical displacement if (AX & ME_MOVE)
II DX = button state
II 51 mouse event flags

This function is the handler for mouse events. It is invoked (usually) by the mouse
driver MOUSE.DRV within its IRQ 2 hardware interrupt handler. It generates a Sys
tem Message Queue entry for button press/release events and generates a new, or
updates the existing, mouse movement queue entry. Note that this function ensures
that there is only one mouse movement message in the queue at one time.

This is the function whose address is returned by the undocumented Get
MouseEventProc function. See the description of that function for an example of how
this function might be called by an application to generate system-level mouse events.

This function is described, though without a name, in the Mouse Drivers chapter
of the DDK manual. The address of Mouse_Event is passed to a mouse driver when its
Enable() function is called.

Support: Code present in 3.0, 3.1, but only visible as a USER.EXE export in 3.1
See also: Keybd_Event, GetMouseEventProc, System Message Queue
Example: See example code for GetMouseEventProc.

OldExltWindows
void FAR PASCAL OldExitWindows(void);

Mouse_ Event

USER.2

478 UNDOCUMENTED WINDOWS

This function terminates the calling Windows application by invoking Int 2Ih/Func
tion 4Ch. This function is a hangover from version 2.1 and persists all the way into
3.1, presumably to provide compatibility for 2.1 applications that call it.

New applications should use the documented ExitWindows function.

Support: 3.0, 3.1

PalntRect USER.325

void FAR PASCAL PaintRect(HWND, HWND, HDC, HANDLE, LPRECT)
HWND hwndParent; /* handle of parent or NULL */
HWND hwnd; /* handle of target window */
HDC hDC; /* window display context */
HANDLE hBrush; /* handle of brush to fill with */

/* OR CTLCOLOR_ constant */
LPRECT lpRect; /* Rectangle to paint */

PaintRect fills a rectangular area defined by the RECT pointed at by IpRect on the
window specified by hwnd using hBrush. If hwndParent is not NULL, the hBrush
parameter may specify one of the documented CTLCOLOR_ control type constants
for the child window, in which case a WM_CTLCOLORis sent to the parent window
to allow it to set the brush type to be used. PaintRect() calls the documented
FillREct() function.

Support: 3.0, 3.1
U sed by: FillWindow()
Notes: If the hBrush parameter specifies a CTLCOLOR- constant and the hwndParent
parameter is NULL, the function fails benignly, but with no indication.
Example:

/* PAINTRCT.C */

#include <windows.h>
#include "wmhandlr.h"
#include "winio.h"

/* undocumented function */
extern void FAR PASCAL PaintRect(HWND hwndParent, HWND hwnd,

HDC hDC, HANDLE hBrush, LPRECT lpRect);
#include "checkord.c"

long dblclk(HWND hwnd, WORD wMsg, WORD wParam, DWORD lParam)
{

RECT recti
HDC hDC = GetDC(hwnd);

GetClientRect(hwnd, (LPRECT) &rect);
rect.left += 20;
rect.right -= 20;

PaintRect

CHAPTER 6 • USER: WINDOWS USER INTERFACE 479

rect.top += 10;
rect.bottom -= 10;
PaintRect(NULL, hwnd, hDC,

GetStockObject(DKGRAY_BRUSH), (LPRECT) &rect);
ReleaseDC(hwnd, hDC);
puts("A rectangular area in the window is now dark gray");
puts("Double click on a text line to do it again");
return 1;
}

int maine)
{

II Ord/name check
if (! CheckOrdName(IIPaintRect", "USER", 325»

return 0;

wmhandler_set(winio_current(),
WM_LBUTTONDBLCLK, (WMHANDLER) dblclk);

puts("Double click on a text line to fill a dark gray rectangle");
puts("Close the window to exit");

return 0;
}

PostMessage2 USER.313

DWORD FAR PASCAL PostMessage2(HANDLE, WORD, WORD, DWORD)
HANDLE hWndTask; 1* target task/window *1
WORD wMsg 1* message *1
WORD wParam; 1* additional message info *1
DWORD lParam; 1* additional message info *1
II CL contains BOOL bTaskMessage

This function is the back end to documented PostAppMessage and PostMessage
functions.

PostAppMessage sets CL to 1 before jumping through to this function; PostMess
age sets CL to 0 and then, if the hwnd parameter is not OxFFFF (in which case it
jumps to BroadcastMessage), it falls through to this function. The value of CL is used
to determine whether the HANDLE parameter is a task handle or a window handle, in
which case the extra step of extracting the task handle from the window structure (see
the WND structure) needs to be performed.

PostMessage2 is included here only for completeness.

Return: The return value reflects the outcome of the target window's processing of
the message and depends on the message being sent.
Support: 3.0
See also: BroadcastMessage

PostMessage2

480 UNDOCUMENTED WINDOWS

SerollChlldren USER.463

void FAR PASCAL ScrollChildren(HWND, WORD, WORD, DWORD)
HWND hwnd; 1* parent window *1
WORD wMsg; 1* WM_HSCROll or WM_VSCROLL *1
WORD wParam; 1* SB_ value from WM_?SCROLL message *1
DWORD lParam; 1* unreferenced *1

This function scrolls MDI client windows within a parent window that is being
scrolled. ScrollChildren is designed to be called from within a WndProc scrollbar event
handler and is used by MDIClientWndProc. It is also called directly from Program
Manager, for example, to realign the iconic application windows within a parent appli
cation group window in response to a user scroll operation. The function is imple
mented using the documented ScrollWindow() function.

Support: 3.0, 3.1
Used by: USER.EXE, PROGMAN.EXE
See also: CalcChildScroll

SendMessage2 USER.312

HWND hwnd;
WORD wMsg
WORD wParam;
DWORD lParam;
lPVOID lp1;
WORD w1;

DWORD FAR PASCAL SendMessage2(HWND, WORD, WORD, DWORD,
lPVOID, WORD)

1* target window *1
1* message *1
1* additional message info *1
1* additional message info *1
1* unknown - always NULL *1
1* unknown - unreferenced - always 0 *1

This function is the back end to the documented SendMessage function. It is called
only by SendMessage and takes two additional, vestigial parameters, which SendMess
age always sets to O. It is included here only for completeness.

Return: The return value reflects the outcome ofthe target window's processing of the
message and depends on the message being sent.
Support: 3.0

SetDeskPattern

BOOl FAR PASCAL SetDeskPattern(void);

USER.279

This function activates the desktop background pattern specified in the WIN.INI file.
SetDeskPattern() is called by the Control Panel (CONTROL.EXE) in version 3.0. It
takes no parameters and obtains the pattern that is to be used as desktop background
from the Pattern entty of the [Desktop] section in WIN.INI. The Control Panel program

ScroliChildren

CHAPTER 6 • USER: WINDOWS USER INTERFACE 481

therefore performs a WriteProfileString(), to record a new user pattern selection,
before issuing the SetDeskPattern() call.

The WIN.INI entry contains a sequence of eight decimal numbers representing
the eight bytes that make up the pattern (which is used to create a bit bIt source
within the SetDeskPattern() call). The Control Panel program selection "50% Gray,"
for example, leads to the WIN.INI entry "Pattern=170 85 170 85 170 85 170 85"
where 170 represents 128+32+8+2 (a byte code with bits 7, 5, 3, and Ion) and 85
represents 64+16+4+1 (a byte code with bits 6, 4, 2, and 0 on). The alternating bit
patterns result in a close crosshatch.

Return: Ifa pattern was specified in WIN.INI, returns 1; otherwise returns 0
Support: 3.0, 3.1 (see Note)
Notes:

1. The call will not fail no matter what the line contains: a nonnumeric
token in the line results in a default 0 for the byte code; missing tokens
are also assumed to be zeroes.

2. The functionality provided by SetDeskPattern has been subsumed into
the documented SystemParametersInfo function in Windows 3.1. In
3.1, the entry point still exists, but it is named OldSetDeskPattern. The
function entry point should therefore be obtained by ordinal rather than
by name in applications intended to work in both Windows 3.0 and 3.1.
The example below illustrates this technique.

Used by: CONTROL.EXE (3.0 only)
See also: SetDeskWallPaper, SetGridGranularity, ControlPanelInfo
Example:

/* DTPATTRN.C */

#include <windows.h>
#include "winio.h"

/* undocumented function *1
BOOl (FAR PASCAL *lpfnSetDeskPattern)(void);

int maine)
{

char buf[128J;

II Get function address
lpfnSetDeskPattern =

GetProcAddress(GetModuleHandle("USER II), (lPSTR) (DWORD) 279);

for (;;)
{

1* prompt for the pattern */
puts(IIEnter 8 bytes of (decimal) pattern data:");
gets(buf);

SetDeskPattern

482 UNDOCUMENTED WINDOWS

1* record the pattern in the win.ini file •••. *1
WriteProfileString("Desktop", "Pattern", buf);

1* ... and call the SetDeskPattern function *1
if «*lpfnSetDeskPattern)(»

{

InvalidateRect(GetDesktopWindow(), NULL, TRUE);
printf("Desktop pattern successfully changed\n");
}

else
printf("Could not change desktop pattern.\n");

}

printf("Program terminated");
return 0;
}

SetDeskWallPaper USER.285

BOOl FAR PASCAL SetDeskWallPaper(LPSTR)
LPSTR lpszBmpFileName; 1* name of the wallpaper bitmap file *1

This function loads the named file as the desktop background wallpaper.
SetDeskWallPaper is called by Control Panel (CONTROL.EXE) in version 3.0 to

set the .BMP bitmap file to be used as the desktop background wallpaper. The call will
fail if the named file is not found or does not contain a valid bitmap. Note that the call
only loads the file but does not refresh the visible desktop. Neither does it record the
new choice in the WIN.INI file.

If the IpszBmpFileName is parameter is -1, the function retrieves the name of the
current bitmap file specified in the 'Wallpaper' entry in the [Desktop] section of
WIN.INI. The example below calls InvalidateRect() on the desktop window to cause
the new wallpaper to take immediate effect.

According to Neil Rubenking's book on TPW, SetDeskWallpaper() doesn't always
load the palette of 256-color bitmaps properly, and can fail when loading RLE files.
Always use SystemParametersInfo() when possible.

Return: If the wallpaper was successfully changed, returns 1; otherwise, if the file
name or content was invalid or the file could not be located, returns o.
Support: 3.0, 3.1 (see Note)
Note: The functionality provided by SetDeskWallpaper has been subsumed into the
documented SystemParametersInfo function in Windows 3.1. In 3.1, the entry point
still exists, but it is named BEAR285. The function entry point should therefore be
obtained by ordinal rather than by name in applications intended to work in both
Windows 3.0 and 3.1. The following example illustrates this technique.
Used by: CONTROL.EXE (3.0 only)
See also: SetDeskPattern, SetGridGranularity, ControlPanelInfo, BearNNN
Example:

#include <windows.h>

SetDeskWaliPaper

CHAPTER 6 • USER: WINDOWS USER INTERFACE 483

#include "winio.h"

/* undocumented function */
BOOl CFAR PASCAL *lpfnSetDeskWallPaper)ClPSTR lpszBmpFileName);

int mainC)
{

char bmpfilenameC64J;

// Get function address
lpfnSetDeskWallPaper =

GetProcAddressCGetModuleHandleC"USER"), ClPSTR) CDWORD) 285);

for C;;)
{

/* prompt for the filename */
putsC"Enter name of .BMP file to use:");
getsCbmpfilename);

/* break on empty filename */
if CbmpfilenameCOJ == 0)

break;

/* otherwise call the SetDeskWallPaper function */
if CC*lpfnSetDeskWallPaper)Cbmpfilename»

{

/* Save name of bitmap in WIN.INI */
WriteProfileStringCIDesktop", "Wallpaper", bmpfilename);
InvalidateRectCGetDesktopWindowC), NULL, TRUE);
putsC"Desktop wallpaper successfully changed.\n");
}

else
putsC"Could not change desktop wallpaper.\n");

}

putsC"Program terminated");
return 0;
}

SetEventHook USER.321

void FAR PASCAL SetEventHookCFARPROC)
FARPROC lpfnEventHook; /* Pointer to the event hook function */

This function allows mouse and keyboard events to be intercepted asynchronously and
filtered. SetEventHook is used by Windows debuggers to intercept mouse and key
board events. Even though it is now documented (see the following), it is included
here because it was undocumented for 3.0 and because the existing documentation
gives no sample source code.

SetEventHook

484 UNDOCUMENTED WINDOWS

Note that the IpfnEventProc passed to the function in the following example
below is not created using MakeProcInstance. This occurs because our event hook
function is written in assembler and already includes appropriate prolog code to estab
lish DS upon entry.

Support: 3.0, documented in 3.1.
Note:

1. This function was undocumented in 3.0 but is included in the Open
Tools documentation.

2. In 3.0, the interface to the event hook function contained two bugs.
a. Bit 0 of BH is supposed to contain the enhanced key flag, but BX is

destroyed before it reaches the hook function.
b. The Carry flag is set by the event hook function to indicate that the

Mouse event is to be discarded instead of being passed on to the
application. However, mouse events are always ignored on return
from the hook function; leaving the Carry flag clear upon exit from
the hook function therefore has no effect.

3. Behavior between 3.0 and 3.1 changed. In 3.0, mouse and keyboard
events pass through the event hook procedure first and, if not ignored,
are passed into the System Message Queue. In 3.1, they pass through
the System Message Queue first and, if used, do not get passed to the
hook function. This is noticea'ble in the example program in that under
3.0 it is impossible to pull down the system menu by pressing AIt +
Space.

Used by: CVW.EXE, TDW.EXE
See also: System Message Queue
Example:
1* SETEHOOK.C *1

1* MUST be compiled SMALL model because of *1
1* model dependency in EVNTHOOK.ASM *1

#include <windows.h>
#include IIwinio.h ll

1* undocumented function *1
extern void FAR PASCAL SetEventHook(FARPROC lpfnEventHook);

1* the Assembler routine from EVNTHOOK.ASM *1
extern void far EventHook(void);

char * szEvent[] = { IIWM_KEYUp lI , IIWM_KEYDOWN II , IIWM_MOUSEMOVE II ,
IIWM_LBUTTONDOWN II , IIWM_LBUTTONUp lI , IIWM_RBUTTONDOWN II ,
IIWM_RBUTTONUp lI , IIWM_MBUTTONDOWN", rrWM_MBUTTONUplI, IIWM_???" };

int wEvent = -1;
int wKeylnfo = -1;

SetEventHook

CHAPTER 6 • USER: WINDOWS USER INTERFACE 485

int iEvent;

#include IIcheckord.c ll

BOOl DeinstHook(HWND hwnd)
{

puts(IIDeinstalling event hook function ••• II);
SetEventHook(NUll);
puts(II ••• successfully deinstalled. II);
return TRUE;
}

int maine)
{

II Ord/name check
if (! CheckOrdName(IISetEventHook ll

, IIUSER II , 321»
return 0;

printf(IIII);
puts(IIInstalling an event hook function •.. II);
SetEventHook«FARPROC) EventHook);
puts(II .•. successfully installed. II);

II Make sure that we always unhook •••
winio_onclose(winio_current(), (DESTROY_FUNC) DeinstHook);

for (;;)
{

if «wEvent -1) && (wKeyInfo -- -1»
continue;

switch (wEvent) {

case WM_KEYUP: iEvent 0; break;
case WM_KEYDOWN: iEvent 1; break;
case WM_MOUSEMOVE: iEvent 2; break;
case WM- lBUTTONDOWN: iEvent = 3; break;
case WM- lBUTTONUP: iEvent = 4; break;
case WM- RBUTTONDOWN: iEvent = 5; break;
case WM- RBUTTONUP: iEvent 6; break;
case WM_MBUTTONDOWN: iEvent 7; break;
case WM_MBUTTONUP: iEvent = 8; break;
default: iEvent = 9;
}

if (iEvent < 2)
printf(lI%s - Scan=Ox%02X, VK code=Ox%02X\n ll

,

szEvent[iEventJ,
HIBYTE(wKeyInfo), lOBYTE(wKeyInfo»;

else
puts(szEvent[iEventJ);

if «wEvent == WM_KEYDOWN) &&
(lOBYTE(wKeyInfo) == VK_ESCAPE»
{

putS(II** ESC pressed ll
);

SetEventHook

486 UNDOCUMENTED WINDOWS

DeinstHook(NULL);
winio_onclose(winio_current(), (DESTROY_FUNC) NULL);
break;
}

wEvent = -1;
wKeyInfo = -1;
}

puts("\nProgram terminated");
return 0;
}

" EVNTHOOK.ASM "
" Event hook function - subroutine of SETEHOOK.C "

.286P

DGROUP
_DATA
_DATA

PUBLIC
EXTRN
EXTRN

GROUP
segment
ends

segment

_EventHook
_wEvent : word
_wKeyInfo : word

_DATA
WORD PUBLIC IDATA I

BYTE PUBLIC ICODE I

_EventHook
assume
push
pusha
mov
mov
mov
mov
popa
pop
ret

_EventHook
_TEXT ends

end

proc far
cs:_TEXT, ds:_DATA
ds

si, _DATA
ds, si
word ptr [_wEventJ, ax
word ptr [_wKeyInfoJ, cx

ds

endp

SetGetKbdState USER.330

void FAR PASCAL SetGetKbdState(lPSTR)
LPSTR lpKeyState; 1* buffer to setlget state from/into *1
II CL holds BOOl bSet

This function is the back end to documented GetKeyboardState and SetKeyboardState
functions. GetKeyboardState sets CL to 0 and falls through to this function;
SetKeyboardState sets CL to 1 and falls through to this function. The bSet parameter

SetGetKbdState

CHAPTER 6 • USER: WINDOWS USER INTERFACE 487

in CL is used to determine whether to copy from the system keyboard state buffer or
into it.

It is neither recommended nor necessary to call this function; it is included here
only for completeness.

Support: 3.0
Note: In version 3.1, this same entry point corresponds to the documented
GetFreeSystemResources function.

SetGrldGranularlty USER.284

void FAR PASCAL SetGridGranularity(int)
int nGranularity; 1* level of granularity (see text) *1

This function sets the desktop window grid granularity. It is called by the Windows
3.0 Control Panel program CONTROL.EXE and allows the desktop grid granularity
to be set in whole screen byte increments or to be disabled (for the grid to be 1 pixel).
For values of nGranularity > 0, the grid is set to nGranularity * 8 pixels horizontally
and vertically. If nGranularity is 0, the grid is set to 1 pixel. The function works by set
ting a global variable that is used by many other routines in USER.

When the grid is enabled, windows are aligned on byte boundaries. This improves
Windows repainting performance because no shifting of bitmap bits needs to be
performed.

Used by: CONTROL.EXE
Support: 3.0
Note: The functionality provided by SetGridGranularity has been subsumed into the
documented SystemParametersInfo function in Windows 3.1.
Example:

1* GRIDGRAN.C *1

#include <windows.h>
#include <stdlib.h>
#include "winio.h"

1* undocumented function *1
extern void FAR PASCAL SetGridGranularity(int nGran);

#include "checkord.c"

int main()
{

char buf[128J;

II Ord/name check

SetGridGranularity

488 UNDOCUMENTED WINDOWS

if (! CheckOrdName("SetGridGranuLarity", "USER", 284»
return 0;

1* prompt for the pattern *1
printf("Enter granuLarity: II);

gets(buf);

1* ... and caLL the SetDeskPattern function *1
SetGridGranuLarity(atoi(buf»;
printf("Grid granuLarity changed\n");

printf("\nResize or move the window; if you entered\n"
"a vaLue> 0, the window shouLd 'snap' to grid\n"
"positions, and window repainting shouLd be faster\n"
"If you entered 0, the window shouLd move smoothLy\n"
"again but performance wiLL be (unnoticeabLy?) degraded.\n\n"
"Program terminated");

return 0;
}

SetlnternalWlndowPos USER.461

void FAR PASCAL SetInternaLWindowPos(HWND, WORD, LPRECT, LPPOINT)
HWND hwnd;
WORD wStatus; 1* new status for window *1
LPRECT LprectWnd; 1* RECT with new window coords or NULL *1
LPPOINT LppointIcon; 1* POINT with new icon position or NULL *1

This function allows modification of a window's screen positions and status.
SetInternalWindowPos is significantly more powerful than the similar sounding

and documented SetWindowPos. SetInternalWindowPos allows a window's desktop
icon position, its active position and size, and its current status (active/inactive, maxi
mized/minimized/normal, etc.) to be set from a single call. In contrast, Set
WindowPos, which SetInternalWindowPos calls as one of its last actions, allows a
window's normal position and size, and its z-order position to be modified (see
GetNextQueu~Window for more discussion ofz ordering).

The wStatus parameter takes the SW_ constants as used by the documented
ShowWindow() function. The IprectWnd parameter may be NULL, in which case the
current window coordinates remain unchanged; otherwise, it points at an application
supplied RECT structure containing the new coordinates that the window is to
occupy when neither iconized nor maximized.

The IppointIcon parameter may be NULL, in which case the current Icon posi
tion is unchanged; otherwise, it points at an application-supplied POINT structure
containing the new x and y coordinates of the top left of the window's icon when
minimized. If the IppointIcon parameter is not NULL, but the supplied x coordinate
is -1, the window's icon position will again remain unchanged.

SetlnternalWindowPos

CHAPTER 6 • USER: WINDOWS USER INTERFACE 489

Note that in Windows 3.1 the documented SetWindowPlacement function,
together with the WINDOWPLACEMENT structure, provides the same capability
through a slightly different interface. However, since most Program Manager replace
ments originally written for Windows 3.0 rely on SetlnternalWindowPos, it has been
allowed to continue to exist, still undocumented, in version 3.1.

Return: Void
Support: 3.0, 3.1
Used by: PROGMAN.EXE, Norton Desktop
See also: GetlnternalWindowPos
Example: Uses GetlnternalWindowPos and SetIntemalWindowPos to arrange win
dow positions.

1* GETIWPOS.C */

#include <windows.h>
#include <stdlib.h>
#include <string.h>
#include "winio.h"

/* undocumented functions */
extern WORD FAR PASCAL GetInternalWindowPos(HWND hwnd,

lPRECT lprectWnd, LPPOINT lppointIcon);
extern BOOl FAR PASCAL SetInternalWindowPos(HWND hwnd,

WORD wStatus, LPRECT lprectWnd, lPPOINT lppointIcon);

char *szWndStatus[J =
{ "0 - hidden", "1 - normal/restored", "2 - minimized",

"3 - maximized", "4 - restore inactive", "5 - show",
"6 - minimize", "7 - minimize inactive",
"8 - show inactive", "9 - restore"};

#include "checkord.c"

int maine)
{

char achInput[80J;
WORD wStatus;
HWND hwnd;
RECT rectWindow;
POINT pointIcon;
char *szStr;
char *szTok;
i nt i Wrk[4J;
i nt i;

1/ Name/ordinal checks
if (! (CheckOrdName("GetInternalWindowPos", "USER", 460) &&

CheckOrdName("SetInternalWindowPos", "USER", 461»)
return 0;

for (;;)

SetlnternalWindowPos

490 UNDOCUMENTED WINDOWS

{

II Prompt for window to look at
puts("Enter the window title of a window");
gets(achlnput);

if (achlnput[OJ 0)
break;

II Get its handle
if «hwnd = FindWindow(NULL, achlnput» == 0)

{

printf("Couldn't locate <%s> \n", achlnput);
continue;
}

II Get current minimized, maximized, and normal
II position data, and current status
wStatus = GetlnternalWindowPos(hwnd,

(LPRECT) &rectWindow, (LPPOINT) &pointlcon);
printf(UWindow is currently %s.\n U, szWndStatus[wStatusJ);
printf("Window coordinates are %d, %d, %d, %d,\n",

rectWindow.left, rectWindow.top,
rectWindow.right, rectWindow.bottom);

printf("Icon position is %d, %d.\n\n U,
pointlcon.x, pointlcon.y);

II Prompt for new normal window coordinates
puts("Enter new window coordinates");
puts(Uor <CR> to leave unchanged:");
szStr = gets(achlnput);
if (! *szStr)

goto lIconPos;
i = 0;
while «i < 4) && (szTok = strtok(szStr, ", \t"»)

{

iWrk[i++J = atoi(szTok);
szStr = NULL;
}

while (; < 4) iWrk[i++J = 0;
memcpy(&rectWindow, &iWrk, sizeof(RECT»;

lIconPos:
II Prompt for top left coordinates of minimized icon position
puts("Enter new icon coordinates");
putS(" or <CR> to leave unchanged:");
szStr = gets(achlnput);
if (! *szStr)

goto lWinStatus;
i = 0;
while (Ci < 2) && CszTok = strtok(szStr, II "»)

{

iWrk[i++J = atoi(szTok);
szStr = NULL;
}

while (i < 2) iWrk[i++J 0;

SetlnternalWindowPos

CHAPTER 6 • USER: WINDOWS USER INTERFACE 491

pointlcon.x
pointlcon.y

iWrk[OJ;
iWrk[1J;

lWinStatus:
II Prompt for new window status
puts(IfEnter new window status"};
printf(lf%s\t%s\t%s\n%s\t%s\t%s\n%s\t%s\n%s\t%s\n lf

If or <CR> to leave unchanged:\n lf , szWndStatus[OJ,
szWndStatus[1J, szWndStatus[ZJ, szWndStatus[3J,
szWndStatus[4J, szWndStatus[SJ, szWndStatus[6J,
szWndStatus[7J, szWndStatus[8J, szWndStatus[9J};

szStr = gets(achlnput};
if (! *szStr)

goto lSetIWPos;
wStatus atoi(szStr};

lSetIWPos:
II and update window position and status data
SetlnternalWindowPos(hwnd, wStatus,

(LPRECT) &rectWindow, (lPPOINT) &pointlcon};
puts(IfSetlnternalWindowPos executed.\n"};
}

printf("program terminated"};
return 0;
}

SetSystemMenu USER.280

BOOl FAR PASCAL SetSystemMenu(HWND, HMENU}
HWND hwnd; 1* window to receive a new system menu *1
HMENU hMenu; 1* handle of new menu *1

This function sets the system menu of the specified MDI client window to the sup
plied menu and destroys any previous system menu handle.

This function is called by MDIClientWndProc and does not work for anything
other than MDI client windows; the documented GetSystemMenu, Append/Insert/
DeleteMenu, and Shc,wMenu combination is adequate for all non-MDI purposes.

Return: TRUE (1) if the function was successful, FALSE (0) if not
Support: 3.0, 3.1

SetSystemTlmer USER.ll

BOOl FAR PASCAL SetSystemTimer(HWND, int, WORD, FARPROC}
HWND hwnd; 1* Window to own timer *1
int nIDEvent; 1* timer identifier *1
WORD wELapse; 1* milliseconds between events *1
FARPROC lpTimerProc; 1* function to receive timer events *1

SetSystemMenu

492 UNDOCUMENTED WINDOWS

This function allows an application to create a timer even when regular application
timers are not available.

USER provides 16 application timers in version 3.0, and 32 in version 3.1. Timers
are entries in an array of structures within USER's default DS. However, the array is
not 16 entries in size in version 3.0, it is 18. In version 3.1 it is 34. the extra two
entries in both versions are only available to this function, not to the documented
SetTimer function.

This mechanism allows SetSystemTimer to draw from the same pool as SetTimer
but allows for a timer to always be available for internal uses, such as the caret or scroll
message auto repeats.

This function should not be confused with the undocumented CreateSystemTimer
function in SYSTEM. The terminology is inconsistent between the two modules; a
SYSTEM system timer is an asynchronous timer, but a USER system timer is a syn
chronous timer available to the system (as opposed to applications).

The IpTimerProc callback function is called with the same parameters as SetTimer.
Note that if timer events are to be received from the message loop, the message sent
by the timer is the undocumented WM_SYSTIMER (OxOl18) (see chapter 7).

A timer created using SetSystemTimer is subsequently destroyed using its comple
mentary function, KillSystemTimer.

Return: A timer identifier ifsuccessful, or NULL ifunsuccessful
Note: In 3.1, the entry point still exists, but it is named BEARll. The function entry
point should therefore be obtained by ordinal rather than by name in applications
intended to work in Wind.ows 3.0 and 3.1. The example below illustrates this.
Support: 3.0, 3.1 (see Note)
U sed by: Excel
See also: CreateSystemTimer, KillSystemTimer, WM_xxxx
Example: Allocates all available application timers, then allocates another timer using
SetSystemTimer:

1* STSYSTMR.C *1

#include <windows.h>
#include IIwmhandlr.h ll

#include IIwinio.h ll

1* undocumented functions *1
WORD (FAR PASCAL *lpfnSetSystemTimer)(HWND hwnd, int nIDEvent,

WORD wElapse, FARPROC lpTimerFunction);
BOOl (FAR PASCAL *lpfnKillSystemTimer)(HWND hwnd, WORD wTimer);

#define WM_SYSTIMER Ox0118

#define MAXTABlE 64 II Overgenerous!

WORD hSysTimer;
WORD hRegTimer[MAXTABlE] {a};

SetSystemTimer

CHAPTER 6 • USER: WINDOWS USER INTERFACE 493

long do_systimer(HWND hWnd, WORD wMsg, WORD nIDEvent, DWORD lParam)
(

printf("hWnd=Ox%04X, wMsg=Ox%04X, nIDEvent=Ox%04X, lParam=Ox%08lX\n",
hWnd, wMsg, nIDEvent, lParam);

return 0;
}

BOOL ResetTimer(HWND hwnd)
{

if (hSysTimer)
(*lpfnKillSystemTimer)(hwnd, hSysTimer);

return TRUE;
}

int maine)
(

i nt i;

(FARPROC) lpfnSetSystemTimer =
GetProcAddress(GetModuleHandle("USER II), (LPSTR) 11L);

(FARPROC) lpfnKillSystemTimer =
GetProcAddress(GetModuleHandle("USER II), (LPSTR) 182L);

if «! lpfnSetSystemTimer) II (! lpfnKi llSystemTimer»
fail("Could not locate Set/KillSystemTimer functions!\n ll

);

puts("Allocating timers ••• II);

for (i = 0; i < MAXTABLE; i++)
{

if (! (hRegTimerCi] = SetTimer(__hMainWnd, i+1, 10000,
(FARPROC) Ol»)

break;
}

printf("\nUsed SetTimer() to allocate all timers\n"
"(there were %d available).\n\n ll

, i);
printf(IIWe can still allocate a timer, however, using\n"

IISetSystemTimer(). An event will be generated\n ll

lIevery second.\n"
"Close the window to terminate.\n\n");

wmhandler_set(__hMainWnd, WM_SYSTIMER, (WMHANDLER) do_systimer);

hSysTimer = (*lpfnSetSystemTimer)(__hMainWnd, OxDADA, 1000, NULL);
if (hSysTimer == NULL)

printf(IICould not create system timer!\n ll
);

else
printf(IITimer handle is %04X\n\n ll

, hSysTimer);

printf("Freeing up %d regular timers.\n", i);
for (i = 0; i < MAXTABLE; i++)

if (hRegTimerCi])
KillTimer(__hMainWnd, hRegTimerCi]);

else
break;

SetSystemTimer

494 UNDOCUMENTED WINDOWS

winio_onclose(__hMainWnd, (DESTROY_FUNC) ResetTimer);

return 0;
}

SetTlmer2 USER.328

HANDLE FAR PASCAL SetTimer2(HWND, WORD, WORD, FARPROC)
HWND hwnd; 1* window owning timer *1
WORD wIDEvent; 1* timer event id *1
WORD wElapse; 1* milliseconds between events *1
FARPROC lpTimerFunc; 1* timer event handler or NUll *1
II CX contains BOOl bSystem

This function is the back end to documented SetTimer and undocumented Set
SystemTimer functions.

CreateTimer sets CX to 0 and jumps to this function; SetSystemTimer sets CX to
1 and falls through to this function. The bSystem parameter in CX specifies whether
the timer is to be drawn from the application subset of the timer array (see the discus
sion ofSetSystemTimer), in which case bSystem is FALSE, or from the entire array, in
which case bSystem is TRUE.

The bSystem parameter in CX also determines whether the message that is posted
to the calling applications message queue is to be the undocumented WM_SYSTlMER
(OxOl18) message (see chapter 7) or the documented WM_TIMER message.

It is neither necessary nor recommended to call this function, and it is included
here only for completeness.

Return: A HANDLE to a timer, or NULL if the function was unsuccessful
Support: 3.0
See also: KillTimer2, SetSystemTimer, WM_SYSTIMER

SetWC2 USER.319

DWORD FAR PASCAL SetWC2(HWND, int, DWORD)
HWND hwnd; 1* window handle *1
int nOffset; 1* offset from end of WND or WNDClASS structure *1
DWORD dwData; 1* new data to update structure at offset *1
II Cl contains bits indicating Class or Window, WORD or DWORD

This function is the engine behind SetWindowLong, SetWindowWord, SetClassWord,
and SetClassLong. Those functions present four entry points that set bits in CL (Ox80
indicates get from class structure, not window structure; OxOl indicates DWORD
required, not WORD) before falling through to SetWC2.

SetTimer2

CHAPTER 6 • USER: WINDOWS USER INTERFACE 495

Return: Previous DWORD from the offset within either the window or class structure
for the window
Support: 3.0
Note: In version 3.1, this same ordinal entry point corresponds to the documented
function ScrolIWindowEx.

SlgnalProc USER.314

void FAR PASCAL SignalProc(HANDLE, WORD, WORD, HANDLE HANDLE)
HANDLE hTaskGueue; 1* task queue of task *1
WORD wSigType; 1* Ox20, Ox40, Ox80 or Ox666 *1
WORD wExitFn; 1* 0, Ox4cOO or Oxffff *1
HANDLE h1; 1* unknown *1
HANDLE hCurrent; 1* task queue of currently executing task *1

This function is USER's standard handler for KERNEL-generated task initia
tion/switch/termination signals.

This function is installed using the undocumented KERNEL function
SetTaskSignalProc. It receives control at task initiation (wSigType == Ox0040), Task
Manager task switch (wSigType == Ox0020), abnormal task event (wSigType ==
Ox0666-the satanic flavor of which is unlikely to be coincidental!), and task termina
tion (wSigType == Ox0080).

Support: 3.0, 3.1
See also: SetTaskSignalProc (chapter 5)

SnapWlndow

BOOl FAR PASCAL SnapWindow(HWND)
HWND hwnd; 1* Window to be snapped *1

USER.281

This function takes a snapshot of the specified window and records it as a bitmap in
the clipboard. It uses the window coordinates to determine what proportion of the
screen to clip. Any of the window that is hidden on the desktop will remain hidden in
the clipboard rendition.

This function allows, for example, a screen capture facility to be built into an
application. SnapWindow(GetActiveWindow()) will capture the current window, and
SnapWindow(GetDesktopWindow()) will capture the entire screen to the clipboard.
In Windows 3.0 these are the calls that are triggered by the PrtScr and Shift-PrtScr
keystrokes, respectively.

The function continues to exist in version 3.1 but is not exported, even by ordinal.

Return: TRUE (1) if the Window was snapped, FALSE (0) ifunsuccessful
Support: 3.0

SignalProc .

496 UNDOCUMENTED WINDOWS

Example:

1* SNAPWIND.C *1

Ninclude <windows.h>
'include "winio.h"

1* undocumented functions *1
extern BOOl FAR PASCAL SnapWindow(HWND hwnd);

'include "checkord.c"

int main()
{

HWND hwnd;
char achWindowTitle[128];

II Ord/name check
if (! CheckOrdName("SnapWindow", "USER", 281»

return 0;

for (;;)
{

puts("Enter the window title of the application window");
gets(achWindowTitle);

if «hwnd = FindWindow(NULl, achWindowTitle» == 0)
printf("Couldn't locate <%s>.\n", achWindowTitle);

else
if (SnapWindow(hwnd»

printf("Window has been snapped into the clipboard.\n ll
);

else
printf(IICould not SnapWindow().\n");

}

printf("Program terminated ll
);

return 0;
}

StrlngFunc USER.470

lPSTRlint FAR PASCAL StringFunc(LPSTR[, lPSTR])
lPSTR strlnput; 1* source string (Reserved5) or char pointer *1
lPSTR strComp; 1* comparison string (Reserved5 only) *1
II CX contains function type (1-5 corresponding to KERNEL
II functions Reserved1 thru Reserved5)

This function is called from the Kernel functions Reservedl thru Reserved5. These
calls are obsolete and date from 2.1 when the functionality of the functions AnsiNext,
AnsiPrev, AnsiUpper, AnsiLower, and lstrcmp resided in KERNEL. This function now
provides a gateway by which KERNEL can provide backward compatibility for those
applications that still use the ReservedN functions. The ReservedN functions place a

StringFunc

CHAPTER 6 • USER: WINDOWS USER INTERFACE 497

function code in ex and call StringFunc, which uses the value in CX to perform an
indexed jump to the appropriate routine.

The strComp parameter is only present from the Reserved5 call (lstrcmp), in
which case the return value is of type int, as documented for the lstrcmp function.
Otherwise, for Reserved1 thru Reserved4 (the Ansi- functions), the strComp parame
ter is not present. For these calls, the strInput parameter and return value are as speci
fied in the documentation of the AnsiPrev, AnsiNext, AnsiUpper, and AnsiLower
functions.

It will never be necessary to call this function directly.

Return: As specified in the SDK for the documented functions AnsiPrev, AnsiNext,
AnsiUpper, AnsiLower, and lstrcmp
Support: 3.0, 3.1
See also: Reserved1 thm Reserved5

SwitchToThisWlndow

void FAR PASCAL SwitchToThisWindow(HWND, BOOl)
HWND hwnd; 1* Window to switch to *1
BOOl bRestore; 1* Restore it? *1

USER.172

SwitchToThisWindow() is nothing if not self-documenting. It switches focus to the
task owning the specified window, activates it and restores it. The Task Manager
"Switch To" button calls this function directly.

If the window is iconized,and the bRestore parameter is TRUE (1), the function
restores the Window to normal size. If the bRestore parameter is FALSE (0), the win
dow is activated, but it is left at its current size and state.

Support: 3.0, 3.1
Notes: For an additional example, see GetNextQueueWindow().
Example: Installs a timer which constantly switches focus to the program.

1* SWTOTHIS.C *1

#include <windows.h>
#include IIwinio.h"

1* undocumented function *1
extern void FAR PASCAL SwitchToThisWindow(HWND hwnd, BOOl tRestore);

#include IIcheckord.c ll

WORD hTimer;
FARPROC lpfnTimerFunc;

WORD FAR PASCAL TimerFunc(HWND hWnd, WORD wMsg,

SwitchToThisWindow

498 UNDOCUMENTED WINDOWS

int nIDEvent, DWORD dwTime)
{

SwitchToThisWindow(winio_current(), TRUE);
return 1;
}

BOOl ResetTimer(HWND hwnd)
{

FreeProclnstance(lpfnTimerFunc);
KillTimer(winio_current(), OxDADA);
return TRUE;
}

int main()
{

II Ord/name check
if (! CheckOrdName("SwitchToThisWindow", "USER", 172»

return 0;

lpfnTimerFunc = MakeProclnstance«FARPROC) TimerFunc, __hlnst);

if «hTimer = SetTimer(winio_current(), OxDADA,
3000, lpfnTimerFunc» == NULL)
{

printf("Could not SetTimer()!\nProgram terminating. II);
return 0;
}

winio_onclose(winio_current(), (DESTROY_FUNC) ResetTimer);

printf(IIMinimize this window, and within 5 seconds,\n ll

lIit will restore itself using a call to\n"
IISwitchToThisWindow() within a timer event.\n\n ll

"Close the window to terminate");

return 0;
}

SysErrorBox USER.320

int FAR PASCAL SysErrorBox(lPSTR, lPSTR, WORD, WORD, WORD)
lPSTR lpMessage; 1* Error message text *1
lPSTR lpTitle; 1* Error box title *1
WORD wlButton; 1* Left button type *1
WORD wMButton; 1* Middle button type *1
WORD wRButton; 1* Right button type *1

This function puts up an asynchronous message box with up to three buttons and
returns the user response.

This function allows a low-level error to be reported immediately. It allows one,
two, or three buttons to appear on the message box, with one of them optionally the

SysErrorBox

CHAPTER 6 • USER: WINDOWS USER INTERFACE 499

default selection. If a button is wanted in one of the three positions, its associated
parameter should be one of the SEB_ constants defined in the example below, option
ally ORed with the SEB_DEFAULT to make it the default selection (giving it initial
keyboard focus). If a button is not wanted in a particular position, its associated posi
tion parameter should be set to o.

The function returns 1, 2, or 3 depending on which button was actually selected
by the user.

This function can be used whatever state Windows is in because it does not rely on
being able to send or receive messages but rather implements its own event handling
within the function.

Return: 1, 2, or 3 depending on user button selection
Support: 3.0, 3.1
Note: This function is not reentrant and is used in the case of application fatal errors
by Windows itself. If any of the parameters is invalid, the system will be unstable and
will in all certainty crash either immediately or very soon after.
Example:

1* SYSERRBX.C *1
#include <dos.h>
#include <windows.h>
#include "winio.h"

1* undocumented function *1
extern int FAR PASCAL SysErrorBox(LPSTR msg, LPSTR title,

WORD lButton, WORD mButton, WORD rButton);

#define SEB_OK
#define SEB_CANCEL
#define SEB_YES
#define SEB_NO
#define SEB_RETRY
#define SEB_ABORT
#define SEB_IGNORE

#define SEB_DEFAULT

#include "checkord.c"

int maine)
{

int nResult;

1
2
3
4
5
6
7

Ox8000

II Ord/name check
if (! CheckOrdName("SysErrorBox ll

, IIUSER", 320»
return 0;

nResult = SysErrorBox(IIPress one of these buttons.",
"SysErrorBox() Test",
SEB_ABORT, SEB_RETRY, SEB_IGNORE I SEB_DEFAULT);

SysErrorBox

500 UNDOCUMENTED WINDOWS

printf("You pressed the %s button\n ll
,

nResult == 1 ? "left" :
nResult == 2 ? "middle"

"right");

printf("\nProgram terminated ll
);

return 0;
}

System Message Queue Structure

Windows contains two different kinds of message queues: the Task Queue and the
System Message Queue. As is discussed in chapter 5 (KERNEL), each task has its own
private Task Queue. There is one system-wide message queue, used essentially as a
buffer for hardware events. The hardware_event() function, documented in the 3.1
SDK, places messages in the System Message Queue. So do the Keybd_Event() and
Mouse_Event() functions, discussed elsewhere in this chapter. The System Message
Queue is sometimes also referred to as the hardware event queue.

The System Message Queue has the same basic structure as the Task Queue (see
chapter 5), but with a few differences:

• The System Message Queue can generally hold more messages than a Task
Queue. By default, the System Message Queue can hold 120 messages. How
ever, this can be changed with the undocumented TypeAhead= setting in the
[windows] section of WIN.INI. In contrast, a Task Queue by default holds
only eight messages, though this too can be changed with an undocumented
DefaultQueueSize= setting in WIN.INI. Thus, a perverse WIN.INI might cre
ate huge Task Queues and a smaller System Message Queue:

[windows]
;;; don't do this!
TypeAhead=60
DefaultQueueSize=80

• Whereas the Task Queue holds an array of 12h-byte MSG structs (plus, in 3.1,
room for GetMessageExtraInfo, for a total of 16h bytes per Task Queue mes
sage), the System Message Queue holds an array of OAh-byte EVENTMSG
Structs (plus, in 3.1, room for GetMessageExtraInfo, for a total of OEh bytes
per system message).

• Because it does not correspond to the Task Database, the System Message
Queue's hTask field (offset 2) does not contain a task handle.

• The System Message Queue is not on the linked list of Task Queues. Thus, its
Next field (offset 0) is NULL.

But Task Queues and the System Message Queue at least share the following
generic Queue structure:

System Message Queue

CHAPTER 6 • USER: WINDOWS USER INTERFACE 501

OOh WORD
02h WORD
04h WORD
06h WORD
08h WORD
OAh WORD
OCh WORD

etc •••.
??? ????

Next
hTask
msgSize
msgCount
msgOffset
freeOffset
endQueue

msgArray

Always NULL in System Message Queue
System Message Queue has no hTask
3.0 SysMsgQ=OAh, 3.1=OEh; TaskQ=12h
Number of unretrieved messages
start + (msgSize * msgCount)
Offset of next free slot
????

size = msgSize * ??

USER keeps a selector to the System Message Queue in its non-default fixed
DATA segment, at offset 2 in 3.0 and offset 0 in 3.1.

Support: 3.0, 3.1
See also: Keybd_Event, Mouse_Event, SetEventHook in this chapter; Task Queue
structure in chapter 5
Example: The following program, SYSMSG, hangs off the timer, printing out any
pending messages in the System Message Queue as raw bytes.

1* SYSMSG.C -- inspect System Message Queue *1

#include <stdlib.h>
#include <dos.h>
#include "windows.h"
#include IItoolhelp.h ll

#include IIwinio.h ll

#include IIwmhandlr.h ll

#define DEFAULT_NUMMSG

typedef struct {
WORD Next;
WORD hTask;
WORD msgSize;
WORD msgCount;
WORD nextMessageOffset;
WORD nextFreeMessageOffset;
WORD endOfQueue;
DWORD GetMessageTimeRetval;
DWORD GetMessagePosRetval;
WORD messageQueueStart;
} QUEUE;

120

II 0
II 2
II 4
II 6
II 8
II OA
II OC
II OE
II 12
II 16

long on_time(HWND hwnd, unsigned message, WORD wParam, LONG lParam);

static BYTE far *fpMsgs;
static QUEUE far *SysMsgQ;
static WORD hSysMsgQ;

WORD GetSystemMessageQueue(void)
{

GLOBALENTRY ge;

System Message Queue

502 UNDOCUMENTED WINDOWS

WORD SysMsgQOfs;
WORD wVers;
BOOl ok;
WORD hUser = GetModuleHandle("USER");
WORD UserOtherDS = 0;
II use ToolHelp to find USER's non-default data segment
ge.dwSize = sizeof(ge);
ok = GlobalFirst(&ge, GLOBAL_All);
while (ok)
{

if (ge.hOwner == hUser)
if (ge.wType -- GT_DATA)
{

II not GT_DGROUP!

UserOtherDS = ge.hBlock;
break;

}

ok = GlobalNext(&ge, GLOBAL_All);
}

if (UserOtherDS
return 0;

-- 0)
II couldn't locate USER's non-DGROUP DS

1* printf("USER's other DS: %04x\n", UserOtherDS); *1

II get selector to System Message Queue from of5 2 (3.0) or 0 (3.1)
wVers = (WORD) GetVersion();
SysMsgQOfs = -1;
if (lOBYTE(wVers) == 3)
{

if (HIBYTE(wVers) == 0)
SysMsgQOfs = 2;

else if (HIBYTE(wVers) -- 10)
SysMsgQOfs = 0;

II 3.0

II 3.10

}

if (SysMsgQOfs == -1)
return 0; II unknown Windows version

return *«WORD far *) MK_FP(UserOtherDS, SysMsgQOfs»;
}

maine)
{

char buf[128J;
WORD cMsg, QOfs;

if «hSysMsgQ = GetSystemMessageQueue(» == 0)
fail("Can't find System Message Queue");

SysMsgQ = MK_FP(hSysMsgQ, 0);

II figure out number of messages
cMsg = GetProfilelnt("windows", "TypeAhead", DEFAUlT_NUMMSG);

II figure out offset of actual queue within System Msg Queue struct
QOfs = SysMsgQ->endOfQueue - (cMsg * SysMsgQ->msgSize);
fpMsgs = MK_FP(hSysMsgQ, QOfs);

II show where SysMsgQ is, and how big it is

System Message Queue

CHAPTER 6 • USER: WINDOWS USER INTERFACE 503

sprintf(buf, "SysMsgQ: %u %u-byte messages Q) %Fp",
cMsg, II number of messages can hold (default 120)
SysMsgQ->msgSize, II size of each message (3.0: OAh, 3.1: OEh)
fpMsgs); II far ptr to actual message within struct

winio_settitle(__hMainWnd, buf);
wmhandler_set(__hMainWnd, WM_TIMER, on_time);
if (! SetTimer(__hMainWnd, 1, 250, NULL»

fail("can't create timer");
return 0;

}

long on_time(HWND hwnd, unsigned message, WORD wParam, LONG lParam)
{

BYTE far *fp;
WORD numpending, nextmsg;
int i, j;

nextmsg = SysMsgQ->nextMessageOffset;

II how many unretrieved messages are in the queue?
numpending =

(SysMsgQ->nextFreeMessageOffset - nextmsg) I
SysMsgQ->msgSize;

II if any pending messages, show them
if (! numpending)

return 0;

winio_setpaint(__hMainWnd, FALSE);
printf("%u messages pending: %04X-%04X\n",

numpending, nextmsg, SysMsgQ->nextFreeMessageOffset);

for (i=O, fp=MK_FP(hSysMsgQ, nextmsg); i<numpending; i++)
{

for (j=O; j<SysMsgQ->msgSize; j++, fp++)
printf("%02X ", *fp);

printf("\n");
}

winio_setpaint(__hMainWnd, TRUE);

return 0;
}

USER.354

TabTheTextOutForWimps(HDC, int, int, LPSTR, int,
int, lPINT, int, BOOl)

1* device context *1
1* start X coordinate *1
1* start Y coordinate *1
1* string to draw *1
1* string length *1
1* number of tab stop positions in array *1
1* array of tab stop positions *1

HDC hDC;
int X;
int Y;
LPSTR lpString;
int nCount;
int nTabPositions
LPINT lpnTabStops;

TabTheTextOutForWlmps

DWORD FAR PASCAL

TabTheTextOutForWimps

504 UNDOCUMENTED WINDOWS

int nTabOrigin;
BOOl bDraw;

1* where to start expanding tabs from *1
1* actually draw the string? *1

This function writes a string on the specified display, expanding tabs to positions spec
ified in the supplied array of tab stops. This function is the engine called by the docu
mented USER functions TabbedTextOut and GetTabbedTextExtent. The final parameter
specifies whether it should actually draw the string or not, allowing it to do double
duty for the above two functions.

The function is included solely for interest, since no more can be achieved with it
than can be achieved with the two documented functions; it does not appear in 3.1
(presumably 3.1 programmers are no longer wimps...).

Return: The dimensions of the string as it would appear on the display, with the
height and width in the high and low words, respectively, of the DWORD
Support: 3.0

TlleChlldWlndows USE~.199

void FAR PASCAL TileChildWindows(HWND [, WORDJ)
HWND hParent; 1* Window whose children are to be tiled *1
WORD wAction; 1* How to tile [3.1 onlyJ *1

This function arranges the positions of child windows of the specified parent into a
tiled formation.

TileChildWindows() was apparently written for the MDI function group and is
called by PROGMAN.EXE and FILEMAN.EXE, both ofwhich are MDI applications.
It takes the window handle of the owning, or parent, window as its first-and in ver
sion 3.0, only-parameter.

Note that an attempt, in version 3.0, to

TileChildWindows(FindWindow(NUll, "Program Manager"»;

will not achieve the expected result, as the Program Group windows are not actually
direct child windows of the Program Manager main window, but rather are MDI cli
ent windows.

The second parameter is present only in version 3.1 and affects whether disabled
windows are tiled. If the wAction parameter is set to MDITILE_SKIPDISABLED
(Ox0002), defined in the version 3.1 WINDOWS.H, only child windows of the cur
rently active child window of the specified hParent are tiled. The wAction field may also
contain one of either MDmLE_HORIZONTAL or MDITILE_VERTICAL. These,
as their names imply, control the direction in which the tiling operation proceeds.

TileChildWindows

CHAPTER 6 • USER: WINDOWS USER INTERFACE 505

Return: Void
Support: 3.0, 3.1 (see Notes)
Note: The second parameter is not present in 3.0.
Used by: PROGMAN.EXE, FILEMAN.EXE
See also: CascadeChildWindows
Example:
1* TILECHLD.C *1

#include <windows.h>
#include "winio.h"

1* undocumented function *1

1* Declaring a void parameter list allows us to call the function *1
1* with the appropriate number of arguments for either 3.0 or 3.1 *1
extern void FAR PASCAL TileChildWindows();

#include "checkord.c"

int maine)
{

WORD wVer = (WORD) GetVersion();

II Ord/name check
if (! CheckOrdName("TileChildWindows", "USER", 199»

return 0;

winio_setecho(winio_current(), FALSE);

for (;;)
if (wVer == Ox0003)

{

puts("Press a key to tile the desktop.");
getchar();

TileChildWindows(GetDesktopWindow(»;
}

else
{

puts(IIPress a key to tile the desktop horizontally.");
getchar();

TileChildWindows(GetDesktopWindow(), MDITILE_HORIZONTAL);

puts(IIPress a key to tile the desktop vertically.");
getchar();

TileChildWindows(GetDesktopWindow(), MDITILE_VERTICAL);
}

printf("Program terminated");
return 0;
}

TileChildWindows

506 UNDOCUMENTED WINDOWS

UserSeeUserDo USER.216

DWORD FAR PASCAL UserSeeUserDo(WORD, WORD, WORD, WORD)
WORD wReqType; /* request type */
WORD wParam1; /* depends on wReqType */
WORD wParam2; /* unused - reserved for future expansion? */
WORD wParam3; /* depends on wReqType */

This function provides access to the USER default local heap. (In version 3.1 USER
has multiple heaps-see the discussion in the USER Heaps section of the introduction
to this chapter.) It is used by TOOLHELP.DLL in version 3.1 (see chapter 10).
UserSeeUserDo recognizes five request types in the wReqType. Use of the other
parameters depends on the request type (except for the wParam2 argument, which is
not used by any of the currently defined request types).

USUD_LOCALALLOC (Ox0001)

allocates some memory from the USER module default local heap. The wParaml
argument contains the flags to be passed to the documented LocaWloc function for
the allocation, and wParam3 specifies the size of the block to allocate.

It returns the allocated handle in the low word if the LocaWloc was successful,
NULL if it failed.

USUD_LOCALFREE (Ox0002)

frees a block of memory in the USER module default local heap. The wParaml argu
ment contains the USER local memory handle to be freed.

It returns NULL in the low WORD if the LocalFree was successful, or the speci
fied handle if it failed.

USUD_LOCALCOMPACT (Ox0003)

generates a free block of the specified size in the USER module default local heap.
The wParam3 argument specifies the size of the required free block, to be passed to
LocalCompact, then returns the size of the largest free block in the USER module
default local heap in the low word.

USUD_LOCALHEAP (Ox0004)

returns the selector for the USER module default local heap in the low word. This can
be combined with a local memory handle such as an HWND, or a handle returned
from the USUD_LOCALALLOC request described above, to form a far pointer into
the USER heap.

UserSeeUserDo

CHAPTER 6 • USER: WINDOWS USER INTERFACE 507

USUD_FIRSTCLASS (OxOOOS)

returns the HCLASS for the first class entry in the linked list of class structures. See
the CLASS entry in this chapter.

If the request type does not correspond to one of the above values, the call signi
fies an invalid request type by returning -1.

In the debug version of USER, allocations made by UserSeeUserDo are identified
by an allocation type ofLT_USER_USERSEEUSERDOALLOC (see chapter 10).

Return: Depends on the request type, as specified above
Support: 3.1
See also: GdiSeeGdiDo (chapter 8), CLASS structure, GetUserLocalObjType

UserYleld

void FAR PASCAL UserYield(void);

USER.332

This function is called from the documented KERNEL function Yield(). UserYield
almost immediately calls the undocumented I<ERNEL function OldYield().
UserYield() checks the queue status fields in the current task's Task Queue.

Support: 3.0, 3.1
See also: OldYield (chapter 5)

WlnFarFrame USER.340

WinFarFrame proc far
" cs:ip on the stack points to two bytes:
" first is count of words of local stack space needed by function
;; second is count of words of function parameters expected on the stack

WinFarFrame is an assembler routine that prepares a stack frame for a near function
that is called using a far call. In WINSTACKASM, from which WinFarFrame is
exported, there is a companion routine, which is not exported but which is presumably
called WinNearFrame, which performs the same functionality for near functions that
are called using a near call. WinNearFrame is not exported because it does not need
DS to be set up by the loader.

It is not known why they exist, but a clue must lie in the fact that in version 3.0,
which supports real mode, almost every function in USER is a near function and calls
one or the other of the WinXXXFrame routines; in version 3.1, however, all traces of
the routines themselves, and the mechanism that they implement, have disappeared, as
has support for real mode.

At offset °at the beginning of every code segment in 3.0 USER, the following
code appears:

I UserVield

508 UNDOCUMENTED WINDOWS

NearFuncEntry:
push cs
jmp far WinNearFrame

NearFuncExit:
push cs
jmp far WinNearUndoFrame

FarFuncEntry:
push cs
jmp far WinFarFrame

FarFuncExit:
push cs
jmp far WinFarUndoFrame

At the beginning ofevery far function, the following code appears:

call FarFuncEntry
db nLocalWords
db nParamWords

;; or NearFuncEntry for a near function

When WinXXXFrame is called, it establishes BP; subtracts the appropriate number
of bytes from SP to allow for local variables as defined by the nLocalWords byte; stores
on the stack the number of words by which the stack must be adjusted to account for
parameters, as defined by the nParamWords byte; puts the address of the appropriate
XXXFuncExit label on the stack; and, in the case of WinFarFrame, establishes DS and
saves SI and DI.

When the function returns via a RETN instruction, the WinXXXFrameUndo func
tion is called. It restores BP, removes the parameters from the stack, and in the case of
WinFarFrameUndo, restores SI, DI, and DS.

Support: 3.0
See also: FFFE_FarFrame

WlnOldAppHackOMatlc USER.322

DWORD FAR PASCAL WinOldAppHackOMatic(DWORD)
DWORD dWFlags; 1* flags to be set - must be 1 *1

This function is only called by WINOA386.MOD, i.e., only in 386 Enhanced mode.
It sets a global flag in USER's DS which tells USER to check the AIt key state to allow
for DOS box system menu options (such as AIt-Tab to switch task focus and AIt-Enter
to switch between full screen and windowed modes) to be processed.

Return: Always returns 0
Support: 3.0, 3.1
Used by: WINOA386.MOD

WinOldAppHackOMatic

WND

CHAPTER 6 • USER: WINDOWS USER INTERFACE 509

Structure

This is the structure that contains information and state about a window. It is main
tained in USER's default near heap segment, and is certainly one of the most impor
tant undocumented Windows structures. The ubiquitous HWND is a handle to this
structure. The structure changed significandy between versions 3.0 and 3.1.

Window structure in version 3.0:

typedef struct tagWND {
HWND hwndNext;
HWND hwndChild;
HCLASS hClass;
HANDLE h1stProp;
HWND hwndLastActive;
HANDLE hmemScroll;
HANDLE hmemlaskQ;
HRGN hrgnPaint;
HANDLE hDCE;
HMENU hmenuSystem;
HWND hwndOwner;
RECl rectWindow;
RECl rectClient;
HPALElTE hPalette;
WORD wFlags;
DWORD rgfExStyle;
DWORD rgfStyle;
WORD wID_Menu;
HANDLE hBuffer;
HWND hwndParent;
HANDLE hInstance;
FARPROC lpfnWndProc;
II User data starts here
} WND_3_0;

Window structure in version 3.1:

typedef struct
HWND
HWND
HWND
HWND
RECl
RECT
HANDLE
HRGN
HCLASS
HANDLE
FARPROC
DWORD
DWORD
DWORD
WORD
HANDLE

tagWND {
hwndNext;
hwndChild;
hwndParent;
hwndOwner;
rectWindow;
rectClient;
hmemTaskQ;
hrgnUpdate;
hClass;
hInstance;
lpfnWndProc;
dwFlags;
rgfStyle;
rgfExStyle;
wID_Menu;
hBuffer;

510 UNDOCUMENTED WINDOWS

HANDLE hmemScroll;
HANDLE h1stProp;
HWND hwndLastActive;
HMENU hmenuSystem;
II User data starts here
} WND_3_1;

The preceeding versions of the structure contain the following fields:

FIELD

hwndNext

hwndChild

hClass

h1stProp

hwndLastActive

hmemScroll

hmemTask

hrgnUpdate

hDCE

hmenuSystem

hwndOwner

rectClient

DESCRIPTION

Next sibling window at the same hierarchical level

First child window belonging to this window. Other children of
this window will appear in the hierarchy as siblings to this window.
Handle to an undocumented CLASS structure in the internal
stored list ofwindow classes
Local handle within USER's heap to the head ofa chain ofproperty
entries associated with the window, added through calls to SetProp;
NULL ifno properties are associated with the window
Window handle of the last popup window owned by this window
that was active, as returned by the GetLastActivePopup function
It is not fully understood what the memory (always 16 bytes) that
this handle references is for, but it appears to have something to do
with window scrolling. It is known to be at the root ofan infamous
bug in USER in version 3.0 involving multiline edit controls (see
Paul Borneau's "Windows Q&A" columns in the December 1991,
April 1992, and June 1992 issues of Windows/DOS Developer)sJour
nal.) The field was used to store a handle allocated during an initial
ization that was erroneously performed twice. The second handle
overwrote the first, which was orphaned, leading eventually to a
Wmdows out of memory lock-up

A global memory handle for the application's Task Queue data
structure
Accumulated window update region, built up through calls to
InvalidateRgn and InvalidateRect, and cleared by EndPaint
Handle of the DeE structure used by the window, if the window
class included the CS_OWNDC style, otherwise NULL. See the
DCE structure entry earlier in this chapter (3.0 only).
The handle ofthe system menu for a MDI client window, or the
copy of the default system menu current for the window, as
returned by GetSystemMenu with a bRevert parameter ofFALSE
(see SDK documentation for GetSystemMenu)
Wmdow handle of the owning window

RECT containing screen coordinates ofclient area

rectWindow

hPalette

wFlags

rgfExStyle

rgfStyle

wID_Menu

hBuffer

hwndParent

hInstance

IpfnWndProc

wExtra

CHAPTER 6 • USER: WINDOWS USER INTERFACE 511

RECT containing screen coordinates of nonclient area

Handle to the logical palette to be used during window, or NULL

Unknown-bits 9/10 set/reset in response to return from
WM_USER+260 (see DragObject)
Undocumented Extra Style bits. These include, among other
unknown flags

WES_NOTIFYDRAG (Ox00000002) - This must be set in order
for LBWndProc to send a WM_BEGINDRAG message ifa drag
operation is started within a listbox control
(see WM_BEGINDRAG in chapter 7)
WES_ALWAYSONTOP-This style is documented in 3.1 and
keeps a window at the top of the z order, Le., always on top of
the desktop

See SDK documentation for CreateWmdow window styles

See SDK documentation for CreateWindow child control window
IDs. In the case ofchild control windows, this field is a control ID.
Otherwise, if the window has a menu, it will contain an HMENU;
otherwise NULL.
Appears to be an alternative global handle for the window text (for
edit controls?)
See SDK documentation for the CreateWindow function hwndPar
ent parameter
See SDK documentation for the CreateWindow hInstance parame
ter. This field contains the hInstance with which the window is
associated.
See SDK documentation for the WNDCLASS structure
IpfnWndProc field. This field contains the procedure instance of
the window's WndProc
See SDK documentation for the WNDCLASS structure
cbWndExtra field. This field marks the start of the window
instance data area, if extra bytes were defined for the window.

Note: The structure changed completely between versions 3.0 and 3.1. It appears that
the number, type, and usage of the fields in the structure have remained constant, but
that the field order has been extensively changed. In fact, the only fields that have
remained in the same position in the structure are the first two, hwndNext and
hwndChild. These are the fields used to navigate the hierarchy of windows in the sys
tem and which relate child windows to parents. Frequendy, code within USER needs
to trace windows up to the top level window for a particular application instance. This
is frequendy done in-line, rather than through a call to a single function, perhaps to
avoid too much 3.0 code modification, which these two fields were spared in 3.1.

512 UNDOCUMENTED WINDOWS

The reordering is puzzling for another reason: in version 3.0, the functions
GetWmdowWord and GetWmdowLong took Windows SDK defined constants such
as GWL_WNDPROC or application-supplied positive offsets. The positive offsets
allowed access to instance data that an application can attach to a window. The pre
defined constants, on the other hand, are negative offsets defined in WINDOWS.H.
The code in 3.0 for the two functions, which shared the same entry point, needed
only to apply the given offset from the end of the window structure directly and
retrieve a double word (the prototype for GetWindowWord makes it return only a
word, although a full double word is available in DX:AX).

The code for these functions in 3.1 has become more complex. Instead of the
direct application of the supplied offset (after simple range validation) to the structure
as in 3.0, it is now checked for being positive or negative. If positive, the function acts
as in 3.0. However, if negative, it is scanned for in a lookup table in CS. When
located, the resultant new offset is extracted and is then used against the structure.

Note: See also Paul Bonneau's" 3.1 's Internal Window Structure," Windows/DOS
DeveloperJsJournal, June 1992. Bonneau mentions the possibility of a four-byte block
before the WND in 3.1 debug.

See also: CLASS structure, MENU structure
Example: See the USERWALK program

WNetErrorText USER.499

WORD FAR PASCAL WNetErrorText(WORD nError, LPSTR lpBuffer, WORD
nBufferSize);

This is the only undocumented WNet* function. All others are documented in chapter
5 of the Wmdows DDK Device Driver Adapation Guide, and in the DDK header file
WINNET.H. (A few are also documented in the 3.1 SDK) WNetErrorText() appears
in WINNET.H as "internal." A comment in WINNET.H simply says "stuff in user,
not driver, for shell apps." Indeed, the function is called by File Manager.

Also unlike most other WNet* functions in USER, which simply use
FarCalINetDriver() to pass through to their respective functions in a network driver
such as LANMAN.DRV, MSNET.DRV, or (most likely!) NETWARE.DRV, the code
for WNetErrorText() actually resides in USER.

WNetErrorText() differs from the documented WNetGetErrorText() function
only in that the textual description of the error may be loaded from a stringtable
resource in USER, rather than from the driver itself. USER's stringtable in 3.1
includes relating to errors while restoring network connections. An improvement in
3.1 was support for network connections in File Manager and Print Manager.)

For descriptions of other WNet* functions, see the DDI(Device Driver Adapta
tion Guide and Ralph Davis's book The Windows ProgrammerJs Guide to Networking
(Addison-Wesley, forthcoming 1993).

WNetErrorText

CHAPTER 6 • USER: WINDOWS USER INTERFACE 513

Support: 3.1
Used by: WINFILE (File Manager)
See also: FarCallNetDriver

XCStoDS

WORD FAR PASCAL XCStoDS(void);

USER.315

This function returns the value of USER's default DS selector.
It can be used in conjunction with the HANDLE of any USER object that is

stored in the USER default heap (see the introduction to this chapter for a discussion
of USER heaps and object types), such as a documented HWND or an undocu
mented HCLASS, to generate a far pointer. This can in turn be used to inspect the
contents of USER data structures. The function depends on the function prolog to set
up DS on entry, after which it simply pushes DS and pops AX.

It should be pointed out that USER's default DS selector can instead be obtained
by calling GetWindowWord(GetDesktopWindow(), GWW_HINSTANCE), all the
pieces of which are documented. Since this works not only in 3.0, but also in 3.1
(where XCStoDS() is not available), this is the recommended method for obtaining
USER's DS.

ToolHelp (see chapter 10) provides a way of locating all USER global heap
blocks. Those that are local heaps can then be determined using techniques described
in the entry for Local Heaps in chapter 5, or simply by testing if the ToolHelp
LocalFirst() function succeeds when passed a given global-heap handle. For example:

GlOBAlENTRY ge;
BOOl ok;
HANDLE hUser = GetModuleHandle(UUSER U);
ge.dwSize = sizeof(ge);
ok = GlobalFirst(&ge, GLOBAL_ALL);
while (ok)
{

if (ge.hOwner == hUser) II locate all blocks belonging to USER
{

lOCAlENTRY le;
le.dwSize = sizeof(le);
if (localEntry(&le, ge.hBlock»
{

II it's a USER local heap
}

}

ok = GlobalNext(&ge, GLOBAL_ALL);
}

The following example masquerades under the name XCSTODS.C but does not
call XCStoDS at all; instead, it illustrates the alternate, GetWindowWord, approach.

XCStoDS

514 UNDOCUMENTED WINDOWS

Using the undocumented WND structure, it lists a hierarchical tree of parent and
child window handles with their titles without using GetWindow, EnumWindows, or
EnumChildWindows.

Return: The USER default DS selector.
See also: Chapter 10, Local Heaps (chapter 5), and the introduction to this chapter
Example: The following is an example of how to avoid having to use XCStoDS!

1* XCSTODS.C *1

#include <windows.h>
#include <dos.h>
#include <string.h>
lIinclude "winio.h"

IIdefine MK_FP(a,b) «void far *)«(unsigned long)(a) « 16) I (b»)

1* Undocumented WND structure *1
lIinclude IIwnd.h ll

1* undocumented function that could be used in 3.0 *1
II extern WORD FAR PASCAL XCStoDS(void);

WORD selUserDS;
char strlndent[30J = {O};
char strText[128J;

void printtree(WORD wndofs)
{

II We only need WND fields which coincide in 3.0 and 3.1
WND_3_0 far *hwnd;

for (;;)
{

hwnd = MK_FP(selUserDS, wndofs);
GetWindowText«HWND) wndofs, (LPSTR) &strText, 128);
printf("%sWindow %04X is %s\n", strlndent, wndofs, strText);
if (hwnd->hwndChild != NULL)

{

int i = strlen(strlndent);
strcat(strlndent, II II);
printtree(hwnd->hwndChild);
strlndent[iJ = 0;
}

if «wndofs = hwnd->hwndNext) == NULL)
break;

}

}

int maine)
{

II The following tine will only work in 3.0
II selUserDS = XCStoDS();
II whereas the following line will work in 3.0 and 3.1

XCStoDS

CHAPTER 6 • USER: WINDOWS USER INTERFACE 515

II (and in 3.1 only because WND structures are store in USER's
II default local heap; other structures reside in other heaps)
selUserDS = GetWindowWord(GetDesktopWindow(), GWW_HINSTANCE);

II Now we need to adjust the selector privilege level for 3.0
selUserDS &= Oxfffc;
selUserDS 1= 1;

II Build the list, then paint it
winio_setpaint(winio_current(), FALSE);
printtree(GetDesktopWindow(»;
puts(fI\n\nEnd **********fI);
winio_setpaint(winio_current(), TRUE);
winio_home(winio_current(»;
return 0;
}

XCStoDS

CHAPTER • 7

Undocumented Windows Messages

The header files included with the SDK contain about 130 window message (WM_)
constants. The file WM_UNDOC.H, which can be found on the disk that accompan
ies this book, defines another 25 or so undocumented messages. Some of these
undocumented messages implement an interface that is directly related to an undocu
mented function. An example of this would be the WM_SYSTIMER message
(OxOl18) which is sent to a window in response to system timer events from a timer
created in a call to the undocumented SetSystemTimer function. Since Microsoft did
not want to document the SetSystemTimer function, it would make even less sense for
them to document the WM_SYSTIMER message, which is only defined to implement
that function's message-based callback.

Others are generated in response to system events such as the user clicking on a
window's system menu bar. In this case, for example, USER generates an undocu
mented WM_ENTERMENULOOP message. Since it is 100% reliable, and always
accompanied by a subsequent WM_EXITMENULOOP, it is less clear why it was this
message would not be documented.

Still others remain a mystery, although proof that they exist is provided by the fact
that there are #defines for them commented with the legend "Internal" in the
WINDOWS.H file that is shipped with the 3.1 DDK A few, such as the
WM_PAINTICON message, which is present but undocumented in version 3.0, have
been included in the preliminary Win32 API documentation, and in the Win32
include file WINUSER.H.

For further discussiqn of Windows messages, see the SNOOP utility and its
WM_UNDOC.DAT file, discussed in chapter 4.

WM_ACTIVATESHELLWINDOW? (Ox0044?)

Windows message 44h is possibly WM_ACTIVATESHELLWINDOW. See WM_
OTHERWINDOWCREATED for further details.

517

518 UNDOCUMENTED WINDOWS

WM_ALTTABACTIVE (Ox0029)

This message is believed to be sent to certain types of dialog windows when the user is
using Alt-Tab to switch focus away from the dialog window.

Support: 3.0, 3.1

(Ox022C)

This message appears on fIrst sight to be part of the drag-and-drop protocol since it its
name and number fit neatly into the range of messages associated with the undocu
mented DragObject function (see chapter 6). However, while it is related to dragging,
it is not used by that function, nor is it a part of the protocol. It is instead sent by a
child listbox class control window to its parent window if the user starts to drag the
listbox selection bar. The message is rarely seen, however, since the other criterion for
its generation is that the child window must have the undocumented extended win
dow style WES_DRAGDETECT (Ox00000002) set. This style cannot be set simply
by using code such as:

SetWindowLong (hwndLBox, GWL_EXSTYLE, GetWindowLong() I WES_DRAGDETECT);

since calls to modify the dwExStyle appear to be filtered (see the WND structure in
chapter 6). Instead, the rgtExStyle field of the WND structure must be modified
directly.

Support: 3.0, 3.1

WM_CBT_RESERVED_FIRST
WM_CBT_RESERVED_LAST

(Ox03FO)

(Ox03FF)

These are placeholders, not messages, to mark the range ofmessage numbers reserved by
Wmdows for use in Computer Based Training (CBT) applications such as WmTutor.

CBT is documented in the Windows 3.1 SDK, in the discussion of SetWindows
Hook(WH_CBT). It is possible that the WM_CBT messages correspond to the
WH_CBT codes in WINDOWS.H; for example, Windows message 03FOh might be
WM_CBT_MOVESIZE:

HCBT_MOVESIZE 0
HCBT_MINMAX 1
HCBT_QS 2

WM ALTfABACTIVE

CHAPTER 7 • UNDOCUMENTED WINDOWS MESSAGES 519

HCBT_CREATEWND 3
HCBT_DESTROYWND 4
HCBT_ACTIVATE 5
HCBT_CLICKSKIPPED 6
HCBT_KEYSKIPPED 7
HCBT_SYSCOMMAND 8
HCBT_SETFOCUS 9

Support: 3.0, 3.1

WM_CONVERTREQUEST (OxOl0A)

This message is documented in Kanji Windows and sent during the processing of the
Kanji Windows function ConvertRequest(). For more information, see "Bringing
Windows to the Expanding Japanese Market," Microsoft SystemsJournal, March 1988.

Support: Kanji Windows
See also: WM_CONVERTRESULT, WM_KANJIFIRST,

WM_CONVERTRESULT (OxOl0B)

This message is documented in Kanji Windows and sent during the processing of the
Kanji Windows function ConvertRequest().

Support: Kanji Windows
See also: WM_CONVERTREQUEST, WM_KANJIFIRST,

(Ox022D)

This message is sent by the undocumented DragObject function to the window asso
ciated with the current drag-and-drop "session" whenever the cursor moves. It pro
vides the source window with an indication ofwhether the object is currently accepted
by the window under the cursor.

Parameter
wParam

Description
TRUE (1) if the object has been accepted by the window under the
cursor, or FALSE (0) ifnotlParam
The high word contains the global memory handle to the
DRAGINFO structure originally supplied to the DragObject func
tion. The low word is always O. In standard or enhanced mode,
therefore, IParam can be used directly as a far pointer to the
DRAGINFO structure.

WM_CONVERTREQUEST

520 UNDOCUMENTED WINDOWS

Support: 3.0, 3.1
See also: DRAGINFO (chapter 6), DragObject (chapter 6), WM_DROPOBJECT,
WM_QUERYDROPOBJECT, WM_DRAGSELECT, WM_BEGINDRAG,
WM_DRAGMOVE

(Ox022F)

This message is sent by the undocumented DragObject function to the window under
the cursor when the user drags the object, once the window has signaled acceptance of
the drop by responding to the WM_QUERYDROPOBJECT message.

Parameter
wParam

IParam

Description
Always 0

The high word contains the global memory handle to the
DRAGINFO structure originally supplied to the DragObject func
tion. The low word always o. In standard or enhanced mode, there
fore, IParam can be used directly as a far pointer to the
DRAGINFO structure.

Support: 3.0, 3.1
See also: DRAGINFO (chapter 6), DragObject (chapter 6), WM_DROPOBJECT,
WM_QUERYDROPOBJECT, WM_DRAGSELECT, WM_BEGINDRAG,
WM_DRAGLOOP

WM_DRAGSELECT (Ox022E)

While an object is being dragged, and once a window has signaled acceptance of the
drop in the 3.0-type drag-and-drop protocol (which continues to work in 3.1),by
responding to the WM_QUERYDROPOBJECT message, it will receive this message
when the cursor is dragged out of, or into, the window area. It can be used by the
"client" window to keep track ofwhether the object is over the window.

Parameter
wParam

IParam

Support: 3.0, 3.1

Description
oif the cursor is leaving the window, or 1 if it is entering the window

The high word contains the global memory handle of the
DRAGINFO structure describing the object(s) being dragged. The
contents of the low word are not understood. Since it is not always
0, IParam cannot be used directly as a far pointer to the
DRAGINFO structure.

WM DRAGMOVE

CHAPTER 7 • UNDOCUMENTED WINDOWS MESSAGES 521

See also: DRAGINFO (chapter 6), DragObject (chapter 6), WM_DROPOBJECT,
WM_QUERYDROPOBJECT, WM_DRAGLOOP, WM_BEGINDRAG,
WM_DRAGMOVE

WM_DROPOBJECT (Ox022A)

IParam

Parameter
wParam

This message is sent by the undocumented DragObject function to the window under
the cursor when the user releases the left mouse button, signifying that the object has
been dropped. It will only be sent to a 3.0-type drag-and-drop protocol client window
that has previously signaled acceptance of the drop by responding to a
WM_QUERYDROPOBJECT message. The lParam parameter will point to the same
DRAGINFO structure as that of the WM_QUERYDROPOBJECT message.

Description
HWND ofsource window

The high word contains a global memory handle to a DRAGINFO
structure describing the object(s) being dropped. The low word is
always O. In standard or enhanced mode, therefore, IParam can be
used directly as a far pointer to the DRAGINFO structure.

Return: In version 3.0, the return is either TRUE (1) signifying that the object has
been dropped, or FALSE (0) signifying that the drop was unsuccessful. In version 3.1,
the DWORD returned contains a four-character identifier ofeither 'FILE' (Ox454c4946)
or 'PRNT' (Ox544e5250) if successful; any other value signifies an unsuccessful drop.
Support: 3.0, 3.1
See also: DRAGINFO (chapter 6), DragObject (chapter 6), WM_QUERYDROP
OBJECT, WM_DRAGLOOP, WM_DRAGSELECT, WM_BEGINDRAG,
WM_DRAGMOVE

WM_ENTERMENULOOP (Ox0211)

When the user clicks on the system menu bar of a window, this message is placed
in the window's message queue. When the system menu is taken down, a
WM_EXITMENULOOP message is posted to the Window. The two messages are
always paired; a window will never receive two WM_ENTERMENULOOP messages
without an intervening WM_EXITMENULOOP message, for example.

Parameter
wParam

IParam

Description
Always NULL

Always NULL

Support: 3.0, 3.1
See also: WM_EXITMENULOOP

522 UNDOCUMENTED WINDOWS

WM_ENTERSIZEMOVE (Ox0231)

This message is generated when the user initiates a move or size operation. This
includes a click or drag of the caption bar, the window border, either of the Move or
Size system options, or the window icon when the window is minimized. The corre
sponding message for signaling termination of the operation, WM_EXITSIZEMOVE,
will only be generated if the operation was initiated by a direct click on the caption bar
or the window border, or if the operation results in a change in window position or
size. This means that the two messages can not reliably be used as a start/stop indica
tion ofwindow size or move operations.

The documented WM_WINDOWPOSCHANGING and WM_WINDOWPOS
CHANGED messages in version 3.1 provide slightly different functionality. There is no docu
mented equivalent in 3.0.

Parameter
wParam

IParam

Description
Always NULL

Always NULL

Support: 3.0, 3.1
See also: WM_EXITSIZEMOVE

WM_EXITMENULOOP (Ox0212)

Description
Always NULL

Always NULL

When the user clicks on the system menu bar, a WM_ENTERMENULOOP message
is placed in the window's message queue. When the user has selected an option from
the option menu, or has cancelled the menu, this message, WM_EXITMENULOOP,
is posted. The two messages are always paired; a window will never receive two
WM_ENTERMENULOOP messages without an intervening WM_EXITMENULOOP
message, for example.

Parameter
wParam
IParam

Support: 3.0, 3.1
See also: WM_ENTERMENULOOP

WM_EXITSIZEMOVE (Ox0232)

This message is generated when the user completes a move or size operation. This
includes a click or drag of the caption bar, the window border, or after selection of

R IZEMOVE

CHAPTER 7 • UNDOCUMENTED WINDOWS MESSAGES 523

the Move or Size system options actually leads to a change in window position or
size. It will always have been preceded by a WM_ENTERSIZEMOVE message.
Note that the reverse is not true; in other words a WM_ENTERSIZEMOVE message
will not always be followed by a WM_EXITSIZEMOVE message. This message is still
supported in version 3.1, although the documented WM_WINDOWPOSCHANGED
provides better and more consistent functionality in that version, as described in the
entry for WM_ENTERSIZEMOVE.

Parameter
wParam

IParam

Description
Always NULL

Always NULL

Support: 3.0, 3.1
See also: WM_ENTERSIZEMOVE

WM_FILESYSCHANGE (Ox0034)

This message is used internally by WinFile and, if "FileSysChange=ON" is specified in
the [Enhanced] section of SYSTEM.INI, broadcast by WINOA386. WmFile sends
itself WM_FILESYSCHANGE messages from within a callback function installed
using the undocumented FileCdr function. The callback is notified of flie system
changes by Windows apps. WinFile also intercepts WM_FILESYSCHANGE messages
generated by WINOA386 in response to file system changes by DOS applications. It
uses the message, from either source, to update its directory listboxes. See the FileCdr
entry in chapter 5 for more information.

Parameter
wParam

IParam

Description
A numeric code identifying the action that caused the file system
change. Only the following are known:

o <:reate file

1 l}elete file

2 Rename file/directory
3 Create unique file

7 Create directory
8 l}elete directory

Not known, except that the high word in version 3.0 always con
tains 0, and in 3.1 always contains a valid selector.

WM FllESYSCHANGE

524 UNDOCUMENTED WINDOWS

Support: 3.0, 3.1
See also: FileCdr chapter 5)

WM_GETHOTKEY (Ox0033)

This message is documented in Win32 but is also available, undocumented, in versions
3.0 and 3.1. An application sends WM_GETHOTKEY to find out its currently
assigned hot key. Hot keys are known as application "shortcut" keys in the user's doc
umentation for Program Manager; shortcut keys can be set in the Program Item
Properties dialog box. The hot key is a Ctrl-, Alt-, and/or Shift-key combination that,
when pressed, activates the application and restores its top-level window. The message
returns the VK_ and shift key values of the currently assigned hot key, or NULL if one
is not currently assigned:

wVK_Curr = SendMessage(hwnd, WM_GETHOTKEY, 0, OL);

The low byte contains the VK_ code for the key, and the high byte contains the
shift state, as described in the SDK documentation for the VkKeyScan function. An
application might send this message to obtain and display the current hot key assign
ment before allowing a user to change it.

The returned shift state flags will always contain the Alt-key bit flag set (Ox0400),
since hot keys are a type of system key not accessible directly to applications.

A new hot key can be assigned using the WM_SETHOTKEY message.

Support: 3.0, 3.1
See also: WM_SETHOTKEY

(OxOl0C)

This message appears in the Korean language (Hangeul) version ofWindows only.

Support: Hangeul Windows

WM_INTERNAL_COALESCE_FIRST

WM_INTERNAL_COALESCE_LAST

(Ox0390)
(Ox039F)

These are placeholders, not messages, to mark the range of message numbers 0390h
through 039Fh reserved by Windows. Their purpose is not currently understood by
us. This range appears, marked "internal," in the version ofWINDOWS.H included
with the 3.1 DDK

WM GETHOTKEY

CHAPTER 7 • UNDOCUMENTED WINDOWS MESSAGES 525

Support: 3.0, 3.1

WM_INTERNAL_DDE_FIRST

WM_INTERNAL_DDE_LAST

(Ox03EO)

(Ox03EF)

These are placeholders, not messages, to mark the range of message numbers 03EOh
through 03EFh, reserved by Windows. Their purpose is not currently understood by
us, aside from the obvious relation to Dynamic Data Exchange (DDE). This range
appears, marked "internal," in the version of WINDOWS.H included with the 3.1
DDK

Support: 3.0, 3.1

WM_ISACTIVEICON (Ox0035)

This message is placed in the message queue of an iconic MDI client window when
ever there is a change in its status. In version 3.0, the message is sometimes sent to the
window, and sometimes posted. It appears to be similar in purpose to the
WM_SETFOCUS and WM_KILLFOCUS messages but operates within an MDI
application only, allowing the application main window to hold system focus but still
provide a separate document focus within the application when it is active.

Return: The return is only meaningful when the message has been sent to a window
rather than posted and is therefore not used in version 3.1, even though
DefMDIChildProc continues to return a valid value. If FALSE (0), the target window
is not the active, i.e., currently selected, icon. If TRUE (1), the target window is the
active icon.

Parameter
wParam

IParam

Support: 3.0, 3.1

WM_KANJIFIRST

WM_KANJILAST

Description
Always NULL

Always NULL

(Ox0280)

(Ox029F)

These are placeholders, not messages, to mark the range of message numbers 0280h
through 029Fh, used in Kanji Windows (Japan).

WM INTERNAL DOE FIRST

526 UNDOCUMENTED WINDOWS

In the Korean-language version of Windows, this same range is identified with
WM_HANGEULFIRST and WM_HANGEULLAST.

Support: Kanji Windows, Hangeul Windows
See also: WM_CONVERTRESULT, WM_CONVERTREQUEST

WM_LBTRACKPOINT (Ox0131)

This message is placed in the message queue of the window that owns a listbox control
whenever the user selects an entry in the list. It appears to provide supplementary
functionality to the LBN_SELCHANGE notification messages sent to parents of list
box controls when the LBS_NOTIFY style is specified.

As can be seen from the parameters below, this message provides information
about the position of the mouse and the entry in the listbox being selected. However,
there is no indication, if the listbox is one of many in a dialog window, which control
is providing the notification. For this, the documented LBS_NOTIFY message should
be used.

Parameter
wParam

IParam

Support: 3.0, 3.1

Description
Item number in the list that has been selected

Contains the coordinates of the position of the cursor at selection
relative to the top left of the listbox, with the x-coordinate in the
low word and the y-coordinate in the high word.

WM_MM_RESERVED_FIRST
WM_MM_RESERVED_LAST

(Ox03AO)
(Ox03DF)

These are placeholders, not messages, that mark the range of message numbers,
03AOh through 03DFh, reserved for the Multimedia extensions to Windows. The
actual message numbers appear in MMSYSTEM.H:

Joystick messages: Ox03AO through Ox03B8
MCI message: Ox03B9
Waveform output: Ox03BB through Ox03BD
Waveform input: Ox03BE through Ox03CO
MIDI input: Ox03Cl through Ox03C6
MIDI output: Ox03C7 through Ox03C9

Support: Multimedia Windows

, WM_LBTRACKPOINT

CHAPTER 7 • UNDOCUMENTED WINDOWS MESSAGES 527

(Ox0085)

Although this message is documented in the SDK, the documentation is incomplete.
In both 3.0 and 3.1, the documentation states that neither wParam nor lParam are
used. While IParam is always zero and is indeed not used, in 3.0, wParam is used inter
nally to hold a rectangular clipping region to be applied to the paint operation. In 3.1,
wParam sometimes contains a 1. The code in USER that handles this message appears
to recognize 1 as signifying that the window frame is to be painted but that there is no
clipping region. Although it is never seen, a NULL clipping region handle would
appear to cause no frame update. This logic appears to be present in the 3.0 code as
well. A clue to the fact that there is a relationship between clipping regions and
WM_NCPAINT lies in the Comments section of the documentation, where, after no
mention of clipping or clipping regions, it offers the following, seemingly irrelevant,
advice: "Remember that the clipping region for a window is always rectangular, even if
the shape of the frame is altered."

Parameter
wParam

IParam

Description
HRGN for clipping region or 1.

Always NULL.

The return from the message is ignored.

Support: 3.0, 3.1

(Ox0213)

This message was undocumented in version 2.1and does not appear in versions 3.0 or
3.1.

WM_OTHERWINDOWCREATED (Ox0042)

Under certain circumstances, this message is posted to top-level windows and to win
dows without owners, whenever a new window is created. However, while the mes
sage number quoted above appears to be the intrinsic message number, Windows also
registers "OTHERWINDOWCREATED", "OTHERWINDOWDESTROYED," and
"ACTIVESHELLWINDOW" messages using the RegisterWindowMessage() function
(and therefore having message numbers >= OxCOOO produced "on the fly").

These three messages appear to be related to SetWindowsHook(WH_SHELL),
which is documented in the 3.1 SDK's entry for ShellProc(). WINDOWS.H defines
the following WH_SHELL codes:

HSHELL_WINDOWCREATED 1
HSHELL_WINDOWDESTROYED 2
HSHELL_ACTIVATESHELLWINDOW 3

WM NCPAINT

528 UNDOCUMENTED WINDOWS

The WM_OTHERWINDOWxxx messages are documented in the Wm32 API,
and appear in the Wm32 include file WINUSER.H.

Parameter
wParam

IParam

Description
HWND ofnewly created window

Always NULL

Support: 3.1
See also: WM_OTHERWINDOWDESTROYED

WM_OTHERWINDOWDESTROYED (Ox0043)

Under certain circumstances, this message is sent to top-level windows and windows
without owners whenever a window in the system is destroyed.

However, while the message number quoted above appears to be the intrinsic
message number, Windows also registers an "OTHERWINDOWDESTROYED"
message using the RegisterWindowMessage function, and may be used instead.

See the WM_OTHERWINDOWCREATED entry, and the 3.1 SDK entry for
SetWindowsHook(SH_SHELL) and ShellProc().

This message is documented in the Win32 API and appears in WINUSER.H.

Parameter
wParam

IParam

Description
HWND ofwindow being destroyed

Always NULL

Support: 3.1
See also: WM_OTHERWINDOWCREATED

(Ox0026)

This message is posted to a window's message queue whenever its icon needs to be
painted. This occurs whenever a window is minimized; when its icon is moved; and
when its icon is revealed after having been partially or completely hidden. It is only
sent to iconic windows with class icons. All other iconic windows receive WM_PAINT
messages instead.

The wParam and IParam parameters are always NULL, except in version 3.0,
where wParam is sometimes 1.

I

THERWINDOWDESTROVED

CHAPTER 7 • UNDOCUMENTED WINDOWS MESSAGES 529

This message is documented in the Win32 API, and appears in WINUSER.H.

Support: 3.0, 3.1

WM_QUERYDROPOBJECT (Ox022B)

This message is sent by the undocumented DragObject function to the window under
the cursor when an object is being dragged. A window responding to the 3.0-type
drag-and-drop protocol that wishes to accept the dragged object will return TRUE on
receipt of this message, otherwise it returns FALSE. The DRAGINFO pointed at by
the lParam parameter may be used to decide whether to accept the object.

Parameter
wParam

IParam

Description
oif cursor is over client area, 1 ifover non-client area.

The high word contains a global memory handle to a DRAGINFO
structure describing the object(s) being dragged. The low word is
always O. In standard or enhanced mode, therefore, IParam can be
used directly as a far pointer to the DRAGINFO structure.

Retwn: TRUE (1) if the receiver wishes to accept the dragged objects, FALSE (0) if
not
Support: 3.0, 3.1
See also: DragObject (in chapter 6), WM_DROPOBJECT, WM_DRAGLOOP,
WM_DRAGSELECT, WM_BEGINDRAG, WM_DRAGMOVE

WM_QUERYPARKICON (Ox0036)

This message is placed in the message queue of a top-level window that is about to be
minimized. It is unclear what its purpose is, but one could speculate that it may origi
nally have been intended as a means ofallowing an application to specifY whether/where
it should be minimized.

An entry for this message number appears in the version of WINDOWS.H that
ships with the version 3.1 SDK as WM_UNDSED0036.

Parameter
wParam
IParam

Support: 3.0

Description
Always NULL

Always NULL

WM_QUERVDROPOBJECT

530 UNDOCUMENTED WINDOWS

WM_QUERYSAVESTATE (Ox0038)

This message was undocumented in version 2.1. It is not known what the purpose of
it was, but it is not seen in versions 3.0 or 3.1.

(Ox0032)

This message is documented in the Win32 API but is also available, undocumented, in
versions 3.0 and 3.1. An application sends WM_SETHOTKEY to defme the hot key
to be assigned to the application. The hot key is an Alt-, Ctrl-, and/or Shift-key com
bination that, when pressed at the keyboard, activates the application and restores its
top-level window; in the user's documentation for Program Manager, hotkeys are
referred to as application "shortcut" keys.

The message expects the new hotkey VK_ and shift key values in wParam, and
returns one of four return codes, as illustrated in this code fragment:

ret = SendMessage(hwnd, WM_SETHOTKEY, VkKeyScan(chHotKey) I Ox400, Ol);
switch (ret)
{

case 2: printf(flOK (another app owned the hot key)\n fl
); break;

case 1 : printf(flOK\n fl
); break;

case 0: printf(fllnvalid hwnd\n fl); break;
case -1 : printf(fllnvalid hot key value\n fl

); break;
}

The low byte of wParam contains the VK_ code for the key, and the high byte
contains the shift state, as described in the SDK documentation for the VkKeyScan
function.

The shift state flags should always contain the Alt- key bit flag set (Ox0400), since
hot keys are a type of system key, much like menu accelerator keys, not accessible
directly to applications.

Support: 3.0, 3.1
See also: WM_GETHOTKEY

WM_SETVISIBLE (Ox0009)

This message was documented in version 2.1 and is sent to a window just before it is
made visible or invisible by a call to ShowWindow, or by the user iconizing or restor
ing the window.

WM_QUERYSAVESTATE

CHAPTER 7 • UNDOCUMENTED WINDOWS MESSAGES 531

Parameter
wParam

IParam

Description
Nonzero if the window is being made visible, zero if the window is
being made invisible
Not used

Support: 3.0 (not in 3.1)

(Ox0004)

This message was undocumented in version 2.1. It is not known what its purpose was,
but it is not seen in versions 3.0 or 3.1.

(Ox0088)

This message is sent or posted to a window when part of its window area is overlayed
by another window that is about to be updated. It is not known what determines
whether the message is sent or posted.

This appears to be similar to the window style CS_SYNCPAINT in OS/2 Presen
tation Manager. According to Charles Petzold's Programming the OS/2 Presentation
Manager, "When CS_SYNCPAINT is set, WM_PAINT messages are sent directly to a
window procedure when part of the window becomes invalid. When this bit is not set,
WM_PAINT messages are posted to the message queue and retrieved later. The
CS_SYNCPAINT bit is used mostly with small control windows that must be
repainted immediately."

Parameter
wParam

IParam

Support: 3.0, 3.1

Description
Unknown

The high word is always o. The low word appears to be 1 when the
window is minimized, otherwise it appears to be an HDC.

(Ox0089)

This message was undocumented in version 2.1. It is not known what the purpose of
it was, but it is not seen in versions 3.0 or 3.1. The Win32 include file WINUSER.H,
while not containing an identifier for WM_SYNCTASK itself, does contain the follow
ing; "SWP" presumably stands for SetWindowPos:

1* WM_SYNCTASK Commands *1
#define ST_BEGINSWP a
#define ST_ENDSWP 1

532 UNDOCUMENTED WINDOWS

WM_SYSTEMERROR (Ox0017)

This message was documented in version 2.1 and was sent to all top-level windows when
Wmdows ran out of memory in response to a request to GlobalAlloc, or GlobalReAlloc
upwards, a block ofmemoty.

Parameter
wParam
IParam

Description
Always 8 (DOS 'Out ofmemory' error code)

Not used

(OxOl18)

This message is to SetSystemTimer (see chapter 6) when the documented
WM_TIMER message is to SetTimer, Le., it is the message that is placed in a win
dow's message queue in response to system timer events. Like WM_TIMER messages,
WM_SYSTIMER messages are only generated if no callback function was specified in
the call to SetSystemTimer, i.e., the last parameter to the call was NULL.

If generated, they are posted to the application message queue.

Parameter
wParam
IParam

Support: 3.0, 3.1

WM_TESTING

Description
Event ID as specified in the call to SetSystemTimer

Always NULL

(Ox0040)

This message is not seen in either the retail or debug versions of 3.0 or 3.1. It is not
known what its purpose is.

WM_YOMICHAR (OxOl08)

The purpose of this message is not currently understood, although it is known to be
seen only in Kanji Windows and is perhaps associated with WIFEMAN (Windows
Intelligent Font Environment).

Support: 3.0, 3.1

WM_SVSTEMERROR

CHAPTER 7 • UNDOCUMENTED WINDOWS MESSAGES 533

Built-in WndProcs
The Windows SDK provides the source for two of the documented functions that
handle messages that an application does not wish to intercept. They are the
DefWindowProc and DetDlgProc functions which process messages for application
windows and dialogs respectively. It is interesting that neither of what are the two
most fundamental WndProcs handle any undocumented messages.

Two other functions, DetFrameProc and DetMDIChildProc, for which source
code was not provided with the SDK, handle MDI messages not processed by the
MDI application window procedure. USER.EXE also contains WndProcs for each of
the built-in control classes and some other special 'window' types including the MDI client
window type. These functions include EditWndProc, StaticWndProc, LBoxCtlWndProc,
ComboBoxWndProc, ButtonWndProc and SBWndProc, MDIClientWndProc,
MenuWndProc, MB_DlgProc (for MessageBox dialogs), and DesktopWndProc, all of
which are undocumented.

Some of these are exported in 3.0; all are present, but none are exported in 3.1, except
for EditWndProc(), which is exported under the name BozosLiveHere(). In any case,
far pointers to all these functions can be acquired using GetWmdowLong
(GWL_WNDPROC) or GetClassInfo().

The SNOOP utility, presented in chapter 4, can be used to trace and filter mes
sages through all the built-in WndProcs.

Undocumented Control Messages
The following identifiers appear, marked "internal," in the version of WINDOWS.H
shipped with the 3.1 DDK. Unfortunately, no more is known about them at this time,
except for EM_SCROLL, which may be the same as the EM_SCROLL documented
in the Wm32 API:

Edit control messages
EM_SCROLL
EM_GETTHUMB

Llstbox messages
LB_ADDFILE
LB_SETANCHORINDEX
LB_GETANCH0 RINDEX

WM_USER+5
WM_USER+14

WM_USER+23
WM_USER+29
WM_USER+30

Llstbox/Combobox messages
LBCB_CARETON WM_USER+36
LBCB_CARETOFF WM_USER+37

WM YOMI HA

CHAPTER • 8

GDI

GDI provides the visual link between Windows and the outside world. It manages the
display and other output devices by communicating with device drivers. These device
drivers are DLLs that control specific types of devices which fall into two categories:
display drivers, which always have the generic module name "DISPLAY" (and a file
name such as VGA.DRV, V7VGA.DRV, or 8514.DRV); and printer drivers, such as
HPPCL.DRV, PSCRIPT.DRV, or nY.DRV.

Keeping the device specific component of device management in a device driver
layer allows GDI to present a device-independent interface both to USER and to
applications. GDI deals with objects like pens, brushes, bitmaps, colors, fonts, regions,
and the device context. These objects are at a lower level than those presented by
USER. Thus GDI does not know about "windows," that is, those things referred to
by HWNDs, or icons, cursors, menus, and so on, whereas USER and applications
need to know about GDI objects. In principle, an entirely different GUI standard
could have been, and could be, implemented on top ofGDI.

The GDI interface to USER and applications consists of function calls and object
handles. The handles are near pointers to objects in GDI's default heap segment. The
GDI functions provide the means by which USER and applications create, manipulate,
and destroy these objects. CreatePen, for example, creates a pen object, and returns a
handle to it (HPEN); CreateBrush creates a brush object and returns a handle to it
(HBRUSH), and so on. HDCs, however, are not treated in quite the same way. As
will be discussed in more length in the DC entry in this chapter, applications normally
obtain the handle to a display device context from USER functions such as BeginPaint
and GetDC, not from the GDI function CreateDC.

The list ofexported GDI functions, aggregated over versions 3.0 and 3.1, contains
about 380 entry points, of which some 80 are undocumented. These numbers show
a better documented-to-undocumented ratio than either the USER or KERNEL
modules.

535

536 UNDOCUMENTED WINDOWS

GDI Data Structures

GDI maintains a number of different data structures in its default near heap. These
structures, which represent the objects that GDI makes available to USER and applica
tions, are consistent in their use of a standard header structure, and in the use of
"magic," or signature words, to identify them. This makes it possible to determine,
given a handle to any object in the default heap, what the object is.

Many of the undocumented structures are simply internal copies of documented
structures passed to API functions such as CreatePenIndirect or CreateBrushIndirect.
So, for example, an undocumented FONTOBJ structure, referenced by a documented
HFONT handle, is made up ofa GDIOBJHDRstructure (described below), followed
by the LOGFONT structure passed to CreateFont.

The object header structure is the same size but has different fields in versions 3.0
and 3.1. In version 3.0, objects are identified by a type number, as follows:

Pen
Brush
Font
Palette

Bitmap
Region
DC
Disabled DC
MetaDC
Metafile
Metafile DC

1
2
3

4
5
6
7
8

9
10
11

These object types, as found in the GDI object header in version 3.0, are identical
to those in the TOOLHELP.H GDI heap object type defines (with one exception
ToolHelp makes no mention of the Metafile DC, type 11).

In version 3.1, objects have signatures that are effectively type numbers made to
look like 2-character strings:

Pen
Brush
Font
Palette
Bitmap
Region
DC
Disabled DC

Ox4F47 ('GO')
Ox4F48 ('HO')
Ox4F49 ('10')
Ox4F4A ('JO')
Ox4F4B ('KO')
Ox4F4C ('LO')
Ox4F4D ('MO')
Ox4F4E ('NO')

MetaDC
Metafile

Metafile DC

Ox4F4F ('00')
Ox4F50 ('PO')
Ox4F51 ('QO')

CHAPTER 8 • GDI 537

These signatures are also overloaded with flags, of which only one is really under
stood. Version 3.1 's undocumented MakeObjectPrivate function, described later in
the chapter, ORs in Ox2000 to indicate that an object is private. This has the effect of
turning the '0' into an '0' in each of the above strings. In addition, another flag
(Ox8000) is known to exist in both 3.0 and 3.1, although its purpose is less obvious. It
appears to signify that the object is currently selected into a DC. The permutations of
these two flags, with the base signature of a Pen, for example, lead to the possible sig
nature field values of 'GO,' 'Go,' 'GI,' and 'Gi'.

In the list of object signatures above, there is a profusion of Metas: MetaDC,
Metafile, and Metafile DC. In addition, as we will see below, there is a wMetaList field
in the object header structure. The MetaDC is very rarely seen, and remains a mystery.
The Metafile DC is a DC created using CreateMetaFile, and which will provide the
device context for the Metafile operations. In the hMetaFile field of the DC is a han
dle to a Metafile object. The Metafile object is the in-memory representation of a
Metafile, documented in the SDK. Interestingly, the Metafile is stored in the global
heap, and does not contain the object header. It is not clear, therefore, why ToolHelp
has a local-heap entry entry constant LT_GDI_METAFILE.

The header structure is described in more detail in the GDI Object Header entry
later in the chapter.

CDIWALK

The GDIWALK program, similar to the USERWALK program described in chapter 6,
provides visual clarification of how GDI object structures are constructed and how
they fit together. The primary undocumented data structure that GDI has to offer is
the DC-the device context. The HDC is, of course, documented, but what it points
to, the DC, isn't. The DC holds device-specific and GDI state information required
for an output operation. In the same way as the WND structure provides the focal
point for many of the USER object types, the DC contains references to almost all of
the GDI object types. Say that the DC, found some 12 lines from the end, with the
handle OBC6, is selected from the following excerpt of a GDIWALK main display run
in version 3.1:

GDI heap in segment 4bach:
(Double-click to view a block>

HANDLE ADDR SIZE TYPE
GDI heap in segment OSeeh:
(Double-click to view a block>
HANDLE ADDR SIZE TYPE
• • . just an example. • .

538 UNDOCUMENTED WINDOWS

OBF6 1D26 001A Brush
OBF2 1D46 001A Brush
OBEE 1D66 001A Brush
OC4A 1D86 001A NORMAL
OBDA 1DA6 0026 Region
OBD6 1DD2 OOCE DC
OBD2 1EA6 0012 NORMAL
OBCE 1EBE 0046 NORMAL
OBCA 1 FaA 0026 Region
OBC6 1F36 OOCE DC
0000 2008 0010 FREE
OC8A 201E 0046 NORMAL
0000 2068 0048 FREE
OC7E 20B6 002A Bitmap
OBB2 20E6 OOCE DC
OC6E 21BA 0026 Bitmap
OBAA 21E6 OOCE DC
0000 22B8 0028 FREE
OBA2 22E6 OOCE DC
OC62 23BA 0026 Bitmap
OB9A 23E6 OOCE DC

The following window might then appear:

DC handle OBC6 @ OSED:1F36 for 206 bytes

Lines marked 1_>1 may be double clicked for expansion

GDIOBJHDR:
hNext
wMagic
dwCount
wMetaList
DC:
byFlags
byFlags2

-> hMeta Fi le
-> hrgnClip

hPDevice
-> hLPen
-> hLBrush
-> hLFont
-> hBi tmap
-> dchPa l

hLDevice
hRaoClip
hPDeviceBlock
hPPen
hPBrush
hPFontTrans
hPFont
lpPDevice
pLDevice
pRaoClip

0000
6F4D ("Mo")
42
0000

01
00
0000
0000
07A7
OAE2
OAC6
OAFA
OC6E
OB06
OB7A
OBCA
OB7E
OBD2
OBCE
OB8E
17E6
02E7:0000
26EA
0000

pPDeviceBlock
pPPen
pPBrush
pPFontTrans
lpPFont
nPFTlndex
fnTransform
wROP2
wBkMode
dwBkColor
dwTextColor

about 50 fields
lpfnNotify
dwHookData
wDCGlobFlags

2666
1EBO
1ECE
25BA
17E7:0042
0000
0000:0000
OOOD
0001
3FFFFFFF
20000000

omitted ...
0000:0000
0000:0000

: 0003

CHAPTER 8 • GDI 539

The DC is a large structure which changes from one Windows version to the next.
It not only changed between versions 3.0 and 3.1, but also differs between retail and
debug versions of 3.1. Direct use of the information in the DC can not be done with
out much coding effort. The situation in 3.1 is further complicated, not only for the
DC, but for all GDI object structures, by the fact that the GDIOBJHDR structure is
equally unstable; in the debug version, the structure grows by 4 bytes, as described in
the GDI Object Header entry in this chapter. For a description of each of the fields in
the DC, refer to the DC entry.

Selecting one of the clickable fields (whose lines are indicated with a '->') in the
GDIWALK display will bring up another window with the underlying structure. The
hLPen field shown in the last window, for example, might lead to:

Pen handle OAE2 @ 05ED:37DE for 22 bytes

GDIOBJHDR:
hNext
wMagic
dwCount
wMetaList
lopnStyle
lopnWidth
lopnColor

OBD2
CF47 (IIG 1")
8
0000 LOGPEN:
0000
<a, 0)
00000000

The header file that contains the undocumented GDI structure definitions used by
GDIWALKis reproduced here:

1* GDIOBJ.H - GDI object structures *1

typedef struct tagGDIOBJHDR {
HANDLE hNext; II OOh Handle to next <sometimes flags in 3.0)
WORD wMagic; II 02h Obj type in 3.0, Magic in 3.1
DWORD dwCount; II 04h Sequence number
WORD wMetaList; II 08h
} GDIOBJHDR, FAR *LPGDIOBJHDR; II OAh total

540 UNDOCUMENTED WINDOWS

typedef struct tagGDIOBJ31DBG {
HANDLE hNext; II OOh Handle to next (sometimes flags in 3.0)
WORD wMagic; II 02h Obj type in 3.0, Magic in 3.1
DWORD dwCount; II 04h Sequence number
WORD wMetaList; II 08h
WORD wSelCount; II OAh Count of times selected???
HANDLE hOwner; II OCh Owning task
} GDIOBJ31DBG, FAR *LPGDIOBJ31DBG; II OEh total

II NOTE all offsets after Iheader l from here on in this file will be
II 4 bytes more when 3.1 DEBUG version is running

typedef struct tagBRUSHOBJ {
GDIOBJHDR header; II OOh
LOGBRUSH logbrush; II OAh
COLORREF crHatchBk; II 12h extra DWord for hatched brush color
} BRUSHOBJ, FAR *LPBRUSHOBJ; II 1Ah total

typedef struct tagPENOBJ {
GDIOBJHDR header;
LOGPEN logpen;
} PENOBJ, FAR *LPPENOBJ;

II OOh
II OAh
II 16h total

typedef struct tagPALETTEOBJ {
GDIOBJHDR header; II OOh
LOGPALETTE logpalette; II OAh
} PALETTEOBJ, FAR *LPPALETTEOBJ;II size depends on size of logpalette

typedef struct tagFONTOBJ {
GDIOBJHDR header;
LOGFONT logfont;
} FONTOBJ, FAR *LPFONTOBJ;

II OOh
II OAh
II size depends on strlen(typeface name)

typedef struct tagBITMAPOBJ {
GDIOBJHDR header; II OOh
HANDLE hmemBitmap; II OAh
BOOL bSelected; II OCh Currently selected into a DC ???
HDC hdc; II OEh DC last selected into ???)
} BITMAPOBJ, FAR *LPBITMAPOBJ;

typedef struct tagDC {
GDIOBJHDR header;
BYTE byFlags;
BYTE byFlags2;
HANDLE hMetaFile;
HRGN hrgnClip;
HANDLE hPDevice;
HANDLE hLPen;
HANDLE hLBrush;
HANDLE hLFont;
HANDLE hBitmap;
HANDLE dchPal;
HANDLE hLDevice;
HRGN hRaoClip;
HANDLE hPDeviceBlock;

II OOh
II OAh
II OBh
II OCh
II OEh handle to (reclangular) clip region
II 10h Phys device handle
II 12h Log. pen
II 14h Log. brush
II 16h Log. Font
II 18h Selected bitmap
II 1Ah Selected palette
II 1Ch Log. device
II 1Eh clip region
II 20h

CHAPTER 8 • GDI 541

HANDLE hPPen; II 22h Phys. pen
HANDLE hPBrush; II 24h Phys. brush
HANDLE hPFontTrans; II 26h
HANDLE hPFont; II 28h Phys. font
LPVOID lpPDevice; II 2Ah
WORD pLDevice; II 2Eh near pointer to log. device info
WORD pRaoClip; II 30h near pointer to clip region
WORD pPDeviceBlock; II 32h near pointer to GDIINFO
WORD pPPen; II 34h
WORD pPBrush; II 36h
WORD pPFontTrans; II 38h near pointer to hPFontTrans
LPVOID lpPFont; II 3Ah Font engine entrypoint
i nt nPFTIndex; II 3Eh
LPVOID Transform; II 40h

origin X
origin Y

Relative/absolute mode
Polygon fill mode
Bitblt stretch mode
for DC
for DC
pen width in pix
pen width in pix
Text alignment flags

Log curs pos X
Log curs pos Y
window origin X
window origin Y
window width
window height
viewport origin X
viewport origin Y
viewport width
viewport height
(USER/user ??) viewport
(USER/user ??) viewport
mapping mode

DRAWMODE structure - see DDK doc *1
wROP2; II 44h Raster Op drawing mode
wBkMode; II 46h Background mode (opaque/transparent)
dwBkColor; II 48h Phys. Background color
dwTextColor; II 4Ch Phys. text color
nTBreakExtra; II SOh Text padding: ExtTextOut justification
nBreakExtra; II 52h pad per break = nTBreakExtra/BreakCount
wBreakErr; II 54h SetTextJustify called with nBreakExtra=O?
nBreakRem; II 56h remainder of TBreakExtra/nBreakCount
nBreakCount; II 58h Count of break characters in string
nCharExtra; II 5Ah Per char additional padding
crLbkColor; II 5Ch Logical background color
crLTextColor; II 60h Logical text color

DRAWMODE structure *1
LCursPosX; II 64h
LCursPosY; II 66h
WndOrgX; II 68h
WndOrgY; II 6Ah
WndExtX; II 6Ch
WndExtY; II 6Eh
VportOrgX; II 70h
VportOrgY; II 72h
VportExtX; II 74h
VportExtY; II 76h
UserVptOrgX; II 78h
UserVptOrgY; II 7Ah
wMapMode; II 7Ch
wXFormFlags; II 7Eh
wRelAbs; II 80h
wPolyFillMode; II 82h
wStretchBltMode;11 84h
byPlanes; II 86h
byBitsPix; II 87h
wPenWidth; II 88h
wPenHeight; II 8Ah
wTextAlign; II 8Ch
dwMapperFlags; II 8Eh
wBrushOrgX; II 92h brush origin X
wBrushOrgY; II 94h brush origin Y
wFontAspectX; II 96h one half of font aspect ratio

1* Begin
WORD
WORD
DWORD
DWORD
i nt
i nt
WORD
i nt
i nt
int
DWORD
DWORD
1* End
int
int
int
i nt
i nt
int
int
int
int
int
int
int
WORD
WORD
WORD
WORD
WORD
BYTE
BYTE
WORD
WORD
WORD
DWORD
WORD
WORD
WORD

542 UNDOCUMENTED WINDOWS

II 98h other half of font aspect ratio
II 9Ah handle to font weights
II 9Ch depth of stack of saved DCs
II 9Eh count of locks on DC
II AOh Handle to visible region
II A2h DC origin X
II A4h DC origin Y
II A6h print driver entrypoint
II AAh Logical device driver name atom
II ACh Physical device name atom
II AEh FILE: port file name atom
II BOh
II B2h

WORD wFontAspectY;
HANDLE hFontWeights;
WORD wDCSaveLevel;
WORD wcDCLocks;
HRGN hVisRgn;
WORD wDCOrgX;
WORD wDCOrgY;
FARPROC lpfnPrint;
WORD wDCLogAtom;
WORD wDCPhysAtom;
WORD wDCFileAtom;
WORD wPostScaleX;
WORD wPostScaleY;
union DC_TAIL {

struct { II
WORD wB4; II
RECT rectB6; II
WORD wDCGlobFlags; II
WORD wCO; II
} tail_3_0; II

struct { II
RECT rectBounds; II
RECT rectLVB; II
FARPROC lpfnNotify; II
LPSTR lpHookData; II
WORD wDCGlobFlags; II
HDC hDCNext; II
} tail_3_1; II

};
} DC, FAR *LPDC;

3.0
B4h
B6h
BEh
COh
3.0
3.1
B4h
BCh
C4h
C8h
CCh
CEh
3.1

fields from here

rect
Bit 0 indicates DC dirty

size: C2h total
fields from here
Bounds rect

Hook func
hook data
Bit 0 indicates DC dirty
Next DC in linked list - Debug only
size: CEh total nondebug, D6h debug

typedef struct tagRGNOBJ {
GDIOBJHDR header;

II RGN rgn;
} RGNOBJ, FAR *LPRGNOBJ;

II OOh
II OAh

There is no specific provision for the ~.1 debug version of the object header struc
ture within the object structures; they all assume the retail version of theheader struc
ture, GDIOBJHDR. Since the 3.1 debug version of the structure is 4 bytes larger,
code such as the following should be used to adjust the alignment of pointers to
address fields in the object structures following the header:

LPGDIOBJ31DBG lphdr;
LPDC lpdc;

if «GetVersion == OxOa03) && GetSystemMetrics(SM_DEBUG»
lpdc = (LPDC) lphdr;

else
(BYTE FAR *) lpdc = (BYTE FAR *) lphdr +

sizeof(GDIOBJ31DBG) - sizeof(GDIOBJHDR);

CHAPTER 8 • GDt 543

1* Use lphdr for access to object header structure fields, and
lpdc for access to DC fields *1

Why didn't we use #ifdef DEBUG for the extra fields in the 3.1 debug version of
this structure? The developers of GDI itself could, and presumably do, use #ifdef
DEBUG to build the two versions of GDI with different structures. But if you think
about it, this isn't going to help when we want to write one program that uses GDI,
and that needs to work with either the debug or retail version.

GDI Heaps
In version 3.0, GDI uses a single heap segment for all local allocations and object stor
age, as well as for the GDI module atom table.

In version 3.1, GDI has two heap segments. The default heap segment still con
tains all local allocations and object storage, but the GDI module atom table has been
moved into its own, secondary heap segment. Comparing this growth with that of
USER's heap segments indicates that the resource problem was not as severe in GDI
as in USER It was/is, in fact, really a problem in USER. See the introduction to
Chapter 6 for a corresponding disussion of USER heap spaces.

GDI Exports and Imports

In version 3.0, the retail GDI.EXE is 129K in size and made of just over 100 object
files; in version 3.1, it is up to a whopping 219K and now comprises just under 150
object files. Apart from its overall growth, the GDI module has followed the same pat
tern as USER In other words, most of the exported entry points have been gathered
into a single LAYER.OBI in version 3.1, whereas they were spread over all of the
object files in version 3.0.

It is also interesting to note that the number of exports increased from 235 in ver
sion 3.0 to 284 in version 3.1. Of the 49 new functions, most are undocumented
not an encouraging trend.

On the bright side, however, this latest batch of functions includes one with the
name "FixUpBogusPublisherMetaFile," which, at 27 characters, noses ahead of a
crowded field by one character and takes the prize for Longest Windows API Function
Name.

The following is a list of the main GDI function groupings, in no particular order:

• device context and device management
• Palette management
• Visible region (VisRgn) manipulation

DeviceColorMatch

544 UNDOCUMENTED WINDOWS

• Font management
• Bitmap manipulation
• Viewport, region, and rectangle manipulation
• Metafile manipulation
• Vector drawing operations

• Printing
• Miscellaneous

GDI Undocumented Functions

GDI is unlike USER, for example, in that some of its exports that are not documented
in the SDK are documented in the DDK. These include the DMxxx functions, such as
DMBitBlt and DMColorlnfo, and most of the spooler interface functions, such as
OpenJob and CloseJob. To avoid redundancy, we have not documented them here.
Refer to the DDK documentation to obtain more information on any of these func
tions. As we did in the introduction to chapter 7, let's categorize the remaining
undocumented GDI functions under general headings:

DEVICE CONTEXT AND DEVICE MANAGEMENT

SetRelAbs SetDCState
GetRelAbs IsDCCurrentPalette
SetDCOrg GetDCHook
InternalCreateDC SetDCHook
GSV SetHookFlags
VVordSet Dea~

IsDCDirty Resurrection
SetDCStatus Brute
GetDCState

PALETTE MANAGEMENT

GdiSelectPalette
GdiRealizePalette

VISIBLE REGION (VISRGN) MANIPULATION

ExcludeVisRect SaveVisRgn
IntersectVisRect RestoreVisRgn
OflSetVlSRgn InquireVisRgn
SelectVisRgn StuftVisible

FONT MANAGEMENT

DeleteAboveLineFonts
ConvertOutlineFontFile
GetPhysicalFontHandle

GetCurLogFont
MFDrawText
UnicodeToAnsi

BITMAP MANIPULATION

SelectBitmap
BitmapBits
CompatibleBitmap
CreateRealBitmapIndirect

CHAPTER 8 • GDI 545

CreateUserBitmap
CreateRealBitmap
CreateUserDiscardableBitmap
GdiMoveBitmap

PixToLine
RCos
RSin
FastWindowFrame

VIEWPORT, REGION, AND RECTANGLE MANIPULATION

DPXlate RectStuff
SetWinViewExt OftSetOrg
ScaleExt GetClipRgn
LVBUnion StuffInRegion

METAFILE MANIPULATION

IsValidMetafile
FixUpBogusPublisherMetaFile
Vector drawing operations
RealizeDefaultPalette

PRINTING

AbortDoc
QueryAbort

MISCELLANEOUS

EnumCallBack
Copy
GdiInit2
FinalGdiInit
FTrappingO
MakeObjectPrivate

GetSpoolJob
QueryJob

GdiTaskTermination
SetObjectOwner
GdiSeeGdiDo
IsGdiObject
ShrinkGdiHeap

Using Undocumented GDI functions

The undocumented functions described in this section can be used in the same way as
any documented function unless otherwise noted. Parameter validation may some
times be less stringent (hard to imagine in version 3.0, where parameter validation is
already notoriously skimpy) than for documented functions, but this should not deter
careful programmers. In GDI, where even most 3.0 structures referred to by handles
contain an embedded signature, more type validation is possible than in USER, where
structures are difficult to identify intrinsically.

546 UNDOCUMENTED WINDOWS

BltmapBits GDI.46

LONG FAR PASCAL BitmapBits(HBITMAP, DWORD, LPSTR)
HBITMAP hBitmap; 1* Identifies the bitmap *1
DWORD dwCount; 1* size of lpBits buffer *1
LPSTR lpBits; 1* Points to a bitmap bits buffer *1
II CX contains a switch value specifying GetlSet functionality

This function is the back end to the documented GetBitmapBits and SetBitmapBits
functions. Those functions are just enny points that set ex and jump to this function.

The value set into ex is the address of one of two tiny functions that establish
DS:SI and ES:DI appropriately for either Get or Set operation. It appears that origi
nally, the code for BitmapBits called the value in ex directly. Although the two func
tions are still present, they are no longer called. Instead, a separate piece of code now
compares the value in ex and sets up DS:SI and ES:DI in-line.

It should never be necessary to call this function directly, and it is included here
for completeness only.

Return: Number of bytes of dwCount used if successful, 0 ifnot.
Support: 3.0

BITMAPOBJ structure

This is the structure behind the documented HBITMAP handle. Like other GDI
object types, it is stored in GDI's default heap segment:

typedef struct tagBITMAPOBJ {
GDIOBJHDR header;
HANDLE hmemBitmap;
BOOL bSelected;
HDC hdc;
} BITMAPOBJ, FAR *LPBITMAPOBJ;

where:

• hmemBitmap is a handle to bitmap resource
• bSelected is TRUE if the bitmap is currently selected, FAlSE if not
• hdc is the handle of the De into which the bitmap is selected if the bSelected

field is TRUE.

The structure is identified by a wMagic field in the GDIOBJHDR structure of 5 in
version 3.0, and "KO" (Ox4F4B) in 3.1.

See also: GDI object header structure

BitmapBits

BRUSHOBJ

CHAPTER 8 • GDI 547

structure

This is the structure behind the documented HBRUSH handle. It is stored in GDI's
default heap segment, and is made up of three parts: the undocumented
GDIOBJHDR structure described in the GDI object header entry later in this chapter;
the LOGBRUSH structure; and an extra COLORREF containing the hatch color for
a hatched brush:

typedef struct tagBRUSHOBJ {
GOIOBJHOR header;
LOGBRUSH logbrush;
COLORREF crHatchBk;
} BRUSHOBJ, FAR *LPBRUSHOBJ;

The structure is identified by a wMagic field in the GDIOBJHDR structure of2 in
version 3.0, and "HO" (Ox4F48) in 3.1.

See also: GDI object header structure

Brute GDI.213

This function is behind the so called "dot matrix" DMxxxx printer driver entry points
(DMExtTextOut, DMGetCharWidth, DMStretchBlt, and DMColorInfo), described
in the DDK. We have shown no prototype for it because it takes no parameters of its
own, nor does it return anything. The entry points that lead into it have different
numbers and types of parameters and return different types. Each entrypoint sets a
value into CX and jumps to this function. The value in CL determines the number of
bytes on the stack that this entrypoint requires for arguments. CH determines the
function ID and is actually an offset within a call table. The call table provides entry
points to a printer driver DLL. Thus, Brute is the interface function to printer drivers.

Support: 3.0, 3.1

CompatibleBltmap GDI.157

HBITMAP FAR PASCAL CompatibleBitmap(HOC, int, int>
HOC hOC; /* target device context */
int nWidth; /* width of the bitmap in bits */
int nHeight; /* height of the bitmap in bits */
/* CX contains additional parameter information */

CompatibleBitmap provides the setup code behind the documented Create
CompatibleBitmap and CreateDiscardableBitmap functions and the undocumented

BRUSHOBJ

548 UNDOCUMENTED WINDOWS

CreateUserDiscardableBitmap function. These entry points set additional information
into CX and then jump to CompatibleBitmap, which establishes DS, performs some
other initializations, and then calls CreateRealBitmap.

This function is included for completeness only; it should never be necessary to
call it directly. Note that internal code is unchanged in version 3.1, but that this
entrypoint is no longer exported.

Return: A handle to the created bitmap or NULL if an error is encountered
Support: 3.0
See also: CreateUserDiscardableBitmap, CreateRealBitmap

ConvertOutlineFontFile GDI.312

DWORD FAR PASCAL ConvertOutlineFontFile(LPSTR, LPSTR, LPSTR);

It is unclear what this function was ever intended to achieve. It first appears in 3.1, but
there is no functional code associated with it, only normal compiler prolog and epilog.
The function prototype appears in the 3.1 DDK version ofWINDOWS.H.

Copy

void FAR PASCAL Copy(LPVOID, LPVOID, int)
LPVOID lpDest; /* Copy to here */
LPVOID lpSrce; /* Copy from here */
int nBytes; /* Number of bytes to copy */

GDI.250

This little piece of rocket science is an inefficient challenger to the C library function
_fmemcpy. It is unclear why this function, which persists into 3.1, lives in GDI and
not KERNEL, if it is needed at all. It does not ever appear to be called by any of the
system executables, and it is not referenced from within GDI itself.

Its inefficiency is due to the byte size string move instruction used in this function,
rather than the word size used in most C library memory-to-memory copies. The code
for Copy is essentially:

mov ex, word ptr nBytes
les di, dword ptr lpDest
lds si, dword ptr lpSrce
rep movsb

By its simplicity and lack of optimization, this code suggests that it originally served a
noncritical, utilitarian purpose.

Consequently, there appears to be no reason to use this function in preference to
_fmemcpy.

Support: 3.0, 3.1

ConvertOutl ineFontFile

CHAPTER 8 • GOI 549

CreateRealBltmaplndlrect GDI.406

HBITMAP FAR PASCAL CreateRealBitmaplndirect(LPBITMAP, HANDLE)
LPBITMAP lpBitmap; /* Bitmap structure */
HDC hDC; /* hDC for compatibility - may be NULL *1
/* CX contains additional parametric information */

This function creates a bitmap and returns a handle to it. It is the engine behind the
documented CreateBitmap, CreateBitmapIndirect, CreateCompatibleBitmap, and
CreateDiscardableBitmap functions, as well as the undocumented CreateRealBitmap,
CreateUserBitmap, CompatibleBitmap, and CreateUserDiscardableBitmap functions.

All these functions, except for CreateBitmapIndirect, allocate an internal BITMAP
structure on the stack before passing control to CreateRealBitmapIndirect.

This function is included for completeness only; there should never be any need to
call it directly.

Return: A handle to the created bitmap
Support: 3.0
See also: CreateRealBitmap

CreateRealBltmap GDI.408

CreateRealBitmap(WORD, WORD, WORD, WORD,

/* width of bitmap */
/* height of bitmap */
/* number of bit planes */
/* bits per pixel */
/* pointer to bitmap bits */
/* hDC for compatibility - may be NULL */

additional parametric information */

HBITMAP FAR PASCAL
DWORD, HDC)

WORD xWidth;
WORD yWidth;
WORD nPlanes;
WORD nBitsPix;
LPSTR lpBits;
HDC hDC;
/* CX contains

This function creates a bitmap and returns a handle to it. It is the engine behind the
documented CreateBitmap, CreateCompatibleBitmap, and CreateDiscardableBitmap
functions, as well as the undocumented CreateUserBitmap, CompatibleBitmap, and
CreateUserDiscardable Bitmap functions.

This function is included for completeness only; there should never be any need to
call it directly.

Return: A handle to the created bitmap
Support: 3.0
See also: CreateRealBitmapIndirect

CreateRealBitmaplndirect

550 UNDOCUMENTED WINDOWS

CreateUserBltmap GDI.407

/* width of bitmap */
/* height of bitmap */
/* number of bit planes */
/* bits per pixel */
/* pointer to bitmap bits */

HBITMAP FAR PASCAL CreateUserBitmap(WORD, WORD, WORD, WORD,
DWORD)

WORD xWidth;
WORD yWidth;
WORD nPlanes;
WORD nBitsPix;
LPSTR lpBits;

This function is a special version of CreateBitmap used by USER. It appears to operate
in almost exactly the same way as CreateBitmap. Both functions place a value in CX
and call CreateRealBitmap.

It is only called from one place in USER, and appears to be used to prepare a
bitmap for use in the creation of grayed menu entries. It is unclear why USER
required a separate entrypoint.

This function is included for completeness only; there should never be any need to
call it directly.

Return: A handle to the created bitmap
Support: 3.0, 3.1
See also: CreateUserDiscardableBitmap

CreateUserDlscardableBltmap GDI.409

HBITMAP FAR PASCAL CreateUserDiscardableBitmap(HDC, WORD, WORD)
HDC hDC; /* device context */
WORD yWidth; /* width of bitmap */
WORD yHeight; /* height of bitmap */

This function is a USER..EXE-specific version of the CreateDiscardableBitmap func
tion, and appears to operate in almost exactly the same way as CreateDiscardable
Bitmap.

It is called from one place: a non-exported function that appears to save the
underlying screen of a new window before it is painted for the first time (CS_
SAVEBITS?). As with CreateUserBitmap, it is unclear why there is a special version for
USER.

This function is included for completeness only; there should never be any need to
call it directly.

Return: A handle to the created bitmap or NULL if an error is encountered
Support: 3.0, 3.1
See also: CreateUserBitmap

CreateUserBitmap

DC

CHAPTER 8 • GDI 551

Structure

The documented GetDC, BeginPaint, GetWindowDC and CreateMetaFile functions
return a handle to a device context (HDC). Although those functions are fully docu
mented in the Windows SDK documentation, the structure to which the returned
handle refers is undocumented and is kept in GDI's local heap. That structure is
defined in the GDIOBJ.H file and is described below.

This use of a handle is nothing new to Windows; the HWND is used principally
outside of USER, by an application, and the WND structure is kept in USER's default
local heap. The application need never direct access to the structure, but holds onto
the handle, and passes it back to USER when some operation needs to be performed
on a window. The analogy with GDI is that the HDC is used principally outside GDI,
but the DC structure is kept and manipulated in GDI's default heap segment.

However, the situation with DC's is not quite as simple as that. Ifyou were to use
the tools described in chapter 2 to generate a complete list of all GDI.EXE module
exports, documented and undocumented, you would find no reference to the above
documented functions. You will instead find them among the exports from the USER
module. CreateDC, which is called less frequently than the above functions, is a GDI
export. CreateDC is functionally similar, in very general terms, to the documented
USER CreateWindow function. In essence, both functions allocate a structure in their
respective module's default heap, initialize it from the parameters passed to the func
tion, and return a handle to it.

In fact, during USER startup, and after GDI has been loaded, USER (not GDI)
calls CreateDC five times to allocate five DC's as an initial pool of HDC's for screen
update. It stores these for shared use by all applications. GetDC, BeginPaint, and
GetWindowDC simply return an unused entry from the list of stored DC handles (see
the DCE structure entry in chapter 6). This reason for this approach is no doubt the
size of the DC. At close to 210 bytes, the DC is a large structure. Allowing one dedi
cated DC structure per window would consume a lot of GDI resources (heap space) in
a moderately loaded system, and would be wasteful. Given that relatively few applica
tions are updating the screen at a given moment, the 'pool' approach appears to be
efficient in terms of GDI resource usage. It incurs a performance penalty, however, in
that the DC must be re-initialized before every painting operation. The CS_OWNDC
and CS_CLASSDC class styles (see SDK for the WNDCLASS structure) provide for a
specific window or class ofwindows to have its own dedicated DC.

The DC changed between versions 3.0 and 3.1, mainly through the addition of
fields at the end of the structure, for the implementation of DC hooks (discussed in
the SetDCHook entry in this chapter). However, in the debug version of the 3.1
GDI.EXE, the OBJECTHDR structure is four bytes longer, pushing all offsets in the
rest of the DC out 4 bytes. Structure sizes are:

3.0 Retail
3.0 Debug

OxC2 (194) bytes
OxC2 (194) bytes

552 UNDOCUMENTED WINDOWS

3.1 Retail

3.1 Debug
OxCE (206) bytes
OxD6 (214) bytes

The wMagic field in the GDIOBJHDR structure in version 3.0 contains the type
number 7, 8, 9 or 11 (for a regular DC, a disabled DC, a MetaDC or a Metafile DC
respectively). In 3.1 it contains the equivalent signature: 'MO,' 'NO,' '00,' or 'QO'.
(Disabled and Meta Des are currently not understood.)

Most of the names below are derived from symbols extracted from a debug version
of 3.1 GDI.EXE. The offsets are for retail Windows; add 4 for debug Wmdows in 3.1.

typedef struct tagDC {
GDIOBJHDR header; II OOh
BYTE byFlags; II OAh
BYTE byFlags2; II OBh
HANDLE hMetaFile; IIOCh
HRGN hrgnClip; II OEh handle to (reclangular) clip region
HANDLE hPDevice; II 10h Phys device handle
HANDLE hLPen; II 12h Log. pen
HANDLE hLBrush; II 14h Log. brush
HANDLE hLFont; II 16h Log. Font
HANDLE hBitmap; II 18h Selected bitmap
HANDLE dchPal; II 1Ah Selected palette
HANDLE hLDevice; II 1Ch Log. device
HRGN hRaoClip; II 1Eh clip region
HANDLE hPDeviceBlock; II 20h
HANDLE hPPen; II 22h Phys. pen
HANDLE hPBrush;. II 24h Phys. brush
HANDLE hPFontTrans; II 26h
HANDLE hPFont; II 28h Phys. font
LPVOID lpPDevice; II 2Ah
WORD pLDevice; II 2Eh near pointer to log. device info
WORD pRaoClip; II 30h near pointer to clip region
WORD pPDeviceBlock; II 32h near pointer to GDIINFO
WORD pPPen; II 34h
WORD pPBrush; II 36h
WORD pPFontTrans; II 38h near pointer to hPFontTrans
LPVOID lpPFont; II 3Ah Font engine entrypoint
int nPFTlndex; II 3Eh
LPVOID Transform; II 40h
1* Begin DRAWMODE structure - see DDK doc *1
WORD wROP2; II 44h Raster Op drawing mode
WORD wBkMode; II 46h Background mode (opaque/transparent)
DWORD dwBkColor; II 48h Phys. Background color
DWORD dwTextColor; II 4Ch Phys. text color
int nTBreakExtra; II 50h Text padding: ExtTextOut justification
int nBreakExtra; II 52h pad per break = nTBreakExtra/BreakCount
WORD wBreakErr; II 54h SetTextJustify called with nBreakExtra=O?
int nBreakRem; II 56h remainder of TBreakExtra/nBreakCount
int nBreakCount; II 58h Count of break characters in string
int nCharExtra; II 5Ah Per char additional padding
DWORD crLbkColor; II 5Ch Logical background color

CHAPTER 8 • GDI 553

brush origin X
brush origin Y
one half of font aspect ratio
other half of font aspect ratio
handle to font weights
depth of stack of saved DCs
count of locks on DC
Handle to visible region
DC origin X
DC origin Y
print driver entrypoint
Logical device driver name atom
Physical device name atom
FILE: port file name atom

Relative/absolute mode
Polygon fill mode
Bitblt stretch mode
for DC
for DC
pen width in pix
pen width in pix
Text alignment flags

fields from here

rect
Bit 0 indicates DC dirty

size: C2h total

fields from here
Bounds rect

Hook func
hook data
Bit 0 indicates DC dirty

struct { II 3.1
RECT rectBounds; I I B4h
RECT rectLVB; II BCh
FARPROC lpfnNotify; II C4h
LPSTR lpHookData; I I C8h
WORD wDCGlobFlags; I I CCh

origin X
origin Y

Log curs pos X
Log curs pos Y
window origin X
window origin Y
window width
window height
viewport origin X
viewport origin Y
viewport width
viewport height
(USER/user 11) viewport
(USER/user 11) viewport
mapping mode

DWORD crLTextColor; II 60h Logical text color
1* End DRAWMODE structure *1
int LCursPosX; II 64h
int LCursPosY; II 66h
int WndOrgX; II 68h
int WndOrgY; II 6Ah
int WndExtX; II 6Ch
int WndExtY; II 6Eh
int VportOrgX; II 70h
int VportOrgY; II 72h
int VportExtX; II 74h
int VportExtY; II 76h
int UserVptOrgX; II 78h
int UserVptOrgY; II 7Ah
WORD wMapMode; II 7Ch
WORD wXFormFlags; II 7Eh
WORD wRelAbs; II 80h
WORD wPolyFillMode; 1182h
WORD wStretchBltMode;11 84h
BYTE byPlanes; II 86h
BYTE byBitsPix; II 87h
WORD wPenWidth; II 88h
WORD wPenHei ght; I I .8Ah
WORD wTextAlign; II 8Ch
DWORD dwMapperFlags; II 8Eh
WORD wBrushOrgX; II 92h
WORD wBrushOrgY; II 94h
WORD wFontAspectX; II 96h
WORD wFontAspectY; II 98h
HANDLE hFontWeights; II 9Ah
WORD wDCSaveLevel; II 9Ch
WORD wcDCLocks; II 9Eh
HRGN hVisRgn; II AOh
WORD wDCOrgX; II A2h
WORD wDCOrgY; II A4h
FARPROC lpfnPrint; II A6h
WORD wDCLogAtom; II AAh
WORD wDCPhysAtom; II ACh
WORD wDCFileAtom; II AEh
WORD wPostScaleX; II BOh
WORD wPostScaleY; II B2h
union DC_TAIL {

struct { II 3.0
WORD wB4; II B4h
RECT rectB6; II B6h
WORD wDCGlobFlags; I I BEh
WORD wCO; II COh
} tail_3_0; II 3.0

554 UNDOCUMENTED WINDOWS

HOC hDCNext;
} tail_3_1;

};
} DC, FAR *LPDC;

typedef struct tagRGNOBJ {
GDIOBJHDR header;

II RGN rgn;
} RGNOBJ, FAR *LPRGNOBJ;

II CEh Next DC in linked list - Debug only
II 3.1 size: CEh total nondebug, D6h debug

II OOh
II OAh

The structure contains the following fields. Fields not described here are not
understood:

header

byFlags

byFlags2

hMetaFile

hrgnClip

hPDevice

hLPen

hLBrush

hLFont

hBitmap

dchPal

.hLDevice

All GDI object types contain a header structure that, among other
things, contains a signature indicating the object's type. See the
OBJECTHDR structure later in this chapter.

Flags, only one ofwhich is currently understood: Bit 2 (Ox04) signi
fies that the VisRgn for DC has changed, and that the DC is, as a
result, dirty. This causes the RaoRgn (see the hRaoClip field below)
to be recomputed, and the DC to be updated. This flag is modified,
among other places, by the undocumented USER function
DCHook through a call to the undocumented SetHookFlags func
tion.

Flags, which are not currently understood.

If this is a metafile playback (as in PlayMetaFile), this field contains
the metafile handle.

This field contains the handle to the currently selected clip region
for the DC.
This contains the handle of the driver-specific PDEVICE info (see
DDK documentation) stored in the GDI default heap.

Logical pen currently selected. See the PEN structure in this
chapter.

Logical brush currently selected. See the BRUSH structure in this
chapter.
Logical font currently selected. See the FONT structure in this
chapter.
Handle to the currently selected bitmap, or NULL.

Logical palette currently selected or NULL. See the PALETTE
structure in this chapter.
Logical device. This is a handle to a block ofmemory in the default
GDI heap segment, whose structure is currently not understood,
except that it appears to be an array of driver entry points.

hRaoClip

hPDeviceBlock

hPPen

hPBrush

hPFontTrans

hPFont

IpPDevice

pLDevice

pRaoClip

pPDeviceBlock

pPPen

pPBrush

pPFontTrans

IpPFont

CHAPTER 8 • GDI 555

This is the handle to a region that describes the intersection of the
clip region and the visible region of the DC. This region used to be
calculated on the fly, but is now precomputed to improve perfor
mance at a slight cost in heap space. The name apparently honors
the Microsoft developer who originated the field (Rao Remala). See
the SelectVisRgn entry in this chapter.
This field appears to be a handle to the GDIINFO structure for the
device driver for the DC. See DDK documentation for more infor
mation on the GDIINFO structure.

Handle to a driver-specific physical structure, stored in the GDI
default heap, representing the logical pen stored in the hLPen field
(see the DDK documentation for more information).
Handle to a driver-specific physical structure, stored in the GDI
default heap, representing the logical brush stored in the hLBrush
field (see the DDKdocumentation for more information).
Handle to a structure in the GDI default heap segment. It is not
known what the structure is for, except that it is obviously related
to Font transformations.
Module handle ofselected font; this value is returned by
GetPhysicalFontHandle() .
Physical address of the device-specific PDEVICE info structure.
This appears to be a far pointer to the PDEVICE structure whose
handle is stored in the hPDevice field.
Near pointer to a logical device structure. This contains the return
from a call to LocalLock the handle in the hLDevice field.

This field contains the return from a call to LocalLock the handle in
the pRaoClip field, or NULL.
This field contains the return from a call to LocalLock the handle in
the hPDeviceBlock field.
This field contains the return from a call to LocalLock the handle in
the hPPen field.

This field contains the return from a call to LocalLock the handle in
the hPBrush field.
This field contains the return from a call to LocalLock the handle in
the hPFontTrans field.
This field contains a pointer into the block ofmemory to which the
hPFont field contains a handle. The offset part of the pointer always
appears to be 42h.

556 UNDOCUMENTED WINDOWS

The next 12 fields correspond to the DRAWMODE structure documented in the
DDK The fields are broken out here for clarity.

wROP2 This field stores the drawing mode selected using the documented
SetROP2 function.

wBkMode This field stores the background mode selected using the docu
mented SetBkMode function.

dwBkColor This field stores the device driver-specific, 32-bit representation of
the crBkColor field below.

dwTextColor This field stores the device driver-specific, 32-bit representation of
the crLTextColor field below.

nTBreakExtra This field stores the nBreakExtra parameter set using the docu
mented SetTextJustification function (see the SDK documenta
tion's description ofSetTextJustification for more information).

nBreakExtra This field stores the number offill pixels per character to be used by
TextOut. It is the quotient of the nTBreakExtra and nBreakCount
fields rounded down.

wBreakErr Contains an error code ifSetTextJustification is called with
nBreakExtra set to zero.

nBreakRem This field stores the remainder of the division performed to calcul
ate the nBreakExtra field above.

nBreakCount This field stores the nBreakCount parameter set using the docu
mented SetTextJustification function.

nCharExtra This field stores the nCharExtra parameter passed to (see the SDK
documentation's description ofSetTextCharacterExtra for more
information).

crLBkColor This field stores the background color selected using the docu
mented SetBkColor function.

crLTextColor This field stores the background color selected using the docu
mented SetTextColor function.

LCursPosX

LCursPosY

WndOrgX

WndOrgY

WndExtX

The current logical cursor X coordinate position. This field is
affected by the documented LineTo function, and by the TextOut
function, if the TA_UPDATECP flag has been set using the docu
mented SetTextAlign function.
The current logical cursor Y position (see LCursPosX above).

The X coordinate of the window origin, as set using the docu
mented SetWindowOrg function.
The Y coordinate of the window origin, as set using the docu
mented SetWindowOrg function.
The width of the window, as set using the documented
SetWindowExt function.

WndExtY

VportOrgX

VportOrgY

VportExtX

VportExtY

UserVptOrgX

UserVptOrgY

wMapMode

wXFormFlags

wRelAbs

wPolyFillMode

wStretchBltMode

byPlanes

byBitsPix

wPenWidth

wPenHeight

wTextAlign

dwMapperFlags

wBrushOrgX

CHAPTER 8 • GDI 557

The height of the window, as set using the documented
SetWindowExtfiwnction.
The X coordinate of the origin ofviewport origin, as set using the
documented SetViewportOrg fiwnction.

The Y coordinate of the origin ofviewport origin, as set using the
documented SetViewportOrg fiwnction.
The width of the viewport, as set using the documented
SetViewportExt fiwnction.
The height of the viewport, as set using the documented
SetViewportExt fiwnction.

It is not known what this field is used for.

It is not known what this field is used for.

This field stores the mapping mode as set using the documented
SetMapMode fiwnction.
It is not known what this field is used for.

This field stores the coordinate mode set by the undocumented
SetRelAbs fiwnction (see the SetRelAbs entry in this chapter).
This field stores the polygon-filling mode set by the documented
SetPolyFillMode function.

This field stores the coordinate mode set by the undocumented
SetRelAbs fiwnction (see the SetRelAbs entry in this chapter).

This appears to hold information related to the last bitmap selected
into the DC, in this case the number of bit planes.
This appears to hold information related to the last bitmap selected
into the DC, in this case the number of bit planes.
This field is derived from the x component of the 10pnWidth field
of the documented LOGPEN structure component, of the undocu
mented PEN structure, referred to by the hLPen parameter in this
structure.

This field is derived from the y component of the 10pnWidth field
of the documented LOGPEN structure component, of the undocu
mented PEN structure, referred to by the hLPen parameter in this
structure.
This field stores the text alignment flags set by the documented
SetTextAlign function.
This field stores the font mapper flags set by the documented
SetMapperFlags function.

This field stores x coordinate of the origin of the currently selected
brush for the DC (see the hLBrush field above), set by the docu
mented SetBrushOrg function.

558 UNDOCUMENTED WINDOWS

wBrushOrgY

wFontAspectX

wFontAspectY

wFontWeights

wDCSaveLeve

weDCLocks

hVisRgn

wDCOrgX

wDCOrgY

IpfnPrint

wDCLogAtom

wDCPhysAtom

wDCFileAtom

wPostScaleX

wPostScaleY

rectBounds

rectLVB

IpfnNotify

This field stores y coordinate of the origin of the currently selected
brush for the DC (see the hLBrush field above), set by the docu
mented SetBrushOrg function.
This field contains the x dimension of the font aspect ratio of the
currently selected font. It is zero for bitmap fonts.

This field contains the x dimension of the font aspect ratio of the
currently selected font. It is zero for bitmap fonts.
This field appears to contain the font weight for the currently
selected font, but is often zero, even for stroked or TrueType fonts.
This field is incremented and decremented by the documented
SaveDC and RestoreDC functions respectively. It indicates the
'stack depth' ofsaved DCs for this DC.

It is not known what this field is used for.

This field contains the handle for the visible region (VisRgn) of the
DC. See the undocumented SelectVlSRgn function in this chapter
for information about visible regions.

This field stores the x coordinate of the origin of the DC in pixels.

This field stores the x coordinate of the origin of the DC in pixels.

This field appears to contain the address of the printer driver
entrypoint.
This field contains a GDI local atom handle containing the name of
the device driver module. In the case of a display DC, the atom will
contain "DISPLAY".
This field contains a GDI local atom handle (presumably containing
the name of the physical device) or NULL.
This field contains a GDI local atom handle (presumably containing
the name of the File port filename when printing to a file) or
NULL.
It is not known what this field is used for.

It is not known what this field is used for.

It is not known what this field is used for.

This field contains the rectangle that bounds the update region of
the DC. It is updated by the undocumented SetDCStatus function
described later in this chapter.
This field stores the address ofa DC hook, or callback function,
installed using the undocumented SetDCHook function (see
SetDCHook later in this chapter). Those DCs created at USER
startup contain the address of the undocumented USER function
DCHook in this field.

dwHookData

wDCGlobFlags

CHAPTER 8 • GDI 559

This field stores the hook data parameter passed to the SetDCHook
function.
Mostly unknown flags. The flag at bit 0, however, is known to indi
cate whether the DC is "dirty," that is, whether it needs updating.
This bit is tested and reset by the undocumented IsDCDirty func
tion described later in this chapter.

See also: DCSAVE structure

DCSAVE Structure

The DCSAVE structure is a subset of a DC structure used to store state saved using
the documented SaveDC or undocumented GetDCState functions, and subsequently
restored using the documented RestoreDC or undocumented SetDCState functions.
GetDCState and SetDCState are described later in this chapter.

The DCSAVE structure, like the DC structure, is affected by the change in GDI
object header structure size between retail and debug versions in 3.1. Apart from that
change, the structure is stable:

3.0 Retail

3.0 Debug

3.1 Retail
3.1 Debug

OxAA (170) bytes

OxAA (170) bytes

OxAA (170) bytes
OxAE (174) bytes

A DCSAVE structure is allocated in the default GDI heap using the documented
SaveDC and undocumented GetDCState functions. These call an internal function,
SaveDCState, that allocates space for the DCSAVE structure; copies the first 160 bytes
(162 in 3.1 debug) of the DC into the DCSAVE; copies the wDCOrgX and
wDCOrgY fields; makes a copy of the clip region, and saves its handle in the hrgnClip
field of the DCSAVE.

The structure is comprised of the first 70 fields of a DC, from "header" up to
"wDCLocks," followed by the wDCOrgX and wDCOrgY fields of a DC. See the DC
structure entry above for information on the individual fields.

See also: DC structure, GetDCState, SetDCState

Death GDI.121

void FAR PASCAL Death(HDC)
HDC hDC; /* handle of desktop device context */

DCSAVE

560 UNDOCUMENTED WINDOWS

This function, called from the undocumented DisableOEMLayer function, disables
the GDI display driver. This returns the display to the default text mode defined for
the device, normally 80x25 in 16 colors.

Used by: USER.EXE
Support: 3.0, 3.1
See also: Resurrection, DisableOEMLayer, EnableOEMLayer

DeleteAboveLlneFonts

void FAR PASCAL DeleteAboveLineFonts(void>;

GDI.186

This function is called as part of the USER task termination procedure in versions 2.1
and 3.0, although its purpose is not understood.

Support: 3.0

DevlceColorMatch

DWORO FAR PASCAL DeviceColorMatch(COlORREF, LP???>
COLORREF crSource; 1* color to be matched *1
LP??? lp;

GDI.449

This function is not currently understood, although it appears to validate whether a
device is capable of rendering the specified color.

Support: 3.0, 3.1

DPXlate CDI.138

BOOl FAR PASCAL OPXlate(HDC, LPPOINT, int>
HOC hDC; 1* device context *1
LPPOINT lpPoints; 1* Array of points to be translated *1
int nPoints; 1* number of points in array *1
II OX contains the address of the internal function
II to perform the translation

This function is the back end to the documented LPtoDP and DPtoLP functions.
Those functions set into DX the address of a near function to perform the appropriate
translation (that is, from logical to device points or from device to logical points) and
then jump to this function.

This function performs a check on the hDC parameter, loads the address of the
array ofpoints into ES:DI and the number ofpoints into CX, and then calls the routine

DeleteAboveLineFonts

CHAPTER 8 • GDI 561

specified in DX. Upon return, it sets the return value to TRUE. This suggests that the
LPtoDP and DPtoLP functions will only fail if the hDC is invalid, contrary to the doc
umentation, which suggests that they can fail if not all the points are converted.

Just as an aside, the DPXlate function contains an interesting piece of code that
does not have any immediately obvious value (symbol names are our own):

" DX contains function to call
call near DontKnowWhy " pushes ret addr then continues

DontKnowWhy:
pop bx " pops ret addr from call (DontKnowWhy)
sub bx, offset DontKnowWhy;; must result in bx = a
add dx, bx " dx never modified by the above
call dx

Return: FALSE (0) if the hDC parameter is not valid, otherwise returns TRUE (1)
Support: 3.0

EnglneXXX GDI.300-314

The 3.1 version ofGDI contains exports for the following functions:

EngineDeleteFont
EngineEnumerateFont
EngineExtTextOut
EngineGetCharWidth
EngineGetGlyphBMP
EngineMakeFontDir
EngineRealizeFont
EngineSetFontContext

GDI.301
GDI.300
GDI.314
GDI.303
GDI.305
GDI.306
GDI.302
GDI.304

These are TrueType service functions that GDI provides for use by non-raster
printer drivers. For example, to print TrueType fonts on a PostScript printer, the Post
Script driver must convert TrueType into a downloadable font format that the printer
accepts; the EngineXXX functions simplify this task by providing the driver with infor
mation about the TrueType font, bitmaps for an individual glyph (character or sym
bol), and so on.

These functions are mentioned briefly in the 3.1 DDK (Device Driver Adaptation
Guide, chapter 4), but no function prototypes are given. The true documentation for
these functions appears to be the source code for the PostScript driver, which comes
with the 3.1 DDK (Use the Source, Luke!) \PRINTERS\PS35\TRUETYPE.H contains

EngineXXX

562 UNDOCUMENTED WINDOWS

function prototypes, and \PRINTERS\PS35\TTFONT.C contains code that uses these
functions. The prototypes are:

WORD FAR PASCAL EngineDeleteFont(LPFONTINFO);
WORD FAR PASCAL EngineEnumerateFont(LPSTR, FARPROC, DWORD);
WORD FAR PASCAL EngineGetCharWidth(LPFONTINFO, BYTE, BYTE, LPINT);
int FAR PASCAL EngineGetGlyphBmp(WORD, LPFONTINFO, WORD, WORD, LPSTR,

DWORD, LPBITMAPMETRICS);
WORD FAR PASCAL EngineRealizeFont(LPLOGFONT, LPTEXTXFORM, LPFONTINFO);
WORD FAR PASCAL EngineSetFontContext(LPFONTINFO, WORD);

The prototype for another appears in the 3.1 DDK version ofWINDOWS.H:

typedef UINT FAR* LPFONTDIR;
DWORD FAR PASCAL EngineMakeFontDir(HDC, LPFONTDIR, LPCSTR);

In general, application programs should not need to use these functions. Windows
3.1 has documented functions for querying TrueType information, such as
GetRasterizerCaps(), GetGlyphOutline(), and GetOutlineTextMetrics().

Interestingly, GDI.EXE in Windows 3.0 had an embedded FONTENG.DLL.
Running a strings utility on 3.0 GDI.EXE turns up the following:

InquireFontEngine
fontdir
FONTENG.DLL
StartFontEngine
EnumerateEFontsHeaders
RealizeThatFont
GetEFontStructSize
DeleteEFont
MicroSoft (c) 1989 - This is an awesome engine font!!

These do not show up in the normal NE header for GDI.EXE. Perhaps they are
functions that realize GDI's bitmap fonts from .FON files.

This all also relates to a component of Kanji Windows: WIFEMAN, "Font Driver
Mgr for Windows Intelligent Font Environment." This DLL contains functions for
manipulating font contexts, getting widths, and so on.

EnumCallback GDI.158

int FAR PASCAL EnumCallback(LPLOGFONT, LPTEXTMETRICS, WORD, LPSTR)
LPLOGFONT lpLogFont;
LPTEXTMETRICS lpTextMetrics;
WORD wFontType;
LPSTR lpData;

EnumCaliback

CHAPTER 8 • GDI 563

The purpose of this function is not clear. It appears to be a vestigial internal callback
function intended for invocation by EnumFonts. However, it is not referenced inter
nally within the primary Windows modules, and it disappears in version 3.1. It is
included here only for completeness; there should be no reason to call it directly.

Return: Unknown
Support: 3.0

ExcludeVisRect

int FAR PASCAL ExcludeVisRect(HDC, lPRECT)
HDC hDC; /* device context */
lPRECT lprect; /* rectangle to exclude */

GDI.73

This function removes the rectangular area from the visible region of the DC. It oper
ates in exactly the same way as the documented ExcludeClipRect function, except that
instead of operating on the current clipping region for the device context, it operates
on the visible region, contained in the hVisRgn field of the DC structure.

See SelectVisRgn for a discussion ofvisible regions.

Return: One of the documented constants COMPLEXREGION, NULLREGION,
SIMPLEREGION, or ERROR
Support: 3.0, 3.1
See also: SelectVisRgn, OffsetVisRgn, SaveVisRgn, RestoreVisRgn, IntersectVisRect,
DC structure

FastWindowFrame GDI.400

BOOl FAR PASCAL FastWindowFrame(HDC, LPRECT, int, int, DWORO)
HOC hDC; /* device context */
LPRECT lprect; /* coordinates of frame */
int xWidth; /* pixel width of frame uprights */
int yWidth; /* pixel width of frame horizontals */
OWORO dwROP3; /* ternary raster operation */

This function allows fast rectangular frames to be bitblt'ed onto a device context. The
USER window manager code uses this function for the frame that appears when a
window is dragged across the desktop, for example.

The dwROP3 parameter is one of the ternary raster operation constants defined in
WINDOWS.H.

This function corresponds to one of the required GDI display driver entry points,
FastBorder (ordinal I?), and is passed on by GDI to the driver. See the DDK docu
mentation for more information.

ExcludeVisRect

564 UNDOCUMENTED WINDOWS

Return: Nonzero if the frame could be painted, zero ifnot
Support: 3.0, 3.1
Example: Uses FastWindowFrame to implement a crude exploding window

1* FASTWFRM.C *1

#include <windows.h>
#include <wmhandlr.h>
#include <winio.h>

1* Undocumented function *1
extern BOOL FAR PASCAL FastWindowFrame(HDC hOC, LPRECT lpRect,

int xWidth, int yWidth, DWORD dwROP3);

WMHANDLER wmsize_old;

#include "checkord.c"

long my_wmsize(HWND hwnd, WORD wMsg, WORD wParam, DWORD lParam)
{

HOC hOC;
RECT recti
int nFrames, i, xWidth = 2, yWidth 2;

GetClientRect(hwnd, &rect);

yWidth = (rect.bottom - rect.top);
xWidth = (rect.right - rect.left);

rect.left = (xWidth 1 2) - 1;
rect.right = (xWidth 1 2) + 1;
rect.top = (yWidth 1 2) - 1;
rect.bottom = (yWidth 1 2) + 1;

if (yWidth > xWidth)
{

nFrames = (xWidth 1 2) - 1;
yWidth 1= xWidth;
xWidth = 1;
}

else
{

nFrames = (yWidth 1 2) - 1;
xWidth 1= yWidth;
yWidth = 1;
}

hOC = GetDC(hwnd);

for (i = 0; i < nFrames; i++)
{

FastWindowFrame(hDC, &rect, 2, 2, DSTINVERT);
FastWindowFrame(hDC, &rect, 2, 2, DSTINVERT);
rect.left -= xWidth;

FastWindowFrame

CHAPTER 8 • Got 565

rect.right += xWidth;
rect.top -= yWidth;
rect.bottom += yWidthi
}

ReleaseDC(hwnd, hDC);

return (*wmsize_old)(hwnd, wMsg, wParam, lParam);
}

int maine)
{

if (! CheckOrdName("FastWindowFrame", "GD1", 400»
return 1;

wmsize_old = wmhandler_set(__hMainWnd, WM_SIZE,
(WMHANDLER) my_wmsize);

printf("Resize this window, and\n"
"an exloding frame will fill it out!\n\n"
"Close the window to exit\n");

return 0;
}

FinalGdllnlt GDI.405

void FAR PASCAL FinalGdilnit(HBRUSH)
HBRUSH hPattern; 1* default desktop background *1

This function is called by USER as the last call of its initialization. It appears to set the
default brush to be used to paint the desktop background.

Subsequent invocations of the function have no effect.

Used by: USER.EXE
Support: 3.0, 3.1

FixUpBogusPubllsherMetaFlle

int FAR PASCAL FixUpBogusPublisherMetaFile(LPMETAFILE)
LPMETAFILE lpMetaFile; 1* contents of the Metafile *1

GDI.464

The purpose of this function is not known; its name gives a general idea of its raison
d'etre, of course, but is not quite long enough to indicate the exact nature of the
problem in the metafile from the offending publisher. Ventura?

It is called from the documented GetClipboardData function in the USER mod
ule. It is very unlikely that there will ever be a need to call this function directly.

FinalGdiinit

566 UNDOCUMENTED WINDOWS

Return: 1, 0, -1, -2, or -3.
D sed by: USER.EXE
Support: 3.1

FONTOBJ structure

This is the structure behind the documented HFONT handle. It is stored in GDI's
default heap segment, and is made up of two parts: the undocumented GDIOBJHDR
structure described in the GDI object header entry later in this chapter; and the
LOGFONT structure:

typedef struct tagFONTOBJ {
GDIOBJHDR header;
LOGFONT logfont;
} FONTOBJ, FAR *LPFONTOBJ;

The structure is identified by a wMagic field in the GDIOBJHDR structure of 3 in
version 3.0, and "JO" (Ox4F49) in 3.1.

See also: Introduction to the chapter, GDI object header structure

fTrapplngO GDI.355

fTrappingO is a WORD variable in the GDI data segment. When GDI initializes, it
uses DPMI to hook processor exception 0 (divide by zero). During certain GDI oper
ations, the value of ffrappingO is set to 1. If an exception 0 occurs while flag is set to
1, then GDI attempts to clean up the exception, and continue. If the value is 0, it
chains it on to whatever handler was previously installed. fTrappingO is inspected by
both TOOLHELP and CVWIN.DLL. If fTrappingO is set, they both chain on the
exception.

The value of this variable can be retrieved using GetProcAddress:

#define GET_VAL(modname, varname) \
«WORD) (LOWORD(GetProcAddress(GetModuleHandle(modname), name»»

WORD fTrappingO = GET_VAL(IfGDI If , IfFTRAPPINGO If);

GDI Object header structure

GDI objects are structures stored, with the exception of BITMAPs (which are stored
in the global heap), in GDI's default local heap segment. They consist of a header fol
lowed by either a documented or undocumented structure specific to the object being

FONTOBJ

CHAPTER 8 • GOI 567

represented. For example, an HPEN is a handle to an undocumented PEN structure
that is made up of the GDIOBJHDR structure followed by a documented LOGPEN
structure; the GDIOBJHDR structure contains a signature word at offset 2 that iden
tifies the structure as a pen. This pattern is completely consistent among all GDI
object types, and makes it very easy to identify and validate object handles program
matically from within applications.

This property is used by ToolHelp to fill the wType field of the LOCALENTRY
structure provided by the LocalFirst/LocalNext heap walking functions (see chapter
10). So that ToolHelp continues to function, it is likely that the GDIOBJHDR struc
ture will remain fairly stable. It should also be said, however, that if all that you need
from the header structure is the object type field, it is advisable to use ToolHelp.
There is one caveat, however: ToolHelp does not recognize the handle to Metafile
DC (type 11 in 3.0, 'QO', Ox4F51 in 3.1).

The structure is 10 bytes long (14 in 3.1 debug version):

typedef struct tagGDIOBJHDR {
HANDLE hNext;
WORD wMagic;
DWORD dwCount;
WORD wMetaList;

1* additional 3.1 debug fields from here *1
WORD wSelCount;
HANDLE hOwner;
} GDIOBJHDR, FAR *LPGDIOBJHDR;

Note the presence of the extra fields at the end of the 3.1 debug version of the
structure. In the file GDIOBJ.H presented in the introduction to this chapter, the 3.1
debug version of the structure is separately defined as GDIOBJ31DBG.

The structure contains the following fields. Fields not described here are not cur
rently understood:

FIELD

hNext

wMagic

DESCRIPTION

This field is used to provide linked lists ofobjects. For example, the
documented SaveDC function stores a stack ofsaved DCSAVE
structures linked through this field. Lists are terminated by a NULL
in this field. In version 3.0, this field appears occasionally to be used
to store transient flags.
The "magic," or type identifier, changed between versions 3.0 and
3.1. In 3.0, the type was a simple numeric value in the range 1-11
as follows:

Pen 1

Brush 2
Font 3
Palette 4

GDI Object header

568 UNDOCUMENTED WINDOWS

Bitmap 5
Region 6
DC 7
Disabled DC 8
MetaDC 9
Metafile 10
Metafile DC 11

In 3.1, the numeric is expanded into a word length string identifier,
presumably to make it easier to spot during debugging, as follows:

Pen Ox4F47 ('GO')
Brush Ox4F48 ('HO')
Font Ox4F49 ('10')
Palette Ox4F4A ('JO')
Bitmap Ox4F4B ('KO')
Region Ox4F4C ('LO')
DC Ox4F4D ('MO')
Disabled DC Ox4F4E ('NO')
MetaDC Ox4F4F ('00')
Metafile Ox4F50 ('PO')
Metafile DC Ox4F51 ('QO')

In addition, the wMagic field is used to store at least two bit flags. These occupy
positions that allow the signature to be masked and validated independently of the
flags' value. Specifically, in both 3.0 and 3.1, bit 15 of this field is set while an object is
selected into a DC. In version 3.1 only, bit 13 is set if the object is private (see the
MakeObjectPrivate function later in this chapter). The IsGdiObject function uses this
field to test the validity of a GDI object handle (see IsGdiObject later in this chapter).

dwCount

wSelCount

hOwner

This field contains a sequence number reflecting the count of
objects created before this one.
This field only exists in the 3.1 debug version, and tracks the num
ber of times that an object has been selected into a DC.
This field only exists in the 3.1 debug version, and contains the han
dle of the task that was current when the object was created. It can
be modified using the SetObjectOwner function, described later in
the chapter.

GOI Object header

Gdilnit2

HANDLE FAR PASCAL GdiInit2(HANDLE, HANDLE)
HANDLE h1; /* GDI object */
HANDLE h2; /* Global data */

CHAPTER 8 • GOI 569

GDI.403

GDI.401

It is not known exactly what this function is for. It is invoked by the USER clipboard
manager when a GDI object, such as a bitmap, is copied from the clipboard. The hI
parameter refers to the GDI object handle. The h2 parameter may be 0, -1, or a global
memory handle. If 0, the function returns the global memory handle of the data asso
ciated with the object. Ifh2 is -1, the global memory handle associated with the object
is set to NULL and the return is undefined. Otherwise, the global memory handle
associated with the object is set to h2, and h2 is returned.

Return: The global memory handle associated with hI, unless h2 is -1, in which case
it is undefined (see text)
U sed by: USER.EXE
Support: 3.0, 3.1

GdiMoveBltmap

void FAR PASCAL GdiMoveBitmap(HBITMAP)
HBITMAP hBitmap; /* handle of bitmap to be moved */

This function causes the global memory associated with the bitmap to be moved into
lower memory using the documented GlobalWire and GlobalUnWire functions.

It is called during USER's startup processing, and from FinalUserInit, to ensure
that USER bitmaps, such as the gray bitmap used for disabled menu item text, are
kept low in memory.

Used by: USER.EXE
Support: 3.0, 3.1

GdlRealizePalette GDI.362

DWORD FAR PASCAL GdiRealizePalette(HDC)
HDC hDC; /* Device context to own palette */

This function realizes the logical palette in effect for the specified device context. It is
the GDI module entrypoint behind the documented USER function RealizePalette.

There is no reason to call this function directly; it is included here for complete
ness only.

I

Gdilnit2
I

570 UNDOCUMENTED WINDOWS

Return: The low word of the return contains the number of entries mapped to differ
ent entries in the system palette; it is not known what the high word contains.
Support: 3.0, 3.1
See also: The DC structure

GdlSeeGdiDo GDI.452

DWORD FAR PASCAL GdiSeeGdiDo(WORD, WORD, WORD, WORD)
WORD wReqType; 1* request type *1
WORD wParam1; 1* depends on wReqType *1
WORD wParam2; 1* unused - reserved for future expansion? *1
WORD wParam3; 1* depends on wReqType *1

This function provides access to the GDI local heap. Like UserSeeUserDo (chapter 6)
it is used by TOOLHELP in version 3.1. GdiSeeGdiDo recognizes four request types
in the wReqType. The use of other parameters depends on the request type (except
for the wParam2 argument, which is not used by any of the currendy defined request
types; it is perhaps being reserved for future use).

GSCiD_LOCALALLOC (Ox0001)

This parameter allocates some memory from the GDI module local heap. The wParaml
argument contains the flags to be passed to the documented LocaWloc function for the
allocation, and wParam3 specifies the size of the block to allocate.

It also returns the allocated handle in the low word if the LocalAlloc was successful,
NULL if it failed. The high word will always be zero.

CiSCiD_LOCALFREE (Ox0002)

This parameter frees a block of memory in the GDI module local heap. The wParaml
argument contains the GDI local memory handle to be freed.

It also returns NULL in the low word if the LocalFree was successful, or the specified
handle if it failed. The high word will always be zero.

GSCiD_LOCALCOMPACT (Ox0003)

This parameter generates a free block of the specified size in the GDI module local heap.
The wParam3 argument specifies the size of the required free block, to be passed to
LocalCompact.

It also returns the size of the largest free block in the GDI module local heap in the
low word. The high word will always be zero.

GSCiD_LOCALHEAP (OxOl03)

This parameter returns the selector for the GDI module local heap in the low word. This
can be combined with a local memory handle, such as an HDC, or a handle returned from
the GSGD_LOCAIALLOC request described above, to form a far pointer into the GDI
heap.

The high word will always be zero.

GdiSeeGdiDo

CHAPTER 8 • GDI 571

If the request type does not correspond to one of the above values, the call signi
fies an invalid request type by returning -1.

Return: Depends on the request type, as specified above
Support: 3.1
See also: UserSeeUserDo (chapter 6), ToolHelp (chapter 10)

GdISelectPalette GDI.361

HPALETTE FAR PASCAL GdiSelectPalette(HOC, HPALETTE)
HOC hOC; 1* Device context to own palette *1
HPALETTE hPalette; 1* Handle of palette to be selected *1

This function selects a logical palette to be in effect for the specified device context. It
is the GDI module entrypoint behind the documented USER function SelectPalette.
The bForceBackground parameter of that call is processed within the USER code
before control is passed to the GDI routine to actually select the palette.

There is no reason to call this function direcdy; it is included here for complete
ness only.

Return: The HPALETIE previously in effect for the device context
Support: 3.0, 3.1
See also: The DC structure

GdlTaskTermlnatlon

void FAR PASCAL GdiTaskTermination(HANDLE)
HANDLE hTask; 1* terminating task *1

GDI.460

USER calls this function in GDI upon task termination. In the retail version, the func
tion does nothing. The debug GDI.EXE, however, contains calls to KERNEL.328
(see K328, chapter 5) to output a debug string if any GDI objects owned by the speci
fied task remain. The. GDI object header structure in the debug executable contains
two extra fields, one ofwhich (hOwner) is the task handle of the task that created the
object. It is this additional field that allows this test to be performed in the debug
version.

Used by: USER.EXE
Support: 3.1
See also: GDI Object Header

GdiSelectPalette

572 UNDOCUMENTED WINDOWS

GetClipRgn

HRGN FAR PASCAL GetClipRgn(HOC)
HOC hOC; 1* Get clipping region for this OC *1

GDI.173

This function returns a handle to the clipping region in effect for the specified DC.
This corresponds to the clipping region handle previously defined for the DC through
a call to the documented SelectClipRgn function.

This function, like most of the GetXXX functions in GDI, is a very simple imple
mentation. It sets the offset of the hrgnClip field in the DC into CX and falls through
to the undocumented GSV function (which is present in both 3.0 and 3.1, but only
exported in 3.0) described later in this chapter.

A slight variation on this function appears in the Win32 API.

Return: HRGN for the clipping region in effect for the device context, NULL if none
Used by: USER.EXE
Support: 3.0, 3.1
See also: GSV, DC structure

GetCurLogFont

HFONT FAR PASCAL GetCurLogFont(HOC)
HOC hOC; 1* device context *1

GDI.411

This function returns the current logical font selected for the specified device context.
This will previously have been created by one of the documented CreateFont or
CreateFontIndirect functions, or it will be one of the stock fonts.

This function, like most of the GetXXX functions in GDI, is a very simple imple
mentation. It sets the offset of the hLFont field in the DC into CX and falls through
to the undocumented GSV function (which is present in both 3.0 and 3.1, but only
exported in 3.0) described later in this chapter.

It is, as with GetClipRgn above, unclear why this function is not documented in
the SDK.

Return: a handle to the logical font in effect for the device context or NULL if the
device context is invalid
Used by: USER.EXE
Support: 3.0, 3.1
See also: DC structure, GSV

GetClipRgn

GetDCHook

CHAPTER 8 • GDI 573

GDI.191

OWORO FAR PASCAL GetOCHook(HOC, FARPROC FAR *)
HOC hOC; 1* device context *1
FARPROC FAR *lpfnHook; 1* ptr to buffer to receive address *1

This function returns the address of the currently installed hook function for the speci
fied HDC and the value of the dwHookData associated with it. For more information
on the DC hook, see SetDCHook later in this chapter.

GetDCHook() places the contents of the IpfnNotify field of the DC structure in
the buffer pointed to by the IpfnHook parameter, and returns the contents of the
dwHookData field. If the specified HDC is invalid, the return is undefined.

Return: The value of the dwHookData field from the DC structure.
Used by: USER.EXE
Support: 3.1
See also: SetDCHook, SetHookFlags

GetDCState

HDCS FAR PASCAL GetDCState(HDC)
HOC hOC; 1* device context *1

GDI.179

This function saves some of the specified device context into a DCSAVB structure in
the local GDI heap and returns a handle to it to allow for a subsequent restore using
SetDCState.

The DCSAVB structure is a subset of the DC structure, and has the same signa
ture as a full DC.

This function is very similar to the documented SaveDCe function; both GetDC
State and Sav.eDC call an unexported internal function, SaveDCState, to make the
selective copy of the DC. There are differences is the behaviors of there two functions.
GetDCState is simply an exported far cover over SaveDCState, whereas SaveDC
inserts the handle returned be SaveDCState into a linked list 'stack' based on the
hNext field of the specified DC's GDI Object header and increments the
wDCSaveLevel field of the DC.

USER calls this function once when creating an initial pool of five DCs to obtain
an initial DCSAVB containing the default DC state. It then uses SetDCState to re
initialize a DC when it is released, for example by ReleaseDC, using the saved
DCSAVB. See the SetDCState entry for more information.

Return: handle to a DCSAVB structure if the DC is valid, otherwise NULL.
Used by: USER.EXE
Support: 3.0, 3.1
See also: SetDCState, DC and DCSAVB structures

GetDCHook

GDI.332

574 UNDOCUMENTED WINDOWS

GetKerningPairs

int FAR PASCAL GetKerningPairs(HFONT, int, LPSTR)
HFONT hFont; /* physical font handle */
int nEntries; /* number of pairs to retrieve */
LPSTR lpBuffer; /* buffer to hold retrieved pairs */

Kerning pairs are adjustments to interletter spacing in a font. For example, the word
LAYAWAY requires kerning between almost every pair of letters. This function
appears to be a variation on the Control(GETPAIRKERNTABLE) subfunction, docu
mented in the DDK Whereas GETPAIRKERNTABLE returns a four-byte KERNP
AIR struct for each kerning pair on a device, this function returns nEntries * a six-byte
struct for a given font. The Win32 API specification indicates that GetKerningPairs()
will be part of the API.

CietPhysicalFontHandle

HANDLE FAR PASCAL GetPhysicalFontHandle(HDC)
HDC hDc; /* device context */

CiDI.352

This function returns the module handle of the font selected into the specified DC.
The function merely returns the value of the hPFont field at offset 28h (2Ch in 3.1
debug) in the DC. It does not check if the passed-in DC is valid.

Return: Font module handle or NULL if the logical font handle is invalid
Support: 3.0, 3.1

GetRelAbs GDI.86

int FAR PASCAL GetRelAbs(HDC)
HDC hDC; /* Get the coordinate mode for this DC */

This function returns ABSOLUTE or RELATIVE, corresponding to the coordinate
mode for the specified DC. The coordinate mode determines whether coordinates are
relative to the origin of the Device Context or the current position. This affects the
behavior of the LineTo and PolyLine functions.

The function operates in the same way as other GDI GetXXX functions; it places
the offset of the wRelAbs field in the DC into CX and drops through to the undocu
mented GSV function, described later in this chapter.

Return: ABSOLUTE (1) or RELATIVE (2) (defmed in WINDOWS.H) unless the
DC is NULL, in which case returns NULL
Support: 3.0, 3.1

GetKerningPairs

CHAPTER 8 • GDI 575

Note: This function was documented in 2.1. The documentation of the return value
states that it is NULL if the DC is invalid. The code (in 3.0 at least) actually checks
only for a zero hDC parameter.
See also: DC structure, SetRelAbs, GSV

GetSpoolJob

DWORD FAR PASCAL GetSpoolJobCint, LONG)
int nOption; 1* spool-job request option *1
LONG p; 1* parameter *1

GDI.245

Most Print Manager spooling functions, such as OpenJob(), CloseJob(), and
DeleteJob(), are documented in the DDK (Device Driver Adaptation Guide, chapter
4). However, some of these functions, including GetSpooIJob(), seem only to appear
in the 3.1 DDKinclude file SPOOL.H.

GetSpoolJob() takes one of the following SP_ or CP_ constants as its first parame
ter. The other parameter, and the function return value, depend on the individual
request. The CP_ constants are used by Control Panel for modifying the printer setup:

#define SP_PRINTERNAME 20
#define SP_REGISTER 21
#define SP_CONNECTEDPORTCNT 25
#define SP_QUERYDISKUSAGE 26
#define SP_DISKFREED 27
#define SP_INIT 28
#define SP_LISTEDPORTCNT 29
#define CP_ISPORTFREE 30
#define CP_REINIT 31
#define SP_TXTIMEOUT 32
#define SP_DNSTIMEOUT 33
#define CP_CHECKSPOOLER 34
#define CP_SET_TT_ONLY 35
#define CP_SETSPOOLER 36
#define CP_SETDOSPRINT 37

For SP_PRINTERNAME (20), the second parameter is an LPSTR that points to
a buffer to receive a NULL-terminated list of NULL-terminated strings. Upon return,
the buffer will be filled with the names of the supported printers. The fIrst two bytes of
the buffer should be initialized as a WORD value specifying the size in bytes of the
buffer.

U sed by: Print Manager, Control Panel
Support: 3.0, 3.1
See also: QueryJob

GetSpoolJob

576 UNDOCUMENTED WINDOWS

easv GDI.137

OWORO FAR PASCAL GSV(HOC)
HOC hDC; 1* device context *1
II CL contains the offset into the DC structure

This function is the engine behind the undocumented and documented GetXXX func
tions that operate on a device context (for example, GetTextColor, GetBkMode,
GetViewPortOrg, and GetRelAbs). Those functions are entrypoint labels that set an
offset into CL and fall through to this function.

The phrase "fall through" should be explained; it is more accurate than you might
think. The code for the various functions that use GSV reveal an unusual technique
which is worth a brief diversion. The code for the entrypoints which use GSV is
arranged as follows:

GetClipRgn proc far
mov cl, OEh
db 3Dh ,,3D is OpCode for cmp ax, immediate-word-value

GetROP2 proc far
mov cl, 44h
db 3Dh

GetTextAlign proc far
mov cl, 8Ch
db 3Dh

GetTextColor proc far
mov cl, 60h

GSV proc far
mov ax, hInstance
push bp
mov bp, sp
push ds
mov bx, [bp+6J

One might think upon first inspection that the above code would always, no mat
ter which function was called, lead to CL being finally loaded with 60h, and that
therefore all of the functions would return the contents of the crLTextColor field of
the DC (crLTextColor is the WORD at offset 60h in the DC). The intervening 3Dh
byte between each of the entrypoints, however, is the opcode for CMP AX, imm
word-value. Thus, for example, the processor interprets the opcodes from the
GetClipRgn entrypoint, as:

GetClipRgn proc far
mov cl, OEh
cmp ax, 44B1h
cmp ax, 8CB1h

CHAPTER 8 • GDI 577

cmp ax, 60B1h
GSV proc far

mov ax, hInstance
push bp
mov bp, sp
push ds
mav bx, [bp+6J

where the CMP AX, 44B1h and so on has no effect apart from setting flags over and
over. Note that the 44B1h word corresponds to the instruction MOV CL, 44h that
aligns with the entrypoint for GetROP2. In the same way, the entrypoint for
GetTextAlign (which was buried in the CMP AX, 8CB1h instruction above) will
appear to the processor as:

GetTextAlign proc far
mov cl, 8Ch
cmp ax, 82B1h
cmp ax, 84B1h

In this way, only the function being called sets CL. This mechanism requires no
JMP instructions. It is an interesting optimization, although it is not clear that it yields
great savings in machine cycles. In fact, generating all those CMP instructions would
seem worse than taking the JMP. This technique is used in other places throughout
Windows, not just in GDI.

The code is almost unchanged in 3.1, but the function is not exported. The func
tion is included here for completeness and should not be called directly.

Return: DWORD in DX:AX. Even if the API function returns a WORD, there is
always a full DWORD available in DX:AX when GSV returns.
Support: 3.0
See also: DC structure, GetRelAbs, GetClipRgn

InqulreVisRgn GDI.131

HRGN FAR PASCAL InquireVisRgn(HDC)
HDC hDC; 1* Get handle to visible region for this DC *1

This function returns a handle to the region describing the visible region of the speci
fied DC. The visible region describes that part of a window that is not overlayed by
other windows or the bounds of the screen.

InquireVisRgn

578 UNDOCUMENTED WINDOWS

This function operates in the same way as many of the documented and undocu
mented GetXXX functions; it sets the offset of the hVisRgn field of the DC structure
into CX and falls through to the undocumented GSV function.

See SelectVisRgn for a discussion ofvisible regions.

Return: HRGN for visible region of display
Used by: USER.EXE
Support: 3.0, 3.1
See also: SelectVisRgn, OffsetVisRgn, SaveVisRgn, RestoreVisRgn, IntersectVisRect,
DC Structure

InternalCreateDC GDI.118

HDC DAR PASCAL InternalCreateDC(LPSTR, LPSTR, LPSTR, LPDEVMODE)
LPSTR lpDriverName; /* filename of device driver */
LPSTR lpDeviceName; /* device name */
LPSTR lpOutputl; /* file or device name for output */
LPDEVMODE lpInitData; /* pointer to DEVMODE containing initial data */

This function is an internal entrypoint to the documented CreateDC function.
IntemalCreateDC implements and stores the driver and device names in local GDI

atoms, then branches into the code for CreateDC.
This function is not exported, but it continues to exist in version 3.1. In version

3.1 another function, ATMlnternalCreateDC (although not exported), also branches
into the CreateDC code, apparently to support the rasterization ofAdobe Type Man
ager (ATM) fonts.

There is no need to call this function directly, and it is included here only for com
pleteness.

Return: HDC for created device context if successful, NULL if not
Support: 3.0

IntersectVlsRect

int FAR PASCAL IntersectVisRect(HDC, int, int, int, int)
int x1; /* left of rectangle */
int y1; /* top of rectangle */
int x2; /* right of rectangle */
int y2; /* bottom of rectangle */

GDI.98

This function forms the intersection of the current visible region and the rectangle
(xl, yl, x2, y2) to create a new visible region. All subsequent output is clipped to this
new visible region.

InternalCreateDC

CHAPTER 8 • GDI 579

This function operates in much the same way as the documented Inter
sectClipRect. Where IntersectClipRect operates on the current clipping region for the
device context, IntersectVisRect operates on the current visible region. Both functions
are simply entry points into the same code, using a technique described in this section
in which a control parameter is set into CX. In this case, that parameter is the offset of
the appropriate region handle (hrgnClip or hVisRgn respectively) in the DC structure.

Note that as a result of either function being called, the RaoRgn is recomputed.
This region defines the intersection of the clipping and visible regions. See the discus
sion of the hRaoClip field of the DC in the DC structure entry earlier in this chapter.

For a description ofvisible regions, see SelectVisRgn.

Return: One of the documented constants ERROR, NULLREGION, SIMPLERE
GION, COMPLEXREGION
Used by: USER.EXE
Support: 3.0, 3.1
See also: DC Structure, SDK documentation for IntersectClipRect function

IsDCCurrentPalette

BOOl FAR PASCAL IsOCCurrentPalette(HOC)
HOC hOC; /* device context */

GDI.412

This function returns TRUE if the palette currently selected for the DC (using the
documented SelectPalette function) is the same as the current foreground palette. It
allows the window manager to avoid the inefficiency of realizing the same palette that
is currently in effect at paint time.

Because many Windows applications do not use anything other than the default
palette, this function allows the window manager to optimize screen updating perfor
mance.

Return: TRUE (1) if the logical palette for the device context is the same as the cur
rently active palette, FALSE (0) ifnot
U sed by: USER.EXE
Support: 3.0, 3.1

IsDCDlrty GDI.169

int FAR PASCAL IsOCOirty(HOC, LPRECT)
HOC hOC; /* Is this DC dirty */
LPRECT lpRectOirty; /* Buffer to receive RECT that needs updating */

This function returns TRUE if the DC is dirty (that is, if any part of the specified
device context has been updated) and returns, in IpRect, the bounding rectangle of

IsDCCurrentPalette

580 UNDOCUMENTED WINDOWS

the area that needs to be repainted. Otherwise, if the DC has been repainted, the func
tion returns FAlSE, and resets the RECT structure to o.

The DC is dirty ifbit 0 of the wDCGlobFlags field of the DC structure is set.
This function is not, whatever its name might imply, without impact. It always

calls SetDCStatus(hDC, 0, NULL), which resets the DC to a clean state.

Return: TRUE (1) if the specified DC needed to be updated, FAlSE (0) ifnot, or-1
if the HDC is NULL. If TRUE, the RECT buffer addressed by IpRectDirty on return
contains the coordinates of the part of the DC that needed painting.
Used by: USER.EXE
Support:3.0, 3.1
See also: DC structure, SetDCStatus

IsGdiObject

BOOl FAR PASCAL IsGdiObject(HANDLE)
HANDLE hObject; /* object */

GDI.462

This function checks the supplied handle to see if it is a valid GDI object handle. It
decides this by looking at the signature word at offset 2 in the GDI object header and
applying a set ofvalidity tests to it.

This function only works with GDI objects stored in the GDI default near heap.
The METAFILE object structure is stored in the global heap, and a separate function,
IsValidMetafile, is used to validate metafile handles. See the IsValidMetafile entry
below for more information.

An object that has previously been marked as private will nevertheless be visible to
any task that passes the private object handle to this function.

Essentially, the function checks that

«pobj->wMagic & OxSfff)-Ox4F47 /* 'GO' */)

is in the range 0 to 9.

Return: TRUE if the supplied handle refers to a valid GDI object, FAlSE if not.
Support: 3.1
See also: DC structure, MakeObjectPrivate, SetObjectOwner, IsValidMetafile

IsValldMetafile

BOOl FAR PASCAL IsValidMetafile(HANDlE)
HANDLE hMetaFile; /* metafile */

IsGdiObject

GDI.410

CHAPTER 8 • GDI 581

This function checks the validity of the specified metafile. The first three fields of the
METAFILE structure associated with the hMetaFile parameter are checked. If they are
in range, the function returns TRUE; otherwise, it returns FALSE.

The METAFILE structure is stored in the global heap, unlike other GDI objects.
For this reason, the IsGdiObject function does not work with Metafile handles.

Return: TRUE (1) if the metafile is valid, FALSE (0) ifnot.
Used by: USER.EXE
Support: 3.0, 3.1

LvbUnion GDI.171

BOOl FAR PASCAL lvbUnion(HDC, int, int, int, int)
HDC hDC; /* device context */
int xleft; /* left x coord of rectangle */
int yTop; /* top y coord of rectangle */
int xRight; /* right x coord of rectangle */
int yBottom; /* bottom y coord of rectangle */

This function is called from several places within GDI, and although it is exported in
3.0, it is not called by any other Windows modules. The function is not exported in
version 3.1.

It is used to update the rectLVB field of the DC. This field contains the bounding
rectangle of the region of the DC that requires update. The function takes the union
of the existing rectLVB and the rectangle formed by the xLeft, yTop, xRight, and
yBottom parameters, and updates the rectLVB with the result.

Return: Always appears to return TRUE (1).
Support: 3.0

MakeObjectPrlvate GDI.463

BOOl FAR PASCAL MakeObjectPrivate(HANDlE, BOOl)
HANDLE hObject; /* GD! object */
BOOl bPrivate; /* TRUE if make private, FALSE if make public */

This function marks a GDI object as private or public in version 3.1.
At offset 2 in the GDI object header is the wMagic field, which contains the

object signature and a set of flags. This function sets or resets the Ox2000 bit flag
depending on the value of the bPrivate parameter. This marks the object as private or
public, and also has the side-effect of making the second character of the signature
lower case. It then returns the previous state of that flag. See the GDI Data structures
section of this chapter's introduction for a discussion of GDI object signature types.

LvbUnion

582 UNDOCUMENTED WINDOWS

It is not clear how the object can be associated with a particular owning task since
this function does nothing more than the procedure described above. It does not, for
example, attempt to obtain the current task and store it with the object.

Note that, presumably because there is no owner stored with the object, it will still
be validated by the undocumented IsGdiObject function, discussed earlier in this
chapter.

Return: TRUE if the object was previously private, FALSE ifnot
Support: 3.1
See also: IsGdiObject, SetObjectOwner, GDI Object Header, GDI Data Structures
(Introduction to this chapter)

METAFILEDC structure

This structure is created by the documented CreateMetaFile function if its IpFilename
parameter is NULL. The structure is a DC with a different signature.

typedef struct tagMETAFILEDC {
GDIOBJHDR header;

II MFDC mfdc; II This structure is not currently understood
} METAFILEDC, FAR *LPMETAFILEDC;

The structure is identified by a wMagic field in the GDIOBJHDR structure of 11
in version 3.0, and "QO" (Ox4F51) in 3.1.

See also: GDI object header structure

MFDrawText GDI.347

BOOL FAR PASCAL MFDrawText(HDC, LPSTR, int, LPRECT, WORD)
HDC hDC; 1* device context *1
LPSTR lpString; 1* string to be printed *1
int nLength; 1* number of chars to draw, or -1 for all *1
LPRECT lpClip; 1* clipping rectangle *1
WORD wFlags; 1* DT_ flags *1

This function appears to be identical to the documented DrawText function in all but
name. It is not referenced internally within any of the primary Windows modules.

Return: The height of the text
Support: 3.0

METAFILEDC

OffsetOrg

CHAPTER 8 • GDI 583

GDI.143

OWORO FAR PASCAL OffsetOrg(HOC, int, int)
HOC hOC; /* device context */
int xOffset; /* x offset */
int yOffset; /* y offset */
/* CX contains additional parametric information */

OffsetOrg provides the functionality behind the documented OffsetWindowOrg and
OffsetViewportOrg functions. These two functions set the offset of the WndOrgX and
VportOrgX fields, respectively, in the DC into CX and then jump to this entrypoint. It
is not clear why it is exported in version 3.0.

This function is included for completeness only and should never need to be called
directly.

Return: A DWORD containing, in the low order word, the x-coordinate, and in the
high word, the y-coordinate of the previous origin
Support: 3.0

OffsetVlsRgn

int FAR PASCAL OffsetVisRgn(HDC, int, int)
HOC hOC; /* device context */
int xOffset; /* X direction offset */
int yOffset; /* Y direction offset */

GDI.l02

This function displaces the visible region of the specified device context xOffset pixels
along the x-axis and yOffset units along the y-axis.

It is called by an unknown internal function in version 3.0 of USER, and does not
appear to be called by any of the primary Windows modules in version 3.1.

Return: One of the documented constants COMPLEXREGION, NULLREGION,
SIMPLEREGION, or ERROR
Used by: USER.EXE (3.0 only)
Support: 3.0, 3.1
See also: InquireVisRgn, SelectVisRgn, SaveVisRgn, RestoreVisRgn, IntersectVisRect

QueryAbort

BOOl FAR PASCAL QueryAbort(HOC, HANDLE);
HOC hOC; /* print device context
/ HANDLE hJCB; / job control block handle */

OffsetOrg

GDI.155

584 UNDOCUMENTED WINDOWS

Most Print Manager spooling functions, such as OpenJob(), CloseJob(), and
DeleteJob(), are documented in the DDK (Device Driver Adaptation Guide, chapter
4). However, some of these functions, including QueryAbort(), seem only to appear
in the 3.1 DDK include file SPOOL.H. QueryAbort() appears to return TRUE if an
abort has been issued for the specified print job control block. The JeB structure is
declared in SPOOL.H.

Support: 3.0, 3.1
See also: GetSpoolJob, QueryJob

QueryJob

BOOl FAR PASCAL QueryJob(int, HANDLE)
int nOption; /* query type */
HANDLE hJCB; /* handle to JCB */

GDI.248

This function provides two inquiries, depending on the value of the nOption parame
ter, as follows:

QJ_CiETJOBACTlVE (Ox001E)

This option uses the size of the global memory allocation associated with the specified
JCB (Job Control Block) to determine whether it is active. The JCB itselfis actually a
global memory handle shifted right by 1 bit! If the size of the block is greater than 327
bytes, the function returns TRUE (1); otherwise, i~ returns FALSE (0).

QJ_CiET771 (Ox1002)

This option returns TRUE ifat least one of two unknown GDI global data items is non
zero. If both are zero, it returns FALSE. For this option, the hJCB parameter is not used.

Support: 3.0, 3.1
See also: GetSpoolJob

PALETTEOBJ structure

This is the structure behind the documented HPALETTE handle. It is stored in
GDI's default heap segment, and is made up of two parts: the undocumented
GDIOBJHDR structure described in the GDI object header entry later in this chapter,
and the documented LOGPALETTE structure:

typedef struct tagPAlETTEOBJ {
GDIOBJHDR header;
lOGPAlETTE logpalette;
} PALETTEOBJ, FAR *lPPAlETTEOBJ;

QueryJob

CHAPTER 8 • GDI 585

The structure is identified by a wMagic field in the GDIOBJHDR structure of4 in
version 3.0, and "JO" (Ox4F4A) in 3.1.

See also: GDI object header structure

PENOBJ structure

This is the structure behind the documented HPEN handle. It is stored in GDI's
default heap segment, and is made up of two parts: the undocumented GDIOBJHDR
structure described in the GDI object header entry later in this chapter; and the docu
mented LOGPEN structure:

typedef struct tagPENOBJ {
GDIOBJHDR header;
LOG PEN logpen;
} PENOBJ, FAR *LPPENOBJ;

The structure is identified by a wMagic field in the GDIOBJHDR structure of 1 in
version 3.0, and "GO" (Ox4F47) in 3.1.

For additional information, see the GDI object header entry later in this chapter.

See also: GDI object header structure

PixToLine GDI.164

void FAR PASCAL PixToLine(??? FAR *, int, int, int, int, ??? FAR *)

This function is not currently understood. It is not called by any of the primary Win
dows modules, and the code does not appear to exist in version 3.1.

Support: 3.0

RestoreVisRgn GDI.130

WORD FAR PASCAL RestoreVisRgn(HDC)
HOC hOC; /* Restore the visible region for this DC */

This function restores the visible region saved by a prior call to SaveVisRgn(). The call
frees the memory associated with the saved visible region, and returns the type of the
restored region, or ERROR if there is either no saved VisRgn, or the HDC is invalid.

There is no hVisRgnSave field in the DC, nor is there a separate stack of saved
VisRgns. It appears that the save and restore mechanism is implemented using a linked

. PENOBJ

586 UNDOCUMENTED WINDOWS

list stack of HRGN handles in the first field of the header of the region structure of
the original VisRgn. RestoreVisRgn "pops" the previous HRGN from the head of the
linked list into the hVisRgn field of the DC, and frees the memory allocated for the
previous hVisRgn.

See SelectVisRgn for a discussion ofvisible regions.

Return: Region type of the restored region, or ERROR if either the DC is invalid, or
there is no saved VisRgn associated with it.
U sed by: USER.EXE
Support: 3.0, 3.1
See also: SaveVisRgn, InquireVisRgn, OffsetVisRgn, SelectVisRgn, IntersectVisRect,
DC Structure

Reos

int FAR PASCAL RCos(int, int)
int nRadius; /* hypotenuse */
int n10thDegrees; /* angle in 10th degrees */

GDI.177

This is an integral cosine function with scaling. This function uses a lookup table and
integer-only math to provide a very useful, very fast trigonometric drawing aid [r *
cos(a)].

The function is not exported in 3.1, and the code appears to no longer exist.

Support: 3.0
Return: The integer result ofnRadius * cos(n10thDegrees/10)
See also: RSin
Example: Uses RSin and RCos to draw fast stars on a window

/* RSIN.C */

#include <windows.h>
#include <wmhandlr.h>
#include <winio.h>

/* Undocumented functions */
extern int FAR PASCAL RSin(int nRadius, n10thDegrees);
extern int FAR PASCAL RCos(int nRadius, n10thDegrees);

WMHANDLER prev_paint;

#include "checkord.c"

long DrawStar(HWND hwnd, WORD wMsg, WORD wParam, DWORD lParam)
{

RECl rectClient;
long ret;

I

I RCos

middle.x
middle.y

CHAPTER 8 • GDI 587

HDC hDC;
POINT middle;
int nRadius;
int d;
TEXTMETRIC tm;

ret = (*prev-paint)(hwnd, wMsg, wParam, lParam);

GetClientRect(hwnd, (LPRECT) &rectClient);

hDC = GetDC(hwnd);

SelectObject(hDC, GetStockObject(BLACK_PEN»;

GetTextMetrics(hDC, &tm);

(rectClient.right - rectClient.left) / 2;
(rectClient.bottom - (rectClient.top

+ tm.tmHeight + tm.tmExternalLeading» / 2;
nRadius = min(middle.x, middle.y) - 2;
middle.y += tm.tmHeight + tm.tmExternalLeading;

for (d = 0; d < 90; d++)
{

MoveTo(hDC, middle.x, middle.y);
LineTo(hDC, middle.x + RSin(nRadius, d * 40),

middle.y + RCos(nRadius, d * 40»;
}

ReleaseDC(hwnd, hDC);

return ret;
}

int maine)
{

if (! CheckOrd(IRSin", "GDI", 178»
return 1;

if (! CheckOrd("RSin", "GDI", 178»
return 1;

prev-paint = wmhandler_set(winio_current(),
WM_PAINT, (WMHANDLER) DrawStar);

printf("The star is drawn using RSin and RCos.");

return 0;
}

RCos

588 UNDOCUMENTED WINDOWS

ReallzeDefaultPalette

int FAR PASCAL RealizeDefaultPalette(HDC)
HDC hDC; 1* device context *1

GDI.365

This function restores the system default logical palette into the specified device con
text and realizes it. This function combines the functionality of the following three
lines of code:

hPal = GetStockObject(DEFAULT_PALETTE);
SelectPalette(hDC, hPal, FALSE);
RealizePalette(hDC);

Return: The number of entries in the default palette that were mapped to different
entries in the system palette
Used by: USE~EXE
Support: 3.0, 3.1

RectStuff GDI.142

int FAR PASCAL RectStuff(HDC, int, int, int, int)
HDC hDC; 1* device context *1
int x1; 1* left of rectangle *1
int y1; 1* top of rectangle *1
int x2; 1* right of rectangle *1
int y2; 1* bottom of rectangle *1
1* CX and DX contain additional parametric information *1

RectStuff provides the functionality behind the documented IntersectClipRect and
ExcludeClipRect functions and the undocumented IntersectVisRect function. These
establish values in CX and DX, and fall through to RectStuff. There is also prolog
code for what would be an ExcludeVisRect function, although the code is unused, and
there is no documented or undocumented or internal function by that name.

RectStuff takes a function code in CL (1 = Intersect, 2 = Exclude), and the offset
of the appropriate field in CH (hrgnClip or hVisRgn). The parameter in DX is not
understood. It is only used when CL is 1 (Include/ExcludeClipRect) and is passed to
an internal CheckMetaFile function.

It is unclear why it was exported in versions 2.1 and 3.0. The code remains in ver
sion 3.1, but the label is no longer exported.

The only reason to call this function directly would be to implement a version of
the "missing" function ExcludeVisRect alluded to above (for version 3.0 only). The
following code could be used as a basis for such a function:

ExcludeVisRect proc far
mov cl, 4

RealizeDefaultPalette

CHAPTER 8 • Got 589

mov ch, offset hVisRgn ;; This will vary between retail and debug
jmp far RectStuff

ExcludeVisRect endp

Return: One of the documented constants COMPLEXREGION, ERROR,
NULLREGION, or SIMPLEREGION
Support: 3.0
See also: IntersectVisRect, DC Structure

RGNOBJ structure

This is the structure behind the documented HRGN handle. It is stored in GDI's
default heap segment, and is made up of two parts. The first is the undocumented
GDIOBJHDR structure described in the GDI object header entry later in this chapter,
and the second, which contains the actual region data, is not currently understood:

typedef struct tagRGNOBJ {
GDIOBJHDR header;

// REGION region; // This structure is not currently understood
} RGNOBJ, FAR *LPRGNOBJ;

The structure is identified by a wMagic field in the GDIOBJHDR structure of6 in
version 3.0, and "LO" (Ox4F4C) in 3.1.

See also: GDI object header structure

Resurrection GDI.122

void FAR PASCAL Resurrection(HDC, WORD, WORD, WORD, WORD, WORD, WORD)
HDC hDC; /* .Hand le of desktop device context */
WORD w1; /* unknown - set to 0 */
WORD w2; /* unknown - set to 0 */
WORD w3; /* unknown - set to 0 */
WORD w4; /* unknown - set to 0 */
WORD w5; /* unknown - set to 0 */
WORD w6; /* unknown - set to 0 */

This function, called from the undocumented EnableOEMLayer function, enables the
GDI graphics driver. The driver in turn sets the display adapter to the active graphics
mode for Windows.

Used by: USER.EXE
Support: 3.0, 3.1
See also: Death, DisableOEMLayer, EnableOEMLayer

I

RGNOBJ

590 UNDOCUMENTED WINDOWS

RSln GDI.178

int FAR PASCAL RSin(int, int)
int nRadius; 1* hypotenuse *1
int n10thDegrees; 1* angle in 10th degrees *1

This is an integral sine function with scaling.
This function uses a lookup table and integer-only math to provide a very useful,

very fast trigonometric drawing aid [r *sin(a)].
The code is not exported, and does not appear to exist in 3.1.

Support:3.0
Return: The integer result ofnRadius * sin(nl0thDegrees/l0)
See also: RCos
Example: See RCos example

SaveDC GDI.30

Note that the SDK documentation for the SaveDC function in version 3.0 states that
the return value 'specifies the saved device context.' We can determine that there is
something wrong there from the fact that the return type is defined as int, not HDC.
In fact the return is the value of the wDCSaveLevel field before it is incremented (see
the entry for the GetDCState function earlier in the chapter).

See also: GetDCState

SaveVlsRgn GDI.129

HRGN FAR PASCAL SaveVisRgn(HDC)
HDC hDC; 1* Save the visible region of this DC *1

This function allocates memory for a copy of the current VisRgn of the specified DC,
copies the VisRgn region structure, and stores the resultant HRGN at the head of a
linked list of HRGNs leading from the hVisRgn field of the DC structure. The first
field in the region structure is used to store a pointer to the next region in the stack.

The complementary function, RestoreVisRgn, frees the current hVisRgn handle in
the DC structure, and replaces it with the head of the stack, or list, of saved HRGNs.

See SelectVisRgn for a discussion ofvisible regions.

Return: HRGN of the newly created, saved, copy of the VisRgn for the DC
Used by: USER.EXE
Support: 3.0, 3.1

RSin

CHAPTER 8 • GDI 591

See also: InquireVisRgn, SelectVisRgn, OffsetVisRgn, RestoreVisRgn, Inter
sectVisRect, DC Structure

ScaleExt GDI.140

DWORD FAR PASCAL ScaleExt(HDC, int, int, int, int)
HDC hDC;
int Xnum;
int Xdenom;
int Ynum;
int Ydenom;
/* BX, CX and DX contain offsets into DC appropriate to either window or
viewport scaling. */

This function is the engine behind the documented ScaleWmdowExt and
ScaleViewportExt functions. Those functions set offsets into the DC structure corre
sponding to the start of the window or viewport data fields respectively into BX; set a
value in CX that is not currently understood; place in DX the offset of an internal near
function to perform the setting of the scaled values into the DC structure. They then
jump to this function.

This function is included for completeness only and should never need to be called
directly.

Return: The previous extents for the window or viewport in logical units. The high
word of the return contains the y extent, and the low word contains the x extent.
Support: 3.0, 3.1

SelectBltmap GDI.195

HBITMAP FAR PASCAL SelectBitmap(HDC, HBITMAP)
HDC hDC; /* device context */
HBITMAP hBitmap; /* bitmap to select into device context */

This function provides almost exactly the same functionality as the documented
SelectObject function when that function is used to select a bitmap.

It is a little unclear why this function exists. It was introduced in version 3.1 but is
not referenced by any of the components ofretail Windows.

Because it is undocumented and provides no additional functionality over
SelectObject, it is not advisable to use this function.

Return: The handle of the previously selected bitmap or NULL if an error was
encountered
Support: 3.1

ScaleExt

592 UNDOCUMENTED WINDOWS

SelectVlsRgn GDI.l05

int FAR PASCAL SelectVisRgn(HDC, HRGN)
HDC hDC; /* device context */
HRGN hRgn; /* region to select into device context */

This function sets a visible region handle into the device context. The hRgn parameter
contains the handle to a region that describes that part of a window that is not over
layed by any other windows or by the bounds of the screen (that is, it describes that
part ofa window that is visible to the user).

Another way of looking at the VisRgn is as a special type ofclipping region. This is
actually how it is used, in conjunction with clipping at two other levels. The first is at
the application level, implemented in documented calls such as SelectClipRgn, which
allows drawing and painting operations to be clipped according to application logical
requirements. At a second level, shared between the application and the window man
ager (USER) is the update region, managed by USER and application calls to Invali
date/ValidateRect/Rgn. This represents that region of the device context for the
window that has been modified by output operations, without any consideration for
whether that region is partially or entirely visible.

The Windows display manager (built into the USER window management rou
tines) uses the VisRgn as a third-level clipping region to ensure that display output
operations directed to a particular window DC do not overwrite other application win
dows that overlay the target window. Note that the role that many Windows develop
ers attribute to the ClipRgn, actually belongs to the VisRgn.

In order to appear on the screen then, a painting operation will be clipped
through the intersection of the three regions described above. In practice, the update
region and VisRgn are intersected at Validate/InvalidateRect/Rgn time, and the
resultant region is stored in the hVisRgn field of the DC. The clip region, selected
using the documented SelectClipRgn function, defines the clipping region to be used
by storing the supplied HRGN in the hrgnClip field of the DC. The intersection of
the VisRgn and the clip region is performed by an internal GDI function called
UpdateRaoRgn. This function is named after Rao Remala, an engineer at Microsoft,
on whose insistence the hRaoRgn field was introduced into the DC structure. This
field, in which the fmal intersected region is stored, was introduced to overcome the
performance problems associated with the previous functionality, whereby the inter
section ofVisRgn and ClipRgn was performed at DC update time.

Visible regions are by no means a Windows invention. The mechanism and even
the name (VisRgn) are used and described thoroughly in the Apple Macintosh operat
ing system and its documentation. See Inside Macintosh for further details on
grafPort->visRgn.

Return: One of the documented constants COMPLEXREGION, NULLREGION,
SIMPLEREGION, or ERROR
Used by: USEREXE

SelectVisRgn

CHAPTER 8 • GDI 593

Support: 3.0, 3.1
See also: InquireVisRgn, OffsetVisRgn, SaveVisRgn, RestoreVisRgn, Inter
sectVisRect, DC structure

SetDCHook

BOOL FAR PASCAL SetDCHook(HDC, FARPROC, DWORD)
HOC hOC; /* Set DC hook for this DC *1
FARPROC lpHookProc; 1* Callback function address *1
DWORD data; /* Additional data */

GDI.190

SetDCHook() is not documented, but a function prototype and some #defines do
appear in the version of WINDOWS.H included with the 3.1 DDK The function
installs a hook function for the specified DC. The hook function is a callback that is
notified whenever the DC is updated or destroyed.

USER calls this function to install the undocumented DCHook() function (see
chapter 6) as the callback for each of the five DCs that it allocates at startup (see the
DC structure entry in this chapter), and although it is not known what DCHook's
purpose is, the function does use the opportunity to change the visible region of the
DC using the undocumented SelectVisRgn() function described earlier in this chapter.

SetDCHook() places the hook procedure's address in the IpfnNotify field of the
DC, and the additional data in the dwHookData field. The hook procedure must have
a prototype of:

WORD HookProc(HDC hOC, WORD code, DWORD data, DWORD lParam);

The two callback codes are:

#define DCHC_INVALIDVISRGN Ox0001
#define DCHC_DELETEDC Ox0002

No validity checking is done on the supplied HDC other than to check that it is
nonzero. Passing an invalid HDC will therefore corrupt GDI's default data segment.

Renun: TRUE if the callback function was successfully installed; FALSE if the speci
fied HDC was zero.
Used by: USER.EXE
Support: 3.1
See also: GetDCHook, SetHookFlags, DC structure, DCHook (chapter 6)

SetDCOrg

DWORD FAR PASCAL SetDCOrg(HDC, WORD, WORD)
HDC hOC; /* Set DC Origin for this DC */

SetDCHook

GDI.117

594 UNDOCUMENTED WINDOWS

WORD wOrgX;
WORD wOrgY;

/* New X coordinate */
/* New Y coordinate */

This function sets the origin coordinates of the specified DC. It returns the previous x
and y coordinates in effect. The function complements GetDCOrg(), which is docu
mented.

It operates on the wDCOrgX and wDCOrgY fields of the DC structure. Note that
as a result of the DC origin's setting, the Rao region, or the intersection of the clip
and VisRgn regions is recalculated. For more information on the relationship between
visible and clip regions, see the SelectVisRgn entry earlier in this chapter.

Return: A DWORD containing the x- and y-origin coordinates previously in effect for
the DC in the low and high words, respectively
Used by: USER.EXE
Support: 3.0, 3.1
See also: SelectVisRgn, DC structure
Note: No validity checking is done on the supplied HDC other than to check that it is
nonzero. Passing an invalid HDC will therefore corrupt GDI's default heap segment.

SetDCState GDI.180

void FAR PASCAL SetDCState(HDC, HDCS)
HDC hDC; /* device context */
HANDLE hDCSave; /* handle to DCSAVE structure from prev GetDCState */

This function restores the state of the specified device context from the HDCS created
by a previous call to GetDCState.

The hDCSave is the handle to a DCSAVE structure maintained in the GDI near
heap, and described in the DCSAVE structure entry earlier in this chapter.

This function is similar to the documented RestoreDC function. Both SetDCState
and RestoreDC call an unexported internal function, RestoreDCState, to restore the
state of the given DC. However, RestoreDC "pops" the HDCS from the top of the
linked list of DCSAVE structures attached to the hNext field of the GDI object header
of the specified DC, and decrements the wDCSaveLevel field of the DC. SetDCState,
however, allows the DCSAVE to be used to specified as a parameter to the function,
and is effectively an exported cover over the RestoreDCState function. Thus, SaveDC
and RestoreDC act on a stack of DCSAVEs associated with the specified DC.
GetDCState and SetDCState, by contrast, allows a DC to be restored from a
DCSAVE structure saved from a different DC, or even built from scratch.

U sed by: USER.EXE
Support: 3.0, 3.1
See also: GetDCState, DC and DCSAVE structures

SetDCState

SetDCStatus

CHAPTER 8 • GDt 595

GDI.170

BOOl FAR PASCAL SetDCStatus(HDC, BOOl, lPRECT)
HDC hDC; /* Set status for this DC */
BOOl bSetDirty; /* lpRect contains update rectangle of display *1
LPRECT lpRect; 1* pointer to RECT specifying update rectangle *1

This function allows the "dirty" (that is, update) rectangle of the device context to be
defined. IfbSetDirty is TRUE, the rectLVB field of the DC is overwritten by the con
tents of the RECT pointed at by the IpRect parameter, and bit Ox0002 of the
wDCGlobFlags field of the DC is set, to signify that the DC is dirty, that is, needs
updating.

If bSetDirty is TRUE, but the IpRect parameter is NULL, the DC is set dirty, but
the previous rectLVB is left in effect.

If the bSetDirty parameter is FALSE, the DC is set clean, (not in need of update)
by resetting bit Ox0002 of the wDCGlobFlags field, and the rectLVB field is set to an
invalid rectangle.

Return: TRUE if DC was dirty upon entry, FALSE if not. If the hDC parameter is
NULL, the return is -1.
Used by: USER.EXE
Support: 3.0, 3.1
Note: There is no GetDCStatus; the nearest equivalent is IsDCDirty, but since that
function itself calls SetDCStatus, there appears to be no way to determine nondestruc
tively if the DC is dirty. In an API function set that is most consistent across undocu
mented and undocumented calls in providing matching Get/Set pairs, the DC status
calls are an interesting aberration.
See also: IsDCDirty, DC Structure

SetHookFlags

WORD FAR PASCAL SetHookFlags(HDC, WORD)
HDC hDC; 1* device context *1
WORD flags; /* hook flags *1

GDI.192

SetHookFlags() is not documented, but a function prototype and some #defines do
appear in the version of WINDOWS.H included with the 3.1 DDK The function
provides a means for modifying a DC flag:

#define DCHF_INVAlIDATEVISRGN Ox0001
#define DCHF_VAlIDATEVISRGN Ox0002

If flags is 1, bit 2 of the DC byFlags field is set; if flags is 0, the byFlags field is
cleared. This flag deteremines whether the VisRgn for the DC has been changed, and

SetDCStatus

596 UNDOCUMENTED WINDOWS

whether the RaoRgn needs to be recomputed (see SelectVisRgn for more information
on visible regions). This function is used by the undocumented DCHook() function
in USER (see chapter 6).

Return: Previous state of the flag
Support: 3.1
See also: GetDCHook, SetDCHook, SelectVisRgn, DCHook (chapter 6)

SetObJectOwner

HANDLE FAR PASCAL SetObjectOwner(HANDLE, HANDLE)
HANDLE hObject; 1* handle of GDI object *1
HANDLE hTask; 1* hTask of new owner *1

GDI.461

This function allows the owner of a GDI object, such as a brush, a pen, or a bitmap,
to be set or changed when the debug version ofWindows is running. The code for the
retail version of this function consists only of normal compiler prolog and epilog.

In the normal course of events, an application that creates an object must delete it
before terminating. This function provides a means for the debug version to track
whether a GDI object has been destroyed when an application terminates, or whether
it is being deleted by an application other than the one that created it.

The supplied task handle is placed into the owner field of the debug version of the
GDI object header at offset OAh, and the previous value of that field is returned.

Return: In the debug version, the return is the task handle of the previous owner of
the object or NULL ifeither handle is invalid. In the retail version, the return is unde
fined.
Support: 3.1
See also: MakeObjectPrivate, IsGdiObject, GDI Object Header

SetRelAbs

int FAR PASCAL SetRelAbs(HDC, int)
HDC hDC; 1* set location mode for this DC *1
int nRelAbs; 1* ABSOLUTE or RELATIVE *1

GDI.5

This function sets the coordinate mode for the specified device context and returns the
mode previously in effect. The nRelAbs parameter should be one of the documented
WINDOWS.H constants, ABSOLUTE or RELATIVE.

This function operates on the wRelAbs field of the DC structure. The comple
mentary undocumented GetReIAbs function returns the contents of the field.

SetObjectOwner

CHAPTER 8 • GDI 597

Return: The coordinate mode previously in effect for the DC unless the DC is
NULL, in which case it returns NULL
Support: 3.0, 3.1
Note: This function was documented in 2.1. The documentation of the return value
states that it is NULL if the DC is invalid. The code for the function in 3.0 actually
checks only for a zero hDC parameter. In version 3.1 a more rigorous test is applied.
See also: GetRelAbs, DC structure

SetWinVlewExt

OWORO FAR PASCAL SetWinViewExt(HOC, int, int>
HOC hOC; 1* device context *1
int x; 1* x extent *1
int y; 1* y extent *1
II BX contains offset into DC structure

GDI.139

This function is the engine behind the documented SetWindowExt and
SetViewportExt functions. The window and viewport extents are held in the DC
structure for the window. The documented functions are entry points that set into BX
the offset of the appropriate extent fields (WndExtX and VportExtX respectively) in
the DC structure and then jump through to this function.

This function is similar to the more generalized WordSet function described later
in this chapter, but updates two adjacent word length fields rather than the one han
dled by WordSet.

It should never be necessary to call this function direcdy, and it is included here
for completeness only.

Return: The previous extents at the specified offset, unless the DC is invalid, in which
case the return is O.
Support:3.0
See also: WordSet, DC Structure

ShrlnkGdlHeap

void FAR ShrinkGdiHeap(void);

GDI.354

This function does pretty much what its name suggests. It shrinks GDI's local heap to
a minimum of 4K. In addition, the function ensures that there is 1K of free space in
the heap.

It is aided in this by the undocumented KERNEL functions LocalCountFree,
LocalHeapSize, and the documented LocalShrink function.

The function is referenced, but never called, from within the code that services the
documented GetMessage and PeekMessage functions in USER, in version 3.0.

SetWinViewExt

598 UNDOCUMENTED WINDOWS

It does not appear to be called from any of the primary Windows modules in ver
sion 3.1.

Support: 3.0, 3.1
See also: LocalCountFree and LocalHeapSize (both in Chapter 5)

StufflnReglon

BOOl FAR PASCAL StufflnRegion(HRGN, lPRECT)
HRGN hRgn; /* region */
LPRECT lpRect; /* rectangle/point */
/* CX contains point/rectangle flag */

GDI.186

This function provides the functionality behind the documented RectInRegion function.
It is unclear why it warrants its own entrypoint, although it may have been

designed to serve not only RectInRegion, but a nonexistent PointInRegion function
as well. The code continues to exist in version 3.1, but the entrypoint is no longer
exported.

If CX contains zero, the function only checks that the first two coordinates in the
RECT buffer are within the specified region. If CX is nonzero, all four coordinates are
checked.

Return: TRUE (1) if the coordinates are within the specified region, FAlSE (0) if
not.
Support: 3.0
See also: StufiVisible

StuffYlslble

BOOl FAR PASCAL StuffVisible(HDC, LPRECT)
HDC hDC; /* device context */
lPRECT lpRect; /* rectangle */
/* CX contains point/rectangle flag */

GDI.185

This function provides the functionality behind the documented RectVisible function.
It is unclear why it warrants its own entrypoint, although it may have been

designed to serve not only RectVisible, but a nonexistent PointVisible function as well;
in any case, neither the entrypoint nor the code itselfis present in version 3.1.

If CX contains zero, the function only checks that the first two coordinates in the
RECT buffer are visible. If CX is nonzero, all four coordinates are checked.

There should never be any need to call this function directly, and it is included
here for completeness only.

StufflnRegion

CHAPTER 8 • GDI 599

Return: TRUE (1) if the coordinates are within the clipping region, FALSE (0) if not
Support: 3.0

UnlcodeToAnsl GDI.467

int FAR PASCAL UnicodeToAnsi(LPSTR, LPSTR)
LPSTR lpUnicodeStr; 1* input unicode string *1
LPSTR lpAnsiBuff; 1* buffer to receive translated string *1

This function translates from the Unicode character set into the ANSI character set.
UnicodeToAnsi provides similar functionality to the documented OemToAnsi

function, except that its source is a string of2-byte Unicode characters and the source
buffer may not exceed 64K in length.

The function performs the translations against a static lookup table within the
GDI default data segment.

Return: The length, including the terminating null, of the resultant ANSI string
Support: 3.1

WordSet GDI.141

WORD FAR PASCAL WordSet(HDC, WORD)
HDC hDC; 1* device context *1
WORD wNewValue; 1* new value for DC field *1
II DL contains the offset into the DC of the affected field.

WordSet is a general-purpose function used by many documented and undocumented
GDI functions to set a word value into an offset within a DC and return the previous
value at that offset. It is the back end to the documented SetROP2, SetPolyFillMode,
SetTextAlign, SetMapMode, SetBkMode, SetStretchBltMode functions and the
undocumented SetRelAbs function.

The above functions set the offset of the appropriate word length field in the DC
structure into DL, and a value whose purpose is not currently understood into DX,
and then jump to this function.

The code continues to exist in 3.1, but the function is only exported in version
3.0. WORDSET appears to complement the GSV function described earlier in the
chapter, but does not use that function's exotic "fall through" technique.

Return: The previous value at the offset in DL
Support: 3.0
See also: GSV

UnicodeToAnsi

CHAPTER • 9

SYSTEM

Although most of the device drivers that come with Microsoft Windows are docu
mented in the Windows Device Driver Kit (DDK) and, in fact, have their source code
included with the DDK, SYSTEM.DRV is not documented in the Windows 3.x DDK.
It was documented in the Windows 2.x DDK, which was available only under a non
disclosure agreement; in contrast, the Windows 3.x DDK can be freely purchased
through normal retail channels. The functions in SYSTEM.DRV today are apparently
documented in the Microsoft Windows Binary Adaptation Kit (BAK), but the BAK is
distributed only to a handful ofhardware original equipment manufacturers (OEMs).

SYSTEM.DRV provides functions to manage asynchronous timers and to manage
the 80x87 coprocessor state; it also provides redundant functionality for querying
drive types.

System nmers
EnableSystemTimers
DisableSystemTimers
CreateSystemTimer

80x87 State
Get80x87SaveSize
Save80x87State

~iscellaneous

A20_Proc

KillSystemTimer
GetSystemMsecCount

Restore80x87State

InquireSystem

The CreateSystemTimer() and KillSystemTimer() functions are potentially useful,
as they allow asynchronous (INT 8) timer callback functions to be installed. In con
trast, the documented SetTimer() and KillTimer() functions manage synchronous tim
ers, with which your callback function is called only after your program has polled its
message queue. In other words, system timers bypass the Windows message facility

601

602 UNDOCUMENTED WINDOWS

and are much closer to the INT 8 handlers one would install in DOS. System timers
appear to be used, for example, by Microsoft Excel; they are also used by the Windows
COMM driver. The documented timer functions in USER are implemented using
SYSTEM timers.

There are currently two versions of the SYSTEM driver shipped with Windows:
SYSTEM.DRV and HPSYSTEM.DRV. HPSYSTEM.DRV is installed on Hewlett
Packard Vectra computers by placing the statement SYSTEM.DRV=HPSYSTEM.DRV
in the Wmdows SYSTEM.INI file; SYSTEM.DRV is installed on all others.

An additional version, ATMSYS.DRV, ships with Adobe Type Manager (ATM).
However, ATMSYS.DRV is not a substitute for SYSTEM.DRV; it passes all function
calls through to the original SYSTEM.DRV. Instead, ATM uses the alternative SYS
TEM.DRV solely because, in Windows 3.0 and 3.1, SYSTEM happens to get loaded
early in the Windows boot process, before GDI and USER. Believe it or not, ATM
patches into the KERNEL LoadModule() function, watches for the call that loads
GDI, and then goes in and patches GDI calls. When you're running with ATM, you
effectively have a slightly different version of GDI.

The SYSTEM initialization routine uses INT Ilh (the BIOS Get Equipment List
service) to determine the number of floppy drives on the system and whether an
80x87 math coprocessor is present (ifINT Ilh reports that one is, it is initialized with
the FNINIT instruction). HPSYSTEM.DRV uses INT 16h AX=6FOOh to ensure it is
running on HP hardware; this function returns BX=4850h ('HP') if the extended HP
functions are available. HPSYSTEM makes additional INT 16h AH=6Fh and INT
6Fh calls to manage HP EX-BIOS drivers, such as HPHIL (Hardware Interface Level).

The SYSTEM module is also briefly discussed in Dan Norton's Writing Windows
Device Drivers, pp. 271-273; the system timer functions are briefly mentioned in a
Microsoft Systems Journal (July 1991) article by Jerry Jongerius, "Accurately Timing
Windows Events Without Timer Reprogramming," pp. 75-79.

SYSTEM.20

This function simply returns the value 2 in both SYSTEM.DRV and HPSYSTEM.DRV.
This is identical to the A20Proc function in KERNEL.

CreateSystemTimer SYSTEM.2

WORD CreateSystemTimer(wRate, fpCallback)
WORD wRate; /* rate in milliseconds at which function should be

called (1000 = once every second) */
FARPROC fpCallback; /* far pointer to callback function; must be

located in FIXED segment */

CHAPTER 9 • SYSTEM 603

CreateSystemTimer() is used to install a timer callback function. The INT 8 han
dler inside SYSTEM (see the entry for EnableSystemTimers()) calls the installed timer
callback function asynchronously, in contrast to the documented SetTimer() and KillTi
mer() functions, which manage synchronous timers, with which a callback function is
only called after a program has polled its message queue. In other words, system tim
ers bypass the Windows message facility and are much closer to the INT 8 handlers
one would install in DOS.

CreateSystemTimer() returns a timer handle or 0 ifno more system timers are avail
able. In present implementations ofSYSTEM, only eight system timers are available.

The callback function installed with CreateSystemTimer will be called directly by
the SYSTEM INT 8 handler, based on the millisecond rate specified. For example, if
wRate is 1000, the function is called once every second. However, granularity is lim
ited; in present implementations of SYSTEM, the function will never be called more
than 18.2 times per second, corresponding to a wRate of about 55.

However, there are two situations in which the callback will not be invoked: in
Standard mode (or Windows 3.0 Real mode) when a DOS box is active and in
Enhanced mode when a full-screen DOS box is active and the user is idle (i.e., not hit
ting keys). The Enhanced mode behavior may be changeable via Virtual Timer Device
(VTD) settings such as IdleVMWakeupTime= and TrapTimerPorts= in SYSTEM.INI.

Even though the callback function is not an interrupt handler (it does not return
with an lRET, for example), it must in other ways be treated essentially as interrupt
code because it is invoked direcdy from an interrupt handler. In particular, the call
back function must be located in a fixed (nonmovable, nondiscardable) segment. Fur
thermore, because registers other than CS:IP are unknown when the function is
called, to access any data it must load DS. MakeProcInstance() takes care of this.

In CWTent implementations of SYSTEM, when the system timer function is called, AX
happens to hold the timer handle (i.e., same number returned by CreateSystemTimer()).

Calling most Windows API functions inside the system timer appears to have no
effect. This is not surprising because the system timer is essentially interrupt code.
However, simple functions (such as MessageBeep() in the following example) can be
called. One useful simple function is GetCurrentTask(). Also, Microsoft garantees that
PostMessage() can be called from inside an interrupt handler. In any case, generally the
timer will instead be used to set a variable whose value can be checked inside tight loops.

In current implementations, the returned timer handle happens to be an offset
into a hard-wired table of eight system timers in SYSTEM:

typedef struct {
WORD wInUse; II initialized to FFFFh = not in use
WORD wRate; II or FFFFh = end of table
FARPROC fpCallback;
} SYSTEMTIMER;

CreateSystemTimer

604 UNDOCUMENTED WINDOWS

Each time it is invoked, about 18.2 times per second, the 1NT 8 handler in SYS
TEM (installed by EnableSystemTimers; see the entry later in this chapter) loops over
the table, calling the installed functions. Similarly, CreateSystemTimer() itself walks
through the table, looking for an unused entry.

Support: Windows 3.0, 3.1
Used by: KERNEL (LDBOOT), USER; Microsoft Excel; Windows COMM driver
(see source code in DDK\COMM\IBMSETUP.ASM and \COMM\IBMINT.ASM)
Example: The following program, SYSTIMER.C, creates an asynchronous timer and
then goes into a loop. Normally, it is a tight loop that shows that the timer is indeed
asynchronous. A command-line argument can be used instead to go into a loop that
will yield whenever the async timer is invoked. Command-line arguments can also be
used to change the duration of the loop and the system-timer rate. If the rate is low
(twice per second or less), the system timer calls MessageBeep(). This helps
demonstrate the behavior of system timers when a DOS session is running: in Stand
ard mode, running a DOS box causes the system timer to grind to a halt (you don't
hear any beeps); in Enhanced mode, a full-screen DOS box in which the user is idle
(i.e., not hitting keys) also brings system timers to a halt.

/*
SYSTIMER.C -- demonstrate CreateSystemTimer and KillSystemTimer

usage:
systimer [loops] [rate] [any third arg disables tight loop]
*/

#include <windows.h>
#include "winio.h lJ

#include "wmhandlr.h"

#define LOOPS 200
#define RATE 100

#define INQSYS_TIMERRES 0

WORD FAR volatile gTicks 0;
WORD FAR volatile gGotTick = 0;
WORD FAR giRate;

/*
NOTE: Because it will be called directly, at interrupt time,
from SYSTEM's INT 8 handler, the callback function installed
with CreateSystemTimer() *MUST* be located in a FIXED segment.
For this example program, we've made the entire code segment
fixed by changing the .DEF file statement from the normal
CODE PRELOAD MOVEABLE DISCARDABLE to simply CODE PRELOAD (i.e.,
non-moveable, non-discardable). In a genuine application, the

CreateSystemTimer

CHAPTER 9 • SYSTEM 605

callback should be located in its own fixed segment. On the
other hand, the callback does *NOT* have to be located in a
DLL, even though Microsoft's documentation suggests that this is
necessary for Windows interrupt handlers.

*1
void FAR _export TimerFunc(void)
{

gTicks++;
gGotTick = 1;
if (giRate >= 500)

MessageBeep(O); II this just happens to work
II PostMessage is guaranteed to work at interrupt time
II other simple functions: GetCurrentTask, etc.

}

static WORD hTimer = 0;
static FARPROC fpTimerProc = 0;
static WORD FAR PASCAL (*KillSystemTimer)(WORD hTimer);

void cleanup(void)
{

}

if (hTimer)
{

if (KillSystemTimer(hTimer) != 0)
fail(IICouldn't kill timer");

hTimer = 0;
}

if (fpTimerProc)
{

FreeProclnstance(fpTimerProc);
fpTimerProc = 0;

}

II 0 success

II just in case they close window while system timer is installed
void on_close(HWND hwnd) { cleanup(); }

int main(int argc, char *argv[J)
{

WORD FAR PASCAL (*CreateSystemTimer)(WORD wRate, FARPROC fpCallback);
DWORD FAR PASCAL (*InquireSystem)(WORD wFlag, WORD wOption);
DWORD dWTimerRes;
DWORD t1, t2;
WORD hSystem;
Baal bTightLoop;
int iloopMax;
int iloop, iloopLoop;

iloopMax = (argc < 2) ? lOOPS: atoi(argv[1J);
giRate = (argc < 3) ? RATE: atoi(argv[2J);
bTightLoop = (argc < 4) ? 1 : 0;

1* dynamically link to undocumented SYSTEM functions *1
hSystem = GetModuleHandle(IISYSTEM II

);

CreateSystemTimer = GetProcAddress(hSystem, "CREATESYSTEMTIMER");

CreateSystemTimer

606 UNDOCUMENTED WINDOWS

KillSystemTimer = GetProcAddress(hSystem, "KILLSYSTEMTIMER");
InquireSystem = GetProcAddress(hSystem, IIINQUIRESYSTEM II);

if (CreateSystemTimer && KillSystemTimer && InquireSystem)
puts(lIlnstalling asynchronous timer with CreateSystemTimer ••• II);

else
fail(IICan't find CreateSystemTimer and KillSystemTimer ll

);

dwTimerRes = InquireSystem(INQSYS_TIMERRES, 0);
if (giRate < (dwTimerRes / 1000»

printf(IIWarning: Lowest rate is %u\n", dwTimerRes / 1000);

gTicks = 0;

/* install the asynchronous timer handler */
fpTimerProc = MakeProclnstance«FARPROC) TimerFunc, __hlnst);
if «hTimer = CreateSystemTimer(giRate, fpTimerProc» == 0)

fail("CreateSystemTimer failed");

winio_onclose(__hMainWnd, on_close);

t1 = GetCurrentTime();

if (bTightLoop)
{

/*
NOTE! The following is a tight loop, with no calls to
GetMessage or PeekMessage. If our TimerFunc gets called,
it means system timers really are asynchronous.

*/

for (iLoop = 0; iLoop < iLoopMax; iLoop++)
for (iLoopLoop = 0; iLoopLoop != -1; iLoopLoop++)

;
}

else
{

/* If we weren1t trying to show that the timer function is
called asynchronously, we would probably use system timers
in the following way */

for (iLoop = 0; iLoop < iLoopMax; iLoop++)
for (iLoopLoop = 0; iLoopLoop != -1; iLoopLoop++)

if (gGotTick != 0) // check volatile variable
{

printf(lI%u\n ll
, gTicks); // printf will yield

gGotTick = 0;
}

}

t2 = GetCurrentTime();

cleanup();

printf("System timer handle: %04xh\n", hTimer);

CreateSystemTimer

CHAPTER 9 • SYSTEM 607

printf(flSetSystemTimer rate: %u\n", giRate);
printf(flGetCurrentTime elapsed: %lu\n", t2 - t1);
printf("Calls to handler: %u\n", gTicks);
if (gTicks != 0)

printf(flActual rate: %lu\n", (t2 - t1) I gTicks);

return 0;
}

DlsableSystemTlmers

void DisableSystemTimers(void);

SYSTEM.5

This function restores the previous INT 8 handler that was saved by
EnableSystemTimers (see below). Normally, it should only be called by Windows at
termination (DisableSystemTimers() is called by ExitKernel()). Even though there is
probably no good reason to call this function, a perverse application can call it. After
calling DisableSystemTimers(), functions such as GetSystemMsecCount() and
GetCurrentTime() continue to return the same value; in programs such as Clock, time
stands still. To reenable time, call EnableSystemTimer(); programs such as Clock catch
up properly.

EnableSystemTImers

void EnableSystemTimers(void);

SYSTEM.4

This function installs the INT 8 (BIOS IRQO timer interrupt) handler for Windows;
functions such as CreateSystemTimer (see above), and consequently all time-related
functions in Windows (with the exception of VfD-related functionality in Enhanced
mode) are based on this INT 8 handler.

EnableSystemTimers() calls INT 2Ih AX=3508h to save the previous INT 8 han
dler; this can later be restored with DisableSystemTimers (see above). The function
then calls INT 2Ih AX=2508h to install the SYSTEM INT 8 handler.

This function should only be called by Windows at initialization time. However, a
perverse program that calls DisableSystemTimers() would later call EnableSystem
Timers() to resume the march of time.

Interestingly, in current implementations of SYSTEM the EnableSystemTimers()
function does not access the 8253 programmable interval timer. The standard timer
resolution ofOD68Dh (18.2 timer interrupts per second) is hard-wired into the SYSTEM
module. (However, the Enhanced mode Virtual Timer Device (VfD) and the Wm
dows 3.1 multimedia driver TIMER.DRV both reprogram the 8253.)

DisableSystemTimers

608 UNDOCUMENTED WINDOWS

Get80x87SaveSIze

WORD Get80x87SaveSize(void);

SYSTEM.7

This function returns the number of bytes that need to be allocated for the buffer
whose address is passed to the Save80x87State() and Restore80x87State() fimctions (see
later in this chapter). The return value will be zero if an 80x87 math coprocessor is
not present. Otherwise, in present versions ofWindows, the value returned is 94 bytes.

See also: WIN87EM fimctions Win87EmSaveArea() and Win87EmInfo()

GetSystemMsecCount

DWORD GetSystemMsecCount(void);

SYSTEM.6

This function returns the number of milliseconds Windows has been running. Because
the documented GetCurrentTime() fimction in USER simply JMPs to this fimction
and, therefore, produces identical results, there should be no reason to call
GetSystemMsecCount().

It is important to note that the time returned by GetSystemMsecCount() and
GetCurrentTime() is not necessary genuine (i.e., wristwatch or wall-clock) time. The
number merely reflects how many times the INT 8 handler in SYSTEM has been
called; each time it is called, the INT 8 handler adds 54 milliseconds to the SYSTEM
msec count. As explained earlier in the entry for CreateSystemTimer(), this INT 8
handler is not invoked when a DOS box is running in Standard mode (or in Windows
3.0 Real mode), and in some circumstances it is will not invoked when a full-screen
DOS box is running in Enhanced mode, so the values returned by GetCurrentTime()
and GetSystemMsecCount() may be quite skewed.

InqulreSystem SYSTEM.l

DWORD InquireSystem(wFlag, wDriveNumber, bOptionalEnable)
WORD wFlag; /* one of the INQSYS flags indicated below */
WORD wDriveNumber; /* a zero-based drive number (i.e., 0 = A:, 1
B:) */
BOOL bOptionalEnable; /* an optional parameter; see below */

InquireSystem() is a hodge-podge function that can return the SYSTEM timer resolu
tion, determine whether a drive exists, or enable/disable single-drive logic:

#define INQSYS_TIMERRES 0 /* get timer resolution */
#define INQSYS_DRIVEEXIST 1 /* does drive exist? */
#define INQSYS_ONEDRIVE 2 /* enable/disable one-drive logic */
InquireSystem(INQSYS_TIMERRES, 0) ==> timer resolution

Get80x87SaveSize

CHAPTER 9 • SYSTEM 609

This returns the hard-wired value OD68Dh, or 54925 decimal, for the Windows
SYSTEM timer resolution. (Note that 1 divided by 54925 is .0000182066, giving the
familiar 18.2 timer interrupts per second.) This number, divided by 1000, gives the
smallest number that can reasonably be passed to Windows timer-handler functions
such as SetTimer() and CreateSystemTimer(). The same value is returned by the undocu
mented GetTimerResolution() function in USER. For an example, see SYSTIMER.C in
the entry for CreateSystemTimer().

InquireSystem(INQSYS_DRIVEEXIST, wDriveNumber) ==> drive information

Like the documented GetDriveType() function, this form of InquireSystem()
reports on whether a drive physically exists and whether it is removable or fixed:

#define DRIVE_NOTEXIST 0
#define DRIVE_REMOVEABLE 2
#define DRIVE_FIXED 3
#define DRIVE_REMOTE 4

Note that if the drive does not physically exist (e.g., drive B: on most systems), the
HIWORD of the return value (AX) is 0, and the LOWORD (DX) indicates the status
of the corresponding mappable drive. For instance, on most systems InquireSystem(l,
1) returns Ox20000L, indicating that drive B: is not physically present, but that the drive
to which it corresponds is removable. Thus, the return value from Inquire
System(INQSYS_DRIVEEXIST) should not be tested against DRIVE_NOTEXIST;
instead, test the HIWORD of the return value:

DWORD dwStatus = InquireSystem(INQSYS_DRIVEEXIST, 1);
if (HIWORD(dwStatus) == DRIVE_NOTEXIST)

return LOWORD(dwStatus);

There is little reason to use this because GetDriveType() is documented. In fact,
GetDriveType() in KERNEL is simply a wrapper around InquireSystem(INQSYS
_DRIVEEXIST); KERNEL uses GetProcAddress() to link to InquireSystem().

InquireSystem(INQSYS_ONEDRIVE, wDriveNumber, bEnable)

In this operation, InquireSystem() is used not to inquire a value, but to change it.
Setting the bEnable flag to FAlSE (0) disables single-drive logic; setting it to TRUE
(nonzero) enables it. Most Windows applications seem not to recognize any such
change in the status of drive B:, however, thus limiting the usefulness of this function.

InquireSystem() uses the undocumented NoHookDOSCall() function in KERNEL
to call the following DOS functions: Get Current Drive (INT 21h AH=19h), Set
Default Drive (INT 21h AH=OEh), Removable Media Check (INT 21h AX=4408h),
Is Drive Remote (INT 21h AX=4409h), Get Logical Drive Map (INT 21h
AX=440Eh), and Get Network Assign-List Entry (INT 21h AX=5F02h).

InquireSystem

610 UNDOCUMENTED WINDOWS

KlllSystemTimer SYSTEM.3

WORD KillSystemTimer(hTimer);
WORD hTimer; /* timer handle returned by CreateSystemTimer */

KilISystemTimer() deallocates a system timer allocated with CreateSystemTimer(). It
returns zero for success; on error, it returns whatever number was passed in.

Example: See SYSTIMER.C in the entry for CreateSystemTimer()

Restore80x87State SYSTEM.9

void Restore80x87State(fpState)
BYTE far *fpState; /* Far pointer to 94-byte buffer */

This function restores the 80x87 math coprocessor state (floating-point stack, excep
tion pointers, control words, etc.) from the specified buffer; the function is equivalent
to the 80x87 FRSTOR instruction. The buffer will have previously been set with a call
to Save80x87State() (see below).

See also: WIN87EM Win87EmRestore()

Save80x87State SYSTEM.8

void Save80x87State(fpState);
BYTE far *fpState; /* Far pointer to 94-byte buffer */

This function saves away the 80x87 math coprocessor state (floating-point stack,
exception pointers, control words, etc.) to the specified buffer; the fimction is equivalent to
the 8Ox87 FSAVE instruction. The buffer can later be restored by calling Save80x87State().
The size of the buffer to allocate can be verified with Get80x87-SaveSize().

See also: WIN87EM Win87EmSave()

KillSystemTimer

CHAPTER • 10

ToolHelp: A Partial
Replacement for Undocumented Windows

TOOLHELP.DLL is a dynamic link library provided by Microsoft that allows pro
grammers to obtain information about the state of Windows internals that was pre
viously unobtainable by documented means. In addition, it provides a higher level
interface to several portions of the Windows operating system functionality. Another
design goal of ToolHelp is to insulate the programmer from having to worry about
changes to the internal data structures from version to version of Windows:
TOOLHELP.DLL is shipped with Windows 3.1 but will also work with the some
what different internal data structures of Windows 3.0. Lastly, Microsoft intends for
ToolHelp to eventually replace WINDEBUG.DLL as the operating system interface
for debuggers. On the other hand, it appears as though ToolHelp will not be part of
the Win32 API; the current Win32 specification includes debugging functions, but
they are different from what's in ToolHelp.

ToolHelp does not "give" you the actual data structures used internally by Win
dows. However, it does give you data in a consistent, documented form. The idea is to
provide a stable interface layer to operating system information, while still allowing
Microsoft to change the internals of Windows as needed. In other words, ToolHelp
functions return what Microsoft wants you to see from its internal data structures. The
functions copy selected information from the actual data structures into "idealized"
and "sanatized" images of the structures. Often, not having the actual structure is just
fine.

Additionally, ToolHelp provides the functionality necessary to implement a GUI
debugger. GUI debuggers are distinct from text mode debuggers in that they use the
windowing system to display themselves, rather than using a character mode interface.
Multiscope and Quick C for Windows are GUI debuggers; TDW and CVW are text
mode debuggers. There is some confusion on this last point. TDW and CVW are Win
dows programs and have WinMain functions. The key difference between them and
"normal" Windows applications is that they use a text mode display to show their

611

612 UNDOCUMENTED WINDOWS

output. This is done by using the predefined KERNEL selectors _BOOOH and
_B800H to access the text mode video memory.

Creating a GUI debugger requires much more control over the tasking and mes
saging mechanisms than is possible with WINDEBUG.DLL. Programs that use
WINDEBUG have a much simpler, higher level interface to debugging functionality
than they would with ToolHelp, but they are more constrained in how they can han
dle their output. A ToolHelp-based debugger has to operate closer to the Windows
kernel, is lower level, and must duplicate much of the code and algorithms that are
enscapsulated in WINDEBUG.DLL, but the benefit is that it leaves the display
options much more open.

Lastly, ToolHelp provides the capability to implement post-mortem debugging
tools such as Dr. Watson and WinSpector. In the CORONER sample program at the
end of this chapter we'll see exactly how this is done.

What Undocumented Functionality Can ToolHelp Replace?

As this book demonstrates, it is not always a simple task to do something that requires
information maintained by Windows (for instance, obtaining a list of all window
classes registered with the system, or making a list of all the tasks). Because internal
data structures such as the format of a task database may need to change, Microsoft
chose not to publish their formats. However, you might need to know this informa
tion. For example, how do you find out the instance handle associated with a given
task handle?

Using undocumented Windows, getting an instance handle from a task handle
looks like this excerpt from HANDLES.H in the introduction to chapter 5:

1* Turn hTask into hInstance: use WORD at TDB offset 1Ch *1
#define HINSTANCE_FROM_HTASK(hTask) \

*«WORD far *) MK_FP(hTask, Ox1C»

This is trivially simple, but obviously open to any changes Microsoft might make
in future versions of the Task Database (TDB).

Using ToolHelp, the code might look like this:

#include "toolhelp.h"

HANDLE HINSTANCE FROM_HTASK(HANDLE hTask)
{

TASKENTRY te;
te.dwSize = sizeof(te);
if (TaskFindHandle(&te, hTask»

return te.hInst;
else

return 0;
}

CHAPTER 10 • TOOLHELP 613

Notice that the ToolHelp version is checking for invalid tasks, which our simple
undocumented Windows macro isn't doing. To truly duplicate the effect of the
ToolHelp function, the undocumented Windows macro would also need to call the
IsTask() function in Windows 3.1, or use the IsValidTask() function from HAN
DLES.C in chapter 5.

In other words, ToolHelp can vastly simplify a lot of code that used to require
undocumented Windows.

Microsoft has packaged up some previously undocumented knowledge in
ToolHelp. Specifically, ToolHelp knows

• The format of the Standard and Enhanced mode Global heaps
• The format of a Local heap (USER and GDI have normal Local heaps)
• The format of a Module database (associated with a Module handle)
• The format of a Task database (associated with a Task handle)
• The register contents for "System notifications"

For example, programs often need to show the amount of free system resources
(the magic number that appears in Program Manager's Help I About box). As
explained in chapter 5, an undocumented function in Windows 3.0 (GetHeapSpa
ces()) will give you information for calculating that number. However, in Windows
3.1 a different function gives you similar information. But to have a program that runs
under either Windows version requires code to determine what version of Windows
you're under, as well as to calculate the value two different ways.

ToolHelp can eliminate this problem because it has a function (System
HeapInfo()) that returns the same information regardless of which version of Win
dows you're running. Thus, there is no need to play with undocumented functions
simply to get the free system resources magic number.

The downside to this is that any program using the more portable Sys
temHeapInfo() function does require that TOOLHELP.DLL itself be available when
the program runs, which might not be the case under Windows 3.0. You can ship
TOOLHELP.DLL with your application, but this might be overkill just to display one
free system resources number. In this situation, you might want to use LoadLibrary()
and GetProcAddress(), so that if TOOLHELP.DLL isn't already present on a Wm
dows 3.0 user's hard disk, the situation can be handled gracefully by your program,
rather than gracelessly by Windows.

Another example: Prior to ToolHelp, walking the global heap would require using
an undocumented function (GlobalMasterHandle()), as well as having code specific to
the mode Windows was running in. Windows 3.0 HEAPWALK does just this. You
could not write your own version of HEAPWALK without using undocumented
information. The Windows 3.1 version of HEAPWALK, however, instead uses
ToolHelp to walk the system heaps. The closest thing to an abstract interface to the
heaps in Windows 3.0 was WINDEBUG.DLL, which is not documented by Microsoft
and which is overkill ifyou only want to know how many selectors are in use.

614 UNDOCUMENTED WINDOWS

Later in this chapter, more details are provided on precisely what undocumented
functionality each ToolHelp function replaces, plus what undocumented functionality
the ToolHelp function itself uses. (Because ToolHelp partially removes the need to
use undocumented functions and structures, it must itself use these functions and
structure.)

There is no contradiction between using ToolHelp and using undocumented
Windows functions and data structures. As shown by sample programs in other parts
of this book (ATOMWALK in chapter 5, USERWALK in chapter 6, and GDIWALK
in chapter 8), you can use ToolHelp to simplify all your basic access to Wmdows inter
nals and then, when ToolHelp gives out, switch over to using undocumented func
tions and data structures. For example, ToolHelp doesn't know anything about the
structure of an atom table, so an atom-table browser like ATOMWALK can't rely
totally on ToolHelp. However, ToolHelp does supply the basic mechanics ofwalking
the global heap, so ATOMWALK uses this to locate atom tables:

GlOBAlENTRY ge;
BOOl ok;
ge.dwSize = sizeof(ge);
ok = GlobalFirst(&ge, GLOBAL_ALL);
while (ok)
{

II TOOLHELP can't help us with this part: figure out
II if ge.hBlock contains an atom table, and, if it
II does, display its contents

ok = GlobalNext(&ge, GLOBAL_ALL);
}

Assorted ToolHelp Programming Considerations
To use ToolHelp, you must include TOOLHELP.H (which contains function proto
types and structure definitions for the library), and link with the import library
TOOLHELP.LIB. As noted earlier, TOOLHELP.DLL must be available when the
program runs.

With a few exceptions, ToolHelp is a read-only API: You can obtain information
contained in Wmdows internal data structures, but you cannot modify them. Informa
tion can be retrieved with the XxxFirst/XXXNext functions, but there is no provision
to change the contents. To do that requires the use of the risky and higWy version
specific undocumented information presented in chapter 5.

For the most part, ToolHelp functions return a BOOL, indicating success or fail
ure. ToolHelp is strict about what it will accept and will fail a function call with invalid
parameters. In other words, it's a good idea to always check return values from
ToolHelp functions.

All the heap and information functions take a FAR pointer to a data structure and
return BOOL. Each structure has a dwSize field; a common mistake made with

CHAPTER 10 • TOOLHELP 615

ToolHelp is forgetting to initialize the dwSize field. The C sizeof() operator provides
an easy way to initialize the structure. For example:

#include IItoolhelp.h ll

// ...
GlOBAlENTRY myGlobalEntry;
myGlobalEntry.dwSize = sizeofCGlOBALENTRY);

The standard prolog inside each ToolHelp function does the following:

• Checks a global variable set in ToolHelp's LibMain to see if ToolHelp is ini
tialized properly; the function returns FALSE ifnot.

• Returns FALSE if the structure pointer passed in is NULL.
• Verifies that the dwSize field in the structure agrees with what ToolHelp

thinks the structure size should be. Doing this allows for backward compati
bility. For example, if a future ToolHelp adds information to a data structure,
but you run a program written for an older ToolHelp, then ToolHelp can
choose to fill in only the fields that the older ToolHelp knows about. Alterna
tively, if a program written for a newer ToolHelp is used with an older
ToolHelp, the call will be failed if the sizes don't match.

Several groups of calls are of the form xxxFirst/xxxNext. These are similar to the
DOS FindFirst/FindNext calls that are used to iterate through all the files in a direc
tory. The simplest way to use these functions is expressed in the following pseudo
code:

BOOl not_finished;
STRUCT info_struct;

info_struct.dwSize = sizeofCSTRUCT);

not_finished = xxxFirstC&info_struct);

while (not_finished)
{

Display/process info in info_struct

not_finished = xxxNextC&info_struct);
}

There is one crucial point about this basic ToolHelp heap-walking loop: the code
"Display/process info in info_struct" must not yield control to other applications or
do anything else that might change the state of the list that you're walking. For exam
ple, if you are using GlobalFirst/GlobalNext, it would be a mistake to call
GlobalAlloc() inside the loop, because this would change the Wmdows global heap
right out from under you.

616 UNDOCUMENTED WINDOWS

ToolHelp does not care too much about the difference between a memory handle
and its associated selector. Almost all ToolHelp functions that expect a handle of some
sort call an internal function that returns a selector. If the parameter passed to this
function is a handle, it is converted to a selector. If the parameter is a selector value,
it's returned unchanged. This internal function has code specifically for Windows 3.0
vs. 3.1, due to the change in processor ring level from Ring 1 in Windows 3.0 to Ring
3 in Windows 3.1. The bottom line is that you can call ToolHelp functions with either
a handle or a selector.

There are a few pitfalls to be aware ofwhen debugging programs that use ToolHelp.
Certain key portions of ToolHelp overlap functionality in WINDEBUG.DLL. Since
WINDEBUG was written before ToolHelp, WINDEBUG assumes that it's the only
user of certain Windows operating system facilities. To attempt to alleviate this poten
tial conflict between ToolHelp and WINDEBUG, the NotifyRegister() function in
ToolHelp will return FALSE under Wmdows 3.0 if the module WINDEBUG.DLL is
currently loaded. This means that if you're running a debugger that uses
WINDEBUG.DLL (TDW, CVW, or Multiscope), you can't debug programs that use
NotifyRegister(). Conversely, when ToolHelp is loaded before WINDEBUG.DLL,
you'll find that your notification callback function is no longer called back. ToolHelp
under Windows 3.1 does not have these problems, as it uses ToolHelpHook (see
chapter 5) to provide a "parallel" set of services to the RegisterPtrace function (again,
see chapter 5) used in Windows 3.0.

A related situation occurs with interrupts and exceptions. Both WINDEBUG and
ToolHelp install handlers for the commonly encountered interrupt/exceptions. If
your program uses InterruptRegister(), it is important that you chain on any interrupt
that you don't handle yourself. Also, loading and unloading ToolHelp and
WINDEBUG "out of sequence" can cause problems. This is similar to the problem of
multiple TSRs hooking the same interrupt and then being removed in the incorrect
order.

There is one additional warning for programmers who are concerned about run
ning their code under Real mode in Windows 3.0, but who want to use ToolHelp:
Get with the program, dudes! Real mode is dead; ToolHelp will not load in Windows
3.0 Real mode.

Using ToolHelp in Your Product

ToolHelp comes with Windows 3.1, but it was designed to provide a consistent inter
face, regardless ofWindows version. It runs under Windows 3.0 as well as 3.1.

Microsoft ships ToolHelp with Windows 3.1, but you can redistribute a copy ofit
with your program and install it on the user's machine ifyour application requires it to
run under Windows 3.0. A very important warning: There were several different beta
versions of ToolHelp floating about before Windows 3.1 became available. Thus, you
may run into an old version on the user's disk. Some really old versions of ToolHelp
actually have different ordinal numbers and functions from the ToolHelp shipped with

CHAPTER 10 • TOOLHELP 617

Windows 3.1. If your program encounters one of these old versions of ToolHelp
while running under Windows 3.0, problems will occur, especially if the debug version
of Windows is running. With Windows 3.1, Microsoft introduced VER.DLL, which
assists installation programs in identifying different versions of a DLL and installing
the correct one (that is, installing a DLL only ifit is not already there, or if it is newer
than the one already installed). Because the versioning facilities provided by this DLL
are compatible with Window 3.0, it's a good idea to use them. See chapter 11 ("File
Installation Library") ofVolume 1 (Overview) of the Windows 3.1 SDKProgrammer)s
Reference.

The ToolHelp Functions

The following is a list of ToolHelp functions, grouped by functionality. It is not
intended to replace the ToolHelp documentation (see chapter 8 of Volume 1 of the 3.1
Programmer)s Reference). Instead, the aim is to show how the functions might be
used, as well as what undocumented functionality they replace and what undocu
mented functionality in Windows they themselves use.

The Heap Functions

The ToolHelp global heap functions are really just shells around a small set of core,
internal routines. There are different internal routines for KRNL286 (Standard mode)
and KRNL386 (Enhanced mode, and 3.1 Standard mode on a 386) because the for
mat of the heap is different in the two modes. Each function gets the address of the
header block that precedes each actual heap block. From that point on, a fairly stand
ard sequence of internal routines is called to transfer the information from the header
block into the GLOBALEENTRY structure that was passed in.

In KRNL386, the GlobalMasterHandle is a selector for a 32-bit segment, which
contains a table matching selectors to their linear address. A simple table lookup pro
vides the offset of the header for the block. (See Selector Table in chapter 5.)

In KRNL286, two selectors are used for each memory block. One selector is used
for the actual data block; the other selector points to a header that is 10h bytes in
length and immediately precedes the data block in the linear address space. (If the
header information was stored in the data block itself, it would be impossible for a
program to allocate a full 64IZ segment.)

DPMI services are used to find the linear address of the data block, then 10h bytes
are subtracted from the address. DPMI is then used again to create a selector with this
new address. The resultant selector is used to access the block header.

These functions are used in the WinWalk sample program, presented later in this
chapter.

618 UNDOCUMENTED WINDOWS

SystemHeaplnfo

BOOl FAR PASCAL SystemHeapInfo
(SYSHEAPINFO FAR* lpSysHeap);

typedef struct {
DWORD dwSize;
WORD wUserFreePercent;
WORD wGDIFreePercent;
HANDLE hUserSegment;
HANDLE hGDISegment;
} SYSHEAPINFO;

SystemHeapInfo() is the simplest way to obtain the free system resources referred to
in the Program Manager About box. To obtain this number, simply take the lower
value of the wUserFreePercent and wGDIFreePercent fields in the SYSHEAPINFO
structure.

The other two fields in the SYSHEAPINFO structure are actually more useful
than you might expect. hUserSegment corresponds to the DGROUP (default data
segment) of USER, and hGDISegment corresponds to the DGROUP of GDI. To
walk the default USER and GDI heaps, you can pass hUserSegment or hGDISegment
as the second parameter to LocalFirst(). (In 3.1 remember that USER and GDI may
have multiple local heaps.)

Without this function, there are several methods to obtain the DGROUP of
USER and GDI. One way is to obtain the DLL's module handle (via GetModuleHan
dle), and then look up the DGROUP value in the segment/selector table (see chapter
5 on KERNEL). As explained in chapter 6, to get USER's DGROUP you might also
use

GetWindowWord(GetDesktopWindow(), GWW_INSTANCE);

To determine the DGROUPs, ToolHelp itself uses the module table lookup
method described earlier. If running under Windows 3.0, it calculates the percentage
free by looking at values stored in the local heap's memory. If running under Windows
3.1, it calls GetFreeSystemResources() to obtain the percentages directly.

GlobalEntryHandle

BOOl FAR PASCAL GlobalEntryHandle
(GlOBAlENTRY FAR *lpGlobal,
HANDLE hItem);

typedef struct {
DWORD dwSize;
DWORD dwAddress;
DWORD dwBlockSize;

SystemHeaplnfo

CHAPTER 10 • TOOLHELP 619

HANDLE hBlock;
WORD wcLock;
WORD wcPageLock;
WORD wFlags;
BOOl wHeapPresent;
HANDLE hOwner;
WORD wType;
WORD wData;
DWORD dwNext;
DWORD dwNextAlt;
} GLOBALENTRY;

Initially, GlobaIEntryHandle() doesn't stand out as one of the key functions in
ToolHelp. It is. A multitude of functions return or deal with memory handles
(hMems); GlobalEntryHandle is the quick and easy way to find out more about an
arbitrary memory block.

One common use for GlobaIEntryHandle() is to determine who owns a particular
memory block. By calling GlobalEntryHandle, you can obtain the module handle of
the block owner. The handle will be in the "hOwner" field of the GLOBALENTRY
structure and can be passed to ModuleFindHandle() to obtain the name of the own
ing module.

This function does not have the overhead one might expect. It does not walk the
global heap until it stumbles across a block whose handle matches the one passed in to
the function. Instead, it uses an internal routine with knowledge of the heap to quickly
find the block header.

GlobalEntryModule

BOOl FAR PASCAL GlobalEntryModule
(GLOBAlENTRY FAR *lpGlobal,
HANDLE hModule, WORD wSeg);

GlobalEntryModule, like its sister function GlobalEntryHandle, is really just a function for
looking up something in the global heap. It's not quite as useful as GlobalEntryHandle
and is used only by programs that deal with logical addresses, rather then selector off
sets.

A logical address is given by specifying a module, a segment number within the
module, and an offset within the segment. For instance, "USER 4:01234" means
"offset 01234h in the 4th segment in USER's segment table." A debugger uses logical
addresses. Because the selectors assigned to each segment of a program are not known
until run-time, the debug information is specified in terms of logical addresses. A
debugger would use this function to "convert" the logical address to an actual
address.

This conversion of logical to actual address can also be obtained through an
undocumented use of GetCodeHandle(). GetCodeHandle is documented as taking an

GlobalEntryModule
I

620 UNDOCUMENTED WINDOWS

IpProc. However, as explained in chapter 5, if you pass it MI<...-FP(ModuleHandle,
SegNumber), it will return a DWORD, with the high word containing the segment
selector and the low word containing the corresponding handle. DPMI functions or
the GetSelectorXXX functions can then be used to obtain information about the
length and linear address of the block. One caveat: calling GetCodeHandle in this way
will force the segment into memory if it's not already there. This mayor may not be
what you want.

Alternatively, without ToolHelp, you could find the selector for a given segment
number by looking it up in the segment table inside the module table. This has the
advantage (or disadvantage) of returning 0 for the selector if it's not loaded.

The ToolHelp implementation first verifies that you've passed in a valid module
handle (by checking for the NE signature). Then it verifies that the wSeg parameter
passed in is within range of the segments specified in the module table. Once it goes
through those checks, it executes essentially the same code as GlobalEntryHandle.

GlobalFlrst
GlobalNext

BOOl FAR PASCAL GlobalFirst
(GlOBAlENTRY FAR *lpGlobal, WORD wFlags);

BOOl FAR PASCAL GlobalNext
(GlOBAlENTRY FAR *lpGlobal, WORD wFlags);

These two functions are the core of any global heap walking program. GlobalFirst calls
an internal routine that uses GlobalMasterHandle to return the address of the first
block header. Then the standard set of internal functions is used to fill in the
GLOBALENTRY structure.

GlobalNext simply obtains the address of the next block from the dwNext or
dwNextAlt fields of the passed in GLOBALENTRY structure. It then calls the stand
ard set ofinternal functions to fill in the GLOBALENTRY.

One interesting aspect of GlobalNext is that it can start walking the heap anywhere,
as long as a GLOBALENTRY structure that has previously been used is passed in.

Globallnfo

BOOl FAR PASCAL Globallnfo
(GlOBAlINFO FAR *lpGloballnfo);

typedef struct {
DWORD dwSize;
WORD wcltems;
WORD wcltemsFree;
WORD wcltemslRU;
} GlOBAlINFO;

GlobalFirst

CHAPTER 1 0 • TOOLHELP 621

This function will return values that are useful if you wish to walk the global heap.
GlobaIInfo() tells you how many items you'll encounter during a global heap walk, so
you can allocate space for an array of structures beforehand. This is much easier than
having to create a new node for a linked list every time you encounter another heap
block. If you are going to allocate global memory after calling this function, however,
beware that the act of allocating global memory may invalidate the results you get
back from GlobalInfo!

This function is extremely fast, as it simply extracts values from heap data struc
tures pointed to by the GlobalMasterHandle. As noted in chapter 5, this information
is at different offsets in the GlobalMasterHandle segment, depending on whether
you're running under KRNL286 or KRNL386.

LoealFirst
LoealNext

BOOL FAR PASCAL localFirst
(LOCALENTRY FAR *lpLocal, HANDLE hHeap);

BOOl FAR PASCAL localNext
(lOCALENTRY FAR *lpLocal);

typedef struct {
DWORD dwSize;
HANDLE hHandle;
WORD wAddress;
WORD wSize;
WORD wFlags;
WORD wcLock;
WORD wType;
WORD hHeap;
WORD wHeapType;
WORD wNext;
} LOCALENTRY;

These functions are the equivalent of GlobalFirst/GlobalNext except that they work
on a specific local heap. Windows has only one global heap, but almost every instance
has its own local heap. Programs can call LocalInit() to create additional local heaps.
In contrast to the global heap functions, you must specify which local heap you want
to walk.

The documentation is somewhat incomplete, as it tells you to pass LocalFirst a
"heap handle," without explaining what this is. A heap handle is really just the
DGROUP segment of the instance in question, assuming that you're using only the
single local heap already set for you in the data segment at startup. If you are manag
ing multiple local heaps created by LocalInit(), then you can pass LocaIFirst() the
selector value that you used when you created the heap.

LocalFirst

622 UNDOCUMENTED WINDOWS

The Windows SDK HEAPWALK utility lets you select a segment and pop up
another window that displays the contents of the local heap within the block, if there
is one. The format of the local heap structures was not documented, thereby making
programmers dependent on HEAPWALK. With LocalFirst/LocalNext (or informa
tion on local heaps in chapter 5), you can now do this yourself. This functionality is
especially useful for the USER and GDI heaps. With the ability to examine these
heaps, programmers can write tools to check for unreleased resources and other
problem-causing conditions.

These functions are relatively robust, as they perform sanity checking to eliminate
the possibility of a bogus heap segment being passed in. In both Standard and
Enhanced mode, offset 6 in a heap segment is a near pointer to the start of the heap.
One of the first things done internally by ToolHelp is to verify that the near pointer
falls within the limit of the selector passed in.

Additionally, in KRNL286 the signature bytes 'LH' (484Ch) will be found 22h
bytes past the start of the local heap. In KRNL386 the same signature can be found
28h bytes past the local heap start. Naturally, ToolHelp shields you from having to
know these details.

LocalNext relies on the wHeap field of the LOCALENTRY structure. Thus, it's
important to preserve the value in the LOCALENTRY structure from the previous call
to LocalFirst or LocalNext.

When walking the USER heap under Windows 3.0, be aware that you will always
get back zeros for the heap block type. Internally, ToolHelp checks the hHeap field in
the LOCALENTRY structure, and takes special action if the value is either USER's or
GDI's heap handle. When the hHeap corresponds to USER's heap, it calls the undoc
umented function GetUserLocalObjType(), which was introduced in Windows 3.1
and is available only in the debugging version of Windows (see chapter 6). If the
hHeap belongs to GDI, the wType value is extracted from the data block itself.

See the USERWALKprogram in chapter 6, and the GDIWALKprogram in chap
ter 8. These use ToolHelp for their basic heap walking and then, where ToolHelp falls
short, they use undocumented Windows.

Loeallnfo

BOOl FAR PASCAL localInfo
(lOCAlINFO FAR *lplocal, HANDLE hHeap);

typedef struct {
DWORD dwSize;
WORD wcItems;
} lOCAlINFO;

This function is the local heap equivalent of GlobalInfo. It allows you to find out how
many items you're going to encounter in the local heap before you walk it using

Loeallnfo

CHAPTER 10 • TOOLHELP 623

LocalFirst/LocaINext. The same cautions about influencing the heap by allocating
from it apply here also.

LocalInfo goes through the same sanity checks for a valid heap as GlobalInfo does.
It then finds the beginning of the local heap (described in the preceeding page) and
places the WORD from offset 4 into the wcItems field.

The Windows Data Structure Walking Functions

ClassFlrst
ClassNext

BOOl FAR PASCAL ClassFirst
(ClASSENTRY FAR *lpClass);

BOOl FAR PASCAL ClassNext
(ClASSENTRY FAR *lpClass);

typedef struct {
DWORD dwSize;
HANDLE hlnst;
char szClassName[MAX_ClASSNAME + 1];
WORD wNext;
} CLASSENTRY;

These functions allow you to traverse the linked list of window classes maintained in
the USER heap.

The class structure (see chapter 6 on USER) members that ToolHelp uses are as
follows:

OOH
04H
14h

WORD
ATOM
WORD

offset of next class in USER default local heap

atom handle ofclass name (note: DS must be set to USER's DS)
instance handle of registering application

Internally, ClassFirst has to fmd the address of the first class in different ways,
depending on which version of Windows is running. If running under Windows 3.0
non-debug version, offset 01B8h in the USER heap is a near pointer to a near pointer
(near * near *) to the first class entry. If running under the 3.0 debug version, offset
01CCh is used instead. If using Windows 3.1, UserSeeUserDo(Ox0500, OxOOOO) is
called to return the offset. (See chapter 6.) It's readily apparent that it's easier to let
ToolHelp do the hard work than to try to do this yourself.

Incidentally, the "hInst" field in the CLASSNTRY structure is in fact a module
handle, not an instance handle. Since other Windows class functions expect an hInst
ance, Microsoft felt it was less confusing to refer to the value as an hInst. Clear enough?

. ClassFirst

624 UNDOCUMENTED WINDOWS

ModuleFindHandle

HANDLE FAR PASCAL ModuleFindHandle
(MODULEENTRY FAR *lpModule, HANDLE hModule);

typedef struct {
DWORD dwSize;
char szModule[MAX_MODULE NAME + 1J;
HANDLE hModule;
WORD wcUsage;
char szExePath[MAX_PATH + 1J;
WORD wNext;
} MODULEENTRY;

One of the most interesting and useful undocumented data structures in Wmdows is
the module table. This table contains all sorts of information that Wmdows must
maintain for every program and DLL that's loaded. A module handle is a handle to a
global memory block that contains the module table (see chapter 5).

ModuleFindHandle returns what Microsoft wants you to see in the module table.
Given a module handle, this function will copy select information from the module
table into a MODULEENTRY structure. The most likely reason for calling this func
tion is to get the module name (corresponding to the "Name" or "Library" field in
the .DEF file).

Unfortunately, there are many more items present in a module table than you'll
get from this function. For instance, the number of segments for a module, the seg
ment number of the module's DGROUP, the initial stack size, and more can all be
found ifyou know the module table format (again, see chapter 5). In fact, the Mod
uleXXX functions in ToolHelp don't really give you anything that you couldn't get
with documented functions. The main benefit is that all the documented information
about a module is collected in one place.

ModuleFindName

HANDLE FAR PASCAL ModuleFindName
(MODULEENTRY FAR *lpModule, LPSTR lpstrName);

This function, like its sister function ModuleFindHandle, is basically useful only for
obtaining the path name of the .EXE or .DLL for the module. If you know the mod
ule name and want the module file name, you could as easily call GetModuleFileName
(GetModuleHandle (lpModName), IpstrName, len).

Internally, ModuleFindName verifies that the two pointers passed in are not
NULL. Then it just calls ModuleFirst/ModuleNext and uses lstrcmp to compare the
returned "szModule" field against the string that was passed in. In other words, this
function is case-sensitive.

ModuleFindHandle

CHAPTER 10 • TOOLHELP 625

ModuleFirst
ModuleNext

BOOl FAR PASCAL ModuleFirst
(MODUlEENTRY FAR *lpModule);

BOOl FAR PASCAL ModuleNext
(MODULEENTRY FAR *lpModule);

These functions are what you'd use to create a complete list of modules currently
loaded in Windows. Like the other ModuleXXX functions, they just take a module
handle, extract a portion of the data from the table, and put it into the MODULE
ENTRY structure.

TaskFindHandle

BOOL FAR PASCAL TaskFindHandle
(TASKENTRY FAR *lpTask, HANDLE hTask);

typedef struct {
DWORD dwSize;
HANDLE hTask;
HANDLE hTaskParent;
HANDLE hlnst;
HANDLE hModule;
WORD wSS;
WORD wSP;
WORD wStackTop;
WORD wStackMinimum;
WORD wStackBottom;
WORD wcEvents;
HANDLE hQueue;
char szModule[MAX_MODULE_NAME + 1];
WORD wPSPOffset;
HANDLE hNext;
} TASKENTRY;

Another useful, undocumented data structure in Windows is the Task Database (see
chapter 5). There is a task database for every instance of a ruruUng program. There are
no task databases for DLLs, which are just program code that wasn't linked until run
time. A task handle is a global memory block handle. By obtaining the selector for the
handle, we can access the task database.

Like ModuleFindHandle, TaskFindHandle is really just a copier of information. It
first verifies that the hTask passed in is a valid task handle by looking for the 4454h
('TD') signature at offset OFAh in the task database. It then copies information from
the undocumented Task database structure to the passed-in TASKENTRY structure.

ModuleFirst

626 UNDOCUMENTED WINDOWS

There is one minor excursion outside the task database segment. In order to fill
the wStackTop, wStackMinimum, and wStackBottom fields, the values are retrieved
from the base of the task's stack segment (see Instance Data, in chapter 5).

TaskFlrst
TaskNext

BOOl FAR PASCAL TaskFirst
(TASKENTRY FAR *lpTask);

BOOl FAR PASCAL TaskNext
(TASKENTRY FAR *lpTask);

With these functions, you can walk the list of task databases that Windows maintains
in the global heap.

One obscure use for the task walking functions is to obtain the DGROUP of a
TASK that is the second instance of a program. For example, let's say that you want to
obtain the DGROUP of the second instance of Solitaire that you're playing. If you
look in the module table for Solitaire, the DGROUP value that you obtain will be for
the fIrst instance. By walking the task list, you can look for a task whose module han
dle is that of Solitaire but whose DGROUP (hInst) is different from the one you
already have.

Debugger and Miscellaneous Functions

GlobalHandleToSel

WORD FAR PASCAL GlobalHandleToSel
(HANDLE hMem);

Despite Microsoft's warnings not to use bit twiddling to obtain selector values from
handles, the practice is alive and well in ToolHelp.

GlobalHandleToSel() is just a wrapper function around an internal routine that's
used heavily elsewhere in ToolHelp. The wrapper function twiddles bits in the passed
in handle and does not verify that the handle is actually for an allocated, valid selector.

Because Microsoft changed the ring-level that user code runs in between versions
3.0 and 3.1, there is version-specific code in the internal functions. Windows 3.0 runs
programs at Ring 1. Windows 3.1 runs programs at Ring 3. This affects the possible
values that a selector can have.

If running under Windows 3.0 protected mode, selectors are always numbered
either xxx5h or xxxDh. Their handles are just the selector value, incremented by 1 (if
not a FIXED segment). In this internal function, a check is made to see if the bottom-

TaskFirst

CHAPTER 10 • TOOLHELP 627

most bit is on (indicating an odd value, hence the selector). If so, then it returns the
value, unchanged. If the bottom bit is off, it subtracts 1 from the value and returns the
result.

Under Windows 3.1, selectors are numbered xxx7h and xxxFh. Their non-FIXED
handles are the selector values minus 1. Thus, to turn a handle into a selector, the bot
tom bit must be turned on. This is just what ToolHelp does, with an OR instruction.
See the HandleToSel() function in the WINMOD.C sample program for the Module
Table in chapter 5.

In both cases, either a selector or its handle can be passed in. It always returns the
selector. As mentioned earlier, ToolHelp doesn't really care about handles verses selec
tors.

InterruptReglster
InterruptUnReglster

BOOl FAR PASCAL InterruptRegister
(HANDLE hTask,
Farproc lpfnlntCallback);

BOOl FAR PASCAL InterruptUnRegister
(HANDLE hTask);

The InterruptRegister function is one of two functions in ToolHelp that make it much
more than just an information provider. InterruptRegister is at the heart of any debug
ger based on ToolHelp. For the purposes of this discussion, the term "interrupt" will
be used to mean interrupt or exception.

Interrupt handling under Windows can be tricky. Fortunately, ToolHelp makes it
much less tricky by calling your program in a nice, consistent manner. Without
ToolHelp, you'd have to have special code for Standard vs. Enhanced modes because
the information on the stack of an interrupt/exception handler differs between the
two Windows modes. In addition, some handlers would be installed using INT 2Ih,
while others are set up using DPMI services. ToolHelp has quite a bit of internal code
that "cooks" the interrupts and sends them to you in an easily digestible form.

On top of this, ToolHelp multiplexes the interrupts. Previously, a program that
took over an interrupt was the only one to receive it; it was entirely responsible for
chaining to previous owners of the interrupt. Now, with ToolHelp, many programs
can hook into the interrupt chain and not interfere with each other.

Behind the scenes, there are many more interrupts and exceptions going on than
you'll see with a ToolHelp interrupt handler. Windows uses GP faults as a "hacky"
method of doing ring transitions that aren't allowable with legal 80x86 instructions.
The virtual memory system of Enhanced mode is implemented via the page fault.
Luckily, these interrupts are handled behind the scenes, and ToolHelp never sees
those faults that are part of Windows normal operation. Thus, the installed interrupt

InterruptRe ister

628 UNDOCUMENTED WINDOWS

handlers do not have to concern themselves with whether the GP or page fault it
received should be ignored.

When a program calls InterruptRegister, it provides a callback address. ToolHelp
maintains a list of tasks that have called InterruptRegister, and their callback
addresses. When InterruptRegister is called for the first time, ToolHelp uses a combi
nation of DPMI calls and DOS Set Vector (INT 2Ih ·Function 25h) calls to install a
set of interrupt handlers to its own internal routine. When an interrupt occurs,
ToolHelp first "processes" the data to create a consistent "view" of what's on the.
stack. It then iterates through the list of installed handlers, calling the registered call
back function. If none of the callback functions process the interrupt themselves, it is
chained on to the original handler that existed before ToolHelp installed its own.

Your callback function is almost always written in assembly language. It is respon
sible for maintaining the state of all registers. It can do one of four things:

1. Handle the interrupt itself and then adjust the stack pointer so that the
ToolHelp-pushed items are no longer on the stack. It can then IRET
back to the task, as if nothing had happened.

2. Not handle the interrupt. It can simply do a far return (RETF), and
ToolHelp will then call the next installed handler.

3. Terminate the task by calling TerminateApp. This is essentially commit
ting suicide, as you're killing your own task (see below).

4. Do a non-local goto using the Catch/Throw functions (the Windows
versions of setjmp/longjmp). Ifyou do this, you must verify that the
stack you're calling Throw() is the same one that you did the original
Catch() on.

When an interrupt occurs, all of the code executed in ToolHelp, and all of the
code in the callback functions, is considered by Windows to be running as the task
that had the interrupt. In other words, if you were to call GetCurrentTask inside of
your interrupt handler, it would return the task handle of the faulting program and
not the task handle of the program that contains the callback function. Another way to
think of it is that the interrupt is processed while running on the stack of the faulting
task. The callback function has magically become part of the faulting task's code!

ToolHelp gives you access to the following interrupts and exceptions:

00 (Divide by 0)
• Hooked by DPMI (INT 3Ih AH=0203h)
• Chained on in Windows 3.1 if fTrappingO() callback function available (see

the entry on fTrappingO in chapter 8)

01 (Single step instruction)
• Hooked by INT 21h AH=25h
• Used almost exclusively by debuggers

InterruptRegister

CHAPTER 10 • TOOLHELP 629

02 (Non Maskable Interrupt) (NMI)
• Hooked by DPMI
• Rarely encountered
• The Windows 3.1 documentation claims that INT 2 is hookable by ToolHelp.

However, this does not appear to be true.

03 (Breakpoint)
• Hooked by !NT 21h AH=25h
• Used almost exclusively by debuggers

06 (Undefined Opcode)
• Hooked by DPMI

OCh (Stack fault)
• Hooked by DPMI
• Rarely encountered
• Has different internal handler for Standard and Enhanced modes

ODh (General protection fault)
• Hooked by DPMI
• Most UAEs are GP faults
• Has different internal handler for Standard and Enhanced modes
• Windows internally generates almost constant GP faults to do ring transitions

between application and system code, but these Windows-driven GP faults are
not seen when you use ToolHelp to .hook GP faults.

OEh (Page fault)
• Hooked by DPMI
• Rarely encountered (There are constant page faults in Windows Enhanced

mode-this is how virtual memory works-but you never see these "expected
exceptions" via TooIHelp.)

• Has different internal handler for Standard and Enhanced modes

100h (Not a real interrupt)
• When ToolHelp receives a Control-Alt-SysReq notification via RegisterPtrace

(see chapter 5), it sets a temporary breakpoint and resumes. When the break
point is hit, it removes it and calls the callback function as if it were a normal
interrupt.

InterruptRegister

630 UNDOCUMENTED WINDOWS

There are a few things to keep in mind if you wish to do serious work with
InterruptRegister:

1. P~ on any interrupts that you don't care about. For instance, the CORONER
sample application later in this chapter does not handle INT 1 or INT 3.
This allows it to be used at the same time as a debugger.

2. The AX register on entry to the callback function does not contain the
AX register value at the time of the interrupt. That value is placed on the
stack and should be retrieved from there ifyou're going to use it.

3. It is generally 'a very good idea to have your assembler callback function
save all the registers on entry, set up a standard stack frame, set the DS
to the DS ofyour application, and call a high-level language function
that does the real work. The CORONER sample application shows how
to do this.

4. ToolHelp only allows one callback function to be installed per task. You
can pass in the hTask ofyour application, or zero. Ifyou pass in zero,
ToolHelp does a GetCurrentTask() and uses that value.

5. The list of callback functions is stored as a linked list. Each new callback
function that's registered is put at the end of the list. This means that
the first task to call InterruptRegister will get first crack at the interrupts.

6. When InterruptUnregister is called for the last remaining callback func
tion, ToolHelp uninstalls its internal interrupt handlers.

7. Due to a bug in the Wmdows 3.0 DPMI implementation, a debugger
that single steps an instruction that GP faults will find itself receiving an
INT 1, with a CS:IP inside of the ToolHelp GP fault handler. This
behavior also manifests itself in WINDEBUG.DLL.

MemManlnfo

BOOl FAR PASCAL MemManlnfo
(MEMMANINFO FAR *lpEnhMode);

typedef struct {
DWORD dWSize;
DWORD dwLargestFreeBlock;
DWORD dwMaxPagesAvailable;
DWORD dwMaxPagesLockable;
DWORD dwTotalLinearSpace;
DWORD dwTotalUnlockedPages;
DWORD dwFreePages;
DWORD dwTotalPages;
DWORD dwFreelinearSpace;
DWORD dwSwapFilePages;
WORD wPageSize;
} MEMMANINFO;

MemManlnfo

CHAPTER 10 • TOOLHELP 631

This function is basically just a shell around DPMI function 0500h (Get Free Memory
Information). Every field in the MEMMANINFO structure is copied verbatim from
the information returned by the DPMI call, with one exception. The wPageSize field
is hard coded to always return 01000h. A note of caution here: the values returned by
the DPMI server are sometimes suspect, especially with regard to the amount of linear
memory.

Much of the information returned by this call relates to paging, which is not
implemented in Standard mode. Because no check is made to see if you're under
Standard mode, this function will merrily return TRUE. However, the returned infor
mation is useless in this case.

MemoryRead
MemoryWrlte

DWORD FAR PASCAL MemoryRead
(WORD wSel, DWORD dwOffset, LPSTR lpBuffer, DWORD dwcb);

DWORD FAR PASCAL MemoryWrite
(WORD wSel, DWORD dWOffset, LPSTR lpBuffer, DWORD dwcb);

MemoryRead and MemoryWrite add a nice touch to ToolHelp. They let you attempt
to read and write any selector:offset address without having to worry about GP fault
ing with an invalid address. Additionally, they allow reading and writing across tiled
selectors without having to worry about when to bump the selector value. Lasdy, they
let you read from 32-bit selectors (note that the offset is a DWORD), without requir
ing 386-specific code in your program.

Internally, the functions do a series of sanity checks, including using the protected
mode LAR and LSL instructions. If the read/write causes a GP fault, due to an invalid
selector or going past the segment limit, the function returns FAlSE.

When calling MemoryRead/MemoryWrite, it is a good idea to save the SI and DI
registers before the function call and restore them afterwards. Some versions of
ToolHelp have a habit of trashing these registers, which can wreak havoc with your
register variables.

These functions are well-suited to a debugger, which does a great deal of accessing
the debuggee's memory. By providing a nice, safe function to access memory, it
relieves the debugger ofhaving paranoid code all over the place.

Additionally, in most robust operating systems, the address space of the debugger
is separate from the address space of the debuggee. A special operating system call is
required to read from the debuggee's memory space (see, for example, the
READ_I_SPACE and READ_D_SPACE options in OS/2's DosPTrace() debugging
function). While this is not required under Windows 3.0 and 3.1, it does provide a
nice abstraction to the debugger; we hope it will be required in future versions of
Windows.

MemoryRead

632 UNDOCUMENTED WINDOWS

Interestingly, ToolHelp itself does not use MemoryRead to access the internal
data structures ofWindows. It relies on a smaller routine to verify that it can read the
end of the data structure it's working with; if the routine returns TRUE, ToolHelp
directly accesses the memory, instead of copying the data into a buffer.

NotlfyRegister
NotlfyUnReglster

BOOl FAR PASCAL NotifyRegister
(HANDLE hTask, lPFNNOTIFYCAllBACK lpfn,
WORD wFlags);

BOOl FAR PASCAL NotifyUnRegister
(HANDLE hTask);

typedef BOOl (FAR PASCAL *lPFNNOTIFYCAllBACK)(WORD wID, DWORD dwData);

The NotifyRegister function is the other major piece of functionality, besides Inter
ruptRegister, required to implement a debugger with ToolHelp.

Like InterruptRegister, this function packages information coming from the Win
dows kernel into a consistent interface. It will multiplex this information among a list
of programs that wish to receive notifications of events such as the loading of a segment,
the start ofa task or DLL, Wmdows RIP ("rest in peace" or FatalExit), and so on.

Internally, the code for NotifyRegister, and for dealing with notifications, is very
similar to InterruptRegister. Instead of installing an interrupt handle, though, it
installs a "notification" handler. When an event occurs, it packages it and then iterates
through the list of installed callback functions, calling each in turn. If a callback func
tion indicates that it handled the notification, then the iteration stops. If the callback
did not handle the notification, the next installed handler in the list is called.

NotifyRegister installs the notification handler by calling the undocumented
RegisterPtrace function (described in chapter 5). In Windows 3.1, it uses the
ToolHelpHook function (also described in chapter 5), but the two functions are
essentially identical in actual use. WINDEBUG.DLL also uses RegisterPtrace and
informs you of a subset of the notifications that you would receive with NotifyRegis
ter. The downside to NotifyRegister is that you're interfacing to the operating system
at a lower level, but it's still a far sight better than trying to install your own
RegisterPtrace handler.

When the internal notification hook is called, the information is stored in the
general-purpose registers. If the information for a given notification is small enough to
fit into a DWORD, it's passed as a parameter to the callback function. If there's more
than a DWORD of information, it's stored in a static buffer, and a far pointer to the
buffer is passed as a parameter to the callback function. Based upon which notification
came in, the callback can decide how to interpret the DWORD parameter.

NotifyRegister

CHAPTER 10 • TOOLHELP 633

The notifications from RegisterPtrace/ToolhelpHook are documented in the
entry for RegisterPtrace() in chapter 5. Here's some of the more interesting ones, as
they appear through ToolHelp:

NFY_LOADSEG Of primary interest to debuggers. Windows discards code segments
and reloads them from disk. If a debugger has written a breakpoint into a code seg
ment, it will be lost if the segment is discarded. The NFY_LOADSEG gives the
debugger an opportunity to reinsert any breakpoints that may have been lost.

NFY_STARTDLL Called before the startup code for a DLL is called. If a debugger
wishes to debug the startup code, it can set a breakpoint at the address specified by the
wCS and wIP fields of the NFYSTARTDLL structure.

NFY_STARTTASK Called before the first instruction in the program is executed.
Debuggers can use this notification to set a breakpoint to gain control at the first
instruction of the program.

NFY_EXITTASK Calls GetCurrentTask() to determine which task is terminating.

NFY_DELMODULE Called when a DLL or the last instance of an EXE is being
removed from the module list. Warning: When this function is called, you may be on
an extremely small stack. It is a good idea to do nothing that requires stack space in
the callback function when processing this notification. For instance, having any signif
icant amount oflocal variables or calling Windows functions other than PostMessage()
can cause the operating system to become unstable. PostMessage is what Microsoft
recommends using, as it uses little stack space. It also is reentrant, allowing its use in
other low-level Windows code.

NFY_RIP Called when FatalExit has been called, either by the debugging version of
Windows or by the program itsel£ It will usually be followed by a series of
NFY_OUTSTRnotifications and then by an NFY_INCHAR.

NFY_OUTSTR When a notification handler is installed, Windows sends its information
output via this notification. When there is no installed handler, Windows sends it to
the AUX device. (In Win 3.1, there's an option to have Windows send these messages
to any DOS file you specify.) The actual string is sent in one call, and the associated
carriage-return/linefeed in the next.

NFY_'NCHAR Sent when Windows needs to know how to proceed in response to the
NFY_RIP notification. If 0 is returned, the ToolHelp will return "i" (ignore) to the
Windows kernel. For this notification, the callback function return type is not BOOL;
the ASCII value for the character should be returned. For instance, to select abort,
you could return "a" from your function.

Here are some points to remember when working with NotifyRegister (note the
similarity to the recommendations for working with InterruptRegister):

1. UnderWmdows 3.0, there can be conflicts between TOOLHELP.DLL
and WINDEBUG.DLL (the .DLL used by TDW, CVW, and Multiscope).

NotifyRegister

634 UNDOCUMENTED WINDOWS

The undocumented RegisterPtrace function is expecting to be used by
only one caller. Since both ToolHelp and WINDEBUG will attempt to
use RegisterPtrace under Windows 3.0, ToolHelp attempts to sidestep
the problem by determining if the WINDEBUG module is loaded in
the system. If so, NotifyRegister will return failure. The end result is that
it's not an easy task to debug ToolHelp applications that use
NotifyRegister under Windows 3.0. Under Windows 3.1, these prob
lems do not exist, because the TOOLHELPHOOK function in KER
NEL provides an alternate, parallel set of services to the RegisterPtrace
function.

2. Pass on any Notifications that you don't care about (return 0).
3. ToolHelp only allows one callback function to be installed per task. You

can pass in the hTask ofyour application or o. Ifyou pass in 0,
ToolHelp does a GetCurrentTask() and uses that value.

4. The list of callback functions is a linked list. Each new callback function
that's registered is put at the end of the list. This means that the first
task to call NotifyRegister will get first crack at the notifications.

5. When InterruptUnregister is called for the last remaining callback func
tion, ToolHelp uninstalls its RegisterPtracejToolhelpHook handler.

StackTraceFlrst
StackTraceCSIPFlrst
StackTraceNext

BOOl FAR PASCAL StackTraceFirst
(STACKTRACEENTRY FAR *lpStackTrace,
HANDLE hTask);

BOOl FAR PASCAL StackTraceCSIPFirst
(STACKTRACEENTRY FAR *lpStackTrace,
WORD wSS, WORD wCS, WORD wIP, WORD wBP);

BOOl FAR PASCAL StackTraceNext
(STACKTRACEENTRY FAR *lpStackTrace);

typedef struct {
DWORD dwSize;
HANDLE hTask;
WORD wSS;
WORD wBP;
WORD wCS;
WORD wIP;
HANDLE hModule;
WORD wSegment;
WORD wFlags;
} STACKTRACEENTRY;

StackTraceFirst

CHAPTER 10 • TOOLHELP 635

The StackTraceXXX functions do just what their name implies. StackTraceFirst will get
the first stack trace entry for any stack other than your own. StackTraceCSIPFirst is for
the case where you wish to walk your own stack (such as in an InterruptRegister call
back function). StackTraceNext has the dirty job of interpreting what's on the stack to
find the previous frame.

StackTraceFirst verifies that the hTask passed in corresponds to a valid task
database. It then extracts the SS:SP from the field at offset 2 in the Task Database (see
chapter 5). It then assumes that SS:SP is pointing to a far stack frame that would have
been set up like this:

PUSH BP
MOV BP, SP
SUB SP, 10h

The WORD at (SP+I0h) is AND'ed with OxFE to zero out the bottom bit, in
case it was set to indicate a far stack frame. It is then assigned to the wBP field of the
STACKTRACEENTRY structure. The WORDS at (SP+12h) and (SP+14h) are
assigned to wIP and wCS, respectively. It is most likely that this is the stack frame that
exists for a task whenever the Windows scheduler switches away from it. Essentially, all
tasks, other than the current task, are "parked" with this stack frame.

After fuling in the CS:IP and SS:BP fields of the STACKTRACEENTRY struc
ture, another internal routine is called to ful in the hModule and wSegment fields. The
routine uses the passed-in hTask to find the module table handle. It then looks up the
CS in the module table to find the logical segment number to put in the wSegment
field. Before all this is done, the CS value is first verified to be in the global heap by
making a call to GlobalEntryHandle.

To use StackTraceCSIPFirst, you need to pass a valid SS:BP and CS:IP. These val
ues are just copied into the appropriate fields, and then the same internal routine is
called to fill in the hModule and wSegment fields.

StackTraceNext has a tough job to perform. It not only has to find the previous
frame on the stack, it also has to somehow figure out whether the stack frame is from a
near or a far call.

In a typical stack frame, the WORD at [BP+O] is the value of the BP in the pre
vious frame. To01Help makes the following checks to determine if it looks valid:

1. Is the frame for the previous BP within the limit of the SS segment?
2. Is [BP+O] not equal to O?
3. Is the previous BP greater than the current BP?
4. Is the previous BP within the SP limits in the task database?

The next job is to determine if the new stack frame is from a near CALL or a far
CALL. In Windows 3.0, far stack frames were indicated by an odd value at [BP+O];
near stack frames were indicated by an even value. It was essential for this convention
to be followed by Real-mode Windows, which had to crawl the stack to search for

StackTraceFirst

636 UNDOCUMENTED WINDOWS

code segments that had been discarded. In Windows 3.1, Real mode is no more, so
the Windows kernel no longer needs to walk the stack. Thus the odd-BP convention
can be disposed of, resulting in savings of space and size.

This gives rise to a new problem, namely how to determine if a stack frame is a
near frame or a far frame. StackFrameNext attempts to deal with this situation. If it
sees an odd BP value on the stack, it automatically assumes that it's a far frame. If it's
an even value, it first assumes that it's a far stack frame and then goes through the fol
lowing sanity checks on the potential new CS:IP at [BP+2]:

1. Are the ring-level bits in the potential CS equal to the ring-level bits of
ToolHelp's code segment?

2. Use LAR on the potential CS. Is the Ox0800 bit on, indicating a code
segment?

3. Is the potential IP within the segment limit of the potential CS?

If any of these tests fail, then ToolHelp treats the frame as a near stack frame. It is
readily obvious that the above method is not foolproof. It's quite possible that a near
frame could slide through the sanity checks, creating a bogus CS:IP in the
STACKTRACEENTRY structure. The moral of the story is that it's a good idea to use
the "Odd-BP" stack frame convention, at least during the debugging stage. At the
time of this writing, most compilers always use the odd-BP convention in their code
generation. As Windows 3.1 becomes more prevalent, though, the option to dispose
of the odd-BP code generation is sure to become a popular one, making life harder for
StackTraceNext, and making its results a little less reliable.

TaskGetCSIP

TaskSetCSIP

DWORD FAR PASCAL TaskGetCSIP
(HANDLE hTask);

DWORD FAR PASCAL TaskSetCSIP
(HANDLE hTask, WORD wCS, WORD wIP);

These functions let you obtain and modify the CS:IP for any task in the system, except
the one currently running.

TaskGetCSIP is an extremely simple function. It compares the hTask passed in to
the current task (returned by GetCurrentTask). If they're the same, it returns failure,
as it should (after all, if you really want to move your own program's CS:IP, there are
easier ways to do it!). It then gets the current SS:SP from the task database and
obtains the CS:IP values from the stack frame, discussed previously in the
StackTraceFirst description.

TaskGetCSIP

CHAPTER 10 • TOOLHELP 637

TaskSetCSIP is almost identical to TaskGetCSIP, except that it changes the CS:IP
values in the stack frame instead of reading them. This is one of the few functions that
is not "read-only" in ToolHelp. When the task is scheduled to run, it will start at the
CS:IP that you set with this function. Note: No sanity checking is done on the CS:IP
that you pass in, so be careful.

TaskSwltch

BOOl FAR PASCAL TaskSwitch
(HANDLE hTask, DWORD dwNewCSIP);

TaskSwitch enables you to execute some arbitrary section of code, while running as
some arbitrary task. Effectively, it provides a SetCurrentTask() function for Windows.

For instance, let's say you have a DLL that's in use by multiple tasks. You want
the DLL to perform file I/O. The problem is that the file handles opened by one task
are not available to another task: Windows uses the PSP to keep a separate file handle
table for each task, just as in plain-vanilla DOS (the per-task PSP is kept, of course, in
the Task Database; see chapter 5).

With TaskSwitch, you can switch to the task that opened the files before doing the
file I/O and then switch back to the original task.

The sequence of events when using TaskSwitch should look something like this:

1. Use TaskGetCSIP to save the address of the switched-to task in a global
variable that will be accessible when running as the new task.

2. Use TaskSwitch to switch to the desired address and task.
3. When done with your work in the desired task, use a JMP instruction to

continue execution at the address saved away in step 1. Eventually, the
original task will be scheduled again, and control will pick up after the
call to TaskSwitch.

How does TaskSwitch work? A good question. It's a nifty excursion into the bow
els of undocumented Windows. First, TaskSwitch ensures that you're not asking it to
switch to the current task. Then it verifies that the hTask passed in is a valid task han
dle (by looking for the 'TD' signature in the Task Database). Next, it does a
TaskSetCSIP, using the address of an internal routine. It then stores the passed-in
CS:IP into two global variables. It then bumps up the event counter field at offset 6 in
the hTask's database to ensure that the Windows scheduler will run it. Finally, it does
a DirectedYield(hTask). We now close our eyes, tap our heels together three times,
and we magically appear at the start of the internal routine, running as the new task.

Now what happens? First, four bytes are subtracted from SP, and then a standard
stack frame is set up with PUSH BP /MOV BP,SP. What are the four bytes for? Well,
it seems that the saved away CS:IP is put in those four bytes. The end result is that it
now looks like a stack frame for a far CALL! The next thing done is to decrement the

TaskSwitch

638 UNDOCUMENTED WINDOWS

event count in the current task database. This restores the event count to what it was
before the DirectedYield. Last, the stack frame is removed and a RETF is executed. It
is the RETF, in conjunction with the tweaked return address, that actually starts exe
cution at the CS:IP that was passed to the TaskSwitch function.

TermlnateApp

void FAR PASCAL TerminateApp
(HANDLE hTask, WORD wFlags);

TerminateApp is useful primarily to debuggers and post-mortem tools. A debugger
would call TerminateApp and pass it the NO_UAB_BOX flag. By doing so, it makes it
look like a graceful termination. It's not. Internally, TerminateApp uses quite a few
undocumented functions and has Windows version-specific code.

First, TerminateApp checks to see if the hTask passed in is either 0 or the current
task, as returned by GetCurrentTask. Ifit's not, it uses TaskSwitch to force itself to be
running as the hTask that was passed in. If TaskSwitch was used, it then zeros out the
DWORD at offset 54 in the Task Queue, but only if it's running under Wmdows 3.0.

Next, the wFlags parameter is checked for the NO_UAB_BOX flag. If it's set,
then the word at offset I8h in the Task Database is OR'ed with 02h. This sets a flag
which tells Windows not to put up a UAB box in the event of this task generating a
UAB.

With that done, the app is terminated with a call to FatalAppExit(O,O).
If for some reason you return from the call to FatalAppExit (see the SDK docu

mentation for details), then an undocumented flag in the wFlags parameter is
inspected. The flag is the high bit (Ox8000), and if it's set, it tells ToolHelp to not call
the task signal proc (see the entry for SetTaskSignalProc in chapter 5). Otherwise, the
task signal proc is called, and, finally, DOS Exit (INT 2Ih AH=4Ch) is called with an
exit code of OFFh in the AL register.

There is a problem with calling TerminateApp for a task under Windows 3.0, if
InitApp has not been called yet in the task's startup code. InitApp creates a message
queue for a task. Under Wmdows 3.0, TerminateApp always tries to write to offset
54h in the message queue (see chapter 5). But if the massage queue doesn't exist
because InitApp hasn't been called yet, this will cause a UAB. This is a problem for
debuggers that are stepping through startup code. In 3.1, the documented
GetSystemDebugState() function can return the value SDS_NOTASKQUEUE.

TimerCount

BOOl FAR PASCAL TimerCount
(TIMERINFO FAR *lpTimer);

typedef struct {

TerminateApp

CHAPTER 10 • TOOLHELP 639

DWORD dwSize;
DWORD dwmsSinceStart;
DWORD dwmsThisVM;
} TIMERINFO;

TimerCount, as its name implies, will be most often used by programs that need to
time events. TimerCount tries to get more accurate timings than available via SyS
TEM timers, which don't reprogram the 8253 (see chapter 9).

Internally, it's relatively simple. IfWindows is running in Enhanced mode, a call is
made to INT 2Fh, with AX = 1684h and BX=5. This returns the address of the VTD
(Virtual Timer Device) entry point. It then calls the VTD entry point with AX=OlOlh
and stores the return value in the "dwmsSinceStart" field of the TIMERINFO struc
ture. A second call is made, this time with AX=0102h, and the result is stored in the
"dwmsThisVM" field.

In Standard mode, a check is first made to see if the timeGetTime() function in
MMSYSTEM.DLL was successfully found via GetProcAddress(). If so, then
TimerCount() calls timeGetTime(), and stores the information in the TIMERINFO
structure. If timeGetTime() isn't found, a call is made to GetTickCount. The
DWORD returned is stored in dwmsSinceStart. Then a series ofport I/O instructions
is made to determine the number of milliseconds that have transpired since the last
timer tick. This value is added to dwmsSinceStart. Last, the dwmsSinceStart is copied
into dwmsThisVM.

Sample Program: WlnWalk
The WinWalk program demonstrates use of the Windows data structure functions in
ToolHelp. It displays the module list, the task list, the window class list, and the global
heap. The USER and GDI local heaps are not included, as they are handled in the sep
arate USERWALK and GDIWALK examples in chapters 6 and 8.

WinWalk uses the WINIO library (described in chapter 4); it makes particularly
heavy use of the WINIO clickable-lines facility. It is written in Borland c++ 3.0 small
model.

Running WlnWalk WinWalk uses the WINIO library to create a menu of available
reports in the main window. By selecting items from the main menu, you can display
secondary windows that walk the appropriate data structures via ToolHelp.

Global Heap, Hex Dump, and Local Walk
The WmWalk Global Heap window looks like this:

<Double-click to dump first 1k of a block>
HANDLE SIZE OWNER TYPE
0000 0 SENTINEL
011F A940 KERNEL CODE SEG 01h
0796 40 GDI TASK MEM ALLOCATION

TimerCount

640 UNDOCUMENTED WINDOWS

1577 480 MMSYSTEM CODE SEG 01h
1537 20 MMSYSTEM DATA
1517 140 TIMER CODE SEG 02h
1507 240 TIMER DGROUP
1527 20 WINFILE TASK MEM ALLOCATION
14AF 200 WINOLDAP TASK DATABASE
1497 120 USER TASK MEM ALLOCATION
147E 40 WINOLDAP CODE SEG 03h
136F 200 SH TASK DATABASE
••• etc.

Double clicking on any of the items displays an additional window with a hex
dump of the first lK bytes. For example, ifyou double click on a Task Database, you
can see its current directory (\SICE in the example below), the instance thunk array
signature ('PT'), the module name (DRWATSON in this example), the 'TD' signa
ture, and the PSP (note the bytes CD 20 on the last line, corresponding to an INT
20h instruction at the start ofa PSP):

12F7 200 DRWATSON TASK DATABASE

0000: 07 08 92 2A CF 12 00 00 00 00 00 00 F7 12 00 00
0010: 00 00 00 00 00 00 00 00 00 00 00 03 CE 12 7F 13
0020: DF 12 07 08 00 00 25 61 1F 01 CS 16 B7 12 00 00
0030: 00 00 17 1D 77 03 04 00 3B 00 08 00 3B 00 OC 00
0040: 3B 00 DE 00 3B 00 7C 00 3B 00 EA 00 3B 00 00 00
0050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0060: EF 12 80 00 EF 12 82 5C 53 49 43 45 00 00 00 00
0070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOAO: 00 00 00 00 00 00 00 00 36 00 00 00 00 00 00 00
0080: E7 12 00 00 50 54 00 00 CO 00 00 00 00 00 00 00
OOCO: C8 00 00 00 00 00 00 00 DO 00 00 00 00 00 00 00
0000: 08 00 00 00 00 00 00 00 EO 00 00 00 00 00 00 00
OOEO: E8 00 00 00 00 00 00 00 FO 00 00 00 00 00 00 00
OOFO: 00 00 44 52 57 41 54 53 4F 4E 54 44 00 00 00 00
0100: CD 20 EF 13 00 9A FO FE 1D FO 9B 18 44 18 AD DB
• •• etc

... * .

•••••• %a ••••••••
•••• w••• ; ••• ; •••
; ... ;. I .;. · .;. · ·

.••.... \SICE

•••••••• 6 •••••••
.... PT .

.. DRWATSONTD .•..
••••••••••• D•••

If the item you click on contains a local heap, WmWalk will also display a Local
Walk window. For example:

12AF 340 ToolHelp DGROUP

HANDLE ADDR SIZE TYPE
0144 0144 0008 FIXED
0150 0150 002C FIXED
0180 0180 oooe FIXED
0190 0190 OOOC FIXED
01AO 01AO 0008 FIXED
0000 01AC 0188 FREE

CHAPTER 10 • TOOLHELP 641

Walks of the USER and GDI local heaps are performed by the USERWALK and
GDIWALK programs, elsewhere in this book.

Task List
The WinWalk Task List window shows each task on the system. For each task, Wm
Walk displays the module name, task handle, module handle, instance handle
(DGROUP), and the module name of its parent:

Task list:
NAME HTASK HMOD HINST PARENT
SH 136F 1487 1346 WINFILE
DRWATSON 12F7 137F 12CE WINFILE
WINOLDAP 14AF 14C7 146E WINFILE
WINFILE 0807 0547 17AE
WINWALK 11FF 1217 122E SH

Module List
The WinWalk Module List window shows the modules on the system. The handle, the
filename, the module name (which is not necessarily the same as the filename; see the
example below), and the reference count are shown:

FILENAME
C:\WIN31\SYSTEM\KRNL386.EXE
C:\WIN31\SYSTEM\SYSTEM.DRV
C:\WIN31\SYSTEM\KEYBOARD.DRV
C:\WIN31\SYSTEM\MOUSE.DRV
C:\WIN31\SYSTEM\VGAMONO.DRV
C:\WIN31\SYSTEM\MMSOUND.DRV
C:\WIN31\SYSTEM\COMM.DRV
C:\WIN31\SYSTEM\VGASYS.FON
C:\WIN31\SYSTEM\VGAOEM.FON
C:\WIN31\SYSTEM\GDI.EXE
C:\WIN31\SYSTEM\VGAFIX.FON
C:\WIN31\SYSTEM\USER.EXE

COUNT
20
13
13
11
12
11
11

2
2

11
1

10

list:
HMOD
0117
0147
014F
0167
01C7
01DF
022F
032F
035F
036F
0357
037F

Module
NAME
KERNEL
SYSTEM
KEYBOARD
MOUSE
DISPLAY
SOUND
COMM
FONTS
OEMFONTS
GDI
FIXFONTS
USER
.•• etc.

Class List
Finally, the WinWalk Class List window shows all the window classes on the system.
For example

Class list:
OWNER INST NAME
WINWALK 11D7 winio_wcmain
SH 14B7 winio_wcmain
WINOLDAP 14C7 WOAFontPreview
WINOLDAP 14C7 WOAWinPreview
WINOLDAP 14C7 tty
MMSYSTEM 0817 #42
••• etc.

642 UNDOCUMENTED WINDOWS

USER 037F #32772
USER 037F #32771
USER 037F #32769
USER 037F MDIClient
USER 037F ComboBox
USER 037F ComboLBox
USER 037F ScrollBar
USER 037F ListBox
USER 037F Edit
USER 037F #32770
USER 037F Static
USER 037F Button
USER 037F #32768

The WlnWalk Code The main() function in WinWalk creates strings for each option
on the main menu and calls AppendMenu() to add them. At the same time, it installs
a handler function for each selection. Because so much code for setting up each sec
ondary window display is common, the menu handlers all point to the same function.

The names of each item on the main menu are obtained by iterating through
WalkFunctionArray[]. WalkFunctionArray[] is an array ofWALKFUNCTION struc
tures. Each structure contains information specific to a report. In addition to the name
of the report, the structure also contains a pointer to the appropriate "walking" func
tion. Each structure also contains a reasonable value for the maximum buffer size nec
essary to display all the information in the report.

In the menu-handling function, MenuHandler() (great name, huh?), the appropri
ate report to display is determined via the menuID parameter, which contains a unique
value for each different report. In all cases, a new window is created, and the title and
buffer size are set according to the values in WalkFunctionArray[]. Next, window
refreshes are turned off in the new window in order to make output go as quickly as
possible and, more important, to make sure that the state ofWindows doesn't change
while ToolHelp is walking some structure. Then a call is made through the function
pointer stored in the WalkFunctionArray[]. After the report function finishes, window
refreshes are turned back on.

The heap/list walking functions themselves are very simple. They each initialize
the "dwSize" field of their specific ToolHelp structure, and then go through the clas
sic find-frrst/fmd-next loop. After obtaining each new list element, selected fields are
displayed. To do the walk, the following ToolHelp services are used:

Global Heap walk
Local Heap walk
Task walk
Module walk
Class walk

GLOBALENTRY
LOCALENTRY
TASKENTRY
MODULE ENTRY
CLASSENTRY

GlobalFirst
LocalFirst
TaskFirst
ModuleFirst
ClassFirst

GlobalNext
LocalNext
TaskNext
ModuleNext
ClassNext

ToolHelp certainly has a lot more order and symmetry than the underlying undoc
umented data structures!

In the Global Heap display, a double-click handler is installed to provide addi
tional useful information on a selected block. The handler uses sscanf() to retrieve the

CHAPTER 10 • TOOLHELP 643

handle value and block length from the clicked-on line. Next, the handle value is con
verted to a selector using the ToolHelp GlobalHandleToSel() function. Following
that, the selector value is tested to see if it is still a "legal" selector. This is necessary,
because a program may have terminated, or deallocated a global memory block, with
out the block being removed from the Global Heap window display. After verifying
that the selector value is good, the MemDump function is called to display up to the
first 1024 bytes of the block in a new window. If the block contains a valid local heap,
LocalHeapWalk() is called to create an additional window that walks the local heap of
the selected block.

The GetModuleNameFromHandle() function is a "helper" function that's used in a
variety ofcontexts. Given a handle to the owner ofa block, it returns the module name of
the program that it's owned by. Memory blocks that are shared by all instances of a
program (such as code segments) will have the module handle as their owner. For
this case, a call to ModuleFindHandle() will return success, and we have the module
name. On the other hand, blocks that were allocated by a task (via GlobalAlloc(),
for instance), will have a task handle as their owner. If ModuleFindHandle()
returns failure, them the handle might be a task handle, so TaskFindHandle() is tried.
If it succeeds, the module name is extracted from the TASKENTRY structure.

//=================================
// WinWalk, by Matt Pietrek, 1992
// File: WINWALK.C
// With changes/suggestions by
// David Maxey & Andrew Schulman
//=================================
#include <windows.h>
#include <stdio.h>
#include <string.h>
#include <dos.h>
#include <ctype.h>
#include "toolhelp.h"
#include "winio.h"

typedef struct _WALKFUNCTION {
char * description;
void (*display_func)(void);
WORD displayBuffSize;

} WALKFUNCTION;

void ModuleWalk(void);
void TaskWalk(void);
void ClassWalk(void);
void GlobalHeapWalk(void);

// Description of function
// Pointer to display function
// Size in bytes of display buffer

void GlobalHeapDoubleClickHandler(HWND, LPSTR, int);
void MemDump(LPSTR, WORD, LPSTR, LPSTR);
void LocalHeapWalk(WORD sel, LPSTR);

644 UNDOCUMENTED WINDOWS

char szModuleList[] "Modules";
char szTaskList[] = "Tasks";
char szClassList[] = "Classes";
char szGlobalHeap[] = "Global Heap";

II Create an array of WALKFUNCTIONs

WALKFUNCTION WalkFunctionArray[] = {
{ szModuleList, ModuleWalk, 2048 },
{szTaskList, TaskWalk, 2048},
{szClassList, ClassWalk, 2048 },
{ szGlobalHeap, GlobalHeapWalk, 65535L }

};

#define WALKFUNCTIONCOUNT \
(sizeof(WalkFunctionArray) I sizeof(WALKFUNCTION»

char UnknownString[] = "<UNKNOWN>";

char *GlobalEntry_Resources[] = {
"User defined", II 0
"Cursor", II 1
"Bitmap", II 2
"Icon Component", II 3
"Menu", II 4
"Dialog", II 5
"String table", II 6
"Font directory", II 7
"Font", II 8
"Accelerators", II 9
"RC data", II 10
"Error table", II 11
"Group cursor", II 12
UnknownString, II 13
"Group icon", II 14
"Name table" II 15
};

char HelpText[] =
"WinWalk is a simple demonstration of the ToolHelp API\n"
"\n"
"By clicking on the options on the main menu, it can show you:\n"
"- The list of EXE/DLL modules in the system\n"
"- The list of running tasks\n"
"- The list of registered windows classes in the USER heap\n"
"- The contents of the global heap\n"
"\n"
"Additionally, up to the first 1K of memory in each global\n"
"memory block can be viewed by double clicking on the\n"
"appropriate line in the global heap window. If the block\n"
"selected has a local heap, an additional window is popped\n"
"up to display the local heap\n"
"\n"
"The USER and GDI heaps are not shown in detail here, as\n"
"they are shown in more detail in a separate sample program\n";

CHAPTER 10 • TOOLHELP 645

//---
// Given a "owner ll handle, return back the
// name of the module. Use ToolHelp functions
// To avoid undocumented methods
//---
char *GetModuleNameFromHandle(HANDLE handle)
{

MODULEENTRY me;
TASKENTRY te;
static char nameC40J;

me.dwSize = sizeof(me);
if (ModuleFindHandle(&me, handle)
{

strcpy(name, me.szModule);
return name;

}

te.dwSize = sizeof(te);
if (TaskFindHandle(&te, handle)
{

strcpy(name, te.szModule);
return name;

}

nameCOJ = 0;
return name;

}

char *ResourceName(WORD handle)
{

if (handle> GD_MAX_RESOURCE
return UnknownString;

return GlobalEntry_ResourcesChandleJ;
)

char *GetGlobalBlockType(WORD type, WORD wData)
{

static char descriptionC40J;

switch type)

{

case GT_UNKNOWN

case GT_DGROUP
case GT_DATA
case GT_CODE

case GT_TASK
case GT_RESOURCE:

case GT_MODULE
case GT- FREE
case GT_INTERNAL:

strcpy(description, "TASK MEM ALLOCATION");
break;

strcpy(description, IIDGROUP"); break;
strcpy(description, "DATA"); break;
sprintf(description,IICODE SEG %02Xh", wData);

break;
strcpy(description, "TASK DATABASEII); break;
sprintf(description,"RESOURCE %Sll,
ResourceName(wData)); break;
strcpy(description, "MODULE TABLE"); break;
strcpy(description, "FREE"); break;
strcpy(description, "INTERNAL"); break;

646 UNDOCUMENTED WINDOWS

case GT_SENTINEL: strcpy(description, "SENTINEL"); break;
case GT_BURGERMASTER : strcpy(description, "BURGERMASTER"); break;
default : strcpy(description, UnknownString);

}

return description;
}

void GlobalHeapWalk(void)
{

GLOBALENTRY ge;
BOOL ok;

printf("Global heap:\n"
"(Double-click to dumpblock)\n"
"HANDLE SIZE OWNER TYPE\n");

ge.dwSize = sizeof(ge);
ok = GlobalFirst(&ge, GLOBAL_ALL);
while (ok)
{

printf("%04X %5lX %-8s %s\n",
ge.hBlock, ge.dwBlockSize,
GetModuleNameFromHandle(ge.hOwner),
GetGlobalBlockType(ge.wType, ge.wData»;

ok = GlobalNext(&ge, GLOBAL_ALL);
}

winio_setlinefn(winio_currentC), GlobalHeapDoubleClickHandler);
}

void ClassWalk(void)
{

CLASSENTRY ce;
BOOL ok;

printf("Class list:\n");
printf("OWNER INST NAME\n");

ce.dwSize = sizeof(ce);
ok = ClassFirst(&ce);
while C ok)
{

printfC"%-8s %04X %s\n",
GetModuleNameFromHandle(ce.hInst),
ce.hlnst, ce.szClassName);

ok = ClassNextC&ce);
}

}

void TaskWalk(void)
{

TASKENTRY te;

CHAPTER 10 • TOOLHELP 647

BOOl ok;

printfC"Task list:\n");
printfC"NAME HTASK HMOD HINST PARENT\n");

te.dwSize = sizeofCte);
ok = TaskFirstC&te);
while C ok)
(

printfC"%-8s %04X %04X %04X %s\n",
te.szModule, te.hTask, te.hModule, te.hInst,
GetModuleNameFromHandleCte.hTaskParent»;

ok = TaskNextC&te);
}

}

void ModuleWalkCvoid)
(

MODUlEENTRY me;
BOOl ok;

printfC"Module list:\n");
printfC"NAME HMOD COUNT FIlENAME\n");

me.dwSize = sizeofCme);
ok = ModuleFirstC&me);
while C ok)
(

printfC"%-8s %04X %2u %s\n",
me.szModule, me.hModule, me.wcUsage, me.szExePath);

ok = ModuleNextC&me);
}

}

II Returns whether a global memory block contains
II a local heap. It does this by trying to
II initiate a local walk of the passed in block
BOOl ContainsLocalHeapCWORD seg)
(

LOCALENTRY lei
le.dwSize = sizeofCle);
return localFirstC&le, seg);

}

void LocalHeapWalkCWORD sel, LPSTR description)
(

GLO~ALENTRY ge;
LOCALENTRY lei
HWND hWndNew, hWndSav;
char buffer[120J;
char * szFlags;
BOOl ok;

648 UNDOCUMENTED WINDOWS

II Call GlobalEntryHandle() to get the "owning" block
ge.dwSize = sizeof(ge);
ok = GlobalEntryHandle(&ge, sel);

II Create a title for the window, create a new window,
II and save away the old current window
sprintf(buffer, "Local heap: %04X %s",

sel, GetModuleNameFromHandle(ge.hOwner));

hWndNew = winio_window(buffer, 32768L, WW_HASMENU);

if (!hWndNew)
MessageBox(NULL, "Not Enough Memory", "Error",

MB_OK I MB_ICONEXCLAMATION);

hWndSav = winio_setcurrent(hWndNew);
winio_setpaint(hWndNew, FALSE);

II Print the header information
printf("%s\n\n", description);

printf("HANDLE ADDR SIZE TYPE\n");

II Walk the local heap
le.dwSize = sizeof(le);
ok = LocalFirst(&le, sel);
while (ok)
{

}

case LF_FIXED: szFlags
case LF_FREE: szFlags =
case LF_MOVEABLE: szFlags
default: szFlags =

switch
{

le.wFlags

"FIXED"; break;
"FREE"; break;
"MOVEABLE"; break;
"".,

printf("%04X %04X %04X %s\n",
le.hHandle, le.wAddress, le.wSize, szFlags);

ok = LocalNext(&le);
}

II Turn painting back on, and put things back
II into a sensible state of affairs
winio_setpaint(hWndNew, TRUE);
winio_home(hWndNew);
winio_setcurrent(hWndSav);

}

II Define how wide the memory dump will be
#define WIDTH 16

void MemDump(LPSTR fp, WORD bytes, LPSTR addr, LPSTR description)
{

HWND hWndNew, hWndSav;

CHAPTER 10 • TOOLHELP 649

LPSTR p;
WORD i, j, c;
char buffer[120J;

II Create a title for the window, create a new window,
II and save away the old current window
sprintf(buffer, IIDump: %Fp - %04X bytes ll , fp, bytes);
hWndNew = winio_window(buffer, bytes * 5, WW_HASMENU);

if (!hWndNew)
MessageBox(NULL, IINot Enough Memoryll, IIError ll ,

MB_OK I MB_ICONEXCLAMATION);

hWndSav = winio_setcurrent(hWndNew);
win;o_setpaint(hWndNew, FALSE);
printf(lI%s\n\n ll , description);

II Dense code to actually do the memory dumping
for (;=0; i<bytes; i += WIDTH)
{

c = «bytes-i) > WIDTH) ? WIDTH bytes-i;
printf(II%04X: ", addr+;);
for (j=c, p=fp+i; j--; P++)

printf("%02X II, (unsigned char) *p);
for (j=WIDTH-c; j--;) II pad out on last line

printf(1I II);
putchar(' I);

for (j=c, p=fp+i; j--; P++)
putchar(isprint(*p) ? *p I');

putchar('\n');
}

II Turn painting back on, and put things back
II into a sensible state of affairs
winio_setpaint(hWndNew, TRUE);
winio_home(hWndNew);
winio_setcurrent(hWndSav);

}

void GlobalHeapDoubleClickHandler(HWND hwnd, LPSTR line, int lineNum)
{

WORD wSel;
DWORD blockSize=O;
WORD dumpSize;
char buffer[80J;
int retVal;

II Make a local copy of the line as it appears in the global
II heap window. sscanf() in the handle and block size
lstrcpy(buffer, line);
retVal = sscanf(buffer, "%04X %5lX ", &wSel, &blockSize);
dumpSize = min(blockSize, 1024L);

II Verify that we got sensible values from the line
if ((retVal != 2) II (dumpSize == 0))

650 UNDOCUMENTED WINDOWS

{

MessageBoxCNULL, "Not a valid line", "Error",
MB_OK I MB_ICONEXCLAMATION);

return;
}

II Convert the handle to a selector we can use
wSel = GlobalHandleToSelCwSel);

II Determine if the selector is O.K. Display an error
II message and get out if not
asm lar ax, wSel
asm jz Selector_OK

MessageBoxCNULL, "Selector not valid", "Error",
MB_OK I MB_ICONEXCLAMATION);

return;

II We get here if the selector is O.K. Call MemDump
II to create a new window and display the memory.
II If there is a local heap in the block, display
II it in a local heap window as well

Selector_OK:

MemDumpCMK_FPCwSel, 0), dumpSize, MK_FPCwSel,O), line);

if C ContainsLocalHeapCwSel))
LocalHeapWalk(wSel, line);

}

void MenuHandlerCHWND hwnd, WORD menuID)
{

HWND newWindow;
WORD selected;
char buffer[SOJ;

selected = menuID-1;

II Create an appropriate title for the new window,
II then create a new window with an appropriately
II sized buffer.
sprintfCbuffer, "WinWalk: %s",

WalkFunctionArray[selectedJ.description);
newWindow = winio_windowCbuffer,

WalkFunctionArray[selectedJ.displayBuffSize,
WW_HASMENU);

winio_setcurrentCnewWind?w);

II Turn off repaints
winio_setbusyC);
winio_setpaintCwinio_currentC), FALSE);

II Call the appropriate display function
WalkFunctionArray[selectedJ.display_funcC);

CHAPTER 10 • TOOLHELP 651

II Turn repaints back on, and position at the top of the info
winio_setpaint(winio_current(), TRUE);
winio_resetbusy();
winio_home(newWindow);

}

int main(int argc, char *argvC]
{

char bufferC40J;
unsigned i;

bufferCOJ = '&';

winio_defwindowsize(MAKELONG(55, 10»;

II Create the main menu, and assign selection handlers
for (i=O; i < WALKFUNCTIONCOUNT; i++)
{

II make a string with an '&', then a description of
II the display that it will trigger
strcpy(&bufferC1J, WalkFunctionArrayC;J.description);

AppendMenu(winio_hmenumain(__hMainWnd), MF_STRING,
;+1, buffer);

winio_setmenufunc(__hMainWnd, i + 1, (MENU_FUNC) MenuHandler);
}

DrawMenuBar(__hMainWnd);
printf(HelpText);
return 0;

}

Suggestions for Enhancements With some user-interface work, WinWalk could
become the basis ofa full-blown HEAPWALKprogram.

A simple way to do this would be to install "clickable-line" handlers for all the var
ious heap and list windows. For the local heaps, if you select an item, it might pop up
a child window with information (or a display) about the item. For the global heap, if
you select a task database, it might pop up a window that displays the information in a
more readable form than just a simple memory dump. It could include undocumented
information that ToolHelp doesn't give you, but that is described elsewhere in this
book. Complete heapwalk-type programs will need to supplement a basic core of
ToolHelp with some selected use of undocumented Windows; the two complement
each other nicely.

Another nifty utility would be a "heap-difP' program. The Microsoft SDK says
that you can check for resource "leaks" by using HEAPWALK to compare the GDI
heaps before and after your application runs. But there's no need to do this by hand,
when your computer can do the hard work. For example, the user could select a
"start" button in this heap-diff program before running the application. The heap-diff
application could walk the GDI heap and store away the block handles. After the user
terminates the app, they could select a "stop" button. The heap-cliff would then walk

652 UNDOCUMENTED WINDOWS

the heap again. Any blocks that aren't in the original walk can be considered "left
over." The same idea applies to the USER local heap.

The Windows Task Manager is really just a list of top level windows. With the
Task list functions, you could write a real "Task Manager." To kill a task in the list,
use TerminateApp() from ToolHelp. To give a better idea ofexactly which program is
running, display the full pathname of the .EXE file for each task. You can do this by
calling ModuleFindHandle, using the hModule that's in the TASKENTRY structure.
To get the top-level windows for a task, you can use EnumTaskWindows().

Sample Program: Coroner
The Coroner program shows the use ofInterruptNotify, the stack trace functions, and
the module and task walking functions. Conceptually, it is similar to Dr. Watson and.
WinSpector. When an exception occurs, it writes out information about the faulting
program to a disk file. The disk file can then be examined for clues about where the
problem occurred and why. The Coroner is written in Borland C++ 3.0 small model.

Running Coroner
To use the Coroner, simply invoke it while running under Wmdows. It will immedi
ately iconize itself. If you double click on its icon, it will bring up a small copyright
dialog box. That's all it does ordinarily. It comes alive when a UAE occurs. Before you
see the UAE box, the Coroner has been called and it has written its information out to
its log file. After you remove the UAE box, you'll see another dialog box, which
informs you that there was an exception and what the faulting application's module
name is. You can then go look at the CORONER.LOG file, which is in the Windows
directory (usually C:\WINDOWS). You can cross reference the logical addresses in the
stack trace section with your .MAP file and see where in the code the exception
occurred.

A typical CORONER.LOG file (with some detail removed) looks like the follow
ing. In this example, a program called CALLFUNC made an illegal Windows KER
NELcall:

Coroner exception report - 1/09/1992 13:19:41
Exception 13 at KERNEL 0117:206C (0001:206C) (TASK=CALLFUNC)
Stack Trace:
o KERNEL CS:IP 0117:206C (0001:2D6C) SS:BP 1297:25A8
1 CALLFUNC CS:IP 129F:065B (0001:065B) SS:BP 1297:25CE
2 CALLFUNC CS:IP 129F:0938 (0001:0938) SS:BP 1297:2708
3 CALLFUNC CS:IP 129F:OADO (0001:0ADO) SS:BP 1297:2816
4 CALLFUNC CS:IP 129F:00A3 (0001:00A3) SS:BP 1297:2824
Registers:
AX OOOB
BX D88E
CX 0000
OX 0739
SI 0888

hTask: 141 F hlnstance: 130E

hTask: 123F hlnstance: 1216

hTask: 179F hlnstance: 16EE

hTask: 12BF hlnstance: 1296

reference count: 19

reference count: 11

CHAPTER 10 • TOOLHELP 653

01 25AO
SP 2594
BP 25A8
1P 206C
FL 0286
CS 0117 Limit: B15F executelread
OS OOE7 Limit: 1FFF read/write
ES 1297 Limit: 383F readlwrite
SS 1297 Limit: 383F readlwrite
Tasks:
C:\W1N31.B2\SYSTEM\W1NOA386.MOO

Module: W1NOLOAP hModule: 1437
C:\UNOOCW1N\TOOLHELP\CORONER.EXE

Module: CORONER hModule: 12C7
C:\W1N31.B2\W1NF1LE.EXE

Module: W1NF1LE hModule: 053F
C:\W1NSERV\CALLFUNC.EXE

Module: CALLFUNC hModule: 12CF
Modules:
C:\W1N31.B2\SYSTEM\KRNL386.EXE

Module: KERNEL hModule: 010F
C:\W1N31.B2\SYSTEM\SYSTEM.ORV

Module: SYSTEM hModule: 013F

Heaps:
USER Free 93%
G01 Free 85%
System info:
Running in enhanced mode under Windows 3.10 debug version
CPU: 80386
Largest Free memory block: 14036992 bytes
Total linear memory space: 15728 K
Free linear memory space: 13708 K
Swap file Pages: 4c3 (4876 K)

Note: ToolHelp does not get called when a DOS box crashes (the "stop-box" dialog).
This means that the Coroner, like Dr. Watson, cannot trap exceptions in the DOS
box. This requires a debugger, such as NuMega's Soft-ICE for Windows, or a virtual
device driver, such as WINX, written by Brett Salter of Periscope.

The Coroner Code
The Coroner code is split into several files. The file CORONER.C contains the
WinMain and the user interface code.

11=================================
II Coroner, by Matt Pietrek, 1992
II File: CORONER.C
11=================================
#include <windows.h>
#include <stdio.h>
#include <string.h>

654 UNDOCUMENTED WINDOWS

I#include "coroner.h"

char AppName[] "CORONER";

char LogFileName[MAX_PATH_LENGTH];
char ExceptionTaskName[14];

HANDLE Hlnstance;
HANDLE HCoronerWnd;
char ERROR_CAPTION[] = "Problem!! !";

long FAR PASCAL _export CoronerDialogProc(HWND hDlg, WORD message,
WORD wParam, DWORD lParam)

{

char buffer[128];

switch (message)
{

case WM_COMMAND:
if (wParam == IDOK)
{

CloseWindow(hDlg);
return TRUE;

}

break;

case WM CORONER_FILEOPEN_ERROR
MessageBox
(

hDlg,
"CORONER could not open a .LOG file",
ERROR_CAPTION,
MB_OK

);
break;

case WM CORONER_EXCEPTION :
sprintfCbuffer, "Exception %u in %s", wParam,

ExceptionTaskName);
MessageBox(hDlg, buffer, AppName, MB_OK);
break;

case WM_DESTROY:
PostQuitMessage(O);
return 0;

}

return DefWindowProc(hDlg, message, wParam, lParam);
}

void GetProgramVariables(void)
{

char WindowsDirectory[MAX_PATH_LENGTH];
i nt i;

CHAPTER 10 • TOOlHElP 655

GetWindowsDirectory(WindowsDirectory, MAX_PATH_LENGTH);

i = strlen(WindowsDirectory);

if (WindowsDirectory[i-1J != 1\\1)
{ II Tack on a 1\1 if there isnlt one

WindowsDirectory[iJ = 1\\1;
WindowsDirectory[i+1J = 0;

}

strcpy(LogFileName, WindowsDirectory);
strcat(LogFileName, "CORONER.LOG");

}

int RegisterCoronerWindowClass(void)
{

WNDCLASS wndclass;
wndclass.style = CS_HREDRAW I CS_VREDRAW;
(FARPROC)wndclass.lpfnWndProc = (FARPROC)CoronerDialogProc;
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = DLGWINDOWEXTRA;
wndclass.hlnstance = Hlnstance;
wndclass.hlcon = Loadlcon(Hlnstance,"CORONERICON");
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
wndclass.hbrBackground = GetStockObject(WHITE_BRUSH);
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = AppName;

return RegisterClass(&wndclass);
}

int CoronerError(char *msg)
{

char buffer[128J;
sprintf(buffer, "CORONER %s", msg);
MessageBox(NULL, buffer, ERROR_CAPTION, MB_OK);
return 0;

}

#pragma argsused

int PASCAL WinMain< HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow)

{

HWND hWnd;
MSG msg;

HInstance = hInstance;
if (hPrevlnstance)

return CoronerError(" can only be run once");
if (RegisterCoronerWindowClass() == 0)

return CoronerError(tlcanlt create its window class");
HCoronerWnd = hWnd = CreateDialog(HInstance, "CORONER", NULL, NULL);
if (hWnd == 0)

return CoronerError("canlt create its window");

656 UNDOCUMENTED WINDOWS

ShowWindow(hWnd, SW_MINIMIZE);

GetProgramVariables();

if (SetuplnterruptHandler() == FALSE)
return CoronerError("can't install a fault handler");

while (GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

ShutdownlnterruptHandler();

return 0;
}

Coroner's user interface is very simple and is based the classic modeless dialog box
made popular by Charles Petzold's HEXCALC program.

The meat of the Coroner application is in XCPTREPT.C, which contains the code
for setting up exception handlers, handling the exception, and writing out the infor
mation about the exception:

//=================================
// Coroner, by Matt Pietrek, 1992
// File: XCPTREPT.C
//=================================
#include <windows.h>
#include <stdarg.h>
#include <string.h>
#include <stdio.h>
#include <alloc.h>
#include <time.h>
#include <dos.h>

#include IItoolhelp.h"
#include IIcoroner.hll

unsigned int Output(char *format, ••.);
void DoReportLineFeed(void);
void GetDateTimeString(char *s);

extern HANDLE HCoronerWnd;
extern char LogFileName[];
extern char ExceptionTaskName[];

int HReportFile=-1;
char pszNull[] = IINULL";

WORD Exception_AX, Exception_BX, Exception_CX, Exception_DX;
WORD Exception_SI, Exception_DI;

CHAPTER 10 • TOOLHELP 657

WORD Exception_SP, Exception_BP, Exception_IP, Exception_FLAGS;
WORD Exception_CS, Exception_DS, Exception_ES, Exception_SS;

char *DescriptorTypes[] =
{

"read-only", "read/write",
"read-only, expand-down", "read/write, expand-down",
"execute-only", "execute/read",
"execute-only, conforming", "execute/read-only, conforming"

};

int GetLogicalSegmentFromSelector(WORD selector, char *name, WORD *lseg)
(

GLOBALENTRY ge;
MODULEENTRY me;

name[O] = 0;
*lseg = 0;
ge.dwSize = sizeof(ge);

ge.hOwner) == 0)

}

if (GlobalEntryHandle(&ge,
return 0;

if (ge.wType != GT_CODE
return 0;

me.dwSize = sizeof(me);
if (ModuleFindHandle(&me,

return 0;
strcpy(name, me.szModule);
*lseg = ge.wData;
return 1;

(HANDLE)selector) == 0)

// Logical segments are only valid for
// code segments

void DoWhatHappenedReport(int wNumber)
{

char moduleName[13];
WORD lseg;
TASKENTRY te;

if (GetLogicalSegmentFromSelector(Exception_CS, moduleName, &lseg) 0)
(

Output("Exception %u at unknown address\r\n", wNumber);
}

else
{

Output
(

"Exception %u at %s %04X:%04X (%04X:%04X)",
wNumber, moduleName, Exception_CS, Exception_IP,
lseg, Exception_IP

);
}

te.dwSize = sizeof(te);
if (TaskFindHandle(&te, GetCurrentTask(»)
{

658 UNDOCUMENTED WINDOWS

Output(fI (TASK=%s)lf, te.szModule);
strcpy(ExceptionTaskName, te.szModule);

}

DoReportLineFeed();
DoReportLineFeed();

}

void DoStackTraceReport(void)
{

char moduleName[13J;
WORD lseg;
STACKTRACEENTRY ste;
BOOl ok;
WORD stackframe_id = 0; II Keeps track of the current frame in the trace

Output("Stack Trace:\r\n");
ste.dwSize = sizeof(ste);
ok = StackTraceCSIPFirst

(

&ste,
Exception_SS, Exception_CS,
Exception_IP, Exception_BP

);

while (ok)
{

GetLogicalSegmentFromSelector(ste.wCS, moduleName, &lseg);

Output
(

1f%-2u %-8s CS:IP %04X:%04X (%04X:%04X) SS:BP %04X:%04X\r\n lf ,
stackframe_id++, moduleName, ste.wCS, ste.wIP, lseg, ste.wIP,
ste.wSS, ste.wBP

);

ok = StackTraceNext(&ste);
}

DoReportLineFeed();
}

void DoRegisterReport(void)
{

WORD CSlimit, DSlimit, ESlimit, SSlimit;
WORD CSrights, DSrights, ESrights, SSrights;
Output(lfRegisters:\r\n lf);

Output(UAX
Output(UBX
Output(lfCX
Output(UDX
Output("SI
Output("DI
Output("SP

%04X\r\n lf , Exception_AX);
%04X\r\n lf , Exception_BX);
%04X\r\n lf , Exception_CX);
%04X\r\n ll

, Exception_DX);
%04X\r\n lf , Exception_SI);
%04X\r\n lf , Exception_DI);
%04X\r\n lf , Exception_SP);

CHAPTER 10 • TOOLHELP 659

Output("BP %04X\r\n", Exception_BP);
Output("IP %04X\r\n", Exception_IP);
Output("FL %04X\r\n", Exception_FLAGS);

asm {
xor ax, ax
lsl ax, word ptr (Exception_CS)
mov CSlimit, ax
lar ax, word ptr (Exception_CS);
shr ax, 9 II Put the type field, minus the "accessed" bit
and al, 07h II in the low bits of AX, and mask them off.
mav CSrights, ax

xor ax, ax
lsl ax, word ptr (Exception_DS)
mov DSlimit, ax
lar ax, word ptr (Exception_DS);
shr ax, 9
and al, 07h
mov DSrights, ax

xor ax, ax
lsl ax, word ptr (Exception_ES)
mov ESlimit, ax
lar ax, word ptr (Exception_ES);
shr ax, 9
and al, 07h
mov ESrights, ax

xor ax, ax
lsl ax, word ptr (Exception_SS)
mov SSlimit, ax
lar ax, word ptr (Exception_SS);
shr ax, 9
and al, 07h
mov SSrights, ax

}

Output("CS %04X Limit: %04X %s\r\n",
Exception_CS, CSlimit, DescriptorTypes[CSrights]);

Output("DS %04X Limit: %04X %s\r\n",
Exception_DS, DSlimit,
Exception_DS ? DescriptorTypes[DSrights] pszNull);

Output("ES %04X Limit: %04X %s\r\n ll
,

Exception_ES, ESlimit,
Exception_ES ? DescriptorTypes[ESrights] : pszNull);

Output("SS %04X Limit: %04X %s\r\n",
Exception_SS, SSlimit, DescriptorTypes[SSrights]);

DoReportLineFeed();
}

void DoTaskReport(void)
{

660 UNDOCUMENTED WINDOWS

TASKENTRY te;
BOOl ok;

Output("Tasks:\r\n");

te.dwSize = sizeof(te);
ok = TaskFirst(&te);

while (ok)
(

GetModuleFileName(te.hModuLe, fiLeName, sizeof(fiLeName»;
Output("%s\r\n", fiLeName);
Output(

II ModuLe: %-8s hModule: %04X
"hTask: %04X hlnstance: %04X\r\n",
te.szModuLe, te.hModule, te.hTask, te.hlnst);

ok = TaskNext(&te);
}

DoReportlineFeed();
}

void DoModuLeReport(void)
(

MODUlEENTRY me;
BOOl ok;

Output("Modules:\r\n");
me.dwSize = sizeof(me);
ok = ModuLeFirst(&me);

while (ok)
(

Output("%s\r\n", me.szExePath);
Output
(

ModuLe: %-8s hModuLe: %04X reference count: %u\r\n",
me.szModule, me.hModule, me.wcUsage

);
ok = ModuleNext(&me);

}

DoReportlineFeed();
}

void DoHeapslnfoReport(void)
(

SYSHEAPINFO sysHeaplnfo;
BOOl ok;
Output("Heaps:\r\n");
sysHeaplnfo.dwSize = sizeof(sysHeaplnfo);

if (! (ok = SystemHeaplnfo(&sysHeaplnfo»)
return;

Output("USER Free %3u%%\r\n", sysHeaplnfo.wUserFreePercent);

Output("GDI

CHAPTER 10 • TOOLHELP 661

Free %3u%%\r\n", sysHeapInfo.wGDIFreePercent);

DoReportLineFeed();
}

void DoWindowsInfoReport(void)
{

DWORD winFlags;
WORD version;
MEMMANINFO mmi;
BOOl ok;
char *cpuName;

winFlags = GetWinFlags();
version = GetVersion();
Output("System info:\r\n");
Output("Running in %5 mode under Windows %d.%d %5 version\r\n",

(winFlags & WF_STANDARD) ? "Standard" : "Enhanced",
lOBYTE(version), HIBYTE(version),
GetSystemMetrics(SM_DEBUG) ? "Debug" : "Retail");

if (winFlags & WF_CPU486)
cpuName = "80486";

else if (winFlags & WF_CPU386
cpuName = "80386";

else if (winFlags & WF_CPU286
cpuName "80286";

else
cpuName "Unknown";

Output("CPU: %s\r\n", cpuName);

if (winFlags & WF_STANDARD
return;

II MemManInfo is useless for Standard mode

mmi.dwSize = sizeof(mmi);
if (! (ok = MemManInfo(&mmi»)

return;

II Output select fields from the MEMMANINFO structure
Output("largest Free memory block: %lu bytes\r\n",

mmi.dwlargestFreeBlock);

Output("Total linear memory space: %-Slu K\r\n",
mmi.dwTotallinearSpace * (mmi.wPageSize/1024));

Output("Free linear memory space: %-Slu K\r\n",
mmi.dwFreeLinearSpace * (mmi.wPageSize/1024));

Output("Swap file Pages: %lx (%lu K)\r\n",
mmi.dwSwapFilePages, mmi.dwSwapFilePages * (mmi.wPageSize/1024));

}

void GetDateTimeString(char *5)
{

struct date mydate;

662 UNDOCUMENTED WINDOWS

struct time mytime;
getdate(&mydate);
gettime(&mytime);
sprintf(s, "%u/%02u/%u %02u:%02u:%02u",

mydate.da_mon, mydate.da_day, mydate.da_year,
mytime.ti_hour, mytime.ti_min, mytime.ti_sec
);

}

unsigned int Output(char *format, •••)
{

static char mybuff[S12J;
va_l i s tar9pt r ;
unsigned len;

if (HReportFile -- -1)
return 0;

va_start(argptr, format); 1* Open the output list format *1
len = vsprintf(mybuff, format, argptr);
va_end(argptr); 1* Close the output list *1

if (len == 0)
return 0;

len = _lwrite(HReportFile, mybuff, len);
return len;

}

int OpenReportFile(void)
{

HReportFile = _lopen(LogFileName, OF_WRITE);
if (HReportFile != -1)
{

_llseek(HReportFile, 0, 2);
return HReportFile;

}

II We couldn't open the file. It may not exist. Try creating it.
HReportFile = _lcreat(LogFileName, 0);

if (HReportFile == -1)
return 0;

return 1;
}

void CloseReportFile(void)
{

if (HReportFile != -1
{

_lclose(HReportFile);
HReportFile = -1;

}

}

CHAPTER 10 • TOOLHELP 663

void DoReportLineFeed(void)
{

Output("\r\n");
}

void DoReportHeader(void)
{

char bufferCSO];
Output("\r\n\r\n");
GetDateTimeString(buffer);
Output(IICoroner exception report - %s\r\n", buffer);

}

int PrepareForReport(void)
{

i nt ok;
ExceptionTaskNameCO] 0;
ok = OpenReportFile();
if (ok)

return 1;

II Null out the task name string

II If we get here, we couldn't open the report file. Maybe there wasn't
II an available file handle in the task that blew up. Remember, we're
II not running as the CORONER. So, let's try closing STDPRN to try to
II free up file handles, and then try again.
_lclose(4);
ok = OpenReportFile();
return ok;

}

void DoExceptionReport(int wNumber)
{

if (!PrepareForReport())
{

PostMessage(HCoronerWnd, WM_CORONER_FILEOPEN_ERROR, 0, 0);
return;

}

DoReportHeader();
DoWhatHappenedReport(wNumber);
DoStackTraceReport();
DoRegisterReport();
DoTaskReport();
DoModuleReport();
DoHeapslnfoReport();
DoWindowslnfoReport();
CloseReportFile();

II Post a message to the CORONER window, so it can display the
II exception message.
PostMessage(HCoronerWnd, WM_CORONER_EXCEPTION, wNumber, 0);

}

char *tempstack;
WORD temps tack_end;

II Pointer to temporary working stack
II offset of the end of the temporary stack

664 UNDOCUMENTED WINDOWS

WORD old_ss; // A place to save the SS:SP that we came in on.
WORD old_sp;
WORD exception_number;

void C_ExceptionHandler(
WORD wES,
WORD wDS,
WORD wDI,
WORD wSI,
WORD wBP,
WORD wSP,
WORD wBX,
WORD wDX,
WORD wCX,
WORD wAX,
WORD wOldBP,
WORD wRetlP,
WORD wRetCS,
WORD wRealAX,
WORD wNumber,
WORD wHandle,
WORD wlP,
WORD wCS,
WORD wFlags)

{

// Flag tells if we're already processing an interrupt/exception
static WORD inHandler = 0;

// Pass on the debugger interrupts. We don't care about them.
if ((wNumber == 1) I I (wNumber == 3))

return;

/* See if we're already here. If so, chain on */
if (inHandler)

return;
else

inHandler 1;

// Save off all of the parameters that we care about. We're going to
// be switching stacks, so they won't be available.
exception_number = wNumber;
Exception_AX wRealAX;
Exception_BX wBX;
Exception_CX wCX;
Exception_DX wDX;
Exception_SI wSI;
Exception_DI wDI;
Exception_BP = wOldBP;
Exception_IP = wlP;
Exception_FLAGS = wFlags;
Exception_CS = wCS;
Exception_DS wDS;
Exception_ES wES;

asm mov [Exception_SS],ss

asm
asm

lea
mov

CHAPTER 10 • TOOLHELP 665

ax, [wES + 26hJ II calculate SP at time of exception
[Exception_SPJ,ax

II We're now going to switch the stack over to the temporary 4K stack
II we allocated before we called InterruptRegister
asm {

mov [old_ssJ, ss
mov [old_spJ, sp

mov ax, ds
mov ss, ax
mov sp, [tempstack_endJ

}

DoExceptionReport(exception~number);

II Switch the stack back to the original stack
asm {

mov ss, [old_ssJ
mov sp, [old_spJ

}

inHandler = 0;

II Return to .ASM handler, which will chain on to the other installed
II handlers. If none of them handle it, Windows will kill the task for us.
return;

}

'define TEMPSTACK_SIZE 4096

BOOl SetupInterruptHandler(void)
{

tempstack = malloc(TEMPSTACK_SIZE);
if (!tempstack)

return 0;
tempstack_end = (WORD)«tempstack + TEMPSTACK_SIZE) - 2);

return InterruptRegister(NUll, (lPFNINTCAllBACK)EXCEPTIONHANDlER);
}

void ShutdownInterruptHandler(void)
{

InterruptUnRegister(NUll);
if (tempstack)

free(tempstack);
}

To enable the Coroner to receive exceptions, the SetupInterruptHandler function
allocates a stack that will be switched to while writing out the exception report. It
then calls InterruptRegister, passing the address of the EXCEPTIONHANDLER
function (from TH_ASM.ASM; see below). We'll come back to the EXCEPTION
HANDLER function in a moment.

666 UNDOCUMENTED WINDOWS

The key function in XCPTREPT.C is C_ExceptionHandler. At the beginning of
the function, checks are made to see ifwe want to write out a report for this particular
invocation. We don't want to do anything with INT 1 or INT 3, since they're used by
debuggers and are quite normal. We also don't want to be in the middle of writing a
report and have another exception come in. To prevent this, the "inHandler" flag is
set to make the function a "critical section."

Because this code is running on the stack of the faulting task, it is desirable to get
on to a "safe stack" as soon as possible. Before that can be done, though, the param
eters that were passed on the stack need to be copied to variables that can be accessed
with the DS register. Once this is complete, the old SS:SP is saved off, and the stack
is switched to the safe stack allocated when InterruptRegister was called.

At this point, it is now safe to write information about the exception to the log
file. This is accomplished by DoExceptionReport. When DoExceptionReport is fin
ished, the stack is switched back to the original stack, and the exception is chained to
the next handler. If there are no other programs that have called InterruptRegister and
that actually dealt with the exception, Windows will kill the application and display the
DAB box.

The DoExceptionReport function is responsible for opening the log file, writing
the various report sections, closing the log file, and then informing the user. Because
Windows is in a potentially unstable state at the time of the exception, the report is
written out before the user is informed. By doing it this way, even ifWindows crashes
while bringing up the exception dialog, the report is still safely on the disk. As a side
note, if you're experiencing severe system crashes it's a good idea to tum off write
caching in your disk cache. If you don't, the system may crash before the cache has a
chance to be flushed.

The code that opens the log file is a bit unusual. Because Wmdows considers the
exception handler to be part of the faulting application, it will use the faulting applica
tion's file handle table when opening a file. In some cases, there may not be anyavail
able file handles. If the first call to _lopen fails, the file opening code tries to free up a
file handle by closing the handle in use by STD PRN. Another attempt is then made
to open the file. If the file still can't be opened, the Coroner gives up and chains on to
the next handler.

The functions that display the information for various sections of the log file are
reasonably straightforward. For the most part, they just call the appropriate ToolHelp
functions and display selected information from the returned structures.

The function GetLogicalSegmentFromSelector is a helper function that is called
by both DoWhatHappenedReport and DoStackTraceReport. It takes a selector (which
should be a code segment selector) and returns the module that it belongs to and its
segment number in the module table. First, it looks up the selector by using
GlobalEntryHandle. This gives the module handle of the owning module and lets us
verify that the selector really is a code segment. Then the module handle is converted
to a module name by calling ModuleFindHandle.

TH_ASM.ASM, just an assembly language extension to XCPTREPT.C, contains
the callback function that is registered via InterruptRegister.

CHAPTER 10 • TOOLHELP 667

;=================================
; Coroner, by Matt Pietrek, 1992
; File: TH_ASM.ASM
;=================================

.model small .286

PUBLIC EXCEPTIONHANDLER ; Make EXCEPTIONHANDLER public

extrn _C_ExceptionHandler: NEAR
.code

; The EXCEPTIONHANDLER proc is called directly from ToolHelp. It
; sets up a stackframe, and calls the 'c' function C_ExceptionHandler.
; On entry, the stack looks like this:

; ------------
;BP---->I Old BP CBP + OOh]
; I Ret IP CBP + 02h]
; I Ret CS CBP + 04h]
; I AX I CBP + 06h]
; IException#1 CBP + 08h]
; I Handle I [BP + OAh]
; I IP I CBP + OCh]
; I CS I CBP + OEh]
; I Flags I [BP + 10h]
;

EXCEPTIONHANDLER proc far

push
mov
pusha
push
push

mov
mov

bp
bp,sp

ds
es

ax, mdata
ds, ax

;Make a stack frame

;Save all registers

; There's only one instance of the CORONER running, so
; we save work by loading DS directly, like a DLL does.

call _C_ExceptionHandler

pop
pop
popa
pop
retf

es
ds

bp

;Chain on to next fault handler

EXCEPTIONHANDLER endp

END

This function is in assembly language because when it's called, the register values
(with the exception ofAX) are what they were at the time of the exception. The function

668 UNDOCUMENTED WINDOWS

exists to save the registers on the stack, set up the DS to point to Coroner's DS, and
then call C_ExceptionHandler.

The DS is set up similarly to a DLL entry point. By putting in the code to load the
DS with an explicit value @data, we restrict ourselves to running only one instance.
The benefit is that we do not have to use MakeProcInstance and pass the instance
thunk to InterruptRegister.

Finally, there's CORONER.H (yawn):

//=================================
// Coroner, by Matt Pietrek, 1992
// File: CORONER.H
//=================================
IIdefine
IIdefine
IIdefine

MAX_PATH_lENGTH
WM_CORONER_FIlEOPEN_ERROR
WM_CORONER_EXCEPTION

144
WM_USER + Ox200
WM_USER + OX201

// The .ASM InterruptRegister handler in TH_ASM.ASM
void FAR PASCAL EXCEPTIONHANDlER(void);

// From XCPTREPT.C
BOOl SetuplnterruptHandler(void);
void ShutdownlnterruptHandler(void);

Suggested Enhancements
The Coroner is a good starting point for writing a post-mortem debugging tool.
Obvious improvements include letting the user set options such as the output file
name and whether the log file should be appended vs. overwritten, among others.
Some users have second monitors or terminals to which a small summary report could
be written. A private profile file is a good way to save and read these options.

A time-consuming but helpful addition is to add a disassembler. The faulting
instruction could be disassembled, as well as a few instructions before and after to save
the user from having to load the program into a debugger to see which instruction
blew up. Given this information and the registers section of the log file, it is almost
always trivial to determine exactly why the exception was generated.

Another useful feature would be to use the logical addresses in the stack trace to
look up and display symbolic names. This is what the debugging version ofWindows
does when it RIPs. The Windows SDK comes with .SYM files that contain symbolic
names and their corresponding logical addresses. You can create .SYM files for your
own programs also by using TMAPSYM (Borland style .MAP files) and MAPSYM
(Microsoft style .MAP files).

It is also possible to write a utility (similar to the DFA utility that comes with
Borland's WinSpector) that post-processes the CORONERLOG file and cross refer
ences the stack trace information with Turbo Debugger or CodeView debug informa
tion. Trying to do this in the Coroner code is a bad idea because it takes significantly
more memory to process a full-blown debug information file than it does to process a

CHAPTER 10 • TOOLHELP 669

.SYM file. Allocating large amounts of memory in the exception handler may cause
memory movement and system instability.

A really ambitious implementation would involve saving a copy of the stack mem
ory and using debug information to display the parameters and local variables for each
stack frame. Additionally, the data segments of the application could be saved in a file,
so that the post-processor could display the global variables also.

In Windows 3.1, Microsoft added parameter validation. To use it effectively, you
need to know where in the code your program used an invalid parameter. The Coro
ner code that walks the stack for an exception is also useful for finding where an erro
neous parameter was passed. To add this capability, you'll need to use NotifyRegister
to install a callback function for notifications.

APPENDIX • A

WINIO Library Reference

WINIO, the library of functions used to build the sample programs in this book, sup
ports a subset of the C stdio library under protected-mode Windows 3.0 and higher,
plus a set of extensions for event handling, window manipulation, menus, clickable
lines, and so on. WINIO works with Borland C++ 2.0 and 3.0 small and medium
models, and Microsoft C 6.0 and C/C++ 7.0 small and medium models. It has been
ported to MetaWare's 32-bit Windows ADK, using MetaWare High C 1.7, but this
version isn't fully supported at this time.

An overview ofWINIO, with several example programs, appears in chapter 4. The
following is a reference to each function and variable in the WINIO library.

To use WINIO, #include "windows.h" and "winio.h." If you are calling any
wmhandler_ functions, #include ''wmhandlr.h'' as well:

/* hello.c */
#include "windows.h"
#include "winio.h fl

mainCint argc, char *argv[])
{

i nt i;
winio_settitleCwinio_currentC),

"Hello from WINIO; Wish You Were Here");
for Ci=O; i<argc; i++)

printfC"%d\t%s\n", i, argv[i]);
return 0;

}

Each WINIO function begins with main() rather than with WinMain(). The
standard argc, argv parameters are supported. When main() is called, a window has
already been created, with a buffer size of 32K, a window title holding the program's
executable file name and command-line, and a default File... menu with the options
Save Buffer... and Exit. See the graphic on the following page.

671

672 UNDOCUMENTED WINDOWS

Command Shell

29696
23024
37888
53728
38688
3561.6
34832

If more output appears than can fit within the window, the user can scroll through
the window using the mouse or the arrow, Pg, or Home and End keys. Unfortunately,
cut and paste are not currently supported.

The program can use the following stdio functions:

fgetchar
printf

fputchar
putchar

getchar
puts

gets
ungets

kbhit
vprintf

Except for ungets (see later discussion), these functions are similar to what the C
standard library provides. However, WINIO programs should #include "winio.h"
rather than <stdio.h> because some of these functions are implemented as macros. If
every stdio function used by your program appears as a function prototype (not a
macro #define) in <stdio.h>, and if you are not using any winio_ or wmhandler_
extension functions, you can simply relink your DOS program's .OBI file with
SWINDOS.LIB or MWINDOS.LIB to create a Windows version of the program.

Your program can call any Windows API function. Use winio_current() or the_h
Main Wnd global variable (described later in this appendix) to find your HWND. For
graphics, see the winio_onpaintentry() function. To handle WM_ messages, see the
wmhandler_ functions.

It is convenient having the program begin with main() rather than WinMain(),
but you may also want to access the WinMain() parameters hInstance, hPrevInstance,
IpCmdLine, and nCmdShow. WINIO saves these values, plus a few others, in global
variables you can use:

HANDLE _hlnst;
int _nCmdShow;

HANDLE __hPrevlnst;
HWND __hMainWnd;

LPSTR _lpCmdLine;
char szModule[];

Link with either the Borland or Microsoft version of SWINDOS.LIB (small
model) or MWINDOS.LIB (medium model). If you want your program to have the

APPENDIX A • -WINIO LIBRARY REFERENCE 673

standard WINIO "Windows meets stdio" handshake icon, use WINDOS.RC. For
example, with Borland C++:

bcc -ws -DWINIO hello.c swindos.lib
rc windos.rc hello.exe

With Microsoft C (including Microsoft C/C++ 7.0), you need a linker .DEF file:

; WINDOS.DEF
DESCRIPTION
EXETYPE
STUB
CODE
DATA
HEAPSIZE
STACKSIZE
EXPORTS

- generic DEF file for programs built with WINDOS
'WINDOS Windows program'
WINDOWS
'WINSTUB.EXE'
PRELOAD MOVEABLE DISCARDABLE
PRELOAD MOVEABLE MULTIPLE
4096
8192
WMHANDLER_WNDPROC

A sample Microsoft C command line is:

cl -G2w -c hello.c
link Inod hello", swindos slibcew libw, windos.def
rc windos.res hello.exe

WINIO Differences from Stdlo
The printf() and vprintf() functions have an internal limitation of 4K bytes. That is,
you cannot display more than 4K bytes per call to printf() or format more than 4K
bytes per call to vprintf().

All output to stdio, and all input from stdio, must go through the functions indi
cated above. For example, printf() and puts() both work with WINI°, but
fprintf(stdout, ...) and fputs(stdout, ...) do not. Likewise, you can use getchar() or
fgetchar(), but not fgetc(stdin). Also, stderr is not supported. The scanf() function is
not supported, but you can instead use sscanf() together with gets():

HWND hwnd;
char buf[SO];
gets(buf);
sscanf(buf, "%04X", &hwnd);

In WINIO, getchar() by default behaves differently than it does under DOS. The
following C construct

int c;
while «c = getchar(» != EOF)

putchar(c);

does not have the desired effect under WINIO because characters input via getchar()
are by default echoed to the screen. The putchar() included in the above loop causes
each character to be echoed a second time. The call to putchar can be removed, or the
echo can be suppressed by calling winio_setecho(FALSE).

674 UNDOCUMENTED WINDOWS

In addition, the test for EOF is often inappropriate because the user can always
double click the window's close box. Thus, the standard C echo loop can be recoded
for WINIO most simply as

for (;;)
getchar();

DOS displays the ASCII codes 1 through 26 using the strings "A through "Z,
except for 8 (Backspace), 9 (Tab), 10 (Line feed), 11 (VT), 16 (Toggle print), and 19
(Stop output), which are interpreted and not displayed. WINIO does not print any
thing below ASCII code 32, which is the space character. With the exception of "P
and "S, WINIO does interpret the same characters that DOS does in much the same
way, including reporting ASCII 26 as EOF.

WINIO Functions
The following is an alphabetical list of the extension functions provided by WINIO; all
functions appear in "winio.h," with the exception of the wmhandler_ functions, which
appear in "wmhandlr.h."

void fall(statlc char *fmt, ...);

This function displays a message box and exits the program. The function takes a format
string and a variable number ofarguments, just like printf.

char *ungets(char *strlng);

This function is like the stdio ungetc() function (which WINIO does not support), except
that it allows an entire string, rather than just one character, to be pushed back onto the
input queue. Calling this function is equivalent to sending the current window a
WM_CHAR message for each character in the string.

void wlnlo_about(char *strlng);

The text of the About box, which is the only choice by default on the Help popup menu,
may be changed using this function. The string passed to this function will make up part
of the About box text. The string may include newline characters, which will be honored,
and will be truncated ifgreater than 128 characters in length.

WORD wlnlo_bufslze(HWND hwnd);

This function returns the size of the output buffer allocated for the specified window. See
the winio_setbufsize() function for more information on the buffer.

void wlnlo_clear(HWND hwnd);

This function clears the output buffer for the specified window, effectively reinitializing
the window. The window will also be redisplayed, blank.

void wlnlo_close(HWND hwnd);

Provided only for symmetry, this function simply calls the Windows API function
DestroyWmdow().

APPENDIX A • WINIO LIBRARY REFERENCE 675

void wlnlo_closeall(vold);

This function closes all WINIO windows for the application. It does this simply by closing
the main window of the application, the one created in WinMain() before main() is called.

HWND wlnlo_current(vold);

This function returns the handle of the WINIO window that is current. This is the win
dow to which stdio output functions write and from which stdio input functions obtain
user input. See winio_setcurrent() for information on how to change the current window.
Given the HWND, you can manipulate the WINIO window with any Windows API
function.

DWORD wlnlo_defwlndowslze(DWORD);

This function sets the default window size for all subsequent winio_window() calls. The
window size is specified in characters, not pixels, with the height in the HIWORD and the
width in the LOWORD. The function returns the previous size in effect.

void wlnlo_end(vold);

This function enters a message loop until the user has closed all application windows. It
simply calls the wmhandler_yield() function repeatedly until the count ofwindows is O.

void wlnlo_getlnfo(HWND hwnd, PWINIOINFO pwlnfo);

This function returns various pieces of information about the WINIO window and its asso
ciated buffer into a WINIOINFO structure:

typedef struct {
POINT dimChar; II dimensions of a character cell
POINT posCurr; II curr pos from top of buffer in chars.
REeT rectView; II part of buffer in view in chars/lines.
long cDiscarded; II lines discarded from buffer so far
} WINIOINFO, * PWINIOINFO, FAR * LPWINIOINFO;

The dimChar member will vary depending on what font is in effect for the window; see
the winio_setfont() function. The posCurr member indicates where the logical text cursor
is. The x and y values of the point contain the character and line (not pixel) offsets from
the start of the buffer. The rectView member is a RECT describing, relative to the top left
of the buffer, what is currently in the window. The left and right fields of the RECT con
tain the left and right character columns, and the top and bottom fields contain the top
and bottom line numbers ofwhat is visible. Finally, cDiscarded indicates how many display
lines have been discarded from the buffer to make room for later output. This allows a line
handler function, for example, to account for the "shifting up" of lines in the display buff
er over time.

HMENU wlnlo_hmenuflle(HWND hwnd);

Ifa window was created with the WW_HASMENU flag, this function will return the
menu handle of the "File" popup menu that initially contains the "Save buffer..." and
"Exit" selections. It allows the menu to be extended or modified: see winio_setmenufunc()
for how to register menu-selection handlers.

676 UNDOCUMENTED WINDOWS

This function returns the handle of the &Help popup menu in the main menu bar, if
the window was created with the winio_window() WW_HASMENU flag; otherwise it
returns NULL. The Help popup menu by default has one choice on it for the &About dia
log. Using the handle returned by this function with InsertMenu, additionalchoices may
be inserted into the Help menu. In order for an application to gain control when any addi
tional items are selected from the menu, their IDs must be registered together with a han
dler function using winio_setmenufunc().

HMENU wlnlo_hmenumaln(HWND hwnd);

If a window was created with the WW_HASMENU flag, this function will return the
menu handle of the main menu bar (that initially contains the "File" selection). It allows
the menu to be extended or modified: see the winio_setmenufunc().

void wlnlo_home(HWND hwnd);

This function simulates the user pressing the Home function key. It is useful, for example,
ifan informational window is created to hold text that might not fit into the window.
Once the text has been output, perhaps wrapped in calls to winio_setpaint(), this function
leaves the window positioned at the start of the buffer.

BOOL wlnlo_lnlt(vold);

This function is used internally by WINIO; it registers the WINIO class (''winio_wcmain")
and initializes some global variables.

void wlnlo_onclose(HWND hwnd, DESTROY_FUNC exltfunc);

In most applications, especially those that rely on some form ofcharacter-based input,
there must be a means for providing notification that the user has closed the window from
which input was expected! This function could be simulated using:

prev_wmdestroy = wmhandler_setChwnd, WM_DESTROY, my_wmdestroy);

However, the winio_onclose() mechanism not only is more convenient, but it also guaran
tees that WINIO's own WM_DESTROY handler is called, without depending on the
application to chain. The DESTROY_FUNC callback function should have a prototype
that matches:

void callbackCHWND hwnd);

Note that because the onclose mechanism comes into operation when the window receives
the WM_DESTROY mechanism, it is too late to ask the users if they really want to close
the window. If that functionality is wanted, a WMHANDLER should be established for
the WM_CLOSE message. Ifexitfunc is NULL, the current callback function is disabled.

PAINT_FUNC wlnlo_onpalntentry(HWND hwnd, PAINT_FUNC palntfunc);

This function gives WINIO program access to GDI. For example, the sample program in
chapter 8 for the undocumented Windows RSin() and RCos() functions in 3.0 draws a
star on the window. It is a persistent star that scales to fit the window and that responds to
the window being scrolled. So that text and graphics can be integrated, and so that the

APPENDIX A • WINIO LIBRARY REFERENCE 677

application has an easy-to-use way of influencing the painting process, WINIO provides
hooks within the processing ofa WM_PAINTmessage.

The first hook, as supplied through this function, allows the application to gain control
after WINIO has obtained a DC, but before the internal winio_wmpaint() function has
actually started painting text into the window. The callback function has the opportunity
to perform whatever painting or DC modification it wants, and then it returns TRUE or
FALSE to indicate whether WINIO should go ahead with, or bypass, its regular display
update. Returning FALSE will cause WINIO not to update the window, leaving it empty
of buffer text.

The callback function type is PAINT_FUNC and should have a prototype that matches

BOOl callback(HWND hwnd, HDC hdc, PAINTSTRUCT *pps, PWINIOINFO pwi)i

where hwnd is the window being updated, hdc is the display context returned by the
BeginPaint function, pps is a pointer to the PAINTSTRUCT filled in by the BeginPaint
call, and pwi is a pointer to a WINIOINFO structure, as described for the winio~etinfo() call.

Ifpaintfunc is NULL, the current callback function is disabled.

PAINT_FUNC wlnlo_onpalntexlt(HWND hwnd, PAINT_FUNC palntfunc);

As its name suggests, this function provides the hook into the end of the update process.
It operates in exactly the same way as the winio_onpaintentry() function, except that a
function registered using this call will be invoked just before WINIO calls EndPaint() to
release the display context. Unless a function has been registered using winio_onpaintentry(),
and it returned FALSE, this will be invoked after the window has been updated with text
from the window's buffer.

The callback function type is again PAINT_FUNC, but note that the BOOL return
code is ignored at paint exit. Ifpaintfunc is NULL, the current callback function is disabled.

Int wlnlo_openwlndows(vold);

This function returns the number ofWINIO windows that are currently open.

void wlnlo_resetbusy(vold);

This function returns the WINIO cursor to the previous shape and releases the capture.
See the winio_setbusy() function below.

WORD wlnlo_setbufslze(HWND hwnd, WORD wBufSlze, BOOL bClear);

This function resizes the output buffer for the specified window. IfbClear is FALSE, the
buffer cannot made smaller than the amount currently in use. If bClear is TRUE, the buff
er will be cleared, and the new size can be anything over 4K bytes. The return value is the
new actual buffer size. The default buffer size for a WINIO program's main window is
32K; for secondary windows, the default buffer size is 8K.

void wlnlo_setbusy(vold);

This function provides a simple mechanism for indicating that some operation is in prog
ress that may not be interrupted. It changes the cursor into the stock hourglass "busy" cur-

678 UNDOCUMENTED WINDOWS

sor and captures the cursor, effectively blocking user input. The cursor is returned to its
previous state and the capture is released through a call to winio_resetbusy(). Second and
subsequent calls to winio_setbusy() without an intervening call to winio_resetbusy() sim
ply increment a counter. winio_resetbusy() only restores the cursor if the counter is zero;
otherwise it decrements it.

HWND wlnlo_setcurrent(HWND hwnd);

As described in the text, WINIO stdio functions operate on the current window. This
function allows the current window to be changed. It returns the handle of the previously
current window.

BOOL wlnlo_setecho(HWND hwnd, BOOL bEcho);

This function controls echoing of stdin. The default behavior of the WINIO version of the
input function getchar() is that characters input are automatically echoed to stdout. This
function allows the behavior to be modified. SpecifYing a bEcho parameter ofFALSE dis
ables echoing ofstdin; specifYing TRUE reenables it. The function returns the previous
value in effect.

WORD wlnlo_setfont(HWND hwnd, WORD wFont)

Although only stock fonts are currently supported, it is possible to change the font in
effect for a particular window using this function. The function accepts the WINDOWS.H
stock object constants ANSI_FIXED_FONT, OEM_FIXED_FONT, and SYSTEM_
FIXED_FONT only. It returns the font previously in effect.

LINEHANDLER wlnlo_setllnefn(HWND hwnd, LINEHANDLER Iinefune);

This function installs a handler to be invoked when the user double clicks on a line of text
in the window, as discussed earlier. The callback function is of type LINEHANDLER and
should have a prototype that matches

void callback(HWND hwnd, LPSTR lpstrLine, int nLineNo);

where IpstrLine will be a pointer to the line of text in the buffer that the user double
clicked on, and nLineNo is the line number from the top of the buffer. Note that when
text is lost from the top of the buffer, the line number for a particular line will decrease
over time. However, the cDiscarded field of the WINIOINFO structure supplied by the
winio_getinfo() function can be used to derive an absolute line number for the line.

MENU_FUNC wlnlo_setmenufunc(HWND hwnd, Int nlD, MENU_FUNC menufune);

Ifmenu items are added to either the main or file menus, a handler function should be
installed to process user selection ofa new item. Note that if a particular menu item id for
a particular window's menu hierarchy is not registered with a handler in WINIO, there is
no way for the application to know that the menu option has been picked. The callback
function is of type MENU_FUNC and should have a prototype that matches:

void callback(HWND hwnd, int nID);

APPENDIX A • WINIO LIBRARY REFERENCE 679

BOOL wlnlo_setpalnt(HWND hwnd, BOOL bPalnt);

This function allows the painting of text added to the window buffer to be deferred. If
bPaint is FALSE, the window is not updated with new text added using the stdio func
tions. When a subsequent call to the function is made with a bPaint parameter ofTRUE,
the window is then updated.

Use of this function around a block ofcode that makes many puts() or printf() avoids
jerkiness. Equally important, WINIO does not yield control to other applications between
a winio_setpaint(FALSE) and a winio_setpaint(TRUE). If a WINIO program is walking a
data structure that could be changed by another application (e.g., the Windows task list or
the global heap), it should call winio_setpaint(FALSE) before starting the walk and
winio_setpaint(TRUE) when the walk is complete. This will keep the structure's state
from being changed underneath you by other applications.

void wlnlo_settltle(HWND hwnd, char *strTltle);

The default window caption for WINIO windows is the module name (together with, in
the case of the main window, any command line arguments to the program). This func
tion is really only a cover over the documented SetWindowText() function and is included
only to round out the WINIO API.

BOOL wlnlo_wam(BOOL bConflrm, char *strCaptlon, static char *fmt, ...);

The documented MessageBox() function is a useful tool, and this function further simpli
fies its use by treating it with a printf style format string and variable arguments. It also has
two operational flavors. If the bConfirm parameter is FALSE, the message box is displayed
with just an OK button, and the return value will always be TRUE. If the bConfrrm
parameter is TRUE, both OK and Cancel buttons will be included, and the return value
will be FALSE if the user cancels; otherwise it will be TRUE.

HWND wlnlo_wlndow(LPSTR IpstrTltle, WORD wBufSlze, WORD wFlags);

This function allows additional windows to be created by the application. The IpstrTitle
parameter specifies the caption for the new window; the wBufSize parameter specifies the
size of the buffer to be allocated for the window. This buffer is allocated from global mem
ory and determines the amount of display history that will be kept with the window. If the
value is 0, a default size of 8K is used; otherwise if the specified value is lower than 4K it is
rounded up. The wFlags parameter is a combination of any (or none) of the following
flags ORed together:

WW_HASMENU (Ox0001)

The new window will have the default WINIO menu, which can be modified as described
in winio_setmenufunc() above.

WW_EXITALLOWED (Ox0002)

The Exit option on the File popup menu of the window will be enabled. If this flag is
used, the application may be exited from any window. If the WW_HASMENU flag is not
used, this flag is ignored.

680 UNDOCUMENTED WINDOWS

WW_STAYSONTOP (Ox0004)

By default, WINIO windows are owned popups, not child windows. In this case, when the
main WINIO window is active, it may cover part or all of the new window. Further, if the
main window is minimized, the new window will not automatically be minimized as well.
If the WW_STAYSONTOP flag is used, the new window is created as a child window and
will never be overlayed by the main WINIO window. Also, minimizing the main window
will cause this window to be minimized automatically.

WMHANDLER Functions
The following functions have prototypes in wmhandlr.h. Although it is usually used
together with WINIO, it is possible to have a WMHANDLER application that does
not use WINIO (see wmhandler_hwnd() below). A WINIO application will probably
only use wmhandler_set() and wmhandler_yield(); the other functions are most likely
to be used by non-WINIO programs.

WMTAB wmhandler_create(vold);

Pointers to the functions registered to handle messages for a window are stored in several
arrays. This function allocates the memory for those arrays, initializes them, and returns a
pointer to the memory. The pointer returned by this function should be stored in the
CREATEPARAMS structure wmTab field (see wmhandler_wndproc()). The wmhandler_
wndproc() function retrieves this pointer together with an application-supplied 32-bit
value (usually a far pointer) when the WM_CREATE message for the window is received
and places them in the extra-data area associated with the window. Thereafter,
wmhandler_wndproc() uses the WMTAB pointer to locate a handler for all messages
received for the window.

void wmhandler_destroy(HWND hwnd);

This is the complementary function to wmhandler_create(). It retrieves the WMTAB
pointer from the specified window and frees the associated allocation.

WMHANDLER wmhandler_get(HWND hwnd, WORD wMsg);

This function returns a pointer to the function that is currently handling the specified mes
sage for the specified WINIO window. The returned value is never NULL, since any mes
sages for which handlers have not been installed using wmhandler_set() are handled by a
WMHANDLERinternal handler that passes them on to DefW"mdowProc(). See
wmhandler_set() for more information and for a description of the WMHANDLER type.

HWND wmhandler_hwnd(char *strTltle);

This function creates an invisible window with an associated handler table. The returned
window can be used as a message recipient, and its handle used in calls to
wmhandler_set(). This facility parallels the concept of an "object window" in OS/2 Pre
sentation Manager. It can be used when you want event handling without a user interface.

APPENDIX A • WINIO LIBRARY REFERENCE 681

WMHANDLER wmhandler_set(HWND hwnd, WORD message, WMHANDLER wmhandler);

This function allows a function to be installed to handle messages of the specified type that
arrive at the specified window. The message number can be any number you want, includ
ing numbers greater than WM_USER (400h), and including message numbers returned
from the Windows RegisterWindowMessage() function. However, there is one restriction:
your program can install no more than 16 handlers for message numbers greater than
WM_USER (400h). Most applications don't install 16 handlers, period, so this should not
present a problem.

The WMHANDLER callback function should have a prototype that matches:

long wmhandler(HWND hwnd, WORD message, WORD wParam, DWORD lParam);

The callback function should return whatever is appropriate to the WM_ message type it is
handling.

If the wmhandler parameter to wmhandler_set() is NULL, the message handler for
the function becomes an internal default handler that passes the message on to
DetWindowProc.

wmhandler_set() returns the previous handler in effect. The callback function can
chain onto this. Ifyour program takes over one of the WM_ messages also handled by
WINIO, your callback function must chain; these messages are listed earlier in this
appendix.

Generally, wmhandler_set() will be used in a WINIO program. Ifused in a non
WINIO program, your window must use wmhandler_wndproc() as its window procedure
and must have a WMTAB pointer as the frrst four bytes of associated user data (see
wmhandler_create()). Again, this is only a concern for non-WINIO windows that use the
WMHANDLER package.

DWORD FAR PASCAL wmhandler_wndproc(HWND hwnd, WORD wMsg,

WORD wParam, DWORD IParam);

This is a generic window procedure that implements the message switching on which
WMHANDLER is based. It may be attached to any window for which WMHANDLER
style message handling is required, so long as the following pieces of the puzzle are in
place (all of this is taken care of automatically ifyou use WINIO):

• The IpfnWndProc field of the WNDCLASS structure for the window class ref
erenced in the CreateWindow() call is set to wmhandler_wndproc.

• The cbWndExtra field of the WNDCLASS structure for the window class is
set to at least 8.

• The lpParam parameter of the CreateWindow() call used to create the window
is pointed to a CREATEPARAMS structure:

682 UNDOCUMENTED WINDOWS

typedef struct {
WMTAB wmTab;
LPSTR lpData;
} CREATEPARAMS, FAR *LPCREATEPARAMS;

where the IpData can be any 32-bit value ofuse to the application and will usually point to
data to be stored with the window.

As described in the wmhandler_create() entry, these pointers are transferred to the 8-byte
user data area set aside for our use. WINIO uses IpData to point to additional window
state information. IpData may be retrieved from within a message handler using:

LPMYSTRUCT lpMyStruct = (LPMYSTRUCT)GetWindowLong(hwnd, 4);

void wmhandler...)'Ield(vold);

This function is the means by which WINIO releases the processor to allow for messages
of its own and other applications to be processed.

APPENDIX • B

Annotated Bibliography

Timothy Adams, "Intercepting DLL Function Calls," Windows/DOS Developer)s
Journal, June 1992

Windows is missing a SetProcAddress() function-hey, the Mac has SetTrapAddress() and
DOS has the Set Vector call-but API calls can be intercepted; you just have think like a
debugger and set breakpoints.

Rakesh K. Agarwal, 80x86 Architecture and Programming, Volume II (Architecture
Reference), Englewood Cliffs NJ: Prentice-Hall, 1991, 627 pp., ISBN 0-13
245432-7

Windows is a protected-mode DOS extender, and it is often necessary for Windows pro-
grammers to understand how protected mode works. This is by far the best book available
on the Intel 80x86 protected-mode architecture, with detailed pseudocode for each instruc
tion. (Volume I isn)t written yet!)

Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberg, The A WI(Programming
Language, Reading MA: Addison-Wesley, 1988, 210 pp., ISBN 0-201-07981-X

Several ofthe utilities in Chapter 2 ofUndocumented Windows were written in A WK. The
book by A-I(-W is the place to go ifyou want to learn more about this wonderful pattern
matching, text-processing language.

Robert Arnson, Daniel Rosen, Mitchell Waite, and Jonathan Zuck, Visual Basic How-
To, Mill Valley CA: Waite Group Press, 1992, 546 pp., ISBN 1-878739-09-3

Chapter 6 (Environment and System) shows how to make Windows API calls, including
undocumented ones like GetHeapSpaces(), from Visual Basic.

Paul Bonneau, "3.1 's Internal Window Structure," Windows/DOS Developer)sJournal,
June 1992

Describes the WND structure in Windows 3.1, very close to what we show in Chapter 6.
This is a continuation from the author)s excellent «Windows Q&A)) column in the
December 1991 issue. Bonneau)s ((Windows Q&A)' is essential reading for serious Win
dows programmers.

683

684 UNDOCUMENTED WINDOWS

Borland Languages Open Architecture Handbook, 1991, Borland Part No. 14MN
RCHOI-I0

Chapter 3 documents the Turbo Debugger (TD) symbol table format.

Ralf Brown and Jim Kyle, PC Interrupts: A ProgrammerJs Reference to BIOS, DOS,
and Third-Party Calls, Reading MA: Addison-Wesley, 1991, ISBN 0-201-57797-6

Chapter 14 covers some of the INT 2Fh calls supported in Windows; Chapter 11 covers
DPMI, and Chapter 12 covers the Virtual DMA Specification (VDS) services (INT 4Bh)
provided by Windows.

Geoff Chappell, Inside DOS 5, Reading MA: Addison-Wesley, 1992 (forthcoming)
An in-depth dissection ofHIMEM and EMM386, showing how DOS 5 (and Windows)
make use ofextended memory.

Paul Chui, "Undocumented DOS from Protected-Mode Windows 3," Dr. DobbJs
Journal, February 1992

One of several articles now available on how to use DPMI to call undocumented DOS
functions from a protected-mode Windows application.

Bob Chiverton, "Shed Some Light on Your Windows Application's Default Data Seg-
ment with HeapPeep," Microsoft SystemsJournal, January-February 1992

Agood description ofthe NULL segment, or Instance Data, area (for some reason called
a "Task Header» by Microsoft). Both TOOLHELP and non-TOOLHELP techniques are
used.

Alan Cobb, Reverse Engineering Windows and OS/2 Software, February 1991. Avail-
able from the author (CIS 73170,3543)

Discusses legalities and ethics of reverse engineering, plus tools, file formats, disassembly
with SYMDEB, and import/export analysis. Contains tons ofgood advice; for example:
((It is desirable that programs to be re-verse engineered be purchased through large well
known national outlets such as Egghead. The objective is to highlight the fact that it was a
mass market purchase, since as we have seen pre-viously, license agreements prohibiting
reverse engineering and patching are weaker when they are attached to high volume, mass
market software. »

Ralph Davis, The Windows ProgrammerJs Guide to Networking, Reading MA: Addison
Wesley, 1992 (forthcoming)

A detailed explanation of the WNet functions, and of using DPMI to access real-mode
TSRs and drivers.

Harvey M. Deitel and Michael S. Kogan, The Design ofOS/2, Reading MA: Addison
Wesley, 1992, 389 pp., ISBN 0-201-54889-5

Chapters 1 (Historical Background), 5 (Multitasking, especially 5.5 on Kernel Architec
ture), 6 (Memory Management), and 10 (Compatibility) are quite useful.

APPENDIX B • ANNOTATED BIBLIOGRAPHY 685

Paul DiLascia, Windows++: Writing Reusable Windows Code in C++, Reading MA:
Addison-Wesley, 1992, 608 pp., ISBN 0-201-60891-X

The nitty-gritty details ofhow Windows applications frameworks are implemented, and of
how Windows programs can hide the Windows API, get rid ofWinMain, get rid ofswitch
statements, and generally make Windows code more readable, modular, and reusable.
This is a brilliant book!

DOS Protected Mode Interface (DPMI) Specification, Version 0.9 (May 15, 1990),
Intel Order No. 240763-001

There is also the DPMI 1.0 specification (March 12, 1991), Intel Order No. 240977-001,
but the 0.9 spec is what Windows implements, so the 1.0 spec leads a largely Platonic exist
ence at present. On the other hand, a number of vendors such as Phar Lap and even
Microsoft itselfhave extended the 0.9 spec, using VxDs to provide parts ofthe 1.0 spec (par
ticularly debug and floating-point coprocessor support), so maybe Windows really supports
0.95 now. Anyhow, the 0.9 spec is the one you want.

Ray Duncan, Advanced OS/2 Programming, Redmond WA: Microsoft Press, 1989,
782 pp., ISBN 1-55615-045-8

Windows has a lot in common with OS/2 1.x, including the NE executable file format.
Appendix D ((OS/2 Load Module Format))) ofRay)s book thus serves as an excellent (and
still largely accurate) discussion ofthe Windows executable file format.

Ray Duncan et al., Extending DOS: A Programmer)s Guide to Protected-Mode DOS,
Reading MA: Addison-Wesley, 1992, 538 pp., ISBN 0-201-56798-9

Chapter 9 (DPMI) contains a detailed look at the DPMI interface provided by Windows.
Other chapters provide good background to protected-mode programming in general.
Once you remember that Windows is just agraphical DOS extender, much ofthe material
in here will suddenly be relevant to your Windows programming.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes, Computer
Graphics: Principles and Practice, Second Edition, Reading MA: Addison-Wesley,
1990, 1174 pp., ISBN 0-201-12110-7

The standard work on computergraphics. Chapter lOis on window-management systems;
Chapter 19 includes BitBIt.

Robert L. Hummel, PC Magazine Programmer)s Technical Reference: The Processor
and Coprocessor, Emeryville CA: Ziff-Davis Press, 1992, 761 pp., ISBN 1-56276
016-5

Because protected mode until recently has not been as well-exercised as real mode, even on
386 and 486 machines, there tend to be bugs in some ofthe more obscure protected mode
specific instructions, including ones used heavily in Undocumented Windows, like LAR,
LSL, VERR, and VER~ Hummel discusses these chip bugs ((errata»), so you know what
to watch outfor and stay away from.

686 UNDOCUMENTED WINDOWS

Jerry Jongerius, "Accurately Timing Windows Events without Timer Reprogram
ming," Microsoft SystemsJournal, July 1991

A good discussion of timers under Windows, including the undocumented CreateSystem
Timer() and KiIISystemTimer() functions.

Mike Klein, "Subclassing Applications," Dr. Dobb's Journal, Windows Supplement,
December 1991

«Subclassing: A legal means by which a programmer can appropriate and use code and
objects developed by others. »

Scott Knaster, Macintosh Programming Secrets, Second Edition, Reading MA: Addison-
Wesley, 1992, 536 pp., ISBN 0-201-58134-5

Few Windows programmers seem familiar with the Macintosh. ICnasters books (this one,
and How to Write Macintosh Software, Third Edition) provide wonderful overviews of
how the Mac works. Would that Windows programming books were thisgood!

Donald Knuth, The Art of Computer Programming, Volume I (Fundamental Algo
rithms) and Volume III (Sorting and Searching), Reading MA: Addison-Wesley,
1973

Volume 1, 2.5 (Dynamic Storage Allocation) and Volume III, 6.4 (Hashing) are partic
ularly relevant here.

Woody Leonhard, Windows 3.1 Programmingfor Mere Mortals, Reading MA: Addison-
Wesley, 1992, 537 pp., ISBN 0-201-60832-4

Windows programming in Visual Basic and WordBasic. Woody's excellent (and extremely
odd!) book shows how to make Windows API calls from Basic. Chapter 6 on DDE is sheer
brilliance.

Gordon Letwin, Inside OS/2, Redmond WA: Microsoft Press, 1988, 289 pp., ISBN
0-55615-117-9

Much (though by no means all) of this book is relevant to Windows. In particular, see
Chapters 2 (Goals and Compatibility Issues), 7 (Dynamic Linking), and 9 (Memory
Management) .

Brian Livingston, Windows 3.1 Secrets, San Mateo CA: IDG Books, 1992, 990 pp.,
ISBN 1-878058-43-6

While «secrets» is used somewhat loosely here (much of this material is available in the
widely-distributed Microsoft Windows Resource Kit), there is also useful material here.
Chapter 3 on TrueType is quite good, as are the chapters on hardware compatibility.
Somehow using WIN /S to force Windows into Standard mode doesn't strike us as an
«undocumented way to start Windows,» but ifyou want to know how to get the "gang
screens» (Easter eggs) in Windows and in various Windows apps, and want to actually see
Bear, check outpp. 141-143.

APPENDIX B • ANNOTATED BIBLIOGRAPHY 687

Microsoft C Developer's Toolkit Reference, 1990, 115 pp., Microsoft Document No.
LN18161-0990.

Contains the CodeView (CV) symbol format, and the IMPDEF and EXPDEF object file
extensions. The CV format used in MSC/C++ 7.0 is different, and so far only seems to
have been documented as part of Open Tools (ifyou need CVformat for C7, try sending
email toisv@microsoft.com).

Microsoft Developer Network Technical Library, CompuServe forum (GO
MSDNLIB)

A newly-Jormed Microsoft library. Includes Bob GundersonJs article on modules, tasks,
and instances (MTI.ZIP), articles on subclassing (SUBCLS.ZIP), hooks (HOOI(S.ZIP
and HOOKSC.ZIP), DOS TSR interfacing to Windows (GMEMZIP and TMEM.ZIP),
3.1 File Manager extensions (XTEN.ZIP), and so on.

Microsoft Developer Relations Forum, CompuSelVe forum (GO MSDR)
Along with Microsoft job postings (i.e., offerings of large pay cuts in exchange for stock
options), there are some useful files here, such as the TrueType specification (SPEC1.ZIp,
SPEC2.ZIp, SPEC3.ZIP), and TrueType sample code (TTNAME.ZIP, TTDUMP.ZIP).

Microsoft KnowledgeBase, CompuServe forum (GO MSKB); also Microsoft Devel-
oper KnowledgeBase (GO MDKB)

The MSKB and MDKB are probably the best resources available ifthereJs something about
Windows that you canJt find in the SDK, DDK, or Undocumented Windows. There is a
huge amount of inftrmation here, and the ability to quickly search ftr words or phrases
occurring anywhere in documents makes it all easy to find. You can also do complicated
searches, such as «(pcode eq winsdk)JJ and (((doctype eq buglist)JJ to find all documented
bugs in the SDK! Here is a small sampling ofthe articles available:
"Accessing Physical Memory Using Kernel Exported Selectors"
"Calling PostMessage() from a Virtual Device Driver (VxD)"
"Communicating Between Wmdows Virtual Machines with DDE"
"DeferWindowPos() Documented Incorrectly"
"Errors in the VDS API in Enhanced Mode Wmdows"
"File Manager's Mechanism for Sensing File System Changes"
"Full-Screen DOS Apps Slow Timer Messages in Enhanced Mode"
"GetCodeInfo() Documented Incorrectly"
"GlobalReAlloc() Fails in Enhanced Mode"
"Hook_Device_PM_API & Hook_Device_V86_API Flawed"
"How to Determine When Another Application Has Finished"
"How to Transparently Intercept Procedure Calls in Windows"
"How to Use PeekMessage Correctly"
"Idle Interrupt (INT 28h) Under Windows 3.0"
"Overcoming the 64 Kilobyte Limit for List Box Data"
"Performance Differences Between LineTo() and Polyline()"

688 UNDOCUMENTED WINDOWS

"'Power Friendly'" Applications
"Reset A20 Bit Set During DPMI Simulate Interrupt Crash"
"UAE Caused from Releasing Aliased Selector"
"Use of GetInputState() Is Faster Than Using PeekMessage()"
"Using Memory Below 1 Megabyte"
"VKD_API_Force_Key Can Cause Windows Crash"

Microsoft Win32 Application Programming Interface, 2 volumes, Redmond WA:
Microsoft Press, 1992, ISBN 1-55615-497-6 and 1-55615-498-4

Some functions and messages that are present but undocumented in 16-bit Windows have
been documented in Win32.

Microsoft Windows Device Driver Kit, Version 3.1, 1992, Microsoft Part No. 29132
The DDK is a wonderful product that should be important to a much widergroup ofpro-
grammers than just those few who write device drivers. The DDK is essentially the «win
dows internals" kit. The two manuals that come with the DDK are pretty poor, but the
DDK disks are an invaluable resource: they contain header files that aren't with the SDK,
such as TDB.INC and WINKERN.INC, a version ofWINDOWS.H that contains things
not in the SDK version, but more important, the DDI(comes with disk after disk ofsource
for most of the device drivers that come with Windows: display drivers, printer drivers, the
Enhanced mode page swapper, the 3.1 FastDisk devices, and so on.

Microsoft Windows Software Development Kit, Version 3.1, 1992, Microsoft Part
No. 30211

The SDK has improved a lot since 3.0. Many ofthe example programs are nowgenuinely
useful. The manuals, while still woefully incomplete (Windows is a huge system, and docu
menting it properly will require something like Apple's Inside Macintosh), do now con
tain a lot of material that was not documented in 3. O. The Programmer's Reference is
now split into four volumes:

Volume 1 (Overview) includes chapters on Windows startup code, protected-mode pro
log and epilog code, self-loading Windows applications, and other subjects. Some ofthe
chapters are even accurate (not the one on DPMI though, which starts by asserting
that Windows supports DPMI 1.0 andgoes downhill from there).
Volume 2 (Functions) is 1,000 pages ofAPlfunction descriptions. Many documented
functions are missing (they're scattered through the overview articles in Chapter 1, or
they're in the DDK).
Volume 3 (Messages, Structures, and Macros). It's a pain not having the structures in
the same place as the functions.
Volume 4 (Resources) is a handyguide to Windows file formats. The new-executable
(NE) format is here, as are resource formats, .OB] module extensions such as
IMPDEF and EXPDEF, and so on.
The Guide to Programming, Chapters 14 (C and Assembly Language), 15 (Memory
Management), and 16 (More Memory Management) contain material that's missing
from the Programmer's Reference. Chapter 18provides agood overview offonts.

APPENDIX B • ANNOTATED BIBLIOGRAPHY 689

Microsoft Windows Resource Kit, 1992, 538 pp., Microsoft Document No. 0030-
31645

Who says Microsoft doesn)t producegood doc? Forget the User)s Guide that comes with 3.1,
and get the Windows Resource ICit (WRIC) instead. This inexpensive book/disk set has
excellent explanations of the files that come with Windows, all those weird *.INI file set
tings, troubleshooting, network configuration issues, etc. Most ofthe third-party power-user
books on Windows are just cribbed from the WRIC.

Raymond T. Nimmer, The Law of Computer Technology, Boston MA: Warren,
Gorham, & Lamont, 1985, ISBN 0-88712-355-4. Also, The Law of Computer
Technology, 1991 Cumulative Supplement No.1, ISBN 0-7913-0898-7

Contains excellent discussions ofreverse engineering, trade secrets, disassembly, shrinkwrap
license agreements, and so on. See Chapter 3 ("Trade Secrets and Confidentiality))), par
ticularly 3.05[b} (Sale ofa Product: Reverse Engineering) and 3.07 (End Users: Reverse
Engineering) .

Daniel A. Norton, Writing Windows Device Drivers, Reading MA: Addison-Wesley,
1992,434 pp., ISBN 0-201-57795-X

If you want an overview of the Windows device layer (both 16-bit, such as display and
printer drivers, and 32-bit VxDs), before buying the DDI(, this is place to go. Dan also
covers some undocumented Windows functions.

Peter Norton and Paul Yao, Borland C++ Programmingfor Windows, New York: Ban-
tam Books, 1992, 746 pp., ISBN 0-553-35143-5

Chapters 17-19 ofYao)s book havegood "conceptual)) overviews ofKernel objects. The indi
vidual details are sometimes wrong, and the whole thing is (like most Windows program
ming books by long-time Windows developers) too rooted in Windows real mode, but this is
an excellent starting point for thinking about how ICERNEL does what it does. The book
has agoodglossary.

Nu-Mega Technologies, Soft-ICE/W Reference Guide, Nashua NH, 1991
Chapter 3 of the Soft-ICE/Windows manual has a nice section on "Exploring Windows
Internals with Soft-ICE/W.))

Thomas W. Olsen, "Making Windows and DOS Programs Talk," Windows/DOS
Developer)sJournal, May 1992

Agood introduction to Virtual Device Driver (VxD) programming.

Walter Oney, "Parlez-vous Windows?," Windows Tech Journal, April 1992
As you can no doubt tell from the title, this article describes how to make WinExec(), which
behaves like spawn (P_NOWAIT) , into ExecWait(), using the ToolHelp NotifyRegister()
function.

Tim Paterson and Steve Flenniken, "Managing Multiple Data Segments Under
Microsoft Windows," Dr. Dobb)s Journal, February 1990 (Part 1) and March
1990 (Part 2).

The definitive statement on real-mode Windows segment tables.

690 UNDOCUMENTED WINDOWS

Charles Petzold, Programming Windows, Second Edition, Redmond WA: Microsoft
Press, 1990, 944 pp., ISBN 1-55615-264-7

The standard book on programming Windows; accept no substitutes! Petzold makes no
attempt to write modular or reusable code, so all the sample programs look essentially the
same, but this is a beautifully written book, with many gems scattered throughout. Sit
down and read this cover-to-cover. There)s not much here on Windows internals, but it
does have a nice discussion ofSYSTEM.DRV and timers.

Phar Lap 386lDOS-Extender Programmer's Guide to DPMI and Windows, Cam-
bridge MA, July 1991

How Windows looks from the DOS extender)s perspective; discusses DPMI, and accessing
Windows from the DOS box. Some ofthe writing style in this manual is shockingly similar
to thatfound in Undocumented Windows.

Matt Pietrek, "Inside the Windows Scheduler," Dr. Dobb)s journal, forthcoming
(August 1992?)

A detailed look, with pseudocode, ofthe internal Reschedule() function in](ERNEL.

Matt Pietrek, "Writing a Windows Debugger," Windows/DOS Developer)s journal,
June 1992

Discusses a host of issues related to building a Windows debugger: how to load the
debuggee, how to terminate it, how to run it, how to single-step, how to set breakpoints, how
to map logical debug symbol addresses to actual run-time memory addresses, and so on.

Matt Pietrek, "A Windows assert() with Symbolic Stack Trace," Windows/DOS Devel
oper)s journal, forthcoming (July 1992)

Eric Raymond, The New Hacker)s Dictionary, Cambridge MA: MIT Press, 1991, 433
pp., ISBN 0-262-68069-6

Along with many other excellent definitions (bagbiter, cargo cult programming, joo, Eas
ter Egg, green bytes, magic, UTSL, You are not expected to understand this, and hundreds
ofothers), here is where you will find the true meaning of «thunk.))

Jeffrey M. Richter, "Drop Everything: How to Make Your Application Accept and
Source Drag-and-Drop Files," Microsoft Systems journal, May-June 1992

How to be a drag-and-drop client and server in 3.1. jeffdescribes the 3.1-type drag and
drop protocol. This is agood complement to our own description, in Chapter 6, ofthe 3.0
type protocol, which continues to work under 3.1 as well.

Jeffrey M. Richter, Windows 3: A Developer)s Guide, Redwood City CA: M&T Books,
1991, 671 pp., ISBN 1-55851-164-4

Chapters 1 (Anatomy ofa Window), 2 (Subclassing and Superclassing Windows), and 6
(Tasks, Queues, and Hooks) are brilliant. There will be a Second Edition out soon.

APPENDIX B • ANNOTATED BIBLIOGRAPHY 691

Neil J. Rubenking, Turbo Pascal for Windows Techniques and Utilities, Emeryville CA:
Ziff-Davis Press, 1992, 1100 pp., ISBN 1-56276-035-1

IfyouJre wondering how to apply the C code in Undocumented Windows to TPlV; get
NeilJs book. IfyouJre doing anything at all in TPlV; get NeilJs book. Chapter 14 (('Access
to Real Mode JJ) shows how to access undocumented DOS data structures from protected
mode Windows, using DPMI and some (at the time) undocumented Wincalls.

Richard Sadowsky, "It's a Real Jungle Out There," Windows Tech Journal, January
1992

You wouldnJt know it from the title (these Windows Tech Journal articles always have
cute titles), but this is another article explaining how to use DPMI to call real-mode code
from a protected-mode Windows application.

Tom Sato and Lin F. Shaw, "Bringing Windows To the Expanding Japanese Market,"
Microsoft SystemsJournal, March 1988

Explains WM_CONVERTREQUEST, WM_CONVERTRESULT, KKLIB, and other
aspects of[(anji Windows.

Andrew Schulman, "Porting DOS Programs to Protected-Mode Windows with the
WINDOS Library," Microsoft SystemsJournal, September-October 1991

Another version of the WINIO library, using LocalXXX calls to implement a Windows
version ofMicrosoft C based-pointer functions.

Andrew Schulman, "The Programming Challenge ofWindows Protected Mode," PC
Magazine, June 25, 1991

Using DPMI and undocumented Windows calls to make undocumented DOS calls. The
sort ofexcruciatingly detailed, long-winded, and tiresome discussion one expects from this
author.

Andrew Schulman, "Windows 3.0: All That Memory, All Those Modes," PC Maga
zine, June 11, 1991

A detailed discussion ofthe amount ofmemory available under the (then) three modes of
Windows.

Andrew Schulman and David Maxey, "Call Standard I/O Functions from Your Win
dows Code Using the WINIO Library," Microsoft SystemsJournal, July 1991

Source code for an early version ofthe WINIO library, with a detailed explanation ofhow
WINIO works.

Andrew Schulman et aI., Undocumented DOS: A ProgrammerJs Guide to Reserved MS
DOS Functions and Data Structures, Reading MA: Addison-Wesley, 1990, 694
pp., ISBN 0-201-57064-5

Windows sits on top ofDOS, and it is often important for Windows programmers to know
about DOS internals. It would be self-serving to say anything more about this fine book.

692 UNDOCUMENTED WINDOWS

Andrew Schulman, David Maxey, and Matt Pietrek, Undocumented Windows, Reading
MA: Addison-Wesley, 1992

A jumble ofmaterial on undocumented functions and internal data structures in KER
NEL, USER, and GDI. Apparently a second book is planned to cover Windows DLLs such
as SHELL, 16-bit device drivers, 32-bit VxDs, DPMI, interrupts, and other lower-level
aspects ofWindows. Contains an extensive bibliography, with only one recursive self-refer
ence, which one ofthe coauthors uses just to talk about different books and articles he likes:
some ofthem donJt even have anything to do with Windows!

Andrew Tanenbaum, Modern Operating Systems, Englewood Cliffs NJ: Prentice Hall,
1992, 728 pp., ISBN 0-13-588187-0

An excellent operating-systems textbook, covering both traditional ass (such as Unix and
MS-DOS) and distributed ass (such as Mach). There are few explicit mentions of Win
dows here, but Chapters 2 (Processes) and 3 (Memory Management) are useful back-
ground to KERNEL, and the entirety of Part 2 (Chapters 9-15) are crucial for an
understanding ofNT (even though NT is never directly mentioned).

David Thielen, "Behind the Curtain," Windows Tech Journal, March 1992, April
1992, May 1992, June 1992

A continuing series on virtual device drivers (VxDs) and the Virtual Machine Manager
(VMM), by an engineer, and writer from Microsoft. "The opinions expressed in this article
are those ofthe author and not necessarily (in some cases definitely not) those ofMicrosoft. JJ

V Communications, Windows Source Disassembly Pre-Processor, San Jose CA, April
1992

The manual contains tutorials on disassembling Windows; the manualJs style at times
seems vaguely reminiscent ofthe writing in Undocumented Windows.

Ai Williams, DOS 5: A DeveloperJs Guide, Redwood City CA: M&T Books, 1991, 914
pp., ISBN 1-55851-177-6

Part III (Protected-Mode Techniques) provides a good overview of Virtual-86 (V86)
mode, which Enhanced mode Windows uses. No direct mentions ofWindows here, but most
ofthe material is still relevant.

Ai Williams, Protected-Mode Programming in C, Reading MA: Addison-Wesley, 1992
(forthcoming)

Accessing real-mode code, protected-mode interrupt handling, virtual memory, perfor
mance issues, working with DPMI servers, and so on, both for conventional DOS extenders
and for Windows.

Paul Yao, "Explore Previously Uncharted Areas of Windows Using the ToolHelp
Library," Microsoft SystemsJournal, May-June 1992

Containsgood conceptual overviews ofhow tasks, modules, and segments interrelate.

.ASM, 96, 97, 103

.C,103

.COM, 7,203

.DAT,79-80,176,179

.DEF, 17, 32-33

.EJCE, 6, 7,29, 62, 66, 81-82

.H, 83,153

.LIB, 17, 153

.I.ST, 96, 97

.OBI, 14, 77, 202

.RC,116

.REC,13

.TDS,96

.vmm,150
(NOP)TEST AX,80Bl instruction, 93
-CVBlANKS,77
*.CPL files, 6
* .FON files, 6
*.IMP,68
/DU,85
#define,116,517
#include, 82, 84, 116, 156, 158
@BUF, 168, 170
\EXCEL\EXCEL.EJCE, 37
\EXCEL\EXCELDE.EJCE, 37
\QCWIN\BIN\QCWIN.EJCE, 39
\VB\VB.EJCE,39
\WIN30\CONTROL.EJCE, 29
\WIN30\SYSTEM\GDI.EJCE,46

IN D EX

\WIN30\sYSTEM\USER.EJCE, 47
\WIN30PROGMAN.EJCE, 29,30
\WIN31\SYSTEM\SHE.DLL, 75
\WIN31\SYSTEM\SHELL.DLL, 29,30
_0000H,26-27,49,204,208-10
_0040H,26-27,204,210-12
_0040h, 11, 14,21,49
_AHINCR, 212
_AHSHIFf, 212
_BOOOH,611
_B800H,611
_GP, 97, 205, 212
_ROMBIOS, 204, 213
_ROMBIOS.EJCE, 29
_WINFLAGS,214
_wsprintf,412
286lDOS-Extender environment, 64
522h,22
8514.DRV,535

A
A20_Proc,601,602
A20Proc, 206, 214
AbortDoc, 545
About...boxes, 15, 18
Adams, Timothy, 179
AddAtom, 140, 141
AllocAlias, 204, 214

693

694 UNDOCUMENTED WINDOWS

AllocCStoDSAlias, 179, 204, 207, 215
18

AllocSelector, 23, 24
AllocSelectorArray, 34, 204, 207,

218-20
Analyze Heap, 401, 409
ANSI C, 17, 32, 33
AnsiToOEM,48
APPLOADER, 97
lUidunetic, mgned, 20
ArrangeIconicWindows, 123
ASCII

names ofAPI functions, 59
strings, NULL-terminated (ASCIIZ),

8-9, 10, 16, 17
AT&T Bell Laboratories, 82
ATM (Adobe Type Manager), 42,602
ATMSYS.DRV, 602
atomCls, 417
Atom Table, 55, 191, 220-27
ATOMWALK, 55, 614
AWl<, 81, 88
AJ{,112, 116, 125,128,129,130,203

and CALLFUNC, 169, 171

B
BAK (Binary Adaptation Kit), 601
BASEMOVE.C, 160
BASIC, 20, 96, 166
BatchWorks, 27
bClient, 444
BEAR, 91, 413-414
BeginDeferWmdowsPos, 101
Be~nPaint,152,153,535

Bell Laboratories, 82
BIOS, 24, 28
BITBLT, 40, 54
Bitmap, 536, 568

and GDI, 544, 545
BitmapBits, 545, 546
BITMAPOBJ, 546
"Boilerplate" functions, 60, 91
BaaL, 126, 127, 614

BOOTSTRAP, 203
Bootstrapping, 202-3
BozosLiveHere, 414
BPINT, 147
BPM (memory-access breakpoint), 132,

142
BPX, 179
BringVVindowToTop, 126
BroadcastMessage, 412, 414-15
Browsers, 188
Brush, 536,567,568
BRUSHOBJ, 547
Brute, 544, 547
BuildBPB, 92
Bunny_351 , 206, 227-28
Burgermaster, 228, 281-91
BX, 12, 169
byBitsPix, 427, 557
byBlockType, 408
byFlags, 554
byFlags2, 554
byPlanes, 427, 557

C
CalcChildScroll, 29, 55, 411,415
Callbacks, 6

asynchronous, 601
and disassembling windows, 114-15
initialization of the DS register for, 13
and TASKMAN, 66
and WndProcs and DialogProcs,

114-15
CALLFUNC, 145, 146, 147

description of, 165-73
and GP fault handling, 171-73
and prompt-read-dynlink-printf, 170,

171
CallProcInstance, 47, 206, 228
CascadeChildVVindows, 29, 30, 32-34,

49,55,66-67,83,86,411
and disassembling windows, 100,

101,122

use of, summaI)' description of,
415-16

Catch, 171
cbItemLen, 474
cbMenu, 476
cClsWnds, 417
CD, 153
CGA.DRV,74
ChangeSelector, 39, 207
chBuffer, 444
Chinese Wall, 40-41
cItems, 476
CLASS, 400, 408, 417-18
ClassFirst/ClassNext, 623
Clickable lines, 161-65
clickfunc, 163-64
Clipboard, 411, 412
CloseJob, 544
CLS,169
Cobb, Alan, 98, 103
CODE, 73

and disassembling windows, 96, 98,
99

CodeView. See CVW (CodeView for
Windows)

COLONEL, 161
COMM, 46,69-70, 602
COMMAND.COM, 154, 156
Command shells

. interactive, 153-56
COMMDLG.DLL,6
CompatibleBitmap, 545, 547-48
CompUpdateRect, 411, 418-19
CompUpdateRgn, 411, 419-20
CONTROL, 182, 183
CONTROL.EXE, 29, 171, 181
Control Panel, 5, 6, 181
ControlPanelInfo, 29, 411, 420-23
ConvertOutlineFontFile, 544, 548
Cooper Software, 42, 45
Copy, 545, 548
CoreIDRAW, 136
CORONER, 151, 188, 612, 652-69
CPU, 12, 180

INDEX 695

CreateBrush, 535
CreateBrushIndirect, 536
CreateCursorIconIndirect, 29, 30, 412,

424-27
CreateDC, 42, 45, 70, 95, 535
CreateDialog, 60
CreateMetaFile, 537
CreatePen, 535
CreatePenIndirect, 536
CreateRealBitmap, 545, 549, 550
CreateRealBitmapIndirect, 545, 549
CreateSystemTimer, 37, 48, 601, 602-7
CreateUserBitMap, 47
CreateUserDiscardableBitmap, 47, 545,

550
CreateWindow, 11, 60, 65, 66, 95,

153,399
crLbkColor, 556
crLTextColor, 556
CSIP,37
Ctrl-D, 142
Ctrl-Esc, 60, 109, 110
CURR-TASK, 128, 130
CURSOR, 427
CURSORCONINFO, 400, 427-28
CVW (CodeView for Windows), 4, 25,

34-36,41,98,138,146
Break, 205, 228
description of, 137
and Soft-ICE/Windows, 144, 146,

151
and Source, 97
symbols, 76-78
and ToolHelp, 611

CVWIN.DLL, 36
CX, 12, 169
cxWidth, 476
cyHeight, 476

D
DATA, 73
DC (device context), 94, 535, 536,

537,539,551-59,568

696 UNDOCUMENTED WINDOWS

DCE, 428-29
DCHook, 429
dchPal, 554
DCSAVE, 559
DDB (Device Description Block), 97
DDE.H,84
DDK (Windows Device Driver Kit), 5,

14,40,95
description of, 138-39
and display drivers, 42
and GDI, 544
header files in, summary of, 139
and KERNEL, 207
and Soft-ICE/Windows, 144, 149
and SYSTEM, 601

Death, 47,49, 544, 559-60
Debugging, 4, 28, 34-36, 119,135-42

and debug symbol tables, 96, 136
and the Debug version ofWindows,

138-39, 151, 191
deliberately-intrusive, 179-80
and disassembling windows, 96, 98
and GDI, 543
and Hosted debuggers, 13. See also

specific debuggers
DEBUG, 34, 99
DebugDefineSegment, 205, 229
DebugFillBuffer, 205, 229-30
DebugOutput, 205
Debug version ofWindows, 151, 191

description of, 138-39
DECLARE, 20., 34
DefDIgProc, 47, 103, 533
DefFrameProc, 178
DefineHandleTable, 50
DefMDIChildProc, 178
De~lIldowProc,II,47,87,174,533

and disassembling windows, 101, 103
DEFWND.C, 87
DeleteAboveLineFonts, 47, 544, 560
DeletePathName, 29,46, 205, 230
DeMystifiers, 142
Dependencies, module, 69-72

Descriptor table(s), 39-40; global
(GDT),26, 149, 207, 281

DeviceColorMatch, 544, 560
DEX, 145
DGROUP, 74, 75
DI,12
DiagOutput, 205, 230-31
DiagQuery, 205, 231
DialogBox, 65
Dialog Editor, 38, 401
DialogProcs, 114-15
DIR, 153
DirectedYield, 13, 34, 39, 40, 204,

231-32
DirectResAlloc, 29, 30, 47, 49, 205,

232-33
Disable, 48
Disabled DC, 536, 568
DisableDOS, 205, 233
DisableKernel, 206, 233
DisableOEMLayer, 48, 412, 429-30
DisableSystemTimers, 48, 601, 607
Disk Parameter Table, 22
DISPLAY, 6,40,42,46,69-70,95, 535
DISPLAY.DRV=, 74
DlgProcs, 66
DMBitBlt, 544
DMColorInfo, 544
DMxxx,544
do_dir, 156
DOS, 1-4, 5, 28, 34, 37, 139

640Klimitations of, 21
box, shutting down, 30
box, starting a, and WISPY, 184-85
and the "Chinese Wall," 41
COMMAND.COM and, 6
and DEBUG, 99
and disassembling windows, 123, 127
executable MZ program, 62
extenders, 71, 72, 92
File Open, 181
FindFirst/FindNext, 615
and free system resources, 16
Get Date and Get Time calls, 187

and high-level disassembly, 8
and INTRSPY, 181-82, 183
and KERNEL, 189, 203, 207
and MAPWIN, 64
and module dependencies, 71, 72
and NT, 55
Protected Mode Interface (DPMI).

See DPMI (DOS Protected Mode
Interface)

Program Segment Prefix (PSP), 12,
129,130,133,189,193,202

real-mode, accessing of, from
protected-mode Windows, 50

and Soft-ICE/Windows, 144-45
and SYSTEM, 602
TSRs, 53
Version 6.0, 5
and Windows orderliness, 1-2
and WINIO, 152, 156
and WmMain, 12
and WISPY, 180

DOS.EXE, 7, 74
Dos3Call, 187, 235-36
DoSignal, 206, 233
DosPTrace, 35
DOSX.EXE, 48, 71, 96, 203, 204
Double-clicking, 110
DPMI (DOS Protected Mode Inter-

face), 5, 14, 96
and descriptor tables, 40
and disassembling windows, 96
and the Get/SetSelectorBasejLimit

family, 50
heavy use of, by NDW, 28
and INTRSPY, 182, 183, 187
and KERNEL, 203, 207, 208
and module dependencies, 71, 72
and protected mode, 23
and selectors, 26
and SOft-ICE/Windows, 147
and Source, summary description of,

97
and ToolHelp, 617

DPXlate, 545, 560-61

INDEX 697

DragDetect, 411, 430
DRAGINFO, 400, 431-32
DragObject, 29, 55, 400, 411, 432-44
Draw, 38
DROPINFO, 400, 444-45
DRV, 46, 66, 74
DRWATSON, 188,612
DS,130
DUMP, 169-70
DumpIcon, 29, 30, 49, 412, 445-47
Duncan, Ray, 207
DuplicateIcon, 30
dwBkColor, 556
dwCount, 568
dwHookData, 559
DWIN,188
dwMapperFlags, 557
dwOldSSP, 297
DWORJ), 15, 112, 167,207
dwSize, 614-15
dwTextColor, 556
DX, 125, 143, 169
DX:AX register, 93

E
Eclectic Software, 97
EditWindowProc, 174
EM_GETTHUMB, 533
EM_SCROLL, 533
EMSCopy, 47, 206, 236
Enable/DisableOEMLayer,91
EnableDOS, 205, 236
EnableKbSysReq, 48
EnableKernel, 206, 236
EnableOEMLayer, 412, 447-49
EnableSystemTimers, 601, 607
END, 12
EndDeferWindowPos, 101
En~enu,37,38,39,47,49,83,87,

412,449-50
ENDPAINT, 10, 152
EngineXXX, 561-62
Entry Table, 64

698 UNDOCUMENTED WINDOWS

EnumCallBack, 545, 562-63
EnumProcs, 66
EnumTaskWindows, 193
EnumWindows, 123
Epilogs, 13, 38
Errors

and KERNEL, 202
and parameter validation, 164
UAEs (Unrecoverable Application

Errors),22, 188
"undefined symbol," 16-17
"unresolved external," 16-17

ES,12,129
Excel, 13, 28, 36-38, 40, 53

and DOS stubs, 62
and pcode, 96

EXCEL.EXE, 37
ExcludeVisRect, 544, 563
EXEC, 181, 182
EXECFile Open, 181
Executable File Format, 13
Executables, 59-94
EXEDUMP, 75, 89, 97, 123

and CodeView (CV) symbols, 76-78
-DESC, 80-81
and disassembling windows, 98, 99

100 '
entry table, 75-76
-EXPORTS, 79-80
and EXEUTIL, 81-94. See also

EXEUTIL
-MAGIC, 80-81
module-reference table, 76
-NORELOC switch, 78
relocation table, 78-79
segment table, 76
use of, 73-75

EXEHDR, 8, 9-10, 38,41, 65, 79, 98,
100

and EXEDUMP, 74
header information presented by, 74
and Task Manager, 62-64

EXEUTIL, 79, 81-85, 89
-DIFF, 81, 90-92

and disassembling windows, 96
-DUPES, 81, 92-94, 140
-FINDUNDOC, 81, 82-85
-IMPORTS, 81, 89-90
-UNDOC, 48, 81, 89, 145

EXIT,153,169,170,411412
ExitKernel, 47, 206, 236 '
ExitWindows, 48
EXPDEF, 14
EXTRACT, 102
ExtractAssociatedIcon, 30
ExtractIcon, 30

F
FAR, 614
FAR CALL, 108
FarCallNetDriver, 450-51
FarGetOwner, 205, 206, 237-38
FAR PASCAL, 146
FastWindowFrame, 47, 545, 563-65
FatMEricliook, 206, 238
FileCdr, 29, 205, 238-44
File Manager, 4, 7, 28, 401

and EXEUTIL, 87
and INTRSPY, 182
and SNOOP, 176, 177, 178

File New, 137
File Open, 181
FillWindow, 37, 38, 411, 452-53
FinalGDIInit, 47, 545
FinalUserInit, 48, 412, 453
FindExecutable, 30
FindFirst/FindNext, 615
FINDUNDOC, 82-85
FindWindow, 167, 168
First Local Arena, 307
FIRST_TASK, 128
FixUp... , 545
FixUpBogusPublisherMetafile, 543
Flenniken, Steve, 50
Floating Point Emulator, 13
FlushCachedFileHandle 205 244, ,
Fonts, 536, 544, 567, 568

FONTOBJ, 536, 566
Free Local Arena, 307
Free system resources, 14-16, 18, 136,

409
FREERES.C, 18-20
FreeSelector, 23
FTC (Federal Trade Commission),

40-41

G
GACF ALWAYSSENDNCPAINT, 247
GACF- AVGWIDTH, 249
GACF- CALLTTDEVICE, 247
GACF=DELAYHWHNDSHAKECHK,

248
GACF EDITSETTEXTMUNGE, 247
GACF-ENUMHELVNTMSRMN, 248
GACF- ENUMTTNOTDEVICE, 248
GACF- FORCETEXTBAND, 246
GACF-FORCEITGRAPHICS, 249
GACF- HACKWINFLAGS, 248
GACF-IGNORENODISCARD, 246
GACF-IGNORETOPMOST, 247
GACF=MOREEXTRAWNDWORDS,

247
GACF MUTIPLEBANDS, 247
GACF=NCCALCSIZEONEMOVE,

249
GACF NOHRGNl, 249
GACF- ONELANDGRXBAND, 247
GACF- SENDMENUDBLCLK, 249
GACF- SUTRACTCLIPSIBS, 248
GACF=TTIGNORERASTERDUPE,

248
GDI (Graphical Device Interface), 6, 7,

49, 535-99
and BitBlt, 54
and CALLFUNC, 168
data structures, summary of, 536-37
and the debug version ofWindows,

138
and the DISPLAY module, 95
exports and imports, 543-44

INDEX 699

and EXEUTIL, 86, 88, 89, 90, 91,
92,93

function groupings, list of, 543-44
functions, undocumented, summary

of, 46-48
functions, undocumented, use of,

summary of, 545
and the Geary incident, 42-46
heaps, 543
and KERNAL, 46, 189
module atom table, 543
and module dependencies, 69-70
and multiple heaps, 20
and NBWIN.EXE, 11
object header, 566-68
and Soft-ICE/Windows, 37, 142-43,

145
and TASKMAN, 65

GDI.35, 8, 9
GDI.EXE, 189, 202, 543
GDIlnit2, 47, 545, 569
GDIMoveBitmap, 47, 545, 569
GDIOBJHDR, 536, 539, 542
GDIRealizePalette, 47, 544, 569-70
GdiSeeGdiDo, 545, 570
GDISelectPalette, 47, 544, 571
GdiTaskTermination, 545, 571
GDIWALK, 55, 188, 537-43
Global Descriptor Table (GDT), 26,

149,207,281
Geary, Michael, 42-46, 136
General protection (GP), 36, 78,

171-73, 188
GENERIC.C, 153
GetFreeMemInfo, 206
Get/SetInternaIWindowPos, 27, 30
Get/SetSelectorBase, 46
Get/SetSelectorBase/Limit, 27, 50, 51,

91
Get/Translate/DispatchMessage, 157
Get_Cur_VM_Handle, 96
GET_USER...DS, 141
Get80x87SaveSize, 37, 38, 601, 608
Get80x87SaveState, 48

700 UNDOCUMENTED WINDOWS

GetAppCompatFlags, 53, 205, 244-50
GetAtomName,141
GetClassLong,92
GetClassWord, 92, 93
GetClassWord/Long,93
GetClipRgn,47, 545, 572
GetCodeHandle, 179,250-51
GetControlBrush, 37, 38, 412, 454
GetCurLogFont, 47, 544, 572
GetCurPid, 29, 46, 47, 206, 252
GetCurrentPDB, 129, 130, 193, 252
GetCurrentTable, 191
GetCurrentTask, 127, 128, 143, 161,

167,193,207,253
GetDC,535
GetDCHook, 544, 573
GetDCState, 47, 544, 573
GetDesktopHwnd, 92, 411, 454
GetDesktopWindow,167
GetExePtr, 47, 205, 255-56
GetExeVersion, 46, 47, 205, 256
GetExpWinVer, 47, 205, 257
GetFilePortName, 412, 454-56
GetFocus, 48, 202
GetFreeMemInfo, 257-59
GetFreeResources, 20-21
GETFREESPACE, 9
GetFreeSystemResources, 18
GetHeapSpaces, 11, 14-18, 20, 26-27,

30,38,49,206,259-61
GetlconID, 30, 412, 456
GetIntemalWindowPos, 26-27, 30, 49,

55,411,456-57
GetKerningPairs,574
GetKeyState, 122
GetLastActivePopup, 125
GetLastCriticalError,205
GetLastDiskChange, 29, 205, 261
GetLPErrMode, 205, 261-62
GetMessage, 4, 11, 153, 182, 189

and INTRSPY, 186, 187
GetMessage2, 412, 457-58
GetModuleDgroup,141

GetModuleHandle, 16, 17, 65, 70,
193, 207, 262-65

and CALLFUNC, 168, 169
GetMouseEventProc, 412, 458-60
GetNextQueueWindow, 411, 460-61
GetNumTasks, 158, 164
GetPhysicalFontHandle, 37, 544, 574
GetProc,57
GetProcAddress, 17, 20, 25, 26, 33, 35,

45,48,57,70,86,89,112,193,
202, 265-66

and CALLFUNC, 168, 169
and CVW, 137
and disassembling windows, 95
and SNOOP, 179
and Soft-ICE/Windows, 145
and TASKMAN, 65,66
and ToolHelp, 613

GETPROFILESTRING, 10
GETPROP,10
GetQueueES,47
GetQueueStatus, 412, 461-62
GetRelAbs, 544, 574-75
GetSelectorBase, 10, 11, 14, 21, 26-27,

34,49,52,160,204,266-68
GetSelectorLimit, 49, 192, 204, 268-71
GetSetKernelDOSProc, 205, 271-73
GetSpodJob, 29, 49, 545,575
GETSTOCKOBJECT,10
GETSUBMENU, 10
GETSYSCOLOR, 10
GetSystemDebugState, 91
GETSYSTEMMENU, 10
GetSystemMetrics, 10, 65, 112, 138,

191
GetSystemMsecCount, 601, 608
GetTaskCurDir, 164
GetTaskDS, 47, 204, 273
GetTaskFromHwnd, 412, 462
GetTaskIntoES, 129
GetTaskModuleName, 164
GetTaskQueue, 39, 40, 47, 132, 273-74
GetTaskQueueDS, 47, 86, 204, 274-75
GETTEMPFILENAME, 10

GETTEXTEXTENT, 10
GETTEXTMETRICS,10
GETTICKCOUNT, 10, 92
GetTimerResolution, 37, 412, 462-63
GetUserLocalObjType, 463-64
GetVersion, 10, 14, 18, 20, 21, 57
GetVVC2,93,411,464-65
GetVVffidow, 10,64,79,96, 100, 123,

167
GETWINDOWLONG, 10, 92, 93, 125
GetWindowPlacement,27
GetWffidowPSP,133
GETWINDOWRECT, 10
GetWffidowTask, 10, 48, 122, 123,

127,131,133,134,202
GETWINDOWWORD, 10, 92
GetVVffidowVVord/Long,93
GETWINFLAGS, 10
GetVVffiOldApHooks, 205, 275
GlobalAddAtom, 10,400
Global Arena Header, 275-79
Global Atom table, 400
GlobaU\lloc,10,89,95,191,615
GLOBALCOMPACT,10
GlobalDeleteAtom, 400
GLOBALENTRY,617
GlobalEntryHandle, 618-20
GlobalFffidAtom, 400
GlobalFirst/GlobalNext, 615, 620
GLOBALFREE, 10, 89
GlobalFreeAll, 206, 280
GLOBALHANDLE,10
GlobalHandleNoRIP, 34,47, 49, 206,

280
GlobalHandleToSel,626
GlobaIInfo,620-21
GLOBALLOCK, 10, 89
GlobalMasterHandle, 26-27, 29, 35,

49,153,191,206,291-92,617
GLOBALNOTIFY, 11
GLOBALREALLOC,ll
GlobalSize, 18
GLOBALUNLOCK, 11, 89
Go, 35

INDEX 701

Going resident, 156-57
GP (general protection) faults, 36, 78,

171-73, 188
Graph, 38
GRAYSTRING,ll
GSGD_LOCALALLOC, 570
GSGD_LOCALCOMPACT,570
GSGD_LOCALFREE, 570
GSGD_LOCALHEAP,570
GSV, 544, 576-77
Guderson, Bob, 192
GUI (Graphic User Interface), 611,

612,535

H
hlstProp,510
Handle Tables, 292-93
HandleParamError, 205, 292
HANDLES.C, 613
HANDLES.H, 612
Hard disks, 51, 80
HasGPHandler, 205, 293
HAtomOrBmp, 474
hBitmap, 554
HBRUSH, 37, 535
hBuffer, 511
hCheckedBmp, 474
HCLASS, 400,510
hcNext, 417
HCURSOR, 400
HDC, 27,537
hDCE, 417, 510
HEAP, 148
Heap Analysis, 401-2
Heapw~,27,136,I39,I48,15I,I88

and BASEMOVE.C, 160
and EXEUTIL, 87
and ToolHelp, 613
and WINIO, 161, 164

HEAPWALK.EXE, 34, 35
HECs, 535
HEXCALC,60
HFONT,536

702 UNDOCUMENTED WINDOWS

hInunce, 12,193,202,511
hltems, 476
HIWORD,20
hLBrush, 554
hLDevice, 554
hLFont, 554
hLPen, 554
hmemScroll, 510
hmemTask, 510
HMENU,400
hmenuNext, 475
hmenuSystem, 510
hMeufile, 537, 554
hModwe, 193,202,207
hNext, 567
hOwner, 568
hPalette, 511
hPBmsh, 555
hPDB, 193
hPDevice, 554
hPDeviceBlock, 555
HPEN, 535
hPFont, 555
hPFontTrans, 555
HPHIL (Hardware Interface Level), 602
hPPen, 555
hPrevInstance, 12
HPSYSTEM.DRV, 602
hRaoClip, 555
hrgnClip, 554
hrgnUpdate, 510
HTASK, 127, 128, 147, 193, 202, 207
hTaskQ,476
hUncheckedBmp, 474
hVisRgn,558
~D,122,131,193,399

and CALLFUNC, 167
and disassembling windows, 125
and GDI, 535

hwndChild, 510
hwndLastActive, 510
hwndNext, 510
hwndOwner, 476, 510
hwndParent, 511

Hyman, Michael, 166

-
I
1/0,189
IBM compatibility, 2
ICON, 400, 465
IconSize, 167, 412, 465
iCurrPopup, 476
iCurrSel, 475
IDD_SWITCHTO, 124-25
IDLE, 182
IGetWindowTask, 131
iMaxltem, 476
IMPDEF, 14, 17, 67
IMPLIB, 14, 17
Imported Names Table, 64
IMPORT.LIB, 16, 67
INFLATERECT, 11
INFO, 169, 170
ImtApp,11,12,13,83,105,412,465
lnitAtomTable, 294
Initialization, 13, 411

and GetProcAddress, 48
and KERNEL, 202-4
and SYSTEM, 602

ImtLib, 206, 294
lnitTask, 11, 12, 13, 105, 106, 206

294-96 '
Inquire, 48
InquireSystem, 37, 38, 48, 601, 608-10
InquireVisRgn, 47, 544, 577-78
InSendMessage, 132, 174, 177 193

466 ' ,

Install, 18
Instance Data (DGROUP), 193 296-

300 '
Instance handle, 12
INT 2Fh, 5, 72, 180, 185, 186
INT 8, 4, 144, 601, 602
INT I1h, 602
INT 13h, 28
INT 16h, 602

INT 21h, 2, 23, 62, 72, 144, 152, 180,
181,182,187,189,204

INT 28h, 53, 182
INT 31h, 23-24, 23, 28, 40, 72, 180,

182,188,207
INT 31h AX=0701, 147
INT 31h AX=4, 182
INT 31h AX=7, 23, 24
INT 31h AX=8, 23
INT 41h, 36, 151
Intel, 3,96, 131,207
InternalCreateDC, 544, 578
Internet mail, 13
InterruptRegister, 36, 171, 172, 179
InterruptRegister/InterruptUnRegister,

616, 627-30
IntersectVisRect, 544, 578-79
INTRSPY, 172, 180-88
InvalidateRect, 11, 28
INVERTRECT, 11
IsBadReadPtr, 300
IsBadStringPtr, 300-301
IsBadWritePtr, 301
IsDCCurrentPalette, 544, 579
IsDCDirty, 544, 579
ISDIALOGMESSAGE, 11
IsDOSWindow, 31
IsGdiObject, 545, 580
IsRomFile, 206, 301
IsROMModule, 206,301
IsScreenGrab,92
IsSharedSelector, 204, 302
IsTask, 131, 164, 192, 193, 302
IsTaskLocked, 35, 36, 204, 303
Istrcpyn, 206
IsTwoByteCharPrefix, 412, 466-67
IsUserIdle, 48, 202, 412, 467
isv@microsoft.com, 13
IsValidMetafile, 545, 580
IsValidTask, 164, 613
ISVs (Independent Software Vendors),

5,13
Is~ndow,48,125,202

INDEX 703

Is~nOldApTask,29, 30,49, 55, 66,
86, 123, 127-28, 130, 131, 133,
204,303

-
J
JMP, 93
Jongerius, Jerry, 602
JOY.OBJ,77

K
KbdRst, 206, 304
KE~EL,6,7,12,17,26,28,88,

135,189-259,399,400,411,412,
535

andATM, 602
atom table, 191, 220-27
and CALLFUNC, 167, 168, 170
data structures, 191-93
and debug Windows, 138
and disassembling windows, 96, 95,

129,132,133
and the entry point for a program or

library, 74
and EXEDUMP, 79
and EXEUTIL, 85, 86, 91, 92, 93
and free system resources, 16
functions, undocumented, summary

of, 48, 204-7
functions, undocumented, use of,

207-59
functions, unnamed, 46
and GDI, 46, 86
and handles, 193-202
implementation ofGetHeapSpaces in,

18
initialization, 202-4
and INTRSPY, 186, 187-88
Is~nOldApTask in, 127
and KE~STUB, 62
and module dependencies, 69-70, 72
and NBWIN.EXE, 11
and Register Ptrace, 36
Reschedule in, 53

704 UNDOCUMENTED WINDOWS

ReservedXfunctions in, 92
and Soft-ICE/Windows, 37, 142-43,

147
and TASKMAN, 65, 74, 79
and Task Manager, 64
and ToolHelp, 602, 611
and USER, lack ofa clear division be

tween, 148-49
versions of, 189-91
and Wmdows protected mode,

23-24,25 KERNAL.EXE, 6, 74
Keybd_Event, 467-69
KEYBOARD, 6, 46

and module dependencies, 69-70
and Soft-ICE/Windows, 144

KEYBOARD.NBWIN, 11
KillSystemTimer, 37, 38, 49, 412, 469,

601,610
KillTask,304
KillTimer2, 412, 470
KnowledgeBase articles, 186, 187
Knuth, Donald, 222
KRNL286,138

and Burgermaster, 281, 282
Global Arena, 277-78
and the local heap, 313
and ToolHelp, 617

KRNL286.EXE, 6,48, 74, 189, 190,
202,203

KRNL386,138,278-80
and Burgermaster, 281, 282
and the local heap, 314
and ToolHelp, 617

KRNL386.ASM, 60
KRNL386.EXE, 6, 48, 60, 64, 74, 189,

190,202,203
KRNL386.LST, 60

L
LAR, 208
LAYER, 93
LAYER-OBI, 411, 412, 543
LB_ADDFILE, 533

LB_GETANCHORINDEX, 533
LB_GETITEMDATA, 125
LB_SETANCHORINDEX, 533
LBCB_CARETOFF, 533
LBCB_CARETON, 533
LCursPosX,556
LCursPosY, 556
LDBOOT.OBJ,203
LDTs (Local Descriptor Tables), 23,

26,40,50,183,207
LE (linear executable) files, 68, 96, 97,

139
LEDUMP, 80,97
Leonhard,VVoody,21, 136, 166
LFN,139
LibMain, 74, 615
LIBVV.LIB, 16, 67
License agreements, 41
LINK, 67
LMEM_MOVEABLE, 409
LoadCursorIconHandler, 38, 412, 470,

471
LoadDIBIconHandler, 412, 471
LoadIconHandler, 29, 49, 412, 471-72
LoadLibr~,17,45,65,70,168,181,

202,613
Loa~odule,65,602

LoadIconHandler,30
Loc~oc,15,141,191,305,400,408

Local Arena Header, 306-7
LocalCountFree, 18,46, 206, 311-12
LocalFirst/LocalNext, 621-22
LocalHandleDelta, 206, 312
LocalHeapSize, 46, 206, 315
LocalInfo, 622
LocalNotify, 37, 38-39, 206, 315-16
LocalVValk, 136
LockCurrentTask, 36, 35, 204, 316-17
LockMyTask, 412, 472
LOGFONT, 536
LongPttAdd, 29,46, 204, 317-18
LookupMenuHandle, 412,472-73
LOVVORD, 20, 25
IpfnNotify, 558

IpfnPrint, 558
IpfnWndProc, 511
IpPDevice, 555
IpPFont, 555
LSL (Load Selector Limit), 131, 170,

192,208
LSN (Logical Segment Number), 74
LT GDI METAFILE, 537
LvBUni~n, 545, 581

M
MACRODE.EXE, 38
main, 12, 135

and WINIO, 157, 158, 185
MakeObjectPrivate, 145, 537, 545, 581
MakeProcInstance, 193
map_real, 22-23, 24, 25-26
MAPEXE, 68
Maples, Mike, 40
MAPWIN, 10, 12,26,48,57, 123

and disassembling windows, 96
and executables, 64-72, 73, 79, 89
and EXEDUMP, 73, 79
and EXEUTIL, 89
-IMPMAKE switch, 68, 79
and module dependencies, 72
and NBWIN.EXE, 11
use of, 64-72

MDIClientWndProc, 178
MDITILE HORIZONTAL, 32
MDITILE=SKIPDISABLED, 32
MDITILE_VERTICAL, 32
MemManInfo, 630-31
Memory, 1, 4, 17, 21, 281-91, 312-14,

400,402-3
-access breakpoints (BPM), 132, 142
and executables, 78
extended, 26
and free system resources, 14-16, 18,

136,409
hard-wired selectors used to access,

24-26

INDEX 705

linear, and SHAKER and HEAP-
WALK, 160

and the Memory Viewer, 27
and the Module Table, 193, 319-39
and NT, 55
and ToolHelp, 611
and Windows Memory Display, 27
and Windows protected mode, 21
and WISPY, 187

MemoryFreed, 206, 318-19
MemoryRead/MemoryWrite, 631-32
MENU, 400, 408, 473-76
MenuItemState, 412, 476-77
Menus, 400, 401-2, 403,411,412

and GDI, 535
WINIO, 159-61

MessageBox, 48
Messages, undocumented, 517-33. See

also specific messages
MetaDC, 536, 537, 568
Metafile, 536, 537, 568

and GDI, 544, 545
MetafileDC, 536, 537, 568, 582
MFDrawText, 544, 582
MicroQuill, 142
Mitchell, Stan, 97
Mixing, 56
MK....FP macro, 25
MMSYSTEM, 138
Module

Database, 76
definition of, 74
dependencies, 69-72
Reference Table, 64, 72
Table, 193, 319-39
and ToolHelp, 613

Module.ordinal, 8, 10, 14, 57, 67
ModuleFindHandle, 624
ModuleFindName, 625
ModuleFirst/ModuleNext, 625
MODWALK, 188
MOS, 62
MOUSE, 46,69-70
MOUSE COMM, 144

706 UNDOCUMENTED· WINDOWS

~ouse_Event,477

~oveableHandle, 307
~oveWindows,110
MOVs, 105
~SDRAW, 38
~SDRAW\MSDRAW.EXE, 38
~SGRAPH\GRAPH.EXE, 38
~ultimedia Extensions for Windows, 6
~ultiscope, 4, 35, 611
MZ, 62, 203

N
nBreakCount, 556
nBreakExtra, 556
nBreakRem, 556
NBWIN (Norton Backup for

Windows), 8-11, 12
four genuine undocument items in,

14
and free system resources, 15
hard-wired selectors used by, 24-25
and the problem with protected

mode, 21
and SetSelectorBase, 24

nCharExtra, 556
NDDW (Norton Disk Doctor for Win

dows),7
NDW (Norton Desktop for Windows),

6, 7-11, 26, 51
batch language, 27-28
and the DPMI interface, heavy use

of, 28
and free system resources, 15
and NT, 56

NE,8,13,38,46,62,64,66,68,72,
73,74,89

andDDK, 139
and disassembling windows, 95, 96,

119
and EXEDUMP, 81
and INTRSPY, 182
and KERNEL, 203
and the Module Database, 76

NEAR, 108
Nesting, 140
NetBIOS,23
Network API, 411, 412
NEWEXE.INC, 139
NFY_DELMODULE, 633
NFY_ENDTASK, 161
NFY_EXITTASK, 633
NFY_INCHAR, 633
NFY_LOADSEG, 633
NFY_OUTSTR, 633
NFY_RIP, 633
NFY_STARTDLL, 633
NFY_STARTTASK, 161, 633
nHeight, 427
Nimmer, Raymond T., 103
NoHookDOSCall, 46, 205, 339-40
Nonresident Names Table, 64, 74
NORMAL, 408, 409
Norton, Dan, 207-8, 602
Norton, Peter, 7, 40, 51
Notepad

and CALLFUNC, 167
and EXEUTIL, 85

Notification functions, 36
NotifyRegister, 36, 161, 173, 188, 616
NotifyRegisterjNotifyUnRegister, 632-

35
NT (New Technology), 40, 55, 56
nTBreakExtra, 556
Number(s)

"magic," 97, 116-22, 167
ordinal, 8, 168

NuMega Technologies, 127, 138. See
also Soft-ICE/Windows

NUMTASKS.C, 157-59
nWidth,427
nWidthBytes, 427

o
Object Module Format, 14
OEMs (original equipment

manufacturers),601

OEMToAnsi, 48
OfiSetOrg, 545, 583
OffsetVisRgn, 91, 544, 583
OldExitWindows, 412, 477-78
OldYield, 204, 340-41
OLE.H,84
ON_ACTIVATEAPP, 116
ON_TILE, 122
ON_TILE_OR_CASCADE, 121
on_time, 158, 164
Open Tools, 4, 5, 12-14

binder, topics covered by, 13-14
and executables, 83, 84

OpenJob, 544
OpenPathname, 35,205,341
OS/2, 40, 68

and CALLFUNC, 169
and Executable File Format, 13
and EXEDUMP, 73, 74
Version l.x, 35, 64

p

PageMaker,53
PaintRect, 411, 478-79
Palette, 536, 567, 568

and GDI, 543, 544
PALETfEOBJ, 584
Parameter validation, 164, 545
Park points, 27
Pascal, 32, 67

and CALLFUNC, 169
and disassembling windows, 105,

108,125
and Soft-ICE/Windows, 146

PatchCodeHandle, 13, 37-38, 75,
341-42

Paterson, Tim, 50
pAtomTable, 297
Patton, Carol, 42
pcode, 96
PCWATCH, 180
PE (portable-executable), 96
PeekMessage, 53, 185, 186, 187, 189
Pen, 536, 537, 567, 568

INDEX 707

Pen Windows, 112-13, 146
PENOBJ,585
Petzold, Charles, 14, 50, 60
pfunc, 17
Phar Lap Software, 10, 64, 68
PixToLine, 545, 585
pLDevice, 555
pLocalHeap, 297
pntHotSpot, 427
PostEvent, 133, 135, 204, 342-43
POSTMAN, 167
PostMessage, 48, 56, 167, 177, 202
PostMessage2, 412, 479
pPBrush,555
pPDeviceBlock, 555
pPFontTrans,555
pPPen,555
pRaoClip, 555
PrestoChangoSelector, 39, 40, 46, 49,

50,204,207,343-46
Previous instance, 12
printf,135,155,156,158,169,171

and CALLFUNC, 169, 171
and WINIO, 158

Printing
and GDI, 544, 545

PRINTMAN.EXE, 29
PROGMAN, 69-70, 137
PROGMAN.EXE, 6, 29, 30, 203
Program Data Base (PDB), 346-47
Program Manager, 5, 15, 28, 30, 401

and EXEUTIL, 87
and NDW, 7, 15
and SPY, 137
and USERWALK, 406

Program Segment Prefix (PSP), 189,
193,202

Prologs, 13, 38
Prompt-read-dynlink-printf, 170, 171
Program Segment Prefix (PSP), 12,

129,130,133,189,193,202
pStackBottom, 297
pStackMin, 297
pStackTop, 297

708 UNDOCUMENTED WINDOWS

Q
QueryAbort, 545, 583-84
QueryJob, 545, 584
Quick C for Windows (QC/W), 28, 39,

40,611
QuickHelp, 85

R
r (command), 99
R (command), 146
RCos, 545, 586-87
Read Memory, 35
Real Registers, 35
RealizeDefaultPalette, 545, 588
Realizer, 20
rectBounds, 558
rectClient, 510
rectItem, 474
rectLVB, 558
RectStuff, 545, 588
rectWindow, 511
Region, 536,568
Register Ptrace, 36, 151
RegisterClass, 11, 153
RegisterClipboardFormat, 140
RegisterPenApp,112,146
RegisterPtrace, 35, 49, 205, 347-48,

616
RegisterShield, 349
RegisterWmdowMessage, 174

description of, 140-42
RegisterWinOldApHook, 205, 349-50
RegOpenKey, 75-76
Relocation Tables, 64, 74
RepaintScreen, 411
ReplaceInst, 206, 350
ReplyMessage, 133
Reschedule, 53, 186
RESDUMP, 97

and SPY, 137
use of, summary of, 119-20

ReservedX, 92

ResidentNameTable, 64, 74
Restore80x87State, 601, 610
RestoreVisRgn, 544, 585-86
Resurrection, 47, 49, 544, 589
RETF OEh, 146
RETN 2,125
rgffixStyle, 511
rgfStyle, 511
RGNOBJ,589
Richter, Jeff, 4, 142, 161, 173
RIP (rest in peace) codes, 151
RSin, 545, 589

S
Safety

of using undocumented functions,
51-57

Save80x87State, 601, 610
SaveDC, 590
SaveVisRgn, 47, 544, 590
ScaleEx, 545, 591
Schumpeter, Joseph, 4
ScrollChildren, 29, 411, 480
ScrollWmdow, 152
SDKPAINT, 34
Segment Table, 64
SEL, 169, 171
SelectBitmap, 545, 591
Selector Table, 352-53
SelectorAccessRights, 35, 204, 207,

350-52
Selectors, code

and data selectors, 39-40
SelectVisRgn, 91, 47, 544, 592
Self-loading Windows Applications, 13,

37-38, 75
SeltIntemalWindowPos, 27
SeltWindowPlacement, 27
SendDriverMessage, 91
SendMessage, 56, 125, 167, 177
SendMessage2, 133, 412, 480
SetActiveWmdow, 126
SetDCHook, 544, 593
SetDCOrg, 47, 544, 593

SetDCState, 47, 544, 594
SetDCStatus, 47, 544, 595
SetDeskPattern, 29
SetDesktopPattem, 411, 480-82
SetDeskWallpaper, 26-27, 29, 49, 482-

83
SetEventliook,13,35,412,483-86
SetFocus, 126
SetGetKbdState, 412, 486-87
Set/GetTaskQueue,91
SetGridGranularity, 29, 411, 487-88
SetliookFlags, 544, 595
SetInternalWindowPos, 26-27, 29, 49,

55,153,411,488-91
Set/KillSystemTimer functions, 39
SetObjectOwner, 545, 596
SetPriority,47,133,204,353-54
SetProcAddress, 179
Set Processor Exception Handler Vec-

tor, 96
SetReU\bs, 544, 596
SetScrollPos, 152
Set Segment Base Address, 23
SetSelectorBase, 11, 14, 21, 24, 26-27,

35,49,204,354-57
SetSelectorBase/Limit, 24
SetSelectorLimit, 26-27, 35, 49, 204,

357-58
SetSigHandler,358
SetSigHandlerUndefDynlink, 206
SetSystemMenu, 412, 491
SetSystemTimer, 37, 38,48,49, 91,

412,491-94, 517
SetTaskInterchange,92
SetTaskQueue, 47, 204, 358-59
SetTaskSignalProc, 47, 92, 204, 359-60
SetTimer, 4, 37
SetTimer2, 412, 494
SetWC2, 411, 494-95
SetWindowsHookEx, 173, 179
SetWinViewExt,545,597
SEX, 64
SEXYHDR, 64
SGDT, 208

INDEX 709

SH, 165, 156, 168
SHAKER, 34, 160
SHELL, 28, 30, 75, 87

and module dependencies, 69-70
and WINIO, 156

SHELL::, 6, 28
ShelU\bout, 30
SHELLAPI.H, 30,84
ShellExecute, 30
ShrinkGDIHeap, 47, 545, 597
SI,12
SIDT, 208
SignalProc, 48, 412, 495
Single-Step, 35
SIW (System Information for Win-

dows),7
sizeof, 615
SKERNEL.EXE, 189
SLDT,208
SLEEPER (screen saver), 7
SM_,112
SM_DEBUG, 138
SM_PENWINDOWS, 112
Smith, Richard, 10
SnapWindow,91,411,495
SNOOP, 139-40, 172, 174-81, 517

"Heisenberg" mode, 174
and USERWALK, 409
and WISPY, 187
and WndProc, 177-79

Soft-ICE/Windows (WINICE), 26, 28,
37,39,131,132,134,138

breakpoints, 145-48
andDDK, 139
description of, 142-51
disassembly with, 127, 142-45
Global Descriptor Table (GDT), 26,

149,207,281
system-information commands,

148-51
SOUND, 46, 69-70
Source, 66, 96, 97

and EXEUTIL, 79
and inspections of resources, 119

710 UNDOCUMENTED WINDOWS

and Soft-ICE/Windows, 145
and startup code, 105
summary description of, 97

Sourcer, 26, 39, 96, 124-25
and IsWinOldApTask, 127
and Soft-ICE/Windows, 146
and WinMain, 106

Spies, 135-42
SPY, 4, 34, 136-37,140, 142
sscanf,l64
STACK, 145
Stack size, 12
StackTraceCSIPFirst, 634-36
StackTraceFirst, 634-36
StackTraceNext, 634-36
Startup code, 12, 13, 104-6
stdio, 155
STRECTCHBLT,9
StringFunc,48,412,496-97
STUB.EXE,62
SnrlflriRe~on,545,598

StuflVisible, 544, 598
Supersets, 62
Switch/case statements, 114-15, 122
SwitchToThisWindow, 30, 55, 66, 83,

86,124,126,411,497-98
Symantec, 13, 40
SymDeb, 34, 98-102
SysErrorBox, 48, 146, 147, 167,412,

498-500
SYSTEM, 4, 46, 601-10

80x87 state, 601
CreateSystemTimer in, 37
Message Queue, 500-503
and module dependencies, 69-70
notifications, and ToolHelp, 613
and Soft-ICE/Windows, 144
timers, 601

SYSTEM.DRV, 6, 601, 602
SYSTEM.INI, 6, 28, 74, 138, 203, 602
SystemHeaplnfo, 18, 613, 618
SystemParametersInfo, 30

T
TabTheTextOutForWimps, 412, 503-4
Task Database (TDB), 131, 132, 133,

147,193,360-79,612
and HEAP, 148
and HEAPWALK, 136
and INTRSPY, 183
and Soft-ICE/Windows, 147
and WINIO, 153

TaskFindHandle,625
TaskFirst/TaskNext, 614, 626
TaskGetCSIP, 636-37
Task List, 109, 122, 123, 126
Task locking, 36
Task Manager, 5, 28, 411, 412

and disassembling windows, 118,
119,120

and EXEDUMP, 73
and MAPWIN, 64-65
and Visual Basic, 34. See also TASK

MAN
Task Queue, 86, 130, 132, 133, 193,

379-85
and HEAPWALK, 136
and SNOOP, 177
and Soft-ICE/Windows, 148

Task Swappers, 71
TASKMAN, 31, 75

Arrange Icons button, 123
Cascade button, 121-22, 124
and DialogProcs, 114-15
and disassembling windows, 96,

103-22
End Task button, 123
and EXEUTIL, 86, 89
and KERNAL, 74, 79
Switch To button, 124
techniques, 122-26
Tile button, 121-22, 124
and WmMain, 106-14
and WndProcs, 114-15

TASKMAN.ASM,31

TASKMAN.EXE, 29, 30, 60-64, 98,
99,102

taskman.exe=, 28
TASKMAN.LST, 31, 114
TaskManDlgProc, 63-64, 66, 75, 114,

115,116,117,118,123,124-25
TASKMGR, 34
TaskSwitch, 637-38
TASKWALK, 161, 163, 164, 188
TAS~K2,55,161,163,164

TD,193
TDB (Task Database). See Task

Database (TDB)
TDB.INC, 131, 139
TDUMP, 8, 9, 62, 64, 67, 68, 77, 98
TDW (Turbo Debugger for Windows),

4,25,35,36,139,611
and Soft-ICE/Windows, 146, 151

TDWIN.DLL, 36
TerminateApp, 638
TextAlloc,400
TextFree, 400
TextOut, 151, 152, 153
Tfiliook,205,385-89
Throw, 171
ThunderForm,136
"Thunks," 389-91
Tile Manager, 122
TileChildWindows, 30, 32,49, 55,66,

67,86,122,165,167,411,504-5
TileDesktop,31
TimerCount, 638-39
ToolHelp, 4, 5, 18, 36, 49, 173, 188,

611-69
and CALLFUNC, 172
and data structure walking functions,

623-26
and debug Windows, 138
and GDI, 537
heap functions, 617
programming considerations, 614-17
and SNOOP, 179
undocumented knowledge in, sum

mary of, 613

INDEX 711

use of, whenever possible, 53-54
and USERWALK, 408
and WINIO, 152, 161, 162

TOOLHELP.DLL, 6,18, 27, 34, 35,
36,87,611,613,614

TOOLHELP.H, 84, 614, 536
ToolHelpHook, 205, 391-92
TPW (Turbo Pascal for Windows),

33-34, 57
TSRs (terminate and stay resident pro

grams), 1, 3, 5, 53, 616
Turbo Debugger for Wmdows. See

TDW (Turbo Debugger for Win
dows)

Turbo Pascal for Windows (TPW),
33-34, 57

U
UAEs (Unrecoverable Application

Errors), 22, 188
UndefDynlink,392-93
UNDOCWIN.BAT, 84, 85, 89
UnicodeToAnsi, 544, 599
Unix, 35, 156
UpdateWindow, 152
USER, 6, 7, 12, 27, 28, 37, 46, 49, 88,

95,132,138,399-515
and CALLFUNC, 166-68
composition, 412
and C source code, 47-48
data structures, 399-400
and debug Windows, 138
and disassembling windows, 95, 110,

131,132
and EXEUTIL, 91, 92, 93
exports and imports, 411
and free system resources, 15, 16
functions, undocumented, summary

of, 46-48
functions, undocumented, use of,

413-515
and GDI, 86, 535, 536, 543, 545
heaps, 400-402

712 UNDOCUMENTED WINDOWS

and .KERNEL, 87, 148-49, 189,
193,202

local atom table, 140
objects, 402-5
Module Database, 79
and module dependencies, 69-70
and multiple heaps, 20
and NBWIN.EXE, 11
Set/KilISystemTimer functions, 39
and SNOOP, 174
and Soft-ICE/Windows, 37, 142-43,

145
and SYSTEM, 602
and Task Manager, 64-65, 67
and ToolHelp, 613
WM_SYSCOMMAND in, 110

USERDATA, 96
USEFLEXE,5,64,66,83,87,140,399
UserLocalAlloc,408
UserPaintDisable,48
UserSeeUserDo, 83, 506-7
UserVptOrgX,557
UserVptOrgY, 557
USERWALK, 55, 188,400,401,402

and GDIWALK, 537
summary description of, 406-11

UserYield, 48, 412, 507
USHORT,77

V
V7VGA.DRV, 6, 74, 535
V Communications, 31. See also Source
VectorDrn~g,544,545

VER.DLL,617
VERR, 170, 208
VGA.DRV, 6, 535
VGAMONO.DRV, 6, 74
Viewport, 544, 545
Virtual Machine Manager, 96
VisRgn,91,543,544
Visual Basic (VB), 20, 21, 28, 33, 39

40,42,60,96
DECLARE in, 34

and SPY, 136
VKD_Force_Keys, 96
VMM (Virtual Machine Manager), 71,

97,144,145,151,185
Voyeur, 173
VportExtX, 557
VportExtY, 557
VportOrgX, 557
VportOrgY,557
VxDs (virtual device drivers), 5, 71, 96

and DDK, 138-39
and KERNEL, 207-8
and Soft-ICE/Windows, 144
and Source, 97

W
W3,96,97
W3MAP,68
W~tEvent, 11, 12, 13, 105,133,135,

205, 393-95
Walkers, 135-42
WallPaper, 27-28
Warnock, John, 42
wAtom, 141
wBkMode, 556
wBreakErr, 556
wBrushOrgX, 557
wBrushOrgY, 558
wC,417
wcDCLocks, 558
wDCFileAtom,558
wDCGlobFlags, 559
wDCLogAtom, 558
wDCOrgX, 558
wDCOrgY, 558
wDCPhysAtom, 558
wDCSaveLeve, 558
~EB386,137-38,151

WEPs (Windows exit procedures), 84
WExtra,417,511
wFlags, 408, 474, 475, 511
wFontAspectX, 558
wFontAspectY,558

wFontWeights, 558
wID_Menu, 511
wIDorPopup, 474
Wilson, Morrie, 27
WINICE (Soft-ICE/Windows). See

Soft-ICEjWindows (WINICE)
WIN.INI,28
Win32, 55,56, 517,611
Win32/NT, 68, 96
WIN386

and disassembling windows, 96, 97,
183

WIN386.EXE, 48, 68, 71-72, 96, 138,
203,204

and Soft-ICE/Windows, 149-50
WIN87EM.DLL, 6
WinBatch, 27
WINDEBUG, 34, 35, 36,49, 611,

612,613,616
WINDKERN.INC, 282
Windows, Enhanced mode, 95

.386 files in, 48
and KERNEL, 190,204
and module dependencies, 71, 72
and Soft-ICE/Windows, 142, 149
and ToolHelp, 613
and USERWALK, 406

Windows, Protected mode
accessing of real-mode DOS from, 50
and ChangeSelector, 39
and mixing, 56
problem with, 21-26

Windows,Re~mode,6,56

addresses, mapping of, 22
data structures, accessing of, from a

protected-mode application,
23-24

and "good" Windows applications, 21
and module dependencies, 70-72

Windows, Standard mode, 6, 48
and KERNEL, 189-90, 203, 208
and module dependencies, 71-72
and Soft-ICE/Windows, 142
and ToolHelp, 613

INDEX 713

WINDOWS.H, 5, 9, 11, 56
and disassembling windows, 112,

116,118,125
and EXEUTIL, 82, 83, 84
GACFs in, 246-50
and the Get/SetSelectorBase/Limit

family, 51
"internal" version of, 139, 517, 533
and Open tools, 14
and prototypes, 16
selectors in, 25

Windows Memory Display, 27
WinExec, 38, 154, 193, 395-98

and CALLFUNC, 168, 171
and INT 21h, 182
and INTRSPY, 182
and WINIO, 156

WinFarFrame, 507-8
WINFILE, 29, 30, 182-83
WINFUNC, 67-68, 89
WinHelp, 85
WINIO, 135

clickable lines, 161-65
description of, 151-65
fixing, 185-88
and going resident, 156-57
and KERNEL, 201
and installing event handlers, 157-59
and interactive command shells, 153-

56
library reference, 671-82
menus, 159-61

winio_clear, 158
winio_current, 158
winio-setcurrent, 164
winio_setpaint, 156
winio-window, 161, 164
WINKERN.INC, 139
WinMain, 13, 105, 106, 112, 135

calling of, with four arguments, 12
and disassembling windows, 106-14
and the entry point for a program or

library, 74
and ToolHelp, 611

714 UNDOCUMENTED WINDOWS

and WINIO, 158
WINNET.H, 83, 139
WINOLDAP, 130, 185
WinOldAp, 87
WinOldApCall, 205, 397
WinOldAppHackOMatic, 412, 508
WinSight, 140, 141, 174
WinSpector, 612
WINSTUB.EXE, 62
WinToAsm, 97
WINUSER.H, 517
WINWALK, 188

and ToolHelp, 617, 639-52
and WINIO, 151

WinWord. See Word for Windows
(WinWord)

WISPY, 180-88
and starting a DOS box, 184-85

WM_, 55-56, 59,86, 116,132,135
and CALLFUNC, 167
and disassembling windows, 95
and SNOOP, 172, 173-80
and SPY, 136
and WINIO, 151
and WinSight, 140

WM_ACTNATEAPP, 116
WM_ACTNATESHELLWINDOW?,

517
WM_ALTfABACTNE, 518
WM_BEGINDRAG, 518
WM_CBT_RESERVED_LAST, 518-19
WM_CBT_RESERVED_FIRST, 518-19
WM_CHAR, 167
WM_CLOSE, 123
WM_COMMAND, 116, 117, 118,

137,159
WM_COMPACTING, 202
WM_CONVERTREQUEST, 519
WM_CONVERTRESULT, 519
WM_DRAGLOOP, 519-20
WM_DRAGMOVE, 520
WM_DRAGSELECT, 520-21
WM_DROPOBJECT, 521
WM_ENTERMENULOOP, 517, 521

WM_ENTERSIZEMOVE, 178,522
WM_ERASEBKGRND, 178
WM_ENTERMENULOOP, 517
WM_EXITMENULOOP, 517, 522
WM_EXITSIZEMOVE, 522-23
WM_FILEYSCHANGE, 523-24
WM_GETHOTKEY, 178, 524
WM_INITDIALOG, 116
WM_INTERIM, 524
WM_INTERNAL_COALESCE_LAST,

524-25
WM_INTERNAL_

COALESCE_FIRST, 524-25
WM_INTERNAL_DDE_LAST, 525
WM_INTERNAL_DDE_FIRST, 525
WM_ISACTNEICON, 525
WM_KANJIFIRST, 525-26
WM_KANJILAST, 525-26
WM_KEY.DAT, 176
WM_KEYDOWN, 157
WM_LBTRACKPOINT, 526
WM_MM_RESERVED_FIRST, 526
WM_MM_RESERVED_LAST, 526
WM_MSG.DAT, 173,178,179
WM_NCPAIN, 178
WM_NCPAINT, 527
WM_NEXTMENU, 527
WM_OTHERWINDOWCREATED,

527-28
WM_OTHERWINDOWDESTROYED,

528
WM_PAINT,151,157
WM_PAINTICON, 528-29
WM_QUERYDROPOBJECT, 529
WM_QUERYPARKICON, 529
WM_QUERYSAVESTATE, 530
WM_SETHOTKEY, 530
WM_SETVISIBLE, 530-31
WM_SIZE,151,157
WM_SIZEWAJT,531
WM_SYNCPAJNT, 177, 178, 531
WM_SYNCTASK, 531
WM_SYSCOMMAND, 110
WM_SYSTIMER, 517, 532

WM_TESTING, 532
WM_TIMER, 157, 158
WM_UNDOC.DAT, 173, 174, 176,

178,179,517
WM_UNDOC.H, 517
WM_USER, 114
WM_USER+, 174
WM_USER=XX, 125
WM_VSCROLL, 151
WM_WHATEVER, 116
WM_YOMICHAR, 532
wMagic, 567
wMapMode, 557
WMHANDLER, 158, 160
wmhandler_set, 158
wmhandler_table, 158
wmhandler_yield, 161
wMustBeZero, 296
WND, 400, 408, 409, 509-12

and GDI, 537
and WINIO, 153

WndExtX, 556
WndExtY, 557
WndOrgX,556
WndOrgY, 556
WndProc, 66, 174

built-in, summary of, 533
and disassembling windows, 114-15
and SNOOP, 177-79
and WINIO, 158

WNet (Windows/network interface),
139

WNetErrorText, 512-13
wOfsFirst, 444
Word for Windows (Winword), 6, 13,

20,36,53,125,130,131,401
and CALLFUNC, 165, 166
executable file for, 38
and KERNEL, 207
and pcode, 96
and USERWALK, 406
Version 1.x, 136
working model, t65, 166

WordBasic, 20, 21, 33

INDEX 715

WordSet, 544, 599
wParam, 118, 159,400
wPenHeight, 557
wPenWidth, 557
wPolyFillMode,557
wPostScaleX, 558
wPostScaleY, 558
wRelAbs, 557
Write Memory, 35
WriteOutProfiles, 205, 397-98
WriteProfileString, 28
Write Registers, 35
wROP2, 556
wSeg, 141
wSelCount, 568
wSig, 417, 475
wSize, 408
wStretchBltMode, 557
wStyle, 32
WSWAP.EXE,71
wTextAlign, 557
wxFormFlags, 557

X
XCStoDS, 91, 412, 513-15
xDrop, 444
XOR, 39
xTab,474
xULLen, 474
xULStart, 474
x,y coordinates, 110, 116

y
Yao, Paul, 51
YASP (Yet Another Spy Program), 173
yDrop,444

Z
Zbikowski, Mark, 62, 182
Zortech,13
Zuck, Jonathan, 20, 21, 34

"Sourcer is the best disassembler we've ever seen." PC MAGAZINE

Windows & DOS
Disassembly!

Sourcern., generates commented assembly language source code and listings
from executable files or memory.

Sourcer gives you the power to easily change and modify existing programs for
which the source code is unavailable or lost. It also helps you learn and
understand assembly code.

Unlike other disassemblers that produce "debug" style output, Sourcer performs an extensive analysis
to generate clear assembly source code in the style similiar to the original. Sourcer generates the
best results of any 8088 - 80486 disassembler, automatically. Compare the output yourself and see
the dramatic difference Sourcer makes.

"V Communication's Sourcer is by far the
best MS-DOS PC disassembler I have seen;
it bundles more features and options than
any other similar product. "

IEEE Software

Windows SourceTM
Windows Source 1M works with Sourcer 1M to
generate detailed listings of Windows EXEs,
DLLs, VxDs, and OS/2 NE files. See the actual
Windows function names used within the
programs. Learn the numerous undocumented
Windows functions used by the professionals to
perform tricks that are otherwise impossiblel

Windows Source comes with a complete set of
utilities for automatically updating the function
lists from both current and future releases of
Windows. It also allows extraction of individual
VxD device drivers when multiple VxDs appear
in a single file. There is no way to get better
commented assembly source code from
Windows programs.

Windows Source includes the following special
features:

.:. Supports the new EXE file formats used in
Windows EXEs, DLLs, VxDs and OS/2
files.

.:. Function name extraction utility supports
current and future versions of Windows.

.:. Labels all export names from file under
analysis.

•:. Identifies the programs main entry point.

•:. Uses Codeview symbols, if present, for
further clarity.

''All in all, Sourcer does the best analysis of
any of the disassemblers I tested and gets
extra points for handling BIOSes and packed
files (albeit at an extra charge)."

Programmer's Journal

.:. In a VxD (32-bit Virtual Device Driver) it
identifies, by name, the VxD's API entry
points and services the VxD provides.

.:. Descriptions for all DPMI and VMM
interrupt sub-functions used within the
program under analysis.

There are additional utilities included with
Windows Source that you will find
indispensable, such as:

.:. Resource Analysis which produces a
listing of resources such as menus, dialog
boxes, controls, and others used by the
Windows program under analysis.

.:. Import Analysis which produces a
summary of the functions referenced in an
import library.

Save $30.001
Sourcer and Windows Source are $129.95
each. Windows Source requires Sourcer.
Purchase Windows Source with Sourcer for
$229.90, a $30.00 savings if you mention ·this
book.

Disassemble BIOS ROMs with Sourcer's BIOS
Pre-processor for $40.00 more. Unpack
packed EXE files with Unpacker for $39.95.

V;" V Communications, Inc•
4320 Stevens Creek Blvd, Suite 275·UW
San Jose, CA, 95129 FAX 408-296-4441

800-648-8266 or 408-296-4224

COM 80486 Device Drivers 80386 EXE 80286 Windows VxDs 80186 Binary Files 80x87 BIOS 8088 TSRs

Addison-Wesley warrants the enclosed disk to be free of defects in materials and faulty
workmanship under normal use for a period of ninety days after purchase. If a defect is
discovered in the disk during this warranty period, a replacement disk can be obtained
at no charge by sending the defective disk, postage prepaid, with proof of purchase to:

Addison-Wesley Publishing Company
Editorial Department

Trade Computer Books Division
One Jacob Way

Reading, MA 01867

After the 90-day period, a replacement will be sent upon receipt of the defective
disk and a check or money order for $10.00, payable to Addison-Wesley Publishing
Company.

Addison-Wesley makes no warranty or representation, either express or implied,
with respect to this software, its quality performance, merchantability, 9r fitness for a
particular purpose. In no event will Addison-Wesley, its distributors, or dealers be lia
ble for direct, indirect, special, incidental, or consequential damages arising out of the
use or inability to use this software. The exclusion of implied warranties is not permit
ted in some states. Therefore, the above exclusion may not apply to you. This warranty
provides you with specific legal rights. There may be other rights that you may have
that vary from state to state.

Attention 51
/4" disk drive users:

The disk to accompany Undocumented Windows is also available in a
51

/4 II high density format. Please return the coupon below with a
check for $10.00 payable to Addison-Wesley to:

Addison-Wesley Publishing Company
Order Department

1 Jacob Way
Reading, MA 01867-9984

Please send me the 51
/4" disk (ISBN 0-201-63286-1) to accompany

Undocumented Windows by Andrew Schulman, David Maxey, and
Matt Pietrek. I am enclosing a check for $10.00.

Name _

Address _

City State Zip _

	Preface
	Chapter 1 This Was Not Supposed to Happen
	Chapter 2 Examining Windows Executables
	Chapter 3 Disassembling Windows
	Chapter 4 Tools for Exploring Windows
	Chapter 5 KERNEL: Windows System Services
	Chapter 6 USER: Microsoft Windows User Interface
	Chapter 7 Undocumented Windows Messages
	Chapter 8 GDI
	Chapter 9 SYSTEM
	Chapter 10 ToolHelp: A Partial Replacement for Undocumented Windows
	Appendix A WINIO Library Reference
	Appendix B Annotated Bibliography
	Index

