
•

I

•
•

•

•

Microsoft® Windows™
Version 3.1

Programmer's Reference
Volume 2: Functions

For the Microsoft Windows Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit
ment on the part of Microsoft Corporation. The software, which includes information contained. ii) any
databases, described in this document is furnished under a license agreement or nondisclosure agree
ment and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the license or nondisclosure agreement. No
part of this manual may be reproduced in any form or by any means, electronic or mechanical, includ
ing photocopying and recording, for any purpose without the express written permission of Microsoft
Corporation.

© 1987-1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Copyright© 1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Palatino, New
Century Schoolbook, Times, and Times Roman typefont data is the property of Linotype or its
licensors.

Arial and Times New Roman fonts. Copyright© 1991 Monotype Corporation PLC. All rights
reserved.

Microsoft, MS, MS-DOS, QuickC, and Code View are registered trademarks, and Windows and
QuickBasic are trademarks of Microsoft Corporation.

U.S. Patent No. 4974159

Adobe and PostScript are registered trademarks of Adobe Systems, Inc.
The Symbol fonts provided with Windows version 3 .1 are based on the CG Times font, a product of

AGFA Compugraphic Division of Agfa Corporation.
Apple, Macintosh, and TrueType are registered trademarks of Apple Computer, Inc.
PANOSE is a trademark of Else Ware Corporation.
Epson and FX are registered trademarks of Epson America, Inc.
Hewlett-Packard, HP, LaserJet, and PCL are registered trademarks of Hewlett-Packard Company.
Intel is a registered trademark, and i486 is a trademark of Intel Corporation.
AT and IBM are registered trademarks of International Business Machines Corporation.
Helvetica, New Century Schoolbook, Palatino, Times, and Times Roman are registered trademarks of

Linotype AG and/or its subsidiaries.
Arial and Times New Roman are registered trademarks of the Monotype Corporation PLC.
Nokia is a registered trademark of Nokia Corporation.
Okidata is a registered trademark of Oki America, Inc.
Olivetti is a registered trademark oflng. C. Olivetti.

Document No. PC28916-0492

Contents

Introduction... v

How to Use This Manual... v
Document Conventions vi

Alphabetic Reference .. 1

Introduction

The Microsoft® Windows™ 3.1 operating system is a single-user system for per
sonal computers. Applications that run with this operating system use functions in
the Windows applications programming interface (API). This manual describes
the API functions in alphabetic order, including each function's purpose, the ver
sion of Windows in which it first appeared, and the function's syntax, parameters,
and possible return values. Many function descriptions also contain additional in
formation and simple code examples that illustrate how the function can be used to
carry out simple tasks.

How to Use This Manual
For most of the functions described in this manual, the syntax is given in C
language format. In your C-language source files, the function name must be
spelled exactly as given in syntax and the parameters must be used in the order
given in syntax.

The Windows API uses many types, structures, and constants that are not part of
standard C language. These items, designed for Windows, are defined in the
Windows C-language header files. Although there are many Windows header
files, the majority of API functions, structures, and messages are defined in the
WINDOWS.H header file. You can use these items in your Windows application
by placing an #include directive specifying WINDOWS.H at the beginning of
your C-language source file.

In this manual, if a function is not defined in WINDOWS.H, its appropriate header
file is included in the first line of syntax. If no header file is listed, you can assume
the function is defined in WINDOWS.H.

Note You will find a list of the appropriate module and library for each Windows
function in the Microsoft Windows Programmer's Reference, Volume I. A list of
the types used in the Windows API, with a brief description of each, is provided in
the Microsoft Windows Programmer's Reference, Volume 3.

vi Microsoft Windows Programmer's Reference

Document Conventions
The following conventions are used throughout this manual to define syntax:

Convention

Bold text

Italic text

[]

BEGIN

END

Meaning

Denotes a term or character to be typed literally, such as a resource
definition statement or function name (MENU or CreateWindow),
a Microsoft MS-DOS® command, or a command-line option
(/nod). You must type these terms exactly as shown.

Denotes a placeholder or variable: You must provide the actual
value. For example, the statement SetCursorPos(X, Y) requires you
to substitute values for the X and Y parameters.

Enclose optional parameters.

Separates an either/or choice.

Specifies that the preceding item may be repeated.

Represents an omitted portion of a sample application.

In addition, certain text conventions are used to help you understand this material:

Convention

SMALL CAPITALS

FULL CAPITALS

monos pace

Meaning

Indicate the names of keys, key sequences, and key
combinations-for example, ALT +SPACEBAR.

Indicate filenames and paths, most type and structure names
(which are also bold), and constants.

Sets off code examples and shows syntax spacing.

AbortProc

AbortDoc
int AbortDoc(hdc)
HDC hdc; I* handle of device context */

The AbortDoc function terminates the current print job and erases everything
drawn since the last call to the StartDoc function. This function replaces the
ABORTDOC printer escape for Windows version 3.1.

Parameters hdc

Return Value

Comments

See Also

AbortProc

Identifies the device context for the print job.

The return value is greater than or equal to zero if the function is successful. Other
wise, it is less than zero.

Applications should call the AbortDoc function to terminate a print job because of
an error or if the user chooses to cancel the job. To end a successful print job, an
application should use the EndDoc function.

If Print Manager was used to start the print job, calling the AbortDoc function
erases the entire spool job-the printer receives nothing. If Print Manager was not
used to start the print job, the data may have been sent to the printer before Abort
Doc was called. In this case, the printer driver would have reset the printer (when
possible) and closed the print job.

EndDoc, SetAbortProc, StartDoc

BOOL CALLBACK AbortProc(hdc, error)
HDC hdc; I* handle of device context */
int error; I* error value */

The AbortProc function is an application-defined callback function that is called
when a print job is to be canceled during spooling.

Parameters hdc
Identifies the device context.

error
Specifies whether an error has occurred. This parameter is zero if no error has
occurred; it is SP_ OUTOFDISK if Print Manager is currently out of disk space

2 AccessResource

Return Value

Comments

See Also

and more disk space will become available if the application waits. If this
parameter is SP _OUTOFDISK, the application need not cancel the print job. If
it does not cancel the job, it must yield to Print Manager by calling the Peek
Message or GetMessage function.

The callback function should return TRUE to continue the print job or FALSE to
cancel the print job.

An application installs this callback function by calling the SetAbortProc func
tion. AbortProc is a placeholder for the application-defined function name. The
actual name must be exported by including it in an EXPORTS statement in the ap
plication's module-definition file.

GetMessage, PeekMessage, SetAbortProc

AccessResource
int AccessResource(hinst, hrs re)
HINSTANCE hinst; I* handle of module with resource *I

/ HRSRC hrsrc; / handle of resource

The AccessResource function opens the given executable file and moves the file
pointer to the beginning of the given resource.

Parameters hinst

Return Value

Comments

Identifies the instance of the module whose executable file contains the re
source.

hrs re
Identifies the desired resource. This handle should be created by using the
FindResource function.

The return value is the handle of the resource file if the function is successful.
Otherwise, it is -1.

The AccessResource function supplies an MS-DOS file handle that can be used in
subsequent file-read calls to load the resource. The file is opened for reading only.

Applications that use this function must close the resource file by calling the
_lclose function after reading the resource. AccessResource can exhaust available
MS-DOS file handles and cause errors if the opened file is not closed after the re
source is accessed.

See Also

AddAtom

AddAtom 3

In general, the LoadResource and LockResource functions are preferred. These
functions will access the resource more quickly if several resources are being read,
because Windows maintains a file-handle cache for accessing executable files.
However, each call to AccessResource requires that a new handle be opened to
the executable file.

You should not use AccessResource to access executable files that are installed in
ROM on a ROM-based system, since there are no disk files associated with the ex
ecutable file; in such a case, a file handle cannot be returned.

FindResource, _ lclose, LoadResource, LockResource

ATOM AddAtom(lpszName)
LPCSTR lpszName; /* address of string to add */

Parameters

Return Value

Comments

Example

The AddAtom function adds a character string to the local atom table and returns
a unique value identifying the string.

lpszName
Points to the null-terminated character string to be added to the table.

The return value specifies the newly created atom if the function is successful.
Otherwise, it is zero.

The AddAtom function stores no more than one copy of a given string in the atom
table. If the string is already in the table, the function returns the existing atom
value and increments (increases by one) the string's reference count.

The MAKEINT A TOM macro can be used to convert a word value into a string
that can be added to the atom table by using the AddAtom function.

The atom values returned by AddAtom are in the range OxCOOO through OxFFFF.

Atoms are case-insensitive.

The following example uses the AddAtom function to add the string "This is an
atom" to the local atom table:

4 AddFontResource

See Also

ATOM at;
char szMsg[80];

at AddAtomC"This is an atom");

if Cat == 0)
MessageBox(hwnd, "AddAtom failed", "", MB_ICONSTOPl;

else {

}

wsprintf(szMsg, "AddAtom returned %u", at);
MessageBoxChwnd, szMsg, "", MB_OKl;

DeleteAtom, FindAtom, GetAtomName

AddFontResource
int AddFontResource(lpszFilename)
LPCSTR lpszFilename; I* address of filename *!

Parameters

Return Value

Comments

Example

The AddFontResource function adds a font resource to the Windows font table.
Any application can then use the font.

lpszFilename
Points to a character string that names the font resource file or that contains a
handle of a loaded module. If this parameter points to a font resource filename,
it must be a valid MS-DOS filename, including an extension, and the string
must be null-terminated. The system passes this string to the LoadLibrary
function if the font resource must be loaded.

The return value specifies the number of fonts added if the function is successful.
Otherwise, it is zero.

Any application that adds or removes fonts from the Windows font table should
send a WM_FONTCHANGE message to all top-level windows in the system by
using the SendMessage function with the hwnd parameter set to OxFFFF.

When font resources added by using AddFontResource are no longer needed,
you should remove them by using the RemoveFontResource function.

The following example uses the AddFontResource function to add a font re
source from a file, notifies other applications by using the SendMessage function,
then removes the font resource by using the RemoveFontResource function:

See Also

AddFontResource("fontres.fon");
SendMessageCHWND_BROADCAST, WM_FONTCHANGE, 0, 0);

. /* Work with the font. */

if (RemoveFontResource("fontres.fon"))
SendMessageCHWND_BROADCAST, WM_FONTCHANGE, 0, 0);
return TRUE;

else
return FALSE;

LoadLibrary, RemoveFontResource, SendMessage

AdjustWindowRect 5

AdjustWindowRect
void AdjustWindowRect(lprc, dwStyle,fMenu)
RECT FAR* lprc; /*address of client-rectangle structure *I

*/
*/

DWORD dwStyle; /* window styles
BOOLJMenu; /*menu-present flag

Parameters

The AdjustWindowRect function computes the required size of the window
rectangle based on the desired client-rectangle size. The window rectangle can
then be passed to the Create Window function to create a window whose client
area is the desired size.

lprc
Points to a RECT structure that contains the coordinates of the client rectangle.
The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

dwStyle
Specifies the window styles of the window whose client rectangle is to be con
verted.

fMenu
Specifies whether the window has a menu.

6 AdjustWindowRectEx

Return Value

Comments

See Also

This function does not return a value.

A client rectangle is the smallest rectangle that completely encloses a client area.
A window rectangle is the smallest rectangle that completely encloses the window.

AdjustWindowRect does not take titles and borders into account when comput
ing the size of the client area. For window styles that include titles and borders, ap
plications must add the title and border sizes after calling AdjustWindowRect.
This function also does not take the extra rows into account when a menu bar
wraps to two or more rows.

AdjustWindowRectEx, CreateWindowEx

AdjustWindowRectEx
void AdjustWindowRectEx(lprc, dwStyle,fMenu, dwExStyle)
RECT FAR* lprc; /* address of client-rectangle structure */

*/
*I
*I

DWORD dwStyle; /* window styles
BOOLfMenu; /*menu-present flag
DWORD dwExStyle; /*extended style

Parameters

The AdjustWindowRectEx function computes the required size of the rectangle
of a window with extended style based on the desired client-rectangle size. The
window rectangle can then be passed to the Create Window Ex function to create
a window whose client area is the desired size.

lprc
Points to a RECT structure that contains the coordinates of the client rectangle.
The RECT structure has the following form:

typedef struct tagRECT {
int left;.
int top;
int right;
int bottom;

} RECT;

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

dwStyle
Specifies the window styles of the window whose client rectangle is to be con
verted.

Return Value

Comments

See Also

AllocDiskSpace 7

fMenu
Specifies whether the window has a menu.

dwExStyle
Specifies the extended style of the window being created.

This function does not return a value.

A client rectangle is the smallest rectangle that completely encloses a client area.
A window rectangle is the smallest rectangle that completely encloses the window.

AdjustWindowRectEx does not take titles and borders into account when com
puting the size of the client area. For window styles that include titles and borders,
applications must add the title and border sizes after calling AdjustWindow
RectEx. This function also does not take the extra rows into account when a menu
bar wraps to two or more rows.

AdjustWindowRect, CreateWindowEx

AllocDiskSpace
#include <stress.h>

int AllocDiskSpace(!Left, uD rive)
long !Left; /* number of bytes left available */
UINT uDrive; I* disk partition */

Parameters

The AllocDiskSpace function creates a file that is large enough to ensure that the
specified amount of space or less is available on the specified disk partition. The
file, called STRESS.EAT, is created in the root directory of the disk partition.

If STRESS.EAT already exists when AllocDiskSpace is called, the function de
letes it and creates a new one.

!Left
Specifies the number of bytes to leave available on the disk.

uDrive
Specifies the disk partition on which to create the STRESS.EAT file. This
parameter must be one of the following values:

8 AllocDStoCSAlias

Return Value

Comments

See Also

Value

EDS_ WIN

EDS_CUR

EDS_TEMP

Meaning

Creates the file on the Windows partition.

Creates the file on the current partition.

Creates the file on the partition that contains the TEMP directory.

The return value is greater than zero if the function is successful; it is zero if the
function could not create a file; or it is - I if at least one of the parameters is in
valid.

In two situations, the amount of free space left on the disk may be less than the
number of bytes specified in the /Left parameter: when the amount of free space
on the disk is less than the number in !Left when an application calls Alloc
DiskSpace, or when the value of !Left is not an exact multiple of the disk cluster
size.

The UnAllocDiskSpace function deletes the file created by AllocDiskSpace.

UnAllocDiskSpace

AllocDStoCSAlias
UINT AllocDStoCSAlias(uSelector)
UINT uSelector; /* data-segment selector */

Parameters

Return Value

Comments

The AllocDStoCSAlias function accepts a data-segment selector and returns a
code-segment selector that can be used to execute code in the data segment.

uSelector
Specifies the data-segment selector.

The return value is the code-segment selector corresponding to the data-segment
selector if the function is successful. Otherwise, it is zero.

The application should not free the new selector by calling the FreeSelector func
tion. Windows will free the selector when the application terminates.

In protected mode, attempting to execute code directly in a data segment will
cause a general-protection violation. AllocDStoCSAlias allows an application to
execute code that the application had created in its own stack segment.

See Also

AllocFileHandles 9

Windows does not track segment movements. Consequently, the data segment
must be fixed and nondiscardable; otherwise, the data segment might move, invali
dating the code-segment selector.

The PrestoChangoSelector function provides another method of obtaining a code
selector corresponding to a data selector.

An application should not use this function unless it is absolutely necessary, since
its use violates preferred Windows programming practices.

FreeSelector, PrestoChangoSelector

AllocfileHandles
#include <stress.h>

int AllocFileHandles(Left)
int Left; /*number of file handles to leave available */

Parameters

Return Value

Comments

See Also

The AllocFileHandles function allocates file handles until only the specified num
ber of file handles is available to the current instance of the application. If this or a
smaller number of handles is available when an application calls AllocFile
Handles, the function returns immediately.

Before allocating new handles, this function frees any handles previously allocates
by AllocFileHandles.

Left
Specifies the number of file handles to leave available.

The return value is greater than zero if AllocFileHandles successfully allocates at
least one file handle. The return value is zero if fewer than the specified number of
file handles were available when the application called AllocFileHandles. The re
turn value is -1 if the Left parameter is negative.

AllocFileHandles will not allocate more than 256 file handles, regardless of the
number available to the application.

The UnAllocFileHandles function frees all file handles previously allocated by
AllocFileHandles.

UnAllocFileHandles

10 AllocGDIMem

AllocGDIMem
#include <stress.h>

BOOL AllocGDIMem(uLeft)
UINT uLeft; I* number of bytes to leave available */

Parameters

Return Value

Comments

See Also

AllocMem
#include <stress.h>

The AllocGDIMem function allocates memory in the graphics device interface
(GDI) heap until only the specified number of bytes is available. Before making
any new memory allocations, this function frees memory previously allocated by
AllocGDIMem.

uLeft
Specifies the amount of memory, in bytes, to leave available in the GDI heap.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The FreeAIIGDIMem function frees all memory allocated by AllocGDIMem.

FreeAIIGDIMem

BOOL AllocMem(dwLeft)
DWORD dwLeft; /*smallest memory allocation */

Parameters

Return Value

Comments

See Also

The AllocMem function allocates global memory until only the specified number
of bytes is available in the global heap. Before making any new memory alloca
tions, this function frees memory previously allocated by AllocMem.

dwLeft
Specifies the smallest size, in bytes, of memory allocations to make.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The FreeAllMem function frees all memory allocated by AllocMem.

FreeAIIMem

AllocSelector 11

AllocResource lliJ
HG LO BAL AllocResource(hinst, hrsrc, cbResource)
HINSTANCE hinst; /* handle of module containing resource */
HRSRC hrsrc; /* handle of resource */
DWORD cbResource; I* size to allocate, or zero */

The AllocResource function allocates uninitialized memory for the given resource.

Parameters hinst

Return Value

See Also

Identifies the instance of the module whose executable file contains the re
source.

hrs re
Identifies the desired resource. This handle should have been created by using
the FindResource function.

ch Resource
Specifies the size, in bytes, of the memory object to allocate for the resource. If
this parameter is zero, Windows allocates enough memory for the specified re
source.

The return value is the handle of the global memory object if the function is
successful.

FindResource, LoadResource

AllocSelector
UINT AllocSelector(uSelector)
UINT uSelector; /* selector to copy or zero */

Parameters

The AllocSelector function allocates a new selector.

Do not use this function in an application unless it is absolutely necessary, since
its use violates preferred Windows programming practices.

uSelector
Specifies the selector to return. If this parameter specifies a valid selector, the
function returns a new selector that is an exact copy of the one specified here. If
this parameter is zero, the function returns a new, uninitialized sector.

12 AllocUserMem

Return Value

Comments

See Also

The return value is a selector that is either a copy of an existing selector, or a new,
uninitialized selector. Otherwise, the return value is zero.

The application must free the new selector by calling the FreeSelector function.

An application can call AllocSelector to allocate a selector that it can pass to the
PrestoChangoSelector function.

PrestoChangoSelector

AllocUserMem
#include <stress.h>

BOOL AllocUserMem(uContig)
UINT uContig; /* smallest memory allocation */

The AllocUserMem function allocates memory in the USER heap until only the
specified number of bytes is available. Before making any new allocations, this
function frees memory previously allocated by AllocUserMem.

Parameters uContig
Specifies the smallest size, in bytes, of memory allocations to make.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments The FreeAllUserMem function frees all memory allocated by AllocUserMem.

See Also FreeAllUserMem

Animate Palette
void AnimatePalette(hpal, iStart, cEntries, lppe)
HPALETTE hpal; /* handle of palette
UINT iStart; /* first palette entry to animate
UINT cEntries; I* number of entries in palette
const PALETTEENTRY FAR* lppe; I* address of color structure

*I
*/
*/
*/

Parameters

Return Value

Comments

Example

Animate Palette 13

The AnimatePalette function replaces entries in the specified logical palette. An
application does not have to update the client area when it calls AnimatePalette,
because Windows maps the new entries into the system palette immediately.

hp al
Identifies the logical palette.

iStart
Specifies the first entry in the palette to be animated.

cEntries
Specifies the number of entries in the palette to be animated.

lppe
Points to the first member of an array of PALETTEENTRY structures. These
palette entries will replace the palette entries identified by the iStart and
cEntries parameters. The PALETTEENTRY structure has the following form:

typedef struct tagPALETTEENTRY
BYTE peRed;
BYTE peGreen;
BYTE peBlue;
BYTE peFl ags;

PALETTEENTRY;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

This function does not return a value.

The AnimatePalette function can change an entry in a logical palette only when
the PC_RESERVED flag is set in the corresponding palPaletteEntry member of
the LOGPALETTE structure that defines the current logical palette.

The following example initializes a LOGPALETTE structure and an array of
PALETTEENTRY structures, uses the CreatePalette function to retrieve a
handle of a logical palette, and then uses the AnimatePalette function to map the
entries into the system palette:

#define NUMENTRIES 128
HPALETTE hpal;
PALETTEENTRY ape[NUMENTRIES];

plgpl = (LOGPALETTE*) LocalAlloc(LPTR,
sizeof(LOGPALETTE) + cColors * sizeof(PALETTEENTRY));

plgpl->palNumEntries = cColors;
plgpl->palVersion = 0x300;

14 Ansilower

See Also

Ansilower

for (i = 0, red= 0, green= 127, blue= 127; i < NUMENTRIES;
i++, red+= 1, green+= 1, blue+= 1) {

}

ape[iJ.peRed =
plgpl->palPalEntry[i].peRed = LOBYTE(red);

ape[i].peGreen =
plgpl->palPalEntry[i].peGreen = LOBYTE(green);

ape[i].peBlue =
plgpl->palPalEntry[iJ.peBlue = LOBYTE(blue);

ape[iJ.peFlags =
plgpl->palPalEntry[i].peFlags = PC_RESERVED;

hpal = CreatePalette(plgpl);
Lo ca lFree ((H LOCAL) pl gp l l;
AnimatePalette(hpal, 0, NUMENTRIES, (PALETTEENTRY FAR*) &ape);

CreatePalette

LPSTR AnsiLower(lpsz)
LPSTR lpsz; I* address of string, or specific character */

Parameters

Return Value

Comments

Example

The AnsiLower function converts a character string to lowercase.

lpsz
Points to a null-terminated string or specifies a single character. If the high
order word of this parameter is zero, the low-order byte of the low-order word
must contain a single character to be converted.

The return value points to a converted character string if the function is successful.
Otherwise, the return value is a 32-bit value that contains the converted character
in the low-order byte of the low-order word.

The conversion is made by the language driver for the current language (the one
selected by the user at setup or by using Control Panel). If no language driver has
been selected, Windows uses an internal function.

The following example uses the AnsiLower function to convert two strings to
lowercase for a non-case-sensitive comparison:

/*
* Convert the target string to lowercase, and then
* convert the subject string one character at a time.
*/

See Also

Ansilower(pszTarget);
while (*pszTarget != '\0')

if (*pszTarget != (char) (DWORD) Ansilower(
MAKELP(0, *pszSubject)))

return FALSE;
pszTarget = AnsiNext(pszTarget);
pszSubject = AnsiNextCpszSubject);

AnsiLowerBuff, AnsiNext, AnsiUpper

AnsilowerBuff 15

AnsilowerBuff
UINT AnsiLowerBuff(lpszString, cbString)
LPSTR lpszString; /* address of string to convert */

/ UINT cbString; / length of string

Parameters

Return Value

Comments

Example

The AnsiLowerBufffunction converts a character string in a buffer to lowercase.

lpszString
Points to a buffer containing one or more characters.

ch String
Specifies the number of bytes in the buffer identified by the lpszString parame
ter. If cbString is zero, the length is 64K (65,536).

The return value specifies the length of the converted string if the function is
successful. Otherwise, it is zero.

The language driver makes the conversion for the current language (the one
selected by the user at setup or by using Control Panel). If no language driver has
been selected, Windows uses an internal function.

The following example uses the AnsiLowerBuff function to convert two strings
to lowercase for a non-case-sensitive comparison:

AnsilowerBuff(pszSubject, CUINT) lstrlen(pszSubject));
AnsilowerBuff(pszTarget, CUINT) lstrlen(pszTarget));

16 AnsiNext

See Also

AnsiNext

while (*pszTarget != '\0') {

}

if (*pszTarget != *pszSubject)
return FALSE;

pszTarget = AnsiNext(pszTarget);
pszSubject = AnsiNextCpszSubject);

AnsiLower, AnsiUpper

LPSTR AnsiNext(lpchCurrentChar)
LPCSTR lpchCurrentChar; I* address of current character */

Parameters

Return Value

Comments

Example

See Also

The AnsiNext function moves to the next character in a string.

lpchCurrentChar
Points to a character in a null-terminated string.

The return value points to the next character in the string or to the null character at
the end of the string, if the function is successful.

The AnsiNext function can be used to move through strings where each character
is a single byte, or through strings where each character is two or more bytes (such
as strings that contain characters from a Japanese character set).

The following example uses the AnsiNext function to step through the characters
in a filename:

f* Find the last backslash. */

for ClpszFile = lpszTemp; *lpszTemp != '\0';
lpszTemp = AnsiNext(lpszTemp)) {

if (*lpszTemp == '\\')
lpszFile = AnsiNext(lpszTemp);

AnsiPrev

AnsiPrev 17

AnsiPrev ~

LPSTR AnsiPrev(lpchStart, lpchCurrentChar)
LPCSTR lpchStart; /*address of first character */
LPCSTR lpchCurrentChar; /*address of current character */

Parameters

Return Value

Comments

Example

See Also

The AnsiPrev function moves to the previous character in a string.

lpchStart
Points to the beginning of the string.

lpchCurrentChar
Points to a character in a null-terminated string.

The return value points to the previous character in the string, or to the first char
acter in the string if the lpchCurrentChar parameter is equal to the lpchStart
parameter.

The AnsiPrev function can be used to move through strings where each character
is a single byte, or through strings where each character is two or more bytes (such
as strings that contain characters from a Japanese character set).

This function can be very slow, because the string must be scanned from the begin
ning to determine the previous character. Wherever possible, the AnsiNext func
tion should be used instead of this function.

The following example uses the AnsiNext and AnsiPrev functions to change
every occurrence of the characters '\&' in a string to a single newline character:

/* Find ampersands. */

for (lpsz = lpszTest; *lpsz != '\0'; lpsz AnsiNext(lpsz)) {

I* Check the previous character. */

if (*lpsz == '&' &&
*(lpsz2 = AnsiPrev(lpszTest, lpsz))

lstrcpy(lpsz2, lpsz);
*lpsz2 = '\n';

AnsiNext

'\\') {

18 AnsiToOem

AnsiToOem
void AnsiToOem(hpsz Windows, hpszOem)
const char _huge* hpszWindows; /*address of string to translate */

/ char _huge hpszOem; /* address of buffer for string

Parameters

Return Value

Comments

Example

The AnsiToOem function translates a string from the Windows character set into
the specified OEM character set.

hpsz Windows
Points to a null-terminated string of characters from the Windows character set.

hpszOem
Points to the location where the translated string is to be copied. To translate the
string in place, this parameter can be the same as hpszWindows.

This function does not return a value.

The string to be translated can be greater than 64K in length.

Windows-to-OEM mappings are defined by the keyboard driver, where this func
tion is implemented. Some keyboard drivers may have different mappings than
others, depending on the machine environment, and some keyboard driver support
loading different OEM character sets; for example, the standard U.S. keyboard
driver for an IBM keyboard supports loadable code pages, with the default being
code page 437 and the most common alternative being code page 850. (The Win
dows character set is sometimes referred to as code page 1007.)

The OEM character set must always be used when accessing string data created by
MS-DOS or MS-DOS applications. For example, a word processor should convert
OEM characters to Windows characters when importing documents from an
MS-DOS word processor. When an application makes an MS-DOS call, including
a C run-time function call, filenames must be in the OEM character set, whereas
they must be presented to the user in Windows characters (because the Windows
fonts use Windows characters).

The following example is part of a dialog box in which a user would create a
directory by typing a name in an edit control:

case IDOK:
GetWindowTextCGetDlgltem(hwndDlg, ID_EDITDIRNAME), szDirName,

sizeof(szDirName));
AnsiToOem(szDirName, szDirName);
mkdir(szDirName);
EndDialog(hwndDlg, 1);
return TRUE;

AnsiUpper 19

See Also AnsiToOemBuff, OemToAnsi

AnsiToOemBuff
void AnsiToOemBuff(lpszWindowsStr, lpszOemStr, cbWindowsStr)
LPCSTR lpsz WindowsStr; /* address of string to translate *I

*/
*/

LPSTR lpszOemStr; /* address of buffer for translated string
UINT cbWindowsStr; /*length of string to translate

Parameters

Return Value

See Also

AnsiUpper

The AnsiToOemBufffunction translates a string from the Windows character set
into the specified OEM character set.

lpszWindowsStr
Points to a buffer containing one or more characters from the Windows charac
ter set.

lpszOemStr
Points to the location where the translated string is to be copied. To translate the
string in place, this parameter can be the same as lpszWindowsStr.

cb WindowsStr
Specifies the number of bytes in the buffer identified by the lpsz WindowsStr pa
rameter. If cbWindowsStris zero, the length is 64K (65,536).

This function does not return a value.

AnsiToOem, OemToAnsi

LPSTR AnsiUpper(/pszString)
LPSTR lpszString; I* address of string, or specific character */

Parameters

The AnsiUpper function converts the given character string to uppercase.

lpszString
Points to a null-terminated string or specifies a single character. If the high
order word of this parameter is zero, the low-order byte of the low-order word
must contain a single character to be converted.

20 AnsiUpperBuff

Return Value

Comments

Example

See Also

The return value points to a converted character string if the function parameter is
a character string. Otherwise, the return value is a 32-bit value that contains the
converted character in the low-order byte of the low-order word.

The language driver makes the conversion for the current language (the one
selected by the user at setup or by using Control Panel). If no language driver is
selected, Windows uses an internal function.

The following example uses the AnsiUpper function to convert two strings to up
percase for a non-case-sensitive comparison:

/*
* Convert the target string to uppercase, and then
* convert the subject string one character at a time.
*/

AnsiUpper(pszTarget);
while (*pszTarget != '\0') {

}

if (*pszTarget != (char) (DWORD) AnsiUpper(
MAKELP(0, *pszSubject)))

return FALSE;
pszTarget = AnsiNext(pszTarget);
pszSubject = AnsiNext(pszSubject);

AnsiLower, AnsiUpperBuff

AnsiUpperBuff
UINT AnsiVpperBuff(lpszString, cbString)
LPSTR lpszString; /* address of string to convert */

/ UINT cbString; I length of string

Parameters

The AnsiUpperBuff function converts a character string in a buffer to uppercase.

lpszString
Points to a buffer containing one or more characters.

cbString
Specifies the number of bytes in the buffer identified by the lpszString parame
ter. If cbString is zero, the length is 64K (65,536).

Return Value

Comments

Example

See Also

AnyPopup

AnyPopup 21

The return value specifies the length of the converted string if the function is
successful.

The language driver makes the conversion for the current language (the one
selected by the user at setup or by using Control Panel). If no language driver is
selected, Windows uses an internal function.

The following example uses the AnsiUpperBuff function to convert two strings to
lowercase for a non-case-sensitive comparison:

/*
* Convert both the subject and target strings to uppercase before
* comparing.
*/

AnsiUpperBuff(pszSubject, (UINT) lstrlen(pszSubject));
AnsiUpperBuff(pszTarget, (UINT) lstrlen(pszTarget));

while (*pSzTarget != '\0') {
if (*pszTarget != *pszSubject)

return FALSE;
pszTarget = AnsiNext(pszTarget);
pszSubject = AnsiNext(pszSubject);

AnsiLower, AnsiUpper

BOOL AnyPopup(void)

Parameters

Return Value

The AnyPopup function indicates whether an unowned, visible, top-level pop-up,
or overlapped window exists on the screen. The function searches the entire Win
dows screen, not just the caller's client area.

This function has no parameters.

The return value is nonzero if a pop-up window exists, even if the pop-up window
is completely covered by other windows. The return value is zero if no pop-up
window exists.

22 Append Menu

Comments

See Also

AnyPopup is a Windows l.x function and remains for compatibility reasons. It is
generally not useful.

This function does not detect unowned pop-up windows or windows that do not
have the WS_ VISIBLE style bit set.

GetLastActivePopup, ShowOwnedPopups

Append Menu
BOOL AppendMenu(hmenu,fuFlags, idNewltem, lpNewltem)
HMENU hmenu; /*handle of menu */
UINT fuFlags; /*menu-item flags */
UINT idNewltem; I* menu-item identifier */
LPCSTR lpNewltem; /*specifies menu-item content */

Parameters

The AppendMenu function appends a new item to the end of a menu. The appli
cation can specify the state of the menu item by setting values in the fuFlags
parameter.

hmenu
Identifies the menu to be changed.

fuFlags
Specifies information about the state of the new menu item when it is added to
the menu. This parameter consists of one or more of the values listed in the fol
lowing Comments section.

idNewltem
Specifies either the command identifier of the new menu item or, if the fuFlags
parameter is set to MF _POPUP, the menu handle of the pop-up menu.

lpNewltem
Specifies the content of the new menu item. The interpretation of the
lpNewltem parameter depends on the value of the fuFlags parameter.

Value

MF_STRING

MF_BITMAP

Menu-item content

Contains a long pointer to a null-terminated string.

Contains a bitmap handle in its low-order word.

Return Value

Comments

Value

MF_OWNERDRAW

Append Menu 23

Menu-item content

Contains an application-supplied 32-bit value that the ap
plication can use to maintain additional data associated
with the menu item. An application can find this value in
the itemData member of the structure pointed to by the
!Param parameter of the WM_MEASUREITEM and
WM_DRAWITEM messages that are sent when the menu
item is changed or initially displayed.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Whenever a menu changes (whether or not the menu is in a window that is dis
played), the application should call the DrawMenuBar function.

Each of the following groups lists flags that are mutually exclusive and cannot be
used together:

• MF _DISABLED, MF _ENABLED, and MF _GRAYED

• MF _BITMAP, MF _STRING, and MF _OWNERDRA W

• MF _MENUBARBREAK and MF _MENUBREAK

• MF _CHECKED and MF _UNCHECKED

Following are the flags that can be set in the fuFlags parameter:

Value

MF_BITMAP

MF_CHECKED

MF _DISABLED

MF_ENABLED

MF_GRAYED

MF _MENUBARBREAK

MF _MENUBREAK

Meaning

Uses a bitmap as the item. The low-order word of the
lpNewltem parameter contains the handle of the bitmap.

Places a check mark next to the item. If the application
has supplied check mark bitmaps (see the SetMenultem
Bitmaps function), setting this flag displays the "check
mark on" bitmap next to the menu item.

Disables the menu item so that it cannot be selected, but
does not gray it.

Enables the menu item so that it can be selected, and re
stores it from its grayed state.

Disables the menu item so that it cannot be selected, and
grays it.

Same as MF _MENUBREAK except that, for pop-up
menus, separates the new column from the old column
with a vertical line.

Places the item on a new line for static menu-bar items.
For pop-up menus, places the item in a new column,
with no dividing line between the columns.

24 Append Menu

Example

See Also

Value

MF_OWNERDRAW

MF_POPUP

MF _SEPARATOR

MF_STRING

MF _UNCHECKED

Meaning

Specifies that the item is an owner-drawn item. The win
dow that owns the menu receives a
WM_MEASUREITEM message when the menu is dis
played for the first time to retrieve the height and width
of the menu item. The WM_DRA WITEM message is
then sent whenever the owner window must update the
visual appearance of the menu item. This option is not
valid for a top-level menu item.

Specifies that the menu item has a pop-up menu as
sociated with it. The idNewltem parameter specifies a
handle to a pop-up menu to be associated with the item.
This is used for adding either a top-level pop-up menu or
adding a hierarchical pop-up menu to a pop-up menu
item.

Draws a horizontal dividing line. Can be used only in a
pop-up menu. This line cannot be grayed, disabled, or
highlighted. The lpNewltem and idNewltem parameters
are ignored.

Specifies that the menu item is a character string; the
lpNewltem parameter points to the string for the menu
item.

Does not place a check mark next to the item (default). If
the application has supplied check mark bitmaps (see
SetMenultemBitmaps), setting this flag displays the
"check mark off' bitmap next to the menu item.

The following example uses the AppendMenu function to append three items to a
floating pop-up menu:

POINT ptCurrent;
HMENU hmenu;

ptCurrent = MAKEPOINT(lParam);
hmenu = CreatePopupMenu();
AppendMenu(hmenu, MF_ENABLED, IDM_ELLIPSE, "Ellipse");
AppendMenu(hmenu, MF_ENABLED, IDM_SQUARE, "Square");
AppendMenu(hmenu, MF_ENABLED, IDM_ TRIANGLE, "Triangle");
ClientToScreen(hwnd, &ptCurrent);
TrackPopupMenu(hmenu, TPM_LEFTALIGN, ptCurrent.x,

ptCurrent.y, 0, hwnd, NULL);

CreateMenu, DeleteMenu, DrawMenuBar, InsertMenu, RemoveMenu, Set
MenultemBitmaps

Arc 25

Arc CEJ
BOOL Arc(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect, nXStartArc, nYStartArc, nXEndArc,

nYEndArc)
HDC hdc;
int nLeftRect;
int nTopRect;
int nRightRect;
int nBottomRect;
int nXStartArc;
int nYStartArc;
int nXEndArc;
int nYEndArc;

/* handle of device context
/* x-coordinate upper-left comer bounding rectangle
/* y-coordinate upper-left comer bounding rectangle
/* x-coordinate lower-right comer bounding rectangle
/* y-coordinate lower-right comer bounding rectangle
/* x-coordinate arc starting point
/* y-coordinate arc starting point
/* x-coordinate arc ending point
/* y-coordinate arc ending point

The Arc function draws an elliptical arc.

*/
*I
*I
*/
*/
*/
*/
*/
*/

Parameters hdc
Identifies the device context.

nLeftRect
Specifies the logical x-coordinate of the upper-left comer of the bounding
rectangle.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the bounding
rectangle.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the bounding
rectangle.

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the bounding
rectangle.

nXStartArc
Specifies the logical x-coordinate of the point that defines the arc's starting
point. This point need not lie exactly on the arc.

nYStartArc
Specifies the logical y-coordinate of the point that defines the arc's starting
point. This point need not lie exactly on the arc.

nXEndArc
Specifies the logical x-coordinate of the point that defines the arc's endpoint.
This point need not lie exactly on the arc.

nYEndArc
Specifies the logical y-coordinate of the point that defines the arc's endpoint.
This point need not lie exactly on the arc.

26 ArrangelconicWindows

Return Value

Comments

Example

See Also

The return value is nonzero if the function is successful. Otherwise, it is zero.

The arc drawn by using the Arc function is a segment of the ellipse defined by the
specified bounding rectangle. The starting point of the arc is the point at which a
ray drawn from the center of the bounding rectangle through the specified starting
point intersects the ellipse. The end point of the arc is the point at which a ray
drawn from the center of the bounding rectangle through the specified end point in
tersects the ellipse. The arc is drawn in a counterclockwise direction. Since an arc
is not a closed figure, it is not filled.

Both the width and the height of a rectangle must be greater than 2 units and less
than 32,767 units.

The following example uses a RECT structure to store the points defining the
bounding rectangle and uses POINT structures to store the coordinates that
specify the beginning and end of the arc:

HDC hde;

RECT re= { 10, 10, 180, 140 };
POINT ptStart = { 12, 12 };
POINT ptEnd = { 128, 135 };

Are(hde, re.left, re.top, re.right, re.bottom,
ptStart.x, ptStart.y, ptEnd.x, ptEnd.y);

Chord

ArrangelconicWindows
UINT Arrangelconic Windows(hwnd)
HWND hwnd; /* handle of parent window */

The ArrangelconicWindows function arranges all the minimized (iconic) child
windows of a parent window.

Parameters hwnd

Return Value

Identifies the parent window.

The return value is the height of one row of icons if the function is successful.
Otherwise, it is zero.

Comments

See Also

BeginDeferWindowPos 27

An application that maintains its own minimized child windows can call Arrange
IconicWindows to arrange icons in a client window. This function also arranges
icons on the desktop window, which covers the entire screen. The GetDesktop
Window function retrieves the window handle of the desktop window.

An application sends the WM_MDIICONARRANGE message to the MDI client
window to prompt the client window to arrange its minimized MDI child windows.

GetDesktop Window

BeginDeferWindowPos ~

HDWP BeginDeferWindowPos(c Windows)
int cWindows; /*number of windows */

Parameters

Return Value

Comments

See Also

The BeginDeferWindowPos function returns a handle of an internal structure.
The DeferWindowPos function fills this structure with information about the tar
get position for a window that is about to be moved. The EndDeferWindowPos
function accepts a handle of this structure and instantaneously repositions the win
dows by using the information stored in the structure.

cWindows
Specifies the initial number of windows for which to store position information
in the structure. The DeferWindowPos function increases the size of the struc
ture if necessary.

The return value identifies the internal structure if the function is successful. Other
wise, it is NULL.

If Windows must increase the size of the internal structure beyond the initial size
specified by the cWindows parameter but cannot allocate enough memory to do so,
Windows fails the entire begin/defer/end window-positioning sequence. By speci
fying the maximum size needed, an application can detect and handle failure early
in the process.

DeferWindowPos, EndDeferWindowPos

28 BeginPaint

BeginPaint
HDC BeginPaint(hwnd, lpps)
HWNDhwnd;
PAINTSTRUCT FAR* lpps;

I* handle of window to paint
I* address of structure with paint information

*I
*I

The BeginPaint function prepares the specified window for painting and fills a
PAINTSTRUCT structure with information about the painting.

Parameters hwnd

Return Value

Comments

Identifies the window to be repainted.

lpps
Points to the PAINTSTRUCT structure that will receive the painting informa
tion. The PAINTSTRUCT structure has the following form:

typedef struct tagPAINTSTRUCT
HOC hdc;
BDDL fErase;
RECT rcPaint;
BDDL fRestore;
BDDL flncUpdate;
BYTE rgbReserved[l6];

PAINTSTRUCT;

f* ps */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the handle of the device context for the given window if the
function is successful.

The BeginPaint function automatically sets the clipping region of the device con
text to exclude any area outside the update region. The update region is set by the
InvalidateRect or InvalidateRgn function and by the system after sizing,
moving, creating, scrolling, or any other operation that affects the client
area. If the update region is marked for erasing, BeginPaint sends a
WM_ERASEBKGND message to the window.

An application should not call BeginPaint except in response to a WM_P AINT
message. Each call to the BeginPaint function must have a corresponding call to
the EndPaint function.

If the caret is in the area to be painted, BeginPaint automatically hides the caret to
prevent it from being erased.

If the window's class has a background brush, BeginPaint will use that brush to
erase the background of the update region before returning.

Example

See Also

BitBlt

BitBlt 29

The following example calls an application-defined function to paint a bar graph
in a window's client area during the WM_PAINT message:

PAINTSTRUCT ps;

case WM_PAINT:
BeginPaint(hwnd, &ps);

EndPaint(hwnd, &ps);
break;

EndPaint, InvalidateRect, InvalidateRgn, ValidateRect, V alidateRgn

BOOL BitBlt(hdcDest, nXDest, nYDest, nWidth, nHeight, hdcSrc, nXSrc, nYSrc, dwRop)
HDC hdcDest; I* handle of destination device context */
int nXDest; I* upper-left comer destination rectangle */
int nYDest; I* upper-left comer destination rectangle */
int n Width; I* bitmap width */
int nHeight; I* bitmap height */
HDC hdcSrc; I* handle of source device context */
int nXSrc; I* upper-left comer source bitmap */
int nYSrc; I* upper-left comer source bitmap */
DWORD dwRop; I* raster operation for copy */

Parameters

The BitBlt function copies a bitmap from a specified device context to a destina
tion device context.

hdcDest
Identifies the destination device context.

nXDest
Specifies the logical x-coordinate of the upper-left comer of the destination
rectangle.

nYDest
Specifies the logical y-coordinate of the upper-left comer of the destination
rectangle.

nWidth
Specifies the width, in logical units, of the destination rectangle and source bit
map.

30 BitBll

nHeight
Specifies the height, in logical units, of the destination rectangle and source bit
map.

hdcSrc
Identifies the device context from which the bitmap will be copied. This
parameter must be NULL if the dwRop parameter specifies a raster operation
that does not include a source. This parameter can specify a memory device
context.

nXSrc
Specifies the logical x-coordinate of the upper-left corner of the source bitmap.

nYSrc
Specifies the logical y-coordinate of the upper-left corner of the source bitmap.

dwRop
Specifies the raster operation to be performed. Raster operation codes define
how the graphics device interface (GDI) combines colors in output operations
that involve a current brush, a possible source bitmap, and a destination bitmap.
This parameter can be one of the following:

Code

BLACKNESS

DSTINVERT

MERGECOPY

MERGEPAINT

NOTSRCCOPY

NOTSRCERASE

PATCOPY

PATINVERT

PATPAINT

SRCAND

SRCCOPY

SRCERASE

SRCINVERT

Description

Tums all output black.

Inverts the destination bitmap.

Combines the pattern and the source bitmap by using the
Boolean AND operator.

Combines the inverted source bitmap with the destination bit
map by using the Boolean OR operator.

Copies the inverted source bitmap to the destination.

Inverts the result of combining the destination and source bit
maps by using the Boolean OR operator.

Copies the pattern to the destination bitmap.

Combines the destination bitmap with the pattern by using the
Boolean XOR operator.

Combines the inverted source bitmap with the pattern by
using the Boolean OR operator. Combines the result of this
operation with the destination bitmap by using the Boolean
OR operator.

Combines pixels of the destination and source bitmaps by
using the Boolean AND operator.

Copies the source bitmap to the destination bitmap.

Inverts the destination bitmap and combines the result with
the source bitmap by using the Boolean AND operator.

Combines pixels of the destination and source bitmaps by
using the Boolean XOR operator.

Return Value

Comments

Example

Code

SRCPAINT

WHITENESS

BitBlt 31

Description

Combines pixels of the destination and source bitmaps by
using the Boolean OR operator.

Turns all output white.

The return value is nonzero if the function is successful. Otherwise, it is zero.

An application that uses the BitBlt function to copy pixels from one window to
another window or from a source rectangle in a window into a target rectangle in
the same window should set the CS_BYTEALIGNWINDOW or
CS_BYTEALIGNCLIENT flag when registering the window classes. By aligning
the windows or client areas on byte boundaries, the application can ensure that the
BitBlt operations occur on byte-aligned rectangles. BitBlt operations on byte
aligned rectangles are considerably faster than BitBlt operations on rectangles that
are not byte-aligned.

GDI transforms then Width and nHeight parameters, once by using the destination
device context, and once by using the source device context. If the resulting ex
tents do not match, GDI uses the StretchBlt function to compress or stretch the
source bitmap as necessary. If destination, source, and pattern bitmaps do not have
the same color format, the BitBlt function converts the source and pattern bitmaps
to match the destination. The foreground and background colors of the destination
bitmap are used in the conversion.

When the BitBlt function converts a monochrome bitmap to color, it sets white
bits (1) to the background color and black bits (0) to the foreground color. The
foreground and background colors of the destination device context are used. To
convert color to monochrome, BitBlt sets pixels that match the background color
to white and sets all other pixels to black. BitBlt uses the foreground and back
ground colors of the source (color) device context to convert from color to mono
chrome.

The foreground color is the current text color for the specified device context, and
the background color is the current background color for the specified device con
text.

Not all devices support the BitBlt function. An application can determine whether
a device supports BitBlt by calling the GetDeviceCaps function and specifying
the RASTERCAPS index.

For a complete list of the raster-operation codes, see the Microsoft Windows Pro
grammer's Reference, Volume 4.

The following example loads a bitmap, retrieves its dimensions, and displays it in
a window:

32 BringWindowToTop

See Also

HOC hdc, hdcMemory;
HBITMAP hbmpMyBitmap, hbmpOld;
BITMAP bm;

hbmpMyBitmap = LoadBitmap(hinst, "MyBitmap"l;
GetObject(hbmpMyBitmap, sizeofCBITMAPl, &bml;

hdc = GetDCChwnd);
hdcMemory = CreateCompatibleDCChdc);
hbmpOld = SelectObjectChdcMemory, hbmpMyBitmap);

BitBlt(hdc, 0, 0, bm.bmWidth, bm.bmHeight, hdcMemory, 0, 0, SRCCOPY);
SelectObject(hdcMemory, hbmpOld);

DeleteDCChdcMemory);
ReleaseDCChwnd, hdc);

GetDeviceCaps, PatBlt, SetTextColor, StretchBlt, StretchDIBits

BringWindowToTop
BOOL BringWindowToTop(hwnd)
HWND hwnd; /* handle of window */

The BringWindowToTop function brings the given pop-up or child window
(including an MDI child window) to the top of a stack of overlapping windows.
In addition, it activates pop-up, top-level, and MDI child windows. The Bring
WindowToTop function should be used to uncover any window that is partially
or completely obscured by any overlapping windows.

Parameters hwnd

Return Value

Comments

See Also

Identifies the pop-up or child window to bring to the top.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Calling this function is similar to calling the SetWindowPos function to change a
window's position in the Z-order. The BringWindowToTop function does not
make a window a top-level window.

Set WindowPos

BuildCommDCB 33

BuildCommDCB lliJ
int BuildCommDCB(lpszDef, lpdcb)
LPCSTR lpszDef; /* address of device-control string */
DCB FAR* lpdcb; !*address of device-control block */

Parameters

The BuildCommDCB function translates a device-definition string into appro
priate serial device control block (DCB) codes.

lpszDef
Points to a null-terminated string that specifies device-control information. The
string must have the same form as the parameters used in the MS-DOS mode
command.

lpdcb
Points to a DCB structure that will receive the translated string. The structure
defines the control settings for the serial-communications device. The DCB
structure has the following form:

typedef struct tagDCB
{

BYTE Id;
UINT BaudRate;
BYTE ByteSize;
BYTE Parity;
BYTE StopBits;
UINT RlsTimeout;
UINT CtsTimeout;
UINT DsrTimeout;

UINT fBinary
UINT fRtsDi sable
UINT fParity
UINT fOutxCtsFlow
UINT fOutxDsrFlow
UINT fDummy
UINT fDtrDisable

UINT fOutX
UINT finX ,
UINT fPeChar
UINT fNull
UINT fChEvt
UINT fDtrfl ow
UINT fRtsflow

/* deb

/* internal device identifier
/* baud rate
/* number of bits/byte, 4-8
/* 0-4=none,odd,even,mark,space
/* 0,1,2 = 1, 1.5, 2
/* timeout for RLSD to be set
/* timeout for CTS to be set
/* timeout for DSR to be set

:1; /* binary mode (skip EDF check) */
:1; /* don't assert RTS at init time */
:1; /* enable parity checking */
:1; /* CTS handshaking on output */
:l; /* DSR handshaking on output */
:2; /* reserved */
:1; /* don't assert DTR at init time */

:1; /* enable output XON/XOFF */
:1; /* enable input XON/XOFF */
:l; /* enable parity err replacement */
:1; /*enable null stripping */
:l; /* enable Rx character event */
:l; /* DTR handshake on input */
:1; /* RTS handshake on input */

UINT fDummy2 :1;

34 BuildCommDCB

Return Value

Comments

Example

See Also

char XonChar; f* Tx and Rx XON character *f
char XoffChar; f* Tx and Rx XOFF character *f
UINT Xonlim; f* transmit XON threshold *f
UINT Xofflim; /* transmit XOFF threshold *f
char Pechar; f* parity error replacement char */
char EofChar; f* end of Input character *f
char EvtChar; f* received event character *f
UINT TxDelay; f* amount of time between chars *f

} DCB;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is zero if the function is successful. Otherwise, it is -1.

The BuildCommDCB function only fills the buffer. To apply the settings to a
port, an application should use the SetCommState function.

By default, BuildCommDCB specifies XON/XOFF and hardware flow control as
disabled. To enable flow control, an application should set the appropriate mem
bers in the DCB structure.

The following example uses the BuildCommDCB and SetCommState functions
to set up COMl to operate at 9600 baud, with no parity, 8 data bits, and 1 stop bit:

idComDev = OpenComm("COMl", 1024, 128);
if (idComDev < 0) {

ShowError(idComDev, "OpenComm");
return 0;

err= BuildCommDCBC"COM1:9600,n,8,l", &deb);
if (err < 0) {

ShowError(err, "BuildCommDCB");
return 0;

err= SetCommStateC&dcb);
if (err < 0) {

}

ShowError(err, "SetCommState");
return 0;

SetCommState

CallMsgFilter 35

CallMsgFilter Cfil
BOOL CallMsgFilter(lpmsg, nCorle)
MSG FAR* lpmsg; /* address of structure with message data */
int nCode; /*processing code */

Parameters

Return Value

Comments

See Also

The CallMsgFilter function passes the given message and code to the current mes
sage-filter function. The message-filter function is an application-specified func
tion that examines and modifies all messages. An application specifies the
function by using the SetWindowsHook function.

lpmsg
Points to an MSG structure that contains the message to be filtered. The MSG
structure has the following form:

typedef struct tagMSG
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

MSG;

/* msg */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

nCode
Specifies a code used by the filter function to determine how to process the mes
sage.

The return value specifies the state of message processing. It is zero if the message
should be processed or nonzero if the message should not be processed further.

The CallMsgFilter function is usually called by Windows to let applications ex
amine and control the flow of messages during internal processing in menus and
scroll bars or when moving or sizing a window.

Values given for the nCode parameter must not conflict with any of the MSGF _
and HC_ values passed by Windows to the message-filter function.

SetWindowsHook

36 CallNextHookEx

Ca II NextHookEx
LRESULT CallNextHookEx(hHook, nCode, wParam, lParam)
HHOOK hHook; /* handle of hook function */
int nCode; /*hook code */
WPARAM wParam; I* first message parameter */
LPARAM lParam; I* second message parameter */

The CallNextHookEx function passes the hook information to the next hook func
tion in the hook chain.

Parameters

Return Value

Comments

See Also

hHook
Identifies the current hook function.

nCode
Specifies the hook code to pass to the next hook function. A hook function uses
this code to determine how to process the message sent to the hook.

wParam
Specifies 16 bits of additional message-dependent information.

lParam
Specifies 32 bits of additional message-dependent information.

The return value specifies the result of the message processing and depends on the
value of the nCode parameter.

Calling the CallNextHookEx function is optional. An application can call this
function either before or after completing any processing in its own hook function.
If an application does not call CallNextHookEx, Windows will not call the hook
functions that were installed before the application's hook function was installed.

SetWindowsHookEx, UnhookWindowsHookEx

CallWindowProc
LRESULT CallWindowProc(wndprcPrev, hwnd, uMsg, wParam, lParam)
WNDPROC wndprcPrev; /* instance address of previous procedure
HWND hwnd; /* handle of window
UINT uMsg; /*message
WPARAM wParam; /* first message parameter
LPARAM lParam; /* second message parameter

*I
*I
*I
*/
*I

Parameters

Return Value

Comments

CallWndProc 37

The CallWindowProc function passes message information to the specified win
dow procedure.

wndprcPrev
Specifies the procedure-instance address of the previous window procedure.

hwnd
Identifies the window that will receive the message.

uMsg
Specifies the message.

wParam
Specifies 16 bits of additional message-dependent information.

lParam
Specifies 32 bits of additional message-dependent information.

The return value specifies the result of the message processing and depends on the
message sent.

The CallWindowProc function is used for window subclassing. Normally, all
windows with the same class share the same window procedure. A subclass is a
window or set of windows belonging to the same window class whose messages
are intercepted and processed by another window procedure (or procedures)
before being passed to the window procedure of that class.

The SetWindowLong function creates the subclass by changing the window pro
cedure associated with a particular window, causing Windows to call the new win
dow procedure instead of the previous one. Any messages not processed by the
new window procedure must be passed to the previous window procedure by
calling CallWindowProc. This allows you to create a chain of window proce
dures.

See Also SetWindowLong

CallWndProc ITIJ
LRESULT CALLBACK CallWndProc(code, wParam, lParam)
int code; /* process-message flag */
WPARAM wParam; !* current-task flag */
LPARAM lParam; /* address of structure with message data */

The CallWndProc function is a library-defined callback function that the system
calls whenever the SendMessage function is called. The system passes the

38 CallWndProc

Parameters

Return Value

Comments

See Also

message to the callback function before passing the message to the destination win
dow procedure.

code
Specifies whether the callback function should process the message or call the
CallNextHookEx function. If the code parameter is less than zero, the callback
function should pass the message to CallNextHookEx without further process
ing.

wParam
Specifies whether the message is sent by the current task. This parameter is non
zero if the message is sent; otherwise, it is NULL.

lParam
Points to a structure that contains details about the message. The following
shows the order, type, and description of each member of the structure:

Member

IP a ram

wParam

uMsg

hWnd

Description

Contains the lParam parameter of the message.

Contains the wParam parameter of the message.

Specifies the message.

Identifies the window that will receive the message.

The callback function should return zero.

The CallWndProc callback function can examine or modify the message as neces
sary. Once the function returns control to the system, the message, with any modi
fications, is passed on to the window procedure.

This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the
WR_ CALL WNDPROC filter type and the procedure-instance address of the call
back function in a call to the SetWindowsHookEx function.

CallWndProc is a placeholder for the library-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the library's
module-definition file.

CallNextHookEx, SendMessage, SetWindowsHookEx

Catch 39

Catch ~

int Catch(lpCatchBuj)
int FAR* lpCatchBuf; /* address of buffer for array *I

Parameters

Return Value

Comments

Example

The Catch function captures the current execution environment and copies it to a
buffer. The Throw function can use this buffer later to restore the execution en
vironment. The execution environment includes the state of all system registers
and the instruction counter.

lpCatchBuf
Points to a memory buffer large enough to contain a CATCHBUF array.

The Catch function returns immediately with a return value of zero. When the
Throw function is called, it returns again, this time with the return value specified
in the nErrorReturn parameter of the Throw function.

The Catch function is similar to the C run-time function setjmp.

The following example calls the Catch function to save the current execution
environment before calling a recursive sort function. The first return value
from Catch is zero. If the doSort function calls the Throw function, execution
will again return to the Catch function. This time, Catch will return the
ST ACKOVERFLOW error passed by the doSort function. The doSort function is
recursive-that is, it calls itself. It maintains a variable, wStackCheck, that is used
to check to see how much stack space has been used. If more then 3 K of the stack
has been used, doSort calls Throw to drop out of all the nested function calls back
into the function that called Catch.

#define STACKOVERFLOW 1

UINT uStackCheck;
CATCHBUF catchbuf;

int iReturn;
char szBuf[80];

if ((iReturn = Catch((int FAR*) catchbuf)) != 0) {

/* Error processing goes here. */

40 CBTProc

See Also

CBTProc

}

else {

}

uStackCheck = 0;
doSort(l, 100);

break;

/*initializes stack-usage count *I
I* calls sorting function *I

void doSort(int sleft, int sRight)
{

int slast;

/*
* Determine whether more than 3K of the stack has been
* used, and if so, call Throw to drop back into the
* original calling application.

* *The stack is incremented by the size of the two parameters,
* the two local variables, and the return value (2 for a near
*function call).
*/

uStackCheck += (sizeof(int) * 4) + 2;

if CuStackCheck > (3 * 1024))
Throw((int FAR*) catchbuf, STACKOVERFLQW);

/* A sorting algorithm goes here. */

doSort(sLeft, slast - 1);
uStackCheck -= 10;

Throw

/*note recursive call *I
/* updates stack-check variable */

LRESULT CALLBACK CBTProc(code, wParam, !Param)
int code; /* CBT hook code */
WPARAM wParam; /*depends on the code parameter */
LPARAM lParam; I* depends on the code parameter */

The CBTProc function is a library-defined callback function that the system calls
before activating, creating, destroying, minimizing, maximizing, moving, or sizing
a window; before completing a system command; before removing a mouse or

Parameters

CBTProc 41

keyboard event from the system message queue; before setting the input focus; or
before synchronizing with the system message queue.

The value returned by the callback function determines whether to allow or pre
vent one of these operations.

code
Specifies a computer-based-training (CBT) hook code that identifies the opera
tion about to be carried out, or a value less than zero if the callback function
should pass the code, wParam, and lParam parameters to the CallNextHookEx
function. The code parameter can be one of the following:

Code

HCBT_ACTIVATE

HCBT _CLICKSKIPPED

HCBT_CREATEWND

HCBT_DESTROYWND

HCBT_KEYSKIPPED

HCBT_MINMAX

Meaning

Indicates that the system is about to activate a win
dow.

Indicates that the system has removed a mouse mes
sage from the system message queue. A CBT applica
tion that must install a journaling playback filter in
response to the mouse message should do so when it
receives this hook code.

Indicates that a window is about to be created. The
system calls the callback function before sending the
WM_ CREATE or WM_NCCREATE message to the
window. If the callback function returns TRUE, the
system destroys the window-the Create Window
function returns NULL, but the WM_DESTROY mes
sage is not sent to the window. If the callback func
tion returns FALSE, the window is created normally.

At the time of the HCBT_CREATEWND notifica
tion, the window has been created, but its final size
and position may not have been determined, nor has
its parent window been established.

It is possible to send messages to the newly created
window, although the window has not yet received
WM_NCCREATE or WM_ CREATE messages.

It is possible to change the Z-order of the newly
created window by modifying the hwndlnsertAfter
member of the CBT_CREATEWND structure.

Indicates that a window is about to be destroyed.

Indicates that the system has removed a keyboard
message from the system message queue. A CBT ap
plication that must install a journaling playback filter
in response to the keyboard message should do so
when it receives this hook code.

Indicates that a window is about to be minimized or
maximized.

42 CBTProc

Return Value

Comments

Code

HCBT _MOVESIZE

HCBT_QS

HCBT_SETFOCUS

HCBT _SYSCOMMAND

wParam

Meaning

Indicates that a window is about to be moved or sized.

Indicates that the system has retrieved a
WM_QUEUESYNC message from the system mes
sage queue.

Indicates that a window is about to receive the input
focus.

Indicates that a system command is about to be car
ried out. This allows a CBT application to prevent
task switching by hot keys.

This parameter depends on the code parameter. See the following Comments
section for details.

lParam
This parameter depends on the code parameter. See the following Comments
section for details.

For operations corresponding to the following CBT hook codes, the callback func
tion should return zero to allow the operation, or 1 to prevent it:

HCBT_ACTIVATE
HCBT_CREATEWND
HCBT_DESTROYWND
HCBT_MINMAX
HCBT _MOVESIZE
HCBT_SYSCOMMAND

The return value is ignored for operations corresponding to the following CBT
hook codes:

HCBT _CLICKSKIPPED
HCBT _KEYSKIPPED
HCBT_QS

The callback function should not install a playback hook except in the situations
described in the preceding list of hook codes.

This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the WH_CBT filter
type and the procedure-instance address of the callback function in a call to the
Set WindowsHookEx function.

Constant

HCBT_ACTIVATE

CBTProc 43

CBTProc is a placeholder for the library-defined function name. The actual name
must be exported by including it in an EXPORTS statement in the library's
module-definition file.

The following table describes the wParam and lParam parameters for each
HCBT _constant.

wParam

Specifies the handle of the win
dow about to be activated.

lParam

Specifies a Jong pointer to a CBT
ACTIVATESTRUCT structure that con
tains the handle of the currently active
window and specifies whether the activation
is changing because of a mouse click.

HCB T _ CLICKSKIPPED Identifies the mouse message re
moved from the system mes
sage queue.

Specifies a long pointer to a MOUSE
HOOKSTRUCT structure that contains the
hit-test code and the handle of the window
for which the mouse message is intended.

HCBT_CREATEWND

HCBT _DESTROYWND

HCBT _KEYSKIPPED

HCBT_MINMAX

HCBT_MOVESIZE

HCBT_QS

HCBT _SETFOCUS

Specifies the handle of the new
window.

Specifies the handle of the win
dow about to be destroyed.

Identifies the virtual key code.

Specifies the handle of the win
dow being minimized or maxi
mized.

Specifies the handle of the win
dow to be moved or sized.

This parameter is undefined; it
should be set to 0.

Specifies the handle of the win
dow gaining the input focus.

For a list of hit-test codes, see the descrip
tion of the WM_NCHITTEST message.

Specifies a long pointer to a
CBT_CREATEWND data structure that
contains initialization parameters for the win
dow.

This parameter is undefined and should be
set to OL.

Specifies the repeat count, scan code, key
transition code, previous key state, and con
text code. For more information, see the
description of the WM_KEYUP or
WM_KEYDOWN message.

The low-order word specifies a show
window value (SW_) that specifies the
operation. For a list of show-window values,
see the description of the ShowWindow
function. The high-order word is undefined.

Specifies a long pointer to a RECT structure
that contains the coordinates of the window.

This parameter is undefined and should be
set to OL.

The low-order word specifies the handle of
the window losing the input focus. The high
order word is undefined.

44 ChangeClipboardChain

Constant wParam lParam

HCBT _SYSCOMMAND Specifies a system-command
value (SC_) that specifies the
system command. For more
information about system
command values, see the
description of the
WM_SYSCOMMAND
message.

If wParam is SC_HOTKEY, the low-order
word of !Param contains the handle of the
window that task switching will bring to the
foreground. IfwParam is not SC_HOTKEY
and a System-menu command is chosen
with the mouse, the low-order word of
!Param contains the x-coordinate of the cur
sor and the high-order word contains the
y-coordinate. If neither of these conditions is
true, !Param is undefined.

See Also CallNextHookEx, SetWindowsHookEx

ChangeClipboardChain
BOOL ChangeClipboardChain(hwnd, hwndNext)
HWND hwnd; /* handle of window to remove *I

I HWND hwndNext; I handle of next window

Parameters

Return Value

See Also

The ChangeClipboardChain function removes the window identified by the
hwnd parameter from the chain of clipboard viewers and makes the window iden
tified by the hwndNext parameter the descendant of the hwnd parameter's ancestor
in the chain.

hwnd
Identifies the window that is to be removed from the chain. The handle must
have been passed to the SetClipboardViewerfunction.

hwndNext
Identifies the window that follows hwnd in the clipboard-viewer chain (this is
the handle returned by the SetClipboardViewer function, unless the sequence
was changed in response to a WM_CHANGECBCHAIN message).

The return value is nonzero if the function is successful. Otherwise, it is zero.

SetClipboardViewer

CheckDlgButton 45

Change Menu lliJ

Example

See Also

The Microsoft Windows 3.1 Software Development Kit (SDK) has replaced this
function with five specialized functions, listed as follows:

Function Description

AppendMenu

DeleteMenu

InsertMenu

Modify Menu

RemoveMenu

Appends a menu item to the end of a menu.

Deletes a menu item from a menu, destroying the menu item.

Inserts a menu item into a menu.

Modifies a menu item in a menu.

Removes a menu item from a menu but does not destroy the menu
item.

Applications written for Windows versions earlier than 3.0 may continue to call
ChangeMenu as previously documented. Applications written for Windows 3.0
and 3.1 should call the new functions.

The following example shows a call to ChangeMenu and how it would be rewrit
ten to call AppendMenu:

ChangeMenu(hMenu,
0'
"&White",
IDM_PATTERNl,
MF_APPEND I MF_STRING I

AppendMenu(hMenu,
MF_STRING I MF_CHECKED,
IDM_PATTERNl,
"&White");

/* handle of menu
/* position parameter not used */
/* menu-item string */
/* menu-item identifier */

MF_CHECKED); /* flags */

/* handle of menu */
/* flags */
/* menu-item identifier */
/* menu-item string */

AppendMenu, DeleteMenu, InsertMenu, ModifyMenu, RemoveMenu

CheckDlgButton
void CheckDlgButton(hwndDlg, idButton, uCheck)
HWND hwndDlg; /*handle of dialog box
int idButton; /* button-control identifier
UINT uCheck; /* check state

*I
*/
*/

46 CheckMenultem

Parameters

Return Value

Comments

See Also

The CheckDlgButton function selects (places a check mark next to) or clears (re
moves a check mark from) a button control, or it changes the state of a three-state
button.

hwndDlg
Identifies the dialog box that contains the button.

idButton
Identifies the button to be modified.

uCheck
Specifies the check state of the button. If this parameter is nonzero,
CheckDlgButton selects the button; if the parameter is zero, the function clears
the button. For a three-state check box, if uCheck is 2, the button is grayed; if
uCheck is l, it is selected; if uCheck is 0, it is cleared.

This function does not return a value.

The CheckDlgButton function sends a BM_SETCHECK message to the
specified button control in the given dialog box.

CheckRadioButton, IsDlgButtonChecked

CheckMenultem lliJ
BOOL CheckMenultem(hmenu, idCheckltem, uCheck)
HMENU hmenu; I* handle of menu */
UINT idCheckltem; /*menu-item identifier */
UINT uCheck; /*check state and position */

Parameters

The CheckMenultem function selects (places a check mark next to) or clears (re
moves a check mark from) a specified menu item in the given pop-up menu.

hmenu
Identifies the menu.

idCheckltem
Identifies the menu item to be selected or cleared.

uCheck
Specifies how to determine the position of the menu item
(MF _BYCOMMAND or MF _BYPOSITION) and whether the item
should be selected or cleared (MF _CHECKED or MF _UNCHECKED). This
parameter can be a combination of these values, which can be combined by
using the bitwise OR operator. The values are described as follows:

Return Value

Comments

See Also

Value

MF _BYCOMMAND

MF _BYPOSITION

MF_CHECKED

MF _UNCHECKED

CheckRadioButton 47

Meaning

Specifies that the idCheckltem parameter gives the menu
item identifier (MF _BYCOMMAND is the default).

Specifies that the idCheckltem parameter gives the posi
tion of the menu item (the first item is at position zero).

Selects the item (adds check mark).

Clears the item (removes check mark).

The return value specifies the previous state of the item-MF _CHECKED or
MF_ UN CHECKED-if the function is successful. The return value is -1 if the
menu item does not exist.

The idCheckltem parameter may identify a pop-up menu item as well as a menu
item. No special steps are required to select a pop-up menu item.

Top-level menu items cannot have a check.

A pop-up menu item should be selected by position since it does not have a menu
item identifier associated with it.

GetMenuState, SetMenultemBitmaps

CheckRadioButton
void CheckRadioButton(hwndDlg, idFirstButton, idLastButton, idCheckButton)
HWND hwndDlg; I* handle of dialog box */
int idFirstButton; I* identifier of first radio button in group */
int idLastButton; /* identifier of last radio button in group */
int idCheckButton; /*identifier of radio button to select */

Parameters

The CheckRadioButton function selects (adds a check mark to) a given radio but
ton in a group and clears (removes a check mark from) all other radio buttons in
the group.

hwndDlg
Identifies the dialog box that contains the radio button.

idFirstButton
Specifies the identifier of the first radio button in the group.

idLastButton
Specifies the identifier of the last radio button in the group.

48 ChildWindowFromPoint

Return Value

Comments

See Also

idCheckButton
Specifies the identifier of the radio button to select.

This function does not return a value.

The CheckRadioButton function sends a BM_SETCHECK message to the
specified radio button control in the given dialog box.

CheckDlgButton, IsDlgButtonChecked

ChildWindowFromPoint
HWND ChildWindowFromPoint(hwndParent, pt)
HWND hwndParent; /* handle of parent window */

I POINT pt; ! structure with point coordinates

Parameters

Return Value

Comments

The ChildWindow FromPoint function determines which, if any, of the child win
dows belonging to the given parent window contains the specified point.

hwndParent

pt

Identifies the parent window.

Specifies a POINT structure that defines the client coordinates of the point to
be checked. The POINT structure has the following form:

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the handle of the child window (hidden, disabled, or trans
parent) that contains the point, if the function is successful. If the given point lies
outside the parent window, the return value is NULL. If the point is within the
parent window but is not contained within any child window, the return value is
the handle of the parent window.

More than one window may contain the given point, but Windows returns the
handle only of the first window encountered that contains the point.

Choose Color 49

See Also WindowFromPoint

ChooseColor [}IJ

#include <commdlg.h>

BOOL ChooseColor(lpcc)
CHOOSECOLOR FAR* lpcc; I* address of structure with initialization data */

Parameters

Return Value

Errors

The ChooseColor function creates a system-defined dialog box from which the
user can select a color.

lpcc
Points to a CHOOSECOLOR structure that initially contains information nec
essary to initialize the dialog box. When the ChooseColor function returns, this
structure contains information about the user's color selection. The CHOOSE
COLOR structure has the following form:

#include <commdlg.h>

typedef struct tagCHOOSECOLOR { /* cc */
DWORD lStructSize;
HWND hwndOwner;
HWND hinstance;
COLORREF rgbResult;
COLORREF FAR* lpCustColors;
DWORD Flags;
LPARAM lCustData;
UINT (CALLBACK* lpfnHook)(HWND, UINT, WPARAM, LPARAMJ;
LPCSTR lpTemplateName;

CHOOSECOLOR;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. It is zero if an error oc
curs, if the user chooses the Cancel button, or if the user chooses the Close com
mand on the System menu (often called the Control menu) to close the dialog box.

Use the CommDlgExtendedErrorfunction to retrieve the error value, which may
be one of the following:

CDERR_FINDRESFAILURE
CDERR_INITIALIZA TION
CDERR_LOCKRESFAILURE

50 ChooseColor

Comments

Example

CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE

The dialog box does not support color palettes. The color choices offered by the
dialog box are limited to the system colors and dithered versions of those colors.

If the hook function (to which the lpfnHook member of the CHOOSECOLOR
structure points) processes the WM_CTLCOLOR message, this function must re
turn a handle for the brush that should be used to paint the control background.

The following example initializes a CHOOSECOLOR structure and then creates
a color-selection dialog box:

/* Color variables */

CHOOS ECO LOR cc;
COLORREF clr;
COLORREF aclrCust[16];
int i;

/* Set the custom-color controls to white. */

for (i = 0; i < 16; i++)
aclrCust[i] = RGBC255, 255, 255);

/* Initialize clr to black. */

cl r = RGB (0, 0, 0);

/*Set all structure fields to zero. */

memset(&cc, 0, sizeof(CHOOSECOLOR));

/* Initialize the necessary CHOOSECOLOR members. */

cc.lStructSize = sizeof(CHOOSECOLOR);
cc.hwndOwner = hwnd;
cc.rgbResult = clr;
cc.lpCustColors = aclrCust;
cc.Flags = CC_PREVENTFULLOPEN;

Choosefont 51

if (ChooseColor(&cc))

f* Use cc.rgbResult to select the user-requested color. */

Choose Font
#include <commdlg.h>

BOOL ChooseFont(lpc.f)
CHOOSEFONT FAR*lpcf; I* address of structure with initialization data *I

Parameters

The ChooseFont function creates a system-defined dialog box from which the
user can select a font, a font style (such as bold or italic), a point size, an effect
(such as strikeout or underline), and a color.

lpcf
Points to a CHOOSEFONT structure that initially contains information
necessary to initialize the dialog box. When the ChooseFont function returns,
this structure contains information about the user's font selection. The
CHOOSEFONT structure has the following form:

#include <commdlg.h>

typedef struct tagCHOOSEFONT { f* cf */
DWORD lStructSize;
HWND hwndOwner;
HOC hDC;
LOGFONT FAR* lpLogFont;
int iPointSize;
DWORD Flags;
COLORREF rgbColors;
LPARAM lCustData;
UINT (CALLBACK* lpfnHook)(HWND, UINT, WPARAM, LPARAM);
LPCSTR lpTemplateName;
HINSTANCE hlnstance;
LPSTR lpszStyle;
UINT nFontType;
int nSizeMin;
int nSizeMax;

} CHOOSEFONT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

52 Choose Font

Return Value

Errors

Example

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the CommDlgExtendedError function to retrieve the error value, which may
be one of the following:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
CFERR_MAXLESSTHANMIN
CFERR_NOFONTS

The following example initializes a CHOOSEFONT structure and then displays a
font dialog box:

LOG FONT l f;
CHOOSEFONT cf;

f* Set all structure fields to zero. */

memset(&cf, 0, sizeof(CHOOSEFONT));

cf.lStructSize = sizeof(CHOOSEFONT);
cf.hwndOwner = hwnd;
cf.lpLogFont = &lf;
cf.Flags = CF_SCREENFONTS I CF_EFFECTS;
cf.rgbColors = RGB(0, 255, 255); /* light blue*/
cf.nFontType = SCREEN_FONTTYPE;

ChooseFont(&cf);

Chord 53

Chord C0
BOOL Chord(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect, nXStartLine, nYStartLine,

nXEndLine, nYEndLine)
HDC hdc; /* handle of device context */
int nLeftRect; /* x-coordinate upper-left comer bounding rectangle */
int nTopRect; /* y-coordinate upper-left comer bounding rectangle */
int nRightRect; /* x-coordinate lower-right comer bounding rectangle */
int nBottomRect; /* y-coordinate lower-right comer bounding rectangle */
int nXStartLine; /* x-coordinate line-segment starting point */
int nYStartLine; /* y-coordinate line-segment starting point */
int nXEndLine; /* x-coordinate line-segment ending point */
int nYEndLine; I* y-coordinate line-segment ending point */

The Chord function draws a chord (a closed figure bounded by the intersection of
an ellipse and a line segment).

Parameters hdc

Return Value

Identifies the device context.

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the bounding
rectangle.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the bounding
rectangle.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the bounding
rectangle.

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the bounding
rectangle.

nXStartLine
Specifies the logical x-coordinate of the starting point of the line segment.

nYStartLine
Specifies the logical y-coordinate of the starting point of the line segment.

nXEndLine
Specifies the logical x-coordinate of the ending point of the line segment.

nYEndLine
Specifies the logical y-coordinate of the ending point of the line segment.

The return value is nonzero if the function is successful. Otherwise, it is zero.

54 ClassFirst

Comments

Example

See Also

Classfirst

The (nLeftRect, nTopRect) and (nRightRect, nBottomRect) parameter combina
tions specify the upper-left and lower-right corners, respectively, of a rectangle
bounding the ellipse that is part of the chord. The (nXStartLine, nYStartLine) and
(nXEndLine, nYEndLine) parameter combinations specify the endpoints of a line
that intersects the ellipse. The chord is drawn by using the selected pen and is
filled by using the selected brush.

The figure the Chord function draws extends up to but does not include the right
and bottom coordinates. This means that the height of the figure is determined as
follows:

nBottomRect- nTopRect

The width of the figure is determined similarly:

nRightRect - nLeftRect

The following example uses a RECT structure to store the points defining the
bounding rectangle and uses POINT structures to store the coordinates that
specify the beginning and end of the chord:

HOC hde;

RECT re= { 10, 10, 180, 140 };
POINT ptStart = { 12, 12 };
POINT ptEnd = { 128, 135 };

Chord(hde, re.left, re.top, re.right, re.bottom,
ptStart.x, ptStart.y, ptEnd.x, ptEnd.y);

Arc

#include <toolhelp.h>

BOOL ClassFirst(lpce)
CLASSENTRY FAR* lpce; I* address of structure for class info *I

The ClassFirst function fills the specified structure with general information
about the first class in the Windows class list.

Parameters

Return Value

Comments

See Also

ClassNext

ClassNext 55

lpce
Points to a CLASSENTRY structure that will receive the class information.
The CLASSENTRY structure has the following form:

#include <toolhelp.h>

typedef struct tagCLASSENTRY /* ce */
DWORD dwSize;
HMODULE hlnst;
char szClassName[MAX_CLASSNAME + 1];
WORD wNext;

CLASSENTRY;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The ClassFirst function can be used to begin a walk through the Windows class
list. To examine subsequent items in the class list, an application can use the
ClassNext function.

Before calling ClassFirst, an application must initialize the CLASSENTRY struc
ture and specify its size, in bytes, in the dwSize member. An application can ex
amine subsequent entries in the Windows class list by using the ClassNext
function.

For more specific information about an individual class, use the GetClasslnfo
function, specifying the name of the class and instance handle from the
CLASSENTRY structure.

ClassNext, GetCiasslnfo

#include <toolhelp.h>

BOOL ClassNext(lpce)
CLASSENTRY FAR* lpce; /* address of structure for class info *I

The ClassNext function fills the specified structure with general information
about the next class in the Windows class list.

56 ClearCommBreak

Parameters

Return Value

Comments

See Also

lpce
Points to a CLASSENTRY structure that will receive the class information.
The CLASSENTRY structure has the following form:

#include <toolhelp.h>

typedef struct tagCLASSENTRY { /* ce */
DWORD dwSize;
HMODULE hinst;
char szClassName[MAX_CLASSNAME + 1];
WORD wNext;

CLASSENTRY;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The ClassNext function can be used to continue a walk through the Windows
class list started by the ClassFirst function.

For more specific information about an individual class, use the GetClasslnfo
function with the name of the class and instance handle from the CLASSENTRY
structure.

ClassFirst

ClearCommBreak
int ClearCommBreak(idComDev)
int idComDev; I* device to be restored */

Parameters

The ClearCommBreak function restores character transmission and places the
communications device in a nonbreak state.

idComDev
Identifies the communications device to be restored. The OpenComm function
returns this value.

Return Value

Comments

See Also

ClientToScreen 57

The return value is zero if the function is successful, or -1 if the idComDev
parameter does not identify a valid device.

This function clears the communications-device break state set by the SetComm
Break function.

OpenComm, SetCommBreak

ClientToScreen
void ClientToScreen(hwnd, lppt)
HWND hwnd; /* window handle for source coordinates */

/ POINT FAR lppt; /*address of structure with coordinates

Parameters

Return Value

Comments

The ClientToScreen function converts the client coordinates of a given point on
the screen to screen coordinates.

hwnd
Identifies the window whose client area is used for the conversion.

lppt
Points to a POINT structure that contains the client coordinates to be con
verted. The POINT structure has the following form:

typedef struct tagPOINT f /* pt */
int x;
int y;

} POINT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

This function does not return a value.

The ClientToScreen function replaces the coordinates in the POINT structure
with the screen coordinates. The screen coordinates are relative to the upper-left
corner of the screen.

58 ClipCursor

Example

See Also

ClipCursor

The following example uses the LOWORD and HIWORD macros and the
ClientToScreen function to convert the mouse position to screen coordinates:

POINT pt;

pt.x = LOWORD(lParam);
pt.y = HIWORD(lParam);
ClientToScreen(hwnd, &pt);

Map Window Points, ScreenToClient

void ClipCursor(lprc)
const RECT FAR* lprc; /* address of structure with rectangle */

Parameters

Return Value

Comments

See Also

The ClipCursor function confines the cursor to a rectangle on the screen. If a sub
sequent cursor position (set by the SetCursorPos function or by the mouse) lies
outside the rectangle, Windows automatically adjusts the position to keep the cur
sor inside.

lprc
Points to a RECT structure that contains the screen coordinates of the upper
left and lower-right corners of the confining rectangle. If this parameter is
NULL, the cursor is free to move anywhere on the screen. The RECT structure
has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

This function does not return a value.

The cursor is a shared resource. An application that has confined the cursor to a
given rectangle must free it before relinquishing control to another application.

GetClipCursor, GetCursorPos, SetCursorPos

CloseComm 59

CloseClipboard lliJ
BOOL CloseClipboard(void)

The CloseClipboard function closes the clipboard.

Parameters This function has no parameters.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments The CloseClipboard function should be called when a window has finished ex
amining or changing the clipboard. This lets other applications access the clip
board.

See Also GetOpenClipboardWindow, OpenClipboard

CloseComm lliJ
int CloseComm(idComDev)
int idComDev; I* device to close */

Parameters

Return Value

See Also

The CloseComm function closes the specified communications device and frees
any memory allocated for the device's transmission and receiving queues. All char
acters in the output queue are sent before the communications device is closed.

idComDev
Specifies the device to be closed. The OpenComm function returns this value.

The return value is zero if the function is successful. Otherwise, it is less than zero.

Open Comm

60 Close Driver

Close Driver
LRESULT CloseDriver(hdrvr, lParaml, lParam2)
HDRVR hdrvr; I* handle of installable driver *I

*I
*I

LPARAM lParaml; I* driver-specific data
LPARAM lParam2; I* driver-specific data

The CloseDriver function closes an installable driver.

Parameters hdrvr

Return Value

Comments

See Also

Identifies the installable driver to be closed. This parameter must have been ob
tained by a previous call to the OpenDriver function.

lParaml
Specifies driver-specific data.

lParam2
Specifies driver-specific data.

The return value is nonzero if the function is successful. Otherwise, it is zero.

When an application calls CloseDriver and the driver identified by hdrvr is the
last instance of the driver, Windows calls the DriverProc function three times. On
the first call, Windows sets the third DriverProc parameter, wMessage, to
ORV _CLOSE; on the second call, Windows sets wMessage to DRV _DISABLE;
and on the third call, Windows sets wMessage to ORV _FREE. When the driver
identified by hdrvr is not the last instance of the driver, only ORV _CLOSE is sent.
The values specified in the lParaml and lParam2 parameters are passed to the
lParaml and lParam2 parameters of the DriverProc function.

DriverProc, OpenDriver

CloseMetaFile
HMETAFILE CloseMetaFile(hdc)
HDC hdc; I* handle of device context *I

The CloseMetaFile function closes a metafile device context and creates a handle
of a metafile. An application can use this handle to play the metafile.

Parameters hdc
Identifies the metafile device context to be closed.

Return Value

Comments

Example

CloseWindow 61

The return value is the handle of the metafile if the function is successful. Other
wise, it is NULL.

If a metafile handle created by using the CloseMetaFile function is no longer
needed, you should remove it (using the DeleteMetaFile function).

The following example creates a device-context handle of a memory metafile,
draws a line in the device context, retrieves a handle of the metafile, plays the
metafile, and finally deletes the metafile.

HOC hdcMeta;
HMETAFILE hmf;

hdcMeta = CreateMetaFile(NULL);
MoveToChdcMeta, 10, 10);
LineTo(hdcMeta, 100, 100);
hmf = CloseMetaFile(hdcMeta);
PlayMetaFile(hdc, hmf);
DeleteMetaFile(hmf);

See Also CreateMetaFile, DeleteMetaFile, PlayMetaFile

CloseSound CI!J
void CloseSound(void)

This function is obsolete. Use the multimedia audio functions instead. For informa
tion about these functions, see the Microsoft Windows Multimedia Programmer's
Reference.

CloseWindow
void CloseWindow(hwnd)
HWND hwnd; /* handle of window to minimize */

Parameters

The Close Window function minimizes (but does not destroy) the given window.
To destroy a window, an application must use the Destroy Window function.

hwnd
Identifies the window to be minimized.

62 CombineRgn

Return Value This function does not return a value.

Comments This function has no effect if the hwnd parameter identifies a pop-up or child win
dow.

See Also DestroyWindow, Islconic, Openlcon

CombineRgn Cfil
int CombineRgn(hrgnDest, hrgnSrcl, hrgnSrc2,fCombineMode)
HRGN hrgnDest; /* handle of region to receive combined regions */
HRGN hrgnSrcl; /* handle of first source region */
HRGN hrgnSrc2; /* handle of second source region */
intfCombineMode; /*mode for combining regions */

Parameters

Return Value

The CombineRgn function creates a new region by combining two existing re
gions.

hrgnDest
Identifies an existing region that will be replaced by the new region.

hrgnSrcl
Identifies an existing region.

hrgnSrc2
Identifies an existing region.

JCombineMode
Specifies the operation to use when combining the two source regions. This
parameter can be any one of the following values:

Value

RGN_AND

RGN_COPY

RGN_DIFF

RGN_OR

RGN_XOR

Meaning

Uses overlapping areas of both regions (intersection).

Creates a copy of region 1 (identified by the hrgnSrcl parameter).

Creates a region consisting of the areas of region 1 (identified by
hrgnSrc 1) that are not part of region 2 (identified by the hrgnSrc2
parameter).

Combines all of both regions (union).

Combines both regions but removes overlapping areas.

The return value specifies that the resulting region has overlapping borders
(COMPLEXREGION), is empty (NULLREGION), or has no overlapping borders

Comments

Example

See Also

CommDlgExtendedError 63

(SIMPLEREGION), if the function is successful. Otherwise, the return value is
ERROR.

The size of a region is limited to 32,000 by 32,000 logical units or 64K of
memory, whichever is smaller.

The CombineRgn function replaces the region identified by the hrgnDest parame
ter with the combined region. To use CombineRgn most efficiently, hrgnDest
should be a trivial region, as shown in the following example.

The following example creates two source regions and an empty destination re
gion, uses the CombineRgn function to create a complex region, selects the re
gion into a device context, and then uses the PaintRgn function to display the
region:

HOC hdc;
HRGN hrgnDest, hrgnSrcl, hrgnSrc2;

hrgnDest
hrgnSrcl
hrgnSrc2

CreateRectRgn(0, 0, 0, 0);
CreateRectRgn(10, 10, 110, 110);
CreateRectRgn(90, 90, 200, 150);

CombineRgn(hrgnDest, hrgnSrcl, hrgnSrc2, RGN_OR);
SelectObject(hdc, hrgnDest);
PaintRgn(hdc, hrgnDest);

CreateRectRgn, PaintRgn

CommDlgExtendedError
#include <commdlg.h>

DWORD CommDlgExtendedError(void)

The CommDlgExtendedError function identifies the cause of the most recent
error to have occurred during the execution of one of the following common
dialog box procedures:

• ChooseColor

• ChooseFont

• FindText

• GetFileTitle

• GetOpenFileName

64 CommDlgExtendedError

Parameters

Return Value

Comments

• GetSaveFileName

• PrintDlg

• ReplaceText

This function has no parameters.

The return value is zero if the prior call to a common dialog box procedure was
successful. The return value is CDERR_DIALOGF AIL URE if the dialog box
could not be created. Otherwise, the return value is a nonzero integer that identi
fies an error condition.

Following are the possible CommDlgExtendedError return values and the mean
ing of each:

Value

CDERR_FINDRESFAILURE

CDERR_INITIALIZATION

CDERR_LOADRESFAILURE

CDERR_LOCKRESFAILURE

CDERR_LOADSTRFAILURE

CDERR_MEMALLOCFAILURE

CDERR_MEMLOCKFAILURE

CDERR_NOHINSTANCE

CDERR_NOHOOK

Meaning

Specifies that the common dialog box proce
dure failed to find a specified resource.

Specifies that the common dialog box proce
dure failed during initialization. This error often
occurs when insufficient memory is available.

Specifies that the common dialog box proce
dure failed to load a specified resource.

Specifies that the common dialog box proce
dure failed to lock a specified resource.

Specifies that the common dialog box proce
dure failed to load a specified string.

Specifies that the common dialog box proce
dure was unable to allocate memory for internal
structures.

Specifies that the common dialog box proce
dure was unable to lock the memory associated
with a handle.

Specifies that the ENABLETEMPLATE flag
was set in the Flags member of a structure for
the corresponding common dialog box but that
the application failed to provide a correspond
ing instance handle.

Specifies that the ENABLEHOOK flag was set
in the Flags member of a structure for the corre
sponding common dialog box but that the appli
cation failed to provide a pointer to a
corresponding hook function.

Value

CDERR_NOTEMPLATE

CDERR_REGISTERMSGFAIL

CDERR_STRUCTSIZE

CFERR_NOFONTS

CFERR_MAXLESSTHANMIN

FNERR_BUFFERTOOSMALL

FNERR_INVALIDFILENAME

FNERR_SUBCLASSFAILURE

FRERR_BUFFERLENGTHZERO

PDERR_CREATEICFAILURE

PDERR_DEFAULTDIFFERENT

CommDlgExtendedError 65

Meaning

Specifies that the ENABLETEMPLATE flag
was set in the Flags member of a structure for
the corresponding common dialog box but that
the application failed to provide a correspond
ing template.

Specifies that the RegisterWindowMessage
function returned an error value when it was
called by the common dialog box procedure.

Specifies as invalid the lStructSize member of
a structure for the corresponding common
dialog box.

Specifies that no fonts exist.

Specifies that the size given in the nSizeMax
member of the CHOOSEFONT structure is
less than the size given in the nSizeMin mem
ber.

Specifies that the filename buffer is too small.
(This buffer is pointed to by the lpstrFile mem
ber of the structure for a common dialog box.)

Specifies that a filename is invalid.

Specifies that an attempt to subclass a list box
failed due to insufficient memory.

Specifies that a member in a structure for the
corresponding common dialog box points to an
invalid buffer.

Specifies that the PrintDlg function failed
when it attempted to create an information con
text.

Specifies that an application has called the
PrintDlg function with the
DN_DEFAULTPRN flag set in the wDefault
member of the DEVNAMES structure, but the
printer described by the other structure mem
bers does not match the current default printer.
(This happens when an application stores the
DEVNAMES structure and the user changes
the default printer by using Control Panel.)

To use the printer described by the DEV
NAMES structure, the application should clear
the DN_DEFAULTPRN flag and call the
PrintDlg function again. To use the default
printer, the application should replace the DEV
NAMES structure (and the DEVMODE struc
ture, if one exists) with NULL; this selects the
default printer automatically.

66 CopyCursor

Value

PDERR_DNDMMISMATCH

PDERR_GETDEVMODEFAIL

PDERR_INITFAILURE

PDERR_LOADDRVFAILURE

PDERR_NODEFAULTPRN

PDERR_NODEVICES

PDERR_PARSEFAILURE

PDERR_PRINTERNOTFOUND

PDERR_RETDEFFAILURE

PDERR_SETUPFAILURE

Meaning

Specifies that the data in the DEVMODE and
DEVNAMES structures describes two different
printers.

Specifies that the printer driver failed to initial
ize a DEVMODE structure. (This error value
applies only to printer drivers written for Win
dows versions 3.0 and later.)

Specifies that the PrintDlg function failed
during initialization.

Specifies that the PrintDlg function failed to
load the device driver for the specified printer.

Specifies that a default printer does not exist.

Specifies that no printer drivers were found.

Specifies that the PrintDlg function failed to
parse the strings in the [devices] section of the
WIN .INI file.

Specifies that the [devices] section of the
WIN.INI file did not contain an entry for the re
quested printer.

Specifies that the PD_RETURNDEFAULT
flag was set in the Flags member of the
PRINTDLG structure but that either the hDev
Mode or hDevNames member was nonzero.

Specifies that the PrintDlg function failed to
load the required resources.

For more information about the CommDlgExtendedError function, see the
Microsoft Windows Programmer's Reference, Volume 1.

See Also ChooseColor, ChooseFont, FindText, GetFileTitle, GetOpenFileName,
GetSaveFileName, PrintDlg, ReplaceText

CopyCursor CI!J
HCURSOR CopyCursor(hinst, hcur)
HINSTANCE hinst; I* handle of application instance */
HCURSOR hcur; I* handle of cursor to copy */

The CopyCursor function copies a cursor.

Parameters

Return Value

Comments

See Also

Copylcon

Copylcon 67

hinst
Identifies the instance of the module that will copy the cursor.

hcur
Identifies the cursor to be copied.

The return value is the handle of the duplicate cursor if the function is successful.
Otherwise, it is NULL.

When it no longer requires a cursor, an application must destroy the cursor, using
the DestroyCursor function.

The CopyCursor function allows an application or dynamic-link library to accept
a cursor from another module. Because all resources are owned by the module in
which they originate, a resource cannot be shared after the module is freed. Copy
Cursor allows an application to create a copy that the application then owns.

Copylcon, DestroyCursor, GetCursor, SetCursor, ShowCursor

HICON Copylcon(hinst, hicon)
HINSTANCE hinst; /*handle of application instance */
HI CON hicon; /* handle of icon to copy */

Parameters

Return Value

Comments

The Copy Icon function copies an icon.

hinst
Identifies the instance of the module that will copy the icon.

hie on
Identifies the icon to be copied.

The return value is the handle of the duplicate icon if the function is successful.
Otherwise, it is NULL.

When it no longer requires an icon, an application should destroy the icon, using
the Destroy Icon function.

68 CopyLZFile

The Copy Icon function allows an application or dynamic-link library to accept an
icon from another module. Because all resources are owned by the module in
which they originate, a resource cannot be shared after the module is freed. Copy
Icon allows an application to create a copy that the application then owns.

See Also CopyCursor, Destroylcon, Drawlcon

CopyLZFile @J

#include <lzexpand.h>

LONG CopyLZFile(hjSource, hfDest)
HFILE hjSource; I* handle of source file */
HFILE hfDest; /*handle of destination file */

Parameters

Return Value

The CopyLZFile function copies a source file to a destination file. If the source
file is compressed, this function creates a decompressed destination file. If the
source file is not compressed, this function duplicates the original file.

hjSource
Identifies the source file.

hfDest
Identifies the destination file.

The return value specifies the size, in bytes, of the destination file if the function is
successful. Otherwise, it is an error value less than zero; it may be one of the fol
lowing:

Value

LZERROR_BADINHANDLE

LZERROR_BADOUTHANDLE

LZERROR_READ

LZERROR_ WRITE

LZERROR_GLOBALLOC

LZERROR_UNKNOWNALG

Meaning

The handle identifying the source file was not
valid.
The handle identifying the destination file was
not valid.

The source file format was not valid.

There is insufficient space for the output file.

There is insufficient memory for the required
buffers.

The file was compressed with an unrecognized
compression algorithm.

Comments

Example

See Also

CopyLZFile 69

This function is identical to the LZCopy function.

The CopyLZFile function is designed for copying or decompressing multiple
files, or both. To allocate required buffers, an application should call the LZStart
function prior to calling CopyLZFile. To free these buffers, an application should
call the LZDone function after copying the files.

If the function is successful, the file identified by hjDest is decompressed.

If the source or destination file is opened by using a C run-time function (rather
than by using the _lopen or OpenFile function), it must be opened in binary mode.

The following example uses the CopyLZFile function to create copies of four text
files:

#define STRICT

#include <windows.h>
#include <lzexpand.h>

#define NUM_FILES 4

char *SZSrc[NUM_FILES]
{"readme.txt", "data.txt", "update.txt", "list.txt"};

char *szDest[NUM_FILES] =

{"readme.bak", "data.bak", "update.bak", "list.bak"};
DFSTRUCT ofStrSrc;
DFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile;
int i;

/*Allocate internal buffers for the CopyLZFile function. */

LZStart();

I* Open, copy, and then close the files. */

for Ci = 0; i < NUM_FILES; i++) {
hfSrcFile LZOpenFile(szSrc[i], &ofStrSrc, OF_READ);
hfDstFile LZOpenFile(szDest[i], &ofStrDest, OF_CREATE);
CopyLZFile(hfSrcFile, hfDstFile);
LZClose(hfSrcFile);
LZClose(hfDstFile);

}

LZDone(); /*free the internal buffers */

_lopen, LZCopy, LZDone, LZStart, OpenFile

70 CopyMetaFile

CopyMetaFile
HMETAFILE CopyMetaFile(hmjSrc, lpszFile)
HMETAFILE hmjSrc; /* handle of metafile to copy */

/ LPCSTR lpszFile; I address of name of copied metafile

Parameters

Return Value

Example

See Also

The CopyMetaFile function copies a source metafile to a specified file and re
turns a handle of the new metafile.

hmjSrc
Identifies the source metafile to be copied.

lpszFile
Points to a null-terminated string that specifies the filename of the copied meta
file. If this value is NULL, the source metafile is copied to a memory metafile.

The return value is the handle of the new metafile if the function is successful.
Otherwise, it is NULL.

The following example copies a metafile to a specified file, plays the copied meta
file, retrieves a handle of the copied metafile, changes the position at which the
metafile is played 200 logical units to the right, and then plays the metafile at the
new location:

HANDLE hmf, hmfSource, hmfOld;
LPSTR lpszFilel = "MFTest";

hmf = CopyMetaFile(hmfSource, lpszFilell;
PlayMetaFile(hdc, hmfl;
DeleteMetaFile(hmf);

hmfOld = GetMetaFile(lpszFilel);
SetWindowOrg(hdc, -200, 0);
PlayMetaFile(hdc, hmfOldl;

DeleteMetaFile(hmfSource);
DeleteMetaFile(hmfOldl;

GetMetaFile, PlayMetaFile, SetWindowOrg

CountClipboardFormats 71

CopyRect [.[!]
void CopyRect(lprcDst, lprcSrc)
RECT FAR* lprcDst; /*address of struct. for destination rect. */
const RECT FAR* lprcSrc; /*address of struct. with source rect. */

Parameters

Return Value

See Also

The CopyRect function copies the dimensions of one rectangle to another.

lprcDst
Points to the RECT structure that will receive the dimensions of the source
rectangle. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

lprcSrc
Points to the RECT structure whose dimensions are to be copied.

This function does not return a value.

SetRect

Cou ntCI i pboard Formats
int CountClipboardFormats(void)

Parameters

Return Value

See Also

The CountClipboardFormats function retrieves the number of different data for
mats currently in the clipboard.

This function has no parameters.

The return value specifies the number of different data formats in the clipboard, if
the function is successful.

EnumClipboardFormats

72 CountVoiceNotes

CountVoiceNotes
int CountVoiceNotes(nvoice)
int nvoice; I* sound queue to be counted *I

CPIApplet

This function is obsolete. Use the multimedia audio functions instead. For informa
tion about these functions, see the Microsoft Windows Multimedia Programmer's
Reference.

LONG CALLBACK* CPlApplet(hwndCPl, iMessage, lParaml, lParam2)
HWND hwndCPl; I* handle of Control Panel window */
UINT iMessage; I* message */
LPARAM lParaml; I* first message parameter *I
LPARAM lParam2; I* second message parameter */

Parameters

Return Value

Comments

The CPIApplet function serves as the entry point for a Control Panel dynamic
link library (DLL). This function is supplied by the application.

hwndCPl
Identifies the main Control Panel window.

iMessage
Specifies the message being sent to the DLL.

lParaml
Specifies 32 bits of additional message-dependent information.

lParam2
Specifies 32 bits of additional message-dependent information.

The return value depends on the message. For more information, see the descrip
tions of the individual Control Panel messages in Microsoft Windows Program
mer's Reference, Volume 3.

Use the hwndCPl parameter for dialog boxes or other windows that require a
handle of a parent window.

Create Bitmap 73

Create Bitmap [}!]

HBITMAP CreateBitmap(nWidth, nHeight, cbPlanes, cbBits, lpvBits)
int n Width; /* bitmap width */
int nHeight; /* bitmap height */
UINT cbPlanes; /* number of color planes */
UINT cbBits; /* number of bits per pixel */
const void FAR* lpvBits; /*address of array with bitmap bits */

Parameters

Return Value

Comments

The CreateBitmap function creates a device-dependent memory bitmap that has
the specified width, height, and bit pattern.

nWidth
Specifies the width, in pixels, of the bitmap.

nHeight
Specifies the height, in pixels, of the bitmap.

ch Planes
Specifies the number of color planes in the bitmap. The number of bits per
plane is the product of the plane's width, height, and bits per pixel (n Width x
nHeight x cbBits).

cbBits
Specifies the number of color bits per display pixel.

lpvBits
Points to an array of short integers that contains the initial bitmap bit values. If
this parameter is NULL, the new bitmap is left uninitialized. For more informa
tion about these bit values, see the description of the bmBits member of the
BITMAP structure in the Microsoft Windows Programmer's Reference,
Volume 3.

The return value is the handle of the bitmap if the function is successful. Other
wise, it is NULL.

The bitmap created by the CreateBitmap function can be selected as the current
bitmap for a memory device context by using the SelectObject function.

For a color bitmap, either the cbPlanes or cbBits parameter should be set to 1. If
both of these parameters are set to 1, CreateBitmap creates a monochrome bit
map.

Although a bitmap cannot be copied directly to a display device, the BitBlt func
tion can copy it from a memory device context (in which it is the current bitmap)
to any compatible device context, including a screen device context.

74 CreateBitmaplndirect

Example

See Also

When it has finished using a bitmap created by CreateBitmap, an application
should select the bitmap out of the device context and then remove the bitmap by
using the DeleteObject function.

The following example uses the CreateBitmap function to create a bitmap with a
zigzag pattern and then uses the PatBlt function to fill the client area with that pat
tern:

HOC hde;
HBITMAP hbmp;
HBRUSH hbr, hbrPrevious;
RECT re;

int aZigzag[] = { 0xFF, 0xF7, 0xEB, 0xDD, 0xBE, 0x7F, 0xFF, 0xFF };

hbmp = CreateBitmap(B, 8, 1, 1, aZigzag);
hbr = CreatePatternBrush(hbmp);

hde = GetDC(hwnd);
UnrealizeObjeet(hbr);
hbrPrevious = SeleetObjeet(hde, hbr);
GetClientReet(hwnd, &re);

PatBlt(hde, re.left, re.top,
re.right - re.left, re.bottom - re.top, PATCOPY);

SeleetObjeet(hde, hbrPrevious);
ReleaseDC(hwnd, hde);

DeleteObjeet(hbr);
DeleteObjeet(hbmp);

BitBlt, CreateBitmaplndirect, CreateCompatibleBitmap, CreateDIBitmap,
CreateDiscardableBitmap, DeleteObject, SelectObject

CreateBitmaplndirect
HBITMAP CreateBitmaplndirect(lpbm)
BITMAP FAR* lpbm; /* address of structure with bitmap information *!

The CreateBitmaplndirect function creates a bitmap that has the width, height,
and bit pattern specified in a BITMAP structure.

Parameters

Return Value

Comments

Example

CreateBitmaplndirect 75

lpbm
Points to a BITMAP structure that contains information about the bitmap. The
BITMAP structure has the following form:

typedef struct tagBITMAP
int bmType;
int bmWidth;
int bmHeight;
int bmWidthBytes;
BYTE bmPlanes;
BYTE bmBitsPixel;
void FAR* bmBits;

BITMAP;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the handle of the bitmap if the function is successful. Other
wise, it is NULL.

Large bitmaps cannot be displayed on a display device by copying them directly to
the device context for that device. Instead, applications should create a memory
device context that is compatible with the display device, select the bitmap as the
current bitmap for the memory device context, and then use a function such as
BitBlt or StretchBlt to copy it from the memory device context to the display
device context. (The PatBlt function can copy the bitmap for the current brush
directly to the display device context.)

When an application has finished using the bitmap created by the Create
Bitmapindirect function, it should select the bitmap out of the device context and
then delete the bitmap by using the DeleteObject function.

If the BITMAP structure pointed to by the lpbm parameter has been filled in by
using the GetObject function, the bits of the bitmap are not specified, and the bit
map is uninitialized. To initialize the bitmap, an application can use a function
such as BitBlt or SetDIBits to copy the bits from the bitmap identified by the first
parameter of GetObject to the bitmap created by CreateBitmapindirect.

The following example assigns values to the members of a BITMAP structure and
then calls the CreateBitmaplndirect function to create a bitmap handle:

BITMAP bm;
HBITMAP hbm;

int aZigzag[] { 0xFF, 0xF7, 0xEB, 0xDD, 0xBE, 0x7F, 0xFF, 0xFF };

76 CreateBrushlndirect

See Also

bm.bmType = 0;
bm.bmWidth = 8;
bm.bmHeight = 8;
bm.bmWidthBytes = 2;
bm.bmPlanes = l;
bm.bmBitsPixel = 1;
bm.bmBits = aZigzag;

hbm = CreateBitmapindirectC&bm);

BitBlt, CreateBitmap, CreateCompatibleBitmap, CreateDIBitmap,
CreateDiscardableBitmap, DeleteObject, GetObject

CreateBrushlndirect
HBRUSH CreateBrushlndirect(lplb)
LOG BRUSH FAR* lplb; I* address of structure with brush attributes */

Parameters

Return Value

Comments

The CreateBrushlndirect function creates a brush that has the style, color, and
pattern specified in a LOGBRUSH structure. The brush can subsequently be
selected as the current brush for any device.

lplb
Points to a LOGBRUSH structure that contains information about the brush.
The LOGBRUSH structure has the following form:

typedef struct tagLOGBRUSH
UINT lbStyle;
COLORREF lbColor;
int lbHatch;

LO GB RUSH;

/* lb */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the handle of the brush if the function is successful. Otherwise,
it is NULL.

A brush created by using a monochrome (one plane, one bit per pixel) bitmap is
drawn by using the current text and background colors. Pixels represented by a bit
set to 0 are drawn with the current text color, and pixels represented by a bit set to
1 are drawn with the current background color.

Example

Create Caret 77

When it has finished using a brush created by CreateBrushlndirect, an applica
tion should select the brush out of the device context in which it was used and then
remove the brush by using the DeleteObject function.

The following example creates a hatched brush with red diagonal hatch marks and
uses that brush to fill a rectangle:

LOGBRUSH lb;
HBRUSH hbr, hbrOld;

lb.lbStyle BS_HATCHED;
lb.lbColor = RGB(255, 0, 0);
lb.lbHatch = HS_BDIAGONAL;

hbr = CreateBrushlndirect(&lb);
hbrOld = SelectObject(hdc, hbr);
Rectangle(hdc, 0, 0, 100, 100);

See Also CreateDIBPatternBrush, CreatePatternBrush, CreateSolidBrush, Delete
Object, GetStockObject, SelectObject

Create Caret CI!J
void CreateCaret(hwnd, hbmp, n Width, nHeight)
HWND hwnd; I* handle of owner window */
HBITMAP hbmp; /*handle of bitmap for caret shape */
int n Width; !* caret width */
int nHeight; /*caret height */

The CreateCaret function creates a new shape for the system caret and assigns
ownership of the caret to the given window. The caret shape can be a line, block,
or bitmap.

Parameters hwnd
Identifies the window that owns the new caret.

hbmp
Identifies the bitmap that defines the caret shape. If this parameter is NULL, the
caret is solid; if the parameter is 1, the caret is gray.

nWidth
Specifies the width of the caret in logical units. If this parameter is NULL, the
width is set to the system-defined window-border width.

78 Create Caret

Return Value

Comments

Example

See Also

nHeight
Specifies the height of the caret, in logical units. If this parameter is NULL, the
height is set to the system-defined window-border height.

This function does not return a value.

If the hbmp parameter contains a bitmap handle, then Width and nHeight parame
ters are ignored; the bitmap defines its own width and height. (The bitmap handle
must have been created by using the CreateBitmap, CreateDIBitmap, or Load
Bitmap function.) If hbmp is NULL or 1, n Width and nHeight give the caret's
width and height, in logical units; the exact width and height (in pixels) depend on
the window's mapping mode.

The CreateCaret function automatically destroys the previous caret shape, if any,
regardless of which window owns the caret. Once created, the caret is initially hid
den. To show the caret, use the ShowCaret function.

The system caret is a shared resource. A window should create a caret only when
it has the input focus or is active. It should destroy the caret before losing the input
focus or becoming inactive.

The system's window-border width or height can be retrieved by using the
GetSystemMetrics function, specifying the SM_CXBORDER and
SM_CYBORDER indices. Using the window-border width or height guarantees
that the caret will be visible on a high-resolution screen.

The following example creates a caret, sets its initial position, and then displays
the caret:

case WM_SETFOCUS:
CreateCaret(hwndParent, NULL, CARET_WIDTH, CARET_HEIGHT);
SetCaretPos(CARET_XPOS, CARET_YPOSl;
ShowCaret(hwndParentl;
break;

CreateBitmap, CreateDIBitmap, DestroyCaret, GetSystemMetrics,
LoadBitmap, ShowCaret

CreateCompatibleBitmap 79

CreateCompatibleBitmap []Z)

HBITMAP CreateCompatibleBitmap(hdc, n Width, nHeight)
HDC hdc; /*handle of device context */
int nWidth; /*bitmap width */
int nHeight; /*bitmap height */

The CreateCompatibleBitmap function creates a bitmap that is compatible with
the given device.

Parameters hdc

Return Value

Comments

Identifies the device context.

nWidth
Specifies the width, in bits, of the bitmap.

nHeight
Specifies the height, in bits, of the bitmap.

The return value is the handle of the bitmap if the function is successful. Other
wise, it is NULL.

The bitmap created by the CreateCompatibleBitmap function has the same num
ber of color planes or the same bits-per-pixel format as the given device. It can be
selected as the current bitmap for any memory device that is compatible with the
one identified by hdc.

If hdc identifies a memory device context, the bitmap returned has the same for
mat as the currently selected bitmap in that device context. A memory device con
text is a memory object that represents a screen surface. It can be used to prepare
images in memory before copying them to the screen surface of the compatible
device.

When a memory device context is created, the graphics device interface (GDI)
automatically selects a monochrome stock bitmap for it.

Since a color memory device context can have either color or monochrome bit
maps selected, the format of the bitmap returned by the CreateCompatible
Bitmap function is not always the same; however, the format of a compatible
bitmap for a non-memory device context is always in the format of the device.

When it has finished using a bitmap created by CreateCompatibleBitmap, an ap
plication should select the bitmap out of the device context and then remove the
bitmap by using the DeleteObject function.

80 CreateCompatibleBitmap

Example

See Also

The following example shows a function named DuplicateBitmap that accepts the
handle of a bitmap, duplicates the bitmap, and returns a handle of the duplicate.
This function uses the CreateCompatibleDC function to create source and desti
nation device contexts and then uses the GetObject function to retrieve the dimen
sions of the source bitmap. The CreateCompatibleBitmap function uses these
dimensions to create a new bitmap. When each bitmap has been selected into a
device context, the BitBlt function copies the bits from the source bitmap to the
new bitmap. (Although an application could use the GetDIBits and SetDIBits
functions to duplicate a bitmap, the method illustrated in this example is much
faster.)

HBITMAP PASCAL DuplicateBitmap(HBITMAP hbmpSrc)
{

}

HBITMAP hbmpOldSrc, hbmpOldDest, hbmpNew;
HDC hdcSrc, hdcDest;
BITMAP bmp;

hdcSrc = CreateCompatibleDC(NULL);
hdcDest = CreateCompatibleDC(hdcSrc);

GetObject(hbmpSrc, sizeof(BITMAP), &bmp);

hbmpOldSrc = SelectObject(hdcSrc, hbmpSrc);

hbmpNew = CreateCompatibleBitmap(hdcSrc, bmp.bmWidth,
bmp.bmHeight);

hbmpOldDest = SelectObject(hdcDest, hbmpNew);

BitBlt(hdcDest, 0, 0, bmp.bmWidth, bmp.bmHeight, hdcSrc, 0, 0,
SRCCOPY);

SelectObject(hdcDest, hbmpOldDest);
SelectObject(hdcSrc, hbmpOldSrc);

DeleteDC(hdcDest);
DeleteDC(hdcSrc);

return hbmpNew;

CreateBitmap, CreateBitmaplndirect, CreateDIBitmap, DeleteObject

CreateCompatibleDC 81

CreateCompatibleDC CI!J
HDC CreateCompatibleDC(hdc)
HDC hdc; /*handle of device context */

The CreateCompatibleDC function creates a memory device context that is com
patible with the given device.

An application must select a bitmap into a memory device context to represent a
screen surface. The device context can then be used to prepare images in memory
before copying them to the screen surface of the compatible device.

Parameters hdc

Return Value

Comments

Example

Identifies the device context. If this parameter is NULL, the function creates a
memory device context that is compatible with the system screen.

The return value is the handle of the new memory device context if the function is
successful. Otherwise, it is NULL.

The CreateCompatibleDC function can be used only to create compatible device
contexts for devices that support raster operations. To determine whether a device
supports raster operations, an application can call the GetDeviceCaps function
with the RC_BITBLT index.

GDI output functions can be used with a memory device context only if a bitmap
has been created and selected into that context.

When it has finished using a device context created by CreateCompatibleDC, an
application should free the device context by calling the DeleteDC function. All
objects selected into the device context after it was created should be selected out
and replaced with the original objects before the device context is removed.

The following example loads a bitmap named Dog, uses the Create
CompatibleDC function to create a memory device context that is compatible
with the screen, selects the bitmap into the memory device context, and then uses
the BitBlt function to move the bitmap from the memory device context to the
screen device context:

HOC hdc, hdcMemory;
HBITMAP hbmpMyBitmap, hbmpOld;
BITMAP bm;

hbmpMyBitmap = LoadBitmap(hinst, "MyBitmap");
GetObject(hbmpMyBitmap, sizeof(BITMAPl, &bml;

82 Create Cursor

See Also

hdc = GetDCChwndl;
hdcMemory = CreateCompatibleDCChdcl;
hbmpDld = SelectObject(hdcMemory, hbmpMyBitmap);

BitBlt(hdc, 0, 0, bm.bmWidth, bm.bmHeight, hdcMemory, 0, 0, SRCCOPY);
SelectObject(hdcMemory, hbmpOld);

DeleteDC(hdcMemory);
ReleaseDCChwnd, hdc);

DeleteDC, GetDeviceCaps

Create Cursor
HCURSOR CreateCursor(hinst, xHotSpot, yHotSpot, nWidth, nHeight, lpvANDplane, lpvXORplane)
HINSTANCE hinst; /*handle of application instance */
int xHotSpot; /*horizontal position of hot spot */
int yHotSpot; /*vertical position of hot spot */
int n Width; /* cursor width *I
int nHeight; /* cursor height */
const void FAR* lpvANDplane; /*address of AND mask array *I
const void FAR* lpvXORplane; I* address of XOR mask array */

Parameters

The CreateCursor function creates a cursor that has the specified width, height,
and bit patterns.

hinst
Identifies the instance of the module that will create the cursor.

xHotSpot
Specifies the horizontal position of the cursor hot spot.

yHotSpot
Specifies the vertical position of the cursor hot spot.

nWidth
Specifies the width, in pixels, of the cursor.

nHeight
Specifies the height, in pixels, of the cursor.

lpvANDplane
Points to an array of bytes that contains the bit values for the AND mask of the
cursor. These can be the bits of a device-dependent monochrome bitmap.

Return Value

Comments

See Also

Create DC
#include <print.h>

CreateDC 83

lpvXORplane
Points to an array of bytes that contains the bit values for the XOR mask of the
cursor. These can be the bits of a device-dependent monochrome bitmap.

The return value is the handle of the cursor if the function is successful. Other
wise, it is NULL.

Then Width and nHeight parameters must specify a width and height supported by
the current display driver, since the system cannot create cursors of other sizes. An
application can determine the width and height supported by the display driver by
calling the GetSystemMetrics function and specifying the SM_CXCURSOR or
SM_CYCURSOR value.

Before terminating, an application must call the DestroyCursor function to free
any system resources associated with the cursor.

Createlcon, DestroyCursor, GetSystemMetrics, SetCursor

HDC CreateDC(lpszDriver, lpszDevice, lpszOutput, lpvlnitData)
LPCSTR lpszDriver; I* address of driver name */
LPCSTR lpszDevice; I* address of device name */
LPCSTR lpszOutput; I* address of filename or port name */
const void FAR* lpvlnitData; I* address of initialization data */

Parameters

The CreateDC function creates a device context for the given device.

lpszDriver
Points to a null-terminated string that specifies the MS-DOS filename (without
extension) of the device driver (for example, Epson).

lpszDevice
Points to a null-terminated string that specifies the name of the specific device
to be supported (for example, Epson FX-80). This parameter is used ifthe mod
ule supports more than one device.

lpszOutput
Points to a null-terminated string that specifies the MS-DOS filename or device
name for the physical output medium (file or output port).

84 Create DC

Return Value

Comments

lpvlnitData
Points to a DEVMODE structure that contains device-specific initialization in
formation for the device driver. The ExtDeviceMode function retrieves this
structure already filled in for a given device. The lpvlnitData parameter must
be NULL if the device driver is to use the default initialization (if any)
specified by the user through Windows Control Panel.

The DEVMODE structure has the following form:

#include <print.h>

typedef struct tagDEVMODE { /* dm */
char dmDeviceName[CCHDEVICENAMEJ;
UINT dmSpecVersion;
UINT dmDriverVersion;
UINT dmSize;
UINT dmDriverExtra;
DWORD dmFields;
int dmOrientation;
int dmPaperSize;
int dmPaperLength;
int dmPaperWidth;
int dmScale;
int dmCopies;
int dmDefaultSource;
int dmPrintQuality;
int dmColor;
int dmDuplex;
int dmYResolution;
int dmTTOption;

} DEVMODE;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the handle of the device context for the specified device if the
function is successful. Otherwise, it is NULL.

The PRINT.H header file is required if the DEVMODE structure is used.

Device contexts created by using the CreateDC function must be deleted by using
the DeleteDC function. All objects selected into the device context after it was
created should be selected out and replaced with the original objects before the
device context is deleted.

MS-DOS device names follow MS-DOS conventions; an ending colon(:) is rec
ommended, but optional. Windows strips the terminating colon so that a device
name ending with a colon is mapped to the same port as the same name without a
colon. The driver and port names must not contain leading or trailing spaces.

Example

CreateDialog 85

The following example uses the CreateDC function to create a device context for
a printer, using information returned by the PrintDlg function in a PRINTDLG
structure:

PRINTDLG
HOC
LPDEVNAMES
LPSTR
LPSTR
LPSTR

/*

pd;
hdc;
lpDevNames;
l pszDri verName;
lpszDeviceName;
lpszPortName;

* PrintDlg displays the common dialog box for printing. The
* PRINTDLG structure should be initialized with appropriate values.
*/

PrintDlg(&pd);
lpDevNames = (LPDEVNAMES) GlobalLock(pd.hDevNames);
lpszDriverName = (LPSTRJ lpDevNames + lpDevNames->wDriverDffset;
lpszDeviceName = (LPSTR) lpDevNames + lpDevNames->wDeviceOffset;
lpszPortName = (LPSTR) lpDevNames + lpDevNames->wDutputOffset;
GlobalUnlock(pd.hDevNames);
hdc = CreateDC(lpszDriverName, lpszDeviceName, lpszPortName, NULL);

See Also CreateIC, DeleteDC, ExtDeviceMode, PrintDlg

Create Dialog ~

HWND CreateDialog(hinst, lpszDlgTemp, hwndOwner, dlgprc)
HINSTANCE hinst; I* handle of application instance */
LPCSTR lpszDlgTemp; I* address of dialog box template name */
HWND hwndOwner; /* handle of owner window */
DLGPROC dlgprc; I* instance address of dialog box procedure */

Parameters

The CreateDialog function creates a modeless dialog box from a dialog box tem
plate resource.

hinst
Identifies an instance of the module whose executable file contains the dialog
box template.

lpszDlgTemp
Points to a null-terminated string that names the dialog box template.

hwndOwner
Identifies the window that owns the dialog box.

86 Create Dialog

Return Value

Comments

Example

See Also

dlgprc
Specifies the procedure-instance address of the dialog box procedure. The
address must be created by using the MakeProclnstance function. For more in
formation about the dialog box procedure, see the description of the Dialog
Proc callback function.

The return value is the handle of the dialog box that was created, if the function is
successful. Otherwise, it is NULL.

The CreateWindowEx function is called to create the dialog box. The dialog box
procedure then receives a WM_SETFONT message (if the DS_SETFONT style
was specified) and a WM_INITDIALOG message, and then the dialog box is dis
played.

The CreateDialog function returns immediately after creating the dialog box.

To make the dialog box appear in the owner window upon being created, use the
WS_ VISIBLE style in the dialog box template.

Use the DestroyWindow function to destroy a dialog box created by the Create
Dialog function.

A dialog box can contain up to 255 controls.

The following example creates a modeless dialog box:

HWND hwndDlgFindBox;
DLGPROC dlgprc (OLGPROC) MakeProcinstance(FindOlgProc, hinst);

hwndDlgFindBox = CreateOialog(hinst, "dlgFindBox", hwndParent, dlgprc);

CreateDialoglndirect, CreateDialoglndirectParam, CreateDialogParam,
DestroyWindow, MakeProclnstance

CreateDialoglndirect 87

CreateDialoglndirect CI!J
HWND CreateDialoglndirect(hinst, lpvDlgTmp, hwndOwner, dlgprc)
HINSTANCE hinst; I* handle of application instance */
const void FAR* lpvDlgTmp; /* address of dialog box template */
HWND hwndOwner; /* handle of owner window */
DLGPROC dlgprc; /* instance address of dialog box procedure */

The CreateDialoglndirect function creates a modeless dialog box from a dialog
box template in memory.

Parameters hinst

Return Value

Comments

Identifies the instance of the module that will create the dialog box.

lpvDlgTmp
Points to a global memory object that contains a dialog box template used to
create the dialog box. This template is in the form of a DialogBoxHeader struc
ture. For more information about this structure, see Chapter 7, "Resource For
mats Within Executable Files," in the Microsoft Windows Programmer's
Reference, Volume 4.

hwndOwner
Identifies the window that owns the dialog box.

dlgprc
Specifies the procedure-instance address of the dialog box procedure. The
address must be created by using the MakeProclnstance function. For more in
formation, see the description of the DialogProc callback function.

The return value is the window handle of the dialog box if the function is success
ful. Otherwise, it is NULL.

The CreateWindowEx function is called to create the dialog box. The dialog box
procedure then receives a WM_SETFONT message (if the DS_SETFONT style
was specified) and a WM_INITDIALOG message, and then the dialog box is dis
played.

The CreateDialoglndirect function returns immediately after creating the dialog
box.

To make the dialog box appear in the owner window upon being created, use the
WS_ VISIBLE style in the dialog box template.

Use the Destroy Window function to destroy a dialog box created by the Create
Dialoglndirect function.

A dialog box can contain up to 255 controls.

88 CreateDialoglndirectParam

Example

See Also

The following example uses the CreateDialoglndirect function to create a dialog
box from a dialog box template in memory:

DLGPROC dlgprc = (DLGPROC) MakeProclnstance(DialogProc, hinst);
HWND hdlg;
BYTE FAR* lpbDlgTemp;

/*Allocate global memory and build a dialog box template. */

hdlg = CreateDialogindirect(hinst, lpbDlgTemp, hwndParent, dlgprc);

CreateDialog, CreateDialoglndirectParam, CreateDialogParam, Destroy
Window, MakeProclnstance

CreateDialoglndirectParam
HWND CreateDialoglndirectParam(hinst, lpvDlgTmp, hwndOwner, dlgprc, lParamlnit)
HINSTANCE hinst; I* handle of application instance */
const void FAR* lpvDlgTmp; /*address of dialog box template */
HWND hwndOwner; I* handle of owner window */
DLGPROC dlgprc; I* instance address of dialog box procedure */
LPARAM lParamlnit; I* initialization value */

Parameters

The CreateDialoglndirectParam function creates a modeless dialog box from a
dialog box template in memory. Before displaying the dialog box, the function
passes an application-defined value to the dialog box procedure as the lParam pa
rameter of the WM_INITDIALOG message. An application can use this value to
initialize dialog box controls.

hinst
Identifies the instance of the module that will create the dialog box.

lpvDlgTmp
Points to a global memory object that contains a dialog box template used to
create the dialog box. This template is in the form of a DialogBoxHeader struc
ture. For more information about this structure, see Chapter 7, "Resource For
mats Within Executable Files," in the Microsoft Windows Programmer's
Reference, Volume 4.

Return Value

Comments

Example

CreateDialoglndirectParam 89

hwndOwner
Identifies the window that owns the dialog box.

dlgprc
Specifies the procedure-instance address of the dialog box procedure. The
address must be created by using the MakeProclnstance function. For more in
formation, see the description of the DialogProc callback function.

!Paramlnit
Specifies the value to pass to the dialog box when processing the
WM_INITDIALOG message.

The return value is the window handle of the dialog box if the function is success
ful. Otherwise, it is NULL.

The CreateWindowEx function is called to create the dialog box. The dialog box
procedure then receives a WM_SETFONT message (if the DS_SETFONT style
was specified) and a WM_INITDIALOG message, and then the dialog box is dis
played.

The CreateDialoglndirectParam function returns immediately after creating the
dialog box.

To make the dialog box appear in the owner window upon being created, use the
WS_ VISIBLE style in the dialog box template.

Use the DestroyWindow function to destroy a dialog box created by the Create
DialoglndirectParam function.

A dialog box can contain up to 255 controls.

The following example calls the CreateDialoglndirectParam function to create a
modeless dialog box from a dialog box template in memory. The example uses the
!Paramlnitparameter to send two initialization parameters, wlnitParml and wlnit
Parm2, to the dialog box procedure when the WM_INITDIALOG message is
being processed.

#define MEM_LENGTH 100
HGLOBAL hglbOlgTemp;
BYTE FAR* lpbDlgTemp;
DLGPROC dlgprc = (DLGPROC) MakeProcinstance(DialogProc, hinst);
HWND hwndDlg;

90 CreateDialogParam

See Also

/*Allocate a global memory object for the dialog box template. */

hglbDlgTemp GlobalAlloc(GHND, MEM_LENGTH);

. /* Build a DLGTEMPLATE structure in the memory object. */

lpbDlgTemp = Globallock(hglbDlgTemp);
hwndDlg = CreateDialogindirectParam(hinst, lpbDlgTemp,

hwndParent, dlgprc, 0);

CreateDialog, CreateDialoglndirect, CreateDialogParam, DestroyWindow,
MakeProclnstance

CreateDialogParam
HWND CreateDialogParam(hinst, lpszDlgTemp, hwndOwner, dlgprc, lParamlnit)
HINSTANCE hinst; /*handle of application instance */
LPCSTR lpszDlgTemp; /* address of name of dialog box template */
HWND hwndOwner; /*handle of owner window */
DLGPROC dlgprc; /* instance address of dialog box procedure *I
LPARAM lParamlnit; /*initialization value */

Parameters

The CreateDialogParam function creates a modeless dialog box from a dialog
box template resource. Before displaying the dialog box, the function passes an
application-defined value to the dialog box procedure as the lParam parameter of
the WM_INITDIALOG message. An application can use this value to initialize
dialog box controls.

hinst
Identifies an instance of the module whose executable file contains the dialog
box template.

lpszDlgTemp
Points to a null-terminated string that names the dialog box template.

hwndOwner
Identifies the window that owns the dialog box.

dlgprc
Specifies the procedure-instance address of the dialog box procedure. The
address must be created by using the MakeProclnstance function. For more in
formation about the dialog box procedure, see the description of the Dialog
Proc callback function.

Return Value

Comments

Example

See Also

CreateDIBitmap 91

lParamlnit
Specifies the value to pass to the dialog box when processing the
WM_INITDIALOG message.

The return value is the handle of the dialog box that was created, if the function is
successful. Otherwise, it is NULL.

The CreateWindowEx function is called to create the dialog box. The dialog box
procedure then receives a WM_SETFONT message (if the DS_SETFONT style
was specified) and a WM_INITDIALOG message, and then the dialog box is dis
played.

The CreateDialogParam function returns immediately after creating the dialog
box.

To make the dialog box appear in the owner window upon being created, use the
WS_ VISIBLE style in the dialog box template.

A dialog box can contain up to 255 controls.

The following example uses the CreateDialogParam function to create a mode
less dialog box. The function passes the application-defined flags MIXEDCASE
and WHOLEWORD, which will be received by the dialog box as the lParam pa
rameter of the WM_INITDIALOG message.

HWND hwndChangeBox;
DLGPRDC dlgprc = (DLGPROC) MakeProcinstance(ChangeDlgProc, hinst);

hwndChangeBox = CreateDialogParam(hinst, "dlgFindBox",
hwndParent, dlgprc, MIXEDCASE I WHOLEWORD);

CreateDialog, CreateDialoglndirect, CreateDialoglndirectParam, Destroy
Window

CreateDIBitmap
HBITMAP CreateDIBitmap(hdc, lpbmih, dwlnit, lpvBits, lpbmi,fnColorUse)
HDC hdc; I* handle of device context
BITMAPINFOHEADER FAR* lpbmih; I* address of structure with header
DWORD dw/nit; I* CBM_INIT to initialize bitmap
const void FAR* lpvBits; I* address of array with bitmap values
BITMAPINFO FAR* lpbmi; !* address of structure with bitmap data
UINT fnColorUse; !* RGB or palette indices

*/
*I
*I
*I
*I
*I

92 CreateDIBitmap

The CreateDIBitmap function creates a device-specific memory bitmap from a
device-independent bitmap (DIB) specification and optionally sets bits in the bit
map.

Parameters hdc
Identifies the device context.

lpbmih
Points to a BITMAPINFOHEADER structure that describes the size and for
mat of the device-independent bitmap. The BITMAPINFOHEADER structure
has the following form:

typedef struct tagBITMAPINFOHEADER {
DWORD biSize;
LONG bi Width;
LONG bi Height;
WORD bi Planes;
WORD biBitCount;
DWORD biCompression;
DWORD biSizeimage;
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrimportant;

} BITMAPINFOHEADER;

f* bmih */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

dwlnit
Specifies whether the memory bitmap is initialized. If this value is CBM_INIT,
the function initializes the bitmap with the bits specified by the lpvBits and
lpbmi parameters.

lpvBits
Points to a byte array that contains the initial bitmap values. The format of the
bitmap values depends on the biBitCount member of the BITMAPINFO
HEADER structure identified by the lpbmi parameter.

lpbmi
Points to a BITMAPINFO structure that describes the dimensions and color
format of the lpvBits parameter. The BITMAPINFO structure contains a BIT
MAPINFOHEADER structure and an array of RGBQUAD structures specify
ing the colors in the bitmap. The BITMAPINFO structure has the following
form:

typedef struct tagBITMAPINFO { /* bmi */
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[l];

} BITMAPINFO;

Return Value

Example

CreateDIBitmap 93

For a full description of the BITMAPINFO and RGBQUAD structures, see
the Microsoft Windows Programmer's Reference, Volume 3.

fnColorUse
Specifies whether the bmiColors member of the BITMAPINFO structure
contains explicit red, green, blue (RGB) values or indices into the currently
realized logical palette. The fnColorU se parameter must be one of the following
values:

Value

DIB_pAL_COLORS

DIB_RGB_COLORS

Meaning

The color table consists of an array of 16-bit indices into
the currently realized logical palette.

The color table contains literal RGB values.

The return value is the handle of the bitmap if the function is successful. Other
wise, it is NULL.

When it has finished using a bitmap created by CreateDIBitmap, an application
should select the bitmap out of the device context and then remove the bitmap by
using the DeleteObject function.

The following example initializes an array of bits and an array ofRGBQUAD
structures, allocates memory for the bitmap header and color table, fills in the re
quired members of a BITMAPINFOHEADER structure, and calls the CreateDl
Bitmap function to create a handle of the bitmap:

HANDLE hloc;
PBITMAPINFO pbmi;
HBITMAP hbm;

BYTE aBits[] 0x00, 0x00, 0x00, 0x00, /* bottom row */
0x01, 0xl2, 0x22, 0xll,
0x01, 0xl2, 0x22, 0xll,
0x02, 0x20, 0x00, 0x22,
0x02, 0x20, 0x20, 0x22,
0x02, 0x20, 0x00, 0x22,
0x01, 0xl2, 0x22, 0xll,
0x01, 0xl2, 0x22, 0xll } ; /* top row */

RGBQUAD argbq[] {{ 255, 0' 0' 0 }, /* blue */
{ 0' 255, 0' 0 }, /* green */
{ 0' 0, 255, 0 }} ; /* red */

hloc = LocalAlloc(LMEM_ZEROINIT I LMEM_MOVEABLE,
sizeof(BITMAPINFOHEADER) + (sizeof(RGBOUAD) * 16));

pbmi = (PBITMAPINFO) Locallock(hloc);

94 CreateDIBPatternBrush

See Also

pbmi->bmiHeader.biSize = sizeof(BITMAPINFOHEADER);
pbmi->bmiHeader.biWidth = 8;
pbmi->bmiHeader.biHeight = 8;
pbmi->bmiHeader.biPlanes = 1;
pbmi->bmiHeader.biBitCount = 4;
pbmi->bmiHeader.biCompression = BI_RGB;

memcpy(pbmi->bmiColors, argbq, sizeof(RGBOUAD) * 3);

hbm = CreateDIBitmap(hdclocal, (BITMAPINFOHEADER FAR*) pbmi, CBM_INIT,
aBits, pbmi, DIB_RGB_COLORS);

LocalFree(hloc);

. f* Use the bitmap handle. */

DeleteObject(hbm);

CreateBitmap, CreateBitmaplndirect, CreateCompatibleBitmap, Create
DiscardableBitmap, DeleteObject

CreateDIBPatternBrush
HBRUSH CreateDIBPatternBrush(hglbDIBPacked,fnColorSpec)
HGLOBAL hglbDIBPacked; /* handle of device-independent bitmap */

/ UINT fnColorSpec; / type of color table

Parameters

The CreateDIBPatternBrush function creates a brush that has the pattern
specified by a device-independent bitmap (DIB). The brush can subsequently be
selected for any device that supports raster operations.

hglbDJBPacked
Identifies a global memory object containing a packed device-independent bit
map. A packed DIB consists of a BITMAPINFO structure immediately fol
lowed by the array of bytes that define the pixels of the bitmap. The
BITMAPINFO structure has the following form:

typedef struct tagBITMAPINFO { /* bmi */
BITMAPINFOHEADER bmiHeader;
RGBOUAD bmiColors[l];

} BITMAPINFO;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

Return Value

Comments

Example

CreateDIBPatternBrush 95

fnColorSpec
Specifies whether the bmiColors member(s) of the BITMAPINFO structure
contain explicit red, green, blue (RGB) values or indices into the currently
realized logical palette. This parameter must be one of the following values:

Value

DIB]AL_COLORS

DIB_RGB_COLORS

Meaning

The color table consists of an array of 16-bit indices into
the currently realized logical palette.

The color table contains literal RGB values.

The return value is the handle of the brush if the function is successful. Otherwise,
it is NULL.

To retrieve the handle identified by the hglbDIBPacked parameter, an application
calls the GlobalAlloc function to allocate a global memory object and then fills
the memory with the packed DIB.

Bitmaps used as fill patterns should be 8 pixels by 8 pixels. If such a bitmap is
larger, Windows creates a fill pattern using only the bits corresponding to the first
8 rows and 8 columns of pixels in the upper-left corner of the bitmap.

When an application selects a two-color DIB pattern brush into a monochrome
device context, Windows ignores the colors specified in the DIB and instead dis
plays the pattern brush, using the current text and background colors of the device
context. Pixels mapped to the first color (at offset 0 in the DIB color table) of the
DIB are displayed using the text color, and pixels mapped to the second color (at
offset I in the color table) are displayed using the background color.

When it has finished using a brush created by CreateDIBPatternBrush, an appli
cation should remove the brush by using the DeleteObject function.

The following example retrieves a bitmap named DIBit from the application's re
source file, uses the bitmap to create a pattern brush in a call to the CreateDIB
PatternBrush function, selects the brush into a device context, and fills a
rectangle by using the new brush:

HRSRC hrsrc;
HGLOBAL hgl bl;
HBRUSH hbr, hbrOld;

hrsrc = FindResource(hinst, "DIBit", RT_ BITMAP);
hglbl = LoadResource(hinst, hrsrc);
LockResource(hgl bl);

96 CreateDiscardableBitmap

See Also

hbr = CreateDIBPatternBrush(hgl bl, DIB_RGB_COLORS);
hbrOld = SelectObject(hdc, hbr);
Rectangle(hdc, 10, 10, 100, 100);
Unl ockResource(hgl bl);

CreatePatternBrush, DeleteObject, FindResource, GetDeviceCaps, Global
Alloc, LoadResource, LockResource, SelectObject, SetBkColor, SetText
Color, UnlockResource

CreateDiscardableBitmap
HBITMAP CreateDiscardableBitmap(hdc, nWidth, nHeight)
HDC hdc; /* handle of device context */
int nWidth; /*bitmap width */
int nHeight; I* bitmap height */

The CreateDiscardableBitmap function creates a discardable bitmap that is com
patible with the given device. The bitmap has the same number of color planes or
the same bits-per-pixel format as the device. An application can select this bitmap
as the current bitmap for a memory device that is compatible with the one iden
tified by the hdc parameter.

Parameters hdc

Return Value

Comments

See Also

Identifies the device context.

nWidth
Specifies the width, in bits, of the bitmap.

nHeight
Specifies the height, in bits, of the bitmap.

The return value is the handle of the bitmap ifthe function is successful. Other
wise, it is NULL.

Windows can discard a bitmap created by this function only if an application has
not selected it into a device context. If Windows discards the bitmap when it is not
selected and the application later attempts to select it, the SelectObject function
will return zero.

Applications should use the DeleteObject function to delete the handle returned
by the CreateDiscardableBitmap function, even if Windows has discarded the
bitmap.

CreateBitmap, CreateBitmaplndirect, CreateDIBitmap, DeleteObject

Create El lipticRgnlndirect 97

CreateEllipticRgn ~

HRGN CreateEllipticRgn(nLeftRect, nTopRect, nRightRect, nBottomRect)
int nLeftRect; /* x-coordinate upper-left comer bounding rectangle */
int nTopRect; /* y-coordinate upper-left comer bounding rectangle */
int nRightRect; /* x-coordinate lower-right comer bounding rectangle */
int nBottomRect; /* y-coordinate lower-right comer bounding rectangle */

Parameters

Return Value

Comments

See Also

The CreateEllipticRgn function creates an elliptical region.

nLeftRect
Specifies the logical x-coordinate of the upper-left comer of the bounding
rectangle of the ellipse.

nTopRect
Specifies the logical y-coordinate of the upper-left comer of the bounding
rectangle of the ellipse.

nRightRect
Specifies the logical x-coordinate of the lower-right comer of the bounding
rectangle of the ellipse.

nBottomRect
Specifies the logical y-coordinate of the lower-right comer of the bounding
rectangle of the ellipse.

The return value is the handle of the region if the function is successful. Other
wise, it is NULL.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of
memory, whichever is smaller.

When it has finished using a region created by using the CreateEllipticRgn func
tion, an application should remove it by using the DeleteObject function.

CreateEllipticRgnlndirect, DeleteObject, PaintRgn

CreateEllipticRgnlndirect
HRGN CreateEllipticRgnlndirect(lprc)
const RECT FAR* lprc; /*address of structure with bounding rectangle */

The CreateEllipticRgnlndirect function creates an elliptical region.

98 CreateEllipticRgnlndirect

Parameters

Return Value

Comments

Example

See Also

lprc
Points to a RECT structure that contains the logical coordinates of the upper
left and lower-right corners of the bounding rectangle of the ellipse. The RECT
structure has the following form:

typedef struet tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the handle of the region if the function is successful. Other
wise, it is NULL.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of
memory, whichever is smaller.

When it has finished using a region created by CreateEllipticRgnlndirect, an ap
plication should remove the region by using the DeleteObject function.

The following example assigns values to the members of a RECT structure, uses
the CreateEllipticRgnlndirect function to create an elliptical region, selects the
region into a device context, and then uses the PaintRgn function to display the re
gion:

HOC hde;
RECT re;
HRGN hrgn;

SetReet(&re, 10, 10, 200, 50);

hrgn = CreateElliptieRgnlndireet(&re);
SeleetObjeet(hde, hrgn);
PaintRgn(hde, hrgn);

CreateEllipticRgn, DeleteObject, PaintRgn

CreateFont 99

Create Font ~

HFONT CreateFont(nHeight, n Width, nEscapement, nOrientation,fn Weight,jbltalic,jbUnderline,
jbStrikeO ut, jbChar Set, jbOutp utPrec is ion, jbClipP rec is ion, jbQuality, jb PitchAndF amity, lpszF ace)

int nHeight; I* font height */
int n Width; I* character width */
int nEscapement; /* escapement of line of text */
int nOrientation; /*angle of base line and x-axis */
int Jn Weight; /*font weight */
BYTEjbltalic; /*flag for italic attribute */
BYTEjbUnderline; /*flag for underline attribute */
BYTEjbStrikeOut; /*flag for strikeout attribute */
BYTEjbCharSet; /*character set */
BYTEjbOutputPrecision; I* output precision */
BYTEjbClipPrecision; I* clipping precision */
BYTEjbQuality; I* output quality */
BYTEjbPitchAndFamily; /*pitch and family */
LPCSTR lpszFace; I* address of typeface name */

Parameters

The CreateFont function creates a logical font that has the specified charac
teristics. The logical font can subsequently be selected as the font for any device.

nHeight
Specifies the requested height, in logical units, for the font. If this parameter is
greater than zero, it specifies the cell height of the font. If it is less than zero, it
specifies the character height of the font. (Character height is the cell height
minus the internal leading. Applications that specify font height in points typi
cally use a negative number for this member.) If this parameter is zero, the font
mapper uses a default height. The font mapper chooses the largest physical font
that does not exceed the requested size (or the smallest font, if all the fonts
exceed the requested size). The absolute value of the nHeight parameter must
not exceed 16,384 after it is converted to device units.

nWidth
Specifies the average width, in logical units, of characters in the font. If this pa
rameter is zero, the font mapper chooses a "closest match" default width for the
specified font height. (The default width is chosen by matching the aspect ratio
of the device against the digitization aspect ratio of the available fonts. The
closest match is determined by the absolute value of the difference.)

nEscapement
Specifies the angle, in tenths of degrees, between the escapement vector and the
x-axis of the screen surface. The escapement vector is the line through the
origins of the first and last characters on a line. The angle is measured counter
clockwise from the x-axis.

100 Create Font

nOrientation
Specifies the angle, in tenths of degrees, between the base line of a character
and the x-axis. The angle is measured in a counterclockwise direction from the
x-axis for left-handed coordinate systems (that is, MM_ TEXT, in which the
y-direction is down) and in a clockwise direction from the x-axis for right
handed coordinate systems (in which they-direction is up).

Jn Weight
Specifies the font weight. This parameter can be one of the following values:

Constant Value

FW _DONTCARE 0
FW_THIN 100
FW _EXTRALIGHT 200
FW _ULTRALIGHT 200
FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500
FW _SEMIBOLD 600
FW _DEMIBOLD 600
FW_BOLD 700
FW _EXTRABOLD 800
FW_ULTRABOLD 800
FW_BLACK 900
FW_HEAVY 900

The appearance of the font depends on the typeface. Some fonts have
only FW _NORMAL, FW _REGULAR, and FW _BOLD weights. If
FW _DONTCARE is specified, a default weight is used.

fbltalic
Specifies an italic font if set to nonzero.

fbUnderline
Specifies an underlined font if set to nonzero.

fbStrikeOut
Specifies a strikeout font if set to nonzero.

fbCharSet
Specifies the character set of the font. The following values are predefined:

Createfont 101

Constant Value

ANSI_CHARSET 0
DEFAULT_CHARSET 1

SYMBOL_CHARSET 2

SHIFTJIS_CHARSET 128

OEM_CHARSET 255

The DEFAULT_CHARSET value is not used by the font mapper. An applica
tion can use this value to allow the name and size of a font to fully describe the
logical font. If the specified font name does not exist, a font from any character
set can be substituted for the specified font; to avoid unexpected results, applica
tions should use the DEFAULT_CHARSET value sparingly.

The OEM character set is system-dependent.

Fonts with other character sets may exist in the system. If an application uses a
font with an unknown character set, it should not attempt to translate or inter
pret strings that are to be rendered with that font.

jbOutputPrecision
Specifies the requested output precision. The output precision defines how
closely the output must match the requested font's height, width, character
orientation, escapement, and pitch. This parameter can be one of the following
values:

OUT_ CHARACTER_PRECIS
OUT_DEFAULT_PRECIS
OUT _DEVICE_PRECIS
OUT _RASTER_PRECIS
OUT_STRING_PRECIS
OUT _STROKE_PRECIS
OUT_ TT _PRECIS

Applications can use the OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS,
and OUT_TT_PRECIS values to control how the font mapper chooses a font
when the system contains more than one font with a given name. For example,
if a system contained a font named Symbol in raster and TrueType form, speci
fying OUT_ TT _PRECIS would force the font mapper to choose the TrueType
version. (Specifying OUT_TT_PRECIS forces the font mapper to choose a
TrueType font whenever the specified font name matches a device or raster
font, even when there is no TrueType font of the same name.)

jbClipPrecision
Specifies the requested clipping precision. The clipping precision defines how
to clip characters that are partially outside the clipping region. This parameter
can be one of the following values:

CLIP_ CHARACTER_pRECIS
CLIP _DEFAULT_PRECIS
CLIP _ENCAPSULATE

102 Create Font

CLIP _LH_ANGLES
CLIP_MASK
CLIP _STROKE_PRECIS
CLIP _TT_ALWAYS

To use an embedded read-only font, applications must specify
CLIP _ENCAPSULATE.

To achieve consistent rotation of device, TrueType, and vector fonts, an applica
tion can use the OR operator to combine the CLIP _LH_ANGLES value with
any of the other jbClipPrecision values. If the CLIP _LH_ANGLES bit is set,
the rotation for all fonts is dependent on whether the orientation of the coordi
nate system is left-handed or right-handed. If CLIP _LH_ANGLES is not set,
device fonts always rotate counterclockwise, but the rotation of other fonts is
dependent on the orientation of the coordinate system. (For more information
about the orientation of coordinate systems, see the description of the
nOrientation parameter.)

jbQuality
Specifies the output quality of the font, which defines how carefully the
graphics device interface (GDI) must attempt to match the attributes of a logical
font to those of a physical font. This parameter can be one of the following
values:

Value

DEFAULT_QUALITY

DRAFT_QUALITY

PROOF _QUALITY

jbPitchAndF amily

Meaning

Appearance of the font does not matter.

Appearance of the font is less important than when the
PROOF _QUALITY value is used. For GDI raster fonts,
scaling is enabled. Bold, italic, underline, and strikeout
fonts are synthesized if necessary.

Character quality of the font is more important than
exact matching of the logical-font attributes. For GDI
raster fonts, scaling is disabled and the font closest in
size is chosen. Bold, italic, underline, and strikeout
fonts are synthesized if necessary.

Specifies the pitch and family of the font. The two low-order bits specify the
pitch of the font and can be one of the following values:

DEFAULT_PITCH
FIXED _PITCH
V ARIABLE_PITCH

Applications can set bit 2 (Ox04) of the lfPitchAndFamily member to choose a
TrueType font.

The four high-order bits specify the font family and can be one of the following
values:

Return Value

Comments

Example

Value

FF _DECORATIVE

FF _DONTCARE

FF_MODERN

FF_ROMAN

FF_SCRIPT

FF_SWISS

Meaning

Novelty fonts. Old English is an example.

Don't care or don't know.

Create Font 103

Fonts with constant stroke width, with or without serifs.
Pica, Elite, and Courier New® are examples.

Fonts with variable stroke width and with serifs. Times
New Roman® and New Century Schoolbook® are ex
amples.

Fonts designed to look like handwriting. Script and Cursive
are examples.

Fonts with variable stroke width and without serifs. MS®
Sans Serif is an example.

An application can specify a value for the jbPitchAndFamily parameter by
using the Boolean OR operator to join a pitch constant with a family constant.

Font families describe the look of a font in a general way. They are intended for
specifying fonts when the exact typeface requested is not available.

lpszFace
Points to a null-terminated string that specifies the typeface name of the font.
The length of this string must not exceed LF _F ACESIZE - 1. The EnumFont
Families function can be used to enumerate the typeface names of all currently
available fonts. If this parameter is NULL, GDI uses a device-dependent type
face.

The return value is the handle of the logical font if the function is successful.
Otherwise, it is NULL.

The CreateFont function creates the handle of a logical font. The font mapper
uses this logical font to find the closest match from the fonts available in GDI's
pool of physical fonts.

Applications can use the default settings for most of these parameters when creat
ing a logical font. The parameters that should always be given specific values are
nHeight and lpszFace. If nHeight and lpszFace are not set by the application, the
logical font that is created is device-dependent.

Fonts created by using the CreateFont function must be selected out of any
device context in which they were used and then removed by using the Delete
Object function.

The following example sets the mapping mode to MM_ TWIPS and then uses the
CreateFont function to create an 18-point logical font:

104 CreateFontlndirect

See Also

HFONT hfont, hfontOld;
int MapModePrevious, iPtSize 18;
PSTR pszFace = "MS Serif";

MapModePrevious = SetMapMode(hdc, MM_TWIPS);
hfont = CreateFont(-iPtSize * 20, 0, 0, 0, 0, f* specify pt size *f

0, 0, 0, 0, 0, 0, 0, 0, pszFace); /*and face name only *f

hfontOld = SelectObject(hdc, hfont);

TextOut(hdc, 100, -500, pszFace, strlen(pszFace));
SetMapMode(hdc, MapModePrevious);
SelectObject(hdc, hfontOld);
DeleteObject(hfont);

CreateFontlndirect, DeleteObject, EnumFontFamilies

Create Fontlnd ire ct
HFONT CreateFontlndirect(lpif)
const LOG FONT FAR* lplf; I* address of struct. with font attributes *I

Parameters

The CreateFontlndirect function creates a logical font that has the characteristics
given in the specified structure. The font can subsequently be selected as the cur
rent font for any device.

lplf
Points to a LOG FONT structure that defines the characteristics of the logical
font. The LOGFONT structure has the following form:

typedef struct tagLOGFONT /* lf */
int lfHeight;
int lfWidth;
int lfEscapement;
int lfOrientation;
int lfWeight;
BYTE lfitalic;
BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQuality;
BYTE lfPitchAndFamily;
BYTE l fFaceName[LF_ FACESIZEJ;

LOG FONT;

Return Value

Comments

Example

See Also

CreateFontlndirect 105

For a full description of this structure, see the Microsoft Windows Progrcim
mer' s Reference, Volume 3.

The return value is the handle of the logical font if the function is successful.
Otherwise, it is NULL.

The CreateFontlndirect function creates a logical font that has the characteristics
specified in the LOGFONT structure. When the font is selected by using the
SelectObject function, the graphics device interface (GDI) font mapper attempts
to match the logical font with an existing physical font. If it cannot find an exact
match for the logical font, the font mapper provides an alternative whose charac
teristics match as many of the requested characteristics as possible.

Fonts created by using the CreateFontlndirect function must be selected out of
any device context in which they were used and then removed by using the
DeleteObject function.

The following example uses the CreateFontlndirect function to retrieve the
handle of a logical font. The nPtSize and pszFace parameters are passed to the
function containing this code. The MulDiv and GetDeviceCaps functions are
used to convert the specified point size into the correct point size for the
MM_ TEXT mapping mode on the current device.

HFONT hfont, hfontOld;

PLOGFONT plf = (PLOGFONT) LocalAlloc(LPTR, sizeof(LOGFONT));

plf->lfHeight = -MulDiv(nPtSize, GetDeviceCaps(hdc, LOGPIXELSY), 72);
strcpy(plf->lfFaceName, pszFace);

hfont = CreateFontindirect(plf);

hfontOld = SelectObject(hdc, hfont);

TextOut(hdc, 10, 50, pszFace, strlen(pszFace));

LocalFree((HLOCAL) plf);
SelectObject(hdc, hfontOld);
DeleteObject(hfont);

CreateFont, DeleteObject

106 CreateHatchBrush

CreateHatchBrush
HBRUSH CreateHatchBrush(frzStyle, clrrej)
intfnStyle; /*hatch style of brush */

! COLORREF clrref; / color of brush

Parameters

Return Value

Comments

The CreateHatchBrush function creates a brush that has the specified hatched
pattern and color. The brush can then be selected for any device.

fnStyle
Specifies one of the following hatch styles for the brush:

Value

HS_BDIAGONAL

HS_CROSS

HS_DIAGCROSS

HS_FDIAGONAL

HS_HORIZONTAL

HS_ VERTICAL

clrref

Meaning

45-degree upward hatch (left to right)

Horizontal and vertical crosshatch

45-degree crosshatch

45-degree downward hatch (left to right)

Horizontal hatch

Vertical hatch

Specifies the foreground color of the brush (the color of the hatches).

The return value is the handle of the brush if the function is successful. Otherwise,
it is NULL.

When an application has finished using the brush created by the CreateHatch
Brush function, it should select the brush out of the device context and then delete
it by using the DeleteObject function.

The following illustration shows how the various hatch brushes appear when used
to fill a rectangle:

HS_HORIZONTAL HS_BDIAGONAL HS_FDIAGONAL

§ m ~
HS_ VERTICAL HS_CROSS HS_DIAGCROSS

D • •

Example

See Also

Create IC

Create IC 107

The following example creates a hatched brush with green diagonal hatch marks
and uses that brush to fill a rectangle:

HBRUSH hbr, hbrOld;

hbr = CreateHatchBrush(HS_FDIAGONAL, RGB(0, 255, 0));
hbrOld = SelectObject(hdc, hbrl;
Rectangle(hdc, 0, 0, 100, 100);

CreateBrushlndirect, CreateDIBPatternBrush, CreatePatternBrush,
CreateSolidBrush, DeleteObject, SelectObject

HDC CreatelC(lpszDriver, lpszDevice, lpszOutput, lpvlnitData)
LPCSTR lpszDriver; !*address of driver name */
LPCSTR lpszDevice; /* address of device name */
LPCSTR lpszOutput; /* address of filename or port name */
const void FAR* lpvlnitData; /*address of initialization data */

Parameters

The CreateIC function creates an information context for the specified device.
The information context provides a fast way to get information about the device
without creating a device context.

lpszDriver
Points to a null-terminated string that specifies the MS-DOS filename (without
extension) of the device driver (for example, EPSON).

lpszDevice
Points to a null-terminated string that specifies the name of the specific device
to be supported (for example, EPSON FX-80). This parameter is used ifthe
module supports more than one device.

lpszOutput
Points to a null-terminated string that specifies the MS-DOS filename or device
name for the physical output medium (file or port).

lpvlnitData
Points to a DEVMODE structure that contains, initially, device-specific infor
mation necessary to initialize the device driver. The ExtDeviceMode function
retrieves this structure filled in for a given device. The lpvlnitData parameter
must be NULL if the device driver is to use the default initialization informa
tion (if any) specified by the user through Windows Control Panel.

108 CreatelC

Return Value

Comments

Example

The DEVMODE structure has the following form:

#include <print.h>

typedef struct tagDEVMODE { /* dm */
char dmDeviceName[CCHDEVICENAME];
UINT dmSpecVersion;

}

UINT dmDriverVersion;
UINT dmSize;
UINT dmDriverExtra;
DWORD dmFields;
int dmOrientation;
int dmPaperSize;
int dmPaperlength;
int dmPaperWidth;
int dmScale;
int dmCopies;
int dmDefaultSource;
int dmPri ntQua l ity;
int dmColor;
int dmDuplex;
int dmYResolution;
int dmTTOption;

DEVMODE;

The return value is the handle of an information context for the given device if the
function is successful. Otherwise, it is NULL.

The PRINT.H header file is required ifthe DEVMODE structure is used.

MS-DOS device names follow MS-DOS conventions; an ending colon(:) is rec
ommended, but optional. Windows strips the terminating colon so that a device
name ending with a colon is mapped to the same port as would be the same name
without a colon.

The driver and port names must not contain leading or trailing spaces.

GDI output functions cannot be used with information contexts.

When it has finished using an information context created by CreateIC, an appli
cation should remove the information context by using the DeleteDC function.

The following example uses the CreateIC function to create an information con
text for the display and then uses the GetDCOrg function to retrieve the origin for
the information context:

HDC hdcIC;
DWORD dwOrigin;

hdcIC = CreateIC("DISPLAY", NULL, NULL, NULL);
dwOrigin = GetDCOrg(hdcICJ;

DeleteOC(hdcIC);

Createlcon 109

See Also CreateDC, DeleteDC, ExtDeviceMode

Create Icon []]]
HICON Createlcon(hinst, n Width, nHeight, bPlanes, bBitsPixel, lpvANDbits, lpvXORbits)
HINSTANCE hinst; !*handle of application instance */
int n Width; /* icon width */
int nHeight; /*icon height */
BYTE bPlanes; /* number of planes in XOR mask */
BYTE bBitsPixel; /*number of bits per pixel in XOR mask */
const void FAR* lpvANDbits; /*address of AND mask array */
const void FAR* lpvXORbits; /* address of XOR mask array */

Parameters

Return Value

The Createlcon function creates an icon that has the specified width, height,
colors, and bit patterns.

hinst
Identifies an instance of the module that will create the icon.

nWidth
Specifies the width, in pixels, of the icon.

nHeight
Specifies the height, in pixels, of the icon.

bPlanes
Specifies the number of planes in the XOR mask of the icon.

bBitsPixel
Specifies the number of bits per pixel in the XOR mask of the icon.

lpvANDbits
Points to an array of bytes that contains the bit values for the AND mask of the
icon. This array must specify a monochrome mask.

lpvXORbits
Points to an array of bytes that contains the bit values for the XOR mask of the
icon. These bits can be the bits of a monochrome or device-dependent color bit
map.

The return value is the handle of the icon if the function is successful. Otherwise,
it is NULL.

110 CreateMenu

Comments The nWidth and nHeightparameters must specify a width and height supported by
the current display driver, since the system cannot create icons of other sizes. An
application can determine the width and height supported by the display driver by
calling the GetSystemMetricsfunction, specifying the SM_CXICON or
SM_CYICON constant.

Before terminating, an application must call the Destroy Icon function to free sys
tem resources associated with the icon.

See Also Destroy Icon, GetSystemMetrics

Create Menu CI!J
HMENU CreateMenu(void)

Parameters

Return Value

Comments

Example

The CreateMenu function creates a menu. The menu is initially empty but can be
filled with menu items by using the AppendMenu or InsertMenu function.

This function has no parameters.

The return value is the handle of the newly created menu if the function is success
ful. Otherwise, it is NULL.

If the menu is not assigned to a window, an application must free system resources
associated with the menu before exiting. An application frees menu resources by
calling the DestroyMenu function. Windows automatically frees resources as
sociated with a menu that is assigned to a window.

The following example creates a main menu and a pop-up menu and associates the
pop-up menu with an item in the main menu:

HMENU hmenu;
HMENU hmenuPopup;

/* Create the main and pop-up menu handles. */

hmenu = CreateMenu();
hmenuPopup = CreatePopupMenu();

See Also

CreateMetaFile 111

/* Create the pop-up menu items. *./

AppendMenu(hmenuPopup, MF_ENABLED MF_STRING, IDM_NEW,
"&New");

AppendMenu(hmenuPopup, MF_ENABLED MF_STRING, IDM_SAVE,
"&Save");

AppendMenu(hmenuPopup, MF_ENABLED MF_STRING, IDM_SAVE_AS,
"&Save As");

/* Add the pop-up menu to the main menu. */

AppendMenu(hmenu, MF_ENABLED I MF_POPUP, (UINTJ hmenuPopup,
"&File");

AppendMenu, DestroyMenu, InsertMenu, SetMenu

CreateMetaFile
HDC CreateMetaFile(lpszFile)
LPCSTR lpszFile; /* address of metafile name */

Parameters

Return Value

Comments

Example

The CreateMetaFile function creates a metafile device context.

lpszFile
Points to a null-terminated string that specifies the MS-DOS filename of the
metafile to create. If this parameter is NULL, a device context for a memory
metafile is returned.

The return value is the handle of the metafile device context if the function is
successful. Otherwise, it is NULL.

When it has finished using a metafile device context created by CreateMetaFile,
an application should close it by using the CloseMetaFile function.

The following example uses the CreateMetaFile function to create the handle of a
device context for a memory metafile, draws a line in that device context, retrieves
a handle of the metafile by calling the CloseMetaFile function, plays the metafile
by using the PlayMetaFile function, and finally deletes the metafile by using the
DeleteMetaFile function:

HDC hdcMeta;
HMETAFILE hmf;

112 CreatePalette

See Also

hdcMeta = CreateMetaFileCNULL);
MoveToChdcMeta, 10, 10);
LineToChdcMeta, 100, 100);
hmf = CloseMetaFile(hdcMeta);
PlayMetaFileChdc, hmf);
DeleteMetaFileChmf);

DeleteMetaFile

Create Pa I ette
HPALETTE CreatePalette(lplgpl)
const LOGPALETTE FAR* lplgpl; !* address of LOGPALETTE structure */

Parameters

Return Value

Comments

Example

The CreatePalette function creates a logical color palette.

lplgpl
Points to a LOG PALETTE structure that contains information about the
colors in the logical palette. The LOGPALETTE structure has the following
form:

typedef struct tagLOGPALETTE { /* lgpl */
WORD pal Version;
WORD palNumEntries;
PALETTEENTRY palPalEntry[l];

LOGPALETTE;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the handle of the logical palette if the function is successful.
Otherwise, it is NULL.

When it has finished using a palette created by CreatePalette, an application
should remove the palette by using the DeleteObject function.

The following example initializes a LOGPALETTE structure and an array of
PALETTEENTRY structures, and then uses the CreatePalette function to re
trieve a handle of a logical palette:

#define NUMENTRIES 128
HPALETTE hpal;
PALETTEENTRY ape[NUMENTRIES];

See Also

CreatePatternBrush 113

plgpl = (LOGPALETTE*l LocalAlloc(LPTR,
sizeof(LOGPALETTE) + cColors * sizeof(PALETTEENTRYJ);

plgpl->palNumEntries = cColors;
plgpl->palVersion = 0x300;

for (i = 0, red= 0, green= 127, blue= 127; i < NUMENTRIES;
i++, red+= l, green+= 1, blue+= 1) {

}

ape[i].peRed =
plgpl->palPalEntry[i].peRed = LOBYTE(red);

ape[i].peGreen =
plgpl->palPalEntry[iJ.peGreen = LOBYTE(green);

ape[i].peBlue =
plgpl->palPalEntry[iJ.peBlue = LOBYTE(blue);

ape[iJ.peFlags =
plgpl->palPalEntry[i].peFlags = PC_RESERVED;

hp al = CreatePal ette(pl gpl);
LocalFree((HLOCALJ plgpll;

. /* Use the palette handle. */

DeleteObject(hpal);

DeleteObject

CreatePatternBrush
HBRUSH CreatePatternBrush(hbmp)
HBITMAP hbmp; /* handle of bitmap *I

Parameters

Return Value

Comments

The CreatePatternBrush function creates a brush whose pattern is specified by a
bitmap. The brush can subsequently be selected for any device that supports raster
operations.

hbmp
Identifies the bitmap.

The return value is the handle of the brush if the function is successful. Otherwise,
it is NULL.

The bitmap identified by the hbmp parameter is typically created by using the
CreateBitmap, CreateBitmaplndirect, CreateCompatibleBitmap, or Load
Bitmap function.

114 CreatePen

Example

See Also

Create Pen

Bitmaps used as fill patterns should be 8 pixels by 8 pixels. If the bitmap is larger,
Windows will use the bits corresponding to only the first 8 rows and 8 columns of
pixels in the upper-left corner of the bitmap.

An application can use the DeleteObject function to remove a pattern brush. This
does not affect the associated bitmap, which means the bitmap can be used to cre
ate any number of pattern brushes. In any case, when the brush is no longer
needed, the application should remove it by using DeleteObject.

A brush created by using a monochrome bitmap (one color plane, one bit per
pixel) is drawn using the current text and background colors. Pixels represented by
a bit set to 0 are drawn with the current text color, and pixels represented by a bit
set to 1 are drawn with the current background color.

The following example loads a bitmap named Pattern, uses the bitmap to create a
pattern brush in a call to the CreatePatternBrush function, selects the brush into
a device context, and fills a rectangle by using the new brush:

HBITMAP hbmp;
HBRUSH hbr, hbrOld;

hbmp = LoadBitmap(hinst, "Pattern");
hbr = CreatePatternBrush(hbmp);
hbrOld = SelectObject(hdc, hbr);
Rectangle(hdc, 10, 10, 100, 100);

CreateBitmap, CreateBitmaplndirect, CreateCompatibleBitmap, CreateDIB
PatternBrush, DeleteObject, GetDeviceCaps, LoadBitmap, SelectObject,
SetBkColor, SetTextColor

HPEN CreatePen(ftiPenStyle, n Width, clrrej)
intfnPenStyle; /*style of pen */
int n Width; /* width of pen *I
COLORREF clrref; !* color of pen */

The CreatePen function creates a pen having the specified style, width, and color.
The pen can subsequently be selected as the current pen for any device.

Parameters

Return Value

Comments

Create Pen 115

fnPenStyle
Specifies the pen style. This parameter can be one of the following values:

Value

PS_SOLID

PS_DASH

PS_DOT

PS_DASHDOT

PS_DASHDOTDOT

PS_NULL

PS_INSIDEFRAME

nWidth

Meaning

Creates a solid pen.

Creates a dashed pen. (Valid only when the pen width is 1.)

Creates a dotted pen. (Valid only when the pen width is 1.)

Creates a pen with alternating dashes and dots. (Valid only
when the pen width is 1.)

Creates a pen with alternating dashes and double dots.
(Valid only when the pen width is 1.)

Creates a null pen.

Creates a pen that draws a line inside the frame of closed
shapes produced by graphics device interface (GDI) out
put functions that specify a bounding rectangle (for ex
ample, the Ellipse, Rectangle, RoundRect, Pie, and
Chord functions). When this style is used with GDI out
put functions that do not specify a bounding rectangle (for
example, the LineTo function), the drawing area of the
pen is not limited by a frame.

Specifies the width, in logical units, of the pen. If this value is zero, the width in
device units is always one pixel, regardless of the mapping mode.

clrref
Specifies the color of the pen.

The return value is the handle of the pen if the function is successful. Otherwise, it
is NULL.

Pens whose width is greater than one pixel always have the PS_NULL,
PS_SOLID, or PS_INSIDEFRAME style.

If a pen has the PS_INSIDEFRAME style and a color that does not match a color
in the logical color table, the pen is drawn with a dithered color. The PS_SOLID
pen style cannot be used to create a pen with a dithered color. The
PS_INSIDEFRAME style is identical to PS_SOLID ifthe pen width is less than
or equal to 1.

When it has finished using a pen created by CreatePen, an application should re
move the pen by using the DeleteObject function.

116 CreatePenlndirect

Example

See Also

The following illustration shows how the various system pens appear when used
to draw a rectangle.

D PS_SOL/D

,-, PS_DASH
L - ______,
;-- - - - - - - - -,
' '
: : PS_DOT
' '
- - - - -,

! I PS_DASHDOT

,-----:
: i PS_DASHDOTDOT
I __ - ----

The following example uses the CreatePen function to create a solid blue pen 6
units wide, selects the pen into a device context, and then uses the pen to draw a
rectangle:

HPEN hpen, hpenOld;

hpen = CreatePen(PS_SOLID, 6, RGB(0, 0, 255));
hpenOld = SelectObject(hdc, hpen);

Rectangle(hdc, 10, 10, 100, 100);

SelectObject(hdc, hpenOld);
DeleteObject(hpen);

CreatePenlndirect, DeleteObject, Ellipse, Rectangle, RoundRect

CreatePenlndirect
HPEN CreatePenlndirect(lplgpn)
LOGPEN FAR* lplgpn; /*address of structure with pen data *I

Parameters

The CreatePenlndirect function creates a pen that has the style, width, and color
given in the specified structure.

lplgpn
Points to the LOGPEN structure that contains information about the pen. The
LOGPEN structure has the following form:

Return Value

Comments

Example

See Also

CreatePenlndirect 117

typedef struct tagLOGPEN f* lgpn */
UINT lopnStyle;
POINT lopnWidth;
COLORREF lopnColor;

LOGPEN;

For a full description of this structure, see the Microsoft Windows Prag ram
mer' s Reference, Volume 3.

The return value is the handle of the pen if the function is successful. Otherwise, it
is NULL.

Pens whose width is greater than 1 pixel always have the PS_NULL, PS_SOLID,
or PS_INSIDEFRAME style.

If a pen has the PS_INSIDEFRAME style and a color that does not match a color
in the logical color table, the pen is drawn with a dithered color. The
PS_INSIDEFRAME style is identical to PS_SOLID if the pen width is less than
or equal to 1.

When it has finished using a pen created by CreatePenlndirect, an application
should remove the pen by using the DeleteObject function.

The following example fills a LOGPEN structure with values defining a solid red
pen 10 logical units wide, uses the CreatePenlndirect function to create this pen,
selects the pen into a device context, and then uses the pen to draw a rectangle:

LOGPEN l p;
HPEN hpen, hpenOld;

lp.lopnStyle = PS_SOLID;
lp.lopnWidth.x = 10;
lp.lopnWidth.y = 0; /* y-dimension not used*/
lp.lopnColor = RGB(255, 0, 0);

hpen = CreatePenindirect(&lp);
hpenOld = SelectObject(hdc, hpen);
Rectangle(hdc, 10, 10, 100, 100);

CreatePen, DeleteObject

118 CreatePolygonRgn

CreatePolygonRgn
HRGN CreatePolygonRgn(lppt, cPoints,fnPolyFillMode)
const POINT FAR* lppt; /* address of array of points */

*I
*I

int cPoints; /* number of points in array
intfnPolyFillMode; /*polygon-filling mode

Parameters

Return Value

Comments

The CreatePolygonRgn function creates a polygonal region. The system closes
the polygon automatically, if necessary, by drawing a line from the last vertex to
the first.

lppt
Points to an array of POINT structures. Each structure specifies the x-coordi
nate and y-coordinate of one vertex of the polygon. The POINT structure has
the following form:

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

cPoints
Specifies the number of POINT structures in the array pointed to by the lppt pa
rameter.

fnPolyFillMode
Specifies the polygon-filling mode. This value may be either ALTERNATE or
WINDING.

The return value is the handle of the region if the function is successful. Other
wise, it is NULL.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of
memory, whichever is smaller.

When the polygon-filling mode is ALTERNATE, the system fills the area be
tween odd-numbered and even-numbered polygon sides on each scan line. That is,
the system fills the area between the first and second side, between the third and
fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in
which a figure was drawn to determine whether to fill an area. Each line segment
in a polygon is drawn in either a clockwise or a counterclockwise direction. When
ever an imaginary line drawn from an enclosed area to the outside of a figure
passes through a clockwise line segment, the system increments a count (increases

Example

See Also

CreatePolyPolygonRgn 119

it by one); when the line passes through a counterclockwise line segment, the sys
tem decrements the count. The area is filled if the count is nonzero when the line
reaches the outside of the figure.

When it has finished using a region created by CreatePolygonRgn, an application
should remove the region by using the DeleteObject function.

The following example fills an array of POINT structures with the coordinates of
a five-pointed star, uses this array in a call to the CreatePolygonRgn function,
selects the region into a device context, and then uses the PaintRgn function to
display the region:

HOC hdc;
HRGN hrgn;
POINT apts[5] {{ 200, 10 },

{ 300, 200 },
{ 100, 100 },
{ 300, 100 } ,
{ 100, 200 }} ;

hrgn = CreatePolygonRgn(apts,
sizeof(apts) I sizeof(POINT),
ALTERNATE);

SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);

/* array of points */
/* number of points *I
/* alternate mode */

CreatePolyPolygonRgn, DeleteObject, Polygon, SetPolyFillMode

CreatePolyPolygonRgn
HRGN CreatePolyPolygonRgn(lppt, lpnPolyCount, clntegers,fnPolyFillMode)
const POINT FAR* lppt; I* address of structure of points */
const int FAR* lpnPolyCount; I* address of array of vertex data */
int clntegers; I* number of integers in array */
intfnPolyFillMode; /*polygon-filling mode */

Parameters

The CreatePolyPolygonRgn function creates a region consisting of a series of
closed polygons. The polygons may be disjoint, or they may overlap.

lppt
Points to an array of POINT structures that define the vertices of the polygons.
Each polygon must be explicitly closed, because the system does not close
them automatically. The polygons are specified consecutively. The POINT
structure has the following form:

120 CreatePolyPolygonRgn

Return Value

Comments

Example

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

lpnPolyCount
Points to an array of integers. The first integer specifies the number of vertices
in the first polygon in the array pointed to by the lppt parameter, the second in
teger specifies the number of vertices in the second polygon, and so on.

clntegers
Specifies the total number of integers in the array pointed to by the lpnPoly
Count parameter.

fnPolyFillMode
Specifies the polygon-filling mode. This value may be either ALTERNATE or
WINDING.

The return value is the handle of the region if the function is successful. Other
wise, it is NULL.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of
memory, whichever is smaller.

When the polygon-filling mode is ALTERNATE, the system fills the area be
tween odd-numbered and even-numbered polygon sides on each scan line. That is,
the system fills the area between the first and second side, between the third and
fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in
which a figure was drawn to determine whether to fill an area. Each line segment
in a polygon is drawn in either a clockwise or a counterclockwise direction. When
ever an imaginary line drawn from an enclosed area to the outside of a figure
passes through a clockwise line segment, the system increments a count (increases
it by one); when the line passes through a counterclockwise line segment, the sys
tem decrements the count. The area is filled if the count is nonzero when the line
reaches the outside of the figure.

When it has finished using a region created by CreatePolyPolygonRgn, an appli
cation should remove the region by using the DeleteObject function.

The following example fills an array of POINT structures with the coordinates of
a five-pointed star and a rectangle, uses this array in a call to the CreatePoly
PolygonRgn function, selects the region into a device context, and then uses the
PaintRgn function to display the region:

See Also

HDC hdc;
HRGN hrgn;
int aVertices[2] = { 6, 5 };
POINT apts[ll] = {{ 200, 10 },

{ 300' 200 } '

CreatePopupMenu 121

{ 100, 100 }, /*Star figure, manually closed*/
{ 300, 100 },
{ 100, 200 },
{ 200, 10 },

10' 150 } '
350, 150 } '
350, 170 } ' /* Rectangle, manually closed */
10' 170 } '
10' 150 }} ;

hrgn = CreatePolyPolygonRgn(apts, /* array of points */
aVertices, /* array of vertices */
sizeof(aVertices) I sizeof(int), /*integers in vertex array*/
ALTERNATE); /*alternate mode */

SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);

CreatePolygonRgn, DeleteObject, PolyPolygon, SetPolyFillMode

CreatePopupMenu
HMENU CreatePopupMenu(void)

Parameters

Return Value

Comments

The CreatePopupMenu function creates an empty pop-up menu.

This function has no parameters.

The return value is the handle of the newly created menu if the function is success
ful. Otherwise, it is NULL.

An application adds items to the pop-up menu by calling the InsertMenu and
AppendMenu functions. The application can add the pop-up menu to an existing
menu or pop-up menu, or it can display and track selections on the pop-up menu
by calling the TrackPopupMenu function.

Before exiting, an application must free system resources associated with a pop-up
menu if the menu is not assigned to a window. An application frees a menu by
calling the DestroyMenu function.

122 CreateRectRgn

Example The following example creates a main menu and a pop-up menu, and associates
the pop-up menu with an item in the main menu:

See Also

HMENU hmenu;
HMENU hmenuPopup;

/* Create the main and pop-up menu handles. */

hmenu = CreateMenu();
hmenuPopup = CreatePopupMenu();

I* Create the pop-up menu items. *./

AppendMenu(hmenuPopup, MF_ ENABLED
"&New");

AppendMenu(hmenuPopup, MF_ ENABLED
"&Save");

AppendMenu(hmenuPopup, MF_ENABLED
"&Save As");

MF_STRING,

MF_STRING,

MF_STRING,

/* Add the pop-up menu to the main menu. */

IDM_ NEW,

IDM_SAVE,

IDM_SAVE_AS,

AppendMenu(hmenu, MF_ENABLED I MF_POPUP, (UINT) hmenuPopup,
"&File");

AppendMenu, CreateMenu, InsertMenu, SetMenu, TrackPopupMenu

CreateRectRgn
HRGN CreateRectRgn(nLeftRect, nTopRect, nRightRect, nBottomRect)
int nLeftRect; I* x-coordinate upper-left corner of region */
int nTopRect; I* y-coordinate upper-left corner of region */
int nRightRect; I* x-coordinate lower-right corner of region */
int nBottomRect; /* y-coordinate lower-right corner of region */

The CreateRectRgn function creates a rectangular region.

Parameters nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the region.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the region.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the region.

Return Value

Comments

Example

See Also

CreateRectRgnlndirect 123

nBottomReet
Specifies the logical y-coordinate of the lower-right corner of the region.

The return value is the handle of a rectangular region if the function is successful.
Otherwise, it is NULL.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of
memory, whichever is smaller.

When it has finished using a region created by CreateRectRgn, an application
should remove the region by using the DeleteObject function.

The following example uses the CreateRectRgn function to create a rectangular
region, selects the region into a device context, and then uses the PaintRgn func
tion to display the region:

HOC hdc;
HRGN hrgn;

hrgn = CreateRectRgn(10, 10, 110, 110);
SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);

CreateRectRgnlndirect, CreateRoundRectRgn, DeleteObject, PaintRgn

CreateRectRgnlndirect
HRGN CreateRectRgnlndirect(lpre)
const RECT FAR* !pre; /*address of structure with region *!

Parameters

The CreateRectRgnlndirect function creates a rectangular region by using a
RECT structure.

!pre
Points to a RECT structure that contains the logical coordinates of the upper
left and lower-right comers of the region. The RECT structure has the follow
ing form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

/* re */

124 CreateRoundRectRgn

Return Value

Comments

Example

See Also

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the handle of the rectangular region if the function is success
ful. Otherwise, it is NULL.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of
memory, whichever is smaller.

When it has finished using a region created by CreateRectRgnlndirect an appli
cation should remove the region by using the DeleteObject function.

The following example assigns values to the members of a RECT structure, uses
the CreateRectRgnlndirect function to create a rectangular region, selects the re
gion into a device context, and then uses the PaintRgn function to display the re
gion:

RECT re;
HRGN hrgn;

SetRectC&rc, 10, 10, 200, 50);

hrgn = CreateRectRgnlndirect(&rc);
SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);

CreateRectRgn, CreateRoundRectRgn, DeleteObject, PaintRgn

CreateRoundRectRgn
HRGN CreateRoundRectRgn(nLe.ftRect, nTopRect, nRightRect, nBottomRect, n WidthEllipse,

nHeightEllipse)
int nLeftRect;
int nTopRect;
int nRightRect;
int nBottomRect;
int n WidthEllipse;
int nHeightEllipse;

I* x-coordinate upper-left corner of region
I* y-coordinate upper-left corner of region
I* x-coordinate lower-right corner of region
/* y-coordinate lower-right corner of region
/* height of ellipse for rounded corners
/* width of ellipse for rounded corners

*/
*/
*/
*/
*/
*/

The CreateRoundRectRgn function creates a rectangular region with rounded
corners.

Parameters

Return Value

Comments

Example

See Also

CreateRoundRectRgn 125

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the region.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the region.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the region.

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the region.

n WidthEllipse
Specifies the width of the ellipse used to create the rounded corners.

nH eig htEllipse
Specifies the height of the ellipse used to create the rounded corners.

The return value is the handle of the region if the function is successful. Other
wise, it is NULL.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of
memory, whichever is smaller.

When it has finished using a region created by CreateRoundRectRgn, an applica
tion should remove the region by using the DeleteObject function.

The following example uses the CreateRoundRectRgn function to create a re
gion, selects the region into a device context, and then uses the PaintRgn function
to display the region:

HRGN hrgn;
int nEllipWidth = 10;
int nEllipHeight = 30;

hrgn = CreateRoundRectRgn(l0, 10, 110, 110,
nEll ipWidth, nEll ipHeight);

SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);

CreateRectRgn, CreateRectRgnlndirect, DeleteObject, PaintRgn

126 CreateScalablefontResource

CreateScalableFontResource
BOOL CreateScalableFontResource(fHidden, lpszResourceFile, lpszFontFile, lpszCurrentPath)
UINT fHidden; /* flag for read-only embedded font */
LPCSTR lpszResourceFile; /* address of filename of font resource */
LPCSTR lpszFontFile; /*address of filename of scalable font */
LPCSTR lpszCurrentPath; /* address of path to font file */

Parameters

Return Value

Comments

The CreateScalableFontResource function creates a font resource file for the
specified scalable font file.

fHidden
Specifies whether the font is a read-only embedded font. This parameter can be
one of the following values:

Value

0

Meaning

The font has read-write permission.

The font has read-only permission and should be hidden from other ap
plications in the system. When this flag is set, the font is not enumerated
by the EnumFonts or EnumFontFamilies function.

lpszResourceFile
Points to a null-terminated string specifying the name of the font resource file
that this function creates.

lpszFontFile
Points to a null-terminated string specifying the scalable font file this function
uses to create the font resource file. This parameter must specify either the
filename and extension or a full path and filename, including drive and
filename extension.

lpszCurrentPath
Points to a null-terminated string specifying either the path to the scalable font
file specified in the lpszFontFile parameter or NULL, if lpszFontFile specifies
a full path.

The return value is nonzero if the function is successful. Otherwise, it is zero.

An application must use the CreateScalableFontResource function to create a
font resource file before installing an embedded font. Font resource files for fonts
with read-write permission should use the .FOT filename extension. Font resource
files for read-only fonts should use a different extension (for example, .FOR) and
should be hidden from other applications in the system by specifying 1 for the
fHidden parameter. The font resource files can be installed by using the Add
FontResource function.

Example

CreateScalableFontResource 127

When the lpszFontFile parameter specifies only a filename and extension, the
lpszCurrentPath parameter must specify a path. When the lpszF ontFile parameter
specifies a full path, the lpszCurrentPath parameter must be NULL or a pointer to
NULL.

When only a filename and extension is specified in the lpszFontFile parameter and
a path is specified in the lpszCurrentPath parameter, the string in lpszFontFile is
copied into the .FOT file as the .TTF file that belongs to this resource. When the
AddFontResource function is called, the system assumes that the .TTF file has
been copied into the SYSTEM directory (or into the main Windows directory in
the case of a network installation). The .TTF file need not be in this directory
when the CreateScalableFontResource function is called, because the
lpszCurrentPath parameter contains the directory information. A resource created
in this manner does not contain absolute path information and can be used in any
Windows installation.

When a path is specified in the lpszFontFile parameter and NULL is specified in
the lpszCurrentPath parameter, the string in lpszFontFile is copied into the .FOT
file. In this case, when the AddFontResource function is called, the .TTF file
must be at the location specified in the lpszFontFile parameter when the Create
ScalableFontResource function was called; the lpszCurrentPath parameter is not
needed. A resource created in this manner contains absolute references to paths
and drives and will not work if the . TTF file is moved to a different location.

The CreateScalableFontResourcefunction supports only TrueType scalable
fonts.

The following example shows how to create a TrueType font file in the SYSTEM
directory of the Windows startup directory:

CreateScalableFontResource(0, "c:\\windows\\system\\font.fot'',
"font.ttr", "c:\\windows\\system");

AddFontResource("c:\\windows\\system\\font.fot");

The following example shows how to create a TrueType font file in a specified
directory:

CreateScalableFontResource(0, "c:\\windows\\system\\font.fot",
"c:\\fontdir\\font.ttr", NULL);

AddFontResource("c:\\windows\\system\\font.fot");

128 CreateScalableFontResource

See Also

The following example shows how to work with a standard embedded font:

H FONT hfont;

/* Extract .TTF file into C:\MYDIR\FONT.TTR. */

CreateScalableFontResource(0, "font.fat", "c:\\mydir\\font.ttr", NULL);

AddFontResource("font.fot");

hfont = CreateFont(.. ., CLIP_DEFAULT_PRECIS, .. ., "FONT");

/* Use the font. */

DeleteObject(hfont);

RemoveFontResource("font.fot");

/*Delete C:\MYDIR\FONT.FOT and C:\MYDIR\FONT.TTR. */

The following example shows how to work with a read-only embedded font:

HFONT hfont;

I* Extract.TTF file into C:\MYDIR\FONT.TTR. */

CreateScalableFontResource(l, "font.for", "c:\\mydir\\font.ttr", NULL);

AddFontResource("font. for");

hfont = CreateFont(... , CLIP_EMBEDDED, ... ,"FONT");

/* Use the font. */

DeleteObject(hfont);

RemoveFontResource("font.for");

/*Delete C:\MYDIR\FONT.FOR and C:\MYDIR\FONT.TTR. */

AddFontResource

CreateSolidBrush 129

CreateSolidBrush CI!J
HBRUSH CreateSolidBrush(clrrej)
COLORREF clrref; /* brush color */

Parameters

Return Value

Comments

Example

See Also

The CreateSolidBrush function creates a brush that has a specified solid color.
The brush can subsequently be selected as the current brush for any device.

clrref
Specifies the color of the brush.

The return value is the handle of the brush if the function is successful. Otherwise,
it is NULL.

When an application has finished using the brush created by CreateSolidBrush, it
should select the brush out of the device context and then remove it by using the
DeleteObject function.

The following example uses the CreateSolidBrush function to create a green
brush, selects the brush into a device context, and then uses the brush to fill a
rectangle:

HBRUSH hbrOld;
HBRUSH hbr;

hbr = CreateSolidBrush(RGB(0, 255, 0));
hbrOld = SelectObject(hdc, hbr);
Rectangle(hdc, 10, 10, 100, 100);

CreateBrushlndirect, CreateDIBPatternBrush, CreateHatchBrush,
CreatePatternBrush, DeleteObject

130 CreateWindow

Create Window
HWND CreateWindow(lpszClassName, lpszWindowName, dwStyle, x, y, nWidth, nHeight,

hwndParent, hmenu, hinst, lpvParam)
LPCSTR lpszClassName; I* address of registered class name */
LPCSTR lpszWindowName; I* address of window text *!
DWORD dwStyle; I* window style */
int x; /*horizontal position of window */
int y; /*vertical position of window */
int nWidth; /*window width */
int nHeight; /*window height */
HWND hwndParent; /* handle of parent window */
HMENU hmenu; I* handle of menu or child-window identifier */
HINSTANCE hinst; /*handle of application instance */
void FAR* lpvParam; /* address of window-creation data */

Parameters

The Create Window function creates an overlapped, pop-up, or child window.
The Create Window function specifies the window class, window title, window
style, and (optionally) the initial position and size of the window. The Create
Window function also specifies the window's parent (if any) and menu.

lpszClassName
Points to a null-terminated string specifying the window class. The class name
can be any name registered with the RegisterClass function or any of the prede
fined control-class names. (See the following Comments section for a complete
list.)

lpszWindowName
Points to a null-terminated string that represents the window name.

dwStyle

x

Specifies the style of window being created. This parameter can be a combina
tion of the window styles and control styles given in the following Comments
section.

Specifies the initial x-position of the window. For an overlapped or pop-up win
dow, the x parameter is the initial x-coordinate of the window's upper-left
corner, in screen coordinates. For a child window, xis the x-coordinate of the
upper-left corner of the window in the client area of its parent window.

If this value is CW _USEDEFAULT, Windows selects the default
position for the window's upper-left corner and ignores they parameter.
CW _USEDEFAULT is valid only for overlapped windows. If
CW _USEDEFAULT is specified for a non-overlapped window, the x
and y parameters are set to 0.

y

Create Window 131

Specifies the initial y-position of the window. For an overlapped window, the
y parameter is the initial y-coordinate of the window's upper-left corner. For a
pop-up window, y is they-coordinate, in screen coordinates, of the upper-left
corner of the pop-up window. For list-box controls, y is they-coordinate of the
upper-left corner of the control's client area. For a child window, y is the
y-coordinate of the upper-left corner of the child window. All of these coordi
nates are for the window, not the window's client area.

If an overlapped window is created with the WS_ VISIBLE style and the x pa
rameter set to CW _USEDEFAULT, Windows ignores they parameter.

nWidth
Specifies the width, in device units, of the window. For overlapped windows,
the n Width parameter is either the window's width (in screen coordinates) or
CW _USEDEFAULT. IfnWidth is CW _USEDEFAULT, Windows selects a de
fault width and height for the window (the default width extends from the ini
tial x-position to the right edge of the screen, and the default height extends
from the initial y-position to the top of the icon area). CW _USEDEFAULT is
valid only for overlapped windows. lfCW _USEDEFAULT is specified in
n Width for a non-overlapped window, n Width and nHeight are set to 0.

nHeight
Specifies the height, in device units, of the window. For overlapped windows,
the nHeight parameter is the window's height in screen coordinates. If the
n Width parameter is CW _USEDEFAULT, Windows ignores nHeight.

hwndParent
Identifies the parent or owner window of the window being created. A valid
window handle must be supplied when creating a child window or an owned
window. An owned window is an overlapped window that is destroyed when its
owner window is destroyed, hidden when its owner is minimized, and that is al
ways displayed on top of its owner window. For pop-up windows, a handle can
be supplied but is not required. If the window does not have a parent window or
is not owned by another window, the hwndParent parameter must be set to
HWND _DESKTOP.

hmenu
Identifies a menu or a child window. This parameter's meaning depends on the
window style. For overlapped or pop-up windows, the hmenu parameter identi
fies the menu to be used with the window. It can be NULL, if the class menu is
to be used. For child windows, hmenu identifies the child window and is an in
teger value that is used by a dialog box control to notify its parent of events
(such as the EN_HSCROLL message). The child window identifier is deter
mined by the application and should be unique for all child windows with the
same parent window.

hinst
Identifies the instance of the module to be associated with the window.

132 Create Window

Return Value

Comments

lpvParam
Points to a value that is passed to the window through the CREATESTRUCT
structure referenced by the lParam parameter of the WM_ CREATE message. If
an application is calling Create Window to create a multiple document inter
face (MDI) client window, lpvParam must point to a CLIENTCREATE
STRUCT structure. The CREATESTRUCT structure has the following form:

typedef struct tagCREATESTRUCT {
void FAR* lpCreateParams;
HINSTANCE hinstance;
HMENU hMenu;
HWND hwndParent;
int cy;
int ex;
int y;
int x;
LONG style;
LPCSTR lpszName;
LPCSTR lpszClass;
DWORD dwExStyle;

CREATESTRUCT;

The CLIENTCREATESTRUCT structure has the following form:

typedef struct tagCLIENTCREATESTRUCT { /* ccs *f
HANDLE hWindowMenu;
UINT idFirstChild;

CLIENTCREATESTRUCT;

For a full description of these two structures, see the Microsoft Windows Pro
grammer's Reference, Volume 3.

The return value is the handle of the new window if the function is successful.
Otherwise, it is NULL.

For overlapped, pop-up, and child windows, the Create Window function sends
WM_ CREATE, WM_GETMINMAXINFO, and WM_NCCREATE messages to
the window. If the WS_ VISIBLE style is specified, Create Window sends the win
dow all the messages required to activate and show the window.

If the window style specifies a title bar, the window title pointed to by the
lpszWindowName parameter is displayed in the title bar. When using Create
Window to create controls such as buttons, check boxes, and edit controls, use the
lpszWindowName parameter to specify the text of the control.

Before returning, the Create Window function sends a WM_ CREATE message to
the window procedure.

Create Window 133

Following are the predefined control classes an application can specify in the
lpszClassName parameter:

Class

BUTTON

COMBOBOX

EDIT

LISTBOX

Meaning

Designates a small rectangular child window that represents a but
ton the user can tum on or off by clicking. Button controls can be
used alone or in groups, and can either be labeled or appear without
text. Button controls typically change appearance when the user
clicks them.

Designates a control consisting of a list box and a selection field
similar to an edit control. The list box may be displayed at all times
or may be dropped down when the user selects a pop-up list box
next to the selection field.

Depending on the style of the combo box, the user can or cannot
edit the contents of the selection field. If the list box is visible,
typing characters into the selection box will cause the first list box
entry that matches the characters typed to be highlighted. Con
versely, selecting an item in the list box displays the selected text in
the selection field.

Designates a rectangular child window in which the user can type
text from the keyboard. The user selects the control, and gives it the
input focus by clicking it or moving to it by pressing the TAB key.
The user can type text when the control displays a flashing caret.
The mouse can be used to move the cursor and select characters to
be replaced, or to position the cursor for inserting characters. The
BACKSPACE key can be used to delete characters.

Edit controls use the variable-pitch System font and display charac
ters from the Windows character set. Applications compiled to run
with earlier versions of Windows display text with a fixed-pitch Sys
tem font unless they have been marked by the Windows 3.0 MARK
utility (with the MEMORY FONT option specified). An applica
tion can also send the WM_SETFONT message to the edit control
to change the default font.

Edit controls expand tab characters into as many space characters as
are required to move the cursor to the next tab stop. Tab stops are as
sumed to be at every eighth character position.

Designates a list of character strings. This control is used whenever
an application must present a list of names, such as filenames, from
which the user can choose. The user can select a string by pointing
to it and clicking. When a string is selected, it is highlighted and a
notification message is passed to the parent window. A vertical or
horizontal scroll bar can be used with a list box control to scroll lists
that are too long for the control window. The list box automatically
hides or shows the scroll bar as needed.

134 CreateWindow

Class

MDI CLIENT

SCROLLBAR

STATIC

Meaning

Designates an MDI client window. The MDI client window receives
messages that control the MDI application's child windows. The rec
ommended style bits are WS_CLIPCHILDREN and WS_CHILD.
To create a scrollable MDI client window that allows the user to
scroll MDI child windows into view, an application can also use the
WS_HSCROLL and WS_ VSCROLL styles.

Designates a rectangle that contains a scroll box (also called a
"thumb") and has direction arrows at both ends. The scroll bar sends
a notification message to its parent window whenever the user clicks
the control. The parent window is responsible for updating the posi
tion, if necessary. Scroll bar controls have the same appearance and
function as scroll bars used in ordinary windows. Unlike scroll bars,
however, scroll bar controls can be positioned anywhere in a win
dow and used whenever needed to provide scrolling input for a
window.

The scroll bar class also includes size box controls (Maximize and
Minimize buttons). These controls are small rectangles that the user
can click to change the size of the window.

Designates a simple text field, box, or rectangle that can be used to
label, box, or separate other controls. Static controls take no input
and provide no output.

Following are the window styles an application can specify in the dwStyle
parameter.

Style

MDIS_ALLCHILDSTYLES

WS_BORDER

WS_CAPTION

WS_CHILD

WS_CHILDWINDOW

WS_CLIPCHILDREN

Meaning

Creates an MDI child window that can have any
combination of window styles. When this style is
not specified, an MDI child window has the
WS_MINIMIZE, WS_MAXIMIZE,
WS_HSCROLL, and WS_ VSCROLL styles
as default settings.

Creates a window that has a border.

Creates a window that has a title bar (implies the
WS_BORDER style). This style cannot be used
with the WS_DLGFRAME style.

Creates a child window. Cannot be used with the
WS_POPUP style.

Same as the WS_CHILD style.

Excludes the area occupied by child windows
when drawing within the parent window. Used
when creating the parent window.

Style

WS_CLIPSIBLINGS

WS_DISABLED

WS_DLGFRAME

WS_GROUP

WS_HSCROLL

WS_MAXIMIZE

WS_MAXIMIZEBOX

WS_MINIMIZE

WS_MINIMIZEBOX

WS_OVERLAPPED

WS_OVERLAPPEDWINDOW

WS_POPUP

ws_poPUPWINDOW

WS_SYSMENU

CreateWindow 135

Meaning

Clips child windows relative to each other; that is,
when a particular child window receives a paint
message, the WS_CLIPSIBLINGS style clips all
other overlapped child windows out of the
region of the child window to be updated. (If
WS_CLIPSIBLINGS is not specified and child
windows overlap, it is possible, when drawing
within the client area of a child window, to draw
within the client area of a neighboring child win
dow.) For use with the WS_CHILD style only.

Creates a window that is initially disabled.

Creates a window with a double border but no title.

Specifies the first control of a group of controls in
which the user can move from one control to the
next by using the arrow keys. All controls defined
with the WS_GROUP style after the first control
belong to the same group. The next control with
the WS_GROUP style ends the style group and
starts the next group (that is, one group ends
where the next begins). Only dialog boxes use this
style.

Creates a window that has a horizontal scroll bar.

Creates a window of maximum size.

Creates a window that has a Maximize button.

Creates a window that is initially minimized. For
use with the WS_OVERLAPPED style only.

Creates a window that has a Minimize button.

Creates an overlapped window. An overlapped
window has a title and a border.

Creates an overlapped window having the
WS_OVERLAPPED, WS_CAPTION,
WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX
styles.

Creates a pop-up window. Cannot be used with the
WS_CHILD style.

Creates a pop-up window that has the
WS_BORDER, ws_poPUP, and
WS_SYSMENU styles. The WS_CAPTION style
must be combined with the
WS_POPUPWINDOW style to make the System
menu visible.

Creates a window that has a System-menu box in
its title bar. Used only for windows with title bars.

136 CreateWindow

Style

WS_TABSTOP

WS_THICKFRAME

WS_VISIBLE

WS_VSCROLL

Meaning

Specifies one of any number of controls through
which the user can move by using the TAB key.
The TAB key moves the user to the next control
specified by the WS_TABSTOP style. Only dialog
boxes use this style.

Creates a window with a thick frame that can be
used to size the window.

Creates a window that is initially visible. This ap
plies to overlapped, child, and pop-up windows.
For overlapped windows, they parameter is used
as a ShowWindow function parameter.

Creates a window that has a vertical scroll bar.

Following are the button styles (in the BUTTON class) that an application can
specify in the dwStyle parameter:

Value

BS_3STATE

BS_AUT03STATE

BS_AUTOCHECKBOX

BS_AUTORADIOBUTTON

BS_CHECKBOX

BS_DEFPUSHBUTTON

BS_GROUPBOX

Meaning

Creates a button that is the same as a check box, ex
cept that the box can be grayed (dimmed) as well as
checked. The grayed state is used to show that the
state of a check box is not determined.

Creates a button that is the same as a three-state
check box, except that the box changes its state when
the user selects it. The state cycles through checked,
grayed, and normal.

Creates a button that is the same as a check box, ex
cept that an X appears in the check box when the user
selects the box; the X disappears (is cleared) the next
time the user selects the box.

Creates a button that is the same as a radio button, ex
cept that when the user selects it, the button automat
ically highlights itself and clears (removes the
selection from) any other buttons in the same group.

Creates a small square that has text displayed to its
right (unless this style is combined with the
BS_LEFTTEXT style).

Creates a button that has a heavy black border. The
user can select this button by pressing the ENTER key.
This style is useful for enabling the user to quickly
select the most likely option (the default option).

Creates a rectangle in which other controls can be
grouped. Any text associated with this style is dis
played in the rectangle's upper-left corner.

Value

BS_LEFTTEXT

BS_OWNERDRAW

BS_pUSHBUTTON

BS_RADIOBUTTON

Create Window 137

Meaning

Places text on the left side of the radio button or
check box when combined with a radio button or
check box style.

Creates an owner-drawn button. The owner window
receives a WM_MEASUREITEM message when the
button is created, and it receives a
WM_DRAWITEM message when a visual aspect of
the button has changed. The BS_OWNERDRAW
style cannot be combined with any other button
styles.

Creates a push button that posts a WM_ COMMAND
message to the owner window when the user selects
the button.

Creates a small circle that has text displayed to its
right (unless this style is combined with the
BS_LEFTTEXT style). Radio buttons are usually
used in groups of related but mutually exclusive
choices.

Following are the combo box styles (in the COMBOBOX class) that an applica
tion can specify in the dwStyle parameter:

Style

CBS_AUTOHSCROLL

CBS_DISABLENOSCROLL

CBS_DROPDOWN

CBS_DROPDOWNLIST

CBS_HASSTRINGS

Description

Automatically scrolls the text in the edit con
trol to the right when the user types a character
at the end of the line. If this style is not set,
only text that fits within the rectangular bound
ary is allowed.

Shows a disabled vertical scroll bar in the list
box when the box does not contain enough
items to scroll. Without this style, the scroll bar
is hidden when the list box does not contain
enough items.

Similar to CBS_SIMPLE, except that the list
box is not displayed unless the user selects an
icon next to the edit control.

Similar to CBS_DROPDOWN, except that the
edit control is replaced by a static text item that
displays the current selection in the list box.

Specifies that an owner-drawn combo box con
tains items consisting of strings. The combo
box maintains the memory and pointers for
the strings so the application can use the
CB_GETLBTEXT message to retrieve the
text for a particular item.

138 Create Window

Style Description

CBS_NOINTEGRALHEIGHT Specifies that the size of the combo box is ex
actly the size specified by the application when
it created the combo box. Normally, Windows
sizes a combo box so that the combo box does
not display partial items.

CBS_OEMCONVERT Converts text entered in the combo-box edit
control from the Windows character set to the
OEM character set and then back to the Win
dows set. This ensures proper character conver
sion when the application calls the
AnsiToOem function to convert a Windows
string in the combo box to OEM characters.
This style is most useful for combo boxes that
contain filenames and applies only to combo
boxes created with the CBS_SIMPLE or
CBS_DROPDOWN styles.

CBS_OWNERDRAWFIXED Specifies that the owner of the list box is re
sponsible for drawing its contents and that the
items in the list box are all the same height.
The owner window receives a
WM_MEASUREITEM message when the
combo box is created and a WM_DRAWITEM
message when a visual aspect of the combo
box changes.

CBS_OWNERDRAWVARIABLE Specifies that the owner of the list box is re
sponsible for drawing its contents and that the
items in the list box are variable in height. The
owner window receives a WM_MEASURE
ITEM message for each item in the combo
box when the combo box is created and a
WM_DRAWITEM message when a visual
aspect of the combo box changes.

CBS_SIMPLE

CBS_SORT

Displays the list box at all times. The current
selection in the list box is displayed in the edit
control.

Automatically sorts strings entered into the list
box.

Following are the edit control styles (in the EDIT class) that an application can
specify in the dwStyle parameter:

Style

ES_AUTOHSCROLL

Meaning

Automatically scrolls text to the right by 10 characters when
the user types a character at the end of the line. When the
user presses the ENTER key, the control scrolls all text back
to position zero.

Style

ES_AUTOVSCROLL

ES_CENTER

ES_LEFT

ES_LOWERCASE

ES_MULTILINE

ES_NOHIDESEL

ES_OEMCONVERT

CreateWindow 139

Meaning

Automatically scrolls text up one page when the user
presses ENTER on the last line.

Centers text in a multiline edit control.

Left aligns text.

Converts all characters to lowercase as they are typed into
the edit control.

Designates a multiline edit control. (The default is single
line edit control.)

When a multiline edit control is in a dialog box, the default
response to pressing the ENTER key is to activate the default
button. To use the ENTER key as a carriage return, an appli
cation should use the ES_ WANTRETURN style.

When the multiline edit control is not in a dialog box and
the ES_AUTOVSCROLL style is specified, the edit control
shows as many lines as possible and scrolls vertically when
the user presses the ENTER key. If ES_AUTOVSCROLL
is not specified, the edit control shows as many lines as
possible and beeps if the user presses ENTER when no more
lines can be displayed.

If the ES_AUTOHSCROLL style is specified, the multiline
edit control automatically scrolls horizontally when the
caret goes past the right edge of the control. To start a new
line, the user must press ENTER. If ES_AUTOHSCROLL is
not specified, the control automatically wraps words to the
beginning of the next line when necessary. A new line is
also started if the user presses ENTER. The position of the
wordwrap is determined by the window size. If the window
size changes, the wordwrap position changes and the text is
redisplayed.

Multiline edit controls can have scroll bars. An edit control
with scroll bars processes its own scroll bar messages. Edit
controls without scroll bars scroll as described in the pre
vious two paragraphs and process any scroll messages sent
by the parent window.

Negates the default behavior for an edit control. The default
behavior is to hide the selection when the control loses the
input focus and invert the selection when the control re
ceives the input focus.

Converts text entered in the edit control from the Windows
character set to the OEM character set and then back to the
Windows set. This ensures proper character conversion
when the application calls the AnsiToOem function to con
vert a Windows string in the edit control to OEM characters.
This style is most useful for edit controls that contain
filenames.

140 Create Window

Style

ES_PASSWORD

ES_READONLY

ES_RIGHT

ES_UPPERCASE

ES_ WANTRETURN

Meaning

Displays all characters as an asterisk (*) as they are typed
into the edit control. An application can use the
EM_SETPASSWORDCHAR message to change the charac
ter that is displayed.

Prevents the user from typing or editing text in the edit con
trol.

Right aligns text in a multiline edit control.

Converts all characters to uppercase as they are typed into
the edit control.

Specifies that a carriage return be inserted when the user
presses the ENTER key while entering text into a multiline
edit control in a dialog box. If this style is not specified,
pressing the ENTER key has the same effect as pressing the
dialog box's default push button. This style has no effect on
a single-line edit control.

Following are the list box styles (in the LISTBOX class) that an application can
specify in the dwStyle parameter:

Style

LBS_DISABLENOSCROLL

LBS_EXTENDEDSEL

LBS_HASSTRINGS

LBS_MULTICOLUMN

LBS_MULTIPLESEL

Meaning

Shows a disabled vertical scroll bar for the list
box when the box does not contain enough
items to scroll. If this style is not specified, the
scroll bar is hidden when the list box does not
contain enough items.

Allows multiple items to be selected by using
the SHIFT key and the mouse or special key
combinations.

Specifies that a list box contains items con
sisting of strings. The list box maintains the
memory and pointers for the strings so the ap
plication can use the LB_GETTEXT message
to retrieve the text for a particular item. By de
fault, all list boxes except owner-drawn list
boxes have this style. An application can create
an owner-drawn list box either with or without
this style.

Specifies a multicolumn list box that is scrolled
horizontally. The LB_SETCOLUMNWIDTH
message sets the width of the columns.

Turns string selection on or off each time the
user clicks or double-clicks the string. Any
number of strings can be selected

Style

LBS_NOINTEGRALHEIGHT

LBS_NOREDRAW

LBS_NOTIFY

LBS_OWNERDRAWFIXED

LBS_ OWNERDRAWVARIABLE

LBS_SORT

LBS_STANDARD

LBS_USETABSTOPS

CreateWindow 141

Meaning

Specifies that the size of the list box is exactly
the size specified by the application when it
created the list box. Normally, Windows sizes a
list box so that the list box does not display par
tial items.

Specifies that the list box's appearance is not
updated when changes are made. This style
can be changed at any time by sending a
WM_SETREDRAW message.

Notifies the parent window with an input mes
sage whenever the user clicks or double-clicks
a string.

Specifies that the owner of the list box is re
sponsible for drawing its contents and that the
items in the list box are the same height. The
owner window receives a WM_MEASURE
ITEM message when the list box is created and
a WM_DRAWITEM message when a visual
aspect of the list box changes.

Specifies that the owner of the list box is
responsible for drawing its contents and
that the items in the list box are variable in
height. The owner window receives a
WM_MEASUREITEM message for each item
in the list box when the list box is created and a
WM_DRAWITEM message whenever the
visual aspect of the list box changes.

Sorts strings in the list box alphabetically.

Sorts strings in the list box alphabetically. The
parent window receives an input message
whenever the user clicks or double-clicks a
string. The list box has borders on all sides.

Allows a list box to recognize and expand tab
characters when drawing its strings. The de
fault tab positions are 32 dialog box units. (A
dialog box unit is a horizontal or vertical dis
tance. One horizontal dialog box unit is equal
to one-fourth of the current dialog box base
width unit. The dialog box base units are com
puted based on the height and width of the cur
rent system font. The GetDialogBaseUnits
function returns the current dialog box base
units in pixels.)

142 Create Window

Style

LBS_ WANTKEYBOARDINPUT

Meaning

Specifies that the owner of the list box receives
WM_ VKEYTOITEM or WM_CHARTOITEM
messages whenever the user presses a key and
the list box has the input focus. This allows an
application to perform special processing on
the keyboard input. If a list box has the
LBS_HASSTRINGS style, the list box can re
ceive WM_ VKEYTOITEM messages but not
WM_CHARTOITEM messages. If a list box
does not have the LBS_HASSTRINGS style,
the list box can receive WM_CHARTOITEM
messages but not WM_ VKEYTOITEM mes
sages.

Following are the scroll bar styles (in the SCROLLBAR class) that an application
can specify in the dwStyle parameter:

Style

SBS_BOTTOMALIGN

SBS_HORZ

SBS_LEFTALIGN

Meaning

Aligns the bottom edge of the scroll bar
with the bottom edge of the rectangle de
fined by the following Create Window
parameters: x, y, nWidth, and nHeight.
The scroll bar has the default height for
system scroll bars. Used with the
SBS_HORZ style.

Designates a horizontal scroll bar. If
neither the SBS_BOTTOMALIGN nor
SBS_TOPALIGN style is specified, the
scroll bar has the height, width, and posi
tion specified by the Create Window pa
rameters.

Aligns the left edge of the scroll bar
with the left edge of the rectangle de
fined by the CreateWindow parameters.
The scroll bar has the default width for
system scroll bars. Used with the
SBS_ VERT style.

Style

SBS_RIGHTALIGN

SBS_SIZEBOX

SBS_SIZEBOXBOTTOMRIGHTALIGN

SBS_SIZEBOXTOPLEFTALIGN

SBS_TOPALIGN

SBS_VERT

CreateWindow 143

Meaning

Aligns the right edge of the scroll bar
with the right edge of the rectangle de
fined by the Create Window parameters.
The scroll bar has the default width for
system scroll bars. Used with the
SBS_ VERT style.

Designates a size box. If neither the
SBS_SIZEBOXBOTTOMRIGHTALIGN
nor SBS_SIZEBOXTOPLEFTALIGN
style is specified, the size box has the
height, width, and position specified by
the Create Window parameters.

Aligns the lower-right corner of the size
box with the lower-right corner of the
rectangle specified by the Create
Window parameters. The size box has
the default size for system size boxes.
Used with the SBS_SIZEBOX style.

Aligns the upper-left corner of the size
box with the upper-left corner of the
rectangle specified by the following
Create Window parameters: x, y,
nWidth, and nHeight. The size box has
the default size for system size boxes.
Used with the SBS_SIZEBOX style.

Aligns the top edge of the scroll bar
with the top edge of the rectangle de
fined by the Create Window parameters.
The scroll bar has the default height for
system scroll bars. Used with the
SBS_HORZ style.

Designates a vertical scroll bar. If
neither the SBS_RIGHTALIGN nor
SBS_LEFTALIGN style is specified, the
scroll bar has the height, width, and posi
tion specified by the Create Window pa
rameters.

144 Create Window

Following are the static control styles (in the STATIC class) that an application
can specify in the dwStyle parameter. A static control can have only one of these
styles.

Style

SS_BLACKFRAME

SS_BLACKRECT

SS_CENTER

SS_GRAYFRAME

SS_GRAYRECT

SS_ICON

SS_LEFT

SS_LEFTNOWORDWRAP

SS_NOPREFIX

Meaning

Specifies a box with a frame drawn in the same color
as window frames. This color is black in the default
Windows color scheme.

Specifies a rectangle filled with the color used to draw
window frames. This color is black in the default Win
dows color scheme.

Designates a simple rectangle and displays the given
text centered in the rectangle. The text is formatted
before it is displayed. Words that would extend past
the end of a line are automatically wrapped to the
beginning of the next centered line.

Specifies a box with a frame drawn with the same
color as the screen background (desktop). This color
is gray in the default Windows color scheme.

Specifies a rectangle filled with the color used to fill
the screen background. This color is gray in the de
fault Windows color scheme.

Designates an icon displayed in the dialog box. The
given text is the name of an icon (not a filename) de
fined elsewhere in the resource file. The n Width and
nHeight parameters are ignored; the icon automat
ically sizes itself.

Designates a simple rectangle and displays the given
text left-aligned in the rectangle. The text is formatted
before it is displayed. Words that would extend past
the end of a line are automatically wrapped to the
beginning of the next left-aligned line.

Designates a simple rectangle and displays the given
text left-aligned in the rectangle. Tabs are expanded
but words are not wrapped. Text that extends past the
end of a line is clipped.

Prevents interpretation of any & characters in the con
trol's text as accelerator prefix characters (which are
displayed with the & removed and the next character
in the string underlined). This static control style may
be included with any of the defined static controls.

You can combine SS_NOPREFIX with other styles by
using the bitwise OR operator. This is most often used
when filenames or other strings that may contain an &
need to be displayed in a static control in a dialog box.

See Also

Style

SS_RIGHT

SS_SIMPLE

SS_ WHITEFRAME

SS_ WHITERECT

CreateWindow 145

Meaning

Designates a simple rectangle and displays the given
text right-aligned in the rectangle. The text is for
matted before it is displayed. Words that would extend
past the end of a line are automatically wrapped to the
beginning of the next right-aligned line.

Designates a simple rectangle and displays a single
line of text left-aligned in the rectangle. The line of
text cannot be shortened or altered in any way. (The
control's parent window or dialog box must not
process the WM_CTLCOLOR message.)

Specifies a box with a frame drawn in the same color
as window backgrounds. This color is white in the de
fault Windows color scheme.

Specifies a rectangle filled with the color used to fill
window backgrounds. This color is white in the de
fault Windows color scheme.

Following are the dialog box styles an application can specify in the dwStyle pa
rameter:

Style

DS_LOCALEDIT

DS_MODALFRAME

DS_NOIDLEMSG

DS_SYSMODAL

Meaning

Specifies that edit controls in the dialog box will use
memory in the application's data segment. By default, all
edit controls in dialog boxes use memory outside the applica
tion's data segment. This feature may be suppressed by
adding the DS_LOCALEDIT flag to the Style command for
the dialog box. If this flag is not used, EM_GETHANDLE
and EM_SETHANDLE messages must not be used, because
the storage for the control is not in the application's data seg
ment. This feature does not affect edit controls created out
side of dialog boxes.

Creates a dialog box with a modal dialog box frame that can
be combined with a title bar and System menu by specifying
the WS_CAPTION and WS_SYSMENU styles.

Suppresses WM_ENTERIDLE messages that Windows
would otherwise send to the owner of the dialog box while
the dialog box is displayed.

Creates a system-modal dialog box.

AnsiToOem, GetDialogBaseUnits, ShowWindow

146 CreateWindowEx

CreateWindowEx
HWND CreateWindowEx(dwExStyle, lpszClassName, lpszWindowName, dwStyle, x, y, n Width,

nHeight, hwndParent, hmenu, hinst, lpvCreateParams)
DWORD dwExStyle; I* extended window style */
LPCSTR lpszClassName; I* address of registered class name */
LPCSTR lpszWindowName; I* address of window text */
DWORD dwStyle; /* window style */
int x; /*horizontal position of the window */
int y; /* vertical position of the window */
int nWidth; /*window width */
int nHeight; /* window height */
HWND hwndParent; /* handle of parent window */
HMENU hmenu; /* handle of menu or child-window identifier */
HINSTANCE hinst; /*handle of application instance */
void FAR* lpvCreateParams; /*address of window-creation data */

Parameters

The CreateWindowEx function creates an overlapped, pop-up, or child window
with an extended style; otherwise, this function is identical to the Create Window
function. For more information about creating a window and for full descriptions
of the other parameters of Create Window Ex, see the preceding description of the
Create Window function.

dwExStyle
Specifies the extended style of the window. This parameter can be one of the
following values:

Style Meaning

WS_EX_ACCEPTFILES

WS_EX_DLGMODALFRAME

WS_EX_NOPARENTNOTIFY

WS_EX_TOPMOST

Specifies that a window created with this style
accepts drag-drop files.

Designates a window with a double border that
may (optionally) be created with a title bar by
specifying the WS_CAPTION style flag in the
dwStyle parameter.

Specifies that a child window created by using
this style will not send the
WM_PARENTNOTIFY message to its parent
window when the child window is created or
destroyed.

Specifies that a window created with this style
should be placed above all non-topmost win
dows and stay above them even when the win
dow is deactivated. An application can use the
SetWindowPos function to add or remove this
attribute.

Style

WS_EX_TRANSPARENT

CreateWindowEx 147

Meaning

Specifies that a window created with this style
is to be transparent. That is, any windows that
are beneath the window are not obscured by
the window. A window created with this style
receives WM_PAINT messages only after all
sibling windows beneath it have been updated.

lpszClassName
Points to a null-terminated string containing the name of the window class.

lpsz Window Name
Points to a null-terminated string containing the name of the window.

dwStyle

x

y

Specifies the style of the window. For a list of the window styles that can be
specified in this parameter, see the preceding description of the Create Window
function.

Specifies the initial left-side position of the window.

Specifies the initial top position of the window.

nWidth
Specifies the width, in device units, of the window.

nHeight
Specifies the height, in device units, of the window.

hwndParent
Identifies the parent or owner window of the window to be created.

hmenu
Identifies a menu or a child window. The meaning depends on the window
style.

hinst
Identifies the instance of the module to be associated with the window.

lpvCreateParams
Contains any application-specific creation parameters. The window being
created may access this data when the CREATESTRUCT structure is passed
to the window by the WM_NCCREATE and WM_CREATE messages.

148 CreateWindowEx

Return Value

Comments

Example

See Also

The CREATESTRUCT structure has the following form:

typedef struct tagCREATESTRUCT {
void FAR* lpCreateParams;
HINSTANCE hinstance;
HMENU hMenu;
HWND hwndParent;
int cy;
int ex;
int y;
int x;
LONG style;
LPCSTR lpszName;
LPCSTR lpszClass;
DWORD dwExStyle;

} CREATESTRUCT;

/* cs */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value identifies the new window if the function is successful. Other
wise, it is NULL.

The CreateWindowEx function sends the following messages to the window
being created:

WM_NCCREATE
WM_NCCALCSIZE
WM_ CREATE

The following example creates a main window that has the WS_EX_TOPMOST
extended style, makes the window visible, and updates the window's client area:

char szClassName[J = "MyClass";

f* Create the main window. */

hwnd = CreateWindowEx(WS_EX_TOPMOST, szClassName, "Grouper",
WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL,
hinst, NULL);

f* Make the window visible and update its client area. */

ShowWindowChwnd, SW_SHOW); /*always show the window*/
UpdateWindow(hwnd);

CreateWindow, SetWindowPos

DdeAbandonTransaction 149

DdeAbandonTransaction lliJ
#include <ddeml.h>

BOOL DdeAbandonTransaction(id/nst, hConv, idTransaction)
DWORD idlnst; /* instance identifier */
HCONV hConv; /*handle of conversation */
DWORD idTransaction; I* transaction identifier */

Parameters

Return Value

Errors

Comments

See Also

The DdeAbandonTransaction function abandons the specified asynchronous
transaction and releases all resources associated with the transaction.

idlnst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hConv
Identifies the conversation in which the transaction was initiated. If this parame
ter is NULL, all transactions are abandoned (the idTransaction parameter is ig
nored).

idTransaction
Identifies the transaction to terminate. If this parameter is NULL, all active
transactions in the specified conversation are abandoned.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT _INITIALIZED
DMLERR_INV ALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_UNFOUND_QUEUE_ID

Only a dynamic data exchange (DDE) client application should call the Dde
AbandonTransaction function. If the server application responds to the transac
tion after the client has called DdeAbandonTransaction, the system discards the
transaction results. This function has no effect on synchronous transactions.

DdeClientTransaction, DdeGetLastError, Ddelnitialize, DdeQueryConvlnfo

150 DdeAccessData

DdeAccessData
#include <ddeml.h>

BYTE FAR* DdeAccessData(hData, lpcbData)
HDDEDATA hData; I* handle of global memory object */
DWORD FAR* lpcbData; I* pointer to variable that receives data length */

Parameters

Return Value

Errors

Comments

Example

The DdeAccessData function provides access to the data in the given global
memory object. An application must call the DdeUnaccessData function when it
is finished accessing the data in the object.

hData
Identifies the global memory object to access.

lpcbData
Points to a variable that receives the size, in bytes, of the global memory object
identified by the hData parameter. If this parameter is NULL, no size informa
tion is returned.

The return value points to the first byte of data in the global memory object if the
function is successful. Otherwise, the return value is NULL.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT _INITIALIZED
DMLERR_INV ALIDPARAMETER
DMLERR_NO_ERROR

If the hData parameter has not been passed to a Dynamic Data Exchange Manage
ment Library (DDEML) function, an application can use the pointer returned by
DdeAccessData for read-write access to the global memory object. If hData has
already been passed to a DDEML function, the pointer can only be used for read
only access to the memory object.

The following example uses the DdeAccessData function to obtain a pointer to a
global memory object, uses the pointer to copy data from the object to a local buff
er, then frees the pointer:

HDDEDATA hData;
LPBYTE lpszAdviseData;
DWORD cbDatalen;
DWORD i;
char szData[128];

lpszAdviseData = DdeAccessData(hData, &cbDatalen);

for Ci = 0; i < cbDatalen; i++)
szData[i] = *lpszAdviseData++;

DdeUnaccessData(hDatal;

DdeAddData 151

See Also DdeAddData, DdeCreateDataHandle, DdeFreeDataHandle, DdeGetLast
Error, DdeUnaccessData

DdeAddData CID
#include <ddeml.h>

HDDEDATA DdeAddData(hData, lpvSrcBuf, cbAddData, offObj)
HDDEDATA hData; /* handle of global memory object */
void FAR* lpvSrcBuf; /*address of source buffer */
DWORD cbAddData; /* length of data */
DWORD offObj; /*offset within global memory object */

Parameters

Return Value

Errors

The DdeAddData function adds data to the given global memory object. An appli
cation can add data beginning at any offset from the beginning of the object. If
new data overlaps data already in the object, the new data overwrites the old data
in the bytes where the overlap occurs. The contents of locations in the object that
have not been written to are undefined.

hData
Identifies the global memory object that receives additional data.

lpvSrcBuf
Points to a buffer containing the data to add to the global memory object.

cbAddData
Specifies the length, in bytes, of the data to be added to the global memory ob
ject.

off Obj
Specifies an offset, in bytes, from the beginning of the global memory object.
The additional data is copied to the object beginning at this offset.

The return value is a new handle of the global memory object if the function is
successful. The new handle should be used in all references to the object. The re
turn value is zero if an error occurs.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

152 DdeAddData

Comments

Example

DMLERR_DLL_NOT _INITIALIZED
DMLERR_INV ALIDPARAMETER
DMLERR_MEMORY _ERROR
DMLERR_NO_ERROR

After a data handle has been used as a parameter in another Dynamic Data Ex
change Management Library (DDEML) function or returned by a DDE callback
function, the handle may only be used for read access to the global memory object
identified by the handle.

If the amount of global memory originally allocated is not large enough to hold
the added data, the DdeAddData function will reallocate a global memory object
of the appropriate size.

The following example creates a global memory object, uses the DdeAddData
function to add data to the object, and then passes the data to a client with an
XTYP _POKE transaction:

DWORD idinst; /* instance identifier */
HDDEDATA hddeStrings; /* data handle */
HSZ hszMyitem; /* item-name string handle */
DWORD offObj = 0; /* offset in global object */
char szMyBuf[16]; /* temporary string buffer */
HCONV hconv; /* conversation handle */
DWORD dwResult; /* transaction results */
BOOL fAddAString; /* TRUE if strings to add */

/* Create a global memory object. */

hddeStrings = DdeCreateDataHandle(idinst, NULL, 0, 0,
hszMyitem, CF_ TEXT, 0);

/*
* If a string is available, the application-defined function
* IsThereAString() copies it to szMyBuf and returns TRUE. Otherwise,
* it returns FALSE.
*/

while ((fAddAString = IsThereAString())) {

}

I* Add the string to the global memory object. *I

DdeAddData(hddeStrings,
&szMyBuf,
(DWORD) strlen(szMyBuf) + 1,
offObj);

/* data handle */
/* string buffer */
/* character count */
/* offset in object */

offObj = (DWORD) strlen(szMyBuf) + 1; /* adjust offset */

DdeCallback 153

/* No more data to add, so poke it to the server. */

DdeClientTransaction((void FAR*) hddeStrings, -ll, hconv, hszMyitem,
CF_TEXT, XTYP_POKE, 1000, &dwResultl;

See Also DdeAccessData, DdeCreateDataHandle, DdeGetLastError, DdeUnaccessData

DdeCallback [}I]

#include <ddeml.h>

HDDEDATA CALLBACK DdeCallback(type,ftnt, hconv, hszl, hsz2, hData, dwDatal, dwData2)
UINT type; /*transaction type */
UINT ftnt; I* clipboard data format */
HCONV hconv; /* handle of conversation */
HSZ hszl; /*handle of string */
HSZ hsz2; I* handle of string */
HDDEDATA hData; /*handle of global memory object */
DWORD dwDatal; /*transaction-specific data */
DWORD dwData2; /* transaction-specific data */

Parameters

The DdeCallback function is an application-defined dynamic data exchange
(ODE) callback function that processes DDE transactions sent to the function as a
result of DDE Management Library (DDEML) calls by other applications.

type
Specifies the type of the current transaction. This parameter consists of a combi
nation of transaction-class flags and transaction-type flags. The following table
describes each of the transaction classes and provides a list of the transaction
types in each class. For information about a specific transaction type, see the in
dividual description of that type in the Microsoft Windows Programmer's Refer
ence, Volume 3.

Value

XCLASS_BOOL

Meaning

A DDE callback function should return TRUE or
FALSE when it finishes processing a transaction
that belongs to this class. Following are the
XCLASS_BOOL transaction types:

XTYP _ADVSTART
XTYP _CONNECT

154 DdeCallback

Value

XCLASS_DATA

XCLASS_FLAGS

XCLASS_NOTIFICATION

fmt

Meaning

A DDE callback function should return a DDE data
handle, CBR_BLOCK, or NULL when it finishes
processing a transaction that belongs to this class.
Following are the XCLASS_DATA transaction
types:

XTYP _ADVREQ
XTYP _REQUEST
XTYP _ WILDCONNECT

A DDE callback function should return
DDE_FACK, DDE_FBUSY, or
DDE_FNOTPROCESSED when it finishes
processing a transaction that belongs to this
class. Following are the XCLASS_FLAGS
transaction types:

XTYP _ADVDATA
XTYP _EXECUTE
XTYP_POKE

The transaction types that belong to this class are
for notification purposes only. The return value
from the callback function is ignored. Following
are the XCLASS_NOTIFICATION transaction
types:

XTYP _ADVSTOP
XTYP _CONNECT_CONFIRM
XTYP _DISCONNECT
XTYP_ERROR
XTYP _MONITOR
XTYP _REGISTER
XTYP _XACT_COMPLETE
XTYP _UNREGISTER

Specifies the format in which data is to be sent or received.

hconv
Identifies the conversation associated with the current transaction.

hszl
Identifies a string. The meaning of this parameter depends on the type of the
current transaction. For more information, see the description of the transaction
type.

hsz2
Identifies a string. The meaning of this parameter depends on the type of the
current transaction. For more information, see the description of the transaction
type.

Return Value

Comments

See Also

DdeClientTransaction 155

hData
Identifies DDE data. The meaning of this parameter depends on the type of the
current transaction. For more information, see the description of the transaction
type.

dwDatal
Specifies transaction-specific data. For more information, see the description of
the transaction type.

dwData2
Specifies transaction-specific data. For more information, see the description of
the transaction type.

The return value depends on the transaction class. For more information about
return values, see the descriptions of the individual DDE transactions in the
Microsoft Windows Programmer's Reference, Volume 3.

The callback function is called asynchronously for transactions that do not involve
creating or terminating conversations. An application that does not frequently ac
cept incoming messages will have reduced DDE performance because DDEML
uses messages to initiate transactions.

An application must register the callback function by specifying its address in a
call to the Ddelnitialize function. DdeCallback is a placeholder for the applica
tion- or library-defined function name. The actual name must be exported by in
cluding it in an EXPORTS statement in the application's module-definition file.

DdeEnableCallback, Ddelnitialize

DdeClientTransaction
#include <ddeml.h>

HDDEDATA DdeClientTransaction(lpvData, cbData, hConv, hsz[tem, uFmt, uType, uTimeout,
lpuResult)

void FAR* lpvData;
DWORD cbData;
HCONV hConv;
HSZ hsz/tem;
UINT uFmt;
UINT uType;
DWORD uTimeout;
DWORD FAR* lpuResult;

I* address of data to pass to server
I* length of data
I* handle of conversation
I* handle of item-name string
I* clipboard data format
/* transaction type
I* timeout duration
I* points to transaction result

*I
*I
*I
*I
*I
*/
*I
*/

156 DdeClientTransaction

Parameters

The DdeClientTransaction function begins a data transaction between a client
and a server. Only a dynamic data exchange (ODE) client application can call this
function, and only after establishing a conversation with the server.

lpvData
Points to the beginning of the data that the client needs to pass to the server.

Optionally, an application can specify the data handle (HDDEDATA) to pass to
the server, in which case the cbData parameter should be set to -1. This pa
rameter is required only if the uType parameter is XTYP _EXECUTE or
XTYP _POKE. Otherwise, this parameter should be NULL.

cbData
Specifies the length, in bytes, of the data pointed to by the lpvData parameter.
A value of -1 indicates that lpvData is a data handle that identifies the data
being sent.

hConv
Identifies the conversation in which the transaction is to take place.

hszltem
Identifies the data item for which data is being exchanged during the transac
tion. This handle must have been created by a previous call to the DdeCreate
StringHandle function. This parameter is ignored (and should be set to NULL)
if the uType parameter is XTYP _EXECUTE.

uFmt
Specifies the standard clipboard format in which the data item is being sub
mitted or requested. For more information about standard clipboard formats,
see the Microsoft Windows Guide to Programming.

uType
Specifies the transaction type. This parameter can be one o.f the following
values:

Value

XTYP _ADVSTART

Meaning

Begins an advise loop. Any number of distinct advise
loops can exist within a conversation. An application
can alter the advise loop type by combining the
XTYP _ADVSTART transaction type with one or
more of the following flags:

Value

XTYPF _NODATA

Meaning

Instructs the server to notify the
client of any data changes without
actually sending the data. This
flag gives the client the option of
ignoring the notification or re
questing the changed data from
the server.

Return Value

Errors

Value Meaning

Value

XTYPF _ACKREQ

Ends an advise loop.

DdeClientTransaction 157

Meaning

Instructs the server to wait until
the client acknowledges that it re
ceived the previous data item
before sending the next data item.
This flag prevents a fast server
from sending data faster than the
client can process it.

XTYP _ADVSTOP

XTYP _EXECUTE

XTYP_POKE

XTYP _REQUEST

Begins an execute transaction.

Begins a poke transaction.

Begins a request transaction.

uTimeout
Specifies the maximum length of time, in milliseconds, that the client will wait
for a response from the server application in a synchronous transaction. This pa
rameter should be set to TIMEOUT_ASYNC for asynchronous transactions.

lpuResult
Points to a variable that receives the result of the transaction. An application
that does not check the result can set this value to NULL. For synchronous
transactions, the low-order word of this variable will contain any applicable
DDE_ flags resulting from the transaction. This provides support for applica
tions dependent on DDE_APPST ATUS bits. (It is recommended that applica
tions no longer use these bits because they may not be supported in future
versions of the DDE Management Library.) For asynchronous transactions, this
variable is filled with a unique transaction identifier for use with the Dde
AbandonTransaction function and the XTYP _XACT_COMPLETE transac
tion.

The return value is a data handle that identifies the data for successful syn
chronous transactions in which the client expects data from the server. The return
value is TRUE for successful asynchronous transactions and for synchronous
transactions in which the client does not expect data. The return value is FALSE
for all unsuccessful transactions.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_ADV ACKTIMEOUT
DMLERR_BUSY
DMLERR_DATAACKTIMEOUT
DMLERR_DLL_NOT _INITIALIZED

158 DdeClientTransaction

Comments

Example

DMLERR_EXECACKTIMEOUT
DMLERR_INV ALIDPARAMETER
DMLERR_MEMORY _ERROR
DMLERR_NO_CONV _ESTABLISHED
DMLERR_NO_ERROR
DMLERR_NOTPROCESSED
DMLERR_POKEACKTIMEOUT
DMLERR_POSTMSG_FAILED
DMLERR_REENTRANCY
DMLERR_SERVER_DIED
DMLERR_UNADV ACKTIMEOUT

When the application is finished using the data handle returned by the DdeClient
Transaction function, the application should free the handle by calling the Dde
FreeDataHandle function.

Transactions can be synchronous or asynchronous. During a synchronous transac
tion, the DdeClientTransaction function does not return until the transaction
completes successfully or fails. Synchronous transactions cause the client to enter
a modal loop while waiting for various asynchronous events. Because of this, the
client application can still respond to user input while waiting on a synchronous
transaction but cannot begin a second synchronous transaction because of the ac
tivity associated with the first. The DdeClientTransaction function fails if any in
stance of the same task has a synchronous transaction already in progress.

During an asynchronous transaction, the DdeClientTransaction function returns
after the transaction is begun, passing a transaction identifier for reference. When
the server's DDE callback function finishes processing an asynchronous transac
tion, the system sends an XTYP _XACT_COMPLETE transaction to the client.
This transaction provides the client with the results of the asynchronous transac
tion that it initiated by calling the DdeClientTransaction function. A client appli
cation can choose to abandon an asynchronous transaction by calling the
DdeAbandonTransaction function.

The following example requests an advise loop with a DDE server application:

HCONV hconv;
HSZ hszNow;
HDDEDATA hData;
DWORD dwResult;

See Also

DdeCmpStringHandles 159

hData = DdeClientTransaction(
(LP BYTE) NULL, /* pass no data to server */
0. /* no data */
hconv, /* conversation handle */
hszNow, /* item name */
CF_ TEXT, /* clipboard format */
XTYP_ADVSTART, /* start an advise loop */
1000, /* time-out in one second */
&dwResult); /* points to result flags */

DdeAbandonTransaction, DdeAccessData, DdeConnect, DdeConnectList,
DdeCreateStringHandle

DdeCmpStringHandles
#include <ddeml.h>

int DdeCmpStringHandles(hszJ, hsz2)
HSZ hszl; I* handle of first string */
HSZ hsz2; I* handle of second string */

Parameters

Return Value

Comments

The DdeCmpStringHandles function compares the values of two string handles.
The value of a string handle is not related to the case of the associated string.

hszl
Specifies the first string handle.

hsz2
Specifies the second string handle.

The return value can be one of the following:

Value

-1

0

Meaning

The value of hszl is either 0 or less than the value of hsz2.

The values of hszl and hsz2 are equal (both can be 0).

The value of hsz2 is either 0 or less than the value of hszl.

An application that needs to do a case-sensitive comparison of two string handles
should compare the string handles directly. An application should use DdeComp
StringHandles for all other comparisons to preserve the case-sensitive nature of
dynamic data exchange (DDE).

160 DdeConnect

Example

The DdeCompStringHandles function cannot be used to sort string handles al
phabetically.

This example compares two service-name string handles and, if the handles are the
same, requests a conversation with the server, then issues an XTYP _ADVSTART
transaction:

HSZ hszClock; /* service name */
HSZ hszTime; /* topic name */
HSZ hszl; f* unknown server *f
HCONV hConv; /* conversation handle */
DWORD dwRes ult; f* result flags */
DWORD idinst; /* instance identifier */

f*
* Compare unknown service name handle with the string handle
* for the clock application.
*f

if (!DdeCmpStringHandles(hszl, hszClock)) {

f*
* If this is the clock application, start a conversation
* with it and request an advise loop.
*/

hConv = DdeConnect(idinst, hszClock, hszTime, NULL);
if ChConv != CHCONV) NULL)

DdeClientTransaction(NULL, 0, hConv, hszNow,
CF_TEXT, XTYP_ADVSTART, 1000, &dwResult);

See Also DdeAccessData, DdeCreateStringHandle, DdeFreeStringHandle

DdeConnect [II]

#include <ddeml.h>

HCONV DdeConnect(id/nst, hszService, hszTopic, pCC)
DWORD id/nst; I* instance identifier */
HSZ hszService; I* handle of service-name string */
HSZ hszTopic; I* handle of topic-name string */
CONY CONTEXT FAR* pCC; /* address of structure with context data */

Parameters

Return Value

DdeConnect 161

The DdeConnect function establishes a conversation with a server application that
supports the specified service name and topic name pair. If more than one such
server exists, the system selects only one.

idlnst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hszService
Identifies the string that specifies the service name of the server application
with which a conversation is to be established. This handle must have been
created by a previous call to the DdeCreateStringHandle function. If this pa
rameter is NULL, a conversation will be established with any available server.

hszTopic
Identifies the string that specifies the name of the topic on which a conversation
is to be established. This handle must have been created by a previous call to
the DdeCreateStringHandle function. If this parameter is NULL, a conversa
tion on any topic supported by the selected server will be established.

pCC
Points to the CONVCONTEXT structure that contains conversation-context in
formation. If this parameter is NULL, the server receives the default CONV
CONTEXT structure during the XTYP _CONNECT or
XTYP _ WILDCONNECT transaction.

The CONVCONTEXT structure has the following form:

#include <ddeml.h>

typedef struct
UINT
UINT
UINT
int
DWORD
DWORD

} CONVCONTEXT;

tagCONVCONTEXT { /* cc
cb;
wFl ags;
wCountryID;
iCodePage;
dwLangID;
dwSecurity;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the handle of the established conversation if the function is
successful. Otherwise, it is NULL.

162 DdeConnect

Errors Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

Comments

Example

See Also

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INV ALIDPARAMETER
DMLERR_NO_CONV _ESTABLISHED
DMLERR_NO_ERROR

The client application should not make assumptions regarding which server will
be selected. If an instance-specific name is specified in the hszService parameter, a
conversation will be established only with the specified instance. Instance-specific
service names are passed to an application's dynamic data exchange callback func
tion during the XTYP _REGISTER and XTYP _UNREGISTER transactions.

All members of the default CONVCONTEXT structure are set to zero except ch,
which specifies the size of the structure, and iCodePage, which specifies
CP _ WINANSI (the default code page).

The following example creates a service-name string handle and a topic-name
string handle, then attempts to establish a conversation with a server that supports
the service name and topic name. If the attempt fails, the example retrieves an
error value identifying the reason for the failure.

DWORD idinst = 0L;
HSZ hszClock;
HSZ hszTime;
HCONV hconv;
UINT uError;

hszClock = DdeCreateStringHandle(idinst, "Clock", CP_WINANSI);
hszTime = DdeCreateStringHandle(idlnst, "Time", CP_WINANSI);

if ((hconv = DdeConnect(
idlnst,
hszClock,
hszTime,
NULL)) NULL) {

f* instance identifier
f* server's service name
f* topic name
f* use default CONVCONTEXT

uError = DdeGetLastError(idlnstl;
}

DdeConnectList, DdeCreateStringHandle, DdeDisconnect,
DdeDisconnectList, Ddelnitialize

DdeConnectlist 163

DdeConnectlist CIIJ
#include <ddeml.h>

HCONVLIST DdeConnectList(id/nst, hszService, hszTopic, hConvList, pCC)
DWORD idlnst; I* instance identifier */
HSZ hszService; I* handle of service-name string */
HSZ hszTopic; /*handle of topic-name string */
HCONVLIST hConvList; /* handle of conversation list */
CONVCONTEXT FAR* pCC; /*address of structure with context data */

Parameters

The DdeConnectList function establishes a conversation with all server applica
tions that support the specified service/topic name pair. An application can also
use this function to enumerate a list of conversation handles by passing the func
tion an existing conversation handle. During enumeration, the Dynamic Data Ex
change Management Library (DDEML) removes the handles of any terminated
conversations from the conversation list. The resulting conversation list contains
the handles of all conversations currently established that support the specified
service name and topic name.

idlnst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hszService
Identifies the string that specifies the service name of the server application
with which a conversation is to be established. If this parameter is NULL, the
system will attempt to establish conversations with all available servers that sup
port the specified topic name.

hszTopic
Identifies the string that specifies the name of the topic on which a conversation
is to be established. This handle must have been created by a previous call to
the DdeCreateStringHandle function. If this parameter is NULL, the system
will attempt to establish conversations on all topics supported by the selected
server (or servers).

hConvList
Identifies the conversation list to be enumerated. This parameter should be set
to NULL if a new conversation list is to be established.

pCC
Points to the CONVCONTEXT structure that contains conversation-context
information. If this parameter is NULL, the server receives the default
CONVCONTEXT structure during the XTYP _CONNECT or
XTYP _ WILDCONNECT transaction.

The CONVCONTEXT structure has the following form:

164 DdeConnectlist

Return Value

Errors

Comments

Example

#include <ddeml .h>

typedef struct
UINT
UINT
UINT
int
DWORD
DWORD

} CONVCONTEXT;

tagCONVCONTEXT { /* cc
cb;
wFl ags;
wCountryID;
iCodePage;
dwlangID;
dwSecurity;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the handle of a new conversation list if the function is success
ful. Otherwise, it is NULL. The handle of the old conversation list is no longer
valid.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT _INITIALIZED
DMLERR_INV AUD _PARAMETER
DMLERR_NO_CONV _ESTABLISHED
DMLERR_NO_ERROR
DMLERR_SYS_ERROR

An application must free the conversation-list handle returned by this function, re
gardless of whether any conversation handles within the list are active. To free the
handle, an application can call the DdeDisconnectList function.

All members of the default CONVCONTEXT structure are set to zero except ch,
which specifies the size of the structure, and iCodePage, which specifies
CP _WINANS! (the default code page).

The following example uses the DdeConnectList function to establish a conversa
tion with all servers that support the System topic, counts the servers, allocates a
buffer for storing the server's service-name string handles, and then copies the han
dles to the buffer:

See Also

HCONVLIST hconvList;
OWORO i dlnst;
HSZ hszSystem;
HCONV hconv = NULL;
CONVINFO ci;
UINT cConv = 0;
HSZ *pHsz, *aHsz;

f* conversation list */
f* instance identifier */
f* System topic */
f* conversation handle */
f* holds conversation data */
f* count of conv. handles */
f* point to string handles */

DdeConnectlist 165

f* Connect to all servers that support the System topic. */

hconvList = DdeConnectList(idinst, CHSZ) NULL, hszSystem,
CHCONVl NULL, CLPVOID) NULL);

f* Count the number of handles in the conversation list. */

while ((hconv = DdeQueryNextServer(hconvList, hconv)) != CHCONV) NULL)
cConv++;

f* Allocate a buffer for the string handles. */

hconv = CHCONV) NULL;
aHsz = CHSZ *) LocalAlloc(LMEM_FIXED, cConv * sizeof(HSZ)l;

f* Copy the string handles to the buffer. */

pHsz = aHsz;
while ((hconv = DdeQueryNextServer(hconvList, hconv)) != CHCONVl NULL) {

DdeQueryConvinfo(hconv, QID_SYNC, CPCONVINFO) &cil;
DdeKeepStringHandle(idinst, ci.hszSvcPartner);
*pHsz++ = ci .hszSvcPartner;

}

f* Use the handles; converse with servers. */

f* Free the memory and terminate conversations. */

LocalFreeCCHANDLE) aHsz);
DdeDisconnectList(hconvList);

DdeConnect, DdeCreateStringHandle, DdeDisconnect, DdeDisconnectList,
Ddelnitialize, DdeQueryN extServer

166 DdeCreateDataHandle

DdeCreateDataHandle
#include <ddeml.h>

HDDEDATA DdeCreateDataHandle(id/nst, lpvSrcBuf, cblnitData, offSrcBuf, hsz/tem, uFmt, afCmd)
DWORD idlnst; I* instance identifier */
void FAR* lpvSrcBuf; I* address of source buffer */
DWORD cblnitData; /*length of global memory object */
DWORD offSrcBuf; /*offset from beginning of source buffer */
HSZ hsz/tem; /*handle of item-name string */
UINT uFmt; /* clipboard data format *I
UINT afCmd; /* creation flags *I

Parameters

The DdeCreateDataHandle function creates a global memory object and fills the
object with the data pointed to by the lpvSrcBuf parameter. A dynamic data ex
change (DDE) application uses this function during transactions that involve pass
ing data to the partner application.

idlnst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

lpvSrcBuf
Points to a buffer that contains data to be copied to the global memory object. If
this parameter is NULL, no data is copied to the object.

cblnitData
Specifies the amount, in bytes, of memory to allocate for the global memory ob
ject. If this parameter is zero, the lpvSrcBuf parameter is ignored.

offSrcBuf
Specifies an offset, in bytes, from the beginning of the buffer pointed to by the
lpvSrcBuf parameter. The data beginning at this offset is copied from the buffer
to the global memory object.

hsz/tem
Identifies the string that specifies the data item corresponding to the global
memory object. This handle must have been created by a previous call to the
DdeCreateStringHandle function. If the data handle is to be used in an
XTYP _EXECUTE transaction, this parameter must be set to NULL.

uFmt
Specifies the standard clipboard format of the data.

afCmd
Specifies the creation flags. This parameter can be HDATA_APPOWNED,
which specifies that the server application that calls the DdeCreate
DataHandle function will own the data handle that this function creates. This
makes it possible for the server to share the data handle with multiple clients in
stead of creating a separate handle for each request. If this flag is set, the server

Return Value

Errors

Comments

Example

DdeCreateDataHandle 167

must eventually free the shared memory object associated with this handle by
using the DdeFreeDataHandle function. If this flag is not set, after the data
handle is returned by the server's DDE callback function or used as a parameter
in another DDE Management Library function, the handle becomes invalid in
the application that creates the handle.

The return value is a data handle if the function is successful. Otherwise, it is
NULL.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT_INITIALIZED
DMLERR_INV ALIDPARAMETER
DMLERR_MEMORY _ERROR
DMLERR_NO_ERROR

Any locations in the global memory object that are not filled are undefined.

After a data handle has been used as a parameter in another DDEML function or
has been returned by a DDE callback function, the handle may be used only for
read access to the global memory object identified by the handle.

If the application will be adding data to the global memory object (using the
DdeAddData function) so that the object exceeds 64K in length, then the applica
tion should specify a total length (cblnitData + offSrcData) that is equal to the an
ticipated maximum length of the object. This avoids unnecessary data copying and
memory reallocation by the system.

The following example processes the XTYP _ WILDCONNECT transaction by re
turning a data handle to an array of HSZP AIR structures-one for each topic
name supported:

#define CTOPICS 2

UINT type;
UINT fmt;
HSZPAIR ahp[(CTOPICS + 1)];
HSZ ahszTopiclist[CTOPICS];
HSZ hszServ, hszTopic;
WORD i , j;

if (type == XTYP_WILDCONNECT) {

/*
* Scan the topic list and create array of HSZPAIR data
* structures.
*/

168 DdeCreateStringHandle

See Also

j 0;
for Ci = 0; i < CTOPICS; i++) {

if ChszTopic == CHSZ) NULL I I

}

hszTopic == ahszTopicList[iJ)
ahp[j].hszSvc = hszServ;
ahp[j++J.hszTopic = ahszTopicList[i];

* End the list with an HSZPAIR structure that contains NULL
* string handles as its members.
*/

ahp[jJ.hszSvc =NULL;
ahp[j++J.hszTopic =NULL;

/*
* Return a handle to a global memory object containing the
* HSZPAIR structures.
*/

return DdeCreateDataHandle(
idinst, I* instance identifier *I
&ahp, /* points to HSZPAIR array */
s i zeof (HSZ) * j' I* length of the array *I
0' /* start at the beginning */
NULL, /* no item-name string */
fmt, /* return the same format */
0); /* let the system own it */

DdeAccessData, DdeFreeDataHandle, DdeGetData, Ddelnitialize

DdeCreateStringHandle
#include <ddeml.h>

HSZ DdeCreateStringHandle(id/nst, lpszString, codepage)
DWORD idlnst; /* instance identifier */
LPCSTR lpszString; /* address of null-terminated string */
int codepage; /* code page . */

The DdeCreateStringHandle function creates a handle that identifies the string
pointed to by the lpszString parameter. A dynamic data exchange (DDE) client or
server application can pass the string handle as a parameter to other DDE Manage
ment Library functions.

Parameters

Return Value

Errors

Comments

DdeCreateStringHandle 169

idlnst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

lpszString
Points to a buffer that contains the null-terminated string for which a handle is
to be created. This string may be any length.

codepage
Specifies the code page used to render the string. This value should be either
CP _WIN ANSI or the value returned by the GetKBCodePage function. A
value of zero implies CP _WIN ANSI.

The return value is a string handle if the function is successful. Otherwise, it is
NULL.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_INV ALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_SYS_ERROR

Two identical strings always correspond to the same string handle. String handles
are unique across all tasks that use the DDEML. That is, when an application
creates a handle for a string and another application creates a handle for an identi
cal string, the string handles returned to both applications are identical-regardless
of case.

The value of a string handle is not related to the case of the string it identifies.

When an application has either created a string handle or received one in the call
back function and has used the DdeKeepStringHandle function to keep it, the ap
plication must free that string handle when it is no longer needed.

An instance-specific string handle is not mappable from string handle to string
to string handle again. This is shown in the following example, in which the
DdeQueryString function creates a string from a string handle and then
DdeCreateStringHandle creates a string handle from that string, but the
two handles are not the same:

DWDRD idinst;
DWORD cb;
HSZ hszinst, hszNew;
PSZ pszinst;

DdeQueryString(idinst, hszinst, pszinst, cb, CP_WINANSI);
hszNew = DdeCreateStringHandle(idinst, pszinst, CP_WINANSI);
f* hszNew != hszinst ! */

170 Ode Disconnect

Example The following example creates a service-name string handle and a topic-name
string handle and then attempts to establish a conversation with a server that sup
ports the service name and topic name. If the attempt fails, the example obtains an
error value identifying the reason for the failure.

See Also

DWORD idlnst = 0L;
HSZ hszClock;
HSZ hszTime;
HCONV hconv;
UINT uError;

hszClock = DdeCreateStringHandle(idinst, "Clock", CP_WINANSIJ;
hszTime = DdeCreateStringHandle(idlnst, "Time", CP_WINANSIJ;

if ((hconv = DdeConnect(
idlnst,
hszClock,
hszTime,
NULL)) NULL) {

I* instance identifier
/* server's service name
I* topic name
/* use default CONVCONTEXT

uError = DdeGetLastError(idlnst);
}

DdeAccessData, DdeCmpStringHandles, DdeFreeStringHandle,
Ddelnitialize, DdeKeepStringHandle, DdeQueryString

Ode Disconnect
#include <ddeml.h>

BOOL DdeDisconnect(hConv)
HCONV hConv; /* handle of conversation */

Parameters

Return Value

Errors

The DdeDisconnect function terminates a conversation started by either the Dde
Connect or DdeConnectList function and invalidates the given conversation
handle.

hConv
Identifies the active conversation to be terminated.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

Comments

See Also

DMLERR_DLL_NOT _INITIALIZED
DMLERR_NO_CONV _ESTABLISHED
DMLERR_NO_ERROR

DdeDisconnectList 171

Any incomplete transactions started before calling DdeDisconnect are immedi
ately abandoned. The XTYP _DISCONNECT transaction type is sent to the dy
namic data exchange (DDE) callback function of the partner in the conversation.
Generally, only client applications need to terminate conversations.

DdeConnect, DdeConnectList, DdeDisconnectList

Ode D isconnectlist
#include <ddeml.h>

BOOL DdeDisconnectList(hConvList)
HCONVLIST hConvList; /*handle of conversation list */

Parameters

Return Value

Errors

Comments

See Also

The DdeDisconnectList function destroys the given conversation list and termi
nates all conversations associated with the list.

hConvList
Identifies the conversation list. This handle must have been created by a pre
vious call to the DdeConnectList function.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT _INITIALIZED
DMLERR_INV ALIDPARAMETER
DMLERR_NO_ERROR

An application can use the DdeDisconnect function to terminate individual con
versations in the list.

DdeConnect, DdeConnectList, DdeDisconnect

172 DdeEnableCallback

DdeEnableCallback
#include <ddeml.h>

BOOL DdeEnableCallback(id/nst, hConv, uCmd)
DWORD idlnst; I* instance identifier */
HCONV hConv; I* handle of conversation */
UINT uCmd; I* the enable/disable function code */

Parameters

Return Value

The DdeEnableCallback function enables or disables transactions for a specific
conversation or for all conversations that the calling application currently has es
tablished.

After disabling transactions for a conversation, the system places the transactions
for that conversation in a transaction queue associated with the application. The ap
plication should reenable the conversation as soon as possible to avoid losing
queued transactions.

idlnst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hConv
Identifies the conversation to enable or disable. If this parameter is NULL, the
function affects all conversations.

uCmd
Specifies the function code. This parameter can be one of the following values:

Value

EC_ENABLEALL

EC_ENABLEONE

EC_DISABLE

Meaning

Enables all transactions for the specified conversation.

Enables one transaction for the specified conversation.

Disables all blockable transactions for the specified conver
sation.

A server application can disable the following transactions:

XTYP _ADVSTART
XTYP _ADVSTOP
XTYP _EXECUTE
XTYP_POKE
XTYP _REQUEST

A client application can disable the following transactions:

XTYP _ADVDATA
XTYP _XACT_COMPLETE

The return value is nonzero if the function is successful. Otherwise, it is zero.

Errors

Comments

See Also

DdeFreeDataHandle 173

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT _INITIALIZED
DMLERR_NO_ERROR
DMLERR_INVALIDPARAMETER

An application can disable transactions for a specific conversation by returning
CBR_BLOCK from its dynamic data exchange (DDE) callback function. When
the conversation is reenabled by using the DdeEnableCallback function, the sys
tem generates the same transaction as was in process when the conversation was
disabled.

DdeConnect, DdeConnectList, DdeDisconnect, Ddelnitialize

DdeFreeDataHandle
#include <ddeml.h>

BOOL DdeFreeDataHandle(hData)
HDDEDATA hData; /*handle of global memory object */

Parameters

Return Value

Errors

Comments

The DdeFreeDataHandle function frees a global memory object and deletes the
data handle associated with the object.

hData
Identifies the global memory object to be freed. This handle must have been
created by a previous call to the DdeCreateDataHandle function or returned
by the DdeClientTransaction function.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_INV AUD PARAMETER
DMLERR_NO_ERROR

An application must call DdeFreeDataHandle under the following circumstances:

• To free a global memory object that the application allocated by calling the
DdeCreateDataHandle function if the object's data handle was never passed

174 DdeFreeDataHandle

Example

See Also

by the application to another Dynamic Data Exchange Management Library
(DDEML) function

• To free a global memory object that the application allocated by specifying the
HDATA_APPOWNED flag in a call to the DdeCreateDataHandle function

• To free a global memory object whose handle the application received from the
DdeClientTransaction function

The system automatically frees an unowned object when its handle is returned by
a dynamic data exchange (DDE) callback function or used as a parameter in a
DDEML function.

The following example creates a global memory object containing help informa
tion, then frees the object after passing the object's handle to the client application:

DWORD idinst;
HSZ hszitem;
HDDEDATA hDataHelp;

char szDdeHelp[J = "DDEML test server help:\r\n"\
"\tThe 'Server' (service) and 'Test' (topic) names may change.\r\n"\
"Items supported under the 'Test' topic are:\r\n"\
"\tCount:\tThis value increments on each data change.\r\n"\
"\tRand:\tThis value is changed after each data change. \r\n"\
"\t\tln Runaway mode, the above items change after a request.\r\n"\
"\tHuge:\tThis is randomly generated text data >64k that the\r\n"\
"\t\ttest client can verify. It is recalculated on each\r\n"\
"\t\trequest. This also verifies huge data poked or executed\r\n"\
"\t\tfrom the test client.\r\n"\
"\tHelp:\tThis help information. This data is APPOWNED.\r\n";

/*Create global memory object containing help information. */

if (!hDataHelpl {
hDataHelp = DdeCreateDataHandle(idinst, szDdeHelp,

strlen(szDdeHelp) + 1, 0, hszltem, CF_TEXT, HDATA_APPOWNED);

/* Pass help information to client application. */

/* Free the global memory object. */

if (hDataHelpl
DdeFreeDataHandle(hDataHelpl;

DdeAccessData, DdeCreateDataHandle

DdeFreeStringHandle 175

DdeFreeStringHandle CIIJ
#include <ddeml.h>

BOOL DdeFreeStringHandle(id/nst, hsz)
DWORD idlnst; /* instance identifier */
HSZ hsz; /* handle of string */

Parameters

Return Value

Comments

Example

See Also

The DdeFreeStringHandle function frees a string handle in the calling applica
tion.

idlnst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hsz
Identifies the string handle to be freed. This handle must have been created by a
previous call to the DdeCreateStringHandle function.

The return value is nonzero if the function is successful. Otherwise, it is zero.

An application can free string handles that it creates with the DdeCreateString
Handle function but should not free those that the system passed to the applica
tion's dynamic data exchange (ODE) callback function or those returned in the
CONVINFO structure by the DdeQueryConvlnfo function.

The following example frees string handles during the XTYP _DISCONNECT
transaction:

DWORD idlnst = 0L;
HSZ hszClock;
HSZ hszTime;
HSZ hszNow;
UINT type;

if (type == XTYP_DISCONNECT) {

}

DdeFreeStringHandle(idlnst, hszClock);
DdeFreeStringHandle(idlnst, hszTime);
DdeFreeStringHandle(idlnst, hszNow);

return (HDDEDATA) NULL;

DdeCmpStringHandles, DdeCreateStringHandle, Ddelnitialize,
DdeKeepStringHandle, DdeQueryString

176 DdeGetData

DdeGetData
#include <ddeml.h>

DWORD DdeGetData(hData,pDest, cbMax, offSrc)
HDDEDATA hData; /* handle of global memory object */
void FAR* pDest; /* address of destination buffer */
DWORD cbMax; I* amount of data to copy */
DWORD offSrc; /* offset to beginning of data */

Parameters

Return Value

Errors

Example

The DdeGetData function copies data from the given global memory object to the
specified local buffer.

hData
Identifies the global memory object that contains the data to copy.

pDest
Points to the buffer that receives the data. If this parameter is NULL, the
DdeGetData function returns the amount, in bytes, of data that would be
copied to the buffer.

ch Max
Specifies the maximum amount, in bytes, of data to copy to the buffer pointed
to by the pDestparameter. Typically, this parameter specifies the length of the
buffer pointed to by pDest.

offSrc
Specifies an offset within the global memory object. Data is copied from the ob
ject beginning at this offset.

If the pDest parameter points to a buffer, the return value is the size, in bytes, of
the memory object associated with the data handle or the size specified in the
cbMax parameter, whichever is lower.

If the pDest parameter is NULL, the return value is the size, in bytes, of the
memory object associated with the data handle.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT _INITIALIZED
DMLERR_INV ALID _HDDEDATA
DMLERR_INV ALIDPARAMETER
DMLERR_NO_ERROR

The following example copies data from a global memory object to a local buffer
and then fills the TIME structure with data from the buffer:

See Also

HDDEDATA hData;
char szBuf[32];

typedef struct {
int hour;
int minute;
int second;

TIME;

DdeGetData(hData, (LPBYTEl szBuf, 32L, 0Ll;
sscanf(szBuf, "%d:%d:%d", &nTime.hour, &nTime.minute,

&nTi me. second);

DdeGetlastError 177

DdeAccessData, DdeCreateDataHandle, DdeFreeDataHandle

DdeGetlastError
#include <ddeml.h>

UINT DdeGetLastError(idJnst)
DWORD idlnst; /* instance identifier */

Parameters

Return Value

The DdeGetLastError function returns the most recent error value set by the
failure of a Dynamic Data Exchange Management Library (DDEML) function and
resets the error value to DMLERR_NO_ERROR.

idlnst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

The return value is the last error value. Following are the possible DDEML error
values:

Value

DMLERR_ADVACKTIMEOUT

DMLERR_BUSY

DMLERR_DATAACKTIMEOUT

Meaning

A request for a synchronous advise trans
action has timed out.

The response to the transaction caused
the DDE_FBUSY bit to be set.

A request for a synchronous data transac
tion has timed out.

178 DdeGetlastError

Value

DMLERR_DLL_NOT_INITIALIZED

DMLERR_DLL_USAGE

DMLERR_EXECACKTIMEOUT

DMLERR_INV ALIDPARAMETER

DMLERR_LOW _MEMORY

DMLERR_MEMORY _ERROR

DMLERR_NO_CONV _ESTABLISHED

DMLERR_NOTPROCESSED

DMLERR_POKEACKTIMEOUT

DMLERR_POSTMSG_FAILED

Meaning

A DDEML function was called without
first calling the Ddelnitialize function,
or an invalid instance identifier was
passed to a DDEML function.

An application initialized as
APPCLASS_MONITOR has attempted
to perform a DDE transaction, or
an application initialized as
APPCMD_CLIENTONLY has
attempted to perform server transactions.

A request for a synchronous execute
transaction has timed out.

A parameter failed to be validated by the
DDEML. Some of the possible causes
are as follows:

• The application used a data handle ini
tialized with a different item-name
handle than that required by the trans
action.

• The application used a data handle that
was initialized with a different clip
board data format than that required by
the transaction.

• The application used a client-side con
versation handle with a server-side
function or vise versa.

• The application used a freed data
handle or string handle.

• More than one instance of the applica-
tion used the same object.

A DDEML application has created a pro
longed race condition (where the server
application outruns the client), causing
large amounts of memory to be con
sumed.

A memory allocation failed.

A client's attempt to establish a conversa
tion has failed.

A transaction failed.

A request for a synchronous poke transac
tion has timed out.

An internal call to the PostMessage func
tion has failed.

Example

Value

DMLERR_REENTRANCY

DMLERR_SERVER_DIED

DMLERR_SYS_ERROR

DMLERR_UNADVACKTIMEOUT

DMLERR_UNFOUND_QUEUE_ID

DdeGetlastError 179

Meaning

An application instance with a syn
chronous transaction already in progress
attempted to initiate another synchronous
transaction, or the DdeEnableCallback
function was called from within a
DDEML callback function.

A server-side transaction was attempted
on a conversation that was terminated by
the client, or the server terminated before
completing a transaction.

An internal error has occurred in the
DDEML.

A request to end an advise transaction
has timed out.

An invalid transaction identifier was
passed to a DDEML function. Once the
application has returned from an
XTYP _XACT_COMPLETE callback,
the transaction identifier for that callback
is no longer valid.

The following example calls the DdeGetLastError function if the DdeCreate
DataHandle function fails:

DWORD idlnst;
HDDEDATA hddeMyData;
HSZPAIR ahszp[2];
HSZ hszClock, hszTime;

/* Create string handles. */

hszClock = DdeCreateStringHandleCidlnst, CLPSTR) "Clock",
CP_WINANSI);

hszTime = DdeCreateStringHandle(idinst, CLPSTRl "Time",
CP_WINANSI);

/* Copy handles to an HSZPAIR structure. */

ahszp[0].hszSvc
ahszp[0].hszTopic
ahszp[l].hszSvc
ahszp[l].hszTopic

hszClock;
hszTime;
CHSZl NULL;
(HSZl NULL;

/* Create a global memory object. */

hddeMyData = DdeCreateDataHandle(idinst, ahszp,
sizeof(ahszp), 0, NULL, CF_TEXT, 0);

if ChddeMyData == NULL)

180 Ddelnitialize

f*
* Pass error value to application-defined error handling
* function.
*f

HandleError(DdeGetlastError(idinst));

See Also Ddelnitialize

Ddelnitialize CID
#include <ddeml.h>

UINT Ddelnitialize(lpid/nst, pfnCallback, afCmd, uRes)
DWORD FAR* lpidlnst; /* address of instance identifier */
PFNCALLBACK pfnCallback; /* address of callback function */
DWORD afCmd; /*array of command and filter flags */
DWORD uRes; /* reserved */

Parameters

The Ddelnitialize function registers an application with the Dynamic Data Ex
change Management Library (DDEML). An application must call this function
before calling any other DDEML function.

lpidlnst
Points to the application-instance identifier. At initialization, this parameter
should point to OL. If the function is successful, this parameter points to the in
stance identifier for the application. This value should be passed as the idlnst
parameter in all other DDEML functions that require it. If an application uses
multiple instances of the DDEML dynamic link library, the application should
provide a different callback function for each instance.

If lpidlnst points to a nonzero value, this implies a reinitialization of the
DDEML. In this case, lpidlnst must point to a valid application-instance identi
fier.

pfnCallback
Points to the application-defined DDE callback function. This function
processes DDE transactions sent by the system. For more information, see the
description of the Ode Callback callback function.

afCmd
Specifies an array of APPCMD_ and CBF _flags. The APPCMD_ flags pro
vide special instructions to the Ddelnitialize function. The CBF _ flags set fil
ters that prevent specific types of transactions from reaching the callback

Ddelnitialize 181

function. Using these flags enhances the performance of a DDE application by
eliminating unnecessary calls to the callback function.

This parameter can be a combination of the following flags:

Flag Meaning

APPCLASS_MONITOR Makes it possible for the application to
monitor DDE activity in the system. This
flag is for use by DDE monitoring appli
cations. The application specifies the
types of DDE activity to monitor by com
bining one or more monitor flags with

APPCLASS_STANDARD

APPCMD _ CLIENTONLY

APPCMD _FILTERINITS

CBF _FAIL_ALLSVRXACTIONS

the APPCLASS_MONITOR flag. For
details, see the following Comments sec
tion.

Registers the application as a standard
(nonmonitoring) DDEML application.

Prevents the application from becoming
a server in a DDE conversation. The ap-
plication can be only a client. This flag
reduces resource consumption by the
DDEML. It includes the functionality of
the CBF _FAIL_ALLSVRXACTIONS
flag.

Prevents the DDEML from
sending XTYP _CONNECT and
XTYP _ WILDCONNECT transactions to
the application until the application has
created its string handles and registered
its service names or has turned off
filtering by a subsequent call to the
DdeNameService or Ddelnitialize func
tion. This flag is always in effect when
an application calls Ddelnitialize for the
first time, regardless of whether the appli
cation specifies this flag. On subsequent
calls to Ddelnitialize, not specifying this
flag turns off the application's service
name filters; specifying this flag turns on
the application's service-name filters.

Prevents the callback function from re
ceiving server transactions. The system
will return DDE_FNOTPROCESSED to
each client that sends a transaction to this
application. This flag is equivalent to
combining all CBF _FAIL_ flags.

182 Ddelnitialize

Flag

CBF _FAIL_ADVISES

CBF _FAIL_ CONNECTIONS

CBF _FAIL_EXECUTES

CBF _FAIL_POKES

CBF _FAIL_REQUESTS

CBF _FAIL_SELFCONNECTIONS

CBF _SKIP _ALLNOTIFICATIONS

CBF _SKIP _CONNECT_CONFIRMS

Meaning

Prevents the callback function from
receiving XTYP _ADVSTART and
XTYP _ADVSTOP transactions.
The system will return
DDE_FNOTPROCESSED to each client
that sends an XTYP _ADVSTART or
XTYP _ADVSTOP transaction to the
server.

Prevents the callback function from
receiving XTYP _CONNECT and
XTYP _ WILDCONNECT transactions.

Prevents the callback function
from receiving XTYP _EXECUTE
transactions. The system will return
DDE_FNOTPROCESSED to a client
that sends an XTYP _EXECUTE transac
tion to the server.

Prevents the callback function from
receiving XTYP _POKE trans-
actions. The system will return
DDE_FNOTPROCESSED to a client
that sends an XTYP _POKE transaction
to the server.

Prevents the callback function
from receiving XTYP _REQUEST
transactions. The system will return
DDE_FNOTPROCESSED to a client
that sends an XTYP _REQUEST transac
tion to the server.

Prevents the callback function from re
ceiving XTYP _CONNECT transactions
from the application's own instance. This
prevents an application from establishing
a DDE conversation with its own in
stance. An application should use this
flag if it needs to communicate with
other instances of itself but not with it
self.

Prevents the callback function from re
ceiving any notifications. This flag is
equivalent combining all CBF _SKIP_
flags.

Prevents the callback function from re
ceiving XTYP _CONNECT_CONFIRM
notifications.

Return Value

Comments

Flag

CBF _SKIP _DISCONNECTS

CBF _SKIP _REGISTRATIONS

CBF _SKIP _UNREGISTRATIONS

uRes
Reserved; must be set to OL.

The return value is one of the following:

DMLERR_DLL_USAGE
DMLERR_INV ALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_SYS_ERROR

Ddelnitialize 183

Meaning

Prevents the callback function from re
ceiving XTYP _DISCONNECT notifica
tions.

Prevents the callback function from re
ceiving XTYP _REGISTER notifications.

Prevents the callback function from re
ceiving XTYP _UNREGISTER notifica
tions.

An application that uses multiple instances of the DDEML must not pass DDEML
objects between instances.

A DDE monitoring application should not attempt to perform DDE (establish con
versations, issue transactions, and so on) within the context of the same applica
tion instance.

A synchronous transaction will fail with a DMLERR_REENTRANCY error if any
instance of the same task has a synchronous transaction already in progress.

A DDE monitoring application can combine one or more of the following monitor
flags with the APPCLASS_MONITOR flag to specify the types of DDE activity
to monitor:

Flag

MF _CALLBACKS

MF_CONV

MF_ERRORS

MF _HSZ_INFO

Meaning

Notifies the callback function whenever a transaction is sent to
any DDE callback function in the system.

Notifies the callback function whenever a conversation is estab
lished or terminated.

Notifies the callback function whenever a DDE error occurs.

Notifies the callback function whenever a DDE application
creates, frees, or increments the use count of a string handle or
whenever a string handle is freed as a result of a call to the
DdeUninitialize function.

184 DdeKeepStringHandle

Example

See Also

Flag

MF_LINKS

MF _POSTMSGS

MF _SENDMSGS

Meaning

Notifies the callback function whenever an advise loop is
started or ended.

Notifies the callback function whenever the system or an appli
cation posts a DDE message.

Notifies the callback function whenever the system or an appli
cation sends a DDE message.

The following example obtains a procedure-instance address for a DDE callback
function, then initializes the application with the DDEML.

DWDRD idinst = 0L;
FARPROC lpDdeProc;

lpDdeProc = MakeProcinstance((FARPROC) DDECallback, hinst);
if (Ddeinitialize((LPDWORD) &idinst, (PFNCALLBACK) lpDdeProc,

APPCMD_CLIENTONLY, 0L))
return FALSE;

DdeClientTransaction, DdeConnect, DdeCreateDataHandle, DdeEnable
Callback, DdeNameService, DdePostAdvise, DdeUninitialize

DdeKeepStringHandle
#include <ddeml.h>

BOOL DdeKeepStringHandle(id/nst, hsz)
DWORD idlnst; /*instance identifier */
HSZ hsz; /*handle of string */

Parameters

The DdeKeepStringHandle function increments the usage count (increases it by
one) associated with the given handle. This function makes it possible for an appli
cation to save a string handle that was passed to the application's dynamic data ex
change (DDE) callback function. Otherwise, a string handle passed to the callback
function is deleted when the callback function returns.

idlnst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hsz
Identifies the string handle to be saved.

Return Value

Example

See Also

DdeNameService 185

The return value is nonzero if the function is successful. Otherwise, it is zero.

The following example is a portion of a DDE callback function that increases the
usage count and saves a local copy of two string handles:

HSZ hszl;
HSZ hsz2;
static HSZ hszServerBase;
static HSZ hszServerlnst;
DWORD idlnst;

case XTYP_REGISTER:

/* Keep the handles for later use. */

DdeKeepStringHandle(idlnst, hszl);
DdeKeepStringHandle(idlnst, hsz2);
hszServerBase hszl;
hszServerlnst = hsz2;

I* Finish processing the transaction. */

DdeCreateStringHandle, DdeFreeStringHandle, Ddelnitialize,
DdeQueryString

DdeNameService
#include <ddeml.h>

HDDEDATA DdeNameService(idlnst, hszl, hszRes, afCmd)
DWORD idlnst; /* instance identifier */
HSZ hszl; /* handle of service-name string */
HSZ hszRes; /*reserved */
UINT afCmd; /*service-name flags */

The DdeNameService function registers or unregisters the service names that a
dynamic data exchange (DDE) server supports. This function causes the system to
send XTYP _REGISTER or XTYP _UNREGISTER transactions to other running
DDE Management Library (DDEML) client applications.

A server application should call this function to register each service name that it
supports and to unregister names that it previously registered but no longer sup
ports. A server should also call this function to unregister its service names just
before terminating.

186 DdeNameService

Parameters

Return Value

Errors

Comments

idlnst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hszl
Identifies the string that specifies the service name that the server is registering
or unregistering. An application that is unregistering all of its service names
should set this parameter to NULL.

hszRes
Reserved; should be set to NULL.

afCmd
Specifies the service-name flags. This parameter can be one of the following
values:

Value

DNS_REGISTER

DNS_ UNREGISTER

DNS_FILTERON

DNS_FILTEROFF

Meaning

Registers the given service name.

Unregisters the given service name. If the hszl parameter
is NULL, all service names registered by the server will
be unregistered.

Turns on service-name initiation filtering. This filter pre
vents a server from receiving XTYP _CONNECT transac
tions for service names that it has not registered. This is
the default setting for this filter.

If a server application does not register any
service names, the application cannot receive
XTYP _ WILDCONNECT transactions.

Turns off service-name initiation filtering. If this flag is
set, the server will receive an XTYP _CONNECT transac
tion whenever another DDE application calls the Dde
Connect function, regardless of the service name.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT _INITIALIZED
DMLERR_DLL_USAGE
DMLERR_INV ALIDPARAMETER
DMLERR_NO_ERROR

The service name identified by the hszl parameter should be a base name (that is,
the name should contain no instance-specific information). The system generates
an instance-specific name and sends it along with the base name during the
XTYP _REGISTER and XTYP _UNREGISTER transactions. The receiving appli
cations can then connect to the specific application instance.

Example

See Also

DdePostAdvise 187

The following example initializes an application with the DDEML, creates
frequently used string handles, and registers the application's service name:

HSZ hszClock;
HSZ hszTime;
HSZ hszNow;
HINSTANCE hinst;
DWORD idlnst = 0L;
FARPROC lpDdeProc;

/* Initialize the application for the DDEML. */

lpDdeProc = MakeProcinstance((FARPROC) DdeCallback, hinst);
if (!Ddelnitialize((LPDWORD) &idlnst, CPFNCALLBACK) lpDdeProc,

APPCMD_FILTERINITS I CBF_FAIL_EXECUTES, 0L))

}

/* Create frequently used string handles. */

hszTime = DdeCreateStringHandle(idinst, "Time", CP_WINANSI);
hszNow = DdeCreateStringHandle(idinst, "Now", CP_WINANSI);
hszClock = DdeCreateStringHandle(idinst, "Clock", CP_WINANSI);

/* Register the service name. */

DdeNameService(idinst, hszClock, (HSZ) NULL, DNS_REGISTER);

DdeConnect, DdeConnectList, Ddelnitialize

DdePostAdvise
#include <ddeml.h>

BOOL DdePostAdvise(idlnst, hszTopic, hszltem)
DWORD idlnst; I* instance identifier */
HSZ hszTopic; I* handle of topic-name string */
HSZ hszltem; I* handle of item-name string */

The DdePostAdvise function causes the system to send an XTYP _ADVREQ
transaction to the calling (server) application's dynamic data exchange (DDE) call
back function for each client that has an advise loop active on the specified topic
or item name pair. A server application should call this function whenever the data
associated with the topic or item name pair changes.

188 DdePostAdvise

Parameters

Return Value

Errors

Comments

Example

idlnst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hszTopic
Identifies a string that specifies the topic name. To send notifications for all top
ics with active advise loops, an application can set this parameter to NULL.

hsz/tem
Identifies a string that specifies the item name. To send notifications for all
items with active advise loops, an application can set this parameter to NULL.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT _INITIALIZED
DMLERR_DLL_USAGE
DMLERR_NO_ERROR

A server that has nonenumerable topics or items should set the hszTopic and
hsz/tem parameters to NULL so that the system will generate transactions for all
active advise loops. The server's DDE callback function returns NULL for any ad
vise loops that do not need to be updated.

If a server calls DdePostAdvise with a topic/item/format name set that includes
the set currently being handled in a XTYP _ADVREQ callback, a stack overflow
may result.

The following example calls the DdePostAdvise function whenever the time
changes:

typedef struct { /* tm */
int hour;
int minute;
int second;

} TIME;

TIME tmTime;
DWORD idinst;
HSZ hszTime;
HSZ hszNow;
TIME tmCurTime;

f* Fill tmCurTime with the current time. */

See Also

DdeQueryConvlnfo 189

/* Check for any change in second, minute, or hour. */

if ((tmCurTime.second != tmTime.second) I I
(tmCurTime.minute != tmTime.minute) I I
(tmCurTime.hour != tmTime.hour)) {

/* Send the current time to the clients. */

DdePostAdvise(idlnst, hszTime, hszNow);

Ddelnitialize

DdeQueryConvlnfo
#include <ddeml.h>

UINT DdeQueryConvlnfo(hConv, idTransaction, lpConvlnfo)
HCONV hConv; I* handle of conversation */
DWORD idTransaction; I* transaction identifier */
CONVINFO FAR* lpConvlnfo; /* address of structure with conversation data */

Parameters

The DdeQueryConvlnfo function retrieves information about a dynamic data ex
change (DDE) transaction and about the conversation in which the transaction
takes place.

hConv
Identifies the conversation.

idTransaction
Specifies the transaction. For asynchronous transactions, this parameter should
be a transaction identifier returned by the DdeClientTransaction function. For
synchronous transactions, this parameter should be QID_SYNC.

lpConvlnfo
Points to the CONVINFO structure that will receive information about the
transaction and conversation. The cb member of the CONVINFO structure
must specify the length of the buffer allocated for the structure.

The CONVINFO structure has the following form:

190 DdeQueryConvlnfo

Return Value

Errors

Example

#include <ddeml .h>

typedef struct tagCONVINFO { /* ci */
DWORD cb;
DWORD hUser;
HCONV hConvPartner;
HSZ hszSvcPartner;
HSZ hszServiceReq;
HSZ hszTopic;
HSZ hszltem;
UINT wFmt;
UINT wType;
UINT wStatus;
UINT wConvst;
UINT wlastError;
HCONVLIST hConvlist;
CONVCONTEXT ConvCtxt;

CONVINFO;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the number of bytes copied into the CONVINFO structure, if
the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT _INITIALIZED
DMLERR_NO_CONV _ESTABLISHED
DMLERR_NO_ERROR
DMLERR_UNFOUND_QUEUE_ID

The following example fills a CONVINFO structure with information about a syn
chronous conversation and then obtains the names of the partner application and
topic:

DWORD idlnst;
HCONV hConv;
CONVINFO ci;
WORD wError;
char szSvcPartner[32];
char szTopic[32];
DWORD cchServ, cchTopic;

if (!DdeQueryConvlnfo(hConv, QID_SYNC, &ci))
wError = DdeGetLastError(idlnst);

See Also

DdeQueryNextServer 191

else {

}

cchServ = DdeQueryString(idinst, ci .hszSvcPartner,
(LPSTR) &szSvcPartner, sizeof(szSvcPartner),
CP_WINANSI);

cchTopic =DdeQueryString(idlnst, ci .hszTopic,
(LPSTR) &szTopic, sizeof(szTopic),
CP_WINANSI);

DdeConnect, DdeConnectList, DdeQuery N extServer

DdeQueryNextServer
#include <ddeml.h>

HCONV DdeQueryNextServer(hConvList, hConvPrev)
HCONVLIST hConvList; /*handle of conversation list */
HCONV hConvPrev; /*previous conversation handle */

Parameters

Return Value

Example

The DdeQueryNextServer function obtains the next conversation handle in the
given conversation list.

hConvList
Identifies the conversation list. This handle must have been created by a pre
vious call to the DdeConnectList function.

hConvPrev
Identifies the conversation handle previously returned by this function. If this
parameter is NULL, this function returns the first conversation handle in the list.

The return value is the next conversation handle in the list if the list contains any
more conversation handles. Otherwise, it is NULL.

The following example uses the DdeQueryNextServer function to count the num
ber of conversation handles in a conversation list and to copy the service-name
string handles of the servers to a local buffer:

HCONVLIST hconvList; /* conversation list */
DWORD idlnst; /* instance identifier */
HSZ hszSystem; /* System topic */
HCONV hconv = NULL; /* conversation handle */
CONVINFO ci; /* holds conversation data */
UINT cConv = 0; /* count of conv. handles */
HSZ *pHsz, *aHsz; /* point to string handles */

192 DdeQueryString

See Also

/*Connect to all servers that support the System topic. */

hconvList = DdeConnectList(idlnst, (HSZ) NULL, hszSystem,
(HCONV) NULL, (LPVOID) NULL);

/*Count the number of handles in the conversation list. */

while ((hconv = DdeQueryNextServer(hconvList, hconv)) != (HCONV) NULL)
cConv++;

/*Allocate a buffer for the string handles. */

hconv = (HCONV) NULL;
aHsz = (HSZ *) LocalAlloc(LMEM_FIXED, cConv * sizeof(HSZ));

/* Copy the string handles to the buffer. */

pHsz = aHsz;
while ((hconv = DdeQueryNextServer(hconvList, hconv)) != (HCONV) NULL) {

DdeQueryConvinfo(hconv, QID_SYNC, (PCONVINFO) &ci);
DdeKeepStringHandle(idinst, ci.hszSvcPartner);
*pHsz++ = ci.hszSvcPartner;

}

/* Use the handles; converse with servers. */

/* Free the memory and terminate conversations. */

LocalFree((HANDLE) aHsz);
DdeDisconnectList(hconvList);

DdeConnectList, DdeDisconnectList

DdeQueryString
#include <ddeml.h>

DWORD DdeQueryString(id/nst, hsz, lpsz, cchMax, codepage)
DWORD idlnst; /*instance identifier */
HSZ hsz; /*handle of string */
LPSTR lpsz; /* address of destination buffer */
DWORD cchMax; !*length of buffer */
int codepage; /*code page */

Parameters

Return Value

Example

DdeQueryString 193

The DdeQueryString function copies text associated with a string handle into a
buffer.

The string returned in the buffer is always null-terminated. If the string is longer
than (cchMax- 1), only the first (cchMax- l) characters of the string are copied.

If the lpsz parameter is NULL, this function obtains the length, in bytes, of the
string associated with the string handle. The length does not include the terminat
ing null character.

idlnst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

hsz
Identifies the string to copy. This handle must have been created by a previous
call to the DdeCreateStringHandle function.

lpsz
Points to a buffer that receives the string. To obtain the length of the string, this
parameter should be set to NULL.

cchMax
Specifies the length, in bytes, of the buffer pointed to by the lpsz parameter. If
the string is longer than (cchMax- 1), it will be truncated. If the lpsz parameter
is set to NULL, this parameter is ignored.

codepage
Specifies the code page used to render the string. This value should be either
CP _WIN ANSI or the value returned by the GetKBCodePage function.

The return value is the length, in bytes, of the returned text (not including the ter
minating null character) if the lpsz parameter specified a valid pointer. The return
value is the length of the text associated with the hsz parameter (not including the
terminating null character) if the lpsz parameter specified a NULL pointer. The re
turn value is NULL if an error occurs.

The following example uses the DdeQueryString function to obtain a service
name and topic name that a server has registered:

UINT type;

HSZ hszl;
HSZ hsz2;
char szBaseName[16];
char szinstName[16];

if (type == XTYP_REGISTER)

194 DdeReconnect

See Also

/* Copy the base service name to a buffer. */

DdeQueryString(idinst, hszl, (LPSTR) &szBaseName,
sizeof(szBaseName), CP_WINANSI);

/* Copy the instance-specific service name to a buffer. */

DdeQueryString(idinst, hsz2, (LPSTR) &szinstName,
sizeof(szinstName), CP_WINANSIJ;

return CHDDEDATA) TRUE;

DdeCmpStringHandles, DdeCreateStringHandle, DdeFreeStringHandle,
Ddelnitialize

DdeReconnect
#include <ddeml.h>

HCONV DdeReconnect(hConv)
HCONV hConv; I* handle of conversation to reestablish */

Parameters

Return Value

Errors

The DdeReconnect function allows a client Dynamic Data Exchange Manage
ment Library (DDEML) application to attempt to reestablish a conversation with a
service that has terminated a conversation with the client. When the conversation
is reestablished, the DDEML attempts to reestablish any preexisting advise loops.

hConv
Identifies the conversation to be reestablished. A client must have obtained the
conversation handle by a previous call to the DdeConnect function.

The return value is the handle of the reestablished conversation if the function is
successful. The return value is NULL if the function fails.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT _INITIALIZED
DMLERR_INV ALIDPARAMETER
DMLERR_NO_CONV _ESTABLISHED
DMLERR_NO_ERROR

Example

See Also

DdeSetUserHandle 195

The following example shows the context within which an application should call
the DdeReconnect function:

HDDEDATA EXPENTRY DdeCallback(wType, wFmt, hConv, hszl,
hsz2, hData, dwDatal, dwData2)

WORD wType; /* transaction type */
WORD wFmt; /*clipboard format */
HCONV hConv; /* handle of the conversation */
HSZ hszl; /* handle of a string */
HSZ hsz2; /* handle of a string */
HDDEDATA hData; /* handle of a global memory object */
DWORD dwDatal; /* transaction-specific data */
DWORD dwData2; /* transaction-specific data */
{

}

BOOL fAutoReconnect;

switch CwTypel {
case XTYP_DISCONNECT:

if CfAutoReconnect)
DdeReconnect(hConv); /*attempt to reconnect*/

}

return 0;

/* Process other transactions. */

DdeConnect, DdeDisconnect

DdeSetUserHandle
#include <ddeml.h>

BOOL DdeSetUserHandle(hConv, id, hUser)
HCONV hConv; I* handle of conversation */
DWORD id; I* transaction identifier */
DWORD hUser; /*application-defined value */

The DdeSetUserHandle function associates an application-defined 32-bit value
with a conversation handle and transaction identifier. This is useful for simplifying
the processing of asynchronous transactions. An application can use the Dde
QueryConvlnfo function to retrieve this value.

196 DdeUnaccessData

Parameters

Return Value

Errors

See Also

hConv

id

Identifies the conversation.

Specifies the transaction identifier of an asynchronous transaction. An applica
tion should set this parameter to QID _SYNC if no asynchronous transaction is
to be associated with the hUserparameter.

hUser
Identifies the value to associate with the conversation handle.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

DMLERR_DLL_NOT _INITIALIZED
DMLERR_INV ALIDPARAMETER
DMLERR_NO_ERROR
DMLERR_UNFOUND_QUEUE_ID

DdeQueryConvlnfo

DdeUnaccessData
#include <ddeml.h>

BOOL DdeUnaccessData(hData)
HDDEDATA hData; /* handle of global memory object */

Parameters

Return Value

Errors

The DdeUnaccessData function frees a global memory object. An application
must call this function when it is finished accessing the object.

hData
Identifies the global memory object.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Use the DdeGetLastError function to retrieve the error value, which may be one
of the following:

Example

See Also

DMLERR_DLL_NOT _INITIALIZED
DMLERR_INV ALIDPARAMETER
DMLERR_NO_ERROR

DdeUninitialize 197

The following example obtains a pointer to a global memory object, uses the
pointer to copy data from the object to a local buffer, and then uses the Dde
UnaccessData function to free the object:

HDDEDATA hData;
LPBYTE lpszAdviseData;
DWORD cbDatalen;
DWORD i;
char szData[l28];

lpszAdviseData = DdeAccessData(hData, &cbDatalen);
for (i = 0; i < cbDataLen; i++)

szData[i] = *lpszAdviseData++;
DdeUnaccessData(hData);

DdeAccessData, DdeAddData, DdeCreateDataHandle, DdeFreeDataHandle

DdeUninitialize
#include <ddeml.h>

BOOL DdeUninitialize(id/nst)
DWORD idlnst; /*instance identifier */

Parameters

Return Value

Comments

The DdeUninitialize function frees all Dynamic Data Exchange Management
Library (DDEML) resources associated with the calling application.

idlnst
Specifies the application-instance identifier obtained by a previous call to the
Ddelnitialize function.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The DdeUninitialize function terminates any conversations currently open for the
application. If the partner in a conversation fails to terminate its end of the conver
sation, the system may enter a modal loop while it waits for the conversation toter
minate. A timeout period is associated with this loop. If the timeout period expires

198 DebugBreak

before the conversation has terminated, a message box appears that gives the user
the choice of waiting for another timeout period (Retry), waiting indefinitely
(Ignore), or exiting the modal loop (Abort).

An application should wait until its windows are no longer visible and its message
loop has terminated before calling this function.

See Also DdeDisconnect, DdeDisconnectList, Ddelnitialize

DebugBreak [}]]
void DebugBreak(void)

Parameters

Return Value

Comments

Example

See Also

The DebugBreak function causes a breakpoint exception to occur in the caller.
This allows the calling process to signal the debugger, forcing it to take some ac
tion. If the process is not being debugged, the system invokes the default break
point exception handler. This may cause the calling process to terminate.

This function has no parameters.

This function does not return a value.

This function is the only way to break into a WEP (Windows exit procedure) in a
dynamic-link library.

For more information about using the debugging functions with Microsoft debug
ging tools, see Microsoft Windows Programming Tools.

The following example uses the DebugBreak function to signal the debugger im
mediately before the application handles the WM_DESTROY message:

case WM_DESTROY:

DebugBreak();
PostQuitMessage(0);
break;

WEP

DebugOutput 199

Debug Output CIIJ
void FAR _cdecl DebugOutput(flags, lpszFmt, ...)
UINT flags; /*type of message */
LPCSTR lpszFmt; /* address of formatting string */

Parameters

Return Value

The DebugOutput function sends a message to the debugging terminal. Applica
tions can apply the formatting codes to the message string and use filters and op
tions to control the message category.

flags
Specifies the type of message to be sent to the debugging terminal. This parame
ter can be one of the following values:

Value

DBF_TRACE

DBF_WARNING

DBF_ERROR

DBF_FATAL

lpszFmt

Meaning

The message reports that no error has occurred and supplies
information that may be useful during debugging. Example:
"t Kernel: LoadResource(l 4AE of GDI)"

The message reports a situation that may or may not be an
error, depending on the circumstances. Example: "wn Kernel:
Globa1Wire(l 7BE of GDI) (try GlobalLock)"

The message reports an error resulting from a failed call to a
Windows function. The application continues to run. Ex
ample: "err Kernel: LocalShrink(15EA of GDI) (invalid local
heap)"

The message reports an error that will terminate the applica
tion. Example: "fatl User: SetDeskWallpaper(l6CA of
USER)''

Points to a formatting string identical to the formatting strings used by the Win
dows function wsprintf. This string must be less than 160 characters long. Any
additional formatting can be done by supplying additional parameters following
lpszFmt.

Specifies zero or more optional arguments. The number and type of arguments
depends on the corresponding format-control character sequences specified in
the lpszFmt parameter.

This function does not return a value.

200 DebugProc

Comments The messages sent by the DebugOutput function are affected by the system
debugging options and trace-filter flags that are set and retrieved by using the
GetWinDebuglnfo and SetWinDebuglnfo functions. These options and flags are
stored in a WINDEBUGINFO structure.

Unlike most other Windows functions, DebugOutput uses the C calling conven
tion (_cdecl), rather than the Pascal calling convention. As a result, the caller must
pop arguments off the stack. Also, arguments must be pushed on the stack from
right to left. In C-language modules, the C compiler performs this task.

See Also GetWinDebuglnfo, OutputDebugString, SetWinDebuglnfo, wsprintf

DebugProc [TI]

LRESULT CALLBACK DebugProc(code, wParam, lParam)
int code; /*hook code */
WPARAM wParam; /*type of hook about to be called */
LPARAM lParam; /* address of structure with debugging information */

Parameters

The DebugProc function is a library-defined callback function that the system
calls before calling any other filter installed by the SetWindowsHookEx function.
The system passes information about the filter about to be called to the Debug
Proc callback function. The callback function can examine the information and de
termine whether to allow the filter to be called.

code
Specifies the hook code. Currently, HC_ACTION is the only positive valid
value. If this parameter is less than zero, the callback function must call the
CallNextHookEx function without any further processing.

wParam
Specifies the task handle of the task that installed the filter about to be called.

lParam
Contains a long pointer to a DEBUGHOOKINFO structure. The
DEBUGHOOKINFO structure has the following form:

Return Value

Comments

typedef struct tagDEBUGHOOKINFO
HMODULE hModuleHook;
LPARAM reserved;
LPARAM l Pa ram;
WPARAM wParam;
int code;

DEBUGHOOKINFO;

DefDlgProc 201

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The callback function should return TRUE to prevent the system from calling
another filter. Otherwise, the callback function must pass the filter information to
the CallNextHookEx function.

An application must install this callback function by specifying the WH_DEBUG
filter type and the procedure-instance address of the callback function in a call to
the SetWindowsHookEx function.

CallWndProc is a placeholder for the library-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the library's
module-definition file.

See Also CallNextHookEx, SetWindowsHookEx

DefDlgProc ~

LRESULT DetDlgProc(hwndDlg, uMsg, wParam, lParam)
HWND hwndDlg; /*handle of dialog box */
UINT uMsg; I* message */
WPARAM wParam; /*first message parameter */
LPARAM lParam; I* second message parameter */

Parameters

The DetDlgProc function provides default processing for any Windows messages
that a dialog box with a private window class does not process.

hwndDlg
Identifies the dialog box.

uMsg
Specifies the message to be processed.

wParam
Specifies 16 bits of additional message-dependent information.

202 DefDriverProc

Return Value

Comments

See Also

lParam
Specifies 32 bits of additional message-dependent information.

The return value specifies the result of the message processing and depends on the
message sent.

The DefDlgProc function is the window procedure for the DIALOG window
class. An application that creates new window classes that inherit dialog box
functionality should use this function. DefDlgProc is not intended to be called as
the default handler for messages within a dialog box procedure, since doing so
will result in recursive execution.

An application creates a dialog box by calling one of the following functions:

Function

CreateDialog

CreateDialoglndirect
CreateDialoglndirectParam

CreateDialogParam

DialogBox
DialogBoxlndirect

DialogBoxlndirectParam

DialogBoxParam

DefWindowProc

Description

Creates a modeless dialog box.

Creates a modeless dialog box.

Creates a modeless dialog box and passes data to it
when it is created.

Creates a modeless dialog box and passes data to it
when it is created.

Creates a modal dialog box.

Creates a modal dialog box.

Creates a modal dialog box and passes data to it
when it is created.

Creates a modal dialog box and passes data to it
when it is created.

DefDriverProc
LRESULT DefDriverProc(dwDriverldentifier, hdrvr, uMsg, lParaml, lParam2)
DWORD dwDriverldentifier; /* installable-driver identifier */
HDRVR hdrvr; /* handle of installable driver */
UINT uMsg; /*message number */
LPARAM lParaml; /*first message parameter */
LPARAM lParam2; /*second message parameter */

The DefDriverProc function provides default processing for any messages not
processed by an installable driver.

Parameters

Return Value

Comments

See Also

DeferWindowPos 203

dwDriverldentifier
Identifies an installable driver. This parameter must have been obtained by a
previous call to the OpenDriver function.

hdrvr
Identifies the installable driver.

uMsg
Specifies the message to be processed.

lParaml
Specifies 32 bits of additional message-dependent information.

lParam2
Specifies 32 bits of additional message-dependent information.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The DeIDriverProc function processes messages that are not handled by the
DriverProc function.

OpenDriver, SendDriver Message

DeferWindowPos
HDWP DeferWindowPos(hdwp, hwnd, hwndlnsertAfter, x, y, ex, ey,flags)
HDWP hdwp; /* handle of internal structure */
HWND hwnd; /* handle of window to position */
HWND hwndlnsertAfter; /*placement-order handle */
int x; /* horizontal position */
int y; /* vertical position */
int ex; !*width */
int ey; /*height */
UINT flags; /* window-positioning flags */

Parameters

The DeferWindowPos function updates the given internal structure for the given
window. The function then returns the handle of the updated structure. The End
DeferWindowPos function uses the information in this structure to change the
position and size of a number of windows simultaneously.

hdwp
Identifies an internal structure that contains size and position information for
one or more windows. This structure is returned by the BeginDeferWindow
Pos function or by the most recent call to the DeferWindowPos function.

204 DeferWindowPos

hwnd
Identifies the window for which to store update information in the structure.

hwndlnsertAfter

x

y

ex

cy

Identifies a window that will precede the positioned window in the Z-order.
This parameter must be a window handle, or one of the following values:

Value

HWND_BOTTOM

HWND_TOP

HWND_TOPMOST

HWND _NOTOPMOST

Meaning

Places the window at the bottom of the Z-order. If
hwnd identifies a topmost window, the window loses
its topmost status.

Places the window at the top of the Z-order.

Places the window above all non-topmost windows.
The window maintains its topmost position even when
the window is deactivated.

Repositions the window to the top of all non-topmost
windows (that is, behind all topmost windows).

This parameter is ignored if SWP _NOZORDER is set in the flags parameter.

Specifies the x-coordinate of the window's upper-left corner.

Specifies they-coordinate of the window's upper-left corner.

Specifies the window's new width.

Specifies the window's new height.

flags
Specifies one of eight possible 16-bit values that affect the size and position of
the window. This parameter can be a combination of the following values:

Value

SWP _DRAWFRAME

SWP _HIDEWINDOW

SWP _NOACTIVATE

SWP_NOMOVE

SWP _NOREDRAW

Meaning

Draws a frame (defined in the window's class descrip
tion) around the window.

Hides the window.

Does not activate the window.

Retains current position (ignores x and y parameters).

Does not redraw changes. If this flag is set, no repaint
ing occurs. This applies to the client area, the non
client area (including the title and scroll bars), and any
part of the parent window uncovered as a result of the
moved window. When this flag is set, the application
must explicitly invalidate or redraw any parts of the
window and parent window that must be redrawn.

Return Value

Comments

Value

SWP_NOSIZE

SWP _NOZORDER

SWP _SHOWWINDOW

DeferWindowPos 205

Meaning

Retains current size (ignores the ex and cy parameters).

Retains current ordering (ignores the hwndlnsertAfter
parameter).

Displays the window.

The return value is a handle of the updated structure if the function is successful.
This handle may differ from the one passed to the function as the hdwp parameter
and should be passed to the next call to DeferWindowPos or to the EndDefer
WindowPos function.

The return value is NULL if insufficient system resources are available for the
function to complete successfully and the repositioning process is terminated.

If a call to DeferWindowPos fails, the application should abandon the window
positioning operation without calling the EndDeferWindowPos function.

If SWP _NOZORDER is not specified, Windows places the window identified
by hwnd in the position following the window identified by hwndlnsertAfter. If
hwndlnsertAfter is NULL, Windows places the window identified by hwnd at the
top of the list. If hwndlnsertAfteris HWND_BOTTOM, Windows places the win
dow identified by hwnd at the bottom of the list.

All coordinates for child windows are relative to the upper-left corner of the parent
window's client area.

A window can be made a topmost window either by setting hwndlnsertAfter to
HWND_TOPMOST and ensuring that SWP _NOZORDER is not set, or by setting
a window's Z-order so that it is above any existing topmost windows. When a non
topmost window is made topmost, its owned windows are also made topmost. Its
owners are not changed.

If neither SWP _NOACTIV ATE nor SWP _NOZORDER is specified (that is,
when the application requests that a window be simultaneously activated and
placed in the specified Z-order), the value specified in hwndlnsertAfteris used
only in the following circumstances:

• Neither HWND_TOPMOST nor HWND_NOTOPMOST is specified in the
hwndlnsertAfter parameter.

• The window specified in the hwnd parameter is not the active window.

An application cannot activate an inactive window without also bringing it to the
top of the Z-order. Applications can change the Z-order of an activated window
without restrictions or activate a window and then move it to the top of the top
most or non-topmost windows.

206 DefFrameProc

See Also

A topmost window is no longer topmost if it is repositioned to the bottom
(HWND_BOTTOM) of the Z-order or after any non-topmost window. When a
topmost window is made non-topmost, the window and all of its owners, and its
owned windows, are also made non-topmost.

A non-topmost window may own a topmost window, but not vice versa. Any win
dow (for example, a dialog box) owned by a topmost window is itself made top
most to ensure that all owned windows stay above their owner.

BeginDeferWindowPos, EndDeferWindowPos

DefFrameProc
LRESULT DefFrameProc(hwnd, hwndMDIClient, uMsg, wParam, lParam)
HWND hwnd; I* handle of frame window */
HWND hwndMDIClient; /* handle of client window */
UINT uMsg; /*message */
WPARAM wParam; /*first message parameter */
LPARAM lParam; /*second message parameter */

The DefFrameProc function provides default processing for any Windows mes
sages that the window procedure of a multiple document interface (MDI) frame
window does not process. All window messages that are not explicitly processed
by the window procedure must be passed to the DefFrameProc function, not the
DefWindowProc function.

Parameters hwnd

Return Value

Identifies the MDI frame window.

hwndMDIClient
Identifies the MDI client window.

uMsg
Specifies the message to be processed.

wParam
Specifies 16 bits of additional message-dependent information.

lParam
Specifies 32 bits of additional message-dependent information.

The return value specifies the result of the message processing and depends on the
message sent. If the hwndMDIClient parameter is NULL, the return value is the
same as for the DefWindowProc function.

Comments

DefHookProc 207

Typically, when an application's window procedure does not handle a message, it
passes the message to the DefWindowProc function, which processes the mes
sage. MDI applications use the DefFrameProc and DefMDIChildProc functions
instead of DefWindowProc to provide default message processing. All messages
that an application would usually pass to DefWindowProc (such as nonclient mes
sages and WM_SETTEXT) should be passed to DefFrameProc instead. In addi
tion to handling these messages, DefFrameProc also handles the following
messages:

Message

WM_ COMMAND

WM_MENUCHAR

WM_SETFOCUS

WM_SIZE

Response

The frame window of an MDI application receives the
WM_COMMAND message to activate a particular MDI child
window. The window identifier accompanying this message
will identify the MDI child window assigned by Windows,
starting with the first identifier specified by the application
when it created the MD I client window. This value of the first
identifier must not conflict with menu-item identifiers.

When the user presses the ALT+- key combination, the System
menu (often called Control menu) of the active MDI child win
dow will be selected.

DefFrameProc passes focus on to the MDI client, which in
turn passes the focus on to the active MDI child window.

If the frame window procedure passes this message to Def
FrameProc, the MDI client window will be resized to fit in
the new client area. If the frame window procedure sizes the
MDI client to a different size, it should not pass the message to
DefWindowProc.

See Also DefMDIChildProc, DefWindowProc

DefHookProc ~

DWORD DeffiookProc(nCode, uParam, dwParam, lphhook)
int nCode; I* process code */
UINT uParam; /*first message parameter */
DWORD dwParam; /* second message parameter */
HHOOK FAR* lphhook; /*points to address of next hook function */

This function is obsolete but has been retained for backward compatibility with
Windows versions 3.0 and earlier. Applications written for Windows version 3.1
should use the CallNextHookEx function.

208 DefMDIChildProc

Parameters

Return Value

Comments

See Also

The DeffiookProc function calls the next function in a chain of hook functions. A
hook function is a function that processes events before they are sent to an applica
tion's message-processing loop in the WinMain function. When an application de
fines more than one hook function by using the SetWindowsHook function,
Windows forms a linked list or hook chain. Windows places functions of the same
type in a chain.

nCode
Specifies a code used by the Windows hook function (also called the message
filter function) to determine how to process the message.

uParam
Specifies 16 bits of additional message-dependent information.

dwParam
Specifies 32 bits of additional message-dependent information.

lphhook
Points to the variable that contains the procedure-instance address of the pre
viously installed hook function returned by the SetWindowsHook function.

The return value specifies the result of the event processing and depends on the
event.

Windows changes the value at the location pointed to by the lphhook parameter
after an application calls the UnhookWindowsHook function. For more informa
tion, see the description of the UnhookWindowsHook function.

SetWindowsHook, UnhookWindowsHook

DefMDIChildProc
LRESULT DefMDIChildProc(hwnd, uMsg, wParam, lParam)
HWND hwnd; /*handle of child window */
UINT uMsg; /*message */
WPARAM wParam; I* first message parameter */
LPARAM lParam; I* second message parameter */

The DefMDIChildProc function provides default processing for any Windows
messages that the window procedure of a multiple document interface (MDI) child
window does not process. All window messages that are not explicitly processed
by the window procedure must be passed to the DefMDIChildProc function, not
the DefWindowProc function.

Parameters

Return Value

Comments

See Also

DefMDIChildProc 209

hwnd
Identifies the MDI child window.

uMsg
Specifies the message to be processed.

wParam
Specifies 16 bits of additional message-dependent information.

lParam
Specifies 32 bits of additional message-dependent information.

The return value specifies the result of the message processing and depends on the
message sent.

This function assumes that the parent of the window identified by the hwnd pa
rameter was created with the MDICLIENT class.

Typically, when an application's window procedure does not handle a message, it
passes the message to the DetwindowProc function, which processes the mes
sage. MDI applications use the DefFrameProc and DefMDIChildProc functions
instead ofDetwindowProc to provide default message processing. All messages
that an application would usually pass to DetwindowProc (such as nonclient mes
sages and WM_SETTEXT) should be passed to DefMDIChildProc instead. In ad
dition to handling these messages, DefMDIChildProc also handles the following
messages:

Message

WM_CHILDACTIVATE

WM_GETMINMAXINFO

WM_MENUCHAR

WM_MOVE

WM_SETFOCUS

WM_SIZE

WM_SYSCOMMAND

Response

Performs activation processing when child windows are
sized, moved, or shown. This message must be passed.

Calculates the size of a maximized MDI child window
based on the current size of the MDI client window.

Sends the keystrokes to the frame window.

Recalculates MDI client scroll bars, if they are present.

Activates the child window if it is not the active MDI
child window.

Performs necessary operations when changing the size
of a window, especially when maximizing or restoring
an MDI child window. Failing to pass this message to
DefMDIChildProc will produce highly undesirable re
sults.

Also handles the next window command.

DefFrameProc, DetwindowProc

210 DefWindowProc

DefWindowProc
LRESULT DetwindowProc(hwnd, uMsg, wParam, lParam)
HWND hwnd; /*handle of window */
UINT uMsg; /*type of message */
WPARAM wParam; /* first message parameter */
LPARAM lParam; /*second message parameter */

Parameters

Return Value

Comments

Example

The DetwindowProc function calls the default window procedure. The default
window procedure provides default processing for any window messages that an
application does not process. This function ensures that every message is
processed. It should be called with the same parameters as those received by the
window procedure.

hwnd
Identifies the window that received the message.

uMsg
Specifies the message.

wParam
Specifies 16 bits of additional message-dependent information.

lParam
Specifies 32 bits of additional message-dependent information.

The return value is the result of the message processing and depends on the mes
sage sent.

The source code for the DetwindowProc function is provided on the Microsoft
Windows 3.1 Software Development Kit (SOK) disks.

The following example shows a typical window procedure. A switch statement is
used to process individual messages. AU messages not processed are passed on to
the DetwindowProc function.

LONG FAR PASCAL
HWND hwnd;
WORD message;
WORD wParam;
LONG l Pa ram;
{

MainWndProc(hwnd, message, wParam,
f* handle of window */
f* type of message *f
f* additional information */
f* additional information */

switch (message) {

l Pa ram)

DeleteAtom 211

/*
* Process whatever messages you want here and send the
* rest to DefWindowProc.
*I

default:
return (DefWindowProc(hwnd, message, wParam, lParamll;

See Also DeIDlgProc

DeleteAtom ~

ATOM DeleteAtom(atm)
ATOM atm; I* atom to delete */

Parameters

Return Value

Comments

Example

The DeleteAtom function decrements (decreases by one) the reference count of a
local atom by one. If the atom's reference count is reduced to zero, the string as
sociated with the atom is removed from the local atom table.

An atom's reference count specifies the number of times the atom has been added
to the atom table. The AddAtom function increments (increases by one) the count
on each call. DeleteAtom decrements the count on each call and removes the
string only if the atom's reference count is reduced to zero.

atm
Identifies the atom and character string to be deleted.

The return value is zero if the function is successful. Otherwise, it is equal to the
atm parameter.

The only way to ensure that an atom has been deleted from the atom table is to call
this function repeatedly until it fails. When the count is decremented to zero, the
next call to the FindAtom or DeleteAtom function will fail.

DeleteAtom has no effect on integer atoms (atoms created by using the MAKE
INTA TOM macro). The function always returns zero for integer atoms.

The following example uses the DeleteAtom function to decrement the reference
count for the specified atom:

ATOM at;

at = DeleteAtom(atTest);

212 DeleteDC

See Also

DeleteDC

if (at == NULL)

else

MessageBox(hwnd, "atom count decremented",
"DeleteAtom", MB_DK);

MessageBox(hwnd, "atom count could not be decremented",
"DeleteAtom", MB_ICDNEXCLAMATION);

AddAtom, FindAtom, GlobalDeleteAtom

BOOL DeleteDC(hdc)
HDC hdc; /*handle of device context *I

The DeleteDC function deletes the given device context.

Parameters hdc

Return Value

Comments

Example

Identifies the device context.

The return value is nonzero if the function is successful. Otherwise, it is zero.

If the hdc parameter identifies the last device context for a given device, the
device is notified and all storage and system resources used by the device are
released.

An application must not delete a device context whose handle was retrieved by
calling the GetDC function. Instead, the application must call the ReleaseDC
function to free the device context.

An application should not call DeleteDC if the application has selected objects
into the device context. Objects must be selected out of the device context before
it is deleted.

The following example uses the CreateDC function to create a device context for
a printer and then calls the DeleteDC function when the device context is no
longer needed:

/* Retrieves a device context for a printer. */

hdcPrinter = CreateDC(lpDriverName, lpDeviceName, lpOutput,
l pinitDatal;

/* Use the device context. */

DeleteMenu 213

/* Delete the device context. */

DeleteDC(hdcPrinter);

See Also CreateDC, GetDC, ReleaseDC

DeleteMenu []I]

BOOL DeleteMenu(hmenu, idltem,fuFlags)
HMENU hmenu; /*handle of menu */
UINT idltem; /*menu-item identifier */
UINT fuFlags; /*menu flags */

Parameters

Return Value

Comments

See Also

The DeleteMenu function deletes an item from a menu. If the menu item has an
associated pop-up menu, DeleteMenu destroys the handle of the pop-up menu and
frees the memory used by the pop-up menu.

hmenu
Identifies the menu to be changed.

idltem
Specifies the menu item to be deleted, as determined by thefuFlags parameter.

fuFlags
Specifies how the idltem parameter is interpreted. This parameter can be one of
the following values:

Value

MF _BYCOMMAND

MF _BYPOSITION

Meaning

The id/tern parameter specifies the menu-item identifier.

The idltem parameter specifies the zero-based relative
position of the menu item.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Whenever a menu changes (whether or not the menu is in a window that is dis
played), the application should call the DrawMenuBar function.

AppendMenu, CreateMenu, DrawMenuBar, InsertMenu, RemoveMenu

214 DeleteMetaFile

DeleteMetaFile
BOOL DeleteMetaFile(hmj)
HMETAFILE hmf; /* handle of metafile */

Parameters

Return Value

Comments

Example

The DeleteMetaFile function invalidates the given metafile handle.

hmf
Identifies the metafile to be deleted.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The DeleteMetaFile function does not destroy a metafile that is saved on disk.
After calling DeleteMetaFile, an application can retrieve a new handle of the
metafile by calling the GetMetaFile function.

The following example uses the CreateMetaFile function to create the handle of a
memory metafile device context, draws a line in that device context, retrieves a
handle of the metafile by calling the CloseMetaFile function, plays the metafile
by using the PlayMetaFile function, and finally deletes the metafile by using
DeleteMetaFile:

HOC hdcMeta;
HMETAFILE hmf;

hdcMeta = CreateMetaFile(NULLl;
MoveTo(hdcMeta, 10, 10);
LineTo(hdcMeta, 100, 100);
hmf = CloseMetaFile(hdcMeta);
PlayMetaFile(hdc, hmf);
DeleteMetaFile(hmf);

See Also CreateMetaFile, GetMetaFile

DeleteObject ~

BOOL DeleteObject(hgdiobj)
HGDIOBJ hgdiobj; /* handle of object to delete */

The DeleteObject function deletes an object from memory by freeing all system
storage associated with the object. (Objects include pens, brushes, fonts, bitmaps,
regions, and palettes.)

Parameters

Return Value

Comments

Example

DestroyCaret 215

hgdiobj
Identifies a pen, brush, font, bitmap, region, or palette.

The return value is nonzero if the function is successful. Otherwise, it is zero.

After the object is deleted, the handle given in the hgdiobj parameter is no longer
valid.

An application should not delete an object that is currently selected into a device
context.

When a pattern brush is deleted, the bitmap associated with the brush is not de
leted. The bitmap must be deleted independently.

The following example creates a pen, selects it into a device context, and uses the
pen to draw a rectangle. To delete the pen, the original pen is selected back into
the device context and the DeleteObject function is called.

HPEN hpen, hpenOld;

hpen = CreatePen(PS_SOLID, 6, RGB(0, 0, 255));
hpenOld = SelectObject(hdc, hpen);

Rectangle(hdc, 10, 10, 100, 100);

SelectObject(hdc, hpenOld);
DeleteObject(hpen);

See Also SelectObject

DestroyCaret [I!]

void DestroyCaret(void)

Parameters

Return Value

The DestroyCaret function destroys the current caret shape, frees the caret from
the window that currently owns it, and removes the caret from the screen if it is
visible. The DestroyCaret function checks the ownership of the caret and de
stroys the caret only if a window in the current task owns it.

If the caret shape was previously a bitmap, DestroyCaret does not free the bitmap.

This function has no parameters.

This function does not return a value.

216 DestroyCursor

Comments

See Also

The caret is a shared resource. If a window has created a caret shape, it should de
stroy that shape before it loses the input focus or becomes inactive.

CreateCaret, HideCaret, ShowCaret

DestroyCursor
BOOL DestroyCursor(hcur)
HCURSOR hcur; I* handle of cursor to destroy *I

The DestroyCursor function destroys a cursor that was previously created by the
CreateCursor or LoadCursor function and frees any memory that the cursor oc
cupied.

Parameters hcur
Identifies the cursor to be destroyed. The cursor must not be in current use.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also CreateCursor, Createlcon, Destroylcon, LoadCursor

Destroylcon [}I]

BOOL Destroylcon(hicon)
HICON hicon; I* handle of icon to destroy */

Parameters

Return Value

See Also

The Destroylcon function destroys an icon that was created by the Createlcon or
Loadlcon function and frees any memory that the icon occupied.

hie on
Identifies the icon to be destroyed.

The return value is nonzero if the function is successful. Otherwise, it is zero.

CreateCursor, Createlcon, DestroyCursor, Loadlcon

DestroyWindow 217

DestroyMenu Cfil
BOOL DestroyMenu(hmenu)
HMENU hmenu; I* handle of menu to destroy */

Parameters

Return Value

See Also

The DestroyMenu function destroys a menu and frees any memory that the menu
occupied.

hmenu
Identifies the menu to be destroyed.

The return value is nonzero if the function is successful. Otherwise, it is zero.

CreateMenu

DestroyWindow
BOOL DestroyWindow(hwnd)
HWND hwnd; I* handle of window to destroy *I

The DestroyWindow function destroys the specified window. The function sends
appropriate messages to the window to deactivate it and remove the input focus. It
also destroys the window's menu, flushes the application queue, destroys outstand
ing timers, removes clipboard ownership, and breaks the clipboard-viewer chain
(if the window is at the top of the viewer chain). It sends WM_DESTROY and
WM_NCDESTROY messages to the window.

If the given window is the parent of any windows, Destroy Window automatically
destroys these child windows when it destroys the parent window. The function de
stroys child windows first, and then the window itself.

The DestroyWindow function also destroys modeless dialog boxes created by the
CreateDialog function.

Parameters hwnd

Return Value

Comments

Identifies the window to be destroyed.

The return value is nonzero if the function is successful. Otherwise, it is zero.

If the window being destroyed is a child window and does not have the
WS_NOPARENTNOTIFY style set, a WM_PARENTNOTIFY message is sent to
the parent.

218 DeviceCapabilities

Example The following example responds to the application-defined menu command
IDM_EXIT, and then calls DestroyWindow to destroy the window:

See Also

case IDM_EXIT:
DestroyWindow(hwnd);
return 0;

CreateDialog, CreateWindow, CreateWindowEx

DeviceCapabi I ities
#include <print.h>

DWORD DeviceCapabilities(lpszDevice, lpszPort,fwCapability, lpszOutput, lpdm)
LPSTR lpszDevice; I* address of device-name string */
LPSTR lpszPort; I* address of port-name string */
WORD fwCapability; I* device capability to query */
LPSTR lpszOutput; I* address of the output *I
LPDEVMODE lpdm; I* address of structure with device data */

Parameters

The DeviceCapabilities function retrieves the capabilities of the printer device
driver.

lpszDevice
Points to a null-terminated string that contains the name of the printer device,
such as PCL/HP LaserJet.

lpszPort
Points to a null-terminated string that contains the name of the port to which the
device is connected, such as LPTl.

fwCapability
Specifies the capabilities to query. This parameter can be one of the following
values:

Value

DC_BINNAMES

Meaning

Copies an array containing a list of the names of
the paper bins. This array is in the form char
PaperNames[cBinMa:x][cchBinName] where
cchBinName is 24. If the lpszOutput parameter is
NULL, the return value is the number of bin en
tries required. Otherwise, the return value is the
number of bins copied.

Value

DC_BINS

DC_COPIES

DC_DRIVER

DC_DUPLEX

DC_ENUMRESOLUTIONS

DC_EXTRA

DC_FIELDS

DC_FILEDEPENDENCIES

DC_MAXEXTENT

DC_MINEXTENT

DeviceCapabilities 219

Meaning

Retrieves a list of available bins. The function co
pies the list to the lpszOutput parameter as a
WORD array. If lpszOutput is NULL, the function
returns the number of supported bins to allow the
application the opportunity to allocate a buffer
with the correct size. For more information about
these bins, see the description of the dmDefault
Source member of the DEVMODE structure.

Returns the number of copies the device can print.

Returns the version number of the printer driver.

Returns the level of duplex support. The function
returns 1 if the printer is capable of duplex print
ing. Otherwise, the return value is zero.

Returns a list of available resolutions. If
lpszOutput is NULL, the function returns the num
ber of available resolution configurations. Resolu
tions are represented by pairs of LONG integers
representing the horizontal and vertical resolutions
(specified in dots per inch).

Returns the number of bytes required for the
device-specific portion of the DEVMODE struc
ture for the printer driver.

Returns the dmFields member of the printer
driver's DEVMODE structure. The dmFields
member indicates which fields in the device
independent portion of the structure are supported
by the printer driver.

Returns a list of files that also need to be loaded
when a driver is installed. If the lpszOutput pa
rameter is NULL, the function returns the number
of files. Otherwise, lpszOutput points to an array
of filenames in the form char[chFileName, 64].
Each filename is a null-terminated string.

Returns a POINT structure containing the maxi
mum paper size that the dmPaperLength and
dmPaperWidth members of the printer driver's
DEVMODE structure can specify.

Returns a POINT structure containing the min
imum paper size that the dmPaperLength and
dmPaperWidth members of the printer driver's
DEVMODE structure can specify.

220 DeviceCapabilities

Value

DC_ORIENTATION

DC_pAPERNAMES

DC_PAPERS

DC_pAPERSIZE

DC_SIZE

Meaning

Returns the relationship between portrait and land
scape orientations for a device, in terms of the
number of degrees that portrait orientation is ro
tated counterclockwise to produce landscape orien
tation. The return value can be one of the
following:

Value

0

90

270

Meaning

No landscape orientation.

Portrait is rotated 90 degrees to pro
duce landscape. (For example,
Hewlett-Packard PCL printers.)

Portrait is rotated 270 degrees to pro
duce landscape. (For example, dot-
matrix printers.)

Retrieves a list of supported paper names-for ex
ample, Letter or Legal. If the lpszOutput parameter
is NULL, the function returns the number of paper
sizes available. Otherwise, lpszOutput points to an
array for the paper names in the form char[cPaper
Names, 64]. Each paper name is a null-terminated
string.

Retrieves a list of supported paper sizes. The func
tion copies the list to lpszOutput as a WORD
array and returns the number of entries in the
array. If lpszOutput is NULL, the function returns
the number of supported paper sizes to allow the
application the opportunity to allocate a buffer
with the correct size. For more information on
paper sizes, see the description of the dmPaper
Size member of the DEVMODE structure.

Copies the dimensions of all supported paper
sizes, in tenths of a millimeter, to an array of
POINT structures pointed to by the lpszOutput
parameter. The width (x-dimension) and length
(y-dimension) of a paper size are returned as if the
paper were in the DMORIENT_PORTRAIT orien
tation.

Returns the dmSize member of the printer driver's
DEVMODE structure.

DC_TRUETYPE

DC_ VERSION

lpszOutput

DeviceCapabilities 221

Retrieves the abilities of the driver to use True
Type fonts. The return value can be one or more of
the following:

Value

DCTT _BITMAP

DCTT_DOWNLOAD

DCTT_SUBDEV

Meaning

Device is capable of
printing TrueType
fonts as graphics. (For
example, dot-matrix
and PCL printers.)

Device is capable of
downloading TrueType
fonts. (For example,
PCL and Postscript
printers.)

Device is capable of
substituting device
fonts for TrueType
fonts. (For example,
PostScript printers.)

For DC_ TRUETYPE, the lpszOutput parameter
should be NULL.

Returns the specification version to which the
printer driver conforms.

Points to an array of bytes. The format of the array depends on the setting of the
fwCapability parameter. If lpszOutput is zero, DeviceCapabilities returns the
number of bytes required for the output data.

lpdm
Points to a DEVMODE structure. If this parameter is NULL, Device
Capabilities retrieves the current default initialization values for the specified
printer driver. Otherwise, the function retrieves the values contained in the
structure to which lpdm points.

222 DeviceCapabilities

Return Value

Comments

See Also

The DEVMODE structure has the following form:

#include <print.h>

typedef struct tagDEVMODE { /* dm *I
char dmDeviceName[CCHDEVICENAME];
UINT dmSpecVersion;

}

UINT dmDriverVersion;
UINT dmSize;
UINT dmDriverExtra;
DWORD dmFields;
int dmOrientation;
int dmPaperSize;
int dmPaperlength;
int dmPaperWidth;
int dmScale;
int dmCopies;
int dmDefaultSource;
int dmPri ntQua l ity;
int dmColor;
int dmDuplex;
int dmYResolution;
int dmTTOption;

DEVMODE;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value, if the function is successful, depends on the setting of the
fwCapability parameter. The return value is -1 if the function fails.

This function is supplied by the printer driver. To use the DeviceCapabilities func
tion, an application must retrieve the address of the function by calling the Load
Library and GetProcAddress functions, and it must include the PRINT.H file.

DeviceCapabilities is not supported by all printer drivers. If the GetProcAddress
function returns NULL, DeviceCapabilities is not supported.

GetProcAddress, LoadLibrary

Device Mode 223

DeviceMode CI!J
void DeviceMode(hwnd, hModule, lpszDevice, lpszOutput)
HWND hwnd; /* handle of window owning dialog box */
HANDLE hModule; /* handle of printer-driver module */
LPSTR lpszDevice; /*address of string for device name */
LPSTR lpszOutput; /*address of string for output name */

The DeviceMode function sets the current printing modes for a specified device
by using a dialog box to prompt for those modes. An application calls Device
Mode to allow the user to change the printing modes of the corresponding device.
DeviceMode copies the mode information to the environment block that is as
sociated with the device and maintained by the graphics device interface (GDI).

The ExtDeviceMode function provides a superset of the functionality of the
DeviceMode function; new applications should use ExtDeviceMode instead of
DeviceMode whenever possible. (Applications can use the DM_IN_PROMPT
constant with ExtDeviceMode to duplicate the functionality of DeviceMode.)

Parameters hwnd

Return Value

Comments

See Also

Identifies the window that will own the dialog box.

hModule
Identifies the printer-driver module. The application should retrieve this handle
by calling either the GetModuleHandle or LoadLibrary function.

lpszDevice
Points to a null-terminateu string that specifies the name of the specific device
to be supported (for example, Epson FX-80). The device name is the same as
the name passed to the CreateDC function.

lpszOutput
Points to a null-terminated string that specifies the MS-DOS filename or device
name for the physical output medium (file or output port). The output name is
the same as the name passed to the CreateDC function.

This function does not return a value.

The DeviceMode function is part of the printer's device driver, not part of GDI.
To call this function, an application must load the printer driver by calling the
LoadLibrary function and retrieve the address of the function by using the Get
ProcAddress function. The application can then use the address to set up the
printer.

DeviceMode is not supported by all printer drivers. If the GetProcAddress func
tion returns NULL, DeviceMode is not supported.

CreateDC, ExtDeviceMode, GetModuleHandle, LoadLibrary

224 DialogBox

DialogBox
int DialogBox(hinst, lpsz}JlgTemp, hwndOwner, dlgprc)
HINSTANCE hinst; I* handle of application instance *I

*I
*/
*/

LPCSTR lpszJJlgTemp; /* address of dialog box template name
HWND hwndOwner; /* handle of owner window
DLGPROC dlgprc; /* instance address of dialog box procedure

The DialogBox function creates a modal dialog box from a dialog box template re
source.

Parameters hinst

Return Value

Comments

Example

Identifies an instance of the module whose executable file contains the dialog
box template.

lpsz}JlgTemp
Points to a null-terminated string that names the dialog box template.

hwndOwner
Identifies the window that owns the dialog box.

dlgprc
Specifies the procedure-instance address of the dialog box procedure. The
address must be created by using the MakeProclnstance function. For more in
formation about the dialog box procedure, see the description of the Dialog
Proc callback function.

The return value specifies the value of the nResult parameter specified in the End
Dialog function that is used to terminate the dialog box. The system processes
values returned by the dialog box procedure and does not return them to the appli
cation. The return value is -1 if the function cannot create the dialog box.

The CreateWindowEx function is called to create the dialog box. The dialog box
procedure then receives a WM_SETFONT message (if DS_SETFONT style was
specified) and a WM_INITDIALOG message, and then the dialog box is dis
played.

The DialogBox function does not return control until the dialog box procedure ter
minates the modal dialog box by calling the EndDialog function.

A dialog box can contain up to 255 controls.

The following example uses the DialogBox function to create a modal dialog box:

DLGPROC dlgprc;
HWND hwndParent;

See Also

DialogBoxlndirect 225

case IDM_ABOUT:
dlgprc = CDLGPROC) MakeProcinstance(About, hinst);
DialogBox(hinst, "AboutBox", hwndParent, dlgprc);
FreeProcinstanceCCFARPROC) dlgprc);
break;

DialogBoxlndirect, DialogBoxlndirectParam, DialogBoxParam, DialogProc,
EndDialog, GetDC, MakeProclnstance

DialogBoxlndirect
int DialogBoxlndirect(hinst, hglbDlgTemp, hwndOwner, dlgprc)
HINSTANCE hinst; /* handle of application instance *I

*/
*/
*/

HGLOBAL hglbDlgTemp; /* handle of memory with dialog box template
HWND hwndOwner; /* handle of owner window
DLGPROC dlgprc; /* instance address of dialog box procedure

Parameters

Return Value

The DialogBoxlndirect function creates a modal dialog box from a dialog box
template in memory.

hinst
Identifies the instance of the module that will create the dialog box.

hglbDlgTemp
Identifies the global memory object that contains a dialog box template used to
create the dialog box. This template is in the form of a DialogBoxHeader struc
ture. For more information about this structure, see Chapter 7, "Resource For
mats Within Executable Files," in the Microsoft Windows Programmer's
Reference, Volume 4.

hwndOwner
Identifies the window that owns the dialog box.

dlgprc
Specifies the procedure-instance address of the dialog box procedure. The
address must be created by using the MakeProclnstance function. For more in
formation about the dialog box procedure, see the description of the Dialog
Proc callback function.

The return value is the value of the nResult parameter specified in the EndDialog
function that is used to terminate the dialog box. The system processes values re
turned by the dialog box procedure and does not return them to the application.
The return value is -1 if the function cannot create the dialog box.

226 DialogBoxlndirectParam

Comments

Example

See Also

The Create Window Ex function is called to create the dialog box. The dialog box
procedure then receives a WM_SETFONT message (if DS_SETFONT style was
specified) and a WM_INITDIALOG message, and then the dialog box is dis
played.

The DialogBoxlndirect function does not return control until the dialog box pro
cedure terminates the modal dialog box by calling the EndDialog function.

A dialog box can contain up to 255 controls.

The following example uses the DialogBoxlndirect function to create a dialog
box from a dialog box template in memory:

#define TEMPLATE_SIZE 100
HGLOBAL hglbDlgTemp;
DLGPROC dlgprc;
int result;
HWND hwndParent;

I* Allocate a global memory object for the dialog box template. */

hglbDlgTemp GlobalAlloc(GHND, TEMPLATE_SIZE);

/* Build a DLGTEMPLATE structure in the memory object. */

dlgprc (DLGPROCJ MakeProclnstance(DialogProc, hinst);
result DialogBoxindirect(hinst, hglbDlgTemp, hwndParent, dlgprc);

DialogBox, DialogBoxlndirectParam, DialogBoxParam, DialogProc, End
Dialog, MakeProclnstance

DialogBoxlndirectParam []}]
int DialogBoxlndirectParam(hinst, hglbDlgTemp, hwndOwner, dlgprc, lParamlnit)
HINSTANCE hinst; I* handle of application instance */
HGLOBAL hglbDlgTemp; I* handle of memory with dialog box template */
HWND hwndOwner; I* handle of owner window */
DLGPROC dlgprc; I* instance address of dialog box procedure */
LPARAM lParamlnit; I* initialization value */

The DialogBoxlndirectParam function creates a modal dialog box from a dialog
box template in memory. Before displaying the dialog box, the function passes an
application-defined value to the dialog box procedure as the ZParam parameter of

Parameters

Return Value

Comments

Example

DialogBoxlndirectParam 227

the WM_INITDIALOG message. An application can use this value to initialize
dialog box controls.

hinst
Identifies the instance of the module that will create the dialog box.

hglbDlgTemp
Identifies the global memory object that contains a dialog box template used to
create the dialog box. This template is in the form of a DialogBoxHeader struc
ture. For more information about this structure, see Chapter 7, "Resource For
mats Within Executable Files," in the Microsoft Windows Programmer's
Reference, Volume 4.

hwndOwner
Identifies the window that owns the dialog box.

dlgprc
Specifies the procedure-instance address of the dialog box procedure. The
address must be created by using the MakeProclnstance function. For more in
formation about the dialog box procedure, see the description of the Dialog
Proc callback function.

lParamlnit
Specifies a 32-bit value that DialogBoxlndirectParam passes to the dialog box
when the WM_INITDIALOG message is being processed.

The return value is the value of the nResult parameter specified in the EndDialog
function that is used to terminate the dialog box. The system processes values re
turned by the dialog box procedure and does not return them to the application.
The return value is -1 if the function cannot create the dialog box.

The CreateWindowEx function is called to create the dialog box. The dialog box
procedure then receives a WM_SETFONT message (ifDS_SETFONT style was
specified) and a WM_INITDIALOG message, and then the dialog box is dis
played.

The DialogBoxlndirectParam function does not return control until the dialog
box procedure terminates the modal dialog box by calling the EndDialog function.

A dialog box can contain up to 255 controls.

The following example uses the DialogBoxlndirectParam function to create a
modal dialog box from a dialog box template in memory. The example uses the
lParamlnitparameter to send two initialization parameters (wlnitParml and
winitParm2) to the dialog box procedure when the WM_INITDIALOG message is
being processed.

228 DialogBoxParam

See Also

#define TEMPLATE_SIZE 100
HGLOBAL hglbDlgTemp;
DLGPROC dlgprc;
int result;
HWND hwndParent;
WORD winitParml, wlnitParm2;

/*Allocate a global memory object for the dialog box template. */

hglbDlgTemp GlobalAlloc(GHND, TEMPLATE_SIZE);

I* Build a DLGTEMPLATE structure in the memory object. */

dlgprc = (DLGPROC) MakeProcinstance(DialogProc, hinst);
result = DialogBoxindirectParam(hinst, hglbDlgTemp, hwndParent,

dlgprc, (LPARAMJ MAKELONG(wlnitParml, winitParm2));

DialogBox, DialogBoxlndirect, DialogBoxParam, DialogProc, EndDialog,
MakeProclnstance

DialogBoxParam
int DialogBoxParam(hinst, lpszDlgTemp, hwndOwner, dlgprc, lParamlnit)
HINSTANCE hinst; /*handle of application instance */

*/
*/
*/
*I

LPCSTR lpszDlgTemp; I* address of dialog box template name
HWND hwndOwner; I* handle of owner window
DLGPROC dlgprc; I* instance address of dialog box procedure
LPARAM lParamlnit; I* initialization value

Parameters

The DialogBoxParam function creates a modal dialog box from a dialog box tem
plate resource. Before displaying the dialog box, the function passes an applica
tion-specified value to the dialog box procedure as the lParam parameter of the
WM_INITDIALOG message. An application can use this value to initialize dialog
box controls.

hinst
Identifies an instance of the module whose executable file contains the dialog
box template.

lpszDlgTemp
Points to a null-terminated string that names the dialog box template.

hwndOwner
Identifies the window that owns the dialog box.

Return Value

Comments

Example

See Also

DialogBoxParam 229

dlgprc
Specifies the procedure-instance address of the dialog box procedure. The
address must be created by using the MakeProclnstance function. For more in
formation about the dialog box procedure, see the description of the Dialog
Proc callback function.

lParamlnit
Specifies a 32-bit value that DialogBoxParam passes to the dialog box proce
dure when creating the dialog box.

The return value specifies the value of the nResult parameter specified in the End
Dialog function that is used to terminate the dialog box. The system processes
values returned by the dialog box procedure and does not return them to the appli
cation. The return value is -1 if the function cannot create the dialog box.

The CreateWindowEx function is called to create the dialog box. The dialog box
procedure then receives a WM_SETFONT message (if DS_SETFONT style was
specified) and a WM_INITDIALOG message, and then the dialog box is dis
played.

The DialogBoxParam function does not return control until the dialog box proce
dure terminates the modal dialog box by calling the EndDialog function.

A dialog box can contain up to 255 controls.

The following example uses the DialogBoxParam function to create a modal
dialog box. The function passes the dialog box a pointer to a string when the
WM_INITDIALOG message is being processed.

DLGPROC dlgprc;
HWND hwndParent;
PSTR pszFileName;
int result;

case IDM_OPEN:

dlgprc = (DLGPROCJ MakeProclnstance(FileOpenProc, hinst);
result= DialogBoxParamChinst, "FileOpenBox", hwndParent,

dlgprc, MAKELPARAM(pszFileName, 0));
FreeProclnstance((FARPROC) dlgprc);
break;

DialogBox, DialogBoxlndirect, DialogBoxlndirectParam, DialogProc,
EndDialog, MakeProclnstance

230 DialogProc

DialogProc
BOOL CALLBACK DialogProc(hwndDlg, msg, wParam, lParam)
HWND hwndDlg; /*handle of dialog box */
UINT msg; /*message */
WPARAM wParam; /*first message parameter */
LPARAM lParam; /*second message parameter */

Parameters

Return Value

Comments

See Also

The DialogProc function is an application-defined callback function that
processes messages sent to a modeless dialog box.

hwndDlg
Identifies the dialog box.

msg
Specifies the message.

wParam
Specifies 16 bits of additional message-dependent information.

lParam
Specifies 32 bits of additional message-dependent information.

Except in response to the WM_INITDIALOG message, the dialog box procedure
should return nonzero if it processes the message, and zero if it does not. In re
sponse to a WM_INITDIALOG message, the dialog box procedure should return
zero if it calls the SetFocus function to set the focus to one of the controls in the
dialog box. Otherwise, it should return nonzero, in which case the system will set
the focus to the first control in the dialog box that can be given the focus.

The dialog box procedure is used only if the dialog box class is used for the dialog
box. This is the default class and is used if no explicit class is given in the dialog
box template. Although the dialog box procedure is similar to a window proce
dure, it must not call the DefWindowProc function to process unwanted mes
sages. Unwanted messages are processed internally by the dialog box window
procedure.

DialogProc is a placeholder for the application-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the applica
tion's module-definition file.

CreateDialog, CreateDialoglndirect, CreateDialoglndirectParam, Create
DialogParam, DefWindowProc, SetFocus

DirectedYield 231

DirectedYield [TI]

void DirectedYield(htask)
HTASK htask;

The DirectedYield function puts the current task to sleep and awakens the given
task.

Parameters htask

Return Value

Comments

See Also

Specifies the task to be executed.

This function does not return a value.

When relinquishing control to other applications (that is, when exiting hard mode),
a Windows-based debugger should call DirectedYield, identifying the handle of
the task being debugged. This ensures that the debugged application runs next and
that messages received during debugging are processed by the appropriate win
dows.

The Windows scheduler executes a task only when there is an event waiting for it,
such as a paint message, or a message posted in the message queue.

If an application uses DirectedYield for a task with no events scheduled, the task
will not be executed. Instead, Windows searches the task queue. In some cases,
however, you may want the application to force a specific task to be scheduled.
The application can do this by calling the PostAppMessage function, specifying a
WM_NULL message identifier. Then, when the application calls DirectedYield,
the scheduler will run the task regardless of the task's event status.

DirectedYield starts the task identified by htask at the location where it left off.
Typically, debuggers should use TaskSwitch instead of Directed Yield, because
TaskSwitch can start a task at any address.

DirectedYield returns when the current task is reawakened. This occurs when the
task identified by htask waits for messages or uses the Yield or DirectedYield
function. Execution will continue as before the task switch.

DirectedYield is located in KRNL286.EXE and KRNL386.EXE and is available
in Windows versions 3.0 and 3.1.

PostAppMessage, TaskSwitch, TaskGetCSIP, TaskSetCSIP, Yield

232 Dispatch Message

DispatchMessage
LONG DispatchMessage(lpmsg)
const MSG FAR* lpmsg; I* address of structure with message */

Parameters

Return Value

Example

The DispatchMessage function dispatches a message to a window. It is typically
used to dispatch a message retrieved by the GetMessage function.

lpmsg
Points to an MSG structure that contains the message. The MSG structure has
the following form:

typedef struct tagMSG
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM l Pa ram;
DWORD time;
POINT pt;

} MSG;

/* msg *I

The MSG structure must contain valid message values. If the lpmsg parameter
points to a WM_ TIMER message and the lParam parameter of the
WM_ TIMER message is not NULL, then lParam points to a function that is
called instead of the window procedure.

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value specifies the value returned by the window procedure. Although
its meaning depends on the message being dispatched, generally the return value is
ignored.

The following example shows a typical use of the DispatchMessage function in
an application's main message loop:

MSG msg;
HWND hwnd;
HWND hwndDlgModeless;
HANDLE haccl;

while (GetMessage(&msg, NULL, 0, 0)) {
if ((hwndDlgModeless == NULL I I

!IsDialogMessage(hwndDlgModeless, &msg)) &&
!TranslateAccelerator(hwnd, haccl, &msg)) {

TranslateMessageC&msg);
DispatchMessage(&msg);

DlgDirlist 233

See Also GetMessage, PeekMessage, PostAppMessage, PostMessage, TranslateMessage

DlgDirlist
int DlgDirList(hwndDlg, lpszPath, idListBox, idStaticPath, uFileType)
HWND hwndDlg; /* handle of dialog box with list box */
LPSTR lpszPath; /* address of path or filename string */
int idListBox; /* identifier of list box */
int idStaticPath; /* identifier of static control */
UINT uFileType; /* file attributes to display */

Parameters

The DlgDirList function fills a list box with a file or directory listing. It fills the
list box with the names of all files matching the specified path or filename.

hwndDlg
Identifies the dialog box that contains the list box.

lpszPath
Points to a null-terminated string that contains the path or filename. DlgDirList
modifies this string, which should be long enough to contain the modifications.
For more information, see the following Comments section.

idListBox
Specifies the identifier of a list box. If this parameter is zero, DlgDirList as
sumes that no list box exists and does not attempt to fill one.

idStaticPath
Specifies the identifier of the static control used for displaying the current drive
and directory. If this parameter is zero, DlgDirList assumes that no such con
trol is present.

uFileType
Specifies the attributes of the filenames to be displayed. This parameter can be
a combination of the following values:

Value

DDL_READWRITE

DDL_READONLY

DDL_HIDDEN

DDL_SYSTEM

DDL_DIRECTORY

DDL_ARCHIVE

Meaning

Read-write data files with no additional attributes.

Read-only files.

Hidden files.

System files.

Directories.

Archives.

234 DlgDirlist

Return Value

Comments

See Also

Value

DDL_pOSTMSGS

DDL_DRIVES

DDL_EXCLUSIVE

Meaning

LB_DIR flag. If the LB_DIR flag is set, Windows places
the messages generated by DlgDirList in the application's
queue; otherwise, they are sent directly to the dialog box
procedure.

Drives.

Exclusive bit. If the exclusive bit is set, only files of the
specified type are listed; otherwise, files of the specified
type are listed in addition to normal files.

The return value is nonzero if the function is successful. Otherwise, it is zero.

If you specify a zero-length string for the lpszPath parameter or if you specify
only a directory name but do not include any filename, the string will be changed
to*.*.

The DlgDirList function shows directories enclosed in brackets ([]) and shows
drives in the form [-x-], where xis the drive letter.

The lpszPath parameter has the following form:

[drive:] [[\]directory[\directory] ... \] rJilename]

In this example, drive is a drive letter, directory is a valid MS-DOS directory
name, and filename is a valid MS-DOS filename that must contain at least one
wildcard. The wildcards are a question mark(?), meaning match any character,
and an asterisk (*), meaning match any number of characters.

If the lpszPath parameter includes a drive or directory name, or both, the current
drive and directory are changed to the specified drive and directory before the list
box is filled. The static control identified by the idStaticPath parameter is also up
dated with the new drive or directory name, or both.

After the list box is filled, lpszPath is updated by removing the drive or directory
portion, or both, of the path and filename.

DlgDirList sends LB_RESETCONTENT and LB_DIR messages to the list box.

DlgDirListComboBox, DlgDirSelect, DlgDirSelectComboBox

DlgDirlistComboBox 235

DlgDirlistComboBox []}]
int DlgDirListComboBox(hwndDlg, lpszPath, idComboBox, idStaticPath, uFileType)
HWND hwndDlg; /*handle of dialog box with combo box */
LPSTR lpszPath; /* address of path or filename string */
int idComboBox; /* identifier of combo box */
int idStaticPath; /*identifier of static control */
UINT uFileType; /*file attributes to display */

Parameters

The DlgDirListComboBox function fills the list box of a combo box with a file or
directory listing. It fills the list box with the names of all files matching the
specified path and filename.

hwndDlg
Identifies the dialog box that contains the combo box.

lpszPath
Points to a null-terminated string that contains the path and filename. For more
information, see the following Comments section.

idComboBox
Specifies the identifier of a combo box in a dialog box. If this parameter is zero,
DlgDirListComboBox assumes that no combo box exists and does not attempt
to fill one.

idStaticPath
Specifies the identifier of the static control used for displaying the current drive
and directory. If this parameter is zero, DlgDirListComboBox assumes that no
such control is present.

uFileType
Specifies the attributes of the filenames to be displayed. This parameter can be
a combination of the following values:

Value

DDL_READWRITE

DDL_READONLY

DDL_HIDDEN

DDL_SYSTEM

DDL_DIRECTORY

DDL_ARCHIVE

DDL_POSTMSGS

DDL_DRIVES

Meaning

Read-write data files with no additional attributes.

Read-only files.

Hidden files.

System files.

Directories.

Archives.

CB_DIR flag. If the CB_DIR flag is set, Windows places
the messages generated by DlgDirListComboBox in the
application's queue; otherwise, they are sent directly to the
dialog box procedure.

Drives.

236 DlgDirSelect

Return Value

Comments

Value

DDL_EXCLUSIVE

Meaning

Exclusive bit. If the exclusive bit is set, only files of the
specified type are listed; otherwise, files of the specified
type are listed in addition to normal files.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The DlgDirListComboBox function shows directories enclosed in brackets ([])
and shows drives in the form [-x-], where xis the drive letter.

The lpszPath parameter has the following form:

[drive:] [[\]directory[\directory] ... \][filename]

In this example, drive is a drive letter, directory is a valid MS-DOS directory
name, and filename is a valid MS-DOS filename that must contain at least one
wildcard. The wildcards are a question mark(?), meaning match any character,
and an asterisk(*), meaning match any number of characters.

If the lpszPath parameter includes a drive or directory name, or both, the current
drive and directory are changed to the specified drive and directory before the list
box is filled. The static control identified by the idStaticPath parameter is also up
dated with the new drive or directory name, or both.

After the list box of the combo box is filled, lpszPath is updated by removing the
drive or directory portion, or both, of the path and filename.

DlgDirListComboBox sends CB_RESETCONTENT and CB_DIR messages to
the combo box.

See Also DlgDirList, DlgDirSelect, DlgDirSelectComboBox

DlgDirSelect IT!]

BOOL DlgDirSelect(hwndDlg, lpszPath, idListBox)
HWND hwndDlg; /* handle of dialog box with list box */
LPSTR lpszPath; /*address of buffer for path or filename string */
int idListBox; /* identifier of list box */

The DlgDirSelect function retrieves the current selection from a list box. It as
sumes that the list box has been filled by the DlgDirList function and that the
selection is a drive letter, a file, or a directory name.

Parameters

Return Value

Comments

See Also

DlgDirSelectComboBox 237

hwndDlg
Identifies the dialog box that contains the list box.

lpszPath
Points to a 128-byte buffer for the path or filename.

idListBox
Specifies the integer identifier of a list box in the dialog box.

The return value is nonzero if the function is successful. Otherwise, it is zero.

If the current selection is a directory name or drive letter, DlgDirSelect removes
the enclosing brackets (and hyphens, for drive letters) so that the name or letter is
ready to be inserted into a new path or filename. If there is no selection, the con
tents of the buffer pointed to by the lpszPath parameter do not change.

The DlgDirSelect function does not allow more than one filename to be returned
from a list box.

The list box must not be a multiple-selection list box. If it is, this function will not
return a zero value and lpszPath will remain unchanged.

DlgDirSelect sends LB_GETCURSEL and LB_GETTEXT messages to the list
box.

DlgDirList, DlgDirListComboBox, DlgDirSelectComboBox, DlgDirSelectEx

DlgDirSelectComboBox
BOOL DlgDirSelectComboBox(hwndDlg, lpszPath, idComboBox)
HWND hwndDlg; !* handle of dialog box with list box */

*/
*/

LPSTR lpszPath; I* address of buffer for path or filename string
int idComboBox; /* identifier of combo box

Parameters

The DlgDirSelectComboBox function retrieves the current selection from the list
box of a combo box. It assumes that the list box has been filled by the DlgDirList
ComboBox function and that the selection is a drive letter, a file, or a directory
name.

hwndDlg
Identifies the dialog box that contains the combo box.

lpszPath
Points to a 128-byte buffer for the path or filename.

238 DlgDirSelectComboBoxEx

Return Value

Comments

See Also

idComboBox
Specifies the integer identifier of the combo box in the dialog box.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The DlgDirSelectComboBox function does not allow more than one selection to
be returned from a combo box.

If the current selection is a directory name or drive letter, DlgDirSelect
ComboBox removes the enclosing brackets (and hyphens, for drive letters) so that
the name or letter is ready to be inserted into a new path or filename. If there is no
selection, the contents of buffer pointed to by the lpszPath parameter do not
change.

DlgDirSelectComboBox sends CB_GETCURSEL and CB_GETLBTEXT mes
sages to the combo box.

DlgDirList, DlgDirListComboBox, DlgDirSelect, DlgDirSelectComboBoxE:x,
DlgDirSelectEx

DlgDirSelectComboBoxEx
BOOL DlgDirSelectComboBoxEx(hwndDlg, lpszPath, cbPath, idComboBox)
HWND hwndDlg; I* handle of dialog box with list box */
LPSTR lpszPath; /* address of buffer for path string */
int cbPath; I* number of bytes in path string */
int idComboBox; /* identifier of combo box */

Parameters

The DlgDirSelectComboBoxEx function retrieves the current selection from the
list box of a combo box. The list box should have been filled by the DlgDirList
ComboBox function, and the selection should be a drive letter, a file, or a
directory name.

hwndDlg
Identifies the dialog box that contains the combo box.

lpszPath
Points to a buffer that receives the selected path or filename.

cbPath
Specifies the length, in bytes, of the path or filename pointed to by the lpszPath
parameter. This value should not be larger than 128.

idComboBox
Specifies the integer identifier of the combo box in the dialog box.

Return Value

Comments

See Also

DlgDirSelectEx 239

The return value is nonzero if the current combo box selection is a directory name.
Otherwise, it is zero.

The DlgDirSelectComboBoxEx function does not allow more than one filename
to be returned from a combo box.

If the current selection is a directory name or drive letter, DlgDirSelect
ComboBoxEx removes the enclosing square brackets (and hyphens, for drive let
ters) so that the name or letter is ready to be inserted into a new path or filename.
If there is no selection, the contents of buffer pointed to by the lpszPath parameter
do not change.

DlgDirSelectComboBoxEx sends CB_ GETCURSEL and CB_ GETLBTEXT
messages to the combo box.

DlgDirList, DlgDirListComboBox, DlgDirSelect, DlgDirSelectEx,
DlgDirSelectComboBox

DlgDirSelectEx CI!J
BOOL DlgDirSelectEx(hwndDlg, lpszPath, cbPath, idListBox)
HWND hwndDlg; /*handle of dialog box with list box */
LPSTR lpszPath; /*address of buffer for path string */
int cbPath; I* number of bytes in path string */
int idListBox; /*identifier of list box */

Parameters

Return Value

The DlgDirSelectEx function retrieves the current selection from a list box. The
specified list box should have been filled by the DlgDirList function, and the
selection should be a drive letter, a file, or a directory name.

hwndDlg
Identifies the dialog box that contains the list box.

lpszPath
Points to a buffer that receives the selected path or filename.

cbPath
Specifies the length, in bytes, of the path or filename pointed to by the lpszPath
parameter. This value should not be larger than 128.

idListBox
Specifies the integer identifier of a list box in the dialog box.

The return value is nonzero if the current list box selection is a directory name.
Otherwise, it is zero.

240 DOS3Call

Comments

See Also

DOS3Call

Parameters

Return Value

Comments

Example

If the current selection is a directory name or drive letter, DlgDirSelectEx re
moves the enclosing square brackets (and hyphens, for drive letters) so that the
name or letter is ready to be inserted into a new path or filename. If there is no
selection, the contents of buffer pointed to by the lpszPath parameter do not
change.

The DlgDirSelectEx function does not allow more than one filename to be re
turned from a list box.

The list box must not be a multiple-selection list box. If it is, this function will not
return a zero value and lpszPath will remain unchanged.

DlgDirSelectEx sends LB_GETCURSEL and LB_GETTEXT messages to the list
box.

DlgDirList, DlgDirListComboBox, DlgDirSelect, DlgDirSelectComboBox

The DOS3Call function allows an application to call an MS-DOS Interrupt 21h
function. DOS3Call can be called only from assembly-language routines. It is ex
ported from KRNL286.EXE and KRNL386.EXE and is not defined in any Win
dows header or include files.

Registers must be set up as required by the desired Interrupt 21h function before
the application calls the DOS3Call function.

The register contents are preserved as they are returned by the Interrupt 21h func
tion.

Applications should use this function instead of a directly coded MS-DOS Inter
rupt 21h function. The DOS3Call function runs somewhat faster than the equiv
alent MS-DOS Interrupt 21h function running in Windows.

The following example shows how to prototype the DOS3Call function in C:

extern void FAR PASCAL DOS3Call(void);

To declare the DOS3Call function in an assembly-language routine, an applica
tion could use the following line:

extrn DOS3CALL: far

DPtoLP

DPtoLP 241

If the application includes CMACROS.INC, the function is declared as follows:

extrnFP DOS3Call

The following example is a typical use of the DOS3Call function:

extrn DOS3CALL: far

; set registers

mov
cCall

ah, DOSFUNC
DOS3Call

;DOSFUNC Int 2lh function number

BOOL DPtoLP(hdc, lppt, cPoints)
HDC hdc; /* handle of device context */

*/
*/

POINT FAR* lppt; /*address of array with points
int cPoints; /* number of points in array

The DPtoLP function converts device coordinates (points) into logical coordinates.

Parameters hdc

Return Value

Identifies the device context.

lppt
Points to an array of POINT structures. Each coordinate in each structure is
mapped into the logical coordinate system for the current device context. The
POINT structure has the following form:

typedef struct tagPOINT { /* pt */
int x;
int y;

POINT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

cPoints
Specifies the number of points in the array.

The return value is nonzero if the function is successful. Otherwise, it is zero.

242 DragAcceptFiles

Comments

Example

See Also

The conversion depends on the current mapping mode and the settings of the
origins and extents for the device's window and viewport.

The following example sets the mapping mode to MM_LOENGLISH, and then
calls the DPtoLP function to convert the coordinates of a rectangle into logical
coordinates:

RECT re;

SetMapMode(hde, MM_LOENGLISH);
SetReet(&re, 100, 100, 200, 200);
DPtoLP(hde, (LPPOINT) &re, 2);

LPtoDP

DragAcceptfiles
#include <shellapi.h>

void DragAcceptFiles(hwnd,/Accept)
HWND hwnd; /* handle of the registering window */
BOOL/Accept; /*flag for whether dropped files are accepted */

The DragAcceptFiles function registers whether a given window accepts dropped
files.

Parameters hwnd

Return Value

Comments

Identifies the window registering whether it accepts dropped files.

/Accept
Specifies whether the window specified by the hwnd parameter accepts
dropped files. An application should set this value to TRUE to accept dropped
files or FALSE to discontinue accepting dropped files.

This function does not return a value.

When an application calls DragAcceptFiles with/Accept set to TRUE, Windows
File Manager (WINFILE.EXE) sends the specified window a WM_DROPFILES
message each time the user drops a file in that window.

DragQueryFile 243

Drag Finish [IT]

#include <shellapi.h>

void DragFinish(hDrop)
HDROP hDrop; /* handle of memory to free *I

Parameters

Return Value

The DragFinish function releases memory that Windows allocated for use in
transferring filenames to the application.

hDrop
Identifies the internal data structure that describes dropped files. This handle is
passed to the application in the wParam parameter of the WM_DROPFILES
message.

This function does not return a value.

DragQueryFile
#include <shellapi.h>

UINT DragQueryFile(hDrop, iFile, lpszFile, cb)
HDROP hDrop; /*handle of structure for dropped files */
UINT iFile; /* index of file to query */
LPSTR lpszFile; /* address of buffer for returned filename */
UINT cb; /* size of buffer for filename */

Parameters

The DragQueryFile function retrieves the number of dropped files and their
filenames.

hDrop
Identifies the internal data structure containing filenames for the dropped files.
This handle is passed to the application in the w Pa ram parameter of the
WM_DROPFILES message.

iFile
Specifies the index of the file to query. The index of the first file is 0. If the
value of the iFile parameter is -1, DragQueryFile returns the number of files
dropped. If the value of the iFile parameter is between zero and the total num
ber of files dropped, DragQueryFile copies the filename corresponding to that
value to the buffer pointed to by the lpszFile parameter.

244 DragQueryPoint

Return Value

See Also

lpszFile

cb

Points to a null-terminated string that contains the filename of a dropped file
when the function returns. If this parameter is NULL and the iFile parameter
specifies the index for the name of a dropped file, DragQueryFile returns the
required size, in bytes, of the buffer for that filename.

Specifies the size, in bytes, of the lpszFile buffer.

When the function copies a filename to the lpszFile buffer, the return value is the
number of bytes copied. If the iFile parameter is OxFFFF, the return value is the
number of dropped files. If iFile is between zero and the total number of dropped
files and if lpszFile is NULL, the return value is the required size of the lpszFile
buffer.

DragQuery Point

DragQueryPoint
#include <shellapi.h>

BOOL DragQueryPoint(hDrop, lppt)
HDROP hDrop; /* handle of structure for dropped file */
POINT FAR* lppt; /*address of structure for cursor coordinates */

Parameters

The DragQueryPoint function retrieves the window coordinates of the cursor
when a file is dropped.

hDrop
Identifies the internal data structure that describes the dropped file. This struc
ture is returned in the wParam parameter of the WM_DROPFILES message.

lppt
Points to a POINT structure that the function fills with the coordinates of the
position at which the cursor was located when the file was dropped. The
POINT structure has the following form:

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

Return Value

Comments

See Also

DrawFocusRect 245

The return value is nonzero if the file is dropped in the client area of the window.
Otherwise, it is zero.

The DragQueryPoint function fills the POINT structure with the coordinates of
the position at which the cursor was located when the user released the left mouse
button. The window for which coordinates are returned is the window that re
ceived the WM_DROPFILES message.

DragQuery File

DrawFocusRect
void DrawFocusRect(hdc, !pre)
HDC hdc; I* handle of device context */

/ const RECT FAR !pre; /*address of structure with rectangle

The DrawFocusRect function draws a rectangle in the style used to indicate that
the rectangle has the focus.

Parameters hdc

Return Value

Comments

Identifies the device context.

!pre
Points to a RECT structure that contains the logical coordinates of the
rectangle. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

This function does not return a value.

Because this is an XOR function, calling it a second time and specifying the same
rectangle removes the rectangle from the screen.

246 Drawl con

See Also

Drawl con

The rectangle this function draws cannot be scrolled. To scroll an area containing
a rectangle drawn by this function, call DrawFocusRect to remove the rectangle
from the screen, scroll the area, and then call DrawFocusRect to draw the
rectangle in the new position.

FrameRect

BOOL Drawlcon(hdc, x, y, hicon)
HDC hdc; /* handle of device context */
int x; /* x-coordinate of upper-left corner */
int y; /* y-coordinate of upper-left corner */
HICON hicon; /* handle of icon to draw */

The Draw Icon function draws an icon on the given device. The Drawlcon func
tion places the icon's upper-left corner at the specified location.

Parameters hdc

Return Value

Comments

See Also

Identifies the device context for a window.

x
Specifies the logical x-coordinate of the upper-left corner of the icon.

y
Specifies the logical y-coordinate of the upper-left corner of the icon.

hicon
Identifies the icon to be drawn.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The icon resource must have been loaded by using the Loadlcon function. The
MM_ TEXT mapping mode must be selected before using this function.

GetMapMode, Loadlcon, SetMapMode

Drawl ext 247

DrawMenuBar [}!]

void DrawMenuBar(hwnd)
HWND hwnd; /* handle of window with menu bar to redraw */

The DrawMenuBar function redraws the menu bar of the given window. If a
menu bar is changed after Windows has created the window, an application should
call this function to draw the changed menu bar.

Parameters hwnd
Identifies the window whose menu must be redrawn.

Return Value This function does not return a value.

Draw Text
int DrawText(hdc, lpsz, cb, lprc,fuFormat)
HDC hdc; /* handle of device context */
LPCSTR lpsz; /*address of string to draw */
int cb; /* string length */
RECT FAR* lprc; /* address of structure with formatting dimensions */
UINT fuFormat; /*text-drawing flags */

The DrawText function draws formatted text into a given rectangle. It formats
text by expanding tabs into appropriate spaces, aligning text to the left, right, or
center of the rectangle, and breaking text into lines that fit within the rectangle.

The DrawText function uses the device context's selected font, text color, and
background color to draw the text. Unless the DT_NOCLIP format is specified,
DrawText clips the text so that the text does not appear outside the given
rectangle. All formatting is assumed to have multiple lines unless the
DT_SINGLELINE format is specified.

Parameters hdc
Identifies the device context. This cannot be a metafile device context.

lpsz
Points to the string to be drawn. If the cb parameter is -1, the string must be
null-terminated.

248 Draw Text

cb
Specifies the number of bytes in the string. If this parameter is -1, then the lpsz
parameter is assumed to be a long pointer to a null-terminated string and
DrawText computes the character count automatically.

lprc
Points to a RECT structure that contains the logical coordinates of the upper
left and lower-right corners of the rectangle in which the text is to be formatted.
The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

fuFormat
Specifies an array of flags that determine how to draw the text. This parameter
can be a combination of the following values:

Value

DT_BOTTOM

DT_CALCRECT

DT_CENTER

DT _EXPANDTABS

DT_EXTERNALLEADING

DT_LEFT

DT_NOCLIP

Meaning

Specifies bottom-aligned text. This value must be
combined with DT _SINGLELINE.

Determines the width and height of the rectangle.
If there are multiple lines of text, DrawText will
use the width of the rectangle pointed to by the
lprc parameter and extend the base of the rectangle
to bound the last line of text. If there is only one
line of text, DrawText will modify the right side
of the rectangle so that it bounds the last character
in the line. In either case, DrawText returns the
height of the formatted text but does not draw the
text.

Centers text horizontally.

Expands tab characters. The default number of
characters per tab is eight.

Includes the font external leading in line height.
Normally, external leading is not included in the
height of a line of text.

Left-aligns text.

Draws without clipping. DrawText is somewhat
faster when DT_NOCLIP is used.

Return Value

Comments

See Also

Value

DT_NOPREFIX

DT_RIGHT

DT _SINGLELINE

DT_TABSTOP

DT_TOP

DT_VCENTER

DT_ WORDBREAK

DrawText 249

Meaning

Turns off processing of prefix characters. Nor
mally, DrawText interprets the mnemonic & as a
directive to underscore the character that follows,
and the mnemonic && as a directive to print a
single&. By specifying DT_NOPREFIX, this pro
cessing is turned off.

Right-aligns text.

Specifies single line only. Carriage returns and
linefeeds do not break the line.

Sets tab stops. The high-order byte of the
fuFormat parameter is the number of characters
for each tab. The default number of characters per
tab is eight.

Specifies top-aligned text (single line only).

Specifies vertically centered text (single line only).

Specifies word breaking. Lines are automatically
broken between words if a word would extend past
the edge of the rectangle specified by the lprc pa
rameter. A carriage return-linefeed sequence will
also break the line.

Note that the DT_CALCRECT, DT_EXTERNALLEADING,
DT_INTERNAL, DT_NOCLIP, and DT_NOPREFIX values cannot be used
with the DT_TABSTOP value.

The return value specifies the height of the text if the function is successful.

If the selected font is too large for the specified rectangle, the DrawText function
does not attempt to substitute a smaller font.

If the DT _CALCRECT flag is specified, the RECT structure pointed to by the
!pre parameter will be updated to reflect the width and height needed to draw the
text.

If the TA_UPDATECP text-alignment flag has been set (see the SetTextAlign
function), DrawText will display text starting at the current position, rather
than at the left of the given rectangle. DrawText will not wrap text when the
TA_UPDATECP flag has been set (the DT_ WORDBREAK flag will have no
effect).

The text color must be set by the SetTextColor function.

ExtTextOut, SetTextColor, TabbedTextOut, TextOut

250 DriverProc

DriverProc
LRESULT CALLBACK DriverProc(dwDriverldentifier, hDriver, wMessage, lParaml, lParam2)
DWORD dwDriver!dentifier; /* identifies installable driver */
HDRVR hDriver; /* handle of installable driver */
UINT wMessage; /* message */
LPARAM lParaml; /*first message parameter */
LPARAM lParam2; I* second message parameter */

Parameters

The DriverProc function processes the specified message.

dwDriverldentifier
Specifies an identifier of the installable driver.

hDriver
Identifies the installable driver. This parameter is a unique handle that Win
dows assigns to the driver.

wMessage
Identifies a message that the driver must process. Following are the messages
that Windows or an application can send to an installable driver:

Message

DRY_CLOSE

DRY _CONFIGURE

DRY _DISABLE

DRY_ENABLE

DRY_FREE

DRY _INSTALL

DRY_LOAD

DRY_OPEN

DRY_pOWER

DRY _QUERYCONFIGURE

Description

Notifies the driver that it should decrement
(decrease by one) its usage count and unload the
driver if the count is zero.

Notifies the driver that it should display a custom
configuration dialog box. (This message should be
sent only if the driver returns a nonzero value
when the DRY _QUERYCONFIGURE message is
processed.)

Notifies the driver that its allocated memory is
about to be freed.

Notifies the driver that it has been loaded or re
loaded, or that Windows has been enabled.

Notifies the driver that it will be discarded.

Notifies the driver that it has been successfully in
stalled.

Notifies the driver that it has been successfully
loaded.

Notifies the driver that it is about to be opened.

Notifies the driver that the device's power source
is about to be turned off or turned on.

Determines whether the driver supports the
DRY _CONFIGURE message. The message dis
plays a private configuration dialog box.

Return Value

Comments

See Also

Ellipse

Message

DRV_REMOVE

lParaml

Ellipse 251

Description

Notifies the driver that it is about to be removed
from the system.

Specifies the first message parameter.

lParam2
Specifies the second message parameter.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The DriverProc function is the main function within a Windows installable
driver; it is supplied by the driver developer.

When the wMessage parameter is DRY _OPEN, lParaml is the string following
the driver filename from the SYSTEM.IN! file and lParam2 is the value given as
the lParam parameter in the call to the OpenDriver function.

When the wMessage parameter is DRY _CLOSE, lParaml and lParam2 are the
same values as the lParaml and lParam2 parameters in the call to the Close
Driver function.

CloseDriver, OpenDriver

BOOL Ellipse(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect)
HDC hdc; /* handle of device context */
int nLeftRect; /* x-coordinate upper-left comer bounding rectangle */
int nTopRect; /* y-coordinate upper-left comer bounding rectangle */
int nRightRect; /* x-coordinate lower-right corner bounding rectangle */
int nBottomRect; /* y-coordinate lower-right corner bounding rectangle */

The Ellipse function draws an ellipse. The center of the ellipse is the center of the
specified bounding rectangle. The ellipse is drawn by using the current pen, and its
interior is filled by using the current brush.

If either the width or the height of the bounding rectangle is zero, the function
does not draw the ellipse.

Parameters hdc
Identifies the device context.

252 EmptyClipboard

Return Value

Comments

See Also

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the bounding
rectangle.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the bounding
rectangle.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the bounding
rectangle.

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the bounding
rectangle.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The figure drawn by this function extends up to but does not include the right and
bottom coordinates. This means that the height of the figure is determined as fol
lows:

nBottomRect- nTopRect

Similarly, the width of the figure is determined as follows:

nRightRect- nLeftRect

Both the width and the height of a rectangle must be greater than 2 units and less
than 32,767 units.

Arc, Chord

EmptyClipboard
BOOL EmptyClipboard(void)

Parameters

Return Value

The EmptyClipboard function empties the clipboard and frees handles to data in
the clipboard. It then assigns ownership of the clipboard to the window that cur
rently has the clipboard open.

This function has no parameters.

The return value is nonzero if the function is successful. Otherwise, it is zero.

EnableCommNotification 253

Comments The clipboard must be open when the EmptyClipboard function is called.

See Also Open Clipboard

EnableCommNotification
BOOL EnableCommNotification(idComDev, hwnd, cb WriteNotify, cbOutQueue)
int idComDev; I* communications-device identifier */
HWND hwnd; I* handle of window receiving messages */
int cbWriteNotify; /*number of bytes written before notification */
int cbOutQueue; /*minimum number of bytes in output queue */

Parameters

Return Value

Comments

The EnableCommNotification function enables or disables
WM_COMMNOTIFY message posting to the given window.

idComDev
Specifies the communications device that is posting notification messages to
the window identified by the hwnd parameter. The OpenComm function re
turns the value for the idComDev parameter.

hwnd
Identifies the window whose WM_COMMNOTIFY message posting will be
enabled or disabled. If this parameter is NULL, EnableCommNotification dis
ables message posting to the current window.

cb WriteNotify
Indicates the number of bytes the COM driver must write to the application's
input queue before sending a notification message. The message signals the ap
plication to read information from the input queue.

cbOutQueue
Indicates the minimum number of bytes in the output queue. When the number
of bytes in the output queue falls below this number, the COM driver sends the
application a notification message, signaling it to write information to the out
put queue.

The return value is nonzero if the function is successful. Otherwise, it is zero, indi
cating an invalid COM port identifier, a port that is not open, or a function not sup
ported by COMM.DRY.

If an application specifies -1 for the cbWriteNotify parameter, the
WM_COMMNOTIFY message is sent to the specified window for CN_EVENT
and CN_ TRANSMIT notifications but not for CN_RECEIVE notifications. If -1

254 EnableHardwarelnput

is specified for the cbOutQueue parameter, CN_EVENT and CN_RECEIVE noti
fications are sent but CN_TRANSMIT notifications are not.

If a timeout occurs before as many bytes as specified by the cb WriteNotify parame
ter are written to the input queue, a WM_COMMNOTIFY message is sent with
the CN_RECEIVE flag set. When this occurs, another message will not be sent
until the number of bytes in the input queue falls below the number specified in
the cbWriteNotifyparameter. Similarly, a WM_COMMNOTIFY message in
which the CN_RECEIVE flag is set is sent only when the output queue is larger
than the number of bytes specified in the cbOutQueue parameter.

The Windows 3.0 version of COMM.DRY does not support this function.

En ab le Hardware Input
BOOL EnableHard warelnput(fEnablelnput)
BOOLfEnablelnput; /*for enabling or disabling queuing */

Parameters

Return Value

Comments

See Also

The EnableHardwarelnput function enables or disables queuing of mouse and
keyboard input.

fEnablelnput
Specifies whether to enable or disable queuing of input. If this parameter is
TRUE, keyboard and mouse input are queued. If the parameter is FALSE, key
board and mouse input are disabled.

The return value is nonzero if queuing of input was previously enabled. Other
wise, it is zero.

This function does not disable input from installable drivers, nor does it disable
device drivers.

GetlnputState

EnableMenultem 255

EnableMenultem CI!J
BOOL EnableMenultem(hmenu, idEnableltem, uEnable)
HMENU hmenu; /* handle of menu */
UINT idEnableltem; /* menu-item identifier */
UINT uEnable; /* action flag */

Parameters

Return Value

Comments

The EnableMenultem function enables, disables, or grays (dims) a menu item.

hmenu
Identifies the menu.

idEnableltem
Specifies the menu item to be enabled, disabled, or grayed. This parameter can
specify pop-up menu items as well as standard menu items. The interpretation
of this parameter depends on the value of the uEnable parameter.

uEnable
Specifies the action to take. This parameter can be MF _DISABLED,
MF _ENABLED, or MF _GRAYED, combined with MF _BYCOMMAND or
MF _BYPOSITION. These values have the following meanings:

Value

MF _BYCOMMAND

MF _BYPOSITION

MF _DISABLED

MF_ENABLED

MF_GRAYED

Meaning

Specifies that the idEnableltem parameter gives the menu
item identifier.

Specifies that the idEnableltem parameter gives the posi
tion of the menu item (the first item is at position zero).

Specifies that the menu item is disabled.

Specifies that the menu item is enabled.

Specifies that the menu item is grayed.

The return value is 0 if the menu item was previously disabled, 1 if the menu item
was previously enabled, and -1 if the menu item does not exist.

To disable or enable input to a menu bar, see the WM_SYSCOMMAND message.

The CreateMenu, InsertMenu, Modify Menu, and LoadMenulndirect func
tions can also set the state (enabled, disabled, or grayed) of a menu item.

Using the MF _BYPOSITION value requires an application to specify the correct
menu handle. If the menu handle of the menu bar is specified, a top-level menu
item (an item in the menu bar) is affected. To set the state of an item in a pop-up
or nested pop-up menu by position, an application must specify the handle of the
pop-up menu.

256 EnableScrollBar

See Also

When an application specifies the MF _BYCOMMAND flag, Windows checks all
pop-up menu items that are subordinate to the menu identified by the specified
menu handle; therefore, unless duplicate menu items are present, specifying the
menu handle of the menu bar is sufficient.

CheckMenultem, HiliteMenultem

EnableScrollBar
BOOL EnableScrollBar(hwnd,fnSBFlags,fuArrowFlags)
HWND hwnd; /* handle of window or scroll bar *!

*/
*/

intfnSBFlags; /* scroll-bar type flag
UINT fuArrowFlags; /* scroll-bar arrow flag

Parameters

The EnableScrollBar function enables or disables one or both arrows of a scroll
bar.

hwnd
Identifies a window or a scroll bar, depending on the value ofthefnSBFlags pa
rameter.

fnSBFlags
Specifies the scroll bar type. This parameter can be one of the following values:

Value

SB_BOTH

SB_CTL

SB_HORZ

SB_ VERT

fuArrowFlags

Meaning

Enables or disables the arrows of the horizontal and vertical scroll
bars associated with the given window. The hwnd parameter identi
fies the window.

Identifies the scroll bar as a scroll bar control. The hwnd parameter
must identify a scroll bar control.

Enables or disables the arrows of the horizontal scroll bar associated
with the given window. The hwnd parameter identifies the window.

Enables or disables the arrows of the vertical scroll bar associated
with the given window. The hwnd parameter identifies the window.

Specifies whether the scroll bar arrows are enabled or disabled, and which ar
rows are enabled or disabled. This parameter can be one of the following values:

Value

ESB_ENABLE_BOTH

ESB_DISABLE_LTUP

Meaning

Enables both arrows of a scroll bar.

Disables the left arrow of a horizontal scroll bar, or the
up arrow of a vertical scroll bar.

Return Value

Example

See Also

Value

ESB_DISABLE_RTDN

ESB_DISABLE_BOTH

EnableWindow 257

Meaning

Disables the right arrow of a horizontal scroll bar, or
the down arrow of a vertical scroll bar.

Disables both arrows of a scroll bar.

The return value is nonzero if the arrows are enabled or disabled as specified.
Otherwise, it is zero, indicating that the arrows are already in the requested state or
that an error occurred.

The following example enables an edit control's vertical scroll bar when the con
trol receives the input focus, and disables the scroll bar when the control loses the
focus:

case EN_SETFOCUS:
EnableScrollBar(hwndMLEdit, SB_VERT, ESB_ENABLE_BOTH);
break;

case EN_KILLFOCUS:
Ena bl eScrol 1 Bar(hwndMLEdit, SB_ VERT, ESB_ DISABLE_ BOTH);
break;

ShowScrollBar

EnableWindow
BOOL EnableWindow(hwnd,jEnable)
HWND hwnd; /* handle of window */

*/ BOOLfEnable; /*flag for enabling or disabling input

Parameters

Return Value

The Enable Window function enables or disables mouse and keyboard input to the
given window or control. When input is disabled, the window ignores input such
as mouse clicks and key presses. When input is enabled, the window processes all
input.

hwnd
Identifies the window to be enabled or disabled.

jEnable
Specifies whether to enable or disable the window. If this parameter is TRUE,
the window is enabled. If the parameter is FALSE, the window is disabled.

The return value is nonzero if the window was previously disabled. Otherwise, the
return value is zero.

258 EndDeferWindowPos

Comments

Example

See Also

If the enabled state of the window is changing, a WM_ENABLE message is sent
before this function returns. If a window is already disabled, all its child windows
are implicitly disabled, although they are not sent a WM_ENABLE message.

A window must be enabled before it can be activated. For example, if an applica
tion is displaying a modeless dialog box and has disabled its main window, the ap
plication must enable the main window before destroying the dialog box.
Otherwise, another window will receive the input focus and be activated. If a child
window is disabled, it is ignored when Windows tries to determine which window
should receive mouse messages.

By default, a window is enabled when it is created. An application can specify the
WS_DISABLED style in the Create Window or CreateWindowEx function to
create a window that is initially disabled. After a window has been created, an ap
plication can use the Enable Window function to enable or disable the window.

An application can use this function to enable or disable a control in a dialog box.
A disabled control cannot receive the input focus, nor can a user access it.

The following example enables a Save push button in a dialog box, depending on
whether a user-specified filename exists:

static char szFileName[l28];

case WM_INITDIALOG:

/* If a filename is specified, enable the Save push button. */

EnableWindow(GetDlgltem(hdlg, IDOK),
(szFileName[0] == '\0' ? FALSE : TRUE));

return TRUE;

Is Window Enabled

EndDeferWindowPos
BOOL EndDeferWindowPos(hdwp)
HDWP hdwp; /* handle of internal structure */

The EndDeferWindowPos function simultaneously updates the position and size
of one or more windows in a single screen-refresh cycle.

Parameters

Return Value

Comments

See Also

End Dialog

EndDialog 259

hdwp
Identifies an internal structure that contains size and position information for
one or more windows. This structure is returned by the BeginDeferWindow
Pos function or by the most recent call to the DeferWindowPos function.

The return value is nonzero if the function is successful. Otherwise, it is zero.

This function sends the WM_ WINDOWPOSCHANGING and
WM_ WINDOWPOSCHANGED messages to each window identified in the inter
nal structure.

BeginDeferWindowPos, DeferWindowPos

void EndDialog(hwndDlg, nResult)
HWND hwndDlg; /*handle of dialog box */
int nResult; /* value to return */

Parameters

Return Value

Comments

The EndDialog function hides a modal dialog box and causes the DialogBox func
tion to return.

hwndDlg
Identifies the dialog box to be destroyed.

nResult
Specifies the value that is returned to the caller ofDialogBox.

This function does not return a value.

The EndDialog function is required to complete processing of a modal dialog box
created by the DialogBox function. An application calls EndDialog from within
the dialog box procedure.

A dialog box procedure can call EndDialog at any time, even during the pro
cessing of the WM_INITDIALOG message. If the function is called while
WM_INITDIALOG is being processed, the dialog box is hidden before it is
shown and before the input focus is set.

260 End Doc

See Also

End Doc
int EndDoc(hdc)

EndDialog does not destroy the dialog box immediately. Instead, it sets a flag that
directs Windows to destroy the dialog box when the DialogBox function returns.

DialogBox

HDC hdc; I* handle of device context */

The EndDoc function ends a print job. This function replaces the END DOC
printer escape for Windows version 3 .1.

Parameters hdc

Return Value

Comments

See Also

EndPage
int EndPage(hdc)

Identifies the device context for the print job.

The return value is greater than or equal to zero ifthe function is successful. Other
wise, it is less than zero.

An application should call the EndDoc function immediately after finishing a
successful print job. To terminate a print job because of an error or if the user
chooses to cancel the job, an application should call the AbortDoc function.

Do not use the EndDoc function inside metafiles.

AbortDoc, Escape, StartDoc

HDC hdc; /* handle of device context */

The EndPage function signals the device that the application has finished writing
to a page. This function is typically used to direct the driver to advance to a new
page.

This function replaces the NEWFRAME printer escape for Windows 3.1. Unlike
NEWFRAME, this function is always called after printing a page.

EndPaint 261

Parameters hdc

Return Value

Errors

Comments

See Also

End Paint

Identifies the device context for the print job.

The return value is greater than or equal to zero if the function is successful. Other
wise, it is an error value.

If the function fails, it returns one of the following error values:

Value

SP_ERROR

SP _APPABORT

SP _USERABORT

SP _OUTOFDISK

SP _OUTOFMEMORY

Meaning

General error.

Job was terminated because the application's print
canceling function returned zero.

User terminated the job by using Windows Print Manager
(PRINTMAN.EXE).

Not enough disk space is currently available for spooling,
and no more space will become available.

Not enough memory is available for spooling.

The ResetDC function can be used to change the device mode, if necessary, after
calling the EndPage function.

Escape, ResetDC, StartPage

void EndPaint(hwnd, lpps)
HWNDhwnd; /* handle of window */

/ const PAINTSTRUCT FAR lpps; I* address of structure for paint data

Parameters

The EndPaint function marks the end of painting in the given window. This func
tion is required for each call to the BeginPaint function, but only after painting is
complete.

hwnd
Identifies the window that has been repainted.

lpps
Points to a PAINTSTRUCT structure that contains the painting information re
trieved by the BeginPaintfunction. The PAINTSTRUCT structure has the fol
lowing form:

262 EnumChildProc

Return Value

Comments

See Also

typedef struct tagPAINTSTRUCT
HOC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL flncUpdate;
BYTE rgbReserved[16];

PAINTSTRUCT;

f* ps */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

This function does not return a value.

If the caret was hidden by the BeginPaint function, the EndPaint function re
stores the caret to the screen.

BeginPaint

EnumChildProc ~

BOOL CALLBACK EnumChildProc(hwnd, lParam)
HWND hwnd; /*handle of child window */
LPARAM lParam; /* application-defined value */

The EnumChildProc function is an application-defined callback function that re
ceives child window handles as a result of a call to the EnumChildWindows func
tion.

Parameters hwnd

Return Value

Comments

Identifies a child window of the parent window specified in the Enum
ChildWindows function.

lParam
Specifies the application-defined value specified in the EnumChildWindows
function.

The callback function must return nonzero to continue enumeration; to stop
enumeration, it must return zero.

The callback function can carry out any desired task.

An application must register this callback function by passing its address to the
EnumChildWindows function. The EnumChildProc function is a placeholder

See Also

EnumChildWindows 263

for the application-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the application's module-definition
(.DEF) file.

EnumChildWindows

EnumChildWindows
BOOL EnumChildWindows(hwndParent, wndenmprc, lParam)
HWND hwndParent; /* handle of parent window */

*!
*!

WNDENUMPROC wndenmprc; I* address of callback function
LPARAM lParam; I* application-defined value

Parameters

Return Value

Comments

The EnumChildWindows function enumerates the child windows that belong to
the given parent window by passing the handle of each child window, in tum, to
an application-defined callback function. EnumChildWindows continues until
the last child window is enumerated or the callback function returns zero.

hwndParent
Identifies the parent window whose child windows are to be enumerated.

wndenmprc
Specifies the procedure-instance address of the application-supplied callback
function. The address must have been created by using the MakeProclnstance
function. For more information about the callback function, see the description
of the EnumChildProc callback function.

lParam
Specifies a 32-bit application-defined value to pass to the callback function.

The return value is nonzero if the function is successful. Otherwise, it is zero.

This function does not enumerate top-level windows that belong to the parent win
dow.

If a child window has created child windows of its own, the function enumerates
those windows as well.

A child window that is moved or repositioned in the Z-order during the enumera
tion process will be properly enumerated. The function will not enumerate a child
window that is destroyed before it is enumerated or that is created during the
enumeration process. These measures ensure that the EnumChildWindows func
tion is reliable even when the application causes odd side effects, whereas an appli-

264 EnumClipboardFormats

See Also

cation that uses a Get Window loop risks being caught in an infinite loop or refer
encing a handle to a window that has been destroyed.

En um ChildProc, MakeProclnstance

EnumClipboardFormats
UINT EnumClipboardFormats(uFormat)
UINT uFormat; /* known clipboard format */

Parameters

Return Value

Comments

See Also

The EnumClipboardFormats function enumerates the formats found in a list of
available formats that belong to the clipboard. Each call to this function specifies a
known available format; the function returns the format that appears next in the
list.

uFormat
Specifies a known format. If this parameter is zero, the function returns the first
format in the list.

The return value specifies the next known clipboard data format if the function is
successful. It is zero if the uFormat parameter specifies the last format in the list
of available formats, or if the clipboard is not open.

Before it enumerates the formats by using the EnumClipboardFormats function,
an application must open the clipboard by using the Open Clipboard function.

An application puts (or "donates") alternative formats for the same data into the
clipboard in the same order that the enumerator uses when returning them to the
pasting application. The pasting application should use the first format enumerated
in the list that it can handle. This gives the donor application an opportunity to rec
ommend formats that involve the least loss of data.

CountClipboardFormats, GetClipboardFormatN ame, GetPriorityClipboard
Format, lsClipboardFormatA vailable, OpenClipboard, RegisterClipboard
Format

EnumFontFamilies 265

Enumfontfamilies []]]
int EnumFontFamilies(hdc, lpszFamily,fntenmprc, lParam)
HDC hdc; /*handle of device context */
LPCSTR lpszFamily; /*address of font-family name */
FONTENUMPROC fntenmprc; /* address of callback function */
LPARAM lParam; I* application-defined data */

The EnumFontFamilies function enumerates the fonts in a specified font family
that are available on a given device. EnumFontFamilies continues until there are
no more fonts or the callback function returns zero.

Parameters hdc

Return Value

Comments

Example

Identifies the device context.

lpszFamily
Points to a null-terminated string that specifies the family name of the desired
fonts. If this parameter is NULL, the EnumFontFamilies function selects and
enumerates one font from each available font family.

fntenmprc
Specifies the procedure-instance address of the application-defined callback
function. The address must be created by the MakeProclnstance function. For
more information about the callback function, see the description of the Enum
FontFamProc callback function.

lParam
Specifies a 32-bit application-defined value that is passed to the callback func
tion along with the font information.

The return value specifies the last value returned by the callback function, if the
function is successful. This value depends on which font families are available for
the given device.

The EnumFontFamilies function differs from the EnumFonts function in that it
retrieves the style names associated with a TrueType font. Using EnumFont
Families, an application can retrieve information about unusual font styles (for ex
ample, Outline) that cannot be enumerated by using the EnumFonts function.
Applications should use EnumFontFamilies instead of EnumFonts.

For each font having the font name specified by the lpszFamily parameter, the
EnumFontFamilies function retrieves information about that font and passes it to
the function pointed to by thefntenmprc parameter. The application-supplied call
back function can process the font information, as necessary.

The following example uses the MakeProclnstance function to create a pointer to
the callback function for the EnumFontFamilies function. The FreeProclnstance

266 EnumFontFamProc

See Also

function is called when enumeration is complete. Because the second parameter is
NULL, EnumFontFamilies enumerates one font from each family that is availa
ble in the given device context. The aFontCount variable points to an array that is
used inside the callback function.

FONTENUMPROC lpEnumFamCallBack;
int aFontCount[J = { 0, 0, 0 };

lpEnumFamCallBack = CFONTENUMPROC) MakeProcinstance(
CFARPRQC) EnumFamCallBack, hAppinstance);

EnumFontFamilies(hdc, NULL, lpEnumFamCallBack, CLPARAM) aFontCount);
FreeProcinstanceCCFARPROC) lpEnumFamCallBack);

EnumFonts, EnumFontFamProc

EnumfontfamProc
int CALLBACK EnumFontFamProc(lpnlf, lpntm, FontType, lParam)
LOGFONT FAR* lpnlf; /* address of structure with logical-font data */

*/
*I
*I

TEXTMETRIC FAR* lpntm; /*address of structure with physical-font data
int FontType; /* type of font
LPARAM lParam; !* address of application-defined data

Parameters

The EnumFontFamProc function is an application-defined callback function that
retrieves information about available fonts.

lpnlf
Points to a NEWLOGFONT structure that contains information about the logi
cal attributes of the font. This structure is locally-defined and is identical to the
Windows LOGFONT structure except for two new members. The
NEWLOGFONT structure has the following form:

struct tagNEWLOGFONT {
int lfHeight;
int lfWi dth;
int lfEscapement;
int lfOrientation;
int lfWeight;
BYTE lfitalic;
BYTE lfUnderline;
BYTE lfStrikeOut;

/* nlf */

BYTE l fCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQuality;
BYTE lfPitchAndFami ly;
BYTE l fFaceName[LF_ FACESIZE];
BYTE lfFullName[2 * LF_FACESIZEJ;
BYTE lfStyl e[LF_FACESIZE];

NEWLOGFONT;

EnumFontFamProc 267

I* TrueType only */
/* TrueType only */

The lfFullName and lfStyle members are appended to a LOGFONT structure
when a True Type font is enumerated in the EnumFontFamProc function.

The lfFullName member is a character array specifying the full name for the
font. This name contains the font name and style name.

The lfStyle member is a character array specifying the style name for the font.

For example, when bold italic Arial® is enumerated, the last three members of
the NEWLOGFONT structure contain the following strings:

ltFaceName ="Arial";
ltFullName ="Arial Bold Italic";
lfStyle ="Bold Italic";

For a full description of the LOG FONT structure, see the Microsoft Windows
Programmer's Reference, Volume 3.

lpntm
Points to a NEWTEXTMETRIC structure that contains information about the
physical attributes of the font, if the font is a True Type font. If the font is not a
TrueType font, this parameter points to a TEXTMETRIC structure.

The NEWTEXTMETRIC structure has the following form:

typedef
int
int
int
int
int
int
int
int
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

struct tagNEWTEXTMETRIC
tmHeight;
tmAscent;
tmDescent;
tmlnternalleading;
tmExternalLeading;
tmAveCharWidth;
tmMaxCharWidth;
tmWeight;
tmltalic;
tmUnderlined;
tmStruckOut;
tmFirstChar;
tmlastChar;
tmDefaultChar;
tmBreakChar;
tmPitchAndFamily;

/* ntm */

268 EnumFontFamProc

Return Value

Comments

See Also

BYTE tmCharSet;
int tmOverhang;
int tmDigitizedAspectX;
int tmDigitizedAspectY;
DWORD ntmFlags;
UINT ntmSizeEM;
UINT ntmCellHeight;
UINT ntmAvgWidth;

} NEWTEXTMETRIC;

The TEXTMETRIC structure is identical to NEWTEXTMETRIC except
that it does not include the last four members. For a full description of these
structures, see the Microsoft Windows Programmer's Reference, Volume 3.

FontType
Specifies the type of the font. This parameter can be a combination of the fol
lowing masks:

DEVICE_FONTTYPE
RASTER_FONTTYPE
TRUETYPE_FONTTYPE

lParam
Points to the application-defined data passed by EnumFontFamilies.

This function must return a nonzero value to continue enumeration; to stop
enumeration, it must return zero.

An application must register this callback function by passing its address to the
EnumFontFamilies function. The EnumFontFamProc function is a placeholder
for the application-defined function name. The actual name must be exported by
including it in an EXPORTS statement in the application's module-definition
(.DEF) file.

The AND(&) operator can be used with the RASTER_FONTTYPE,
DEVICE_FONTTYPE, and TRUETYPE_FONTTYPE constants to determine the
font type. If the RASTER_FONTTYPE bit is set, the font is a raster font. If the
TRUETYPE_FONTTYPE bit is set, the font is a TrueType font. If neither bit is
set, the font is a vector font. A third mask, DEVICE_FONTTYPE, is set when a
device (for example, a laser printer) supports downloading TrueType fonts; it is
zero if the font is not a device font. (Any device can support device fonts, includ
ing display adapters and dot-matrix printers.) An application can also use the
DEVICE_FONTTYPE mask to distinguish GDI-supplied raster fonts from device
supplied fonts. GDI can simulate bold, italic, underline, and strikeout attributes for
GDI-supplied raster fonts, but not for device-supplied fonts.

EnumFontFamilies, EnumFonts

EnumFonts 269

Enumfonts ~

int EnumFonts(hdc, lpszFace,fntenmprc, lParam)
HDC hdc; /* handle of device context */
LPCSTR lpszFace; /*address of font name */
FONTENUMPROC fntenmprc; /* address of callback function */
LPARAM lParam; /*application-defined data */

The EnumFonts function enumerates the fonts available for a given device. This
function is provided for backwards compatibility with earlier versions of Win
dows; current applications should use the EnumFontFamilies function.

EnumFonts continues until there are no more fonts or the callback function re
turns zero.

Parameters hdc

Return Value

Comments

Identifies the device context.

lpszFace
Points to a null-terminated string that specifies the names of the requested
fonts. If this parameter is NULL, the EnumFonts function randomly selects
and enumerates one font from each available typeface.

fntenmprc
Specifies the procedure-instance address of the application-defined callback
function. The address must be created by the MakeProclnstance function. For
more information about the callback function, see the description of the Enum
FontsProc callback function.

!Pa ram
Specifies a 32-bit application-defined value that is passed to the callback func
tion along with the font information.

The return value specifies the last value returned by the callback function and is
defined by the user.

The EnumFonts function retrieves information about the specified font and
passes it to the function pointed to by the fntenmprc parameter. The application
supplied callback function can process the font information, as necessary.

If the device is capable of text transformations (scaling, italicizing, and so on),
only the base font will be enumerated. The user must know the device's text-trans
formation abilities to determine which additional fonts are available directly from
the device. The graphics device interface (GDI) can simulate the bold, italic, under
lined, and strikeout attributes for any GDI-based font.

The EnumFonts function enumerates fonts from the GDI internal table only.
This does not include fonts that are generated by a device, such as fonts that are

270 EnumFontsProc

Example

See Also

transformations of fonts from the internal table. The GetDeviceCaps function can
be used to determine which transformations a device can perform. This informa
tion is available by using the TEXTCAPS index.

GDI can scale GDI-based raster fonts by one to five units horizontally and one to
eight units vertically, unless PROOF _QUALITY is being used.

The following example uses the MakeProclnstance function to create a pointer to
the callback function for the EnumFonts function. The FreeProclnstance func
tion is called when enumeration is complete. Because the second parameter is
"Arial", EnumFonts enumerates the Arial fonts available in the given device con
text. The cArial variable is passed to the callback function.

FONTENUMPROC lpEnumFontsCallBack;
int cArial = 0;

lpEnumFontsCallBack = (FONTENUMPROC) MakeProcinstance(
(FARPROC) EnumFontsCallBack, hAppinstance);

EnumFonts(hdc, "Arial", lpEnumFontsCallBack, (LPARAMl &cAriall;
FreeProclnstance((FARPROC) lpEnumFontsCallBack);

EnumFontFamilies, EnumFontsProc

EnumfontsProc
int CALLBACK EnumFontsProc(lplf, lpntm, FontType, lpData)
LOGFONT FAR* lplf; !*address oflogical-font data structure
NEWTEXTMETRIC FAR* lpntm; /* address of physical-font data structure
int FontType; /* type of font
LPARAM lpData; /* address of application-defined data

*!
*I
*!
*/

The EnumFontsProc function is an application-defined callback function that
processes font data from the EnumFonts function.

Parameters lplf
Points to a LOGFONT structure that contains information about the logical at
tributes of the font. The LOGFONT structure has the following form:

typedef struct tagLOGFONT {
int lfHeight;
int lfWi dth;
int lfEscapement;
int lfOrientation;
int lfWeight;
BYTE lfltalic;

BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQuality;
BYTE lfPitchAndFamily;
BYTE l fFaceName[LF _FACES I ZEJ;

LOGFONT;

EnumFontsProc 271

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

lpntm
Points to a NEWTEXTMETRIC structure that contains information about the
physical attributes of the font, if the font is a True Type font. If the font is not a
TrueType font, this parameter points to a TEXTMETRIC structure.

The NEWTEXTMETRIC structure has the following form:

typedef struct tagNEWTEXTMETRIC { /* ntm */
int tmHeight;
int tmAscent;
int tmDescent;
int tmlnternalleading;
int tmExternalleading;
int tmAveCharWidth;
int tmMaxCharWidth;
int tmWeight;
BYTE tmltalic;
BYTE tmUnderlined;
BYTE tmStruckDut;
BYTE tmFirstChar;
BYTE tmlastChar;
BYTE tmDefaultChar;
BYTE tmBreakChar;
BYTE tmPitchAndFamily;
BYTE tmCharSet;
int tmOverhang;
int tmDigitizedAspectX;
int tmDigitizedAspectY;
DWORD ntmFlags;
UINT ntmSizeEM;
UINT ntmCellHeight;
UINT ntmAvgWidth;

} NEWTEXTMETRIC;

The TEXTMETRIC structure is identical to NEWTEXTMETRIC except
that it does not include the last four members. For a full description of these
structures, see the Microsoft Windows Programmer's Reference, Volume 3.

272 EnumMetaFile

Return Value

Comments

See Also

FontType
Specifies the type of the font. This parameter can be a combination of the fol
lowing masks:

DEVICE_FONTTYPE
RASTER_FONTTYPE
TRUETYPE_FONTTYPE

lpData
Points to the application-defined data passed by the EnumFonts function.

This function must return a nonzero value to continue enumeration; to stop
enumeration, it must return zero.

An application must register this callback function by passing its address to the
EnumFonts function. The EnumFontsProc function is a placeholder for the ap
plication-defined function name. The actual name must be exported by including it
in an EXPORTS statement in the application's module-definition (.DEF) file.

The AND(&) operator can be used with the RASTER_FONTTYPE,
DEVICE_FONTTYPE, and TRUETYPE_FONTTYPE constants to determine the
font type. If the RASTER_FONTTYPE bit is set, the font is a raster font. If the
TRUETYPE_FONTTYPE bit is set, the font is a TrueType font. If neither bit is
set, the font is a vector font. A third mask, DEVICE_FONTTYPE, is set when a
device (for example, a laser printer) supports downloading TrueType fonts; it is
zero ifthe device is a display adapter, dot-matrix printer, or other raster device. An
application can also use the DEVICE_FONTTYPE mask to distinguish GDI
supplied raster fonts from device-supplied fonts. GDI can simulate bold, italic,
underline, and strikeout attributes for GDI-supplied raster fonts, but not for device
supplied fonts.

EnumFonts, EnumFontFamilies

EnumMetaFile
BOOL EnumMetaFile(hdc, hmf, mfenmprc, lParam)
HDC hdc; /* handle of device context
HLOCAL hmf; /* handle of metafile
MFENUMPROC mfenmprc; /* address of callback function
LPARAM lParam; /* application-defined data

*/
*/
*/
*/

The EnumMetaFile function enumerates the metafile records in a given metafile.
EnumMetaFile continues until there are no more graphics device interface (GDI)
calls or the callback function returns zero.

EnumMetaFile 273

Parameters hdc

Return Value

Comments

Example

Identifies the device context associated with the metafile.

hmf
Identifies the metafile.

Note The HLOCAL type for this parameter is incorrect in the WINDOWS.H
file. The type of this parameter is actually HMET AFILE. Developers should
cast this parameter to an HLOCAL type to avoid compiler warnings.

mfenmprc
Specifies the procedure-instance address of the application-supplied callback
function. The address must be created by using the MakeProclnstance func
tion. For more information about the callback function, see the description of
the EnumMetaFileProc callback function.

lParam
Specifies a 32-bit application-defined value that is passed to the callback func
tion along with the metafile information.

The return value is nonzero if the callback function enumerates all the GDI calls in
a metafile. Otherwise, it is zero.

The EnumMetaFile function retrieves metafile records and passes them to a call
back function. An application can modify the metafile record inside the callback
function. The application can also use the PlayMetaFileRecord function inside
the callback function; this is useful for very large metafiles, when using the Play
MetaFile function might be time-consuming.

The following example creates a dashed green pen and passes it to the callback
function for the EnumMetaFile function. If the first element in the array of object
handles is a handle, that handle is replaced by the handle of the green pen before
the PlayMetaFileRecord function is called. (For this example, it is assumed that
the table of object handles contains only one handle and that it is the handle of a
pen.)

MFENUMPROC lpEnumMetaProc;
HPEN hpenGreen;

lpEnumMetaProc = (MFENUMPROC) MakeProcinstance(
(FARPROC) EnumMetaFileProc, hAppinstance);

hpenGreen = CreatePen(PS_OASH, 1, RGB(0, 255, 0));
EnumMetaFile(hdc, hmf, lpEnumMetaProc, (LPARAMl &hpenGreen);
FreeProcinstance((FARPROC) lpEnumMetaProc);
DeleteObject(hpenGreen);

274 EnumMetaFileProc

See Also

int FAR PASCAL EnumMetaFileProc(HDC hdc, HANDLETABLE FAR* lpHTable,
METARECORD FAR* lpMFR, int cObj, BYTE FAR* lpClientData)

{

}

if (lpHTable->objectHandle[0] != 0)
lpHTable->objectHandle[0] = *(HPEN FAR *) lpClientData;

PlayMetaFileRecord(hdc, lpHTable, lpMFR, cObj);

return 1;

EnumMetaFileProc, MakeProclnstance, PlayMetaFile, PlayMetaFileRecord

EnumMetaFileProc
int CALLBACK EnumMetaFileProc(hdc, lpht, lpmr, cObj, lParam)
HDC hdc; I* handle of device context *I

*I
*I
*I
*I

HANDLETABLE FAR* lpht; I* address of table of object handles
METARECORD FAR* lpmr; I* address ofmetafile record
int cObj; I* number of objects in handle table
LPARAM lParam; I* address of application-defined data

The EnumMetaFileProc function is an application-defined callback function that
processes metafile data from the EnumMetaFile function.

Parameters hdc

Return Value

Comments

Identifies the special device context that contains the metafile.

lpht
Points to a table of handles associated with the objects (pens, brushes, and so
on) in the metafile.

lpmr
Points to a metafile record contained in the metafile.

cObj
Specifies the number of objects with associated handles in the handle table.

lParam
Points to the application-defined data.

The callback function must return a nonzero value to continue enumeration; to
stop enumeration, it must return zero.

An application must register this callback function by passing its address to the
EnumMetaFile function.

See Also

EnumObjects 275

The EnumMetaFileProc function is a placeholder for the application-defined
function name. The actual name must be exported by including it in an
EXPORTS statement in the application's module-definition (.DEF) file.

EnumMetaFile

EnumObjects
int EnumObjects(hdc,fnObjectType, goenmprc, lParam)
HDC hdc; /* handle of device context */

*/
*/
*/

intfnObjectType; /* type of object
GOBJENUMPROC goenmprc; /* address of callback function
LPARAM lParam; /* application-defined data

The EnumObjects function enumerates the pens and brushes available in the
given device context. For each object of a given type, the callback function is
called with the information for that object. EnumObjects continues until there are
no more objects or the callback function returns zero.

Parameters hdc

Return Value

Identifies the device context.

fnObjectType
Specifies the object type. This parameter can be one of the following values:

Value

OBJ_BRUSH

OBJ_PEN

goenmprc

Meaning

Specifies a brush.

Specifies a pen.

Specifies the procedure-instance address of the application-supplied callback
function. The address must be created by the MakeProclnstance function. For
more information about the callback function, see the description of the
EnumObjectsProc callback function.

lParam
Specifies a 32-bit application-defined value that is passed to the callback func
tion.

The return value specifies the last value returned by the callback function and is
defined by the user.

276 EnumObjects

Example The following example retrieves the number of horizontally hatched brushes and
fills LOG BRUSH structures with information about each of them:

See Also

#define MAXBRUSHES 50

GOBJENUMPROC lpProcCallback;
HGLOBAL hglbl;
LPBYTE lpbCountBrush;

lpProcCallback = (GOBJENUMPROC) MakeProcinstance(
(FARPROC) Callback, hinst);

hglbl = GlobalAlloc(GMEM_FIXED, sizeof(LOGBRUSH)
* MAXBRUSHES);

lpbCountBrush = (LPBYTE) Global Lock(hglbl);
*lpbCountBrush = 0;
EnumObjects(hdc, OBJ_BRUSH, lpProcCallback,

(LPARAM) lpbCountBrush);

FreeProcinstance((FARPROC) lpProcCallback);

int FAR PASCAL Callback(LPLOGBRUSH lplogBrush, LPBYTE pbData)
{

}

*The pbData parameter contains the number of horizontally
* hatched brushes; the lpDest parameter is set to follow the
* byte reserved for pbData and the LOGBRUSH structures that
* have been filled with brush information.
*f

LPLOGBRUSH lpDest =
(LPLOGBRUSH) (pbData + 1 + (*pbData * sizeof(LOGBRUSH)));

if (lplogBrush->lbStyle ==

}

BS_HATCHED && /* if horiz hatch */
lpLogBrush->lbHatch == HS_HORIZONTAL)

*lpDest++ = *lplogBrush; /* fills structure with brush info */
(*pbData) ++; f* increments brush count */
if (*pbData >= MAXBRUSHES)

return 0;

return 1;

EnumObjectsProc, FreeProclnstance, GlobalAlloc, GlobalLock,
MakeProclnstance

EnumObjectsProc 277

EnumObjectsProc [}J]

int CALLBACK EnumObjectsProc(lpLogObject, lpData)
void FAR* lpLogObject; /*address of object */
LPARAM lpData; /* address of application-defined data */

Parameters

Return Value

Comments

The EnumObjectsProc function is an application-defined callback function that
processes object data from the EnumObjects function.

lpLogObject
Points to a LOGPEN or LOG BRUSH structure that contains information
about the attributes of the object.

The LOGPEN structure has the following form:

typedef struct tagLOGPEN /* lgpn */
UINT lopnStyle;
POINT lopnWidth;
COLORREF lopnColor;

LOGPEN;

The LOGBRUSH structure has the following form:

typedef struct tagLOGBRUSH
UINT lbStyle;
COLORREF lbColor;
int lbHatch;

LOGBRUSH;

For a full description of these structures, see the Microsoft Windows Program
mer's Reference, Volume 3.

Ip Data
Points to the application-defined data passed by the EnumObjects function.

This function must return a nonzero value to continue enumeration; to stop
enumeration, it must return zero.

An application must register this callback function by passing its address to the
EnumObjects function. The EnumObjectsProc function is a placeholder for the
application-supplied function name. The actual name must be exported by includ
ing it in an EXPORTS statement in the application's module-definition (.DEF)
file.

278 EnumObjectsProc

Example The following example retrieves the number of horizontally hatched brushes and
fills LOG BRUSH structures with information about each of them:

See Also

#define MAXBRUSHES 50

GOBJENUMPROC lpProcCallback;
HGLOBAL hglbl;
LPBYTE lpbCountBrush;

lpProcCallback = (GOBJENUMPROC) MakeProcinstance(
(FARPROC) Callback, hinst);

hglbl = GlobalAlloc(GMEM_FIXED, sizeof(LOGBRUSH)
* MAXBRUSHES);

lpbCountBrush = (LPBYTE) Globallock(hglbl);
*lpbCountBrush = 0;
EnumObjects(hdc, OBJ_BRUSH, lpProcCallback,

(LPARAM) lpbCountBrush);

FreeProcinstance((FARPROC) lpProcCallback);

int FAR PASCAL Callback(LPLOGBRUSH lpLogBrush, LPBYTE pbData)
{

}

*The pbData parameter contains the number of horizontally
*hatched brushes; the lpDest parameter is set to follow the
* byte reserved for pbOata and the LOGBRUSH structures that
* have been filled with brush information.
*/

LPLOGBRUSH lpDest =
(LPLOGBRUSH) (pbData + 1 + (*pbOata * sizeof(LOGBRUSH)));

if (lplogBrush->lbStyle ==

}

BS_HATCHED && /* if horiz hatch */
lpLogBrush->lbHatch == HS_HORIZONTAL)

*lpOest++ = *lplogBrush; /* fills structure with brush info *f
(*pbData) ++; I* increments brush count */
if (*pbData >= MAXBRUSHES)

return 0;

return 1;

EnumObjects, FreeProclnstance, GlobalAlloc, GlobalLock,
MakeProclnstance

EnumPropFixedProc 279

EnumPropFixedProc ~

BOOL CALLBACK EnumPropFixedProc(hwnd, lpsz, hData)
HWND hwnd; /*handle of window with property */
LPCSTR lpsz; /*address of property string or atom */
HANDLE hData; /*handle data of property data */

The EnumPropFixedProc function is an application-defined callback function
that receives a window's property data as a result of a call to the EnumProps func
tion.

Parameters hwnd

Return Value

Comments

See Also

Identifies the handle of the window that contains the property list.

lpsz
Points to the null-terminated string associated with the property data identified
by the hData parameter. The application specified the string and data in a pre
vious call to the SetProp function. If the application passed an atom instead of
a string to SetProp, the lpsz parameter contains the atom in the low-order word
and zero in the high-order word.

hData
Identifies the property data.

The callback function must return TRUE to continue enumeration; it must return
FALSE to stop enumeration.

This form of the property-enumeration callback function should be used in applica
tions and dynamic-link libraries with fixed data segments and in dynamic libraries
with movable data segments that do not contain a stack.

The following restrictions apply to the callback function:

• The callback function must not yield control or do anything that might yield
control to other tasks.

• The callback function can call the RemoveProp function. However, Remove
Prop can remove only the property passed to the callback function through the
callback function's parameters.

• The callback function should not attempt to add properties.

The EnumPropFixedProc function is a placeholder for the application-defined
function name. The actual name must be exported by including it in an
EXPORTS statement in the application's module-definition (.DEF) file.

EnumPropMovableProc, EnumProps, RemoveProp, SetProp

280 EnumPropMovableProc

EnumPropMovableProc
BOOL CALLBACK EnumPropMovableProc(hwnd, lpsz, hData)
HWND hwnd; /* handle of window with property */
LPCSTR lpsz; /* address of property string or atom */
HANDLE hData; I* handle of property data */

The EnumPropMovableProc function is an application-defined callback function
that receives a window's property data as a result of a call to the EnumProps func
tion.

Parameters hwnd

Return Value

Comments

Identifies the handle of the window that contains the property list.

lpsz
Points to the null-terminated string associated with the data identified by the
hData parameter. The application specified the string and data in a previous
call to the SetProp function. If the application passed an atom instead of a
string to SetProp, the lpsz parameter contains the atom.

hData
Identifies the property data.

The callback function must return TRUE to continue enumeration; to stop
enumeration, it must return FALSE.

This form of the property-enumeration callback function should be used in applica
tions with movable data segments and in dynamic libraries whose movable data
segments also contain a stack. This form is required since movement of the data
will invalidate any long pointer to a variable on the stack, such as the lpsz parame
ter. The data segment typically moves if the callback function allocates more
space in the local heap than is currently available.

The following restrictions apply to the callback function:

• The callback function must not yield control or do anything that might yield
control to other tasks.

• The callback function can call the RemoveProp function. However, Remove
Prop can remove only the property passed to the callback function through the
callback function's parameters.

• The callback function should not attempt to add properties.

The EnumPropMovableProc function is a placeholder for the application
defined function name. The actual name must be exported by including it in an
EXPORTS statement in the application's module-definition (.DEF) file.

EnumProps 281

See Also EnumPropFixedProc, EnumProps, RemoveProp, SetProp

EnumProps ~

int EnumProps(hwnd, prpenmprc)
HWNDhwnd;
PROPENUMPROC prpenmprc;

I* handle of window
I* address of callback function

*/
*/

Parameters

Return Value

Comments

See Also

The EnumProps function enumerates all entries in the property list of the given
window. It enumerates the entries by passing them, one by one, to the specified
callback function. EnumProps continues until the last entry is enumerated or the
callback function returns zero.

hwnd
Identifies the window whose property list is enumerated.

prpenmprc
Specifies the procedure-instance address of the callback function. For more in
formation, see the descriptions of the EnumPropFixedProc and EnumProp
MovableProc callback functions.

The return value specifies the last value returned by the callback function. It is -1
if the function did not find a property to enumerate.

The form of the callback function depends on whether the application or dynamic
link library (DLL) uses fixed or movable data segments. If the application or
library uses fixed data segments (or if the library uses movable data segments that
do not contain a stack), see the description of the EnumPropFixedProc callback
function. If the application uses movable data segments (or if the library uses mov
able data segments that also contain a stack), see the description of the Enum
PropMovableProc callback function.

An application's EnumPropFixedProc or EnumPropMovableProc callback
function should not add new properties to a window. If the callback function de
letes a window's properties, it should delete only the property currently being
enumerated. The callback function should not delete other properties belonging to
the window; if it does, the enumeration process terminates early.

The address passed in the prpenmprc parameter must be created by using the
MakeProclnstance function.

EnumPropFixedProc, EnumPropMovableProc, GetProp, MakeProclnstance,
RemoveProp, SetProp

282 EnumTaskWindows

EnumTaskWindows
BOOL EnumTaskWindows(htask, wndenmprc, lParam)
HTASK htask; /* handle of task */

*/
*/

WNDENUMPROC wndenmprc; /* address of callback function
LPARAM lParam; I* application-defined value

Parameters

Return Value

Comments

See Also

The EnumTaskWindows function enumerates all windows associated with a
given task. (A task is any program that executes as an independent unit. All appli
cations are executed as tasks, and each instance of an application is a task.) The
function enumerates the windows by passing their handles, one by one, to the
specified callback function. EnumTaskWindows continues until the last entry is
enumerated or the callback function returns zero.

htask
Identifies the task. The task handle must be retrieved by a previous call to the
GetCurrentTask function.

wndenmprc
Specifies the procedure-instance address of the callback function. For more in
formation, see the description of the EnumTaskWndProc callback function.

lParam
Specifies a 32-bit application-defined value that is passed to the callback func
tion along with each window handle.

The return value is nonzero if the function is successful. Otherwise, it is zero.

This function enumerates all top-level windows but does not enumerate child win
dows.

The EnumTaskWindows function is reliable even when the application causes
odd side effects, whereas an application that uses a Get Window loop risks being
caught in an infinite loop or referencing a handle to a window that has been de
stroyed.

The address passed in the wndenmprc parameter must be created by using the
MakeProclnstance function.

EnumTaskWndProc, GetCurrentTask

EnumWindows 283

EnumTaskWndProc ~

BOOL CALLBACK EnumTaskWndProc(hwnd, lParam)
HWND hwnd; /* handle of a window */
LPARAM lParam; I* application-defined value */

The EnumTaskWndProc function is an application-defined callback function
that receives the window handles associated with a task as a result of a call to the
EnumTask Windows function.

Parameters hwnd

Return Value

Comments

See Also

Identifies a window associated with the task specified in the EnumTask
Windows function.

lParam
Specifies the application-defined value specified in the EnumTaskWindows
function.

The callback function must return TRUE to continue enumeration; to stop
enumeration, it must return FALSE.

The callback function can carry out any desired task.

The EnumTaskWndProc function is a placeholder for the application-defined
function name. The actual name must be exported by including it in an
EXPORTS statement in the application's module-definition (.DEF) file.

EnumTaskWindows

EnumWindows
BOOL EnumWindows(wndenmprc, lParam)
WNDENUMPROC wndenmprc; /* address of callback function
LPARAM lParam; /* application-defined value

*I
*I

The Enum Windows function enumerates all parent windows on the screen by
passing the handle of each window, in turn, to an application-defined callback
function. Enum Windows continues until the last parent window is enumerated or
the callback function returns zero.

284 EnumWindowsProc

Parameters

Return Value

Comments

See Also

wndenmprc
Specifies the procedure-instance address of the callback function. For more in
formation, see the description of the Enum WindowsProc callback function.

lParam
Specifies a 32-bit application-defined value that is passed to the callback func
tion.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The Enum Windows function does not enumerate child windows.

Enum Windows is reliable even when the application causes odd side effects,
whereas an application that uses a GetWindow loop risks being caught in an in
finite loop or referencing a handle to a window that has been destroyed.

The address passed as the wndenmprc parameter must be created by using the
MakeProclnstance function. ·

Enum WindowsProc, MakeProclnstance

EnumWindowsProc
BOOL CALLBACK EnumWindowsProc(hwnd, lParam)
HWND hwnd; I* handle of parent window */
LPARAM lParam; I* application-defined value */

The Enum WindowsProc function is an application-defined callback function that
receives parent window handles as a result of a call to the Enum Windows func
tion.

Parameters hwnd

Return Value

Comments

Identifies a parent window.

lParam
Specifies the application-defined value specified in the Enum Windows func
tion.

The callback function must return nonzero to continue enumeration; to stop
enumeration, it must return zero.

The callback function can carry out any desired task.

See Also

EqualRect

EqualRect 285

The Enum WindowsProc function is a placeholder for the application-defined
function name. The actual name must be exported by including it in an
EXPORTS statement in the application's module-definition (.DEF) file.

En um Windows

BOOL EqualRect(lprcl, lprc2)
const RECT FAR* lprcl; /*address of structure with first rectangle */
const RECT FAR* lprc2; /*address of structure with second rectangle */

Parameters

Return Value

The EqualRect function determines whether the two given rectangles are equal by
comparing the coordinates of their upper-left and lower-right corners.

lprcl
Points to a RECT structure that contains the logical coordinates of the first
rectangle. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

lprc2
Points to a RECT structure that contains the logical coordinates of the second
rectangle.

The return value is nonzero if the two rectangles are identical. Otherwise, it is zero.

286 EqualRgn

EqualRgn
BOOL EqualRgn(hrgnSrcl, hrgnSrc2)
HRGN hrgnSrcl; I* handle of first region to test for equality *I

I HRGN hrgnSrc2; I handle of second region to test for equality

Parameters

Return Value

Example

The EqualRgn function determines whether two given regions are identical.

hrgnSrcl
Identifies the first region.

hrgnSrc2
Identifies the second region.

The return value is nonzero if the two regions are equal. Otherwise, it is zero.

The following example uses the EqualRgn function to test the equality of a region
against two other regions. In this case, hrgn2 is identical to hrgnl, but hrgn3 is not
identical to hrgnl.

BOOL fEqual;
HRGN hrgnl, hrgn2, hrgn3;
LPSTR lpszEqual = "Regions are equal.";
LPSTR lpszNotEqual = "Regions are not equal.";

hrgnl CreateRectRgn(l0, 10, 110, 110); /* 1 and 2 identical */
hrgn2 = CreateRectRgn(l0, 10, 110, 110);
hrgn3 = CreateRectRgn(100, 100, 210, 210); /*same dimensions*/

fEqual = EqualRgn(hrgnl, hrgn2);
if CfEqual)

TextOut(hdc, 10, 10, l pszEqual, l strl en(l pszEqual));
else

TextOut(hdc, 10, 10, lpszNotEqual, lstrlen(lpszNotEqual));

fEqual = EqualRgn(hrgnl, hrgn3);
if CfEqual)

TextOut(hdc, 10, 30, lpszEqual, lstrlen(lpszEqual));
else

TextOut(hdc, 10, 30, lpszNotEqual, lstrlen(lpszNotEqual));

DeleteObject(hrgnl);
Delete0bject(hrgn2);
Delete0bject(hrgn3);

Escape 287

Escape CI!J
int Escape(hdc, nEscape, cblnput, lpszlnData, lpvOutData)
HDC hdc; /*handle of device context */
int nEscape; /*specifies escape function */
int cblnput; /* size of structure for input */
LPCSTR lpszlnData; /* address of structure for input */
void FAR* lpvOutData; /*address of structure for output */

The Escape function allows applications to access capabilities of a particular
device that are not directly available through the graphics device interface (GDI).
Escape calls made by an application are translated and sent to the driver.

Parameters hdc

Return Value

Errors

Identifies the device context.

nEscape
Specifies the escape function to be performed. For a complete list of printer
escapes, see the Microsoft Windows Programmer's Reference, Volume 3.

cblnput
Specifies the number of bytes of data pointed to by the lpszlnData parameter.

lpszlnData
Points to the input structure required for the specified escape.

lpvOutData
Points to the structure that receives output from this escape. This parameter
should be NULL if no data is returned.

The return value specifies the outcome of the function. It is greater than zero if the
function is successful, except for the QUERYESCSUPPORT printer escape,
which checks for implementation only. The return value is zero if the escape is not
implemented. A return value less than zero indicates an error.

If the function fails, the return value is one of the following:

Value

SP_ERROR

SP _OUTOFDISK

SP _OUTOFMEMORY

SP _USERABORT

Meaning

General error.

Not enough disk space is currently available for spooling,
and no more space will become available.

Not enough memory is available for spooling.

User terminated the job through Print Manager.

288 EscapeCommfunction

EscapeCommfunction
LONG EscapeCommFunction(idComDev, nFunction)
int idComDev; /* identifies communications device */

I int nFunction; I code of extended function

Parameters

Return Value

The EscapeCommFunction function directs the specified communications device
to carry out an extended function.

idComDev
Specifies the communications device that will carry out the extended function.
The OpenComm function returns this value.

nFunction
Specifies the function code of the extended function. It can be one of the follow
ing values:

Value

CLRDTR

CLRRTS

GETMAXCOM

GETMAXLPT

RES ETD EV

SETDTR

SETRTS

SETXOFF

SETXON

Meaning

Clears the DTR (data-terminal-ready) signal.

Clears the RTS (request-to-send) signal.

Returns the maximum COM port identifier supported by the
system. This value ranges from OxOO to Ox7F, such that OxOO
corresponds to COMl, OxOl to COM2, Ox02 to COM3, and so
on.

Returns the maximum LPT port identifier supported by the sys
tem. This value ranges from Ox80 to OxFF, such that Ox80 corre
sponds to LPTI, Ox81 to LPT2, Ox82 to LPT3, and so on.

Resets the printer device if the idComDev parameter specifies
an LPT port. No function is performed if idComDev specifies a
COM port.

Sends the DTR (data-terminal-ready) signal.

Sends the RTS (request-to-send) signal.

Causes transmission to act as if an XOFF character has been re
ceived.

Causes transmission to act as if an XON character has been re
ceived.

The return value is zero if the function is successful. Otherwise, it is less than zero.

ExcludeClipRect 289

ExcludeClipRect CI!J
int ExcludeClipRect(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect)
HDC hdc; /*handle of device context */
int nLeftRect; /* x-coordinate top-left comer of rectangle */
int nTopRect; /* y-coordinate top-left comer of rectangle */
int nRightRect; /* x-coordinate bottom-right comer of rectangle */
int nBottomRect; /* y-coordinate bottom-right comer of rectangle */

The ExcludeClipRect function creates a new clipping region that consists of the
existing clipping region minus the specified rectangle.

Parameters hdc

Return Value

Comments

Example

Identifies the device context.

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the rectangle.

nTopRect
Specifies the logical y-coordinate of the upper-left comer of the rectangle.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the rectangle.

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the rectangle.

The return value is SIMPLEREGION (region has no overlapping borders),
COMPLEXREGION (region has overlapping borders), or NULLREGION (region
is empty), if the function is successful. Otherwise, the return value is ERROR (no
region is created).

The width of the rectangle, specified by the absolute value of nRightRect
nLeftRect, must not exceed 32,767 units. This limit applies to the height of the
rectangle as well.

The following example uses the ExcludeClipRect function to create a clipping re
gion in the shape of a frame that is 20 units wide. The frame is painted red when
the FillRect function is used to paint the client area.

RECT re;
HRGN hrgn;
HBRUSH hbrRed;

GetClientReet(hwnd, &re);
hrgn = CreateReetRgn(l0, 10, 110, 110);
SeleetClipRgn(hde, hrgn);

ExeludeClipReet(hde, 30, 30, 90, 90);

290 ExcludeUpdateRgn

See Also

hbrRed = CreateSolidBrushCRGBC255, 0, 0));
FillRect(hdc, &re, hbrRed);

DeleteObject(hbrRed);
DeleteObject(hrgn);

CombineRgn

ExcludeUpdateRgn
int ExcludeUpdateRgn(hdc, hwnd)
HDC hdc; /* handle of device context
HWND hwnd; /* handle of window

*/
*/

The ExcludeUpdateRgn function prevents drawing within invalid areas of a win
dow by excluding an updated region in the window from a clipping region.

Parameters hdc
Identifies the device context associated with the clipping region.

hwnd
Identifies the window to be updated.

Return Value The return value is SIMPLEREGION (region has no overlapping borders),
COMPLEXREGION (region has overlapping borders), or NULLREGION (region
is empty), if the function is successful. Otherwise, the return value is ERROR (no
region is created).

See Also BeginPaint, GetUpdateRect, GetUpdateRgn, Update Window

ExitWindows IT!J
BOOL ExitWindows(dwReturnCode, reserved)
DWORD dwReturnCode; /* return or restart code */
UINT reserved; /* reserved; must be zero */

The Exit Windows function can restart Windows, terminate Windows and return
control to MS-DOS, or terminate Windows and restart the system. Windows sends
the WM_QUERYENDSESSION message to notify all applications that a request

Parameters

Return Value

See Also

ExitWindowsExec 291

has been made to restart or terminate Windows. If all applications "agree" to termi
nate, Windows sends the WM_ENDSESSION message to all applications before
terminating.

dwReturnCode
Specifies whether Windows should restart, terminate and return control to
MS-DOS, or terminate and restart the system. The high-order word of this pa
rameter should be zero. The low-order word specifies the return value to be
passed to MS-DOS when Windows terminates. The low-order word can be one
of the following values:

Value

EW _REBOOTSYSTEM

EW _RESTARTWINDOWS

reserved
Reserved; must be zero.

Meaning

Causes Windows to terminate and the system to re
start.
Causes Windows to restart.

The return value is zero if one or more applications refuse to terminate. The func
tion does not return a value if all applications agree to be terminated.

ExitWindowsExec

ExitWindowsExec
BOOL ExitWindowsExec(lpszExe, lpszParams)
LPCSTR lpszExe;
LPCSTR lpszParams;

Parameters

The ExitWindowsExec function terminates Windows, runs a specified MS-DOS
application, and then restarts Windows.

lpszExe
Points to a null-terminated string specifying the path and filename of the execu
table file for the system to run after Windows has been terminated. This string
must not be longer than 128 bytes (including the null terminating character).

lpszParams
Points to a null-terminated string specifying any parameters for the executable
file specified by the lpszExe parameter. This string must not be longer than 127
bytes (including the null terminating character). This value can be NULL.

292 ExtDeviceMode

Return Value

Comments

See Also

The return value is FALSE ifthe function fails. (The function could fail because
of a memory-allocation error or if one of the applications in the system does not
terminate.)

The ExitWindowsExec function is typically used by installation programs to re
place components of Windows which are active when Windows is running.

Exit Windows

ExtDeviceMode
#include <print.h>

int ExtDeviceMode(hwnd, hDriver, lpdmOutput, lpszDevice, lpszPort, lpdmlnput, lpszProfile,fwMode)
HWND hwnd; I* handle of window */
HANDLE hDriver; I* handle of driver */
LPDEVMODE lpdmOutput; I* address of structure for driver output */
LPSTR lpszDevice; /*string for name of device */
LPSTR lpszPort; /* string for name of port */
LPDEVMODE lpdmlnput; /* address of structure for driver input */
LPSTR lpszProfile; /* string for profile filename */
WORD fwMode; /* operations mask */

The ExtDeviceMode function retrieves or modifies device initialization informa
tion for a given printer driver or displays a driver-supplied dialog box for configur
ing the printer driver. Printer drivers that support device initialization by
applications export ExtDeviceMode so that applications can call it.

Parameters hwnd
Identifies a window. If the application calls the ExtDeviceMode function to dis
play a dialog box, the specified window is the parent window of the dialog box.

hDriver
Identifies the device-driver module. The GetModuleHandle function or Load
Library function returns a module handle.

lpdmOutput
Points to a DEVMODE structure. The driver writes the initialization informa
tion supplied in the lpdmlnput parameter to this structure. The DEVMODE
structure has the following form:

#include <print.h>

typedef struct tagOEVMODE /* dm */
char dmOeviceName[CCHDEVICENAME];
UINT dmSpecVersion;
UINT dmDriverVersion;
UINT dmSize;
UINT dmDriverExtra;
DWORO dmFields;
int dmOrientation;
int dmPaperSize;
int dmPaperlength;
int dmPaperWidth;
int dmScale;
int dmCopies;
int dmOefaultSource;
int dmPrintQuality;
int dmColor;
int dmDuplex;
int dmYResolution;
int dmTTOption;

} DEVMODE;

ExtDeviceMode 293

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

lpszDevice
Points to a null-terminated string that contains the name of the printer device
for example, PCL/HP LaserJet.

lpszPort
Points to a null-terminated string that contains the name of the port to which the
device is connected-for example, LPTl.

lpdmlnput
Points to a DEVMODE structure that supplies initialization information to the
printer driver.

lpszProfile
Points to a null-terminated string that contains the name of the initialization file,
where initialization information is recorded and read from. If this parameter is
NULL, WIN.IN! is the default initialization file.

fwMode
Specifies a mask of values that determines the operations the function per
forms. If this parameter is zero, the ExtDeviceMode function returns the num
ber of bytes required by the printer driver's DEVMODE structure. Otherwise,
the fwMode parameter can be one or more of the following values (to change
the print settings, the application must specify at least one input value and one
output value):

294 ExtDeviceMode

Return Value

Comments

Value

DM_IN_BUFFER

DM_IN_PROMPT

DM_OUT_BUFFER

DM_OUT_DEFAULT

Meaning

Input value. Before prompting, copying, or updating,
this value merges the printer driver's current print set
tings with the settings in the DEVMODE structure iden
tified by the lpdmlnput parameter. The structure is
updated only for those members indicated by the applica
tion in the dmFields member. This value is also defined
as DM_MODIFY.

Input value. This value presents the printer driver's Print
Setup dialog box and then changes the settings in the
printer's DEVMODE structure to values specified by
the user. This value is also defined as DM_PROMPT.

Output value. This value writes the printer driver's cur
rent print settings (including private data) to the DEV
MODE structure identified by the lpdmOutput
parameter. The calling application must allocate a buffer
sufficiently large to contain the information. If this bit is
clear, lpdmOutput can be NULL. This value is also de
fined as DM_COPY.

Output value. This value updates graphics device inter
face (GDI)'s current printer environment and the
WIN.INI file, using the contents of the printer driver's
DEVMODE structure. Avoid using this value, because it
permanently changes the print settings for all applica
tions. This value is also defined as DM_UPDATE.

If the fwMode parameter is zero, the return value is the size of the buffer required
to contain the printer driver initialization data. (Note that this buffer can be larger
than a DEVMODE structure, if the printer driver appends private data to the struc
ture.) If the function displays the initialization dialog box, the return value is either
IDOK or IDCANCEL, depending on which button the user selects. If the function
does not display the dialog box and is successful, the return value is IDOK. The re
turn value is less than zero if the function fails.

The ExtDeviceMode function is part of the printer's device driver and not part of
GDI. To use this function, an application must retrieve the address of the function
by calling the LoadLibrary and GetProcAddress functions, and it must include
the header file PRINT.H. The application can then use the address to set up the
printer.

ExtDeviceMode is not supported by all printer drivers. If the GetProcAddress
function returns NULL, ExtDeviceMode is not supported.

To make changes to print settings that are local to the application, an application
should call the ExtDeviceMode function, specifying the DM_OUT_BUFFER
value; modify the returned DEVMODE structure; and then pass the modified
DEVMODE structure back to ExtDeviceMode, specifying DM_IN_BUFFER

ExtFloodFill 295

and DM_OUT_BUFFER (combined by using the OR operator). The DEVMODE
structure returned by this second call to ExtDeviceMode can be used as an argu
ment in a call to the CreateDC function.

Any call to ExtDeviceMode must set either DM_OUT_BUFFER or
DM_OUT_DEFAULT.

An application can set thejWMode parameter to DM_OUT_BUFFER to obtain a
DEVMODE structure filled with the printer driver's initialization data. The appli
cation can then pass this structure to the CreateDC function to set a private en
vironment for the printer device context.

See Also CreateDC, DeviceMode, GetModuleHandle, GetProcAddress, LoadLibrary

ExtFloodFill IT!]

BOOL ExtFloodFill(hdc, nXStart, nYStart, clrref,fuFillType)
HDC hdc; I* handle of device context */
int nXStart; I* x-coordinate where filling begins */
int nYStart; /* y-coordinate where filling begins */
COLORREF clrref; /* color of fill */
UINT fuFillType; /*fill type */

The ExtFloodFill function fills an area of the screen surface by using the current
brush. The type of flood fill specified determines which part of the screen is filled.

Parameters hdc
Identifies the device context.

nXStart
Specifies the logical x-coordinate at which to begin filling.

nYStart
Specifies the logical y-coordinate at which to begin filling.

clrref
Specifies the color of the boundary or area to be filled. The interpretation of this
parameter depends on the value of the fuFillType parameter.

fuFillType
Specifies the type of flood fill to be performed. It must be one of the following
values:

296 Extractlcon

Return Value

Comments

Value

FLOODFILLBORDER

FLOODFILLSURFACE

Meaning

Fill area is bounded by the color specified by the clrref
parameter. This style is identical to the filling per
formed by the FloodFill function.

Fill area is defined by the color specified by the clrref
parameter. Filling continues outward in all directions
as long as the color is encountered. This style is useful
for filling areas that have multicolored boundaries.

The return value is nonzero if the function is successful. It is zero if the filling can
not be completed, if the given point has the boundary color specified by the clrref
parameter (if FLOODFILLBORDER was requested), if the given point does not
have the color specified by clrref (ifFLOODFILLSURFACE was requested), or if
the point is outside the clipping region.

Only memory device contexts and devices that support raster-display technology
support the ExtFloodFill function. For more information about raster capabilities,
see the description of the GetDeviceCaps function.

If the fuFillType parameter is the FLOODFILLBORDER value, the area is as
sumed to be completely bounded by the color specified by the clrrefparameter.
The ExtFloodFill function begins at the coordinates specified by the nXStart and
nYStart parameters and fills in all directions to the color boundary.

IffuFillType is FLOODFILLSURFACE, ExtFloodFill begins at the coordinates
specified by nXStart and nYStart and continues in all directions, filling all adjacent
areas containing the color specified by clrref

See Also FloodFill, GetDeviceCaps

Extractlcon [}TI

#include <shellapi.h>

HICON Extractlcon(hinst, lpszExeName, if con)
HINSTANCE hinst; /*instance handle */
LPCSTR lpszExeName; /* address of string for file */
UINT if con; /* index of icon to retrieve */

The Extractlcon function retrieves the handle of an icon from a specified execu
table file, dynamic-link library (DLL), or icon file.

Parameters

Return Value

ExtTextOut

ExtTextOut 297

hinst
Identifies the instance of the application calling the function.

lpszExeName
Points to a null-terminated string specifying the name of an executable file,
dynamic-link library, or icon file.

ilcon
Specifies the index of the icon to be retrieved. If this parameter is zero, the
function returns the handle of the first icon in the specified file. If the parame
ter is -1, the function returns the total number of icons in the specified file.

The return value is the handle of an icon if the function is successful. It is 1 if the
file specified in the lpszExeName parameter is not an executable file, dynamic-link
library, or icon file. Otherwise, it is NULL, indicating that the file contains no
icons.

BOOL ExtTextOut(hdc, nXStart, nYStart,fuOptions, lprc, lpszString, cbString, lpDx)
HDC hdc; /*handle of device context */
int nXStart; /* x-coordinate of starting position */
int nYStart; /* y-coordinate of starting position */
UINT fuOptions; /*rectangle type */
const RECT FAR* lprc; /*address of structure with rectangle */
LPCSTR lpszString; I* address of string */
UINT cbString; /*number of bytes in string */
int FAR* lpDx; /* spacing between character cells */

The ExtTextOut function writes a character string within a rectangular region,
using the currently selected font. The rectangular region can be opaque (filled by
using the current background color as set by the SetBkColor function), and it can
be a clipping region.

Parameters hdc
Identifies the device context.

nXStart
Specifies the logical x-coordinate at which the string begins.

nYStart
Specifies the logical y-coordinate at which the string begins.

fuOptions
Specifies the rectangle type. This parameter can be one, both, or neither of the
following values:

298 ExtTextOut

Return Value

Comments

Value

ETO_CLIPPED

ETO_OPAQUE

lprc

Meaning

Text is clipped to the rectangle.

Current background color fills the rectangle. (An application
can set and query the current background color by using the
SetBkColor and GetBkColor functions.)

Points to a RECT structure that determines the dimensions of the rectangle.
The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

lpszString
Points to the specified character string.

cbString
Specifies the number of bytes in the string.

lpDx
Points to an array of values that indicate the distance, in logical units, between
origins of adjacent character cells. The nth element in the array specifies the
number of logical units that separate the origin of the nth item in the string from
the origin of item n + 1. If this parameter is NULL, ExtTextOut uses the de
fault spacing between characters. Otherwise, the array contains the number of
elements specified in the cbString parameter.

The return value is nonzero if the function is successful. Otherwise, it is zero.

If the fuOptions parameter is zero and the lprc parameter is NULL, the Ext
TextOut function writes text to the device context without using a rectangular re
gion.

By default, the current position is not used or updated by ExtTextOut. If an appli
cation needs to update the current position when it calls ExtTextOut, the applica
tion can call the SetTextAlign function with the wFlags parameter set to
TA_ UPDATECP. When this flag is set, Windows ignores the nXStart and nYStart
parameters on subsequent calls to ExtTextOut, using the current position instead.
When an application uses TA_UPDATECP to update the current position, Ext
TextOut sets the current position either to the end of the previous line of text or to

Example

FatalAppExit 299

the position specified by the last element of the array pointed to by the lpDX pa
rameter, whichever is greater.

The following example uses the ExtTextOut function to clip text to a rectangular
region defined by a RECT structure:

RECT re;

SetRect(&rc, 90, 190, 250, 220);

ExtTextOut(hdc, 100, 200,
ETO_CLIPPED,
&re,

/* x and y coordinates *I
/* clips text to rectangle *I
/* address of RECT structure *I

"Test of ExtTextOut
28,

function.",/* string to write *I
/* characters in string */

(LPINT) NULL); /* default character spacing */

See Also GetBkColor, SetBkColor, SetTextAlign, SetTextColor, TabbedTextOut,
TextOut

FatalAppExit []]]
void FatalAppExit(fuAction, lpszMessageText)
UINT fuAction; /*must be zero */
LPCSTR lpszMessageText; I* string to display in message box */

Parameters

Return Value

The FatalAppExit function displays a message box and terminates the application
when the message box is closed. If the user is running the debugging version of
the Windows operating system, the message box gives the user the opportunity to
terminate the application or to cancel the message box and return to the caller.

fuAction
Reserved; must be zero.

lpszM essageText
Points to a null-terminated string that is displayed in the message box. The mes
sage is displayed on a single line. To accommodate low-resolution screens, the
string should contain no more than 35 characters.

This function does not return a value.

300 Fatal Exit

Comments

See Also

Fatal Exit

An application should call the FatalAppExit function only when it is incapable of
terminating any other way. FatalAppExit may not always free an application's
memory or close its files, and it may cause a general failure of Windows. An appli
cation that encounters an unexpected error should terminate by freeing all its
memory and returning from its main message loop.

FatalExit, TerminateApp

void FatalExit(nErrCode)
int nErrCode; /*error value to display */

Parameters

Return Value

Comments

See Also

The FatalExit function sends the current state of Windows to the debugger and
prompts for instructions on how to proceed.

An application should call this function for debugging purposes only; it should not
call the function in a retail version of the application. Calling this function in the
retail version will terminate the application.

nErrCode
Specifies the error value to be displayed.

This function does not return a value.

The displayed information includes an error value followed by a symbolic stack
trace, showing the flow of execution up to the point of the call.

The FatalExit function prompts the user to respond to an Abort, Break, or Ignore
message. Windows processes the response as follows:

Response

A(Abort)

B (Break)

I (Ignore)

Description

Terminate immediately.

Enter the debugger.

Return to the caller.

You can specify any combination of error values for the nErrCode parameter,
since the meaning of the values is unique to your application. However, the error
value -1 must always be reserved for the stack-overflow message. When this
value is specified, Windows automatically displays a stack-overflow message.

FatalAppExit

FillRect 301

FillRect ~

int FillRect(hdc, lprc, hbr)
HDC hdc; /* handle of device context */

*/
*/

const RECT FAR* lprc;
HBRUSH hbr;

/* address of structure with rectangle
/* handle of brush

The FillRect function fills a given rectangle by using the specified brush. The
FillRect function fills the complete rectangle, including the left and top borders,
but does not fill the right and bottom borders.

Parameters hdc

Return Value

Comments

See Also

Identifies the device context.

lprc
Points to a RECT structure that contains the logical coordinates of the
rectangle to be filled. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

REC1;

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

hbr
Identifies the brush used to fill the rectangle.

The return value is not used and has no meaning.

The brush must be created by using either the CreateHatchBrush, Create
PatternBrush, or CreateSolidBrush function, or retrieved by using the Get
StockObject function.

When filling the specified rectangle, the FillRect function does not include the rec
tangle's right and bottom sides. Graphics device interface (GDI) fills a rectangle
up to, but not including, the right column and bottom row, regardless of the cur
rent mapping mode.

FillRect compares the values of the top, bottom, left, and right members of the
specified RECT structure. If bottom is less than or equal to top, or if right is less
than or equal to left, the function does not draw the rectangle.

CreateHatchBrush, CreatePatternBrush, CreateSolidBrush, GetStockObject,
InvertRect

302 FillRgn

FillRgn
BOOL FillRgn(hdc, hrgn, hbr)
HDC hdc; /* handle of device context */

*/
*/

HRGN hrgn; /* handle of region
HBRUSH hbr; /* handle of brush

The FillRgn function fills the given region by using the specified brush.

Parameters hdc

Return Value

Example

See Also

Identifies the device context.

hrgn
Identifies the region to be filled. The coordinates for the given region are
specified in device units.

hbr
Identifies the brush to be used to fill the region.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The following example uses a blue brush to fill a rectangular region. Note that it is
not necessary to select the brush into the device context before using it to fill the
region.

HRGN hrgn;
HBRUSH hBrush;

hrgn = CreateRectRgn(l0, 10, 110, 110);
SelectObject(hdc, hrgn);

hBrush = CreateSolidBrush(RGB(0, 0, 255));

FillRgn(hdc, hrgn, hBrush);

DeleteObject(hrgn);

CreateBrushlndirect, CreateDIBPatternBrush, CreateHatchBrush,
CreatePatternBrush, CreateSolidBrush, PaintRgn

Find Executable 303

FindAtom ~

ATOM FindAtom(lpszString)
LPCSTR lpszString; /* address of string to find */

Parameters

Return Value

Example

See Also

The FindAtom function searches the local atom table for the specified character
string and retrieves the atom associated with that string.

lpszString
Points to the null-terminated character string to search for.

The return value identifies the atom associated with the given string ifthe function
is successful. Otherwise (if the string is not in the table), the return value is zero.

The following example uses the FindAtom function to retrieve the atom for the
string "This is an atom":

ATOM at;
char szMsg[80J;

if ((at= FindAtom("This is an atom")) == 0)
MessageBox(hwnd, "could not find atom",

"Fi ndAtom", MB_ ICONEXCLAMATION);
else {

}

wsprintf(szMsg, "atom= %u", at);
MessageBox(hwnd, szMsg, "FindAtom", MB_OK);

AddAtom, DeleteAtom

FindExecutable
#include <shellapi.h>

HINSTANCE FindExecutable(lpszFile, lpszDir, lpszResult)
LPCSTR lpszFile; /* address of string for filename */
LPCSTR lpszDir; /*address of string for default directory */
LPSTR lpszResult; /* address of string for executable file on return */

The FindExecutable function finds and retrieves the executable filename that is
associated with a specified filename.

304 Find Executable

Parameters

Return Value

Errors

lpszFile
Points to a null-terminated string specifying a filename. This can be a document
or executable file.

lpszDir
Points to a null-terminated string specifying the drive letter and path for the de
fault directory.

lpszResult
Points to a buffer that receives the name of an executable file when the function
returns. This null-terminated string specifies the application that is started when
the Open command is chosen from the File menu in File Manager.

The return value is greater than 32 if the function is successful. If the return value
is less than or equal to 32, it specifies an error code.

The FindExecutable function returns 31 if there is no association for the specified
file type. The other possible error values are as follows:

Value

0

2

3

5

6

8

10

11

12

13

14

15

16

19

20

21

Meaning

System was out of memory, executable file was corrupt, or relocations were
invalid.

File was not found.

Path was not found.

Attempt was made to dynamically link to a task, or there was a sharing or
network-protection error.

Library required separate data segments for each task.

There was insufficient memory to start the application.

Windows version was incorrect.

Executable file was invalid. Either it was not a Windows application or
there was an error in the .EXE image.

Application was designed for a different operating system.

Application was designed for MS-DOS 4.0.

Type of executable file was unknown.

Attempt was made to load a real-mode application (developed for an earlier
version of Windows).

Attempt was made to load a second instance of an executable file contain
ing multiple data segments that were not marked read-only.

Attempt was made to load a compressed executable file. The file must be
decompressed before it can be loaded.

Dynamic-link library (DLL) file was invalid. One of the DLLs required to
run this application was corrupt.

Application requires Microsoft Windows 32-bit extensions.

Comments

See Also

Find Resource 305

The filename specified in the lpszFile parameter is associated with an executable
file when an association has been registered between that file's filename extension
and an executable file in the registration database. An application that produces
files with a given filename extension typically associates the extension with an ex
ecutable file when the application is installed.

RegQueryValue, ShellExecute

FindResource
HRSRC FindResource(hinst, lpszName, lpszType)
HINSTANCE hinst; /* handle of module containing resource */

*/
*I

LPCSTR lpszName; /* address of resource name
LPCSTR lpszType; /* address of resource type

Parameters

The FindResource function determines the location of a resource in the specified
resource file.

hinst
Identifies the instance of the module whose executable file contains the re
source.

lpszName
Specifies the name of the resource. For details, see the following Comments
section.

lpszType
Specifies the resource type. For details, see the following Comments section.
For predefined resource types, this parameter should be one of the following
values:

Value

RT_ACCELERATOR

RT_BITMAP

RT_CURSOR

RT_DIALOG

RT_FONT

RT_FONTDIR

RT_ICON

RT_MENU

RT_RCDATA

RT_STRING

Meaning

Accelerator table

Bitmap resource

Cursor resource

Dialog box

Font resource

Font directory resource

Icon resource

Menu resource

User-defined resource (raw data)

String resource

306 FindText

Return Value

Comments

See Also

FindText

The return value is the handle of the named resource if the function is successful.
Otherwise, it is NULL.

If the high-order word of the lpszName or lpszType parameter is zero, the low
order word specifies the integer identifier of the name or type of the given re
source. Otherwise, the parameters are long pointers to null-terminated strings. If
the first character of the string is a pound sign(#), the remaining characters repre
sent a decimal number that specifies the integer identifier of the resource's name
or type. For example, the string #258 represents the integer ID 258.

To reduce the amount of memory required for the resources used by an applica
tion, the application should refer to the resources by integer identifier instead of by
name.

An application must not call the FindResource and LoadResource functions to
load cursor, icon, and string resources. Instead, it must load these resources by
calling the LoadCursor, Loadlcon, and LoadString functions, respectively.

Although the application can call the FindResource and LoadResource functions
to load other predefined resource types, it should load the corresponding resources
by calling the LoadAccelerators, LoadBitmap, and LoadMenu functions.

LoadAccelerators, LoadBitmap, LoadCursor, Loadlcon, LoadMenu,
LoadResource, LoadString

#include <commdlg.h>

HWND FindText(lpfr)
FINDREPLACE FAR* lpfr; /* address of structure with initialization data */

Parameters

The FindText function creates a system-defined modeless dialog box that makes
it possible for the user to find text within a document. The application must per
form the search operation.

lpfr
Points to a FINDREPLACE structure that contains information used to initial
ize the dialog box. When the user makes a selection in the dialog box, the sys
tem fills this structure with information about the user's selection and then
sends a message to the application. This message contains a pointer to the
FINDREPLACE structure.

The FINDREPLACE structure has the following form:

Return Value

Errors

Comments

FindText 307

#include <commdlg.h>

typedef struct tagFINDREPLACE /* fr */
DWORD lStructSize;
HWND hwndOwner;
HINSTANCE hlnstance;
DWORD Flags;
LPSTR lpstrFindWhat;
LPSTR lpstrReplaceWith;
UINT wFindWhatLen;
UINT wReplaceWithLen;
LPARAM lCustData;
UINT (CALLBACK* lpfnHook)(HWND, UINT, WPARAM, LPARAM);
LPCSTR lpTemplateName;

FINDREPLACE;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the window handle of the dialog box if the function is success
ful. Otherwise, it is NULL. An application can use this window handle to com
municate with or to close the dialog box.

Use the CommDlgExtendedError function to retrieve the error value, which may
be one of the following values:

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
FRERR_BUFFERLENGTHZERO

The dialog box procedure for the Find dialog box passes user requests to the
application through special messages. The lParam parameter of each of these
messages contains a pointer to a FINDREPLACE structure. The procedure sends
the messages to the window identified by the hwndOwner member of the FIND
REPLA CE structure. An application can register the identifier for these messages
by specifying the "commdlg_FindReplace" string in a call to the Register
WindowMessage function.

308 FindText

Example

For the TAB key to function correctly, any application that calls the FindText func
tion must also call the IsDialogMessage function in its main message loop. (The
IsDialogMessage function returns a value that indicates whether messages are in
tended for the Find dialog box.)

If the hook function (to which the lpfnHook member of the FIND REPLACE
structure points) processes the WM_CTLCOLOR message, this function must re
turn a handle of the brush that should be used to paint the control background.

The following example initializes a FINDREPLACE structure and calls the
FindText function to display the Find dialog box:

FINDREPLACE fr;

/* Set all structure members to zero. */

memset(&fr, 0, sizeof(FINDREPLACE));

fr.lStructSize = sizeof(FINDREPLACE);
fr.hwndOwner = hwnd;
fr.lpstrFindWhat = szFindWhat;
fr.wFindWhatLen = sizeof(szFindWhat);

hDlg = FindText(&fr);

break;

In addition to initializing the members of the FINDREPLACE structure
and calling the FindText function, an application must register the special
FINDMSGSTRING message and process messages from the dialog box.

The following example registers the message by using the RegisterWindow
Message function:

UINT uFindReplaceMsg;

/* Register the FindReplace message. */

uFindReplaceMsg = RegisterWindowMessage(FINDMSGSTRING);

After the application registers the FINDMSGSTRING message, it can process
messages by using the Register Window Message return value. An application
must check the FR_DIALOGTERM bit in the Flags member of the FIND
REPLACE structure when it processes this message, as in the following ex
ample:

LRESULT CALLBACK MainWndProcCHWND hwnd, UINT msg, WPARAM wParam,
LPARAM l Pa ram)

static FINDREPLACE FAR* lpfr;

if (msg == uFindReplaceMsg) {
lpfr = CFINDREPLACE FAR*) lParam;
SearchFileCCBOOL) Clpfr->Flags & FR_DOWN),

CBOOL) Clpfr->Flags & FR_MATCHCASE));
return 0;

SearchFile((BOOL) Clpfr->Flags & FR_DOWNJ,
CBOOL) Clpfr->Flags & FR_MATCHCASEJ);

return 0;

FindWindow 309

See Also IsDialogMessage, RegisterWindowMessage, ReplaceText

FindWindow CI!J
HWND FindWindow(lpszClassName, lpszWindow)
LPCSTR lpszClassName; /* address of class-name string */
LPCSTR lpszWindow; /*address of window-name string */

Parameters

Return Value

Example

See Also

The Find Window function retrieves the handle of the window whose class name
and window name match the specified strings. This function does not search child
windows.

lpszClassName
Points to a null-terminated string that contains the window's class name. If this
parameter is NULL, all class names match.

lpszWindow
Points to a null-terminated string that specifies the window name (the window's
title). If this parameter is NULL, all window names match.

The return value is the handle of the window that has the specified class name and
window name if the function is successful. Otherwise, it is NULL.

The following example searches for the main window of Windows Control Panel
(CONTROL.EXE) and, if it does not find it, starts Control Panel:

if (FindWindow("CtlPanelClass", "Control Panel")== NULL)
WinExec("control .exe", SW_SHOWNAJ;

EnumWindows, GetWindow, WindowFromPoint

310 FlashWindow

FlashWindow
BOOL Flash Window(hwnd,jlnvert)
HWND hwnd; /* handle of window to flash */

/ BOOLjlnvert; I invert flag

Parameters

Return Value

Comments

See Also

The Flash Window function flashes the given window once. Flashing a window
means changing the appearance of its title bar as if the window were changing
from inactive to active status or vice versa. (An inactive title bar changes to an ac
tive title bar or an active title bar changes to an inactive title bar.)

Typically, a window is flashed to inform the user that the window requires atten
tion but that it does not currently have the input focus.

hwnd
Identifies the window to be flashed. The window can be either open or min
imized.

jlnvert
Specifies whether to flash the window or return it to its original state. If this
parameter is TRUE, the window is flashed from one state to the other. If the pa
rameter is FALSE, the window is returned to its original state (either active or
inactive).

The return value is nonzero if the window was active before the call to the Flash
Window function. Otherwise, it is zero.

The Flash Window function flashes the window only once; for successive flash
ing, the application should create a system timer.

The jlnvert parameter should be FALSE only when the window is receiving the
input focus and will no longer be flashing; it should be TRUE on successive calls
while waiting to get the input focus.

This function always returns nonzero for minimized windows. If the window is
minimized, Flash Window simply flashes the window's icon;jlnvertis ignored
for minimized windows.

MessageBeep

FlushComm 311

Flood Fill ~

BOOL FloodFill(hdc, nXStart, nYStart, clrrej)
HDC hdc; /*handle of device context */
int nXStart; /* x-coordinate of starting position */
int nYStart; /* y-coordinate of starting position */
COLORREF clrref; /* color of fill boundary */

The FloodFill function fills an area of the screen surface by using the current
brush. The area is assumed to be bounded as specified by the clrref parameter. The
FloodFill function begins at the point specified by the nXStart and nYStart parame
ters and continues in all directions to the color boundary.

Parameters hdc
Identifies the device context.

nXStart
Specifies the logical x-coordinate at which to begin filling.

nYStart
Specifies the logical y-coordinate at which to begin filling.

clrref
Specifies the color of the boundary.

Return Value The return value is nonzero ifthe function is successful. Otherwise, it is zero, indi
cating that the filling cannot be completed, that the given point has the boundary
color specified by clrref, or that the point is outside the clipping region.

Comments Only memory device contexts and devices that support raster-display technology
support the FloodFill function. For more information about raster capabilities, see
the description of the GetDeviceCaps function.

See Also ExtFloodFill, GetDeviceCaps

FlushComm ~

int FlushComm(idComDev,fnQueue)
int idComDev; I* communications-device identifier */
intjnQueue; /*queue to flush */

The FlushComm function flushes all characters from the transmission or receiv
ing queue of the specified communications device.

312 FMExtensionProc

Parameters

Return Value

See Also

idComDev
Specifies the communication device to be flushed. The OpenComm function
returns this value.

Jn Queue
Specifies the queue to be flushed. If this parameter is zero, the transmission
queue is flushed. If the parameter is 1, the receiving queue is flushed.

The return value is zero if the function is successful. It is less than zero if idCom
Dev is not a valid device or ifjnQueue is not a valid queue. The return value is
positive if there is an error for the specified device. For a list of the possible error
values, see the GetCommError function.

GetCommError, OpenComm

FMExtensionProc
#include <wfext.h>

HMENU FAR PASCAL FMExtensionProc(hwnd, wMsg, lParam)
HWND hwnd; /* handle of the extension window */
WORD wMsg; /* menu-item identifier or message */
LONG lParam; /*additional message information */

Parameters

The FMExtensionProc function, an application-defined callback function,
processes menu commands and messages sent to a File Manager extension
dynamic-link library (DLL).

hwnd
Identifies the File Manager window. An extension DLL should use this handle
to specify the parent for any dialog boxes or message boxes that the DLL may
display and to send request messages to File Manager.

wMsg
Specifies the message. This parameter may be one of the following values:

Value

1-99

FMEVENT_INITMENU

FMEVENT_LOAD

FMEVENT_SELCHANGE

Meaning

Identifier for the menu item that the user
selected.

User selected the extension's menu.

File Manager is loading the extension DLL.

Selection in File Manager's directory window,
or Search Results window, changed.

FrameRect 313

Value Meaning

FMEVENT _UNLOAD

FMEVENT_USER_REFRESH

File Manager is unloading the extension DLL.

User chose the Refresh command from the Win
dow menu.

lParam
Specifies 32 bits of additional message-dependent information.

Return Value The callback function should return the result of the message processing. The ac
tual return value depends on the message that is processed.

Comments Whenever File Manager calls the FMExtensionProc function, it waits to refresh
its directory windows (for changes in the file system) until after the function re
turns. This allows the extension to perform large numbers of file operations
without excessive repainting by the File Manager. The extension does not need to
send the FM_REFRESH_ WINDOWS message to notify File Manager to repaint
its windows.

FrameRect ~

int FrameRect(hdc, lprc, hbr)
HDC hdc; /* handle of device context */
const RECT FAR* lprc; /*address of structure with rectangle */
HBRUSH hbr; /* handle of brush */

The FrameRect function draws a border around a rectangle, using the specified
brush. The width and height of the border are always one logical unit.

Parameters hdc
Identifies the device context in which to draw the border.

lprc
Points to a RECT structure that contains the logical coordinates of the upper
left and lower-right corners of the rectangle. The RECT structure has the fol
lowing form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

/* re */

314 FrameRgn

Return Value

Comments

See Also

FrameRgn

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

hbr
Identifies the brush that will be used to draw the border.

The return value is not used and has no meaning.

The border drawn by the FrameRect function is in the same position as a border
drawn by the Rectangle function using the same coordinates (if Rectangle uses a
pen that is one logical unit wide). The interior of the rectangle is not filled when
an application calls FrameRect.

FrameRect compares the values of the top, bottom, left, and right members of
the specified RECT structure. If bottom is less than or equal to top, or if right is
less than or equal to left, FrameRect does not draw the rectangle.

CreateHatchBrush, CreatePatternBrush, CreateSolidBrush, DrawFocusRect

BOOL FrameRgn(hdc, hrgn, hbr, n Width, nHeight)
HDC hdc; I* handle of device context */
HRGN hrgn; I* handle of region */
HBRUSH hbr; I* handle of brush */
int nWidth; I* width ofregion frame */
int nHeight; I* height of region frame */

The FrameRgn function draws a border around the given region, using the
specified brush.

Parameters hdc
Identifies the device context.

hrgn
Identifies the region to be enclosed in a border.

hbr
Identifies the brush to be used to draw the border.

nWidth
Specifies the width, in device units, of vertical brush strokes.

nHeight
Specifies the height, in device units, of horizontal brush strokes.

Return Value

Example

See Also

FreeAllGDIMem 315

The return value is nonzero if the function is successful. Otherwise, it is zero.

The following example uses a blue brush to frame a rectangular region. Note that
it is not necessary to select the brush or the region into the device context.

HRGN hrgn;
HBRUSH hBrush;
int Width = 5, Height = 2;

hrgn = CreateRectRgn(l0, 10, 110, 110);
hBrush = CreateSolidBrush(RGB(0, 0, 255));

FrameRgn(hdc, hrgn, hBrush, Width, Height);

DeleteObject(hrgn);
DeleteObjectChBrush);

FillRgn, PaintRgn

FreeAllGDIMem
#include <stress.h>

void FreeAIIGDIMem(void)

Parameters

Return Value

See Also

The FreeAIIGDIMem function frees all memory allocated by the AllocGDIMem
function.

This function has no parameters.

This function does not return a value.

AllocGDIMem

316 FreeAllMem

FreeAllMem
#include <stress.h>

void FreeAllMem(void)

The FreeAllMem function frees all memory allocated by the AllocMem function.

Parameters This function has no parameters.

Return Value This function does not return a value.

See Also AllocMem

FreeAllUserMem
#include <stress.h>

void FreeAIIUserMem(void)

The FreeAllUserMem function frees all memory allocated by the AllocUserMem
function.

Parameters This function has no parameters.

Return Value This function does not return a value.

See Also AllocUserMem

Freelibrary lliJ
void FreeLibrary(hinst)
HINSTANCE hinst; /* handle of loaded library module */

The FreeLibrary function decrements (decreases by one) the reference count of
the loaded library module. When the reference count reaches zero, the memory oc
cupied by the module is freed.

Parameters

Return Value

Comments

Example

FreeModule 317

hinst
Identifies the loaded library module.

This function does not return a value.

A dynamic-link library (DLL) must not call the FreeLibrary function within its
WEP function (Windows exit procedure).

The reference count for a library module is incremented (increased by one) each
time an application calls the LoadLibrary function for the library module.

The following example uses the LoadLibrary function to load TOOLHELP.DLL
and the FreeLibrary function to free it:

HINSTANCE hinstToolHelp = Loadlibrary("TOOLHELP.DLL"l;

if ((UINT) hinstToolHelp > 32) {

/* use GetProcAddress to use TOOLHELP functions */

else
ErrorHandler();

if ((UINTl hinstToolHelp > 32)
Freelibrary(hinstToolHelp); /*free TOOLHELP.DLL */

See Also GetProcAddress, LoadLibrary, WEP

FreeModule [TI]

BOOL FreeModule(hinst)
HINSTANCE hinst; /*handle of loaded module */

Parameters

Return Value

The FreeModule function decrements (decreases by one) the reference count of
the loaded module. When the reference count reaches zero, the memory occupied
by the module is freed.

hinst
Identifies the loaded module.

The return value is zero if the reference count is decremented to zero and the mod
ule's memory is freed. Otherwise, the return value is nonzero.

318 FreeProclnstance

Comments

See Also

The reference count for a module is incremented (increased by one) each time an
application calls the LoadModule function for the module.

LoadModule

FreeProclnstance
void FreeProclnstance(lpProc)
FARPROC lpProc; /*instance address of function to free */

Parameters

Return Value

Comments

See Also

The FreeProclnstance function frees the specified function from the data seg
ment bound to it by the MakeProclnstance function.

lpProc
Points to the procedure-instance address of the function to be freed. It must be
created by using the MakeProclnstance function.

This function does not return a value.

After a procedure instance has been freed, attempts to call the function using the
freed procedure-instance address will result in an unrecoverable error.

MakeProclnstance

FreeResource
BOOL FreeResource(hglbResource)
HGLOBAL hglbResource; /* handle of loaded resource */

Parameters

The FreeResource function decrements (decreases by one) the reference count of
a loaded resource. When the reference count reaches zero, the memory occupied
by the resource is freed.

hglbResource
Identifies the data associated with the resource. The handle is assumed to have
been created by using the LoadResource function.

GetActiveWindow 319

Return Value The return value is zero if the function is successful. Otherwise, it is nonzero, indi
cating that the function has failed and the resource has not been freed.

Comments The reference count for a resource is incremented (increased by one) each time an
application calls the LoadResource function for the resource.

See Also LoadResource

FreeSelector [ill

UINT FreeSelector(uSelector)
UINT uSelector; !* selector to be freed */

Parameters

Return Value

See Also

The FreeSelector function frees a selector originally allocated by the Alloc
Selector or AllocDStoCSAlias function. After the application calls this function,
the selector is invalid and must not be used.

An application should not use this function unless it is absolutely necessary, since
its use violates preferred Windows programming practices.

uSelector
Specifies the selector to be freed.

The return value is zero if the function is successful. Otherwise, it is the selector
specified by the uSelectorparameter.

AllocDStoCSAlias, AllocSelector

GetActiveWindow
HWND GetActive Window(void)

Parameters

The GetActiveWindowfunction retrieves the window handle of the active win
dow. The active window is either the top-level window associated with the input
focus or the window explicitly made active by the SetActiveWindow function.

This function has no parameters.

320 GetAspectRatioFilter

Return Value

See Also

The return value is the handle of the active window or NULL if no window was ac
tive at the time of the call.

GetCapture, GetFocus, GetLastActivePopup, SetActive Window

G etAsp ectRati o Filter
DWORD GetAspectRatioFilter(hdc)
HDC hdc; /* handle of device context */

The GetAspectRatioFilter function retrieves the setting for the current aspect
ratio filter. The aspect ratio is the ratio formed by a device's pixel width and
height. Information about a device's aspect ratio is used in the creation, selection,
and display of fonts. Windows provides a special filter, the aspect-ratio filter, to
select fonts designed for a particular aspect ratio from all of the available fonts.
The filter uses the aspect ratio specified by the SetMapperFlags function.

Parameters hdc

Return Value

See Also

Identifies the device context that contains the specified aspect ratio.

The low-order word of the return value contains the x-coordinate of the aspect
ratio if the function is successful; the high-order word contains the y-coordinate.

SetMapperFlags

GetAspectRatioFilterEx
BOOL GetAspectRatioFilterEx(hdc, lpAspectRatio)
HDC hdc;
SIZE FAR* lpAspectRatio;

The GetAspectRatioFilterEx function retrieves the setting for the current aspect
ratio filter. The aspect ratio is the ratio formed by a device's pixel width and
height. Information about a device's aspect ratio is used in the creation, selection,
and displaying of fonts. Windows provides a special filter, the aspect-ratio filter,
to select fonts designed for a particular aspect ratio from all of the available fonts.
The filter uses the aspect ratio specified by the SetMapperFlags function.

GetAsyncKeyState 321

Parameters hDC
Identifies the device context that contains the specified aspect ratio.

lpAspectRatio
Pointer to a SIZE structure where the current aspect ratio filter will be returned.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also SetMapperFlags

G etAsyncKeyState
int GetAsyncKeyState(vkey)
int vkey; /*virtual-key code */

Parameters

Return Value

Comments

See Also

The GetAsyncKeyState function determines whether a key is up or down at the
time the function is called and whether the key was pressed after a previous call to
the GetAsyncKeyState function.

vkey
Specifies one of 256 possible virtual-key codes.

The return value specifies whether the key was pressed since the last call to the
GetAsyncKeyState function and whether the key is currently up or down. If the
most significant bit is set, the key is down, and if the least significant bit is set, the
key was pressed after a preceding GetAsyncKeyState call.

If VK_LBUTTON or VK_RBUTTON is specified in the vkey parameter, this func
tion returns the state of the physical left or right mouse button regardless of
whether the SwapMouseButton function has been used to reverse the meaning of
the buttons.

GetKeyboardState, GetKeyState, SetKeyboardState, SwapMouseButton

322 GetAtomHandle

GetAtomHandle
HLOCAL GetAtomHandle(atm)
ATOM atm; /* atom to retrieve handle of */

Parameters

Return Value

See Also

The GetAtomHandle function retrieves a handle of the specified atom.

This function is only provided for compatibility with Windows, versions l .x and
2.x. It should not be used with Windows 3.0 and later.

atm
Specifies an atom whose handle is to be retrieved.

The return value is a handle of the specified atom if the function is successful.

GetAtomName, GlobalGetAtomName

GetAtomName
UINT GetAtomName(atm, lpszBu.ffer, cbBuffer)
ATOM atm; /* atom identifying character string */

*/
*!

LPSTR lpszBuffer; I* address of buffer for atom string
int cbBuffer; /* size of buffer

Parameters

Return Value

Comments

The GetAtomName function retrieves a copy of the character string associated
with the specified local atom.

atm
Specifies the local atom that identifies the character string to be retrieved.

lpszBuffer
Points to the buffer for the character string.

ch Buffer
Specifies the maximum size, in bytes, of the buffer.

The return value specifies the number of bytes copied to the buffer, if the function
is successful.

The string returned for an integer atom (an atom created by the MAKEINT-
A TOM macro) will be a null-terminated string, where the first character is a
pound sign(#) and the remaining characters make up the UINT used in MAKE
INTATOM.

Example

See Also

GetBitmapBits 323

The following example uses the GetAtomName function to retrieve the character
string associated with a local atom:

char szBuf[80];

GetAtomName(atTest, szBuf, sizeof(szBuf));

MessageBox(hwnd, szBuf, "GetAtomName", MB_OK);

AddAtom, DeleteAtom, FindAtom

GetBitmapBits
LONG GetBitmapBits(hbm, cbBuffer, lpvBits)
HBITMAP hbm; I* handle of bitmap *I

*I
*I

LONG ch Buffer; I* number of bytes to copy to buffer
void FAR* lpvBits; /* address of buffer for bitmap bits

The GetBitmapBits function copies the bits of the specified bitmap into a buffer.

Parameters hbm

Return Value

Comments

See Also

Identifies the bitmap.

ch Buffer
Specifies the number of bytes to be copied.

lpvBits
Points to the buffer that is to receive the bitmap. The bitmap is an array of
bytes. This array conforms to a structure in which horizontal scan lines are
multiples of 16 bits.

The return value specifies the number of bytes in the bitmap if the function is
successful. It is zero if there is an error.

An application can use the GetObject function to determine the number of bytes
to copy into the buffer pointed to by the lpvBits parameter.

GetObject, SetBitmapBits

324 GetBitmapDimension

GetBitmapDimension
DWORD GetBitmapDimension(hbm)
HBITMAP hbm; I* handle of bitmap *I

The GetBitmapDimension function returns the width and height of the specified
bitmap. The height and width is assumed to have been set by the SetBitmap
Dimension function.

Parameters hbm

Return Value

See Also

Identifies the bitmap.

The low-order word of the return value contains the bitmap width, in tenths of a
millimeter, if the function is successful; the high-order word contains the height. If
the bitmap width and height have not been set by using the SetBitmapDimension
function, the return value is zero.

SetBitmapDimension

GetBitmapDimensionEx
BOOL GetBitmapDimensionEx(hBitmap, lpDimension)
HBITMAP hBitmap; I* handle of bitmap *I

/ SIZE FAR lpDimension; I* address of dimension structure

Parameters

The GetBitmapDimensionEx function returns the dimensions of the bitmap pre
viously set by the SetBitmapDimensionEx function. If no dimensions have been
set, a default of 0,0 will be returned.

hBitmap
Identifies the bitmap.

lpDimension
Points to a SIZE structure to which the dimensions are returned. The SIZE
structure has the following form:

typedef struct tagSIZE {
int ex;
int cy;

} SIZE;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

GetBkColor 325

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

See Also SetBitmapDimensionEx

GetBkColor IT!J
COLORREF GetBkColor(hdc)
HDC hdc; I* handle of device context */

The GetBkColor function returns the current background color.

Parameters hdc

Return Value

Comments

Example

See Also

Identifies the device context.

The return value is an RGB (red, green, blue) color value if the function is suc
cessful.

If the background mode is OPAQUE, the system uses the background color to fill
the gaps in styled lines, the gaps between hatched lines in brushes, and the back
ground in character cells. The system also uses the background color when con
verting bitmaps between color and monochrome device contexts.

The following example uses the GetBkColor function to determine whether the
current background color is white. If it is, the SetBkColor function sets it to red.

DWORD dwBackColor;

dwBackColor = GetBkColor(hdc);
if (dwBackColor == RGB(255, 255, 255)) { /* if color is white */

SetBkColor(hdc, RGB(255, 0, 0)); /*sets color to red*/
TextOut(hdc, 100, 200, "SetBkColor test.", 16);

GetBkMode, SetBkColor, SetBkMode

326 GetBkMode

GetBkMode
int GetBkMode(hdc)
HDC hdc; I* handle of device context *I

The GetBkMode function returns the background mode. The background mode
defines whether the system removes existing background colors on the drawing
surface before drawing text, hatched brushes, or any pen style that is not a solid
line.

Parameters hdc

Return Value

Example

See Also

Identifies the device context.

The return value specifies the current background mode if the function is success
ful. It can be OPAQUE, TRANSPARENT, or TRANSPARENT!.

The following example determines the current background mode by calling the
GetBkMode function. If the mode is OPAQUE, the SetBkMode function sets it
to TRANSPARENT.

int nBackMode;

nBackMode = GetBkMode(hdc);
if (nBackMode == OPAQUE) {

}

TextOut(hdc, 90, 100, "This background mode is OPAQUE.", 31);
SetBkMode(hdc, TRANSPARENT);

GetBkColor, SetBkColor, SetBkMode

GetBoundsRect
UINT GetBoundsRect(hdc, lprcBounds,flags)
HDC hdc; I* handle of device context
RECT FAR* lprcBounds; /* address of structure for bounding rectangle
UINT flags; I* specifies information to return

*I
*/
*/

The GetBoundsRect function returns the current accumulated bounding rectangle
for the specified device context.

GetBrushOrg 327

Parameters hdc
Identifies the device context to return the bounding rectangle for.

lprcBounds
Points to a buffer that will receive the current bounding rectangle. The rectangle
is returned in logical coordinates.

flags
Specifies whether the bounding rectangle is to be cleared after it is returned.
This parameter can be DCB_RESET, to clear the rectangle. Otherwise, it
should be zero.

Return Value The return value is DCB_SET if the bounding rectangle is not empty. Otherwise,
it is DCB_RESET.

Comments To ensure that the bounding rectangle is empty, check both the DCB_RESET bit
and the DCB_ACCUMULATE bit in the return value. IfDCB_RESET is set and
DCB_ACCUMULATE is not, the bounding rectangle is empty.

See Also SetBoundsRect

GetBrushOrg ~

DWORD GetBrushOrg(hdc)
HDC hdc; /* handle of device context */

The GetBrushOrg function retrieves the origin, in device coordinates, of the
brush currently selected for the given device context.

Parameters hdc

Return Value

Identifies the device context.

The low-order word of the return value contains the current x-coordinate of the
brush, in device coordinates, if the function is successful; the high-order word con
tains they-coordinate.

328 GetBrushOrgEx

Comments

Example

See Also

The initial brush origin is at the coordinates (0,0) in the client area. The return
value specifies these coordinates in device units relative to the origin of the desk
top window.

The following example uses the LO WORD and HIWORD macros to extract the
x- and y-coordinate of the current brush from the return value of the GetBrush
Org function:

DWORD dwBrOrg;
WORD wXBrOrg, wYBrOrg;

dwBrOrg
wXBrOrg
wYBrOrg

GetBrushOrg(hdc);
LOWORD(dwBrOrg);
HIWORD(dwBrOrg);

SelectObject, SetBrushOrg

GetBrushOrgEx
BOOL GetBrushOrgEx(hDC, lpPoint)
HDC hDC; I* handle of device context
POINT FAR* lpPoint; I* address of structure for brush origin

*!
*/

The GetBrushOrgEx function retrieves the current brush origin for the given
device context.

Parameters hDC
Identifies the device context.

lpPoint
Points to a POINT structure to which the device coordinates of the brush origin
are to be returned. The POINT structure has the following form:

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

GetCaretBlinkTime 329

Return Value The return value is nonzero ifthe function is successful. Otherwise, it is zero.

Comments The initial brush origin is at the coordinate (0,0).

See Also SetBrushOrg

GetCapture CI!J
HWND GetCapture(void)

Parameters

Return Value

Comments

See Also

The GetCapture function retrieves a handle of the window that has the mouse
capture. Only one window has the mouse capture at any given time; this window
receives mouse input whether or not the cursor is within its borders.

This function has no parameters.

The return value is a handle identifying the window that has the mouse capture if
the function is successful. It is NULL if no window has the mouse capture.

A window receives the mouse capture when its handle is passed as the hwnd pa
rameter of the SetCapture function.

Set Capture

GetCaretBlinkTime
UINT GetCaretBlinkTime(void)

Parameters

The GetCaretBlinkTime function retrieves the caret blink rate. The blink rate is
the elapsed time, in milliseconds, between flashes of the caret.

This function has no parameters.

330 GetCaretPos

Return Value The return value specifies the blink rate, in milliseconds, if the function is
successful.

See Also SetCaretBlinkTime

GetCaretPos IT!]

void GetCaretPos(lppt)
POINT FAR* lppt; !* address of structure to receive coordinates */

Parameters

Return Value

Comments

See Also

The GetCaretPos function retrieves the current position of the caret.

lppt
Points to a POINT structure that receives the client coordinates of the caret's
current position. The POINT structure has the following form:

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

This function does not return a value.

The caret position is always given in the client coordinates of the window that con
tains the caret.

SetCaretPos

GetCharABCWidths
BOOL GetCharABCWidths(hdc, uFirstChar, uLastChar, lpabc)
HDC hdc; /*handle of device context *I
UINT uFirstChar; I* first character in range to query */
UINT uLastChar; /*last character in range to query */
LPABC lpabc; I* address of ABC width structures */

GetCharABCWidths 331

The GetCharABCWidths function retrieves the widths of consecutive characters
in a specified range from the current TrueType font. The widths are returned in
logical units. This function succeeds only with TrueType fonts.

Parameters hdc

Return Value

Comments

See Also

Identifies the device context.

uFirstChar
Specifies the first character in the range of characters from the current font for
which character widths are returned.

uLastChar
Specifies the last character in the range of characters from the current font for
which character widths are returned.

lpabc
Points to an array of ABC structures that receive the character widths when the
function returns. This array must contain at least as many ABC structures as
there are characters in the range specified by the uFirstChar and uLastChar pa
rameters.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The TrueType rasterizer provides ABC character spacing after a specific point size
has been selected. "A" spacing is the distance that is added to the current position
before placing the glyph. "B" spacing is the width of the black part of the glyph.
"C" spacing is added to the current position to account for the white space to the
right of the glyph. The total advanced width is given by A+ B + C.

When the GetCharABCWidths function retrieves negative "A" or "C" widths for
a character, that character includes underhangs or overhangs.

To convert the ABC widths to font design units, an application should create a
font whose height (as specified in the lffieight member of the LOGFONT struc
ture) is equal to the value stored in the ntmSizeEM member of the NEWTEXT
METRIC structure. (The value of the ntmSizeEM member can be retrieved by
calling the EnumFontFamilies function.)

The ABC widths of the default character are used for characters that are outside
the range of the currently selected font.

To retrieve the widths of characters in non-TrueType fonts, applications should
use the GetCharWidth function.

EnumFontFamilies, GetCharWidth

332 GetCharWidth

GetCharWidth CI!J
BOOL GetCharWidth(hdc, uFirstChar, uLastChar, lpn Widths)
HDC hdc; /*handle of device context */
UINT uFirstChar; /*first character in range to query */
UINT uLastChar; /* last character in range to query *I
int FAR* lpn Widths; /* address of buffer for widths */

The GetCharWidth function retrieves the widths of individual characters in a
range of consecutive characters in the current font.

Parameters hdc

Return Value

Comments

Example

Identifies the device context.

uFirstChar
Specifies the first character in a group of consecutive characters in the current
font.

uLastChar
Specifies the last character in a group of consecutive characters in the current
font.

lpnWidths
Points to a buffer that receives the width values for a group of consecutive char
acters in the current font.

The return value is nonzero if the function is successful. Otherwise, it is zero.

If a character in the group of consecutive characters does not exist in a particular
font, it will be assigned the width value of the default character.

The following example uses the GetCharWidth function to retrieve the widths of
the characters from "I" through "S" and displays the total number of widths re
trieved in a message box:

HDC hdc;
WDRD wTotalValues;
WDRD wFirstChar, wlastChar;
int InfoBuffer[256J;
char szMessage[30];

wFirstChar
wlastChar

(WORD) 'I';
(WORD) 'S';

hdc = GetDC(hwnd);

GetClasslnfo 333

if (GetCharWidth(hdc, wFirstChar, wlastChar, (int FAR*) InfoBuffer))
wTotalValues = wlastChar - wFirstChar + 1;

else

wsprintf(szMessage, "Total values received: %d", wTotalValues);
MessageBox(hwnd, szMessage, "GetCharWidth", MB_OK);

MessageBox(hwnd, "GetCharWidth was unsuccessful", "ERROR!",
MB_OKl;

ReleaseOC(hwnd, hdcl;

See Also GetCharABCWidths

GetClasslnfo CITJ
BOOL GetClasslnfo(hinst, lpszClassName, lpwc)
HINSTANCE hinst; I* handle of application instance */
LPCSTR lpszClassName; I* address of class-name string */
WNDCLASS FAR* lpwc; /* address of structure for class data */

Parameters

The GetClasslnfo function retrieves information about a window class. This func
tion is used for creating subclasses of a given class.

hinst
Identifies the instance of the application that created the class. To retrieve infor
mation about classes defined by Windows (such as buttons or list boxes), set
this parameter to NULL.

lpszClassName
Points to a null-terminated string containing the class name. The class name is
either an application-specified name as defined by the RegisterClass function
or the name of a preregistered window class. If the high-order word of this pa
rameter is NULL, the low-order word is assumed to be a value returned by the
MAKEINTRESOURCE macro used when the class was created.

lpwc
Points to a WNDCLASS structure that receives the information about the class.
The WNDCLASS structure has the following form:

typedef struct tagWNDCLASS /* we */
UINT style;
WNDPROC lpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hlnstance;
HICON hlcon;

334 GetClasslong

Return Value

Comments

See Also

HCURSOR
HBRUSH
LPCSTR
LPCSTR

} WNDCLASS;

hCursor;
hbrBackground;
lpszMenuName;
lpszClassName;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero ifthe function is successful. Otherwise, it is zero, indi
cating the function did not find a matching class.

The GetClasslnfo function does not set the lpszClassName and lpszMenuName
members of the WNDCLASS structure. The menu name is not stored internally
and cannot be returned. The class name is already known, since it is passed to this
function. GetClasslnfo returns all other members with the values used when the
class was registered.

GetClassLong, GetClassName, GetClassWord, RegisterClass

GetClasslong
LONG GetClassLong(hwnd, offset)
HWND hwnd; /* handle of window
int offset; /* offset of value to retrieve

*I
*I

The GetClassLong function retrieves a 32-bit (long) value at the specified offset
into the extra class memory for the window class to which the given window
belongs. Extra class memory is reserved by specifying a nonzero value in the
cbClsExtra member of the WNDCLASS structure used with the RegisterClass
function.

Parameters hwnd
Identifies the window.

offset
Specifies the zero-based byte offset of the value to be retrieved. Valid values
are in the range zero through the number of bytes of class memory minus four
(for example, if 12 or more bytes of extra class memory was specified, a value
of 8 would be an index to the third 32-bit integer) or one of the following
values:

Return Value

Comments

See Also

Value

GCL_MENUNAME

GCL_ WNDPROC

GetClassName 335

Meaning

Retrieves a 32-bit pointer to the menu-name string.

Retrieves a 32-bit pointer to the window procedure.

The return value is the specified 32-bit value in the extra class memory if the func
tion is successful. Otherwise, it is zero, indicating the hwnd or offset parameter is
invalid.

To access any extra four-byte values allocated when the window-class structure
was created, use a positive byte offset as the index specified by the offset parame
ter, starting at 0 for the first four-byte value in the extra space, 4 for the next four
byte value, and so on.

GetClasslnfo, GetClassName, GetClassWord, RegisterClass, SetClassLong

GetClassName
int GetClassName(hwnd, lpszClassName, cchClassName)
HWND hwnd; I* handle of window */

*/
*I

LPSTR lpszClassName; /* address of buffer for class name
int cchClassName; /* size of buffer

Parameters

Return Value

The GetCiassName function retrieves the class name of a window.

hwnd
Identifies the window.

lpszClassName
Points to a buffer that receives the null-terminated class name string.

cchClassName
Specifies the length of the buffer pointed to by the lpszClassName parameter.
The class name string is truncated if it is longer than the buffer.

The return value is the length, in bytes, of the returned class name, not including
the terminating null character. The return value is zero if the specified window
handle is invalid.

336 GetClassWord

GetClassWord
WORD GetClassWord(hwnd, offset)
HWND hwnd; I* handle of window */

! int offset; I offset of value to retrieve

Parameters

Return Value

Comments

See Also

The GetCiassWord function retrieves a 16-bit (word) value at the specified offset
into the extra class memory for the window class to which the given window
belongs. Extra class memory is reserved by specifying a nonzero value in the
cbCisExtra member of the WNDCLASS structure used with the RegisterClass
function.

hwnd
Identifies the window.

offset
Specifies the zero-based byte offset of the value to be retrieved. Valid values
are in the range zero through the number of bytes of class memory minus two
(for example, if 10 or more bytes of extra class memory was specified, a value
of 8 would be an index to the fifth 16-bit integer) or one of the following values:

Value

GCW _CBCLSEXTRA

GCW _CBWNDEXTRA

GCW_HBRBACKGROUND

GCW _HCURSOR

GCW_HICON

GCW _HMODULE

GCW_STYLE

Meaning

Retrieves the number of bytes of additional class
information. For information about how to access
this memory, see the following Comments section.

Retrieves the number of bytes of additional win
dow information. For information about how to
access this memory, see the following Comments
section.

Retrieves the handle of the background brush.

Retrieves the handle of the cursor.

Retrieves the handle of the icon.

Retrieves the handle of the module.

Retrieves the window-class style bits.

The return value is the 16-bit value in the window's reserved memory, if the func
tion is successful. Otherwise, it is zero, indicating the hwnd or offset parameter is
invalid.

To access any extra two-byte values allocated when the window-class structure
was created, use a positive byte offset as the index specified by the offset parame
ter, starting at 0 for the first two-byte value in the extra space, 2 for the next two
byte value, and so on.

GetCiasslnfo, GetClassLong, GetClassName, RegisterCiass, SetCiassWord

GetClipboardData 337

GetClientRect C0
void GetClientRect(hwnd, lprc)
HWND hwnd; /* handle of window */
RECT FAR* lprc; /*address of structure for rectangle */

The GetClientRect function retrieves the client coordinates of a window's client
area. The client coordinates specify the upper-left and lower-right corners of the
client area. Because client coordinates are relative to the upper-left corner of a win
dow's client area, the coordinates of the upper-left corner are (0,0).

Parameters hwnd

Return Value

See Also

Identifies the window whose client coordinates are to be retrieved.

lprc
Points to a RECT structure that receives the client coordinates. The left and
top members will be zero. The right and bottom members will contain the
width and height of the window. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

f* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

This function does not return a value.

GetWindowRect

GetClipboardData
HANDLE GetClipboardData(uF ormat)
UINT uFormat; /*data format */

The GetClipboardData function retrieves a handle of the current clipboard data
having a specified format. The clipboard must have been opened previously.

338 GetClipboardformatName

Parameters

Return Value

Comments

See Also

uFormat
Specifies the format of the data accessed by this function. For a description of
the possible data formats, see the description of the SetClipboardData func
tion.

The return value is a handle of the clipboard data in the specified format, if the
function is successful. Otherwise, it is NULL.

The available formats can be enumerated in advance by using the Enum
ClipboardFormats function.

The data handle returned by the GetClipboardData function is controlled by the
clipboard, not by the application. The application should copy the data immedi
ately, instead of relying on the data handle for long-term use. The application
should not free the data handle or leave it locked.

Windows supports two formats for text: CF _TEXT (the default Windows text
clipboard format) and CF _OEMTEXT (the format Windows uses for text in non
Windows applications). If you call GetClipboardData to retrieve data in one text
format and the other text format is the only available text format, Windows auto
matically converts the text to the requested format before supplying it to your ap
plication.

If the clipboard contains data in the CF _PALETTE (logical color palette) format,
the application should assume that any other data in the clipboard is realized
against that logical palette.

CloseClipboard, EnumClipboardFormats, IsClipboardFormatAvailable,
OpenClipboard, SetClipboardData

GetClipboardFormatName
int GetClipboardFormatName(uFormat, lpszFormatName, cbMax)
UINT uFormat; /*format to retrieve */
LPSTR lpszFormatName; /*address of buffer for name */
int cbMax; /* length of name string */

Parameters

The GetClipboardFormatName function retrieves the name of a registered clip
board format.

uFormat
Specifies the registered format to retrieve. This parameter must not specify any
of the predefined clipboard formats.

Return Value

See Also

GetClipboardViewer 339

lpszF ormatName
Points to a buffer that receives the format name.

cbMax
Specifies the maximum length, in bytes, of the format-name string. The format
name string is truncated if it is longer.

The return value is the length, in bytes, of the returned format name if the function
is successful. Otherwise, it is zero, indicating the requested format does not exist
or is predefined.

CountClipboardFormats, EnumClipboardFormats, GetPriorityClipboard
Format, IsClipboardFormatA vailable, RegisterClipboardFormat

GetClipboardOwner
HWND GetClip board Owner(void)

Parameters

Return Value

Comments

See Also

The GetClipboardOwner function retrieves the handle of the window that cur
rently owns the clipboard, if any.

This function has no parameters.

The return value identifies the window that owns the clipboard if the function is
successful. Otherwise, it is NULL.

The clipboard can still contain data even if the clipboard is not currently owned.

CloseClipboard, GetClipboardData, GetClipboardViewer, OpenClipboard

GetClipboardViewer
HWND GetClipboardViewer(void)

Parameters

The GetClipboardViewer function retrieves the handle of the first window in the
clipboard-viewer chain.

This function has no parameters.

340 GetClipBox

Return Value The return value identifies the window currently responsible for displaying the
clipboard, if the function is successful. Otherwise, it is NULL (if there is no
viewer, for example).

See Also CloseClipboard, GetClipboardData, GetClipboardOwner, OpenClipboard

GetClipBox ~

int GetClipBox(hdc, lprc)
HDC hdc; /*handle of device context */
RECT FAR* lprc; /* address of structure with rectangle */

The GetClipBox function retrieves the dimensions of the smallest rectangle that
completely contains the current clipping region.

Parameters hdc

Return Value

See Also

Identifies the device context.

lprc
Points to the RECT structure that receives the logical coordinates of the rec
tangle. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is SIMPLEREGION (region has no overlapping borders),
COMPLEXREGION (region has overlapping borders), or NULLREGION (region
is empty), ifthe function is successful. Otherwise, the return value is ERROR.

GetBoundsRect, GetRgnBox, GetTextExtent, SelectClipRgn

GetCodeHandle 341

GetClipCursor [}]]
void GetClipCursor(lprc)
RECT FAR* lprc; !*address of structure for rectangle */

Parameters

Return Value

See Also

The GetClipCursor function retrieves the screen coordinates of the rectangle to
which the cursor has been confined by a previous call to the ClipCursor function.

lprc
Points to a RECT structure that receives the screen coordinates of the confining
rectangle. The structure receives the dimensions of the screen if the cursor is
not confined to a rectangle. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

This function does not return a value.

ClipCursor, GetCursorPos

GetCodeHandle
HGLOBAL GetCodeHandle(lpProc)
FARPROC lpProc; I* instance address of function */

Parameters

Return Value

The GetCodeHandle function determines which code segment contains the
specified function.

lpProc
Points to the procedure-instance address of the function for which to return the
code segment. Typically, this address is returned by the MakeProclnstance
function.

The return value identifies the code segment that contains the function if the Get
CodeHandle function is successful. Otherwise, it is NULL.

342 GetCodelnfo

Comments If the code segment that contains the function is already loaded, the GetCode
Handle function marks the segment as recently used. If the code segment is not
loaded, GetCodeHandle attempts to load it. Thus, an application can use this func
tion to attempt to preload one or more segments necessary to perform a particular
task.

See Also MakeProclnstance

GetCodelnfo [}]]
void GetCodelnfo(lpProc, lpSeglnfo)
FARPROC lpProc; I* function address or module handle */
SEGINFO FAR* lpSeglnfo; I* address of structure for segment information */

Parameters

Return Value

See Also

The GetCodelnfo function retrieves a pointer to a structure containing informa
tion about a code segment.

lpProc
Specifies the procedure-instance address of the function (typically, returned by
the MakeProclnstance function) in the segment for which information is to be
retrieved, or it specifies a module handle (typically, returned by the Get
ModuleHandle function) and segment number.

lpSeglnfo
Points to a SEGINFO structure that will be filled with information about the
code segment. The SEGINFO structure has the following form:

typedef struct tagSEGINFO {
UINT offSegment;
UINT cbSegment;
UINT flags;
UINT cbAlloc;
HGLOBAL h;
UINT alignShift;
UINT reserved[2];

} SEGINFO;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

This function does not return a value.

GetModuleHandle, MakeProclnstance

GetCommError 343

GetCommError ~

int GetCommError(idComDev, lpStat)
int idComDev; /* communications device identifier */
COMSTAT FAR* lpStat; /*address of device-status buffer */

Parameters

Return Value

Errors

The GetCommError function retrieves the most recent error value and current
status for the specified device.

When a communications error occurs, Windows locks the communications port
until GetCommError clears the error.

idComDev
Specifies the communications device to be examined. The OpenComm func
tion returns this value.

lpStat
Points to the CO MST AT structure that is to receive the device status. If this pa
rameter is NULL, the function returns only the error values. The COMSTAT
structure has the following form:

typedef struct tagCOMSTAT /* cmst */
BYTE status; /* status of transmission */
UINT cbinQue; /* count of characters in Rx Queue */
UINT cbOutQue; /* count of characters in Tx Queue */

COMSTAT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value specifies the error value for the most recent communications
function call to the specified device, if GetCommError is successful.

The return value can be a combination of the following values:

Value

CE_BREAK

CE_CTSTO

CE_DNS

CE_DSRTO

CE_FRAME

Meaning

Hardware detected a break condition.

CTS (clear-to-send) timeout. While a character was being trans
mitted, CTS was low for the duration specified by the fCtsHold
member of the COMSTAT structure.

Parallel device was not selected.

DSR (data-set-ready) timeout. While a character was being trans
mitted, DSR was low for the duration specified by the tDsrHold
member of COMSTAT.

Hardware detected a framing error.

344 GetCommEventMask

Value

CE_IOE

CE_MODE

CE_OOP

CE_ OVERRUN

CE_pTO

CE_RLSDTO

CE_RXOVER

CE_RXPARITY

CE_TXFULL

See Also Open Comm

Meaning

110 error occurred during an attempt to communicate with a paral
lel device.

Requested mode is not supported, or the idComDev parameter is
invalid. If set, CE_MODE is the only valid error.

Parallel device signaled that it is out of paper.

Character was not read from the hardware before the next charac
ter arrived. The character was lost.

Timeout occurred during an attempt to communicate with a paral
lel device.

RLSD (receive-line-signal-detect) timeout. While a character was
being transmitted, RLSD was low for the duration specified by
the fRlsdHold member of COMSTAT.

Receiving queue overflowed. There was either no room in the
input queue or a character was received after the end-of-file char
acter was received.

Hardware detected a parity error.

Transmission queue was full when a function attempted to queue
a character.

GetCommEventMask
UINT GetCommEventMask(idComDev,fnEvtClear)
int idComDev; !* communications device identifier */

I int fnEvtClear; ! events to clear in the event word

Parameters

Return Value

The GetCommEventMask function retrieves and then clears the event word for a
communications device.

idComDev
Specifies the communication device to be examined. The OpenComm function
returns this value.

fnEvtClear
Specifies which events are to be cleared in the event word. For a list of the
event values, see the description of the SetCommEventMask function.

The return value specifies the current event-word value for the specified com
munications device ifthe function is successful. Each bit in the event word speci
fies whether a given event has occurred; a bit is set (to 1) ifthe event has occurred.

Comments

See Also

GetCommState 345

Before the GetCommEventMask function can record the occurrence of an event,
an application must enable the event by using the SetCommEventMask function.

If the communication device event is a line-status or printer error, the application
should call the GetCommError function after calling GetCommEventMask.

GetCommError, OpenComm, SetCommEventMask

GetCommState
int GetCommState(idComDev, lpdcb)
int idComDev; /* communications device identifier */

/ DCB FAR lpdcb; /*address of structure for device control block

Parameters

The GetCommState function retrieves the device control block for the specified
device.

idComDev
Specifies the device to be examined. The OpenComm function returns this
value.

lpdcb
Points to the DCB structure that is to receive the current device control block.
The DCB structure defines the control settings for the device. It has the follow
ing form:

typedef struct tag DCB /* deb */
{

BYTE Id; /* internal device i dent ifi er */
UINT BaudRate; /* baud rate */
BYTE ByteSize; /* number of bits/byte, 4-8 */
BYTE Parity; I* 0-4=none,odd,even,mark,space */
BYTE StopBits; /* 0,1,2 = 1, 1. 5. 2 */
UINT RlsTimeout; I* timeout for RLSD to be set */
UINT CtsTimeout; I* timeout for CTS to be set */
UINT DsrTimeout; I* timeout for DSR to be set */

UINT fBinary : 1; /* binary mode (skip EDF check) */
UINT fRtsDisable : 1; /* don't assert RTS at init time */
UINT fParity : 1; /* enable parity checking */
UINT fOutxCtsFlow : 1; /* CTS handshaking on output */
UINT fOutxDsrFlow : 1; I* DSR handshaking on output */
UINT fDummy : 2; I* reserved */
UINT fDtrDisable : 1; I* don't assert DTR at i nit ti me */

346 GetCurrentPDB

Return Value

See Also

UINT fOutX : 1; /* enable output XON/XOFF */
UINT flnX : 1; I* enable input XON/XOFF */
UINT fPeChar : 1; /* enable parity err replacement */
UINT fNull : 1; I* enable null stripping */
UINT fChEvt : 1; /* enable Rx character event */
UINT fDtrfl OW : 1; /* DTR handshake on input */
UINT fRtsfl ow : 1; /* RTS handshake on input */
UINT fDummy2 : 1;

char XonChar; /* Tx and Rx XON character */
char XoffChar; /* Tx and Rx XOFF character */
UINT Xonl im; /* transmit XON threshold */
UINT Xofflim; /* transmit XOFF threshold */
char Pechar; /* parity error replacement char */
char EofChar; /* end of Input character */
char EvtChar; /* received event character */
UINT TxDelay; I* amount of time between chars */

} DCB;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is zero if the function is successful. Otherwise, it is less than zero.

OpenComm, SetCommState

GetCurrentPDB
UINT GetCurrentPDB(void)

Parameters

Return Value

Example

The GetCurrentPDB function returns the selector address of the current
MS-DOS program database (PDB), also known as the program segment prefix
(PSP).

This function has no parameters.

The return value is the selector address of the current PDB if the function is
successful.

The following example uses the GetCurrentPDB function to list the current com
mand tail:

typedef struct {
WORD pspint20;

GetCurrentPosition 347

/* Int 20h instruction */
WORD pspNextParagraph; /* segment addr. of next paragraph */
BYTE resl; /* reserved */
BYTE pspDispatcher[5J; /*long call to MS-DOS */
DWORD pspTerminateVector; /* termination address (Int 22h) */
DWORD pspControlCVector; /* addr of CTRL+C (Int 23h) */
DWORD pspCritErrorVector; /* addr of Crit-Error (Int 24h)
WORD res2[11];
WORD pspEnvironment;
WORD res3[23];
BYTE pspFCB_l[16];
BYTE pspFCB_2[16];
DWORD res4;
BYTE pspCommandTail[128];

PSP, FAR* LPSP;

/* reserved
/* segment address
/* reserved
/* default FCB #1
/* default FCB #2

of environment */
*/
*/
*/

/* reserved */
/* command tail (also default OTA) */

LPSP lpsp = (LPSP) MAKELP(GetCurrentPDB(), 0);

MessageBox(NULL, lpsp->pspCommandTail, "PDB Command Tail", MB_OK);

GetCurrentPosition
DWORD GetCurrentPosition(hdc)
HDC hdc; /* handle of device context */

The GetCurrentPosition function retrieves the logical coordinates of the current
position. The current position is set by using the MoveTo function.

Parameters hdc

Return Value

See Also

Identifies the device context.

The low-order word of the return value contains the logical x-coordinate of the cur
rent position if the function is successful; the high-order word contains the logical
y-coordinate.

LineTo, MoveTo

348 GetCurrentPositionEx

GetCurrentPositionEx
BOOL GetCurrentPositionEx(hdc, lpPoint)
HDC hdc;
POINT FAR* lpPoint;

The GetCurrentPositionEx function retrieves the current position in logical
coordinates.

Parameters hdc
Identifies the device context to get the current position from.

lpPoint
Points to a POINT structure that gets filled with the current position.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

GetCurrentTask
HTASK GetCurrentTask(void)

Parameters

Return Value

The GetCurrentTask function retrieves the handle of the current (running) task.

This function has no parameters.

The return value is a handle of the current task if the function is successful. Other
wise, it is NULL.

GetCurrentTime
DWORD GetCurrentTime(void)

Parameters

The GetCurrentTime function retrieves the number of milliseconds that have
elapsed since Windows was started.

This function has no parameters.

Return Value

Comments

See Also

GetCursor

GetCursorPos 349

The return value is the number of milliseconds that have elapsed since Windows
was started, if the function was successful.

The GetCurrentTime function is identical to the GetTickCount function. Appli
cations should use the GetTickCount function, since its name matches more
closely with what the function does.

GetTickCount

HCURSOR GetCursor(void)

Parameters

Return Value

See Also

The GetCursor function retrieves the handle of the current cursor.

This function has no parameters.

The return value is the handle of the current cursor if a cursor exists. Otherwise, it
is NULL.

SetCursor

GetCursorPos
void GetCursorPos(lppt)
POINT FAR* lppt; /*address of structure for cursor position */

Parameters

The GetCursorPos function retrieves the screen coordinates of the cursor's cur
rent position.

lppt
Points to the POINT structure that receives the cursor position, in screen
coordinates. The POINT structure has the following form:

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

350 GetDC

Return Value

Comments

See Also

GetDC
HDC GetDC(hwnd)

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

This function does not return a value.

The cursor position is always given in screen coordinates and is not affected by
the mapping mode of the window that contains the cursor.

ClipCursor, SetCursorPos

HWND hwnd; /*handle of window */

The GetDC function retrieves the handle of a device context for the client area of
the given window. The device context can be used in subsequent graphics device
interface (GDI) functions to draw in the client area.

The GetDC function retrieves a common, class, or private device context, depend
ing on the class style specified for the given window. For common device con
texts, GetDC assigns default attributes to the context each time it is retrieved. For
class and private contexts, GetDC leaves the previously assigned attributes un
changed.

Parameters hwnd

Return Value

Comments

Identifies the window where drawing will occur. If this parameter is NULL, the
function returns a device context for the screen.

The return value is a handle of the device context for the given window's client
area, if the function is successful. Otherwise, it is NULL.

Unless the device context belongs to a window class, the ReleaseDC function
must be called to release the context after drawing. Since only five common
device contexts are available at any given time, failure to release a device context
can prevent other applications from accessing a device context. If the hwnd pa
rameter of the GetDC function is NULL, the first parameter of ReleaseDC should
also be NULL.

A device context belonging to the window's class is returned by the GetDC func
tion if CS_CLASSDC, CS_OWNDC, or CS_PARENTDC style was specified in
the WNDCLASS structure when the class was registered.

GetDCEx 351

See Also BeginPaint, GetWindowDC, ReleaseDC

GetDCEx
HDC GetDCEx(hwnd, hrgnClip,fdwOptions)
register HWND hwnd; /* window where drawing will occur */
HRGN hrgnClip; /* clipping region that may be combined */
DWORD fdwOptions; /* device-context options */

Parameters

The GetDCEx function retrieves the handle of a device context for the given win
dow. The device context can be used in subsequent graphics device interface
(GDI) functions to draw in the client area.

This function, which is an extension to the GetDC function, gives an application
more control over how and whether a device context for a window is clipped.

hwnd
Identifies the window where drawing will occur.

hrgnClip
Identifies a clipping region that may be combined with the visible region of the
client window.

fdwOptions
Specifies how the device context is created. This parameter can be a combina
tion of the following values:

Value

DCX_CACHE

DCX_CLIPCHILDREN

DCX_CLIPSIBLINGS

DCX_EXCLUDERGN

DCX_INTERSECTRGN

Meaning

Returns a device context from the cache,
rather than the OWNDC or CLASSDC win
dow. Essentially overrides CS_OWNDC and
CS_CLASSDC.

Excludes the visible regions of all child win
dows below the window identified by the
hwnd parameter.

Excludes the visible regions of all sibling win
dows above the window identified by the
hwnd parameter.

Excludes the clipping region identified by the
hrgnClip parameter from the visible region of
the returned device context.

Intersects the clipping region identified by
the hrgnClip parameter with the visible re
gion of the returned device context.

352 GetDCOrg

Return Value

Comments

See Also

GetDCOrg

Value

DCX_LOCKWINDOWUPDATE

DCX_PARENTCLIP

DCX_WINDOW

Meaning

Allows drawing even if there is a Lock
WindowUpdate call in effect that would
otherwise exclude this window. This value is
used for drawing during tracking.

Uses the visible region of the parent
window, ignoring the parent window's
WS_CLIPCHILDREN and WS_PARENTDC
style bits. This value sets the device context's
origin to the upper-left comer of the window
identified by the hwnd parameter.

Returns a device context corresponding to
the window rectangle rather than the client
rectangle.

The return value is a handle of the device context for the specified window, if the
function is successful. Otherwise, it is NULL.

Unless the device context belongs to a window class, the ReleaseDC function
must be called to release the context after drawing. Since only five common
device contexts are available at any given time, failure to release a device context
can prevent other applications from accessing a device context.

A device context belonging to the window's class is returned by the GetDCEx
function ifthe CS_CLASSDC, CS_OWNDC, or CS_PARENTDC class style was
specified in the WNDCLASS structure when the class was registered.

In order to obtain a cached device context, an application must specify
DCX_ CACHE. If DCX_ CACHE is not specified and the window is neither
CS_OWNDC nor CS_CLASSDC, this function returns NULL.

BeginPaint, GetDC, GetWindowDC, ReleaseDC

DWORD GetDCOrg(hdc)
HDC hdc; I* handle of device context */

The GetDCOrg function retrieves the coordinates of the final translation origin
for the device context. This origin specifies the offset used by Windows to trans
late device coordinates into client coordinates for points in an application's win
dow. The final translation origin is relative to the physical origin of the screen.

GetoesktopWindow 353

Parameters hdc

Return Value

Example

See Also

Identifies the device context whose origin is to be retrieved.

The low-order word of the return value contains the x-coordinate of the final trans
lation origin, in device coordinates, if the function is successful; the high-order
word contains they-coordinate.

The following example uses the CreateIC function to create an information con
text for the screen and then retrieves the context's origin by using the GetDCOrg
function:

HDC hdcIC;
DWORD dwOrigin;

hdcIC = CreateICC "DISPLAY", NULL, NULL, NULL);
dwOrigin = GetDCOrgChdcIC);

DeleteDC(hdcIC);

CreateIC

GetDesktopWindow
HWND GetDesktopWindow(void)

Parameters

Return Value

See Also

The GetDesktop Window function retrieves the handle of the desktop window.
The desktop window covers the entire screen and is the area on top of which all
icons and other windows are painted.

This function has no parameters.

The return value is a handle of the desktop window.

GetTopWindow, GetWindow

354 GetDeviceCaps

GetDeviceCaps
int GetDeviceCaps(hdc, iCapability)
HDC hdc; I* handle of device context
int iCapability; I* index of capability to query

*I
*I

The GetDeviceCaps function retrieves device-specific information about a given
display device.

Parameters hdc
Identifies the device context.

iCapability
Specifies the type of information to be returned. It can be one of the following
indices:

Index

DRIVERVERSION

TECHNOLOGY

HORZSIZE

VERTSIZE

HORZRES

VERTRES

LOGPIXELSX

LOGPIXELSY

BITS PIXEL

PLANES

NUMBRUSHES

NUMPENS

NUMMARKERS

NUMFONTS

NUMCOLORS

Description

Version number of the device driver.

Device technology. It can be one of the following values:

Value Meaning

DT_pLOTTER Vector plotter

DT _RASDISPLAY Raster display

DT _RASPRINTER Raster printer

DT _RASCAMERA Raster camera

DT _CHARSTREAM Character stream

DT_METAFILE Metafile

DT_DISPFILE Display file

Width of the physical display, in millimeters.

Height of the physical display, in millimeters.

Width of the display, in pixels.

Height of the display, in raster lines.

Number of pixels per logical inch along the display width.

Number of pixels per logical inch along the display height.

Number of adjacent color bits for each pixel.

Number of color planes.

Number of device-specific brushes.

Number of device-specific pens.

Number of device-specific markers.

Number of device-specific fonts.

Number of entries in the device's color table.

Index

ASPECTX

ASPECTY

ASPECTXY

PDEVICESIZE

CLIPCAPS

SIZEPALETTE

NUMRESERVED

COLORRES

RASTER CAPS

GetDeviceCaps 355

Description

Relative width of a device pixel used for line drawing.

Relative height of a device pixel used for line drawing.

Diagonal width of a device pixel used for line drawing.

Size of the PDEVICE internal structure, in bytes.

Clipping capabilities the device supports. It can be one of
the following values:

Value

CP_NONE

CP _RECTANGLE

CP_REGION

Meaning

Output is not clipped.

Output is clipped to rectangles.

Output is clipped to regions.

Number of entries in the system palette. This index is
valid only if the device driver sets the RC_PALETTE bit
in the RASTERCAPS index; it is available only if the
driver is written for Windows 3.0 or later.

Number of reserved entries in the system palette.
This index is valid only ifthe device driver sets the
RC_PALETTE bit in the RASTERCAPS index; it is avail
able only if the driver is written for Windows 3.0 or later.

Color resolution of the device, in bits per pixel. This index
is valid only if the device driver sets the RC_PALETTE
bit in the RASTER CAPS index; it is available only if the
driver is written for Windows 3.0 or later.

Raster capabilities the device supports. It can be a combi
nation of the following values:

Value

RC_BANDING

RC_BIGFONT

RC_BITBLT

RC_BITMAP64

RC_DEVBITS

RC_DI_BITMAP

RC_DIBTODEV

RC_FLOODFILL

RC_GDI20_0UTPUT

Meaning

Supports banding.

Supports fonts larger than
64K.

Transfers bitmaps.

Supports bitmaps larger than
64K.

Supports device bitmaps.

Supports the SetDIBits and
GetDIBits functions.

Supports the SetDIBitsTo
Device function.

Performs flood fills.

Supports Windows version
2.0 features.

356 GetDeviceCaps

Index

CURVECAPS

LINECAPS

Description

Value

RC_GDI20_STATE

RC_NONE

RC_OP _DX_ OUTPUT

RC_PALETTE

RC_SAVEBITMAP

RC_SCALING

RC_STRETCHBLT

RC_STRETCHDIB

Meaning

Includes a state block in the
device context.

Supports no raster operations.

Supports dev opaque and DX
array.

Specifies a palette-based
device.

Saves bitmaps locally.

Supports scaling.

Supports the StretchBlt func
tion.

Supports the StretchDIBits
function.

Curve capabilities the device supports. It can be a combi
nation of the following values:

Value

CC_NONE

CC_CIRCLES

CC_PIE

CC_CHORD

CC_ELLIPSES

CC_ WIDE

CC_STYLED

CC_ WIDESTYLED

CC_INTERIORS

CC_ROUNDRECT

Meaning

Supports curves.

Supports circles.

Supports pie wedges.

Supports chords.

Supports ellipses.

Supports wide borders.

Supports styled borders.

Supports wide, styled borders.

Supports interiors.

Supports rectangles with
rounded comers.

Line capabilities the device supports. It can be a combina
tion of the following values:

Value

LC_NONE

LC_POLYLINE

LC_MARKER

LC_POLYMARKER

Meaning

Supports no lines.

Supports polylines.

Supports markers.

Supports polymarkers.

Index

POLYGONALCAPS

TEXT CAPS

Description

Value

LC_WIDE

LC_STYLED

LC_ WIDESTYLED

LC _INTERIORS

GetDeviceCaps 357

Meaning

Supports wide lines.

Supports styled lines.

Supports wide, styled lines.

Supports interiors.

Polygonal capabilities the device supports. It can be a
combination of the following values:

Value

PC_NONE

PC_pOLYGON

PC_RECTANGLE

PC_ WINDPOLYGON

PC_SCANLINE

PC_WIDE

PC_STYLED

PC_ WIDESTYLED

PC_INTERIORS

Meaning

Supports no polygons.

Supports alternate fill poly
gons.

Supports rectangles.

Supports winding number fill
polygons.

Supports scan lines.

Supports wide borders.

Supports styled borders.

Supports wide, styled borders.

Supports interiors.

Text capabilities the device supports. It can be a combina
tion of the following values:

Value

TC_OP _CHARACTER

TC_OP _STROKE

TC_CP _STROKE

Meaning

Supports character output pre
cision, which indicates the
device can place device fonts
at any pixel location. This is
required for any device with
device fonts.

Supports stroke output preci
sion, which indicates the
device can omit any stroke of
a device font.

Supports stroke clip preci
sion, which indicates the
device can clip device fonts
to a pixel boundary.

358 GetDeviceCaps

Index Description

Value

TC_CR_90

TC_CR_ANY

TC_SF _X_ YINDEP

TC_SA_DOUBLE

TC_SA_INTEGER

TC_SA_CONTIN

TC_EA_DOUBLE

TC_IA_ABLE

Meaning

Supports 90-degree character
rotation, which indicates the
device can rotate characters
only 90 degrees at a time.

Supports character rotation at
any degree, which indicates
the device can rotate device
fonts through any angle.

Supports scaling independent
of x and y directions, which
indicates the device can scale
device fonts separately in x
and y directions.

Supports doubled characters
for scaling, which indicates
the device can double the
size of device fonts.

Supports integer multiples
for scaling, which indicates
the device can scale the size
of device fonts in any integer
multiple.

Supports any multiples for
exact scaling, which indicates
the device can scale device
fonts by any amount but still
preserve the x and y ratios.

Supports double-weight char
acters, which indicates the
device can make device fonts
bold. If this bit is not set for
printer drivers, graphics
device interface (GDI) at
tempts to create bold device
fonts by printing them twice.

Supports italics, which indi
cates the device can make
device fonts italic. If this bit
is not set, GDI assumes
italics are not available.

GetDeviceCaps 359

Index Description

Value Meaning

TC_UA_ABLE Supports underlining, which
indicates the device can un-
derline device fonts. If this
bit is not set, GDI creates un-
derlines for device fonts.

TC_SO_ABLE Supports strikeouts, which in-
dicates the device can
strikeout device fonts. If this
bit is not set, GDI creates
strikeouts for device fonts.

TC_RA_ABLE Supports raster fonts, which
indicates that GDI should
enumerate any raster or True-
Type fonts available for this
device in response to a call to
the EnumFonts or Enum-
FontFamilies function. If
this bit is not set, GDI-
supplied raster or True Type
fonts are not enumerated
when these functions are
called.

TC_VA_ABLE Supports vector fonts, which
indicates that GDI should
enumerate any vector fonts
available for this device in
response to a call to the
EnumFonts or EnumFont-
Families function. This is sig-
nificant for vector devices
only (that is, for plotters).
Display drivers (which must
be able to use raster fonts)
and raster printer drivers al-
ways enumerate vector fonts,
because GDI rasterizes vector
fonts before sending them to
the driver.

TC_RESERVED Reserved; must be zero.

360 GetDialogBaseUnits

Return Value

Example

The return value is the value of the requested capability if the function is
successful.

The following example uses the GetDeviceCaps function to determine whether a
device supports raster capabilities and is palette-based. If so, the example calls the
GetSystemPaletteUse function.

WORD nUse;

hdc = GetDCChwnd);
if ((GetDeviceCaps(hdc, RASTERCAPS) & RC_PALETTE) 0) {

ReleaseDCChwnd, hdc);
break;

nUse = GetSystemPaletteUse(hdc);
ReleaseDCChwnd, hdc);

GetDialogBaseUnits
DWORD GetDialogBaseUnits(void)

Parameters

Return Value

Comments

The GetDialogBaseUnits function returns the dialog box base units used by Win
dows when creating dialog boxes. An application should use these values to calcu
late the average width of characters in the system font.

This function has no parameters.

The low-order word of the return value contains the width, in pixels, of the current
dialog box base-width unit, if the function is successful (this base unit is derived
from the system font); the high-order word of the return value contains the height,
in pixels.

The values returned represent dialog box base units before being scaled to dialog
box units. The dialog box unit in the x-direction is one-fourth of the width
returned by the GetDialogBaseUnits function. The dialog box unit in the
y-direction is one-eighth of the height returned by the function.

To use GetDialogBaseUnits to determine the height and width, in pixels, of a con
trol, given the width (x) and height (y) in dialog box units and the return value
(lDlgBaseUnits), use the following formulas:

Cx * LOWORDClDlgBaseUnits)) I 4
Cy * HIWORD(lDlgBaseUnits)) I 8

GetDIBits 361

To avoid rounding problems, perform the multiplication before the division, in
case the dialog box base units are not evenly divisible by four.

Example The following example calculates tab stops based on the dialog box base units:

HMENU hmenu;
WORD DlgWidthUnits;
WORD TabStoplist[4];

case WM_CREATE:
hmenu = LoadMenu(hinst, "TabStopsMenu");
SetMenu(hwnd, hmenu);
DlgWidthUnits = LOWORD(GetDialogBaseUnits()) I 4;
TabStoplist[0] (DlgWidthUnits * 16 * 2);
TabStoplist[l] (DlgWidthUnits * 32 * 2);
TabStoplist[2J (DlgWidthUnits * 58 * 2);
TabStoplist[3] (DlgWidthUnits * 84 * 2);
break;

GetDIBits [IT]

int GetDIBits(hdc, hbmp, nStartScan, cScanLines, lpvBits, lpbmi,fuColorUse)
HDC hdc; /* handle of device context */
HBITMAP hbmp; /* handle of bitmap */
UINT nStartScan; /*first scan line to set in destination bitmap */
UINT cScanLines; I* number of scan lines to copy */
void FAR* lpvBits; /*address of array for bitmap bits */
BITMAPINFO FAR* lpbmi; /*address of structure with bitmap data */
UINT fuColorUse; /*type of color table */

The GetDIBits function retrieves the bits of the specified bitmap and copies them,
in device-independent format, into the buffer pointed to by the lpvBits parameter.
The lpbmi parameter retrieves the color format for the device-independent bits.

Parameters hdc
Identifies the device context.

hbmp
Identifies the bitmap.

nStartScan
Specifies the first scan line to be set in the bitmap received in the lpvBits pa
rameter.

cScanLines
Specifies the number of lines to be copied.

362 GetDIBits

Return Value

Comments

See Also

lpvBits
Points to a buffer that will receive the bitmap bits in device-independent format.

lpbmi
Points to a BITMAPINFO structure that specifies the color format and dimen
sion for the device-independent bitmap. The BITMAPINFO structure has the
following form:

typedef struct tagBITMAPINFO { /* bmi */
BITMAPINFOHEAOER bmiHeader;
RGBQUAD bmiColors[l];

} BITMAPINFO;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

fuColorUse
Specifies whether the bmiColors members of the BITMAPINFO structure are
to contain explicit RGB values or indices into the currently realized logical
palette. ThefuColorUse parameter must be one of the following values:

Value

DIB_pAL_COLORS

DIB_RGB_COLORS

Meaning

Color table is to consist of an array of 16-bit indices into
the currently realized logical palette.

Color table is to contain literal RGB values.

The return value specifies the number of scan lines copied from the bitmap if the
function is successful. Otherwise, it is zero.

If the lpvBits parameter is NULL, the GetDIBits function fills in the BIT
MAPINFO structure to which the lpbmi parameter points but does not retrieve
bits from the bitmap.

The bitmap identified by the hbmp parameter must not be selected into a device
context when the application calls this function.

The origin for device-independent bitmaps (DIBs) is the lower-left corner of the
bitmap, not the upper-left corner, which is the origin when the mapping mode is
MM_ TEXT.

SetDIBits

GetDlgltem 363

GetDlgCtrllD [IT]

int GetDlgCtrlID(hwnd)
HWND hwnd; /*handle of child window */

The GetDigCtrlID function returns a handle of a child window.

Parameters hwnd

Return Value

Comments

Identifies the child window.

The return value is a handle of the child window if the function is successful.
Otherwise, it is NULL.

This function returns a handle of any child window, not just that of a control in a
dialog box.

Since top-level windows do not have an identifier, the GetDlgCtrllD function's
return value is invalid if the hwnd parameter identifies a top-level window.

See Also GetDlgltem, GetDlgltemlnt, GetDlgltemText

GetDlgltem CI!J
HWND GetDlgltem(hwndDlg, idControl)
HWND hwndDlg; /*handle of dialog box */
int idControl; !* identifier of control */

Parameters

Return Value

Comments

The GetDlgltem function retrieves the handle of a control that is in the given
dialog box.

hwndDlg
Identifies the dialog box that contains the control.

idControl
Specifies the identifier of the control to be retrieved.

The return value is the handle of the given control if the function is successful.
Otherwise, it is NULL, indicating either an invalid dialog box handle or a nonex
istent control.

The GetDlgltem function can be used with any parent-child window pair, not just
dialog boxes. As long as the hwndDlg parameter identifies a parent window and

364 GetDlgltemlnt

See Also

the child window has a unique identifier (as specified by the hmenu parameter in
the Create Window function that created the child window), GetDlgltem returns
the handle of the child window.

CreateWindow, GetDlgCtrlID, GetDlgltemlnt, GetDlgltemText, GetWindow

GetDlgltemlnt
UINT GetDlgltemlnt(hwndDlg, idControl, lpfrranslated,JSigned)
HWND hwndDlg; I* handle of dialog box *I

*/
*/
*/

int idControl; /* identifier of control
BOOL FAR* lpfrranslated; /*address of variable for error flag
BOOLJSigned; /*signed or unsigned indicator

Parameters

Return Value

Comments

The GetDlgltemlnt function translates the text of a control in the given dialog
box into an integer value.

hwndDlg
Identifies the dialog box.

idControl
Specifies the identifier of the dialog box control to be translated.

lpfrranslated
Points to the Boolean variable that is to receive the translated flag.

fSigned
Specifies whether the value to be retrieved is signed.

The return value specifies the translated value of the dialog box item text if the
function is successful. Since zero is a valid return value, the lpfrranslated parame
ter must be used to detect errors. If an application requires a signed return value, it
should cast the return value as an int type.

The function retrieves the text of the given control by sending the control a
WM_ GETTEXT message. The function then translates the text by stripping any
extra spaces at the beginning of the text and converting decimal digits. The func
tion stops translating when it reaches the end of the text or encounters a non
numeric character. If the JSigned parameter is TRUE, the GetDlgltemlnt function
checks for a minus sign (-) at the beginning of the text and translates the text into
a signed number. Otherwise, it creates an unsigned value.

GetDlgltemlnt returns zero if the translated number is greater than 32, 767 (for
signed numbers) or 65,535 (for unsigned numbers). When a error occurs, such as

See Also

GetDlgltemText 365

encountering nonnumeric characters and exceeding the given maximum, Get
Dlgltemlnt copies zero to the location pointed to by the lpfFranslatedparameter.
If there are no errors, lpfI'ranslated receives a nonzero value. If lpfI'ranslated is
NULL, GetDlgltemlnt does not warn about errors.

GetDlgCtrlID, GetDlgltem, GetDlgltemText

GetDlgltemText ~

int GetDlgltemText(hwndDlg, idControl, lpsz, cbMax)
HWND hwndDlg; I* handle of dialog box */
int idControl; I* identifier of control */
LPSTR lpsz; I* address of buffer for text */
int cbMax; /* maximum size of string */

Parameters

Return Value

Comments

See Also

The GetDlgltemText function retrieves the title or text associated with a control
in a dialog box.

hwndDlg
Identifies the dialog box that contains the control.

idControl
Specifies the identifier of the control whose title is to be retrieved.

lpsz
Points to a buffer that is to receive the control's title or text.

cbMax
Specifies the maximum length, in bytes, of the string to be copied to the buffer
pointed to by the lpsz parameter. The string is truncated if it is longer.

The return value specifies the number of bytes copied to the buffer, not including
the terminating null character, if the function is successful. Otherwise, it is zero.

The GetDlgltemText function sends a WM_GETTEXT message to the control.

GetDlgCtrlID, GetDlgltem, GetDlgltemlnt

366 GetDOSEnvironment

GetDOSEnvironment
LPSTR GetDOSEnvironment(void)

Parameters

Return Value

Comments

Example

The GetDOSEnvironment function returns a far pointer to the environment string
of the current (running) task.

This function has no parameters.

The return value is a far pointer to the current environment string.

Unlike an application, a dynamic-link library (DLL) does not have a copy of the
environment string. As a result, the library must call this function to retrieve the
environment string.

The following example uses the GetDOSEnvironment function to return a
pointer to the environment, and then lists the environment settings:

LPSTR lpszEnv;

lpszEnv = GetDOSEnvironment();
while (*lpszEnv != '\0') {

. I* process the environment string */

I* Move to the next environment string*/

lpszEnv += lstrlen(lpszEnv) + l;
}

GetDoubleClickTime
UINT GetDoubleClickTime(void)

Parameters

The GetDoubleClickTime function retrieves the current double-click time for the
mouse. A double-click is a series of two clicks of the mouse button, the second oc
curring within a specified time after the first. The double-click time is the maxi
mum number of milliseconds that may occur between the first and second click of
a double-click.

This function has no parameters.

GetDriverModuleHandle 367

Return Value The return value specifies the current double-click time, in milliseconds.

See Also GetCapture

GetDriverlnfo
BOOL GetDriverlnfo(hdrvr, lpdis)
HDRVR hdrvr;
DRIVERINFOSTRUCT FAR* lpdis;

/* handle of installable driver
/*address of structure for info

*/
*/

Parameters

Return Value

The GetDriverlnfo function retrieves information about an installable driver.

hdrvr
Identifies the installable driver. This handle must be retrieved by the Open
Driver function.

lpdis
Points to a DRIVERINFOSTRUCT structure that receives the driver informa
tion. The DRIVERINFOSTRUCT structure has the following form:

typedef struct tagDRIVERINFOSTRUCT { /* drvinfst */
UINT length;
HDRVR hDriver;
HINSTANCE hModule;
char szAliasName[l28J;

} DRIVERINFOSTRUCT;

For a full description of this structure, see the Microsoft Windows Prag ram
mer' s Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

GetDriverModuleHandle
HINSTANCE GetDriverModuleHandle(hdrvr)
HDRVR hdrvr; I* handle of installable driver */

The GetDriverModuleHandle function retrieves the instance handle of a module
that contains an installable driver.

368 GetDriveType

Parameters

Return Value

See Also

hdrvr
Identifies the installable driver. This parameter must be retrieved by the Open
Driver function.

The return value is an instance handle of the driver module if the function is
successful. Otherwise, it is NULL.

OpenDriver

GetDriveType
UINT GetDriveType(DriveNumber)
int DriveNumber; /* 0 = A, 1 = B, and so on *!

Parameters

Return Value

Example

The GetDriveType function determines whether a disk drive is removable, fixed,
or remote.

DriveNumber
Specifies the drive for which the type is to be determined (0 = drive A,
1 =drive B, 2 =drive C, and so on).

The return value is DRIVE_REMOVABLE (disk can be removed from the drive),
DRIVE_FIXED (disk cannot be removed from the drive), or DRIVE_REMOTE
(drive is a remote, or network, drive), ifthe function is successful. Otherwise, the
return value is zero.

The following example uses the GetDriveType function to determine the drive
type for all possible disk drives (letters A through Z):

int iDrive;
WORD wReturn;
char szMsg[80J;

for CiDrive = 0, wReturn = 0;
CiDrive < 26) && CwReturn != 1); iDrive++) {

wReturn = GetDriveType(iDrive);

sprintf(szMsg, "drive %c: ", iDrive +'A');

switch (wReturn) {
case 0:

strcat(szMsg, "undetermined");
break;

case DRIVE REMOVABLE:
strcat(szMsg, "removable");
break;

case DRIVE FIXED:
strcat(szMsg, "fixed");
break;

case DRIVE REMOTE:
strcat(szMsg, "remote (network)");
break;

GetExpandedName 369

TextOut(hdc, 10, 15 * iDrive, szMsg, strlen(szMsg));

GetExpandedName
#include <lzexpand.h>

int GetExpandedName(lpszSource, lpszBuffer)
LPCSTR lpszSource; I* specifies name of compressed file */
LPSTR lpszBuffer; /*points to buffer receiving original filename */

Parameters

Return Value

The GetExpandedName function retrieves the original name of a compressed file
if the file was compressed with the COMPRESS.EXE utility and the Ir option was
specified.

lpszSource
Points to a string that specifies the name of a compressed file.

lpszBuffer
Points to a buffer that receives the name of the compressed file.

The return value is TRUE if the function is successful. Otherwise, it is an error
value that is less than zero, and it may be LZERROR_BADINHANDLE, which
means that the handle identifying the source file was not valid.

370 GetExpandedName

Example The following example uses the GetExpandedName function to retrieve the origi
nal filename of a compressed file:

char szSrc[J = {"readme.cmp"};
char szFileName[128];
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile, hfCompFile;
int cbRead;
BYTE abBuf[512];

/* Open the compressed source file. */

hfSrcFile OpenFile(szSrc, &ofStrSrc, OF_READ);

/*
* Initialize internal data structures for the decompression
* operation.
*/

hfCompFile = LZinit(hfSrcFile);

/* Retrieve the original name for the compressed file. */

GetExpandedName(szSrc, szFileName);

/* Create the destination file using the original name. */

hfDstFile LZOpenFile(szFileName, &ofStrDest, OF_CREATE);

/*Copy the compressed source file to the destination file. */

do {
if ((cbRead = LZRead(hfCompFile, abBuf, sizeof(abBuf))) > 0)

_lwrite(hfDstFile, abBuf, cbRead);
else {

/* handle error condition */

}

} while (cbRead == sizeof(abBuf));

/* Close the files. */

LZClose(hfSrcFile);
LZClose(hfDstFile);

Comments

GetFileResource 371

This function retrieves the original filename from the header of the compressed
file. If the source file is not compressed, the filename to which lpszSource points
is copied to the buffer to which lpszBuffer points.

If the /r option was not set when the file was compressed, the string in the buffer
to which lpszBuffer points is invalid.

GetFileResource
#include <ver.h>

BOOL GetFileResource(lpszFileName, lpszResType, lpszResJD, dwFileO.ffset, dwResLen, lpvData)
LPCSTR lpszFileName; /* address of buffer for filename */
LPCSTR lpszResType; /* address of buffer for resource type */
LPCSTR lpszResID; I* address of buffer for resource ID */
DWORD dwFileO.ffset; I* resource offset in file */
DWORD dwResLen; I* size of resource buffer */
void FAR* lpvData; /*address of buffer for resource copy */

Parameters

The GetFileResource function copies the specified resource from the specified
file into the specified buffer. To obtain the appropriate buffer size, the application
can call the GetFileResourceSize function before calling GetFileResource.

lpszFileName
Points to the buffer that contains the name of the file containing the resource.

lpszResType
Points to a value that is created by using the MAKEINTRESOURCE macro
with the numbered resource type. This value is typically VS_FILE_INFO.

lpszResID
Points to a value that is created by using the MAKEINTRESOURCE
macro with the numbered resource identifier. This value is typically
vs_ VERSION_INFO.

dwFileO.ffset
Specifies the offset of the resource within the file. The GetFileResourceSize
function returns this value. If this parameter is NULL, the GetFileResource
function searches the file for the resource.

dwResLen
Specifies the buffer size, in bytes, identified by the lpvData parameter. The Get
FileResourceSize function returns the buffer size required to hold the resource.
If the buffer is not large enough, the resource data is truncated to the size of the
buffer.

372 GetFileResourceSize

Return Value

Comments

See Also

lpvData
Points to the buffer that will receive a copy of the resource. If the buffer is not
large enough, the resource data is truncated.

The return value is nonzero ifthe function is successful. Otherwise, it is zero, indi
cating the function could not find the file, could not find the resource, or produced
an MS-DOS error. The GetFileResource function returns no information about
the type of error that occurred.

If the dw FileOffset parameter is zero, the GetFileResource function determines
the location of the resource by using the lpszResType and lpszRes!D parameters.

If dwFileOffsetis not zero, GetFileResource assumes that dwFileOffsetis the re
turn value of GetFileResourceSize and, therefore, ignores lpszResType and
lpszRes!D.

GetFileResourceSize

GetFileResourceSize
#include <ver.h>

DWORD GetFileResourceSize(lpszFileName, lpszResType, lpszReslD, lpdwFileOffset)
LPCSTR lpszFileName; /*address of buffer for filename */
LPCSTR lpszResType; I* address of buffer for resource type */
LPCSTR lpszRes!D; I* address of buffer for resource ID */
DWORD FAR *lpdwFileOffset; I* address of resource offset in file */

Parameters

The GetFileResourceSize function searches the specified file for the resource of
the specified type and identifier.

lpszFileName
Points to the buffer that contains the name of the file in which to search for the
resource.

lpszResType
Points to a value that is created by using the MAKEINTRESOURCE macro
with the numbered resource type. This value is typically VS_FILE_INFO.

lpszRes!D
Points to a value that is created by using the MAKEINTRESOURCE macro
with the numbered resource identifier. This value is typically
vs_ VERSION_INFO.

GetFileTitle 373

lpdwFileOffset
Points to a 16-bit value that the GetFileResourceSize function fills with the off
set to the resource within the file.

Return Value The return value is the size of the resource, in bytes. The return value is NULL if
the function could not find the file, the file does not have any resources attached,
or the function produced an MS-DOS error. The GetFileResourceSize function re
turns no information about the type of error that occurred.

See Also GetFileResource

GetFileTitle [ID

#include <commdlg.h>

int GetFileTitle(lpszFile, lpszTitle, cbBuj)
LPCSTR lpszFile; /*pointer to filename (including drive and directory) */
LPSTR lpszTitle; /* address of buffer that receives filename */
UINT cbBuf; /* length of buffer */

Parameters

Return Value

Comments

The GetFileTitle function returns the title of the file identified by the lpszFile pa
rameter.

lpszFile
Points to the name and location of an MS-DOS file.

lpszTitle
Points to a buffer into which the function is to copy the name of the file.

cbBuf
Specifies the length, in bytes, of the buffer to which the lpszTitle parameter
points.

The return value is zero if the function is successful. The return value is a negative
number ifthe filename is invalid. The return value is a positive integer that speci
fies the required buffer size, in bytes, if the buffer to which the lpszTitle parameter
points is too small.

The function returns an error value if the buffer pointed to by the lpszFile parame
ter contains any of the following:

• An empty string

• A string containing a wildcard (*), opening bracket ([), or closing bracket (])

374 GetFileVersionlnfo

• A string that ends with a colon(:), slash mark(/), or backslash(\)

• A string whose length exceeded the length of the buffer

• An invalid character (for example, a space or unprintable character).

The required buffer size includes the terminating null character.

GetFileVersionlnfo
#include <ver.h>

BOOL GetFileVersionlnfo(lpszFileName, handle, cbBuf, lpvData)
LPCSTR lpszFileName; /*address of buffer for filename */
DWORD handle; /* file-version information */
DWORD cbBuf; /* size of buffer */
void FAR* lpvData; /*address of buffer for file-version info */

Parameters

Return Value

Comments

The GetFile Versionlnfo function returns version information about the specified
file. The application must call the GetFileVersionlnfoSizefunction before calling
GetFile Versionlnfo to obtain the appropriate handle if the handle is not NULL.

lpszFileName
Points to the buffer that contains the name of the file.

handle
Identifies the file-version information. The GetFile VersionlnfoSize function
returns this handle, or it may be NULL. If the handle parameter is NULL, the
GetFile Versionlnfo function searches the file for the version information.

cbBuf
Specifies the buffer size, in bytes, identified by the lpvData parameter. The Get
File VersionlnfoSize function returns the buffer size required to hold the file
version information. If the buffer is not large enough, the file-version
information is truncated to the size of the buffer.

lpvData
Points to the buffer that will receive the file-version information. This parame
ter is used by a subsequent call to the VerQueryValue function.

The return value is nonzero if the function is successful. Otherwise, it is zero, indi
cating the file does not exist or the handle parameter is invalid. The GetFile-
V ersionlnfo function returns no information about the type of error that occurred.

The file version information is organized in a VERSIONINFO statement.

See Also

GetFileVersionlnfoSize 375

Currently, the GetFile Versionlnfo function recognizes only version-information
created by Microsoft Resource Compiler (RC).

GetFile VersionlnfoSize, VerQuery Value

GetFileVersionlnfoSize
#include <ver.h>

DWORD GetFile VersionlnfoSize(lpszFileName, lpdwHandle)
LPCSTR lpszFileName; /* address of buffer for filename */
DWORD FAR *lpdwHandle; /* address of handle for info */

Parameters

Return Value

Comments

See Also

The GetFile VersionlnfoSize function determines whether it can obtain version in
formation from the specified file. If version information is available, GetFile
VersionlnfoSize returns the size of the buffer required to hold the version
information. It also returns a handle that can be used in a subsequent call to the
GetFile Versionlnfo function.

lpszFileName
Points to the buffer that contains the name of the file.

lpdwHandle
Points to a 32-bit value that the GetFileVersionlnfoSize function fills with the
handle to the file-version information. The GetFile V ersionlnfo function can
use this handle.

The return value is the buffer size, in bytes, required to hold the version informa
tion if the function is successful. The return value is NULL if the function could
not find the file, could not find the version information, or produced an MS-DOS
error. The GetFile VersionlnfoSize function returns no information about the type
of error that occurred.

The file version information is organized in a VERSIONINFO statement.

GetFile V ersionlnfo

376 GetFocus

Getfocus
HWND GetFocus(void)

The GetFocus function retrieves the handle of the window that currently has the
input focus.

Parameters This function has no parameters.

Return Value The return value is the handle of the focus window. If no window has the focus, it
is NULL.

See Also GetActive Window, GetCapture, SetFocus

Getf ontData CIIJ
DWORD GetFontData(hdc, dwTable, dwOffset, lpvBuffer, cbData)
HDC hdc; /*handle of device context */
DWORD dwTable; /*metric table to query */
DWORD dwOffset; I* offset into table being queried */
void FAR* lpvBuffer; /*address of buffer for font data */
DWORD cbData; /*length of data to query */

The GetFontData function retrieves font-metric information from a scalable font
file. The information to retrieve is identified by specifying an offset into the font
file and the length of the information to return.

Parameters hdc
Identifies the device context.

dwTable
Specifies the name of the metric table to be returned. This parameter can be one
of the metric tables documented in the True Type Font Files specification, pub
lished by Microsoft Corporation. If this parameter is zero, the information is re
trieved starting at the beginning of the font file.

dwOffset
Specifies the offset from the beginning of the table at which to begin retrieving
information. If this parameter is zero, the information is retrieved starting at the
beginning of the table specified by the dwTable parameter. If this value is
greater than or equal to the size of the table, GetFontData returns zero.

Return Value

Comments

Example

GetFontData 377

lpvBuffer
Points to a buffer that will receive the font information. If this value is NULL,
the function returns the size of the buffer required for the font data specified in
the dwTable parameter.

ch Data
Specifies the length, in bytes, of the information to be retrieved. If this parame
ter is zero, GetFontData returns the size of the data specified in the dwTable
parameter.

The return value specifies the number of bytes returned in the buffer pointed to by
the lpvBuffer parameter, if the function is successful. Otherwise, it is -1.

An application can sometimes use the GetFontData function to save a TrueType
font with a document. To do this, the application determines whether the font can
be embedded and then retrieves the entire font file, specifying zero for the
dwTable, dwOffset, and cbData parameters.

Applications can determine whether a font can be embedded by checking the
otmfsType member of the OUTLINETEXTMETRIC structure. If bit 1 of
otmfsType is set, embedding is not permitted for the font. If bit 1 is clear, the font
can be embedded. If bit 2 is set, the embedding is read-only.

If an application attempts to use this function to retrieve information for a non
TrueType font, the GetFontData function returns -1.

The following example retrieves an entire TrueType font file:

HGLOBAL hglb;
DWORD dwSize;
void FAR* lpvBuffer;

dwSize = GetFontData(hdc, NULL, 0L, NULL, 0Ll; /*get file size */

hglb = GlobalAlloc(GPTR, dwSize); I* allocate memory*/
lpvBuffer = GlobalLock(hglb);
GetFontData(hdc, NULL, 0L, lpvBuffer, dwSize); /*retrieve data */

The following retrieves an entire TrueType font file 4K at a time:

#define SIZE 4096
BYTE Buffer[SIZE];
DWORD dwOffset;
DWORD dwSize;

378 GetFreeFileHandles

See Also

dwOffset = 0L;
while(dwSize = GetFontData(hdc, NULL, dwOffset, Buffer, SIZE)) {

. f* process data in buffer */

dwOffset += dwSize;
}

The following example retrieves a TrueType font table:

HGLOBAL hglb;
DWORD dwSize;
void FAR* lpvBuffer;

LPSTR lpszTable;
DWORD dwTable;

lpszTable "cmap";
dwTable *(LPDWORD) lpszTable; f* construct DWORD type */

dwSize GetFontData(hdc, dwTable, 0L, NULL, 0LJ; /*get table size*/

hglb = GlobalAlloc(GPTR, dwSize); /* allocate memory *f
lpvBuffer = Globallock(hglb);
GetFontData(hdc, dwTable, 0L, lpvBuffer, dwSize); /* retrieve data */

GetOutlineTextMetrics

GetFreeFileHandles
#include <stress.h>

int GetFreeFileHandles(void)

Parameters

Return Value

The GetFreeFileHandles function returns the number of file handles available to
the current instance.

This function has no parameters.

The return value is the number of file handles available to the current instance.

GetFreeSystemResources 379

GetFreeSpace [}I]

DWORD GetFreeSpace(fuFlags)
UINT fuFlags; /*ignored in Windows 3.1 */

Parameters

Return Value

Comments

See Also

The GetFreeSpace function scans the global heap and returns the number of bytes
of memory currently available.

fuFlags
This parameter is ignored in Windows 3.1.

The return value is the amount of available memory, in bytes, if the function is
successful.

The amount of memory specified by the return value is not necessarily contiguous;
the Global Compact function returns the number of bytes in the largest block of
free global memory.

In standard mode, the value returned represents the number of bytes in the global
heap that are not used and that are not reserved for code.

In 386-enhanced mode, the return value is an estimate of the amount of memory
available to an application. It does not account for memory held in reserve for non
Windows applications.

Global Compact

GetFreeSystemResources
UINT GetFreeSystemResources(fuSysResource)
UINT fuSysResource; /* type of resource to check */

Parameters

The GetFreeSystemResources function returns the percentage of free space for
system resources.

fuSysResource
Specifies the type of resource to be checked. This parameter can be one of the
following values:

380 GetGlyphOutline

Return Value

Comments

See Also

Value

GFSR_SYSTEMRESOURCES

GFSR_GDIRESOURCES

GFSR_USERRESOURCES

Meaning

Returns the percentage of free space for system
resources.

Returns the percentage of free space for GDI re
sources. GDI resources include device-context
handles, brushes, pens, regions, fonts, and bit
maps.

Returns the percentage of free space for USER
resources. These resources include window and
menu handles.

The return value specifies the percentage of free space for resources, if the func
tion is successful.

Since the return value from this function does not guarantee that an application
will be able to create a new object, applications should not use this function to de
termine whether it will be possible to create an object.

GetFreeSpace

GetGlyphOutline CI!J
DWORD GetGiyphOutline(hdc, uChar,fuFormat, lpgm, cbBuffer, lpBuffer, lpmat2)
HDC hdc; /* handle of device context */
UINT uChar; I* character to query */
UINT fuFormat; I* format of data to return */
LPGLYPHMETRICS lpgm; I* address of structure with glyph metrics */
DWORD cbBuffer; I* size of buffer for data */
void FAR* lpBuffer; I* address of buffer for outline data *I
LPMAT2 lpmat2; /*address of structure with transform matrix */

The GetGiyphOutline function retrieves the outline curve or bitmap for an out
line character in the current font.

Parameters hdc
Identifies the device context.

uChar
Specifies the character for which information is to be returned.

fuFormat
Specifies the format in which the function is to return information. It can be one
of the following values:

Value

GGO_BITMAP

GGO_NATIVE

GetGlyphOutline 381

Meaning

Returns the glyph bitmap. When the function returns, the buffer
pointed to by the lpBuffer parameter contains a I-bit-per-pixel
bitmap whose rows start on doubleword boundaries.

Returns the curve data points in the rasterizer's native format,
using device units. When this value is specified, any transforma
tion specified in the lpmat2 parameter is ignored.

When the value of this parameter is zero, the function fills in a
GLYPHMETRICS structure but does not return glyph-outline data.

lpgm
Points to a GLYPHMETRICS structure that describes the placement of the
glyph in the character cell. The GL YPHMETRICS structure has the following
form:

typedef struct tagGLYPHMETRICS
UINT gmBlackBoxX;
UINT gmBlackBoxY;
POINT gmptGlyphOrigin;
int gmCellincX;
int gmCellincY;

GLYPHMETRICS;

For a full description of this structure, see the Microsoft Windows Prag ram
mer 's Reference, Volume 3.

cbBuffer
Specifies the size of the buffer into which the function copies information about
the outline character. If this value is zero and the fuF ormat parameter is either
the GGO_BITMAP or GGO_NATIVE values, the function returns the required
size of the buffer.

lpBuffer
Points to a buffer into which the function copies information about the outline
character. IfthefuFormatparameter specifies the GGO_NATIVE value, the in
formation is copied in the form of TTPOL YGONHEADER and TTPOL Y
CURVE structures. If this value is NULL and the fuFormat parameter is either
the GOO _BITMAP or GGO _NATIVE value, the function returns the required
size of the buffer.

lpmat2
Points to a MA T2 structure that contains a transformation matrix for the charac
ter. This parameter cannot be NULL, even when the GGO_NATIVE value is
specified for the fuF ormat parameter. The MA T2 structure has the following
form:

382 GetGlyphOutline

Return Value

Comments

typedef struct tagMAT2 { /* mat2 */
FIXED eMll;
FIXED eM12;
FIXED eM21;
FIXED eM22;

} MAT2;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the size, in bytes, of the buffer required for the retrieved infor
mation if the ch Buffer parameter is zero or the lpBuffer parameter is NULL. Other
wise, it is a positive value if the function is successful, or -1 if there is an error.

An application can rotate characters retrieved in bitmap format by specifying a
2-by-2 transformation matrix in the structure pointed to by the lpmat2 parameter.

A glyph outline is returned as a series of contours. Each contour is defined by a
TTPOL YGONHEADER structure followed by as many TTPOL YCURVE
structures as are required to describe it. All points are returned as POINTFX struc
tures and represent absolute positions, not relative moves. The starting point given
by the pfxStart member of the TTPOL YGONHEADER structure is the point at
which the outline for a contour begins. The TTPOL YCURVE structures that fol
low can be either polyline records or spline records. Polyline records are a series
of points; lines drawn between the points describe the outline of the character.
Spline records represent the quadratic curves used by TrueType (that is, quadratic
b-splines).

For example, the GetGlyphOutline function retrieves the following information
about the lowercase "i" in the Arial TrueType font:

dwrc = 88 /* total size of native buffer */

TTPOLYGONHEADER #1 /* contour for dot on */
cb 44 I* size for contour *I
dwType = 24 /* TT_ POLYGON_ TYPE *I
pfxStart = 1.000, 11.000

TTPOLYCURVE Ill
wType TT PRIM LINE
cpfx 3
pfx[0J 1. 000' 12.000
pfx[l] 2.000, 12.000
pfx[2J 2.000, 11. 000 /* automatically close to pfxStart */

TTPOLYGONHEADER #2 I* contour for body of */
cb 44
dwType = 24 /* TT_ POLYGON_ TYPE *I
pfxStart = 1.000, 0.000

See Also

TTPO L YCURV E #1
wType TT PRIM LINE
cpfx 3
pfx[0] 1.000, 9.000
pfx[l] 2.000, 9.000
pfx[2] 2.000, 0.000

GetOutlineTextMetrics

GetlnstanceData 383

/*automatically close to pfxStart */

GetlnputState
BOOL GetlnputState(void)

Parameters

Return Value

See Also

The GetlnputState function determines whether there are mouse clicks or key
board events in the system queue that require processing. Keyboard events occur
when a user presses one or more keys. The system queue is the location in which
Windows stores mouse clicks and keyboard events.

This function has no parameters.

The return value is nonzero if the function detects a mouse click or keyboard event
in the system queue. Otherwise, it is zero.

EnableHardwarelnput

GetlnstanceData
int GetlnstanceData(hinst, npbData, cbData)
HINSTANCE hinst; I* handle of previous instance
BYTE* npbData; I* address of current instance data buffer
int ch Data; I* number of bytes to transfer

*I
*I
*I

The GetlnstanceData function copies data from a previous instance of an applica
tion into the data area of the current instance.

Parameters hinst
Identifies a previous instance of the application.

384 GetKBCodePage

Return Value

npbData
Points to a buffer in the current instance.

ch Data
Specifies the number of bytes to be copied.

The return value specifies the number of bytes copied if the function is successful.
Otherwise, it is zero.

GetKBCodePage
int GetKBCodePage(void)

Parameters

Return Value

Comments

The GetKBCodePage function returns the current Windows code page.

This function has no parameters.

The return value specifies the code page currently loaded by Windows, if the func
tion is successful. It can be one of the following values:

Value

437

850

860

861

863

865

Meaning

Default (United States, used by most countries: indicates that there is no
OEMANSI.BIN in the Windows directory)

International (OEMANSI.BIN = XLAT850.BIN)

Portugal (OEMANSI.BIN = XLAT860.BIN)

Iceland (OEMANSI.BIN = XLAT861.BIN)

French Canadian (OEMANSI.BIN = XLAT863.BIN)

Norway/Denmark (OEMANSI.BIN = XLAT865.BIN)

The keyboard driver provides the GetKBCodePage function. An application
using this function must include the following information in its module-definition
(.DEF) file:

IMPORTS
KEYBOARD.GETKBCODEPAGE

If the OEMANSI.BIN file is in the Windows directory, Windows reads it and over
writes the OEM/ ANSI translation tables in the keyboard driver.

When the user selects a language from the Setup program and the language does
not use the default code page (437), Setup copies the appropriate file (such as
XLAT850.BIN) to OEMANSI.BIN in the Windows system directory. If the Ian-

Example

See Also

GetKerningPairs 385

guage uses the default code page, Setup deletes OEMANSl.BIN, if it exists, from
the Windows system directory.

The following example uses the GetKBCodePage function to display the current
code page:

char szBuf[80];
int i, cp, subtype, f_keys, len;

char *apszKeyboards[J = {
"IBM PX/XT",
"Olivetti ICO",
"IBM AT",
"IBM Enhanced",
"Nokia 1050",
"Nokia 9140",
"Standard Japanese",
} ;

cp = GetKBCodePage();

if ((i = GetKeyboardType(0)) == 0 I I i > 7) {
MessageBox(NULL, "invalid keyboard type",

"GetKeyboardType", MB_ICONSTOP);
break;

subtype= GetKeyboardType(l);
f_keys = GetKeyboardType(2);

len = wsprintf(szBuf, "%s keyboard, subtype %d\n",
apszKeyboards[i - 1], subtype);

len = wsprintf(szBuf + len, "%d function keys, code page %d",
f _keys, cp) ;

MessageBox(NULL, szBuf, "Keyboard Information", MB_OK);

GetKeyboardType

GetKerningPairs
int GetKerningPairs(hdc, cPairs, lpkrnpair)
HDC hdc; I* handle of device context
int cPairs; I* number of kerning pairs
KERNINGPAIR FAR* lpkrnpair; /*pointer to structures for kerning pairs

*/
*/
*/

386 GetKeyboardState

The GetKerningPairs function retrieves the character kerning pairs for the font
that is currently selected in the specified device context.

Parameters hdc

Return Value

Identifies a device context. The GetKerningPairs function retrieves kerning
pairs for the current font for this device context.

cPairs
Specifies the number of KERNING PAIR structures pointed to by the
lpkrnpair parameter. The function will not copy more kerning pairs than
specified by cPairs.

The KERNINGPAIR structure has the following form:

typedef struct tagKERNINGPAIR
WORD wFirst;
WORD wSecond;
int iKernAmount;

} KERNINGPAIR;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

lpkrnpair
Points to an array of KERNING PAIR structures that receive the kerning pairs
when the function returns. This array must contain at least as many structures as
specified by the cPairs parameter. If this parameter is NULL, the function re
turns the total number of kerning pairs for the font.

The return value specifies the number of kerning pairs retrieved or the total num
ber of kerning pairs in the font, if the function is successful. It is zero if the func
tion fails or there are no kerning pairs for the font.

GetKeyboardState
void GetKeyboardState(lpbKeyState)
BYTE FAR* lpbKeyState; I* address of array to receive virtual-key codes *I

Parameters

Return Value

The GetKeyboardState function copies the status of the 256 virtual-keyboard
keys to the specified buffer.

lpbKeyState
Points to the 256-byte buffer that will receive the virtual-key codes.

This function does not return a value.

Comments

Example

See Also

GetKeyboardType 387

An application calls the GetKeyboardState function in response to a keyboard
input message. This function retrieves the state of the keyboard at the time the
input message was generated.

If the high-order bit is 1, the key is down; otherwise, it is up. If the low-order bit is
1, the key is toggled. A toggle key, such as the CAPSLOCK key, is toggled if it has
been pressed an odd number of times since the system was started. The key is un
toggled if the low-order bit is 0.

For a list of virtual-key codes and their corresponding mouse or keyboard equiv
alents, see the Microsoft Windows Programmer's Reference, Volume 3.

The following example simulates a pressed CTRL key:

BYTE pbKeyState[256];

GetKeyboardState((LPBYTEl &pbKeyState);
pbKeyState[VK_CONTROLJ I= 0x80;
SetKeyboardState((LPBYTEl &pbKeyStatel;

GetKeyState, SetKeyboardState

GetKeyboardType
int GetKcyboardType(frzKeyb/nfo)
int fnKeyblnfo; /* specifies type of information to retrieve */

Parameters

Return Value

Comments

The GetKeyboardType function retrieves information about the current keyboard.

fnKeyblnfo
Determines the type of keyboard information to be retrieved. This parameter
can be one of the following values:

Value

0

1

2

Meaning

Retrieves the keyboard type.

Retrieves the keyboard subtype.

Retrieves the number of function keys on the keyboard.

The return value specifies the requested information if the function is successful.
Otherwise, it is zero.

The subtype is an OEM-dependent value. The subtype may be one of the follow
ing values:

388 GetKeyboardType

Example

Value Meaning

IBM PC/XT, or compatible (83-key) keyboard

2 Olivetti "ICO" (102-key) keyboard

3 IBM AT (84-key) or similar keyboard

4 IBM Enhanced (101- or 102-key) keyboard

5 Nokia 1050 and similar keyboards

6 Nokia 9140 and similar keyboards

7 Japanese keyboard

The keyboard driver provides the GetKeyboardType function. An application
using this function must include the following information in its module-definition
(.DEF) file:

IMPORTS
KEYBOARD.GETKEYBOARDTYPE

The application can also determine the number of function keys on a keyboard
from the keyboard type. The number of function keys for each keyboard type fol
lows:

Type Number of function keys

10

2 12 (sometimes 18)

3 10

4 12

5 10

6 24

7 This value is hardware-dependent and must be specified by the OEM.

The following example uses the GetKeyboardType function to display informa
tion about the current keyboard:

char szBuf[80J;
int i, cp, subtype, f_keys, len;

char *apszKeyboards[J = {
"IBM PX/XT",
"Olivetti ICO",
"IBM AT",
"IBM Enhanced",
"Nokia 1050",
"Nokia 9140",
"Standard Japanese",
} ;

cp = GetKBCodePage();

if ((i = GetKeyboardType(0)) == 0 I I i > 7) {
MessageBox(NULL, "invalid keyboard type",

"GetKeyboardType", MB_ICONSTOPl;
break;

subtype = GetKeyboardType(l);
f_keys = GetKeyboardType(2);

len = wsprintf(szBuf, "%s keyboard, subtype %d\n",
apszKeyboards[i - 1], subtype);

GetKeyNameText 389

len = wsprintf(szBuf + len, "%d function keys, code page %d",
f _keys , cp) ;

MessageBox(NULL, szBuf, "Keyboard Information", MB_OK);

GetKeyNameText
int GetKeyNameText(lParam, lpszBuffer, cbMaxKey)
LONG lParam; /* 32-bit parameter of keyboard message */

*I
*I

LPSTR lpszBuffer; /* address of a buffer for key name
int cbMaxKey; /* specifies maximum key string length

Parameters

The GetKeyNameText function retrieves a string that represents the name of a
key.

lParam
Specifies the 32-bit parameter of the keyboard message (such as
WM_KEYDOWN) to be processed. The GetKeyNameText function interprets
the following portions of lParam:

Bits

16-23
24

25

lpszBuffer

Meaning

Character scan code.

Extended bit. Distinguishes some keys on an enhanced keyboard.

"Don't care" bit. The application calling this function sets this bit to indi
cate that the function should not distinguish between left and right CTRL
and SHIFT keys, for example.

Points to a buffer that will receive the key name.

390 GetKeyState

cbMaxKey
Specifies the maximum length, in bytes, of the key name, not including the ter
minating null character (this parameter should one less than the size of the buff
er pointed to by the lpszBuffer parameter).

Return Value The return value is the length, in bytes, of the string copied to the specified buffer,
if the function is successful. Otherwise, it is zero.

Comments The format of the key-name string depends on the current keyboard driver. This
driver maintains a list of names in the form of character strings for keys with
names longer than a single character. The key name is translated, according to the
layout of the currently installed keyboard, into the principal language supported by
the keyboard driver.

GetKeyState CI!J
int GetKeyState(vkey)
int vkey; /* virtual key */

Parameters

Return Value

Comments

See Also

The GetKeyState function retrieves the state of the specified virtual key. The state
specifies whether the key is up, down, or toggled (on, off-alternating each time
the key is pressed).

vkey
Specifies a virtual key. If the requested virtual key is a letter or digit (A through
Z, a through z, or 0 through 9), vkey must be set to the ASCII value of that char
acter. For other keys, it must be a virtual-key code. For a list of virtual-key
codes, see the Microsoft Windows Programmer's Reference, Volume 3.

The return value specifies the state of the given virtual key. If the high-order bit is
1, the key is down; otherwise, it is up. If the low-order bit is 1, the key is toggled.
A toggle key, such as the CAPSLOCK key, is toggled if it has been pressed an odd
number of times since the system was started. The key is untoggled if the low
order bit is 0.

An application calls the GetKeyState function in response to a keyboard-input
message. This function retrieves the state of the key at the time the input message
was generated.

GetAsyncKeyState, GetKeyboardState

GetMapMode 391

GetlastActivePopup [!]]

HWND GetLastActivePopup(hwndOwner)
HWND hwndOwner; /*handle of owner window */

Parameters

Return Value

Comments

See Also

The GetLastActivePopup function determines which pop-up window owned by
the given window was most recently active.

hwndOwner
Identifies the owner window.

The return value is the handle of most-recently active pop-up window if the func
tion is successful.

The return value handle will be the same as the handle in the hwndOwner parame
ter if any of the following conditions are met:

• The window identified by hwndOwner was most recently active.

• The window identified by hwndOwner does not own any pop-up windows.

• The window identified by hwndOwner is not a top-level window or is owned
by another window.

AnyPopup, GetActive Window, ShowOwnedPopups

GetMapMode
int GetMapMode(hdc)
HDC hdc; /* handle of device context *I

The GetMapMode function retrieves the current mapping mode.

Parameters hdc

Return Value

Comments

Example

Identifies the device context.

The return value specifies the mapping mode if the function is successful.

For a complete list of mapping modes, see the description of the SetMapMode
function.

The following example uses the GetMapMode function to determine whether the
current mapping mode is MM_ TEXT:

392 GetMenu

See Also

GetMenu

if (GetMapMode(hdc) != MM_TEXT) {
TextOut(hdc, 100, -200, "Mapping mode must be MM_ TEXT", 28);
return FALSE;

SetMapMode

HMENU GetMenu(hwnd)
HWND hwnd; /*handle of window */

The GetMenu function retrieves the handle of the menu associated with the given
window.

Parameters hwnd

Return Value

See Also

Identifies the window whose menu handle is retrieved.

The return value is the handle of the menu if the function is successful. It is NULL
if the given window has no menu. It is undefined if the window is a child window.

GetSubMenu, SetMenu

GetMenuCheckMarkDimensions
DWORD GetMenuCheckMarkDimensions(void)

Parameters

The GetMenuCheckMarkDimensions function returns the dimensions of the de
fault check mark bitmap. Windows displays this bitmap next to checked menu
items. Before calling the SetMenultemBitmaps function to replace the default
check mark, an application should determine the correct size for the bitmaps by
calling the GetMenuCheckMarkDimensions function.

This function has no parameters.

Return Value

See Also

GetMenultemCount 393

The low-order word of the return value contains the width, in pixels, of the default
check mark bitmap, if the function is successful; the high-order word contains the
height.

SetMenultemBitmaps

GetMenultemCount
int GetMenultemCount(hmenu)
HMENU hmenu; /* handle of menu */

Parameters

Return Value

Example

See Also

The GetMenultemCount function determines the number of items in a pop-up or
top-level menu.

hmenu
Identifies the handle of the menu to be examined.

The return value specifies the number of items in the menu if the function is
successful. Otherwise, it is -1.

The following example initializes the items in a pop-up menu:

WORD wCount;
WORD witem;
WORD wID;

case WM_INITMENUPOPUP:
wCount = GetMenuitemCount((HMENU) wParam);
for (wltem = 0; witem < wCount; witem++) {

wID = GetMenuitemID((HMENU) wParam, witem);

f* Initialize menu items. */

break;

GetMenu, GetMenultemID, GetSubMenu

394 GetMenultemlD

GetMenultemlD
UINT GetMenultemID(hmenu,pas)
HMENU hmenu; I* handle of menu *I

I int pas; I position of menu item

Parameters

Return Value

Example

See Also

The GetMenultemID function retrieves the identifier for a menu item located at
the given position.

hmenu
Identifies the pop-up menu that contains the item whose identifier is to be re
trieved.

pas
Specifies the zero-based position of the menu item whose identifier is to be re
trieved.

The return value specifies the identifier of the pop-up menu item if the function is
successful. If the hmenu parameter is NULL or if the specified item is a pop-up
menu (as opposed to an item within the pop-up menu), the return value is -1. If
the pas parameter corresponds to a SEPARATOR menu item, the return value is
zero.

The following example initializes the items in a pop-up menu:

WORD wCount;
WORD witem;
WORD wID;

case WM_INITMENUPOPUP:
wCount = GetMenuitemCount((HMENU) wParam);
for (witem = 0; witem < wCount; witem++) {

wID = GetMenuitemID((HMENU) wParam, witem);

}

break;

/* Initialize menu items. */

GetMenu, GetMenultemCount, GetSubMenu

GetMenuState 395

GetMenuState IT!]

UINT GetMenuState(hrnenu, idltern,fuFlags)
HMENU hrnenu; /* handle of menu */
UINT id/tern; I* menu-item identifier */
UINT fuFlags; /*menu flags */

Parameters

Return Value

The GetMenuState function retrieves the status flags associated with the
specified menu item. If the menu item is a pop-up menu, this function also returns
the number of items in the pop-up menu.

hrnenu
Identifies the menu.

id/tern
Specifies the menu item for which the state is retrieved, as determined by the
fuFlags parameter.

fuFlags
Specifies the nature of the id/tern parameter. It can be one of the following
values:

Value

MF _BYCOMMAND

MF _BYPOSITION

Meaning

Specifies the menu-item identifier.

Specifies the zero-based position of the menu item.

The return value is -1 if the specified item does not exist. If the id/tern parameter
identifies a pop-up menu, the high-order byte of the return value contains the num
ber of items in the pop-up menu, and the low order byte contains the menu flags
associated with the pop-up menu. Otherwise, the return value is a mask (Boolean
OR) of the values from the following list (this mask describes the status of the
menu item that id/tern identifies):

Value

MF_BITMAP

MF_CHECKED

MF _DISABLED

MF_ENABLED

MF_GRAYED

MF _MENUBARBREAK

Meaning

Item is a bitmap.

Check mark is placed next to item (pop-up menus only).

Item is disabled.

Item is enabled. Note that the value of this constant is
zero; an application should not test against zero for
failure when using this value.

Item is disabled and grayed.

Same as MF _MENUBREAK, except for pop-up menus
where the new column is separated from the old column
by a vertical dividing line.

396 GetMenuState

Example

See Also

Value

MF _MENUBREAK

MF _SEPARATOR

MF _UNCHECKED

Meaning

Item is placed on a new line (static menus) or in a new
column (pop-up menus) without separating columns.

Horizontal dividing line is drawn (pop-up menus only).
This line cannot be enabled, checked, grayed, or
highlighted. The idltem andfuFlags parameters are ig
nored.

Check mark is not placed next to item (default). Note
that the value of this constant is zero; an application
should not test against zero for failure when using this
value.

The following example retrieves the handle of a pop-up menu, retrieves the
checked state of a menu item in the menu, and then toggles the checked state of
the item:

HMENU hmenu;
BOOL fOwnerDraw;

/* Retrieve a handle to the Colors menu. */

hmenu = GetSubMenu(GetMenu(hwnd), ID_COLORS_POS);

f* Retrieve the current state of the item. */

fOwnerDraw = GetMenuState(hmenu, IDM_COLOROWNERDR,
MF_BYCOMMAND) & MF_CHECKED;

f* Toggle the state of the item. */

CheckMenuitem(hmenu, IDM_COLOROWNERDR,
MF_BYCOMMAND I (fOwnerDraw? MF_UNCHECKED MF_CHECKED));

GetMenu, GetMenultemCount, GetSubMenu

GetMenuString 397

GetMenuString ~

int GetMenuString(hmenu, idltem, lpsz, cbMax,fwFlags)
HMENU hmenu; /* handle of menu */
UINT idltem; /* menu-item identifier */
LPSTR lpsz; /*address of buffer for label */
int cbMax; /* maximum length of label */
UINT fwFlags; /* menu flags */

Parameters

Return Value

Comments

See Also

The GetMenuString function copies the label of a menu item into a buffer.

hmenu
Identifies the menu.

id/tern
Specifies the menu item whose label is to be copied, as determined by the
fwFlags parameter.

lpsz
Points to a buffer that will receive the null-terminated label string.

cbMax
Specifies the maximum length, in bytes, of the label string. The label string is
truncated if it is longer.

fwFlags
Specifies the nature of the id/tern parameter. It can be one of the following
values:

Value

MF _BYCOMMAND

MF _BYPOSITION

Meaning

Specifies the menu-item identifier.

Specifies the zero-based position of the menu item.

The return value is the length, in bytes, of the returned label, if the function is
successful. The length does not include the terminating null character.

The cbMax parameter should be one larger than the number of characters in the
label to accommodate the null character that terminates the string.

GetMenu, GetMenultemID

398 GetMessage

GetMessage
BOOL GetMessage(lpmsg, hwnd, uMsgFilterMin, uMsgFilterMa:x)
MSG FAR* lpmsg; /*address of structure with message *!

*/
*/
*/

HWND hwnd; /* handle of the window
UINT uMsgFilterMin; /* first message
UINT uMsgFilterMa:x; /* last message

Parameters

Return Value

The GetMessage function retrieves a message from the application's message
queue and places the message in a MSG structure. If no message is available, Get
Message yields control to other applications until a message becomes available.

GetMessage retrieves messages associated only with the given window and
within the given range of message values. The function does not retrieve messages
for windows that belong to other applications.

lpmsg
Points to an MSG structure that contains message information from the applica
tion's message queue. The MSG structure has the following form:

typedef struct tagMSG {
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

MSG;

I* msg */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

hwnd
Identifies the window whose messages are to be retrieved. If this parameter is
NULL, GetMessage retrieves messages for any window that belongs to the ap
plication making the call.

uMsgFilterMin
Specifies the integer value of the lowest message value to be retrieved.

uMsgFilterMax
Specifies the integer value of the highest message value to be retrieved.

The return value is nonzero if a message other than WM_ QUIT is retrieved. It is
zero if the WM_ QUIT message is retrieved.

Comments

Example

See Also

GetMessageExtralnfo 399

The return value is usually used to decide whether to terminate the application's
main loop and exit the program.

The WM_KEYFIRST and WM_KEYLAST constants can be used as filter values
to retrieve all messages related to keyboard input; the WM_MOUSEFIRST and
WM_MOUSELAST constants can be used to retrieve all mouse-related messages.
If the uMsgFilterMin and uMsgFilterMax parameters are both zero, the Get
Message function returns all available messages (without performing any
filtering).

In addition to yielding control to other applications when no messages are availa
ble, the GetMessage and PeekMessage functions also yield control when
WM_PAINT or WM_ TIMER messages for other tasks are available.

The GetMessage, PeekMessage, and WaitMessage functions are the only ways
to let other applications run. If your application does not call any of these func
tions for long periods of time, other applications cannot run.

The following example uses the GetMessage function to retrieve messages from a
message queue, translates virtual-key messages into character messages, and dis
patches messages to the appropriate window procedures:

MSG msg;

while (GetMessage(&msg, (HWND) NULL, 0, 0)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

GetMessageExtralnfo, PeekMessage, PostQuitMessage, SetMessageQueue,
WaitMessage

GetMessag eExtra Info
LONG GetMessageExtralnfo(void)

Parameters

The GetMessageExtralnfo function retrieves the extra information associated
with the last message retrieved by the GetMessage or PeekMessage function.
This extra information may be added to a message by the driver for a pointing
device or keyboard.

This function has no parameters.

400 GetMessagePos

Return Value

See Also

The return value specifies the extra information if the function is successful. The
meaning of the extra information is device-specific.

GetMessage, hardware_ event, PeekMessage

GetMessagePos
DWORD GetMessagePos(void)

Parameters

Return Value

Comments

See Also

The GetMessagePos function returns a long value that represents a cursor posi
tion, in screen coordinates. This position is the point occupied by the cursor when
the last message retrieved by the GetMessage function occurred.

This function has no parameters.

The return value specifies the x- and y-coordinates of the cursor position if the
function is successful.

To retrieve the current position of the cursor instead of the position at the time the
last message occurred, use the GetCursorPos function.

The x-coordinate is in the low-order word of the return value; they-coordinate
is in the high-order word. If the return value is assigned to a variable, you can
use the MAKEPOINT macro to obtain a POINT structure from the return value.
You can also use the LOWORD or HIWORD macro to extract the x- or the
y-coordinate.

GetCursorPos, GetMessage, GetMessageTime

GetMessageTime
LONG GetMessageTime(void)

Parameters

The GetMessageTime function returns the message time for the last message re
trieved by the GetMessage function. The time is a long integer that specifies the
elapsed time, in milliseconds, from the time the system was started to the time the
message was created (placed in the application queue).

This function has no parameters.

Return Value

Comments

GetMetaFile 401

The return value specifies the message time if the function is successful.

The return value of the GetMessageTime function does not necessarily increase
between subsequent messages, because the value wraps to zero if the timer count
exceeds the maximum value for long integers.

To calculate time delays between messages, verify that the time of the second mes
sage is greater than the time of the first message and then subtract the time of the
first message from the time of the second message.

See Also GetMessage, GetMessagePos

GetMetafile ~

HMETAFILE GetMetaFile(lpszFile)
LPCSTR lpszFile; /* address of metafile name */

Parameters

Return Value

Example

The GetMetaFile function creates a handle of a specified metafile.

lpszFile
Points to the null-terminated string that specifies the MS-DOS filename of the
metafile. The metafile is assumed to exist.

The return value is the handle of a metafile if the function is successful. Other
wise, it is NULL.

The following example uses the CopyMetaFile function to copy a metafile to a
specified file, plays the copied metafile, uses the GetMetaFile function to retrieve
a handle to the copied metafile, uses the SetWindowOrg function to change the
position at which the metafile is played 200 logical units to the right, and then
plays the metafile at the new location:

HANDLE hmf, hmfSource, hmfOld;
LPSTR lpszFilel = "MFTest";

hmf = CopyMetaFile(hmfSource, lpszFilell;
PlayMetaFile(hdc, hmfl;
DeleteMetaFile(hmfl;

hmfOld = GetMetaFile(lpszFilel);
SetWindowOrg(hdc, -200, 0);
PlayMetaFileChdc, hmfOld);

402 GetMetaFileBits

See Also

DeleteMetaFile(hmfSource);
DeleteMetaFile(hmfDldl;

CopyMetaFile, PlayMetaFile, SetWindowOrg

GetMetafileBits
HGLOBAL GetMetaFileBits(hm.f)
HMETAFILE hmf; I* handle of metafile */

Parameters

Return Value

Comments

See Also

The GetMetaFileBits function returns a handle of the global memory object that
contains the specified metafile as a collection of bits. The memory object can be
used to determine the size of the metafile or to save the metafile as a file. The
memory object should not be modified.

hmf
Identifies the memory metafile.

The return value is the handle of the global memory object that contains the meta
file, if the function is successful. Otherwise, it is NULL.

The handle contained in the hmf parameter becomes invalid when the GetMeta
FileBits function returns, so the returned global memory handle must be used to
refer to the metafile.

When it no longer requires a global memory object that is associated with a meta
file, an application should remove the object by using the GlobalFree function.

GlobaIFree

GetModulefileName
int GetModuleFileName(hinst, lpszFilename, cbFileName)
HINSTANCE hinst; I* handle of module
LPSTR lpszFilename; /* address of buffer for filename
int cbFileName; /* maximum number of bytes to copy

*/
*/
*I

The GetModuleFileName function retrieves the full path and filename of the ex
ecutable file from which the specified module was loaded.

Parameters

Return Value

Example

See Also

GetModuleHandle 403

hinst
Identifies the module or the instance of the module.

lpszFilename
Points to the buffer that is to receive the null-terminated filename.

cbFileName
Specifies the maximum number of bytes to copy, including the terminating null
character. The filename is truncated if it is longer than cbFileName. This pa
rameter should be set to the length of the filename buffer.

The return value specifies the length, in bytes, of the string copied to the specified
buffer, if the function is successful. Otherwise, it is zero.

The following example retrieves an application's filename by using the instance
handle passed to the application in the WinMain function:

int PASCAL WinMainCHINSTANCE hinst, HINSTANCE hPrevlnst,
LPSTR lpCmdline, int nCmdShow)

{

char szModuleName[260];

GetModuleFileName(hinst, szModuleName, sizeof(szModuleName));
}

GetModuleHandle

GetModuleHandle
HMODULE GetModuleHandle(lpszModuleName)
LPCSTR lpszModuleName; /* address of name of module *I

Parameters

Return Value

See Also

The GetModuleHandle function retrieves the handle of the specified module.

lpszModuleName
Points to a null-terminated string that specifies the name of the module.

The return value is the handle of the module if the function is successful. Other
wise, it is NULL.

GetModuleFileN ame

404 GetModuleUsage

GetModuleUsage
int GetModuleUsage(hinst)
HINSTANCE hinst; I* handle of module */

The GetModuleUsage function retrieves the reference count of a specified
module.

Parameters hinst
Identifies the module or an instance of the module.

Return Value The return value specifies the reference count of the module ifthe function is
successful.

Comments Windows increments (increases by one) a module's reference count each time an
application calls the LoadModule function. The count is decremented (decreased
by one) when an application calls the FreeModule function.

See Also FreeModule, LoadModule

GetMsgProc ITIJ
LRESULT CALLBACK GetMsgProc(code, wParam, lParam)
int code; /*process-message flag */
WPARAM wParam; /*undefined */
LPARAM lParam; /*pointer to MSG structure */

Parameters

The GetMsgProc function is a library-defined callback function that the system
calls whenever the GetMessage function has retrieved a message from an applica
tion queue. The system passes the retrieved message to the callback function
before passing the message to the destination window procedure.

code
Specifies whether the callback function should process the message or call the
CallNextHookEx function. If this parameter is less than zero, the callback func
tion should pass the message to CallNextHookEx without further processing.

wParam
Specifies a NULL value.

lParam
Points to an MSG structure that contains information about the message. The
MSG structure has the following form:

Return Value

Comments

See Also

typedef struct tagMSG
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

MSG;

GetNearestColor 405

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The callback function should return zero.

The GetMsgProc callback function can examine or modify the message as
desired. Once the callback function returns control to the system, the GetMessage
function returns the message, with any modifications, to the application that origi
nally called it. The callback function does not require a return value.

This callback function must be in a dynamic-link library (DLL).

An application must install the callback function by specifying the
WH_GETMESSAGE filter type and the procedure-instance address of
the callback function in a call to the SetWindowsHookEx function.

GetMsgProc is a placeholder for the library-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the library's
module-definition (.DEF) file.

CallNextHookEx, GetMessage, SetWindowsHookEx

GetNearestColor
COLORREF GetNearestColor(hdc, clrrej)
HDC hdc; I* handle of device context
COLORREF clrref; /* color to match

*/
*/

The GetNearestColor function retrieves the solid color that best matches a
specified logical color; the given device must be able to represent this solid color.

Parameters hdc
Identifies the device context.

clrref
Specifies the color to be matched.

406 GetNearestPalettelndex

Return Value

See Also

The return value specifies an RGB (red, green, blue) color value that defines the
solid color closest to the clrref value that the device can represent.

GetNearestPalettelndex

GetNearestPalettelndex
DINT GetNearestPalettelndex(hpal, clrrej)
HPALETTE hpal; /* handle of palette */

/ COLORREF clrref; / color to match

Parameters

Return Value

Example

See Also

The GetNearestPalettelndex function retrieves the index of the logical-palette
entry that best matches the specified color value.

hp al
Identifies the logical palette.

clrref
Specifies the color to be matched.

The return value is the index of the logical-palette entry whose corresponding
color best matches the specified color.

The following example uses the GetNearestPalettelndex function to retrieve a
color index from a palette. It then creates a brush with that retrieved color by using
the PALETTEINDEX macro in a call to the CreateSolidBrush function.

WORD nColor;
HPALETTE hpal;
DWORD dwBrushColors[8][8J;
HBRUSH hbr;
int x, y;

. f* Initialize the array of brush colors. */

nColor = GetNearestPaletteindex(hpal, dwBrushColors[x][y]);
hbr CreateSolidBrush(PALETTEINDEX(nColor));

f* Use the brush handle. */

DeleteObject(hbr);

CreateSolidBrush, GetNearestColor, GetPaletteEntries,
GetSystemPaletteEntries

GetNextDlgGroupltem 407

GetNextDlgGroupltem ~

HWND GetNextDlgGroupltem(hwndDlg, hwndCtrl,fPrevious)
HWND hwndDlg; /* handle of dialog box */
HWND hwndCtrl; /*handle of control */
BOOLfPrevious; /*direction flag */

Parameters

Return Value

Comments

Example

The GetNextDlgGroupltem function searches for the previous (or next) control
within a group of controls in a dialog box. A group of controls begins with a con
trol with the WS_GROUP style and ends with the last control that does not con
tain a WS_GROUP style.

hwndDlg
Identifies the dialog box to be searched.

hwndCtrl
Identifies the control to be used as the starting point for the search.

fPrevious
Specifies how the function is to search the group of controls in the dialog box.
If this parameter is TRUE, the function searches for the previous control in the
group. If this parameter is FALSE, the function searches for the next control in
the group.

The return value is the window handle of the previous (or next) control in the
group, if the function is successful.

If the hwndCtrl parameter identifies the last control in the group and the /Previous
parameter is FALSE, the GetNextDlgGroupltem function returns the window
handle of the first control in the group. If hwndCtrl identifies the first control in
the group and/Previous is TRUE, GetNextDlgGroupltem returns the window
handle of the last control in the group.

The following example sets the check state of a group of radio buttons. It is as
sumed that the group contains only radio buttons and no other type of control:

HWND hwndStart, hwndCurrent;

case WM_COMMAND:
switch (HIWORD(lParam)) {

case BN_CLICKED:

/*
* If a radio button was clicked, clear the current
*selection and select the one that was clicked.
*/

hwndStart GetDlgltem(hdlg, wParam);

408 GetNextDlgTabltem

See Also

}

if (LOWORDCGetWindowlong(hwndStart,
GWL_STYLE) == BS_RADIOBUTTON)) {

hwndCurrent = hwndStart;

}

do {
hwndCurrent = GetNextDlgGroupitem(hdlg,

hwndCurrent, TRUE);
SendMessage(hwndCurrent, BM_SETCHECK,

hwndCurrent == hwndStart, 0L);
} while (hwndCurrent != hwndStart);

/* Process other notification codes. */

GetDlgltem, GetNextDlgTabltem

GetNextDlgTabltem
HWND GetNextDlgTabltem(hwndDlg, hwndCtrl, /Previous)
HWND hwndDlg; I* handle of dialog box */
HWND hwndCtrl; I* handle of known control */
BOOLfPrevious; I* direction flag */

Parameters

Return Value

Example

The GetNextDlgTabltem function retrieves the handle of the first control that has
the WS_TABSTOP style that precedes (or follows) the specified control.

hwndDlg
Identifies the dialog box to be searched.

hwndCtrl
Identifies the control to be used as the starting point for the search.

fPrevious
Specifies how the function is to search the dialog box. If this parameter is
TRUE, the function searches for the previous control in the dialog box. If this
parameter is FALSE, the function searches for the next control in the dialog
box.

The return value is the window handle of the previous (or next) control that has
the WS_TABSTOP style, ifthe function is successful.

The following example retrieves the handle of the previous control that has the
WS_TABSTOP style, relative to the control that has the input focus:

GetNextDriver 409

HWND hdlg;
HWND hwndControl;

hwndControl = GetNextDlgTabitem(hdlg, GetFocus(), TRUE);

See Also GetDlgltem, GetNextDlgGroupltem

GetNextDriver
HDRVR GetNextDriver(hdrvr,fdwFlag)
HDRVR hdrvr; I* handle of installable driver */

/ DWORD fdwFlag; I search flag

Parameters

Return Value

The GetNextDriver function enumerates instances of an installable driver.

hdrvr
Identifies the installable driver for which instances should be enumerated. This
parameter must be retrieved by the OpenDriver function. If this parameter is
NULL, the enumeration begins at either the beginning or end of the list of
installable drivers (depending on the setting of the flags in thefdwFlag
parameter).

fdwFlag
Specifies whether the function should return a handle identifying only the first
instance of a driver and whether the function should return handles identifying
the instances of the driver in the order in which they were loaded. This parame
ter can be one or more of the following flags:

Value

GND_FIRSTINSTANCEONLY

GND_FORWARD

GND_REVERSE

Meaning

Returns a handle identifying the first instance
of an installable driver. When this flag is set,
the function will enumerate only the first in
stance of an installable driver, no matter how
many times the driver has been installed.

Enumerates subsequent instances of the driver.
(Using this flag has the same effect as not
using the GND_REVERSE flag.)

Enumerates instances of the driver as it was
loaded-each subsequent call to the function
returns the handle of the next instance.

The return value is the instance handle of the installable driver if the function is
successful.

410 GetNextWindow

GetNextWindow
HWND GetNextWindow(hwnd, uFlag)
HWND hwnd; I* handle of current window *I

/ UINT uFlag; I direction flag

The GetNextWindow function searches for the handle of the next (or previous)
window in the window manager's list. The window manager's list contains entries
for all top-level windows, their associated child windows, and the child windows
of any child windows. If the given window is a top-level window, the function
searches for the next (or previous) handle of a top-level window. If the given win
dow is a child window, the function searches for the handle of the next (or pre
vious) child window.

Parameters hwnd

Return Value

See Also

Identifies the current window.

uFlag
Specifies whether the function should return a handle to the next window or to
the previous window. It can be either of the following values:

Value

GW _HWNDNEXT

GW _HWNDPREV

Meaning

Returns a handle of the next window.

Returns a handle of the previous window.

The return value is the handle of the next (or previous) window in the window
manager's list if the function is successful.

GetTopWindow, GetWindow

GetNumTasks
UINT GetNumTasks(void)

Parameters

Return Value

The GetNumTasks function retrieves the number of currently running tasks.

This function has no parameters.

The return value specifies the number of current tasks if the function is successful.
Otherwise, it is zero.

GetObject 411

GetObject IT!]

int GetObject(hgdiobj, cbBuffer, lpvObject)
HGDIOBJ hgdiobj; /* handle of object */
int cbBuffer; /*size of buffer for object information */
void FAR* lpvObject; /*address of buffer for object information */

Parameters

Return Value

Comments

Example

The GetObject function fills a buffer with information that defines a given object.
The function retrieves a LOGPEN, LOGBRUSH, LOGFONT, or BITMAP
structure, or an integer, depending on the specified object.

hgdiobj
Identifies a logical pen, brush, font, bitmap, or palette.

ch Buffer
Specifies the number of bytes to be copied to the buffer.

lpvObject
Points to the buffer that is to receive the information.

The return value specifies the number of bytes retrieved if the function is success
ful. Otherwise, it is zero.

The buffer pointed to by the lpvObject parameter must be sufficiently large to re
ceive the information.

If the hgdiobj parameter identifies a bitmap, the GetObject function returns only
the width, height, and color format information of the bitmap. The bits can be re
trieved by using the GetBitmapBits function.

If hgdiobj identifies a logical palette, GetObject retrieves an integer that specifies
the number of entries in the palette; the function does not retrieve the LOG-
P ALETTE structure that defines the palette. To retrieve information about palette
entries, an application can call the GetPaletteEntries function.

The following example uses the GetObject function to fill a LOGBRUSH struc
ture with the attributes of the current brush and then tests whether the brush style
is BS_SOLID:

LOGBRUSH lb;

HBRUSH hbr;

GetObject(hbr, sizeof(LOGBRUSH), (LPSTR) &lb);

412 GetOpenClipboardWindow

if (lb.lbStyle BS_ SOLID)

}

See Also GetBitmapBits, GetPaletteEntries, GetStockObject

GetOpenClipboardWindow
HWND GetOpenClipboardWindow(void)

Parameters

Return Value

See Also

The GetOpenClipboardWindow function retrieves the handle of the window that
currently has the clipboard open.

This function has no parameters.

The return value is the handle of the window that has the clipboard open, if the
function is successful. Otherwise, it is NULL.

GetClipboardOwner, GetClipboardViewer, OpenClipboard

GetOpenFileName
#include <commdlg.h>

BOOL GetOpenFileName(lpofa)
OPENFILENAME FAR* lpofa; /* address of structure with initialization data *I

Parameters

The GetOpenFileName function creates a system-defined dialog box that makes
it possible for the user to select a file to open.

lpofa
Points to an OPENFILENAME structure that contains information used to ini
tialize the dialog box. When the GetOpenFileName function returns, this struc
ture contains information about the user's file selection.

The OPENFILENAME structure has the following form:

Return Value

Errors

GetOpenFileName 413

#include <commdlg.h>

typedef struct tagOPENFILENAME { /* ofn */
OWORO lStructSize;
HWND hwndOwner;
HINSTANCE hlnstance;
LPCSTR lpstrFilter;
LPSTR lpstrCustomFilter;
DWORD nMaxCustFilter;
DWORD nFilterlndex;
LPSTR lpstrFile;
DWORD nMaxFile;
LPSTR lpstrFileTitle;
DWORD nMaxFileTitle;
LPCSTR lpstrlnitialDir;
LPCSTR lpstrTitle;
DWORD Flags;
UINT nFileOffset;
UINT nFileExtension;
LPCSTR lpstrDefExt;
LPARAM lCustData;
UINT (CALLBACK* lpfnHook) (HWND, UINT, WPARAM, LPARAM);
LPCSTR lpTemplateName;

} OPENFILENAME;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the user selects a file to open. It is zero if an error oc
curs, if the user chooses the Cancel button, if the user chooses the Close command
on the System menu to close the dialog box, or if the buffer identified by the
lpstrFile member of the OPENFILENAME structure is too small to contain the
string that specifies the selected file.

The CommDlgExtendedError function retrieves the error value, which may be
one of the following values:

CDERR_FINDRESFAILURE
CDERR_INITIALIZA TION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK

414 GetOpenFileName

Comments

Example

CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
FNERR_BUFFERTOOSMALL
FNERR_INV ALIDFILENAME
FNERR_SUBCLASSFAILURE

If the hook function (to which the lpfnHook member of the OPENFILENAME
structure points) processes the WM_CTLCOLOR message, this function must re
turn a handle of the brush that should be used to paint the control background.

The following example copies file-filter strings into a buffer, initializes an OPEN
FILENAME structure, and then creates an Open dialog box.

The file-filter strings are stored in the resource file in the following form:

STRINGTABLE
BEGIN

IDS_FILTERSTRING "Write Files(*.WRI) l*.wri I Word Files(*.DDC) l*.docl"
END

The replaceable character at the end of the string is used to break the entire string
into separate strings, while still guaranteeing that all the strings are continguous in
memory.

OPENFILENAME ofn;
char szDirName[256];
char szFile[256], szFileTitle[256J;
UINT i, cbString;
char chReplace; /* string separator for szFilter */
char szFilter[256J;
HFILE hf;

/* Get the system directory name and store in szDirName */

GetSystemDirectory(szDirName, sizeof(szDirName));
szFile[0J = '\0';

if ((cbString = LoadString(hinst, IDS_FILTERSTRING,
szFilter, sizeof(szFilter))) == 0) {

ErrorHandl er();
return 0L;

}

chReplace = szFilter[cbString - 1]; /*retrieve wild character*/

for (i = 0; szFilter[i] != '\0'; i++)
if (szFilter[i] == chReplace)

szFilter[i] = '\0';

See Also

/* Set all structure members to zero. */

memset(&ofn, 0, sizeof(OPENFILENAME));

ofn.lStructSize = sizeof(OPENFILENAME);
ofn.hwndOwner = hwnd;
ofn.lpstrFilter = szFilter;
ofn.nFilterindex = 1;
ofn.lpstrFile= szFile;
ofn.nMaxFile = sizeof(szFile);
ofn.lpstrFileTitle = szFileTitle;
ofn.nMaxFileTitle = sizeof(szFileTitle);
ofn.lpstrinitialDir = szDirName;

GetOullineTextMetrics 415

ofn.Flags = OFN_SHOWHELP I OFN_PATHMUSTEXIST I OFN_FILEMUSTEXIST;

if (GetOpenFileName(&ofn)) {
hf= _lopen(ofn.lpstrFile, OF_READ);

/* Perform file operations */

}

else
ErrorHandler();

GetSaveFileNrune

GetOutlineTextMetrics
WORD GetOutlineTextMetrics(hdc, cbData, lpotm)
HDC hdc; I* handle of device context
UINT cbData; I* size of buffer for information
OUTLINETEXTMETRIC FAR* lpotm; I* address of structure for metrics

*I
*I
*I

The GetOutlineTextMetrics function retrieves metric information for TrueType
fonts.

Parameters hdc
Identifies the device context.

cbData
Specifies the size, in bytes, of the buffer to which information is returned.

lpotm
Points to an OUTLINETEXTMETRIC structure. If this parameter is NULL,
the function returns the size of the buffer required for the retrieved metric infor
mation. The OUTLINETEXTMETRIC structure has the following form:

416 GetOutlineTextMetrics

Return Value

Comments

See Also

typedef struct tagOUTLINETEXTMETRIC {

UINT otmSize;
TEXTMETRIC otmTextMetrics;
BYTE otmFiller;
PANOSE otmPanoseNumber;
UINT otmfsSelection;
UINT otmfsType;
UINT otmsCharSlopeRise;
UINT otmsCharSlopeRun;
UINT otmitalicAngle;
UINT otmEMSquare;
INT otmAscent;
INT otmDescent;
UINT otmlineGap;
UINT otmsXHeight;
UINT otmsCapEmHeight;
RECT otmrcFontBox;
INT otmMacAscent;
INT otmMacDescent;
UINT otmMaclineGap;
UINT otmusMinimumPPEM;
POINT otmptSubscriptSize;
POINT otmptSubscriptOffset;
POINT otmptSuperscriptSize;
POINT otmptSuperscriptOffset;
UINT otmsStrikeoutSize;
INT otmsStrikeoutPosition;
INT otmsUnderscorePosition;
UINT otmsUnderscoreSize;
PSTR otmpFamilyName;
PSTR otmpFaceName;
PSTR otmpStyleName;
PSTR otmpFullName;

} OUTLINETEXTMETRIC;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The OUTLINETEXTMETRIC structure contains most of the font metric infor
mation provided with the TrueType format, including a TEXTMETRIC struc
ture. The last four members of the OUTLINETEXTMETRIC structure are
pointers to strings. Applications should allocate space for these strings in addition
to the space required for the other members. Because there is no system-imposed
limit to the size of the strings, the simplest method for allocating memory is to re
trieve the required size by specifying NULL for the lpotm parameter in the first
call to the GetOutlineTextMetrics function.

GetTextMetrics

GetPaletteEntries 417

GetPaletteEntries [}]]
UINT GetPaletteEntries(hpal, iStart, cEntries, lppe)
HPALETTE hpal; I* handle of palette */
UINT iStart; I* first palette entry to retrieve */
UINT cEntries; I* number of entries to retrieve */
PALETTEENTRY FAR* lppe; I* address of structure for palette entries */

Parameters

Return Value

See Also

The GetPaletteEntries function retrieves a range of palette entries in a logical
palette.

hp al
Identifies the logical palette.

iStart
Specifies the first logical-palette entry to be retrieved.

cEntries
Specifies the number of logical-palette entries to be retrieved.

lppe
Points to an array of PALETTEENTRY structures that will receive the palette
entries. The array must contain at least as many structures as specified by the
cEntries parameter. The PALETTEENTRY structure has the following form:

typedef struct tagPALETTEENTRY
BYTE peRed;
BYTE peGreen;
BYTE peBlue;
BYTE peFlags;

} PALETTE ENTRY;

/* pe */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the number of entries retrieved from the logical palette, if the
function is successful. Otherwise, it is zero.

GetSystemPaletteEntries

418 GetParent

GetParent
HWND GetParent(hwnd)
HWND hwnd; I* handle of window *I

Parameters

Return Value

See Also

GetPixel

The GetParent function retrieves the handle of the given window's parent win
dow (if any).

hwnd
Identifies the window whose parent window handle is to be retrieved.

The return value is the handle of the parent window if the function is successful.
Otherwise, it is NULL, indicating an error or no parent window.

SetParent

COLORREF GetPixel(hdc, nXPos, nYPos)
HDC hdc; I* handle of device context */
int nXPos; I* x-coordinate of pixel to retrieve */
int nYPos; I* y-coordinate of pixel to retrieve */

The GetPixel function retrieves the RGB (red, green, blue) color value of the pixel
at the specified coordinates. The point must be in the clipping region; if it is not,
the function is ignored.

Parameters hdc

Return Value

Comments

Identifies the device context.

nXPos
Specifies the logical x-coordinate of the point to be examined.

nYPos
Specifies the logical y-coordinate of the point to be examined.

The return value specifies an RGB color value for the color of the given point, if
the function is successful. It is -1 if the coordinates do not specify a point in the
clipping region.

Not all devices support the GetPixel function. For more information, see the de
scription of the GetDeviceCaps function.

GetPolyfillMode 419

See Also GetDeviceCaps, SetPixel

GetPolyFillMode
int GetPolyFillMode(hdc)
HDC hdc; /* handle of device context *!

The GetPolyFillMode function retrieves the current polygon-filling mode.

Parameters hdc

Return Value

Comments

Example

See Also

Identifies the device context.

The return value specifies the polygon-filling mode, ALTERNATE or WINDING,
if the function is successful.

When the polygon-filling mode is ALTERNATE, the system fills the area be
tween odd-numbered and even-numbered polygon sides on each scan line. That is,
the system fills the area between the first and second side, between the third and
fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in
which a figure was drawn to determine whether to fill an area. Each line segment
in a polygon is drawn in either a clockwise or a counterclockwise direction. When
ever an imaginary line drawn from an enclosed area to the outside of a figure
passes through a clockwise line segment, a count is incremented. When the line
passes through a counterclockwise line segment, the count is decremented. The
area is filled if the count is nonzero when the line reaches the outside of the figure.

The following example uses the GetPolyFillMode function to determine whether
the current polygon-filling mode is ALTERNATE:

int nPolyFillMode;

nPolyFillMode = GetPolyFillMode(hdc);
if (nPolyFillMode == ALTERNATE) {

}

SetPolyFillMode

420 GetPriorityClipboardformat

GetPriorityClipboardformat
int GetPriorityClipboardFormat(lpuPriorityList, cEntries)
UINT FAR* lpuPriorityList; /* address of priority list */

/ int cEntries; / count of entries in list

Parameters

Return Value

See Also

The GetPriorityClipboardFormat function retrieves the first clipboard format in
a list for which data exists in the clipboard.

lpuPriorityList
Points to an integer array that contains a list of clipboard formats in priority
order. For a description of the data formats, see the description of the Set
ClipboardData function.

cEntries
Specifies the number of entries in the priority list. This value must not be
greater than the number of entries in the list.

The return value is the highest priority clipboard format in the list for which data
exists. If no data exists in the clipboard, the return value is NULL. If data exists in
the clipboard that does not match any format in the list, the return value is -1.

CountClipboardFormats, EnumClipboardFormats, GetClipboardFormat
Name, IsClipboardFormatA vailable, RegisterClipboardFormat,
SetClipboardData

Get Private Prof i I e Int
UINT GetPrivateProfilelnt(lpszSection, lpszEntry, default, lpszFilename)
LPCSTR lpszSection; /* address of section */
LPCSTR lpszEntry; /*address of entry */
int default; /* return value if entry not found */
LPCSTR lpszFilename; /* address of initialization filename */

Parameters

The GetPrivateProfilelnt function retrieves the value of an integer from an entry
within a specified section of a specified initialization file.

lpszSection
Points to a null-terminated string containing the section heading in the initializa
tion file.

Return Value

Comments

GetPrivateProfilelnt 421

lpszEntry
Points to the null-terminated string containing the entry whose value is to be re
trieved.

default
Specifies the default value to return if the entry cannot be found in the initializa
tion file. This value must be a positive integer in the range 0 through 32,767
(OxOOOO through Ox7FFF).

lpszFilename
Points to a null-terminated string that names the initialization file. If this pa
rameter does not contain a full path, Windows searches for the file in the Win
dows directory.

The return value is the integer value of the specified entry if the function is
successful. It is the value of the default parameter if the function does not find the
entry. The return value is zero if the value that corresponds to the specified entry is
not an integer.

The function searches the file for an entry that matches the name specified by the
lpszEntry parameter under the section heading specified by the lpszSection parame
ter. An integer entry in the initialization file must have the following form:

[section]
entry=value

If the value that corresponds to the entry consists of digits followed by non
numeric characters, the function returns the value of the digits. For example, the
function would return 102 for the line "Entry= 102abc".

The GetPrivateProfilelnt function is not case-dependent, so the strings in the
lpszSection and lpszEntry parameters may contain a combination of uppercase and
lowercase letters.

GetPrivateProfilelnt supports hexadecimal notation. When GetPrivate
Profilelnt is used to retrieve a negative integer, the value should be cast to an int.

An application can use the GetProfilelnt function to retrieve an integer value
from the WIN.IN! file.

422 GetPrivateProfileString

Example The following example uses the GetPrivateProfilelntfunction to retrieve the
last line number by reading the LastLine entry from the [My App] section of
TESTCODE.INI:

See Also

WORD wlnt;
char szMsg[144];

wlnt = GetPrivateProfileint("MyApp", "Lastline",
0, "testcode.ini");

sprintf(szMsg, "last line was %d", wlnt);
MessageBox(hwnd, szMsg, "GetPrivateProfileint", MB_OK);

GetPrivateProfileString, GetProfilelnt

G etPrivate Profile String
int GetPrivateProfileString(lpszSection, lpszEntry, lpszDefault, lpszReturnBuffer, cbReturnBuffer,

lpszFilename)
LPCSTR lpszSection;
LPCSTR lpszEntry;
LPCSTR lpszDefault;
LPSTR lpszReturnBuffer;
int cbReturnBuffer;
LPCSTR lpszFilename;

I* address of section
/* address of entry
/* address of default string
I* address of destination buffer
I* size of destination buffer
I* address of initialization filename

*/
*!
*/
*/
*/
*/

Parameters

The GetPrivateProfileString function retrieves a character string from the
specified section in the specified initialization file.

lpszSection
Points to a null-terminated string that specifies the section containing the entry.

lpszEntry
Points to the null-terminated string containing the entry whose associated string
is to be retrieved. If this value is NULL, all entries in the section specified by
the lpszSection parameter are copied to the buffer specified by the lpszReturn
Buffer parameter. For more information, see the following Comments section.

lpszDefault
Points to a null-terminated string that specifies the default value for the given
entry if the entry cannot be found in the initialization file. This parameter must
never be NULL.

Return Value

Comments

GetPrivateProfileString 423

lpszReturnBuffer
Points to the buffer that receives the character string.

cbReturnBuffer
Specifies the size, in bytes, of the buffer pointed to by the lpszReturnBuffer pa
rameter.

lpszFilename
Points to a null-terminated string that names the initialization file. If this pa
rameter does not contain a full path, Windows searches for the file in the Win
dows directory.

The return value specifies the number of bytes copied to the specified buffer, not
including the terminating null character.

The function searches the file for an entry that matches the name specified by the
lpszEntry parameter under the section heading specified by the lpszSection parame
ter. If the entry is found, its corresponding string is copied to the buffer. If the
entry does not exist, the default character string specified by the lpszDefault pa
rameter is copied. A string entry in the initialization file must have the following
form:

[section]
entry=string

If lpszEntry is NULL, the GetPrivateProfileString function copies all entries in
the specified section to the supplied buffer. Each string will be null-terminated,
with the final string ending with two zero-termination characters. If the supplied
destination buffer is too small to hold all the strings, the last string will be trun
cated and followed with two zero-termination characters.

If the string associated with lpszEntry is enclosed in single or double quotation
marks, the marks are discarded when GetPrivateProfileString returns the string.

GetPrivateProfileString is not case-dependent, so the strings in lpszSection and
lpszEntry may contain a combination of uppercase and lowercase letters.

An application can use the GetProfileString function to retrieve a string from the
WIN.IN! file.

The lpszDefault parameter must point to a valid string, even if the string is empty
(its first character is zero).

424 GetProcAddress

Example The following example uses the GetPrivateProfileString function to determine
the last file saved by the [My App] application by reading the LastFile entry in
TESTCODE.INI:

See Also

char szMsg[144], szBuf[80];

Getpri vateProfi l eString("MyApp", "LastFi le",
"", szBuf, sizeof(szBuf), "testcode.ini");

sprintf(szMsg, "last file was %s", szBufl;
MessageBox(hwnd, szMsg, "GetPrivateProfileString", MB_OKl;

GetProfileString, WritePrivateProfileString

GetProcAddress
FARPROC GetProcAddress(hinst, lpszProcName)
HINSTANCE hinst; /*handle of module */

/ LPCSTR lpszProcName; / address of function

The GetProcAddress function retrieves the address of the given module function.

Parameters hinst

Return Value

Comments

Identifies the module that contains the function.

lpszProcName
Points to a null-terminated string containing the function name, or specifies the
ordinal value of the function. If it is an ordinal value, the value must be in the
low-order word and the high-order word must be zero.

The return value is the address of the module function's entry point if the
GetProcAddress function is successful. Otherwise, it is NULL.

If the lpszProcName parameter is an ordinal value and a function with the
specified ordinal does not exist in the module, GetProcAddress can still return a
non-NULL value. In cases where the function may not exist, specify the function
by name rather than ordinal value.

Use the GetProcAddress function to retrieve addresses of exported functions in
dynamic-link libraries (DLLs). The MakeProclnstance function can be used to
access functions within different instances of the current module.

Example

GetProcAddress 425

The spelling of the function name (pointed to by the lpszProcName parameter)
must be identical to the spelling as it appears in the EXPORTS section of the
source DLL's module-definition (.DEF) file.

The following example uses the GetProcAddress function to retrieve the address
of the TimerCount function in TOOLHELP.DLL:

char szBuf[80J;
TIMERINFO timerinfo;
HINSTANCE hinstToolHelp;
BOOL (FAR *lpfnTimerCount) (TIMERINFO FAR*);

/* Turn off the "File not found" error box. */

SetErrorMode(SEM_NOOPENFILEERRORBOX);

I* Load the TOOLHELP.DLL library module. */

hinstToolHelp = LoadLibrary("TOOLHELP.DLL");

if (hinstToolHelp > HINSTANCE_ERROR) { /* loaded successfully */

/* Retrieve the address of the TimerCount function. */

(FARPROC) lpfnTimerCount =
GetProcAddress(hinstToolHelp, "TimerCount");

if (lpfnTimerCount != NULL) {

/* Call the TimerCount function. */

timerinfo.dwSize = sizeof(TIMERINFO);

if ((*lpfnTimerCount) ((TIMERINFO FAR *) &timerinfo)) {
sprintf(szBuf, "task: %1 u seconds\nVM: %1 u seconds",

timerinfo.dwmsSinceStart I 1000,
timerinfo.dwmsThisVM I 1000);

else
strcpy(szBuf, "TimerCount failed");

else {
strcpy(szBuf, "GetProcAddress failed");

}

/* Free the TOOLHELP.DLL library module. */

FreeLibrary(hinstToolHelp);

426 GetProfilelnt

else {
strcpy(szBuf, "Loadlibrary failed");

}

MessageBox(NULL, szBuf, "Library Functions", MB_ICONHANDl;

See Also MakeProclnstance

GetProfilelnt IT!J
UINT GetProfilelnt(lpszSection, lpszEntry, default)
LPCSTR lpszSection; I* address of section */
LPCSTR lpszEntry; I* address of entry */
int default; /*return value if entry is not found */

Parameters

Return Value

Comments

The GetProfilelnt function retrieves the value of an integer from an entry within a
specified section of the WIN.IN! initialization file.

lpszSection
Points to a null-terminated string that specifies the section containing the entry.

lpszEntry
Points to the null-terminated string containing the entry whose value is to be re
trieved.

default
Specifies the default value to return if the entry cannot be found. This value can
be an unsigned value in the range 0 through 65,536 or a signed value in the
range -32,768 through 32,768. Hexadecimal notation is accepted for both posi
tive and negative values.

The return value is the integer value of the string following the specified entry, if
the function is successful. The return value is the value of the def a ult parameter if
the function does not find the entry. The return value is zero ifthe value that corre
sponds to the specified entry is not an integer.

The GetProfilelnt function is not case-dependent, so the strings in the lpszSection
and lpszEntry parameters may contain a combination of uppercase and lowercase
letters.

GetProfilelnt supports hexadecimal notation. When the function is used to re
trieve a negative integer, the value should be cast to an int.

An integer entry in the WIN.IN! file must have the following form:

Example

See Also

[section]
entry=value

GetProfileString 427

If the value that corresponds to the entry consists of digits followed by non
numeric characters, the function returns the value of the digits. For example, the
function would return 102 for the line "Entry= 102abc".

An application can use the GetPrivateProfilelnt function to retrieve an integer
from a specified file.

The following example uses the GetProfilelnt function to retrieve the screen-save
timeout time from the WIN.IN! file:

WORD wTimeOut;
char szMsg[80];

wTimeOut = GetProfilelnt("windows",
"ScreenSaveTimeOut", 0);

sprintf(szMsg, "timeout time is %d", wTimeOut);
MessageBox(hwnd, szMsg, "GetProfilelnt", MB_OK);

GetPrivateProfilelnt, GetProfileString

GetProfileString
int GetProfileString(lpszSection, lpszEntry, lpszDefault, lpszReturnBuffer, cbReturnBuffer)
LPCSTR lpszSection; /*address of section */
LPCSTR lpszEntry; /*address of entry */
LPCSTR lpszDefault; /*address of default string */
LPSTR lpszReturnBuffer; /*address of destination buffer */
int cbReturnBuffer; /* size of destination buffer */

Parameters

The GetProfileString function retrieves the string associated with an entry within
the specified section in the WIN.IN! initialization file.

lpszSection
Points to a null-terminated string that specifies the section containing the entry.

lpszEntry
Points to the null-terminated string containing the entry whose associated string
is to be retrieved. If this value is NULL, all entries in the section specified by

428 GetProfileString

Return Value

Comments

Example

the lpszSection parameter are copied to the buffer specified by the lpszReturn
Buffer parameter. For more information, see the following Comments section.

lpszDefault
Points to the default value for the given entry if the entry cannot be found in the
initialization file. This parameter must never be NULL.

lpszReturnBuffer
Points to the buffer that will receive the character string.

cbReturnBujfer
Specifies the size, in bytes, of the buffer pointed to by the lpszReturnBujfer pa
rameter.

The return value is the number of bytes copied to the buffer, not including the ter
minating zero, if the function is successful.

If the lpszEntry parameter is NULL, the GetProfileString function copies all en
tries in the specified section to the supplied buffer. Each string will be null-termi
nated, with the final string terminating with two null characters. If the supplied
destination buffer is too small to hold all the strings, the last string will be trun
cated and followed by two terminating null characters.

If the string associated with lpszEntry is enclosed in single or double quotation
marks, the marks are discarded when GetProfileString returns the string.

GetProfileString is not case-dependent, so the strings in the lpszSection and
lpszEntry parameters may contain a combination of uppercase and lowercase let
ters.

A string entry in the WIN.INI file must have the following form:

[section]
entry=string

An application can use the GetPrivateProfileString function to retrieve a string
from a specified file.

The lpszDefault parameter must point to a valid string, even if the string is empty
(its first character is zero).

The following example uses the GetProfileString function to list all the entries
and strings in the [windows] section of the WIN.IN! file:

See Also

GetProp

int c, cc;
PSTR pszBuf, pszKey;
char szMsg[80], szVal[80];

f* Allocate a buffer for the entries. */

pszBuf = (PSTR) LocalAlloc(LMEM_FIXED, 1024);

f* Retrieve all the entries in the [windows] section. */

GetProfileString("windows", NULL,"", pszBuf, 1024);

/*
* Retrieve the string for each entry, until
* reaching the double null character.
*f

for (pszKey = pszBuf, c = 0;

}

*pszKey != '\0'; pszKey += strlen(pszKey) + 1) {

f* Retrieve the value for each entry in the buffer. */

GetProfileString("windows", pszKey, "not found'',
szVal, sizeof(szVal));

cc = sprintf(szMsg, "%s = %s", pszKey, szVal);
TextOut(hdc, 10, 15 * c++, szMsg, cc);

LocalFree((HANDLE) pszBuf);

GetPrivateProfileString, W riteProfileString

Get Prop 429

HANDLE GetProp(hwnd, lpsz)
HWND hwnd; I* handle of window */
LPCSTR lpsz; /* atom or address of string */

Parameters

The GetProp function retrieves a data handle from the property list of a window.
The character string pointed to by the lpsz parameter identifies the handle to be re
trieved. The string and handle must be added to the property list by a previous call
to the SetProp function.

hwnd
Identifies the window whose property list is to be searched.

430 GetQueueStatus

Return Value

Comments

See Also

lpsz
Points to a null-terminated string or an atom that identifies a string. If an atom
is given, it must be a global atom created by a previous call to the GlobalAdd
Atom function. The atom, a 16-bit value, must be placed in the low-order word
of the lpsz parameter; the high-order word must be zero.

The return value is the associated data handle if the property list contains the given
string. Otherwise, it is NULL.

The value retrieved by the GetProp function can be any 16-bit value useful to the
application.

GlobalAddAtom, RemoveProp, SetProp

GetQueueStatus
DWORD GetQueueStatus(fuFlags)
UINT fuFlags; /*queue-status flags */

Parameters

The GetQueueStatus function returns a value that indicates the type of messages
in the queue.

This function is very fast and is typically used inside speed-critical loops to deter
mine whether the GetMessage or PeekMessage function should be called to
process input.

GetQueueStatus returns two sets of information: whether any new messages have
been added to the queue since GetQueueStatus, GetMessage, or PeekMessage
was last called, and what kinds of events are currently in the queue.

fuFlags
Specifies the queue-status flags to be retrieved. This parameter can be a combi
nation of the following values:

Value

QS_KEY

QS_MOUSE

QS_MOUSEMOVE

QS_MOUSEBUTTON

QS_PAINT

Meaning

WM_ CHAR message is in the queue.

WM_MOUSEMOVE or WM_ *BUTTON* message is
in the queue.

WM_MOUSEMOVE message is in the queue.

WM_ *BUTTON* message is in the queue.

WM_PAINT message is in the queue.

Return Value

Comments

See Also

Value

QS_POSTMESSAGE

QS_SENDMESSAGE

QS_TIMER

GetRasterizerCaps 431

Meaning

Posted message other than those listed above is in the
queue.

Message sent by another application is in the queue.

WM_ TIMER message is in the queue.

The high-order word of the return value indicates the types of messages currently
in the queue. The low-order word shows the types of messages added to the queue
and are still in the queue since the last call to the GetQueueStatus, GetMessage,
or PeekMessage function.

The existence of a QS_ flag in the return value does not guarantee that a sub
sequent call to the PeekMessage or GetMessage function will return a message.
GetMessage and PeekMessage perform some internal filtering computation that
may cause the message to be processed internally. For this reason, the return
value from GetQueueStatus should be considered only a hint as to whether
GetMessage or PeekMessage should be called.

GetlnputState, GetMessage, PeekMessage

GetRasterizerCaps
BOOL GetRasterizerCaps(lpraststat, cb)
RASTERIZER_STATUS FAR* lpraststat;
int cb;

/* address of structure for status
/* number of bytes in structure

*I
*/

Parameters

The GetRasterizerCaps function returns flags indicating whether TrueType fonts
are installed in the system.

lpraststat
Points to a RASTERIZER_ STATUS structure that receives information about
the rasterizer. The RASTERIZER_ ST A TUS structure has the following form:

typedef struct tagRASTERIZER_STATUS {
int nSize;
int wFlags;
int nlanguageID;

RASTERIZER_STATUS;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

432 GetRgnBox

Return Value

Comments

cb
Specifies the number of bytes that will be copied into the structure pointed to
by the lpraststat parameter.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The GetRasterizerCaps function enables applications and printer drivers to deter
mine whether TrueType is installed.

If the TT _AVAILABLE flag is set in the wFlags member of the
RASTERIZER_STATUS structure, at least one TrueType font is installed.
If the TT _ENABLED flag is set, True Type is enabled for the system.

See Also GetOutlineTextMetrics

GetRgnBox CI!J
int GetRgnBox(hrgn, lprc)
HRGN hrgn; /* handle of region */
RECT FAR* lprc; I* address of structure with rectangle */

Parameters

Return Value

The GetRgnBox function retrieves the coordinates of the bounding rectangle of
the given region.

hrgn
Identifies the region.

lprc
Points to a RECT structure that receives the coordinates of the bounding
rectangle. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is SIMPLEREGION (region has no overlapping borders),
COMPLEXREGION (region has overlapping borders), or NULLREGION (region
is empty), if the function is successful. Otherwise, the return value is ERROR.

Example

GetROP2
int GetROP2(hdc)

GetROP2 433

The following example uses the GetRgnBox function to determine the type of a
region:

RECT re;
HRGN hrgn;
int RgnType;

RgnType = GetRgnBox(hrgn, &re);

if (RgnType == COMPLEXREGION)
TextOut(hde, 10, 10, "COMPLEXREGION", 13);

else if (RgnType == SIMPLEREGION)
TextOut(hde, 10, 10, "SIMPLEREGION", 12);

else
TextOut(hde, 10, 10, "NULLREGION", 10);

HDC hdc; /* handle of device context *I

The GetROP2 function retrieves the current drawing mode. The drawing mode
specifies how the colors of the pen and the interior of filled objects are combined
with the color already on the screen surface.

Parameters hdc

Return Value

Comments

Identifies the device context.

The return value specifies the drawing mode if the function is successful.

The drawing mode is for raster devices only and does not apply to vector devices.
It can be any of the following values:

Value

R2_BLACK

R2_WHITE

R2_NOP

R2_NOT

R2_COPYPEN

R2_NOTCOPYPEN

R2_MERGEPENNOT

Meaning

Pixel is always black.

Pixel is always white.

Pixel remains unchanged.

Pixel is the inverse of the screen color.

Pixel is the pen color.

Pixel is the inverse of the pen color.

Pixel is a combination of the pen color and the inverse of
the screen color (final pixel = (-screen pixel) I pen).

434 GetROP2

Example

See Also

Value

R2_MASKPENNOT

R2_MERGENOTPEN

R2_MASKNOTPEN

R2_MERGEPEN

R2_NOTMERGEPEN

R2_MASKPEN

R2_NOTMASKPEN

R2_XORPEN

R2_NOTXORPEN

Meaning

Pixel is a combination of the colors common to both the pen
and the inverse of the screen (final pixel = (-screen pixel) &
pen).

Pixel is a combination of the screen color and the inverse of
the pen color (final pixel= (-pen) I screen pixel).

Pixel is a combination of the colors common to both the
screen and the inverse of the pen (final pixel = (-pen) &
screen pixel).

Pixel is a combination of the pen color and the screen color
(final pixel = pen I screen pixel).

Pixel is the inverse of the R2_MERGEPEN color (final
pixel= -(pen I screen pixel)).

Pixel is a combination of the colors common to both the pen
and the screen (final pixel = pen & screen pixel).

Pixel is the inverse of the R2_MASKPEN color (final pixel
=-(pen & screen pixel)).

Pixel is a combination of the colors that are in the pen and
in the screen, but not in both (final pixel = pen A screen
pixel).

Pixel is the inverse of the R2_XORPEN color (final pixel =
-(pen A screen pixel)).

The following example uses the GetROP2 function to test whether the current
drawing mode is R2_COPYPEN:

int nROP;

nROP = GetROP2(hdc);
if CnROP == R2_COPYPEN)

TextOut(hdc, 100, 100, "ROP is R2_COPYPEN.", 18);

GetDeviceCaps, SetROP2

GetSavefileName 435

GetSaveFileName [II]

#include <commdlg.h>

BOOL GetSaveFileName(lpofa)
OPENFILENAME FAR* lpofa; I* address of structure with initialization data *I

Parameters

Return Value

The GetSaveFileName function creates a system-defined dialog box that makes it
possible for the user to select a file to save.

lpofn
Points to an OPENFILENAME structure that contains information used to ini
tialize the dialog box. When the GetSaveFileName function returns, this struc
ture contains information about the user's file selection.

The OPENFILENAME structure has the following form:

#include <commdlg.h>

typedef struct tagOPENFILENAME { /* ofn */
DWORD lStructSize;
HWND hwndOwner;
HINSTANCE hlnstance;
LPCSTR lpstrFilter;
LPSTR lpstrCustomFilter;
DWORD nMaxCustFilter;
DWORD nFilterlndex;
LPSTR lpstrFile;
DWORD nMaxFile;
LPSTR lpstrFileTitle;
DWORD nMaxFileTitle;
LPCSTR lpstrlnitialDir;
LPCSTR lpstrTitle;
DWORD Flags;
UINT nFileOffset;
UI~T nFileExtension;
LPCSTR lpstrDefExt;
LPARAM lCustData;
UINT (CALLBACK* lpfnHook) CHWND, UINT, WPARAM, LPARAM);
LPCSTR lpTemplateName;

} OPENFILENAME;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the user selects a file to save. It is zero if an error oc
curs, if the user clicks the Cancel button, if the user chooses the Close command
on the System menu to close the dialog box, or if the buffer identified by the
lpstrFile member of the OPENFILENAME structure is too small to contain the
string that specifies the selected file.

436 GetSaveFileName

Errors The CommDlgExtendedError retrieves the error value, which may be one of the
following values:

Comments

Example

CDERR_FINDRESFAILURE
CDERR_INITIALIZATION
CDERR_LOCKRESFAILURE
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
FNERR_BUFFERTOOSMALL
FNERR_INV ALIDFILENAME
FNERR_SUBCLASSFAILURE

If the hook function (to which the lpfnHook member of the OPENFILENAME
structure points) processes the WM_CTLCOLOR message, this function must re
turn a handle for the brush that should be used to paint the control background.

The following example copies file-filter strings (filename extensions) into a buff
er, initializes an OPENFILENAME structure, and then creates a Save As dialog
box.

The file-filter strings are stored in the resource file in the following form:

STRINGTABLE
BEGIN

IDS_FILTERSTRING "Write Files(•.WRill•.wrilWord Files(•.DOC>l*.docl"
END

The replaceable character at the end of the string is used to break the entire string
into separate strings, while still guaranteeing that all the strings are continguous in
memory.

OPENFILENAME ofn;
char szDirName[256J;
char szFile[256], szFileTitle[256J;
UINT i, cbString;
char chReplace; /• string separator for szFilter •/
char szFilter[256J;
HFILE hf;

* Retrieve the system directory name and store it in
* szDirName.

See Also

*/
GetSystemDirectory(szDirName, sizeof(szDirName));

if ((cbString = LoadString(hinst, IDS_FILTERSTRING,
szFilter, sizeof(szFilter))) == 0) {

ErrorHandl er();
return 0;

GetSaveFileName 437

chReplace szFilter[cbString - 1]; /* retrieve wild character*/

for (i = 0; szFilter[iJ != '\0'; i++)
if (szFilter[i] == chReplace)

szFilter[iJ = '\0';

/* Set all structure members to zero. *I

memset(&ofn, 0, sizeof(OPENFILENAME));

/* Initialize the OPENFILENAME members. *I

szFile[0] = '\0';

ofn.lStructSize sizeof(OPENFILENAME);
ofn.hwndOwner = hwnd;
ofn.lpstrFilter = szFilter;
ofn.lpstrFile= szFile;
ofn.nMaxFile = sizeof(szFile);
ofn.lpstrFileTitle = szFileTitle;
ofn.nMaxFileTitle = sizeof(szFileTitle);
ofn.lpstrinitialDir = szDirName;
ofn.Flags = OFN_SHOWHELP I OFN_OVERWRITEPROMPT;

if (GetSaveFileName(&ofn))

/* Perform file operations. */

else
ErrorHandl er();

GetOpenFileName

438 GetScrollPos

GetScrollPos
int GetScrollPos(hwnd,feBar)
HWND hwnd; /* handle of window with scroll bar *I

/ int feBar; / scroll bar flags

Parameters

Return Value

See Also

The GetScrollPos function retrieves the current position of the scroll box (thumb)
of a scroll bar. The current position is a relative value that depends on the current
scrolling range. For example, if the scrolling range is 0 through 100 and the scroll
box is in the middle of the bar, the current position is 50.

hwnd
Identifies a window that has standard scroll bars or a scroll bar control, depend
ing on the value of the fnBar parameter.

feBar
Specifies the scroll bar to examine. It can be one of the following values:

Value

SB_CTL

SB_HORZ
SB_ VERT

Meaning

Retrieves the position of a scroll bar control. In this case, the hwnd
parameter must be the window handle of a scroll bar control.

Retrieves the position of a window's horizontal scroll bar.

Retrieves the position of a window's vertical scroll bar.

The return value specifies the current position of the scroll box in the scroll bar, if
the function is successful. Otherwise, it is zero, indicating that the hwnd parameter
is invalid or that the window does not have a scroll bar.

GetScrollRange, SetScrollPos, SetScrollRange

GetScrollRange
void GetScrollRange(hwnd,feBar, lpnMinPos, lpnMaxPos)
HWND hwnd; I* handle of window with scroll bar
int feBar; I* scroll bar flags
int FAR* lpnMinPos; /*receives minimum position
int FAR* lpnMaxPos; /* receives maximum position

*I
*I
*I
*I

The GetScrollRange function retrieves the current minimum and maximum scroll
bar positions for the given scroll bar.

GetSelectorBase 439

Parameters hwnd

Return Value

Comments

See Also

Identifies a window that has standard scroll bars or a scroll bar control, depend
ing on the value ofthefaBarpararneter.

faBar
Specifies which scroll bar to retrieve. This parameter can be one of the follow
ing values:

Value

SB_CTL

SB_HORZ
SB_ VERT

lpnMinPos

Meaning

Retrieves the position of a scroll bar control; in this case, the hwnd
parameter must be the handle of a scroll bar control.

Retrieves the position of a window's horizontal scroll bar.

Retrieves the position of a window's vertical scroll bar.

Points to the integer variable that receives the minimum position.

lpnMaxPos
Points to the integer variable that receives the maximum position.

This function does not return a value.

If the given window does not have standard scroll bars or is not a scroll bar con
trol, the GetScrollRange function copies zero to the lpnMinPos and lpnMaxPos
parameters.

The default range for a standard scroll bar is 0 through 100. The default range for
a scroll bar control is empty (both values are zero).

GetScrollPos, SetScrollPos, SetScrollRange

GetSelectorBase
DWORD GetSelectorBase(uSelector)
UINT uSelector;

The GetSelectorBase function retrieves the base address of a selector.

Parameters uSelector
Specifies the selector whose base address is retrieved.

440 GetSelectorlimit

Return Value This function returns the base address of the specified selector.

See Also GetSelectorLimit, SetSelectorBase, SetSelectorLimit

GetSelectorlimit
DWORD GetSelectorLimit(uSelector)
UINT uSelector;

The GetSelectorLimit function retrieves the limit of a selector.

Parameters uSelector
Specifies the selector whose limit is being retrieved.

Return Value This function returns the limit of the specified selector.

See Also GetSelectorBase, SetSelectorBase, SetSelectorLimit

GetStockObject
HGDIOBJ GetStockObject(frtObject)
int fnObject; I* type of stock object */

Parameters

The GetStockObject function retrieves a handle of one of the predefined stock
pens, brushes, or fonts.

fnObject
Specifies the type of stock object for which to retrieve a handle. This parameter
can be one of the following values:

Value Meaning

BLACK_BRUSH Black brush.

DKGRAY_BRUSH Dark-gray brush.

GRAY_BRUSH Gray brush.

HOLLOW _BRUSH Hollow brush.

LTGRAY _BRUSH Light-gray brush.

NULL_BRUSH Null brush.

Return Value

Comments

Example

See Also

Value

WHITE_BRUSH

BLACK_PEN

NULL_PEN

WHITE_pEN

ANSI_FIXED_FONT

ANSI_ VAR_FONT

DEVICE_DEFAULT_FONT

OEM_FIXED_FONT

SYSTEM_FONT

SYSTEM_FIXED_FONT

DEFAULT_PALETTE

Meaning

White brush.

Black pen.

Null pen.

White pen.

GetStockObject 441

Windows fixed-pitch system font.

Windows variable-pitch system font.

Device-dependent font.

OEM-dependent fixed font.

System font. By default, Windows uses the sys
tem font to draw menus, dialog box controls, and
other text. In Windows versions 3.0 and later, the
system font is a variable-pitch font width; earlier
versions of Windows use a fixed-pitch system
font.

Fixed-pitch system font used in Windows ver
sions earlier than 3.0. This object is available for
compatibility with earlier versions of Windows.

Default color palette. This palette consists of the
static colors in the system palette.

The return value is the handle of the specified object if the function is successful.
Otherwise, it is NULL.

The DKGRA Y _BRUSH, GRAY _BRUSH, and LTGRA Y _BRUSH objects
should be used only in windows with the CS_HREDRA W and CS_ VREDRA W
class styles. Using a gray stock brush in any other style of window can lead to mis
alignment of brush patterns after a window is moved or sized. The origins of stock
brushes cannot be adjusted.

The following example retrieves the handle of a black brush by calling the Get
StockObject function, selects the brush into the device context, and fills a
rectangle by using the black brush:

HBRUSH hbr, hbrOld;

hbr = GetStockObject(BLACK_BRUSH);
hbrOld = SelectObject(hdc, hbr);
Rectangle(hdc, 10, 10, 100, 100);

GetObject, SetBrushOrg

442 GetStretchBltMode

GetStretchBltMode
int GetStretchBltMode(hdc)
HDC hdc; I* handle of device context */

The GetStretchBltMode function retrieves the current bitmap-stretching mode.
The bitmap-stretching mode defines how information is removed from bitmaps
that were compressed by using the StretchBlt function.

Parameters hdc

Return Value

Comments

Example

See Also

Identifies the device context.

The return value specifies the current bitmap-stretching mode
STRETCH_ANDSCANS, STRETCH_DELETESCANS, or
STRETCH_ ORSCANS-if the function is successful.

The STRETCH_ANDSCANS and STRETCH_ORSCANS modes are
typically used to preserve foreground pixels in monochrome bitmaps. The
STRETCH_DELETESCANS mode is typically used to preserve color in color bit
maps. For more information, see the SetStretchBltMode function.

The following example uses the GetStretchBltMode function to determine
whether the current bitmap-stretching mode is STRETCH_DELETESCANS; if
so, it uses the StretchBlt function to display a compressed bitmap.

HDC hdcMem;

int nStretchMode;

nStretchMode = GetStretchBltMode(hdc);
if CnStretchMode == STRETCH_DELETESCANS) {

}

StretchBlt(hdc, 50, 175, 32, 32, hdcMem, 0, 0, 64, 64,
SRCCDPY);

SetStretchBltMode, StretchBlt

GetSysColor 443

GetSubMenu CI!J
HMENU GetSubMenu(hmenu, nPos)
HMENU hmenu; !* handle of menu with pop-up menu */
int nPos; /* position of pop-up menu */

Parameters

The GetSubMenu function retrieves the handle of a pop-up menu.

hmenu
Identifies the menu with the pop-up menu whose handle is to be retrieved.

nPos
Specifies the position in the given menu of the pop-up menu. Position values
start at zero (zero-based) for the first menu item. The pop-up menu's identifier
cannot be used in this function.

Return Value The return value is the handle of the given pop-up menu if the function is success
ful. Otherwise, it is NULL, indicating that no pop-up menu exists at the given posi
tion.

See Also CreatePopupMenu, GetMenu

GetSysColor CI!J
COLORREF GetSysColor(nDspElement)
int nDspElement; /* display element */

Parameters

The GetSysColor function retrieves the current color of the specified display ele
ment. Display elements are the various parts of a window and the Windows dis
play that appear on the system screen.

nDspElement
Specifies the display element whose color is to be retrieved. This parameter can
be one of the following values:

Value

COLOR_ACTIVEBORDER

COLOR_ACTIVECAPTION

COLOR_APPWORKSPACE

COLOR_BACKGROUND

Meaning

Active window border.

Active window title.

Background color of multiple document
interface (MDI) applications.

Desktop.

444 GetSysColor

Return Value

Comments

See Also

Value

COLOR_BTNFACE

COLOR_BTNHIGHLIGHT

COLOR_BTNSHADOW

COLOR_BTNTEXT

COLOR_CAPTIONTEXT

COLOR_GRAYTEXT

COLOR_HIGHLIGHT

COLOR_HIGHLIGHTTEXT

COLOR_INACTIVEBORDER

COLOR_INACTIVECAPTION

COLOR_INACTIVECAPTIONTEXT

COLOR_ MENU

COLOR_MENUTEXT

COLOR_SCROLLBAR

COLOR_ WINDOW

COLOR_ WINDOWFRAME

COLOR_ WINDOWTEXT

Meaning

Face shading on push buttons.

Selected button in a control.

Edge shading on push buttons.

Text on push buttons.

Text in title bar, size button, scroll-bar
arrow button.

Grayed (dimmed) text. This color is zero
if the current display driver does not sup
port a solid gray color.

Background of selected item in a control.

Text of selected item in a control.

Inactive window border.

Inactive window title.

Color of text in an inactive title.

Menu background.

Text in menus.

Scroll-bar gray area.

Window background.

Window frame.

Text in windows.

The return value is a red, green, blue (RGB) color value for the specified display
element, if the function is successful.

An application can use the GetRValue, GetGValue, and GetBValue macros to
extract the various colors from the return value.

GetSystemMetrics, SetSysColors

GetSystemDebugState 445

GetSysModalWindow ~

HWND GetSysModalWindow(void)

Parameters

Return Value

See Also

The GetSysModalWindow function retrieves the handle of the system-modal win
dow, if one is present.

This function has no parameters.

The return value is the handle of the system-modal window, if one is present.
Otherwise, it is NULL.

SetSysModalWindow

GetSystem DebugState
LONG GetSystemDebugState(void)

Parameters

Return Value

The GetSystemDebugState function retrieves information about the state of the
system. A Windows-based debugger can use this information to determine
whether to enter hard mode or soft mode upon encountering a breakpoint.

This function has no parameters.

The return value can be one or more of the following values:

Value

SDS_MENU

SDS_SYSMODAL

SDS_NOTASKQUEUE

SDS_DIALOG

SDS_TASKLOCKED

Meaning

Menu is displayed.

System-modal dialog box is displayed.

Application queue does not exist yet and, therefore, the ap
plication cannot accept posted messages.

Dialog box is displayed.

Current task is locked and, therefore, no other task is per
mitted to run.

446 GetSystemDir

GetSystemDir
#include <ver.h>

UINT GetSystemDir(lpszWinDir, lpszBuf, cbBuf)
LPCSTR lpszWinDir; I* address of Windows directory */
LPSTR lpszBuf; I* address of buffer for path *I
int cbBuf; I* size of buffer */

Parameters

Return Value

Comments

See Also

The GetSystemDir function retrieves the path of the Windows system directory.
This directory contains such files as Windows libraries, drivers, and fonts.

GetSystemDir is used by MS-DOS applications that set up Windows applica
tions; it exists only in the static-link version of the File Installation library. Win
dows applications should use the GetSystemDirectory function to determine the
Windows directory.

lpszWinDir
Points to the Windows directory retrieved by a previous call to the Get
WindowsDir function.

lpszBuf
Points to the buffer that is to receive the null-terminated string containing the
path.

cbBuf
Specifies the size, in bytes, of the buffer pointed to by the lpszBuf parameter.

The return value is the length of the string copied to the buffer, in bytes, including
the terminating null character, ifthe function is sucessful. If the return value is
greater than the cbBuf parameter, the return value is the size of the buffer required
to hold the path. The return value is zero if the function fails.

An application must call the GetWindowsDir function before calling the Get
SystemDir function to obtain the correct lpsz WinDir value.

The path that this function retrieves does not end with a backslash unless the Win
dows system directory is the root directory. For example, if the system directory is
named WINDOWS\SYSTEM on drive C, the path of the system directory re
trieved by this function is C:\WINDOWS\SYSTEM.

GetSystemDirectory, GetWindowsDir

GetSystemDirectory 447

GetSystemDirectory CITJ
UINT GetSystemDirectory(/pszSysPath, cbSysPath)
LPSTR lpszSysPath; /* address of buffer for system directory */
UINT cbSysPath; /* size of directory buffer */

Parameters

Return Value

Comments

Example

The GetSystemDirectory function retrieves the path of the Windows system
directory. The system directory contains such files as Windows libraries, drivers,
and font files.

lpszSysPath
Points to the buffer that is to receive the null-terminated string containing the
path of the system directory.

cbSysPath
Specifies the maximum size, in bytes, of the buffer. This value should be set to
at least 144 to allow sufficient room in the buffer for the path.

The return value is the length, in bytes, of the string copied to the lpszSysPath pa
rameter, not including the terminating null character. If the return value is greater
than the size specified in the cbSysPath parameter, the return value is the size of
the buffer required to hold the path. The return value is zero if the function fails.

Applications should not create files in the system directory. If the user is running a
shared version of Windows, the application will not have write access to the sys
tem directory. Applications should create files only in the directory returned by the
Get WindowsDirectory function.

The path that this function retrieves does not end with a backslash unless the sys
tem directory is the root directory. For example, if the system directory is named
WINDOWS\SYSTEM on drive C, the path of the system directory retrieved by
this function is C:\WINDOWS\SYSTEM.

A similar function, GetSystemDir, is intended for use by MS-DOS applications
that set up Windows applications. Windows applications should use GetSystem
Directory, not GetSystemDir.

The following example uses the GetSystemDirectory function to determine the
path of the Windows system directory:

WORD wReturn;
char szBuf[l44];

wReturn = GetSystemDirectory((LPSTR) szBuf, sizeof(szBuf));

448 GetSystemMenu

See Also

if (wReturn == 0)
MessageBox(hwnd, "function failed",

"GetSystemDirectory", MB_ICONEXCLAMATION);

else if (wReturn > sizeof(szBuf))

else

MessageBox(hwnd, "buffer is too small",
"GetSystemDirectory", MB_ICONEXCLAMATION);

MessageBox(hwnd, szBuf, "GetSystemDi rectory", MB_OK);

Get WindowsDirectory

GetSystemMenu
HMENU GetSystemMenu(hwnd,jRevert)
HWND hwnd; /* handle of window to own the System menu */

*/ BOOLJRevert; /*reset flag

The GetSystemMenu function allows the application to access the System menu
for copying and modification.

Parameters hwnd

Return Value

Comments

Identifies the window that will own a copy of the System menu.

JR eve rt
Specifies the action to be taken. If this parameter is FALSE, the GetSystem
Menu function returns a handle of a copy of the System menu currently in use.
This copy is initially identical to the System menu, but can be modified.

If the parameter is TRUE, GetSystemMenu resets the System menu back to
the Windows default state. The previous System menu, if any, is destroyed. The
return value is undefined in this case.

The return value is the handle of a copy of the System menu, if the jRevert parame
ter is FALSE. If jRevert is TRUE, the return value is undefined.

Any window that does not use the GetSystemMenu function to make its own
copy of the System menu receives the standard System menu.

The handle that GetSystemMenu returns can be used with the AppendMenu,
InsertMenu, or ModifyMenu function to change the System menu. The System
menu initially contains items identified by various identifier values such as
SC_ CLOSE, SC_MOVE, and SC_SIZE. Menu items on the System menu send
WM_SYSCOMMAND messages. All predefined System-menu items have

Example

See Also

GetSystemMetrics 449

identifier numbers greater than OxFOOO. If an application adds commands to the
System menu, it should use identifier numbers less than OxFOOO.

Windows automatically grays (dims) items on the standard System menu, depend
ing on the situation. The application can carry out its own checking or graying by
responding to the WM_INITMENU message, which is sent before any menu is
displayed.

The following example appends the About item to the System menu:

HMENU hmenu;

hmenu = GetSystemMenu(hwnd, FALSE);
AppendMenu(hmenu, MF_SEPARATOR, 0, (LPSTR) NULL);
AppendMenu(hmenu, MF_STRING, IDM_ABOUT, "About ... ");

AppendMenu, InsertMenu, ModifyMenu

GetSystemMetrics
int GetSystemMetrics(nJndex)
int nlndex; /* system measurement to retrieve *I

Parameters

The GetSystemMetrics function retrieves the system metrics. The system metrics
are the widths and heights of the various elements displayed by Windows. Get
SystemMetrics can also return flags that indicate whether the current version of
the Windows operating system is a debugging version, whether a mouse is pre
sent, or whether the meanings of the left and right mouse buttons have been
exchanged.

nlndex
Specifies the system measurement to be retrieved. All measurements are given
in pixels. The system measurement must be one of the following values:

Value

SM_CXBORDER

SM_CYBORDER

SM_CYCAPTION

SM_CXCURSOR

SM_CYCURSOR

Meaning

Width of window frame that cannot be sized.

Height of window frame that cannot be sized.

Height of window title. This is the title height
plus the height of the window frame that can
not be sized (SM_CYBORDER).

Width of cursor.

Height of cursor.

450 GetSystemMetrics

Value

SM_CXDOUBLECLK

SM_CYDOUBLECLK

SM_CXDLGFRAME

SM_CYDLGFRAME

SM_CXFRAME

SM_CYFRAME

SM_CXFULLSCREEN

SM_CYFULLSCREEN

SM_CXICON

SM_CYICON

SM_CXICONSPACING

SM_CYICONSPACING

SM_CYKANJIWINDOW

SM_CYMENU

SM_CXMIN

SM_CYMIN

SM_CXMINTRACK

SM_CYMINTRACK

SM_CXSCREEN

SM_ CY SCREEN

SM_CXHSCROLL

SM_CYHSCROLL

Meaning

Width of the rectangle around the location of
the first click in a double-click sequence. The
second click must occur within this rectangle
for the system to consider the two clicks a
double-click.

Height of the rectangle around the location of
the first click in a double-click sequence. The
second click must occur within this rectangle
for the system to consider the two clicks a
double-click.

Width of frame when window has the
WS_DLGFRAME style.

Height of frame when window has the
WS_DLGFRAME style.

Width of window frame that can be sized.

Height of window frame that can be sized.

Width of window client area for a full-screen
window.

Height of window client area for a full-screen
window (equivalent to the height of the
screen minus the height of the window title).

Width of icon.

Height of icon.

Width of rectangles the system uses to posi
tion tiled icons.

Height of rectangles the system uses to posi
tion tiled icons.

Height of Kanji window.

Height of single-line menu bar. This is
the menu height minus the height of the
window frame that cannot be sized
(SM_CYBORDER).

Minimum width of window.

Minimum height of window.

Minimum tracking width of window.

Minimum tracking height of window.

Width of screen.

Height of screen.

Width of arrow bitmap on a horizontal scroll
bar.

Height of arrow bitmap on a horizontal
scroll bar.

Return Value

Comments

See Also

Value

SM_CXVSCROLL

SM_CYVSCROLL

SM_CXSIZE

SM_CYSIZE

SM_CXHTHUMB

SM_CYVTHUMB

SM_DBCSENABLED

SM_DEBUG

SM_MENUDROPALIGNMENT

SM_MOUSEPRESENT

SM_PENWINDOWS

SM_SWAPBUTTON

GetSystemPaletteEntries 451

Meaning

Width of arrow bitmap on a vertical scroll bar.

Height of arrow bitmap on a vertical scroll
bar.

Width of bitmaps contained in the title bar.

Height of bitmaps contained in the title bar.

Width of scroll box (thumb) on horizontal
scroll bar.

Height of scroll box on vertical scroll bar.

Nonzero if current version of Windows uses
double-byte characters; otherwise, this value
returns zero.

Nonzero if the Windows version is a debug
ging version.

Alignment of pop-up menus. If this value is
zero, the left side of a pop-up menu is aligned
with the left side of the corresponding menu
bar item. If this value is nonzero, the left side
of a pop-up menu is aligned with the right
side of the corresponding menu-bar item.

Nonzero if the mouse hardware is installed.

Handle of the Pen Windows dynamic-link
library (DLL) if Pen Windows is installed.

Nonzero if the left and right mouse buttons
are swapped.

The return value specifies the requested system metric if the function is successful.

System metrics depend on the type of screen and may vary from screen to screen.

GetSysColor, SystemParameterslnfo

GetSystemPa I etteEntri es
UINT GetSystemPaletteEntries(hdc, iStart, cEntries, lppe)
HDC hdc; /* handle of device context
UINT iStart; I* first palette entry to retrieve
UINT cEntries; /* number of entries to retrieve
PALETTEENTRY FAR* lppe; /*address of structure for palette entries

*/
*/
*/
*/

452 GetSystemPaletteEntries

The GetSystemPaletteEntries function retrieves a range of palette entries from
the system palette.

Parameters hdc

Return Value

Example

See Also

Identifies the device context.

iStart
Specifies the first system-palette entry to be retrieved.

cEntries
Specifies the number of system-palette entries to be retrieved.

lppe
Points to an array of PALETTEENTRY structures that receives the palette en
tries. The array must contain at least as many structures as specified by the
cEntries parameter. The PALETTEENTRY structure has the following form:

typedef struct tagPALETTEENTRY
BYTE peRed;
BYTE peGreen;
BYTE peBlue;
BYTE peFlags;

} PALETTE ENTRY;

f* pe */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the number of entries retrieved from the system palette, if the
function is successful. Otherwise, it is zero.

The following example uses the GetDeviceCaps function to determine whether
the specified device is palette-based. If the device supports palettes, the Get
SystemPaletteEntries function is called, using GetDeviceCaps again, this time to
determine the number of entries in the system palette.

PALETTEENTRY pe[MAXNUMBER];

hdc = GetDC(hwnd);
if (!(GetDeviceCaps(hdc, RASTERCAPS) & RC_PALETTE))

ReleaseDC(hwnd, hdc);
break;

GetSystemPaletteEntries(hdc, 0, GetDeviceCaps(hdc, SIZEPALETTE),
pe);

ReleaseDC(hwnd, hdc);

GetDeviceCaps, GetPaletteEntries

GetSystemPaletteUse 453

GetSystemPaletteUse []_]]
UINT GetSystemPaletteUse(hdc)
HDC hdc; /*handle of device context */

The GetSystemPaletteUse function determines whether an application has access
to the entire system palette.

Parameters hdc

Return Value

Comments

Example

See Also

Identifies the device context. This device context must support color palettes.

The return value specifies the current use of the system palette, if the function is
successful. This parameter can be one of the following values:

Value

SYSPAL_NOSTATIC

SYSPAL_STATIC

Meaning

System palette contains no static colors except black and
white.

System palette contains static colors that do not change
when an application realizes its logical palette.

The system palette contains 20 default static colors that are not changed when an
application realizes its logical palette. An application can gain access to most of
these colors by calling the SetSystemPaletteUse function.

The following example uses the GetDeviceCaps function to determine whether
the specified device is palette-based. If the device supports palettes, the Get
SystemPaletteUse function is called.

WORD nUse;

hdc = GetDC(hwnd);
if ((GetDeviceCaps(hdc, RASTERCAPS) & RC PALETTE) 0) {

ReleaseDC(hwnd, hdc);
break;

nUse = GetSystemPaletteUse(hdc);
ReleaseDC(hwnd, hdc);

GetDeviceCaps, SetSystemPaletteUse

454 GetTabbedTextExtent

GetTabbedTextExtent
DWORD GetTabbedTextExtent(hdc, lpszString, cChars, cTabs, lpnTabs)
HDC hdc; I* handle of device context */
LPCSTR lpszString; I* address of string */
int cChars; I* number of characters in string */
int cTabs; I* number of tab positions */
int FAR* lpnTabs; I* address of array of tab positions */

The GetTabbedTextExtent function computes the width and height of a charac
ter string. If the string contains one or more tab characters, the width of the string
is based upon the specified tab stops. GetTabbedTextExtent uses the currently
selected font to compute the dimensions of the string.

Parameters hdc

Return Value

Comments

Identifies the device context.

lpszString
Points to a character string.

cChars
Specifies the number of characters in the text string.

cTabs
Specifies the number of tab-stop positions in the array pointed to by the
lpnTabs parameter.

lpnTabs
Points to an array containing the tab-stop positions, in device units. The tab
stops must be sorted in increasing order; the smallest x-value should be the first
item in the array.

The low-order word of the return value contains the string width, in logical units,
if the function is successful; the high-order word contains the string height.

The current clipping region does not affect the width and height returned by the
GetTabbedTextExtent function.

Since some devices do not place characters in regular cell arrays (that is, they kern
the characters), the sum of the extents of the characters in a string may not be
equal to the extent of the string.

Example

See Also

GetTempDrive 455

If the cTabs parameter is zero and the lpnTabs parameter is NULL, tabs are ex
panded to eight times the average character width. If cTabs is 1, the tab stops are
separated by the distance specified by the first value in the array to which lpnTabs
points.

The following example uses the LOWORD and HIWORD macros to retrieve the
width and height of the string from the value returned by the GetTabbedTextEx
tent function:

LPSTR lpszTabbedText = "Column 1\tColumn 2\tTest of TabbedTextOut";
int aTabs[2] = { 150, 300 };
DWORD dwTabExtent;
WORD wStringWidth, wStringHeight;

dwTabExtent = GetTabbedTextExtent(hdc, /* handle of device context
lpszTabbedText, /* address of text
lstrlen(lpszTabbedText), /* number of characters
sizeof(aTabs) I sizeof(int), f* number of tabs in array
a Tabs); f* array for tab positions

wStringWidth = LOWORD(dwTabExtent); /*gets width of string */
wStringHeight = HIWORDCdwTabExtent); /*gets height of string */

GetTextExtent, TabbedTextOut

*f
*f
*f
*f
*f

GetTempDrive lliJ
BYTE GetTempDrive(chDriveLetter)
char chDriveLetter; !* ignored */

Parameters

Return Value

The GetTempDrive function returns a letter that specifies a disk drive the applica
tion can use for temporary files.

chDriveLetter
This parameter is ignored.

The return value specifies a disk drive for temporary files if the function is success
ful. If at least one hard disk drive is available, the function returns the letter of the
first hard disk drive (usually C). If no hard disk drives are available, the function
returns the letter of the current drive.

456 GetTempfileName

Example The following example uses the GetTempDrive function to determine a suitable
disk drive for temporary files:

See Also

char szMsg[80J;
BYTE bTempDrive;

bTempDrive = GetTempDrive(0);

sprintf(szMsg, "temporary drive: %c", bTempDrive);

MessageBoxChwnd, szMsg, "GetTempDrive", MB_OK);

GetTempFileName

GetTempFileName
int GetTempFileName(bDriveLetter, lpszPrefixString, uUnique, lpszTempFileName)
BYTE bDriveLetter; /* suggested drive */
LPCSTR lpszPrefixString; /* address of filename prefix */
UINT uUnique; /*number to use as prefix */
LPSTR lpszTempFileName; I* address of buffer for created filename */

Parameters

The GetTempFileName function creates a temporary filename of the following
form:

drive: \path\prefixuuuu. TMP

The following list describes the filename syntax:

Element

drive

path

prefix

uuuu

bDriveLetter

Description

Drive letter specified by the bDriveLetter parameter

Path of the temporary file (either the Windows directory or the directory
specified in the TEMP environment variable)

All the letters (up to the first three) of the string pointed to by the
lpszPrefixString parameter

Hexadecimal value of the number specified by the uUnique parameter

Specifies the suggested drive for the temporary filename. If this parameter is
zero, Windows uses the current default drive.

lpszPrefixString
Points to a null-terminated string to be used as the temporary filename prefix.
This string must consist of characters in the OEM-defined character set.

Return Value

Comments

Example

GetTempFileName 457

uUnique
Specifies an unsigned short integer. If this parameter is nonzero, it will be ap
pended to the temporary filename. If the parameter is zero, Windows uses the
current system time to create a number to append to the filename.

lpszTempFileName
Points to the buffer that will receive the temporary filename. This string con
sists of characters in the OEM-defined character set. This buffer should be at
least 144 bytes in length to allow sufficient room for the path.

The return value specifies a unique numeric value used in the temporary filename.
If the uUnique parameter is nonzero, the return value specifies this same number.

Temporary files created with this function are not automatically deleted when Win
dows shuts down.

To avoid problems resulting from converting an OEM character string to a Win
dows string, an application should call the _lopen function to create the temporary
file.

The GetTempFileName function uses the suggested drive letter for creating the
temporary filename, except in the following cases:

• If a hard disk is present, GetTempFileName always uses the drive letter of the
first hard disk.

• If, however, a TEMP environment variable is defined and its value begins with
a drive letter, that drive letter is used.

If the TF _FORCED RIVE bit of the bDriveLetter parameter is set, the preceding
exceptions do not apply. The temporary filename will always be created in the cur
rent directory of the drive specified by bDriveLetter, regardless of the presence of
a hard disk or the TEMP environment variable.

If the uUnique parameter is zero, GetTempFileName attempts to form a unique
number based on the current system time. If a file with the resulting filename ex
ists, the number is increased by one and the test for existence is repeated. This con
tinues until a unique filename is found; GetTempFileName then creates a file by
that name and closes it. No attempt is made to create and open the file when
uUnique is nonzero.

The following example uses the GetTempFileName function to create a unique
temporary filename on the first available hard disk:

HFILE hfTempFile;
char szBuf[144];

458 GetTextAlign

/* Create a temporary file. */

GetTempFileName(0, "tst", 0, szBufl;

hfTempFile = _ lcreat(szBuf, 0);

if (hfTempFile == HFILE_ERROR) {
ErrorHandl er();

}

See Also GetTempDrive, _lopen

GetTextAlign CI!J
UINT GetTextAlign(hdc)
HDC hdc; /*handle of device context */

The GetTextAlign function retrieves the status of the text-alignment flags for the
given device context.

Parameters hdc

Return Value

Identifies the device context.

The return value specifies the status of the text-alignment flags. This parameter
can be one or more of the following values:

Value

TA_BASELINE

TA_BOTTOM

TA_ CENTER

TA_LEFT

TA_NOUPDATECP

TA_ RIGHT

TA_TOP

TA_UPDATECP

Meaning

Specifies alignment of the x-axis and the base line of the
chosen font within the bounding rectangle.

Specifies alignment of the x-axis and the bottom of the bound
ing rectangle.

Specifies alignment of the y-axis and the center of the bound
ing rectangle.

Specifies alignment of the y-axis and the left side of the
bounding rectangle.

Specifies that the current position is not updated.

Specifies alignment of the y-axis and the right side of the
bounding rectangle.

Specifies alignment of the x-axis and the top of the bounding
rectangle.

Specifies that the current position is updated.

Comments

Example

See Also

GetTextAlign 459

The text-alignment flags retrieved by the GetTextAlign function are used by the
TextOut and ExtTextOut functions. These flags determine how TextOut and
ExtTextOut align a string of text in relation to the string's starting point.

The text-alignment flags are not necessarily single-bit flags and may be equal to
zero. To test whether a flag is set, an application should follow three steps:

1. Apply the bitwise OR operator to the flag and its related flags.

Following are the groups of related flags:

• TA_LEFT, TA_CENTER, and TA_RIGHT

• TA_BASELINE, TA_BOTTOM, and TA_TOP

• TA_NOUPDATECPandTA_UPDATECP

2. Apply the bitwise AND operator to the result and the return value of the
GetTextAlign function.

3. Test for the equality of this result and the flag.

The following example uses the method described in the preceding Comments sec
tion to determine whether text is aligned at the right, left, or center of the bounding
rectangle. If the T A_RIGHT flag is set, the SetTextAlign function is used to set
the text alignment to the left side of the rectangle.

switch ((TA_LEFT I TA_CENTER I TA_RIGHT) & GetTextAlign(hdc)) {
case TA_RIGHT:

TextOut(hdc, 200, 100, "This is TA_RIGHT.", 17);
SetTextAlign(hdc, TA_LEFT);
TextOut(hdc, 200, 120, "This is TA_LEFT.", 16);
break;

case TA_LEFT:

case TA CENTER:

ExtTextOut, SetTextAlign, TextOut

460 GetTextCharacterExtra

GetTextCharacterExtra
int GetTextCharacterExtra(hdc)
HDC hdc; /* handle of device context *I

The GetTextCharacterExtra function retrieves the current setting for the amount
of intercharacter spacing. Graphics device interface (GDI) adds this spacing to
each character, including break characters, when it writes a line of text to the
device context.

Parameters hdc
Identifies the device context.

Return Value The return value specifies the amount of intercharacter spacing if the function is
successful.

Comments The default value for the amount of intercharacter spacing is zero.

See Also SetTextCharacterExtra

GetTextColor ~

COLORREF GetTextColor(hdc)
HDC hdc; I* handle of device context */

The GetTextColor function retrieves the current text color. The text color is the
foreground color of characters drawn by using the graphics device interface (GDI)
text-output functions.

Parameters hdc

Return Value

Example

Identifies the device context.

The return value specifies the current text color as a red, green, blue (RGB) color
value, if the function is successful.

The following example sets the text color to red if the GetTextColor function de
termines that the current text color is black:

GetTextExtent 461

DWDRD dwColor;

dwColor = GetTextColor(hdc);
if CdwColor == RGBC0, 0, 0)) /*if current color is black*/

SetTextColor(hdc, RGBC255, 0, 0)); /*sets color to red */

See Also GetBkColor, GetBkMode, SetBkMode, SetTextColor

G etTextExtent
DWORD GetTextExtent(hdc, lpszString, cbString)
HDC hdc; I* handle of device context *I

*I
*I

LPCSTR lpszString; /*address of string
int cbString; /* number of bytes in string

The GetTextExtent function computes the width and height of a line of text,
using the current font to compute the dimensions.

Parameters hdc

Return Value

Comments

Example

Identifies the device context.

lpszString
Points to a character string.

ch String
Specifies the number of bytes in the string.

The low-order word of the return value contains the string width, in logical units,
if the function is successful; the high-order word contains the string height.

The current clipping region does not affect the width and height returned by the
GetTextExtent function.

Since some devices do not place characters in regular cell arrays (that is, they kern
characters), the sum of the extents of the characters in a string may not be equal to
the extent of the string.

The following example retrieves the number of characters in a string by using the
lstrlen function, calls the GetTextExtent function to retrieve the dimensions of
the string, and then uses the LOWORD macro to determine the string width, in
logical units:

462 GetTextExtentPoint

See Also

DWORD dwExtent;
WORD wTextWidth;
LPSTR lpszJustified = "Text to be justified in this test.";

dwExtent = GetTextExtent(hdc, lpszJustified, lstrlen(lpszJustified));
wTextWidth = LOWORD(dwExtent);

GetTabbedTextExtent, SetTextJustification

GetTextExtentPoint
BOOL GetTextExtentPoint(hdc, lpszString, cbString, lpSize)
HDC hdc; /* handle of device context
LPCSTR lpszString; I* address of text string
int cbString; /* number of bytes in string
SIZE FAR* lpSize; !* address if structure for string size

*/
*I
*I
*/

The GetTextExtentPoint function computes the width and height of the specified
text string. The GetTextExtentPoint function uses the currently selected font to
compute the dimensions of the string. The width and height, in logical units, are
computed without considering any clipping.

The GetTextExtentPoint function may be used as either a wide-character func
tion (where text arguments must use Unicode) or an ANSI function (where text
arguments must use characters from the Windows 3.x character set).

Parameters hdc
Identifies the device context.

lpszString
Points to a text string.

cbString
Specifies the number of bytes in the text string.

lpSize
Points to a SIZE structure that will receive the dimensions of the string The
SIZE structure has the following form:

typedef struct tagSIZE {
int ex;
int cy;

} SIZE;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

Return Value

Comments

GetTextFace 463

The return value is nonzero if the function is successful. Otherwise, it is zero.

Because some devices do not place characters in regular cell arrays-that is, be
cause they carry out kerning-the sum of the extents of the characters in a string
may not be equal to the extent of the string.

The calculated width takes into account the intercharacter spacing set by the
SetTextCharacterExtra function.

See Also SetTextCharacterExtra

GetTextFace ~

int GetTextFace(hdc, cbBuffer, lpszFace)
HDC hdc; /* handle of device context */
int cbBuffer; I* size of buffer for face name */
LPSTR lpszFace; /*pointer to buffer for face name */

The GetTextFace function copies the typeface name of the current font into a
buffer. The typeface name is copied as a null-terminated string.

Parameters hdc

Return Value

Example

Identifies the device context.

cbBuffer
Specifies the buffer size, in bytes. If the typeface name is longer than the num
ber of bytes specified by this parameter, the name is truncated.

lpszFace
Points to the buffer for the typeface name.

The return value specifies the number of bytes copied to the buffer, not including
the terminating null character, if the function is successful. Otherwise, it is zero.

The following example uses the GetTextFace function to retrieve the name of the
current typeface, calls the SetTextAlign function so that the current position is up
dated when the TextOut function is called, and then writes some introductory text
and the name of the typeface by calling TextOut:

int nFaceNamelen;
char aFaceName[80J;

464 GetTextMetrics

nFaceNamelen = GetTextFace(hdc, /* returns length of string */
sizeof(aFaceName), /*size of face-name buffer */
(LPSTR) aFaceName); /*address of face-name buffer*/

SetTextAlign(hdc,
TA_UPDATECP); /*updates current position */

MoveTo(hdc, 100, 100); /*sets current position */
TextOut(hdc, 0, 0, /* uses current position for text */

"This is the current face name: ", 31);
TextOut(hdc, 0, 0, aFaceName, nFaceNamelen);

See Also GetTextMetrics, SetTextAlign, TextOut

GetTextMetrics
BOOL GetTextMetrics(hdc, lptm)
HDC hdc; /* handle of device context
TEXTMETRIC FAR* lptm; /* pointer to structure for font metrics

*!
*/

The GetTextMetrics function retrieves the metrics for the current font.

Parameters hdc
Identifies the device context.

lptm
Points to the TEXTMETRIC structure that receives the metrics. The TEXT
METRIC structure has the following form:

typedef struct tagTEXTMETRIC /* tm */
int tmHeight;
int tmAscent;
int tmDes.cent;
int tminternalleading;
int tmExternalleading;
int tmAveCharWidth;
int tmMaxCharWidth;
int tmWeight;
BYTE tmitalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmFirstChar;
BYTE tmlastChar;
BYTE tmDefaultChar;
BYTE tmBreakChar;
BYTE tmPitchAndFamily;
BYTE tmCharSet;

Return Value

Example

See Also

int tmOverhang;
int tmDigitizedAspectX;
int tmDigitizedAspectY;

TEXTMETRIC;

GetThresholdEvent 465

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The following example calls the GetTextMetrics function and then uses informa
tion in a TEXTMETRIC structure to determine how many break characters are in
a string of text:

TEXTMETRIC tm;
int j, cBreakChars, cchString;
LPSTR lpszJustified = "Text to be justified in this test.";

GetTextMetrics(hdc, &tm);

cchString = lstrlen(lpszJustified);

for (cBreakChars = 0, j = 0; j < cchString; j++)
if(*(lpszJustified + j) == (char) tm.tmBreakChar)

cBreakChars++;

GetTextAlign, GetTextExtent, GetTextFace, SetTextJustification

GetThresholdEvent
int FAR* GetThresholdEvent(void)

This function is obsolete. Use the Windows multimedia audio functions instead.
For information about these functions, see the Microsoft Windows Multimedia Pro
grammer's Reference.

466 GetThresholdStatus

GetThresholdStatus
int GetThresholdStatus(void)

This function is obsolete. Use the Windows multimedia audio functions instead.
For information about these functions, see the Microsoft Windows Multimedia Pro
grammer's Reference.

GetTickCount
DWORD GetTickCount(void)

Parameters

Return Value

Comments

Example

The GetTickCount function retrieves the number of milliseconds that have
elapsed since Windows was started.

This function has no parameters.

The return value specifies the number of milliseconds that have elapsed since Win
dows was started.

The internal timer will wrap around to zero if Windows is run continuously for ap
proximately 49 days.

The GetTickCount function is identical to the GetCurrentTime function. Appli
cations should use GetTickCount, because its name matches more closely with
what the function does.

The following example calls GetTickCount to determine the number of millisec
onds that Windows has been running, converts the value into seconds, and dis
plays the value in a message box:

char szBuf[255J;

sprintf(szBuf, "Windows has been running for %lu seconds\n",
GetTickCount() I 1000L);

MessageBox(hwnd, szBuf, "", MB_OKl;

GetUpdateRect 467

GetTimerResolution CIIJ
DWORD GetTimerResolution(void)

Parameters

Return Value

See Also

The GetTimerResolution function retrieves the number of microseconds per
timer tick.

This function has no parameters.

The return value is the number of microseconds per timer tick.

GetTickCount, SetTimer

GetTopWindow
HWND GetTopWindow(hwnd)
HWND hwnd; I* handle of parent window */

The GetTopWindow function retrieves the handle of the top-level child window
that belongs to the given parent window. If the parent window has no child win
dows, this function returns NULL.

Parameters hwnd
Identifies the parent window. If this parameter is NULL, the function returns
the first child window of the desktop window.

Return Value The return value is the handle of the top-level child window in a parent window's
linked list of child windows. The return value is NULL if no child windows exist.

See Also En um Windows, GetParent, Is Child

GetUpdateRect
BOOL GetUpdateRect(hwnd, lprc,fErase)
HWND hwnd; I* handle of window
RECT FAR* lprc; I* address of structure for update rectangle
BOOLfErase; /* erase flag

*/
*/
*/

468 GetupdateRect

The GetUpdateRect function retrieves the coordinates of the smallest rectangle
that completely encloses the update region of the given window. If the window
was created with the CS_OWNDC style and the mapping mode is not
MM_ TEXT, GetUpdateRect gives the rectangle in logical coordinates; other
wise, GetUpdateRect gives the rectangle in client coordinates. If there is no up
date region, GetUpdateRect makes the rectangle empty (sets all coordinates to
zero).

Parameters hwnd

Return Value

Comments

See Also

Identifies the window whose update region is to be retrieved.

!pre
Points to the RECT structure that receives the client coordinates of the enclos
ing rectangle. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

An application can set this parameter to NULL to determine whether an update
region exists for the window. If this parameter is NULL, the GetUpdateRect
function returns nonzero if an update region exists, and zero if one does not.
This provides a simple and efficient means of determining whether a
WM_PAINT message resulted from an invalid area.

/Erase
Specifies whether to erase the background in the update region. If this parame
ter is TRUE and the update region is not empty, the background is erased. To
erase the background, the GetUpdateRect function sends a
WM_ERASEBKGND message to the given window.

The return value is nonzero if the update region is not empty. Otherwise, it is zero.

The update rectangle retrieved by the BeginPaint function is identical to that re
trieved by the GetUpdateRect function.

BeginPaint automatically validates the update region, so any call to Get
UpdateRect made immediately after the call to BeginPaint retrieves an empty
update region.

BeginPaint, GetUpdateRgn, InvalidateRect, UpdateWindow, ValidateRect

GetVersion 469

GetUpdateRgn ~

int GetUpdateRgn(hwnd, hrgn,fErase)
HWND hwnd; I* handle of window */
HRGN hrgn; I* handle of region */
BOOLfErase; I* erase flag */

The GetUpdateRgn function retrieves the update region of a window. The coordi
nates of the update region are relative to the upper-left corner of the window (that
is, they are client coordinates).

Parameters hwnd
Identifies the window whose update region is to be retrieved.

hrgn
Identifies the update region.

fErase
Specifies whether the window background should be erased and whether non
client areas of child windows should be drawn. If this parameter is FALSE, no
drawing is done.

Return Value The return value is SIMPLEREGION (region has no overlapping borders),
COMPLEXREGION (region has overlapping borders), or NULLREGION (region
is empty), ifthe function is successful. Otherwise, the return value is ERROR.

Comments The BeginPaint function automatically validates the update region, so any call to
the GetUpdateRgn function made immediately after the call to BeginPaint re
trieves an empty update region.

See Also BeginPaint, GetUpdateRect, InvalidateRgn, Update Window, ValidateRgn

GetVersion ~

DWORD GetVersion(void)

Parameters

Return Value

The Get Version function retrieves the current version numbers of the Windows
and MS-DOS operation systems.

This function has no parameters.

The return value specifies the major and minor version numbers of Windows and
of MS-DOS, if the function is successful.

470 GetViewportExt

Comments

Example

The low-order word of the return value contains the version of Windows, if the
function is successful. The high-order byte contains the minor version (revision)
number as a two-digit decimal number. For example, in Windows 3.1, the minor
version number is 10. The low-order byte contains the major version number.

The high-order word contains the version of MS-DOS, if the function is success
ful. The high-order byte contains the major version; the low-order byte contains
the minor version (revision) number.

The following example uses the Get Version function to display the Windows and
MS-DOS version numbers:

int len;
char szBuf[80];
DWORD dwVersion;

dwVersion = GetVersion();

len = sprintf(szBuf, "Windows version %d.%d\n'',
LOBYTE(LOWORD(dwVersion)),
HIBYTE(LOWORD(dwVersion)));

sprintf(szBuf + len, "MS-DOS version %d.%d",
HIBYTE(HIWORD(dwVersion)),
LOBYTE(HIWORD(dwVersion)));

MessageBox(NULL, szBuf, "GetVersion", MB_ICONINFORMATION);

Note that the major and minor version information is reversed between the Win
dows version and MS-DOS version.

GetViewportExt
DWORD GetViewportExt(hdc)
HDC hdc; /* handle of device context */

The GetViewportExt function retrieves the x- and y-extents of the device con
text's viewport.

Parameters hdc

Return Value

Identifies the device context.

The low-order word of the return value contains the x-extent, in device units, if the
function is successful; the high-order word contains they-extent.

Example

See Also

GetViewportOrg 471

The following example uses the GetViewportExt function and the LOWORD
and HIWORD macros to retrieve the x- and y-extents for a device context:

HOC hdc;
DWORD dw;
int xViewExt, yViewExt;

hdc = GetDC(hwnd);
dw = GetViewportExt(hdc);
ReleaseDC(hwnd, hdc);
xViewExt LOWORO(dw);
yViewExt = HIWORO(dw);

SetViewportExt

GetViewportExtEx
BOOL GetViewportExtEx(hdc, lpSize)
HDChdc;
SIZE FAR* lpSize;

The GetViewportExtEx function retrieves the x- and y-extents of the device con
text's viewport.

Parameters hdc

Return Value

Identifies the device context.

lpSize
Points to a SIZE structure. The x- and y-extents (in device units) are placed in
this structure.

The return value is nonzero if the function is successful. Otherwise, it is zero.

GetViewportOrg
DWORD GetViewportOrg(hdc)
HDC hdc; I* handle of device context */

The GetViewportOrg function retrieves the x- and y-coordinates of the origin of
the viewport associated with the given device context.

472 GetViewportOrgEx

Parameters hdc

Return Value

Example

See Also

Identifies the device context.

The low-order word of the return value contains the viewport origin's x-coordi
nate, in device coordinates, if the function is successful; the high-order word con
tains they-coordinate of the viewport origin.

The following example uses the GetViewportOrg function and the LOWORD
and HIWORD macros to retrieve the x- and y-coordinates of the viewport origin:

HOC hdc;
DWORD dw;
int xViewOrg, yViewOrg;

hdc = GetDCChwnd);
dw = GetViewportOrg(hdc);
ReleaseDCChwnd, hdc);
xViewOrg LOWORDCdw);
yViewOrg = HIWORD(dw);

GetWindowOrg, SetViewportOrg

GetViewportOrgEx
BOOL GetViewportOrgEx(hdc, lpPoint)
HDChdc;
POINT FAR* lpPoint;

The GetViewportOrgEx function retrieves the x- and y-coordinates of the origin
of the viewport associated with the specified device context.

Parameters hdc

Return Value

Identifies the device context.

lpPoint
Points to a POINT structure. The origin of the viewport (in device coordinates)
is placed in this structure.

The return value is nonzero if the function is successful. Otherwise, it is zero.

GetWinDebuglnfo 473

GetWinDebuglnfo []_]]
BOOL GetWinDebuglnfo(lpwdi,flags)
WINDEBUGINFO FAR* lpwdi; /*address ofWINDEBUGINFO structure */
UINT flags; /* flags for returned information */

Parameters

Return Value

Comments

See Also

The GetWinDebuglnfo function retrieves current system-debugging information
for the debugging version of the Windows 3 .1 operating system.

lpwdi
Points to a WINDEBUGINFO structure that is filled with debugging informa
tion. The WINDEBUGINFO structure has the following form:

typedef struct tagWINDEBUGINFO
UINT flags;
DWORD dwOptions;
DWORD dwFilter;
char achAllocModule[8J;
DWORD dwAllocBreak;
DWORD dwAllocCount;

} WINDEBUGINFO;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

flags
Specifies which members of the WINDEBUGINFO structure should be filled
in. This parameter can be one or more of the following values:

Value

WDI_OPTIONS

WDI_FILTER

WDI_ALLOCBREAK

Meaning

Fill in the dwOptions member of WINDEBUGINFO.

Fill in the dwFilter member of WINDEBUGINFO.

Fill in the achAllocModule, dwAllocBreak, and
dwAllocCount members ofWINDEBUGINFO.

The return value is nonzero if the function is successful. It is zero if the pointer
specified in the lpwdi parameter is invalid or if the function is not called in the de
bugging version of Windows 3.1.

The flags member of the returned WINDEBUGINFO structure is set to the
values supplied in the flags parameter of this function.

SetWinDebuglnfo

474 GetWindow

GetWindow
HWND GetWindow(hwnd,fuRel)
HWND hwnd; I* handle of original window *I

I UINT fuRel; / relationship flag

Parameters

Return Value

See Also

The Get Window function retrieves the handle of a window that has the specified
relationship to the given window. The function searches the system's list oftop
level windows, their associated child windows, the child windows of any child
windows, and any siblings of the owner of a window.

hwnd
Identifies the original window.

fuRel
Specifies the relationship between the original window and the returned win
dow. This parameter can be one of the following values:

Value

GW_CHILD

GW _HWNDFIRST

GW _HWNDLAST

GW _HWNDNEXT

GW _HWNDPREV

GW_OWNER

Meaning

Identifies the window's first child window.

Returns the first sibling window for a child window; other
wise, it returns the first top-level window in the list.

Returns the last sibling window for a child window; other
wise, it returns the last top-level window in the list.

Returns the sibling window that follows the given window
in the list.

Returns the previous sibling window in the list.

Identifies the window's owner.

The return value is the handle of the window if the function is successful. Other
wise, it is NULL, indicating either the end of the system's list or an invalidfuRel
parameter.

En um Windows, Find Window

GetWindowDC
HDC GetWindowDC(hwnd)
HWND hwnd; I* handle of window */

The GetWindowDC function retrieves a device context for the entire window,
including title bar, menus, and scroll bars. A window device context permits

Parameters

Return Value

Comments

See Also

GetWindowExt 475

painting anywhere in the window, because the origin of the context is the upper
left corner of the window instead of the client area.

Get Window DC assigns default attributes to the device context each time it re
trieves the context. Previous attributes are lost.

hwnd
Identifies the window whose device context is to be retrieved.

The return value is the handle of the device context for the given window, if the
function is successful. Otherwise, it is NULL, indicating an error or an invalid
hwnd parameter.

The GetWindowDC function is intended to be used for special painting effects
within a window's nonclient area. Painting in nonclient areas of any window is not
recommended.

The GetSystemMetrics function can be used to retrieve the dimensions of various
parts of the nonclient area, such as the title bar, menu, and scroll bars.

After painting is complete, the ReleaseDC function must be called to release the
device context. Failure to release a window device context will have serious ef
fects on painting requested by applications.

BeginPaint, GetDC, GetSystemMetrics, ReleaseDC

GetWindowExt
DWORD GetWindowExt(hdc)
HDC hdc; /* handle of device context */

The GetWindowExt function retrieves the x- and y-extents of the window as
sociated with the given device context.

Parameters hdc

Return Value

Identifies the device context.

The return value specifies the x- and y-extents, in logical units, if the function is
successful. The x-extent is in the low-order word; they-extent is in the high-order
word.

476 GetWindowExtEx

Example The following example uses the GetWindowExt function and the LOWORD and
HIWORD macros to retrieve the x- and y-extents of a window:

See Also

HOC hdc;
DWORD dw;
int xWindExt, yWindExt;

hdc = GetDC(hwnd);
dw = GetWindowExt(hdc);
ReleaseDC(hwnd, hdc);
xWindExt LOWORD(dw);
yWindExt = HIWORD(dw);

Set Window Ext

GetWindowExtEx
BOOL GetWindowExtEx(hdc, lpSize)
HDC hdc;
SIZE FAR* lpSize;

The GetWindowExtEx function retrieves the x- and y-extents of the window
associated with the specified device context.

Parameters hdc
Identifies the device context.

lpSize
Points to a SIZE structure. The x- and y-extents (in logical units) are placed in
this structure.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

GetWindowlong
LONG GetWindowLong(hwnd, nO.ffset)
HWND hwnd; I* handle of window
int nO.ffset; /* offset of value to retrieve

*I
*/

The GetWindowLong function retrieves a long value at the specified offset into
the extra window memory of the given window. Extra window memory is re-

Parameters

Return Value

Comments

See Also

GetWindowlong 477

served by specifying a nonzero value in the cb WndExtra member of the
WNDCLASS structure used with the RegisterClass function.

hwnd
Identifies the window.

nOffset
Specifies the zero-based byte offset of the value to be retrieved. Valid values
are in the range zero through the number of bytes of extra window memory,
minus four (for example, if 12 or more bytes of extra memory was specified, a
value of 8 would be an index to the third long integer), or one of the following
values:

Value

GWL_EXSTYLE

GWL_STYLE

GWL_ WNDPROC

Meaning

Extended window style

Window style

Long pointer to the window procedure

The following values are also available when the hwnd parameter identifies a
dialog box:

Value

DWL_DLGPROC

DWL_MSGRESULT

DWL_USER

Meaning

Specifies the address of the dialog box procedure.

Specifies the return value of a message processed in the
dialog box procedure.

Specifies extra information that is private to the applica
tion, such as handles or pointers.

The return value specifies information about the given window if the function is
successful.

To access any extra 4-byte values allocated when the window-class structure was
created, use a positive byte offset as the index specified by the nOffset parameter,
starting at 0 for the first 4-byte value in the extra space, 4 for the next 4-byte
value, and so on.

GetWindowWord, SetWindowLong, SetWindowWord

478 GetWindowOrg

GetWindowOrg
DWORD GetWindowOrg(hdc)
HDC hdc; I* handle of device context *I

The GetWindowOrg function retrieves the x- and y-coordinates of the origin of
the window associated with the given device context.

Parameters hdc

Return Value

Example

See Also

Identifies the device context.

The low-order word of the return value contains the logical x-coordinate of the
window's origin, if the function is successful; the high-order word contains the
y-coordinate.

The following example uses the GetWindowOrg function and the LO WORD
and HIWORD macros to retrieve the x- and y-coordinates for the window origin:

HOC hdc;
DWORD dw;
int xWindOrg, yWindOrg;

hdc = GetDC(hwnd);
dw = GetWindowOrg(hdc);
ReleaseDC(hwnd, hdc);
xWindOrg LOWORD(dwl;
yWindOrg = HIWORD(dwl;

GetViewportOrg, SetWindowOrg

GetWindowOrgEx
BOOL GetWindowOrgEx(hdc, lpPoint)
HDC hdc;
POINT FAR* lpPoint;

This function retrieves the x- and y-coordinates of the origin of the window as
sociated with the specified device context.

Parameters hdc
Identifies the device context.

Return Value

GetWindowPlacement 479

lpPoint
Points to a POINT structure. The origin of the window (in logical coordinates)
is placed in this structure.

The return value is nonzero if the function is successful. Otherwise, it is zero.

GetWindowPlacement
BOOL GetWindowPlacement(hwnd, lpwndpl)
HWND hwnd; /* handle of window *I

I WINDOWPLACEMENT FAR lpwndpl; /*address of structure for position data

The Get Window Placement function retrieves the show state and the normal
(restored), minimized, and maximized positions of a window.

Parameters hwnd

Return Value

See Also

Identifies the window.

lpwndpl
Points to the WINDOWPLACEMENT structure that receives the show state
and position information. The WINDOWPLACEMENT structure has the fol
lowing form:

typedef struct tagWINDOWPLACEMENT
UINT length;
UINT flags;
UINT showCmd;
POINT ptMinPosition;
POINT ptMaxPosition;
RECT rcNormalPosition;

WINDOWPLACEMENT;

/* wndpl */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Set Window Placement

480 GetWindowRect

GetWindowRect
void GetWindowRect(hwnd, lprc)
HWND hwnd; I* handle of window */

/ RECT FAR lprc; I* address of structure for window coordinates

Parameters

Return Value

Example

The GetWindowRect function retrieves the dimensions of the bounding rectangle
of a given window. The dimensions are given in screen coordinates, relative to the
upper-left corner of the display screen, and include the title bar, border, and scroll
bars, if present.

hwnd
Identifies the window.

lprc
Points to a RECT structure that receives the screen coordinates of the upper
left and lower-right corners of the window. The RECT structure has the follow
ing form:

typedef struet tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

f* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

This function does not return a value.

The following example calls the GetWindowRect function to retrieve the dimen
sions of the desktop window, and uses the dimensions to create a window that fills
the right third of the desktop window:

RECT re;
WORD wWidth;

GetWindowReet(GetDesktopWindow(), &re);

f* Set the width to be 1/3 of the desktop window's width. *f

wWidth =(re.right - re.left) I 3;

GetWindowsDir 481

/* Create a main window for this application instance. *I

hwndFrame CreateWindow("MyCl ass", "My Title", WS_OVERLAPPEDWINDOW,
re.right - wWidth, /*horizontal position*/
0, /* vertical position */
wWidth, /* width */
re.bottom, /* height */
(HWND) NULL, (HMENUl NULL, hinst, (LPSTR) NULL);

See Also GetClientRect, MoveWindow, SetWindowPos

GetWindowsDir
#include <ver.h>

UINT GetWindowsDir(lpszAppDir, lpszPath, cbPath)
LPCSTR lpszAppDir; I* address of Windows directory */
LPSTR lpszPath; /*address of buffer for path */
int cbPath; /* size of buffer for path */

Parameters

Return Value

The GetWindowsDir function retrieves the path of the Windows directory. This
directory contains such files as Windows applications, initialization files, and help
files.

GetWindowsDir is used by MS-DOS applications that set up Windows applica
tions; it exists only in the static-link version of the File Installation library. Win
dows applications should use the GetWindowsDirectory function to determine
the Windows directory.

lpszAppDir
Specifies the current directory in a search for Windows files. If the Windows
directory is not on the path, the application must prompt the user for its location
and pass that string to the GetWindowsDir function in the lpszAppDir parame
ter.

lpszPath
Points to the buffer that will receive the null-terminated string containing the
path.

cbPath
Specifies the size, in bytes, of the buffer pointed to by the lpszPath parameter.

The return value is the length of the string copied to the lpszPath parameter, in
cluding the terminating null character, if the function is successful. If the return

482 GetWindowsDirectory

Comments

See Also

value is greater than the ch Path parameter, it is the size of the buffer required to
hold the path. The return value is zero if the function fails.

The path that this function retrieves does not end with a backslash unless the
Windows directory is the root directory. For example, ifthe Windows direc
tory is named WINDOWS on drive C, the path retrieved by this function is
C:\ WINDOWS. If Windows is installed in the root directory of drive C, the path
retrieved is C:\.

After the GetWindowsDir function locates the Windows directory, it caches the
location for use by subsequent calls to the function.

GetSystemDir, Get WindowsDirectory

GetWindowsDirectory
UINT GetWindowsDirectory(lpszSysPath, cbSysPath)
LPSTR lpszSysPath; /* address of buffer for Windows directory */

/ UINT cbSysPath; / size of directory buffer

Parameters

Return Value

Comments

The GetWindowsDirectory function retrieves the path of the Windows directory.
The Windows directory contains such files as Windows applications, initialization
files, and help files.

lpszSysPath
Points to the buffer that will receive the null-terminated string containing the
path.

cbSysPath
Specifies the maximum size, in bytes, of the buffer. This value should be set to
at least 144 to allow sufficient room in the buffer for the path.

The return value is the length, in bytes, of the string copied to the lpszSysPath pa
rameter, not including the terminating null character. If the return value is greater
than the number specified in the cbSysPath parameter, it is the size of the buffer re
quired to hold the path. The return value is zero if the function fails.

The Windows directory is the only directory where an application should create
files. If the user is running a shared version of Windows, the Windows directory is
the only directory guaranteed private to the user.

The path this function retrieves does not end with a backslash unless the Windows
directory is the root directory. For example, if the Windows directory is named

Example

See Also

GetWindowTask 483

WINDOWS on drive C, the path retrieved by this function is C:\WINDOWS. If
Windows is installed in the root directory of drive C, the path retrieved is C:\.

A similar function, GetWindowsDir, is intended for use by MS-DOS applications
that set up Windows applications. Windows applications should use Get
WindowsDirectory, not GetWindowsDir.

The following example uses the GetWindowsDirectory function to determine the
path of the Windows directory:

WORD wReturn;
char szBuf[l44J;

wReturn = GetWindowsOirectory((LPSTR)szBuf, sizeof(szBuf));

if CwReturn == 0)
MessageBoxChwnd, "function failed",

"GetWi ndows Directory", MB_ I CON EXCLAMATION);

else if (wReturn > sizeof(szBuf))
MessageBoxChwnd, "buffer is too small",

"GetWi ndowsDi rectory", MB_ ICONEXCLAMATION);

else
MessageBoxChwnd, szBuf, "GetWindowsDi rectory", MB_OK);

GetSystemDirectory

GetWindowTask
HTASK GetWindowTask(hwnd)
HWND hwnd; /* handle of window *I

Parameters

Return Value

See Also

The GetWindowTask function searches for the handle of a task associated with a
window. A task is any program that executes as an independent unit. All applica
tions are executed as tasks. Each instance of an application is a task.

hwnd
Identifies the window for which to retrieve a task handle.

The return value is the handle of the task associated with a particular window, if
the function is successful. Otherwise, it is NULL.

EnumTaskWindows, GetCurrentTask

484 GetWindowText

GetWindowText
int GetWindowText(hwnd, lpsz, cbMax)
HWND hwnd; /* handle of window */

*/
*/

LPSTR lpsz; I* address of buffer for text
int cbMax; I* maximum number of bytes to copy

The GetWindowText function copies text of the given window's title bar (if it has
one) into a buffer. If the given window is a control, the text within the control is
copied.

Parameters hwnd

Return Value

Comments

See Also

Identifies the window or control containing the title bar or text.

lpsz
Points to a buffer that will receive the title bar or text.

cbMax
Specifies the maximum number of characters to copy to the buffer. The title bar
or text is truncated if it is longer than the number of characters specified in
cbMax.

The return value specifies the length, in bytes, of the copied string, not including
the terminating null character. It is zero if the window has no title bar, the title bar
is empty, or the hwnd parameter is invalid.

This function causes a WM_GETTEXT message to be sent to the given window
or control.

GetWindowTextLength

GetWindowTextlength
int GetWindowTextLength(hwnd)
HWND hwnd; I* handle of window with text */

The Get WindowTextLength function retrieves the length, in bytes, of the text in
the given window's title bar. If the window is a control, the length of the text
within the control is retrieved.

Parameters hwnd
Identifies the window or control.

Return Value

Comments

See Also

GetWindowWord 485

The return value specifies the text length, in bytes, not including any null terminat
ing character, if the function is successful. Otherwise, it is zero.

This function causes the WM_GETTEXTLENGTH message to be sent to the
given window or control.

GetWindowText

GetWindowWord
WORD GetWindowWord(hwnd, nOffset)
HWND hwnd; I* handle of window */

/ int nOffset; I offset of value to retrieve

Parameters

Return Value

Comments

The GetWindowWord function retrieves a word value at the specified offset into
the extra window memory of the given window. Extra window memory is re
served by specifying a nonzero value in the cb WndExtra member of the
WNDCLASS structure used with the RegisterClass function.

hwnd
Identifies the window.

nOjfset
Specifies the zero-based byte offset of the value to be retrieved. Valid values
are in the range zero through the number of bytes of extra window memory,
minus two (for example, if 10 or more bytes of extra memory was specified, a
value of 8 would be an index to the fifth integer), or one of the following values:

Value

GWW _HINSTANCE

GWW _HWNDPARENT

GWW_ID

Meaning

Specifies the instance handle of the module that owns
the window.

Specifies the handle of the parent window, if any. The
SetParent function changes the parent window of a
child window. An application should not call the
SetWindowWord function to change the parent of a
child window.

Specifies the identifier of the child window.

The return value specifies information about the given window if the function is
successful.

To access any extra two-byte values allocated when the window-class structure
was created, use a positive byte offset as the index specified by the nOffset

486 GetWinFlags

parameter, starting at 0 for the first two-byte value in the extra space, 2 for the
next two-byte value, and so on.

See Also GetWindowLong, SetParent, SetWindowLong, SetWindowWord

GetWinFlags [TI]

DWORD GetWinFlags(void)

Parameters

Return Value

Comments

The GetWinFlags function retrieves the current Windows system and memory
configuration.

This function has no parameters.

The return value specifies the current system and memory configuration if the
function is successful.

The configuration returned by GetWinFlags can be a combination of the follow
ing values:

Value

WF_80x87

WF_CPU086

WF_CPU186

WF_CPU286

WF_CPU386

WF_CPU486

WF _ENHANCED

WF_pAGING

WF_PMODE

WF _STANDARD

WF_WIN286

WF_WIN386

WF_WLO

Meaning

System contains an Intel math coprocessor.

System CPU is an 8086. Windows 3.1 will not return this flag.

System CPU is an 80186. Windows 3.1 will not return this flag.

System CPU is an 80286.

System CPU is an 80386.

System CPU is an i486.

Windows is running in 386-enhanced mode. The WF _PMODE
flag is always set when WF _ENHANCED is set.

Windows is running on a system with paged memory.

Windows is running in protected mode. In Windows 3.1, this
flag is always set.

Windows is running in standard mode. The WF _PMODE flag is
always set when WF _STANDARD is set.

Same as WF _STANDARD.

Same as WF _ENHANCED.

Identifies an application running Windows-emulation libraries
in a non-Windows operating system.

Example

GetWinMem32Version 487

The following example uses the GetWinFlags function to display information
about the current Windows system configuration:

int len;
char szBuf[80];
DWORD dwFlags;

dwFlags = GetWinFlags();

len = sprintf(szBuf, "system %s a coprocessor",
(dwFlags & WF_80x87) ? "contains" : "does not contain");

TextOut(hdc, 10, 15, szBuf, lenl;

l en = spri ntf(szBuf, "processor is an %s",
(dwFlags & WF_CPU286) ? "80286" :
(dwFlags & WF_CPU386) ? "80386" :
(dwFl ags & WF_CPU486l ? "i486" : "unknown");

TextOut(hdc, 10, 30, szBuf, len);

len = sprintf(szBuf, "running in %s mode",
(dwFlags & WF ENHANCED) ? "enhanced" "standard");

TextOut(hdc, 10, 45, szBuf, lenl;

len = sprintf(szBuf, "%s WLO",
(dwFl ags & WF_WLO) ? "using" "not using");

TextOut(hdc, 10, 60, szBuf, len);

GetWinMem32Version IT!J
#include <winmem32.h>

WORD GetWinMem32Version(void)

Parameters

Return Value

The GetWinMem32Version function retrieves the application programming inter
face (API) version implemented by the WINMEM32.DLL dynamic-link library.
This is not the version number of the library itself.

This function has no parameters.

The return value specifies the version of the 32-bit memory API implemented by
WINMEM32.DLL. The high-order 8 bits contain the major version number, and
the low-order 8 bits contain the minor version number.

488 Global16PointerAlloc

Global16PointerAlloc
#include <winmem32.h>

WORD Global16PointerAlloc(wSelector, dwOffset, lpBuffer, dwSize, wFlags)
WORD wSelector; !*selector of object */
DWORD dwOffset; !*offset of first byte for alias */
LPDWORD lpBuffer; !* address oflocation for alias */
DWORD dwSize; /* size of region */
WORD wFlags; /* reserved, must be zero */

Parameters

Return Value

Comments

The Global16PointerAlloc function converts a 16:32 pointer into a 16: 16 pointer
alias that the application can pass to a Windows function or to other 16: 16 func
tions.

wSelector
Specifies the selector of the object for which an alias is to be created. This must
be the selector returned by a previous call to the Global32Alloc function.

dwOffset
Specifies the offset of the first byte for which an alias is to be created. The off
set is from the first byte of the object specified by the wSelector parameter.
Note that wSelector:dwOffset forms a 16:32 address of the first byte of the re
gion for which an alias is to be created.

lpBuffer
Points to a four-byte location in memory that receives the 16: 16 pointer alias
for the specified region.

dwSize
Specifies the addressable size, in bytes, of the region for which an alias is to be
created. This value must be no larger than 64K.

wFlags
Reserved; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which can be one of the following:

WM32_Insufficient_Mem
WM32_Insufficient_Sels
WM32_Invalid_Arg
WM32_Invalid_Flags
WM32_Invalid_Func

When this function returns successfully, the location pointed to by the lpBufferpa
rameter contains a 16: 16 pointer to the first byte of the region. This is the same
byte to which wSelector:dwOffset points.

See Also

Global16PointerFree 489

The returned selector identifies a descriptor for a data segment that has the follow
ing attributes: read-write, expand up, and small (B bit clear). The descriptor privi
lege level (DPL) and the granularity (the G bit) are set at the system's discretion,
so you should make no assumptions regarding their settings. The DPL and request
or privilege level (RPL) are appropriate for a Windows application.

Note An application must not change the setting of any bits in the DPL or the RPL
selector. Doing so can result in a system crash and will prevent the application
from running on compatible platforms.

Because of tiling schemes implemented by some systems, the offset portion of the
returned 16: 16 pointer is not necessarily zero.

When writing your application, you should not assume the size limit of the re
turned selector. Instead, assume that at least dwSize bytes can be addressed
starting at the 16: 16 pointer created by this function.

Globall6PointerFree

Global16Pointerfree
#include <winmem32.h>

WORD Globall6PointerFree(wSelector, dwAlias, wFlags)
WORD wSelector; I* selector of object */
DWORD dwAlias; I* pointer alias to free */
WORD wFlags; I* reserved, must be zero */

Parameters

The Globall6PointerFree function frees the 16: 16 pointer alias previously
created by a call to the Globall6PointerAlloc function.

wSelector
Specifies the selector of the object for which the alias is to be freed. This must
be the selector returned by a previous call to the Global32Alloc function.

dwAlias
Specifies the 16:16 pointer alias to be freed. This must be the alias (including
the original offset) returned by a previous call to the Globall6PointerAlloc
function.

wFlags
Reserved; must be zero.

490 Global32Alloc

Return Value

Comments

See Also

The return value is zero if the function is successful. Otherwise, it is an error
value, which can be one of the following:

WM32_Insufficient_Mem
WM32_Insufficient_Sels
WM32_Invalid_Arg
WM32_Invalid_Flags
WM32_Invalid_Func

An application should free a 16: 16 pointer alias as soon as it is no longer needed.
Freeing the alias releases space in the descriptor table, a limited system resource.

Global16Pointer Alloc

Global32Alloc
#include <winmem32.h>

WORD Global32Alloc(dwSize, lpSelector, dwMaxSize, wFlags)
DWORD dwSize; I* size of block to allocate */
LPWORD lpSelector; /* address of location for selector */
DWORD dwMaxSize; /* maximum size of object */
WORD wFlags; /* sharing flag */

Parameters

The Global32Alloc function allocates a memory object to be used as a 16:32
(USE32) code or data segment and retrieves the selector portion of the 16:32
address of the memory object. The first byte of the object is at offset 0 from this
selector.

dwSize
Specifies the initial size, in bytes, of the object to be allocated. This value must
be in the range 1 through (16 megabytes - 64K).

lpSelector
Points to a 2-byte location in memory that receives the selector portion of the
16:32 address of the allocated object.

dwMaxSize
Specifies the maximum size, in bytes, that the object will reach when it is reallo
cated by the Global32Realloc function. This value must be in the range 1
through (16 megabytes - 64 K). If the application will never reallocate this
memory object, the dwMaxSize parameter should be set to the same value as the
dwSize parameter.

Return Value

Comments

See Also

Global32Alloc 491

wFlags
Depends on the return value of the GetWinMem32Version function. If
the return value is less than Ox0101, this parameter must be zero. If the
return value is greater than or equal to Ox0101, this parameter can be set to
GMEM_DDESHARE (to make the object shareable). Otherwise, this parame
ter should be zero. For more information about GMEM_DDESHARE, see the
description of the GlobalAlloc function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which can be one of the following:

WM32_Insufficient_Mem
WM32_Insufficient_Sels
WM32_Invalid_Arg
WM32_Invalid_Flags
WM32_Invalid_Func

If the Global32Alloc function fails, the value to which the lpSelector parameter
points is zero. If the function succeeds, lpSelector points to the selector of the ob
ject. The valid range of offsets for the object referenced by this selector is 0
through (but not including) dwSize.

In Windows 3.0 and later, the largest object that can be allocated is OxOOFFOOOO
(16 megabytes - 64K). This is the limitation placed on WINMEM32.DLL by the
current Windows kernel.

The returned selector identifies a descriptor for a data segment that has the follow
ing attributes: read-write, expand-up, and big (B bit set). The descriptor privilege
level (DPL) and the granularity (the G bit) are set at the system's discretion, so
you should make no assumptions regarding these settings. Because the system sets
the granularity, the size of the object (and the selector size limit) may be greater
than the requested size by up to 4095 bytes (4K minus 1). The DPL and requestor
privilege level (RPL) will be appropriate for a Windows application.

Note An application must not change the setting of any bits in the DPL or the RPL
selector. Doing so can result in a system crash and will prevent the application
from running on compatible platforms.

The allocated object is neither movable nor discardable but can be paged. An appli
cation should not page-lock a 32-bit memory object. Page-locking an object is use
ful only if the object contains code or data that is used at interrupt time, and 32-bit
memory cannot be used at interrupt time.

Global32Free, Global32Realloc

492 Global32CodeAlias

Glob a 132CodeAI ias
#include <winmem32.h>

WORD Global32CodeAlias(wSelector, lpAlias, wFlags)
WORD wSelector; /* selector of object for alias */
LPWORD lpAlias; /* address of location for alias selector */
WORD wFlags; /* reserved, must be zero */

Parameters

Return Value

Comments

The Global32CodeAlias function creates a 16:32 (USE32) code-segment alias
selector for a 32-bit memory object previously created by the Global32Alloc func
tion. This allows the application to execute code contained in the memory object.

wSelector
Specifies the selector of the object for which an alias is to be created. This must
be the selector returned by a previous call to the Global32Alloc function.

lpAlias
Points to a 2-byte location in memory that receives the selector portion of the
16:32 code-segment alias for the specified object.

wFlags
Reserved; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which can be one of the following:

WM32_Insufficient_Mem
WM32_Insufficient_Sels
WM32_Invalid_Arg
WM32_Invalid_Flags
WM32_Invalid_Func

If the function fails, the value pointed to by the lpAlias parameter is zero. If the
function is successful, lpAlias points to a USE32 code-segment alias for the object
specified by the wSelector parameter. The first byte of the object is at offset 0
from the selector returned in lpAlias. Valid offsets are determined by the size of
the object as set by the most recent call to the Global32Alloc or Global32Realloc
function.

The returned selector identifies a descriptor for a code segment that has the follow
ing attributes: read-execute, nonconforming, and USE32 (D bit set). The descrip
tor privilege level (DPL) and the granularity (the G bit) are set at the system's
discretion, so you should make no assumptions regarding their settings. The granu
larity will be consistent with the current data selector for the object. The DPL and
requestor privilege level (RPL) are appropriate for a Windows application.

See Also

Global32CodeAliasFree 493

Note An application must not change the setting of any bits in the DPL or the RPL
selector. Doing so can result in a system crash and will prevent the application
from running on compatible platforms.

An application should not call this function more than once for an object. Depend
ing on the system, the function might fail if an application calls it a second time
for a given object without first calling the Global32CodeAliasFree function for
the object.

Global32Alloc, Global32CodeAliasFree

Global32CodeAliasFree
#include <winmem32.h>

WORD Global32CodeAliasFree(wSelector, wAlias, wFlags)
WORD wSelector; !* selector of object */
WORD wAlias; /* code-segment alias selector to free */
WORD wFlags; I* reserved, must be zero *I

Parameters

Return Value

See Also

The Global32CodeAliasFreefunction frees the 16:32 (USE32) code-segment
alias selector previously created by a call to the Global32CodeAlias function.

wSelector
Specifies the selector of the object for which the alias is to be freed. This must
be the selector returned by a previous call to the Global32Alloc function.

wAlias
Specifies the USE32 code-segment alias selector to be freed. This must be the
alias returned by a previous call to the Global32CodeAlias function.

wFlags
Reserved; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which can be one of the following:

WM32_Insufficient_Mem
WM32_Insufficient_Sels
WM32_Invalid_Arg
WM32_Invalid_Flags
WM32_Invalid_Func

Global32CodeAlias

494 Global32Free

Global32Free
#include <winmem32.h>

WORD Global32Free(wSelector, wFlags)
WORD wSelector; I* selector of object to free */
WORD wFlags; I* reserved, must be zero */

Parameters

Return Value

Comments

See Also

The Global32Free function frees an object previously allocated by the
Global32Alloc function.

wSelector
Specifies the selector of the object to be freed. This must be the selector re
turned by a previous call to the Global32Alloc function.

wFlags
Reserved; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which can be one of the following:

WM32_Insufficient_Mem
WM32_Insufficient_Sels
WM32_Invalid_Arg
WM32_Invalid_Flags
WM32_Invalid_Func

The Global32Alloc function frees the object itself; it also frees all aliases created
for the object by the 32-bit memory application programming interface (API).

Note Before terminating, an application must call this function to free each object
allocated by the Global32Alloc function to ensure that all aliases created for the
object are freed.

Global32Alloc, Global32Realloc

Global32Realloc 495

Global32Realloc [ill

#include <winmem32.h>

WORD Global32Realloc(wSelector, dwNewSize, wFlags)
WORD wSelector; /*selector of object to reallocate */
DWORD dwNewSize; /*new size of object */
WORD wFlags; /*reserved, must be zero */

Parameters

Return Value

Comments

The Global32Realloc function changes the size of a 32-bit memory object pre
viously allocated by the Global32Alloc function.

wSelector
Specifies the selector of the object to be changed. This must be the selector re
turned by a previous call to the Global32Alloc function.

dwNewSize
Specifies the new size, in bytes, of the object. This value must be greater than
zero and less than or equal to the size specified by the dwMaxSize parameter of
the Global32Alloc function call that created the object.

wFlags
Reserved; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which can be one of the following:

WM32_Insufficient_Mem
WM32_Insufficient_Sels
WM32_Invalid_Arg
WM32_Invalid_Flags
WM32_Invalid_Func

If this function fails, the previous state of the object is unchanged. If the function
succeeds, it updates the state of the object and the state of all aliases to the object
created by the 32-bit memory application programming interface (API) functions.
For this reason, an application must call the the Global32Realloc function to
change the size of the object. Using other Windows functions to manipulate the ob
ject results in corrupted aliases.

This function does not change the selector specified by the wSelector parameter. If
this function succeeds, the new valid range of offsets for the selector is zero
through (but not including) dwNewSize.

496 GlobalAddAtom

See Also

The system determines the appropriate granularity of the object. As a result, the
size of the object (and the selector size limit) may be greater than the requested
size by up to 4095 bytes (4K minus 1).

Global32Alloc, Global32Free

GlobalAddAtom
ATOM GlobalAddAtom(lpszString)
LPCSTR lpszString; /* address of string to add *I

Parameters

Return Value

Comments

Example

The GlobalAddAtom function adds a string to the system atom table and returns
a unique value identifying the string.

lpszString
Points to the null-terminated string to be added. The case of the first string
added is preserved and returned by the GlobalGetAtomName function. Strings
that differ only in case are considered identical.

The return value identifies the string if the function is successful. Otherwise, it is
zero.

If the string exists already in the system atom table, the atom for the existing string
will be returned and the atom's reference count will be incremented (increased by
one). The string associated with the atom will not be deleted from memory until its
reference count is zero. For more information, see the description of the Global
DeleteAtom function.

Global atoms are not deleted automatically when the application terminates. For
every call to the GlobalAddAtom function, there must be a corresponding call to
the GlobalDeleteAtom function.

The following example adds the string "This is a global atom" to the system atom
table:

ATOM atom;
char szMsg[80];

atom= GlobalAddAtom("This is a global atom");

if (atom == 0)
MessageBox(hwnd, "GlobalAddAtom failed",

MB_ICONSTOP);

else {
wsprintf(szMsg, "GlobalAddAtom returned %u", atom);
MessageBox(hwnd, szMsg, "", MB_OK);

GlobalAlloc 497

See Also AddAtom, GlobalDeleteAtom, GlobalGetAtomName

GlobalAlloc ~

HGLOBAL GlobalAlloc(fuAlloc, cbAlloc)
UINT fuAlloc; /* how to allocate object */
DWORD cbAlloc; /* size of object */

Parameters

The GlobalAlloc function allocates the specified number of bytes from the global
heap.

fuAlloc
Specifies how to allocate memory. This parameter can be a combination of the
following values:

Value

GHND

GMEM_DDESHARE

GMEM_DISCARDABLE

GMEM_FIXED

GMEM_LOWER

GMEM_MOVEABLE

GMEM_NOCOMPACT

GMEM_NODISCARD

GMEM_NOT_BANKED

Meaning

Combines the GMEM_MOVEABLE and
GMEM_ZEROINIT flags.

Allocates sharable memory. This flag is used for dy
namic data exchange (DDE) only. This flag is equiv
alent to GMEM_SHARE.

Allocates discardable memory. This flag can only be
used with the GMEM_MOVEABLE flag.

Allocates fixed memory. The GMEM_FIXED and
GMEM_MOVEABLE flags cannot be combined.

Same as GMEM_NOT_BANKED. This flag is ig
nored in Windows 3.1.

Allocates movable memory. The GMEM_FIXED
and GMEM_MOVEABLE flags cannot be combined.

Does not compact or discard memory to satisfy the al
location request.

Does not discard memory to satisfy the allocation re
quest.

Allocates non-banked memory (memory is not
within the memory provided by expanded memory).
This flag cannot be used with the GMEM_NOTIFY
flag. This flag is ignored in Windows 3.1.

498 GlobalAlloc

Return Value

Comments

Example

Value

GMEM_NOTIFY

GMEM_SHARE

GMEM_ZEROINIT

GPTR

cbAlloc

Meaning

Calls the notification routine if the memory object is
discarded.

Allocates memory that can be shared with
other applications. This flag is equivalent to
GMEM_DDESHARE.

Initializes memory contents to zero.

Combines the GMEM_FIXED and
GMEM_ZEROINIT flags.

Specifies the number of bytes to be allocated.

The return value is the handle of the newly allocated global memory object, if the
function is successful. Otherwise, it is NULL.

To convert the handle returned by the GlobalAlloc function into a pointer, an ap
plication should use the GlobalLock function.

If this function is successful, it allocates at least the amount requested. If the
amount allocated is greater than the amount requested, the application can use the
entire amount. To determine the size of a global memory object, an application
can use the GlobalSize function.

To free a global memory object, an application should use the GlobalFree func
tion. To change the size or attributes of an allocated memory object, an application
can use the GlobalReAlloc function.

The largest memory object that an application can allocate on an 80286 processor
is 1 megabyte less 80 bytes. The largest block on an 80386 processor is 16 mega
bytes less 64K.

If the cbAlloc parameter is zero, the GlobalAlloc function returns a handle of a
memory object that is marked as discarded.

The following example uses the GlobalAlloc;and GlobalLock functions to
allocate memory, and then calls the GlobalUnlock and GlobalFree functions
to free it.

See Also

HGLOBAL hglb;
void FAR* lpvBuffer;

hglb = GlobalAlloc(GPTR, 1024);
lpvBuffer = Globallock(hglb);

GlobalUnlock(hglb);
Global Free(hgl b);

GlobalCompact 499

GlobalFree, GlobalLock, GlobalNotify, GlobalReAlloc, GlobalSize,
LocalAlloc

GlobalCompact
DWORD GlobalCompact(dwMinFree)
DWORD dwMinFree; I* amount of memory requested */

Parameters

Return Value

Comments

See Also

The GlobalCompact function rearranges memory currently allocated to the global
heap so that the specified amount of memory is free. If the function cannot free the
requested amount of memory, it frees as much as possible.

dwMinFree
Specifies the number of contiguous free bytes desired. If this parameter is zero,
the function does not discard memory, but the return value is valid.

The return value specifies the number of bytes in the largest free global memory
object in the global heap. If the dwMinFree parameter is zero, the return value
specifies the number of bytes in the largest free object that Windows can generate
if it removes all discardable objects.

If an application passes the return value to the GlobalAlloc function, the
GMEM_NOCOMPACT or GMEM_NODISCARD flag should not be used.

This function always rearranges movable memory objects before checking for free
memory. Then it checks the memory currently allocated to the global heap for the
number of contiguous free bytes specified by the dwMinFree parameter. If the
specified amount of memory is not available, the function discards unlocked dis
cardable objects, until the requested space is generated (if possible).

GlobalAlloc

500 GlobalDeleteAtom

GlobalDeleteAtom
ATOM GlobalDeleteAtom(atm)
ATOM atm; /*atom to delete */

Parameters

Return Value

Comments

Example

See Also

The GlobalDeleteAtom function decrements (decreases by one) the reference
count of a global atom. If the atom's reference count reaches zero, the string as
sociated with the atom is removed from the system atom table.

atm
Identifies the atom to be deleted.

The return value is zero if the function is successful. The return value is equal to
the atm parameter if the function failed to decrement the reference count for the
specified atom.

An atom's reference count specifies the number of times the string has been added
to the atom table. The GlobalAddAtom function increments (increases by one)
the reference count each time it is called with a string that already exists in the sys
tem atom table.

The only way to ensure that an atom has been deleted from the atom table is to call
this function repeatedly until it fails. When the count is decremented to zero, the
next GlobalFindAtom or GlobalDeleteAtom function call will fail.

The following example repeatedly calls the GlobalDeleteAtom function to decre
ment the reference count for the atom until the atom is deleted and the Global
DeleteAtom function does not return zero:

int cRef;
ATOM atom;
char szMsg[80];

for (cRef = 0; ((atom= GlobalFindAtom("This is a global atom")) != 0);
cRef++)

GlobalDeleteAtom(atom);

wsprintf(szMsg, "reference count was %d", cRef);
MessageBox(hwnd, szMsg, "GlobalDeleteAtom", MB_OK);

DeleteAtom, GlobalAddAtom, GlobalFindAtom

GlobalDosFree 501

GlobalDosAlloc [}]]
DWORD GlobaIDosAlloc(cbAlloc)
DWORD cbAlloc; /* number of bytes to allocate */

Parameters

Return Value

Comments

See Also

The GlobaIDosAlloc function allocates global memory that can be accessed by
MS-DOS running in real mode. The memory is guaranteed to exist in the first meg
abyte of linear address space.

An application should not use this function unless it is absolutely necessary, be
cause the memory pool from which the object is allocated is a scarce system re
source.

cbAlloc
Specifies the number of bytes to be allocated.

The return value contains a paragraph-segment value in its high-order word and a
selector in its low-order word. An application can use the paragraph-segment
value to access memory in real mode and the selector to access memory in pro
tected mode. If Windows cannot allocate a block of memory of the requested size,
the return value is zero.

Memory allocated by using the GlobaIDosAlloc function does not need to be
locked by using the GlobalLock function.

GlobaIDosFree

GlobalDosFree
UINT GlobaIDosFree(uSelector)
UINT uSelector; /* memory to free */

Parameters

The GlobaIDosFree function frees a global memory object previously allocated
by the GlobaIDosAlloc function.

uSelector
Identifies the memory object to be freed.

502 GlobalEntryHandle

Return Value

See Also

The return value is zero if the function is successful. Otherwise, it is equal to the
uSelector parameter.

GlobalDosAlloc

GlobalEntryHandle
#include <toolhelp.h>

BOOL GlobalEntryHandle(lpge, hglb)
GLOBALENTRY FAR* lpge; I* address of structure for object */
HGLOBAL hglb; I* handle of item */

Parameters

The GlobalEntryHandle function fills the specified structure with information
that describes the given global memory object.

lpge
Points to a GLOBALENTRY structure that receives information about the
global memory object. The GLOBALENTRY structure has the following
form:

#include <toolhelp.h>

typedef struct tagGLOBALENTRY { /* ge */
OWORO dwSize;
DWORD dwAddress;
DWORD dwBlockSize;
HGLOBAL hBlock;
WORD we Lock;
WORD wcPageLock;
WORD wFlags;
BOOL wHeapPresent;
HGLOBAL hOwner;
WORD wType;
WORD wData;
DWORD dwNext;
DWORD dwNextAlt;

} GLOBAL ENTRY;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

Return Value

Comments

See Also

GlobalEntryModule 503

hglb
Identifies the global memory object to be described.

The return value is nonzero if the function is successful. Otherwise, it is zero. The
function fails if the hglb value is an invalid handle or selector.

This function retrieves information about a global memory handle or selector. De
buggers use this function to obtain the segment number of a segment loaded from
an executable file.

Before calling the GlobalEntryHandle function, an application must initialize the
GLOBALENTRY structure and specify its size, in bytes, in the dwSize member.

GlobalEntryModule, GlobalFirst, Globallnfo, GlobalNext

GlobalEntryModule
#include <toolhelp.h>

BOOL GlobalEntryModule(lpge, hmod, wSeg)
GLOBALENTRY FAR* lpge; /*address of structure for segment */
HMODULE hmod; /*handle of module */
WORD wSeg; I* segment to describe */

Parameters

The GlobalEntryModule function fills the specified structure by lpge with infor
mation about the specified module segment.

lpge
Points to a GLOBALENTRY structure that receives information about the seg
ment specified in the wSeg parameter. The GLOBALENTRY structure has the
following form:

#include <toolhelp.h>

typedef struct tagGLOBALENTRY
DWORD dwSize;
DWORD dwAddress;
DWORD dwBlockSize;
HGLOBAL hBlock;
WORD we Lock;
WORD wcPagelock;
WORD wFlags;
BOOL wHeapPresent;
HGLOBAL hOwner;

/* ge */

504 GlobalFindAtom

Return Value

Comments

See Also

WORD wType;
WORD wData;
DWORD dwNext;
DWORD dwNextAlt;

} GLOBALENTRY;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

hmod
Identifies the module that owns the segment.

wSeg
Specifies the segment to be described in the GLOBALENTRY structure. The
number of the first segment in the module is 1. Segment numbers are always
contiguous, so if the last valid segment number is 10, all segment numbers 1
through 10 are also valid.

The return value is nonzero if the function is successful. Otherwise, it is zero. This
function fails if the segment in the wSeg parameter does not exist in the module
specified in the hmod parameter.

Debuggers can use the GlobalEntryModule function to retrieve global heap infor
mation about a specific segment loaded from an executable file. Typically, the de
bugger will have symbols that refer to segment numbers; this function translates
the segment numbers to heap information.

Before calling GlobalEntryModule, an application must initialize the
GLOBALENTRY structure and specify its size, in bytes, in the dwSize member.

GlobalEntryHandle, GlobalFirst, Globallnfo, GlobalNext

GlobalFindAtom
ATOM GlobalFindAtom(lpszString)
LPCSTR lpszString; I* address of string to find */

Parameters

The GlobalFindAtom function searches the system atom table for the specified
character string and retrieves the global atom associated with that string. (A global
atom is an atom that is available to all Windows applications.)

lpszString
Points to the null-terminated character string to search for.

Return Value

Example

GlobalFirst 505

The return value identifies the global atom associated with the given string, if the
function is successful. Otherwise, if the string is not in the table, the return value is
zero.

The following example repeatedly calls the GlobalFindAtom function to retrieve
the atom associated with the string "This is a global atom". The example uses the
GlobaIDeleteAtom function to decrement (decrease by one) the reference count
for the atom until the atom is deleted and GlobalFindAtom returns zero.

int cRef;
ATOM atom;
char szMsg[80];

for (cRef = 0; ((atom= GlobalFindAtom("This is a global atom")) != 0);
cRef++)

GlobalDeleteAtom(atom);

wsprintf(szMsg, "reference count was %d", cRef);
MessageBox(hwnd, szMsg, "GlobalDeleteAtom", MB_OK);

See Also FindAtom, GlobalAddAtom, GlobalDeleteAtom

Global First [ID

#include <toolhelp.h>

BOOL GlobalFirst(lpge, wFlags)
GLOBALENTRY FAR* lpge;
WORD wFlags;

I* address of structure for object
I* specifies the heap to use

*/
*I

Parameters

The GlobalFirst function fills the specified structure with information that de
scribes the first object on the global heap.

lpge
Points to a GLOBALENTRY structure that receives information about the
global memory object. The GLOBALENTRY structure has the following
form:

#include <toolhelp.h>

typedef struct tagGLOBALENTRY { /* ge */
DWORD dwSize;
DWORD dwAddress;
DWORD dwBlockSize;
HGLOBAL hBlock;

506 Globalfix

Return Value

Comments

See Also

Global fix

WORD we Lock;
WORD wcPagelock;
WORD wFl ags;
BOOL wHeapPresent;
HG LO BAL hOwner;
WORD wType;
WORD wData;
DWORD dwNext;
DWORD dwNextAlt;

} GLOBALENTRY;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

wFlags
Specifies the heap to use. This parameter can be one of the following values:

Value

GLOBAL_ALL

GLOBAL_FREE

GLOBAL_LRU

Meaning

Structure pointed to by lpge will receive information about the
first object on the complete global heap.

Structure will receive information about the first object on the
free list.

Structure will receive information about the first object on the
least-recently-used (LRU) list.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The GlobalFirst function can be used to begin a global heap walk. An application
can examine subsequent objects on the global heap by using the GlobalNext func
tion. Calls to GlobalNext must have the same wFlags value as that specified in
GlobalFirst.

Before calling GlobalFirst, an application must initialize the GLOBALENTRY
structure and specify its size, in bytes, in the dwSize member.

GlobalEntryHandle, GlobalEntryModule, Globallnfo, GlobalNext

void GlobalFix(hglb)
HGLOBAL hglb; /* handle of object to fix */

The GlobalFix function prevents the given global memory object from moving in
linear memory.

Parameters

Return Value

Comments

GlobalFlags 507

This function interferes with effective Windows memory management and can re
sult in linear-address fragmentation. Few applications need to fix memory in linear
address space.

hglb
Identifies the global memory object to be fixed in linear memory.

This function does not return a value.

The object is locked into linear memory at its current address, and its lock count is
incremented (increased by one). Locked memory is not subject to moving or dis
carding except when the memory object is being reallocated by the Global
ReAlloc function. The object remains locked in memory until its lock count is
decreased to zero.

Each time an application calls the GlobalFix function for a memory object, it
must eventually call the GlobalUnfix function, which decrements (decreases by
one) the lock count for the object. Other functions also can affect the lock count of
a memory object. For a list of these functions, see the description of the Global
Flags function.

See Also GlobalFlags, GlobalReAlloc, GlobalUnfix

Global Flags CI!J
UINT GlobalFlags(hglb)
HGLOBAL hglb; I* handle of global memory object */

Parameters

Return Value

Comments

The GlobalFlags function returns information about the given global memory ob
ject.

hglb
Identifies the global memory object.

The return value specifies the memory-allocation flag and the lock count for the
memory object, if the function is successful.

When an application masks out the lock count in the low-order byte of the return
value, the return value contains one of the following allocation flags:

508 Global Free

Value

GMEM_DISCARDABLE

GMEM_DISCARDED

Meaning

Object can be discarded.

Object has been discarded.

The low-order byte of the return value contains the lock count of the object. Use
the GMEM_LOCKCOUNT mask to retrieve the lock count from the return value.

The following functions can affect the lock count of a global memory object:

Increments lock count

GlobalFix

GlobalLock

Decrements lock count

GlobalUnfix

GlobalUnlock

See Also GlobalFix, GlobalLock, GlobalUnfix, GlobalUnlock

Global free CliJ
HGLOBAL GlobalFree(hglb)
HGLOBAL hglb; I* handle of object to free */

Parameters

Return Value

Comments

See Also

The GlobalFree function frees the given global memory object (if the object is not
locked) and invalidates its handle.

hglb
Identifies the global memory object to be freed.

The return value is NULL if the function is successful. Otherwise, it is equal to the
hglb parameter.

The GlobalFree function cannot be used to free a locked memory object-that is,
a memory object with a lock count greater than zero. For a list of the functions that
affect the lock count, see the description of the GlobalFlags function.

Once freed, the handle of the memory object must not be used again. Attempting
to free the same memory object more than once can cause Windows to terminate
abnormally.

GlobalDiscard, GlobaIFlags, GlobalLock

GlobalHandle 509

GlobalGetAtomName ~

UINT GlobalGetAtomName(atom, lpszBuffer, cbBuffer)
ATOM atom; /* atom identifier */
LPSTR lpszBuffer; /* address of buffer for atom string */
int cbBu:ffer; /* size of buffer */

Parameters

Return Value

Example

The GlobalGetAtomName function retrieves a copy of the character string as
sociated with the given global atom. (A global atom is an atom that is available to
all Windows applications.)

atom
Identifies the global atom associated with the character string to be retrieved.

lpszBuffer
Points to the buffer for the character string.

cbBuffer
Specifies the size, in bytes, of the buffer.

The return value specifies the number of bytes copied to the buffer, not including
the terminating null character, if the function is successful.

The following example uses the GlobalGetAtomName function to retrieve the
character string associated with a global atom:

char szBuf[80];

GlobalGetAtomName(atGlobal, szBuf, sizeof(szBuf));

MessageBox(hwnd, szBuf, "Global GetAtomName", MB_OK);

Global Handle
DWORD GlobalHandle(uGlobalSel)
UINT uGlobalSel; /* selector of global memory object */

Parameters

The GlobalHandle function retrieves the handle of the specified global memory
object.

uGlobalSel
Specifies the selector of a global memory object.

510 GlobalHandleToSel

Return Value The low-order word of the return value contains the handle of the global memory
object, and the high-order word contains the selector of the memory object, if the
function is successful. The return value is NULL if no handle exists for the
memory object.

GlobalHandleToSel
#include <toolhelp.h>

WORD GlobalHandleToSel(hglb)
HGLOBAL hglb;

Parameters

Return Value

Comments

See Also

Globallnfo

The GlobalHandleToSel function converts the given handle to a selector.

hglb
Identifies the global memory object to be converted.

The return value is the selector of the given object if the function is successful.
Otherwise, it is zero.

The GlobalHandleToSel function converts a global handle to a selector appro
priate for Windows, version 3.0 or 3.1, depending on which version is running. A
debugging application might use this selector to access a global memory object if
the object is not discardable or if the object's attributes are irrelevant.

GlobalAlloc

#include <toolhelp.h>

BOOL Globallnfo(lpgi)
GLOBALINFO FAR* lpgi; I* address of global-heap structure */

The Globallnfo function fills the specified structure with information that de
scribes the global heap.

Parameters

Return Value

Comments

Global lock 511

lpgi
Points to a GLOBALINFO structure that receives information about the global
heap. The GLOBALINFO structure has the following form:

#include <toolhelp.h>

typedef struct tagGLOBALINFO
DWORD dwSize;
WORD wcltems;
WORD wcltemsFree;
WORD wcltemsLRU;

GLOBALINFO;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function successful. Otherwise, it is zero.

The information in the structure can be used to determine how much memory to al
locate for a global heap walk.

Before calling the Globallnfo function, an application must initialize the
GLOBALINFO structure and specify its size, in bytes, in the dwSize member.

See Also GlobalEntryHandle, GlobalEntryModule, GlobalFirst, GlobalNext

Globallock IT!J
void FAR* GlobalLock(hglb)
HGLOBAL hglb; !*handle of memory object to lock */

Parameters

Return Value

The GlobalLock function returns a pointer to the given global memory object.
GlobalLock increments (increases by one) the lock count of movable objects and
locks the memory. Locked memory will not be moved or discarded unless the
memory object is reallocated by the GlobalReAlloc function. The object remains
locked in memory until its lock count is decreased to zero.

hglb
Identifies the global memory object to be locked.

The return value points to the first byte of memory in the global object, if the func
tion is successful. It is NULL if the object has been discarded or an error occurs.

512 GlobalLRUNewest

Comments

See Also

Each time an application calls the GlobalLock function for an object, it must even
tually call the GlobalUnlock function for the object.

This function will return NULL if an application attempts to lock a memory object
with a zero-byte size.

If GlobalLock incremented the lock count for the object, GlobalUnlock decre
ments the lock count for the object. Other functions can also affect the lock count
of a memory object. For a list of these functions, see the description of the Get
GlobalFlags function.

Discarded objects always have a lock count of zero.

GlobalFlags, GlobalReAlloc, GlobalUnlock

GlobalLRUNewest
HGLOBAL GlobalLRUNewest(hglb)
HGLOBAL hglb; /* handle of memory object to move *I

Parameters

Return Value

Comments

See Also

The GlobalLRUNewest function moves a global memory object to the newest
least-recently-used (LRU) position in memory. This greatly reduces the likelihood
that the object will be discarded soon, but does not prevent the object from eventu
ally being discarded.

hglb
Identifies the global memory object to be moved.

The return value is NULL if the hglb parameter is not a valid handle.

The GlobalLRUNewest function is useful only if the given object is discardable.

GlobalLRUOldest

GlobalNext 513

GlobalLRUOldest lliJ
HGLOBAL GlobalLRUOldest(hglb)
HGLOBAL hglb; /*handle of memory object to move */

The GlobalLRUOldest function moves a global memory object to the oldest least
recently-used (LRU) position in memory. This makes the memory object the next
candidate for discarding.

Parameters hglb
Identifies the global memory object to be moved.

Return Value The return value is NULL if the hglb parameter does not identify a valid handle.

Comments The GlobalLRUOldest function is useful only if the hglb object is discardable.

See Also GlobalLRUNewest

GlobalNext [IT]

#include <toolhelp.h>

BOOL GlobalNext(lpge,flags)
GLOBALENTRY FAR* lpge;
WORD.flags;

/* address of structure for object
/* heap to use

*/
*/

Parameters

The GlobalNext function fills the specified structure with information that de
scribes the next object on the global heap.

lpge
Points to a GLOBALENTRY structure that receives information about the
global memory object. The GLOBALENTRY structure has the following
form:

#include <toolhelp.h>

typedef struct tagGLOBALENTRY { /* ge */
OWORD dwSize;
DWORD dwAddress;
DWORD dwBlockSize;
HGLOBAL hBl ock;
WORD we Lock;
WORD wcPagelock;

514 GlobalNotify

Return Value

Comments

WORD wFl ags;
BOOL wHeapPresent;
HGLOBAL hOwner;
WORD wType;
WORD wData;
DWORD dwNext;
DWORD dwNextAlt;

GLOBALENTRY;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

flags
Specifies heap to use. This parameter can be one of the following values:

Value

GLOBAL_ALL

GLOBAL_FREE

GLOBAL_LRU

Meaning

Structure pointed by the lpge parameter will receive informa
tion about the first object on the complete global heap.

Structure will receive information about the first object on the
free list.

Structure will receive information about the first object on the
least-recently-used (LRU) list.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The GlobalNext function can be used to continue a global heap walk started by
the GlobalFirst, GlobalEntryHandle, or GlobalEntryModule functions.

If GlobalFirst starts a heap walk, the flags value used in GlobalNext must be the
same as the value used in GlobalFirst.

See Also GlobalEntryHandle, GlobalEntryModule, GlobalFirst, Globallnfo

GlobalNotify CI!J
void GlobalNotify(lpNotif.YProc)
GNOTIFYPROC lpNotif.YProc; /* instance address of callback function *!

The GlobalNotify function installs a notification procedure for the current task. A
notification procedure is a library-defined callback function that the system calls
whenever a global memory object allocated with the GMEM_NOTIFY flag is
about to be discarded.

Parameters

Return Value

Comments

See Also

GlobalPagelock 515

lpNotifyProc
Specifies the address of the current task's notification procedure. For more in
formation, see the description of the NotifyProc callback function.

This function does not return a value.

An application must not call the GlobalNotify function more than once per in
stance.

The system does not call the notification procedure when discarding memory that
belongs to a dynamic-link library (DLL).

If the object is discarded, the application must use the GMEM_NOTIFY flag
when it calls the GlobalRealloc function to recreate the object. Otherwise, the ap
plication will not be notified when the object is discarded again.

If the notification procedure returns a nonzero value, Windows discards the global
memory object. If the procedure returns zero, the block is not discarded.

The address of the NotifyProc callback function (specified in the lpNotifyProc pa
rameter) must be in a fixed code segment of a dynamic-link library.

GlobalReAlloc, NotifyProc

GlobalPagelock
UINT GlobalPageLock(hglb)
HGLOBAL hglb; I* selector of global memory to lock *I

Parameters

Return Value

Comments

The GlobalPageLock function increments (increases by one) the page-lock count
for the memory associated with the given global selector. As long as its page-lock
count is nonzero, the data that the selector references is guaranteed to remain in
memory at the same physical address.

hglb
Specifies the selector of the memory to be page-locked.

The return value specifies the page-lock count after the function has incremented
it. If the function fails, the return value is zero.

Because using this function violates preferred Windows programming practices,
an application should not use it unless absolutely necessary. The function is

516 GlobalPageUnlock

See Also

intended to be used for dynamically allocated data that must be accessed at inter
rupt time. For this reason, it must be called only from a dynamic-link library
(DLL).

The GlobalPageLock function increments the page-lock count for the block of
memory, and the GlobalPageUnlock function decrements (decreases by one) the
page-lock count. Page-locking operations can be nested, but each page-locking
must be balanced by a corresponding unlocking.

GlobalPageUnlock

GlobalPageUnlock
DINT GlobalPageUnlock(hglb)
HGLOBAL hglb; I* selector of global memory to unlock */

Parameters

Return Value

Comments

See Also

The GlobalPageLock function decrements (decreases by one) the page-lock count
for the memory associated with the specified global selector. When the page-lock
count reaches zero, the data that the selector references is no longer guaranteed to
remain in memory at the same physical address.

hglb
Specifies the selector of the memory to be page-unlocked.

The return value specifies the page-lock count after the function has decremented
it. If the function fails, the return value is zero.

Because using this function violates preferred Windows programming practices,
an application should not use it unless absolutely necessary. The function is in
tended to be used for dynamically allocated data that must be accessed at interrupt
time. For this reason, it must only be called from a dynamic-link library (DLL).

The GlobalPageLock function increments the page-lock count for the block of
memory, and the GlobalPageUnlock function decrements the page-lock count.
Page-locking operations can be nested, but each page-locking must be balanced by
a corresponding unlocking.

GlobalPageLock

GlobalReAlloc 517

GlobalReAlloc ~

HGLOBAL GlobalReAlloc(hglb, cbNewSize,fuAlloc)
HGLOBAL hglb; /* handle of memory object to reallocate */
DWORD cbNewSize; /*new size of object */
UINT fuAlloc; /* how object is reallocated */

Parameters

The GlobalReAlloc function changes the size or attributes of the given global
memory object.

hglb
Identifies the global memory object to be reallocated.

cbNewSize
Specifies the new size of the memory object.

fuAlloc
Specifies how to reallocate the global object. If this parameter includes
GMEM_MODIFY, the GlobalReAlloc function ignores the cbNewSize
parameter.

Value

GMEM_DISCARDABLE

GMEM_MODIFY

GMEM_MOVEABLE

GMEM_NODISCARD

Meaning

Causes a previously movable object to become
discardable. This flag can be used only with
GMEM_MODIFY.

Modifies the object's memory flags. This flag can
be used with GMEM_DISCARDABLE and
GMEM_MOVEABLE.

Causes a previously movable and discardable object
to be discarded, if the cbNewSize parameter is zero
and the object's lock count is zero. If cbNewSize is
zero and the object is not movable and discardable,
this flag causes the GlobalReAlloc function to fail.

If cbNewSize is nonzero and the object identified by
the hglb parameter is fixed, this flag allows the reallo
cated object to be moved to a new fixed location.

If a movable object is locked, this flag allows the ob
ject to be moved to a new locked location without in
validating the handle. This may occur even if the
object is currently locked by a previous call to the
GlobalLock function.

If this flag is used with GMEM_MODIFY, the
GlobalReAlloc function changes a fixed memory
object to a movable memory object.

Prevents memory from being discarded to satisfy the
allocation request. This flag cannot be used with
GMEM_MODIFY.

518 GlobalReAlloc

Return Value

Comments

See Also

Value

GMEM_ZEROINIT

Meaning

Causes the additional memory to be initialized to
zero if the object is growing. This flag cannot be
used with GMEM_MODIFY.

The return value is the handle of the reallocated global memory if the function is
successful. It is NULL if the object cannot be reallocated as specified.

If GlobalReAlloc reallocates a movable object, the return value is a handle to the
memory. To access the memory, an application must use the GlobalLock function
to convert the handle to a pointer.

To free a global memory object, an application should use the GlobalFree func
tion.

The GMEM_ZEROINIT flag will cause applications to fail if it is used as shown
in the following sequence:

hMem = GlobalAlloc(GMEM_ZEROINIT I (other flags), dwSizel);

hMem = GlobalReAlloc(hMem, dwSize2, GMEM_ZEROINIT I (other flags));

/* where dwSize2 > dwSizel. */

hMem = GlobalReAlloc(hMem, dwSize3, GMEM_ZEROINIT I (other flags));

/* where dwSize3 < dwSize2. */

hMem = GlobalReAlloc(hMem, dwSize4, GMEM_ZEROINIT I (other flags));

/* GMEM_ZEROINIT fails when dwSize4 > dwSize3. */

In the last step of the preceding example, the memory between dwSize3 and the in
ternal allocation boundary is not set to zero. After the last step, the contents of the
buffer equal its contents prior to the call to GlobalReAlloc that specified dwSize3.

GlobalAlloc, GlobalDiscard, GlobalFree, GlobalLock

Global Unfix 519

GlobalSize IT!]

DWORD GlobalSize(hglb)
HGLOBAL hglb; /*handle of memory object to return size of */

Parameters

Return Value

Comments

The GlobalSize function retrieves the current size, in bytes, of the given global
memory object.

hglb
Identifies the global memory object.

The return value specifies the size, in bytes, of the memory object. It is zero if the
specified handle is not valid or if the object has been discarded.

The size of a memory object is sometimes larger than the size requested at the
time the memory was allocated.

An application should call the GlobalFlags function prior to calling the Global
Size function, to verify that the specified memory object was not discarded. If the
memory object has been discarded, the return value for GlobalSize is meaningless.

See Also GlobalAlloc, GlobalFlags

GlobalUnfix IT!J
void GlobalUnfix(hglb)
HGLOBAL hglb; /* handle of global memory to unlock */

Parameters

Return Value

Comments

The GlobalUnfix function cancels the effects of the GlobalFix function and al
lows a global memory object to be moved in linear memory.

hglb
Identifies the global memory object to be unlocked.

This function does not return a value.

This function interferes with effective Windows memory management and can re
sult in linear-address fragmentation. Few applications need to fix memory in linear
address space.

Each time an application calls the GlobalFix function for an object, it must eventu
ally call the GlobalUnfix function for the object.

520 GlobalUnlock

See Also

GlobalUnfix decrements (decreases by one) the object's lock count and returns
the new lock count in the CX register. The object is completely unlocked and sub
ject to moving or discarding if the lock count is decremented to zero. Other func
tions also can affect the lock count of a memory object. For a list of these
functions, see the description of the GlobalFlags function.

GlobalFix, GlobalFlags

Global Unlock
BOOL GlobalUnlock(hglb)
HGLOBAL hglb; I* handle of global memory to unlock *I

Parameters

Return Value

Comments

See Also

The GlobalUnlock function unlocks the given global memory object. This func
tion has no effect on fixed memory.

hglb
Identifies the global memory object to be unlocked.

The return value is zero if the object's lock count was decremented (decreased by
one) to zero. Otherwise, the return value is nonzero.

With movable or discardable memory, this function decrements the object's lock
count. The object is completely unlocked and subject to moving or discarding if
the lock count is decreased to zero.

This function returns nonzero if the given memory object is not movable. An appli
cation should not rely on the return value to determine the number of times it must
subsequently call the GlobalUnlock function for the memory object.

Other functions can also affect the lock count of a memory object. For a list of the
functions that affect the lock count, see the description of the GlobaIFlags func
tion.

Each time an application calls GlobalLock for an object, it must eventually call
the GlobalUnlock function for the object.

GlobaIFlags, GlobaILock, UnlockResource

GrayString 521

GlobalUnWire [}!]

BOOL GlobalUnWire(hglb)
HGLOBAL hglb;

This function should not be used in Windows 3 .1.

See Also GlobalUnlock

GlobalWire [}!]

void FAR* GlobalWire(hglb)
HGLOBAL hglb;

This function should not be used in Windows 3.1.

See Also GlobalLock

GrayString [}!]

BOOL GrayString(hde, hbr, gspre, lParam, eeh, x, y, ex, ey)
HDC hde; /* handle of device context */
HBRUSH hbr; /* handle of brush for graying */
GRAYSTRINGPROC gspre; /* address of callback function */
LPARAM lParam; /* address of application-defined data */
int eeh; /* number of characters to output */
int x; /*horizontal position */
int y; /* vertical position */
int ex; /*width */
int ey; /*height */

The GrayString function draws gray (dim) text at the given location by writing
the text in a memory bitmap, graying the bitmap, and then copying the bitmap to
the display. The function grays the text regardless of the selected brush and back
ground. GrayString uses the font currently selected for the given device context.

Parameters hde
Identifies the device context.

522 GrayString

Return Value

Comments

hbr
Identifies the brush to be used for graying.

gsprc
Specifies the procedure-instance address of the application-supplied callback
function that will draw the string. The address must be created by the Make
Proclnstance function. For more information about the callback function, see
the description of the GrayStringProc callback function.

If this parameter is NULL, the system uses the TextOut function to draw the
string, and the lParam parameter is assumed to be a long pointer to the charac
ter string to be output.

lParam
Points to data to be passed to the output function. If the gsprc parameter is
NULL, the lParam parameter must point to the string to be output.

cch

x

y

ex

cy

Specifies the number of characters to be output. If this parameter is zero, the
GrayString function calculates the length of the string (assuming that the
lParam parameter is a pointer to the string). If cch is -1 and the function
pointed to by the gsprc parameter returns zero, the image is shown but not
grayed.

Specifies the logical x-coordinate of the starting positjon of the rectangle that
encloses the string.

Specifies the logical y-coordinate of the starting position of the rectangle that
encloses the string.

Specifies the width, in logical units, of the rectangle that encloses the string. If
this parameter is zero, the GrayString function calculates the width of the area,
assuming the lParam parameter is a pointer to the string.

Specifies the height, in logical units, of the rectangle that encloses the string. If
this parameter is zero, the GrayString function calculates the height of the
area, assuming the lParam parameter is a pointer to the string.

The return value is nonzero if the function is successful. It is zero if either the
TextOut function or the application-supplied output function returns zero, or if
there is insufficient memory to create a memory bitmap for graying.

An application must select the MM_ TEXT mapping mode before using this func
tion.

See Also

GrayStringProc 523

If TextOut cannot handle the string to be output (for example, if the string is
stored as a bitmap), the gsprc parameter must point to a callback function that will
draw the string.

An application can draw grayed strings on devices that support a solid gray color
without calling the GrayString function. The system color COLOR_GRAYTEXT
is the solid-gray system color used to draw disabled text. The application can call
the GetSysColor function to retrieve the color value of COLOR_GRA YTEXT. If
the color is other than zero (black), the application can call the SetTextColor func
tion to set the text color to the color value and then draw the string directly. If the
retrieved color is black, the application must call GrayString to gray the text.

GetSysColor, MakeProclnstance, SetTextColor, TextOut

GrayStringProc
BOOL CALLBACK GrayStringProc(hdc, lpData, cch)
HDC hdc; /* handle of device context */

*/
*/

LPARAM lpData; I* address of string to be drawn
int cch; /* length of string to be drawn

The GrayStringProc function is an application-defined callback function that
draws a string as a result of a call to the GrayString function.

Parameters hdc

Return Value

Comments

See Also

Identifies a device context with a bitmap of at least the width and height
specified by the ex and cy parameters passed to the GrayString function.

lpData
Points to the string to be drawn.

cch
Specifies the length, in characters, of the string.

The callback function should return TRUE to indicate success. Otherwise it should
return FALSE.

The callback function must draw an image relative to the coordinates (0,0).

GrayStringProc is a placeholder for the application-defined function name. The
actual name must be exported by including it in an EXPORTS statement in the ap
plication's module-definition (.DEF) file.

GrayString

524 HardwareProc

HardwareProc
LRESULT CALLBACK HardwareProc(code, wParam, lParam)
int code; /*hook code */

*/
*I

WPARAM wParam; /*undefined
LPARAM lParam; /* address of structure with event information

Parameters

Return Value

Comments

The HardwareProc function is an application-defined callback function that the
system calls whenever the application calls the GetMessage or PeekMessage
function and there is a hardware event to process. Mouse events and keyboard
events are not processed by this hook.

code
Specifies whether the callback function should process the message or call the
CallNextHookEx function. If this value is less than zero, the callback function
should pass the message to CaIINextHookEx without further processing. If this
value is HC_NOREMOVE, the application is using the PeekMessage function
with the PM_NOREMOVE option, and the message will not be removed from
the system queue.

wParam
Specifies a NULL value.

lParam
Points to a HARDW AREHOOKSTRUCT structure. The HARDWARE
HOOKSTRUCT structure has the following form:

typedef struct tagHARDWAREHOOKSTRUCT { /* hhs */
HWND hWnd;
UINT wMessage;
WPARAM wParam;
LPARAM l Pa ram;

} HARDWAREHOOKSTRUCT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The callback function should return zero to allow the system to process the mes
sage; it should be 1 if the message is to be discarded.

This callback function should not install a playback hook because the function can
not use the GetMessageExtralnfo function to get the extra information associated
with the message.

The callback function must use the Pascal calling convention and must be declared
FAR. An application must install the callback function by specifying the
WH_HARDW ARE filter type and the procedure-instance address of the callback
function in a call to the SetWindowsHookEx function.

See Also

hardware_ event 525

HardwareProc is a placeholder for the library-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the library's
module-definition (.DEF) file.

CallNextHookEx, GetMessageExtralnfo, SetWindowsHookEx

hardware_ event

Parameters

Return Value

Comments

extrn hardware_event :far

mov ax, Msg message
mov ex, Paraml low-order word of lParam of the message
mov dx, ParamH high-order word of lParam of the message
mov s i ' hwnd handle of the destination window
mov di ' wParam wParam of the message
cCa 11 hardware_ event

The hardware_ event function places a hardware-related message into the system
message queue. This function allows a driver for a non-standard hardware device
to place a message into the queue.

Msg
Specifies the message to place in the system message queue.

ParamL
Specifies the low-order word of the lParam parameter of the message.

lParamH
Specifies the high-order word of the lParam parameter of the message.

hwnd
Identifies the window to which the message is directed. r~'his parameter also be
comes the low-order word of the dwExtralnfo parameter associated with the
message. An application can determine the value of this parameter by calling
the GetMessageExtralnfo function.

wParam
Specifies the wParam parameter of the message.

The return value is nonzero if the function is successful. Otherwise, it is zero.

An application should not use this function to place keyboard or mouse messages
into the system message queue.

526 HideCaret

See Also

HideCaret

An application may only call the hardware_ event function from an assembly lan
guage routine. The application must declare the function as follows:

extrn hardware_event :far

If the application includes CMACROS.INC, the application can declare the func
tion as follows:

extrnFP hardware_event.

GetMessageExtralnfo

void HideCaret(hwnd)
HWND hwnd; /* handle of window with caret *I

The HideCaret function hides the caret by removing it from the screen. Although
the caret is no longer visible, it can be displayed again by using the ShowCaret
function. Hiding the caret does not destroy its current shape.

Parameters hwnd

Return Value

Comments

See Also

Identifies the window that owns the caret. This parameter can be set to NULL
to specify indirectly the window in the current task that owns the caret.

This function does not return a value.

The HideCaret function hides the caret only if the given window owns the caret.
If the hwnd parameter is NULL, the function hides the caret only if a window in
the current task owns the caret.

Hiding is cumulative. If HideCaret has been called five times in a row, Show
Caret must be called five times before the caret will be shown.

CreateCaret, ShowCaret

HiliteMenultem 527

HiliteMenultem ~

BOOL HiliteMenultem(hwnd, hmenu, idHiliteltem,fuHilite)
HWND hwnd; I* handle of window with menu */
HMENU hmenu; I* handle of menu */
UINT idHiliteltem; /* menu-item identifier */
UINT fuHilite; /* highlight flags */

The HiliteMenultem function highlights or removes the highlighting from a top
level (menu-bar) menu item.

Parameters hwnd

Return Value

Comments

See Also

Identifies the window that contains the menu.

hmenu
Identifies the top-level menu that contains the item to be highlighted.

idHiliteltem
Specifies the menu item to be highlighted, as determined by the fuHilite param
eter.

fuHilite
Specifies whether the menu item is highlighted or the highlight is removed. It
can be a combination of the MF _HILITE or MF_ UNHILITE value with the
MF _BYCOMMAND or MF _BYPOSITION value. These values have the fol
lowing meanings:

Value

MF _BYCOMMAND

MF _BYPOSITION

MF_HILITE

MF _UNHILITE

Meaning

Menu-item identifier is specified by the idHiliteltem pa
rameter (the default interpretation).

Zero-based position of the menu item is specified by the
idHiliteltem parameter.

Menu item is highlighted. If this value is not given,
highlighting is removed from the menu item.

Highlighting is removed from the menu item.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The MF _HILITE and MF _UNHILITE flags can be used only with the Hilite
Menultem function; they cannot be used with the ModifyMenu function.

CheckMenultem, EnableMenultem, ModifyMenu

528 hmemcpy

hmemcpy
void hmemcpy(hpvDest, hpvSource, cbCopy)
void _huge* hpvDest; !* address of destination buffer */

*/
*!

const void _huge* hpvSource; !* address of source buffer
long cbCopy; !* number of bytes to copy

Parameters

Return Value

See Also

hread

The hmemcpy function copies bytes from a source buffer to a destination buffer.
This function supports huge memory objects (that is, objects larger than 64K, allo
cated using the GlobalAlloc function).

hpvDest
Points to a buffer that receives the copied bytes.

hpvSource
Points to a buffer that contains the bytes to be copied.

cbCopy
Specifies the number of bytes to be copied.

This function does not return a value.

_bread, _hwrite, lstrcpy

long _hread(hf, hpvBuffer, cbBuffer)
HFILE hf; /*file handle */
void _huge* hpvBuffer; /*address of buffer for read data */
long cbBuffer; I* length of data buffer */

Parameters

The _bread function reads data from the specified file. This function supports
huge memory objects (that is, objects larger than 64K, allocated using the
GlobalAlloc function).

hf
Identifies the file to be read.

hpvBuffer
Points to a buffer that is to receive the data read from the file.

ch Buffer
Specifies the number of bytes to be read from the file.

Return Value

See Also

hwrite

hwrite 529

The return value indicates the number of bytes that the function read from the file,
if the function is successful. If the number of bytes read is less than the number
specified in cbBuffer, the function reached the end of the file (EOF) before reading
the specified number of bytes. The return value is - IL if the function fails.

_lread, hmemcpy, _hwrite

long _hwrite(/if, hpvBuffer, cbBuffer)
HFILE hf; /* file handle *I
const void _huge* hpvBuffer; /*address of buffer for write data */
long cbBuffer; /* size of data */

Parameters

Return Value

Comments

See Also

The _hwrite function writes data to the specified file. This function supports huge
memory objects (that is, objects larger than 64K, allocated using the GlobalAlloc
function).

hf
Identifies the file to be written to.

hpvBuffer
Points to a buffer that contains the data to be written to the file.

cbBuffer
Specifies the number of bytes to be written to the file.

The return value indicates the number of bytes written to the file, if the function is
successful. Otherwise, the return value is -IL.

MS-DOS error values are not available when an application calls this function.

hmemcpy, _hread, _lwrite

530 Inflate Reel

lnflateRect
void InflateRect(lprc, xAmt, yAmt)
RECT FAR* lprc; /* address of rectangle */

*/
*/

int xAmt; /* amount to increase or decrease width
int yAmt; /* amount to increase or decrease height

Parameters

Return Value

Comments

See Also

The InflateRect function increases or decreases the width and height of a
rectangle. The InflateRect function adds xAmt units to the left and right ends of
the rectangle and adds yAmt units to the top and bottom. The xAmt and yAmt pa
rameters are signed values; positive values increase the width and height, and
negative values decrease them.

lprc
Points to the RECT structure that increases or decreases in size. The RECT
structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

f* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

xAmt
Specifies the amount to increase or decrease the rectangle width. It must be
negative to decrease the width.

yAmt
Specifies the amount to increase or decrease the rectangle height. It must be
negative to decrease the height.

This function does not return a value.

The width and height of a rectangle must not be greater than 32,767 units or less
than -32,768 units.

IntersectRect, OffsetRect, UnionRect

lnitAtomTable 531

lnitAtomTable CI!J
BOOL InitAtomTable(cTableEntries)
int cTableEntries; I* size of atom table */

Parameters

Return Value

Comments

Example

The InitAtomTable function initializes the local atom hash table and sets it to the
specified size.

An application need not use this function to use a local atom table. The default
size of the local and global atom hash tables is 37 table entries. If an application
uses InitAtomTable, however, it should call the function before any other atom
management function.

cTableEntries
Specifies the size, in table entries, of the atom hash table. This value should be
a prime number.

The return value is nonzero if the function is successful. Otherwise, it is zero.

If an application uses a large number of local atoms, it can increase the size of the
local atom table, reducing the time required to add an atom to the local atom table
or to find an atom in the table. However, this increases the amount of memory re
quired to maintain the table.

The size of the global atom table cannot be changed from its default size of 37 en
tries.

The following example uses the InitAtomTable function to change the size of the
local atom table to 73:

BOOL fSuccess;

fSuccess = InitAtomTable(73);

if (fSucces s)

else

MessageBoxChwnd, "table initialization succeeded",
"InitAtomTable", MB_QK);

MessageBox(hwnd, "table initialization failed",
"InitAtomTabl e", MB_ ICONEXCLAMATION);

532 lnSendMessage

lnSendMessage
BOOL InSendMessage(void)

Parameters

Return Value

The InSendMessage function specifies whether the current window procedure
is processing a message that was sent from another task by a call to the Send
Message function.

This function has no parameters.

The return value is nonzero if the window procedure is processing a message sent
to it from another task by the SendMessage function. Otherwise, the return value
is zero.

Comments Applications use the InSendMessage function to determine how to handle errors
that occur when an inactive window processes messages. For example, if the ac
tive window uses the SendMessage function to send a request for information to
another window, the other window cannot become active until it returns control
from the SendMessage call. The only method an inactive window has to inform
the user of an error is to create a message box.

See Also PostAppMessage, SendMessage

lnsertMenu [ill

BOOL InsertMenu(hmenu, idltem,fuFlags, idNewltem, lpNewltem)
HMENU hmenu; I* handle of menu */
UINT idltem; I* menu item that new menu item is to precede */
UINT fuFlags; /* menu flags */
UINT idNew/tem; /* item identifier or pop-up menu handle */
LPCSTR lpNew/tem; /* item content */

Parameters

The InsertMenu function inserts a new menu item into a menu, moving other
items down the menu. The function also sets the state of the menu item.

hmenu
Identifies the menu to be changed.

id/tern
Specifies the menu item before which the new menu item is to be inserted, as
determined by thefuFlags parameter.

Return Value

Comments

lnsertMenu 533

fuFlags
Specifies how the id/tern parameter is interpreted and information about the
state of the new menu item when it is added to the menu. This parameter con
sists of a combination of one of the following values and the values listed in the
Comments section.

Value

MF _BY COMMAND

MF _BYPOSITION

idNewltem

Meaning

The id/tern parameter specifies the menu-item identifier.

The idltem parameter specifies the zero-based position of
the menu item. If idltem is -1, the new menu item is ap
pended to the end of the menu.

Specifies either the identifier of the new menu item or, if.fuFlags is set to
MF _POPUP, the menu handle of the pop-up menu.

lpNewltem
Specifies the contents of the new menu item. IffuFlags is set to MF _STRING
(the default value), this parameter points to a null-terminated string. IffuFlags
is set to MF _BITMAP instead, lpNewltem contains a bitmap handle in its low
order word. lffuFlags is set to MF _OWNERDRA W, lpNewltem specifies an
application-defined 32-bit value, which the application can use to maintain addi
tional data associated with the menu item. This 32-bit value is available to the
application in the itemData member of the structure pointed to by the lParam
parameter of the WM_MEASUREITEM and WM_DRA WITEM messages.
These messages are sent when the menu item is initially displayed or is
changed.

The return value is nonzero if the function is successful. Otherwise, it is zero.

If the active multiple document interface (MDI) child window is maximized and
an application inserts a pop-up menu into the MDI application's menu by calling
this function and specifying the MF _BYPOSITION flag, the menu is inserted one
position farther left than expected. This occurs because the System menu of the ac
tive MDI child window is inserted into the first position of the MDI frame win
dow's menu bar. To avoid this behavior, the application must add 1 to the
position value that would otherwise be used. An application can use the
WM_MDIGETACTIVE message to determine whether the currently active
child window is maximized.

Whenever a menu changes (whether or not the menu is in a window that is dis
played), the application should call the DrawMenuBar function.

Each of the following groups lists flags that should not be used together:

• MF _BYCOMMAND and MF _BYPOSITION

• MF _DISABLED, MF _ENABLED, and MF _GRAYED

534 lnsertMenu

• MF _BITMAP, MF _STRING, MF _OWNERDRA W, and MF _SEPARATOR

• MF _MENUBARBREAK and MF _MENUBREAK

• MF _CHECKED and MF _UNCHECKED

The following list describes the flags that may be set in thefuFlags parameter:

Value

MF_BITMAP

MF _BYCOMMAND

MF _BYPOSITION

MF_CHECKED

MF _DISABLED

MF_ENABLED

MF_GRAYED

MF _MENUBARBREAK

MF _MENUBREAK

MF_OWNERDRAW

MF_POPUP

Meaning

Uses a bitmap as the item. The low-order word of the
lpNewltern parameter contains the handle of the bitmap.

Specifies that the id/tern parameter gives the menu-item
identifier (default).

Specifies that the id/tern parameter gives the position of
the menu item rather than the menu-item identifier.

Places a check mark next to (selects) the menu item. If
the application has supplied check-mark bitmaps (see the
SetMenultemBitmaps function), setting this flag dis
plays the check-mark bitmap next to the menu item.

Disables the menu item so that it cannot be selected, but
does not gray (dim) it.

Enables the menu item so that it can be selected, and re
stores it from its grayed state.

Disables the menu item so that it cannot be selected, and
grays it.

Same as MF _MENUBREAK except, for pop-up menus,
separates the new column from the old column by using
a vertical line.

Places the menu item on a new line for static menu-bar
items. For pop-up menus, places the menu item in a new
column, with no dividing line between the columns.

Specifies that the item is an owner-drawn item.
The window that owns the menu receives a
WM_MEASUREITEM message (when the menu is dis
played for the first time) to retrieve the height and width
of the menu item. The WM_DRA WITEM message is
then sent to the owner whenever the owner must update
the visual appearance of the menu item. This option is
not valid for a top-level menu item.

Specifies that the menu item has a pop-up menu as
sociated with it. The idNewltern parameter specifies a
handle of a pop-up menu to be associated with the item.
Use the MF _OWNERDRAW flag to add either a top
level pop-up menu or a hierarchical pop-up menu to a
pop-up menu item.

See Also

Value

MF _SEPARATOR

MF_STRING

MF _UNCHECKED

lnterruptRegister 535

Meaning

Draws a horizontal dividing line. You can use this flag
in a pop-up menu. This line cannot be grayed, disabled,
or highlighted. Windows ignores the lpNewltem and
idNewltem parameters.

Specifies that the menu item is a character string; the
lpNewltem parameter points to the string for the item.

Does not place a check mark next to the item (default
value). If the application has supplied check-mark bit
maps (see SetMenultemBitmaps), setting this flag dis
plays the check-mark-off bitmap next to the menu item.

AppendMenu, CreateMenu, DrawMenuBar, RemoveMenu,
SetMenultemBitmaps

lnterruptRegister
#include <toolhelp.h>

BOOL InterruptRegister(htask, lpfnlntCallback)
HTASK htask; I* handle of task */
FARPROC lpfnlntCallback; I* address of callback function */

Parameters

Return Value

The InterruptRegister function installs a callback function to handle all system
interrupts.

htask
Identifies the task that is registering the callback function. The htask value is
for registration purposes, not for filtering interrupts. Typically, this value is
NULL, indicating the current task. The only time this value is not NULL is
when an application requires more than one interrupt handler.

lpfnlntCallback
Points to the interrupt callback function that will handle interrupts. The Tool
Helper library calls this function whenever a task receives an interrupt.

The lpfnlntCallback value is normally the return value of a call to the Make
Proclnstance function. This causes the interrupt callback function to be
entered with the AX register set to the selector of the application's data seg
ment. Usually, an exported function prolog contains the following code:

mov ds,ax

The return value is nonzero if the function is successful. Otherwise, it is zero.

536 lnterruptRegister

Comments The syntax of the function pointed to by lpfnlntCallbackis as follows:

void lnterruptRegisterCallback(void)

InterruptRegisterCallback is a placeholder for the application-defined function
name. The actual name must be exported by including it an EXPORTS in the ap
plication's module-definition file.

An interrupt callback function must be reentrant, must be page-locked, and must
explicitly preserve all register values. When the Tool Helper library calls the func
tion, the stack will be organized as shown in the following illustration.

SS (fault) SP+ 12h

SP (fault) SP+ 10h

Flags (fau It) SP+ OEh

CS (fault) SP+ OCh

IP (fault) SP+ OAh

Handle (internal) SP+ OBh

Interrupt number SP+ 06h

AX SP+ 04h

CS (TOOLHELP.DLL) SP+02h

IP (TOOLHELP.DLL) SP+ OOh

The SS and SP values will not be on the stack unless a low-stack fault occurred.
This fault is indicated by the high bit of the interrupt number being set.

When Windows calls a callback function, the AX register contains the DS value
for the instance of the application that contains the callback function. For more in
formation about this process, see the MakeProclnstance function.

Typically, an interrupt callback function is exported. If it is not exported, the
developer should verify that the appropriate stack frame is generated, including the
correct DS value.

lnterruptRegister 537

An interrupt callback function must save and restore all register values. The func
tion must also do one of the following:

• Execute an retf instruction if it does not handle the interrupt. The Tool Helper
library will pass the interrupt to the next appropriate handler in the interrupt
handler list.

• Terminate the application by using the TerminateApp function.

• Correct the problem that caused the interrupt, clear the first 10 bytes of the
stack, and execute an iret instruction. This action will restart execution at the
specified address. An application may change this address, if necessary.

• Execute a nonlocal goto to a known position in the application by using the
Catch and Throw functions. This type of interrupt handling can be hazardous;
the system may be in an unstable state and another fault may occur. Applica
tions that handle interrupts in this way must verify that the fault was a result of
the application's code.

The Tool Helper library supports the following interrupts:

Name Number Meaning

INT_DIVO 0 Divide-error exception

INT_l Debugger interrupt

INT_3 3 Breakpoint interrupt

INT_UDINSTR 6 Invalid-opcode exception

INT_STKFAULT 12 Stack exception

INT_GPFAULT 13 General protection violation

INT_BADPAGEFAULT 14 Page fault not caused by normal virtual-
memory operation

INT_ CTLALTSYS RQ 256 User pressed CTRL+ALT+SYS RQ

The Tool Helper library returns interrupt numbers as word values. Normal soft
ware interrupts and processor faults are represented by numbers in the range 0
through 255. Interrupts specific to Tool Helper are represented by numbers greater
than 255.

Some developers may wish to use CTRL+ALT+SYS RQ (Interrupt 256) to break into
the debugger. Be cautious about implementing this interrupt, because the point at
which execution stops will probably be in a sensitive part of the Windows kernel.
All InterruptRegisterCallback functions must be page-locked to prevent prob
lems when this interrupt is used. In addition, the debugger probably will not be
able to perform user-interface functions. However, the debugger can use Tool
Helper functions to set breakpoints and gather information. The debugger
may also be able to use a debugging terminal or secondary screen to display
information.

538 lnterruptUnRegister

See Also

Low-stack Faults
A low-stack fault occurs when inadequate stack space is available on the faulting
application's stack. For example, if any fault occurs when there is less than 128
bytes of stack space available or if runaway recursion depletes the stack, a low
stack fault occurs. The Tool Helper library processes a low-stack fault differently
than it processes other faults.

A low-stack fault is indicated by the high-order bit of the interrupt number being
set. For example, if a stack fault occurs and the SP value becomes invalid, the
Tool Helper library will return the fault number as OxSOOC rather than OxOOOC.

Interrupt handlers designed to process low-stack faults must be aware that the
Tool Helper library has passed a fault frame on a stack other that the faulting appli
cation's stack. The SS:SP value is on the stack because it was pushed before the
rest of the information in the stack frame. The SS:SP value is available only for ad
visory purposes.

An interrupt handler should never restart the faulting instruction, because this
will cause the system to crash. The handler may terminate the application with
TerminateApp or pass the fault to the next handler in the interrupt-handler list.

Interrupt handlers should not assume that all stack faults are low-stack faults. For
example, if an application accesses a stack-relative variable that is out of range, a
stack fault will occur. This type of fault can be processed in the same manner as
any general protection (GP) fault. If the high-order bit of the interrupt number is
not set, the instruction can be restarted.

Interrupt handlers also should not assume that all low-stack faults are stack faults.
Any fault that occurs when there is less than 128 bytes of stack available will
cause a low-stack fault.

Interrupt callback functions that are not designed to process low-stack faults
should execute an retfinstruction so that the Tool Helper library will pass the fault
to the next appropriate handler in the interrupt-handler list.

Catch, InterruptUnRegister, NotifyRegister, NotifyUnRegister,
TerminateApp, Throw

lnterruptUnRegister
#include <toolhelp.h>

BOOL InterruptUnRegister(htask)
HTASK htask; /* handle of task */

lntersectClipRect 539

The lnterruptUnRegister function restores the default interrupt handle for sys
tem interrupts.

Parameters htask

Return Value

Comments

See Also

Identifies the task. If this value is NULL, it identifies the current task.

The return value is nonzero if the function is successful. Otherwise, it is zero.

After this function is executed, the Tool Helper library will pass all interrupts it re
ceives to the system's default interrupt handler.

InterruptRegister, NotifyRegister, NotifyUnRegister, TerminateApp

lntersectClipRect CI!J
int IntersectClipRect(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect)
HDC hdc; /*handle of device context */
int nLeftRect; /* x-coordinate top-left corner of rectangle */
int nTopRect; /* y-coordinate top-left comer of rectangle */
int nRightRect; /* x-coordinate bottom-right corner of rectangle */
int nBottomRect; /* y-coordinate bottom-right corner of rectangle */

The IntersectClipRect function creates a new clipping region from the intersec
tion of the current region and a specified rectangle.

Parameters hdc

Return Value

Identifies the device context.

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the rectangle.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the rectangle.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the rectangle.

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the rectangle.

The return value specifies that the resulting region has overlapping borders
(COMPLEXREGION), is empty (NULLREGION), or has no overlapping borders
(SIMPLEREGION). Otherwise, the return value is ERROR.

540 lntersectRect

Comments

Example

See Also

An application uses the IntersectClipRect function to create a clipping region
from the intersection of the current region and a specified rectangle. An applica
tion can also create a clipping region that is the intersection of two regions, by
specifying RGN_AND in a call to the CombineRgn function and then making
this combined region the clipping region by calling the SelectClipRgn function.

The width of the rectangle, specified by the absolute value of nRightRect
nLeftRect, must not exceed 32,767 units. This limit applies to the height of the
rectangle as well.

The following example creates a square clipping region and colors it red by using
a red brush to fill the client area. The IntersectClipRect function is called with
coordinates that overlap the region, and the client area is filled with a yellow
brush. The only region colored yellow is the overlap between the region and the
coordinates specified in the call to IntersectClipRect

RECT re;
HRGN hrgn;
HBRUSH hbrRed, hbrYellow;

GetClientReet(hwnd, &re);
hrgn = CreateReetRgn(l0, 10, 110, 110);
SeleetClipRgn(hde, hrgn);
hbrRed = CreateSolidBrush(RGB(255, 0, 0));
FillReet(hde, &re, hbrRed);

InterseetClipReet(hde, 100, 100, 200, 200);

hbrYellow = CreateSolidBrush(RGB(255, 255, 0));
FillReet(hde, &re, hbrYellow);

DeleteObjeet(hbrRed);
DeleteObjeet(hbrYellow);
DeleteObjeet(hrgn);

CombineRgn, SelectClipRgn

lntersectRect
BOOL IntersectRect(lprcDst, lprcSrcl, lprcSrc2)
RECT FAR* lprcDst; /* address of structure for intersection
const RECT FAR* lprcSrcl; I* address of structure with 1st rectangle
const RECT FAR* lprcSrc2; I* address of structure with 2nd rectangle

*/
*!
*/

Parameters

Return Value

See Also

lnvalidateRect 541

The lntersectRect function calculates the intersection of two source rectangles
and places the coordinates of the intersection rectangle into the destination
rectangle. If the rectangles do not intersect, an empty rectangle (0, 0, 0, 0) is
placed into the destination rectangle.

lprcDst
Points to a RECT structure that receives the intersection of the rectangles
pointed to by the lprcSrcl and lprcSrc2 parameters. The RECT structure has
the following form:

typedef struct tagRECT {
int 1 eft;
int top;
int right;
int bottom;

} RECT;

f* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

lprcSrcl
Points to the RECT structure that contains the first source rectangle.

lprcSrc2
Points to the RECT structure that contains the second source rectangle.

The return value is nonzero if the rectangles intersect. Otherwise, it is zero.

InflateRect, SubtractRect, UnionRect

lnvalidateRect
void InvalidateRect(hwnd, lprc,fErase)
HWND hwnd; I* handle of window with changed update region
const RECT FAR* !pre; I* address of structure with rectangle
BOOLfErase; I* erase-background flag

*/
*/
*/

The InvalidateRect function adds a rectangle to a window's update region. The
update region represents the client area of the window that must be redrawn.

Parameters hwnd
Identifies the window whose update region has changed.

542 lnvalidateRgn

Return Value

Comments

See Also

!pre
Points to a RECT structure that contains the client coordinates of the rectangle
to be added to the update region. If the !pre parameter is NULL, the entire
client area is added to the update region.

The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

fErase
Specifies whether the background within the update region is to be erased when
the update region is processed. It this parameter is TRUE, the background is
erased when the BeginPaint function is called. If this parameter is FALSE, the
background remains unchanged.

This function does not return a value.

The invalidated areas accumulate in the update region until the region is processed
when the next WM_PAINT message occurs, or until the region is validated by
using the ValidateRect or V alidateRgn function.

Windows sends a WM_PAINT message to a window whenever its update region
is not empty and there are no other messages in the application queue for that win
dow.

If the fErase parameter is TRUE for any part of the update region, the background
is erased in the entire region, not just in the given part.

BeginPaint, InvalidateRgn, ValidateRect, ValidateRgn

lnvalidateRgn
void InvalidateRgn(hwnd, hrgn,fErase)
HWND hwnd; I* handle of window with changed update region
HRGN hrgn; I* handle of region to add
BOOL fErase; I* erase-background flag

*I
*I
*I

Parameters

Return Value

Comments

See Also

lnvertRect

lnvertRect 543

The InvalidateRgn function adds a region to a window's update region. The up
date region represents the client area of the window that must be redrawn.

hwnd
Identifies the window whose update region has changed.

hrgn
Identifies the region to be added to the update region. The region is assumed to
have client coordinates. If this parameter is NULL, the entire client area is
added to the update region.

fErase
Specifies whether the background within the update region is to be erased when
the update region is processed. If this parameter is TRUE, the background is
erased when the BeginPaint function is called. If the parameter is FALSE, the
background remains unchanged.

This function does not return a value.

The invalidated regions accumulate in the update region until the region is
processed when the next WM_PAINT message occurs, or until the region is vali
dated by using the ValidateRect or ValidateRgn function.

Windows sends a WM_P AINT message to a window whenever its update region
is not empty and there are no other messages in the application queue for that win
dow.

If the fErase parameter is TRUE for any part of the update region, the background
is erased in the entire region, not just in the given part.

BeginPaint, InvalidateRect, ValidateRect, ValidateRgn

void InvertRect(hdc, lprc)
HDChdc; I* handle of device context *I

I const RECT FAR lprc; I* address of structure with rectangle

The InvertRect function inverts a rectangular area. Inversion is a logical NOT
operation and flips the bits of each pixel.

Parameters hdc
Identifies the device context.

544 lnvertRgn

Return Value

Comments

See Also

lnvertRgn

lprc
Points to a RECT structure that contains the logical coordinates of the
rectangle to be inverted. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

This function does not return a value.

On monochrome screens, the InvertRect function makes white pixels black and
black pixels white. On color screens, the inversion depends on how colors are
generated for the screen. Calling InvertRect twice, specifying the same rectangle,
restores the display to its previous colors.

The InvertRect function compares the values of the top, bottom, left, and right
members of the specified rectangle. If bottom is less than or equal to top, or if
right is less than or equal to left, the function does not draw the rectangle.

FillRect

BOOL InvertRgn(hdc, hrgn)
HDC hdc; !* handle of device context */
HRGN hrgn; !* handle of region */

The InvertRgn function inverts the colors in a given region.

Parameters hdc
Identifies the device context.

hrgn
Identifies the region for which colors are to be inverted.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

Example

See Also

lsBadCodePtr 545

On monochrome screens, the InvertRgn function makes white pixels black and
black pixels white. On color screens, the inversion depends on how the colors are
generated for the screen.

The following example sets the device coordinates of and creates a rectangular re
gion, selects the region into a device context, and then calls the InvertRgn func
tion to display the region in inverted colors:

HRGN hrgn;

hrgn = CreateRectRgn(10, 10, 110, 110);
SelectObject(hdc, hrgn);
InvertRgn(hdc, hrgn);

DeleteObject(hrgn);

FillRgn, PaintRgn

lsBadCodePtr
BOOL lsBadCodePtr(lpfa)
FARPROC lpfa; /*pointer to test */

The IsBadCodePtr function determines whether a pointer to executable code is
valid.

Parameters lpfa

Return Value

See Also

Points to a function.

The return value is nonzero if the pointer is bad (that is, if it does not point to ex
ecutable code). The return value is zero if the pointer is good.

IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadReadPtr, IsBadStringPtr,
IsBadWritePtr

546 lsBadHugeReadPtr

lsBadHugeReadPtr
BOOL IsBadHugeReadPtr(lp, ch)
const void _huge* lp; /*pointer to test */

/ DWORD ch; / number of allocated bytes

Parameters

Return Value

See Also

The IsBadHugeReadPtr function determines whether a huge pointer to readable
memory is valid.

lp

ch

Points to the beginning of a block of allocated memory. The data object may
reside anywhere in memory and may exceed 64K in size.

Specifies the number of bytes of memory that were allocated.

The return value is nonzero if the pointer is bad (that is, if it does not point to read
able memory of the specified size). The return value is zero if the pointer is good.

IsBadCodePtr, IsBadHugeWritePtr, IsBadReadPtr, IsBadStringPtr,
IsBadW ritePtr

lsBadHugeWritePtr
BOOL IsBadHugeWritePtr(lp, ch)
void _huge* lp; /*pointer to test */

/ DWORD ch; / number of allocated bytes

Parameters

The IsBadHugeWritePtr function determines whether a huge pointer to writable
memory is valid.

lp

ch

Points to the beginning of a block of allocated memory. The data object may
reside anywhere in memory and may exceed 64K in size.

Specifies the number of bytes of memory that were allocated.

Return Value

See Also

lsBadStringPtr 547

The return value is nonzero if the pointer is bad (that is, if it does not point to
writable memory of the specified size). The return value is zero if the pointer is
good.

IsBadCodePtr, IsBadHugeReadPtr, lsBadReadPtr, lsBadStringPtr,
IsBadW ritePtr

lsBadReadPtr
BOOL IsBadReadPtr(lp, cb)
const void FAR* lp; /*pointer to test */

/ UINT cb; / number of allocated bytes

Parameters

Return Value

See Also

The IsBadReadPtr function determines whether a pointer to readable memory is
valid.

lp
Points to the beginning of a block of allocated memory.

cb
Specifies the number of bytes of memory that were allocated.

The return value is nonzero if the pointer is bad (that is, if it does not point to read
able memory of the specified size). The return value is zero if the pointer is good.

IsBadCodePtr, IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadStringPtr,
IsBadWritePtr

lsBadStringPtr
BOOL IsBadStringPtr(lpsz, cchMax)
const void FAR* lpsz; /*pointer to test
UINT cchMax; /* maximum size of string

*/
*/

The IsBadStringPtr function determines whether a pointer to a string is valid.

Parameters lpsz
Points to a null-terminated string.

548 lsBadWritePtr

Return Value

See Also

cchMax
Specifies the maximum size of the string, in bytes.

The return value is nonzero if the pointer is bad (that is, if it does not point to a
string of the specified size). The return value is zero if the pointer is good.

IsBadCodePtr, IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadReadPtr,
IsBadWritePtr

lsBadWritePtr
BOOL IsBadWritePtr(lp, cb)
void FAR* lp; I* pointer to test
UINT cb; /* number of allocated bytes

*!
*!

The lsBadWritePtr function determines whether a pointer to writable memory is
valid.

Parameters lp
Points to the beginning of a block of allocated memory.

cb
Specifies the number of bytes of memory that were allocated.

Return Value The return value is nonzero if the pointer is bad (that is, if it does not point to wri
table memory of the specified size). The return value is zero if the pointer is good.

See Also IsBadCodePtr, IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadReadPtr,
IsBadStringPtr

lsCharAlpha [ill

BOOL IsCharAlpha(chTest)
char chTest; I* character to test */

The IsCharAlpha function determines whether a character is in the set of
language-defined alphabetic characters.

Parameters

Return Value

Comments

Example

See Also

lsCharAlphaNumeric 549

ch Test
Specifies the character to be tested.

The return value is nonzero if the character is in the set of alphabetic characters.
Otherwise, it is zero.

The language driver for the current language (the language the user selected at
setup or by using Control Panel) determines whether the character is in the set. If
no language has been set, Windows uses an internal function.

The following example uses the lsCharAlpha function to find the first nonalpha
betic character in a string:

for (lpszNon = lpsz; IsCharAlpha(*lpszNonl;
lpszNon = AnsiNext(lpszNonll;

IsCharAlphaNumeric

lsCharAlphaNumeric lliJ
BOOL IsCharAlphaNumeric(chTest)
char chTest; /*character to test */

Parameters

Return Value

Comments

Example

The IsCharAlphaNumeric function determines whether a character is in the set
of language-defined alphabetic or numeric characters.

chTest
Specifies the character to be tested.

The return value is nonzero if the character is in either the set of alphabetic charac
ters or the set of numeric characters. Otherwise, it is zero.

The language driver for the current language (the language the user selected at
setup or by using Control Panel) determines whether the character is in the set. If
no language driver is selected, Windows uses an internal function.

The following example uses the Is Char AlphaNumeric function to find the first
nonalphanumeric character in a string:

550 lsCharlower

for (lpszNon = lpsz; IsCharAlphaNumeric(*lpszNon);
lpszNon = AnsiNext(lpszNon));

See Also IsCharAlpha

lsCharlower CIT]

BOOL IsCharLower(chTest)
char chTest; I* character to test */

Parameters

Return Value

Comments

Example

See Also

The IsCharLower function determines whether a character is in the set of
language-defined lowercase characters.

chTest
Specifies the character to be tested.

The return value is nonzero if the character is lowercase. Otherwise, it is zero.

The language driver for the current language (the language selected at setup or by
using Control Panel) determines whether the character is in the set. If no language
driver is selected, Windows uses an internal function.

The following example uses the IsCharLower function to find the first lowercase
character in a string:

/* Look through string for a lowercase character. */

for (lpszLower = lpsz;
!IsCharLower(*lpszLower) && lpszLower != '\0';
lpszLower = AnsiNext(lpszLower));

/* Return NULL if no lowercase character is found. *I

if (lpszLower == '\0')
lpszLower = NULL;

IsCharUpper

lsChild 551

lsCharUpper [ill

BOOL IsCharUpper(chTest)
char chTest; I* character to test */

Parameters

Return Value

Comments

Example

See Also

lsChild

The IsCharUpper function determines whether a character is in the set of
language-defined uppercase characters.

ch Test
Specifies the character to be tested.

The return value is nonzero if the character is uppercase. Otherwise, it is zero.

The language driver for the current language (the language the user selected at
setup or by using Control Panel) determines whether the character is in the set. If
no language driver is selected, Windows uses an internal function.

The following example uses the IsCharUpper function to find the first uppercase
character in a string:

f* Look through the string for an uppercase character. *f

for (lpszUpper = lpsz;
!IsCharUpper(*lpszUpper) && lpszUpper != '\0';
lpszUpper = AnsiNext(lpszUpper));

f* Return NULL if no uppercase character is found. */

if (lpszUpper == '\0')
lpszUpper = NULL;

Is Char Lower

BOOL IsChild(hwndParent, hwndChild)
HWND hwndParent; I* handle of parent window */
HWND hwndChild; /* handle of child window */

The IsChild function tests whether a given window is a child or other direct de
scendant of a given parent window. A child window is the direct descendant of a
given parent window if that parent window is in the chain of parent windows lead
ing from the original pop-up window to the child window.

552 lsClipboardFormatAvailable

Parameters

Return Value

See Also

hwndParent
Identifies the parent window.

hwndChild
Identifies the child window to be tested.

The return value is nonzero if the child window is a descendant of the parent win
dow. Otherwise, it is zero.

SetParent

lsClipboardFormatAvailable
BOOL IsClipboardFormatAvailable(uF ormat)
UINT uFormat; /* registered clipboard format */

Parameters

Return Value

Comments

See Also

The IsClipboardFormatA vailable function specifies whether data of a certain
format exists on the clipboard.

uFormat
Specifies a registered clipboard format. For information about clipboard for
mats, see the description of the SetClipboardData function.

The return value is nonzero if data of the specified format is on the clipboard.
Otherwise, the return value is zero.

This function is typically called during processing of the WM_INITMENU or
WM_INITMENUPOPUP message to determine whether the clipboard contains
data that the application can paste. If such data is present, the application typically
enables the Paste command (in its Edit menu).

CountClipboardFormats, EnumClipboardFormats, GetClipboardFormat
Name, GetPriorityClipboardFormat, RegisterClipboardFormat,
SetClipboardData

lsDBCSLeadByte
BOOL IsDBCSLeadByte(bTestChar)
BYTE bTestChar; I* character to test *I

Parameters

Return Value

Comments

See Also

lsDialogMessage 553

The IsDBCSLeadByte function determines whether a character is a lead byte, the
first byte of a character in a double-byte character set (DBCS).

bTestChar
Specifies the character to be tested.

The return value is nonzero if the character is a DBCS lead byte. Otherwise, it is
zero.

The language driver for the current language (the language the user selected at
setup or by using Control Panel) determines whether the character is in the set. If
no language driver is selected, Windows uses an internal function.

Each double-byte character set has a unique set of lead-byte values. By itself, a
lead byte has no character value; together, the lead byte and the following byte rep
resent a single character. The second, or following, byte is called a trailing byte.

GetKeyboardType

lsDialogMessage
BOOL IsDialogMessage(hwndDlg, lpmsg)
HWND hwndDlg; I* handle of dialog box */

/ MSG FAR lpmsg; I* address of structure with message

Parameters

The IsDialogMessage function determines whether the specified message is in
tended for the given modeless dialog box and, if it is, processes the message.

hwndDlg
Identifies the dialog box.

lpmsg
Points to an MSG structure that contains the message to be checked. The MSG
structure has the following form:

typedef struct tagMSG
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

} MSG;

/* msg */

554 lsDlgButtonChecked

Return Value

Comments

See Also

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the message has been processed. Otherwise, it is
zero.

Although IsDialogMessage is intended for modeless dialog boxes, it can be used
with any window that contains controls, enabling such windows to provide the
same keyboard selection as in a dialog box.

When IsDialogMessage processes a message, it checks for keyboard messages
and converts them into selection commands for the corresponding dialog box. For
example, the TAB key, when pressed, selects the next control or group of controls,
and the DOWN ARROW key, when pressed, selects the next control in a group.

If a message is processed by lsDialogMessage, it must not be passed to the
TranslateMessage or DispatchMessage function. This is because IsDialog
Message performs all necessary translating and dispatching of messages.

lsDialogMessage sends WM_GETDLGCODE messages to the dialog box proce
dure to determine which keys should be processed.

lsDialogMessage can send DM_GETDEFID and DM_SETDEFID messages to
the window. These messages are defined in the WINDOWS.H header file as
WM_USER and WM_USER+l, so conflicts are possible with application-defined
messages having the same values.

DispatchMessage, SendDlgltemMessage, TranslateMessage

lsDlgButtonChecked ~

UINT IsDlgButtonChecked(hwndDlg, idButton)
HWND hwndDlg; I* handle of dialog box */
int idButton; /* button identifier */

Parameters

The IsDlgButtonChecked function determines whether a button has a check mark
next to it and whether a three-state button is grayed, checked, or neither.

hwndDlg
Identifies the dialog box that contains the button.

idButton
Specifies the identifier of the button.

lslconic 555

Return Value The return value is nonzero if the specified button is checked, 0 if it is not, or -1 if
the hwndDlg parameter is invalid. For three-state buttons, the return value is 2 if
the button is grayed, 1 if the button is checked, 0 if it is unchecked, or -1 if
hwndDlg is invalid.

Comments The IsDlgButtonChecked function sends a BM_GETCHECK message to the
button.

See Also CheckDlgButton, CheckRadioButton

lsGDIObject CITJ
BOOL IsGDIObject(hobj)
HGDIOBJ hobj; /*handle of a menu */

Parameters

Return Value

Comments

See Also

Isl conic

The IsGDIObject function determines whether the specified handle is not the
handle of a graphics device interface (GDI) object.

hobj
Specifies a handle to test.

The return value is nonzero if the handle may be the handle of a GDI object. It is
zero if the handle is not the handle of a GDI object.

An application cannot use IsGDIObject to guarantee that a given handle is to a
GDI object. However, this function can be used to guarantee that a given handle is
not to a GDI object.

GetObject

BOOL Islconic(hwnd)
HWND hwnd; /*handle of window */

The lslconic function determines whether the given window is minimized (iconic).

556 lsMenu

Parameters hwnd
Identifies the window.

Return Value The return value is nonzero if the window is minimized. Otherwise, it is zero.

See Also CloseWindow, IsZoomed

lsMenu
BOOL IsMenu(hmenu)
HMENU hmenu; /*handle of menu */

The IsMenu function determines whether the given handle is a menu handle.

Parameters hmenu
Identifies the handle to be tested.

Return Value The return value is zero if the handle is definitely not a menu handle. A nonzero re
turn value does not guarantee that the handle is a menu handle, however; for non
zero return values, the application should conduct further tests to verify the handle.

Comments An application should use this function only to ensure that a given handle is not a
menu handle.

See Also CreateMenu, CreatePopupMenu, DestroyMenu, GetMenu

lsRectEmpty CI!J
BOOL IsRectEmpty(lprc)
const RECT FAR* lprc; /*address of structure with rectangle */

Parameters

The IsRectEmpty function determines whether the specified rectangle is empty.
A rectangle is empty if its width or height is zero, or if both are zero.

lprc
Points to a RECT structure that contains the coordinates of the rectangle. The
RECT structure has the following form:

Return Value

Example

ls Task
BOOL IsTask(htask)

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

ls Task 557

f* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the rectangle is empty. Otherwise, it is zero.

The following example uses the IsRectEmpty function to determine whether a
rectangle is empty and then displays a message box giving the status of the
rectangle:

RECT re;

if (IsRectEmpty((LPRECT) &re))
MessageBox(hwnd, "Rectangle is empty.",

"Rectangle Status", MB_OK);
else

MessageBox(hwnd, "Rectangle is not empty.",
"Rectangle Status", MB_OKl;

HTASK htask; /* handle of task */

The lsTask function determines whether the given task handle is valid.

Parameters htask
Identifies a task.

Return Value The return value is nonzero if the task handle is valid. Otherwise, it is zero.

558 lsWindow

lsWindow
BOOL lsWindow(hwnd)
HWND hwnd; /* handle of window *I

The Is Window function determines whether the given window handle is valid.

Parameters hwnd
Identifies a window.

Return Value The return value is nonzero if the window handle is valid. Otherwise, it is zero.

See Also lsWindowEnabled, IsWindowVisible

lsWindowEnabled
BOOL IsWindowEnabled(hwnd)
HWND hwnd; I* handle of window to test */

The IsWindowEnabled function determines whether the given window is enabled
for mouse and keyboard input.

Parameters hwnd
Identifies the window.

Return Value The return value is nonzero if the window is enabled. Otherwise, it is zero.

Comments A child window receives input only if it is both enabled and visible.

See Also IsWindow, lsWindowVisible

lsWindowVisible
BOOL IsWindowVisible(hwnd)
HWND hwnd; /* handle of window to test *I

The IsWindowVisible function determines the visibility state of the given
window.

JournalPlaybackProc 559

Parameters hwnd

Return Value

Comments

See Also

lsZoomed

Identifies the window.

The return value is nonzero if the specified window is visible on the screen (has
the WS_ VISIBLE style bit set). The return value is zero if the window is not vis
ible. Because the return value reflects the value of the window's WS_ VISIBLE
flag, it may be nonzero even if the window is totally obscured by other windows.

A window possesses a visibility state indicated by the WS_ VISIBLE style bit.
When this style bit is set, the window is displayed and subsequent drawing into the
window is displayed as long as the window has the style bit set.

Any drawing to a window that has the WS_ VISIBLE style will not be displayed if
the window is covered by other windows or is clipped by its parent window.

Show Window

BOOL IsZoomed(hwnd)
HWND hwnd; /* handle of window */

The IsZoomed function determines whether the given window is maximized.

Parameters hwnd
Identifies the window.

Return Value The return value is nonzero if the window is maximized. Otherwise, it is zero.

See Also lslconic

JournalPlaybackProc
LRESULT CALLBACK JournalPlaybackProc(code, wParam, lParam)
int code; I* process-message flag */
WPARAM wParam; /*undefined */
LPARAM lParam; /* address of structure for message */

560 JournalPlaybackProc

Parameters

Return Value

Comments

The JournalPlaybackProc function is a library-defined callback function that a
library can use to insert mouse and keyboard messages into the system message
queue. Typically, a library uses this function to play back a series of mouse and
keyboard messages that were recorded earlier by using the JournalRecordProc
function. Regular mouse and keyboard input is disabled as long as a Journal
PlaybackProc function is installed.

code
Specifies whether the callback function should process the message or call the
CallNextHookEx function. If this parameter is less than zero, the callback func
tion should pass the message to CallNextHookEx without further processing.

wParam
Specifies a NULL value.

lParam
Points to an EVENTMSG structure that represents the message being
processed by the callback function. The EVENTMSG structure has the follow
ing form:

typedef struct tagEVENTMSG {
UINT message;
UINT paraml;
UINT paramH;
DWDRD time;

} EVENTMSG;

f* em */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The callback function should return a value that represents the amount of time, in
clock ticks, that the system should wait before processing the message. This value
can be computed by calculating the difference between the time members of the
current and previous input messages. If the function returns zero, the message is
processed immediately.

The JournalPlaybackProc function should copy an input message to the lParam
parameter. The message must have been recorded by using a JournalRecordProc
callback function, which should not modify the message.

Once the function returns control to the system, the message continues to be
processed. If the code parameter is HC_SKIP, the filter function should prepare to
return the next recorded event message on its next call.

This callback function should reside in a dynamic-link library.

An application must install the callback function by specifying the
WH_JOURNALPLA YBACK filter type and the procedure-instance address of the
callback function in a call to the SetWindowsHookEx function.

See Also

JournalRecordProc 561

JournalPlaybackProc is a placeholder for the library-defined function name. The
actual name must be exported by including it in an EXPORTS statement in the
library's module-definition file.

CallNextHookEx, JournalRecordProc, SetWindowsHookEx

JournalRecordProc
LRESULT CALLBACK JournalRecordProc(code, wParam, !Param)
int code; /* process-message flag */
WPARAM wParam; I* undefined */
LPARAM !Param; /* address of structure for message */

Parameters

Return Value

Comments

The JournalRecordProc function is a library-defined callback function that re
cords messages that the system removes from the system message queue. Later, a
library can use a JournalPlaybackProc function to play back the messages.

code
Specifies whether the callback function should process the message or call the
CallNextHookEx function. If this parameter is less than zero, the callback func
tion should pass the message to CallNextHookEx without further processing.

wParam
Specifies a NULL value.

!Param
Points to an MSG structure. The MSG structure has the following form:

typedef struct tagMSG {
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM l Pa ram;
DWORD time;
POINT pt;

MSG;

/* msg */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The callback function should return zero.

A JournalRecordProc callback function should copy but not modify the mes
sages. After control returns to the system, the message continues to be processed.
The callback function does not require a return value.

562 KeyboardProc

See Also

This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the
WH_JOURNALRECORD filter type and the procedure-instance address of the
callback function in a call to the SetWindowsHookEx function.

JournalRecordProc is a placeholder for the library-defined function name. The
actual name must be exported by including it in an EXPORTS statement in the
library's module-definition file.

CallNextHookEx, JournalPlaybackProc, SetWindowsHookEx

KeyboardProc
LRESULT CALLBACK KeyboardProc(code, wParam, lParam)
int code; /*process-message flag */
WPARAM wParam; I* virtual-key code */
LPARAM lParam; I* keyboard-message information */

Parameters

The KeyboardProc function is a library-defined callback function that the system
calls whenever the application calls the GetMessage or PeekMessage function
and there is a WM_KEYUP or WM_KEYDOWN keyboard message to process.

code
Specifies whether the callback function should process the message or call the
CallNextHookEx function. If this value is HC_NOREMOVE, the application
is using the PeekMessage function with the PM_NOREMOVE option, and the
message will not be removed from the system queue. If this value is less than
zero, the callback function should pass the message to CallNextHookEx
without further processing.

wParam
Specifies the virtual-key code of the given key.

lParam
Specifies the repeat count, scan code, extended key, previous key state, context
code, and key-transition state, as shown in the following table. (Bit 0 is the low
order bit):

Bit

0-15

16-23

Description

Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

Return Value

Comments

See Also

KillTimer

Bit

24

25-26
27-28
29

30

31

KillTimer 563

Description

Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other
wise, it is 0.

Not used.

Used internally by Windows.

Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is 0 ifthe key is up.

Specifies the key-transition state. The value is 1 if the key is being re
leased, or it is 0 if the key is being pressed.

The callback function should return 0 if the message should be processed by the
system; it should return 1 if the message should be discarded.

This callback function must be in a dynamic-link library.

An application must install the callback function by specifying the
WH_KEYBOARD filter type and the procedure-instance address of the callback
function in a call to the SetWindowsHookEx function.

KeyboardProc is a placeholder for the library-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the library's
module-definition file.

CallNextHookEx, GetMessage, PeekMessage, SetWindowsHookEx

BOOL KillTimer(hwnd, idTimer)
HWND hwnd; /* handle of window that installed timer */
UINT idTimer; /* timer identifier */

Parameters

The KillTimer function removes the specified timer. Any pending WM_ TIMER
messages associated with the timer are removed from the message queue.

hwnd
Identifies the window associated with the timer to be removed. This must be the
same value passed as the hwnd parameter of the SetTimer function that created
the timer.

564 lclose

Return Value

See Also

I close
HFILE _lclose(/if)

idTimer
Identifies the timer to be removed. If the application called SetTimer with the
hwnd parameter set to NULL, this parameter must be the timer identifier re
turned by SetTimer. If the hwnd parameter of SetTimer was a valid window
handle, this parameter must be the value of the idTimer parameter passed to Set
Timer.

The return value is nonzero if the function is successful. It is zero if the KillTimer
function could not find the specified timer.

SetTimer

HFILE hf; I* handle of file to close */

Parameters

Return Value

Example

The _lclose function closes the given file. As a result, the file is no longer availa
ble for reading or writing.

hf
Identifies the file to be closed. This handle is returned by the function that
created or last opened the file.

The return value is zero if the function is successful. Otherwise, it is
HFILE_ERROR.

The following example copies a file to a temporary file, then closes both files:

int cbRead;
PBYTE pbBuf;

/*Allocate a buffer for file I/O. *f

pbBuf = (PBYTE) LocalAlloc(LMEM_FIXED, 2048);

/* Copy the input file to the temporary file. */

do {
cbRead = _lread(hfReadFile, pbBuf, 2048);
_lwrite(hfTempFile, pbBuf, cbRead);

while (cbRead != 0);

/* Free the buffer and close the files. */

See Also

I ere at

LocalFree((HLOCAL) pbBuf);

_lclose(hfReadFile);
_lclose(hfTempFile);

_ lopen, OpenFile

lcreat 565

HFILE _lcreat(lpszFilename ,fnAttribute)
LPCSTR lpszFilename; /* address of file to open */
intfnAttribute; /* file attributes */

Parameters

Return Value

Comments

Example

The _lcreat function creates or opens a specified file. If the file does not exist, the
function creates a new file and opens it for writing. If the file does exist, the func
tion truncates the file size to zero and opens it for reading and writing. When the
function opens the file, the pointer is set to the beginning of the file.

lpszFilename
Points to a null-terminated string that names the file to be opened. The string
must consist of characters from the Windows character set.

fnAttribute
Specifies the file attributes. This parameter must be one of the following values:

Value

0

2

3

Meaning

Normal; can be read or written without restriction.

Read-only; cannot be opened for writing.

Hidden; not found by directory search.

System; not found by directory search.

The return value is a file handle if the function is successful. Otherwise, it is
HFILE_ERROR.

Use this function carefully. It is possible to open any file, even one that has al
ready been opened by another function.

The following example uses the _lcreat function to open a temporary file:

HFILE hfTempFile;
char szBuf[144];

566 LibMain

LibMain

f* Create a temporary file. */

GetTempFileName(0, "tst", 0, szBuf);

hfTempFile = _lcreat(szBuf, 0);

if (hfTempFile == HFILE_ERROR)
ErrorHandl er();

}

int CALLBACK LibMain(hinst, wDataSeg, cbHeapSize, lpszCmdLine)
HINSTANCE hinst; /*handle of library instance */
WORD wDataSeg; /* library data segment */
WORD cbHeapSize; /* default heap size */
LPSTR lpszCmdLine; I* command-line arguments */

Parameters

Return Value

Comments

The LibMain function is called by the system to initialize a dynamic-link library
(DLL). A DLL must contain the LibMain function if the library is linked with the
file LIBENTRY.OBJ.

hinst
Identifies the instance of the DLL.

wDataSeg
Specifies the value of the data segment (DS) register.

cbHeapSize
Specifies the size of the heap defined in the module-definition file. (The
LibEntry routine in LIBENTRY.OBJ uses this value to initialize the local heap.)

lpszCmdLine
Points to a null-terminated string specifying command-line information. This
parameter is rarely used by DLLs.

The function should return 1 if it is successful. Otherwise, it should return 0.

The LibMain function is called by LibEntry, which is called by Windows when
the DLL is loaded. The LibEntry routine is provided in the LIBENTRY.OBJ mod
ule. LibEntry initializes the DLL's heap (if a HEAPSIZE value is specified in the
DLL's module-definition file) before calling the LibMain function.

Example

See Also

LibMain 567

The following example shows a typical LibMain function:

int CALLBACK LibMain(HINSTANCE hinst, WORD wDataSeg, WORD cbHeap,
LPSTR lpszCmdLine)

}

HGLOBAL hgblClassStruct;
LPWNDCLASS lpClassStruct;
static HINSTANCE hinstLib;

/*Has the library been initialized yet? */

if (hinstLib == NULL) {

}

hgblClassStruct = GlobalAlloc(GHND, sizeof(WNDCLASSll;
if (hgblClassStruct != NULL) {

}

lpClassStruct = (LPWNDCLASS) GlobalLock(hgblClassStructl;
if (1 pCl assStruct ! = NULL) {

/* Define the class attributes. */

lpClassStruct->style = CS_HREDRAW I CS_VREDRAW
CS_DBLCLKS I CS_GLOBALCLASS;

lpClassStruct->lpfnWndProc = DllWndProc;
lpClassStruct->cbWndExtra = 0;
lpClassStruct->hinstance = hinst;
lpClassStruct->hicon = NULL;
lpClassStruct->hCursor = LoadCursor(NULL, IDC_ARROW);
lpClassStruct->hbrBackground =

(HBRUSH) (COLOR_ WINDOW + 1l;
lpClassStruct->lpszMenuName = NULL;
lpClassStruct->lpszClassName = "MyClassName";

hinstLib = (RegisterClass(lpClassStructll ?
hinst : NULL;

GlobalUnlock(hgblClassStructl;

GlobalFree(hgblClassStruct);

return (hinstLib? 1 0); /*return 1 success; 0 fail */

GlobalAlloc, GlobalFree, GlobalLock, GlobalUnlock, WEP

568 LimitEmsPages

LimitEmsPages
void LimitEmsPages(cAppKB)
DWORD cAppKB; /* amount of expanded memory available to application */

In Windows version 3.1, this function is obsolete and does nothing.

LineDDA
void LineDDA(nXStart, nYStart, nXEnd, nYEnd, lnddaprc, lParam)
int nXStart; /* x-coordinate of line beginning */

*/
*/
*/
*!
*/

int nYStart; !* y-coordinate of line beginning
int nXEnd; /* x-coordinate of line end
int nYEnd; /* y-coordinate of line end
LINEDDAPROC lnddaprc; /* address of callback function
LPARAM lParam; /* address of application-defined data

Parameters

The LineDDA function computes all successive points in a line specified by
starting and ending coordinates. For each point on the line, the system calls an
application-defined callback function, specifying the coordinates of that point.

nXStart
Specifies the logical x-coordinate of the first point.

nYStart
Specifies the logical y-coordinate of the first point.

nXEnd
Specifies the logical x-coordinate of the endpoint. This endpoint is not part of
the line.

nYEnd
Specifies the logical y-coordinate of the endpoint. This endpoint is not part of
the line.

lnddaprc
Specifies the procedure-instance address of the application-defined callback
function. The address must have been created by using the MakeProclnstance
function. For more information about the callback function, see the description
of the LineDDAProc callback function.

lParam
Points to 32 bits of application-defined data that is passed to the callback
function.

LineDDAProc 569

Return Value This function does not return a value.

Example The following example uses the LineDDA function to draw a dot every two
spaces between the beginning and ending points of a line:

See Also

/*Callback function*/

void CALLBACK DrawDotsCint xPos, int yPos, LPSTR lphdc)
{

static short cSpaces 1 · '

if (cSpaces == 3) {

/* Draw a black dot. */

SetPixel(*(HDC FAR*) lphdc, xPos, yPos, 0);

f* Initialize the space count. */

cSpaces = 1;

else
cSpaces++;

}

LineDDAProc, MakeProclnstance

LineDDAProc
void CALLBACK LineDDAProc(xPos, yPos, lpData)
int xPos; I* x-coordinate of current position
int yPos; /* y-coordinate of current position
LPARAM lpData; /* address of application-defined data

*I
*/
*/

The LineDDAProc function is an application-defined callback function that
processes coordinates from the LineDDA function.

Parameters xPos
Specifies the x-coordinate of the current point.

yPos
Specifies they-coordinate of the current point.

lpData
Points to the application-defined data.

570 Line To

Return Value

Comments

See Also

Line To

This function does not return a value.

An application must register this function by passing its address to the LineDDA
function.

LineDDAProc is a placeholder for the application-defined function name. The ac
tual name must be exported by including it in an EXPORTS statement in the ap
plication's module-definition file.

LineDDA

BOOL LineTo(hdc, nXEnd, nYEnd)
HDC hdc; /*handle of device context */
int nXEnd; /* x-coordinate of line endpoint */
int nYEnd; /* y-coordinate of line endpoint */

The LineTo function draws a line from the current position up to, but not includ
ing, the specified endpoint. The function uses the selected pen to draw the line and
sets the current position to the coordinates (nXEnd,nYEnd).

Parameters hdc

Return Value

Example

Identifies the device context.

nXEnd
Specifies the logical x-coordinate of the line's endpoint.

nYEnd
Specifies the logical y-coordinate of the line's endpoint.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The following example sets the current position by using the MoveTo function
before calling the LineTo function. The example uses POINT structures to store
the coordinates.

HOC hdc;

POINT ptStart = { 12, 12 };
POINT ptEnd { 128, 135 };

MoveTo(hdc, ptStart.x, ptStart.y);
LineTo(hdc, ptEnd.x, ptEnd.y);

II seek 571

See Also MoveTo

llseek
LONG _llseek(hf, !Offset, nOrigin)
HFILE hf; /*file handle */
LONG !Offset; /*number of bytes to move */
int nOrigin; /*position to move from */

Parameters

Return Value

Comments

Example

The _llseek function repositions the pointer in a previously opened file.

hf
Identifies the file.

!Offset
Specifies the number of bytes the pointer is to be moved.

nOrigin
Specifies the starting position and direction of the pointer. This parameter must
be one of the following values:

Value

0

2

Meaning

Move the file pointer /Offset bytes from the beginning of the file.

Move the file pointer /Offset bytes from its current position.

Move the file pointer /Offset bytes from the end of the file.

The return value specifies the new offset, in bytes, of the pointer from the begin
ning of the file, if the function is successful. Otherwise, the return value is
HFILE_ERROR.

When a file is initially opened, the file pointer is positioned at the beginning of the
file. The _llseek function permits random access to a file's contents by moving
the pointer an arbitrary amount without reading data.

The following example uses the _llseek function to move the file pointer to the
end of an existing file:

HFILE hfAppendFile;

/* Open the write file. */

hfAppendFile = _lopen("append.txt", WRITE);

572 LoadAccelerators

See Also

f* Move to the end of the file. */

if LllseekChfAppendFile, 0L, 2) == -1) {
ErrorHandl er();

_lopen

LoadAcce I era tors
HACCEL LoadAccelerators(hinst, lpszTableName)
HINSTANCE hinst; /* handle of module to load from */

/ LPCSTR lpszTableName; I address of table name

Parameters

Return Value

Comments

The LoadAccelerators function loads the specified accelerator table.

hinst
Identifies an instance of the module whose executable file contains the accelera
tor table to be loaded.

lpszTableName
Points to a null-terminated string that names the accelerator table to be loaded.

The return value is the handle of the loaded accelerator table if the function is
successful. Otherwise, it is NULL.

If the accelerator table has not yet been loaded, the function loads it from the given
executable file.

Accelerator tables loaded from resources are freed automatically when the applica
tion terminates.

LoadBitmap 573

Load Bitmap CI.!J
HBITMAP LoadBitmap(hinst, lpszBitmap)
HINSTANCE hinst; /* handle of application instance */
LPCSTR lpszBitmap; /*address of bitmap name */

Parameters

Return Value

Comments

The LoadBitmap function loads the specified bitmap resource from the given
module's executable file.

hinst
Identifies the instance of the module whose executable file contains the bitmap
to be loaded.

lpszBitmap
Points to a null-terminated string that contains the name of the bitmap resource
to be loaded. Alternatively, this parameter can consist of the resource identifier
in the low-order word and zero in the high-order word. The MAKEINT
RESOURCE macro can be used to create this value.

The return value is the handle of the specified bitmap if the function is successful.
Otherwise, it is NULL.

If the bitmap pointed to by lpszBitmap does not exist or if there is insufficient
memory to load the bitmap, the function fails.

The application must call the DeleteObject function to delete each bitmap handle
returned by the LoadBitmap function. This also applies to the following prede
fined bitmaps.

An application can use the LoadBitmap function to access the predefined bitmaps
used by Windows. To do so, the application must set the hinst parameter to NULL
and the lpszBitmap parameter to one of the following values:

OBM_BTNCORNERS
OBM_BTSIZE
OBM_CHECK
OBM_CHECKBOXES
OBM_CLOSE
OBM_COMBO
OBM_DNARROW
OBM_DNARROWD
OBM_DNARROWI
OBM_LFARROW
OBM_LFARROWD
OBM_LFARROWI
OBM_MNARROW
OBM_OLD_CLOSE

574 LoadBitmap

OBM_OLD_DNARROW
OBM_OLD_LFARROW
OBM_OLD_REDUCE
OBM_OLD_RESTORE
OBM_OLD_RGARROW
OBM_OLD_UPARROW
OBM_OLD_ZOOM
OBM_REDUCE
OBM_REDUCED
OBM_RESTORE
OBM_RESTORED
OBM_RGARROW
OBM_RGARROWD
OBM_RGARROWI
OBM_SIZE
OBM_UPARROW
OBM_UPARROWD
OBM_UPARROWI
OBM_ZOOM
OBM_ZOOMD

Bitmap names that begin with OBM_OLD represent bitmaps used by Windows
versions earlier than 3.0.

The bitmaps identified by OBM_DNARROWI, OBM_LFARROWI,
OBM_RGARROWI, and OBM_UPARROWI are new for Windows 3.1. These
bitmaps are not found in device drivers for previous versions of Windows.

Note that for an application to use any of the OBM_ constants, the constant
OEMRESOURCE must be defined before the WINDOWS.H header file is in
cluded.

The following shows the appearance of each of the OBM_ bitmaps.

LoadCursor 575

OBM_CLOSE ~ OBM_MNARROW o 0 • OBM_BTNCORNERS

[ii DBM_ UPARROW ! OBM_COMBO .J} OBM_OLD_REDUCE

W!I ra DBM_ UPARROW/
it OBM_OLD_lOOM '

OBM_DNARROW

[;j] ll1 OBM_DNARROWI
00 OBM_RGARROW OBM_OLD_RESTORE

'

!!I ra OBM_RGARROWI
OBM_LFARROW

!!I OBM_LFARROW/
OBM_REDUCE

r=;ii !;;;;;II OBM_OLD_CLOSE
OBM_ZOOM , OBM_SIZE
OBM_RESTORE

1' OBM_OLD_UPARROW

OBM_REDUCED
+ OBM_OLD_DNARROW

OBM_lOOMD .. OBM_OLD_RGARROW

OBM_RESTORED .. OBM_OLD_LFARROW

~ ' OBM_UPARROWD 0 OBM_BTSIZE

~ OBM_DNARROWD ...; OBM_CHECK

m OBM_RGARROWD 8181 OBM_CHECKBOXES '

~ OBM_LFARROWD ~

See Also DeleteObject

Load Cursor
HCURSOR LoadCursor(hinst, pszCursor)
HINSTANCE hinst; I* handle of application instance
LPCSTR pszCursor; I* cursor-name string or cursor resource identifier

*/
*/

The LoadCursor function loads the specified cursor resource from the executable
file associated with the given application instance.

576 LoadCursor

Parameters

Return Value

Comments

See Also

hinst
Identifies an instance of the module whose executable file contains the cursor to
be loaded.

pszCursor
Points to a null-terminated string that contains the name of the cursor resource
to be loaded. Alternatively, this parameter can consist of the resource identifier
in the low-order word and zero in the high-order word. The MAKEINT
RESOURCE macro can be used to create this value.

The return value is the handle of the newly loaded cursor if the function is success
ful. Otherwise, it is NULL.

The function loads the cursor resource only if it has not been loaded; otherwise, it
retrieves a handle of the existing resource. The Load Cursor function returns a
valid cursor handle only if the pszCursor parameter points to a cursor resource. If
pszCursor points to any type of resource other than a cursor (such as an icon), the
return value will not be NULL, even though it is not a valid cursor handle.

An application can use the LoadCursor function to access the predefined cursors
used by Windows. To do this, the application must set the hinst parameter to
NULL and the pszCursor parameter to one the following values:

Value

IDC_ARROW

IDC_CROSS

IDC_IBEAM

IDC_ICON

IDC_SIZE

IDC_SIZENESW

IDC_SIZENS

IDC_SIZENWSE

IDC_SIZEWE

IDC_UPARROW

IDC_WAIT

Meaning

Standard arrow cursor.

Crosshair cursor.

Text I-beam cursor.

Empty icon.

A square with a smaller square inside its lower-right comer.

Double-pointed cursor with arrows pointing northeast and south
west.

Double-pointed cursor with arrows pointing north and south.

Double-pointed cursor with arrows pointing northwest and south
east.

Double-pointed cursor with arrows pointing west and east.

Vertical arrow cursor.

Hourglass cursor.

It is not necessary to destroy these system cursors. An application should use the
DestroyCursor function to destroy any private cursors it loads.

DestroyCursor, SetCursor, ShowCursor

Load Icon 577

Load Icon ~

HICON Loadlcon(hinst, psz/con)
HINSTANCE hinst; /* handle of application instance */
LPCSTR psz/con; /* icon-name string or icon resource identifier */

The Loadlcon function loads the specified icon resource from the executable file
associated with the given application instance.

Parameters hinst

Return Value

Comments

Identifies an instance of the module whose executable file contains the icon to
be loaded. This parameter must be NULL when a system icon is being loaded.

psz/con
Points to a null-terminated string that contains the name of the icon resource to
be loaded. Alternatively, this parameter can consist of the resource identifier
in the low-order word and zero in the high-order word. The MAKEINT
RESOURCE macro can be used to create this value.

The return value is the handle of the newly loaded icon if the function is success
ful. Otherwise, it is NULL.

This function loads the icon resource only if it has not been loaded; otherwise, it
retrieves a handle of the existing resource.

An application can use the Loadlcon function to access the predefined icons used
by Windows. To do this, the application must set the hinst parameter to NULL and
the psz/con parameter to one of the following values:

Value

IDl_APPLICATION

IDI_ASTERISK

IDI_EXCLAMATION

IDI_HAND

ID I_ QUESTION

Meaning

Default application icon.

Asterisk (used in informative messages).

Exclamation point (used in warning messages).

Hand-shaped icon (used in serious warning messages).

Question mark (used in prompting messages).

It is not necessary to destroy these system icons. An application should use the
Destroy Icon function to destroy any private icons it loads.

578 Loadlibrary

The following shows all of the system icons.

D IDl_APPL/CAT!ON

e IDl_HAND

I DI_ QUESTION

Cl) IDl_EXCLAMAT!ON

0 IDl_ASTERISK

See Also Destroy Icon, Drawlcon

Load library [I!]

HINSTANCE LoadLibrary(lpszLibFileName)
LPCSTR lpszLibFileName; /* address of name of library file */

Parameters

Return Value

The LoadLibrary function loads the specified library module.

lpszLibFileName
Points to a null-terminated string that names the library file to be loaded. If the
string does not contain a path, Windows searches for the library in this order:

1. The current directory.

2. The Windows directory (the directory containing WIN.COM); the Get
WindowsDirectory function retrieves the path of this directory.

3. The Windows system directory (the directory containing such system files as
GDI.EXE); the GetSystemDirectory function retrieves the path of this
directory.

4. The directory containing the executable file for the current task; the Get
ModuleFileN ame function retrieves the path of this directory.

5. The directories listed in the PATH environment variable.

6. The list of directories mapped in a network.

The return value is the instance handle of the loaded library module if the function
is successful. Otherwise, it is an error value less than HINSTANCE_ERROR.

Errors

Comments

Example

Loadlibrary 579

If the function fails, it returns one of the following error values:

Value

0

2

3

5

6

8

10

11

12

13

14

15

16

19

20

21

Meaning

System was out of memory, executable file was corrupt, or relocations were
invalid.

File was not found.

Path was not found.

Attempt was made to dynamically link to a task, or there was a sharing or
network-protection error.

Library required separate data segments for each task.

There was insufficient memory to start the application.

Windows version was incorrect.

Executable file was invalid. Either it was not a Windows application or
there was an error in the .EXE image.

Application was designed for a different operating system.

Application was designed for MS-DOS 4.0.

Type of executable file was unknown.

Attempt was made to load a real-mode application (developed for an earlier
version of Windows).

Attempt was made to load a second instance of an executable file contain
ing multiple data segments that were not marked read-only.

Attempt was made to load a compressed executable file. The file must be
decompressed before it can be loaded.

Dynamic-link library (DLL) file was invalid. One of the DLLs required to
run this application was corrupt.

Application requires Microsoft Windows 32-bit extensions.

If the module has been loaded, LoadLibrary increments (increases by one) the
module's reference count. If the module has not been loaded, the function loads it
from the specified file.

LoadLibrary increments the reference count for a library module each time an ap
plication calls the function. When it has finished using the module, the application
should use the FreeLibrary function to decrement (decrease by one) the reference
count.

An application can use the GetProcAddress function to access functions in a
library that was loaded using LoadLibrary.

The following example uses the LoadLibrary function to load the Tool Helper
Library TOOLHELP.DLL and the FreeLibrary function to free it:

HINSTANCE hinstToolHelp = Loadlibrary("TOOLHELP.DLL"l;

580 LoadMenu

if ((UINT) hinstToolHelp > 32) {

/* use GetProcAddress to use TOOLHELP functions */

else
ErrorHandl er();

if ((UINT) hinstToolHelp > 32)
Freelibrary(hinstToolHelp); f* free TOOLHELP.DLL */

See Also FreeLibrary, GetProcAddress

Load Menu
HMENU LoadMenu(hinst, lpszMenuName)
HINSTANCE hinst; I* handle of application instance */
LPCSTR lpszMenuName; I* menu-name string or menu resource identifier */

Parameters

Return Value

Comments

Example

The LoadMenu function loads the specified menu resource from the executable
file associated with the given application instance.

hinst
Identifies an instance of the module whose executable file contains the menu to
be loaded.

lpszMenuName
Points to a null-terminated string that contains the name of the menu resource
to be loaded. Alternatively, this parameter can consist of the resource identifier
in the low-order word and zero in the high-order word. The MAKEINT
RESOURCE macro can be used to create this value.

The return value is the handle of the menu resource if the function is successful.
Otherwise, it is NULL.

Before exiting, an application must free system resources associated with a menu
if the menu is not assigned to a window. An application frees a menu by calling
the Destroy Menu function.

The following example loads a menu resource, and then assigns the menu to a
window:

See Also

HMENU hmenu;

hmenu = LoadMenu(hinst, "ColorMenu");
SetMenu(hwnd, hmenu);

DestroyMenu, LoadMenulndirect, SetMenu

LoadMenulndirect 581

LoadMenulndirect
HMENU LoadMenulndirect(lpmith)
const void FAR* lpmith; /*address of menu template */

Parameters

Return Value

The LoadMenulndirect function loads the specified menu template in memory.
A menu template is a header followed by a collection of one or more MENU
ITEMTEMPLA TE structures, each of which may contain one or more menu
items and pop-up menus.

lpmith
Points to a menu template, which consists of a menu-template header and one
or more menu item templates. The menu template header consists of a MENU
ITEMTEMPLATEHEADER structure, which has the following form:

typedef struct { /* mith •/
UINT versionNumber;
UINT offset;

MENUITEMTEMPLATEHEADER;

Each menu item template consists of a MENUITEMTEMPLATE structure.
The MENUITEMTEMPLA TE structure has the following form:

typedef struct { I• mit •/
UINT mtOption;
UINT mtID;
char mtString[l];

} MENUITEMTEMPLATE;

For a full description of these two structures, see the Microsoft Windows Pro
grammer's Reference, Volume 3.

The return value is the handle of a menu if the function is successful. Otherwise, it
is NULL.

582 LoadModule

Comments

Example

Before exiting, an application must free system resources associated with a menu
if the menu is not assigned to a window. An application frees a menu by calling
the DestroyMenu function.

The following example retrieves a menu handle for a menu template resource that
has been loaded into memory, gives the menu handle to a window, and then un
locks and frees the resource:

HRSRC hrsrcResinfo;
HGLOBAL hglbResMenu;
char FAR* lpResMenu;
HMENU hmenu;

case IOM_NEWMENU:
hrsrcResinfo = FindResource(hinst, "DynaMenu", RT_MENU);
hglbResMenu = LoadResource(hinst, hrsrcResinfo);
lpResMenu = LockResource(hglbResMenu);
hmenu = LoadMenuindirect(lpResMenu);

DestroyMenu(GetMenu(hwnd));
SetMenu(hwnd, hmenu);

UnlockResource(hglbResMenu);
FreeResource(hglbResMenu);

break;

See Also DestroyMenu, LoadMenu, SetMenu

Load Module @J

HINSTANCE LoadModule(lpszModuleName, lpvParameterBlock)
LPCSTR lpszModuleName; /* address of filename to load */
LPVOID lpvParameterBlock; /* address of parameter block for new module */

Parameters

The LoadModule function loads and executes a Windows application or creates a
new instance of an existing Windows application.

lpszModuleName
Points to a null-terminated string that contains the complete filename (including
the file extension) of the application to be run. If the string does not contain a
path, Windows searches for the executable file in this order:
1. The current directory.

Return Value

Load Module 583

2. The Windows directory (the directory containing WIN.COM), whose path
the GetWindowsDirectory function retrieves.

3. The Windows system directory (the directory containing such system files as
GD I.EXE), whose path the GetSystemDirectory function retrieves.

4. The directory containing the executable file for the current task; the Get
ModuleFileName function obtains the path of this directory.

5. The directories listed in the PATH environment variable.

6. The list of directories mapped in a network.

lpv Parameter Block
Points to an application-defined LOADPARMS structure that defines the new
application's parameter block. The LOADPARMS structure has the following
form:

struct _LOADPARMS {
WORD segEnv; /* child environment */

/* child command tail */
I* how to show child */
/* must be NULL */

LPSTR lpszCmdLine;
UINT FAR* lpShow;
UINT FAR* lpReserved;

} LOADPARMS;

Member

segEnv

lpszCommandLine

lpShow

lpReserved

Description

Specifies whether the child application receives a copy of
the parent application's environment or a new environment
created by the parent application. If this member is zero, the
child application receives an exact duplicate of the parent ap
plication's environment block. If the member is nonzero, the
value entered must be the segment address of a memory ob
ject containing a copy of the new environment for the child
application.

Points to a null-terminated string that specifies the command
line (excluding the child application name). This string must
not exceed 120 characters. If there is no command line, this
member must point to a zero-length string (it cannot be set
to NULL).

Points to an array containing two 16-bit values. The first
value must always be set to two. The second value specifies
how the application window is to be shown. For a list of the
acceptable values, see the description of the nCmdShow pa
rameter of the ShowWindow function.

Reserved; must be NULL.

The return value is the instance handle of the loaded module if the function
is successful. If the function fails, it returns an error value less than
HINST ANCE_ERROR.

584 LoadModule

Errors If the function fails, it returns one of the following error values:

Comments

Example

Value Meaning

0

2

3
5

6

8

10

11

12

13

14

15

16

19

20

21

System was out of memory, executable file was corrupt, or relocations were
invalid.

File was not found.

Path was not found.

Attempt was made to dynamically link to a task, or there was a sharing or
network-protection error.

Library required separate data segments for each task.

There was insufficient memory to start the application.

Windows version was incorrect.

Executable file was invalid. Either it was not a Windows application or
there was an error in the .EXE image.

Application was designed for a different operating system.

Application was designed for MS-DOS 4.0.

Type of executable file was unknown.

Attempt was made to load a real-mode application (developed for an earlier
version of Windows).

Attempt was made to load a second instance of an executable file contain
ing multiple data segments that were not marked read-only.

Attempt was made to load a compressed executable file. The file must be
decompressed before it can be loaded.

Dynamic-link library (DLL) file was invalid. One of the DLLs required to
run this application was corrupt.

Application requires Microsoft Windows 32-bit extensions.

The WinExec function provides an alternative method for executing an applica
tion.

The following example uses the LoadModule function to run an executable file
named DRAW.EXE:

struct LOADPARMS {
WORD segEnv; /* child environment */
LPSTR lpszCmdLine; /* child command tail */
LPWORD lpwShow; /* how to show child */
LPWORD l pwReserved; /* must be NULL */

} ;

char szMsg[80];
HINSTANCE hinstMod;
struct LOADPARMS parms;
WORD awShow[2] = { 2, SW SHOWM IN IM I ZED } ;

See Also

LoadProc

LoadProc 585

/* child inherits environment*/
/* no command line */
/* shows child as an icon */
/* must be NULL */

parms.segEnv = 0;
parms.lpszCmdLine = (LPSTR) "";
parms.lpwShow = (LPWORO) awShow;
parms.lpwReserved = (LPWORD) NULL;

hinstMod = LoadModule("draw.exe", &parms);

if ((UINT) hinstMod < 32) {
sprintf(szMsg, "LoadModule failed; error code= %d",

hinstMod);
MessageBox(hwnd, szMsg, "Error", MB_ICONSTOP);

else {
sprintf(szMsg, "LoadModule returned %d", hinstMod);
MessageBox(hwnd, szMsg, "", MB_OK);

FreeModule, GetModuleFileName, GetSystemDirectory, GetWin
dowsDirectory, ShowWindow, WinExec

HGLOBAL CALLBACK LoadProc(hglbMem, hinst, hrsrcReslnfo)
HGLOBAL hglbMem; /*handle of object containing resource */
HINSTANCE hinst; /*handle of application instance */
HRSRC hrsrcReslnfo; !*handle of a resource */

Parameters

Return Value

The LoadProc function is an application-defined callback function that receives
information about a resource to be locked and can process that information as
needed.

hglbMem
Identifies a memory object that contains a resource. This parameter is NULL if
the resource has not yet been loaded.

hinst
Identifies the instance of the module whose executable file contains the re
source.

hrsrcReslnfo
Identifies the resource. The resource must have been created by using the
FindResource function.

The return value is a global memory handle for memory that was allocated using
the GMEM_DDESHARE flag in the GlobalAlloc function.

586 LoadResource

Comments

See Also

If an attempt to lock the memory object identified by the hglbMem parameter fails,
this means the resource has been discarded and must be reloaded. ·

LoadProc is a placeholder for the application-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the applica
tion's module-definition file.

FindResource, GlobalAlloc, SetResourceHandler

Load Resource
HGLOBAL LoadResource(hinst, hrsrc)
HINSTANCE hinst; /* handle of file containing resource */

/ HRSRC hrsrc; / handle of resource

The LoadResource function loads the specified resource in global memory.

Parameters hinst

Return Value

Comments

See Also

Identifies an instance of the module whose executable file contains the resource
to be loaded.

hrs re
Identifies the resource to be loaded. This handle must have been created by
using the FindResource function.

The return value is the instance handle of the global memory object containing the
data associated with the resource. It is NULL if no such resource exists.

When finished with a resource, an application should free the global memory as
sociated with it by using the FreeResource function.

If the specified resource has been loaded, this function simply increments the refer
ence count for the resource.

The resource is not loaded until the LockResource function is called to translate
the handle returned by LoadResource into a far pointer to the resource data.

FindResource, FreeResource, LockResource

LocalAlloc 587

LoadString [I!]

int LoadString(hinst, idResource, lpszBuffer, cbBuffer)
HINSTANCE hinst; /* handle of module containing string resource */
UINT idResource; /*resource identifier */
LPSTR lpszBuffer; /*address of buffer for resource */
int cbBuffer; /*size of buffer */

Parameters

Return Value

LocalAlloc

The LoadString function loads the specified string resource.

hinst
Identifies an instance of the module whose executable file contains the string re
source to be loaded.

idResource
Specifies the integer identifier of the string to be loaded.

lpszBuffer
Points to the buffer that will receive the null-terminated string.

ch Buffer
Specifies the buffer size, in bytes. The buffer should be large enough for the
string and its terminating null character. The string is truncated if it is longer
than the number of bytes specified.

The return value specifies the number of bytes copied into the buffer, if the func
tion is successful. It is zero if the string resource does not exist.

HLOCAL LocalAlloc(fuAllocFlags, fuAlloc)
UINT jitAllocFlags; /* allocation attributes */
UINT fuAlloc; /* number of bytes to allocate *I

Parameters

The LocalAlloc function allocates the specified number of bytes from the local
heap.

fuAllocFlags
Specifies how to allocate memory. This parameter can be a combination of the
following values:

588 LocalAlloc

Return Value

Comments

See Also

Value

LHND

LMEM_DISCARDABLE

LMEM_FIXED

LMEM_MOVEABLE

LMEM_NOCOMPACT

LMEM_NODISCARD

LMEM_ZEROINIT

LPTR

NONZEROLHND

NONZEROLPTR

fuAlloc

Meaning

Combines the LMEM_MOVEABLE and
LMEM_ZEROINIT flags.

Allocates discardable memory.

Allocates fixed memory. The LMEM_FIXED and
LMEM_MOVEABLE flags cannot be combined.

Allocates movable memory. The LMEM_FIXED and
LMEM_MOVEABLE flags cannot be combined.

Does not compact or discard memory to satisfy the al
location request.

Does not discard memory to satisfy the allocation re
quest.

Initializes memory contents to zero.

Combines the LMEM_FIXED and
LMEM_ZEROINIT flags.

Same as the LMEM_MOVEABLE flag.

Same as the LMEM_FIXED flag.

Specifies the number of bytes to be allocated.

The return value is the instance handle of the newly allocated local memory ob
ject, if the function is successful. Otherwise, it is NULL.

If LocalAlloc allocates movable memory, the return value is a local handle of the
memory. To access the memory, an application must use the LocalLock function
to convert the handle to a pointer.

If LocalAlloc allocates fixed memory, the return value is a pointer to the memory.
To access the memory, an application can simply cast the return value to a pointer.

Fixed memory will be slightly faster than movable memory. If memory will be al
located and freed without an intervening local allocation or reallocation, then the
memory should be allocated as fixed.

If this function is successful, it allocates at least the amount requested. If the
amount allocated is greater than the amount requested, the application can use the
entire amount. To determine the size of a local memory object, an application can
use the LocalSize function.

To free a local memory object, an application should use the LocalFree function.
To change the size or attributes of an allocated memory object, an application can
use the LocalReAlloc function.

LocalFree, LocalLock, LocalReAlloc, LocalSize, LocalUnlock

Local First 589

Local Compact CI!J
UINT LocalCompact(uMinFree)
UINT uMinFree; /* amount of memory requested */

Parameters

Return Value

Comments

See Also

Local First

The LocalCompact function rearranges the local heap so that the specified
amount of memory is free.

uMinFree
Specifies the number of contiguous free bytes requested. If this parameter is
zero, the function does not compact memory, but the return value is valid.

The return value specifies the number of bytes in the largest free local memory ob
ject. If the uMinFree parameter is zero, the return value specifies the number of
bytes in the largest free object that Windows can generate if it removes all discard
able objects.

The function first checks the local heap for the specified number of contiguous
free bytes. If the bytes do not exist, the function compacts local memory by
moving all unlocked, movable objects into high memory. If this does not generate
the requested amount of space, the function discards movable and discardable ob
jects that are not locked, until the requested amount of space is generated (if
possible).

LocalAlloc, LocalLock

#include <toolhelp.h>

BOOL LocalFirst(lple, hglbHeap)
LOCALENTRY FAR* lple; /* address of LOCALENTRY structure */
HGLOBAL hglbHeap; /* handle of local heap */

Parameters

The LocalFirst function fills the specified structure with information that de
scribes the first object on the local heap.

lple
Points to a LOCALENTRY structure that will receive information about the
local memory object. The LOCALENTRY structure has the following form:

590 LocalFlags

Return Value

Comments

#include <toolhelp.h>

typedef struct tagLOCALENTRY { /* le */
DWORD dwSize;
HLOCAL hHandle;
WORD wAddress;
WORD wSize;
WORD wFlags;
WORD we Lock;
WORD wType;
WORD hHeap;
WORD wHeapType;
WORD wNext;

} LOCAL ENTRY;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

hglbHeap
Identifies the local heap.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The LocalFirst function can be used to begin a local heap walk. An application
can examine subsequent objects on the local heap by using the LocalNext func
tion.

Before calling LocalFirst, an application must initialize the LOCALENTRY
structure and specify its size, in bytes, in the dwSize member.

See Also Locallnfo, LocalNext

Local Flags IT!J
UINT LocalFlags(hloc)
HLOCAL hloc; /* handle of local memory object */

The LocalFlags function retrieves information about the given local memory ob
ject.

Parameters hloc
Identifies the local memory object.

Return Value

Comments

See Also

Local Free

LocalHandle 591

The low-order byte of the return value contains the lock count of the object; the
high-order byte contains either LMEM_DISCARDABLE (object has been marked
as discardable) or LMEM_DISCARDED (object has been discarded).

To retrieve the lock count from the return value, use the LMEM_LOCKCOUNT
mask.

LocalAlloc, LocalLock, LocalReAlloc, LocalUnlock

HLOCAL LocalFree(hloc)
HLOCAL hloc; !*handle of local memory object */

The LocalFree function frees the given local memory object (if the object is not
locked) and invalidates its handle.

Parameters hloc

Return Value

Comments

Identifies the local memory object to be freed.

The return value is NULL if the function is successful. Otherwise, it is equal to the
hloc parameter.

An application cannot use the LocalFree function to free a locked memory ob
ject-that is, a memory object with a lock count greater than zero.

After freeing the handle of the memory object, an application cannot use the
handle again. An attempt to free the same memory object more than once can
cause Windows to terminate abnormally.

See Also LocalFlags, LocalLock

Local Handle lliJ
HLOCAL LocalHandle(pvMem)
void NEAR* pvMem; /*address oflocal memory object */

The LocalHandle function retrieves the handle of the specified local memory
object.

592 Locallnfo

Parameters

Return Value

See Also

Locallnfo

pvMem
Specifies the address of the local memory object.

The return value is the handle of the specified local memory object if the function
is successful. It is NULL if the specified address has no handle.

LocalAlloc

#include <toolhelp.h>

BOOL Locallnfo(lpli, hglbHeap)
LOCALINFO FAR* lpli; /* address of LOCALINFO structure */
HGLOBAL hglbHeap; /* handle of local heap */

Parameters

Return Value

Comments

The Locallnfo function fills the specified structure with information that describes
the local heap.

lpli
Points to a LOCALINFO structure that will receive information about the
local heap. The LOCALINFO structure has the following form:

#include <toolhelp.h>

typedef struct tagLOCALINFO { /* li */
DWORD dwSize;
WORD wcitems;

LOCALINFO;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

hglbHeap
Identifies the local heap to be described.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The information in the LOCALINFO structure can be used to determine how
much memory to allocate for a local heap walk.

Before calling Locallnfo, an application must initialize the LOCALINFO struc
ture and specify its size, in bytes, in the dwSize member.

Local lock 593

See Also LocalFirst, LocalNext

Locallnit
BOOL Locallnit(uSegment, uStartAddr, uEndAddr)
UINT uSegment; /* segment to contain local heap */
UINT uStartAddr; /* starting address for heap */
UINT uEndAddr; /* ending address for heap */

Parameters

Return Value

Comments

See Also

Local lock

The Locallnit function initializes a local heap in the specified segment.

uSegment
Identifies the segment that is to contain the local heap.

uStartAddr
Specifies the starting address of the local heap within the segment.

uEndAddr
Specifies the ending address of the local heap within the segment.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The first 16 bytes of the segment containing a local heap must be reserved for use
by the system.

GlobalLock, LocalAlloc, LocalReAlloc

void NEAR* LocalLock(hloc)
HLOCAL hloc; I* handle of local memory object */

The LocalLock function retrieves a pointer to the given local memory object.
LocalLock increments (increases by one) the lock count of movable objects and
locks the memory.

Parameters hloc
Identifies the local memory object to be locked.

594 LocalNext

Return Value

Comments

See Also

Local Next

The return value points to the first byte of memory in the local object, if the func
tion is successful. It is NULL if the object has been discarded or an error occurs.

Each time an application calls LocalLock for an object, it must eventually call
LocalUnlock for the object.

This function will return NULL if an application attempts to lock a memory object
with a size of 0 bytes.

The LocalUnlock function decrements (decreases by one) the lock count for the
object if LocalLock incremented the count. Other functions can also affect the
lock count of a memory object.

Locked memory will not be moved or discarded unless the memory object is
reallocated by the LocalReAlloc function. The object remains locked in memory
until its lock count is decreased to zero.

Discarded objects always have a lock count of zero.

LocalFlags, LocalReAlloc, LocalUnlock

#include <toolhelp.h>

BOOL LocalNext(lple)
LOCALENTRY FAR* lple; /* address of LOCALENTRY structure *I

Parameters

The LocalNext function fills the specified structure with information that de
scribes the next object on the local heap.

lple
Points to a LOCALENTRY structure that will receive information about the
local memory object. The LOCALENTRY structure has the following form:

#include <toolhelp.h>

typedef struct tagLOCALENTRY { /* le */
DWORD dwSize;
HLOCAL hHandle;
WORD wAddress;
WORD wSize;
WORD wFl ags;
WORD we Lock;
WORD wType;

Return Value

Comments

See Also

LocalReAlloc 595

WORD hHeap;
WORD wHeapType;
WORD wNext;

LOCALENTRY;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The LocalNext function can be used to continue a local heap walk started by the
LocalFirst function.

LocalFirst, Locallnfo

LocalReAlloc
HLOCAL LocalReAlloc(hloc,fuNewSize,fuFlags)
HLOCAL hloc; /* handle of local memory object */

*/
*I

UINT fuNewSize; I* new size of object
UINT fuFlags; I* new allocation attributes

The LocalReAlloc function changes the size or attributes of the given local
memory object.

Parameters hloc
Identifies the local memory object to be reallocated.

fuNewSize
Specifies the new size of the local memory object.

fuFlags
Specifies how to reallocate the local memory object. If this parameter includes
the LMEM_MODIFY and LMEM_DISCARDABLE flags, LocalReAlloc ig
nores the fuNewSize parameter. The fuFlags parameter can be a combination of
the following values.

Value

LMEM_DISCARDABLE

LMEM_MODIFY

Meaning

Causes a previously movable object to become
discardable. This flag can be used only with
LMEM_MODIFY.

Modifies the object's memory flags. This flag can be
used only with LMEM_DISCARDABLE.

596 LocalShrink

Return Value

Comments

Value

LMEM_MOVEABLE

LMEM_NOCOMPACT

LMEM_ZEROINIT

Meaning

IffuNewSize is zero, this flag causes a previously
fixed object to be freed or a previously movable
object to be discarded (if the object's lock
count is zero). This flag cannot be used with
LMEM_MODIFY.

IfjuNewSize is nonzero and the object identified by
the hloc parameter is fixed, this flag allows the reallo
cated object to be moved to a new fixed location.

Prevents memory from being compacted or discarded
to satisfy the allocation request. This flag cannot be
used with LMEM_MODIFY.

If the object is growing, this flag causes the addi
tional memory contents to be initialized to zero. This
flag cannot be used with LMEM_MODIFY.

The return value is the handle of the reallocated local memory object, if the func
tion is successful. Otherwise, it is NULL.

If LocalReAlloc reallocates a movable object, the return value is a local handle of
the memory. To access the memory, an application must use the LocalLock func
tion to convert the handle to a pointer.

If LocalReAlloc reallocates a fixed object, the return value is a pointer to the
memory. To access the memory, an application can simply cast the return value to
a pointer.

To free a local memory object, an application should use the LocaIFree function.

See Also LocalAlloc, LocaIDiscard, LocaIFree, LocalLock

Local Shrink lliJ
DINT LocalShrink(hloc, cbNewSize)
HLOCAL hloc; /*segment containing local heap */
DINT cbNewSize; /* new size of local heap */

The LocalShrink function shrinks the local heap in the given segment.

Parameters hloc
Identifies the segment that contains the local heap. If this parameter is zero, the
function shrinks the heap in the current data segment.

Return Value

Comments

See Also

Local Size

LocalSize 597

cbNewSize
Specifies the new size, in bytes, of the local heap.

The return value specifies the new size of the local heap if the function is suc
cessful.

Windows will not shrink the portion of the data segment that contains the stack
and the static variables.

Use the GlobalSize function to determine the new size of the data segment.

GlobalSize

UINT LocalSize(hloc)
HLOCAL hloc; /*handle of local memory object */

The LocalSize function returns the current size, in bytes, of the given local
memory object.

Parameters hloc

Return Value

Comments

See Also

Identifies the local memory object.

The return value specifies the size, in bytes, of the memory object, if the function
is successful. It is zero if the specified handle is invalid or if the object has been
discarded.

The size of a memory object sometimes is larger than the size requested when the
memory was allocated.

To verify that the memory object has not been discarded, an application should
call the LocalFlags function prior to calling the LocalSize function. If the
memory object has been discarded, the return value for LocalSize is meaningless.

LocalAlloc, LocalFlags

598 Local Unlock

LocalUnlock
BOOL LocalUnlock(hloc)
HLOCAL hloc; /* handle of local memory object *!

The LocalUnlock function unlocks the given local memory object. This function
has no effect on fixed memory.

Parameters hloc

Return Value

Comments

See Also

Lockln!JUt

Identifies the local memory object to be unlocked.

The return value is zero if the function is successful. Otherwise, it is nonzero.

With discardable memory, this function decrements (decreases by one) the ob
ject's lock count. The object is completely unlocked, and subject to discarding, if
the lock count is decreased to zero.

LocalLock

BOOL Locklnput(hReserved, hwndlnput,fLock)
HANDLE hReserved; /* reserved, must be NULL */
HWND hwndlnput; I* handle of window to receive all inpet */
BOOLfLock; I* the lock/unlock flag */

Parameters

Return Value

The Locklnput function locks input to all tasks except the current one, if the
fLock parameter is TRUE. The given window is made system modal; that is, it will
receive all input. If fLock is FALSE, Locklnput unlocks input and restores the sys
tem to its unlocked state.

hReserved
This parameter is reserved and must be NULL.

hwndlnput
Identifies the window that is to receive all input. This window must be in the
current task. If fLock is FALSE, this parameter should be NULL.

fLock
Indicates whether to lock or unlock input. A value of TRUE locks input; a
value of FALSE unlocks input.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments

See Also

LockResource 599

Before entering hard mode, a Windows-based debugger calls Locklnput, specify
ing TRUE for thefLock parameter. This action saves the current global state. To
exit hard mode, the debugger calls Locklnput, specifying FALSE for fLock. This
restores the global state to the conditions that existed when the debugger entered
hard mode. A debugger must restore the global state before exiting. Calls to Lock
Input cannot be nested.

Directed Yield

LockResource
void FAR* LockResource(hglb)
HGLOBAL hglb; I* handle of resource */

Parameters

Return Value

Comments

See Also

The LockResource function locks the given resource. The resource is locked in
memory and its reference count is incremented (increased by one). The locked re
source is not subject to discarding.

hglb
Identifies the resource to be locked. This handle must have been created by
using the LoadResource function.

The return value points to the first byte of the loaded resource if the function is
successful. Otherwise, it is NULL.

The resource remains locked in memory until its reference count is decreased to
zero by calls to the FreeResource function.

If the resource identified by the hglb parameter has been discarded, the resource
handler function (if any) associated with the resource is called before the Lock
Resource function returns. The resource-handler function can recalculate and
reload the resource if necessary. After the resource-handler function returns,
LockResource makes another attempt to lock the resource and returns with the
result.

Using the handle returned by the FindResource function for the hglb parameter
causes an error.

Use the UnlockResource macro to unlock a resource that was locked by Lock
Resource.

FindResource, FreeResource, SetResourceHandler

600 LockSegment

LockSegment
HGLOBAL LockSegment(uSegment)
UINT uSegment; /* segment to lock */

Parameters

Return Value

Comments

See Also

The LockSegment function locks the specified discardable segment. The segment
is locked into memory at the given address and its lock count is incremented
(increased by one).

uSegment
Specifies the segment address of the segment to be locked. If this parameter
is -1, the LockSegment function locks the current data segment.

The return value specifies the data segment if the function is successful. It is
NULL if the segment has been discarded or an error occurs.

Locked memory is not subject to discarding except when a portion of the segment
is being reallocated by the GlobalReAlloc function. The segment remains locked
in memory until its lock count is decreased to zero by the UnlockSegment func
tion.

Each time an application calls LockSegment for a segment, it must eventually call
UnlockSegment for the segment. The UnlockSegment function decrements the
lock count for the segment. Other functions also can affect the lock count of a
memory object. For a list of these functions, see the description of the Global
Flags function.

GlobalFlags, GlobalReAlloc, LockData, UnlockSegment

LockWindowUpdate
BOOL LockWindowUpdate(hwndLock)
HWND hwndLock; /* handle of window */

Parameters

The LockWindowUpdate function disables or reenables drawing in the given
window. A locked window cannot be moved. Only one window can be locked at a
time.

hwndLock
Identifies the window in which drawing will be disabled. If this parameter is
NULL, drawing in the locked window is enabled.

Return Value

Comments

Log Error

Log Error 601

The return value is nonzero if the function is successful. It is zero if a failure oc
curs or if the LockWindowUpdate function has been used to lock another win
dow.

If an application with a locked window (or any locked child windows) calls the
GetDC, GetDCEx, or BeginPaint function, the called function returns a device
context whose visible region is empty. This will occur until the application un
locks the window by calling Lock Window Update, specifying a value of NULL
for hwndLock.

While window updates are locked, the system keeps track of the bounding
rectangle of any drawing operations to device contexts associated with a locked
window. When drawing is reenabled, this bounding rectangle is invalidated in the
locked window and its child windows to force an eventual WM_PAINT message
to update the screen. If no drawing has occurred while the window updates were
locked, no area is invalidated.

The Lock Window Update function does not make the given window invisible and
does not clear the WS_ VISIBLE style bit.

void LogError(uErr, lpvlnfo)
UINT uErr; /* error type */

/ void FAR lpvlnfo; I* address of error information

Parameters

The LogError function identifies the most recent system error. An application's
interrupt callback function typically calls LogError to return error information to
the user.

uErr
Specifies the type of error that occurred. The lpvlnfo parameter may point to
more information about the error, depending on the value of uErr. This parame
ter may be one or more of the following values:

Value

ERR_ALLOCRES

ERR_BADINDEX

ERR_BYTE

Meaning

AllocResource failed.

Bad index to GetClassLong, GetClassWord,
GetWindowLong, GetWindowWord, Set
ClassLong, SetClassWord, SetWindowLong,
or SetWindowWord.

Invalid 8-bit parameter.

602 Log Error

Return Value

Value

ERR_CREATEDC

ERR_ CREATED LG

ERR_CREATEDLG2

ERR_CREATEMENU

ERR_CREATEMETA

ERR_CREATEWND

ERR_DCBUSY

ERR_DELOBJSELECTED

ERR_DWORD

ERR_GALLOC

ERR_GLOCK

ERR_GREALLOC

ERR_LALLOC

ERR_LLOCK

ERR_LOADMENU

ERR_LOADMODULE

ERR_LOADSTR

ERR_LOCKRES

ERR_LREALLOC

ERR_NESTEDBEGINPAINT

ERR_REGISTERCLASS

ERR_SELBITMAP

ERR_SIZE_MASK

ERR_STRUCEXTRA

ERR_ WARNING

ERR_ WORD

lpvlnfo

Meaning

CreateCompatibleDC, CreateDC, or CreateIC
failed.

Could not create dialog box because LoadMenu
failed.

Could not create dialog box because Create
Window failed.

Could not create menu.

CreateMetaFile failed.

Could not create window because the class was
not found.

Device context (DC) cache is full.

Program is trying to delete a bitmap that is
selected into the DC.

Invalid 32-bit parameter.

GlobalAlloc failed.

GlobalLock failed.

GlobalReAlloc failed.

LocalAlloc failed.

LocalLock failed.

LoadMenu failed.

LoadModule failed.

LoadString failed.

LockResource failed.

LocalReAlloc failed.

Program contains nested BeginPaint calls.

RegisterClass failed because the class is already
registered.

Program is trying to select a bitmap that is al
ready selected.

Identifies which 2 bits of uErr specify the size of
the invalid parameter,

Program is using unallocated space.

A non-fatal error occurred.

Invalid 16-bit parameter.

Points to more information about the error. The value of lpvlnfo depends on the
value of uErr. If the value of (uErr & ERR_SIZE_MASK) is 0, lpvlnfo is unde
fined. Currently, no uErr code has defined meanings for lpvlnfo.

This function does not return a value.

Comments

See Also

LagParamError 603

The errors identified by LogError may be trapped by the callback function that
Notify Register installs.

Error values whose low 12 bits are less than Ox07FF are reserved for use by Win
dows.

LogParamError, Notify Register

LogParamError
void LogParamError(uErr, lpjn, lpvParam)
UINT uErr; I* error type */

*/
*/

FARPROC lpjn; /*address where error occurred
void FAR* lpvParam; /*address of more error information

Parameters

The LogParamError function identifies the most recent parameter validation
error. An application's interrupt callback function typically calls LogParamError
to return information about an invalid parameter to the user.

uErr
Specifies the type of parameter validation error that occurred. The lpvParam pa
rameter may point to more information about the error, depending on the value
of uErr. This parameter may be one or more of the following values:

Value

ERR_BAD_ATOM

ERR_BAD_CID

ERR_BAD_COORDS

ERR_BAD_DFLAGS

ERR_BAD_DINDEX

ERR_BAD_DVALUE

ERR_BAD_FLAGS

ERR_BAD_FUNc_PTR

ERR_BAD_GDl_OBJECT

ERR_BAD_GLOBAL_HANDLE

ERR_BAD_HANDLE

ERR_BAD_HBITMAP

ERR_BAD_HBRUSH

ERR_BAD_HCURSOR

Meaning

Invalid atom.

Invalid communications identifier (CID).

Invalid x,y coordinates.

Invalid 32-bit flags.

Invalid 32-bit index or index out-of-range.

Invalid 32-bit signed or unsigned value.

Invalid bit flags.

Invalid function pointer.

Invalid graphics device interface (GDI)
object.

Invalid global handle.

Invalid generic handle.

Invalid bitmap handle.

Invalid brush handle.

Invalid cursor handle.

604 LogParamError

Value

ERR_BAD_HDC

ERR_BAD _HDRVR

ERR_BAD_HDWP

ERR_BAD _HFILE

ERR_BAD _HFONT

ERR_BAD _HICON

ERR_BAD_HINSTANCE

ERR_BAD _HMENU

ERR_BAD _HMETAFILE

ERR_BAD_HMODULE

ERR_BAD_HPALETTE

ERR_BAD_HPEN

ERR_BAD_HRGN

ERR_BAD_HWND

ERR_BAD _INDEX

ERR_BAD_LOCAL_HANDLE

ERR_BAD_PTR

ERR_ BAD _SELECTOR

ERR_BAD _STRING_PTR

ERR_BAD_VALUE

ERR_BYTE

ERR_DWORD

ERR_PARAM

ERR_SIZE_MASK

ERR_ WARNING

ERR_ WORD

lpfn

Meaning

Invalid device context (DC) handle.

Invalid driver handle.

Invalid handle of a window-position
structure.

Invalid file handle.

Invalid font handle.

Invalid icon handle.

Invalid instance handle.

Invalid menu handle.

Invalid metafile handle.

Invalid module handle.

Invalid palette handle.

Invalid pen handle.

Invalid region handle.

Invalid window handle.

Invalid index or index out-of-range.

Invalid local handle.

Invalid pointer.

Invalid selector.

Invalid zero-terminated string pointer.

Invalid 16-bit signed or unsigned value.

Invalid 8-bit parameter.

Invalid 32-bit parameter.

A parameter validation error occurred. This
flag is always set.

Identifies which 2 bits of uErr specify the
size of the invalid parameter.

An invalid parameter was detected, but the
error is not serious enough to cause the func
tion to fail. The invalid parameter is reported,
but the call runs as usual.

Invalid 16-bit parameter.

Specifies the address at which the parameter error occurred. This value is
NULL if the address is unknown.

lpvParam
Points to more information about the error. The value of lpvParam depends on
the value of uErr. If the value of (uErr & ERR_SIZE_MASK) is 0, lpvParam
is undefined. Currently, no uErr code has defined meanings for lpvParam.

Return Value

Comments

See Also

_lopen

_lopen 605

This function does not return a value.

The errors identified by LogParamError may be trapped by the callback function
that Notify Register installs.

Error values whose low 12 bits are less than Ox07FF are reserved for use by Win
dows.

The size of the value passed in lpvParam is determined by the values of the bits
selected by ERR_SIZE_MASK, as follows:

switch (err & ERR_SIZE_MASK)
{

case ERR_BYTE: /* 8-bit invalid parameter*/
b = LOBYTE(param);
break;

case ERR_WORD: /* 16-bit invalid parameter*/
w = LOWORDCparam);
break;

case ERR_DWORD:
l = CDWORD)param;
break:

default:
break;

}

LogError, NotifyRegister

/* 32-bit invalid parameter */

/*invalid parameter value is unknown*/

HFILE _lopen(lpszFilename,fnOpenMode)
LPCSTR lpszFilename; I* address of file to open */
intfnOpenMode; /*file access */

Parameters

The _lopen function opens an existing file and sets the file pointer to the begin
ning of the file.

lpszFilename
Points to a null-terminated string that names the file to be opened. The string
must consist of characters from the Windows character set.

606 _lopen

Return Value

Example

fnOpenMode
Specifies the modes in which to open the file. This parameter consists of one
access mode and an optional share mode.

Value Access mode

READ

READ_WRITE

WRITE

Opens the file for reading only.

Opens the file for reading and writing.

Opens the file for writing only.

Value

OF _SHARE_COMPAT

OF _SHARE_DENY _NONE

OF _SHARE_DENY _READ

OF _SHARE_DENY _WRITE

OF _SHARE_EXCLUSIVE

Share mode (optional)

Opens the file in compatibility mode, allowing
any process on a given machine to open the file
any number of times. If the file has been opened
by using any of the other sharing modes, _lopen
fails.

Opens the file without denying other programs
read or write access to the file. If the file has been
opened in compatibility mode by any other pro
gram, _lopen fails.

Opens the file and denies other programs read
access to the file. If the file has been opened in
compatibility mode or for read access by any
other program, _lopen fails.

Opens the file and denies other programs write
access to the file. If the file has been opened in
compatibility mode or for write access by any
other program, _lopen fails.

Opens the file in exclusive mode, denying other
programs both read and write access to the file. If
the file has been opened in any other mode for
read or write access, even by the current program,
_lopen fails.

The return value is a file handle if the function is successful. Otherwise, it is
HFILE_ERROR.

The following example uses the _lopen function to open an input file:

HFILE hfReadFile;
/*Open the input file (read only).*/

hfReadFile = _lopen("testfile", READ);

if (hfReadFile == HFILE_ERROR) {
ErrorHandl er();

}

LPtoDP 607

See Also OpenFile

LPtoDP
BOOL LPtoDP(hdc, lppt, cPoints)
HDC hdc; /* handle of device context */
POINT FAR* lppt; /* address of array with points */
int cPoints; /* number of points in array */

The LPtoDP function converts logical coordinates (points) into device coordinates.

Parameters hdc

Return Value

Comments

Example

Identifies the device context.

lppt
Points to an array of POINT structures. The coordinates in each structure are
mapped to the device coordinates of the current device context. The POINT
structure has the following form:

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

cPoints
Specifies the number of points in the array.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The conversion depends on the current mapping mode and the settings of the
origins and extents of the device's window and viewport.

The x- and y-coordinates of points are 2-byte signed integers in the range -32,768
through 32,767. In cases where the mapping mode would result in values larger
than these limits, the system sets the values to -32,768 and 32,767, respectively.

The following example sets the mapping mode to MM_LOENGLISH and then
calls the LPtoDP function to convert the coordinates of a rectangle into device
coordinates:

608 I read

See Also

I read

RECT re;

SetMapMode(hdc, MM_LOENGLISH);
SetRect(&rc, 100, -100, 200, -200);
LPtoDP(hdc, (LPPOINT) &re, 2);

DPtoLP

UINT _lread(lif, hpvBuffer, cbBuffer)
HFILE hf; /*file handle */
void _huge* hpvBuffer; /* address of buffer for read data */
UINT cbBuffer; /*length of data buffer */

Parameters

Return Value

Example

The _ lread function reads data from the specified file.

hf
Identifies the file to be read.

hpvBuffer
Points to a buffer that is to receive the data read from the file.

cbBuffer
Specifies the number of bytes to be read from the file. This value cannot be
greater than OxFFFE (65,534).

The return value indicates the number of bytes that the function read from the file,
if the function is successful. If the number of bytes read is less than the number
specified in ch Buffer, the function reached the end of the file (EOF) before reading
the specified number of bytes. The return value is HFILE_ERROR if the function
fails.

The following example uses the _lread and _lwrite functions to copy data from
one file to another:

HFILE hfReadFile;
int cbRead;
PBYTE pbBuf;

/*Allocate a buffer for file I/O. */

pbBuf = (PBYTE) LocalAlloc(LMEM_FIXED, 2048);

/* Copy the input file to the temporary file. */

See Also

lstrcat

do {
cbRead = _lread(hfReadFile, pbBuf, 2048);
_ lwrite(hfTempFile, pbBuf, cbRead);

while (cbRead != 0);

/* Free the buffer and close the files. */

LocalFree((HLOCAL) pbBuf);

_lclose(hfReadFile);
_lclose(hfTempFile);

_bread, _lwrite

lstrcat 609

LPSTR lstrcat(lpszString 1, lpszString2)
LPSTR lpszString 1; /* address of buffer for concatenated strings *I
LPCSTR lpszString2; /* address of string to add to stringl */

Parameters

Return Value

Comments

Example

The lstrcat function appends one string to another.

lpszString 1
Points to a byte array containing a null-terminated string. The byte array con
taining the string must be large enough to contain both strings.

lpszString2
Points to the null-terminated string to be appended to the string specified in the
lpszString 1 parameter.

The return value points to lpszString 1 if the function is successful.

Both strings must be less than 64K in size.

The following example uses the lstrcat function to append a test string to a buffer:

char szBuf[80] = { "the test string is " };

lstrcat(szBuf, lpsz);
MessageBox(hwnd, szBuf, "lstrcat", MB_OK);

610 lstrcmp

Istre mp
int lstrcmp(lpszString I, lpszString2)
LPCSTR lpszString I; /* address of first string *I

/ LPCSTR lpszString2; I address of second string

Parameters

Return Value

Comments

See Also

lstrcmpi

The lstrcmp function compares two character strings. The comparison is case
sensitive.

lpszString I
Points to the first null-terminated string to be compared.

lpszString2
Points to the second null-terminated string to be compared.

The return value is less than zero if the string specified in lpszString I is less than
the string specified in lpszString2, is greater than zero if lpszStringl is greater than
lpszString2, and is zero if the two strings are equal.

The lstrcmp function compares two strings by checking the first characters
against each other, the second characters against each other, and so on, until it
finds an inequality or reaches the ends of the strings. The function returns the
difference of the values of the first unequal characters it encounters. For example,
lstrcmp determines that "abcz" is greater than "abcdefg" and returns the differ
ence of "z" and "d".

The language driver for the language selected by the user determines which string
is greater (or whether the strings are the same). If no language driver is selected,
Windows uses an internal function. With the Windows United States language
functions, uppercase characters have lower values than lowercase characters.

With a double-byte character set (DBCS) version of Windows, this function can
compare two DBCS strings.

Both strings must be less than 64K in size.

lstrcmpi

int lstrcmpi(lpszString I, lpszString2)
LPCSTR lpszString I; /* address of first string *I
LPCSTR lpszString2; /* address of second string */

Parameters

Return Value

Comments

See Also

lstrcpy

lstrcpy 611

The lstrcmpi function compares the two strings. The comparison is not case
sensitive.

lpszString 1
Points to the first null-terminated string to be compared.

lpszString2
Points to the second null-terminated string to be compared.

The return value is less than zero if the string specified in lpszString 1 is less than
the string specified in lpszString2, is greater than zero if lpszStringl is greater than
lpszString2, and is zero if the two strings are equal.

The lstrcmpi function compares two strings by checking the first characters
against each other, the second characters against each other, and so on, until it
finds an inequality or reaches the ends of the strings. The function returns the
difference of the values of the first unequal characters it encounters. For example,
lstrcmpi determines that "abcz" is greater than "abcdefg" and returns the differ
ence of "z" and "d".

The language driver for the language selected by the user determines which string
is greater (or whether the strings are the same). If no language driver is selected,
Windows uses an internal function.

With a double-byte character set (DBCS) version of Windows, this function can
compare two DBCS strings.

Both strings must be less than 64K in size.

lstrcmp

LPSTR lstrcpy(lpszStringl, lpszString2)
LPSTR lpszString 1; /* address of buffer */
LPCSTR lpszString2; /* address of string to copy */

Parameters

The lstrcpy function copies a string to a buffer.

lpszString 1
Points to a buffer that will receive the contents of the string pointed to by the
lpszString2 parameter. The buffer must be large enough to contain the string, in
cluding the terminating null character.

612 lstrlen

lpszString2
Points to the null-terminated string to be copied.

Return Value The return value is a pointer to lpszString I if the function is successful. Otherwise,
it is NULL.

Comments

See Also

lstrlen
int lstrlen(lpszString)
LPCSTR lpszString;

Parameters

Return Value

See Also

lwrite

This function can be used to copy a double-byte character set (DBCS) string.

Both strings must be less than 64K in size.

lstrlen

/* address of string to count *!

The lstrlen function returns the length, in bytes, of the specified string (not includ
ing the terminating null character).

lpszString
Points to a null-terminated string. This string must be less than 64K in size.

The return value specifies the length, in bytes, of the string pointed to by the
lpszString parameter. There is no error return.

lstrcpy

UINT _lwrite(hf, hpvBuffer, cbBuffer)
HFILE hf; /*file handle */
const void _huge* hpvBuffer; /* address of buffer for write data */
UINT cbBuffer; /*size of data */

The _lwrite function writes data to the specified file.

Parameters

Return Value

Comments

Example

See Also

lwrite 613

hf
Identifies the file to be written to.

hpvBuffer
Points to a buffer that contains the data to be written to the file.

cbBuffer
Specifies the number of bytes to be written to the file. If this parameter is zero,
the file is expanded or truncated to the current file-pointer position.

The return value indicates the number of bytes written to the file, if the function is
successful. Otherwise, the return value is HFILE_ERROR.

The buffer specified by hpvBujfercannot extend past the end of a segment.

The following example uses the _lread and _lwrite functions to copy data from
one file to another:

int cbRead;
PBYTE pbBuf;

/*Allocate a buffer for file 1/0. */

pbBuf = (PBYTE) LocalAlloc(LMEM_FIXED, 2048);

/* Copy the input file to the temporary file. */

do
cbRead = _lread(hfReadFile, pbBuf, 2048);
_ lwrite(hfTempFile, pbBuf, cbRead);

} while (cbRead != 0);

/* Free the buffer and close the files. */

LocalFree((HLOCAL) pbBuf);

_lclose(hfReadFile);
_lclose(hfTempFile);

_hwrite, _lread

614 LZClose

LZClose
#include <lzexpand.h>

void LZClose(lif)
HFILE hf; I* handle of file to be closed */

The LZCiose function closes a file that was opened by the LZOpenFile or Open
File function.

Parameters hf

Return Value

Comments

Example

See Also

Identifies the source file.

This function does not return a value.

If the file was compressed by Microsoft File Compression Utility
(COMPRESS.EXE) and opened by the LZOpenFile function, LZCiose
frees any global heap space that was required to expand the file.

The following example uses LZClose to close a file opened by LZOpenFile:

char szSrc[J = {"readme.txt"};
char szDst[J = {"readme.bak"};
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile;

/*Open the source file. */

hfSrcFile LZOpenFile(szSrc, &ofStrSrc, OF_READ);

/* Create the destination file. */

hfDstFile LZOpenFile(szDst, &ofStrDest, OF_CREATE);

f* Copy the source file to the destination file. */

LZCopy(hfSrcFile, hfDstFile);

/* Close the files. */

LZClose(hfSrcFile);
LZClose(hfDstFile);

OpenFile, LZOpenFile

LZCopy 615

LZCopy [[!]

#include <lzexpand.h>

LONG LZCopy(hjSource, hfDest)
HFILE hfSource; /* handle of source file */
HFILE hfDest; /* handle of destination file */

Parameters

Return Value

Comments

The LZCopy function copies a source file to a destination file. If the source file
was compressed by Microsoft File Compression Utility (COMPRESS.EXE), this
function creates a decompressed destination file. If the source file was not com
pressed, this function duplicates the original file.

hfSource
Identifies the source file. (This handle is returned by the LZOpenFile function
when a compressed file is opened.)

hfDest
Identifies the destination file.

The return value is the size, in bytes, of the destination file if the function is
successful. Otherwise, it is an error value that is less than zero and may be one of
the following:

Value

LZERROR_BADINHANDLE

LZERROR_BADOUTHANDLE

LZERROR_GLOBALLOC

LZERROR_GLOBLOCK

LZERROR_READ
LZERROR_UNKNOWNALG

LZERROR_ WRITE

Meaning

The handle identifying the source file was not
valid.

The handle identifying the destination file was
not valid.

There is insufficient memory for the required
buffers.

The handle identifying the internal data structures
is invalid.

The source file format was not valid.

The source file was compressed with an unrecog
nized compression algorithm.

There is insufficient space for the output file.

This function is designed for single-file copy operations. (Use the CopyLZFile
function for multiple-file copy operations.)

If the function is successful, the file identified by hfDest is uncompressed.

If the source or destination file is opened by a C run-time function (rather than the
_lopen or OpenFile function), it must be opened in binary mode.

616 LZDone

Example The following example uses the LZCopy function to copy a file:

See Also

LZDone

char szSrc[J = {"readme.txt"};
char szDst[J = {"readme.bak"};
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile;

/* Open the source file. */

hfSrcFile LZOpenFile(szSrc, &ofStrSrc, OF_READ);

/* Create the destination file. */

hfDstFile LZOpenFile(szDst, &ofStrDest, OF_CREATE);

/*Copy the source file to the destination file. */

LZCopy(hfSrcFile, hfDstFile);

/* Close the files. */

LZClose(hfSrcFile);
LZClose(hfDstFile);

CopyLZFile, _lopen, LZOpenFile, OpenFile

#include <lzexpand.h>

void LZDone(void)

Parameters

Return Value

Comments

Example

The LZDone function frees buffers that the LZStart function allocated for
multiple-file copy operations.

This function has no parameters.

This function does not return a value.

Applications that copy multiple files should call LZStart before copying the files
with the CopyLZFile function. LZStart allocates buffers for the file copy opera
tions.

The following example uses LZDone to free buffers allocated by LZStart:

See Also

LZlnit

#define NUM_FILES 4

char *SZSrc[NUM_FILES]
{"readme.txt", "data.txt", "update.txt", "list.txt"};

char *szOest[NUM_FILES] =

{"readme.bak", "data.bak", "update.bak", "list.bak"};
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile;
int i;

/*Allocate internal buffers for the CopyLZFile function. */

LZStart(l;

/* Open, copy, and then close the files. */

for (i = 0; i < NUM_FILES; i++) {
hfSrcFile LZOpenFile(szSrc[i], &ofStrSrc, OF_READJ;
hfDstFile LZOpenFile(szOest[i], &ofStrDest, OF_CREATE);
CopyLZFile(hfSrcFile, hfDstFile);
LZClose(hfSrcFilel;
LZClose(hfDstFilel;

LZDone(); /*free the internal buffers*/

CopyLZFile, LZCopy, LZStart

LZlnit 617

#include <lzexpand.h>

HFILE LZinit(hjSrc)
HFILE hfSrc; I* handle of source file */

Parameters

Return Value

The LZinit function allocates memory for, creates, and initializes the internal data
structures that are required to decompress files.

hfSrc
Identifies the source file.

The return value is the original file handle if the function is successful and the file
is not compressed. If the function is successful and the file is compressed, the re
turn value is a new file handle. If the function fails, the return value is an error
value that is less than zero and may be one of the following:

618 LZlnit

Comments

Example

Value

LZERROR_BADINHANDLE

LZERROR_GLOBALLOC

LZERROR_GLOBLOCK

LZERROR_READ

LZERROR_UNKNOWNALG

Meaning

The handle identifying the source file is invalid.

There is insufficient memory for the required inter
nal data structures. This value is returned when an
application attempts to open more than 16 files.

The handle identifying global memory is invalid.
(The internal call to the GlobalLock function
failed.)

The source file format is invalid.

The file was compressed with an unrecognized com
pression algorithm.

A maximum of 16 compressed files can be open at any given time.

The following example uses LZinit to initialize the internal structures that are re
quired to decompress a file:

char szSrc[J = {"readme.cmp"};
char szFileName[128J;
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile, hfCompFile;
int cbRead;
BYTE abBuf[512];

I* Open the compressed source file. */

hfSrcFile OpenFile(szSrc, &ofStrSrc, OF_READ);

/*
* Initialize internal data structures for the decompression
* operation.
*/

hfCompFile = LZinit(hfSrcFile);

I* Retrieve the original name for the compressed file. */

GetExpandedName(szSrc, szFileName);

/* Create the destination file using the original name. */

hfDstFi le LZOpenFile(szFileName, &ofStrDest, OF_CREATE);

I* Copy the compressed source file to the destination file. */

do {
if ((cbRead = LZRead(hfCompFile, abBuf, sizeof(abBuf))) > 0)

_lwrite(hfDstFile, abBuf, cbRead);

LZOpenFile

else {

/* handle error condition */

while (cbRead == sizeof(abBuf));

/* Close the files. */

LZClose(hfSrcFile);
LZClose(hfDstFile);

LZOpenFile 619

#include <lzexpand.h>

HFILE LZOpenFile(lpszFile, lpof, style)
LPCSTR lpszFile; /* address of filename */
OFSTRUCT FAR* lpof; /* address of structure for file info */
UINT style; /* action to be taken */

Parameters

The LZOpenFile function creates, opens, reopens, or deletes the file specified by
the string to which lpszFile points.

lpszFile
Points to a string that specifies the name of a file.

lpof
Points to the OFSTRUCT structure that is to receive information about the
file when the file is opened. The structure can be used in subsequent calls to
LZOpenFile to refer to the open file.

The szPathName member of this structure contains characters from the
OEM character set. For more information about the OEM character set, see
the Microsoft Windows Guide to Programming.

style
Specifies the action to be taken. These styles can be combined by using the
bitwise OR operator:

Value

OF_CANCEL

OF_CREATE

Meaning

Adds a Cancel button to the OF _PROMPT dialog
box. Choosing the Cancel button directs LZOpen·
File to return a file-not-found error message.

Directs LZOpenFile to create a new file. If the
file already exists, it is truncated to zero length.

620 LZOpenFile

Return Value

Comments

Example

Value

OF_DELETE

OF_EXIST

OF_pARSE

OF_PROMPT

OF_READ

OF _READWRITE

OF_REOPEN

OF _SHARE_DENY _NONE

OF _SHARE_DENY _READ

OF _SHARE_DENY _WRITE

OF _SHARE_EXCLUSIVE

OF_WRITE

Meaning

Deletes the file.

Opens the file, and then closes it. This action is
used to test for file existence.

Fills the OFSTRUCT structure, but carries out
no other action.

Displays a dialog box ifthe requested file does
not exist. The dialog box informs the user that
Windows cannot find the file and prompts the
user to insert the disk containing the file in
drive A

Opens the file for reading only.

Opens the file for reading and writing.

Opens the file using information in the reopen
buffer.

Opens the file without denying other programs
read access or write access to the file. LZOpen
File fails if the file has been opened in compati
bility mode by any other program.

Opens the file and denies other programs read
access to the file. LZOpenFile fails if the file has
been opened in compatibility mode or for read
access by any other program.

Opens the file and denies other programs write
access to the file. LZOpenFile fails if the file has
been opened in compatibility mode or for write
access by any other program.

Opens the file in exclusive mode, denying other
programs both read access and write access to the
file. LZOpenFile fails if the file has been opened
in any other mode for read access or write access,
even by the current program.

Opens the file for writing only.

The return value is a handle identifying the file if the function is successful and the
value specified by style is not OF _READ. If the file is compressed and opened
with style set to the OF _READ value, the return value is a special file handle. If
the function fails, the return value is -1.

If style is OF _READ (or OF _READ and any of the OF _SHARE_ flags) and the
file is compressed, LZOpenFile calls the LZinit function, which performs the re
quired initialization for the decompression operations.

The following example uses LZOpenFile to open a source file and create a desti
nation file into which the source file can be copied:

See Also

LZRead

char szSrc[J = {"readme.txt"};
char szDst[J = {"readme.bak"};
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile;

/* Open the source file. */

hfSrcFile LZOpenFile(szSrc, &ofStrSrc, OF_READ);

I* Create the destination file. */

hfDstFile LZOpenFile(szDst, &ofStrDest, OF_CREATE);

/* Copy the source file to the destination file. */

LZCopy(hfSrcFile, hfDstFile);

I* Close the files. */

LZClose(hfSrcFile);
LZClose(hfDstFile);

LZinit

#include <lzexpand.h>

int LZRead(hf, lpvBuf, cb)
HFILE hf; /*handle of the file */
void FAR* lpvBuf; I* address of buffer for file data */
int cb; /* number of bytes to read */

The LZRead function reads into a buffer bytes from a file.

Parameters hf
Identifies the source file.

lpvBuf
Points to a buffer that is to receive the bytes read from the file.

cb
Specifies the maximum number of bytes to be read.

LZRead 621

622 LZRead

Return Value

Comments

Example

The return value is the actual number of bytes read if the function is successful.
Otherwise, it is an error value that is less than zero and may be any of the follow
ing:

Value

LZERROR_BADINHANDLE

LZERROR_BADVALUE

LZERROR_GLOBLOCK

LZERROR_READ

LZERROR_UNKNOWNALG

Meaning

The handle identifying the source file was invalid.

The cb parameter specified a negative value.

The handle identifying required initialization data is
invalid.

The format of the source file was invalid.

The file was compressed with an unrecognized com
pression algorithm.

If the file is not compressed, LZRead calls the _lread function, which performs
the read operation.

If the file is compressed, LZRead emulates _lread on an expanded image of the
file and copies the bytes of data into the buffer to which lpvBuf points.

If the source file was compressed by Microsoft File Compression Utility
(COMPRESS.EXE), the LZOpenFile, LZSeek, and LZRead functions can be
called instead of the OpenFile, _llseek, and _lread functions.

The following example uses LZRead to copy and decompress a compressed file:

char szSrc[J = {"readme.cmp"};
char szFileName[128J;
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile, hfCompFile;
int cbRead;
BYTE abBuf[512];

I* Open the compressed source file. */

hfSrcFile OpenFile(szSrc, &ofStrSrc, OF~READ);

/*
*Initialize internal data structures for the decompression
* operation.
*/

hfCompFile = LZinit(hfSrcFile);

/* Retrieve the original name for the compressed file. */

GetExpandedName(szSrc, szFileName);

See Also

LZSeek

LZSeek 623

/* Create the destination file using the original name. */

hfDstFile LZOpenFile(szFileName, &ofStrDest, OF_CREATE);

/* Copy the compressed source file to the destination file. */

do
if ((cbRead = LZRead(hfCompFile, abBuf, sizeof(abBuf))) > 0)

_lwrite(hfDstFile, abBuf, cbRead);
else {

/* handle error condition */

}

while (cbRead == sizeof(abBuf));

/* Close the files. */

LZClose(hfSrcFile);
LZClose(hfDstFile);

_ llseek, _ lread, LZOpenFile, LZRead, LZSeek

#include <lzexpand.h>

LONG LZSeek(hf, !Offset, nOrigin)
HFILE hf; /* handle of file *I
long !Offset; /*number of bytes to move */
int nOrigin; /* original position */

Parameters

The LZSeek function moves a file pointer from its original position to a new
position.

hf
Identifies the source file.

!Offset
Specifies the number of bytes by which the file pointer should be moved.

nOrigin
Specifies the starting position of the pointer. This parameter must be one of the
following values:

624 LZStart

Return Value

Comments

See Also

LZStart

Value Meaning

0

1

2

Move the file pointer !Offset bytes from the beginning of the file.

Move the file pointer lOffset bytes from the current position.

Move the file pointer !Offset bytes from the end of the file.

The return value is the offset from the beginning of the file to the new pointer posi
tion, if the function is successful. Otherwise, it is an error value that is less than
zero and may be one of the following:

Value

LZERROR_BADINHANDLE
LZERROR_BADVALUE

LZERROR_GLOBLOCK

Meaning

The handle identifying the source file was invalid.

One of the parameters exceeds the range of valid
values.

The handle identifying the initialization data is in
valid.

If the file is not compressed, LZSeek calls the _llseek function and moves the file
pointer by the specified offset.

If the file is compressed, LZSeek emulates _llseek on an expanded image of the
file.

_llseek

#include <lzexpand.h>

int LZStart(void)

Parameters

Return Value

Comments

The LZStart function allocates the buffers that the CopyLZFile function uses to
copy a source file to a destination file.

This function has no parameters.

The return value is nonzero if the function is successful. Otherwise, it is
LZERROR_GLOBALLOC.

Applications that copy (or copy and decompress) multiple consecutive files should
call the LZStart, CopyLZFile, and LZDone functions. Applications that copy a
single file should call the LZCopy function.

Example

See Also

MakeProclnstance 625

The following example uses LZStart to allocate buffers used by CopyLZFile:

#define NUM_FILES 4

char *szSrc[NUM_FILES]
{"readme.txt", "data.txt", "update.txt", "list.txt"};

char *SZDest[NUM_FILES] =
{"readme.bak", "data.bak", "update.bak", "list.bak"};

OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSrcFile, hfDstFile;
int i ;

/*Allocate internal buffers for the CopyLZFile function. */

LZStart();

/* Open, copy, and then close the files. */

for (i = 0; i < NUM_FILES; i++) {
hfSrcFile LZOpenFile(szSrc[i], &ofStrSrc, OF_READ);
hfDstFile LZOpenFile(szDest[i], &ofStrDest, OF_CREATE);
CopyLZFile(hfSrcFile, hfDstFile);
LZCloseChfSrcFile);
LZClose(hfDstFile);

LZDone(); /* free the internal buffers */

CopyLZFile, LZCopy, LZDone

MakeProclnstance
FARPROC MakeProclnstance(lpPrac, hinst)
FARPROC lpProc; /* address of function */

/ HINSTANCE hinst; I instance to bind to function

Parameters

The MakeProclnstance function returns the address of the pro log code for an ex
ported function. The prolog code binds an instance data segment to an exported
function. When the function is called, it has access to variables and data in that in
stance data segment.

lpProc
Specifies the address of an exported function.

626 MapDialogRect

Return Value

Comments

See Also

hinst
Identifies the instance associated with the desired data segment.

The return value points to the prolog code for the specified exported function, if
MakeProclnstance is successful. Otherwise, it is NULL.

The MakeProclnstance function is used to retrieve a calling address for a func
tion that must be called by Windows, such as an About procedure. This function
must be used only to access functions from instances of the current module. If the
address specified in the lpProc parameter identifies a procedure in a dynamic-link
library, MakeProclnstance returns the same address specified in lpProc.

After MakeProclnstance has been called for a particular function, all calls to that
function should be made through the retrieved address.

The FreeProclnstance function frees the function from the data segment bound to
it by the MakeProclnstance function.

MakeProclnstance will create more than one procedure instance. To avoid wast
ing memory, an application should not call MakeProclnstance more than once
using the same function and instance handle.

FreeProclnstance, GetProcAddress

MapDialogRect
void MapDialogRect(hwndDlg, lprc)
HWND hwndDlg; I* handle of dialog box */

I RECT FAR lprc; /* address of structure with rectangle

Parameters

The MapDialogRect function converts (maps) the specified dialog box units to
screen units (pixels).

hwndDlg
Identifies a dialog box. This dialog box must have been created by using the
CreateDialog or DialogBox function.

lprc
Points to a RECT structure that contains the dialog box coordinates to be con
verted. The RECT structure has the following form:

Return Value

Comments

See Also

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

MapVirtualKey 627

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

This function does not return a value.

The MapDialogRect function converts the dialog box units of a rectangle to
screen units. Dialog box units are defined in terms of the current dialog base unit,
which is derived from the average width and height of characters in the font used
for dialog box text. Typically, dialog boxes use the System font, but an application
can specify a different font by using the DS_SETFONT style in the resource
definition file.

One horizontal unit is one-fourth of the dialog box base width unit, and one verti
cal unit is one-eighth of the dialog box base height unit. The GetDialogBaseUnits
function retrieves the dialog box base units in pixels.

CreateDialog, DialogBox, GetDialogBaseUnits

MapVirtualKey
UINT Map VirtualKey(uKeyCode,fuMapType)
UINT uKeyCode; /*virtual-key code or scan code */

/ UINT fuMapType; / translation to perform

Parameters

The MapVirtualKey function translates (maps) a virtual-key code into a scan
code or ASCII value, or it translates a scan code into a virtual-key code.

uKeyCode
Specifies the virtual-key code or scan code for a key. How this parameter is in
terpreted depends on the value of the fuMapType parameter.

fuMapType
Specifies the translation to perform. If this parameter is 0, the uKeyCode pa
rameter is a virtual-key code and is translated into its corresponding scan code.
lffuMapType is 1, uKeyCode is a scan code and is translated to a virtual-key
code. IffuMapType is 2, uKeyCode is a virtual-key code and is translated to an
unshifted ASCII value. Other values are reserved.

628 MapWindowPoints

Return Value

See Also

The return value depends on the value of the uKeyCode and fuMapType parame
ters. For more information, see the description of the fuMapType parameter.

OemKeyScan, VkKeyScan

MapWindowPoints
void MapWindowPoints(hwndFrom, hwndTo, lppt, cPoints)
HWND hwndFrom; I* handle of window to be mapped from */

*/
*/
*/

HWND hwndTo; /* handle of window to be mapped to
POINT FAR* lppt; /*address of structure array with points to map
UINT cPoints; /* number of structures in array

Parameters

The MapWindowPoints function converts (maps) a set of points from a coordi
nate space relative to one window to a coordinate space relative to another win
dow.

hwndFrom
Identifies the window from which points are converted. If this parameter is
NULL or HWND_DESKTOP, the points are assumed to be in screen coordi
nates.

hwndTo
Identifies the window to which points are converted. If this parameter is NULL
or HWND_DESKTOP, the points are converted to screen coordinates.

lppt
Points to an array of POINT structures that contain the set of points to be con
verted. This parameter can also point to a RECT structure, in which case the
cPoints parameter should be set to 2. The POINT structure has the following
form:

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

f* re */

Return Value

See Also

MemManlnfo 629

For a full description of these structures, see the Microsoft Windows Program
mer's Reference, Volume 3.

cPoints
Specifies the number of POINT structures in the array pointed to by the lppt pa
rameter.

This function does not return a value.

ClientToScreen, ScreenToClient

MemManlnfo
#include <toolhelp.h>

BOOL MemManlnfo(lpmmi)
MEMMANINFO FAR* lpmmi; I* address of MEMMANINFO structure */

Parameters

The MemManlnfo function fills the specified structure with status and perform
ance information about the memory manager. This function is most useful in 386
enhanced mode but can also be used in standard mode.

lpmmi
Points to a MEMMANINFO structure that will receive information about the
memory manager. The MEMMANINFO structure has the following form:

#include <toolhelp.h>

typedef struct tagMEMMANINFO { /* mmi */
DWORD dwSize;
DWORD dwlargestFreeBlock;
DWORD dwMaxPagesAvailable;
DWORD dwMaxPageslockable;
DWORD dwTotallinearSpace;
DWORD dwTotalUnlockedPages;
DWORD dwFreePages;
DWORD dwTotalPages;
DWORD dwFreelinearSpace;
DWORD dwSwapFilePages;
WORD wPageSize;

} MEMMANINFO;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

630 MemoryRead

Return Value

Comments

The return value is nonzero if the function is successful. Otherwise, it is zero.

This function is included for advisory purposes.

Before calling MemManlnfo, an application must initialize the MEM
MANINFO structure and specify its size, in bytes, in the dwSize member.

MemoryRead
#include <toolhelp.h>

DWORD MemoryRead(wSel, dwOffset, lpvBuf, dwcb)
WORD wSel; /* selector of global heap object */
DWORD dwOffset; /* offset to object */
void FAR* lpvBuf; /* address of buffer to read to */
DWORD dwcb; I* number of bytes to read */

Parameters

Return Value

Comments

The Memory Read function copies memory from the specified global heap object
to the specified buffer.

wSel
Specifies the global heap object from which to read. This value must be a selec
tor on the global heap; if the value is an alias selector or a selector in a tiled
selector array, Memory Read will fail.

dwOffset
Specifies the offset in the object specified in the wSel parameter at which to
begin reading. The dwOffset value may point anywhere within the object; it
may be greater than 64K if the object is larger than 64K.

lpvBuf
Points to the buffer to which MemoryRead will copy the memory from the ob
ject. This buffer must be large enough to contain the entire amount of memory
copied to it. If the application is running under low memory conditions, lpvBuf
should be in a fixed object while Memory Read copies data to it.

dwcb
Specifies the number of bytes to copy from the object to the buffer pointed to
by lpvBuf

The return value is the number of bytes copied from wSel to lpvBuf If wSel is in
valid or if dwOffset is out of the selector's range, the return value is zero.

The MemoryRead function enables developers to examine memory without
consideration for selector tiling and aliasing. Memory Read reads memory in

See Also

MemoryWrite 631

read-write or read-only objects. This function can be used in any size object
owned by any task. It is not necessary to compute selector array offsets.

The Memory Read and MemoryWrite functions are designed to read and write
objects loaded by the LoadModule function or allocated by the GlobalAlloc func
tion. Developers should not split off the selector portion of a far pointer and use
this as the value for wSel, unless the selector is known to be on the global heap.

Memory Write

MemoryWrite
#include <toolhelp.h>

DWORD MemoryWrite(wSel, dwOffset, lpvBuf, dwcb)
WORD wSel; /* selector of global heap object */
DWORD dwOffset; /* offset to object */
void FAR* lpvBuf; /*address of buffer to write from */
DWORD dwcb; /* number of bytes to write */

The MemoryWrite function copies memory from the specified buffer to the
specified global heap object.

Parameters wSel

Return Value

Specifies the global heap object to which MemoryWrite will write. This value
must be a selector on the global heap; if the value is an alias selector or a selec
tor in a tiled selector array, MemoryWrite will fail.

dwOffset
Specifies the offset in the object at which to begin writing. The dwOffset value
may point anywhere within the object; it may be greater than 64K if the object
is larger than 64K.

lpvBuf
Points to the buffer from which MemoryWrite will copy the memory to the ob
ject. If the application is running under low memory conditions, lpv Buf should
be in a fixed object while MemoryWrite copies data from it.

dwcb
Specifies the number of bytes to copy to the object from the buffer pointed to
by lpvBuf

The return value is the number of bytes copied from lpvBuf to wSel. If the selector
is invalid or if dwOffset is out of the selector's range, the return value is zero.

632 MessageBeep

Comments

See Also

The MemoryWrite function enables developers to modify memory without con
sideration for selector tiling and aliasing. Memory Write writes memory in read
write or read-only objects. This function can be used in any size object owned by
any task. It is not necessary to make alias objects writable or to compute selector
array offsets.

The Memory Read and MemoryWrite functions are designed to read and write
objects loaded by the LoadModule function or allocated by the GlobalAlloc func
tion. Developers should not split off the selector portion of a far pointer and use
this as the value for wSel, unless the selector is known to be on the global heap.

Memory Read

Message Beep
void MessageBeep(uAlert)
UINT uAlert; /* alert level *I

Parameters

Return Value

The MessageBeep function plays a waveform sound corresponding to a given sys
tem alert level. The sound for each alert level is identified by an entry in the
[sounds] section of the WIN .INI initialization file.

uAlert
Specifies the alert level. This parameter can be one of the following values:

Value

-1

MB_ICONASTERISK

MB_ICONEXCLAMATION

MB_ICONHAND

MB_ICONQUESTION

MB_OK

Meaning

Produces a standard beep sound by using the com
puter speaker.

Plays the sound identified by the SystemAsterisk
entry in the [sounds] section ofWIN.INI.

Plays the sound identified by the System
Exclamation entry in the [sounds] section of
WIN.IN!.

Plays the sound identified by the SystemHand
entry in the [sounds] section ofWIN.INI.

Plays the sound identified by the SystemQuestion
entry in the [sounds] section ofWIN.INI.

Plays the sound identified by the SystemDefault
entry in the [sounds] section ofWIN.INI.

This function does not return a value.

Comments

MessageBox 633

MessageBeep returns control to the caller after queuing the sound and plays the
sound asynchronously.

If it cannot play the specified alert sound, MessageBeep attempts to play the sys
tem default sound. If it cannot play the system default sound, the function pro
duces a standard beep sound by using the computer speaker.

The user can disable the warning beep by using the Windows Control Panel appli
cation Sounds.

See Also FlashWindow, MessageBox

Message Box CEJ
int MessageBox(hwndParent, lpszText, lpszTitle,fuStyle)
HWND hwndParent; I* handle of parent window */
LPCSTR lpszText; I* address of text in message box */
LPCSTR lpszTitle; I* address of title of message box */
UINT fuStyle; I* style of message box */

Parameters

The MessageBox function creates, displays, and operates a message-box window.
The message box contains an application-defined message and title, plus any com
bination of the predefined icons and push buttons described in the fuStyle parame
ter.

hwndParent
Identifies the parent window of the message box to be created. If this parameter
is NULL, the message box will have no parent window.

lpszText
Points to a null-terminated string containing the message to be displayed.

lpszTitle
Points to a null-terminated string to be used for the dialog box title. If this pa
rameter is NULL, the default title Error is used.

fuStyle
Specifies the contents and behavior of the dialog box. This parameter can be a
combination of the following values:

Value Meaning

MB_ABORTRETRYIGNORE The message box contains three push buttons:
Abort, Retry, and Ignore.

634 MessageBox

Value

MB_APPLMODAL

MB_DEFBUTTONI

MB_DEFBUTTON2

MB_DEFBUTTON3

MB_ICONASTERISK

MB_ICONEXCLAMATION

MB_ICONHAND

MB_ICONINFORMATION

MB_ICONQUESTION

MB_ICONSTOP

MB_OK

MB_OKCANCEL

MB_RETRYCANCEL

MB_SYSTEMMODAL

Meaning

The user must respond to the message box
before continuing work in the window identified
by the hwndParent parameter. However, the user
can move to the windows of other applications
and work in those windows.
MB_APPLMODAL is the default if
neither MB_SYSTEMMODAL nor
MB_TASKMODAL is specified.

The first button is the default. Note that the first
button is always the default unless
MB_DEFBUTTON2 or MB_DEFBUTTON3 is
specified.

The second button is the default.

The third button is the default.

Same as MB_ICONINFORMATION.

An exclamation-point icon appears in the mes
sage box.

Same as MB_ICONSTOP.

An icon consisting of a lowercase letter "I" in a
circle appears in the message box.

A question-mark icon appears in the message
box.

A stop-sign icon appears in the message box.

The message box contains one push button: OK.

The message box contains two push buttons:
OK and Cancel.

The message box contains two push buttons:
Retry and Cancel.

All applications are suspended until the user re
sponds to the message box. Unless the applica
tion specifies MB_ICONHAND, the message
box does not become modal until after it is
created; consequently, the parent window and
other windows continue to receive messages re
sulting from its activation. System-modal mes
sage boxes are used to notify the user of serious,
potentially damaging errors that require immedi
ate attention (for example, running out of
memory).

Return Value

Comments

Message Box 635

Value Meaning

MB_TASKMODAL Same as MB_APPLMODAL except that all the
top-level windows belonging to the current task
are disabled if the hwndParent parameter is
NULL. This flag should be used when the
calling application or library does not have a
window handle available but still needs to pre
vent input to other windows in the current appli
cation without suspending other applications.

MB_YESNO The message box contains two push buttons: Yes
and No.

MB_ YESNOCANCEL The message box contains three push buttons:
Yes, No, and Cancel.

The return value is zero if there is not enough memory to create the message box.
Otherwise, it is one of the following menu-item values returned by the dialog box:

Value Meaning

ID ABORT Abort button was selected.

IDCANCEL Cancel button was selected.

IDIGNORE Ignore button was selected.

IDNO No button was selected.

IDOK OK button was selected.

ID RETRY Retry button was selected.

ID YES Yes button was selected.

If a message box has a Cancel button, the IDCANCEL value will be returned if
either the ESC key is pressed or the Cancel button is selected. If the message box
has no Cancel button, pressing ESC has no effect.

When a system-modal message box is created to indicate that the system is low on
memory, the strings pointed to by the lpszText and lpszTitle parameters should not
be taken from a resource file, because an attempt to load the resource may fail.

When an application calls the MessageBox function and specifies the
MB_ICONHAND and MB_SYSTEMMODAL flags for thefuStyle parameter,
Windows displays the resulting message box regardless of available memory.
When these flags are specified, Windows limits the length of the message-box text
to three lines. Windows does not automatically break the lines to fit in the message
box, however, so the message string must contain carriage returns to break the
lines at the appropriate places.

If a message box is created while a dialog box is present, use the handle of the
dialog box as the hwndParent parameter. The hwndParent parameter should not
identify a child window, such as a control in a dialog box.

636 MessageProc

Following are the various system icons that can be used in a message box:

e MB_ICONHAND and MB_ICONSTOP

MB_ICONOUEST/ON

(l) MB_ICONEXCLAMATION

0 MB_ICONASTERISK and MB_ICON/NFORMATION

See Also Flash Window, MessageBeep

MessageProc
LRESULT CALLBACK MessageProc(code, wParam, lParam)
int code; I* message type */

*/
*I

WPARAM wParam; /* undefined
LPARAM lParam; I* address of structure with message data

Parameters

The MessageProc function is an application- or library-defined callback function
that the system calls after a dialog box, message box, or menu has retrieved a mes
sage, but before the message is processed. The callback function can process or
modify the messages.

code
Specifies the type of message being processed. This parameter can be one of
the following values:

Value

MSGF _DIALOGBOX

MSGF_MENU

Meaning

Messages inside a dialog box or message box procedure
are being processed.

Keyboard and mouse messages in a menu are being
processed.

If the code parameter is less than zero, the callback function must pass the mes
sage to CallNextHookEx without further processing and return the value re
turned by CallNextHookEx.

wParam
Specifies a NULL value.

Return Value

Comments

ModifyMenu 637

!Pa ram
Points to an MSG structure. The MSG structure has the following form:

typedef struct tagMSG
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

MSG;

/* msg */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The callback function should return a nonzero value if it processes the message; it
should return zero if it does not process the message.

The WH_MSGFILTER filter type is the only task-specific filter. A task may in
stall this filter.

An application must install the callback function by specifying the
WH_MSGFILTER filter type and the procedure-instance address of the callback
function in a call to the SetWindowsHookEx function.

MessageProc is a placeholder for the library-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the library's
module-definition file.

See Also CallNextHookEx, SetWindowsHookEx

ModifyMenu CIQJ
BOOL ModifyMenu(hmenu, idltem,fuFlags, idNewltem, lpNewltem)
HMENU hmenu; /* handle of menu */
UINT idltem; /* menu-item identifier */
UINT fuFlags; /* menu-item flags */
UINT idNewltem; /* new menu-item identifier */
LPCSTR lpNewltem; /* menu-item content */

The ModifyMenu function changes an existing menu item.

Parameters hmenu
Identifies the menu to change.

638 ModifyMenu

Return Value

Comments

id/tern
Specifies the menu item to change, as determined by thejitFlagsparameter.
When the jitFlags parameter is MF _BYCOMMAND, the id/tern parameter
specifies the menu-item identifier. When thefuFlags parameter is MF _BY
POSITION, the idltem parameter specifies the zero-based position of the menu
item.

jitFlags
Specifies how the idltem parameter is interpreted and information about the
changes to be made to the menu item. It consists of one or more values listed in
the following Comments section.

idNewltem
Specifies either the identifier of the modified menu item or, iffuFlags is set to
MF _PO PUP, the menu handle of the pop-up menu.

lpNewltem
Specifies the content of the changed menu item. If fuFlags is set to
MF _STRING (the default), lpNewltem is a long pointer to a null-terminated
string. IfjitFlags is set to MF _BITMAP instead, lpNewltem contains a bitmap
handle in its low-order word. IfjitFlags is set to MF _OWNERDRA W,
lpNewltem specifies an application-defined 32-bit value that the application
can use to maintain additional data associated with the menu item. This
32-bit value is available to the application in the itemData member of the
MEASUREITEMSTRUCT or DRA WITEMSTRUCT structure pointed to
by the lParam parameter of the WM_MEASUREITEM or WM_DRA WITEM
message. These messages are sent when the menu item is initially displayed or
is changed.

The return value is nonzero if the function is successful. Otherwise, it is zero.

If the Modify Menu function replaces a pop-up menu associated with the menu
item, it destroys the old pop-up menu and frees the memory used by the pop-up
menu.

Whenever a menu changes (whether or not it is in a window that is displayed), the
application should call DrawMenuBar. To change the attributes of existing menu
items, it is much faster to use the CheckMenultem and EnableMenultem func
tions.

Each of the following groups lists flags that should not be used together:

• MF _BYCOMMAND and MF _BYPOSITION

• MF _DISABLED, MF _ENABLED, and MF _GRA YEO

• MF _BITMAP, MF _STRING, MF _OWNERDRA W, and MF _SEP ARA TOR

ModifyMenu 639

• MF _MENUBARBREAK and MF _MENUBREAK

• MF _CHECKED and MF _UNCHECKED

The following list describes the flags that may be set in thefuFlags parameter:

Value

MF_BITMAP

MF _BYCOMMAND

MF _BYPOSITION

MF_CHECKED

MF _DISABLED

MF_ENABLED

MF_GRAYED

MF _MENUBARBREAK

MF _MENUBREAK

MF _OWNERDRAW

MF_POPUP

Meaning

Uses a bitmap as the menu item. The low-order word of
the lpNewltern parameter contains the handle of the bit
map.

Specifies that the id/tern parameter gives the menu-item
identifier. This is the default if neither
MF _BYCOMMAND nor MF _POSITION is set.

Specifies that the id/tern parameter gives the position of
the menu item to be changed rather than the menu-item
identifier.

Places a check mark next to the menu item. If the appli
cation has supplied check-mark bitmaps (see SetMenu
ItemBitmaps), setting this flag displays the check-mark
bitmap next to the menu item.

Disables the menu item so that it cannot be selected, but
does not gray (dim) it.

Enables the menu item so that it can be selected and re
stores it from its grayed state.

Disables the menu item so that it cannot be selected and
grays it.

Same as MF _MENUBREAK except, for pop-up menus,
separates the new column from the old column with a
vertical line.

Places the menu item on a new line for static menu-bar
items. For pop-up menus, this flag places the item in a
new column, with no dividing line between the columns.

Specifies that the menu item is an owner-drawn
item. The window that owns the menu receives a
WM_MEASUREITEM message when the menu is dis
played for the first time to retrieve the height and width
of the menu item. The WM_DRAWITEM message is
then sent whenever the owner must update the visual ap
pearance of the menu item. This option is not valid for a
top-level menu item.

Specifies that the item has a pop-up menu associated
with it. The idNewltern parameter specifies a handle of a
pop-up menu to be associated with the menu item. Use
this flag for adding either a top-level pop-up menu or a
hierarchical pop-up menu to a pop-up menu item.

640 ModuleFindHandle

See Also

Value

MF _SEPARATOR

MF_STRING

MF _UNCHECKED

Meaning

Draws a horizontal dividing line. This line cannot be
grayed, disabled, or highlighted. You can use this flag
only in a pop-up menu. The lpNewltem and idNewltem
parameters are ignored.

Specifies that the menu item is a character string; the
lpNewltem parameter points to the string for the menu
item.

Does not select (place a check mark next to) the menu
item. No check mark is the default condition if neither
MF _CHECKED nor MF _UNCHECKED is set. If the ap
plication has supplied check-mark bitmaps (see the Set
MenultemBitmaps function), setting this flag displays
the "check mark off" bitmap next to the menu item.

CheckMenultem, DrawMenuBar, EnableMenultem, SetMenultemBitmaps

ModuleFindHandle
#include <toolhelp.h>

HMODULE ModuleFindHandle(lpme, hmod)
MODULEENTRYFAR* lpme; /*address ofMODULEENTRY structure */
HMODULE hmod; /* handle of module */

Parameters

The ModuleFindHandle function fills the specified structure with information
that describes the given module.

lpme
Points to a MODULEENTRY structure that will receive information about the
module. The MODULEENTRY structure has the following form:

#include <toolhelp.h>

typedef struct tagMODULEENTRY /* me *f
DWORD dwSize;
char szModule[MAX_MODULE_NAME + l];
HMODULE hModule;
WORD wcUsage;
char szExePath[MAX_PATH + 1];
WORD wNext;

MODULEENTRY;

Return Value

Comments

See Also

ModuleFindName 641

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

hmod
Identifies the module to be described.

The return value is the handle of the given module if the function is successful.
Otherwise, it is NULL.

The ModuleFindHandle function returns information about a currently loaded
module whose module handle is known.

This function can be used to begin a walk through the list of all currently loaded
modules. An application can examine subsequent items in the module list by using
the ModuleNext function.

Before calling ModuleFindHandle, an application must initialize the
MODULEENTRY structure and specify its size, in bytes, in the dwSize member.

ModuleFindN ame, ModuleFirst, ModuleN ext

ModuleFindName
#include <toolhelp.h>

HMODULE ModuleFindName(lpme, lpszName)
MODULEENTRY FAR* lpme; !*address of MODULEENTRY structure */
LPCSTR lpszName; /* address of module name */

Parameters

The ModuleFindName function fills the specified structure with information that
describes the module with the specified name.

lpme
Points to a MODULEENTRY structure that will receive information about the
module. The MODULEENTRY structure has the following form:

642 ModuleFirst

Return Value

Comments

#include <toolhelp.h>

typedef struct tagMODULEENTRY { /* me */
DWORD dwSize;
char szModule[MAX_MODULE_NAME + l];
HMODULE hModule;
WORD wcUsage;
char szExePath[MAX_PATH + 1];
WORD wNext;

MODULE ENTRY;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

lpszName
Specifies the name of the module to be described.

The return value is the handle named in the lpszName parameter, if the function is
successful. Otherwise, it is NULL.

The ModuleFindName function returns information about a currently loaded
module by looking up the module's name in the module list.

This function can be used to begin a walk through the list of all currently loaded
modules. An application can examine subsequent items in the module list by using
the ModuleNext function.

Before calling ModuleFindName, an application must initialize the
MODULEENTRY structure and specify its size, in bytes, in the dwSize member.

See Also ModuleFindHandle, ModuleFirst, ModuleNext

ModuleFirst [}TI

#include <toolhelp.h>

BOOL ModuleFirst(lpme)
MODULEENTRY FAR* lpme; /*address ofMODULEENTRY structure *!

The ModuleFirst function fills the specified structure with information that de
scribes the first module in the list of all currently loaded modules.

Parameters

Return Value

Comments

ModuleNext 643

lpme
Points to a MODULEENTRY structure that will receive information about the
first module. The MODULEENTRY structure has the following form:

#include <toolhelp.h>

typedef struct tagMOOULEENTRY /* me */
DWORD dwSize;
char szModule[MAX_MODULE_NAME + l];
HMODULE hModule;
WORD wcUsage;
char szExePath[MAX_PATH + l];
WORD wNext;

MODULEENTRY;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The ModuleFirst function can be used to begin a walk through the list of all cur
rently loaded modules. An application can examine subsequent items in the mod
ule list by using the ModuleNext function.

Before calling ModuleFirst, an application must initialize the MODULEENTRY
structure and specify its size, in bytes, in the dwSize member.

See Also ModuleFindHandle, ModuleFindName, ModuleNext

ModuleNext CDJ
#include <toolhelp.h>

BOOL ModuleNext(lpme)
MODULEENTRY FAR* lpme; /* address of MODULEENTRY structure */

Parameters

The ModuleNext function fills the specified structure with information that de
scribes the next module in the list of all currently loaded modules.

lpme
Points to a MODULEENTRY structure that will receive information about the
next module. The MODULEENTRY structure has the following form:

644 MouseProc

#include <toolhelp.h>

typedef struct tagMODULEENTRY /* me */
DWORD dwSize;
char szModule[MAX_MODULE_NAME + 1];
HMODULE hModule;
WORD wcUsage;
char szExePath[MAX_PATH + 1];
WORD wNext;

MODULEENTRY;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments The ModuleNext function can be used to continue a walk through the list of all
currently loaded modules. The walk must have been started by the ModuleFirst,
ModuleFindName, or ModuleFindHandle function.

See Also ModuleFindHandle, ModuleFindName, ModuleFirst

MouseProc lliJ
LRESULT CALLBACK MouseProc(code, wParam, lParam)
int code; I* process-message flag */
WPARAM wParam; I* message identifier */
LPARAM lParam; I* address of MOUSEHOOKSTRUCT structure */

Parameters

The MouseProc function is a library-defined callback function that the system
calls whenever an application calls the GetMessage or PeekMessage function and
there is a mouse message to be processed.

code
Specifies whether the callback function should process the message or call the
CallNextHookEx function. If this value is less than zero, the callback function
should pass the message to CallNextHookEx without further processing. If this
value is HC_NOREMOVE, the application is using a PeekMessage function
with the PM_NOREMOVE option, and the message will not be removed from
the system queue.

wParam
Specifies the identifier of the mouse message.

Comments

See Also

Move To

Move To 645

lParam
Points to a MOUSEHOOKSTRUCT structure containing information about
the mouse. The MOUSEHOOKSTRUCT structure has the following form:

typedef struct tagMOUSEHOOKSTRUCT { /* ms */
POINT pt;
HWND hwnd;
UINT wHitTestCode;
DWORD dwExtrainfo;

MOUSEHOOKSTRUCT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The callback function should return 0 to allow the system to process the message;
it should return 1 to discard the message.

This callback function should not install a JournalPlaybackProc callback func
tion.

An application must install the callback function by specifying the WH_MOUSE
filter type and the procedure-instance address of the callback function in a call to
the SetWindowsHookEx function.

MouseProc is a placeholder for the library-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the library's
module-definition file.

CallNextHookEx, GetMessage, PeekMessage, SetWindowsHookEx

DWORD MoveTo(hdc, nXPos, nYPos)
HDC hdc; /* handle of device context */
int nXPos; I* x-coordinate of new position */
int nYPos; I* y-coordinate of new position */

The MoveTo function moves the current position to the specified coordinates.

Parameters hdc
Identifies the device context.

nXPos
Specifies the logical x-coordinate of the new position.

646 MoveToEx

Return Value

Example

See Also

Move To Ex

nYPos
Specifies the logical y-coordinate of the new position.

The low-order word of the return value contains the logical x-coordinate of the pre
vious position, ifthe function is successful; the high-order word contains the logi
cal y-coordinate.

The following example uses the MoveTo function to set the current position and
then calls the LineTo function. The example uses POINT structures to store the
coordinates.

HDC hdc;

POINT ptStart
POINT ptEnd

{ 12, 12 };
128, 135 };

MoveTo(hdc, ptStart.x, ptStart.y);
LineTo(hdc, ptEnd.x, ptEnd.y);

GetCurrentPosition, LineTo

BOOL MoveToEx(hdc, nX, nY, lpPoint)
HDC hdc; /*handle of device context */
int nX; /* x-coordinate of new position */
int nY; /* y-coordinate of new position */
POINT FAR* lpPoint; /*pointer to structure for previous position */

The MoveToEx function moves the current position to the point specified by the
nX and nYparameters, optionally returning the previous position.

Parameters hdc
Identifies the device context.

nX
Specifies the logical x-coordinate of the new position.

nY
Specifies the logical y-coordinate of the new position.

lpPoint
Points to a POINT structure in which the previous current position will be
stored. If this parameter is NULL, no previous position is returned. The POINT
structure has the following form:

Return Value

See Also

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

MoveWindow 647

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the call is successful. Otherwise, it is zero.

MoveTo

Move Window
BOOL MoveWindow(hwnd, nLeft, nTop, nWidth, nHeight,fRepaint)
HWND hwnd; I* handle of window */
int nLeft; I* left coordinate */
int nTop; I* top coordinate */
int n Width; I* width */
int nHeight; /*height */
BOOL.fRepaint; /*repaint flag */

Parameters

The Move Window function changes the position and dimensions of a window.
For top-level windows, the position and dimensions are relative to the upper-left
corner of the screen. For child windows, they are relative to the upper-left corner
of the parent window's client area.

hwnd
Identifies the window to be changed.

nLeft
Specifies the new position of the left side of the window.

nTop
Specifies the new position of the top of the window.

nWidth
Specifies the new width of the window.

nHeight
Specifies the new height of the window.

fRepaint
Specifies whether the window is to be repainted. If this parameter is TRUE, the
window receives a WM_PAINT message. If this parameter is FALSE, no re
painting of any kind occurs. This applies to the client area, the nonclient area

648 Mu ID iv

Return Value

Comments

Example

See Also

Mui Div

(including the title and scroll bars), and any part of the parent window un
covered as a result of the moved window. When this parameter is FALSE, the
application must explicitly invalidate or redraw any parts of the window and
parent window that must be redrawn.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The Move Window function sends a WM_GETMINMAXINFO message to the
window being moved, giving it an opportunity to modify the default values for the
largest and smallest possible windows. If the Move Window parameters exceed
these values, they will be replaced by the minimum or maximum values specified
in the WM_GETMINMAXINFO message.

The following example changes the dimensions of a child window in response to a
WM_SIZE message. In this example, the child window would always fill the
client area of the parent window.

case WM_SIZE:
MoveWindow(hwndChild, 0, 0, LOWORD(lParam), HIWORD(lParam),

TRUE);
break;

ClientToScreen, GetWindowRect, ScreenToClient, SetWindowPos

int MulDiv(nMultiplicand, nMultiplier, nDivisor)
int nMultiplicand; /* 16-bit signed multiplicand */
int nMultiplier; /* 16-bit signed multiplier */
int nDivisor; /* 16-bit signed divisor */

Parameters

The MulDiv function multiplies two 16-bit values and then divides the 32-bit re
sult by a third 16-bit value. The return value is the 16-bit result of the division,
rounded up or down to the nearest integer.

nMultiplicand
Specifies the multiplicand.

nMultiplier
Specifies the multiplier.

nDivisor
Specifies the number by which the result of the multiplication
(nMultiplicand * nMultiplier) is to be divided.

NetBIOSCall 649

Return Value The return value is the result of the multiplication and division if the function is
successful. The return value is -32,768 if either an overflow occurs or the
nDivisor parameter is 0.

See Also CreateFontlndirect, GetDeviceCaps

NetBIOSCall CITJ

Parameters

Return Value

Comments

Example

The NetBIOSCall function allows an application to issue the NETBIOS Interrupt
5Ch. This function can be called only from assembly-language routines. It is ex
ported from KRNL286.EXE and KRNL386.EXE and is not defined in any Win
dows header files.

Registers must be set up as required by Interrupt 5Ch before the application calls
the NetBIOSCall function.

The register contents are preserved as they are returned by Interrupt 5Ch.

Applications should use this function instead of directly issuing a NETBIOS
Interrupt 5Ch.

To use this function, an application should declare it in an assembly-language
routine, as follows:

extrn NETBIOSCALL: far

Uthe application includes CMACROS.INC, the function is declared as follows:

externFP NetBIOSCall

Following is an example of how to use the NetBIOSCall function:

extrn NETBIOSCALL: far

;set registers

cCall NetBIOSCall

650 NotifyProc

NotifyProc
BOOL CALLBACK NotifyProc(hglbl)
HGLOBAL hglbl; /* handle of global memory object */

Parameters

Return Value

Comments

See Also

The NotifyProc function is a library-defined callback function that the system
calls whenever it is about to discard a global memory object allocated with the
GMEM_NOTIFY flag.

hglbl
Identifies the global memory object being discarded.

The callback function should return nonzero if the system is to discard the
memory object, or zero if it should not.

The callback function is not necessarily called in the context of the application that
owns the routine. For this reason, the callback function should not assume it is
using the stack segment of the application. The callback function should not call
any routine that might move memory.

The callback function must be in a fixed code segment of a dynamic-link library.

NotifyProc is a placeholdt: ·for the application-defined function name. The actual
name must be exported by :ncluding it in an EXPORTS statement in the library's
module-definition statement.

GlobalNotify

NotifyRegister
#include <toolhelp.h>

BOOL NotifyRegister(htask, lpfnCallback, wFlags)
HTASK htask; /* handle of task *I
LPFNNOTIFYCALLBACK lpfnCallback; /*address of callback function */
WORD wFlags; /* notification flags */

The Notify Register function installs a notification callback function for the given
task.

NotifyRegister 651

Parameters htask

Return Value

Callback Function

Identifies the task associated with the callback function. If this parameter is
NULL, it identifies the current task.

lpfnCallback
Points to the notification callback function that is installed for the task. The ker
nel calls this function whenever it sends a notification to the task.

The callback-function address is normally the return value of a call to Make
Proclnstance. This causes the callback function to be entered with the AX reg
ister set to the selector of the application's data segment. Usually, an exported
function prolog contains the following code:

mov ds,ax

wFlags
Specifies the optional notifications that the application will receive, in addition
to the default notifications. This parameter can be NF _NORMAL or any combi
nation of the following values:

Value

NF_NORMAL

NF _TASKSWITCH

NF_RIP

Meaning

The application will receive the default notifications but
none of the notifications of task switching, system debug
ging errors, or debug strings.

The application will receive task-switching notifications.
To avoid poor performance, an application should not re
ceive these notifications unless absolutely necessary.

The application will receive notifications of system debug
ging errors.

The return value is nonzero if the function was successful. Otherwise, it is zero.

The syntax of the function pointed to by lpfnCallback is as follows:

BOOL NotifyRegisterCallback(wID, dwData)
WORDwID;
DWORD dwData;

Parameters wID
Indicates the type of notification and the value of the dwData parameter. The
w/D parameter may be one of the following values in Windows versions 3.0
and later:

Value

NFY _DELMODULE

Meaning

The low-order word of dwData is the handle of the mod
ule to be freed.

652 NotifyRegister

Return Value

Comments

Value

NFY_EXITTASK

NFY _FREESEG

NFY_INCHAR

NFY _LOADSEG

NFY_OUTSTR

NFY_RIP

NFY _STARTDLL

NFY _STARTTASK

NFY_UNKNOWN

Meaning

The low-order byte of dwData contains the program exit
code.

The low-order word of dwData is the selector of the seg
ment to be freed.

The dwData parameter is not used. The notification call
back function should return either the ASCII value for the
keystroke or NULL.

The dwData parameter points to an NFYLOADSEG
structure.

The dwData parameter points to the string to be displayed.

The dwData parameter points to an NFYRIP structure.

The dwData parameter points to an NFYSTARTDLL
structure.

The dwData parameter is the CS:IP of the starting address
of the task.

The kernel returned an unknown notification.

In Windows version 3.1, w!D may be one of the following values:

Value

NFY _LOGERROR

NFY _LOGPARAMERROR

NFY_TASKIN

NFY_TASKOUT

dwData

Meaning

The dwData parameter points to an NFYLOG
ERROR structure.

The dwData parameter points to an NFYLOG
PARAMERROR structure.

The dwData parameter is undefined. The callback
function should call the GetCurrentTask function.

The dwData parameter is undefined. The callback
function should call GetCurrentTask.

Specifies data, or specifies a pointer to data, or is undefined, depending on the
value of w!D.

The return value of the callback function is nonzero if the callback function
handled the notification. Otherwise, it is zero and the notification is passed to
other callback functions.

A notification callback function must be able to ignore any unknown notification
value. Typically, the notification callback function cannot use any Windows func
tion, with the exception of the Tool Helper functions and PostMessage.

NotifyRegisterCallbackis a placeholder for the application-defined function
name. The actual name must be exported by including it in an EXPORTS state
ment in the application's module-definition file.

See Also

OemKeyScan 653

lnterruptRegister, InterruptUnRegister, MakeProclnstance,
NotifyUnRegister, TerminateApp

NotifyUnRegister
#include <toolhelp.h>

BOOL NotifyUnRegister(htask)
HTASK htask; /*handle of task */

The NotifyUnRegister function restores the default notification handler.

Parameters htask

Return Value

Comments

See Also

Identifies the task. If htask is NULL, it identifies the current task.

The return value is nonzero if the function is successful. Otherwise, it is zero.

After this function is executed, the given task no longer receives notifications from
the kernel.

InterruptRegister, InterruptUnRegister, NotifyRegister, TerminateApp

OemKeyScan
DWORD OemKeyScan(uOemChar)
UINT uOemChar; /* OEM ASCII character */

Parameters

Return Value

The OemKeyScan function translates (maps) OEM ASCII codes 0 through OxFF
to their corresponding OEM scan codes and shift states.

uOemChar
Specifies the ASCII value of the OEM character.

The low-order word of the return value contains the scan code of the specified
OEM character; the high-order word contains flags that indicate the shift state: If
bit 1 is set, a SHIFT key is pressed; if bit 2 is set, a CTRL key is pressed. Both the
low-order and high-order words of the return value contain -1 if the character is
not defined in the OEM character tables.

654 OemToAnsi

Comments The OemKeyScan function does not translate characters that require CTRL+ALT or
dead keys. Characters not translated by this function must be copied by simulating
input, using the ALT+ keypad mechanism. For this to work, the NUM LOCK key
must be off.

This function calls the VkKeyScan function in recent versions of the keyboard
device drivers.

OemKeyScan allows an application to send OEM text to another application by
simulating keyboard input. It is used specifically for this purpose by Windows in
386 enhanced mode.

See Also VkKeyScan

OemToAnsi ~

void OemToAnsi(hpszOemStr, hpszWindowsStr)
const char _huge* hpszOemStr; /* address of string to translate */
char _huge* hpszWindowsStr; !*address of translated string buffer */

Parameters

Return Value

See Also

The OemToAnsi function translates a string from the OEM-defined character set
into the Windows character set.

hpszOemStr
Points to a null-terminated string of characters from the OEM-defined character
set.

hpsz WindowsStr
Points to the location where the translated string is to be copied. To translate
the string in place, the hpszWindowsStrparameter can be the same as the
hpszOemStr parameter.

This function does not return a value.

AnsiToOem, OemToAnsiBuff

OffsetClipRgn 655

OemToAnsiBuff CI!:J
void OemToAnsiBuff(lpszOemStr, lpszWindowsStr, cbOemStr)
LPCSTR lpszOemStr; /* address of OEM character string */
LPSTR lpszWindowsStr; /*address of buffer for Windows string */
UINT cbOemStr; /* length of OEM string */

Parameters

Return Value

See Also

The OemToAnsiBufffunction translates a string from the OEM-defined character
set into the Windows character set.

lpszOemStr
Points to a buffer containing one or more characters from the OEM-defined
character set.

lpsz WindowsStr
Points to the location where the translated string is to be copied. To translate
the string in place, the lpsz WindowsStr parameter can be the same as the
lpszOemStr parameter.

cbOemStr
Specifies the length, in bytes, of the buffer pointed to by lpszOemStr. If
cbOemStr is 0, the length is 64 K.

This function does not return a value.

AnsiToOem, OemToAnsi

OffsetClipRgn
int OffsetClipRgn(hdc, nXOffset, nYOffset)
HDC hdc; /* device-context handle
int nXOffset; /*offset along x-axis
int nYOffset; /* offset along y-axis

*/
*/
*!

The OffsetClipRgn function moves the clipping region of the given device by the
specified offsets.

Parameters hdc
Identifies the device context.

nXOffset
Specifies the number of logical units to move left or right.

656 OffsetRect

Return Value

Example

See Also

OffsetRect

nYOffset
Specifies the number of logical units to move up or down.

The return value is SIMPLEREGION (region has no overlapping borders),
COMPLEXREGION (region has overlapping borders), or NULLREGION (region
is empty), ifthe function is successful. Otherwise, the return value is ERROR.

The following example creates an elliptical region and selects it as the clipping re
gion for a device context. The OffsetCiipRgn function is called repeatedly to
move the clipping region from left to right across the screen. Because only the
new clipping region is redrawn each time the Rectangle function is called, the left
side of each ellipse remains on the screen when the clipping region moves. When
the loop has finished, a wide blue line with rounded ends stretches from one side
of the client area to the other.

RECT re;
HRGN hrgn;
HBRUSH hbr, hbrPrevious;
int i ;

GetClientReet(hwnd, &re);
hrgn = CreateElliptieRgn(0, 100, 100, 200);
SeleetClipRgn(hde, hrgn);
hbr = CreateSolidBrush(RGB(0, 0, 255));
hbrPrevious = SeleetObjeet(hde, hbr);

for (i = 0; i < re.right - 100; i++) {
OffsetClipRgn(hde, 1, 0);
Reetangle(hde, re.left, re.top, re.right, re.bottom);

}

SeleetObjeet(hde, hbrPrevious);
DeleteObjeet(hbr);
DeleteObjeet(hrgn);

CreateEllipticRgn, SelectCiipRgn

void OffsetRect(lprc, x, y)
RECT FAR* lprc; /* address of structure with rectangle */
int x; /* horizontal offset */
int y; /* vertical offset */

The OffsetRect function moves the given rectangle by the specified offsets.

Parameters

Return Value

Comments

See Also

OffsetRgn

OffsetRgn 657

lprc

x

y

Points to a RECT structure that contains the coordinates of the rectangle to be
moved. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

Specifies the amount to move left or right. It must be negative to move left.

Specifies the amount to move up or down. It must be negative to move up.

This function does not return a value.

The coordinate values of a rectangle must not be greater than 32,767 or less than
-32,768. The x and y parameters must be chosen carefully to prevent invalid
rectangles.

lnflateRect, IntersectRect, UnionRect

int OffsetRgn(hrgn, nXOffset, nYOffset)
HRGN hrgn; /*handle of region */
int nXO.ffset; /*offset along x-axis */
int nYO.ffset; /* offset along y-axis */

The OffsetRgn function moves the given region by the specified offsets.

Parameters hrgn
Identifies the region to be moved.

nXO.ffset
Specifies the number of logical units to move left or right.

nYO.ffset
Specifies the number of logical units to move up or down.

658 OffsetRgn

Return Value

Comments

Example

The return value is SIMPLEREGION (region has no overlapping borders),
COMPLEXREGION (region has overlapping borders), or NULLREGION (region
is empty), if the function is successful. Otherwise, the return value is ERROR.

The coordinate values of a region must not be greater than 32,767 or less than
-32,768. The nXOffset and nYOffsetparameters must be carefully chosen to pre
vent invalid regions.

The following example creates a rectangular region, uses the OffsetRgn function
to move the region 50 positive units in the x- and y-directions, selects the offset re
gion into the device context, and then fills it by using a blue brush:

HOC hdclocal;
HRGN hrgn;
HBRUSH hbrBlue;
int RgnType;

hdclocal = GetDCChwnd);
hrgn = CreateRectRgn(100, 10, 210, 110);
SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);

RgnType = OffsetRgn(hrgn, 50, 50);
SelectObject(hdc, hrgn);

if (RgnType == ERROR)
TextOut(hdclocal, 10, 135, "ERROR", 5);

else if (RgnType == SIMPLEREGION)
TextOut(hdclocal, 10, 135, "SIMPLEREGION", 12);

else if (RgnType == NULLREGION)
TextOut(hdclocal, 10, 135, "NULLREGION", 10);

else
TextOut(hdclocal, 10, 135, "Unrecognized value.", 19);

hbrBlue = CreateSolidBrush(RGB(0, 0, 255));
FillRgn(hdc, hrgn, hbrBlue);

DeleteObject(hrgn);
DeleteObject(hbrBlue);
ReleaseOC(hwnd, hdclocal);

OffsetViewportOrg 659

OffsetViewportOrg CEJ
DWORD OffsetViewportOrg(hdc, nXOffset, nYOffset)
HDC hdc; /* handle of device context */
int nXOffset; I* offset along x-axis */
int nYOffset; /* offset along y-axis */

The OffsetViewportOrg function modifies the coordinates of the viewport origin
relative to the coordinates of the current viewport origin.

Parameters hdc

Return Value

Comments

Example

Identifies the device context.

nXOffset
Specifies the value, in device units, to add to the x-coordinate of the current
origin.

nYOffset
Specifies the value, in device units, to add to they-coordinate of the current
origin.

The low-order word of the return value contains the x-coordinate, in device units,
of the previous viewport origin, if the function is successful; the high-order word
contains they-coordinate.

The viewport origin is the origin of the device coordinate system for a window.
By changing the viewport origin, an application can change the way the graphics
device interface (GDI) maps points from the logical coordinate system. GDI maps
all points in the logical coordinate system to the viewport in the same way as it
maps the origin.

To map points to the right, specify a negative value for the nXOffset parameter.
Similarly, to map points down (in the MM_ TEXT mapping mode), specify a nega
tive value for the nYOffset parameter.

The following example uses the OffsetWindowOrg and OffsetViewportOrg
functions to reposition the output of the PlayMetaFile function on the screen:

HOC hdcMeta;
HANDLE hmf;

hdcMeta = CreateMetaFile((LPSTR) NULL);

/* Record the metafile. */

PlayMetaFile(hdc, hmf);

660 OffsetViewportOrgEx

OffsetWindowOrg(hdc, -200, -200);
PlayMetaFile(hdc, hmfl; /*MM_ TEXT screen output +200 x, +200 y */

OffsetViewportOrg(hdc, 0, -200);
PlayMetaFile(hdc, hmf); /*outputs -200 y from last PlayMetaFile */

DeleteMetaFile(hmf);

See Also GetViewportOrg, OffsetWindowOrg, SetViewportOrg

OffsetViewportOrgEx
BOOL OffsetViewportOrgEx(hdc, nX, nY, lpPoint)
HDC hdc; I* handle of device context */

*/
*/
*/

int nX; I* device units to add to x-coordinate
int nY; I* device units to add toy-coordinate
POINT FAR* lpPoint; /*address of POINT structure

The OffsetViewportOrgEx function modifies the viewport origin relative to the
current values. The formulas are written as follows:

xNewVO xOldVO + X
yNewVO = yOldVO + Y

The new origin is the sum of the current origin and the nX and nYvalues.

Parameters hdc

Return Value

Identifies the device context.

nX
Specifies the number of device units to add to the current origin's x-coordinate.

nY
Specifies the number of device units to add to the current origin's y-coordinate.

lpPoint
Points to a POINT structure. The previous viewport origin (in device coordi
nates) is placed in this structure. If lpPoint is NULL, the previous viewport
origin in not returned.

The return value is nonzero if the function is successful. Otherwise, it is zero.

OffsetWindowOrg 661

OffsetWindowOrg CEJ
DWORD OffsetWindowOrg(hdc, nXOffset, nYOffset)
HDC hdc; /* handle of device context */
int nXOffset; /* offset along x-axis */
int nYOffset; /*offset along y-axis */

The OffsetWindowOrg function modifies the window origin relative to the
coordinates of the current window origin.

Parameters hdc

Return Value

Comments

Example

Identifies the device context.

nXOffset
Specifies the value, in logical units, to add to the x-coordinate of the current
origin.

nYOffset
Specifies the value, in logical units, to add toy-coordinate of the current origin.

The low-order word of the return value contains the logical x-coordinate of the pre
vious window origin, if the function is successful; the high-order word contains
the logical y-coordinate.

The window origin is the origin of the logical coordinate system for a window.
By changing the window origin, an application can change the way the graphics
device interface (GDI) maps logical points to the physical coordinate system (the
viewport). GDI maps all points in the logical coordinate system to the viewport in
the same way as it maps the origin.

To map points to the right, specify a negative value for the nXOffset parameter.
Similarly, to map points down (in the MM_ TEXT mapping mode), specify a nega
tive value for the nYOffsetparameter.

The following example uses the OffsetWindowOrg and OffsetViewportOrg
functions to reposition the output of the PlayMetaFile function on the screen:

HOC hdcMeta;
HANDLE hmf;

hdcMeta = CreateMetaFile((LPSTR) NULL);

/* Record the metafile. */

PlayMetaFile(hdc, hmf);

662 OffsetWindowOrgEx

OffsetWindowOrg(hdc, -200, -200);
PlayMetaFile(hdc, hmf); /*MM_ TEXT screen output +200 x, +200 y *f

OffsetViewportOrg(hdc, 0, -200);
PlayMetaFile(hdc, hmf); /*outputs -200 y from last PlayMetaFile */

DeleteMetaFile(hmf);

See Also GetWindowOrg, OffsetViewportOrg, SetWindowOrg

OffsetWindowOrgEx
BOOL OffsetWindowOrgEx(hdc, nX, nY, lpPoint)
HDC hdc; /* handle of device context */

*/
*/
*/

int nX; /*logical units to add to x-coordinate
int nY; I* logical units to add to y-coordinate
POINT FAR* lpPoint; /*address of POINT structure

The OffsetWindowOrgEx function modifies the viewport origin relative to the
current values. The formulas are written as follows:

xNewWO xOldWO + X
yNewWO = yOldWO + Y

The new origin is the sum of the current origin and the nX and nYvalues.

Parameters hdc

Return Value

Identifies the device context.

nX
Specifies the number oflogical units to add to the current origin's x-coordinate.

nY
Specifies the number oflogical units to add to the current origin's y-coordinate.

lpPoint
Points to a POINT structure. The previous window origin (in logical coordi
nates) is placed in this structure. If lpPointis NULL, the previous origin is not
returned.

The return value is nonzero if the function is successful. Otherwise, it is zero.

OleActivate 663

OleActivate [ill

#include <ole.h>

OLESTATUS OleActivate(lpObject, verb,fShow,frakeFocus, hwnd, lprcBound)
LPOLEOBJECT lpObject; I* address of object to activate */
UINT verb; I* operation to perform */
BOOLfShow; I* whether to show window */
BOOLfrakeFocus; /*whether server gets focus */
HWND hwnd; /* window handle of destination document */
const RECT FAR* lprcBound; /*bounding rectangle for object display */

Parameters

Return Value

The OleActivate function opens an object for an operation. Typically, the object is
edited or played.

lpObject
Points to the object to activate.

verb
Specifies which operation to perform (0 = the primary verb, 1 =the secondary
verb, and so on).

fShow
Specifies whether the window is to be shown. If the window is to be shown,
this value is TRUE; otherwise, it is FALSE.

frakeFocus
Specifies whether the server should get the focus. If the server should get the
focus, this value is TRUE; otherwise, it is FALSE. This parameter is relevant
only if the fShow parameter is TRUE.

hwnd
Identifies the window of the document containing the object.

lprcBound
Points to a RECT structure containing the coordinates of the bounding
rectangle in which the destination document displays the object. The mapping
mode of the device context determines the units for these coordinates.

The return value is OLE_ OK ifthe function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_BUSY
OLE_ERROR_ OBJECT
OLE_ W AIT_FOR_RELEASE

664 OleBlockServer

Comments

See Also

Typically, a server is launched in a separate window; editing then occurs asyn
chronously. The client is notified of changes to the object through the callback
function.

A client application might set the JS how parameter to FALSE if a server needed to
remain active without being visible on the display. (In this case, the application
would also use the OleSetData function.)

Client applications typically specify the primary verb when the user double-clicks
an object. The server can take any action in response to the specified verb. If the
server supports only one action, it takes that action no matter which value is
passed in the verb parameter.

In future releases of the object linking and embedding (OLE) protocol, the hwnd
and lprcBound parameters will be used to help determine the placement of the
server's editing window.

OleQueryOpen, OleSetData

OleBlockServer
#include <ole.h>

OLESTATUS OleBlockServer(lhSrvr)
LHSERVER lhSrvr; /*handle of server */

Parameters

Return Value

Comments

The OleBlockServer function causes requests to the server to be queued until the
server calls the OleUnblockServer function.

lhSrvr
Identifies the server for which requests are to be queued.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be OLE_ERROR_HANDLE.

The server must call the OleUnblockServer function after calling the OleBlock
Server function.

A server application can use the OleBlockServer and OleUnblockServer func
tions to control when the server library processes requests from client applications.
Because only messages from the client to the server are blocked, a blocked server
can continue to send messages to client applications.

See Also

OleClone
#include <ole.h>

Ole Clone 665

A server application receives a handle when it calls the OleRegisterServer func
tion.

OleRegisterServer, OleUnblockServer

OLESTATUS OleClone(lpObject, lpClient, lhClientDoc, lpszObjname, lplpObject)
LPOLEOBJECT lpObject; /* address of object to copy */
LPOLECLIENT lpClient; /* address of OLECLIENT for new object */
LHCLIENTDOC lhClientDoc; /*long handle of client document */
LPCSTR lpszObjname; /* address of string for object name */
LPOLEOBJECT FAR* lplpObject; I* address of pointer to new object */

Parameters

Return Value

The OleClone function makes a copy of an object. The copy is identical to the
source object, but it is not connected to the server.

lpObject
Points to the object to copy.

lpClient
Points to an OLECLIENT structure for the new object.

lhClientDoc
Identifies the client document in which the object is to be created.

lpszObjname
Points to a null-terminated string specifying the client's name for the object.
This name must be unique with respect to the names of any other objects in the
document and cannot contain a slash mark(/).

lplpObject
Points to a variable where the library will store the long pointer to the new ob
ject.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_BUSY
OLE_ERROR_HANDLE
OLE_ERROR_ OBJECT
OLE_ W AIT_FOR_RELEASE

666 Ole Close

Comments

See Also

OleClose
#include <ole.h>

Client applications often use the OleClone function to support the Undo command.

A client application can supply a new OLECLIENT structure for the cloned ob
ject, if required.

OleEqual

OLESTATUS OleClose(lpObject)
LPOLEOBJECT lpObject; I* address of object to close */

Parameters

Return Value

See Also

The OleClose function closes the specified open object. Closing an object termi
nates the connection with the server application.

lpObject
Points to the object to close.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_BUSY
OLE_ERROR_ OBJECT
OLE_ WAIT _FOR_RELEASE

OleActivate, OleDelete, OleReconnect

OleCopyFromlink 667

OleCopyFromlink []]]
#include <ole.h>

OLESTATUS OleCopyFromLink(lpObject, lpszProtocol, lpClient, lhClientDoc, lpszObjname,
lplpObject)

LPOLEOBJECT lpObject;
LPCSTR lpszProtocol;
LPOLECLIENT lpClient;
LHCLIENTDOC lhClientDoc;

/* address of object to embed
/* address of protocol name
/* address of client structure
/* long handle of client document
/* address of string for object name
/* address of pointer to new object

*/
*/
*I
*/
*I
*/

LPCSTR lpszObjname;
LPOLEOBJECT FAR* lplpObject;

Parameters

Return Value

Comments

See Also

The OleCopyFromLink function makes an embedded copy of a linked object.

lpObject
Points to the linked object that is to be embedded.

lpszProtocol
Points to a null-terminated string specifying the name of the protocol required
for the new embedded object. Currently, this value can be StdFileEditing (the
name of the object linking and embedding protocol).

lpClient
Points to an OLECLIENT structure for the new object.

lhClientDoc
Identifies the client document in which the object is to be created.

lpszObjname
Points to a null-terminated string specifying the client's name for the object.

lplpObject
Points to a variable where the long pointer to the new object will be stored.

The return value is OLE_ OK ifthe function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_BUSY
OLE_ERROR_HANDLE
OLE_ERROR_NAME
OLE_ERROR_ OBJECT
OLE_ERROR_FROTOCOL
OLE_ WAIT _FOR_RELEASE

Making an embedded copy of a linked object may involve starting the server appli
cation.

OleObjectConvert

668 OleCopyToClipboard

OleCopyToClipboard
#include <ole.h>

OLESTATUS OleCopyToClipboard(lpObject)
LPOLEOBJECT lpObject; /*address of object */

The OleCopyToClipboard function puts the specified object on the clipboard.

Parameters

Return Value

Comments

Ole Create
#include <ole.h>

lpObject
Points to the object to copy to the clipboard.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be OLE_ERROR_OBJECT.

A client application typically calls the OleCopyToClipboard function when a
user chooses the Copy or Cut command from the Edit menu.

The client application should open and empty the clipboard, call the OleCopyTo
Clipboard function, and close the clipboard.

OLESTATUS OleCreate(lpszProtocol, lpClient, lpszClass, lhClientDoc, lpszObjname, lplpObject,
renderopt, cjFormat)

LPCSTR lpszProtocol;
LPOLECLIENT lpClient;
LPCSTR lpszClass;
LHCLIENTDOC lhClientDoc;
LPCSTR lpszObjname;
LPOLEOBJECT FAR* lplpObject;
OLEOPT_RENDER renderopt;
OLECLIPFORMAT cjFormat;

/* address of string for protocol name
I* address of client structure
/* address of string for classname
/* long handle of client document
/* address of string for object name
I* address of pointer to object
I* rendering options
/* clipboard format

*I
*I
*/
*/
*/
*/
*/
*/

The OleCreate function creates an embedded object of a specified class. The serv
er is opened to perform the initial editing.

Parameters lpszProtocol
Points to a null-terminated string specifying the name of the protocol required
for the new embedded object. Currently, this value can be StdFileEditing (the
name of the object linking and embedding protocol).

Return Value

Comments

Ole Create 669

lpClient
Points to an OLECLIENT structure for the new object.

lpszClass
Points to a null-terminated string specifying the registered name of the class of
the object to be created.

lhClientDoc
Identifies the client document in which the object is to be created.

lpszObjname
Points to a null-terminated string specifying the client's name for the object.
This name must be unique with respect to the names of any other objects in the
document and cannot contain a slash mark(/).

lplpObject
Points to a variable where the library will store the long pointer to the new ob
ject.

renderopt
Specifies the client's preference for presentation data for the object. This pa
rameter can be one of the following values:

Value

olerender_ draw

olerender_format

olerender _none

cfFormat

Meaning

The client calls the OleDraw function, and the library ob
tains and manages presentation data.
The client calls the OleGetData function to retrieve data in a
specific format. The library obtains and manages the data in
the requested format, as specified by the cfFormat parameter.
The client library does not obtain any presentation data and
does not draw the object.

Specifies the clipboard format when the renderopt parameter is
olerender_format This clipboard format is used in a subsequent call to
OleGetData. If this clipboard format is CF _MET AFILEPICT, CF _DIB, or
CF _BITMAP, the library manages the data and draws the object. The library
does not support drawing for any other formats.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_HANDLE
OLE_ERROR_NAME
OLE_ERROR_pROTOCOL
OLE_ W AIT_FOR_RELEASE

The olerender_none rendering option is typically used to support hyperlinks.
With this option, the client does not call OleDraw and calls OleGetData only for
ObjectLink, OwnerLink, and Native formats.

670 OleCreateFromClip

See Also

The olerender_formatrendering option allows a client to compute data (instead
of painting it), use an unusual data format, or modify a standard data format. With
this option, the client does not call OleDraw. The client calls OleGetData to re
trieve data in the specified format.

The olerender_draw rendering option is the most typical option. It is the easiest
rendering option for the client to implement (the client simply calls OleDraw),
and it allows the most flexibility. An object handler can exploit this flexibility to
store no presentation data, a private presentation data format, or several different
formats that it can choose among dynamically. Future implementations of object
linking and embedding (OLE) may also exploit the flexibility that is inherent in
this option.

OleCreateFromClip, OleCreateFromTemplate, OleDraw, OleGetData

OleCreatefromClip
#include <ole.h>

OLESTATUS OleCreateFromClip(lpszProtocol, lpClient, lhClientDoc, lpszObjname, lplpObject,
renderopt, cfFormat)

LPCSTR lpszProtocol;
LPOLECLIENT lpClient;
LHCLIENTDOC lhClientDoc;

/* address of string for protocol name
/* address of client structure
/* long handle of client document
/* address of string for object name
/* address of pointer to object

*I
*!
*!
*/
*/
*/
*/

LPCSTR lpszObjname;
LPOLEOBJECT FAR* lplpObject;
OLEOPT_RENDER renderopt;
OLECLIPFORMAT cfFormat;

I* rendering options
I* clipboard format

Parameters

The OleCreateFromClip function creates an object from the clipboard.

lpszProtocol
Points to a null-terminated string specifying the name of the protocol required
for the new embedded object. Currently, this value can be StdFileEditing (the
name of the object linking and embedding protocol) or Static (for uneditable
pictures only).

lpClient
Points to an OLECLIENT structure allocated and initialized by the client appli
cation. This pointer is used to locate the callback function and is passed in call
back notifications.

lhClientDoc
Identifies the client document in which the object is being created.

Return Value

Comments

OleCreateFromClip 671

lpszObjname
Points to a null-terminated string specifying the client's name for the object.
This name must be unique with respect to the names of any other objects in the
document and cannot contain a slash mark (/).

lplpObject
Points to a variable where the library will store the long pointer to the new ob
ject.

renderopt
Specifies the client's preference for presentation data for the object. This pa
rameter can be one of the following values:

Value

olerender_draw

olerender _format

olerender_ none

cfFormat

Meaning

The client calls the OleDraw function, and the library ob
tains and manages presentation data.

The client calls the OleGetData function to retrieve data in a
specific format. The library obtains and manages the data in
the requested format, as specified by the cfFormat parameter.

The client library does not obtain any presentation data and
does not draw the object.

Specifies the clipboard format when the renderopt parameter is
olerender_format. This clipboard format is used in a subsequent call to
OleGetData. If this clipboard format is CF _MET AFILEPICT, CF _DIB, or
CF _BITMAP, the library manages the data and draws the object. The library
does not support drawing for any other formats.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_CLIP
OLE_ERROR_FORMAT
OLE_ERROR_HANDLE
OLE_ERROR_NAME
OLE_ERROR_OPTION
OLE_ERROR_PROTOCOL
OLE_ W AIT_FOR_RELEASE

The client application should open and empty the clipboard, call the OleCreate
FromClip function, and close the clipboard.

The olerender_none rendering option is typically used to support hyperlinks.
With this option, the client does not call OleDraw and calls OleGetData only for
ObjectLink, OwnerLink, and Native formats.

672 OleCreateFromFile

See Also

The olerender_formatrendering option allows a client to compute data (instead
of painting it), use an unusual data format, or modify a standard data format. With
this option, the client does not call OleDraw. The client calls OleGetData to re
trieve data in the specified format.

The olerender_draw rendering option is the most typical option. It is the easiest
rendering option for the client to implement (the client simply calls OleDraw),
and it allows the most flexibility. An object handler can exploit this flexibility to
store no presentation data, a private presentation data format, or several different
formats that it can choose among dynamically. Future implementations of object
linking and embedding (OLE) may also exploit the flexibility that is inherent in
this option.

OleCreate, OleCreateFromTemplate, OleDraw, OleGetData,
OleQueryCreateFromClip

OleCreateFromFile
#include <ole.h>

OLESTATUS OleCreateFromFile(lpszProtocol, lpClient, lpszClass, lpszFile, lhClientDoc,
lpszObjname, lplpObject, renderopt, cfFormat)

LPCSTR lpszProtocol; /* address of string for protocol name */
LPOLECLIENT lpClient; I* address of client structure */
LPCSTR lpszClass; /* address of string for class name */
LPCSTR lpszFile; /* address of string for filename */
LHCLIENTDOC lhClientDoc; /*long handle of client document */
LPCSTR lpszObjname; /* address of string for object name */
LPOLEOBJECT FAR* lplpObject; /* address of pointer to object */
OLEOPT_RENDER renderopt; I* rendering options */
OLECLIPFORMAT cfFormat; I* clipboard format */

Parameters

The OleCreateFromFile function creates an embedded object from the contents
of a named file.

lpszProtocol
Points to a null-terminated string specifying the name of the protocol required
for the new embedded object. Currently, this value can be StdFileEditing (the
name of the object linking and embedding protocol).

Ip Client
Points to an OLECLIENT structure allocated and initialized by the client appli
cation. This pointer is used to locate the callback function and is passed in call
back notifications.

Return Value

OleCreateFromFile 673

lpszClass
Points to a null-terminated string specifying the name of the class for the new
object. If this value is NULL, the library uses the extension of the filename
pointed to by the lpszFile parameter to find the class name for the object.

lpszFile
Points to a null-terminated string specifying the name of the file containing the
object.

lhClientDoc
Identifies the client document in which the object is being created.

lpszObjname
Points to a null-terminated string specifying the client's name for the object.
This name must be unique with respect to the names of any other objects in the
document and cannot contain a slash mark(/).

lplpObject
Points to a variable where the library will store the long pointer to the new ob
ject.

renderopt
Specifies the client's preference for presentation data for the object. This pa
rameter can be one of the following values:

Value

olerender_draw

olerender_format

olerender _none

cfFormat

Meaning

The client calls the OleDraw function, and the library ob
tains and manages presentation data.

The client calls the OleGetData function to retrieve data in a
specific format. The library obtains and manages the data in
the requested format, as specified by the c.fFormat parameter.

The client library does not obtain any presentation data and
does not draw the object.

Specifies the clipboard format when the renderopt parameter is
olerender_format This clipboard format is used in a subsequent call to
OleGetData. If this clipboard format is CF _METAFILEPICT, CF _DIE, or
CF _BITMAP, the library manages the data and draws the object. The library
does not support drawing for any other formats.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_CLASS
OLE_ERROR_HANDLE
OLE_ERROR_MEMORY
OLE_ERROR_NAME
OLE_ERROR_PROTOCOL
OLE_ WAIT_FOR_RELEASE

674 OleCreateFromTemplate

Comments

See Also

When a client application calls the OleCreateFromFile function, the server is
started to render the Native and presentation data and then is closed. (If the server
and document are already open, this function simply retrieves the information,
without closing the server.) The server does not show the object to the user for
editing.

The olerender_none rendering option is typically used to support hyperlinks.
With this option, the client does not call OleDraw and calls OleGetData only for
ObjectLink, OwnerLink, and Native formats.

The olerender_format rendering option allows a client to compute data (instead
of painting it), use an unusual data format, or modify a standard data format. With
this option, the client does not call OleDraw. The client calls OleGetData to re
trieve data in the specified format.

The olerender_draw rendering option is the most typical option. It is the easiest
rendering option for the client to implement (the client simply calls OleDraw),
and it allows the most flexibility. An object handler can exploit this flexibility to
store no presentation data, a private presentation data format, or several different
formats that it can choose among dynamically. Future implementations of object
linking and embedding (OLE) may also exploit the flexibility that is inherent in
this option.

If a client application accepts files dropped from File Manager, it should respond
to the WM_DROPFILES message by calling OleCreateFromFile and specify
ing Packager for the lpszClass parameter to indicate Microsoft Windows Object
Packager.

OleCreate, OleCreateFromTemplate, OleDraw, OleGetData

OleCreatefromTemplate
#include <ole.h>

OLESTATUS OleCreateFromTemplate(lpszProtocol, lpClient, lpszTemplate, lhClientDoc,
lpszObjname, lplpObject, renderopt, cfFormat)

LPCSTR lpszProtocol; /* address of string for protocol name */
LPOLECLIENT lpClient; /*address of client structure */
LPCSTR lpszTemplate; /* address of string for path of file */
LHCLIENTDOC lhClientDoc; /*long handle of client document */
LPCSTR lpszObjname; I* address of string for object name */
LPOLEOBJECT FAR* lplpObject; /* address of pointer to object */
OLEOPT_RENDER renderopt; /*rendering options */
OLECLIPFORMAT cfFormat; /* clipboard format */

Parameters

OleCreateFromTemplate 675

The OleCreateFromTemplate function creates an object by using another object
as a template. The server is opened to perform the initial editing.

lpszProtocol
Points to a null-terminated string specifying the name of the protocol required
for the new embedded object. Currently, this value can be StdFileEditing (the
name of the object linking and embedding protocol).

lpClient
Points to an OLECLIENT structure for the new object.

lpszTemplate
Points to a null-terminated string specifying the path of the file to be used as a
template for the new object. The server is opened for editing and loads the ini
tial state of the new object from the named template file.

lhClientDoc
Identifies the client document in which the object is being created.

lpszObjname
Points to a null-terminated string specifying the client's name for the object.
This name must be unique with respect to the names of any other objects in the
document and cannot contain a slash mark(/).

lplpObject
Points to a variable where the library will store the long pointer to the new ob
ject.

renderopt
Specifies the client's preference for presentation data for the object. This pa
rameter can be one of the following values:

Value

olerender_ draw

olerender_ format

olerender _none

cfFormat

Meaning

The client calls the OleDraw function, and the library ob
tains and manages presentation data.

The client calls the OleGetData function to retrieve data in a
specific format. The library obtains and manages the data in
the requested format, as specified by the cfFormat parameter.

The client library does not obtain any presentation data and
does not draw the object.

Specifies the clipboard format when the renderopt parameter is
olerender_format This clipboard format is used in a subsequent call to the
OleGetData function. If this clipboard format is CF _MET AFILEPICT,
CF _DIB, or CF _BITMAP, the library manages the data and draws the object.
The library does not support drawing for any other formats.

676 OleCreatefromTemplate

Return Value

Comments

See Also

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_ CLASS
OLE_ERROR_HANDLE
OLE_ERROR_MEMORY
OLE_ERROR_NAME
OLE_ERROR_PROTOCOL
OLE_ WAIT _FOR_RELEASE

The client library uses the filename extension of the file specified in the
lpszTemplate parameter to identify the server for the object. The association
between the extension and the server is stored in the registration database.

The olerender_none rendering option is typically used to support hyperlinks.
With this option, the client does not call OleDraw and calls OleGetData only for
ObjectLink, OwnerLink, and Native formats.

The olerender_format rendering option allows a client to compute data (instead
of painting it), use an unusual data format, or modify a standard data format. With
this option, the client does not call OleDraw. The client calls OleGetData to re
trieve data in the specified format.

The olerender_ draw rendering option is the most typical option. It is the easiest
rendering option for the client to implement (the client simply calls OleDraw),
and it allows the most flexibility. An object handler can exploit this flexibility to
store no presentation data, a private presentation data format, or several different
formats that it can choose among dynamically. Future implementations of object
linking and embedding (OLE) may also exploit the flexibility that is inherent in
this option.

OleCreate, OleCreateFromClip, OleDraw, OleGetData, OleObjectConvert

OleCreatelnvisible 677

OleCreatelnvisible [}I]

#include <ole.h>

OLESTATUS OleCreatelnvisible(lpszProtocol, lpClient, lpszClass, lhClientDoc, lpszObjname,
lplpObject, renderopt, cfF ormat,f Activate)

LPCSTR lpszProtocol; I* address of string for protocol name */
LPOLECLIENT lpClient; /* address of client structure */
LPCSTR lpszClass; /* address of string for classname */
LHCLIENTDOC lhClientDoc; I* long handle of client document */
LPCSTR lpszObjname; /* address of string for object name */
LPOLEOBJECT FAR* lplpObject; I* address of pointer to object *I
OLEOPT_RENDER renderopt; I* rendering options */
OLECLIPFORMAT cfFormat; /*clipboard format */
BOOLfActivate; /*server activation flag */

Parameters

The OleCreatelnvisible function creates an object without displaying the server
application to the user. The function either starts the server to create the object or
creates a blank object of the specified class and format without starting the server.

lpszProtocol
Points to a null-terminated string specifying the name of the protocol required
for the new embedded object. Currently, this value can be StdFileEditing (the
name of the object linking and embedding protocol) or Static (for uneditable
pictures only).

lpClient
Points to an OLECLIENT structure allocated and initialized by the client appli
cation. This pointer is used to locate the callback function and is passed in call
back notifications.

lpszClass
Points to a null-terminated string specifying the registered name of the class of
the object to be created.

lhClientDoc
Identifies the client document in which the object is being created.

lpszObjname
Points to a null-terminated string specifying the client's name for the object.
This name must be unique with respect to the names of any other objects in the
document and cannot contain a slash mark(/).

lplpObject
Points to a variable where the library will store the long pointer to the new ob
ject.

renderopt
Specifies the client's preference for presentation data for the object. This pa
rameter can be one of the following values:

678 OleCreatelnvisible

Return Value

Comments

See Also

Value

olerender _draw

olerender _format

olerender _none

cfFormat

Meaning

The client calls the OleDraw function, and the library ob
tains and manages presentation data.

The client calls the OleGetData function to retrieve data in a
specific format. The library obtains and manages the data in
the requested format, as specified by the cfFormat parameter.

The client library does not obtain any presentation data and
does not draw the object.

Specifies the clipboard format when the renderopt parameter is
olerender_format. This clipboard format is used in a subsequent call to
OleGetData. If this clipboard format is CF _METAFILEPICT, CF _DIB, or
CF _BITMAP, the library manages the data and draws the object. The library
does not support drawing for any other formats.

/Activate
Specifies whether to start the server for the object. If this parameter is TRUE
the server is started (but not shown). If this parameter is FALSE, the server is
not started and the function creates a blank object of the specified class and for
mat.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_HANDLE
OLE_ERROR_NAME
OLE_ERROR_PROTOCOL

An application can avoid redrawing an object repeatedly by calling the
OleCreatelnvisible function before using such functions as OleSetBounds,
OleSetColorScheme, and OleSetTargetDevice to set up the object. After setting
up the object, the application can either call the OleActivate function to display
the object or call the OleUpdate and OleClose functions to update the object
without displaying it.

OleActivate, OleClose, OleSetBounds, OleSetColorScheme,
OleSetTargetDevice, OleUpdate

OleCreatelinkFromClip 679

OleCreatelinkFromClip [IT]

#include <ole.h>

OLESTATUS OleCreateLinkFromClip(lpszProtocol, lpClient, lhClientDoc, lpszObjname, lplpObject,
renderopt, cfFormat)

LPCSTR lpszProtocol;
LPOLECLIENT lpClient;
LHCLIENTDOC lhClientDoc;

I* address of string for protocol name
I* address of client structure
I* long handle of client document
/* address of string for object name
I* address of pointer to object

*I
*I
*/
*/
*/
*/
*/

LPCSTR lpszObjname;
LPOLEOBJECT FAR* lplpObject;
OLEOPT_RENDER renderopt;
OLECLIPFORMAT cfFormat;

/* rendering options
/* clipboard format

Parameters

The OleCreateLinkFromClip function typically creates a link to an object from
the clipboard.

lpszProtocol
Points to a null-terminated string specifying the name of the required protocol.
Currently, this value can be StdFileEditing (the name of the object linking and
embedding protocol).

lpClient
Points to an OLECLIENT structure allocated and initialized by the client appli
cation. This pointer is used to locate the callback function and is passed in call
back notifications.

lhClientDoc
Identifies the client document in which the object is being created.

lpszObjname
Points to a null-terminated string specifying the client's name for the object.
This name must be unique with respect to the names of any other objects in the
document and cannot contain a slash mark(/).

lplpObject
Points to a variable where the library will store the long pointer to the new ob
ject.

renderopt
Specifies the client's preference for presentation data for the object. This pa
rameter can be one of the following values:

Value

olerender_draw

olerender_ format

Meaning

The client calls the OleDraw function, and the library ob
tains and manages presentation data.

The client calls the OleGetData function to retrieve data in a
specific format. The library obtains and manages the data in
the requested format, as specified by the cfFormat parameter.

680 OleCreatelinkFromClip

Return Value

Comments

See Also

Value

olerender _none

cfFormat

Meaning

The client library does not obtain any presentation data and
does not draw the object.

Specifies the clipboard format when the renderopt parameter is
olerender_format. This clipboard format is used in a subsequent call to
OleGetData. If this clipboard format is CF _METAFILEPICT, CF _DIB, or
CF _BITMAP, the library manages the data and draws the object. The library
does not support drawing for any other formats.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_CLIP
OLE_ERROR_FORMAT
OLE_ERROR_HANDLE
OLE_ERROR_NAME
OLE_ERROR_PROTOCOL
OLE_ WAIT _FOR_RELEASE

The olerender_none rendering option is typically used to support hyperlinks.
With this option, the client does not call the OleDraw function and calls OleGet
Data only for ObjectLink, OwnerLink, and Native formats.

The olerender_format rendering option allows a client to compute data (instead
of painting it), use an unusual data format, or modify a standard data format. With
this option, the client does not call OleDraw. The client calls OleGetData to re
trieve data in the specified format.

The olerender_draw rendering option is the most typical option. It is the easiest
rendering option for the client to implement (the client simply calls OleDraw),
and it allows the most flexibility. An object handler can exploit this flexibility to
store no presentation data, a private presentation data format, or several different
formats that it can choose among dynamically. Future implementations of object
linking and embedding (OLE) may also exploit the flexibility that is inherent in
this option.

OleCreate, OleCreateFromTemplate, OleDraw, OleGetData,
OleQueryLinkFrom Clip

OleCreatelinkFromFile 681

OleCreatelinkFromFile CID
#include <ole.h>

OLESTATUS OleCreateLinkFromFile(lpszProtocol, lpClient, lpszClass, lpszFile, lpszltem,
lhClientDoc, lpszObjname, lplpObject, renderopt, cfFormat)

LPCSTR lpszProtocol; /* address of string for protocol name */
LPOLECLIENT lpClient; /* address of client structure */
LPCSTR lpszClass; I* string for class name */
LPCSTR lpszFile; I* address of string for filename */
LPCSTR lpszltem; I* address of string for document part to link */
LHCLIENTDOC lhClientDoc; /* long handle of client document */
LPCSTR lpszObjname; /* address of string for object name */
LPOLEOBJECT FAR* lplpObject; /*address of pointer to new object */
OLEOPT_RENDER renderopt; /*rendering options */
OLECLIPFORMAT cfFormat; /*clipboard format */

Parameters

The OleCreateLinkFromFile function creates a linked object from a file that con
tains an object. If necessary, the library starts the server to render the presentation
data, but the object is not shown in the server for editing.

lpszProtocol
Points to a null-terminated string specifying the name of the required protocol.
Currently, this value can be StdFileEditing (the name of the object linking and
embedding protocol).

lpClient
Points to an OLECLIENT structure allocated and initialized by the client appli
cation. This pointer is used to locate the callback function and is passed in call
back notifications.

lpszClass
Points to a null-terminated string specifying the name of the class for the new
object. If this value is NULL, the library uses the extension of the filename
pointed to by the lpszFile parameter to find the class name for the object.

lpszFile
Points to a null-terminated string specifying the name of the file containing the
object.

lpszltem
Points to a null-terminated string identifying the part of the document to link to.
If this value is NULL, the link is to the entire document.

lhClientDoc
Identifies the client document in which the object is being created.

682 OleCreatelinkFromFile

Return Value

Comments

lpszObjname
Points to a null-terminated string specifying the client's name for the object.
This name must be unique with respect to the names of any other objects in the
document and cannot contain a slash mark(/).

lplpObject
Points to a variable where the library will store the long pointer to the new ob
ject.

renderopt
Specifies the client's preference for presentation data for the object. This pa
rameter can be one of the following values:

Value

olerender_draw

olerender _format

olerender_none

cfFormat

Meaning

The client calls the OleDraw function, and the library ob
tains and manages presentation data.

The client calls the OleGetData function to retrieve data in a
specific format. The library obtains and manages the data in
the requested format, as specified by the cfFormat parameter.

The client library does not obtain any presentation data and
does not draw the object.

Specifies the clipboard format when the renderopt parameter is
olerender_format. This clipboard format is used in a subsequent call to
OleGetData. lfthis clipboard format is CF _METAFILEPICT, CF _DIB, or
CF _BITMAP, the library manages the data and draws the object. The library
does not support drawing for any other formats.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_ CLASS
OLE_ERROR_HANDLE
OLE_ERROR_MEMORY
OLE_ERROR_NAME
OLE_ERROR_PROTOCOL
OLE_ W AIT_FOR_RELEASE

The olerender_none rendering option is typically used to support hyperlinks.
With this option, the client does not call OleDraw and calls OleGetData only for
ObjectLink, OwnerLink, and Native formats.

The olerender_formatrendering option allows a client to compute data (instead
of painting it), use an unusual data format, or modify a standard data format. With
this option, the client does not call OleDraw. The client calls OleGetData to re
trieve data in the specified format.

See Also

OleDelete
#include <ole.h>

Ole Delete 683

The olerender _draw rendering option is the most typical option. It is the easiest
rendering option for the client to implement (the client simply calls OleDraw),
and it allows the most flexibility. An object handler can exploit this flexibility to
store no presentation data, a private presentation data format, or several different
formats that it can choose among dynamically. Future implementations of object
linking and embedding (OLE) may also exploit the flexibility that is inherent in
this option.

OleCreate, OleCreateFromFile, OleCreateFromTemplate, OleDraw,
OleGetData

OLESTATUS OleDelete(lpObject)
LPOLEOBJECT lpObject; /* address of object to delete */

Parameters

Return Value

Comments

See Also

The OleDelete function deletes an object and frees memory that was associated
with that object. If the object was open, it is closed.

lpObject
Points to the object to delete.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_BUSY
OLE_ERROR_OBJECT
OLE_ W AIT_FOR_RELEASE

An application uses the OleDelete function when the object is no longer part of
the client document.

The OleDelete function, unlike OleRelease, indicates that the object has been per
manently removed.

OleClose, OleRelease

684 Ole Draw

Ole Draw
#include <ole.h>

OLESTATUS OleDraw(lpObject, hdc, lprcBounds, lprcWBounds, hdcFormat)
LPOLEOBJECT lpObject; I* address of object to draw */
HDC hdc; /* handle of DC for drawing object */
const RECT FAR* lprcBounds; /*bounding rectangle for drawing object */
const RECT FAR* lprcWBounds; /*bounding rectangle for metafile DC *I
HDC hdcFormat; /*handle of DC for formatting object */

Parameters

Return Value

Comments

The OleDraw function draws a specified object into a bounding rectangle in a
device context.

lpObject
Points to the object to draw.

hdc
Identifies the device context in which to draw the object.

lprcBounds
Points to a RECT structure defining the bounding rectangle, in logical units for
the device context specified by the hdc parameter, in which to draw the object.

lprcWBounds
Points to a RECT structure defining the bounding rectangle if the hdc parame
ter specifies a metafile. The left and top members of the RECT structure
should specify the window origin, and the right and bottom members should
specify the window extents.

hdcFormat
Identifies a device context describing the target device for which to format the
object.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_ABORT
OLE_ERROR_BLANK
OLE_ERROR_DRA W
OLE_ERROR_MEMORY
OLE_ERROR_ OBJECT

This function returns OLE_ERROR_ABORT ifthe callback function returns
FALSE during drawing.

When the hdc parameter specifies a metafile device context, the rectangle
specified by the lprcWBounds parameter contains the rectangle specified by the

See Also

OleEnumFormats 685

lprcBounds parameter. If hdc does not specify a metafile device context, the
!pre WBounds parameter is ignored.

The library may use an object handler to render the object, and this object handler
may need information about the target device. Therefore, the device-context
handle specified by the hdcFormatparameter is required. The lprcBounds parame
ter identifies the rectangle on the device context (relative to its current mapping
mode) that the object should be mapped onto. This may involve scaling the picture
and can be used by client applications to impose a view scaling between the dis
played view and the final printed image.

An object handler should format an object as if it were to be drawn at the size
specified by a call to the OleSetBounds function for the device context specified
by the hdcF ormat parameter. Often this formatting will already have been done by
the server application; in this case, the library simply renders the presentation data
with suitable scaling for the required bounding rectangle. If cropping or banding is
required, the device context in which the object is drawn may include a clipping re
gion smaller than the specified bounding rectangle.

OleSetBounds

OleEnumformats
#include <ole.h>

OLECLIPFORMAT OleEnumFormats(lpObject, cfFormat)
LPOLEOBJECT lpObject; /* address of object to query */
OLECLIPFORMAT cfFormat; /*format from previous function call */

Parameters

Return Value

Comments

The OleEnumFormats function enumerates the data formats that describe a
specified object.

lpObject
Points to the object to be queried.

cfFormat
Specifies the format returned by the last call to the OleEnumFormats function.
For the first call to this function, this parameter is zero.

The return value is the next available format if any further formats are available.
Otherwise, the return value is NULL.

When an application specifies NULL for the cfFormat parameter, the OleEnum
Formats function returns the first available format. Whenever an application

686 OleEnumObjects

See Also

specifies a format that was returned by a previous call to OleEnumFormats, the
function returns the next available format, in sequence. When no more formats are
available, the function returns NULL.

OleGetData

OleEnumObjects
#include <ole.h>

OLESTATUS OleEnumObjects(lhDoc, lplpObject)
LHCLIENTDOC lhDoc; I* document handle */
LPOLEOBJECT FAR* lplpObject; /* address of pointer to object */

Parameters

Return Value

Comments

See Also

The OleEnumObjects function enumerates the objects in a specified document.

lhDoc
Identifies the document for which the objects are enumerated.

lplpObject
Points to an object in the document when the function returns. For the first call
to this function, this parameter should point to a NULL object.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_HANDLE
OLE_ERROR_ OBJECT

When an application specifies a NULL object for the lplpObjectparameter, the
OleEnumObjects function returns the first object in the document. Whenever
an application specifies an object that was returned by a previous call to
OleEnumObjects, the function returns the next object, in sequence. When there
are no more objects in the document, the lplpObject parameter points to a NULL
object.

Only objects that have been loaded and not released are enumerated by this func
tion.

OleDelete, OleRelease

Ole Execute 687

OleEqual [IT]

#include <ole.h>

OLESTATUS OleEqual(lpObjectl, lp0bject2)
LPOLEOBJECT lpObjectl; /* address of first object to compare */
LPOLEOBJECT lp0bject2; /* address of second object to compare */

Parameters

Return Value

The OleEqual function compares two objects for equality.

lpObjectl
Points to the first object to test for equality.

lp0bject2
Points to the second object to test for equality.

The return value is OLE_ OK if the specified objects are equal. Otherwise, it is an
error value, which may be one of the following:

OLE_ERROR_ OBJECT
OLE_ERROR_NOT_EQUAL

Comments Embedded objects are equal if their class, item, and native data are identical.
Linked objects are equal if their class, document, and item are identical.

See Also OleClone, OleQueryOutOtDate

OleExecute [IT]

#include <ole.h>

OLESTATUS OleExecute(lpObject, hglbCmds, reserved)
LPOLEOBJECT lpObject; I* address of object receiving DDE commands */
HGLOBAL hglbCmds; I* handle of memory with commands */
UINT reserved; /* reserved */

Parameters

The OleExecute function sends dynamic data exchange (DDE) execute com
mands to the server for the specified object.

lpObject
Points to an object identifying the server to which DDE execute commands
are sent.

688 OleGetData

Return Value

hglbCmds
Identifies the memory containing one or more DDE execute commands.

reserved
Reserved; must be zero.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_BUSY
OLE_ERROR_COMMAND
OLE_ERROR_MEMORY
OLE_ERROR_NOT_OPEN
OLE_ERROR_OBJECT
OLE_ERROR_PROTOCOL
OLE_ERROR_ST A TIC
OLE_ WAIT_FOR_RELEASE

Comments The client application should call the OleQueryProtocol function, specifying
StdExecute, before calling the OleExecute function. The OleQueryProtocol func
tion succeeds if the server for an object supports the OleExecute function.

See Also OleQueryProtocol

OleGetData [ill

#include <ole.h>

OLESTATUS OleGetData(lpObject, cfFormat, lphData)
LPOLEOBJECT lpObject; I* address of object to query */
OLECLIPFORMAT cfFormat; /*format for retrieved data */
HANDLE FAR* lphData; /*address of memory to contain data */

Parameters

The OleGetData function retrieves data in the requested format from the specified
object and supplies the handle of a memory or graphics device interface (GDI) ob
ject containing the data.

lpObject
Points to the object from which data is retrieved.

cfFormat
Specifies the format in which data is returned. This parameter can be one of the
predefined clipboard formats or the value returned by the RegisterClipboard
Format function.

Return Value

Comments

See Also

OleGetlinkUpdateOptions 689

lphData
Points to the handle of a memory object that contains the data when the func
tion returns.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_BLANK
OLE_ERROR_FORMAT
OLE_ERROR_OBJECT
OLE_ W ARN_DELETE_DATA

If the OleGetData function returns OLE_ W ARN_DELETE_DAT A, the client ap
plication owns the data and should free the memory associated with the data when
the client has finished using it. For other return values, the client should not free
the memory or modify the data, because the data is controlled by the client library.
If the application needs the data for long-term use, it should copy the data.

The OleGetData function typically returns OLE_ W ARN_DELETE_DATA if an
object handler generates data for an object that the client library cannot interpret.
In this case, the client application is responsible for controlling that data.

When the OleGetData function specifies CF _METAFILE or CF _BITMAP, the
lphData parameter points to a GDI object, not a memory object, when the function
returns. OleGetData supplies the handle of a memory object for all other formats.

OleEnumFormats, OleSetData, RegisterClipboardFormat

OleGetlinkUpdateOptions
#include <ole.h>

OLESTATUS OleGetLinkUpdateOptions(lpObject, lpUpdateOpt)
LPOLEOBJECT lpObject; I* address of object to query */
OLEOPT_ UPDATE FAR* lpUpdateOpt; I* address ofupdate options */

Parameters

The OleGetLinkUpdateOptions function retrieves the link-update options for the
presentation of a specified object.

lpObject
Points to the object to query.

690 OlelsDcMeta

Return Value

lpUpdateOpt
Points to a variable in which the function stores the current value of the link
update option for the specified object. The link-update option setting may be
one of the following values:

Value

oleupdate_ always

oleupdate_oncall

oleupdate_onsave

Meaning

Update the linked object whenever possible. This option sup
ports the Automatic link-update radio button in the Links
dialog box.

Update the linked object only on request from the client ap
plication. This option supports the Manual link-update radio
button in the Links dialog box.

Update the linked object when the source document is saved
by the server.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_ OBJECT
OLE_ERROR_ST A TIC

See Also OleSetLinkUpdateOptions

OlelsDcMeta ITIJ
#include <ole.h>

BOOL OlelsDcMeta(hdc)
HDC hdc; /*device-context handle */

The OlelsDcMeta function determines whether the specified device context is a
metafile device context.

Parameters hdc

Return Value

Identifies the device context to query.

The return value is a positive value if the device context is a metafile device con
text. Otherwise, it is NULL.

OleloadFromStream 691

OleloadfromStream CIIJ
#include <ole.h>

OLESTATUS OleLoadFromStream(lpStream, lpszProtocol, lpClient, lhClientDoc, lpszObjname,
lplpObject)

LPOLESTREAM lpStream;
LPCSTR lpszProtocol;
LPOLECLIENT lpClient;
LHCLIENTDOC lhClientDoc;

/* address of stream for object
/* address of string for protocol name
/* address of client structure
/* long handle of client document
/* address of string for object name
/* address of pointer to object

*/
*I
*/
*/
*/
*/

LPCSTR lpszObjname;
LPOLEOBJECT FAR* lplpObject;

Parameters

Return Value

The OleLoadFromStream function loads an object from the containing document.

lpStream
Points to an OLESTREAM structure that was allocated and initialized by the
client application. The library calls the Get function in the
OLESTREAMVTBL structure to obtain the data for the object.

lpszProtocol
Points to a null-terminated string specifying the name of the required protocol.
Currently, this value can be StdFileEditing (the name of the object linking and
embedding protocol) or Static (for uneditable pictures only).

lpClient
Points to an OLECLIENT structure allocated and initialized by the client appli
cation. This pointer is used to locate the callback function and is passed in call
back notifications.

lhClientDoc
Identifies the client document in which the object is being created.

lpszObjname
Points to a null-terminated string specifying the client's name for the object.

lplpObject
Points to a variable in which the library stores a pointer to the loaded object.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_HANDLE
OLE_ERROR_NAME
OLE_ERROR_PROTOCOL
OLE_ERROR_STREAM
OLE_ W AIT_FOR_RELEASE

692 OlelockServer

Comments

See Also

To load an object, the client application needs only the location of that object in a
file. A client typically loads an object only when the object is needed (for ex
ample, when it must be displayed).

If an object cannot be loaded when the lpszProtocol parameter specifies
StdFileEditing, the application can call the OleLoadFromStream function again,
specifying Static.

If the object is linked and the server and document are open, the library automat
ically makes the link between the client and server applications when an applica
tion calls OleLoadFromStream.

OleQuerySize, OleSaveToStream

OlelockServer
#include <ole.h>

OLESTATUS OleLockServer(lpObject, lphServer)
LPOLEOBJECT lpObject; /* address of object */
LHSERVER FAR* lphServer; /*address of handle of server */

Parameters

Return Value

Comments

The OleLockServer function is called by a client application to keep an open serv
er application in memory. Keeping the server application in memory allows the
client library to use the server application to open objects quickly.

lpObject
Points to an object the client library uses to identify the open server application
to keep in memory. When the server has been locked, this object can be deleted.

lphServer
Points to the handle of the server application when the function returns.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_COMM
OLE_ERROR_LAUNCH
OLE_ERROR_ OBJECT

A client calls OleLockServer to speed the opening of objects when the same serv
er is used for a number of different objects. Before the client terminates, it must
call the OleUnlockServer function to release the server from memory.

See Also

OleObjectConvert 693

When OleLockServer is called more than once for a given server, even by differ
ent client applications, the server's lock count is increased. Each call to Ole
UnlockServer decrements the lock count. The server remains locked until the
lock count is zero. If the object identified by the lpObject parameter is deleted
before calling the OleUnlockServer function, OleUnlockServer must still be
called to decrement the lock count.

If necessary, a server can terminate even though a client has called the OleLock
Server function.

OleUnlockServer

OleObjectConvert
#include <ole.h>

OLESTATUS OleObjectConvert(lpObject, lpszProtocol, lpClient, lhClientDoc, lpszObjname,
lplpObject)

LPOLEOBJECT lpObject;
LPCSTR lpszProtocol;
LPOLECLIENT lpClient;
LHCLIENTDOC lhClientDoc;

/* address of object to convert
/* address of string for protocol name
/* address of client for new object
/* long handle of client document

*/
*/
*!
*/
*/
*/

LPCSTR lpszObjname;
LPOLEOBJECT FAR* lplpObject;

/* address of string for object name
/* address of pointer to new object

Parameters

The OleObjectConvert function creates a new object that supports a specified
protocol by converting an existing object. This function neither deletes nor re
places the original object.

lpObject
Points to the object to convert.

lpszProtocol
Points to a null-terminated string specifying the name of the required protocol.
Currently this value can be Static (for uneditable pictures only).

lpClient
Points to an OLECLIENT structure for the new object.

lhClientDoc
Identifies the client document in which the object is being created.

lpszObjname
Points to a null-terminated string specifying the client's name for the object.
This name must be unique with respect to the names of any other objects in the
document and cannot contain a slash mark(/).

694 OleQueryBounds

Return Value

Comments

See Also

lplpObject
Points to a variable in which the library stores a pointer to the new object.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_BUSY
OLE_ERROR_HANDLE
OLE_ERROR_NAME
OLE_ERROR_ OBJECT
OLE_ERROR_ST A TIC

The only conversion currently supported is that of changing a linked or embedded
object to a static object.

OleCione

OleQueryBounds
#include <ole.h>

OLESTATUS OleQueryBounds(lpObject, lpBounds)
LPOLEOBJECT lpObject; /* address of object to query */
RECT FAR* lpBounds; /*address of structure for bounding rectangle */

Parameters

The OleQueryBounds function retrieves the extents of the bounding rectangle on
the target device for the specified object. The coordinates are in MM_HIMETRIC
units.

lpObject
Points to the object to query.

lpBounds
Points to a RECT structure for the extents of the bounding rectangle. The mem
bers of the RECT structure have the following meanings:

Member Meaning

rect.left 0
rect.top 0
rect.right x-extent

rect.bottom y-extent

Return Value

See Also

OleQueryCreateFromClip 695

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_BLANK
OLE_ERROR_MEMORY
OLE_ERROR_ OBJECT

OleSetBounds, SetMapMode

OleQueryClientVersion
#include <ole.h>

DWORD OleQueryClientVersion(void)

Parameters

Return Value

See Also

The OleQueryClient Version function retrieves the version number of the client
library.

This function has no parameters.

The return value is a doubleword value. The major version number is in the low
order byte of the low-order word, and the minor version number is in the high
order byte of the low-order word. The high-order word is reserved.

OleQueryServer Version

OleQueryCreateFromClip
#include <ole.h>

OLESTATUS OleQueryCreateFromClip(lpszProtocol, renderopt, cfFormat)
LPCSTR lpszProtocol; /* address of string for protocol name */
OLEOPT_RENDER renderopt; /*rendering options */
OLECLIPFORMAT cfFormat; I* format for clipboard data */

The OleQueryCreateFromClip function checks whether the object on the clip
board supports the specified protocol and rendering options.

696 OleQueryCreateFromClip

Parameters

Return Value

Comments

lpszProtocol
Points to a null-terminated string specifying the name of the protocol needed by
the client. Currently, this value can be StdFileEditing (the name of the object
linking and embedding protocol) or Static (for uneditable pictures only).

renderopt
Specifies the client's preference for presentation data for the object. This pa
rameter can be one of the following values:

Value

olerender_draw

olerender _format

olerender _none

cfFormat

Meaning

The client calls the OleDraw function, and the library ob
tains and manages presentation data.

The library obtains and manages the data in the requested for
mat, as specified by the cfFonnat parameter.

The client library does not obtain any presentation data and
does not draw the object.

Specifies the clipboard format. This parameter is used only when the renderopt
parameter is olerender_format If the clipboard format is
CF _METAFILEPICT, CF _DIB, or CF _BITMAP, the library manages the data
and draws the object. The library does not support drawing for any other for
mats.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_FORMAT
OLE_ERROR_PROTOCOL

The OleQueryCreateFromClip function is typically used to check whether to
enable a Paste command.

The olerender_none rendering option is typically used to support hyperlinks.
With this option, the client does not call OleDraw and calls the OleGetData func
tion only for ObjectLink, OwnerLink, and Native formats.

The olerender_formatrendering option allows a client to compute data (instead
of painting it), use an unusual data format, or modify a standard data format. With
this option the client does not call OleDraw. The client calls OleGetData to re
trieve data in the specified format.

The olerender_draw rendering option is the most typical option. It is the easiest
rendering option for the client to implement (the client simply calls OleDraw),
and it allows the most flexibility. An object handler can exploit this flexibility to
store no presentation data, a private presentation data format, or several different
formats that it can choose among dynamically. Future implementations of object

See Also

OleQuerylinkFromClip 697

linking and embedding (OLE) may also exploit the flexibility that is inherent in
this option.

OleCreateFromClip, OleDraw, OleGetData

OleQuerylinkFromClip
#include <ole.h>

OLESTATUS OleQueryLinkFromClip(lpszProtocol, renderopt, cfFormat)
LPCSTR lpszProtocol; /* address of string for protocol name */
OLEOPT_RENDER renderopt; /*rendering options */
OLECLIPFORMAT cfFormat; /*format for clipboard data */

Parameters

The OleQueryLinkFromClip function checks whether a client application can
use the data on the clipboard to produce a linked object that supports the specified
protocol and rendering options.

lpszProtocol
Points to a null-terminated string specifying the name of the protocol needed by
the client. Currently this value can be StdFileEditing (the name of the object
linking and embedding protocol).

renderopt
Specifies the client's preference for presentation data for the object. This pa
rameter can be one of the following values:

Value

olerender_draw

olerender_format

olerender_ none

cfFormat

Meaning

The client calls the OleDraw function, and the library ob
tains and manages presentation data.

The library obtains and manages the data in the requested for
mat, as specified by the cjFormat parameter.

The client library does not obtain any presentation data and
does not draw the object.

Specifies the clipboard format. This parameter is used only when the
renderopt parameter is olerender_format. If this clipboard format is
CF _METAFILEPICT, CF _DIB, or CF _BITMAP, the library manages the data
and draws the object. The library does not support drawing for any other
formats.

698 OleQueryName

Return Value

Comments

See Also

The return value is OLE_ OK ifthe function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_FORMAT
OLE_ERROR_PROTOCOL

The OleQueryLinkFromClip function is typically used to check whether to
enable a Paste Link command.

The olerender_none rendering option is typically used to support hyperlinks.
With this option, the client does not call OleDraw and calls the OleGetData func
tion only for ObjectLink, OwnerLink, and Native formats.

The olerender_formatrendering option allows a client to compute data (instead
of painting it), use an unusual data format, or modify a standard data format. With
this option, the client does not call OleDraw. The client calls OleGetData to re
trieve data in the specified format.

The olerender_draw rendering option is the most typical option. It is the easiest
rendering option for the client to implement (the client simply calls OleDraw),
and it allows the most flexibility. An object handler can exploit this flexibility to
store no presentation data, a private presentation data format, or several different
formats that it can choose among dynamically. Future implementations of object
linking and embedding (OLE) may also exploit the flexibility that is inherent in
this option.

OleCreateLinkFromClip, OleDraw, OleGetData

OleQueryName
#include <ole.h>

OLESTATUS OleQueryName(lpObject, lpszObject, lpwBuffSize)
LPOLEOBJECT lpObject; /* address of object */
LPSTR lpszObject; /* address of string for object name */
UINT FAR* lpwBuffSize; !*address of word for size of buffer */

The OleQueryName function retrieves the name of a specified object.

Parameters lpObject
Points to the object whose name is being queried.

Return Value

See Also

OleQueryOpen 699

lpszObject
Points to a character array that contains a null-terminated string. When the func
tion returns, this string specifies the name of the object.

lpwBufjSize
Points to a variable containing the size, in bytes, of the buffer pointed to by the
lpszObject parameter. When the function returns, this value is the number of
bytes copied to the buffer.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be OLE_ERROR_OBJECT.

OleRename

OleQueryOpen
#include <ole.h>

OLESTATUS OleQueryOpen(lpObject)
LPOLEOBJECT lpObject; /* address of object to query */

Parameters

Return Value

See Also

The OleQueryOpen function checks whether the specified object is open.

lpObject
Points to the object to query.

The return value is OLE_ OK if the object is open. Otherwise, it is an error value,
which may be one of the following:

OLE_ERROR_COMM
OLE_ERROR_OBJECT
OLE_ERROR_ST A TIC

OleActivate

700 OleQueryOutOfDate

OleQueryOutOfDate
#include <ole.h>

OLESTATUS OleQueryOutOIDate(lpObject)
LPOLEOBJECT lpObject; /* address of object to query */

Parameters

Return Value

Comments

See Also

The OleQueryOutOIDate function checks whether an object is out-of-date.

lpObject
Points to the object to query.

The return value is OLE_ OK if the object is up-to-date. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_OBJECT
OLE_ERROR_OUTOFDATE

The OleQueryOutOIDate function has not been implemented for the current ver
sion of object linking and embedding (OLE). For linked objects, OleQueryOutOf
Date always returns OLE_OK.

A linked object might be out-of-date if the document that is the source for the link
has been updated. An embedded object that contains links to other objects might
also be out-of-date.

OleEqual, OleUpdate

OleQueryProtocol
#include <ole.h>

void FAR* OleQueryProtocol(lpobj, lpszProtocol)
LPOLEOBJECT lpobj; /* address of object to query */
LPCSTR lpszProtocol; /*address of string for protocol to query */

Parameters

The OleQueryProtocol function checks whether an object supports a specified
protocol.

lpobj
Points to the object to query.

Return Value

Comments

See Also

OleQueryReleaseError 701

lpszProtocol
Points to a null-terminated string specifying the name of the requested protocol.
This value can be StdFileEditing or StdExecute.

The return value is a void pointer to an OLEOBJECT structure if the function is
successful, or it is NULL if the object does not support the requested protocol. The
library can return OLE_ WAIT_FOR_RELEASE when an application calls this
function.

The OleQueryProtocol function queries whether the specified protocol is sup
ported and returns a modified object pointer that allows access to the function
table for the protocol. This modified object pointer points to a structure that has
the same form as the OLEOBJECT structure; the new structure also points to a
table of functions and may contain additional state information. The new pointer
does not point to a different object-if the object is deleted, secondary pointers be
come invalid. If a protocol includes delete functions, calling a delete function in
validates all pointers to that object.

A client application typically calls OleQueryProtocol, specifying StdExecute for
the lpszProtocol parameter, before calling the OleExecute function. This allows
the client application to check whether the server for an object supports dynamic
data exchange (DDE) execute commands.

OleExecute

OleQueryReleaseError
#include <ole.h>

OLESTATUS OleQueryReleaseError(/pobj)
LPOLEOBJECT lpobj; I* address of object to query */

Parameters

Return Value

The OleQueryReleaseError function checks the error value for an asynchronous
operation on an object.

lpobj
Points to an object for which the error value is to be queried.

The return value, if the function is successful, is either OLE_ OK if the asynchro
nous operation completed successfully or the error value for that operation. If the
pointer passed in the lpobj parameter is invalid, the function returns
OLE_ERROR_OBJECT.

702 OleQueryReleaseMethod

Comments

See Also

A client application receives the OLE_RELEASE notification when an asynchro
nous operation has terminated. The client should then call OleQueryRelease
Error to check whether the operation has terminated successfully or with an error
value.

OleQuery ReleaseMethod, OleQueryReleaseStatus

OleQueryReleaseMethod
#include <ole.h>

OLE_RELEASE_METHOD OleQueryReleaseMethod(/pobj)
LPOLEOBJECT lpobj; I* address of object to query */

Parameters

Return Value

The OleQueryReleaseMethod function finds out the operation that finished for
the specified object.

lpobj
Points to an object for which the operation is to be queried.

The return value indicates the server operation (method) that finished. It can be
one of the following values:

Value

OLE_ACTIVATE

OLE_ CLOSE

OLE_COPYFROMLNK

OLE_ CREATE

OLE_CREATEFROMFILE

OLE_CREATEFROMTEMPLATE

OLE_CREATEINVISIBLE

OLE_CREATELINKFROMFILE

OLE_DELETE

OLE_EMBPASTE

OLE_LNKPASTE

OLE_LOADFROMSTREAM

OLE_NONE

OLE_ OTHER

OLE_RECONNECT

Server operation

Activate

Close

CopyFromLink (autoreconnect)

Create

CreateFromFile

CreateFromTemplate

Createlnvisible

CreateLinkFromFile

Object Delete

Paste and Update

PasteLink (autoreconnect)

LoadFromStream (autoreconnect)

No operation active

Other miscellaneous asynchronous operations

Reconnect

Comments

See Also

Value

OLE_REQUESTDATA

OLE_RUN

OLE_SERVERUNLAUNCH

OLE_SETDATA

OLE_SETUPDATEOPTIONS

OLE_SHOW

OLE_ UPDATE

Server operation

OleRequestData

Run

Server is stopping

OleSetData

OleQueryReleaseStatus 703

Setting update options

Show

Update

If the pointer passed in the lpobj parameter is invalid, the function returns
OLE_ERROR_OBJECT.

A client application receives the OLE_RELEASE notification when an asynchro
nous operation has ended. The client can then call OleQueryReleaseMethod to
check which operation caused the library to send the OLE_RELEASE notification.
The client calls OleQueryReleaseError to determine whether the operation termi
nated successfully or with an error value.

OleQueryReleaseError, OleQueryReleaseStatus

OleQueryReleaseStatus
#include <ole.h>

OLESTATUS OleQueryReleaseStatus{lpobj)
LPOLEOBJECT lpobj; I* address of object to query */

Parameters

Return Value

See Also

The OleQueryReleaseStatus function determines whether an operation has
finished for the specified object.

lpobj
Points to an object for which the operation is queried.

The return value, if the function is successful, is either OLE_BUSY if an operation
is in progress or OLE_OK. If the pointer passed in the lpobj parameter is invalid,
the function returns OLE_ERROR_OBJECT.

OleQueryReleaseError, OleQueryReleaseMethod

704 OleQueryServerVersion

OleQueryServerVersion
#include <ole.h>

DWORD OleQueryServerVersion(void)

Parameters

Return Value

See Also

The OleQueryServer Version function retrieves the version number of the server
library.

This function has no parameters.

The return value is a doubleword value. The major version number is in the
low-order byte of the low-order word, and the minor version number is in the high
order byte of the low-order word. The high-order word is reserved.

OleQueryClient Version

OleQuerySize
#include <ole.h>

OLESTATUS OleQuerySize(lpObject, pdwSize)
LPOLEOBJECT lpObject; I* address of object to query */
DWORD FAR* pdwSize; /*address of size of object */

Parameters

Return Value

See Also

The OleQuerySize function retrieves the size of the specified object.

lpObject
Points to the object to query.

pdwSize
Points to a variable for the size of the object. This variable contains the size of
the object when the function returns.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_BLANK
OLE_ERROR_MEMORY
OLE_ERROR_OBJECT

OleLoadFromStream

OleReconnect 705

OleQueryType [ill

#include <ole.h>

OLESTATUS OleQueryType(lpObject, lpType)
LPOLEOBJECT lpObject; /* address of object to query */
LONG FAR* lpType; /* address of type of object */

Parameters

Return Value

See Also

The OleQueryType function checks whether a specified object is embedded,
linked, or static.

lpObject
Points to the object for which the type is to be queried.

Ip Type
Points to a long variable that contains the type of the object when the function
returns. This parameter can be one of the following values:

Value

OT_EMBEDDED

OT_LINK

OT_STATIC

Meaning

Object is embedded.

Object is a link.

Object is a static picture.

The return value is OLE_OK ifthe function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_GENERIC
OLE_ERROR_OBJECT

OleEnumFormats

OleReconnect
#include <ole.h>

OLESTATUS OleReconnect(lpObject)
LPOLEOBJECT lpObject; /* address of object to reconnect to *I

The OleReconnect function reestablishes a link to an open linked object. If the
specified object is not open, this function does not open it.

706 OleRegisterClientDoc

Parameters

Return Value

Comments

See Also

lpObject
Points to the object to reconnect to.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_BUSY
OLE_ERROR_NOT _LINK
OLE_ERROR_ OBJECT
OLE_ERROR_ST ATIC
OLE_ WAIT_FOR_RELEASE

A client application can use OleReconnect to keep the presentation for a linked
object up-to-date.

OleActivate, OleClose, OleUpdate

OleRegisterClientDoc
#include <ole.h>

OLESTATUS OleRegisterClientDoc(lpszClass, lpszDoc, reserved, lplhDoc)
LPCSTR lpszClass; I* address of string for class name */
LPCSTR lpszDoc; I* address of string for document name */
LONG reserved; /* reserved */
LHCLIENTDOC FAR* lplhDoc; /* address of handle of document */

Parameters

The OleRegisterClientDoc function registers an open client document with the
library and returns the handle of that document.

lpszClass
Points to a null-terminated string specifying the class of the client document.

lpszDoc
Points to a null-terminated string specifying the location of the client document.
(This value should be a fully qualified path.)

reserved
Reserved. Must be zero.

lplhDoc
Points to the handle of the client document when the function returns. This
handle is used to identify the document in other document-management func
tions.

Return Value

Comments

See Also

OleRegisterServer 707

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_ALREADY _REGISTERED
OLE_ERROR_MEMORY
OLE_ERROR_NAME

When a document being copied onto the clipboard exists only because the client
application is copying Native data that contains objects, the name specified in the
lpszDoc parameter must be Clipboard.

Client applications should register open documents with the library and notify the
library when a document is renamed, closed, saved, or restored to a changed state.

OleRenameClientDoc, OleRevertClientDoc, OleRevokeClientDoc,
OleSavedClientDoc

OleRegisterServer
#include <ole.h>

OLESTATUS OleRegisterServer(lpszClass, lpsrvr, lplhserver, hinst, srvruse)
LPCSTR lpszClass; /* address of string for class name */
LPOLESERVER lpsrvr; /* address of OLESERVER structure */
LHSERVER FAR* lplhserver; !*address of server handle */
HINSTANCE hinst; /*instance handle */
OLE_ SERVER_ USE srvruse; /* single or multiple instances */

Parameters

The OleRegisterServer function registers the specified server, class name, and in
stance with the server library.

lpszClass
Points to a null-terminated string specifying the class name being registered.

lpsrvr
Points to an OLESERVER structure allocated and initialized by the server ap
plication.

lplhserver
Points to a variable of type LHSERVER in which the library stores the handle
of the server. This handle is used in such functions as OleRegisterServerDoc
and OleRevokeServer.

708 OleRegisterServerDoc

Return Value

Comments

See Also

hinst
Identifies the instance of the server application. This handle is used to ensure
that clients connect to the correct instance of a server application.

srvruse
Specifies whether the server uses a single instance or multiple instances to sup
port multiple objects. This value must be either OLE_SERVER_SINGLE or
OLE_SERVER_MULTI.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_ CLASS
OLE_ERROR_MEMORY
OLE_ERROR_PROTECT_ONLY

When the server application starts, it creates an OLESERVER structure and calls
the OleRegisterServer function. Servers that support several class names can allo
cate a structure for each or reuse the same structure. The class name is passed to
server-application functions that are called through the library, so that servers
supporting more than one class can check which class is being requested.

The srvruse parameter is used when the libraries open an object. When
OLE_SERVER_MULTI is specified for this parameter and all current instances
are already editing an object, a new instance of the server is started. Servers that
support the multiple document interface (MDI) typically specify
OLE_SERVER_SINGLE.

OleRegisterServerDoc, OleRevokeServer

OleRegisterServerDoc
#include <ole.h>

OLESTATUS OleRegisterServerDoc(lhsrvr, lpszDocName, lpdoc, lplhdoc)
LHSERVER lhsrvr; /*server handle */
LPCSTR lpszDocName; /*address of string for document name */
LPOLESERVERDOC lpdoc; /* address of OLESERVERDOC structure */
LHSERVERDOC FAR* lplhdoc; /*handle of registered document */

The OleRegisterServerDoc function registers a document with the server library
in case other client applications have links to it. A server application uses this func
tion when the server is started with the !Embeddingfilename option or when it
creates or opens a document that is not requested by the library.

Parameters

Return Value

Ole Release 709

lhsrvr
Identifies the server. Server applications obtain this handle by calling the
OleRegisterServer function.

lpszDocName
Points to a null-terminated string specifying the permanent name for the docu
ment. This parameter should be a fully qualified path.

lpdoc
Points to an OLESERVERDOC structure allocated and initialized by the serv
er application.

lplhdoc
Points to a handle that will identify the document. This parameter points to the
handle when the function returns.

If the function is successful, the return value is OLE_OK. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_ADDRESS
OLE_ERROR_HANDLE
OLE_ERROR_MEMORY

Comments If the document was created or opened in response to a request from the server
library, the server should not register the document by using OleRegisterServer
Doc. Instead, the server should return a pointer to the OLESERVERDOC struc
ture through the parameter to the relevant function.

See Also OleRegisterServer, OleRevokeServerDoc

OleRelease CI!J
#include <ole.h>

OLESTATUS OleRelease(lpObject)
LPOLEOBJECT lpObject; /* address of object to release */

Parameters

The OleRelease function releases an object from memory and closes it if it was
open. This function does not indicate that the object has been deleted from the
client document.

lpObject
Points to the object to release.

710 OleRename

Return Value If the function is successful, the return value is OLE_ OK. Otherwise, it is an error
value, which may be one of the following:

OLE_BUSY
OLE_ERROR_OBJECT
OLE_ WAIT_FOR_RELEASE

Comments The OleRelease function should be called for all objects when closing the client
document.

See Also OleDelete

OleRename ITIJ
#include <ole.h>

OLESTATUS OleRename(lpObject, lpszNewname)
LPOLEOBJECT lpObject; /* address of object being renamed */
LPCSTR lpszNewname; /* address of string for new object name */

Parameters

Return Value

Comments

See Also

The OleRename function renames an object.

lpObject
Points to the object that is being renamed.

lpszN ewname
Points to a null-terminated string specifying the new name of the object.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be OLE_ERROR_OBJECT.

Object names need not be seen by the user. They must be unique within the con
taining document and must be preserved when the document is saved.

OleQueryName

OleRenameServerDoc 711

OleRenameClientDoc []]]
#include <ole.h>

OLESTATUS OleRenameClientDoc(lhClientDoc, lpszNewDocname)
LHCLIENTDOC lhClientDoc; /*handle of client document */
LPCSTR lpszNewDocname; /* address of string for new document name */

Parameters

Return Value

Comments

See Also

The OleRenameClientDoc function informs the client library that a document has
been renamed. A client application calls this function when a document name has
changed-for example, when the user chooses the Save or Save As command
from the File menu.

lhClientDoc
Identifies the document that has been renamed.

lpszNewDocname
Points to a null-terminated string specifying the new name of the document.

The return value is OLE_ OK ifthe function is successful. Otherwise, it is an error
value, which may be OLE_ERROR_HANDLE.

Client applications should register open documents with the library and notify the
library when a document is renamed, closed, saved, or restored to a changed state.

OleRegisterClientDoc, OleRevertClientDoc, OleRevokeClientDoc,
OleSavedClientDoc

OleRenameServerDoc
#include <ole.h>

OLESTATUS OleRenameServerDoc(lhDoc, lpszDocName)
LHSERVERDOC lhDoc; /* handle of document */
LPCSTR lpszDocName; /* address of string for path and filename */

Parameters

The OleRenameServerDoc function informs the server library that a document
has been renamed.

lhDoc
Identifies the document that has been renamed.

712 OleRequestData

Return Value

Comments

See Also

lpszDocName
Points to a null-terminated string specifying the new name of the document.
This parameter is typically a fully qualified path.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_HANDLE
OLE_ERROR_MEMORY

The OleRenameServerDoc function has the same effect as sending the
OLE_RENAMED notification to the client application's callback function. The
server application calls this function when it renames a document to which the ac
tive links need to be reconnected or when the user chooses the Save As command
from the File menu while working with an embedded object.

Server applications should register open documents with the server library and
notify the library when a document is renamed, closed, saved, or restored to a
changed state.

OleRegisterServerDoc, OleRevertServerDoc, OleRevokeServerDoc,
OleSavedServerDoc

OleRequestData
#include <ole.h>

OLESTATUS OleRequestData(lpObject, cfFormat)
LPOLEOBJECT lpObject; /* address of object to query */
OLECLIPFORMAT cfFormat; /* format for retrieved data */

Parameters

The OleRequestData function requests the library to retrieve data in a specified
format from a server.

lpObject
Points to the object that is associated with the server from which data is to be re
trieved.

cfFormat
Specifies the format in which data is to be returned. This parameter can be one
of the predefined clipboard formats or the value returned by the Register
ClipboardFormat function.

Return Value

Comments

See Also

OleRevertClientDoc 713

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_BUSY
OLE_ERROR_NOT_OPEN
OLE_ERROR_OBJECT
OLE_ERROR_ST A TIC
OLE_ WAIT _FOR_RELEASE

The client application should be connected to the server application when
the client calls the OleRequestData function. When the client receives the
OLE_RELEASE notification, it can retrieve the data from the object by using the
OleGetData function or query the data by using such functions as OleQuery
Bounds.

If the requested data format is the same as the presentation data for the object, the
library manages the data and updates the presentation.

The OleRequestData function returns OLE_ WAIT _FOR_RELEASE if the server
is busy. In this case, the application should continue to dispatch messages until it
receives a callback notification with the OLE_RELEASE argument.

OleEnumFormats, OleGetData, OleSetData, RegisterClipboardFormat

OleRevertClientDoc
#include <ole.h>

OLESTATUS OleRevertClientDoc(lhClientDoc)
LHCLIENTDOC lhClientDoc; /*handle of client document */

Parameters

Return Value

Comments

The OleRevertClientDoc function informs the library that a document has been
restored to a previously saved condition.

lhClientDoc
Identifies the document that has been restored to its saved state.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be OLE_ERROR_HANDLE.

A client application should call the OleRevertClientDoc function when it reloads
a document without saving changes to the document.

714 OleRevertServerDoc

See Also

Client applications should register open documents with the library and notify the
library when a document is renamed, closed, saved, or restored to a saved state.

OleRegisterClientDoc, OleRenameClientDoc, OleRevokeClientDoc,
OleSavedClientDoc

OleRevertServerDoc
#include <ole.h>

OLESTATUS OleRevertServerDoc(lhDoc)
LHSERVERDOC lhDoc; I* handle of document */

Parameters

Return Value

Comments

See Also

The OleRevertServerDoc function informs the server library that the server has
restored a document to its saved state without closing it.

lhDoc
Identifies the document that has been restored to its saved state.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be OLE_ERROR_HANDLE.

Server applications should register open documents with the server library and
notify the library when a document is renamed, closed, saved, or restored to a
saved state.

OleRegisterServerDoc, OleRenameServerDoc, OleRevokeServerDoc,
OleSavedServerDoc

OleRevokeClientDoc
#include <ole.h>

OLESTATUS OleRevokeClientDoc(lhClientDoc)
LHCLIENTDOC lhClientDoc; I* handle of client document */

The OleRevokeClientDoc function informs the client library that a document is
no longer open.

Parameters

Return Value

Comments

See Also

OleRevokeObject 715

lhClientDoc
Identifies the document that is no longer open. This handle is invalid following
the call to OleRevokeClientDoc.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_HANDLE
OLE_ERROR_NOT_EMPTY

The client application should delete all the objects in a document before calling
OleRevokeClientDoc.

Client applications should register open documents with the library and notify the
library when a document is renamed, closed, saved, or restored to a changed state.

OleRegisterClientDoc, OleRenameClientDoc, OleRevertClientDoc,
OleSavedClientDoc

OleRevokeObject
#include <ole.h>

OLESTATUS OleRevokeObject(lpClient)
LPOLECLIENT lpClient; /* address of OLECLIENT structure */

Parameters

Return Value

See Also

The OleRevokeObject function revokes access to an object. A server application
typically calls this function when the user destroys an object.

lpClient
Points to the OLECLIENT structure associated with the object being revoked.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value.

OleRevokeServer, OleRevokeServerDoc

716 OleRevokeServer

OleRevokeServer
#include <ole.h>

OLESTATUS OleRevokeServer(lhServer)
LHSERVER lhServer; I* server handle */

Parameters

Return Value

Comments

See Also

The OleRevokeServer function is called by a server application to close any regis
tered documents.

lhServer
Identifies the server to revoke. A server application obtains this handle in a call
to the OleRegisterServer function.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_HANDLE
OLE_ WAIT _FOR_RELEASE

The OleRevokeServer function returns OLE_ WAIT _FOR_RELEASE if com
munications between clients and the server are in the process of terminating. In
this case, the server application should continue to send and dispatch messages
until the library calls the server's Release function.

OleRegisterServer, OleRevokeObject, OleRevokeServerDoc

OleRevokeServerDoc
#include <ole.h>

OLESTATUS OleRevokeServerDoc(lhdoc)
LHSERVERDOC lhdoc; /*document handle */

The OleRevokeServerDoc function revokes the specified document. A server ap
plication calls this function when a registered document is being closed or other
wise made unavailable to client applications.

Parameters lhdoc
Identifies the document to revoke. This handle was returned by a call to the
OleRegisterServerDoc function or was associated with a document by using
one of the server-supplied functions that create documents.

Return Value

Comments

See Also

OleSavedClientDoc 717

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_HANDLE
OLE_ W AIT_FOR_RELEASE

If this function returns OLE_ WAIT _FOR_RELEASE, the server application
should not free the OLESERVERDOC structure or exit until the library calls the
server's Release function.

OleRegisterServerDoc, OleRevokeObject, OleRevokeServer

OleSavedClientDoc
#include <ole.h>

OLESTATUS OleSavedClientDoc(lhClientDoc)
LHCLIENTDOC lhClientDoc; /* handle of client document */

Parameters

Return Value

Comments

See Also

The OleSavedClientDoc function informs the client library that a document has
been saved.

lhClientDoc
Identifies the document that has been saved.

The return value is OLE_ 0 K if the function is successful. Otherwise, it is an error
value, which may be OLE_ERROR_HANDLE.

Client applications should register open documents with the client library and
notify the library when a document is renamed, closed, saved, or restored to a
saved state.

OleRegisterClientDoc, OleRenameClientDoc, OleRevertClientDoc,
OleRevokeClientDoc

718 OleSavedServerDoc

OleSavedServerDoc
#include <ole.h>

OLESTATUS OleSavedServerDoc(lhDoc)
LHSERVERDOC lhDoc; I* handle of document */

Parameters

Return Value

Comments

See Also

The OleSavedServerDoc function informs the server library that a document has
been saved.

lhDoc
Identifies the document that has been saved.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_CANT_UPDATE_CLIENT
OLE_ERROR_HANDLE

The OleSavedServerDoc function has the same effect as sending the
OLE_SA VED notification to the client application's callback function. The server
application calls this function when saving a document or when updating an
embedded object without closing the document.

When a server application receives OLE_ERROR_CANT_UPDATE_CLIENT as
an error value, it should display a message box indicating that the user cannot up
date the document until the server terminates.

Server applications should register open documents with the server library and
notify the library when a document is renamed, closed, saved, or restored to a
saved state.

OleRegisterServerDoc, OleRenameServerDoc, OleRevertServerDoc,
OleRevokeServerDoc

OleSetBounds 719

OleSaveToStream [II]

#include <ole.h>

OLESTATUS OleSaveToStream(lpObject, lpStream)
LPOLEOBJECT lpObject; /* address of object to save */
LPOLESTREAM lpStream; /* address of OLESTREAM structure */

Parameters

Return Value

Comments

See Also

The OleSaveToStream function saves an object to the stream.

lpObject
Points to the object to be saved to the stream.

lpStream
Points to an OLESTREAM structure allocated and initialized by the client ap
plication. The library calls the Put function in the OLESTREAM structure to
store the data from the object.

The return value is OLE_ OK ifthe function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_BLANK
OLE_ERROR_MEMORY
OLE_ERROR_OBJECT
OLE_ERROR_STREAM

An application can use the OleQuerySize function to find the number of bytes to
allocate for the object.

OleLoadFromStream, OleQuerySize

OleSetBounds
#include <ole.h>

OLESTATUS OleSetBounds(lpObject, lprcBound)
LPOLEOBJECT lpObject; /* address of object */
RECT FAR* lprcBound; /* address of structure for bounding rectangle */

The OleSetBounds function sets the coordinates of the bounding rectangle for the
specified object on the target device.

720 OleSetColorScheme

Parameters

Return Value

Comments

See Also

lpObject
Points to the object for which the bounding rectangle is set.

lprcBound
Points to a RECT structure containing the coordinates of the bounding
rectangle. The coordinates are specified in MM_HIMETRIC units. Neither the
width nor height of an object should exceed 32,767 MM_HIMETRIC units.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_BUSY
OLE_ERROR_MEMORY
OLE_ERROR_OBJECT
OLE_ WAIT_FOR_RELEASE

The OleSetBounds function returns OLE_ERROR_OBJECT when it is called for
a linked object.

The OleSetBounds function is ignored for linked objects, because the size of a
linked object is determined by the source document for the link.

A client application uses OleSetBounds to change the bounding rectangle. The
client does not need to call OleSetBounds every time a server is opened.

The bounding rectangle specified in the OleSetBounds function does not neces
sarily have the same dimensions as the rectangle specified in the call to the Ole
Draw function. These dimensions may be different because of the view scaling
used by the container application. An application can use OleSetBounds to cause
the server to reformat the picture to fit the rectangle more closely.

In the MM_HIMETRIC mapping mode, the positive y-direction is up.

OleDraw, OleQueryBounds, SetMapMode

OleSetColorScheme
#include <ole.h>

OLESTATUS OleSetColorScheme(lpObject, lpPalette)
LPOLEOBJECT lpObject; I* address of object */
const LOGPALETTE FAR* lpPalette; /* address of preferred palette */

Parameters

Return Value

Comments

OleSetColorScheme 721

The OleSetColorScheme function specifies the palette a client application recom
mends be used when the server application edits the specified object. The server
application can ignore the recommended palette.

lpObject
Points to an OLEOBJECT structure describing the object for which a palette
is recommended.

Ip Palette
Points to a LOGPALETTE structure specifying the recommended palette.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_BUSY
OLE_ERROR_COMM
OLE_ERROR_MEMORY
OLE_ERROR_ OBJECT
OLE_ERROR_PALETTE
OLE_ERROR_STATIC
OLE_ WAIT_FOR_RELEASE

The OleSetColorScheme function returns OLE_ERROR_ OBJECT when it is
called for a linked object.

A client application uses OleSetColorScheme to change the color scheme. The
client does not need to call OleSetColorScheme every time a server is opened.

The first palette entry in the LOG PALETTE structure specifies the foreground
color recommended by the client application. The second palette entry specifies
the background color. The first half of the remaining palette entries are fill colors,
and the second half are colors for lines and text.

Client applications should specify an even number of palette entries. When there is
an uneven number of entries, the server interprets the odd entry as a fill color; that
is, if there are five entries, three are interpreted as fill colors and two as line and
text colors.

When server applications render metafiles, they should use the suggested palette.

722 OleSetData

OleSetData
#include <ole.h>

OLESTATUS OleSetData(lpObject, cfFormat, hData)
LPOLEOBJECT lpObject; I* address of object */
OLECLIPFORMAT cfFormat; I* format of data to send */
HANDLE hData; I* memory containing data */

Parameters

Return Value

See Also

The OleSetData function sends data in the specified format to the server as
sociated with a specified object.

lpObject
Points to an object specifying the server to which data is to be sent.

cfFormat
Specifies the format of the data.

hData
Identifies a memory object containing the data in the specified format.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_BUSY
OLE_ERROR_BLANK
OLE_ERROR_MEMORY
OLE_ERROR_NOT_OPEN
OLE_ERROR_OBJECT
OLE_ WAIT _FOR_RELEASE

If the specified object cannot accept the data, the function returns an error value. If
the server is not open and the requested data format is different from the format of
the presentation data, the return value is OLE_ERROR_NOT_OPEN.

OleGetData, OleRequestData

OleSetHostNames 723

OleSetHostNames [}TI

#include <ole.h>

OLESTATUS OleSetHostNames(lpObject, lpszClient, lpszClientObj)
LPOLEOBJECT lpObject; /* address of object */
LPCSTR lpszClient; /* address of string with name of client app */
LPCSTR lpszClientObj; I* address of string with client's name for object */

Parameters

Return Value

Comments

The OleSetHostNames function specifies the name of the client application and
the client's name for the specified object. This information is used in window
titles when the object is being edited in the server application.

lpObject
Points to the object for which a name is to be set.

lpszClient
Points to a null-terminated string specifying the name of the client application.

lpszClientObj
Points to a null-terminated string specifying the client's name for the object.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_BUSY
OLE_ERROR_MEMORY
OLE_ERROR_OBJECT
OLE_ WAIT_FOR_RELEASE

The OleSetHostNames function returns OLE_ERROR_OBJECT when it is called
for a linked object.

When a server application is started for editing of an embedded object, it displays
in its title bar the string specified in the lpszClientObj parameter. The object name
specified in this string should be the name of the client document containing the
object.

A client application uses OleSetHostNames to set the name of an object the first
time that object is activated or to change the name of an object. The client does not
need to call OleSetHostNames every time a server is opened.

724 OleSetlinkUpdateOptions

OleSetlinkUpdateOptions
#include <ole.h>

OLESTATUS OleSetLinkUpdateOptions(lpObject, UpdateOpt)
LPOLEOBJECT lpObject; /*address of object */
OLEOPT_UPDATE UpdateOpt; I* link-update options */

Parameters

Return Value

See Also

The OleSetLinkUpdateOptions function sets the link-update options for the pre
sentation of the specified object.

lpObject
Points to the object for which the link-update option is set.

UpdateOpt
Specifies the link-update option for the specified object. This parameter can be
one of the following values:

Option

oleupdate_always

oleupdate_ oncall

oleupdate_ onsave

Description

Update the linked object whenever possible. This option sup
ports the Automatic link-update radio button in the Links
dialog box.

Update the linked object only on request from the client ap
plication. This option supports the Manual link-update radio
button in the Links dialog box.

Update the linked object when the source document is saved
by the server.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_BUSY
OLE_ERROR_OBJECT
OLE_ERROR_OPTION
OLE_ERROR_ST A TIC
OLE_ WAIT_FOR_RELEASE

OleGetLinkUpdateOptions

OleSetTargetDevice 725

OleSetTargetDevice ITD
#include <ole.h>

OLESTATUS OleSetTargetDevice(lpObject, hotd)
LPOLEOBJECT lpObject; I* address of object */
HGLOBAL hotd; I* handle of OLETARGETDEVICE structure */

Parameters

Return Value

Comments

The OleSetTargetDevice function specifies the target output device for an object.

lpObject
Points to the object for which a target device is specified.

hotd
Identifies an OLET ARGETDEVICE structure that describes the target device
for the object.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_BUSY
OLE_ERROR_MEMORY
OLE_ERROR_OBJECT
OLE_ERROR_ST A TIC
OLE_ W AIT_FOR_RELEASE

The OleSetTargetDevice function allows a linked or embedded object to be for
matted correctly for a target device, even when the object is rendered on a differ
ent device. A client application should call this function whenever the target
device changes, so that servers can be notified to change the rendering of the ob
ject, if necessary. The client application should call the OleUpdate function to en
sure that the information is sent to the server, so that the server can make the
necessary changes to the object's presentation. The client application should call
the library to redraw the object if it receives a notification from the server that the
object has changed.

A client application uses the OleSetTargetDevice function to change the target
device. The client does not need to call OleSetTargetDevice every time a server is
opened.

726 OleUnblockServer

OleUnblockServer
#include <ole.h>

OLESTATUS OleUnblockServer(lhSrvr, lpfRequest)
LHSERVER lhSrvr; I* handle of server */
BOOL FAR* lpfRequest; /* address of flag for more requests */

Parameters

Return Value

Comments

See Also

The OleUnblockServer function processes a request from a queue created by
calling the OleBlockServer function.

lhSrvr
Identifies the server for which requests were queued.

lpfRequest
Points to a flag indicating whether there are further requests in the queue. If
there are further requests in the queue, this flag is TRUE when the function re
turns. Otherwise, it is FALSE when the function returns.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_HANDLE
OLE_ERROR_MEMORY

A server application can use the OleBlockServer and OleUnblockServer func
tions to control when the server library processes requests from client applications.
It is best to use OleUnblockServer outside the GetMessage function in a message
loop, unblocking all blocked messages before getting the next message. Unblock
ing message loops should not be run inside server-defined functions that are called
by the library.

OleBlockServer

OleUnlockServer
#include <ole.h>

OLESTATUS OleUnlockServer(hServer)
LHSERVER hServer; I* handle of server to unlock */

The OleUnlockServer function unlocks a server that was locked by the OleLock
Server function.

Parameters

Return Value

Comments

See Also

OleUpdate
#include <ole.h>

Ole Update 727

hServer
Identifies the server to release from memory. This handle was retrieved by a
call to the OleLockServer function.

The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

OLE_ERROR_HANDLE
OLE_ W AIT_FOR_RELEASE

When the OleLockServer function is called more than once for a given server, the
server's lock count is incremented. Each call to OleUnlockServer decrements the
lock count. The server remains locked until the lock count is zero.

If the OleUnlockServer function returns OLE_ WAIT_FOR_RELEASE, the appli
cation should call the OleQueryReleaseStatus function to determine whether the
unlocking process has finished. In the call to OleQueryReleaseStatus, the applica
tion can cast the server handle to a long pointer to an object linking and embed
ding (OLE) object (LPOLEOBJECT):

OleQueryReleaseStatus((LPOLEOBJECT) lhserver);

When OleQueryReleaseStatus no longer returns OLE_BUSY, the server has
been unlocked.

OleLockServer, OleQuery ReleaseStatus

OLESTATUS OleUpdate(lpObject)
LPOLEOBJECT lpObject; /* address of object */

Parameters

The OleUpdate function updates the specified object. This function updates the
presentation of the object and ensures that the object is up-to-date with respect to
any linked objects it contains.

lpObject
Points to the object to be updated.

728 OpenClipboard

Return Value The return value is OLE_ OK if the function is successful. Otherwise, it is an error
value, which may be one of the following:

See Also

OLE_BUSY
OLE_ERROR_OBJECT
OLE_ERROR_ST A TIC
OLE_ WAIT_FOR_RELEASE

OleQueryOutOIDate

OpenClipboard
BOOL OpenClipboard(hwnd)
HWND hwnd; /* handle of window to associate ownership with */

The OpenClipboard function opens the clipboard. Other applications will not be
able to modify the clipboard until the CloseClipboard function is called.

Parameters hwnd
Identifies the window to be associated with the open clipboard.

Return Value The return value is nonzero if the function is successful. It is zero if another appli
cation or window has the clipboard opened.

Comments The window identified by the hwnd parameter will not become the owner of the
clipboard until the EmptyClipboard function is called.

See Also CloseClipboard, EmptyClipboard

OpenComm IT!J
int OpenComm(lpszDevControl, cblnQueue, cbOutQueue)
LPCSTR lpszDevControl; /*address of device-control information */
UINT cblnQueue; /* size of receiving queue */
UINT cbOutQueue; /* size of transmission queue */

The OpenComm function opens a communications device.

Parameters

Return Value

Errors

Comments

Example

OpenComm 729

lpszDevControl
Points to a null-terminated string that specifies the device in the form COMn or
LPTn, where n is the device number.

cblnQueue
Specifies the size, in bytes, of the receiving queue. This parameter is ignored
for LPT devices.

cbOutQueue
Specifies the size, in bytes, of the transmission queue. This parameter is ig
nored for LPT devices.

The return value identifies the open device if the function is successful. Otherwise,
it is less than zero.

If the function fails, it may return one of the following error values:

Value

IE_BADID

IE_BAUDRATE

IE_BYTESIZE

IE_DEFAULT

IE_HARDWARE

IE_MEMORY

IE_NOPEN

IE_ OPEN

Meaning

The device identifier is invalid or unsupported.

The device's baud rate is unsupported.

The specified byte size is invalid.

The default parameters are in error.

The hardware is not available (is locked by another device).

The function cannot allocate the queues.

The device is not open.

The device is already open.

If this function is called with both queue sizes set to zero, the return value is
IE_ OPEN if the device is already open or IE_MEMORY if the device is not open.

Windows allows COM ports 1 through 9 and LPT ports 1 through 3. If the device
driver does not support a communications port number, the OpenComm function
will fail.

The communications device is initialized to a default configuration. The Set
CommState function should be used to initialize the device to alternate values.

The receiving and transmission queues are used by interrupt-driven device
drivers. LPT ports are not interrupt driven-for these ports, the cblnQueue and
cbOutQueue parameters are ignored and the queue size is set to zero.

The following example uses the OpenComm function to open communications
port 1:

730 OpenDriver

idComDev = OpenComm("COMl", 1024, 128);
if (idComDev < 0) {

}

ShowError(idComDev, "OpenComm");
return 0;

err= BuildCommDCBC"COM1:9600,n,8,l", &deb);
if (err< 0) {

ShowError(err, "BuildCommDCB");
return 0;

err= SetCommState(&dcb);
if (err < 0) {

ShowError(err, "SetCommState");
return 0;

See Also CloseComm, SetCommState

OpenDriver [IT]

HDRVR OpenDriver(lpDriverName, lpSectionName, lParam)
LPCSTR lpDriverName; /* address of driver name */
LPCSTR lpSectionName; /*address of .INI file section name */
LPARAM lParam; /*address of driver-specific information */

Parameters

Return Value

Comments

The OpenDriver function performs necessary initialization operations such as set
ting members in installable-driver structures to their default values.

lpDriverName
Points to a null-terminated string that specifies the name of an installable driver.

lpSectionName
Points to a null-terminated string that specifies the name of a section in the
SYSTEM.IN! file.

lParam
Specifies driver-specific information.

The return value is a handle of the installable driver, ifthe function is successful.
Otherwise it is NULL.

The string to which lpDriverName points must be identical to the name of the in
stallable driver as it appears in the SYSTEM.IN! file.

See Also

OpenFile

Open File 731

If the name of the installable driver appears in the [driver] section of the
SYSTEM.IN! file, the string pointed to by lpSectionName should be NULL. Other
wise this string should specify the name of the section in SYSTEM.IN! that con
tains the driver name.

When an application opens a driver for the first time, Windows calls the Driver
Proc function with the DRV _LOAD, DRV _ENABLE, and DRV _OPEN mes
sages. When subsequent instances of the driver are opened, only DRY _OPEN is
sent.

The value specified in the lParam parameter is passed to the lParam2 parameter
of the DriverProc function.

CloseDriver, DriverProc

HFILE OpenFile(lpszFileName, lpOpenBuff,fuMode)
LPCSTR lpszFileName; I* address of filename */
OFSTRUCT FAR* lpOpenBuff; /* address of buffer for file information */
UINT fuMode; /* action and attributes */

Parameters

The OpenFile function creates, opens, reopens, or deletes a file.

lpszFileName
Points to a null-terminated string that names the file to be opened. The string
must consist of characters from the Windows character set and cannot contain
wildcards.

lpOpenBuff
Points to the OFSTRUCT structure that will receive information about the file
when the file is first opened. The structure can be used in subsequent calls to
the OpenFile function to refer to the open file. The OFSTRUCT structure has
the following form:

typedef struct tagOFSTRUCT
BYTE cBytes;
BYTE fFixedDisk;
UINT nErrCode;
BYTE reserved[4J;
BYTE szPathName[l28J;

OFSTRUCT;

/* of */

The szPathName member of OFSTRUCT contains characters from the OEM
character set.

732 Openfile

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

fuMode
Specifies the action to take and the attributes for the file. This parameter can be
a combination of the following values:

Value

OF_CANCEL

OF_CREATE

OF_DELETE

OF_EXIST

OF_PARSE

OF_PROMPT

OF_READ

OF _READWRITE

OF_REOPEN

OF_SEARCH

OF _SHARE_COMPAT

OF _SHARE_DENY _NONE

OF _SHARE_DENY _READ

OF _SHARE_DENY _WRITE

Meaning

Adds a Cancel button to the OF _PROMPT dialog
box. Pressing the Cancel button directs OpenFile
to return a file-not-found error message.

Creates a new file. If the file already exists, it is
truncated to zero length.

Deletes the file.

Opens the file, and then closes it. This value is
used to test for file existence. Using this value
does not change the file date.

Fills the OFSTRUCT structure but carries out no
other action.

Displays a dialog box if the requested file does
not exist. The dialog box informs the user that
Windows cannot find the file and prompts the
user to insert the file in drive A.

Opens the file for reading only.

Opens the file for reading and writing.

Opens the file using information in the reopen
buffer.

Windows searches in directories even when the
file name includes a full path.

Opens the file with compatibility mode, allowing
any program on a given machine to open the file
any number of times. OpenFile fails if the file
has been opened with any of the other sharing
modes.

Opens the file without denying other programs
read or write access to the file. OpenFile fails if
the file has been opened in compatibility mode by
any other program.

Opens the file and denies other programs read
access to the file. OpenFile fails if the file has
been opened in compatibility mode or for read
access by any other program.

Opens the file and denies other programs write
access to the file. OpenFile fails if the file has
been opened in compatibility or for write access
by any other program.

Return Value

Comments

See Also

Value

OF _SHARE_EXCLUSIVE

OF_VERIFY

OF_WRITE

OpenFile 733

Meaning

Opens the file with exclusive mode, denying
other programs both read and write access to the
file. OpenFile fails if the file has been opened in
any other mode for read or write access, even by
the current program.

Compares the time and date in the OF _STRUCT
with the time and date of the specified file. The
function returns HFILE_ERROR if the dates and
times do not agree.

Opens the file for writing only.

The return value is an MS-DOS file handle ifthe function is successful. (This
handle is not necessarily valid; for example, if the fuMode parameter is
OF _EXIST, the handle does not identify an open file, and ifthefuMode parameter
is OF _DELETE, the handle is invalid.) The return value is HFILE_ERROR if an
error occurs.

If the lpszFileName parameter specifies a filename and extension only (or if the
OF _SEARCH flag is specified), the OpenFile function searches for a matching
file in the following directories (in this order):

1. The current directory.

2. The Windows directory (the directory containing WIN.COM), whose path the
GetWindowsDirectory function retrieves.

3. The Windows system directory (the directory containing such system files as
GD I.EXE), whose path the GetSystemDirectory function retrieves.

4. The directory containing the executable file for the current task; the Get
ModuleFileName function obtains the path of this directory.

5. The directories listed in the PA TH environment variable.

6. The list of directories mapped in a network.

To close the file after use, the application should call the _lclose function.

GetSystemDirectory, GetWindowsDirectory

734 Openlcon

Openlcon
BOOL Openlcon(hwnd)
HWND hwnd; I* handle of window *I

The Openlcon function activates and displays a minimized window. Windows re
stores the window to its original size and position.

Parameters hwnd
Identifies the window.

Return Value The return value is nonzero if the function is successful. Otherwise, it is zero.

Comments Using Openlcon is the same as specifying the SW _SHOWNORMAL flag in a
call to the ShowWindow function.

See Also Close Window, Islconic, ShowWindow

OpenSound [I!]

int OpenSound(void)

This function is obsolete. Use the Windows multimedia audio functions instead.
For information about these functions, see the Microsoft Windows Multimedia Pro
grammer's Reference.

OutputDebugString
void OutputDebugString(lpszOutputString)
LPCSTR lpszOutputString; /* address of string to display */

The OutputDebugString function displays the specified character string on the
debugging terminal if a debugger is running.

Parameters

Return Value

Comments

Example

See Also

PaintRgn

PaintRgn 735

lpszOutputString
Points to a null-terminated string to be displayed.

This function does not return a value.

This function preserves all registers.

The following example uses the OutputDebugString function to display informa
tion on the debugging terminal:

OutputDebugString{"\n\rcalling ValidateCodeSegments"l;

ValidateCodeSegments();

OutputDebugString{"\n\rdone");

DebugOutput

BOOL PaintRgn(hdc, hrgn)
HDC hdc; I* handle of device context */
HRGN hrgn; I* handle of region */

The PaintRgn function fills a region by using the current brush for the given
device context.

Parameters hdc

Return Value

Example

Identifies the device context that contains the region to be filled.

hrgn
Identifies the region to be filled. The coordinates for the given region are
specified in device units.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The following example uses the current brush for a device context to fill an ellipti
cal region:

736 PatBlt

See Also

PatBlt

HOC hdc;
HRGN hrgn;

hrgn = CreateEllipticRgn(10, 10, 110, 110);
SelectObject(hdc, hrgn);
PaintRgn(hdc, hrgn);

DeleteObject(hrgn);

CreateBrushlndirect, CreateDIBPatternBrush, CreateHatchBrush,
CreatePatternBrush, CreateSolidBrush, FillRgn

BOOL PatBlt(hdc, nLeftRect, nTopRect, nwidth, nheight,fdwRop)
HDC hdc; /* handle of device context */
int nLeftRect; I* x-coordinate top-left corner destination rectangle */
int nTopRect; I* y-coordinate top-left corner destination rectangle */
int nwidth; I* width of destination rectangle */
int nheight; /* height of destination rectangle */
DWORD fdwRop; /*raster operation */

The PatBlt function creates a bit pattern on the specified device. The pattern is a
combination of the selected brush and the pattern already on the device. The
specified raster-operation code defines how the patterns are combined.

Parameters hdc
Identifies the device context.

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the rectangle that
receives the pattern.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the rectangle that
receives the pattern.

nwidth
Specifies the width, in logical units, of the rectangle that will receive the pattern.

nheight
Specifies the height, in logical units, of the rectangle that will receive the
pattern.

Return Value

Comments

Example

PatBlt 737

fdwRop
Specifies the raster-operation code that determines how the graphics device in
terface (GDI) combines the colors in the output operation. This parameter can
be one of the following values:

Value

PATCOPY

PATINVERT

PATPAINT

DSTINVERT

BLACKNESS

WHITENESS

Meaning

Copies the pattern to the destination bitmap.

Combines the destination bitmap with the pattern by using the
Boolean XOR operator.

Paints the destination bitmap.

Inverts the destination bitmap.

Turns all output black.

Turns all output white.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The raster operations listed for this function are a limited subset of the full 256 ter
nary raster-operation codes; in particular, a raster-operation code that refers to a
source cannot be used.

Not all devices support the PatBlt function. To determine whether a device sup
ports PatBlt, an application can call the GetDeviceCaps function with the
RASTERCAPS index.

The following example uses the CreateBitmap function to create a bitmap with a
zig-zag pattern, and then uses the PatBlt function to fill the client area with that
pattern:

HDC hde;
HBITMAP hbmp;
HBRUSH hbr, hbrPrevious;
RECT re;

int aZigzag[] = { 0xFF, 0xF7, 0xEB, 0xDD, 0xBE, 0x7F, 0xFF, 0xFF };

hbmp = CreateBitmap(8, 8, 1, 1, aZigzag);
hbr = CreatePatternBrush(hbmp);

hde = GetDC(hwnd);
UnrealizeObjeet(hbrl;
hbrPrevious = SeleetObjeet(hde, hbr);
GetClientReet(hwnd, &re);

738 PeekMessage

See Also

PatBlt(hde, re.left, re.top,
re.right - re.left, re.bottom - re.top, PATCOPY);

SeleetObjeet(hde, hbrPrevious);
ReleaseDC(hwnd, hde);

DeleteObjeet(hbrl;
DeleteObjeet(hbmp);

GetDeviceCaps

PeekMessage
BOOL PeekMessage(lpmsg, hwnd, uFilterFirst, uFilterLast,fuRemove)
MSG FAR* lpmsg; /*address of structure for message */
HWND hwnd; /* handle of filter window */
UINT uFilterFirst; I* first message */
UINT uFilterLast; /* last message */
UINT fuRemove; /*removal flags */

Parameters

The PeekMessage function checks the application's message queue for a message
and places the message (if any) in the specified MSG structure.

lpmsg
Points to an MSG structure that will receive message information from the ap
plication's message queue. The MSG structure has the following form:

typedef struet tagMSG
HWND hwnd;
UINT
WP A RAM
LP A RAM
DWORD
POINT

} MSG;

message;
wParam;
lParam;
time;
pt;

f* msg */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

hwnd
Identifies the window whose messages are to be examined.

uFilterFirst
Specifies the value of the first message in the range of messages to be examined.

uFilterLast
Specifies the value of the last message in the range of messages to be examined.

Return Value

Comments

PeekMessage 739

fuRemove
Specifies how messages are handled. This parameter can be a combination of
the following values (PM_NOYIELD can be combined with either
PM_NOREMOVE or PM_REMOVE):

Value

PM_NOREMOVE

PM_NOYIELD

PM_REMOVE

Meaning

Messages are not removed from the queue after processing
by PeekMessage.

Prevents the current task from halting and yielding system re
sources to another task.

Messages are removed from the queue after processing by
PeekMessage.

The return value is nonzero if a message is available. Otherwise, it is zero.

Unlike the GetMessage function, the PeekMessage function does not wait for a
message to be placed in the queue before returning. It does, however, yield control
to other tasks (if the PM_NOYIELD flag is not set).

PeekMessage retrieves only messages associated with the window identified by
the hwnd parameter, or any of its children as specified by the IsChild function,
and within the range of message values given by the uFilterFirst and uFilterLast
parameters. If hwnd is NULL, PeekMessage retrieves messages for any window
that belongs to the application making the call. (PeekMessage does not retrieve
messages for windows that belong to other applications.) If uFilterFirst and
uFilterLast are both zero, PeekMessage returns all available messages (no range
filtering is performed).

The WM_KEYFIRST and WM_KEYLAST flags can be used as filter values to re
trieve all key messages; the WM_MOUSEFIRST and WM_MOUSELAST flags
can be used to retrieve all mouse messages.

PeekMessage does not remove WM_P AINT messages from the queue. The mes
sages remain in the queue until processed. The GetMessage, PeekMessage, and
WaitMessage functions yield control to other applications. These calls provide the
only way to let other applications run. If your application does not call any of
these functions for long periods of time, other applications cannot run.

As long as an application is in a PeekMessage loop, Windows cannot become
idle. Therefore, an application should not remain in a PeekMessage loop after the
application's background processing has completed.

When an application uses the PeekMessage function without removing the mes
sage and then calls the WaitMessage function, WaitMessage does not return until
the message is received. Applications that use the PeekMessage function should
remove any retrieved messages from the queue before calling W aitMessage.

740 Pie

Example The following example checks the message queue for keystrokes that have special
meaning to the application. Note that the CheckSpecialKeys function is applica
tion-defined.

See Also

Pie

MSG msg;
BOOL fRetVal = TRUE;

while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {

}

if Cmsg.message == WM_QUIT)
fRetVal = FALSE;

if (CheckSpecialKeys(&msg)) /*application defined*/
continue;

TranslateMessageC&msg);
DispatchMessage(&msg);

return fRetVal;

GetMessage, Is Child, PostAppMessage, SetMessageQueue, W aitMessage

BOOL Pie(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect, nxStartArc, nyStartArc, nxEndArc,
nyEndArc)

HDC hdc;
int nLeftRect;
int nTopRect;
int nRightRect;
int nBottomRect;
int nxStartArc;
int nyStartArc;
int nxEndArc;
int nyEndArc;

/* handle of device context
/* x-coordinate upper-left corner bounding rectangle
/* y-coordinate upper-left corner bounding rectangle
/* x-coordinate lower-right corner bounding rectangle
I* y-coordinate lower-right corner bounding rectangle
I* x-coordinate arc starting point
/* y-coordinate arc starting point
/* x-coordinate arc ending point
/* y-coordinate arc ending point

*/
*/
*/
*/
*/
*I
*!
*!
*I

The Pie function draws a pie-shaped wedge by drawing an elliptical arc whose
center and two endpoints are joined by lines.

Parameters hdc
Identifies the device context.

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the bounding
rectangle.

Return Value

Comments

Pie 741

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the bounding
rectangle.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the bounding
rectangle.

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the bounding
rectangle.

nxStartArc
Specifies the logical x-coordinate of the arc's starting point. This point does not
have to lie exactly on the arc.

nyStartArc
Specifies the logical y-coordinate of the arc's starting point. This point does not
have to lie exactly on the arc.

nxEndArc
Specifies the logical x-coordinate of the arc's endpoint. This point does not
have to lie exactly on the arc.

nyEndArc
Specifies the logical y-coordinate of the arc's endpoint. This point does not
have to lie exactly on the arc.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The center of the arc drawn by the Pie function is the center of the bounding
rectangle specified by the nLeftRect, nTopRect, nRightRect, and nBottomRect pa
rameters. The starting and ending points of the arc are specified by the nxStartArc,
nyStartArc, nxEndArc, and nyEndArc parameters. The function draws the arc by
using the selected pen, moving in a counterclockwise direction. It then draws two
additional lines from each endpoint to the arc's center. Finally, it fills the pie
shaped area by using the current brush.

If nxStartArc equals nxEndArc and nyStartArc equals nyEndArc, the result is an
ellipse with a single line from the center of the ellipse to the point (nxStartArc,
nyStartArc) or (nxEndArc,nyEndArc).

The figure drawn by this function extends up to but does not include the right and
bottom coordinates. This means that the height of the figure is nBottomRect
nTopRect and the width of the figure is nRightRect- nLeftRect.

Both the width and the height of a rectangle must be greater than 2 units and less
than 32,767 units.

742 PlayMetafile

Example The following example uses a RECT structure to store the points that define the
bounding rectangle and uses POINT structures to store the coordinates that
specify the beginning and end of the wedge:

See Also

HOC hde;

RECT re = { 10, 10, 180, 140 };
POINT ptStart = { 12, 12 };
POINT ptEnd = { 128, 135 };

Pie(hde, re.left, re.top, re.right, re.bottom,
ptStart.x, ptStart.y, ptEnd.x, ptEnd.y);

Chord

PlayMetafile
BOOL PlayMetaFile(hdc, hmj)
HDC hdc; /* handle of device context */

/ HMETAFILE hmf; / handle of metafile

The PlayMetaFile function plays the contents of the specified metafile on the
given device. The metafile can be played any number of times.

Parameters hdc

Return Value

Example

Identifies the device context of the output device.

hmf
Identifies the metafile to be played.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The following example uses the CreateMetaFile function to create a device
context handle of a memory metafile, draws a line in the device context, retrieves
a metafile handle by calling the CloseMetaFile function, plays the metafile by
using the PlayMetaFile function, and finally deletes the metafile by using the
DeleteMetaFile function:

HOC hdeMeta;
HMETAFILE hmf;

See Also

hdcMeta = CreateMetaFileCNULL);
MoveTo(hdcMeta, 10, 10);
LineTo(hdcMeta, 100, 100);
hmf = CloseMetaFile(hdcMeta);
PlayMetaFile(hdc, hmf);
DeleteMetaFile(hmf);

PlayMetaFileRecord

PlayMetafileRecord 743

PlayMeta Fi le Record
void PlayMetaFileRecord(hdc, lpht, lpmr, cHandles)
HDC hdc; /* handle of device context */

*/
*I
*/

HANDLETABLE FAR* lpht; !*address of table of object handles
METARECORD FAR* lpmr; /*address of metafile record
UINT cHandles; /* number of handles in table

The PlayMetaFileRecord function plays a metafile record by executing the
graphics device interface (GDI) function contained in the record.

Parameters hdc

Return Value

Comments

Example

Identifies the device context of the output device.

lpht
Points to a table of handles associated with the objects (pens, brushes, and so
on) in the metafile.

lpmr
Points to the metafile record to be played.

cHandles
Specifies the number of handles in the handle table.

This function does not return a value.

An application typically uses this function in conjunction with the EnumMetafile
function to modify and then play a metafile.

The following example creates a dashed green pen and passes it to the callback
function for the EnumMetaFile function. If the first element in the array of object
handles contains a handle, that handle is replaced by the handle of the green pen
before the PlayMetaFileRecord function is called. (For this example, it is as
sumed that the table of object handles contains only one handle and that it is a pen
handle.)

744 Polygon

See Also

Polygon

MFENUMPROC lpEnumMetaProc;
HPEN hpenGreen;

lpEnumMetaProc = CMFENUMPROC) MakeProcinstance(
CFARPROC) EnumMetaFileProc, hAppinstance);

hpenGreen = CreatePenCPS_DASH, 1, RGBC0, 255, 0));
EnumMetaFileChdc, hmf, lpEnumMetaProc, CLPARAMl &hpenGreen);
FreeProcinstanceCCFARPROC) lpEnumMetaProc);
DeleteObject(hpenGreen);

int FAR PASCAL EnumMetaFileProcCHDC hdc, HANDLETABLE FAR* lpHTable,
METARECORD FAR* lpMFR, int cObj, BYTE FAR* lpClientDatal

}

if ClpHTable->objectHandle[0J != 0)
lpHTable->objectHandle[0] = *(HPEN FAR*) lpClientData;

PlayMetaFileRecord(hdc, lpHTable, lpMFR, cObj);

return l;

EnumMetafile, Play MetaFile

BOOL Polygon(hdc, lppt, cPoints)
HDC hdc; I* handle of device context */
const POINT FAR* lppt; !*address of array with points for vertices */
int cPoints; !* number of points in array */

The Polygon function draws a polygon consisting of two or more points (vertices)
connected by lines. The system closes the polygon automatically, if necessary, by
drawing a line from the last vertex to the first. Polygons are surrounded by a frame
drawn by using the current pen and filled by using the current brush.

Parameters hdc
Identifies the device context.

lppt
Points to an array of POINT structures that specify the vertices of the polygon.
Each structure in the array specifies a vertex. The POINT structure has the fol
lowing form:

Return Value

Comments

Example

See Also

Polyline

typedef struct tagPOINT { /* pt */
int x;
int y;

POINT;

Polyline 745

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

cPoints
Specifies the number of vertices in the array.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The current polygon-filling mode can be retrieved or set by using the GetPolyFill
Mode and SetPolyFillMode functions.

The following example assigns values to an array of points and then calls the
Polygon function:

HOC hdc;

POINT aPoints[3];

aPoints[0].x 50;
aPoints[0J.y 10;
aPoints[lJ.x 250;
aPoints[l].y 50;
aPoints[2].x 125;
aPoints[2].y 130;

Polygon(hdc, aPoints, sizeof(aPoints) I sizeof(POINT));

GetPolyFillMode, Polyline, PolyPolygon, SetPolyFillMode

BOOL Polyline(hdc, lppt, cPoints)
HDC hdc; /*handle of device context */
const POINT FAR* lppt; /*address of array with points to connect */
int cPoints; /* number of points in array */

The Polyline function draws a set of line segments, connecting the specified
points. The lines are drawn from the first point through subsequent points, using
the current pen. Unlike the LineTo function, the Polyline function neither uses nor
updates the current position.

746 PolyPolygon

Parameters hdc

Return Value

Example

Identifies the device context.

lppt
Points to an array of POINT structures. Each structure in the array specifies a
point. The POINT structure has the following form:

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

cPoints
Specifies the number of points in the array. This value must be at least 2.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The following example assigns values to an array of points and then calls the
Polyline function:

HDC hdc;

POINT aPoints[3];

aPoints[0].x 50;
aPoints[0].y 10;
aPoints[l].x 250;
aPoints[l] .y 50;
aPoints[2].x 125;
aPoints[2].y 130;

Polyline(hdc, aPoints, sizeof(aPoints) I sizeof(POINT));

See Also LineTo, Polygon

PolyPolygon CI!J
BOOL PolyPolygon(hdc, lppt, lpnPolyCounts, cPolygons)
HDC hdc; /*handle of device context */
const POINT FAR* lppt; /*address of array with vertices */
int FAR* lpnPolyCounts; !* address of array with point counts */
int cPolygons; !* number of polygons to draw */

PolyPolygon 747

The Poly Polygon function creates two or more polygons that are filled by using
the current polygon-filling mode. The polygons may be disjoint or overlapping.

Parameters hdc

Return Value

Comments

Example

Identifies the device context.

lppt
Points to an array of POINT structures. Each structure in the array specifies a
vertext of a polygon. The POINT structure has the following form:

typedef struct tagPOINT { /* pt */
int x;
int y;

POINT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

lpnPolyCounts
Points to an array of integers, each of which specifies the number of points in
one of the polygons in the array pointed to by the lppt parameter.

cPolygons
Specifies the number of polygons to be drawn. This value must be at least 2.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Each polygon specified in a call to the PolyPolygon function must be closed. Un
like polygons created by the Polygon function, the polygons created by Poly
Polygon are not closed automatically.

The PolyPolygon function creates two or more polygons. To create a single poly
gon, an application should use the Polygon function.

The current polygon-filling mode can be retrieved or set by using the GetPolyFill
Mode and SetPolyFillMode functions.

The following example draws two overlapping polygons by assigning values to an
array of points and then calling the PolyPolygon function:

HOC hdc;

POINT aPolyPoints[SJ;
int aVertices[J = { 4, 4 };

aPolyPoints[0J.x 50;
aPolyPoints[0].y 10;
aPolyPoints[l].x 250;
aPolyPoints[l].y 50;
aPolyPoints[2].x 125;

748 PostAppMessage

See Also

aPolyPoints[2J.y 130;
aPolyPoints[3].x 50;
aPolyPoints[3J.y 10;

aPolyPoints[4].x 100;
aPolyPoints[4].y 25;
aPolyPoints[5J.x 300;
aPolyPoints[5J.y 125;
aPolyPoints[6].x 70;
aPolyPoints[6].y 150;
aPolyPoints[7J.x 100;
aPolyPoints[7J.y 25;

PolyPolygon(hdc, aPolyPoints, aVertices,
sizeof(aVertices) I sizeof(int));

GetPolyFillMode, Polygon, Polyline, SetPolyFillMode

PostAppMessage
BOOL PostAppMessage(htask, uMsg, wParam, lParam)
HTASK htask; !* handle of task to receive message *!

*!
*/
*/

UINT uMsg; /* message to post
WPARAM wParam; /* first message parameter
LPARAM lParam; /* second message parameter

The PostAppMessage function posts (places) a message in the message queue of
the given application (task) and then returns without waiting for the application to
process the message. The application to which the message is posted retrieves the
message by calling the GetMessage or PeekMessage function. The hwnd mem
ber of the returned MSG structure is NULL.

Parameters htask

Return Value

Identifies the task to which the message is posted. The GetCurrentTask func
tion returns this handle.

uMsg
Specifies the type of message to be posted.

wParam
Specifies 16 bits of additional message-dependent information.

lParam
Specifies 32 bits of additional message-dependent information.

The return value is nonzero if the function is successful. Otherwise, it is zero.

PostMessage 749

See Also GetCurrentTask, GetMessage, PeekMessage

PostMessage
BOOL PostMessage(hwnd, uMsg, wParam, lParam)
HWND hwnd; /* handle of the destination window */

*/
*/
*/

UINT uMsg; !*message to post
WPARAM wParam; !* first message parameter
LPARAM lParam; /* second message parameter

Return Value

Comments

See Also

The PostMessage function posts (places) a message in a window's message queue
and then returns without waiting for the corresponding window to process the mes
sage. Messages in a message queue are retrieved by calls to the GetMessage or
PeekMessage function.

hwnd
Identifies the window to which the message will be posted. If this parameter is
HWND_BROADCAST, the message will be posted to all top-level windows,
including disabled or invisible unowned windows.

uMsg
Specifies the message to be posted.

wParam
Specifies 16 bits of additional message-dependent information.

ZParam
Specifies 32 bits of additional message-dependent information.

The return value is nonzero if the function is successful. Otherwise, it is zero.

An application should never use the PostMessage function to post a message to a
control.

If the message is being posted to another application and the wParam or lParam
parameter is used to pass a handle or pointer to a global memory object, the
memory should be allocated by the GlobalAlloc function, using the
GMEM_SHARE flag.

GetMessage, PeekMessage, PostAppMessage, SendDlgltemMessage,
SendMessage

750 PostQuitMessage

PostQu itMessage
void PostQuitMessage(nExitCode)
int nExitCode; /*exit code */

Parameters

Return Value

Comments

See Also

The PostQuitMessage function posts a message to Windows indicating that an ap
plication is requesting to terminate execution (quit). This function is typically used
in response to a WM_DESTROY message.

nExitCode
Specifies an application-defined exit code. It must be the wParam parameter of
the WM_ QUIT message.

This function does not return a value.

The PostQuitMessage function posts a WM_ QUIT message to the application
and returns immediately; the function simply indicates to the system that the appli
cation will request to quit some time in the future.

When the application receives the WM_ QUIT message, it should exit the message
loop in the main function and return control to Windows.

GetMessage

PrestoChangoSelector
UINT PrestoChangoSelector(uSourceSelector, uDestSelector)
UINT uSourceSelector; I* selector to convert */

/ UINT uDestSelector; I converted selector (allocated by AllocSelector)

Parameters

The PrestoChangoSelector function generates a code selector that corresponds to
a given data selector, or it generates a data selector that corresponds to a given
code selector.

An application should not use this function unless it is absolutely necessary, be
cause its use violates preferred Windows programming practices.

uSourceSelector
Specifies the selector to be converted.

uDestSelector
Specifies a selector previously allocated by the AllocSelector function. This
previously allocated selector receives the converted selector.

Return Value

Comments

See Also

PrintDlg

PrintDlg 751

The return value is the copied and converted selector if the function is successful.
Otherwise, it is zero.

Windows does not track changes to the source selector. Consequently, before any
memory can be moved, the application should use the converted destination selec
tor immediately after it is returned by this function.

The PrestoChangoSelector function modifies the destination selector to have the
same properties as the source selector, but with the opposite code or data attribute.
This function changes only the attributes of the selector, not the value of the selec
tor.

This function was named ChangeSelector in the Windows 3.0 documentation.

AllocDStoCSAlias, AllocSelector

#include <commdlg.h>

BOOL PrintDlg(lppd)
PRINTDLG FAR* lppd; /* address of structure with initialization data */

Parameters

The PrintDlg function displays a Print dialog box or a Print Setup dialog box. The
Print dialog box makes it possible for the user to specify the properties of a particu
lar print job. The Print Setup dialog box makes it possible for the user to select ad
ditional job properties and configure the printer.

lppd
Points to a PRINTDLG structure that contains information used to initialize
the dialog box. When the PrintDlg function returns, this structure contains in
formation about the user's selections.

The PRINTDLG structure has the following form:

#include <commdlg.h>

typedef struct tagPD /* pd */
DWORD lStructSize;
HWND hwndDwner;
HGLOBAL hDevMode;
HGLOBAL hDevNames;
HOC hDC;
DWORD Flags;
UINT nFromPage;

752 PrintDlg

Return Value

Errors

Example

UINT
UINT
UINT

nToPage;
nMinPage;
nMaxPage;
nCopies;
h!nstance;
lCustData;

UINT
HINSTANCE
LP A RAM
UINT (CALLBACK* lpfnPrintHook)(HWND,

(CALLBACK* lpfnSetupHook)(HWND,
lpPrintTemplateName;
lpSetupTemplateName;
hPrintTemplate;
hSetupTemplate;

UINT
LPCSTR
LPCSTR
HGLOBAL
HGLOBAL

UINT, WPARAM, LPARAM);
UINT, WPARAM, LPARAM);

} PR INTO LG;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function successfully configures the printer. The
return value is zero if an error occurs, if the user chooses the Cancel button, or if
the user chooses the Close command on the System menu to close the dialog box.
(The return value is also zero if the user chooses the Setup button to display the
Print Setup dialog box, chooses the OK button in the Print Setup dialog box, and
then chooses the Cancel button in the Print dialog box.)

Use the CommDlgExtendedErrorfunction to retrieve the error value, which may
be one of the following:

CDERR_FINDRESFAILURE

CDERR_INITIALIZATION

CDERR_LOADRESFAILURE

CDERR_LOADSTRFAILURE

CDERR_LOCKRESFAILURE

CDERR_MEMALLOCFAILURE

CDERR_MEMLOCKFAILURE

CDERR_NOHINSTANCE

CDERR_NOHOOK

CDERR_NOTEMPLATE

CDERR_STRUCTSIZE

PDERR_CREATEICFAILURE

PDERR_DEFAULTDIFFERENT

PDERR_DNDMMISMATCH

PDERR_GETDEVMODEFAIL

PDERR_INITFAILURE

PDERR_LOADDRVFAILURE

PDERR_NODEFAULTPRN

PDERR_NODEVICES

PDERR_PARSEFAILURE

PDERR_PRINTERNOTFOUND

PDERR_RETDEFFAILURE

PDERR_SETUPFAILURE

The following example initializes the PRINTDLG structure, calls the PrintDlg
function to display the Print dialog box, and prints a sample page of text if the re
turn value is nonzero:

Prof Clear
void ProfClear(void)

Parameters

Return Value

Comments

PRINTDLG pd;

I* Set all structure fields to zero. */

memset(&pd, 0, sizeof(PRINTDLG));

/* Initialize the necessary PRINTDLG structure fields. */

pd.lStructSize = sizeofCPRINTDLGl;
pd.hwndOwner = hwnd;
pd.Flags PD_RETURNDC;

f* Print a test page if successful */

if (PrintDlg(&pd) != 0) {
Escape(pd.hDC, STARTDOC, 8, "Test-Doc", NULL);

I* Print text and rectangle */

ProfClear 753

TextOut(pd.hDC, 50, 50, "Common Dialog Test Page", 23);
Rectangle(pd.hDC, 50, 90, 625, 105);

}

Escape(pd.hDC, NEWFRAME, 0, NULL, NULL);
Escape Cpd. hDC, ENDDOC, 0, NULL, NULL);
DeleteDC(pd.hDCl;
if Cpd.hDevMode != NULL)

GlobalFree(pd.hDevMode);
if (pd.hDevNames != NULL)

GlobalFree(pd.hDevNames);

else
ErrorHandler();

The ProfClear function discards all Microsoft Windows Profiler samples cur
rently in the sampling buffer.

This function has no parameters.

This function does not return a value.

For more information about using Profiler, see Microsoft Windows Programming
Tools.

754 ProfFinish

Example The following example uses the ProfClear function to clear the Profiler sampling
buffer before changing the sampling rate:

Prof Finish

ProfClear();
ProfSampRate(5, 1);

/* clears existing buffer */
/* changes sampling rate */

void ProfFinish(void)

Parameters

Return Value

Comments

Example

Prof Flush

The ProfFinish function stops Microsoft Windows Profiler sampling and flushes
the output buffer to disk.

This function has no parameters.

This function does not return a value.

If Profiler is running in 386 enhanced mode, the ProfFinish function also frees the
buffer for system use.

For more information about using Profiler, see Microsoft Windows Programming
Tools.

The following example uses the ProfFinish function to stop sampling and flush
the output buffer during WM_DESTROY message processing:

case WM_DESTROY:
ProfFi ni sh();
PostQuitMessage(0);
break;

void ProfFlush(void)

Parameters

The ProfFlush function flushes the Microsoft Windows Profiler sampling buffer
to disk.

This function has no parameters.

Return Value

Comments

Example

ProflnsChk

ProflnsChk 755

This function does not return a value.

Excessive use of the ProfFlush function can seriously impair application perform
ance. An application should not use ProfFlush when MS-DOS may be unstable
(inside an interrupt handler, for example).

For more information about using Profiler, see Microsoft Windows Programming
Tools.

The following example uses the ProfFlush function to flush the Profiler buffer
before changing the buffer size:

ProfFl ush();
ProfSetup(l024, 0);

/* flushes existing buffer */
/* uses a 1024K buffer */

int ProflnsChk(void)

Parameters

Return Value

Comments

Example

The ProflnsChk function determines whether Microsoft Windows Profiler is in
stalled.

This function has no parameters.

The return value is 1 if Profiler is installed for a mode other than 386 enhanced
mode, or it is 2 if Profiler is installed for 386 enhanced mode. Otherwise, the re
turn value is 0, indicating that Profiler is not installed.

For more information about using Profiler, see Microsoft Windows Programming
Tools.

The following example uses the ProflnsChk function to determine whether the
Profiler is installed:

int ick;
char szMsg[80];

if ((ick = ProfinsChk()) == 0)
MessageBox(hwnd, "Profiler is not installed!",

"ProfinsChk", MB_ ICONSTOP);

756 ProfSampRate

else {

}

strcpy(szMsg, "Profiler is installed");
if (i ck == 2) {

strcat(szMsg, " in 386 enhanced mode");
ProfSetup(l28, 0); /*uses a 128K buffer*/

}

MessageBox(hwnd, szMsg, "ProfinsChk", MB_OK);

ProfSampRate
void ProfSampRate(nRate286, nRate386)
int nRate286; /* sample rate for non-386 enhanced mode */

/ int nRate386; / sample rate for 386 enhanced mode

Parameters

The ProfSampRate function sets the Microsoft Windows Profiler code-sampling
rate.

nRate286
Specifies the sampling rate if the application is not running in 386 enhanced
mode. The nRate286 parameter can be one of the following values:

Value Sampling rate

122.070 microseconds

2 244.141 microseconds

3 488.281 microseconds

4 976.562 microseconds

5 1.953125 milliseconds

6 3.90625 milliseconds

7 7.8125 milliseconds

8 15.625 milliseconds

9 31.25 milliseconds

10 62.5 milliseconds

11 125 milliseconds

12 250 milliseconds

13 500 milliseconds

nRate386
Specifies the sampling rate, in milliseconds ifthe application is running in 386
enhanced mode. This value is in the range 1 through 1000.

Return Value

Comments

Example

Prof Setup

ProfSetup 757

This function does not return a value.

Only the rate parameter appropriate to the current mode is used; the other parame
ter is ignored.

The default rate is 2 milliseconds in 386 enhanced mode; in any other mode, the
value is 5, which specifies a rate of 1.953125 milliseconds.

For more information about using Profiler, see Microsoft Windows Programming
Tools.

The following example uses the ProfSampRate function to change the Profiler
sampling rate to 1 millisecond in 386 enhanced mode:

ProfCl ear();
ProfSampRateC5, 1);

/* clears existing buffer */
/*changes sampling rate */

void ProfSetup(nBufferKB, nSamplesKB)
int nBufferKB; /* size of output buffer */
int nSamplesKB; /* amount of sample data written to disk */

Parameters

Return Value

Comments

The ProfSetup function specifies the size of the Microsoft Windows Profiler out
put buffer and how much sampling data Profiler is to write to the disk.

Profiler ignores the ProfSetup function when running with Windows in any mode
other than 386 enhanced mode.

nBufferKB
Specifies the size, in kilobytes, of the output buffer. This value is in the range 1
through 1064. The default value is 64.

nSamplesKB
Specifies the amount, in kilobytes, of sampling data Profiler writes to the disk.
A value of zero (the default value) specifies unlimited sampling data.

This function does not return a value.

Do not call the ProfSetup function after calling ProfStart. To resize memory
after ProfStart has been called, first call the ProfStop function.

For more information about using Profiler, see Microsoft Windows Programming
Tools.

758 ProfStart

Example The following example uses the ProfSetup function to set the output buffer size to
128K if Profiler is installed in 386 enhanced mode:

See Also

Prof Start
void ProfStart(void)

Parameters

Return Value

Comments

Example

int ick;
char szMsg[80];

if ((ick = ProflnsChk()) == 0)
MessageBox(hwnd, "Profiler is not installed!",

"ProflnsChk", MB_ICONSTOP);
else {

strcpy(szMsg, "Profiler is installed");
if (ick == 2) {

strcat(szMsg, " in 386 enhanced mode");
ProfSetup(128, 0); /*uses a 128K buffer*/

MessageBox(hwnd, szMsg, "ProflnsChk", MB_OK);

ProfStart, ProfStop

The ProfStart function starts Microsoft Windows Profiler sampling.

This function has no parameters.

This function does not return a value.

For more information about using Profiler, see Microsoft Windows Programming
Tools.

The following example uses the ProfStart and ProfStop functions to sample
during the message-queue dispatch process:

f* Acquire and dispatch messages until WM_QUIT is received. */

while (GetMessage(&msg, /* message structure */
(HWND) NULL, /* handle of window receiving message */
0, /* lowest message to examine */
0)) /* highest message to examine */

See Also

Prof Stop
void ProfStop(void)

Parameters

Return Value

Comments

Example

See Also

Prof Stop 759

ProfStart();

TranslateMessage(&msg); /*translates virtual-key codes */
DispatchMessage(&msg); /*dispatches message to window */

ProfStop();

ProfStop

The ProfStop function stops Microsoft Windows Profiler sampling.

This function has no parameters.

This function does not return a value.

For more information about using Profiler, see Microsoft Windows Programming
Tools.

The following example uses the ProfStart and ProfStop functions to sample
during the message-queue dispatch process:

/*Acquire and dispatch messages until WM QUIT is received. */

while (GetMessage(&msg, /* message structure
(HWND) NULL, /* handle of window receiving
0, /* lowest message to examine
0)) /* highest message to examine

ProfStart();

*/
message */

*/
*/

TranslateMessage(&msg); /* translates virtual-key codes */
DispatchMessage(&msg); /*dispatches message to window */

ProfStop();

ProfStart

760 PtlnRect

PtlnRect
BOOL PtlnRect(lprc,pt)
const RECT FAR* lprc;
POINT pt;

/* address of structure with rectangle
/* structure with point

*I
*/

Parameters

Return Value

See Also

The PtlnRect function determines whether the specified point lies within a given
rectangle. A point is within a rectangle if it lies on the left or top side or is within
all four sides. A point on the right or bottom side is considered outside the
rectangle.

lprc

pt

Points to a RECT structure that contains the specified rectangle. The RECT
structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

Specifies a POINT structure that contains the specified point. The POINT
structure has the following form:

typedef struct tagPOINT { /* pt */
int x;
int y;

POINT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the point lies within the given rectangle. Otherwise,
it is zero.

EqualRect, IsRectEmpty

PtVisible 761

PtlnRegion [}Zl

BOOL PtlnRegion(hrgn, nXPos, nYPos)
HRGN hrgn; /* handle of region */
int nXPos; /* x-coordinate of point */
int nYPos; /* y-coordinate of point */

Parameters

Return Value

Example

See Also

PtVisible

The PtlnRegion function determines whether a specified point is in the given re
gion.

hrgn
Identifies the region to be examined.

nXPos
Specifies the logical x-coordinate of the point.

nYPos
Specifies the logical y-coordinate of the point.

The return value is nonzero if the point is in the region. Otherwise, it is zero.

The following example uses the PtlnRegion function to determine whether the
point (50, 50) is in the specified region and prints the result:

HRGN hrgn;
BOOL fPtin;
LPSTR lpszinRegion = "Specified point is in region.";
LPSTR lpszNotinRegion ="Specified point is not in region.";

fPtin = PtinRegion(hrgn, 50, 50);
if (!fPtinl

else

TextOut(hdc, 10, 10, lpszNotinRegion,
lstrlen(lpszNotinRegion));

TextOut(hdc, 10, 10, lpszinRegion, lstrlen(lpszinRegion));

RectlnRegion

BOOL PtVisible(hdc, nXPos, nYPos)
HDC hdc; /* handle of device context */
int nXPos; /* x-coordinate of point to query */
int nYPos; /* y-coordinate of point to query */

762 PtVisible

The Pt Visible function determines whether the specified point is within the clip
ping region of the given device context.

Parameters hdc

Return Value

Example

Identifies the device context.

nXPos
Specifies the logical x-coordinate of the point.

nYPos
Specifies the logical y-coordinate of the point.

The return is nonzero if the point is within the clipping region. Otherwise, it is
zero.

The following example creates a rectangular region, displays a message inside it,
and selects the region as the clipping region. The Pt Visible function is used to de
termine whether coordinates generated by a double-click are inside the region. If
so, the message changes to "Thank you." If not, the CombineRgn function is used
to create a clipping r.,gion that combines the first region with a new region that sur
rounds the specified coordinates, and the word "Missed!" is displayed at the
coordinates.

HOC hdcLocal;
HRGN hrgnClick, hrgnMiss, hrgnCombine;
HBRUSH hbr;

hdcLocal = GetDC(hwndl;
hbr = GetStockObject(BLACK_BRUSH);

hrgnClir,k = CreateRectRgn(90, 95, 225, 120);
FrameRgn(hdcLocal, hrgnClick, hbr, 1, l);
TextOut(hdcLocal, 100, 100, "Double-click here.", 18);
SelectClipRgn(hdcLocal, hrgnClick);

if CPtVisible(hdcLocal, XClick, YClick)) {
PaintRgn(hdcLocal, hrgnCl ick);
FrameRgn (hdcLoca l, h rgnCl i ck, hbr, l, 1);

TextOutChdcLocal, 100, 100, "Thank you.", 10);

else if (XClick > 0) {

}

hrgnMiss = CreateRectRgn(XClick - 5, YClick - 5, XClick + 60,
YClick+20);

hrgnCombine = CreateRectRgn(0, 0, 0, 0);
CombineRgn(hrgnCombine, hrgnClick, hrgnMiss, RGN_ORl;
SelectClipRgn(hdcLocal, hrgnCombine);
FrameRgn(hdcLocal, hrgnCombine, hbr, 1, ll;
TextOut(hdcLocal, XClick, YClick, "Missed!", 7l;

InvalidateRect(hwnd, NULL, FALSE);

DeleteObject(hrgnClickl;
DeleteObject(hrgnMissl;
DeleteObject(hrgnCombine);
ReleaseDC(hwnd, hdclocal);

See Also CombineRgn, RectVisible

QuerySendMessage 763

Query Abort CIIJ
BOOL QueryAbort(hdc, reserved)
HDC hdc; /* device-context handle */
int reserved; /* reserved; should be zero */

The Query Abort function calls the AbortProc callback function for a printing ap
plication and queries whether the printing should be terminated.

Parameters hdc

Return Value

See Also

Identifies the device context.

reserved
Specifies a reserved value. It should be zero.

The return value is TRUE if printing should continue or if there is no abort proce
dure. It is FALSE if the print job should be terminated. The return value is sup
plied by the AbortProc callback function.

AbortDoc, AbortProc, SetAbortProc

QuerySendMessage
BOOL QuerySendMessage(hreservedJ, hreserved2, hreserved3, lpMessage)
HANDLE hreservedl;
HANDLE hreserved2;
HANDLE hreserved3;
LPMSG lpMessage; I* address of structure for message */

The QuerySendMessage function determines whether a message sent by Send
Message originated from within the current task. If the message is an intertask
message, QuerySendMessage puts it into the specified MSG structure.

764 ReadComm

Parameters

Return Value

Comments

hreservedl
Reserved; must be NULL.

hreserved2
Reserved; must be NULL.

hreserved3
Reserved; must be NULL.

lpMessage
Specifies the MSG structure in which to place an intertask message. The MSG
structure has the following form:

typedef struct tagMSG
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

} MSG;

/* msg */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is zero if the message originated within the current task. Other
wise, it is nonzero.

If the Windows debugger is entering soft mode, the application being debugged
should reply to intertask messages by using the Reply Message function.

The NULL parameters are reserved for future use.

See Also SendMessage, ReplyMessage

ReadComm IT!J
int ReadComm(idComDev, lpvBuf, cbRead)
int idComDev; I* identifier of device to read from */
void FAR* lpvBuf; I* address of buffer for read bytes */
int cbRead; I* number of bytes to read */

The Read Comm function reads up to a specified number of bytes from the given
communications device.

Parameters

Return Value

Comments

See Also

RealizePalette 765

idComDev
Specifies the communications device to be read from. The OpenComm func
tion returns this value.

lpvBuf
Points to the buffer for the read bytes.

cbRead
Specifies the number of bytes to be read.

The return value is the number of bytes read, if the function is successful. Other
wise, it is less than zero and its absolute value is the number of bytes read.

For parallel 1/0 ports, the return value is always zero.

When an error occurs, the cause of the error can be determined by using the Get
CommError function to retrieve the error value and status. Since errors can occur
when no bytes are present, if the return value is zero, the GetCommError func
tion should be used to ensure that no error occurred.

The return value is less than the number specified by the cbRead parameter only if
the number of bytes in the receiving queue is less than that specified by cbRead. If
the return value is equal to cbRead, additional bytes may be queued for the device.
If the return value is zero, no bytes are present.

GetCommError, OpenComm

RealizePalette
UINT RealizePalette(hdc)
HDC hdc; I* handle of device context *I

The RealizePalette function maps palette entries from the current logical palette
to the system palette.

Parameters hdc

Return Value

Identifies the device context containing a logical palette.

The return value indicates how many entries in the logical palette were mapped to
different entries in the system palette. This represents the number of entries that
this function remapped to accommodate changes in the system palette since the
logical palette was last realized.

766 Rectangle

Comments

Example

See Also

Rectangle

A logical color palette acts as a buffer between color-intensive applications and
the system, allowing an application to use as many colors as necessary without in
terfering with either its own displayed color or with colors displayed by other win
dows. When a window has the input focus and calls the RealizePalette function,
Windows ensures that the window will display all the requested colors (up to the
maximum number simultaneously available on the screen) and Windows displays
additional colors by matching them to available colors. In addition, Windows
matches the colors requested by inactive windows that call RealizePalette as
closely as possible to the available colors. This significantly reduces undesirable
changes in the colors displayed in inactive windows.

The following example uses the SelectPalette function to select a palette into a .
device context and then calls the RealizePalette function to map the colors to the
system palette:

HPALETTE hpal, hPalPrevious;

hdc = GetDC(hwnd);

hPalPrevious = SelectPalette(hdc, hpal, FALSE);
if (RealizePalette(hdc) == NULL)

MessageBox(hwnd, "Can't realize palette", "Error", MB_OK);

ReleaseDC(hwnd, hdc);

SelectPalette

BOOL Rectangle(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect)
HDC hdc; I* handle of device context */
int nLeftRect; I* x-coordinate upper-left corner */
int nTopRect; I* y-coordinate upper-left corner */
int nRightRect; I* x-coordinate lower-right corner */
int nBottomRect; I* y-coordinate lower-right corner */

The Rectangle function draws a rectangle, using the current pen. The interior of
the rectangle is filled by using the current brush.

Parameters hdc
Identifies the device context.

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the rectangle.

Return Value

Comments

Example

See Also

RectlnRegion 767

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the rectangle.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the rectangle.

nBottomRect
Specifies the logical y-coordinate of the lower-right comer of the rectangle.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The figure this function draws extends up to, but does not include, the
right and bottom coordinates. This means that the height of the figure is
nBottomRect- nTopRect and the width of the figure is nRightRect- nLeftRect.

Both the width and the height of a rectangle must be greater than 2 units and less
than 32,767 units.

The following example uses a RECT structure to store the coordinates used by the
Rectangle function:

HOC hde;

RECT re= { 10, 10, 180, 140 };
Reetangle(hde, re.left, re.top,

re.right, re.bottom);

PolyLine, RoundRect

RectlnRegion
BOOL RectlnRegion(hrgn, lprc)
HRGN hrgn; /*handle of region *I

I const RECT FAR lprc; I* address of structure with rectangle

Parameters

The RectlnRegion function determines whether any part of the specified
rectangle is within the boundaries of the given region.

hrgn
Identifies the region.

lprc
Points to a RECT structure containing the coordinates of the rectangle. The
RECT structure has the following form:

768 RectVisible

Return Value

Example

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if any part of the specified rectangle lies within the
boundaries of the region. Otherwise, it is zero.

The following example uses the RectlnRegion function to determine whether a
specified rectangle is in a region and prints the result:

HRGN hrgn;
RECT re= { 100, 10, 130, 50 };
BOOL fRectin;
LPSTR lpszOverlap = "Some overlap between re and region.";
LPSTR lpszNoOverlap = "No common points in re and region.";

fRectin = RectinRegion(hrgn, &re);
if (!fRectin)

TextOut(hdc, 10, 10, lpszNoOverlap, lstrlen(lpszNoOverlap));
else

TextOutChdc, 10, 10, lpszOverlap, lstrlen(lpszOverlap));

See Also PtlnRegion

RectVisible [EJ

BOOL RectVisible(hdc, lprc)
HDC hdc; I* handle of device context */
const RECT FAR* !pre; I* address of structure with rectangle */

The RectVisible function determines whether any part of the specified rectangle
lies within the clipping region of the given device context.

Parameters hdc
Identifies the device context.

!pre
Points to a RECT structure that contains the logical coordinates of the specified
rectangle. The RECT structure has the following form:

Return Value

Example

See Also

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

RectVisible 769

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if some portion of the rectangle is within the clipping
region. Otherwise, it is zero.

The following example paints a clipping region yellow by painting the client area.
The RectVisible function is called to determine whether a specified rectangle over
laps the clipping region. If there is some overlap, the rectangle is filled by using a
red brush. If there is no overlap, text is displayed inside the clipping region. In this
case, the rectangle and the region do not overlap, even though they both specify
110 as a boundary on the y-axis, because regions are defined as including the pix
els up to but not including the specified right and bottom coordinates.

RECT re, re Vis;
HRGN hrgn;
HBRUSH hbrRed, hbrYellow;

GetClientRect(hwnd, &re);
hrgn = CreateRectRgn(l0, 10, 310, 110);
SelectClipRgn(hdc, hrgn);

hbrYellow = CreateSolidBrush(RGB(255, 255, 0));
FillRect(hdc, &re, hbrYellow);

SetRect(&rcVis, 10, 110, 310, 300);
if (RectVisible(hdc, &rcVis)) {

}

hbrRed = CreateSolidBrush(RGB(255, 0, 0));
FillRect(hdc, &rcVis, hbrRed);
DeleteObject(hbrRed);

else {
SetBkColor(hdc, RGB(255, 255, 0));
TextOut(hdc, 20, 50, "Rectangle outside clipping region.", 34);

}

DeleteObject(hbrYellow);
DeleteObject(hrgn);

CreateRectRgn, PtVisible, SelectClipRgn

770 RedrawWindow

RedrawWindow
BOOL RedrawWindow(hwnd, lprcUpdate, hrgnUpdate,juRedraw)
HWND hwnd; /* handle of window
const RECT FAR* lprcUpdate; /*address of structure with update rect.
HRGN hrgnUpdate; /* handle of update region
UINT fuRedraw; I* redraw flags

*/
*/
*/
*/

The RedrawWindow function updates the specified rectangle or region in the
given window's client area.

Parameters hwnd
Identifies the window to be redrawn. If this parameter is NULL, the desktop
window is updated.

lprcUpdate
Points to a RECT structure containing the coordinates of the update rectangle.
This parameter is ignored if the hrgnUpdate parameter contains a valid region
handle. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

f* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

hrgnUpdate
Identifies the update region. If both the hrgnUpdate and lprcUpdate parameters
are NULL, the entire client area is added to the update region.

fuRedraw
Specifies one or more redraw flags. This parameter can be a combination of
flags:

The following flags are used to invalidate the window:

Value

RDW_ERASE

Meaning

Causes the window to receive a
WM_ERASEBKGND message when the window is
repainted. The RDW _INVALIDATE flag must also
be specified; otherwise, RDW _ERASE has no effect.

Value

RDW_FRAME

RDW _INTERNALPAINT

RDW _INVALIDATE

RedrawWindow 771

Meaning

Causes any part of the non-client area of the window
that intersects the update region to receive a
WM_NCPAINT message. The RDW _INVALIDATE
flag must also be specified; otherwise,
RDW _FRAME has no effect. The WM_NCPAINT
message is typically not sent during the execution
of the Redraw Window function unless either
RDW _UPDATENOW or RDW _ERASENOW is
specified.

Causes a WM_PAINT message to be posted to the
window regardless of whether the window contains
an invalid region.

Invalidate lprcUpdate or hrgnUpdate (only one may
be non-NULL). If both are NULL, the entire win
dow is invalidated.

The following flags are used to validate the window:

Value

RDW _NOERASE

RDW _NOFRAME

Meaning

Suppresses any pending WM_ERASEBKGND
messages.

Suppresses any pending WM_NCPAINT
messages. This flag must be used with
RDW _VALIDATE and is typically used with
RDW _NOCHILDREN. This option should be
used with care, as it could cause parts of a win
dow from painting properly.

RDW _NOINTERNALPAINT Suppresses any pending internal WM_PAINT
messages. This flag does not affect WM_PAINT
messages resulting from invalid areas.

RDW_VALIDATE Validates lprcUpdate or hrgnUpdate (only one
may be non-NULL). If both are NULL, the entire
window is validated. This flag does not affect in
ternal WM_PAINT messages.

The following flags control when repainting occurs. No painting is performed
by the Redraw Window function unless one of these bits is specified.

Value

RDW _ERASENOW

Meaning

Causes the affected windows (as specified by the
RDW _ALLCHILDREN and RDW _NOCHILDREN
flags) to receive WM_NCPAINT and
WM_ERASEBKGND messages, if necessary, before
the function returns. WM_PAINT messages are deferred.

772 R11gCloseKey

Return Value

Comments

See Also

Value

RDW _UPDATENOW

Meaning

Causes the affected windows (as specified by the
RDW _ALLCHILDREN and RDW _NOCHILDREN
flags) to receive WM_NCPAINT,
WM_ERASEBKGND, and WM_pAINT messages,
if necessary, before the function returns.

By default, the windows affected by the RedrawWindow function depend on
whether the specified window has the WS_CLIPCHILDREN style. The child
windows of WS_CLIPCHILDREN windows are not affected; however, non
WS_CLIPCHILDREN windows are recursively validated or invalidated until a
WS_CLIPCHILDREN window is encountered. The following flags control
which windows are affected by the RedrawWindow function:

Value

RDW _ALLCHILDREN

RDW _NOCHILDREN

Meaning

Includes child windows, if any, in the repainting
operation.

Excludes child windows, if any, from the repainting
operation.

The return value is nonzero if the function is successful. Otherwise, it is zero.

When the Redraw Window function is used to invalidate part of the desktop win
dow, the desktop window does not receive a WM_PAINT message. To repaint the
desktop, an application should use the RDW _ERASE flag to generate a
WM_ERASEBKGND message.

GetUpdateRect, GetUpdateRgn, InvalidateRect, InvalidateRgn,
Update Window

RegCloseKey
#include <shellapi.h>

LONG RegCioseKey(hkey)
HKEY hkey; I* handle of key to close */

Parameters

The RegCloseKey function closes a key. Closing a key releases the key's handle.
When all keys are closed, the registration database is updated.

hkey
Identifies the open key to close.

Return Value

Comments

Example

See Also

RegCreateKey 773

The return value is ERROR_SUCCESS if the function is successful. Otherwise, it
is an error value.

The RegCloseKey function should be called only if a key has been opened by
either the RegOpenKey function or the RegCreateKey function. The handle for a
given key should not be used after it has been closed, because it may no longer be
valid. Key handles should not be left open any longer than necessary.

The following example uses the RegCreateKey function to create the handle of a
protocol, uses the RegSetValue function to set up the subkeys of the protocol, and
then calls RegCloseKey to save the information in the database:

HKEY hkProtocol;

if (RegCreateKey(HKEY_CLASSES_ROOT, /* root *I
"NewAppDocument\\protocol\\StdFileEditing", /* protocol string */
&hkProtocol) != ERROR_SUCCESSl /* protocol key handle */

return FALSE;

RegSetV al ue (h kP rotoco l , I* handle of protocol key */
"server", /* name of subkey */
REG_ SZ, /* required */
"newapp.exe", /* command to activate server */
10); /* text string size */

RegSetValue(hkProtocol, f* handle of protocol key */
"verb\\0", /* name of subkey */
REG_ SZ, /* required */
"EDIT", /* server should edit object */
4); /* text string size *I

RegCloseKey(hkProtocol); /* closes protocol key and sub keys */

RegCreateKey, RegDeleteKey, RegOpenKey, RegSetValue

Reg Create Key
#include <shellapi.h>

LONG RegCreateKey(hkey, lpszSubKey, lphkResult)
HKEY hkey; /*handle of an open key */
LPCSTR lpszSubKey; /* address of string for subkey to open */
HKEY FAR* lphkResult; /* address of handle of open key */

774 RegCreateKey

Parameters

Return Value

Comments

Example

The RegCreateKey function creates the specified key. If the key already exists in
the registration database, RegCreateKey opens it.

hkey
Identifies an open key (which can be HKEY_CLASSES_ROOT). The key
opened or created by the RegCreateKey function is a sub key of the key iden
tified by the hkey parameter. This value should not be NULL.

lpszSubKey
Points to a null-terminated string specifying the subkey to open or create.

lphkResult
Points to the handle of the key that is opened or created.

The return value is ERROR_SUCCESS if the function is successful. Otherwise, it
is an error value.

An application can create keys that are subordinate to the top level of the database
by specifying HKEY _CLASSES_ROOT for the hKey parameter. An application
can use the RegCreateKey function to create several keys at once. For example,
an application could create a subkey four levels deep and the three preceding sub
keys by specifying a string of the following form for the lpszSubKey parameter:

sub key J\subkey2\subkey3\subkey4

The following example uses the RegCreateKey function to create the handle of a
protocol, uses the RegSet Value function to set up the subkeys of the protocol, and
then calls RegCloseKey to save the information in the database:

HKEY hkProtocol;

if (RegCreateKey(HKEY_CLASSES_ROOT, /* root */
"NewAppDocument\\protocol\\StdFileEditing'', /*protocol string */
&hkProtocol) != ERROR_SUCCESS) /* protocol key handle *I

return FALSE;

RegSetValue(hkProtocol, /* handle of protocol key */
"server", /* name of subkey */
REG_ SZ, /* required */
"newapp.exe", /* command to activate server *I
10); /* text string size */

RegSetVa l ue (h kProtoco l , /* handle of protocol key */
"verb\\0", /* name of subkey */
REG_ SZ, /* required *I
"EDIT", /* server should edit object *I
4); /* text string size */

Reg Cl oseKey (h kP rotoco l) ; /* closes protocol key and sub keys */

RegDeleteKey 775

See Also RegCloseKey, RegOpenKey, RegSetValue

RegDeleteKey
#include <shellapi.h>

LONG RegDeleteKey(hkey, lpszSubKey)
HKEY hkey; /* handle of an open key */
LPCSTR lpszSubKey; /* address of string for subkey to delete */

Parameters

Return Value

Example

The RegDeleteKey function deletes the specified key. When a key is deleted, its
value and all of its subkeys are deleted.

hkey
Identifies an open key (which can be HKEY_CLASSES_ROOT). The key de
leted by the RegDeleteKey function is a sub key of this key.

lpszSubKey
Points to a null-terminated string specifying the subkey to delete. This value
should not be NULL.

The return value is ERROR_SUCCESS if the function is successful. Otherwise, it
is an error value.

If the error value is ERROR_ACCESS_DENIED, either the application does not
have delete privileges for the specified key or another application has opened the
specified key.

The following example uses the RegQueryValue function to retrieve the name of
an object handler and then calls the RegDeleteKey function to delete the key if its
value is nwappobj.dll:

char sz8uff[80];
LONG cb;
HKEY hkStdFileEditing;

if (RegOpenKey(HKEY_CLASSES_ROOT,
"NewAppDocument\\protocol\\StdFileEditing",
&hkStdFileEditing) ERROR SUCCESS) {

cb = sizeof(szBuff);

776 RegEnumKey

See Also

if (RegQueryValue(hkStdFileEditing,
"handler",

}

szBuff,
&cb) == ERROR_SUCCESS
&& lstrcmpi("nwappobj.dll", szBuff) == 0)

Reg Del eteKey(hkStdFil eEditi ng, "handler");
RegCloseKey(hkStdFileEditing);

RegCloseKey

RegEnumKey
#include <shellapi.h>

LONG RegEnumKey(hkey, iSubkey, lpszBu.ffer, cbBujfer)
HKEY hkey; /*handle of key to query */
DWORD iSubkey; I* index of subkey to query */
LPSTR lpszBu.ffer; I* address of buffer for subkey string */
DWORD cbBuffer; I* size of subkey buffer */

Parameters

Return Value

Comments

The RegEnumKey function enumerates the subkeys of a specified key.

hkey
Identifies an open key (which can be HKEY_CLASSES_ROOT) for which sub
key information is retrieved.

iSubkey
Specifies the index of the subkey to retrieve. This value should be zero for the
first call to the RegEnumKey function.

lpszBu.ffer
Points to a buffer that contains the name of the subkey when the function
returns. This function copies only the name of the subkey, not the full key
hierarchy, to the buffer.

ch Buffer
Specifies the size, in bytes, of the buffer pointed to by the lpszBujfer parameter.

The return value is ERROR_SUCCESS if the function is successful. Otherwise, it
is an error value.

The first parameter of the RegEnumKey function must specify an open key. Ap
plications typically precede the call to the RegEnumKey function with a call to
the RegOpenKey function and follow it with a call to the RegCloseKey function.

Example

See Also

RegisterClass 777

Calling RegOpenKey and RegCloseKey is not necessary when the first parameter
is HKEY _CLASSES_ROOT, because this key is always open and available; how
ever, calling RegOpenKey and RegCloseKey in this case is a time optimization.
While an application is using the RegEnumKey function, it should not make calls
to any registration functions that might change the key being queried.

To enumerate subkeys, an application should initially set the iSubkey parameter to
zero and then increment it on successive calls.

The following example uses the RegEnumKey function to put the values associ
ated with top-level keys into a list box:

HKEY hkRoot;
char szBuff[80], szValue[80J;
static DWORD dwlndex;
LONG cb;

if (RegOpenKey(HKEY_CLASSES_ROOT, NULL, &hkRoot) == ERROR_SUCCESS) {
for (dwlndex = 0; RegEnumKey(hkRoot, dwlndex, szBuff,

sizeof(szBuff)) == ERROR_SUCCESS; ++dwlndex) {
if (*SZBuff == '.')

continue;
cb = sizeof(szValue);
if (RegQueryValue(hkRoot, (LPSTR) szBuff, szValue,

&cb) == ERROR_SUCCESS)
SendDlgitemMessage(hDlg, ID_ENUMLIST, LB_ADDSTRING, 0,

(LONG) (LPSTR) szValue);

RegCloseKey(hkRoot);

RegQuery Value

RegisterClass
ATOM RegisterClass(lpwc)
const WNDCLASS FAR* lpwc; /* address of structure with class data */

Parameters

The RegisterClass function registers a window class for subsequent use in calls to
the CreateWindow or CreateWindowExfunction.

lpwc
Points to a WNDCLASS structure. The structure must be filled with the appro
priate class attributes before being passed to the function. The WNDCLASS
structure has the following form:

778 RegisterClass

Return Value

Comments

Example

typedef struct tagWNDCLASS {
UINT style;
WNDPROC lpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hinstance;
HICON hicon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCSTR lpszMenuName;
LPCSTR lpszClassName;

WNDCLASS;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is an atom that uniquely identifies the class being registered. For
Windows versions 3.0 and earlier, the return value is nonzero ifthe function is
successful or zero if an error occurs.

An application cannot register a global class if either a global class or a task
specific class already exists with the given name.

An application can register a task-specific class with the same name as a global
class. The task-specific class overrides the global class for the current task only. A
task cannot register two local classes with the same name. However, two different
tasks can register task-specific classes using the same name.

The following example registers a window class, then creates a window of that
class:

WNDCLASS we;
HINSTANCE hinst;
char szMyClass[J "MyClass";
HWND hwndMyWindow;

/* Register the window class. */

we.style
wc.lpfnWndProc
wc.cbClsExtra
wc.cbWndExtra
wc.hinstance
wc.hicon
wc.hCursor
wc.hbrBackground
wc.lpszMenuName
wc.lpszClassName

0;
MyWndProc;
0;
0;
hinst;
Loadicon(hinst, "Myicon");
LoadCursor(NULL, IDC_ARROW);
(HBRUSH) (COLOR_WINDOW + 1);
(LPCSTR) NULL;
szMyClass;

See Also

if (!RegisterClass(&wc))
return FALSE;

/* Create the window. */

RegisterClipboardFormat 779

hwndMyWindow = CreateWindow(szMyClass, "MyApp",
WS_OVERLAPPED I WS_SYSMENU, CW_USEDEFAULT, 0,
CW_USEDEFAULT, 0, NULL, NULL,
hinst, NULL) ;

CreateWindow, CreateWindowEx, GetClasslnfo, GetClassName, Unregister
Class, WindowProc

RegisterClipboardFormat
UINT RegisterClipboardFormat(ZpszF ormatName)
LPCSTR lpszFormatName; I* address of name string *!

Parameters

Return Value

Comments

See Also

The RegisterClipboardFormat function registers a new clipboard format. The
registered format can be used in subsequent clipboard functions as a valid format
in which to render data, and it will appear in the clipboard's list of formats.

lpszFormatName
Points to a null-terminated string that names the new format.

The return value indicates the newly registered format. If the identical format
name has been registered before, even by a different application, the format's refer
ence count is incremented (increased by one) and the same value is returned as
when the format was originally registered. The return value is zero if the format
cannot be registered.

The format value returned by the RegisterClipboardFormat function is within
the range OxCOOO through OxFFFF.

CountClipboardFormats, EnumClipboardFormats, GetClipboardFormat
Name, GetPriorityClipboardFormat, IsClipboardFormatA vailable

780 RegisterWindowMessage

RegisterWindowMessage
UINT RegisterWindowMessage(lpsz)
LPCSTR lpsz; /* address of message string */

Parameters

Return Value

Comments

The RegisterWindowMessage function defines a new window message that is
guaranteed to be unique throughout the system. The returned message value can
be used when calling the SendMessage or PostMessage function.

lpsz
Points to a null-terminated string that specifies the message to be registered.

The return value is an unsigned short integer in the range OxCOOO through OxFFFF
if the message is successfully registered. Otherwise, the return value is 0.

RegisterWindowMessage is typically used to register messages for communicat
ing between two cooperating applications.

If two different applications register the same message string, the applications re
turn the same message value. The message remains registered until the Windows
session ends.

Use the RegisterWindowMessage function only when more than one application
must process the same message. For sending private messages within a window
class, an application can use any integer in the range WM_ USER through Ox7FFF.
(Messages in this range are private to a window class, not to an application. For ex
ample, such predefined control classes as BUTTON, EDIT, LISTBOX, and
COMBOBOX may use values in this range.)

See Also PostAppMessage, PostMessage, SendMessage

Reg Open Key CIIJ
#include <shellapi.h>

LONG RegOpenKey(hkey, lpszSubKey, lphkResult)
HKEY hkey; /*handle of an open key */
LPCSTR lpszSubKey; /*address of string for subkey to open */
HKEY FAR* lphkResult; /* address of handle of open key */

The RegOpenKey function opens the specified key.

Parameters

Return Value

Comments

Example

See Also

Reg Open Key 781

hkey
Identifies an open key (which can be HKEY_CLASSES_ROOT). The key
opened by the RegOpenKey function is a subkey of the key identified by this
parameter. This value should not be NULL.

lpszSubKey
Points to a null-terminated string specifying the name of the subkey to open.

lphkResult
Points to the handle of the key that is opened.

The return value is ERROR_SUCCESS if the function is successful. Otherwise, it
is an error value.

Unlike the RegCreateKey function, the RegOpenKey function does not create
the specified key if the key does not exist in the database.

The following example uses the RegOpenKey function to retrieve the handle of
the StdFileEditing subkey, calls the RegQueryValue function to retrieve the name
of an object handler, and then calls the RegDeleteKey function to delete the key if
its value is nwappobj.dll:

char szBuff[80J;
LONG cb;
HKEY hkStdFileEditing;

if (RegOpenKey(HKEY_CLASSES_ROOT,
"NewAppDocument\\protocol\\StdFileEditing",
&hkStdFileEditing) == ERROR_SUCCESS) {

cb = sizeof(szBuff);
if (RegQueryValue(hkStdFileEditing,

"handler",
szBuff,
&cb) == ERROR SUCCESS
&& lstrcmpi("nwappobj.dll", szBuff) == 0)

RegDeleteKey(hkStdFileEditing, "handler");
RegCloseKey(hkStdFileEditing);

RegCreateKey

782 RegQueryValue

RegQueryValue
#include <shellapi.h>

LONG RegQueryValue(hkey, lpszSubKey, lpszValue, lpcb)
HKEY hkey; /*handle of key to query */
LPCSTR lpszSubKey; /*address of string for subkey to query */
LPSTR lpsz Value; /* address of buffer for returned string *I
LONG FAR* lpcb; I* address of buffer for size of returned string */

Parameters

Return Value

Example

The RegQueryValue function retrieves the text string associated with a specified
key.

hkey
Identifies a currently open key (which can be HKEY_CLASSES_ROOT). This
value should not be NULL.

lpszSubKey
Points to a null-terminated string specifying the name of the subkey of the hkey
parameter for which a text string is retrieved. If this parameter is NULL or
points to an empty string, the function retrieves the value of the hkey parameter.

lpszValue
Points to a buffer that contains the text string when the function returns.

lpcb
Points to a variable specifying the size, in bytes, of the buffer pointed to by the
lpsz Value parameter. When the function returns, this variable contains the size
of the string copied to lpszValue, including the null-terminating character.

The return value is ERROR_SUCCESS if the function is successful. Otherwise, it
is an error value.

The following example uses the RegOpenKey function to retrieve the handle of
the StdFileEditing subkey, calls the RegQueryValue function to retrieve the name
of an object handler and then calls the RegDeleteKey function to delete the key if
its value is nwappobj.dll:

char szBuff[80J;
LONG cb;
HKEY hkStdFileEditing;

if (RegOpenKey(HKEY_CLASSES_ROOT,
"NewAppDocument\\protocol\\StdFileEditing",
&hkStdFileEditing) ERROR_SUCCESS) {

cb = sizeof(szBuff);

if (RegQueryValue(hkStdFileEditing,
"handler",
szBuff,
&cb) == ERROR SUCCESS
&& lstrcmpi("nwappobj.dll", szBuff) == 0)

Reg Del eteKey (h kStd Fil eEd it i ng, "handler");
RegCloseKey(hkStdFileEditing);

RegSetValue 783

See Also RegEnumKey

RegSetValue CI!J
#include <shellapi.h>

LONG RegSetValue(hkey, lpszSubKey,fdwType, lpszValue, cb)
HKEY hkey; /*handle of key */
LPCSTR lpszSubKey; /* address of string for subkey */
DWORD fdwType; /* must be REG_SZ */
LPCSTR lpszValue; /*address of string for key */
DWORD cb; /* ignored */

Parameters

Return Value

The RegSetValue function associates a text string with a specified key.

hkey
Identifies a currently open key (which can be HKEY _CLASSES_ROOT). This
value should not be NULL.

lpszSubKey
Points to a null-terminated string specifying the subkey of the hkey parameter
with which a text string is associated. If this parameter is NULL or points to an
empty string, the function sets the value of the hkey parameter.

fdwType
Specifies the string type. For Windows version 3.1, this value must be REG_SZ.

lpszValue

cb

Points to a null-terminated string specifying the text string to set for the given
key.

Specifies the size, in bytes, of the string pointed to by the lpsz Value parameter.
For Windows version 3.1, this value is ignored.

The return value is ERROR_SUCCESS if the function is successful. Otherwise, it
is an error value.

784 ReleaseCapture

Comments

Example

See Also

If the key specified by the lpszSubKey parameter does not exist, the RegSetValue
function creates it.

The following example uses the RegSetValue function to register a filename ex
tension and its associated class name:

RegSetValue(HKEY_ CLASSES _ROOT, f* root *f
". XXX", f* string for filename extension *f
REG_ SZ, f* required *f
"NewAppDocument", f* class name for extension *f
14) ; f* size of text string *f

RegSetValue(HKEY_ CLASSES _ROOT, f* root *f
"NewAppDocument", f* string for class-definition key */
REG_ SZ, f* required *f
"New Application", f* text description of class *f
15); f* size of text string *f

RegCreateKey, RegQueryValue

ReleaseCapture
void ReleaseCapture(void)

Parameters

Return Value

Comments

See Also

The ReleaseCapture function releases the mouse capture and restores normal
input processing. A window with the mouse capture receives all mouse input re
gardless of the position of the cursor.

This function has no parameters.

This function does not return a value.

An application calls this function after calling the SetCapture function.

SetCapture

RemoveFontResource 785

Release DC ~

int ReleaseDC(hwnd, hdc)
HWND hwnd; /* handle of window with device context */
HDC hdc; /*handle of device context */

The ReleaseDC function releases the given device context, freeing it for use by
other applications.

Parameters hwnd

Return Value

Comments

See Also

Identifies the window whose device context is to be released.

hdc
Identifies the device context to be released.

The return value is 1 if the function is successful. Otherwise, it is 0.

The effect ofReleaseDC depends on the type of device context. It frees only com
mon and window device contexts. It has no effect on class or private device con
texts.

The application must call the ReleaseDC function for each call to the Get
WindowDC function and for each call to the GetDC function that retrieves a com
mon device context.

BeginPaint, EndPaint, GetDC, GetWindowDC

RemoveFontResource
BOOL RemoveFontResource(lpszFile)
LPCSTR lpszFile; /* address of string for filename *I

Parameters

The RemoveFontResource function removes an added font resource from the
specified file or from the Windows font table.

lpszFile
Points to a string that names the font resource file or contains a handle of a
loaded module. If this parameter points to the font resource file, the string must
be null-terminated and have the MS-DOS filename format. If the parameter con
tains a handle, the handle must be in the low-order word and the high-order
word must be zero.

786 Remove Menu

Return Value

Comments

Example

See Also

The return value is nonzero if the function is successful. Otherwise, it is zero.

Any application that adds or removes fonts from the Windows font table should
send a WM_FONTCHANGE message to all top-level windows in the system by
using the SendMessage function with the hwnd parameter set to OxFFFF.

In some cases, the RemoveFontResource function may not remove the font re
source immediately. If there are outstanding references to the resource, it remains
loaded until the last logical font using it has been removed (deleted) by using the
DeleteObject function.

The following example uses the AddFontResource function to add a font re
source from a file, notifies other applications by using the SendMessage function,
then removes the font resource by calling the RemoveFontResource function:

AddFontResource("font res. fan");
SendMessage(HWND_BROADCAST, WM_FONTCHANGE, 0, 0);

. /* Work with the font. *I

if (RemoveFontResource("fontres.fon")) {
SendMessage(HWND_BROADCAST, WM_FONTCHANGE, 0, 0);
return TRUE;

else
return FALSE;

AddFontResource, DeleteObject, SendMessage

RemoveMenu 0J
BOOL RemoveMenu(hmenu, idltem,fuFlags)
HMENU hmenu; /* handle of menu */
UINT idltem; /*menu item to delete */
UINT fuFlags; /* menu flags */

Parameters

The RemoveMenu function deletes a menu item with an associated pop-up menu
from a menu but does not destroy the handle of the pop-up menu, allowing the
menu to be reused. Before calling this function, an application should call the Get
SubMenu function to retrieve the pop-up menu handle.

hmenu
Identifies the menu to be changed.

RemoveProp 787

idltem
Specifies the menu item to be removed, as determined by thefuFlags parameter.

fuFlags
Specifies how the idltem parameter is to be interpreted. This parameter can be
one of the following values:

Value

MF _BYCOMMAND

MF _BYPOSITION

Meaning

The id/tern parameter specifies the menu-item identifier.

The id/tern parameter specifies the zero-based position of
the menu item.

Return Value The return value is nonzero if the function is successful. Otherwise it is zero.

Comments Whenever a menu changes (whether or not it is in a window that is displayed), the
application should call the DrawMenuBar function.

See Also AppendMenu, CreateMenu, DeleteMenu, DrawMenuBar, GetSubMenu,
InsertMenu

Remove Prop CI!J
HANDLE RemoveProp(hwnd, lpsz)
HWND hwnd; /* handle of window */
LPCSTR lpsz; /* atom or address of string */

Parameters

Return Value

The RemoveProp function removes an entry from the property list of the given
window. The RemoveProp function returns a data handle so that the application
can free the data associated with the handle.

hwnd
Identifies the window whose property list is to be changed.

lpsz
Points to a null-terminated string or an atom that identifies a string. If an atom
is given, it must be a global atom created by a previous call to the GlobalAdd
Atom function. The atom, a 16-bit value, must be placed in the low-order word
of this parameter; the high-order word must be zero.

The return value is the handle of the given string if the function is successful.
Otherwise, it is NULL-for example, if the string cannot be found in the given
property list.

788 Replace Text

Comments An application can remove only those properties it has added. It should not re
move properties added by other applications or by Windows itself.

An application must free the data handles associated with entries removed from a
property list. The application should remove only those properties it added to the
property list.

See Also GetProp, GlobalAddAtom

ReplaceText [IT]

#include <commdlg.h>

HWND ReplaceText(lpfr)
FIND REPLACE FAR* lpfr; /* address of structure with initialization data *I

Parameters

The ReplaceText function creates a system-defined modeless dialog box that
makes it possible for the user to find and replace text within a document. The ap
plication must perform the actual find and replace operations.

lpfr
Points to a FINDREPLACE structure that contains information used to initial
ize the dialog box. When the user makes a selection in the dialog box, the sys
tem fills this structure with information about the user's selection and then
sends a message to the application. This message contains a pointer to the
FINDREPLACE structure.

The FINDREPLACE structure has the following form:

#include <commdlg.h>

typedef struct tagFINDREPLACE { /* fr */
DWORD lStructSize;
HWND hwndOwner;
HINSTANCE hinstance;
DWORD Flags;
LPSTR lpstrFindWhat;
LPSTR lpstrReplaceWith;
UINT wFindWhatLen;
UINT wReplaceWithLen;
LPARAM lCustData;
UINT (CALLBACK* lpfnHooklCHWND, UINT, WPARAM, LPARAMJ;
LPCSTR lpTemplateName;

} FINDREPLACE;

Return Value

Errors

Comments

Example

Replace Text 789

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the window handle of the dialog box, or it is NULL if an error
occurs. An application can use this handle to communicate with or to close the
dialog box.

Use the CommDlgExtendedErrorfunction to retrieve the error value, which may
be one of the following:

CDERR_FINDRESF AIL URE
CDERR_INITIALIZATION
CDERR_LOADRESFAILURE
CDERR_LOADSTRFAILURE
CDERR_LOCKRESFAILURE
CDERR_MEMALLOCFAILURE
CDERR_MEMLOCKFAILURE
CDERR_NOHINSTANCE
CDERR_NOHOOK
CDERR_NOTEMPLATE
CDERR_STRUCTSIZE
FRERR_BUFFERLENGTHZERO

The dialog box procedure for the ReplaceText function passes user requests to the
application through special messages. The lParam parameter of each of these mes
sages contains a pointer to a FINDREPLACE structure. The procedure sends the
messages to the window identified by the hwndOwner member of the FIND
REPLACE structure. An application can register the identifier for these messages
by specifying the commdlg_FindReplace string in a call to the RegisterWindow
Message function.

For the TAB key to function correctly, any application that calls the ReplaceText
function must also call the IsDialogMessage function in its main message loop.
(The IsDialogMessage function returns a value that indicates whether messages
are intended for the Replace dialog box.)

This example initializes a FINDREPLACE structure and calls the ReplaceText
function to display the Replace dialog box:

static FINDREPLACE fr;
char szFindWhat[256] = "";
char szReplaceWith[256] = "";

/* string to find */
/* string to replace */

/*Set all structure fields to zero. */

memset(&fr, 0, sizeof(FINDREPLACE));

790 ReplyMessage

See Also

fr.lStructSize = sizeof(FINDREPLACE);
fr.hwndOwner = hwnd;
fr.lpstrFindWhat = szFindWhat;
fr.wFindWhatLen = sizeof(szFindWhat);
fr.lpstrReplaceWith = szReplaceWith;
fr.wReplaceWithlen = sizeof(szReplaceWith);

hDlg = ReplaceText(&fr);

In addition to initializing the members of the FINDREPLACE structure and
calling the ReplaceText function, an application must register the special
FINDMSGSTRING message and process messages from the dialog box. Refer to
the description of the Find Text function for an example that shows how an appli
cation registers and processes a message.

FindText, lsDialogMessage, RegisterWindowMessage

ReplyMessage
void ReplyMessage(lResult)
LRESULT lResult; /* message-dependent reply *I

Parameters

Return Value

Comments

The Reply Message function is used to reply to a message sent through the Send
Message function without returning control to the function that called Send
Message.

lResult
Specifies the result of the message processing. The possible values depend on
the message sent.

This function does not return a value.

By calling this function, the window procedure that receives the message allows
the task that called SendMessage to continue to run as though the task that re
ceived the message had returned control. The task that calls ReplyMessage also
continues to run.

Usually, a task that calls SendMessage to send a message to another task will not
continue running until the window procedure that Windows calls to receive the
message returns. However, if a task that is called to receive a message must per
form some type of operation that might yield control (such as calling the Message
Box or DialogBox function), Windows could be deadlocked, as when the sending
task must run and process messages but cannot because it is waiting for

See Also

ResetDC
#include <print.h>

ResetDC 791

SendMessage to return. An application can avoid this problem if the task receiv
ing the message calls ReplyMessage before performing any operation that could
cause the task to yield.

The Reply Message function has no effect if the message was not sent through the
SendMessage function or if the message was sent by the same task.

DialogBox, MessageBox, SendMessage

HDC ResetDC(hdc, lpdm)
HDC hdc; I* handle of device context */

I const DEVMODE FAR lpdm; I* address of DEVMODE structure

The ResetDC function updates the given device context, based on the information
in the specified DEVMODE structure.

Parameters hdc
Identifies the device context to be updated.

lpdm
Points to a DEVMODE structure containing information about the new device
context. The DEVMODE structure has the following form:

#include <print.h>

typedef struct tagDEVMDDE /* dm */
char dmDeviceName[CCHDEVICENAME];
UINT dmSpecVersion;
UINT dmDriverVersion;
UINT dmSize;
UINT dmDriverExtra;
DWORD dmFields;
int dmOrientation;
int dmPaperSize;
int dmPaperlength;
int dmPaperWidth;
int dmScale;
int dmCopies;
int dmDefaultSource;
int dmPrintQuality;

792 ResizePalette

Return Value

Comments

See Also

int dmColor;
int dmDuplex;
int dmYResolution;
int dmTTOption;

DEVMODE;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the handle of the original device context if the function is
successful. Otherwise, it is NULL.

An application will typically use the ResetDC function when a window receives a
WM_DEVMODECHANGE message. ResetDC can also be used to change the
paper orientation or paper bins while printing a document.

The ResetDC function cannot be used to change the driver name, device name or
the output port. When the user changes the port connection or device name, the ap
plication must delete the original device context and create a new device context
with the new information.

Before calling ResetDC, the application must ensure that all objects (other than
stock objects) that had been selected into the device context have been selected out.

DeviceCapabilities, Escape, ExtDeviceMode

ResizePalette
BOOL ResizePalette(hpal, cEntries)
HPALETTE hpal; /* handle of palette *I

/ UINT cEntries; / number of palette entries after resizing

Parameters

Return Value

Comments

The ResizePalette function changes the size of the given logical palette.

hp al
Identifies the palette to be changed.

cEntries
Specifies the number of entries in the palette after it has been resized.

The return value is nonzero if the function is successful. Otherwise, it is zero.

If an application calls the ResizePalette function to reduce the size of the palette,
the entries remaining in the resized palette are unchanged. If the application calls

Restore DC

Restore DC 793

ResizePalette to enlarge the palette, the additional palette entries are set to black
(the red, green, and blue values are all zero) and the flags for all additional entries
are set to zero.

BOOL RestoreDC(hdc, nSavedDC)
HDC hdc; /* handle of device context */

/ int nSavedDC; / integer identifying device context to restore

The RestoreDC function restores the given device context to a previous state.
The device context is restored by popping state information off a stack created by
earlier calls to the SaveDC function.

Parameters hdc

Return Value

Comments

Example

Identifies the device context.

nSavedDC
Specifies the device context to be restored. This parameter can be a value re
turned by a previous SaveDC function. If the parameter is -1, the most recently
saved device context is restored.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The stack can contain the state information for several instances of the device con
text. If the context specified by the nSavedDC parameter is not at the top of the
stack, RestoreDC deletes all state information between the instance specified by
nSavedDC and the top of the stack.

The following example uses the GetMapMode function to retrieve the mapping
mode for the current device context, uses the SaveDC function to save the state of
the device context, changes the mapping mode, restores the previous state of the
device context by using the RestoreDC function, and retrieves the mapping mode
again. The final mapping mode is the same as the mapping mode prior to the call
to the SaveDC function.

HOC hdclocal;
int MapMode;
char *aModes[] = {"ZERO", "MM_ TEXT", "MM_ LOMETRIC", "MM_HIMETRIC",

"MM_LOENGLISH", "MM_HIENGLISH", "MM_TWIPS",
"MM_ ISOTROPIC", "MM_ANISOTROPIC" } ;

hdclocal = GetDC(hwnd);
MapMode = GetMapMode(hdclocal);

794 RoundRect

TextOut(hdc, 100, 100, (LPSTR) a Modes [MapMode],
lstrlen(aModes[MapModeJ));

SaveDC(hdclocal);

SetMapMode(hdclocal, MM_LOENGLISH);
MapMode = GetMapMode(hdclocal);
TextOut(hdc, 100, 120, (LPSTR) aModes[MapMode],

lstrlen(aModes[MapModeJ));

RestoreDC(hdclocal, -1);

MapMode = GetMapMode(hdclocal);
TextOut(hdc, 100, 140, (LPSTR) aModes[MapMode],

lstrlen(aModes[MapMode]));

ReleaseDC(hwnd, hdclocal);

See Also SaveDC

RoundRect IT!]

BOOL RoundRect(hdc, nLeftRect, nTopRect, nRightRect, nBottomRect, nEllipseWidth, nEllipseHeight)
HDC hdc; I* handle of device context */
int nLeftRect; /* x-coordinate upper-left corner */
int nTopRect; /* y-coordinate upper-left corner */
int nRightRect; /* x-coordinate lower-right corner */
int nBottomRect; /* y-coordinate lower-right corner */
int nEllipseWidth; /*width of ellipse for rounded corners */
int nEllipseHeight; /* height of ellipse for rounded corners */

The RoundRect function draws a rectangle with rounded corners, using the cur
rent pen. The interior of the rectangle is filled by using the current brush.

Parameters hdc
Identifies the device context.

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the rectangle.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the rectangle.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the rectangle.

Return Value

Comments

Example

See Also

Save DC
int SaveDC(hdc)

Save DC 795

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the rectangle.

nEllipse Width
Specifies the width, in logical units, of the ellipse used to draw the rounded
corners.

nEllipseHeight
Specifies the height, in logical units, of the ellipse used to draw the rounded
corners.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The figure this function draws extends up to but does not include the right and
bottom coordinates. This means that the height of the figure is nBottomRect
nTopRect and the width of the figure is nRightRect- nLeftRect.

Both the width and the height of a rectangle must be greater than 2 units and less
than 32,767 units.

The following example uses a RECT structure to store the coordinates used by the
RoundRect function:

HOC hde;

RECT re = { 10, 10, 180, 140 } ;
int i Elli pseWi dth, i Elli pseHei ght;

iEll i pseWi dth = 20;
iEllipseHeight = 40;

RoundReet(hde, re.left, re.top, re.right, re.bottom,
iEllipseWidth, iEllipseHeight);

Rectangle

HDC hdc; /* handle of device context */

The SaveDC function saves the current state of the given device context by copy
ing state information (such as clipping region, selected objects, and mapping
mode) to a context stack. The saved device context can later be restored by using
the RestoreDC function.

796 Save DC

Parameters hdc

Return Value

Comments

Example

See Also

Identifies the device context to be saved.

The return value is an integer identifying the saved device context if the function
is successful. This integer can be used to restore the device context by calling the
RestoreDC function. The return value is zero if an error occurs.

The SaveDC function can be used any number of times to save any number of
device-context states.

The following example uses the GetMapMode function to retrieve the mapping
mode for the current device context, uses the SaveDC function to save the state of
the device context, changes the mapping mode, restores the previous state of the
device context by using the RestoreDC function, and retrieves the mapping mode
again. The final mapping mode is the same as the mapping mode prior to the call
to the SaveDC function.

HOC hdclocal;
int MapMode;
char •aModes[] = {"ZERO", "MM_TEXT", "MM_LOMETRIC", "MM_HIMETRIC",

"MM_LOENGLISH", "MM_HIENGLISH", "MM_ TWIPS",
"MM_ ISOTROPIC", "MM_ANISOTROPIC" } ;

hdclocal = GetDCChwnd);
MapMode = GetMapMode(hdclocal);
TextOut(hdc, 100, 100, CLPSTR) aModes[MapMode],

lstrlenCaModes[MapMode]));

SaveDCChdclocal);

SetMapMode(hdclocal, MM_LOENGLISH);
MapMode = GetMapMode(hdclocal);
TextOut(hdc, 100, 120, CLPSTR) aModes[MapModeJ,

lstrlen(aModes[MapModeJ));

RestoreDCChdclocal, -1);

MapMode = GetMapMode(hdclocal);
TextOut(hdc, 100, 140, (LPSTR) aModes [MapModeJ,

lstrlen(aModes[MapMode]));

ReleaseDC(hwnd, hdclocal);

RestoreDC

ScaleViewportExt 797

ScaleViewportExt ~

DWORD ScaleViewportExt(hdc, nXNum, nXDenom, nYNum, nYDenom)
HDC hdc; I* handle of device context */
int nXNum; /* amount by which current x-extent is multiplied */
int nXDenom; /* amount by which current x-extent is divided */
int nYNum; /* amount by which current y-extent is multiplied */
int nYDenom; I* amount by which current y-extent is divided */

The ScaleViewportExt function modifies the viewport extents relative to the cur
rent values.

Parameters hdc

Return Value

Comments

Example

Identifies the device context.

nXNum
Specifies the amount by which to multiply the current x-extent.

nXDenom
Specifies the amount by which to divide the result of multiplying the current
x-extent by the value of the nXNum parameter.

nYNum
Specifies the amount by which to multiply the current y-extent.

nYDenom
Specifies the amount by which to divide the result of multiplying the current
y-extent by the value of the nYNum parameter.

The low-order word of the return value contains the x-cxtent, in device units, of
the previous viewport if the function is successful; the high-order word contains
they-extent.

The new viewport extents are calculated by multiplying the current extents by the
given numerator and then dividing by the given denominator, as shown in the fol
lowing formulas:

nXNewVE (nXOldVE * nXNum)
nYNewVE = (nYOldVE * nYNum)

nXDenom
nYDenom

The following example draws a rectangle that is 4 logical units high and 4 logical
units wide. It then calls the Scale ViewportExt function and draws a rectangle that
is 8 units by 8 units. Because of the viewport scaling, the second rectangle is the
same size as the first.

798 ScaleViewportExtEx

See Also

HOC hde;
RECT re;

GetClientReet(hwnd, &rel;
hde = GetDC(hwnd);
SetMapMode(hde, MM_ANISOTROPIC);

SetWindowExt(hde, 10, 10);
SetViewportExt(hde, re.right, re.bottom);
Reetangle(hde, 3, 3, 7, 7);

SealeViewportExt(hde, 1, 2, 1, 2);
Reetangle(hde, 6, 6, 14, 14);

ReleaseDC(hwnd, hde);

Get ViewportExt

ScaleViewportExtEx CI!J
BOOL ScaleViewportExtEx(hdc, nXnum, nXdenom, nYnum, nYdenom, lpSize)
HDC hdc; !*handle of device context */
int nXnum; !* amount by which current x-extent is multiplied */
int nXdenom; /* amount by which current x-extent is divided */
int nYnum; /* amount by which current y-extent is multiplied */
int nYdenom; /*amount by which current y-extent is divided */
SIZE FAR* lpSize; !*address of SIZE structure */

The ScaleViewportExtEx function modifies the viewport extents relative to the
current values. The formulas are written as follows:

xNewVE (xOldVE * Xnum) I Xdenom
yNewVE = (yOldVE * Ynum) I Ydenom

The new extent is calculated by multiplying the current extents by the given
numerator and then dividing by the given denominator.

Parameters hdc
Identifies the device context.

nXnum
Specifies the amount by which to multiply the current x-extent.

nXdenom
Specifies the amount by which to divide the current x-extent.

Return Value

ScaleWindowExt 799

nYnum
Specifies the amount by which to multiply the current y-extent.

nYdenom
Specifies the amount by which to divide the current y-extent.

lpSize
Points to a SIZE structure. The previous viewport extents, in device units, are
placed in this structure. If lpSize is NULL, nothing is returned.

The return value is nonzero if the function is successful. Otherwise, it is zero.

ScaleWindowExt ~

DWORD ScaleWindowExt(hdc, nXNum, nXDenom, nYNum, nYDenom)
HDC hdc; /*handle of device context */
int nXNum; /*amount by which current x-extent is multiplied */
int nXDenom; /*amount by which current x-extent is divided */
int nYNum; /*amount by which current y-extent is multiplied */
int nYDenom; /* amount by which current y-extent is divided */

The Scale Window Ext function modifies the window extents relative to the cur
rent values.

Parameters hdc

Return Value

Identifies the device context.

nXNum
Specifies the amount by which to multiply the current x-extent.

nXDenom
Specifies the amount by which to divide the result of multiplying the current
x-extent by the value of the nXNum parameter.

nYNum
Specifies the amount by which to multiply the current y-extent.

nYDenom
Specifies the amount by which to divide the result of multiplying the current
y-extent by the value of the nYNum parameter.

The low-order word of the return value contains the x-extent, in logical units, of
the previous window, if the function is successful; the high-order word contains
they-extent.

800 ScaleWindowExtEx

Comments

Example

See Also

The new window extents are calculated by multiplying the current extents by the
given numerator and then dividing by the given denominator, as shown in the fol
lowing formulas:

nXNewWE CnXOldWE * nXNum) I nXDenom
nYNewWE = CnYOldWE * nYNum) I nYDenom

The following example draws a rectangle that is 4 logical units high and 4 logical
units wide. It then calls the Scale Window Ext function and draws a rectangle that
is 8 units by 8 units. Because of the window scaling, the second rectangle is the
same size as the first.

HOC hde;
RECT re;

GetClientReet(hwnd, &re);
hde = GetDC(hwnd);
SetMapMode(hde, MM_ANISOTROPIC);

SetWindowExt(hde, 10, 10);
SetViewportExt(hde, re.right, re.bottom);
Reetangle(hde, 3, 3, 7, 7);

SealeWindowExt(hde, 2, 1, 2, 1);
Reetangle(hde, 6, 6, 14, 14);

ReleaseDCChwnd, hde);

Get Window Ext

ScaleWindowExtEx [IT]

BOOL ScaleWindowExtEx(hdc, nXnum, nXdenom, nYnum, nYdenom, lpSize)
HDC hdc; /* handle of device context */
int nXnum; /* amount by which current x-extent is multiplied */
int nXdenom; /* amount by which current x-extent is divided */
int nYnum; /* amount by which current y-extent is multiplied */
int nYdenom; I* amount by which current y-extent is divided */
SIZE FAR* lpSize; I* address of SIZE structure */

The ScaleWindowExtEx function modifies the window extents relative to the cur
rent values. The formulas are written as follows:

xNewWE (xOldWE * Xnum) I Xdenom
yNewWE = (yOldWE * Ynum) I Ydenom

ScreenToClient 801

The new extent is calculated by multiplying the current extents by the given
numerator and then dividing by the given denominator.

Parameters hdc

Return Value

Identifies the device context.

nXnum
Specifies the amount by which to multiply the current x-extent.

nXdenom
Specifies the amount by which to divide the current x-extent.

nYnum
Specifies the amount by which to multiply the current y-extent.

nYdenom
Specifies the amount by which to divide the current y-extent.

lpSize
Points to a SIZE structure. The previous window extents, in logical units, are
placed in this structure. If lpSize is NULL, nothing is returned.

The return value is nonzero if the function is successful. Otherwise, it is zero.

ScreenToClient
void ScreenToClient(hwnd, lppt)
HWND hwnd; /* window handle for source coordinates */

/ POINT FAR lppt; /*address of structure with coordinates

Parameters

The ScreenToClient function converts the screen coordinates of a given point on
the screen to client coordinates.

hwnd
Identifies the window whose client area is to be used for the conversion.

lppt
Points to a POINT structure that contains the screen coordinates to be con
verted. The POINT structure has the following form:

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

802 ScrollDC

Return Value

Comments

Example

See Also

Scroll DC

This function does not return a value.

The ScreenToClient function replaces the screen coordinates in the POINT struc
ture with client coordinates. The new coordinates are relative to the upper-left
corner of the given window's client area.

The following example uses the GetWindowRect function to retrieve the screen
coordinates for a specified window, calls the ScreenToClient function to convert
the upper-left and lower-right corners of the window rectangle to client coordi
nates, and then reports the results in a message box:

RECT re;
POINT ptUpperleft;
POINT ptlowerRight;
char szText[l28J;

/*window's screen coordinates */
/*client coordinate of upper left */
I* client coordinate of lower right */
I* char buffer for ,wsprintf */

GetWindowRect(hwnd, &re);

ptUpperleft.x
ptUpperleft.y
ptLowerRight.x
ptLowerRight.y

re.left;
re.top;
re.right;
re.bottom;

ScreenToClient(hwnd, &ptUpperleft);
ScreenToClient(hwnd, &ptlowerRight);

wsprintf(szText,
"S: (%d,%d)-(%d,%d) --> C: (%d,%d)-(%d,%d)",
re.left, re.top, re.right, re.bottom,
ptUpperleft.x, ptUpperleft.y, ptlowerRight.x, ptlowerRight.y);

MessageBox(hwnd, szText, "ScreenToClient", MB_OK);

ClientToScreen, Map Window Points

BOOL ScrollDC(hdc, dx, dy, lprcScroll, lprcClip, hrgnUpdate, lprcUpdate)
HDC hdc; /*handle of device context *I
int dx; /* horizontal scroll units */
int dy; !* vertical scroll units */
const RECT FAR* lprcScroll; /* address of scrolling rectangle */
const RECT FAR* lprcClip; /*address of clipping rectangle */
HRGN hrgnUpdate; /* handle of scrolling region */
RECT FAR* lprcUpdate; /*address of structure for update rect. */

Scroll DC 803

The ScrollDC function scrolls a rectangle of bits horizontally and vertically.

Parameters hdc

Return Value

Comments

Identifies the device context that contains the bits to be scrolled.

dx
Specifies the number of horizontal scroll units.

dy
Specifies the number of vertical scroll units.

lprcScroll
Points to the RECT structure that contains the coordinates of the scrolling
rectangle. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

f* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

lprcClip
Points to the RECT structure that contains the coordinates of the clipping
rectangle. When this rectangle is smaller than the original one pointed to by the
lprcScroll parameter, scrolling occurs only in the smaller rectangle.

hrgnUpdate
Identifies the region uncovered by the scrolling process. The ScrollDC function
defines this region; it is not necessarily a rectangle.

lprcUpdate
Points to the RECT structure that receives the coordinates of the rectangle that
bounds the scrolling update region. This is the largest rectangular area that re
quires repainting. The values in the structure when the function returns are in
client coordinates, regardless of the mapping mode for the given device context.

The return value is nonzero if the function is successful. Otherwise, it is zero.

If the lprcUpdate parameter is NULL, Windows does not compute the update
rectangle. If both the hrgnUpdate and lprcUpdate parameters are NULL, Win
dows does not compute the update region. If hrgnUpdate is not NULL, Windows
assumes that it contains a valid handle of the region uncovered by the scrolling
process (defined by the ScrollDC function).

When the ScrollDC function returns, the values in the structure pointed to by the
lprcUpdate parameter are in client coordinates. This allows applications to use the
update region in a call to the InvalidateRgn function, if required.

804 ScrollWindow

See Also

An application should use the ScrollWindow function when it is necessary to
scroll the entire client area of a window; otherwise, it should use ScrollDC.

InvalidateRgn, ScrollWindow, ScrollWindowEx

ScrollWindow
void ScrollWindow(hwnd, dx, dy, lprcScroll, lprcClip)
HWND hwnd; /* handle of window to scroll */

*/
*/
*/
*/

int dx; I* amount of horizontal scrolling
int dy; I* amount of vertical scrolling
const RECT FAR* lprcScroll; I* address of structure with scroll rect.
const RECT FAR* lprcClip; I* address of structure with clip rect.

The ScrollWindow function scrolls the contents of a window's client area.

Parameters hwnd

dx

dy

Identifies the window to be scrolled.

Specifies the amount, in device units, of horizontal scrolling. This parameter
must be a negative value to scroll to the left.

Specifies the amount, in device units, of vertical scrolling. This parameter must
be a negative value to scroll up.

lprcScroll
Points to a RECT structure that specifies the portion of the client area to be
scrolled. If this parameter is NULL, the entire client area is scrolled. The caret
is repositioned if the cursor rectangle intersects the scroll rectangle.

The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

I* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

lprcClip
Points to a RECT structure that specifies the clipping rectangle to scroll. This
structure takes precedence over the rectangle pointed to by lprcScroll. Only bits

Return Value

Comments

See Also

ScrollWindowEx 805

inside this rectangle are scrolled. Bits outside this rectangle are not scrolled,
even if they are in the lprcScroll rectangle. If this parameter is NULL, no clip
ping is performed on the scroll rectangle.

This function does not return a value.

If the caret is in the window being scrolled, ScrollWindow automatically hides
the caret to prevent it from being erased, then restores the caret after the scroll is
finished. The caret position is adjusted accordingly.

The area uncovered by the ScrollWindow function is not repainted, but it is com
bined into the window's update region. The application will eventually receive a
WM_P AINT message notifying it that the region needs repainting. To repaint the
uncovered area at the same time the scrolling is done, call the Update Window
function immediately after calling ScrollWindow.

If the lprcScroll parameter is NULL, the positions of any child windows in the
window are offset by the amount specified by the dx and dy parameters, and any
invalid (unpainted) areas in the window are also offset. ScrollWindow is faster
when lprcScroll is NULL.

If the lprcScroll parameter is not NULL, the positions of child windows are not
changed and invalid areas in the window are not offset. To prevent updating prob
lems when lprcScroll is not NULL, call the Update Window function to repaint
the window before calling ScrollWindow.

ScrollDC, ScrollWindowE:x, UpdateWindow

ScrollWindowEx
int ScrollWindowEx(hwnd, dx, dy, lprcScroll, lprcClip, hrgnUpdate, lprcUpdate,fuScroll)
HWND hwnd; /*handle of window to scroll */
int dx; /*amount of horizontal scrolling */
int dy; I* amount of vertical scrolling */
const RECT FAR* !pre Scroll; I* address of structure with scroll rect. */
const RECT FAR* lprcClip; /*address of structure with clip rect. */
HRGN hrgnUpdate; /*handle of update region */
RECT FAR* !pre Update; /*address of structure for update rect. */
UINT fuScroll; /*scrolling flags */

The ScrollWindowEx function scrolls the contents of a window's client area.
This function is similar to the ScrollWindow function, with some additional
features.

806 ScrollWindowEx

Parameters hwnd

dx

dy

Identifies the window to be scrolled.

Specifies the amount, in device units, of horizontal scrolling. This parameter
must be a negative value to scroll to the left.

Specifies the amount, in device units, of vertical scrolling. This parameter must
be a negative value to scroll up.

lprcScroll
Points to a RECT structure that specifies the portion of the client area to be
scrolled. If this parameter is NULL, the entire client area is scrolled. The
RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

lprcClip
Points to a RECT structure that specifies the clipping rectangle to scroll. This
structure takes precedence over the rectangle pointed to by the lprcScroll pa
rameter. Only bits inside this rectangle are scrolled. Bits outside this rectangle
are not affected even if they are in the lprcScroll rectangle. If this parameter is
NULL, no clipping is performed on the scroll rectangle.

hrgnUpdate
Identifies the region that is modified to hold the region invalidated by scrolling.
This parameter may be NULL.

lprcUpdate
Points to a RECT structure that will receive the boundaries of the rectangle in
validated by scrolling. This parameter may be NULL.

fuScroll
Specifies flags that control scrolling. This parameter can be one of the follow
ing values:

Return Value

Comments

See Also

Value

SW_ERASE

SW_INVALIDATE

SW _SCROLLCHILDREN

ScrollWindowEx 807

Meaning

When specified with SW _INVALID ATE, erases
the newly invalidated region by sending a
WM_ERASEBKGND message to the window.

Invalidates the region identified by the hrgnUpdate
parameter after scrolling.

Scrolls all child windows that intersect the rectangle
pointed to by lprcScroll by the number of pixels
specified in the dx and dy parameters. Windows
sends a WM_MOVE message to all child windows
that intersect lprcScroll, even if they do not move.
The caret is repositioned when a child window is
scrolled and the cursor rectangle intersects the scroll
rectangle.

The return value is SIMPLEREGION (rectangular invalidated region),
COMPLEXREGION (nonrectangular invalidated region; overlapping rectangles),
or NULLREGION (no invalidated region), if the function is successful. Other
wise, the return value is ERROR.

If SW _INV ALIDA TE and SW _ERASE are not specified, ScrollWindowEx does
not invalidate the area that is scrolled away from. If either of these flags is set,
ScrollWindowEx invalidates this area. The area is not updated until the applica
tion calls the Update Window function, calls the RedrawWindow function (speci
fying RDW _ UPDATENOW or RDW _ERASENOW), or retrieves the
WM_PAINT message from the application queue.

If the window has the WS_CLIPCHILDREN style, the returned areas specified by
hrgnUpdate and !pre Update represent the total area of the scrolled window that
must be updated, including any areas in child windows that need qupdating.

If the SW _SCROLLCHILDREN flag is specified, Windows will not properly up
date the screen if part of a child window is scrolled. The part of the scrolled child
window that lies outside the source rectangle will not be erased and will not be
redrawn properly in its new destination. Use the DeferWindowPos function to
move child windows that do not lie completely within the lprcScroll rectangle.

All input and output coordinates (for lprcScroll, lprcClip, !pre Update, and
hrgnUpdate) are assumed to be in client coordinates, regardless of whether the
window has the CS_OWNDC or CS_CLASSDC class style. Use the LPtoDP and
DPtoLP functions to convert to and from logical coordinates, if necessary.

RedrawWindow, ScrollDC, ScrollWindow, UpdateWindow

808 SelectClipRgn

SelectClipRgn
int SelectClipRgn(hdc, hrgn)
HDC hdc; I* handle of device context */

/ HRGN hrgn; / handle of region

The SelectClipRgn function selects the given region as the current clipping region
for the given device context.

Parameters hdc

Return Value

Comments

Example

Identifies the device context.

hrgn
Identifies the region to be selected. If this value is NULL, the entire client area
is selected and output is still clipped to the window.

The return value is SIMPLEREGION (region has no overlapping borders),
COMPLEXREGION (region has overlapping borders), or NULLREGION (region
is empty), ifthe function is successful. Otherwise, the return value is ERROR.

The SelectClipRgn function selects only a copy of the specified region. Because
SelectClipRgn uses only a copy, the region can be selected for any number of
other device contexts or it can be deleted.

The coordinates for the specified region should be specified in device units.

Some printer devices support text output at a higher resolution than graphics out
put in order to retain the precision needed to express text metrics. These devices re
port device units at the higher resolution-that is, text units. These devices then
scale coordinates for graphics so that several reported device units map to only
one graphics unit. Applications should always call the SelectClipRgn function
using the text unit. Applications that must take the scaling of graphics objects in
the graphics device interface (GDI) can use the GETSCALINGF ACTOR printer
escape to determine the scaling factor. This scaling factor affects clipping. If a re
gion is used to clip graphics, GDI divides the coordinates by the scaling factor. (If
the region is used to clip text, however, GDI makes no scaling adjustment.) A scal
ing factor of 1 causes the coordinates to be divided by 2; a scaling factor of 2
causes the coordinates to be divided by 4; and so on.

The following example uses the GetClipBox function to determine the size of the
current clipping region and the GetTextExtent function to determine the width of
a line of text. If the text will not fit in the clipping region, the SelectClipRgn is
used to make the region wide enough for the text. The output is clipped to the win
dow regardless of the size of the region specified in the second parameter of
SelectClipRegion.

HRGN hrgnClip;
RECT rcClip;
LPSTR lpszTest = "Test of clipping region.";
DWDRD dwStringLen;
WORD wExtent;

GetClipBox(hdc, &rcClip);

SelectObject 809

dwStringlen = GetTextExtent(hdc, lpszTest, lstrlen(lpszTest));
wExtent = LOWORD(dwStringlen);
if (rcClip.right < 50 + wExtent)

}

hrgnClip = CreateRectRgn(50, 50, 50 + wExtent, 80);
SelectClipRgn(hdc, hrgnClip);

TextOut(hdc, 50, 60, lpszTest, lstrlen(lpszTest));

DeleteObject(hrgnClip);

See Also GetClipBox, GetTextExtent

SelectObject CI!J
HGDIOBJ SelectObject(hdc, hgdiobj)
HDC hdc; /*handle of device context */
HGDIOBJ hgdiobj; /*handle of object */

The SelectObject function selects an object into the given device context. The
new object replaces the previous object of the same type.

Parameters hdc
Identifies the device context.

hgdiobj
Identifies the object to be selected. The object can be one of the following and
must have been created by using one of the listed functions:

Object Functions

Bitmap

Brush

Font

Pen

CreateBitmap, CreateBitmaplndirect, CreateCompatibleBitmap,
CreateDIBitmap
CreateBrushlndirect, CreateDIBPatternBrush,
CreateHatchBrush, CreatePatternBrush, CreateSolidBrush
CreateFont, CreateFontlndirect

CreatePen, CreatePenlndirect

810 SelectObject

Return Value

Comments

Example

Object

Region

Functions

CreateEllipticRgn, CreateEllipticRgnlndirect, CreatePolygonRgn,
CreateRoundRectRgn, CreateRectRgn, CreateRectRgnlndirect

The return value is the handle of the object being replaced, if the function is
successful. Otherwise, it is NULL.

If the hgdiobj parameter identifies a region, this function performs the same task
as the SelectClipRgn function and the return value is SIMPLEREGION (region
has no overlapping borders), COMPLEXREGION (region has overlapping
borders), or NULLREGION (region is empty). If an error occurs, the return value
is ERROR and the previously selected object of the specified type remains
selected in the device context.

When an application uses the SelectObject function to select a font, pen, or brush,
the system allocates space for that object in its data segment. Because data
segment space is limited, an application should use the DeleteObject function to
remove each drawing object that it no longer requires. Before removing the object,
the application should select it out of the device context. To do this, the applica
tion can select a different object of the same type back into the device context;
typically, this different object is the original object for the device context.

When the hdc parameter identifies a metafile device context, the SelectObject
function does not return the handle of the previously selected object. When the
device context is a metafile, calling SelectObject with the hgdiobj parameter set
to a value returned by a previous call to SelectObject can cause unpredictable re
sults. Because metafiles perform their own object cleanup, an application need not
reselect default objects when recording a metafile.

Memory device contexts are the only device contexts into which an application
can select a bitmap. A bitmap can be selected into only one memory device con
text at a time. The format of the bitmap must either be monochrome or be compat
ible with the given device; if it is not, SelectObject returns an error.

The following example creates a pen, uses the SelectObject function to select it
into a device context, uses the pen to draw a rectangle, selects the previous pen
back into the device context, and uses the DeleteObject function to remove the
pen that was just created:

HPEN hpen, hpenOld;

hpen = CreatePen(PS_SOLIO, 6, RGB(0, 0, 255));
hpenOld = SelectObject(hdc, hpen);

Rectangle(hdc, 10, 10, 100, 100);

See Also

SelectObject(hdc, hpenOld);
DeleteObject(hpen);

DeleteObject, SelectClipRgn, SelectPalette

SelectPalette 811

SelectPalette
HPALETTE SelectPalette(hdc, hpal,fPalBack)
HDC hdc; I* handle of device context */

*/
*/

HPALETTE hpal; /* handle of palette
BOOLfPalBack; /*flag for forcing palette to background

The SelectPalette function selects the specified logical palette into the given
device context. The selected palette replaces the previous palette for that device
context.

Parameters hdc

Return Value

Comments

Example

Identifies the device context.

hp al
Identifies the logical palette to be selected.

fPalBack
Specifies whether the logical palette is always to be a background palette. If
this parameter is nonzero, the selected palette is always a background palette. If
this parameter is zero and the device context is attached to a window, the logi
cal palette is a foreground palette when the window has the input focus. (The
device context is attached to a window if it was obtained by using the GetDC
function or if the window-class style is CS_OWNDC.)

The return value is the handle of the previous logical palette for the given device
context, if the function is successful. Otherwise, it is NULL.

An application can select a logical palette into more than one device context.
However, changes to a logical palette will affect all device contexts for which it is
selected. If an application selects a palette into more than one device context, the
device contexts must all belong to the same physical device.

The following example calls the SelectPalette function to select a logical palette
into a device context and then calls the RealizePalette function to change the
palette size:

812 SendDlgltemMessage

See Also

HPALETTE hpal, hPalPrevious;

hdc = GetDC(hwnd);

hPalPrevious = SelectPalette(hdc, hpal, FALSE);
if (RealizePalette(hdc) == NULL)

MessageBox(hwnd, "Can't realize palette", "Error", MB_OK);

ReleaseDC(hwnd, hdc);

CreatePalette, GetDC, RealizePalette

SendDlgltemMessage
LRESULT SendDlgltemMessage(hwndDlg, idDlgltem, uMsg, wParam, lParam)
HWND hwndDlg; I* handle of dialog box */
int idDlgltem; I* identifier of dialog box item */
UINT uMsg; I* message */
WPARAM wParam; I* first message parameter */
LPARAM lParam; I* second message parameter */

Parameters

Return Value

Comments

The SendDlgltemMessage function sends a message to a control in a dialog box.

hwndDlg
Identifies the dialog box that contains the control.

idDlg/tem
Specifies the identifier of the dialog item that will receive the message.

uMsg
Specifies the message to be sent.

wParam
Specifies 16 bits of additional message-dependent information.

lParam
Specifies 32 bits of additional message-dependent information.

The return value specifies the result of the message processing and depends on the
message sent.

The SendDlgltemMessage function does not return until the message has been
processed.

See Also

SendDriverMessage 813

Using SendDlgltemMessage is identical to retrieving a handle of the given con
trol and calling the SendMessage function.

PostMessage, SendMessage

SendDriverMessage
LRESULT SendDriverMessage(hdrvr, msg, lParaml, lParam2)
HDRVR hdrvr; /*handle of installable driver */
UINT msg; /*message */
LPARAM lParaml; /*first message parameter */
LPARAM lParam2; /*second message parameter */

The SendDriverMessage function sends the specified message to the given install
able driver.

Parameters hdrvr

Return Value

See Also

Identifies the installable driver.

msg
Specifies the message that the driver must process. The following messages
should never be sent by an application directly to the driver; they are sent only
by the system:

DRV_CLOSE
DRV _DISABLE
DRV_ENABLE
DRY _EXIT APPLICATION
DRV _EXITSESSION
DRV_FREE
DRV_LOAD
DRV_OPEN

lParaml
Specifies 32 bits of additional message-dependent information.

lParam2
Specifies 32 bits of additional message-dependent information.

The return value is nonzero if the function is successful. Otherwise, it is zero.

DeffiriverProc

814 SendMessage

SendMessage
LRESULT SendMessage(hwnd, uMsg, wParam, lParam)
HWND hwnd; /* handle of destination window *!

*!
*/
*/

UINT uMsg; !* message to send
WPARAM wParam; /* first message parameter
LPARAM lParam; /*second message parameter

The SendMessage function sends the specified message to the given window or
windows. The function calls the window procedure for the window and does not
return until that window procedure has processed the message. This is in contrast
to the PostMessage function, which places (posts) the message in the window's
message queue and returns immediately.

Parameters hwnd

Return Value

Comments

Example

See Also

Identifies the window to which the message will be sent. If this parameter is
HWND_BROADCAST, the message will be sent to all top-level windows,
including disabled or invisible unowned windows.

uMsg
Specifies the message to be sent.

wParam
Specifies 16 bits of additional message-dependent information.

lParam
Specifies 32 bits of additional message-dependent information.

The return value specifies the result of the message processing and depends on the
message sent.

If the message is being sent to another application and the wParam or lParam pa
rameter is used to pass a handle or pointer to global memory, the memory should
be allocated by the GlobalAlloc function using the GMEM_SHARE flag.

The following example calls the SendMessage function to send an EM_SETSEL
message to a multiline edit control, telling it to select all the text. It then calls
SendMessage to send a WM_ COPY message to copy the selected text to the clip
board.

SendMessage(hwndMle, EM_SETSEL, 0, MAKELONG(0, -1));
SendMessage(hwndMle, WM_COPY, 0, 0Ll;

InSendMessage, PostMessage, SendDlgltemMessage

SetActiveWindow 815

SetAbortProc []]]
int SetAbortProc(hdc, abrtprc)
HDC hdc; /* handle of device context */
ABORTPROC abrtprc; /* instance address of abort function */

The SetAbortProc function sets the application-defined procedure that
allows a print job to be canceled during spooling. This function replaces the
SET ABORTPROC printer escape for Windows version 3.1.

Parameters hdc

Return Value

See Also

Identifies the device context for the print job.

abrtprc
Specifies the procedure-instance address of the callback function. The address
must have been created by using the MakeProclnstance function. For more in
formation about the callback function, see the description of the AbortProc
callback function.

The return value is greater than zero if the function is successful. Otherwise, it is
less than zero.

AbortDoc, AbortProc, Escape

SetActive Window
HWND SetActiveWindow(hwnd)
HWND hwnd; /* handle of window to activate */

The SetActiveWindow function makes the specified top-level window the active
window.

Parameters hwnd

Return Value

Identifies the top-level window to be activated.

The return value identifies the window that was previously active, if the function
is successful.

816 SetBitmapBits

Comments

See Also

The SetActiveWindow function should be used with care, since it allows an appli
cation to arbitrarily take over the active window and input focus. Normally, Win
dows takes care of all activation.

GetActive Window, Set Capture, SetFocus

SetBitmapBits
LONG SetBitmapBits(hbmp, cBits, lpvBits)
HBITMAP hbmp; /* handle of bitmap
DWORD cBits; /* number of bytes in bitmap array
const void FAR* lpvBits; I* address of array with bitmap bits

*/
*/
*/

The SetBitmapBits function sets the bits of the given bitmap, to the specified bit
values.

Parameters

Return Value

See Also

hbmp
Identifies the bitmap to be set.

cBits
Specifies the number of bytes pointed to by the lpvBits parameter.

lpvBits
Points to an array of bytes for the bitmap bits.

The return value is the number of bytes used in setting the bitmap bits, if the func
tion is successful. Otherwise, the return value is zero.

GetBitmapBits

SetBitmapDimension
DWORD SetBitmapDimension(hbmp, nWidth, nHeight)
HBITMAP hbmp; /*handle of bitmap */
int nWidth; /*bitmap width */
int nHeight; /*bitmap height */

The SetBitmapDimension function assigns a width and height to a bitmap, in 0.1-
millimeter units. The graphics device interface (GDI) does not use these values ex
cept to return them when an application calls the GetBitmapDimension function.

Parameters

Return Value

See Also

SetBitmap DimensionEx 817

hbmp
Identifies the bitmap.

nWidth
Specifies the bitmap width, in 0.1-millimeterunits.

nHeight
Specifies the bitmap height, in 0.1-millimeter units.

The return value is the dimensions of the previous bitmap, in 0.1-millimeter units,
if the function is successful. The low-order word contains the previous width; the
high-order word contains the previous height.

GetBitmapDimension

SetBitmapDimensionEx
BOOL SetBitmapDimensionEx(hbm, nX, nY, lpSize)
HBITMAP hbm; /* handle of bitmap
int nX; /* bitmap width
int nY; /* bitmap height
SIZE FAR* lpSize; /*address of structure for prev. dimensions

*/
*/
*I
*I

The SetBitmapDimensionEx function assigns the preferred size to a bitmap, in
0.1-millimeter units. The graphics device interface (GDI) does not use these
values, except to return them when an application calls the GetBitmap
DimensionEx function.

Parameters hbm
Identifies the bitmap.

nX
Specifies the width of the bitmap, in 0.1-millimeter units.

nY
Specifies the height of the bitmap, in 0.1-millimeter units.

lpSize
Points to a SIZE structure. The previous bitmap dimensions are placed in this
structure. If lpSize is NULL, nothing is returned. The SIZE structure has the fol
lowing form:

typedef struct tagSIZE {
int ex;
int cy;

} SIZE;

818 SetBkColor

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

Return Value The return value is nonzero ifthe function is successful. Otherwise, it is zero.

SetBkColor CI!J
COLORREF SetBkColor(hdc, clrrej)
HDC hdc; /*handle of device context */
COLORREF clrref; I* color specification */

The SetBkColor function sets the current background color to the specified color.

Parameters hdc

Return Value

Comments

Example

Identifies the device context.

clrref
Specifies the new background color.

The return value is the RGB value of the previous background color, if the func
tion is successful. The return value is Ox80000000 if an error occurs.

If the background mode is OPAQUE, the system uses the background color to fill
the gaps in styled lines, the gaps between hatched lines in brushes, and the back
ground in character cells. The system also uses the background color when con
verting bitmaps between color and monochrome device contexts.

If the device cannot display the specified color, the system sets the background
color to the nearest physical color.

For information about color-bitmap conversions, see the descriptions of the BitBlt
and StretchBlt functions.

The following example uses the GetBkColor function to determine whether the
current background color is white. If it is, the SetBkColor function sets it to red.

DWORD dwBackColor;

dwBackColor = GetBkColor(hdc);
if CdwBackColor == RGBC255, 255, 255)) { /* if color is white */

SetBkColor(hdc, RGBC255, 0, 0)); I* sets color to red*/
TextOut(hdc, 100, 200, "SetBkColor test.", 16);

SetBkMode 819

See Also BitBlt, GetBkColor, GetBkMode, SetBkMode, StretchBlt

SetBkMode CI!J
int SetBkMode(hdc,fnBkMode)
HDC hdc; /*handle of device context */
intfnBkMode; /* background mode */

The SetBkMode function sets the specified background mode. The background
mode defines whether the system removes existing background colors on the draw
ing surface before drawing text, hatched brushes, or any pen style that is not a
solid line.

Parameters hdc

Return Value

Example

See Also

Identifies the device context.

fnBkMode
Specifies the background mode to be set. This parameter can be one of the fol
lowing values:

Value

OPAQUE

TRANSPARENT

Meaning

Background is filled with the current background color before
the text, hatched brush, or pen is drawn. This is the default
background mode.

Background is not changed before drawing.

The return value is the previous background mode, if the function is successful.

The following example determines the current background mode by calling the
GetBkMode function. If the mode is OPAQUE, the SetBkMode function sets it
to TRANSPARENT.

int nBackMode;

nBackMode = GetBkModeChdc);
if (nBackMode == OPAQUE) {

TextOutChdc, 90, 100, "This background mode is OPAQUE.", 31);
SetBkMode(hdc, TRANSPARENT);

GetBkColor, GetBkMode, SetBkColor

820 SetBoundsRect

SetBoundsRect
UINT SetBoundsRect(hdc, lprcBounds,flags)
HDC hdc; /* handle of device context *!

*/
*/

const RECT FAR* lprcBounds; /* address of structure for rectangle
UINT flags; /* specifies information to return

The SetBoundsRect function controls the accumulation of bounding-rectangle in
formation for the specified device context.

Parameters hdc

Return Value

Identifies the device context to accumulate bounding rectangles for.

lprcBounds
Points to a RECT structure that is used to set the bounding rectangle. Rectangle
dimensions are given in logical coordinates. This parameter can be NULL. The
RECT structure has the following form:

typedef struct tagRECT {
int left;

f* re */

int top;
int right;
int bottom;

} RECT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

flags
Specifies how the new rectangle will be combined with the accumulated
rectangle. This parameter may be a combination of the following values:

Value

DCB_ACCUMULATE

DCB_DISABLE

DCB_ENABLE

Meaning

Add the rectangle specified by the lprcBounds parame
ter to the bounding rectangle (using a rectangle union
operation).

Turn off bounds accumulation.

Turn on bounds accumulation. (The default setting for
bounds accumulation is disabled.)

The return value is the current state of the bounding rectangle, if the function is
successful. Like the flags parameter, the return value can be a combination of the
following values:

Value

DCB_ACCUMULATE

Meaning

The bounding rectangle is not empty. (This value will
always be set.)

Value

DCB_DISABLE

DCB_ENABLE

Meaning

Bounds accumulation is off.

Bounds accumulation is on.

SetBrushOrg 821

Comments Windows can maintain a bounding rectangle for all drawing operations. This
rectangle can be queried and reset by the application. The drawing bounds are use
ful for invalidating bitmap caches.

See Also GetBoundsRect

SetBrushOrg ~

DWORD SetBrushOrg(hdc, nXOrg, nYOrg)
HDC hdc; /* handle of device context */
int nXOrg; /* x-coordinate of new origin */
int nYOrg; /* y-coordinate of new origin */

The SetBrushOrg function specifies the origin that GDI will assign to the next
brush an application selects into the specified device context.

Parameters hdc

Return Value

Comments

Identifies the device context.

nXOrg
Specifies the x-coordinate, in device units, of the new origin. This value must
be in the range 0 through 7.

nYOrg
Specifies they-coordinate, in device units, of the new origin. This value must
be in the range 0 through 7.

The return value is the coordinates, in device units, of the previous origin, if the
function is successful. The low-order word contains the x-coordinate; the high
order word contains they-coordinate.

The default coordinates for the brush origin are (0, 0).

To alter the origin of a brush, an application should call the UnrealizeObject func
tion, specifying the handle of the brush for which the origin will be set; call
SetBrushOrg; and then call the SelectObject function to select the brush into the
device context.

The SetBrushOrg function should not be used with stock objects.

822 SetCapture

Example The following example uses the SetBrushOrg function to shift the brush origin
vertically by 5 pixels:

HBRUSH hbr, hbrOld;
SetBkMode(hdc, TRANSPARENT);
hbr = CreateHatchBrushCHS_CROSS, RGB(0, 0, 0));

UnrealizeObject(hbr);
SetBrushOrg(hdc, 0, 0);
hbrOld = SelectObject(hdc, hbr);

Rectangle(hdc, 0, 0, 200, 200);

hbr = SelectObject(hdc, hbrOld); /*deselects hbr */
UnrealizeObject(hbr); /*resets origin next time hbr selected*/
SetBrushOrg(hdc, 3, 5);
hbrOld = SelectObject(hdc, hbr); /*selects hbr again*/

Rectangle(hdc, 0, 0, 200, 200);

SelectObject(hdc, hbrOld);
DeleteObject(hbr);

See Also GetBrushOrg, SelectObject, UnrealizeObject

SetCapture CI!J
HWND SetCapture(hwnd)
HWND hwnd; /* handle of window to receive all mouse messages */

Parameters

Return Value

Comments

The SetCapture function sets the mouse capture to the specified window. With
the mouse capture set to a window, all mouse input is directed to that window, re
gardless of whether the cursor is over that window. Only one window can have the
mouse capture at a time.

hwnd
Identifies the window that is to receive all mouse messages.

The return value is the handle of the window that previously received all mouse
input, ifthe function is successful. It is NULL ifthere is no such window.

When the window no longer requires all mouse input, the application should call
the ReleaseCapture function so that other windows can receive mouse input.

SetCaretPos 823

See Also ReleaseCapture

SetCaretBlinkTime
void SetCaretBlinkTime(uMSeconds)
UINT uMSeconds; /* blink rate in milliseconds */

Parameters

Return Value

Comments

The SetCaretBlinkTime function sets the caret blink rate. The blink rate is the
elapsed time, in milliseconds, between caret flashes.

uMSeconds
Specifies the new blink rate, in milliseconds.

This function does not return a value.

The caret flashes on or off every uMSeconds milliseconds. One complete flash
(off-on) takes twice uMSeconds milliseconds.

The caret is a shared resource. A window should set the caret blink rate only if it
owns the caret. It should restore the previous rate before it loses the input focus or
becomes inactive.

See Also GetCaretBlinkTime

SetCa retPos lliJ
void SetCaretPos(x, y)
int x; I* horizontal position */
int y; /* vertical position */

The SetCaretPos function sets the position of the caret.

Parameters x
Specifies the new x-coordinate, in client coordinates, of the caret.

y
Specifies the new y-coordinate, in client coordinates, of the caret.

Return Value This function does not return a value.

824 SetClasslong

Comments

See Also

The SetCaretPos function moves the caret only if it is owned by a window in the
current task. SetCaretPos moves the caret whether or not the caret is hidden.

The caret is a shared resource. A window should not move the caret if it does not
own the caret.

GetCaretPos

SetClasslong
LONG SetClassLong(hwnd, nlndex, n Val)
HWND hwnd; /* handle of window */

*/
*/

int nlndex; /* index of value to change
LONG n Val; /* new value

The SetClassLong function sets a long value at the specified offset into the extra
class memory for the window class to which the specified window belongs. Extra
class memory is reserved by specifying a nonzero value in the cbClsExtra mem
ber of the WNDCLASS structure used with the RegisterCiass function.

Parameters hwnd

Return Value

Comments

Identifies the window.

nlndex
Specifies the zero-based byte offset of the long value to change. Valid values
are in the range zero through the number of bytes of class memory, minus four.
(For example, if 12 or more bytes of extra class memory were specified, a value
of 8 would be an index to the third long integer.) This parameter can also be
GCL_ WNDPROC, which sets a new long pointer to the window procedure.

nVal
Specifies the replacement value.

The return value is the previous value of the specified long integer, if the function
is successful. Otherwise, it is zero.

If the SetClassLong function and GCL_ WNDPROC index are used to set a win
dow procedure, the specified window procedure must have the window-procedure
form and be exported in the module-definition file. For more information, see the
description of the RegisterCiass function.

Calling SetClassLong with the GCL_ WNDPROC index creates a subclass of the
window class that affects all windows subsequently created by using the class.

See Also

SetClassWord 825

Applications should not call SetClassLong with the GCL_MENUNAME value.

To access any extra 4-byte values allocated when the window-class structure was
created, use a positive byte offset as the index specified by the nlndex parameter,
starting at 0 for the first 4-byte value in the extra space, 4 for the next 4-byte
value, and so on.

GetClassLong, RegisterClass, Set Class Word

SetClassWord
WORD SetClassWord(hwnd, nlndex, wNewWord)
HWND hwnd; /* handle of window */

*/
*/

int nlndex; /* index of value to change
WORD wNewWord; /* new value

Parameters

Return Value

The SetClassWord function sets a word value at the specified offset into the extra
class memory for the window class to which the given window belongs. Extra
class memory is reserved by specifying a nonzero value in the cbClsExtra mem
ber of the WNDCLASS structure used with the RegisterClass function.

hwnd
Identifies the window.

nlndex
Specifies the zero-based byte offset of the word value to change. Valid values
are in the range zero through the number of bytes of class memory, minus two
(for example, if 10 or more bytes of extra class memory were specified, a value
of 8 would be an index to the fifth integer), or one of the following values:

Value

GCW_HBRBACKGROUND

GCW _HCURSOR

GCW_HICON

GCW_STYLE

wNewWord

Meaning

Sets a new handle of a background brush.

Sets a new handle of a cursor.

Sets a new handle of an icon.

Sets a new style bit for the window class.

Specifies the replacement value.

The return value is the previous value of the specified word, if the function is
successful. Otherwise, it is zero.

826 SetClipboardData

Comments

See Also

The SetClassWord function should be used with care. For example, it is possible
to change the background color for a class by using SetClassWord, but this
change does not cause all windows belonging to the class to be repainted immedi
ately. Applications should not attempt to set the class word values of any class at
tribute except those listed for the nlndex parameter.

To access any extra 2-byte values allocated when the window-class structure was
created, use a positive byte offset as the index specified by the nlndex parameter,
starting at 0 for the first 2-byte value in the extra space, 2 for the next 2-byte
value, and so on.

Get Class Word, RegisterClass, SetClassLong

SetClipboardData
HANDLE SetClipboardData(uFormat, hData)
UINT uFormat; !*clipboard format */
HANDLE hData; !*data handle */

Parameters

Return Value

The SetClipboardData function sets the data in the clipboard. The application
must have called the OpenClipboard function before calling the SetClipboard
Data function.

uFormat
Specifies the format of the data. It can be any one of the system-defined for
mats or a format registered by the RegisterClipboardFormat function. For a
list of system-defined formats, see the following Comments section.

hData
Identifies the data to be placed in the clipboard. For all formats except
CF _BITMAP and CF _p ALETTE, this parameter must be a handle of the
memory allocated by the GlobalAlloc function. For CF _BITMAP format, the
hData parameter is a bitmap handle (see the description of the LoadBitmap
function). For the CF _PALETTE format, hData is a palette handle (see the de
scription of the CreatePalette function).

If this parameter is NULL, the owner of the clipboard will be sent a
WM_RENDERFORMAT message when it must supply the data.

The return value is a handle of the data, if the function is successful. Otherwise, it
is NULL.

Comments

SetClipboardData 827

If the hData parameter contains a handle of the memory allocated by the
GlobalAlloc function, the application must not use this handle once it has called
the SetClipboardData function.

Following are the system-defined clipboard formats:

Value

CF_BITMAP

CF_DIB

CF_DIF

CF _DSPBITMAP

CF _DSPMETAFILEPICT

CF_DSPTEXT

CF _METAFILEPICT

CF_OEMTEXT

CF _OWNERDISPLAY

CF_PALETTE

CF_PENDATA

CF_RIFF

CF_SYLK

CF_TEXT

CF_TIFF

CF_WAVE

Meaning

The data is a bitmap.

The data is a memory object containing a
BITMAPINFO structure followed by the bitmap data.

The data is in Data Interchange Format (DIF).

The data is a bitmap representation of a private format.
This data is displayed in bitmap format in lieu of the pri
vately formatted data.

The data is a metafile representation of a private data
format. This data is displayed in metafile-picture format
in lieu of the privately formatted data.

The data is a textual representation of a private data for
mat. This data is displayed in text format in lieu of the
privately formatted data.

The data is a metafile (see the description of the META
FILEPICT structure in the Microsoft Windows Pro
grammer's Reference, Volume 3).

The data is an array of text characters in the OEM char
acter set. Each line ends with a carriage return-linefeed
(CR-LF) combination. A null character signals the end
of the data.
The data is in a private format that the clipboard owner
must display.

The data is a color palette.

The data is for the pen extensions to the Windows oper
ating system.

The data is in Resource Interchange File Format (RIFF).

The data is in Microsoft Symbolic Link (SYLK) format.

The data is an array of text characters. Each line ends
with a carriage return-linefeed (CR-LF) combination. A
null character signals the end of the data.

The data is in Tag Image File Format (TIFF).

The data describes a sound wave. This is a subset of the
CF _RIFF data format; it can be used only for RIFF
WAVE files.

Private data formats in the range CF _PRIV ATEFIRST through
CF _PRIV ATELAST are not automatically freed when the data is removed from

828 SetClipboardViewer

See Also

the clipboard. Data handles associated with these formats should be freed upon re
ceiving a WM_DESTROYCLIPBOARD message.

Private data formats in the range CF _GDIOBJFIRST through CF _GDIOBJLAST
will be automatically removed by a call to the DeleteObject function when the
data is removed from the clipboard.

If Windows Clipboard is running, it will not update its window to show the data
placed in the clipboard by the SetClipboardData until after the CloseClipboard
function is called.

CloseClipboard, GetClipboardData, GlobalAlloc, OpenClipboard,
RegisterClipboardFormat

SetClipboardViewer
HWND SetClipboardViewer(hwnd)
HWND hwnd; !* handle of clipboard viewer */

The SetClipboardViewer function adds the given window to the chain of win
dows that are notified (by means of the WM_DRA WCLIPBOARD message)
whenever the contents of the clipboard are changed.

Parameters hwnd

Return Value

Comments

See Also

Identifies the window to receive clipboard-viewer chain messages.

The return value is the handle of the next window in the clipboard-viewer chain, if
the function is successful.

Applications should save this handle in static memory and use it when responding
to clipboard-viewer chain messages.

Windows that are part of the clipboard-viewer chain must respond to
WM_CHANGECBCHAIN, WM_DRA WCLIPBOARD, and WM_DESTROY
messages.

To remove itself from the clipboard-viewer chain, an application must call the
ChangeClipboardChain function.

ChangeClipboardChain, GetClipboardViewer

SetCommEventMask 829

SetCommBreak CI!J
int SetCommBreak(idComDev)
int idComDev; /* device to suspend */

Parameters

Return Value

Comments

See Also

The SetCommBreak function suspends character transmission and places the
communications device in a break state.

idComDev
Specifies the communications device to be suspended. The OpenComm func
tion returns this value.

The return value is zero if the function is successful. Otherwise, it is less than zero.

The communications device remains suspended until the application calls the
ClearCommBreak function.

ClearCommBreak, OpenComm

SetCommEventMask
UINT FAR* SetCommEventMask(idComDev,fuEvtMask)
int idComDev; /* device to enable */
UINT fuEvtMask; /*events to enable */

Parameters

The SetCommEventMask function enables events in the event word of the
specified communications device.

idComDev
Specifies the communications device to be enabled. The OpenComm function
returns this value.

fuEvtMask
Specifies which events are to be enabled. This parameter can be any combina
tion of the following values:

Value

EV_BREAK

EV_CTS

EV_CTSS

EV_DSR

Meaning

Set when a break is detected on input.

Set when the CTS (clear-to-send) signal changes state.

Set to indicate the current state of the CTS signal.

Set when the DSR (data-set-ready) signal changes state.

830 SetCommState

Return Value

Comments

See Also

Value

EV_ERR

EV_PERR

EV_RING

EV_RLSD

EV_RLSDS

EV_RXCHAR

EV_RXFLAG

EV_TXEMPTY

Meaning

Set when a line-status error occurs. Line-status errors are
CE_FRAME, CE_OVERRUN, and CE_RXPARITY.

Set when a printer error is detected on a parallel device. Errors
are CE_DNS, CE_IOE, CE_LOOP, and CE_PTO.

Set to indicate the state of ring indicator during the last modem
interrupt.

Set when the RLSD (receive-line-signal-detect) signal changes
state.

Set to indicate the current state of the RLSD signal.

Set when any character is received and placed in the receiving
queue.

Set when the event character is received and placed in the re
ceiving queue. The event character is specified in the device's
control block.

Set when the last character in the transmission queue is sent.

The return value is a pointer to the event word for the specified communications
device, if the function is successful. Each bit in the event word specifies whether a
given event has occurred. A bit is 1 if the event has occurred.

Only enabled events are recorded. The GetCommEventMask function retrieves
and clears the event word.

GetCommEventMask, OpenComm

SetCom mState
int SetCommState(lpdcb)
const DCB FAR* lpdcb; I* address of device control block */

Parameters

The SetCommState function sets a communications device to the state specified
by a device control block.

lpdcb
Points to a DCB structure that contains the desired communications settings for
the device. The Id member of the DCB structure must identify the device. The
DCB structure has the following form:

Return Value

Example

typedef struct tagDCB
{

BYTE Id;
UINT BaudRate;
BYTE ByteSize;
BYTE Parity;
BYTE StopBits;
U I NT Rl sTi me out;
UINT CtsTimeout;
UINT DsrTimeout;

UINT fBi nary
UINT fRtsDi sable
UINT fParity
UINT fOutxCtsFlow
UINT fOutxDsrFlow
UINT fDummy
UINT fDtrDisable

U I NT fOutX
UINT finX
UINT fPeChar
UINT fNul 1
UINT fChEvt
UINT fDtrflow
UINT fRtsflow
UINT fDummy2

char XonChar;
char XoffChar;
UINT Xonlim;
UINT Xofflim;
char Pechar;
char EofChar;
char EvtChar;
UINT TxDelay;

DCB;

SetCommState 831

/* deb

/* internal device identifier
/* baud rate
f* number of bits/byte, 4-8
f* 0-4=none,odd,even,mark,space
/* 0,1,2 = 1, 1.5, 2
/* timeout for RLSD to be set
/* timeout for CTS to be set
/* timeout for DSR to be set

:l; /* binary mode (skip EOF check) */
:l; /* don't assert RTS at init time */
:l; /* enable parity checking */
:l; /* CTS handshaking on output */
:l; /* DSR handshaking on output */
:2; /* reserved */
:l; /* don't assert DTR at init time */

:l; /*enable output XON/XOFF */
:l; /* enable input XON/XOFF */
:l; /* enable parity err replacement */
:l; /* enable null stripping */
:l; /* enable Rx character event */
:l; /* DTR handshake on input */
:l; f* RTS handshake on input */
: 1;

f* Tx and Rx XON character */
/* Tx and Rx XOFF character *f
/* transmit XON threshold */
/* transmit XOFF threshold */
f* parity error replacement char */
f* end of Input character */
f* received event character */
/* amount of time between chars */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is zero if the function is successful. Otherwise, it is less than zero.

The following example uses the BuildCommDCB and SetCommState functions
to set up COMI at 9600 baud, no parity, 8 data bits, and 1 stop bit:

832 SetCursor

Comments

See Also

SetCursor

idComDev = OpenComm("COMl", 1024, 128);
if (idComDev < 0) {

ShowError(idComDev, "OpenComm"l;
return 0;

err= BuildCommDCBC"COM1:9600,n,8,l", &deb);
if (err < 0) {

ShowError(err, "BuildCommDCB"l;
return 0;

err= SetCommStateC&dcbl;
if (err < 0) {

ShowError(err, "SetCommState");
return 0;

This function reinitializes all hardware and controls as defined by the DCB struc
ture, but it does not empty transmission or receiving queues.

GetCommState

HCURSOR SetCursor(hcur)
HCURSOR hcur; I* handle of cursor */

The SetCursor function changes the given cursor. ·

Parameters hcur

Return Value

Comments

Identifies the cursor resource. The resource must have been loaded by using the
Load Cursor function. If this parameter is NULL, the cursor is removed from
the screen.

The return value is the handle of the previous cursor, if the function is successful.
It is NULL if there is no previous cursor.

The cursor is set only if the new cursor is different from the previous cursor; other
wise, the function returns immediately. The function is quite fast if the new cursor
is the same as the old.

See Also

SetCursorPos 833

The cursor is a shared resource. A window should set the cursor only when the cur
sor is in the window's client area or when the window is capturing all mouse
input. In systems without a mouse, the window should restore the previous cursor
before the cursor leaves the client area or before the window relinquishes control
to another window.

Any application that must set the cursor while it is in a window must ensure that
the class cursor for the given window's class is set to NULL. If the class cursor is
not NULL, the system restores the previous shape each time the mouse is moved.

GetCursor, LoadCursor, ShowCursor

SetCursorPos
void SetCursorPos(x, y)
int x; /* horizontal position */

/ int y; / vertical position

The SetCursorPos function sets the position, in screen coordinates, of the cursor.
If the new coordinates are not within the screen rectangle set by the most recent
ClipCursor function, Windows automatically adjusts the coordinates so that the
cursor stays within the rectangle.

Parameters x

Return Value

Comments

See Also

Specifies the new x-coordinate, in screen coordinates, of the cursor.

y
Specifies the new y-coordinate, in screen coordinates, of the cursor.

This function does not return a value.

The cursor is a shared resource. A window should move the cursor only when the
cursor is in its client area.

ClipCursor, GetCursorPos

834 SetDIBits

SetDIBits
int SetDIBits(hdc, hbmp, uStartScan, cScanLines, lpvBits, lpbmi,fuColorUse)
HDC hdc; /* handle of device context
HBITMAP hbmp; /* handle of bitmap
UINT uStartScan; I* starting scan line
UINT cScanLines; I* number of scan lines
const void FAR* lpvBits; /*address of array with bitmap bits
BITMAPINFO FAR* lpbmi; /*address of structure with bitmap data
UINT fuColorUse; /* type of color indices to use

*/
*I
*!
*/
*/
*/
*/

The SetDIBits function sets the bits of a bitmap to the values given in a device
independent bitmap (DIB) specification.

Parameters hdc
Identifies the device context.

hbmp
Identifies the bitmap to set the data in.

uStartScan
Specifies the zero-based scan number of the first scan line in the buffer pointed
to by the lpvBits parameter.

cScanLines
Specifies the number of scan lines in the lpvBits buffer to copy into the bitmap
identified by the hbmp parameter.

lpvBits
Points to the device-independent bitmap bits that are stored as an array of bytes.
The format of the bitmap values depends on the biBitCount member of the
BITMAPINFOHEADER structure, which is the first member of the
BITMAPINFO structure pointed to by the lpbmi parameter.

The BITMAPINFOHEADER structure has the following form:

typedef struct tagBITMAPINFOHEADER { /* bmih */
DWORD biSize;
LONG bi Width;
LONG bi Height;
WORD bi Planes;
WORD biBitCount;
DWORD bi Compression;
DWORD biSizeimage;
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrimportant;

BITMAPINFOHEADER;

Return Value

Comments

See Also

SetDIBits 835

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

lpbmi
Points to a BITMAPINFO structure that contains information about the device
independent bitmap. The BITMAPINFO structure has the following form:

typedef struct tagBITMAPINFO { /* bmi */
BITMAPINFOHEADER bmiHeader;
RGBOUAD bmiColors[l];

BITMAPINFO;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

fuColorUse
Specifies whether the bmiColors member of the BITMAPINFO structure con
tains explicit RGB values or indices into the currently realized logical palette.
This parameter must be one of the following values:

Value

DIB_pAL_COLORS

DIB_RGB_COLORS

Meaning

The color table consists of an array of 16-bit indices into
the palette of the device context identified by the hdc pa
rameter.

The color table contains literal ROB values.

The return value is the number of scan lines copied, if the function is successful.
Otherwise, it is zero.

The bitmap identified by the hbmp parameter must not be selected into a device
context when the application calls this function.

To reduce the amount of memory required to set bits from a large device
independent bitmap on a device surface, an application can band the output by re
peatedly calling the SetDIBitsToDevice function, placing a different portion of
the entire bitmap into the lpvBits buffer each time. The values of the uStartScan
and cScanLines parameters identify the portion of the entire bitmap that is con
tained in the lpvBits buffer.

The origin of a device-independent bitmap is the bottom-left comer of the bitmap,
not the top-left comer, which is the origin when the mapping mode is MM_ TEXT.
GDI performs the necessary transformation to display the image correctly.

SetDIBitsToDevice

836 SetDIBitsToDevice

SetDIBitsToDevice
int SetDIBitsToDevice(hde, XDest, YDest, ex, ey, XSrc, YSrc, uStartScan, eSeanLines, lpvBits, lpbmi,

fuColorUse)
HDC hdc;
intXDest;
int YDest;
int ex;
int ey;
intXSre;
int YSrc;
UINT uStartScan;
UINT cScanLines;

I* handle of device context
/* x-coordinate origin of destination rect
I* y-coordinate origin of destination rect
I* rectangle width
/* rectangle height
I* x-coordinate origin of source rect
I* y-coordinate origin of source rect
I* number of first scan line in array
I* number of scan lines

void FAR* lpvBits;
BITMAPINFO FAR* lpbmi;

/* address of array with DIB bits
/* address of structure with bitmap info
/* RGB or palette indices

*I
*/
*I
*/
*/
*/
*/
*/
*/
*/
*I
*/ UINT fuColorUse;

The SetDIBitsToDevice function sets bits from a device-independent bitmap
(DIB) directly on a device surface. The device coordinates specified define a
rectangle within the total bitmap. SetDIBitsToDevice sets the bits in this rectangle
directly on the display surface of the output device associated with the given
device context, at the specified logical coordinates.

Parameters hdc
Identifies the device context.

XDest
Specifies the logical x-coordinate of the origin of the destination rectangle.

YD est
Specifies the logical y-coordinate of the origin of the destination rectangle.

ex
Specifies the x-extent, in device units, of the rectangle in the bitmap.

cy
Specifies they-extent, in device units, of the rectangle in the bitmap.

XS re
Specifies the x-coordinate, in device units, of the source rectangle in the bitmap.

YSre
Specifies the y-coordinate, in device units, of the source rectangle in the bitmap.

uStartScan
Specifies the scan-line number of the device-independent bitmap that is con
tained in the first scan line of the buffer pointed to by the lpvBits parameter.

cScanLines
Specifies the number of scan lines in the lpvBits buffer to copy to the device.

Return Value

Comments

See Also

SetDIBitsToDevice 837

lpvBits
Points to the DIB bits that are stored as an array of bytes.

lpbmi
Points to a BITMAPINFO structure that contains information about the bit
map. The BITMAPINFO structure has the following form:

typedef struct tagBITMAPINFO { /* bmi */
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[l];

BITMAPINFO;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

fuColorUse
Specifies whether the bmiColors member of the lpbmi parameter contains ex
plicit RGB values or indices into the currently realized logical palette. This pa
rameter must be one of the following values:

Value

DIB_PAL_COLORS

DIB_RGB_COLORS

Meaning

The color table consists of an array of 16-bit indices into
the currently realized logical palette.

The color table contains literal RGB values.

The return value is the number of scan lines set, if the function is successful.

The origin of a device-independent bitmap is the bottom-left corner of the bitmap,
not the top-left corner, which is the origin when the mapping mode is MM_ TEXT.
GDI performs the necessary transformation to display the image correctly.

To reduce the amount of memory required to set bits from a large device
independent bitmap on a device surface, an application can band the output by re
peatedly calling SetDIBitsToDevice, placing a different portion of the entire
bitmap into the lpvBits buffer each time. The values of the uStartScan and cScan
Lines parameters identify the portion of the entire bitmap that is contained in the
lpvBits buffer.

SetDIBits

838 Setolgltemlnt

SetDlgltemlnt ~

void SetDlgltemlnt(hwndDlg, idControl, uValue,jSigned)
HWND hwndDlg; I* handle of dialog box *I
int idControl; /*identifier of control */
DINT uValue; /*value to set */
BOOLjSigned; I* signed or unsigned indicator */

Parameters

Return Value

Comments

See Also

The SetDlgltemlnt function sets the text of a given control in a dialog box to the
string representation of a specified integer value.

hwndDlg
Identifies the dialog box that contains the control.

id Control
Specifies the control to be changed.

uValue
Specifies the integer value used to generate the item text.

jSigned
Specifies whether the u Value parameter is signed or unsigned. If this parameter
is TRUE, u Value is signed. If this parameter is TRUE and u Value is less than
zero, a minus sign is placed before the first digit in the string. If this parameter
is FALSE, u Value is unsigned.

This function does not return a value.

SetDlgltemlnt sends a WM_SETTEXT message to the given control.

GetDlgltemlnt, SetDlgltemText

SetDlgltemText ~

void SetDlgltemText(hwndDlg, idControl, lpsz)
HWND hwndDlg; /*handle of dialog box */
int idControl; /* identifier of control */
LPCSTR lpsz; I* text to set *I

The SetDlgltemText function sets the title or text of a control in a dialog box.

Parameters hwndDlg
Identifies the dialog box that contains the control.

Return Value

Comments

See Also

SetDoubleClickTime 839

idControl
Identifies the control whose text is to be set.

lpsz
Points to the null-terminated string that contains the text to be copied to the con
trol.

This function does not return a value.

The SetDlgltemText function sends a WM_SETTEXT message to the given con
trol.

GetDlgltemText, SetDlgltemlnt

SetDoubleClickTime
void SetDoubleClickTime(uJnterval)
UINT ulnterval; I* double-click interval */

Parameters

Return Value

Comments

See Also

The SetDoubleClickTime function sets the double-click time for the mouse. A
double-click is a series of two clicks of the mouse button, the second occurring
within a specified time after the first. The double-click time is the maximum num
ber of milliseconds that may occur between the first and second clicks of a double
click.

ulnterval
Specifies the number of milliseconds that can occur between double-clicks.

This function does not return a value.

If the ulnterval parameter is zero, Windows uses the default double-click time of
500 milliseconds.

The SetDoubleClickTime function alters the double-click time for all windows in
the system.

GetDoubleClickTime

840 SetErrorMode

SetErrorMode
DINT SetErrorMode(fuErrorMode)
UINT fuErrorMode; /* specifies the error-mode flag */

Parameters

Return Value

Example

The SetErrorMode function controls whether Windows handles MS-DOS Inter
rupt 24h errors or allows the calling application to handle them.

fuErrorMode
Specifies the error-mode flag. The flag can be a combination of the following
values:

Value

SEM_FAILCRITICALERRORS

SEM_NOGPFAULTERRORBOX

SEM_NOOPENFILEERRORBOX

Meaning

Windows does not display the critical-error
handler message box and returns the error to
the calling application.

Windows does not display the general-pro
tection-fault message box. This flag should
be set only by debugging applications that
handle GP faults themselves.

Windows does not display a message box
when it fails to find a file.

The return value is the previous state of the error-mode flag, if the function is
successful.

The following example uses the SetErrorMode function to turn off the file-not
found message box (the application handles this error itself):

I* Turn off the "File not found" error box. */

SetErrorMode(SEM_NOOPENFILEERRORBOX);

/* Load the TOOLHELP.DLL library module. */

hi nstTool Help = Load Li brary("TOOLHELP. DLL");

if (hinstToolHelp > HINSTANCE_ERROR) /* loaded successfully */

/* Use the DLL here. *'

SetFocus 841

else {
strcpy(szBuf, "Loadlibrary failed");

MessageBox(NULL, szBuf, "Library Functions", MB_ICONHANDl;

SetFocus
HWND SetFocus(hwnd)
HWND hwnd; /* handle of window to receive focus *I

The SetFocus function sets the input focus to the given window. All subsequent
keyboard input is directed to this window. The window, if any, that previously had
the input focus loses it.

Parameters hwnd

Return Value

Comments

See Also

Identifies the window to receive the keyboard input. If this parameter is NULL,
keystrokes are ignored.

The return value identifies the window that previously had the input focus, if the
function is successful. It is NULL if there is no such window or if the specified
handle is invalid.

The SetFocus function sends a WM_KILLFOCUS message to the window that
loses the input focus and a WM_SETFOCUS message to the window that receives
the input focus. It also activates either the window that receives the focus or the
parent of the window that receives the focus.

If a window is active but does not have the focus (that is, no window
has the focus), any key pressed will produce the WM_SYSCHAR,
WM_SYSKEYDOWN, or WM_SYSKEYUP message. If the VK_MENU key is
also pressed, the lParam parameter of the message will have bit 30 set. Otherwise,
the messages that are produced do not have this bit set.

GetActive Window, GetFocus, SetActive Window, Set Capture

842 SetHandleCount

SetHandleCount
UINT SetHandleCount(cHandles)
UINT cHandles; I* number of file handles needed */

Parameters

Return Value

Comments

Example

The SetHandleCount function changes the number of file handles available to a
task.

cHandles
Specifies the number of file handles the application requires. This count cannot
be greater than 255.

The return value is the number of file handles available to the application, if the
function is successful. This number may be less than the number of handles
specified.

By default, the maximum number of file handles available to a task is 20.

The following example uses the SetHandleCount function to set the number of
available file handles to 30:

UINT cHandles;
char szBuf[80J;

cHandles = SetHandleCount(30);

sprintf(szBuf, "%d handles available", cHandles);
MessageBox(hwnd, szBuf, "SetHandleCount", MB_OK);

SetKeyboardState
void SetKeyboardState(lpbKeyState)
BYTE FAR* lpbKeyState; /*address of array with virtual-key codes */

Parameters

The SetKeyboardState function copies a 256-byte array of keyboard key states
into the Windows keyboard-state table.

lpbKeyState
Points to a 256-byte array that contains keyboard key states.

Return Value

Comments

Example

See Also

SetMapMode 843

This function does not return a value.

In many cases, an application should call the GetKeyboardState function first to
initialize the 256-byte array. The application should then change the desired bytes.

SetKeyboardState sets the LEDs and BIOS flags for the NUMLOCK, CAPSLOCK,

and SCROLL LOCK keys according to the toggle state of the VK_NUMLOCK,
VK_CAPITAL, and VK_SCROLL entries of the array.

For more information, see the description of the GetKeyboardState function.

The following example simulates the pressing of the CTRL key:

BYTE pbKeyState[256];

GetKeyboardState((LPBYTEl &pbKeyState);
pbKeyState[VK_CONTROLJ I= 0x80;
SetKeyboardState((LPBYTE) &pbKeyState);

GetKeyboardState

SetMapMode
int SetMapMode(hdc,faMapMode)
HDC hdc; /* handle of device context
intfaMapMode; !*mapping mode to set

*I
*/

The SetMapMode function sets the mapping mode of the given device context.
The mapping mode defines the unit of measure used to convert logical units to
device units; it also defines the orientation of the device's x- and y-axes. GDI uses
the mapping mode to convert logical coordinates into the appropriate device
coordinates.

Parameters hdc
Identifies the device context.

faMapMode
Specifies the new mapping mode. This parameter can be any one of the follow
ing values:

844 SetMapMode

Return Value

Comments

Example

Value

MM_ANISOTROPIC

MM_ HIEN GLISH

MM_HIMETRIC

MM_ISOTROPIC

MM_LOENGLISH

MM_LOMETRIC

MM_ TEXT

MM_TWIPS

Meaning

Logical units are converted to arbitrary units with
arbitrarily scaled axes. Setting the mapping mode to
MM_ANISOTROPIC does not change the current win
dow or viewport settings. To change the units, orienta
tion, and scaling, an application should use the
SetWindowExt and SetViewportExt functions.

Each logical unit is converted to 0.001 inch. Positive xis
to the right; positive y is up.

Each logical unit is converted to 0.01 millimeter. Positive
xis to the right; positive y is up.

Logical units are converted to arbitrary units with equally
scaled axes; that is, one unit along the x-axis is equal to
one unit along the y-axis. The SetWindowExt and
SetViewportExt functions must be used to specify the
desired units and the orientation of the axes. GDI makes
adjustments as necessary to ensure that the x and y units
remain the same size.

Each logical unit is converted to 0.01 inch. Positive xis
to the right; positive y is up.

Each logical unit is converted to 0.1 millimeter. Positive
x is to the right; positive y is up.

Each logical unit is converted to one device pixel. Posi
tive xis to the right; positive y is down.

Each logical unit is converted to 1/20 of a point. (Be
cause a point is 1/72 inch, a twip is 1,1440 inch). Positive
x is to the right; positive y is up.

The return value is the previous mapping mode, if the function is successful.

The MM_ TEXT mode allows applications to work in device pixels, where one
unit is equal to one pixel. The physical size of a pixel varies from device to device.

The MM_HIENGLISH, MM_HIMETRIC, MM_LOENGLISH,
MM_LOMETRIC, and MM_TWIPS modes are useful for applications that must
draw in physically meaningful units (such as inches or millimeters).

The MM_ISOTROPIC mode ensures a 1: 1 aspect ratio, which is useful when it is
important to preserve the exact shape of an image.

The MM_ANISOTROPIC mode allows the x- and y-coordinates to be adjusted in
dependently.

The following example uses the SetMapMode function to set the mapping mode
to MM_TWIPS and then uses the CreateFont function to create an 18-point logi
cal font:

See Also

HFONT hfont, hfontOld;
int MapModePrevious, iPtSize 18;
PSTR pszFace = "MS Serif";

MapModePrevious = SetMapMode(hdc, MM_TWIPS);

SetMapperFlags 845

hfont = CreateFont(-iPtSize * 20, 0, 0, 0, 0, /* specify pt size */
0, 0, 0, 0, 0, 0, 0, 0, pszFace); /*and face name only*/

hfontOld = SelectObjectChdc, hfont);

TextOut(hdc, 100, -500, pszFace, strlen(pszFace));
SetMapMode(hdc, MapModePrevious);
SelectObject(hdc, hfontOld);
DeleteObject(hfont);

GetMapMode, SetViewportExt, SetWindowExt

SetMapperflags
DWORD SetMapperFlags(hdc,fdwMatch)
HDC hdc; /* handle of device context */

/ DWORD fdwMatch; / mapper flag

The SetMapperFlags function changes the method used by the font mapper when
it converts a logical font to a physical font. An application can use SetMapper
Flags to cause the font mapper to attempt to choose only a physical font that ex
actly matches the aspect ratio of the specified device.

Parameters hdc

Return Value

Comments

Identifies a device context.

fdwMatch
Specifies whether the font mapper attempts to match a font's aspect height and
width to the device. When this value is ASPECT_FILTERING, the mapper
selects only fonts whose x-aspect and y-aspect exactly match those of the
specified device, and the remaining bits are ignored.

The return value is the previous value of the font-mapper flag, if the function is
successful.

An application that uses only raster fonts can use the SetMapperFlags function to
ensure that the font selected by the font mapper is attractive and readable on the
specified device. Applications that use scalable (TrueType) fonts typically do not
use SetMapperFlags.

846 SetMenu

SetMenu

If no physical font has an aspect ratio that matches the specifications in the logical
font, GDI chooses a new aspect ratio and selects a font that matches this new
aspect ratio.

BOOL SetMenu(hwnd, hmenu)
HWND hwnd; I* handle of window *!

! HMENU hmenu; / handle of menu

Parameters

Return Value

Comments

Example

See Also

The SetMenu function sets the given window's menu to the specified menu.

hwnd
Identifies the window whose menu is to be changed.

hmenu
Identifies the new menu. If this parameter is NULL, the window's current
menu is removed.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The SetMenu function causes the window to be redrawn to reflect the menu
change.

SetMenu will not destroy a previous menu. An application should call the
Destroy Menu function to accomplish this task.

HMENU hmenu;

hmenu = LoadMenu(hinst, "My Menu");
SetMenu(hwnd, hmenu);

DestroyMenu, LoadMenu, LoadMenulndirect

SetMenultemBitmaps 847

SetMenultemBitmaps [}I]

BOOL SetMenultemBitmaps(hrnenu, idltern,fuFlags, hbrnUnchecked, hbrnChecked)
HMENU hrnenu; /* handle of menu */
UINT id/tern; /* menu-item identifier */
UINT fuFlags; I* menu-item flags */
HBITMAP hbrnUnchecked; /*handle of unchecked bitmap */
HBITMAP hbrnChecked; /*handle of checked bitmap */

Parameters

Return Value

Comments

The SetMenultemBitmaps function associates the given bitmaps with a menu
item. Whether the menu item is checked or unchecked, Windows displays the ap
propriate check-mark bitmap next to the menu item.

hrnenu
Identifies the menu.

id/tern
Specifies the menu item to be changed, as determined by the fuFlags parameter.

fuFlags
Specifies how the id/tern parameter is interpreted. This parameter can be one of
the following values:

Value

MF_BYCOMMAND

MF _B YPOSITION

hbrnUnchecked

Meaning

The idltem parameter specifies the menu-item identifier
(default value).

The idltem parameter specifies the zero-based position of
the menu item.

Identifies the check-mark bitmap to display when the menu item is not checked.

hbrnChecked
Identifies the check-mark bitmap to display when the menu item is checked.

The return value is nonzero if the function is successful. Otherwise, it is zero.

If either the hbrnUnchecked or the hbrnChecked parameter is NULL, Windows
displays nothing next to the menu item for the corresponding attribute. If both pa
rameters are NULL, Windows uses the default check mark when the item is
checked and removes the check mark when the item is unchecked.

When the menu is destroyed, these bitmaps are not destroyed; the application must
destroy them.

848 SetMessageQueue

See Also

The GetMenuCheckMarkDimensions function retrieves the dimensions of the
default check mark used for menu items. The application should use these values
to determine the appropriate size for the bitmaps supplied with this function.

GetMenuCheckMarkDimensions

SetMessageQueue
BOOL SetMessageQueue(cMsg)
int cMsg; /* size of message queue */

Parameters

Return Value

Comments

See Also

The SetMessageQueue function creates a new message queue. It is particularly
useful in applications that require a queue that contains more than eight messages
(the maximum size of the default queue).

cMsg
Specifies the maximum number of messages that the new queue may contain.
This value must not be larger than 120.

The return value is nonzero if the function is successful. If the value specified in
the cMsg parameter is larger than 120, the return value is nonzero but the message
queue is not created. The return value is zero if an error occurs.

The function must be called from an application's WinMain function before any
windows are created and before any messages are sent. The SetMessageQueue
function destroys the old queue, along with messages it might contain.

If the return value is zero, the application has no queue, because the Set
MessageQueue function deletes the original queue before attempting to create a
new one. The application must continue calling SetMessageQueue with a smaller
queue size until the function returns nonzero.

GetMessage, PeekMessage

SetMetaFileBitsBetter 849

SetMetaFileBits CI!J
HGLOBAL SetMetaFileBits(hm.f)
HMETAFILE hmf; /* handle of metafile */

Parameters

Return Value

Comments

See Also

The SetMetaFileBits function creates a memory metafile from the data in the
given global memory object.

hmf
Identifies the global memory object that contains the metafile data. The object
must have been created by a previous call to the GetMetaFileBits function.

The return value is the handle of a memory metafile, if the function is successful.
Otherwise, it is NULL.

After the SetMetaFileBits function returns, the metafile handle it returns must be
used instead of the hmfhandle to refer to the metafile. If SetMetaFileBits is
successful, the application should not use or free the memory handle specified by
the hmfparameter, because that handle is reused by Windows.

When the application no longer needs the metafile header, it should free the handle
by calling the DeleteMetaFile function.

GetMetaFileBits, GlobalFree

SetMetaFileBitsBetter
HGLOBAL SetMetaFileBitsBetter(hm.f)
HMETAFILE hmf; /* handle of the metafile */

Parameters

Return Value

The SetMetaFileBitsBetter function creates a memory metafile from the data in
the specified global-memory object.

hmf
Identifies the global-memory object that contains the metafile data. The object
must have been created by a previous call to the GetMetaFileBits function.

The return value is the handle of a memory metafile, if the function is successful.
Otherwise, the return value is NULL.

850 SetPaletteEntries

Comments

See Also

The global-memory handle returned by SetMetaFileBitsBetter is owned by GDI,
not by the application. This enables applications that use metafiles to support ob
ject linking and embedding (OLE) to use metafiles that persist beyond the
termination of the application. An OLE application should always use SetMeta
FileBitsBetter instead of the SetMetaFileBits function.

After the SetMetaFileBitsBetter function returns, the metafile handle returned by
the function should be used to refer to the metafile, instead of the handle identified
by the hnifparameter.

GetMetaFileBits, SetMetaFileBits

SetPaletteEntries
DINT SetPaletteEntries(hpal, iStart, cEntries, lppe)
HPALETTE hpal; /* handle of palette */

*/
*/
*/

DINT iStart; !* index of first entry to set
DINT cEntries; /* number of entries to set
const PALETTEENTRY FAR* lppe; /* address of array of structures

Parameters

The SetPaletteEntries function sets RGB color values and flags in a range of en
tries in the given logical palette.

hp al
Identifies the logical palette.

iStart
Specifies the first logical-palette entry to be set.

cEntries
Specifies the number of logical-palette entries to be set.

lppe
Points to the first member of an array of PALETTEENTRY structures contain
ing the RGB values and flags. The PALETTEENTRY structure has the follow
ing form:

typedef struct tagPALETTEENTRY {
BYTE peRed;
BYTE peGreen;
BYTE peBlue;
BYTE peFlags;

PALETTEENTRY;

/* pe */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

Return Value

Comments

See Also

SetParent

SetPixel 851

The return value is the number of entries set in the logical palette, if the function is
successful. Otherwise, it is zero.

If the logical palette is selected into a device context when the application calls the
SetPaletteEntries function, the changes will not take effect until the application
calls the RealizePalette function.

RealizePalette

HWND SetParent(hwndChild, hwndNewParent)
HWND hwndChild; /*handle of window whose parent is changing */
HWND hwndNewParent; /*handle of new parent window */

Parameters

Return Value

Comments

See Also

SetPixel

The SetParent function changes the parent window of the given child window.

hwndChild
Identifies the child window.

hwndNewParent
Identifies the new parent window.

The return value is the handle of the previous parent window, if the function is
successful.

If the window identified by the hwndChild parameter is visible, Windows per
forms the appropriate redrawing and repainting.

GetParent, IsChild

COLORREF SetPixel(hdc, nXPos, nYPos, clrrej)
HDC hdc; I* handle of device context */
int nXPos; /* x-coordinate of pixel to set */
int nYPos; /* y-coordinate of pixel to set */
COLORREF clrref; /* color of set pixel */

852 SetPolyFillMode

The SetPixel function sets the pixel at the specified coordinates to the closest ap
proximation of the given color. The point must be in the clipping region; if it is
not, the function does nothing.

Parameters hdc

Return Value

Comments

See Also

Identifies the device context.

nXPos
Specifies the logical x-coordinate of the point to be set.

nYPos
Specifies the logical y-coordinate of the point to be set.

clrref
Specifies the color to be used to paint the point.

The return value is the RGB value for the color the point is painted, if the function
is successful. This value can be different from the specified value if an approxima
tion of that color is used. The return value is -1 if the function fails (if the point is
outside the clipping region).

Not all devices support the SetPixel function. To discover whether a device sup
ports raster operations, an application can call the GetDeviceCaps function using
the RC_BITBLT index.

GetDeviceCaps, GetPixel

SetPolyfillMode
int SetPolyFillMode(hdc,fnMode)
HDC hdc; I* handle of device context *I

*/ intfnMode; /*polygon-filling mode

The SetPolyFillMode function sets the specified polygon-filling mode.

Parameters hdc

Return Value

Identifies the device context.

fnMode
Specifies the new filling mode. This value may be either ALTERNATE or
WINDING. The default mode is ALTERNATE.

The return value specifies the previous filling mode, if the function is successful.
Otherwise, it is zero.

Comments

Example

SetPolyFillMode 853

When the polygon-filling mode is ALTERNATE, the system fills the area be
tween odd-numbered and even-numbered polygon sides on each scan line. That is,
the system fills the area between the first and second side, between the third and
fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in
which a figure was drawn to determine whether to fill an area. Each line segment
in a polygon is drawn in either a clockwise or a counterclockwise direction. When
ever an imaginary line drawn from an enclosed area to the outside of a figure
passes through a clockwise line segment, a count is incremented (increased by
one); when the line passes through a counterclockwise line segment, the count is
decremented (decreased by one). The area is filled ifthe count is nonzero when
the line reaches the outside of the figure.

The following example uses winding mode to draw the same figure twice. The fig
ure is a rectangle that completely encloses a triangle. The first time the figure is
drawn, both the rectangle and the triangle are drawn clockwise, and both the
rectangle and the triangle are filled. The second time, the rectangle is drawn clock
wise, but the triangle is drawn counterclockwise; the rectangle is filled, but the tri
angle is not. (If the figures had been drawn using alternate mode, the rectangle
would have been filled and the triangle would not have been filled, in both cases.)

HBRUSH hbrGray, hbrPrevious;

* Define the points for a clockwise triangle in a clockwise
* rectangle.
*/

POINT aPolyPoints[9] = {{ 50, 60 }, { 250, 60 }, { 250, 260 },
{ 50, 260 }, { 50, 60 }, { 150, 80 },
{ 230, 240 }, { 70, 240 }, { 150, 80 }};

int aPolyCount[J = { 5, 4 };
int cValues, i;

hbrGray = GetStockObject(GRAY_BRUSH);
hbrPrevious = SelectObject(hdc, hbrGray);

cValues = sizeof(aPolyCount) I sizeof(int);

SetPolyFillMode(hdc, WINDING); /*sets winding mode*/
PolyPolygon(hdc, aPolyPoints, aPolyCount, cValues);

f* Define the triangle counter-clockwise */

aPolyPoints[6J.x
aPolyPoints[7J.x

70; aPolyPoints[6J.y
230; aPolyPoints[7J.y

240;
240;

854 SetProp

for (i = 0; i < sizeof(aPolyPoints) I sizeof(POINT); i++)
aPolyPoints[iJ.x += 300; /*moves figure 300 units right*/

PolyPolygon(hdc, aPolyPoints, aPolyCount, cValues);

SelectObject(hdc, hbrPrevious);

See Also GetPolyFillMode, PolyPolygon

SetProp
BOOL SetProp(hwnd, lpsz, hData)
HWND hwnd; /*handle of window */
LPCSTR lpsz; /*atom or address of string */
HANDLE hData; /*handle of data */

The SetProp function adds a new entry or changes an existing entry in the prop
erty list of the given window. The function adds a new entry to the list if the given
character string does not exist already in the list. The new entry contains the string
and the handle. Otherwise, the function replaces the string's current handle with
the given handle.

Parameters hwnd

Return Value

Comments

See Also

Identifies the window whose property list receives the new entry.

lpsz
Points to a null-terminated string or an atom that identifies a string. If this pa
rameter is an atom, it must be a global atom created by a previous call to the
GlobalAddAtom function. The atom, a 16-bit value, must be placed in the low
order word of lpsz; the high-order word must be zero.

hData
Identifies data to be copied to the property list. The data handle can identify any
16-bit value useful to the application.

The return value is nonzero if the data handle and string are added to the property
list. Otherwise, it is zero.

Before destroying a window (that is, before processing the WM_DESTROY mes
sage), an application must remove all entries it has added to the property list. The
RemoveProp function must be used to remove entries from a property list.

GetProp, GlobalAddAtom, RemoveProp

SetRect 855

SetRect [I!]

void SetRect(lprc, nLeft, nTop, nRight, nBottom)
RECT FAR* !pre; /*address of structure with rectangle to set */
int nLeft; /* left side */
int nTop; /*top side */
int nRight; /*right side */
int nBottom; /*bottom side */

Parameters

Return Value

Comments

See Also

The SetRect function sets rectangle coordinates. The action of this function is
equivalent to assigning the left, top, right, and bottom arguments to the appropriate
members of the RECT structure.

!pre
Points to the RECT structure that contains the rectangle to be set. The RECT
structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

nLeft
Specifies the x-coordinate of the upper-left corner.

nTop
Specifies they-coordinate of the upper-left comer.

nRight
Specifies the x-coordinate of the lower-right corner.

nBottom
Specifies they-coordinate of the lower-right corner.

This function does not return a value.

The width of the rectangle, specified by the absolute value of nRight- nLeft, must
not exceed 32,767 units. This limit also applies to the height of the rectangle.

CopyRect, SetRectEmpty

856 SetRectEmpty

SetRectEmpty
void SetRectEmpty(lprc)
RECT FAR* !pre; I* address of struct. with rectangle to set to empty */

The SetRectEmpty function creates an empty rectangle (all coordinates set to
zero).

Parameters !pre
Points to the RECT structure that contains the rectangle to be set to empty. The
RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

I* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

Return Value This function does not return a value.

See Also CopyRect, SetRect

SetRectRgn IT!]

void SetRectRgn(hrgn, nLeftRect, nTopRect, nRightRect, nBottomRect)
HRGN hrgn; /* handle of region */
int nLeftRect; I* x-coordinate top-left corner of rectangle *I
int nTopRect; I* y-coordinate top-left corner of rectangle */
int nRightRect; I* x-coordinate bottom-right corner of rectangle */
int nBottomRect; /* y-coordinate bottom-right corner of rectangle */

Parameters

The SetRectRgn function changes the given region into a rectangular region with
the specified coordinates.

hrgn
Identifies the region.

nLeftRect
Specifies the x-coordinate of the upper-left corner of the rectangular region.

Return Value

Comments

Example

See Also

SetResourceHandler 857

nTopRect
Specifies they-coordinate of the upper-left corner of the rectangular region.

nRightRect
Specifies the x-coordinate of the lower-right corner of the rectangular region.

nBottomRect
Specifies they-coordinate of the lower-right corner of the rectangular region.

This function does not return a value.

Applications can use this function instead of the CreateRectRgn function to avoid
allocating more memory from the GDI heap. Because the memory allocated for
the hrgn parameter is reused, no new allocation is performed.

The following example uses the CreateRectRgn function to create a rectangular
region and then calls the SetRectRgn function to change the region coordinates:

HRGN hrgn;

hrgn = CreateRectRgn(l0, 10, 30, 30);
PaintRgn(hdc, hrgn);

SetRectRgn(hrgn, 50, 50, 150, 200);
PaintRgn(hdc, hrgn);

DeleteObject(hrgn);

CreateRectRgn

SetResourceHandler
RSRCHDLRPROC SetResourceHandler(hinst, lpszType, lpLoadProc)
HINSTANCE hinst; /* handle of application instance
LPCSTR lpszType; /* address of resource-type identifier
RSRCHDLRPROC lpLoadProc; I* callback procedure-instance address

*/
*/
*/

The SetResourceHandler function installs a callback function that loads re
sources.

Parameters hinst
Identifies the instance of the module whose executable file contains the re
source.

858 SetROP2

Return Value

Comments

See Also

SetROP2

lpszType
Points to a null-terminated string that specifies a resource type. For predefined
resource types, the high-order word should be zero and the low-order word
should indicate the resource type.

lpLoadProc
Specifies the procedure-instance address of the application-supplied callback
function. For more information, see the description of the LoadProc callback
function.

The return value is a pointer to the previously installed resource handler, if the
function is successful. If no resource handler has been explicitly installed, the re
turn value is a pointer to the default resource handler.

An application may find this function useful for handling its own resource types,
but the use of this function is not required.

The address passed as the lpLoadProc parameter must be created by using the
MakeProclnstance function.

FindResource, LoadProc, LockResource, MakeProclnstance

int SetROP2(hdc,fnDrawMode)
HDC hdc; I* handle of device context */
intfnDrawMode; /*new drawing mode */

The SetROP2 function sets the current drawing mode. The drawing mode speci
fies how the colors of the pen and the interior of filled objects are combined with
the color already on the screen surface.

Parameters hdc
Identifies the device context.

fnDrawMode
Specifies the new drawing mode. This parameter can be one of the following
values:

Return Value

Comments

See Also

Value

R2_BLACK

R2_WHITE

R2_NOP

R2_NOT

R2_COPYPEN

R2_NOTCOPYPEN

R2_MERGEPENNOT

R2_MASKPENNOT

R2_MERGENOTPEN

R2_MASKNOTPEN

R2_MERGEPEN

R2_NOTMERGEPEN

R2_MASKPEN

R2_NOTMASKPEN

R2_XORPEN

R2_NOTXORPEN

Meaning

Pixel is always black.

Pixel is always white.

Pixel remains unchanged.

Pixel is the inverse of the screen color.

Pixel is the pen color.

Pixel is the inverse of the pen color.

SetROP2 859

Pixel is a combination of the pen color and the inverse of
the screen color (final pixel= (-screen pixel) I pen).

Pixel is a combination of the colors common to both the
pen and the inverse of the screen (final pixel = (-screen
pixel) & pen).

Pixel is a combination of the screen color and the inverse
of the pen color (final pixel= (-pen) I screen pixel).

Pixel is a combination of the colors common to both the
screen and the inverse of the pen (final pixel = (-pen) &
screen pixel).

Pixel is a combination of the pen color and the screen
color (final pixel= pen I screen pixel).

Pixel is the inverse of the R2_MERGEPEN color (final
pixel= -(pen I screen pixel)).

Pixel is a combination of the colors common to both the
pen and the screen (final pixel = pen & screen pixel).

Pixel is the inverse of the R2_MASKPEN color (final
pixel = -(pen & screen pixel)).

Pixel is a combination of the colors that are in the
pen and in the screen, but not in both (final pixel =
pen A screen pixel).

Pixel is the inverse of the R2_XORPEN color (final
pixel = -(pen A screen pixel)).

The return value specifies the previous drawing mode, if the function is successful.

The drawing mode is for raster devices only; it does not apply to vector devices.

Drawing modes are binary raster-operation codes representing all possible
Boolean combinations of two variables. These values are created by using the bi
nary operations AND, OR, and XOR (exclusive OR) and the unary operation NOT.

GetDeviceCaps, GetROP2

860 SetScrollPos

SetScro llPos
int SetScrollPos(hwnd,faBar, nPos,ffeepaint)
HWND hwnd; I* handle of window with scroll bar *I

*I
*I
*I

int faBar; I* scroll bar flag
int nPos; I* new position of scroll box
BOOL ffeepaint; I* redraw flag

Parameters

Return Value

Comments

See Also

The SetScrollPos function sets the position of a scroll box (thumb) and, if re
quested, redraws the scroll bar to reflect the new position of the scroll box.

hwnd
Identifies the window whose scroll bar is to be set.

faBar
Specifies the scroll bar to be set. This parameter can be one of the following
values:

Value

SB_CTL

SB_HORZ

SB_ VERT

nPos

Meaning

Sets the position of the scroll box in a scroll bar. In this case, the
hwnd parameter must be the handle of a scroll bar.

Sets the position of the scroll box in a window's horizontal scroll bar.

Sets the position of the scroll box in a window's vertical scroll bar.

Specifies the new position of the scroll box. It must be within the scrolling
range.

ffeepaint
Specifies whether the scroll bar should be repainted to reflect the new scroll
box position. If this parameter is TRUE, the scroll bar is repainted. If it is
FALSE, the scroll bar is not repainted.

The return value is the previous position of the scroll box, if the function is
successful. Otherwise, it is zero.

Setting the ffeepaint parameter to FALSE is useful whenever the scroll bar will be
redrawn by a subsequent call to another function.

GetScrollPos, GetScrollRange, ScrollWindow, SetScrollRange

SetScrollRange 861

SetScrollRange CI!J
void SetScrollRange(hwnd,faBar, nMin, nMax,fRedraw)
HWND hwnd; I* handle of window with scroll bar */
intfaBar; /*scroll bar flag */
int nMin; /* minimum scrolling position */
int nMax; /* maximum scrolling position */
BOOLfRedraw; I* redraw flag */

The SetScrollRange function sets minimum and maximum position values for the
given scroll bar. It can also be used to hide or show standard scroll bars.

Parameters hwnd

Return Value

Comments

Identifies a window or a scroll bar, depending on the value offaBar.

faBar
Specifies the scroll bar to be set. This parameter can be one of the following
values:

Value

SB_CTL

SB_HORZ
SB_ VERT

nMin

Meaning

Sets the range of a scroll bar. In this case, the hwnd parameter must
be the handle of a scroll bar.

Sets the range of a window's horizontal scroll bar.

Sets the range of a window's vertical scroll bar.

Specifies the minimum scrolling position.

nMax
Specifies the maximum scrolling position.

fRedraw
Specifies whether the scroll bar should be redrawn to reflect the change. If this
parameter is TRUE, the scroll bar is redrawn. If it is FALSE, the scroll bar is
not redrawn.

This function does not return a value.

An application should not call this function to hide a scroll bar while processing a
scroll-bar notification message.

If the call to SetScrollRange immediately follows the call to the SetScrollPos
function, the fRedraw parameter in SetScrollPos should be zero, to prevent the
scroll bar from being drawn twice.

The default range for a standard scroll bar is 0 through 100. The default range
for a scroll bar control is empty (both the nMin and nMax values are zero). The

862 SetSelectorBase

See Also

difference between the values specified by the nMin and nMax parameters must
not be greater than 32,767.

GetScrollPos, GetScrollRange, ScrollWindow, SetScrollPos

SetSelectorBase [ill

UINT SetSelectorBase(selector, dwBase)
UINT selector; I* new selector */
DWORD dwBase; /* new base */

Parameters

Return Value

See Also

The SetSelectorBase function sets the base and limit of a selector.

selector
Specifies the selector value to modify.

dwBase
Specifies the new base value. This value is the starting linear address that selec
tor will reference.

The return value is the selector value, or zero if an error occurs.

GetSelectorBase, GetSelectorLimit, SetSelectorLimit

SetSelectorlimit [ill

UINT SetSelectorLimit(selector, dwBase)
UINT selector; /*new selector */
DWORD dwBase; /* current base */

Parameters

Return Value

The SetSelectorLimit function sets the limit of a selector.

selector
Specifies the selector to modify.

dwBase
Specifies the new limit value for selector. For an 80286 processor, this value
must be less than OxlOOOO.

The return value is always zero.

SetStretchBltMode 863

See Also GetSelectorBase, GetSelectorLimit, SetSelectorBase

SetSoundNoise IT!]

int SetSoundNoise(fiiSource, nDuration)
int ftzSource; I* source of noise */
int nDuration; I* duration of noise */

This function is obsolete. Use the Microsoft Windows multimedia audio functions
instead. For information about audio functions, see the Microsoft Windows Multi
media Programmer's Reference.

SetStretchBltMode
int SetStretchBltMode(hdc,ftzStretchMode)
HDC hdc; /* handle of device context
intftzStretchMode; /*bitmap-stretching mode

*/
*/

The SetStretchBltMode function sets the bitmap-stretching mode. The bitmap
stretching mode defines how information is removed from bitmaps that are com
pressed by using the StretchBlt function.

Parameters hdc
Identifies the device context.

ftzStretchMode
Specifies the new bitmap-stretching mode. This parameter can be one of the fol
lowing values:

Value

STRETCH_ANDSCANS

STRETCH_DELETESCANS

STRETCH_ORSCANS

Meaning

Uses the AND operator to combine eliminated
lines with the remaining lines. This mode pre
serves black pixels at the expense of colored or
white pixels. It is the default mode.

Deletes the eliminated lines. Information in the
eliminated lines is not preserved.

Uses the OR operator to combine eliminated lines
with the remaining lines. This mode preserves
colored or white pixels at the expense of black
pixels.

864 SetSwapAreaSize

Return Value

Comments

See Also

The return value is the previous stretching mode, if the function is successful. It
can be STRETCH_ANDSCANS, STRETCH_DELETESCANS, or
STRETCH_ORSCANS.

The STRETCH_ANDSCANS and STRETCH_ORSCANS modes are typically
used to preserve foreground pixels in monochrome bitmaps. The
STRETCH_DELETESCANS mode is typically used to preserve color in color bit
maps.

GetStretchBltMode, StretchBlt, StretchDIBits

SetSwapAreaSize
LONG SetSwapAreaSize(cCodeParagraphs)
UINT cCodeParagraphs; /* number of paragraphs for code */

Parameters

Return Value

Comments

See Also

The SetSwapAreaSize function sets the amount of memory that an application
uses for its code segments.

cCodeParagraphs
Specifies the number of 16-byte paragraphs requested by the application for use
as code segments. If this parameter is zero, the return value specifies the current
size of the code-segment space.

The return value is the amount of space available for the code segment, if the func
tion is successful. The low-order word specifies the number of paragraphs ob
tained for use as a code-segment space (or the current size if the cCodeParagraphs
parameter is zero); the high-order word specifies the maximum size available.

If cCodeParagraphs specifies a size larger than is available, this function sets the
size to the available amount. The maximum amount of memory available is one
half the space remaining after Windows is loaded.

Calling this function can improve an application's performance by preventing Win
dows from swapping code segments to the hard disk. However, increasing the
code-segment space reduces the amount of memory available for data objects and
can reduce the performance of other applications.

GetNumTasks, GlobalAlloc

SetSysColors 865

SetSysColors CI!J
void SetSysColors(cDspElements, lpnDspElements, lpdwRgbValues)
int cDspElements; /*number of elements to change */
const int FAR* lpnDspElements; /*address of array of elements */
const COLORREF FAR* lpdwRgb Values; /* address of array of RGB values */

Parameters

Return Value

Comments

The SetSysColors function sets the system colors for one or more display ele
ments. Display elements are the various parts of a window and the Windows back
ground that appear on the screen.

The SetSysColors function sends a WM_SYSCOLORCHANGE message to all
windows to inform them of the change in color. It also directs Windows to repaint
the affected portions of all currently visible windows.

cDspElements
Specifies the number of display elements in the array pointed to by the
lpnDspElements parameter.

lpnDspElements
Points to an array of integers that specify the display elements to be changed.
For a list of possible display elements, see the following Comments section.

lpdwRgbValues
Points to an array of unsigned long integers that contains the new RGB (red
green-blue) color value for each display element in the array pointed to by the
lpnDspElements parameter.

This function does not return a value.

The SetSysColors function changes the current Windows session only. The new
colors are not saved when Windows terminates.

Following are the display elements that may be used in the lpnDspElements array:

Value

COLOR_ACTIVEBORDER

COLOR_ACTIVECAPTION

COLOR_APPWORKSPACE

COLOR_BACKGROUND

COLOR_BTNFACE

COLOR_BTNHIGHLIGHT

COLOR_BTNSHADOW

COLOR_BTNTEXT

Meaning

Active window border.

Active window title.

Background color of multiple document
interface (MDI) applications.

Desktop.

Face shading on push buttons.

Selected button in a control.

Edge shading on push buttons.

Text on push buttons.

866 SetSysColors

Example

See Also

Value

COLOR_CAPTIONTEXT

COLOR_GRAYTEXT

COLOR_HIGHLIGHT

COLOR_HIGHLIGHTTEXT

COLOR_INACTIVEBORDER

COLOR_INACTIVECAPTION

COLOR_INACTIVECAPTIONTEXT

COLOR_MENU

COLOR_MENUTEXT

COLOR_SCROLLBAR

COLOR_ WINDOW

COLOR_ WINDOWFRAME

COLOR_ WINDOWTEXT

Meaning

Text in title bar, size button, scroll-bar
arrow button.

Grayed (dimmed) text. This color is zero if
the current display driver does not support a
solid gray color.

Background of selected item in a control.

Text of selected item in a control.

Inactive window border.

Inactive window title.

Color of text in an inactive title.

Menu background.

Text in menus.

Scroll-bar gray area.

Window background.

Window frame.

Text in windows.

The following example changes the window background to black and the text in
the window to green:

int aiDspElements[2];
DWORD aRgbValues[2];

aiDspElements[0] = COLOR_WINDOW;
aRgbValues[0] = RGB(

0x00, /* red */
0x00, /* green */
0x00); /*blue*/

aiDspElements[l] = COLOR_WINDOWTEXT;
aRgbValues[l] = RGB(

0x00, I* red */
0xff, /* green */
0x00); /* blue */

SetSysColors(2, aiDspElements, aRgbValues);

GetSysColor

SetSystemPaletteUse 867

SetSysModalWindow ~

HWND SetSysModalWindow(hwnd)
HWND hwnd; /* handle of window to become system modal */

The SetSysModalWindow function makes the given window the system-modal
window.

Parameters hwnd

Return Value

Comments

See Also

Identifies the window to be made system modal.

The return value is the handle of the window that was previously the system
modal window, if the function is successful.

If another window is made the active window (for example, the system-modal win
dow creates a dialog box that becomes the active window), the active window be
comes the system-modal window. When the original window becomes active
again, it is once again the system-modal window. To end the system-modal state,
destroy the system-modal window.

If a WH_JOURNALRECORD hook is in place when SetSysModalWindow is
called, the hook is called with a hook code of HC_SYSMODALON (for turning
on the system-modal window) or HC_SYSMODALOFF (for turning off the
system-modal window).

GetSysModalWindow

SetSyste m Pa I etteUse
UINT SetSystemPaletteU se(hdc, fuStatic)
HDC hdc; /* handle of device context
UINT fuStatic; /*system-palette contents

*/
*/

The SetSystemPaletteUse function sets the use of static colors in the system
palette. The default system palette contains 20 static colors, which are not changed
when an application realizes its logical palette. An application can use SetSystem
PaletteUse to change this to two static colors (black and white).

Parameters hdc
Identifies the device context. This device context must support color palettes.

868 SetSystemPaletteUse

Return Value

Comments

fuStatic
Specifies the new use of the system palette. This parameter can be either of the
following values:

Value

SYSPAL_NOSTATIC

SYSPAL_STATIC

Meaning

System palette contains no static colors except black and
white.

System palette contains static colors that will not change
when an application realizes its logical palette.

The return value is the previous setting for the static colors in the system palette,
if the function is successful. This setting is either SYSPAL_NOST A TIC or
SYSPAL_STA TIC.

An application must call this function only when its window is maximized and has
the input focus.

If an application calls SetSystemPaletteUse withfuStatic set to
SYSPAL_NOSTATIC, Windows continues to set aside two entries in
the system palette for pure white and pure black, respectively.

After calling this function withfuStatic set to SYSPAL_NOSTATIC, an applica
tion must follow these steps:

1. Call the UnrealizeObject function to force the graphics device interface (GDI)
to remap the logical palette completely when it is realized.

2. Realize the logical palette.

3. Call the GetSysColor function to save the current system-color settings.

4. Call the SetSysColors function to set the system colors to reasonable values
using black and white. For example, adjacent or overlapping items (such as win
dow frames and borders) should be set to black and white, respectively.

5. Send the WM_SYSCOLORCHANGE message to other top-level windows to
allow them to be redrawn with the new system colors.

When the application's window loses focus or closes, the application must per
form the following steps:

1. Call SetSystemPaletteUse with the fuStatic parameter set to
SYSPAL_STA TIC.

2. Call UnrealizeObject to force GDI to remap the logical palette completely
when it is realized.

3. Realize the logical palette.

4. Restore the system colors to their previous values.

5. Send the WM_SYSCOLORCHANGE message.

SetTextAlign 869

See Also GetSysColor, SetSysColors, SetSystemPaletteUse, UnrealizeObject

SetTextAlign CI!J
UINT SetTextAlign(hdc,jitAlign)
HDC hdc; /* handle of device context */
UINT fuAlign; /* text-alignment flags */

The SetTextAlign function sets the text-alignment flags for the given device con
text.

Parameters hdc
Identifies the device context.

fuAlign
Specifies text-alignment flags. The flags specify the relationship between a
point and a rectangle that bounds the text. The point can be either the current
position or coordinates specified by a text-output function (such as the Ext
TextOut function). The rectangle that bounds the text is defined by the adja
cent character cells in the text string.

The fuAlign parameter can be one or more flags from the following three cate
gories. Choose only one flag from each category.

The first category affects text alignment in the x-direction:

Value

TA_ CENTER

TA_LEFT

TA_RIGHT

Meaning

Aligns the point with the horizontal center of the bounding
rectangle.

Aligns the point with the left side of the bounding rectangle. This
is the default setting.

Aligns the point with the right side of the bounding rectangle.

The second category affects text alignment in they-direction:

Value

TA_BASELINE

TA_BOTTOM

TA_ TOP

Meaning

Aligns the point with the base line of the chosen font.

Aligns the point with the bottom of the bounding rectangle.

Aligns the point with the top of the bounding rectangle. This is
the default setting.

The third category determines whether the current position is updated when text
is written:

870 SetTextCharacterExtra

Return Value

Comments

Example

See Also

Value

TA_NOUPDATECP

TA_UPDATECP

Meaning

Does not update the current position after each call to a
text-output function. This is the default setting.

Updates the current x-position after each call to a text
output function. The new position is at the right side of the
bounding rectangle for the text. When this flag is set, the
coordinates specified in calls to the TextOut function are
ignored.

The return value is the previous text-alignment settings, if the function is success
ful. The low-order byte contains the horizontal setting; the high-order byte con
tains the vertical setting. Otherwise, the return value is zero.

The text-alignment flags set by SetTextAlign are used by the TextOut and Ext
TextOut functions.

The following example uses the GetTextFace function to retrieve the name of the
current typeface, calls SetTextAlign so that the current position is updated when
the TextOut function is called, and then writes some introductory text and the
name of the typeface by calling TextOut:

int nFaceNameLen;
char aFaceName[80J;

nFaceNamelen = GetTextFace(hdc, f* returns length of string */
sizeof(aFaceName), /*size of face-name buffer */
(LPSTR) aFaceName); /*address of face-name buffer*/

SetTextAlign(hdc,
TA_UPDATECP); /*updates current position */

MoveTo(hdc, 100, 100); /*sets current position */
TextOut(hdc, 0, 0, /* uses current position for text */

"This is the current face name: ", 31);
TextOut(hdc, 0, 0, aFaceName, nFaceNamelen);

ExtTextOut, GetTextAlign, TextOut

SetTextCharacterExtra
int SetTextCharacterExtra(hdc, nExtraSpace)
HDC hdc; I* handle of device context
int nExtraSpace; /*extra character spacing

*/
*/

SetTextColor 871

The SetTextCharacterExtra function sets the amount of intercharacter spacing.
The graphics device interface (GDI) adds this spacing to each character, including
break characters, when it writes a line of text to the device context.

Parameters hdc
Identifies the device context.

nExtraSpace
Specifies the amount of extra space, in logical units, to be added to each charac
ter. If the current mapping mode is not MM_ TEXT, this parameter is trans
formed and rounded to the nearest pixel.

Return Value The return value is the previous intercharacter spacing, if the function is successful.

Comments The default value for the amount of intercharacter spacing is zero.

See Also GetTextCharacterExtra

SetTextColor CI!J
COLORREF SetTextColor(hdc, clrrej)
HDC hdc; /*handle of device context */
COLORREF clrref; /* new color for text */

The SetTextColor function sets the text color to the specified color. The system
uses the text color when writing text to a device context and also when converting
bitmaps between color and monochrome device contexts.

Parameters hdc

Return Value

Comments

Identifies the device context.

clrref
Specifies the color of the text.

The return value is the RGB (red-green-blue) value for the previous text color, if
the function is successful.

If the device cannot represent the specified color, the system sets the text color to
the nearest physical color.

The background color for a character is specified by the SetBkColor and SetBk
Mode functions.

872 SetTextJustification

Example The following example sets the text color to red if the GetTextColor function de
termines that the current text color is black. The text color is specified by using the
RGBmacro.

DWORD dwColor;

dwColor = GetTextColor(hdc);
if (dwColor == RGB(0, 0, 0)) /*if current color is black*/

SetTextColor(hdc, RGB(255, 0, 0)); /*sets color to red */

See Also GetTextColor, BitBlt, SetBkColor, SetBkMode

SetTextJustification
int SetTextJustification(hdc, nExtraSpace, cBreakChars)
HDC hdc; I* handle of device context */

*/
*/

int nExtraSpace; I* space to add to string
int cBreakChars; /* number of break characters in the string

The SetTextJustification function adds space to the break characters in a string.
An application can use the GetTextMetrics function to retrieve a font's break
character.

Parameters hdc

Return Value

Comments

Identifies the device context.

nExtraSpace
Specifies the total extra space, in logical units, to be added to the line of text. If
the current mapping mode is not MM_ TEXT, the value given by this parameter
is converted to the current mapping mode and rounded to the nearest device
unit.

cBreakChars
Specifies the number of break characters in the line.

The return value is 1 if the function is successful. Otherwise, it is zero.

After the SetTextJustification function is called, a call to a text-output function
(for example, TextOut) distributes the specified extra space evenly among the
specified number of break characters. The break character is usually the space
character (ASCII 32), but it may be defined by a font as some other character.

The GetTextExtent function is typically used with SetTextJustification. The
GetTextExtent function computes the width of a given line before alignment. An

Example

SetTextJustification 873

application can determine how much space to specify in the nExtraSpace parame
ter by subtracting the value returned by GetTextExtent from the width of the
string after alignment.

The SetTextJustification function can be used to align a line that contains
multiple runs in different fonts. In this case, the line must be created piecemeal by
aligning and writing each run separately.

Because rounding errors can occur during alignment, the system keeps a running
error term that defines the current error. When aligning a line that contains
multiple runs, GetTextExtent automatically uses this error term when it computes
the extent of the next run, allowing the text-output function to blend the error into
the new run. After each line has been aligned, this error term must be cleared to
prevent it from being incorporated into the next line. The term can be cleared by
calling SetTextJustification with the nExtraSpace parameter set to zero.

The following example writes two lines of text inside a box; one of the lines is
aligned, and the other is not. The GetTextExtent function determines the width of
the unaligned string. The GetTextMetrics function determines the break character
that is used by the current font; this information is then used to determine how
many break characters the string contains. The SetTextJustification function
specifies the total amount of extra space and the number of break characters to dis
tribute it among. After writing a line of aligned text, SetTextJustification is called
again, to set the error term to zero.

POINT aPoints[5];
int iLMargin = 10, iRMargin = 10, iBoxWidth;
int cchString;
LPSTR lpszJustified = "Text to be justified in this test.";
DWORD dwExtent;
WORD wTextWidth;
TEXTMETRIC tm;
int j, cBreakChars;

aPoints[0].x 100; aPoints[0J.y 50;
aPoints[l].x 600; aPoints[lJ.y 50;
aPoints[2J.x 600; aPoints[2J.y 200;
aPoints[3J.x 100; aPoints[3J.y 200;
aPoints[4J.x 100; aPoints[4J.y 50;

Polyline(hdc, aPoints, sizeof(aPoints) I sizeof(POINT));

TextOut(hdc, 100 + iLMargin, 100, "Unjustified text.", 17);
cchString = lstrlen(lpszJustified);
dwExtent = GetTextExtent(hdc, lpszJustified, cchString);
wTextWidth = LOWORD(dwExtent);

iBoxWidth = aPoints[l].x - aPoints[0J.x;
GetTextMetrics(hdc, &tm);

874 SetTimer

See Also

SetTimer

for (cBreakChars = 0, j 0; j < cchString; j++)
if (*(lpszJustified + j) == (char) tm.tmBreakChar)

cBreakChars++;

SetTextJustification(hdc,
iBoxWidth - wTextWidth - (iLMargin + iRMargin),
cBreakChars);

TextOut(hdc, 100 + iLMargin, 150, lpszJustified, cchString);

SetTextJustification(hdc, 0, 0); /* clears error term */

GetMapMode, GetTextExtent, GetTextMetrics, SetMapMode, TextOut

UINT SetTimer(hwnd, idTimer, uTimeout, tmprc)
HWND hwnd; /*handle of window for timer messages */
UINT idTimer; /*timer identifier */
UINT uTimeout; !*time-out duration */
TIMERPROC tmprc; I* instance address of timer procedure */

Parameters

The SetTimer function installs a system timer. A time-out value is specified, and
every time a time-out occurs, the system posts a WM_ TIMER message to the in
stalling application's message queue or passes the message to an application
defined TimerProc callback function.

hwnd
Identifies the window to be associated with the timer. If the tmprc parameter is
NULL, the window procedure associated with this window receives the
WM_ TIMER messages generated by the timer. If this parameter is NULL, no
window is associated with the timer.

idTimer
Specifies a nonzero timer identifier. If the hwnd parameter is NULL, this pa
rameter is ignored.

uTimeout
Specifies the time-out value, in milliseconds.

Return Value

Comments

Example

See Also

SetTimer 875

tmprc
Specifies the procedure-instance address of the callback function that processes
the WM_ TIMER messages. If this parameter is NULL, the WM_ TIMER mes
sages are placed in the application's message queue and the hwnd member of
the MSG structure contains the window handle specified in hwnd. For more in
formation, see the description of the TimerProc callback function.

The MSG structure has the following form:

typedef struct tagMSG
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

MSG;

/* msg */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is the identifier of the new timer if hwnd is NULL and the func
tion is successful. An application passes this value to the KillTimer function to
kill the timer. The return value is nonzero if hwnd is a valid window handle and
the function is successful. Otherwise, the return value is zero.

Timers are a limited global resource; therefore, it is important that an application
check the value returned by the SetTimer function to verify that a timer is avail
able.

The tmprc parameter must specify a procedure-instance address of the callback
function, and the callback function must be exported in the application's module
definition file. A procedure-instance address can be created by using the Make
Proclnstance function. The callback function must use the Pascal calling
convention and must be declared as FAR.

The following example installs a system timer. The system will pass WM_ TIMER
messages generated by the timer to the "MyTimerProc" callback function.

TIMERPROC lpfnMyTimerProc;

lpfnMyTimerProc = CTIMERPROC) MakeProclnstance(MyTimerProc, hinst);
SetTimer(hwnd, ID_MYTIMER, 5000, lpfnMyTimerProc);

KillTimer, MakeProclnstance, TimerProc

876 SetViewportExt

SetViewportExt
DWORD SetViewportExt(hdc, nXExtent, nYExtent)
HDC hdc; I* handle of device context */
int nXExtent; /* x-extent of viewport */
int nYExtent; /* y-extent of viewport */

The SetViewportExt function sets the x- and y-extents of the viewport of the
given device context. The viewport, along with the window, defines how points
are converted from logical coordinates to device coordinates.

Parameters hdc

Return Value

Comments

Identifies the device context.

nXExtent
Specifies the x-extent, in device units, of the viewport.

nYExtent
Specifies they-extent, in device units, of the viewport.

The return value is the previous viewport extents, in device units, if the function is
successful. The low-order word contains the previous x-extent; the high-order
word contains the previous y-extent. Otherwise, the return value is zero.

When the following mapping modes are set, calls to the SetWindowExt and
Set ViewportExt functions are ignored:

MM_HIENGLISH
MM_HIMETRIC
MM_LOENGLISH
MM_LOMETRIC
MM_ TEXT
MM_TWIPS

When the mapping mode is MM_ISOTROPIC, an application must call the
SetWindowExt function before calling SetViewportExt.

The x- and y-extents of the viewport define how much the graphics device inter
face (GDI) must stretch or compress units in the logical coordinate system to fit
units in the device coordinate system. For example, ifthe x-extent of the window
is 2 and the x-extent of the viewport is 4, GDI converts two logical units
(measured from the x-axis) into four device units. Similarly, if they-extent of the
window is 2 and they-extent of the viewport is -1, GDI converts two logical units
(measured from the y-axis) into one device unit.

The extents also define the relative orientation of the x- and y-axes in both coordi
nate systems. If the signs of matching window and viewport extents are the same,

Example

See Also

SetViewportExtEx 877

the axes have the same orientation. If the signs are different, the orientation is
reversed. For example, if they-extent of the window is 2 and they-extent of the
viewport is -1, GDI converts the positive y-axis in the logical coordinate system
to the negative y-axis in the device coordinate system. If the x-extents are 2 and 4,
GDI converts the positive x-axis in the logical coordinate system to the positive
x-axis in the device coordinate system.

The following example uses the SetMapMode, SetWindowExt, and Set
ViewportExt functions to create a client area that is 10 logical units wide and 10
logical units high, and then draws a rectangle that is 4 logical units wide and 4 logi
cal units high:

HOC hde;
RECT re;

GetClientReet(hwnd, &re);
hde = GetDCChwnd);
SetMapMode(hde, MM_ANISOTROPIC);
SetWindowExt(hde, 10, 10);
SetViewportExt(hde, re.right, re.bottom);
Reetangle(hde, 3, 3, 7, 7);
ReleaseDC(hwnd, hde);

GetViewportExt, SetWindowExt

SetViewportExtEx
BOOL SetViewportExtEx(hdc, nX, nY, lpSize)
HDC hdc; I* handle of device context
int nX; I* x-extent of viewport
int nY; /* y-extent of viewport
SIZE FAR* lpSize; /*address of struct. with prev. extents

*/
*/
*/
*I

The SetViewportExtEx function sets the x- and y-extents of the viewport of the
specified device context. The viewport, along with the window, defines how
points are mapped from logical coordinates to device coordinates.

Parameters hdc
Identifies the device context.

nX
Specifies the x-extent of the viewport, in device units.

nY
Specifies they-extent of the viewport, in device units.

878 SetViewportOrg

Return Value

Comments

See Also

lpSize
Points to a SIZE structure. The previous extents of the viewport, in device
units, are placed in this structure. If lpSize is NULL, nothing is returned. The
SIZE structure has the following form:

typedef struct tagSIZE {
int ex;
int cy;

} SIZE;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

When the following mapping modes are set, calls to the SetWindowExtEx and
SetViewportExtEx functions are ignored:

MM_HIENGLISH
MM_HIMETRIC
MM_LOENGLISH
MM_LOMETRIC
MM_ TEXT
MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the SetWindow
ExtEx function before it calls SetViewportExtEx.

SetWindowExtEx

SetViewportOrg
DWORD SetViewportOrg(hdc, nXOrigin, nYOrigin)
HDC hdc; /*handle of device context */
int nXOrigin; I* x-coordinate of new origin */
int nYOrigin; I* y-coordinate of new origin */

The SetViewportOrg function sets the viewport origin of the specified device con
text. The viewport, along with the window, defines how points are converted from
logical coordinates to device coordinates.

Parameters hdc
Identifies the device context.

Return Value

Comments

Example

See Also

SetViewportOrgEx 879

nXOrigin
Specifies the x-coordinate, in device coordinates, of the origin of the viewport.
This value must be within the range of the device coordinate system.

nYOrigin
Specifies they-coordinate, in device coordinates, of the origin of the viewport.
This value must be within the range of the device coordinate system.

The return value is the coordinates of the previous viewport origin, in device units,
ifthe function is successful. The low-order word contains the previous x-coordi
nate; the high-order word contains the previous y-coordinate. Otherwise, the re
turn value is zero.

The viewport origin is the origin of the device coordinate system. The graphics
device interface (GDI) converts points from the logical coordinate system to
device coordinates. (An application can specify the origin of the logical coordinate
system by using the SetWindowOrg function.) GDI converts all points in the logi
cal coordinate system to device coordinates in the same way as it converts the
origin.

The following example uses the SetViewportOrg function to set the viewport
origin to the center of the client area and then draws a rectangle centered over the
origin:

HOC hde;
RECT re;

GetClientReet(hwnd, &re);
hde = GetDC(hwnd);
SetViewportOrg(hde, re.right/2, rc.bottom/2);
Rectangle(hdc, -100, -100, 100, 100);
ReleaseDC(hwnd, hde);

SetWindowOrg

SetViewportOrgEx
BOOL SetViewportOrgEx(hdc, nX, nY, lpPoint)
HDC hdc; /* handle of device context
int nX; I* x-coordinate of new origin
int nY; /* y-coordinate of new origin
POINT FAR* lpPoint; I* address of struct. with prev. origin

*/
*I
*I
*/

880 SetVoiceAccent

The Set ViewportOrgEx function sets the viewport origin of the specified device
context. The viewport, along with the window, defines how points are mapped
from logical coordinates to device coordinates.

Parameters hdc

Return Value

See Also

Identifies the device context.

nX
Specifies the x-coordinate, in device units, of the origin of the viewport.

nY
Specifies they-coordinate, in device units, of the origin of the viewport.

lpPoint
Points to a POINT structure. The previous origin of the viewport, in device
coordinates, is placed in this structure. If lpPoint is NULL, nothing is returned.
The POINT structure has the following form:

typedef struct tagPOINT { /* pt */
int x;
int y;

POINT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

SetWindowOrgEx

SetVoiceAccent
int SetVoiceAccent(n Voice, nTempo, n Volume,fnMode, nPitch)
int nVoice; /*voice queue */
int nTempo; /*number of quarter notes per minute *I
int nVolume; /*volume level */
intfnMode; /*how notes are to be played */
int nPitch; !* pitch */

This function is obsolete. Use the Microsoft Windows multimedia audio functions
instead. For information about these functions, see the Microsoft Windows Multi
media Programmer's Reference.

SetVoiceQueueSize 881

SetVoiceEnvelope [0

int SetVoiceEnvelope(n Voice, nShape, nRepeat)
int n Voice; /* voice queue */
int nShape; /* index into an OEM wave-shape table */
int nRepeat; /* repetition count */

This function is obsolete. Use the Microsoft Windows multimedia audio functions
instead. For information about these functions, see the Microsoft Windows Multi
media Programmer's Reference.

SetVoiceNote
int SetVoiceNote(voice, value, length, cdots)
int voice; /* voice queue */
int value; /*note */
int length; /* length of note */
int cdots; /*duration of note */

This function is obsolete. Use the Microsoft Windows multimedia audio functions
instead. For information about these functions, see the Microsoft Windows Multi
media Programmer's Reference.

SetVoiceQueueSize
int SetVoiceQueueSize(n Voice, cbQueue)
int n Voice; /*voice queue */
int cbQueue; /*size of queue */

This function is obsolete. Use the Microsoft Windows multimedia audio functions
instead. For information about these functions, see the Microsoft Windows Multi
media Programmer's Reference.

882 SetVoiceSound

SetVoiceSound ~

int SetVoiceSound(nVoice, dwFrequency, nDuration)
int nVoice; I* voice queue */
DWORD dwFrequency; I* frequency */
int nDuration; I* duration of sound */

This function is obsolete. Use the Microsoft Windows multimedia audio functions
instead. For information about these functions, see the Microsoft Windows Multi
media Programmer's Reference.

SetVoiceThreshold
int SetVoiceThreshold(voice, cNotesThreshold)
int voice; /*voice queue */
int cNotesThreshold; /* threshold level */

This function is obsolete. Use the Microsoft Windows multimedia audio functions
instead. For information about these functions, see the Microsoft Windows Multi
media Programmer's Reference.

SetWinDebuglnfo
BOOL SetWinDebuglnfo(lpwdi)
const WINDEBUGINFO FAR* lpwdi; /* address of WINDEBUGINFO structure */

Parameters

The SetWinDebuglnfo function sets current system-debugging information for
the debugging version of the Windows 3.1 operating system.

lpwdi
Points to a WINDEBUGINFO structure that specifies the type of debugging in
formation to be set. The WINDEBUGINFO structure has the following form:

typedef struct tagWINDEBUGINFO
UINT flags;
DWORD dwOptions;
DWORD dwFilter;

Return Value

Comments

See Also

SetWindowExt 883

char achAllocModule[8];
DWORD dwAllocBreak;
DWORD dwAllocCount;

WINDEBUGINFO;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. It is zero if the pointer
specified in the lpwdi parameter is invalid, the flags member of the WIN
DEBUGINFO structure is invalid, or the function is not called in the debugging
version of Windows 3 .1.

The flags member of the WINDEBUGINFO structure specifies which debugging
information should be set. Applications need initialize only those members of the
WINDEBUGINFO structure that correspond to the flags set in the flags member.

Changes to debugging information made by calling SetWinDebuglnfo apply only
until you exit the system or restart your computer.

Get WinDebuglnfo

SetWindowExt
DWORD SetWindowExt(hdc, nXExtent, nYExtent)
HDC hdc; /*handle of device context */
int nXExtent; I* x-extent of window */
int nYExtent; /* y-extent of window */

The SetWindowExt function sets the x- and y-extents of the window associated
with the given device context. The window, along with the viewport, defines how
logical coordinates are converted to device coordinates.

Parameters hdc
Identifies the device context.

nXExtent
Specifies the x-extent, in logical units, of the window.

nYExtent
Specifies they-extent, in logical units, of the window.

884 SetWindowExt

Return Value

Comments

Example

The return value is the window's previous extents, in logical units, if the function
is successful. The low-order word contains the previous x-extent; the high-order
word contains the previous y-extent. Otherwise, the return value is zero.

When the following mapping modes are set, calls to the SetWindowExt and
SetViewportExt functions are ignored:

MM_HIENGLISH
MM_HIMETRIC
MM_LOENGLISH
MM_LOMETRIC
MM_ TEXT
MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the SetWindowExt
function before calling SetViewportExt.

The x- and y-extents of the window define how much the graphics device interface
(GDI) must stretch or compress units in the logical coordinate system to fit units
in the device coordinate system. For example, if the x-extent of the window is 2
and the x-extent of the viewport is 4, GDI converts two logical units (measured
from the x-axis) into four device units. Similarly, if they-extent of the window is
2 and the y-extent of the viewport is -1, GDI converts two logical units (measured
from the y-axis) into one device unit.

The extents also define the relative orientation of the x- and y-axes in both coordi
nate systems. If the signs of matching window and viewport extents are the same,
the axes have the same orientation. If the signs are different, the orientation is
reversed. For example, if they-extent of the window is 2 and they-extent of the
viewport is -1, GDI converts the positive y-axis in the logical coordinate system
to the negative y-axis in the device coordinate system. If the x-extents are 2 and 4,
GDI converts the positive x-axis in the logical coordinate system to the positive
x-axis in the device coordinate system.

The following example uses the SetMapMode, SetWindowExt, and Set
ViewportExt functions to create a client area that is 10 logical units wide and 10
logical units high and then draws a rectangle that is 4 units wide and 4 units high:

HDC hde;
RECT re;

GetClientReet(hwnd, &re);
hde = GetDC(hwnd);
SetMapMode(hde, MM_ANISOTROPIC);
SetWindowExt(hde, 10, 10);
SetViewportExt(hde, re.right, re.bottom);
Reetangle(hde, 3, 3, 7, 7);
ReleaseDC(hwnd, hde);

SetWindowExtEx 885

See Also GetWindowExt, SetViewportExt

SetWindowExtEx
BOOL SetWindowExtEx(hdc, nX, nY, lpSize)
HDC hdc; /* handle of device context */

*/
*/
*/

int nX; /* x-extent of window
int nY; /* y-extent of window
SIZE FAR* lpSize; I* address of struct. with prev. extents

The SetWindowExtEx function sets the x- and y-extents of the window as
sociated with the specified device context. The window, along with the viewport,
defines how points are mapped from logical coordinates to device coordinates.

Parameters hdc

Return Value

Comments

Identifies the device context.

nX
Specifies the x-extent, in logical units, of the window.

nY
Specifies they-extent, in logical units, of the window.

lpSize
Points to a SIZE structure. The previous extents of the window (in logical
units) are placed in this structure. If lpSize is NULL nothing is returned. The
SIZE structure has the following form:

typedef struct tagSIZE {
int ex;
int cy;

SIZE;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

When the following mapping modes are set, calls to the SetWindowExtEx and
SetViewportExt functions are ignored:

MM_HIENGLISH
MM_HIMETRIC
MM_LOENGLISH

886 SetWindowLong

See Also

MM_LOMETRIC
MM_ TEXT
MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the SetWindow
ExtEx function before calling SetViewportExt.

Set ViewportExtEx

SetWindowlong
LONG SetWindowLong(hwnd, nOffset, n Val)
HWND hwnd; /*handle of window */
int nOffset; I* offset of value to set */
LONG nVal; I* new value */

The SetWindowLong function places a long value at the specified offset into the
extra window memory of the given window. Extra window memory is reserved by
specifying a nonzero value in the cb WndExtra member of the WNDCLASS
structure used with the RegisterCiass function.

Parameters hwnd
Identifies the window.

nOffset
Specifies the zero-based byte offset of the value to change. Valid values are in
the range zero through the number of bytes of extra window memory, minus
four (for example, if 12 or more bytes of extra memory were specified, a value
of 8 would be an index to the third long integer), or one of the following values:

Value

GWL_EXSTYLE

GWL_STYLE

GWL_ WNDPROC

Meaning

Extended window style

Window style

Long pointer to the window procedure

The following values are also available when the hwnd parameter identifies a
dialog box:

Value

DWL_DLGPROC

DWL_MSGRESULT

Meaning

Specifies the address of the dialog box procedure.

Specifies the return value of a message processed in the
dialog box procedure.

Return Value

Comments

Example

SetWindowlong 887

Value Meaning

DWL_USER Specifies extra information that is private to the applica
tion, such as handles or pointers.

nVal
Specifies the long value to place in the window's reserved memory.

The return value is the previous value of the specified long integer, if the function
is successful. Otherwise, it is zero.

If the Set Window Long function and the GWL_ WNDPROC index are used to set
a new window procedure, that procedure must have the window-procedure form
and be exported in the module-definition file of the application. For more informa
tion, see the description of the RegisterClass function.

Calling SetWindowLong with the GCL_ WNDPROC index creates a subclass of
the window class used to create the window. An application should not attempt to
create a window subclass for standard Windows controls such as combo boxes and
buttons.

An application should not use this function to set the WS_DISABLE style for a
window. Instead, the application should use the Enable Window function.

To access any extra 4-byte values allocated when the window-class structure was
created, use a positive byte offset as the index specified by the nO.ffsetparameter,
starting at 0 for the first 4-byte value in the extra space, 4 for the next 4-byte
value, and so on.

An application can use the DWL_MSGRESULT value to return values from a
dialog box procedure's window procedure. Typically, a dialog box procedure must
return TRUE in order for a value to be returned to the sender of the message.
Some messages, however, return a value in the Boolean return value of the dialog
box procedure. The following messages return values in the return value of the
dialog box procedure:

WM_CHARTOITEM
WM_COMPAREITEM
WM_CTLCOLOR
WM_INITDIALOG
WM_QUERYDRAGICON
WM_ VKEYTOITEM

The following example shows how to use the SetWindowLong function with the
DWL_MSGRESULT value to return a value from a dialog box procedure. Appli
cations often include a switch statement to handle the messages that return values
in the Boolean return value of the dialog box procedure, even when the dialog box

888 SetWindowlong

procedure does not process these messages. This practice makes it easy to revise
the dialog box procedure to handle the message and has a negligible effect on
speed and memory.

BOOL CALLBACK MyDlgProc(hwndDlg, msg, wParam, lParam)
HWND hwndDlg;
UINT msg;
WPARAM wParam;
LPARAM l Pa ram;
{

BOOL fProcessed FALSE;
LRESULT lResult;

/*
*To return a value for a specific message, set lResult to the
* return value and fProcessed to TRUE.
*I

switch (msg) {

I* process messages */

case WM QUERYENDSESSION:

/*
* Example: Do not allow the system to terminate
* while the dialog box is displayed.
*/

fProcessed = TRUE;
lResult = (LRESULT) (UINT) FALSE;
break;

default:
break;

if (fProcessed) {
switch (msg) {
case WM_CTLCOLOR:
case WM_COMPAREITEM:
case WM_VKEYTOITEM:
case WM_CHARTOITEM:
case WM_QUERYDRAGICON:
case WM_INITDIALOG:

return (BOOL) LOWORD(lResult);

SetWindowOrg 889

default:
SetWindowlong(hwndDlg, DWL_MSGRESULT, (LPARAM) lResult);

return fProcessed;

See Also EnableWindow, GetWindowLong, RegisterClass, SetWindowWord

SetWindowOrg
DWORD SetWindowOrg(hdc, nXOrigin, nYOrigin)
HDC hdc; /* handle of device context */

*/
*!

int nXOrigin; /* x-coordinate to map to upper-left window corner
int nYOrigin; /* y-coordinate to map to upper-left window corner

The SetWindowOrg function sets the window origin for the given device context.

Parameters hdc

Return Value

Comments

Example

Identifies the device context.

nXOrigin
Specifies the logical x-coordinate to map to the upper-left corner of the window.

nYOrigin
Specifies the logical y-coordinate to map to the upper-left corner of the window.

The return value is the coordinates of the previous window origin, in logical units,
ifthe function is successful. The low-order word contains the x-coordinate of the
previous window origin; the high-order word contains they-coordinate. Other
wise, the return value is zero.

The window origin is the origin of the logical coordinate system for a window.
By changing the window origin, an application can change the way the graphics
device interface (GDI) converts logical coordinates to device coordinates (the
viewport). GDI converts logical coordinates to the device coordinates of the view
port in the same way as it converts the origin.

To convert points to the right, an application can specify a negative value for the
nXOrigin parameter. Similarly, to convert points down (in the MM_ TEXT map
ping mode), the nYOrigin parameter can be negative.

The following example uses the CopyMetaFile function to copy a metafile to a
specified file, plays the copied metafile, uses the GetMetaFile function to retrieve

890 SetWindowOrgEx

See Also

a handle of the copied metafile, uses the SetWindowOrg function to change the
position at which the metafile is played 200 logical units to the right, and then
plays the metafile at the new location:

HANDLE hmf, hmfSource, hmfOld;
LPSTR lpszFilel = "MFTest";

hmf = CopyMetaFile(hmfSource, lpszFilel);
PlayMetaFile(hdc, hmf);
DeleteMetaFile(hmf);

hmfOld = GetMetaFile(lpszFilel);
SetWindowOrg(hdc, -200, 0);
PlayMetaFile(hdc, hmfOld);

DeleteMetaFile(hmfSource);
DeleteMetaFile(hmfOld);

CopyMetaFile, GetMetaFile, GetWindowOrg, PlayMetaFile, SetViewportOrg

SetWindowOrgEx
BOOL SetWindowOrgEx(hdc, nX, nY, lpPoint)
HDC hdc; /* handle of device context
int nX; /* x-coordinate of window
int nY; /* y-coordinate of window
POINT FAR* lpPoint; /*address of struct. with prev. origin

*I
*I
*I
*/

The SetWindowOrgEx function sets the window origin of the specified device
context. The window, along with the viewport, defines how points are mapped
from logical coordinates to device coordinates.

Parameters hdc
Identifies the device context.

nX
Specifies the logical x -coordinate of the new origin of the window.

nY
Specifies the logical y-coordinate of the new origin of the window.

lpPoint
Points to a POINT structure. The previous origin of the window is placed in
this structure. If lpPoint is NULL nothing is returned. The POINT structure has
the following form:

Return Value

See Also

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

SetWindowPlacement 891

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

SetViewportOrgEx

SetWindowPlacement
BOOL SetWindowPlacement(hwnd, lpwndpl)
HWNDhwnd; I* handle of the window */

/ const WINDOWPLACEMENT FAR lpwndpl; I* address of structure with position data

The Set Window Placement function sets the show state and the normal (restored),
minimized, and maximized positions for a window.

Parameters hwnd

Return Value

See Also

Identifies the window.

lpwndpl
Points to a WINDOWPLACEMENT structure that specifies the new show
state and positions. The WINDOWPLACEMENT structure has the following
form:

typedef struct tagWINDOWPLACEMENT {
U INT length;
UINT flags;
UINT showCmd;
POINT ptMinPosition;
POINT ptMaxPosition;
RECT rcNormalPosition;

} WINDOWPLACEMENT;

/* wndpl */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Get Window Placement

892 SetWindowPos

SetWindowPos
BOOL SetWindowPos(hwnd, hwndlnsertAfter, x, y, ex, ey,faFlags)
HWND hwnd; I* handle of window */
HWND hwndlnsertAfter; /*placement-order handle */
int x; I* horizontal position */
int y; I* vertical position */
int ex; /*width */
int ey; I* height */
UINT fuFlags; I* window-positioning flags */

Parameters

The SetWindowPos function changes the size, position, and Z-order of child, pop
up, and top-level windows. These windows are ordered according to their appear
ance on the screen; the window on top receives the highest rank and is the first
window in the Z-order.

hwnd
Identifies the window to be positioned.

hwndlnsertAfter

x

y

ex

Identifies the window to precede the positioned window in the Z-order. This pa
rameter must be a window handle or one of the following values:

Value

HWND_BOTTOM

HWND_TOP

HWND_TOPMOST

HWND_NOTOPMOST

Meaning

Places the window at the bottom of the Z-order. If
hwnd identifies a topmost window, the window loses
its topmost status; the system places the window at the
bottom of all other windows.

Places the window at the top of the Z-order.

Places the window above all non-topmost windows.
The window maintains its topmost position even when
it is deactivated.

Repositions the window to the top of all non-topmost
windows (that is, behind all topmost windows). This
flag has no effect if the window is already a non
topmost window.

For rules about how this parameter is used, see the following Comments section.

Specifies the new position of the left side of the window.

Specifies the new position of the top of the window.

Specifies the new width of the window.

Return Value

Comments

SetWindowPos 893

ex
Specifies the new width of the window.

cy
Specifies the new height of the window.

fuFlags
Specifies the window sizing and positioning options. This parameter can be a
combination of the following values:

Value

SWP _DRAWFRAME

SWP _HIDEWINDOW

SWP _NOACTIVATE

SWP_NOMOVE

SWP_NOSIZE

SWP _NOREDRAW

SWP _NOZORDER

SWP _SHOWWINDOW

Meaning

Draws a frame (defined in the window's class descrip
tion) around the window.

Hides the window.

Does not activate the window. If this flag is not set, the
window is activated and moved to the top of either the
topmost or non-topmost group (depending on the set
ting of the hwndlnsertAfter parameter).

Retains the current position (ignores the x and y pa
rameters).

Retains the current size (ignores the ex and cy parame
ters).

Does not redraw changes. If this flag is set, no repaint
ing of any kind occurs. This applies to the client area,
the non-client area (including the title and scroll bars),
and any part of the parent window uncovered as a re
sult of the moved window. When this flag is set, the ap
plication must explicitly invalidate or redraw any parts
of the window and parent window that must be
redrawn.

Retains the current ordering (ignores the hwnd
InsertAfter parameter).

Displays the window.

The return value is nonzero if the function is successful. Otherwise, it is zero.

If the SWP _SHOWWINDOW or the SWP _HIDEWINDOW flags are set, the win
dow cannot be moved or sized.

All coordinates for child windows are client coordinates (relative to the upper-left
comer of the parent window's client area).

A window can be made a topmost window either by setting the hwndlnsertAfter
parameter to HWND_TOPMOST and ensuring that the SWP _NOZORDER flag is
not set, or by setting a window's Z-order so that it is above any existing topmost
windows. When a non-topmost window is made topmost, its owned windows are
also made topmost. Its owners are not changed.

894 SetWindowsHook

Example

See Also

If neither SWP _NOACTIV ATE nor SWP _NOZORDER is specified (that is,
when the application requests that a window be simultaneously activated and
placed in the specified Z-order), the value specified in hwndlnsertAfter is used
only in the following circumstances:

• Neither HWND_TOPMOST or HWND_NOTOPMOST is specified in the
hwndlnsertAfterparameter.

• The window specified in the hwnd parameter is not the active window.

An application cannot activate an inactive window without also bringing it to the
top of the Z-order. Applications can change the Z-order of an activated window
without restrictions or activate a window and then move it to the top of the top
most or non-topmost windows.

A topmost window is no longer topmost if it is repositioned to the bottom
(HWND_BOTTOM) of the Z-order or after any non-topmost window. When a
topmost window is made non-topmost, all of its owners and its owned windows
are also made non-topmost windows.

A non-topmost window may own a topmost window, but not vice versa. Any win
dow (for example, a dialog box) owned by a topmost window is itself made a top
most window, to ensure that all owned windows stay above their owner.

The following example sets the size of a window equal to one-fourth the size of
the desktop and then positions the window in the upper-left corner of the desktop:

RECT rect;

GetWindowRect(GetDesktopWindow(), &rect);
SetWindowPos(hwnd, (HWND) NULL, 0, 0,

rect.right I 2, rect.bottom I 2,
SWP_NOZORDER I SWP_NOACTIVATE);

BringWindowToTop, GetWindowRect, Move Window

SetWindowsHook
HHOOK SetWindowsHook(idHook, hkprc)
int idHook; /* type of hook to install
HOOKPROC hkprc; /* filter function procedure-instance address

*I
*I

The SetWindowsHook function is obsolete but has been retained for backward
compatibility with Windows versions 3.0 and earlier. Applications written for Win
dows version 3.1 should use the SetWindowsHookExfunction.

Parameters

SetWindowsHook 895

The SetWindowsHook function installs an application-defined hook function into
a hook chain.

idHook
Specifies the type of hook to be installed. This parameter can be one of the fol
lowing values:

Value

WH_CALLWNDPROC

WH_CBT

WH_DEBUG

WH_GETMESSAGE

WH_HARDWARE

WH_JOURNALPLAYBACK

WH_JOURNALRECORD

WH_KEYBOARD

WH_MOUSE

WH_MSGFILTER

WH_SHELL

WH_SYSMSGFILTER

Meaning

Installs a window-procedure filter. For more in
formation, see the description of the CallWnd
Proc callback function.

Installs a computer-based training (CBT) filter.
For more information, see the description of the
CBTProc callback function.

Installs a debugging filter. For more information,
see the description of the DebugProc callback
function.

Installs a message filter. For more information,
see the description of the GetMsgProc callback
function.

Installs a nonstandard hardware-message filter.
For more information, see the description of the
HardwareProc callback function.

Installs a journaling playback filter. For more in
formation, see the description of the Journal
PlaybackProc callback function.

Installs a journaling record filter. For more infor
mation, see the description of the Journal
RecordProc callback function.

Installs a keyboard filter. For more information,
see the description of the KeyboardProc call
back function.

Installs a mouse-message filter. For more infor
mation, see the description of the MouseProc
callback function.

Installs a message filter. For more information,
see the description of the MessageProc callback
function.

Installs a shell-application filter. For more infor
mation, see the description of the ShellProc call
back function.

Installs a system-wide message filter. For more
information, see the description of the SysMsg
Proc callback function.

896 SetWindowsHookEx

Return Value

Comments

See Also

hkprc
Specifies the procedure-instance address of the application-defined hook proce
dure to be installed.

The return value is a handle of the installed hook, if the function is successful.
Otherwise, it is NULL.

Before terminating, an application must call the UnhookWindowsHook function
to free system resources associated with the hook.

The WH_CALLWNDPROC hook affects system performance. It is supplied for
debugging purposes only.

The system hooks are a shared resource. Installing a hook affects all applications.
Most hook functions must be in libraries. The only exception is
WH_MSGFILTER, which is task-specific. System hooks should be restricted to
special-purpose applications or to use as a development aid during debugging of
an application. Libraries that no longer need the hook should remove the filter
function.

To install a filter function, the SetWindowsHook function must receive a proce
dure-instance address of the function and the function must be exported in the
library's module-definition file. A task must use the MakeProclnstance function
to get a procedure-instance address. A dynamic-link library can pass the procedure
address directly.

DefHookProc, GetProcAddress, MakeProclnstance, MessageBox,
PeekMessage, PostMessage, SendMessage, SetWindowsHookEx,
Unhook WindowsHook

SetWindowsHookEx
HHOOK SetWindowsHookEx(idHook, hkprc, hinst, htask)
int idHook; /* type of hook to install
HOOKPROC hkprc; I* procedure-instance address of filter function
HINSTANCE hinst; I* handle of application instance
HTASK htask; I* task to install the hook for

*I
*/
*/
*/

The SetWindowsHookEx function installs an application-defined hook function
into a hook chain. This function is an extended version of the SetWindowsHook
function.

Parameters

SetWindowsHookEx 897

idHook
Specifies the type of hook to be installed. This parameter can be one of the fol
lowing values:

Value

WH_CALLWNDPROC

WH_CBT

WH_DEBUG

WH_GETMESSAGE

WH_HARDWARE

WH_JOURNALPLAYBACK

WH_JOURNALRECORD

WH_KEYBOARD

WH_MOUSE

WH_MSGFILTER

WH_SYSMSGFILTER

hkprc

Meaning

Installs a window-procedure filter. For more in
formation, see the description of the CallWnd
Proc callback function.

Installs a computer-based training (CBT) filter.
For more information, see the description of the
CBTProc callback function.

Installs a debugging filter. For more information,
see the description of the DebugProc callback
function.

Installs a message filter. For more information,
see the description of the GetMsgProc callback
function.

Installs a nonstandard hardware-message filter.
For more information, see the description of the
HardwareProc callback function.

Installs a journaling playback filter. For more in
formation, see the description of the Journal
PlaybackProc callback function.

Installs a journaling record filter. For more infor
mation, see the description of the Journal
RecordProc callback function.

Installs a keyboard filter. For more information,
see the description of the KeyboardProc call
back function.

Installs a mouse-message filter. For more infor
mation, see the description of the MouseProc
callback function.

Installs a message filter. For more information,
see the description of the MessageProc callback
function.

Installs a system-wide message filter. For more
information, see the description of the SysMsg
Proc callback function.

Specifies the procedure-instance address of the application-defined hook proce
dure to be installed.

hinst
Identifies the instance of the module containing the hook function.

898 SetWindowsHookEx

Return Value

Comments

htask
Identifies the task for which the hook is to be installed. If this parameter is
NULL, the installed hook function has system scope and may be called in the
context of any process or task in the system.

The return value is a handle of the installed hook, if the function is successful. The
application or library must use this handle to identify the hook when it calls the
CallNextHookEx and UnhookWindowsHookEx functions. The return value is
NULL if an error occurs.

An application or library can use the GetCurrentTask or GetWindowTask func
tion to obtain task handles for use in hooking a particular task.

Hook procedures used with SetWindowsHookEx must be declared as follows:

DWORD CALLBACK HookProc(code, wParam, lParam)
int code;
WPARAM wParam;
LPARAM lParam;
{

if (...)
return CallNextHookEx(hhook, code, wParam, lParam);

Chaining to the next hook procedure (that is, calling the CallNextHookProc func
tion) is optional. An application or library can call the next hook procedure either
before or after any processing in its own hook procedure.

Before terminating, an application must call the UnhookWindowsHookEx func
tion to free system resources associated with the hook.

Some hooks may be set with system scope only, and others may be set only for a
specific task, as shown in the following list:

Hook Scope

WH_CALLWNDPROC Task or system

WH_CBT Task or system

WH_DEBUG Task or system

WH_ GETMESSAGE Task or system

WH_HARDWARE Task or system

WH_JOURNALRECORD System only

WH_JOURNALPLAYBACK System only

WH_KEYBOARD Task or system

WH_MOUSE Task or system

WH_MSGFILTER Task or system

See Also

SetWindowText 899

Hook Scope

WH_SYSMSGFILTER System only

For a given hook type, task hooks are called first, then system hooks.

The WH_CALLWNDPROC hook affects system performance. It is supplied for
debugging purposes only.

The system hooks are a shared resource. Installing one affects all applications. All
system hook functions must be in libraries. System hooks should be restricted to
special-purpose applications or to use as a development aid during debugging of
an application. Libraries that no longer need the hook should remove the filter
function.

It is a good idea for several reasons to use task hooks rather than system hooks:
They do not incur a system-wide overhead in applications that are not affected by
the call (or that ignore the call); they do not require packaging the hook-procedure
implementation in a separate dynamic-link library; they will continue to work
even when future versions of Windows prevent applications from installing
system-wide hooks for security reasons.

To install a filter function, the SetWindowsHookEx function must receive a pro
cedure-instance address of the function and the function must be exported in the
library's module-definition file. Libraries can pass the procedure address directly.
Tasks must use the MakeProclnstance function to get a procedure-instance
address. Dynamic-link libraries must use the GetProcAddress function to get a
procedure-instance address.

For a given hook type, task hooks are called first, then system hooks.

The WH_SYSMSGFILTER hooks are called before the WH_MSGFILTER
hooks. If any of the WH_SYSMSGFILTER hook functions return TRUE, the
WH_MSGFILTER hooks are not called.

CallNextHookEx, GetProcAddress, MakeProclnstance, MessageBox,
PeekMessage, PostMessage, SendMessage, UnhookWindowsHookEx

SetWindowText
void SetWindowText(hwnd, lpsz)
HWND hwnd; I* handle of window
LPCSTR lpsz; I* address of string

*/
*/

900 SetWindowWord

The SetWindowText function sets the given window's title to the specified text.

Parameters hwnd

Return Value

Comments

Example

See Also

Identifies the window or control whose text is to be set.

lpsz
Points to a null-terminated string to be used as the new title or control text.

This function does not return a value.

This function causes a WM_SETTEXT message to be sent to the given window or
control.

If the window specified by the hwnd parameter is a control, the text within
the control is set. If the specified window is a list-box control created with
WS_CAPTION style, however, SetWindowText will set the caption for the
control, not for the list-box entries.

The following example sets a window title:

char szBuf[64];
char szFileName[64];

wsprintf((LPSTR) szBuf, "PrntFile - %s", (LPSTR) szFileName);
SetWindowText(hwnd, (LPSTR) szBuf);

GetWindowText

SetWindowWord
WORD SetWindowWord(hwnd, nOffset, nVal)
HWND hwnd; I* handle of window */
int nOffset; I* offset of value to set */
WORD nVal; /*new value */

Parameters

The SetWindowWord function places a word value at the specified offset into the
extra window memory of the given window. Extra window memory is reserved by
specifying a nonzero value in the cb WndExtra member of the WNDCLASS
structure used with the RegisterClass function.

hwnd
Identifies the window.

Return Value

Comments

Shell Execute 901

nOffset
Specifies the zero-based byte offset of the value to change. Valid values are in
the range zero through the number of bytes of extra window memory, minus
two (for example, if 10 or more bytes of extra memory were specified, a value
of 8 would be an index to the fifth integer), or one of the following values:

Value

GWW _HINSTANCE

GWW_ID

nVal

Meaning

Specifies the instance handle of the module that owns the
window.

Specifies the identifier of the child window.

Specifies the word value to be placed in the window's reserved memory.

The return value is the previous value of the specified word, if the function is
successful. Otherwise, it is zero.

To access any extra 2-byte values allocated when the window-class structure was
created, use a positive byte offset as the index specified by the nOffset parameter,
starting at 0 for the first 2-byte value in the extra space, 2 for the next 2-byte
value, and so on.

An application should call the SetParent function, not the SetWindowWord func
tion, to change a value in the parent of a child window.

See Also GetWindowWord, RegisterClass, SetParent, SetWindowLong

Shell Execute [IT]

#include <shellapi.h>

HINSTANCE ShellExecute(hwnd, lpszOp, lpszFile, lpszParams, lpszDir,fsShowCmd)
HWND hwnd; /* handle of parent window */
LPCSTR lpszOp; /*address of string for operation to perform */
LPCSTR lpszFile; /*address of string for filename */
LPCSTR lpszParams; /*address of string for executable-file parameters */
LPCSTR lpszDir; /*address of string for default directory */
intfsShowCmd; /*whether file is shown when opened */

The ShellExecute function opens or prints the specified file.

902 ShellExecute

Parameters hwnd
Identifies the parent window. This window receives any message boxes an ap
plication produces (for example, for error reporting).

lpszOp
Points to a null-terminated string specifying the operation to perform. This
string can be "open" or "print". If this parameter is NULL, "open" is the default
value.

lpszFile
Points to a null-terminated string specifying the file to open.

lpszParams
Points to a null-terminated string specifying parameters passed to the applica
tion when the lpszFile parameter specifies an executable file. If lpszFile points
to a string specifying a document file, this parameter is NULL.

lpszDir
Points to a null-terminated string specifying the default directory.

fsShowCmd
Specifies whether the application window is to be shown when the application
is opened. This parameter can be one of the following values:

Value

SW_HIDE

SW _MINIMIZE

SW_RESTORE

SW_SHOW

SW _SHOWMAXIMIZED

SW _SHOWMINIMIZED

SW _SHOWMINNOACTIVE

SW_SHOWNA

SW _SHOWNOACTIVATE

Meaning

Hides the window and passes activation to
another window.

Minimizes the specified window and activates the
top-level window in the system's list.

Activates and displays a window. If the window
is minimized or maximized, Windows restores it
to its original size and position (same as
SW _SHOWNORMAL).

Activates a window and displays it in its current
size and position.

Activates a window and displays it as a maxi
mized window.

Activates a window and displays it as an icon.

Displays a window as an icon. The window that is
currently active remains active.

Displays a window in its current state. The win
dow that is currently active remains active.

Displays a window in its most recent size and
position. The window that is currently active re
mains active.

Return Value

Errors

Comments

ShellExecute 903

Value Meaning

SW _SHOWNORMAL Activates and displays a window. If the window
is minimized or maximized, Windows restores it
to its original size and position (same as
SW _RESTORE).

The return value is the instance handle of the application that was opened or
printed, if the function is successful. (This handle could also be the handle of a
DDE server application.) A return value less than or equal to 32 specifies an error.
The possible error values are listed in the following Comments section.

The ShellExecute function returns the value 31 if there is no association for the
specified file type or if there is no association for the specified action within the
file type. The other possible error values are as follows:

Value

0

2

3

5

6

8

10

11

12

13

14

15

16

19

20

21

Meaning

System was out of memory, executable file was corrupt, or relocations were
invalid.

File was not found.

Path was not found.

Attempt was made to dynamically link to a task, or there was a sharing or
network-protection error.

Library required separate data segments for each task.

There was insufficient memory to start the application.

Windows version was incorrect.

Executable file was invalid. Either it was not a Windows application or
there was an error in the .EXE image.

Application was designed for a different operating system.

Application was designed for MS-DOS 4.0.

Type of executable file was unknown.

Attempt was made to load a real-mode application (developed for an earlier
version of Windows).

Attempt was made to load a second instance of an executable file contain
ing multiple data segments that were not marked read-only.

Attempt was made to load a compressed executable file. The file must be
decompressed before it can be loaded.

Dynamic-link library (DLL) file was invalid. One of the DLLs required to
run this application was corrupt.

Application requires Microsoft Windows 32-bit extensions.

The file specified by the lpszFile parameter can be a document file or an execu
table file. If it is a document file, this function opens or prints it, depending on the

904 ShellProc

See Also

ShellProc

value of the lpszOp parameter. If it is an executable file, this function opens it,
even if the string "print" is pointed to by lpszOp.

FindExecutable

LRESULT CALLBACK ShellProc(code, wParam, lParam)
int code; /*process-message flag */
WPARAM wParam; /* current-task flag */
LPARAM lParam; /*undefined */

Parameters

The ShellProc function is a library-defined callback function that a shell applica
tion can use to receive useful notifications from the system.

code
Specifies a shell-notification code. This parameter can be one of the following
values:

Value

HSHELL_ACTIVATESHELLWINDOW

HSHELL_ WINDOWCREATED

HSHELL_ WINDOWDESTROYED

wParam

Meaning

The shell application should activate
its main window.

A top-level, unowned window was
created. The window exists when the
system calls a ShellProc function.

A top-level, unowned window is
about to be destroyed. The window
still exists when the system calls a
Shel!Proc function.

Specifies additional information the shell application may need. The interpreta
tion of this parameter depends on the value of the code parameter, as follows:

code

HSHELL_ACTIVATESHELLWINDOW

HSHELL_ WINDOWCREATED

HSHELL_ WINDOWDESTROYED

wParam

Not used.

Specifies the handle of the window
being created.

Specifies the handle of the window
being destroyed.

Return Value

Comments

ShowCaret 905

lParam
Reserved; not used.

The return value should be zero.

An application must install this callback function by specifying the WH_SHELL
filter type and the procedure-instance address of the callback function in a call to
the SetWindowsHook function.

ShellProc is a placeholder for the library-defined function name. The actual name
must be exported by including it in an EXPORTS statement in the library's
module-definition file.

See Also DeffiookProc, SendMessage, SetWindowsHook

ShowCaret CI!J
void ShowCaret(hwnd)
HWND hwnd; I* handle of window with caret */

The ShowCaret function shows the caret on the screen at the caret's current posi
tion. Once shown, the caret begins flashing automatically.

Parameters hwnd

Return Value

Comments

See Also

Identifies the window that owns the caret. This parameter can be set to NULL
to indirectly specify the window in the current task that owns the caret.

This function does not return a value.

The ShowCaret function shows the caret only if it has a current shape and has not
been hidden two or more times consecutively. If the given window does not own
the caret, the caret is not shown. If the hwnd parameter is NULL, the ShowCaret
function shows the caret only if it is owned by a window in the current task.

Hiding the caret is cumulative. If the HideCaret function has been called five
times consecutively, ShowCaret must be called five times to show the caret.

The caret is a shared resource. A window should show the caret only when it has
the input focus or is active.

CreateCaret, GetActiveWindow, GetFocus, HideCaret

906 ShowCursor

ShowCursor
int ShowCursor(fShow)
BOOLfS'how; I* cursor visibility flag *I

Parameters

Return Value

Comments

See Also

The ShowCursor function shows or hides the cursor.

fS'how
Specifies whether the display count is incremented or decremented (increased
or decreased by one). If this parameter is TRUE, the display count is incre
mented; otherwise, it is decremented.

The return value specifies the new display count, if the function is successful.

A cursor show-level count is kept internally. It is incremented by a show operation
and decremented by a hide operation. The cursor is visible only if the count is
greater than or equal to zero. If a mouse exists, the initial setting of the cursor
show level is zero; otherwise, it is -1.

The cursor is a shared resource. A window that hides the cursor should show it
before the cursor leaves its client area or before the window relinquishes control to
another window.

Set Cursor

ShowOwnedPopups
void ShowOwnedPopups(hwnd,fS'how)
HWND hwnd; /* handle of window
BOOLfS'how; /*window visibility flag

*/
*/

The ShowOwnedPopups function shows or hides all pop-up windows owned by
the given window.

Parameters hwnd
Identifies the window that owns the pop-up windows to be shown or hidden.

Return Value

See Also

ShowScrollBar 907

JS how
Specifies whether pop-up windows are to be shown or hidden. If this parameter
is TRUE, all hidden pop-up windows are shown. If this parameter is FALSE,
all visible pop-up windows are hidden.

This function does not return a value.

IsWindowVisible, ShowWindow

ShowScrollBar
void ShowScrollBar(hwnd, fnBar,fShow)
HWND hwnd; I* handle of window with scroll bar */

*I
*/

intfnBar; I* scroll-bar flag
BOOLfShow; /* scroll-bar visibility flag

Parameters

The ShowScrollBar function shows or hides a scroll bar.

hwnd
Identifies a scroll bar or a window that contains a scroll bar in its nonclient
area, depending on the value of the fnBar parameter. If fnBar is SB_ CTL, hwnd
identifies a scroll bar. IffnBar is SB_HORZ, SB_ VERT, or SB_BOTH, hwnd
identifies a window that has a scroll bar in its nonclient area.

fnBar
Specifies whether the scroll bar is a control or part of a window's non client
area. If the scroll bar is part of the nonclient area,fnBar also indicates whether
the scroll bar is positioned horizontally, vertically, or both. This parameter can
be one of the following values:

Value

SB_BOTH

SB_CTL

SB_HORZ

SB_ VERT

JS how

Meaning

Specifies the window's horizontal and vertical scroll bars.

Specifies that the hwnd parameter identifies a scroll bar control.

Specifies the window's horizontal scroll bar.

Specifies the window's vertical scroll bar.

Specifies whether the scroll bar is shown or hidden. If this parameter is TRUE,
the scroll bar is shown; otherwise, it is hidden.

908 ShowWindow

Return Value

Comments

See Also

This function does not return a value.

An application should not call this function to hide a scroll bar while processing a
scroll-bar notification message.

GetScrollPos, GetScrollRange, ScrollWindow, SetScrollPos, SetScrollRange

ShowWindow
BOOL ShowWindow(hwnd, nCmdShow)
HWND hwnd; /* handle of window
int nCmdShow; /* window visibility flag

*/
*/

The ShowWindow function sets the given window's visibility state.

Parameters hwnd
Identifies the window.

nCmdShow
Specifies how the window is to be shown. This parameter can be one of the fol
lowing values:

Value

SW_HIDE

SW _MINIMIZE

SW_RESTORE

SW_SHOW

SW _SHOWMAXIMIZED

SW _SHOWMINIMIZED

SW _SHOWMINNOACTIVE

SW_SHOWNA

Meaning

Hides the window and passes activation to
another window.

Minimizes the specified window and activates the
top-level window in the system's list.

Activates and displays a window. If the window
is minimized or maximized, Windows restores it
to its original size and position (same as
SW _SHOWNORMAL).

Activates a window and displays it in its current
size and position.

Activates a window and displays it as a maxi
mized window.

Activates a window and displays it as an icon.

Displays a window as an icon. The window that is
currently active remains active.

Displays a window in its current state. The win
dow that is currently active remains active.

Return Value

Comments

See Also

Value

SW _SHOWNOACTIVATE

SW _SHOWNORMAL

SizeofResource 909

Meaning

Displays a window in its most recent size and
position. The window that is currently active re
mains active.

Activates and displays a window. If the window
is minimized or maximized, Windows restores it
to its original size and position (same as
SW _RESTORE).

The return value is nonzero if the window was previously visible. It is zero if the
window was previously hidden.

The ShowWindow function must be called only once per application using the
nCmdShow parameter from the WinMain function. Subsequent calls to Show
Window must use one of the values listed in the preceding list, instead of the one
specified by the nCmdShow parameter from WinMain.

Is Window Visible, ShowOwnedPopups

SizeofResource
DWORD SizeofResource(hinst, hrsrc)
HINSTANCE hinst; /*handle of module with resource */

I HRSRC hrsrc; ! handle of resource

The SizeofResource function returns the size, in bytes, of the given resource.

Parameters hinst

Return Value

Comments

See Also

Identifies the instance of the module whose executable file contains the re
source.

hrs re
Identifies the resource. This handle must have been created by using the
FindResource function.

The return value specifies the number of bytes in the resource, if the function is
successful. It is zero if the resource cannot be found.

The value returned may be larger than the resource due to alignment. An applica
tion should not rely upon this value for the exact size of a resource.

AccessResource, FindResource

910 Spool File

Spool File
HANDLE SpoolFile(lpszPrinter, lpszPort, lpszlob, lpszFile)
LPSTR lpszPrinter; /*printer name */
LPSTR lpszPort; /* port name */
LPSTR lpszlob; /*job name */
LPSTR lpszFile; /* file name */

Parameters

Return Value

Comments

The SpoolFile function puts a file into the spooler queue. This function is typically
used by device drivers.

lpszPrinter
Points to a null-terminated string specifying the printer name-for example,
"HP LasterJet IIP".

lpszPort
Points to a null-terminated string specifying the local name-for example,
"LPTI:". This must be a local port.

lpszlob
Points to a null-terminated string specifying the name of the print job for the
spooler. This string cannot be longer than 32 characters, including the null
terminating character.

lpszFile
Points to a null-terminated string specifying the path and filename of the file to
put in the spooler queue. This file contains raw printer data.

The return value is the global handle that is passed to the spooler, if the function is
successful. Otherwise, it is an error value, which can be one of the following:

SP _APP ABORT
SP_ERROR
SP _NOTREPORTED
SP _OUTOFDISK
SP _OUTOFMEMORY
SP_USERABORT

Applications should ensure that the spooler is enabled before calling the SpoolFile
function.

StackTraceCSIPFirst 911

StackTraceCSIPFirst ITIJ
#include <toolhelp.h>

BOOL StackTraceCSIPFirst(lpste, wSS, wCS, wIP, wBP)
STACKTRACEENTRY FAR* lpste; /*address of stack-frame structure */
WORD wSS; /* value of SS register */
WORD wCS; /* value of CS register */
WORD wIP; /*value of IP register */
WORD wBP; /*value of BP register */

Parameters

Return Value

The StackTraceCSIPFirst function fills the specified structure with information
that describes the specified stack frame.

lpste
Points to a STACKTRACEENTRY structure to receive information about the
stack. The STACKTRACEENTRY structure has the following form:

#include <toolhelp.h>

typedef struct tagSTACKTRACEENTRY
DWORD dwSize;
HTASK hTask;
WORD wSS;
WORD wBP;
WORD wCS;
WORD wIP;
HMODULE hModule;
WORD wSegment;
WORD wFl ags;

STACKTRACEENTRY;

/* ste */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

wSS
Contains the value in the SS register. This value is used with the wBP value to
determine the next entry in the stack trace.

wCS
Contains the value in the CS register of the first stack frame.

wIP
Contains the value in the IP register of the first stack frame.

wBP
Contains the value in the BP register. This value is used with the wSS value to
determine the next entry in the stack trace.

The return value is nonzero if the function is successful. Otherwise, it is zero.

912 StackTraceFirst

Comments

See Also

The StackTraceFirst function can be used to begin a stack trace of any task ex -
cept the current task. When a task is inactive, the kernel maintains its state, includ
ing its current stack, stack pointer, CS and IP values, and BP value. The kernel
does not maintain these values for the current task. Therefore, when a stack trace
is done on the current task, the application must use StackTraceCSIPFirst to
begin a stack trace. An application can continue to trace through the stack by using
the StackTraceNext function.

Before calling StackTraceCSIPFirst, an application must initialize the STACK
TRACEENTRY structure and specify its size, in bytes, in the dwSize member.

StackTraceNext, StackTraceFirst

StackTraceFirst
#include <toolhelp.h>

BOOL StackTraceFirst(lpste, htask)
STACKTRACEENTRY FAR* lpste;
HTASK htask;

I* address of stack-frame structure
I* handle of task

*/
*I

Parameters

The StackTraceFirst function fills the specified structure with information that
describes the first stack frame for the given task.

lpste
Points to a STACKTRACEENTRY structure to receive information about the
task's first stack frame. The STACKTRACEENTRY structure has the follow
ing form:

#include <toolhelp.h>

typedef struct tagSTACKTRACEENTRY { /* ste */
DWDRD dwSize;
HTASK hTask;
WORD wSS;
WORD wBP;
WORD wCS;
WORD wIP;
HMODULE hModule;
WORD wSegment;
WORD wFlags;

STACKTRACEENTRY;

Return Value

Comments

See Also

StackTraceNext 913

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

htask
Identifies the task whose stack information is to be described.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The StackTraceFirst function can be used to begin a stack trace of any task ex
cept the current task. When a task is inactive, the kernel maintains its state, includ
ing its current stack, stack pointer, CS and IP values, and BP value. The kernel
does not maintain these values for the current task. Therefore, when a stack trace
is done on the current task, the application must use the StackTraceCSIPFirst
function to begin a stack trace. An application can continue to trace through the
stack by using the StackTraceNext function.

Before calling StackTraceFirst, an application must initialize the STACK
TRACEENTRY structure and specify its size, in bytes, in the dwSize member.

StackTraceCSIPFirst, StackTraceNext

StackTraceNext
#include <toolhelp.h>

BOOL StackTraceNext(lpste)
STACKTRACEENTRY FAR* lpste; /*address of stack-frame structure */

Parameters

The StackTraceNext function fills the specified structure with information that de
scribes the next stack frame in a stack trace.

lpste
Points to a STACKTRACEENTRY structure to receive information about the
next stack frame. The STACKTRACEENTRY structure has the following
form:

#include <toolhelp.h>

typedef struct tagSTACKTRACEENTRY { /* ste */
DWORD dwSize;
HTASK hTask;
WORD wSS;
WORD wBP;
WORD wCS;

914 StartDoc

Return Value

Comments

See Also

StartDoc

WORD wIP;
HMODULE hModule;
WORD wSegment;
WORD wFlags;

STACKTRACEENTRY;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The StackTraceNext function can be used to continue a stack trace started by
using the StackTraceFirst or StackTraceCSIPFirst function.

StackTraceCSIPFirst, StackTraceFirst, ST A CKTRA CEENTRY

int StartDoc(hdc, lpdi)
HDChdc; I* handle of device context *I

/ DOCINFO FAR lpdi; I* pointer to DOCINFO structure

The StartDoc function starts a print job. For Windows version 3.1, this function
replaces the STARTDOC printer escape.

Parameters hdc

Return Value

Identifies the device context for the print job.

lpdi
Points to a DOCINFO structure containing the name of the document file and
the name of the output file. The DOCINFO structure has the following form:

typedef struct { /* di */
int cbSize;
LPCSTR lpszDocName;
LPCSTR lpszOutput;

} DOCINFO;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is positive if the function is successful. Otherwise, it is
SP_ERROR.

Comments

See Also

StartPage
int StartPage(hdc)

StartSound 915

Applications should call the StartDoc function immediately before beginning a
print job. Using this function ensures that documents containing more than one
page are not interspersed with other print jobs.

The StartDoc function should not be used inside metafiles.

EndDoc, Escape

HDC hdc; /*handle of device context */

The StartPage function prepares the printer driver to accept data.

Parameters hdc
Identifies the device context for the print job.

Return Value The return value is greater than zero if the function is successful. It is less than or
equal to zero if an error occurs.

Comments The system disables the ResetDC function between calls to the StartPage and
EndPage functions. This means that applications cannot change the device mode
except at page boundaries.

See Also EndPage, Escape, ResetDC

StartSound CI!J
int StartSound(void)

This function is obsolete. Use the Microsoft Windows multimedia audio functions
instead. For information about these functions, see the Microsoft Windows Multi
media Programmer's Reference.

916 StopSound

StopSound
int StopSound(void)

Stretch Bit

This function is obsolete. Use the Microsoft Windows multimedia audio functions
instead. For information about these functions, see the Microsoft Windows Multi
media Programmer's Reference.

BOOL StretchBlt(hdcDest, nXOriginDest, nYOriginDest, nWidthDest, nHeightDest, hdcSrc,
nXOriginSrc, nYOriginSrc, nWidthSrc, nHeightSrc,fdwRop)

HDC hdcDest; I* destination device-context handle */
int nXOriginDest; I* x-coordinate of origin of destination rectangle */
int nYOriginDest; /* y-coordinate of origin of destination rectangle */
int nWidthDest; /*width of destination rectangle */
int nHeightDest; /*height of destination rectangle */
HDC hdcSrc; /*source device-context handle */
int nXOriginSrc; I* x-coordinate of origin of source rectangle */
int nYOriginSrc; I* y-coordinate of origin of source rectangle */
int nWidthSrc; /*width of source rectangle */
int nHeightSrc; /*height of source rectangle */
DWORD fdwRop; /* raster operation */

Parameters

The StretchBlt function copies a bitmap from a source rectangle into a destination
rectangle, stretching or compressing the bitmap if necessary to fit the dimensions
of the destination rectangle. The StretchBlt function uses the stretching mode of
the destination device context (set by the SetStretchBltMode function) to deter
mine how to stretch or compress the bitmap.

hdcDest
Identifies the device context to receive the bitmap.

nXOriginDest
Specifies the logical x-coordinate of the upper-left comer of the destination
rectangle.

nYOriginDest
Specifies the logical y-coordinate of the upper-left comer of the destination
rectangle.

nWidthDest
Specifies the width, in logical units, of the destination rectangle.

Stretch Bit 917

nHeightDest
Specifies the height, in logical units, of the destination rectangle.

hdcSrc
Identifies the device context that contains the source bitmap.

nXOriginSrc
Specifies the logical x-coordinate of the upper-left corner of the source
rectangle.

nYOriginSrc
Specifies the logical y-coordinate of the upper-left corner of the source
rectangle.

nWidthSrc
Specifies the width, in logical units, of the source rectangle.

nHeightSrc
Specifies the height, in logical units, of the source rectangle.

fdwRop
Specifies the raster operation to be performed. Raster-operation codes define
how the graphics device interface (GDI) combines colors in output operations
that involve a current brush, a possible source bitmap, and a destination bitmap.
This parameter can be one of the following values:

Code

BLACKNESS

DSTINVERT

MERGECOPY

MERGEPAINT

NOTSRCCOPY

NOTSRCERASE

PATCOPY

PATINVERT

PATPAINT

SRCAND

SRCCOPY

SRCERASE

Description

Turns all output black.

Inverts the destination bitmap.

Combines the pattern and the source bitmap by using the
Boolean AND operator.

Combines the inverted source bitmap with the destination bit
map by using the Boolean OR operator.

Copies the inverted source bitmap to the destination.

Inverts the result of combining the destination and source bit
maps by using the Boolean OR operator.

Copies the pattern to the destination bitmap.

Combines the destination bitmap with the pattern by using the
Boolean XOR operator.

Combines the inverted source bitmap with the pattern by
using the Boolean OR operator. Combines the result of this
operation with the destination bitmap by using the Boolean
OR operator.

Combines pixels of the destination and source bitmaps by
using the Boolean AND operator.

Copies the source bitmap to the destination bitmap.

Inverts the destination bitmap and combines the result with
the source bitmap by using the Boolean AND operator.

918 Stretch Bit

Return Value

Comments

Example

Code

SRCINVERT

SRCPAINT

WHITENESS

Description

Combines pixels of the destination and source bitmaps by
using the Boolean XOR operator.

Combines pixels of the destination and source bitmaps by
using the Boolean OR operator.

Turns all output white.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The StretchBlt function stretches or compresses the source bitmap in memory and
then copies the result to the destination. If a pattern is to be merged with the result,
it is not merged until the stretched source bitmap is copied to the destination.

If a brush is used, it is the selected brush in the destination device context.

The destination coordinates are transformed according to the destination device
context; the source coordinates are transformed according to the source device con
text.

If the destination, source, and pattern bitmaps do not have the same color format,
StretchBlt converts the source and pattern bitmaps to match the destination bit
maps. The foreground and background colors of the destination device context are
used in the conversion.

If StretchBlt must convert a monochrome bitmap to color, it sets white bits (1) to
the background color and black bits (0) to the foreground color. To convert color
to monochrome, it sets pixels that match the background color to white (1) and
sets all other pixels to black (0). The foreground and background colors of the
device context with color are used.

StretchBlt creates a mirror image of a bitmap if the signs of the n WidthSrc and
n WidthDest or nHeightSrc and nHeightDest parameters differ. If n WidthSrc and
n WidthDest have different signs, the function creates a mirror image of the bitmap
along the x-axis. If nHeightSrc and nHeightDest have different signs, the function
creates a mirror image of the bitmap along the y-axis.

Not all devices support the StretchBlt function. Applications can discover
whether a device supports StretchBlt by calling the GetDeviceCaps function and
specifying the RASTERCAPS index.

The following example retrieves the handle of the desktop window and uses it to
create a device context. After retrieving the dimensions of the desktop window,
the example calls the StretchBlt function to copy the desktop bitmap into a
smaller rectangle in the destination device context.

HWND hwndDesktop;
HOC hdeloeal;
RECT re;

hwndDesktop = GetDesktopWindow();
hdelocal = GetDC(hwndDesktop);
GetWindowReet(GetDesktopWindow(), &rel;

StretehBlt(hde, 10, 10, 138, 106,
hdelocal, 0, 0, re.right, re.bottom, SRCCOPYJ;

ReleaseDC(hwndDesktop, hdclocal);

See Also BitBlt, GetDeviceCaps, SetStretchBltMode, StretchDIBits

Stretch DI Bits 919

StretchDIBits [ill

int StretchDIBits(hdc, XDest, YDest, cxDest, cyDest, XSrc, YSrc, cxSrc, cySrc, lpvBits, lpbmi,
fuColorU se, f dw Rop)

HDC hdc;
intXDest;
int YDest;
int cxDest;
int cyDest;
intXSrc;
int YSrc;
int cxSrc;
int cySrc;
const void FAR* lpvBits;
LPBITMAPINFO lpbmi;
UINT fuColorUse;
DWORD fdwRop;

/* handle of device context
!* x-coordinate of destination rectangle
/* y-coordinate of destination rectangle
!* width of destination rectangle
/* height of destination rectangle
/* x-coordinate of source rectangle
/* y-coordinate of source rectangle
/* width of source rectangle
/* height of source rectangle
/* address of buffer with DIB bits
/* address of structure with bitmap data
/* RGB or palette indices
I* raster operation

*/
*/
*I
*I
*I
*I
*/
*/
*I
*I
*I
*/
*/

The StretchDIBits function moves a device-independent bitmap (DIB) from a
source rectangle into a destination rectangle, stretching or compressing the bitmap
if necessary to fit the dimensions of the destination rectangle.

Parameters hdc
Identifies the destination device context for a screen surface or memory bitmap.

XDest
Specifies the logical x-coordinate of the destination rectangle.

YDest
Specifies the logical y-coordinate of the destination rectangle.

920 StretchDIBits

Return Value

cxDest
Specifies the logical x-extent of the destination rectangle.

cyDest
Specifies the logical y-extent of the destination rectangle.

XSrc
Specifies the x-coordinate, in pixels, of the source rectangle in the DIB.

YSrc
Specifies they-coordinate, in pixels, of the source rectangle in the DIB.

cxSrc
Specifies the width, in pixels, of the source rectangle in the DIB.

cySrc
Specifies the height, in pixels, of the source rectangle in the DIB.

lpvBits
Points to the DIB bits that are stored as an array of bytes.

lpbmi
Points to a BITMAPINFO structure that contains information about the DIB.
The BITMAPINFO structure has the following form:

typedef struct tagBITMAPINFO { /* bmi */
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[l];

} BITMAPINFO;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

fuColorUse
Specifies whether the bmiColors member of the lpbmi parameter contains ex
plicit RGB (red-green-blue) values or indices into the currently realized logical
palette. The fuColorUse parameter can be one of the following values:

Value

DIB_PAL_COLORS

DIB_RGB_COLORS

fdwRop

Meaning

The color table consists of an array of 16-bit indices into
the currently realized logical palette.

The color table contains literal RGB values.

Specifies the raster operation to be performed. Raster-operation codes define
how the graphics device interface (GDI) combines colors in output operations
that involve a current brush, a possible source bitmap, and a destination bitmap.
For a list of raster-operation codes, see the description of the BitBlt function.
For a complete list of the raster operations, see the Microsoft Windows Pro
grammer's Reference, Volume 4.

The return value is the number of scan lines copied, if the function is successful.

Comments

SubtractRect 921

The StretchDIBits function uses the stretching mode of the destination device
context (set by the SetStretchBltMode function) to determine how to stretch or
compress the bitmap.

The origin of the coordinate system for a device-independent bitmap is the lower
left corner. The origin of the coordinates of the destination rectangle depends on
the current mapping mode of the device context.

StretchDIBits creates a mirror image of a bitmap if the signs of the cxSrc and
cxDest parameters or the cySrc and cyDest parameters differ. If cxSrc and cxDest
have different signs, the function creates a mirror image of the bitmap along the
x-axis. If cySrc and cyDest have different signs, the function creates a mirror
image of the bitmap along the y-axis.

See Also SetMapMode, SetStretchBltMode

SubtractRect ITU
BOOL SubtractRect(lprcDest, lprcSourcel, lprcSource2)
RECT FAR* lprcDest; /*pointer to destination rectangle */
const RECT FAR* lprcSourcel; /*pointer to rect. to subtract from */
const RECT FAR* lprcSource2; /*pointer to rect. to subtract */

Parameters

The SubtractRect function retrieves the coordinates of a rectangle by subtracting
one rectangle from another.

lprcDest
Points to the RECT structure to receive the dimensions of the new rectangle.
The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

lprcSourcel
Points to the RECT structure from which a rectangle is to be subtracted.

922 SwapMouseButton

Return Value

Comments

See Also

lprcSource2
Points to the RECT-structure that is to be subtracted from the rectangle pointed
to by the lprcSourcel parameter.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The rectangle specified by the lprcSource2 parameter is subtracted from the rec
tangle specified by lprcSourcel only when the rectangles intersect completely in
either the x- or y-direction. For example, if lprcSourcel were (10,10, 100,100) and
lprcSource2 were (50,50, 150,150), the rectangle pointed to by lprcDest would
contain the same coordinates as lprcSourcel when the function returned. If
lprcSourcel were (10,10, 100, 100) and lprcSource2 were (50,10, 150,150), how
ever, the rectangle pointed to by lprcDestwould contain the coordinates (10,10,
50, 100) when the function returned.

IntersectRect, UnionRect

SwapMouseButton
BOOL SwapMouseButton(fSwap)
BOOL.fSwap; /*reverse or restore buttons *I

Parameters

Return Value

Comments

The SwapMouseButton function reverses the meaning ofleft and right mouse but
tons.

]Swap
Specifies whether the button meanings are reversed or restored. If this parame
ter is TRUE, the left button generates right-button mouse messages and the
right button generates left-button messages. If this parameter is FALSE, the but
tons are restored to their original meanings.

The return value specifies the meaning of the mouse buttons immediately before
the function is called. It is nonzero if the meaning was reversed. Otherwise, it is
zero.

Button swapping is provided as a convenience to people who use the mouse with
their leh hands. The SwapMouseButton function is usually called by Control
Panel only. Although an application is free to call the function, the mouse is a
shared resource and reversing the meaning of the mouse button affects all
applications.

Example

SwitchStackBack 923

The following example swaps the mouse buttons, depending on the check state of
a check box:

BOOL fSwap;

fSwap = CBOOL) SendDlgitemMessage(hdlg, IDD_SWAP,
BM_GETCHECK, 0, 0L);

SwapMouseButton(fSwap);

SwapRecording
void SwapRecording(fuFlag)
UINT fuFlag; !* whether to start or stop swap recording */

The SwapRecording function starts or stops recording data about memory swap
ping. Because this function can be used only in real mode, it cannot be used with
Windows 3.1.

SwitchStackBack
void SwitchStackBack(void)

Parameters

Return Value

Comments

See Also

The SwitchStackBack function restores the stack of the current task, canceling
the effect of the SwitchStackTo function.

This function has no parameters.

This function does not return a value.

SwitchStackBack preserves the contents of the AX:DX registers when it returns.

SwitchStackTo

924 SwitchStackTo

SwitchStackTo
void SwitchStackTo(uStackSegment, uStackPointer, uStackTop)
UINT uStackSegment; /*new stack data segment */
UINT uStackPointer; /* offset of beginning of stack */
UINT uStackTop; I* offset of top of stack */

Parameters

Return Value

Comments

See Also

The SwitchStackTo function changes the stack of the current task to the specified
data segment.

uStackSegment
Specifies the data segment to contain the stack.

uStackPointer
Specifies the offset to the beginning of the stack in the data segment.

uStackTop
Specifies the offset to the top of the stack from the beginning of the stack.

This function does not return a value.

Dynamic-link libraries (DLLs) do not have private stacks; instead, a DLL uses the
stack of the task that calls the library. As a result, a DLL function fails if it treats
the contents of the data-segment (DS) and stack-segment (SS) registers as equal. A
task can call SwitchStackTo before calling a function in a DLL that treats the SS
and DS registers as equal. When the DLL function returns, the task must then call
the SwitchStackBack function to redirect its stack to its own data segment.

A DLL can also call SwitchStackTo before calling a function that assumes SS
and DS to be equal and then call SwitchStackBack before returning to the task
that called the DLL function.

Calls to SwitchStackTo and SwitchStackBack cannot be nested. That is, after
calling SwitchStackTo, an application must call SwitchStackBack before calling
SwitchStackTo again.

SwitchStackBack

SysMsgProc 925

SyncAllVoices [}Zl

int SyncAllVoices(void)

SysMsgProc

This function is obsolete. Use the Microsoft Windows multimedia audio functions
instead. For information about these functions, see the Microsoft Windows Multi
media Programmer's Reference.

LRESULT CALLBACK SysMsgProc(code, wParam, lParam)
int code; /*message type */
WPARAM wParam; /* undefined */
LPARAM lParam; /* pointer to an MSG structure */

Parameters

The SysMsgProc function is a library-defined callback function that the system
calls after a dialog box, message box, or menu has retrieved a message, but before
the message is processed. The callback function can process or modify messages
for any application in the system.

code
Specifies the type of message being processed. This parameter can be one of
the following values:

Value

MSGF _DIALOGBOX

MSGF_MENU

Meaning

Messages inside a dialog box or message box procedure
are being processed.

Keyboard and mouse messages in a menu are being
processed.

If the code parameter is less than zero, the callback function must pass the mes
sage to the CallNextHookEx function without further processing and return the
value returned by CallNextHookEx.

wParam
Must be NULL.

lParam
Points to the MSG structure to contain the message. The MSG structure has the
following form:

926 SystemHeaplnfo

Return Value

Comments

See Also

typedef struct tagMSG {
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM l Pa ram;
DWORD time;
POINT pt;

MSG;

f* msg */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value should be nonzero if the function processes the message. Other
wise, it should be zero.

This callback function must be in a dynamic-link library (DLL).

An application must install this callback function by specifying the
WH_SYSMSGFILTER filter type and the procedure-instance address of the call
back function in a call to the SetWindowsHookEx function.

SysMsgProc is a placeholder for the library-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the library's
module-definition file.

CallNextHookEx, MessageBox, SetWindowsHookEx

SystemHeaplnfo
#include <toolhelp.h>

BOOL SystemHeaplnfo(lpshi)
SYSHEAPINFO FAR* lpshi; I* address of heap-info structure */

Parameters

The SystemHeaplnfo function fills the specified structure with information that
describes the USER.EXE and GDI.EXE heaps.

lpshi
Points to a SYSHEAPINFO structure to receive information about the USER
and GDI heaps. The SYSHEAPINFO structure has the following form:

Return Value

Comments

#include <toolhelp.h>

typedef struct tagSYSHEAPINFO
OWORD dwSize;
WORD wUserFreePercent;
WORD wGDIFreePercent;
HGLOBAL hUserSegment;
HGLOBAL hGDISegment;

SYSHEAPINFO;

SystemParameterslnfo 927

/* shi */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

This function is included for advisory purposes. Before calling SystemHeaplnfo,
an application must initialize the SYSHEAPINFO structure and specify its size,
in bytes, in the dwSize member.

SystemParameterslnfo
BOOL SystemParameterslnfo(uAction, uParam, lpvParam,fuWinlni)
UINT uAction; I* system parameter to query or set */
UINT uParam; I* depends on system parameter */
void FAR* lpvParam; I* depends on system parameter */
UINT Ju Winlni; /* WIN.IN! update flag */

Parameters

The SystemParameterslnfo function queries or sets system-wide parameters.
This function can also update the WIN.IN! file while setting a parameter.

uAction
Specifies the system-wide parameter to query or set. This parameter can be one
of the following values:

Value

SPI_GETBEEP

SPI_GETBORDER

SPI_GETFASTTASKSWITCH

Meaning

Retrieves a BOOL value that indicates
whether the warning beep is on or off.

Retrieves the border multiplying factor
that determines the width of a window's
sizing border.

Determines whether fast task switching
is on or off.

928 SystemParameterslnfo

Value

SPI_GETGRIDGRANULARITY

SPI_GETICONTITLELOGFONT

SPI_GETICONTITLEWRAP

SPI_GETKEYBOARDDELAY

SPI_GETKEYBOARDSPEED

SPI_GETMENUDROPALIGNMENT

SPI_GETMOUSE

SPI_GETSCREENSAVEACTIVE

SPI_GETSCREENSAVETIMEOUT

SPI_ICONHORIZONTALSPACING

SPI_ICONVERTICALSPACING

SPI_LANGDRIVER

SPI_SETBEEP

SPI_SETBORDER

SPI_SETDESKPATTERN

SPI_SETDESKWALLPAPER

SPl_SETDOUBLECLKHEIGHT

SPl_SETDOUBLECLICKTIME

Meaning

Retrieves the current granularity value of
the desktop sizing grid.

Retrieves the logical-font information for
the current icon-title font.

Determines whether icon-title wrapping
is on or off.

Retrieves the keyboard repeat-delay
setting.

Retrieves the keyboard repeat-speed
setting.

Determines whether pop-up menus are
left-aligned or right-aligned relative to
the corresponding menu-bar item.

Retrieves the mouse speed and the
mouse threshold values, which Windows
uses to calculate mouse acceleration.

Retrieves a BOOL value that indicates
whether screen saving is on or off.

Retrieves the screen-saver time-out value.

Sets the width, in pixels, of an icon cell.

Sets the height, in pixels, of an icon cell.

Forces the user to load a new language
driver.

Tums the warning beep on or off.

Sets the border multiplying factor that de
termines the width of a window's sizing
border.

Sets the current desktop pattern to the
value specified in the Pattern entry in the
WIN.IN! file or to the pattern specified
by the lpvParam parameter.

Specifies the filename that contains the
bitmap to be used as the desktop wall
paper.

Sets the height of the rectangle within
which the second click of a double-click
must fall for it to be registered as a
double-click.

Sets the double-click time for the mouse.
The double-click time is the maximum
number of milliseconds that may occur
between the first and second clicks of a
double-click.

Return Value

Comments

Value

SPI_SETDOUBLECLKWIDTH

SPI_SETFASTTASKSWITCH

SPI_SETGRIDGRANULARITY

SystemParameterslnfo 929

Meaning

Sets the width of the rectangle in which
the second click of a double-click must
fall to be registered as a double-click.

Tums fast task switching on or off.

Sets the granularity of the desktop sizing
grid.

SPI_SETICONTITLELOGFONT

SPI_SETICONTITLEWRAP

SPI_SETKEYBOARDDELAY

SPI_SETKEYBOARDSPEED

SPI_SETMENUDROPALIGNMENT

Sets the font that is used for icon titles.

Tums icon-title wrapping on or off.

Sets the keyboard repeat-delay setting.

Sets the keyboard repeat-speed setting.

Sets the alignment value of pop-up
menus.

SPI_SETMOUSE

SPI_SETMOUSEBUTTONSWAP

SPI_SETSCREENSAVEACTIVE

SPI_SETSCREENSAVETIMEOUT

uParam

Sets the mouse speed and the x and y
mouse-threshold values.

Swaps or restores the meaning of the left
and right mouse buttons.

Sets the state of the screen saver.

Sets the screen-saver time-out value.

Depends on the uAction parameter. For more information, see the following
Comments section.

lpvParam
Depends on the uAction parameter. For more information, see the following
Comments section.

fuWinlni
If a system parameter is being set, specifies whether the WIN .INI file is up
dated, and if so, whether the WM_ WININICHANGE message is broadcast to
all top-level windows to notify them of the change. This parameter can be a
combination of the following values:

Value

SPIF _UPDATEINIFILE

SPIF _SENDWININICHANGE

Meaning

Writes the new system-wide parameter setting
to the WIN.INI file.

Broadcasts a WM_ WININICHANGE message
after WIN.INI is updated. This flag has no ef
fect if SPIF _UPDATEINIFILE is not specified.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The SystemParameterlnfo function is intended for applications, such as Control
Panel, that allow the user to customize the Windows environment.

930 SystemParameterslnfo

The following table describes the uParam and lpvParam parameters for each
SPI_ constant:

Constant

SPI_GETBEEP

SPI_GETBORDER

SPI_GETFASTTASKSWITCH

SPI_GETGRIDGRANULARITY

SPI_GETICONTITLELOGFONT

SPI_GETICONTITLEWRAP

SPI_GETKEYBOARDDELAY

SPI_GETKEYBOARDSPEED

SPI_GETMENUDROPALIGNMENT

SPI_GETMOUSE

SPI_GETSCREENSAVEACTIVE

SPI_GETSCREENSAVETIMEOUT

SPI_ICONHORIZONTALSPACING

SPI_ICONVERTICALSPACING

uParam

0

0

0

0

Size of LOG FONT
structure

0

0

0

0

0

0

0

New width, in
pixels, for horizontal
spacing of icons

New height, in
pixels, for vertical
spacing of icons

lpvParam

Points to a BOOL variable that receives
TRUE if the beep is on, FALSE if it is off.

Points to an integer variable that receives the
border multiplying factor.

Points to a BOOL variable that receives
TRUE if fast task switching is on, FALSE if
it is off.

Points to an integer variable that receives the
grid-granularity value.

Points to a LOGFONT structure that re
ceives the logical-font information.

Points to a BOOL variable that receives
TRUE if wrapping is on, FALSE if wrap
ping is off.

Points to an integer variable that receives the
keyboard repeat-delay setting.

Points to a WORD variable that receives the
current keyboard repeat-speed setting.

Points to a BOOL variable that receives
TRUE if pop-up menus are right-aligned,
FALSE if they are left-aligned.

Points to an integer array name lpiMouse,
where lpiMouse[O] receives the WIN.IN!
entry MouseThresholdl, lpiMouse[l] re
ceives the entry MouseThreshold2, and
lpiMouse[2] receives the entry MouseSpeed.

Points to a BOOL variable that receives
TRUE if the screen saver is active, FALSE if
it is not.

Points to an integer variable that receives the
screen-saver time-out value, in milliseconds.

Is NULL if the icon cell width, in pixels, is
returned in uParam. If this value is a pointer
to an integer, the current horizontal spacing
is returned in that variable and uParam is
ignored.

Is NULL if the icon cell height, in pixels, is
returned in uParam. If this value is a pointer
to an integer, the current vertical spacing is
returned in that variable and uParam is
ignored.

Constant

SPl_LANGDRIVER

SPI_SETBEEP

SPI_SETBORDER

SPl_SETDESKPATTERN

SPI_SETDESKWALLPAPER

SPI_SETDOUBLECLKHEIGHT

SPI_SETDOUBLECLICKTIME

SPI_SETDOUBLECLKWIDTH

SPI_SETFASTTASKSWITCH

SPI_SETGRIDGRANULARITY

SPI_SETICONTITLELOGFONT

SPI_SETICONTITLEWRAP

SPI_SETKEYBOARDDELAY

SPI_SETKEYBOARDSPEED

uParam

0

TRUE = turn the
beep on; FALSE=
turn the beep off

Border multiplying
factor

0 or-1

0

Double-click height,
in pixels

Double-click time, in
milliseconds

Double-click width,
in pixels

TRUE= turn on fast
task switching;
FALSE= turn it off

Grid granularity,

Size of the LOG
FONT structure

TRUE = turn wrap
ping on; FALSE =
turn wrapping off

Keyboard-delay
setting

Repeat-speed setting

SystemParameterslnfo 931

lpvParam

Points to a string containing the new lan
guage driver filename. The application
should make sure that all other international
settings remain consistent when changing
the language driver.

Is NULL.

Is NULL.

Specifies the desktop pattern. If this value is
NULL and the uParam parameter is -1, the
value is reread from the WIN.IN! file. This
value can also be a null-terminated string
(LPSTR) containing a sequence of 8 num
bers that represent the new desktop pattern;
for example, "170 85 170 85 170 85 170 85"
represents a 50% gray pattern.

Points to a string that specifies the name of
the bitmap file.

Is NULL.

Is NULL.

Is NULL.

Is NULL.

Points to a LOGFONT structure that de
fines the font to use for icon titles. If
uParam is set to zero and lParam is set to
NULL, Windows uses the icon-title font and
spacings that were in effect when Windows
was started.

Is NULL.

Is NULL.

Is NULL.

932 SystemParameterslnfo

Constant uParam

SPI_SETMENUDROPALIGNMENT TRUE= right
alignment; FALSE =
left-alignment

SPI_SETMOUSE 0

SPI_SETMOUSEBUTTONSWAP TRUE= reverse the
meaning of the left
and right mouse
buttons; FALSE =
restore the buttons
to their original
meanings

SPI_SETSCREENSAVEACTIVE

SPI_SETSCREENSAVETIMEOUT

TRUE= activate
screen saving;
FALSE= deactivate
screen saving

Idle time-out dura
tion, in seconds,
before screen is saved

lpvParam

Is NULL.

Points to an integer array named lpiMouse,
where lpiMouse[O] receives the WIN.IN!
entry xMouseThreshold, lpiMouse[l] re
ceives the entry yMouseThreshold, and
lpiMouse[2] receives the entry MouseSpeed.

Is NULL.

Is NULL.

Is NULL.

Example The following example retrieves the value for the DoubleClickSpeed entry from
the WIN.IN! file and uses the value to initialize an edit control. In this example,
while the WM_ COMMAND message is being processed, the user-specified value
is retrieved from the edit control and used to set the double-click time.

char szBuf[32];
int iResult;

case WM_INITDIALOG:

/* Initialize edit control to the current double-click time. */

iResult = GetProfileint("windows",
"DoubleClickSpeed", 550);

itoa(iResult, szBuf, 10);
SendOlgitemMessage(hdlg, IDD_DCLKTIME, WM_SETTEXT, 0,

CDWORD) (LPSTR) szBuf);

/* Initialize any other controls. */

return FALSE;

case WM_COMMAND:
switch(wParam)

case IDOK:

TabbedTextOut 933

/* Set double-click time to a user-specified value. */

SendDlgltemMessage(hdlg, IDD_DCLKTIME, WM_GETTEXT,
si zeof(szBufl, <DWORDl (LPSTR) szBuf);

SystemParameterslnfo(SPI_SETDOUBLECLICKTIME, atoi(szBuf),
(LPVOID) NULL, SPIF_UPDATEINIFILE I
SPIF_SENDWININICHANGEl;

/* Set any other system-wide parameters. */

EndDialog(hdlg, TRUE);
return TRUE;

TabbedTextOut
LONG TabbedTextOut(hdc, xPosStart, yPosStart, lpszString, cbString, cTabStops, lpnTabPositions,

nTabOrigin)
HDC hdc;
int xPosStart;
int yPosStart;
LPCSTR lpszString;
int cbString;
int cTabStops;

/* handle of device context
I* x-coordinate of starting position
I* y-coordinate of starting position
/* address of string
/* number of characters in string
/* number of tabs in array

int FAR* lpnTabPositions; I* address of array with tab positions
/* x-coordinate for tab expansion

*/
*I
*/
*/
*/
*/
*/
*I int nTabOrigin;

The TabbedTextOut function writes a character string at the specified location,
expanding tabs to the values specified in the array of tab-stop positions. The func
tion writes text in the currently selected font.

Parameters hdc
Identifies the device context.

xPosStart
Specifies the logical x-coordinate of the starting point of the string.

yPosStart
Specifies the logical y-coordinate of the starting point of the string.

934 TabbedTextOut

Return Value

Comments

Example

lpszString
Points to the character string to be drawn.

cbString
Specifies the number of characters in the string.

cTabStops
Specifies the number of values in the array of tab-stop positions.

lpnTabPositions
Points to an array containing the tab-stop positions, in device units. The tab
stops must be sorted in increasing order; the smallest x-value should be the first
item in the array.

nTabOrigin
Specifies the logical x-coordinate of the starting position from which tabs are
expanded.

The return value is the dimensions of the string, in logical units, if the function is
successful. The low-order word contains the string width; the high-order word con
tains the string height. Otherwise, the return value is zero.

If the cTabStops parameter is zero and the lpnTabPositions parameter is NULL,
tabs are expanded to eight times the average character width.

If cTabStops is 1, the tab stops are separated by the distance specified by the first
value in the lpnTabPositions array.

If the lpnTabPositions array contains more than one value, a tab stop is set for
each value in the array, up to the number specified by cTabStops.

The nTabOrigin parameter allows an application to call the TabbedTextOut func
tion several times for a single line. If the application calls TabbedTextOut more
than once with the nTabOrigin set to the same value each time, the function ex
pands all tabs relative to the position specified by nTabOrigin.

By default, the current position is not used or updated by the TabbedTextOut
function. If an application must update the current position when calling Tabbed
TextOut, it can call the SetTextAlign function with the wFlags parameter set to
TA_UPDATECP. When this flag is set, Windows ignores the xPosStart and yPos
Start parameters on subsequent calls to the TabbedTextOut function, using the
current position instead.

The following example expands tabs from the same x-coordinate as the string's
starting point:

LPSTR lpszTabbedText ="Column 1\tColumn 2\tTest of TabbedTextOut";
int aTabs[2J = { 150, 300 };
int iStartXPos 100;
int iStartYPos 100;

TaskFindHandle 935

TabbedTextOut(hdc, /* handle of device context *I
iStartXPos, iStartYPos, /* starting coordinates */
lpszTabbedText, /* address of text */
lstrlen(lpszTabbedText), /* number of characters */
sizeof(aTabs) I sizeof(int), /* number of tabs in array */
aTabs, /* array for tab positions */
i StartxPos); /* x-coord. for tab expanding */

See Also GetTabbedTextExtent, SetTextAlign, SetTextColor, TextOut

TaskFindHandle
#include <toolhelp.h>

BOOL TaskFindHandle(lpte, htask)
TASKENTRY FAR* lpte; /* address of TASKENTRY structure */
HTASK htask; /*handle of task */

The TaskFindHandle function fills the specified structure with information that
describes the given task.

Parameters lpte
Points to a TASKENTRY structure to receive information about the task. The
TASKENTRY structure has the following form:

#include <toolhelp.h>

typedef struct tagTASKENTRY /* te */
DWORD dwSize;
HT ASK hTask;
HTASK hTaskParent;
HINSTANCE hlnst;
HMODULE hModule;
WORD wSS;
WORD wSP;
WORD wStackTop;
WORD wStackMinimum;
WORD wStackBottom;

wcEvents; WORD
HGLOBAL
char
WORD
HANDLE

hQueue;
szModule[MAX_MODULE_NAME + 1];
wPSPOffset;
hNext;

} T AS KEN TRY;

936 Taskfirst

Return Value

Comments

See Also

TaskFirst

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

htask
Identifies the task to be described.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The TaskFindHandle function can be used to begin a walk through the task
queue. An application can examine subsequent entries in the task queue by using
the TaskNext function.

Before calling TaskFindHandle, an application must initialize the
TASKENTRY structure and specify its size, in bytes, in the dwSize member.

TaskFirst, TaskNext

#include <toolhelp.h>

BOOL TaskFirst(lpte)
TASKENTRY FAR* lpte; /* address of TASKENTRY structure *I

Parameters

The TaskFirst function fills the specified structure with information about the
first task on the task queue.

lpte
Points to a TASKENTRY structure to receive information about the first task.
The TASKENTRY structure has the following form:

#include <toolhelp.h>

typedef struct tagTASKENTRY /* te */
DWORD dwSize;
HT ASK hTask;
HTASK hTaskParent;
HINSTANCE hlnst;
HMODULE hModule;
WORD wSS;
WORD wSP;
WORD wStackTop;
WORD wStackMinimum;
WORD wStackBottom;
WORD wcEvents;

Return Value

Comments

HG LO BAL
char
WORD
HANDLE

TASKENTRY;

hQueue;
szModule[MAX_MODULE_NAME + 1];
wPSPOffset;
hNext;

TaskGetCSIP 937

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The TaskFirst function can be used to begin a walk through the task queue. An ap
plication can examine subsequent entries in the task queue by using the TaskNext
function.

Before calling TaskFirst, an application must initialize the TASKENTRY struc
ture and specify its size, in bytes, in the dwSize member.

See Also TaskFindHandle, TaskNext

TaskGetCSIP [1IJ

#include <toolhelp.h>

DWORD TaskGetCSIP(htask)
HTASK htask; /*handle of task */

The TaskGetCSIP function returns the next CS:IP value of a sleeping task. This
function is useful for applications that must "know" where a sleeping task will
begin execution upon awakening.

Parameters htask

Return Value

Comments

See Also

Identifies the task whose CS:IP value is being examined. This task must be
sleeping when the application calls TaskGetCSIP.

The return value is the next CS:IP value, if the function is successful. If the htask
parameter is invalid, the return value is NULL.

TaskGetCSIP should not be called if htask identifies the current task.

DirectedYield, TaskSetCSIP, TaskSwitch

938 TaskNext

TaskNext
#include <toolhelp.h>

BOOL TaskNext(lpte)
TASKENTRY FAR* lpte; I* address of TASKENTRY structure */

Parameters

Return Value

Comments

See Also

The TaskNext function fills the specified structure with information about the
next task on the task queue.

lpte
Points to a TASKENTRY structure to receive information about the next task.
The TASKENTRY structure has the following form:

#include <toolhelp.h>

typedef struct tagTASKENTRY /* te */
DWDRD dwSize;
HT ASK hTask;
HTASK hTaskParent;
HINSTANCE hinst;
HMODULE hModule;
WORD wSS;
WORD wSP;
WORD wStackTop;
WORD wStackMinimum;
WORD wStackBottom;
WORD wcEvents;
HGLOBAL hQueue;
char szModule[MAX_MODULE_NAME + 1];
WORD wPSPOffset;
HANDLE hNext;

TASKENTRY;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The TaskNext function can be used to continue a walk through the task queue.
The walk must have been started by the TaskFirst or TaskFindHandle function.

TaskFindHandle, TaskFirst

TaskSwitch 939

TaskSetCSIP ITIJ
#include <toolhelp.h>

DWORD TaskSetCSIP(htask, wCS, w!P)
HTASK htask; /*handle of task */
WORD wCS; /*value in CS register */
WORD w!P; !* value in IP register */

Parameters

The TaskSetCSIP function sets the CS:IP value of a sleeping task. When the task
is yielded to, it will begin execution at the specified address.

htask
Identifies the task to be assigned the new CS:IP value.

wCS
Contains the new value of the CS register.

w!P
Contains the new value of the IP register.

Return Value The return value is the previous CS:IP value for the task. The TaskSwitch func
tion uses this value. The return value is NULL if the htask parameter is invalid.

Comments TaskSetCSIP should not be called if htask identifies the current task.

See Also DirectedYield, TaskGetCSIP, TaskSwitch

TaskSwitch ITIJ
#include <toolhelp.h>

BOOL TaskSwitch(htask, dwNewCSIP)
HTASK htask; I* handle of task */
DWORD dwNewCSIP; /*execution address within task */

The TaskSwitch function switches to the given task. The task begins executing at
the specified address.

Parameters htask
Identifies the new task.

940 TerminateApp

Return Value

Comments

See Also

dwNewCSIP
Identifies the address within the given task at which to begin execution. Be very
careful that this address is not in a code segment owned by the given task.

The return value is nonzero if the task switch is successful. Otherwise, it is zero.

When the task identified by the htask parameter yields, TaskSwitch returns to the
calling application.

TaskSwitch changes the CS:IP value of the task's stack frame to the value
specified by the dwNewCSIP parameter and then calls the Directed Yield function.

DirectedYield, TaskSetCSIP, TaskGetCSIP

TerminateApp
#include <toolhelp.h>

void TerminateApp(htask, wFlags)
HTASK htask; I* handle of task */
WORD wFlags; /* termination flags */

The TerminateApp function ends the given application instance (task).

Parameters htask

Return Value

Identifies the task to be ended. If this parameter is NULL, it identifies the cur
rent task.

wFlags
Indicates how to end the task. This parameter can be one of the following
values:

Value

UAE_BOX

NO_UAE_BOX

Meaning

Calls the Windows kernel to display the Application Error mes
sage box and then ends the task.

Calls the Windows kernel to end the task but does not display
the Application Error message box. The application's interrupt
or notification callback function should have displayed an error
message, a warning, or both.

This function returns only if htask is not NULL and does not identify the current
task.

Comments

See Also

TextOut

TextOut 941

The TerminateApp function unregisters all callback functions registered with the
Tool Help functions and then ends the application as if the given task had pro
duced a general-protection (GP) fault or other error.

TerminateApp should be used only by debugging applications, because the func
tion may not free not all objects owned by the ended application.

InterruptRegister, InterruptUnRegister, NotifyRegister, NotifyUnRegister

BOOL TextOut(hdc, nXStart, nYStart, lpszString, cbString)
HDC hdc; I* handle of device context */
int nXStart; I* x-coordinate of starting position */
int nYStart; I* y-coordinate of starting position */
LPCSTR lpszString; /* address of string */
int cbString; /* number of bytes in string */

The TextOut function writes a character string at the specified location, using the
currently selected font.

Parameters hdc

Return Value

Comments

Identifies the device context.

nXStart
Specifies the logical x-coordinate of the starting point of the string.

nYStart
Specifies the logical y-coordinate of the starting point of the string.

lpszString
Points to the character string to be drawn.

cbString
Specifies the number of bytes in the string.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Character origins are at the upper-left corner of the character cell.

By default, the TextOut function does not use or update the current position. If an
application must update the current position when calling TextOut, it can call the
SetTextAlign function with the wFlags parameter set to TA_UPDATECP. When
this flag is set, Windows ignores the nXStart and nYStart parameters on sub
sequent calls to the TextOut function, using the current position instead.

942 Throw

Example The following example uses the GetTextFace function to retrieve the face name
of the current font, calls SetTextAlign so that the current position is updated when
the TextOut function is called, and then writes some introductory text and the
face name by calling TextOut:

See Also

Throw

int nFaceNamelen;
char aFaceName[80];

nFaceNamelen = GetTextFace(hdc, /* returns length of string */
sizeof(aFaceName), /*size of face-name buffer */
CLPSTR) aFaceName); /*address of face-name buffer*/

SetTextAlign(hdc,
TA_UPDATECP); I* updates current position */

MoveTo(hdc, 100, 100); /*sets current position */
TextOut(hdc, 0, 0, /* uses current position for text */

"This is the current face name: ", 31);
TextOut(hdc, 0, 0, aFaceName, nFaceNamelen);

ExtTextOut, GetTextExtent, SetTextAlign, SetTextColor, TabbedTextOut

void Throw(lpCatchBuf, nErrorReturn)
const int FAR* lpCatchBuf; /* address of CATCHB UF saved by Catch *I
int nErrorReturn; /* value to return from Catch function */

Parameters

Return Value

Comments

The Throw function restores the execution environment to the values saved in the
specified array. Execution then transfers to the Catch function that copied the en
vironment to the array.

lpCatchBuf
Points to a CATCHBUF array that contains the execution environment. This
array must have been set by a previous call to the Catch function.

nErrorReturn
Specifies the value to be returned to the Catch function. The meaning of the
value is determined by the application. The value should be nonzero, so that the
call to the Catch function can distinguish between a return from Catch (which
returns zero) and a return from Throw.

This function does not return a value.

The Throw function is similar to the C run-time function longjmp.

Example

Throw 943

The function that calls Catch must free any resources allocated between the time
Catch was called and the time Throw was called.

Do not use the Throw function across messages. For example, if an application
calls Catch while processing a WM_CREATE message and then calls Throw
while processing a WM_PAINT message, the application will terminate.

The following example calls the Catch function to save the current execution en
vironment before calling a recursive sort function. The first return from Catch is
zero. If the doSort function calls the Throw function, execution will again return
to the Catch function. This time, Catch returns the ST ACKOVERFLOW error
passed by the doSort function. The doSort function is recursive-that is, it calls it
self. It maintains a variable, wStackCheck, that is used to check the amount of
stack space used. If more than 3K of the stack has been used, doSort calls Throw
to drop out of all the nested function calls back into the function that called Catch.

#define STACKOVERFLOW

UINT uStackCheck;
CATCHBUF catchbuf;

int iReturn;
char szBuf[80];

if ((iReturn = Catch((int FAR*) catchbuf)) != 0) {

/* Error processing goes here. */

else {
uStackCheck = 0;
doSort(l, 100);

break;

/* initializes stack-usage count*/
/*calls sorting function */

void doSort(int sleft, int sRight)
{

int slast;

/*
* Determine whether more than 3K of the stack has been
* used, and if so, call Throw to drop back into the
*original calling application.

*
* The stack is incremented by the size of the two parameters,
* the two local variables, and the return value (2 for a near
*function call).
*/

944 TimerCount

}

uStackCheck += (sizeof(int) * 4) + 2;

if (uStackCheck > (3 * 1024))
Throw((int FAR*) catchbuf, STACKOVERFLOW);

/* A sorting algorithm goes here. */

doSort(sleft, slast - 1);
uStackCheck -= 10;

/* note recursive call */
/* updates stack-check variable */

See Also Catch

TimerCount ITIJ
#include <toolhelp.h>

BOOL TimerCount(lpti)
TIMERINFO FAR* lpti; /* address of structure for execution times */

Parameters

Return Value

Comments

The TimerCount function fills the specified structure with the execution times of
the current task and VM (virtual machine).

lpti
Points to the TIMERINFO structure that will receive the execution times. The
TIMERINFO structure has the following form:

#include <toolhelp.h>

typedef struct tagTIMERINFO
DWORD dwSize;
DWORD dwmsSinceStart;
DWORD dwmsThisVM;

TIMERINFO;

/* ti */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The TimerCount function provides a consistent source of timing information, ac
curate to the millisecond. In enhanced mode, TimerCount uses the VTD (virtual
timer device) to obtain accurate execution times.

See Also

TimerProc

TimerProc 945

In standard mode, TimerCount calls the GetTickCount function, which returns
information accurate to one clock tick (approximately 55 ms). TimerCount then
reads the hardware timer to estimate how many milliseconds remain until the next
clock tick. The resulting time is accurate to 1 ms.

Before calling TimerCount, an application must initialize the TIMERINFO
structure and specify its size, in bytes, in the dwSize member.

GetTickCount

void CALLBACK TimerProc(hwnd, msg, idTimer, dwTime)
HWND hwnd; !* handle of window for timer messages */
UINT msg; /* WM_TIMERmessage */
UINT idTimer; /* timer identifier */
DWORD dwTime; /* current system time */

The TimerProc function is an application-defined callback function that processes
WM_ TIMER messages.

Parameters hwnd

Return Value

Comments

See Also

Identifies the window associated with the timer.

msg
Specifies the WM_ TIMER message.

idTimer
Specifies the timer's identifier.

dwTime
Specifies the current system time.

This function does not return a value.

TimerProc is a placeholder for the application-defined function name. The actual
name must be exported by including it in an EXPORTS statement in the applica
tion's module-definition file.

KillTimer, SetTimer

946 ToAscii

ToAscii
int ToAscii(uVirtKey, uScanCode, lpbKeyState, lpdwTransKey,fuState)
UINT uVirtKey; /*virtual-key code */

*/
*/
*/
*/

UINT uScanCode; /* scan code
BYTE FAR* lpbKeyState; /* address of key-state array
DWORD FAR* lpdwTransKey; /* 32-bit buffer for translated key
UINT fuState; I* active-menu flag

Parameters

Return Value

Comments

The ToAscii function translates the specified virtual-key code and keyboard state
to the corresponding Windows character or characters.

uVirtKey
Specifies the virtual-key code to be translated.

uScanCode
Specifies the hardware scan code of the key to be translated. The high-order bit
of this value is set if the key is not pressed (is up).

lpbKeyState
Points to a 256-byte array that contains the current keyboard state. Each ele
ment (byte) in the array contains the state of one key. If the high-order bit of a
byte is set, the key is pressed (is down).

lpdwTransKey
Points to a doubleword buffer to receive the translated Windows character or
characters.

fuState
Specifies whether a menu is active. This parameter must be 1 if a menu is ac
tive, or zero otherwise.

The return value is a negative value ifthe specified key is a dead key. Otherwise,
it is one of the following values:

Value

2

1

0

Meaning

Two characters were copied to the buffer. This is usually an accent and a
dead-key character, when the dead key cannot be translated otherwise.

One Windows character was copied to the buffer.

The specified virtual key has no translation for the current state of the key
board.

If a previous dead key is stored in the keyboard driver, the parameters supplied to
the ToAscii function might not be sufficient to translate the virtual-key code.

See Also

TrackPopupMenu 947

Typically, ToAscii performs the translation based on the virtual-key code. In some
cases, however, the uSeanCode parameter may be used to distinguish between a
key press and a key release. The scan code is used for translating ALT+number key
combinations.

OemKeyScan, VkKeyScan

TrackPopupMenu
BOOL TrackPopupMenu(hmenu,fuFlags, x, y, nReserved, hwnd, lpre)
HMENU hmenu; /* handle of menu *I

*I
*/
*I
*/
*/
*/

UINT fuFlags; /* screen-position and mouse-button flags
int x; /* horizontal screen position
int y; /* vertical screen position
int nReserved; /* reserved
HWND hwnd; /* handle of owner window
const RECT FAR* !pre; /*address of structure with rectangle

Parameters

The TrackPopupMenu function displays the given floating pop-up menu at the
specified location and tracks the selection of items on the pop-up menu. A floating
pop-up menu can appear anywhere on the screen.

hmenu
Identifies the pop-up menu to be displayed. The application retrieves this
handle by calling the CreatePopupMenu function to create a new pop-up
menu or by calling the GetSubMenu function to retrieve the handle of a pop
up menu associated with an existing menu item.

fuFlags
Specifies the screen-position and mouse-button flags. The screen-position flag
can be one of the following:

Value

TPM_CENTERALIGN

TPM_LEFTALIGN

TPM_RIGHTALIGN

Meaning

Centers the pop-up menu horizontally relative to the
coordinate specified by the x parameter.

Positions the pop-up menu so that its left side is aligned
with the coordinate specified by the x parameter.

Positions the pop-up menu so that its right side is
aligned with the coordinate specified by the x parameter.

948 TrackPopupMenu

Return Value

Example

x

y

The mouse-button flag can be one of the following:

Value

TPM_LEFTBUTTON

TPM_RIGHTBUTTON

Meaning

Causes the pop-up menu to track the left mouse button.

Causes the pop-up menu to track the right mouse but
ton instead of the left.

Specifies the horizontal position, in screen coordinates, of the pop-up menu. De
pending on the value ofthefuFlags parameter, the menu can be left-aligned,
right-aligned, or centered relative to this position.

Specifies the vertical position, in screen coordinates, of the top of the menu on
the screen.

nReserved
Reserved; must be zero.

hwnd
Identifies the window that owns the pop-up menu. This window receives all
WM_ COMMAND messages from the menu. The window will not receive
WM_ COMMAND messages until TrackPopupMenu returns.

lprc
Points to a RECT structure that contains the screen coordinates of a rectangle
in which the user can click without dismissing the pop-up menu. If this parame
ter is NULL, the pop-up menu is dismissed if the user clicks outside the pop-up
menu. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The following example creates and tracks a pop-up menu when the user clicks the
left mouse button:

POINT ptCurrent;
HMENU hmenu;

ptCurrent = MAKEPOINT(lParam);
hmenu = CreatePopupMenu();

See Also

TranslateAccelerator 949

AppendMenu(hmenu, MF_ENABLED, IDM_ELLIPSE, "Ellipse");
AppendMenu(hmenu, MF_ENABLED, IDM_SQUARE, "Square");
AppendMenu(hmenu, MF_ ENABLED, IDM_ TRIANGLE, "Triangle");
ClientToScreen(hwnd, &ptCurrent);
TrackPopupMenuChmenu, TPM_LEFTALIGN, ptCurrent.x,

ptCurrent.y, 0, hwnd, NULL);

CreatePopupMenu, GetSubMenu

Trans I ateAcce I e rato r
int TranslateAccelerator(hwnd, haccl, lpmsg)
HWND hwnd; /* handle of window */

*/
*I

HACCEL haccl; /* handle of accelerator table
MSG FAR* lpmsg; /*address of structure with message information

Parameters

Return Value

The TranslateAccelerator function processes accelerator keys for menu com
mands. The function translates WM_KEYUP and WM_KEYDOWN messages to
WM_ COMMAND or WM_SYSCOMMAND messages if there is an entry for the
accelerator key in the application's accelerator table.

hwnd
Identifies the window whose messages are to be translated.

haccl
Identifies an accelerator table (loaded by using the LoadAccelerators function).

lpmsg
Points to an MSG structure retrieved by a call to the GetMessage or Peek
Message function. The structure contains message information from the appli
cation's message queue. The MSG structure has the following form:

typedef struct tagMSG {
HWND hwnd;
UINT
WP A RAM
LP A RAM
DWORD
POINT

} MSG;

message;
wParam;
l Pa ram;
time;
pt;

/* msg */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the message is translated. Otherwise, it is zero.

950 TranslateAccelerator

Comments

See Also

The high-order word of the !Param parameter of the WM_COMMAND or
WM_SYSCOMMAND message contains the value 1, to differentiate the message
from messages sent by menus or controls.

WM_ COMMAND or WM_SYSCOMMAND messages are sent directly to the
window, rather than being posted to the application queue. The Translate
Accelerator function does not return until the message is processed.

Accelerator keystrokes that are defined to select items from the System menu are
translated into WM_SYSCOMMAND messages; all other accelerator keystrokes
are translated into WM_ COMMAND messages.

When TranslateAccelerator returns a nonzero value (meaning that the message is
translated), the application should not process the message again by using the
TranslateMessage function.

Keystrokes in accelerator tables need not correspond to menu items.

If the accelerator keystroke does correspond to a menu item, the application is sent
WM_INITMENU and WM_INITMENUPOPUP messages, just as if the user were
trying to display the menu. However, these messages are not sent if any of the fol
lowing conditions are present:

• The window is disabled.

• The menu item is disabled.

• The accelerator keystroke does not correspond to an item on the System menu
and the window is minimized.

• A mouse capture is in effect (for more information, see the description of the
SetCapture function).

If the window is the active window and there is no keyboard focus (generally the
case ifthe window is minimized), WM_SYSKEYUP and WM_SYSKEYDOWN
messages are translated instead of WM_KEYUP and WM_KEYDOWN messages.

If an accelerator keystroke that corresponds to a menu item occurs when the win
dow that owns the menu is minimized, no WM_ COMMAND message is sent.
However, if an accelerator keystroke that does not match any of the items on the
window's menu or the System menu occurs, a WM_ COMMAND message is sent,
even if the window is minimized.

GetMessage, LoadAccelerators, PeekMessage, SetCapture

TranslateMDISysAccel 951

TranslateMDISysAccel [}]]
BOOL TranslateMDISysAccel(hwndC/ient, lpmsg)
HWND hwndClient; /* handle of parent MDI client window */
MSG FAR* lpmsg; /* address of structure with message data */

Parameters

Return Value

Comments

See Also

The TranslateMDISysAccel function processes accelerator keystrokes for the
given multiple document interface (MDI) child window. The function translates
WM_KEYUP and WM_KEYDOWN messages to WM_SYSCOMMAND mes
sages.

hwndClient
Identifies the parent MDI client window.

lpmsg
Points to an MSG structure retrieved by a call to the GetMessage or Peek
Message function. The structure contains message information from the appli
cation's message queue. The MSG structure has the following form:

typedef struct tagMSG
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

MSG;

/* msg */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The high-order word of the lParam parameter of the WM_SYSCOMMAND mes
sage contains the value 1, to differentiate the message from messages sent by
menus or controls.

GetMessage, PeekMessage

952 TranslateMessage

TranslateMessage
BOOL TranslateMessage(lpmsg)
const MSG FAR* lpmsg; /* address of MSG structure */

Parameters

Return Value

Comments

The TranslateMessage function translates virtual-key messages into character
messages, as follows:

• WM_KEYDOWN/WM_KEYUP combinations produce a WM_ CHAR or
WM_DEADCHAR message.

• WM_SYSKEYDOWN/WM_SYSKEYUP combinations produce a
WM_SYSCHAR or WM_SYSDEADCHAR message.

The character messages are posted to the application's message queue, to be read
the next time the application calls the GetMessage or PeekMessage function.

lpmsg
Points to an MSG structure retrieved by a call to the GetMessage or Peek
Message function. The structure contains message information from the appli
cation's message queue. The MSG structure has the following form:

typedef struct tagMSG
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM l Pa ram;
DWORD time;
POINT pt;

} MSG;

I* msg */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

The return value is nonzero ifthe message is WM_KEYDOWN, WM_KEYUP,
WM_SYSKEYDOWN, or WM_SYSKEYUP, regardless of whether the key that
was pressed or released generates a WM_ CHAR message. Otherwise, the return
value is zero.

The TranslateMessage function does not modify the message pointed to by the
lpmsg parameter.

TranslateMessage produces WM_ CHAR messages only for keys that are mapped
to ASCII characters by the keyboard driver.

An application should not call TranslateMessage if the application processes
virtual-key messages for some other purpose. For instance, an application should
not call TranslateMessage if the TranslateAccelerator function returns nonzero.

TransmitCommChar 953

See Also GetMessage, PeekMessage, TranslateAccelerator

TransmitCommChar
int TransmitCommChar(idComDev, chTransmit)
int idComDev; /* communications device *I

I char chTransmit; / character to transmit

Parameters

Return Value

Comments

Example

See Also

The TransmitCommChar function places the specified character at the head of
the transmission queue for the specified device.

idComDev
Specifies the communications device to transmit the character. The Open
Comm function returns this value.

chTransmit
Specifies the character to be transmitted.

The return value is zero if the function is successful. It is less than zero if the char
acter cannot be transmitted.

The TransmitCommChar function cannot be called repeatedly if the device is
not transmitting. Once TransmitCommChar places a character in the transmis
sion queue, the character must be transmitted before the function can be called
again. TransmitCommChar returns an error if the previous character has not yet
been sent.

The following example uses the TransmitCommChar function to send characters
from the keyboard to the communications port:

case WM_CHAR:

ch = (char)wParam;
TransmitCommChar(idComDev, ch);

/*Add a linefeed for every carriage return. */

if (ch == 0x0d)
TransmitCommChar(idComDev, 0x0a);

break;

OpenComm, WriteComm

954 UnAllocDiskSpace

UnAllocDiskSpace
#include <stress.h>

void UnAllocDiskSpace(drive)
UINT drive;

Parameters

Return Value

See Also

The UnAllocDiskSpace function deletes the STRESS.EAT file from the root
directory of the specified drive. This frees the disk space previously consumed by
the AllocDiskSpace function.

drive
Specifies the disk partition on which to delete the STRESS.EAT file. This can
be one of the following values:

Value

EDS_ WIN

EDS_CUR

EDS_TEMP

Meaning

Deletes the file on the Windows partition.

Deletes the file on the current partition.

Deletes the file on the partition that contains the TEMP directory.

This function does not return a value.

AllocDiskSpace

UnAllocFileHandles
#include <stress.h>

void UnAllocFileHandles(void)

Parameters

Return Value

See Also

The UnAllocFileHandles function frees all file handles allocated by the AllocFile
Handles function.

This function has no parameters.

This function does not return a value.

AllocFileHandles

UngetCommChar 955

Undeletefile
#include <wfext.h>

int FAR PASCAL VndeleteFile(hwndParent, lpszDir)
HWND hwndParent; I* handle of File Manager window */
LPSTR lpszDir; I* address of name of initial directory */

Parameters

Return Value

The UndeleteFile function is an application-defined callback function that File
Manager calls when the user chooses the Undelete command from the File
Manager File menu.

hwndParent
Identifies the File Manager window. An "undelete" dynamic-link library (DLL)
should use this handle to specify the parent window for any dialog box or mes
sage box the DLL may display.

lpszDir
Points to a null-terminated string that contains the name of the initial directory.

The return value is one of the following, if the function is successful:

Value

-1

IDOK

IDCANCEL

Meaning

An error occurred.

A file was undeleted. File Manager will repaint its windows.

No file was undeleted.

UngetCommChar
int UngetCommChar(idComDev, chUnget)
int idComDev; I* communications device */
char chUnget; I* character to place in queue */

Parameters

The UngetCommChar function places the specified character back in the receiv
ing queue. The next read operation will return this character first.

idComDev
Specifies the communications device that will receive the character. The Open
Comm function returns this value.

chUnget
Specifies the character to be placed in the receiving queue.

956 UnhookWindowsHook

Return Value

Comments

The return value is zero if the function is successful. Otherwise, it is less than zero.

Consecutive calls to the UngetCommChar function are not permitted. The charac
ter placed in the queue must be read before this function can be called again.

UnhookWindowsHook
BOOL UnhookWindowsHook(idHook, hkprc)
int idHook; I* type of hook function to remove *I

I HOOKPROC hkprc; I hook function procedure-instance address

Parameters

The UnhookWindowsHook function is obsolete but has been retained for back
ward compatibility with Windows versions 3.0 and earlier. Applications written
for Windows version 3.1 should use the UnhookWindowsHookEx function.

The UnhookWindowsHook function removes an application-defined hook func
tion from a chain of hook functions. A hook function processes events before they
are sent to an application's message loop in the WinMain function.

idHook
Specifies the type of function to be removed. This parameter can be one of the
following values:

Value

WH_CALLWNDPROC

WH_CBT

WH_DEBUG

WH_GETMESSAGE

WH_HARDWARE

WH_JOURNALPLAYBACK

Meaning

Removes a window-procedure filter. For more in
formation, see the description of the CallWnd
Proc callback function.

Removes a computer-based training (CBT) filter.
For more information, see the description of the
CBTProc callback function.

Removes a debugging filter. For more informa
tion, see the description of the DebugProc call
back function.

Removes a message filter. For more information,
see the description of the GetMsgProc callback
function.

Removes a nonstandard hardware-message filter.
For more information, see the description of the
HardwareProc callback function.

Removes a journaling playback filter. For more
information, see the description of the Journal
PlaybackProc callback function.

Return Value

Comments

See Also

Value

WH_JOURNALRECORD

WH_KEYBOARD

WH_MOUSE

WH_MSGFILTER

WH_SYSMSGFILTER

hkprc

UnhookWindowsHookEx 957

Meaning

Removes a journaling record filter. For more in
formation, see the description of the Joumal
RecordProc callback function.

Removes a keyboard filter. For more informa
tion, see the description of the KeyboardProc
callback function.

Removes a mouse-message filter. For more infor
mation, see the description of the MouseProc
callback function.

Removes a message filter. For more information,
see the description of the MessageProc callback
function.

Removes a system-wide message filter. For more
information, see the description of the SysMsg
Proc callback function.

Specifies the procedure-instance address of the application-defined filter func
tion to remove.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The UnhookWindowsHook function calls the hook chain, causing the hook func
tion to receive a negative value for the idHook parameter. The hook function must
then call the DefllookProc function, which removes the hook function from the
chain.

SetWindowsHook

UnhookWindowsHookEx
BOOL UnhookWindowsHookEx(hhook)
HHOOK hhook; I* handle of hook function to remove *I

Parameters

The UnhookWindowsHookEx function removes an application-defined hook
function from a chain of hook functions. A hook function processes events before
they are sent to an application's message loop in the WinMain function.

hhook
Identifies the hook function to be removed. This is the value returned by the
SetWindowsHookEx function when the hook was installed.

958 UnionRect

Return Value

Comments

Example

See Also

UnionRect

The return value is nonzero if the function is successful. It is zero if the hook can
not be found.

The UnhookWindowsHookEx function must be used in combination with the
SetWindowsHookEx function.

The following example uses the UnhookWindowsHookEx function to remove a
message filter that was used to provide context-sensitive help for a dialog box:

DLGPROC lpfnAboutProc;
HOOKPROC lpfnFilterProc;
HHOOK hhook;

case IDM_ABOUT:
lpfnAboutProc = (DLGPROC) MakeProcinstance(About, hinst);
lpfnFilterProc = (HOOKPROC) MakeProcinstance(FilterFunc, hinst);
hhook = SetWindowsHookEx(WH_MSGFILTER, lpfnFilterProc,

hinst, (HTASK) NULL);

DialogBox(hinst, "AboutBox", hwnd, lpfnAboutProc);

UnhookWindowsHookEx(hhook);
FreeProcinstance((FARPROC) lpfnFilterProc);
FreeProcinstance((FARPROC) lpfnAboutProc);

break;

CallNextHookEx, SetWindowsHookEx

BOOL UnionRect(lprcDst, lprcSrcl, lprcSrc2)
RECT FAR* lprcDst; I* address of structure for union */
const RECT FAR* lprcSrcl; I* address of structure with 1st rect. */
const RECT FAR* lprcSrc2; I* address of structure with 2nd rect. */

Parameters

The UnionRect function creates the union of two rectangles. The union is the
smallest rectangle that contains both source rectangles.

lprcDst
Points to a RECT structure to receive a rectangle containing the rectangles
pointed to by the lprcSrcl and lprcSrc2 parameters. The RECT structure has
the following form:

Return Value

Comments

See Also

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

UnlockSegment 959

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

lprcSrcl
Points to a RECT structure that contains the first source rectangle.

lprcSrc2
Points to a RECT structure that contains the second source rectangle.

The return value is nonzero if the function is successful-that is, if the lprcDst pa
rameter contains a nonempty rectangle. It is zero if the rectangle is empty or an
error occurs.

Windows ignores the dimensions of an empty rectangle-that is, a rectangle that
has no height or no width.

InflateRect, IntersectRect, OffsetRect, SubtractRect

UnlockSegment
void UnlockSegment(uSegment)
UINT uSegment; I* specifies segment to unlock */

Parameters

Return Value

The UnlockSegment function unlocks the specified discardable memory segment.
The function decrements (decreases by one) the segment's lock count. The seg
ment is completely unlocked and subject to discarding when the lock count
reaches zero.

uSegment
Specifies the segment address of the segment to be unlocked. If this parameter
is -1, the UnlockSegment function unlocks the current data segment.

The return value is the lock count for the segment, if the function is successful.
This function returns its result in the ex register. When the ex register contains
zero, the segment is completely unlocked.

960 UnrealizeObject

Comments

See Also

The value returned when the function is called in C should be ignored, because the
return value can be checked only in assembly language.

An application should not rely on the return value to determine the number of
times it must subsequently call UnlockSegment for the segment.

Other functions also can affect the lock count of a memory object. For a list of
these functions, see the description of the GlobalFlags function.

Each time an application calls LockSegment for a segment, it must eventually call
UnlockSegment for the segment.

GlobalFlags, LockSegment, UnlockData

UnrealizeObject
BOOL UnrealizeObject(hgdiobj)
HGDIOBJ hgdiobj; /* handle ofbrush or palette *I

Parameters

Return Value

Comments

The UnrealizeObject function resets the origin of a brush or resets a logical
palette. If the hgdiobj parameter identifies a brush, UnrealizeObject directs the
system to reset the origin of the brush the next time it is selected. If the hgdiobj pa
rameter identifies a logical palette, UnrealizeObject directs the system to realize
the palette as though it had not previously been realized. The next time the applica
tion calls the RealizePalette function for the specified palette, the system
completely remaps the logical palette to the system palette.

hgdiobj
Identifies the object to be reset.

The return value is nonzero if the function is successful. Otherwise, it is zero.

The UnrealizeObject function should not be used with stock objects.

The UnrealizeObject function must be called whenever a new brush origin is set
(by using the SetBrushOrg function).

A brush identified by the hgdiobj parameter must not be the currently selected
brush of any device context.

A palette identified by hgdiobj can be the currently selected palette of a device
context.

Example

See Also

UnregisterClass 961

The following example uses the SetBrushOrg function to set the origin coordi
nates of the current brush to (3,5), uses the SelectObject function to remove that
brush from the device context, uses the UnrealizeObject function to force the sys
tem to reset the origin of the specified brush, and then calls SelectObject again to
select the brush into the device context with the new brush origin:

HBRUSH hbr, hbrOl d;
SetBkMode(hdc, TRANSPARENT);
hbr = CreateHatchBrush(HS_CROSS, RGB(0, 0, 0));

UnrealizeObject(hbr);
SetBrushOrg(hdc, 0, 0);
hbrOld = SelectObject(hdc, hbr);

Rectangle(hdc, 0, 0, 200, 200);

hbr = SelectObject(hdc, hbrOld); /*deselects hbr */
UnrealizeObject(hbr); /* resets origin next time hbr selected */
SetBrushOrg(hdc, 3, 5);
hbrOld = SelectObject(hdc, hbr); /*selects hbr again*/

Rectangle(hdc, 0, 0, 200, 200);

SelectObject(hdc, hbrOld);
DeleteObject(hbr);

RealizePalette, SelectObject, SetBrushOrg

UnregisterClass
BOOL UnregisterClass(lpszClassName, hinst)
LPCSTR lpszClassName; /* address of class-name string *I

/ HINSTANCE hinst; I handle of application instance

Parameters

The UnregisterClass function removes a window class, freeing the storage re
quired for the class.

lpszClassName
Points to a null-terminated string containing the class name. This class name
must have been registered by a previous call to the RegisterClass function with
a valid hinstance member of the WNDCLASS structure. Predefined classes,
such as dialog box controls, cannot be unregistered. The WNDCLASS struc
ture has the following form:

962 UpdateColors

Return Value

Comments

See Also

typedef struct tagWNDCLASS {
UINT style;
WNDPROC lpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hlnstance;
HICON hlcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCSTR lpszMenuName;
LPCSTR lpszClassName;

} WNDCLASS;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

hinst
Identifies the instance of the module that created the class.

The return value is nonzero if the function successful. It is zero if the class could
not be found or if a window exists that was created with the class.

Before calling this function, an application should destroy all windows that were
created with the specified class.

RegisterCiass

UpdateColors
int UpdateColors(hdc)
HDC hdc; /* handle of device context */

The UpdateColors function updates the client area of the given device context by
matching the current colors in the client area, pixel by pixel, to the system palette.
An inactive window with a realized logical palette may call UpdateColors as an
alternative to redrawing its client area when the system palette changes.

Parameters hdc
Identifies the device context.

Return Value The return value is not used.

Comments

ValidateCodeSegments 963

Using UpdateColors to update a client area is typically faster than redrawing the
area. However, because UpdateColors performs the color translation based on the
color of each pixel before the system palette changed, each call to this function re
sults in the loss of some color accuracy.

Update Window
void UpdateWindow(hwnd)
HWND hwnd; I* handle of window */

The Update Window function updates the client area of the given window by
sending a WM_P AINT message to the window if the update region for the win
dow is not empty. The function sends a WM_PAINT message directly to the win
dow procedure of the given window, bypassing the application queue. If the
update region is empty, no message is sent.

Parameters hwnd

Return Value

See Also

Identifies the window to be updated.

This function does not return a value.

ExcludeUpdateRgn, GetUpdateRect, GetUpdateRgn, InvalidateRect,
InvalidateRgn

ValidateCodeSegments
void ValidateCodeSegments(void)

Parameters

Return Value

The ValidateCodeSegments function tests all code segments for random memory
overwrites. The function works only in real mode (for Windows versions earlier
than 3.1) and only with the debugging version of Windows.

This function has no parameters.

This function does not return a value.

964 ValidatefreeSpaces

Comments

See Also

Because code segments are not writable in protected mode (standard or enhanced),
this function does nothing in Windows 3.1.

ValidateFreeSpaces

ValidateFreeSpaces
void ValidateFreeSpaces(void)

Parameters

Return Value

Comments

See Also

The ValidateFreeSpaces function checks free segments in memory for valid con
tents. This function is available only in the debugging version of Windows.

This function has no parameters.

This function does not return a value.

In the debugging version of Windows, the kernel fills all the bytes in free seg
ments with the hexadecimal value OxOCC. This function begins checking for valid
contents in the free segment with the lowest address; it continues checking until it
finds an invalid byte or until it has determined that all free space contains valid
contents. Before calling this function, put the following lines in the WIN.IN! file:

[KERNEL]
EnableFreeChecking=l
EnableHeapChecking=l

Windows sends debugging information to the debugging terminal if an invalid
byte is encountered, and then it performs a fatal exit.

The [KERNEL] entries in WIN.IN! cause automatic checking of free memory.
Before returning a memory object to the application in response to a call to the
GlobalAlloc function, Windows checks that memory to make sure it is filled with
OxOCC. Before a call to the GlobalCompact function, all free memory is checked.
Note that using this function slows Windows system-wide by about twenty per
cent.

GlobalAlloc, GlobalCompact, ValidateCodeSegments

ValidateRect 965

ValidateRect IT!]

void ValidateRect(hwnd, lprc)
HWND hwnd; /*handle of window */
const RECT FAR* lprc; /*address of structure with validation rect. */

Parameters

Return Value

Comments

See Also

The ValidateRect function validates the client area within the given rectangle by
removing the rectangle from the update region of the given window.

hwnd
Identifies the window whose update region is to be modified.

lprc
Points to a RECT structure that contains the client coordinates of the rectangle
to be removed from the update region. If this parameter is NULL, the entire
client area is removed. The RECT structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

} RECT;

/* re */

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

This function does not return a value.

The BeginPaint function automatically validates the entire client area. Neither the
ValidateRect nor the ValidateRgn function should be called if a portion of the up
date region needs to be validated before the next WM_P AINT message is
generated.

Windows continues to generate WM_PAINT messages until the current update re
gion is validated.

BeginPaint, InvalidateRect, InvalidateRgn, V alidateRgn

966 ValidateRgn

ValidateRgn
void ValidateRgn(hwnd, hrgn)
HWND hwnd; I* handle of window
HRGN hrgn; I* handle of valid region

*/
*/

The ValidateRgn function validates the client area within the given region by re
moving the region from the current update region of the specified window.

Parameters hwnd
Identifies the window whose update region is to be modified.

hrgn
Identifies a region that defines the area to be removed from the update region.
If this parameter is NULL, the entire client area is removed.

Return Value This function does not return a value.

Comments The given region must have been created by a region function. The region coordi
nates are assumed to be client coordinates.

The BeginPaint function automatically validates the entire client area. Neither the
ValidateRect nor the ValidateRgn function should be called if a portion of the up
date region must be validated before the next WM_P AINT message is generated.

See Also BeginPaint, InvalidateRect, InvalidateRgn, ValidateRect

VerFindFile [ill

#include <ver.h>

UINT VerFindFile(flags, lpszFilename, lpszWinDir, lpszAppDir, lpszCurDir, lpuCurDirLen,
lpszDestDir, lpuDestDirLen)

VINT flags;
LPCSTR lpszFilename;
LPCSTR lpszWinDir;
LPCSTR lpszAppDir;
LPSTR lpszCurDir;
UINT FAR* lpuCurDirLen;
LPSTR lpszDestDir;
UINT FAR* lpuDestDirLen;

/* source-file flags
/* address of buffer for file
/* address of Windows directory
/* address of application directory
/* address of buffer for current directory
I* address of buffer size for directory
I* address of buffer for dest. directory
I* address of size for <lest. directory

*/
*I
*I
*I
*/
*/
*I
*I

Parameters

VerFindFile 967

The VerFindFile function determines where to install a file based on whether it lo
cates another version of the file in the system. The values VerFindFile returns are
used in a subsequent call to the VerlnstallFile function.

flags
Contains a bitmask of flags. This parameter can be VFFF _ISSHAREDFILE,
which indicates that the source file may be shared by multiple applications.
VerFindFile uses this information to determine where the file should be
copied. All other values are reserved for future use.

lpszFilename
Points to a null-terminated string specifying the name of the file to be installed.
This name should include only the filename and extension, not a path.

lpszWinDir
Points to a null-terminated string specifying the Windows directory. This string
is returned by the GetWindowsDir function. The dynamic-link library (DLL)
version of VerFindFile ignores this parameter.

lpsz,AppDir
Points to a null-terminated string specifying the drive letter and directory where
the installation program is installing a set of related files. If the installation pro
gram is installing an application, this is the directory where the application will
reside. This directory will also be the application's working directory unless
you specify otherwise.

lpszCurDir
Points to a buffer that receives the path to a current version of the file being in
stalled. The path is a null-terminated string. If a current version is not installed,
the buffer will contain the source directory of the file being installed. The buff
er must be at least _MAX_PATH bytes long.

lpuCurDirLen
Points to a null-terminated string specifying the length, in bytes, of the buffer
pointed to by lpszCurDir. On return, lpuCurDirLen contains the size, in bytes,
of the data returned in lpszCurDir, including the terminating null character. If
the buffer is too small to contain all the data, lpuCurDirLen will be greater than
the actual size of the buffer.

lpszDestDir
Points to a buffer that receives the path to the installation directory recom
mended by VerFindFile. The path is a null-terminated string. The buffer must
be at least _MAX_P A TH bytes long.

lpuDestDirLen
Points to the length, in bytes, of the buffer pointed to by lpszDestDir. On return,
lpuDestDirLen contains the size, in bytes, of the data returned in lpszDestDir,
including the terminating null character. If the buffer is too small to contain all
the data, lpuDestDirLen will be greater than the actual size of the buffer.

968 VerFindFile

Return Value

Comments

See Also

The return value is a bitmask that indicates the status of the file, if the function is
successful. This value may be one or more of the following:

Error

VFF _CURNEDEST

VFF _FILEINUSE

VFF _BUFFTOOSMALL

Meaning

Indicates that the currently installed version of the file is
not in the recommended destination.

Indicates that Windows is using the currently installed
version of the file; therefore, the file cannot be overwrit
ten or deleted.

Indicates that at least one of the buffers was too small to
contain the corresponding string. An application should
check the lpuCurDirLen and lpuDestDirLen parameters
to determine which buffer was too small.

All other values are reserved for future use.

The dynamic-link library (DLL) version of VerFindFile searches for a copy of the
specified file by using the OpenFile function. In the LIB version, the function
searches for the file in the Windows directory, the system directory, and then the
directories specified by the PATH environment variable.

VerFindFile determines the system directory from the specified Windows
directory, or it searches the path.

If the flags parameter indicates that the file is private to this application (not
VFFF _ISSHAREDFILE), VerFindFile recommends installing the file in the appli
cation's directory. Otherwise, ifthe system is running a shared copy of Windows,
the function recommends installing the file in the Windows directory. If the sys
tem is running a private copy of Windows, the function recommends installing the
file in the system directory.

V erlnstallFile

VerlnstallFile 969

VerlnstallFile CDJ
#include <ver.h>

DWORD VerlnstallFile(flags, lpszSrcFilename, lpszDestFilename, lpszSrcDir, lpszDestDir,
lpszCurDir, lpszTmpFile, lpwTmpFileLen)

UINT flags; /*source-file flags */
LPCSTR lpszSrcFilename; /* address of source filename */
LPCSTR lpszDestFilename; /*address of destination filename */
LPCSTR lpszSrcDir; !* address of buffer for source dir. name */
LPCSTR lpszDestDir; /* address of buffer for dest. dir. name */
LPCSTR lpszCurDir; /* address of buffer for preexisting dir. */
LPSTR lpszTmpFile; !* address of buffer for temp. filename */
UINT FAR* lpwTmpFileLen; /*address of buffer for temp. file size */

Parameters

The V erlnstallFile function attempts to install a file based on information re
turned from the VerFindFile function. VerlnstallFile decompresses the file with
the LZCopy function and checks for errors, such as outdated files.

flags
Contains a bitmask of flags. This parameter can be a combination of the follow
ing values:

Value

VIFF _FORCEINSTALL

VIFF _DONTDELETEOLD

Meaning

Installs the file regardless of mismatched version
numbers. The function will check only for physical
errors during installation.

Ifjlags includes VIFF _FORCEINSTALL and
lpszTmpFileLen is not a pointer to zero, Verlnstall
File will skip all version checks of the temporary
file and the destination file and rename the
temporary file to the name specified by
lpszSrcFilename, as long as the temporary file ex
ists in the destination directory, the destination file
is not in use, and the user has privileges to delete
the destination file and rename the temporary file.
The return value from VerlnstallFile should be
checked for any errors.

Installs the file without deleting the previously in
stalled file, if the previously installed file is not in
the destination directory. If the previously installed
file is in the destination directory, VerlnstallFile re
places it with the new file upon successful installa
tion.

All other values are reserved for future use.

970 VerlnstallFile

Return Value

lpszSrcFilename
Points to the name of the file to be installed. This is the filename in the
directory pointed to by lpszSrcDir; the filename should include only the
filename and extension, not a path. VerlnstallFile opens the source file by
using the LZOpenFile function. This means it can handle both files as
specified and files that have been compressed and renamed by using the
Ir option with COMPRESS.EXE.

lpszDestFilename
Points to the name VerlnstallFile will give the new file upon installation. This
filename may be different than the filename in the directory pointed to by
lpszSrcFilename. The new name should include only the filename and exten
sion, not a path.

lpszSrcDir
Points to a buffer that contains the directory name where the new file is found.

lpszDestDir
Points to a buffer that contains the directory name where the new file should be
installed. The VerFindFile function returns this value in the lpszDestDir pa
rameter.

lpszCurDir
Points to a buffer that contains the directory name where the preexisting version
of this file is found. VerFindFile returns this value in the lpszCurDir parame
ter. If the filename specified in lpszDestFilename already exists in the lpszCur
Dir directory and flags does not include VIFF _DONTDELETEOLD, the
existing file will be deleted. If lpszCurDir is a pointer to NULL, a previous ver
sion of the file does not exist on the system.

lpszTmpFile
Points to a buffer that should be empty upon the initial call to VerlnstallFile.
The function fills the buffer with the name of a temporary copy of the source
file. The buffer must be at least _MAX_PATH bytes long.

lpwTmpFileLen
Points to the length of the buffer pointed to by lpszTmpFile. On return,
lpwTmpFileLen contains the size, in bytes, of the data returned in lpszTmpFile,
including the terminating null character. If the buffer is too small to contain all
the data, lpwTmpFileLen will be greater than the actual size of the buffer.

lfjlags includes VIFF _FORCEINSTALL and lpwTmpFileLen is not a pointer
to zero, VerlnstallFile will rename the temporary file to the name specified by
lpszSrcFilename.

The return value is a bitmask that indicates exceptions, if the function is success
ful. This value may be one or more of the following:

Value

VIF _ TEMPFILE

VIF _MISMATCH

VIF_SRCOLD

VIF _DIFFLANG

VIF _DIFFCODEPG

VIF_DIFFTYPE

VIF _ WRITEPROT

VIF _FILEINUSE

VIF _OUTOFSPACE

VIF _ACCESSVIOLATION

VIF _SHARINGVIOLATION

VIF _CANNOTCREATE

VerlnstallFile 971

Meaning

Indicates that the temporary copy of the new file is
in the destination directory. The cause of failure is re
flected in other flags. Applications should always
check whether this bit is set and delete the temporary
file, if required.

Indicates that the new and preexisting files differ in
one or more attributes. This error can be overridden
by calling VerlnstallFile again with the
VIFF _FORCEINSTALL flag.

Indicates that the file to install is older than the
preexisting file. This error can be overridden by
calling VerlnstallFile again with the
VIFF _FORCEINSTALL flag.

Indicates that the new and preexisting files have
different language or code-page values. This error
can be overridden by calling VerlnstallFile again
with the VIFF _FORCEINSTALL flag.

Indicates that the new file requires a code page that
cannot be displayed by the currently running version
of Windows. This error can be overridden by calling
VerlnstallFile with the VIFF _FORCEINSTALL
flag.

Indicates that the new file has a different type, sub
type, or operating system than the preexisting file.
This error can be overridden by calling Verlnstall
File again with the VIFF _FORCEINSTALL flag.

Indicates that the preexisting file is write-protected.
The installation program should reset the read-only
bit in the destination file before proceeding with the
installation.

Indicates that the preexisting file is in use by Win
dows and cannot be deleted.

Indicates that the function cannot create the tem
porary file due to insufficient disk space on the desti
nation drive.

Indicates that a create, delete, or rename operation
failed due to an access violation.

Indicates that a create, delete, or rename operation
failed due to a sharing violation.

Indicates that the function cannot create the tem
porary file. The specific error may be described by
another flag.

972 Verlnstallfile

Comments

Value

VIF _CANNOTDELETE

VIF _CANNOTRENAME

VIF _OUTOFMEMORY

VIF _CANNOTREADSRC

VIF _CANNOTREADDST

VIF _BUFFTOOSMALL

Meaning

Indicates that the function cannot delete the
destination file or cannot delete the existing ver-
sion of the file located in another directory. If the
VIF _TEMPFILE bit is set, the installation failed and
the destination file probably cannot be deleted.

Indicates that the function cannot rename the tem
porary file but already deleted the destination file.

Indicates that the function cannot complete the re
quested operation due to insufficient memory. Gener
ally, this means the application ran out of memory
attempting to expand a compressed file.

Indicates that the function cannot read the source
file. This could mean that the path was not specified
properly, that the file does not exist, or that the file is
a compressed file that has been corrupted. To distin
guish these conditions, use LZOpenFile to deter
mine whether the file exists. (Do not use the
OpenFile function, because it does not correctly
translate filenames of compressed files.) Note
that VIF _CANNOTREADSRC does not cause
either the VIF _ACCESSVIOLATION or
VIF _SHARINGVIOLATION bit to be set.

Indicates that the function cannot read the destina
tion (existing) files. This prevents the function from
examining the file's attributes.

Indicates that the lpszTmpFile buffer was too small
to contain the name of the temporary source file. On
return, lpwTmpFileLen contains the size of the buff
er required to hold the filename.

All other values are reserved for future use.

VerlnstallFile is designed for use in an installation program. This function copies
a file (specified by lpszSrcFilename) from the installation disk to a temporary file
in the destination directory. If necessary, VerlnstallFile expands the file by using
the functions in LZEXP AND.DLL.

If a preexisting copy of the file exists in the destination directory, VerlnstallFile
compares the version information of the temporary file to that of the preexisting
file. If the preexisting file is more recent than the new version, or if the files' at
tributes are significantly different, VerlnstallFile returns one or more error
values. For example, files with different languages would cause VerlnstallFile to
return VIP _DIFFLANG.

VerlnstallFile leaves the temporary file in the destination directory. If all of the er
rors are recoverable, the installation program can override them by calling Ver-

See Also

VerlanguageName 973

lnstallFile again with the VIFF _FORCEINST ALL flag. In this case,
lpszSrcFilename should point to the name of the temporary file. Then, Verlnstall
File deletes the preexisting file and renames the temporary file to the name
specified by lpszSrcFilename. If the VIF _TEMPFILE bit indicates that a tem
porary file exists and the application does not force the installation by using the
VIFF _FORCEINST ALL flag, the application must delete the temporary file.

If an installation program attempts to force installation after a nonrecoverable
error, such as VIP _CANNOTREADSRC, VerlnstallFile will not install the file.

VerFindFile

VerlanguageName
#include <ver.h>

UINT VerLanguageName(uLang, lpszLang, cbLang)
UINT uLang; I* Microsoft language identifier */
LPSTR lpszLang; I* address of buffer for language string */
UINT cbLang; /* size of buffer */

Parameters

Return Value

The VerLanguageName function converts the specified binary Microsoft lan
guage identifier into a text representation of the language.

uLang
Specifies the binary Microsoft language identifier. For example,
VerLanguageName translates Ox040A into Castilian Spanish. If Ver
LanguageName does not recognize the identifier, the lpszLang parameter will
point to a default string, such as "Unknown language". For a complete list of
the language identifiers supported by Windows, see the following Comments
section.

lpszLang
Points to the buffer to receive the null-terminated string representing the lan
guage specified by the uLang parameter.

cbLang
Indicates the size of the buffer, in bytes, pointed to by lpszLang.

The return value is the length of the string that represents the language identifier,
if the function is successful. This value does not include the null character at the
end of the string. If this value is greater than ch Lang, the string was truncated to
cbLang. The return value is zero if an error occurs. Unknown uLang values do not
produce errors.

974 VerlanguageName

Comments Typically, an installation application uses this function to translate a language iden
tifier returned by the VerQueryValue function. The text string may be used in a
dialog box that asks the user how to proceed in the event of a language conflict.

Windows supports the following language identifiers:

Value Language

Ox0401 Arabic

Ox0402 Bulgarian

Ox0403 Catalan

Ox0404 Traditional Chinese

Ox0405 Czech

Ox0406 Danish

Ox0407 German

Ox0408 Greek

Ox0409 U.S. English

Ox040A Castilian Spanish

Ox040B Finnish

Ox040C French

Ox040D Hebrew

Ox040E Hungarian

Ox040F Icelandic

Ox0410 Italian

Ox0411 Japanese

Ox0412 Korean

Ox0413 Dutch

Ox0414 Norwegian - Bokmal

Ox0415 Polish

Ox0416 Brazilian Portuguese

Ox0417 Rhaeto-Romanic

Ox0418 Romanian

Ox0419 Russian

Ox041A Croato-Serbian (Latin)

Ox041B Slovak

Ox041C Albanian

Ox041D Swedish

Ox041E Thai

Ox041F Turkish

Ox0420 Urdu

Ox0421 Bahasa

VerQueryValue 975

Value Language

Ox0804 Simplified Chinese

Ox0807 Swiss German

Ox0809 U.K. English

Ox080A Mexican Spanish

Ox080C Belgian French

Ox0810 Swiss Italian

Ox0813 Belgian Dutch

Ox0814 Norwegian - Nynorsk

Ox0816 Portuguese

Ox081A Serbo-Croatian (Cyrillic)

OxOCOC Canadian French

OxlOOC Swiss French

VerQueryValue CIIJ
#include <ver.h>

BOOL VerQueryValue(lpvBlock, lpszSubBlock, lplpBuffer, lpcb)
const void FAR* lpvBlock; /*address of buffer for version resource */
LPCSTR lpszSubBlock; I* address of value to retrieve */
VOID FAR* FAR* lplpBuffer; /*address of buffer for version pointer */
UINT FAR* lpcb; /*address of buffer for version-value length */

Parameters

The V erQuery Value function returns selected version information from the
specified version-information resource. To obtain the appropriate resource, the
GetFileVersionlnfo function must be called before VerQueryValue.

lpvBlock
Points to the buffer containing the version-information resource returned by the
GetFile Versionlnfo function.

lpszSubBlock
Points to a zero-terminated string specifying which version-information value
to retrieve. The string consists of names separated by backslashes (\) and can
have one of the following forms:

976 VerQueryValue

Return Value

Comments

Form

\

Description

Specifies the root block. The func
tion retrieves a pointer to the
VS_FIXEDFILEINFO structure
for the version-information resource.

\VarFilelnfo\Translation Specifies the translation table in the
variable information block. The
function retrieves a pointer to an
array of language and character-set
identifiers. An application uses these
identifiers to create the name of an
language-specific block in the
version-information resource.

\StringFilelnfo\lang-charset\string-name Specifies a value in a language
specific block. The lang-charset
name is a concatenation of a lan
guage and character-set identifier
pair found in the translation table
for the resource. The lang-charset
name must be specified as a hex
adecimal string. The string-name
name is one of the predefined

lplpBuffer

strings described in the following
Comments section.

Points to a buffer that receives a pointer to the version-information value.

lpcb
Points to a buffer that receives the length, in bytes, of the version-information
value.

The return value is nonzero if the specified block exists and version information
is available. If lpcb is zero, no value is available for the specified version
information name. The return value is zero if the specified name does not
exist or the resource pointed to by lpvBlock is not valid.

The string-name in the lpszSubBlock parameter can be one of the following prede
fined names:

Name

Comments

Company Name

Value

Specifies additional information that should be displayed for
diagnostic purposes.

Specifies the company that produced the file-for example,
"Microsoft Corporation" or "Standard Microsystems Corpora
tion, Inc.". This string is required.

Example

Name

FileDescription

File Version

InternalName

Legal Copyright

Legal Trademarks

OriginalFilename

PrivateBuild

ProductName

Product Version

SpecialBuild

VerQueryValue 977

Value

Specifies a file description to be presented to users. This string
may be displayed in a list box when the user is choosing files
to install-for example, "Keyboard Driver for AT-Style
Keyboards" or "Microsoft Word for Windows". This string is
required.

Specifies the version number of the file-for example, "3.1 O"
or "5.00.RC2". This string is required.

Specifies the internal name of the file, if one exists-for ex
ample, a module name if the file is a dynamic-link library. If
the file has no internal name, this string should be the original
filename, without extension. This string is required.

Specifies all copyright notices that apply to the file. This should
include the full text of all notices, legal symbols, copyright
dates, and so on-for example, "Copyright Microsoft
Corporation 1990-1991 ". This string is optional.

Specifies all trademarks and registered trademarks that apply to
the file. This should include the full text of all notices, legal
symbols, trademark numbers, and so on-for example,
"Windows(TM) is a trademark of Microsoft Corporation". This
string is optional.

Specifies the original name of the file, not including a path.
This information enables an application to determine whether a
file has been renamed by a user. The format of the name de
pends on the file system for which the file was created. This
string is required.

Specifies information about a private version of the file-for
example, "Built by TESTERl on \TESTBED". This string
should be present only if the VS_FF _PRIVATEBUILD flag is
set in the dwFileFlags member of the VS_FIXEDFILEINFO
structure of the root block.

Specifies the name of the product with which the file is dis
tributed-for example, "Microsoft Windows". This string is re
quired.

Specifies the version of the product with which the file is dis
tributed-for example, "3 .1 O" or "5 .OO.RC2". This string is re
quired.

Specifies how this version of the file differs from the standard
version-for example, "Private build for TESTER! solving
mouse problems on M250 and M250E computers". This string
should be present only if the VS_FF _SPECIALBUILD flag is
set in the dwFileFlags member of the VS_ FIXEDFILEINFO
structure in the root block.

The following example loads the version information for a dynamic-link library
and retrieves the company name:

978 VkKeyScan

BYTE abData[512];
DWORD handle;
DWORD dwSize;
LPBYTE lpBuffer;
char szName[512];

dwSize = GetFileVersioninfoSizeC"c:\\dll\\sample.dll", &handle));

GetFileVersioninfo("c:\\dll\\sample.dll", handle, dwSize, abData));

VerQueryValue(abData, "\\VarFileinfo\\Translation", &lpBuffer,
&dwSize));

if (dwSize!=0) {

}

wsprintf(szName, "\\StringFileinfo\\%8lx\\CompanyName", &lpBuffer);
VerQueryValue(abData, szName, &lpBuffer, &dwSize);

See Also GetFile Versionlnfo

VkKeyScan CI!]

UINT VkKeyScan(uChar)
UINT uChar; /*character to translate */

Parameters

Return Value

The VkKeyScan function translates a Windows character to the corresponding
virtual-key code and shift state for the current keyboard.

uChar
Specifies the character to be translated to a virtual-key code.

The return value is the virtual-key code and shift state, if the function is success
ful. The low-order byte contains the virtual-key code; the high-order byte contains
the shift state, which can be one of the following:

Value Meaning

Character is shifted.

2 Character is a control character.

3-5 Shift-key combination that is not used for characters.

6 Character is generated by the CTRL+ALT key combination.

7 Character is generated by the SHIFI' +CTRL+ALT key combination.

Comments

See Also

WaitMessage 979

If no key is found that translates to the passed Windows code, the return value
is -1.

Translations for the numeric keypad (VK_NUMPADO through VK_DIVIDE) are
ignored. This function is intended to force a translation for the main keyboard only.

Applications that send characters by using the WM_KEYUP and
WM_KEYDOWN messages use this function.

OemKeyScan

WaitMessage
void WaitMessage(void)

Parameters

Return Value

Comments

See Also

The WaitMessage function yields control to other applications when an applica
tion has no other tasks to perform. The WaitMessage function suspends the appli
cation and does not return until a new message is placed in the application's queue.

This function has no parameters.

This function does not return a value.

The WaitMessage function normally returns immediately if there is a message in
the queue. If an application has used the PeekMessage function but not removed
the message, however, WaitMessage does not return until the message is re
ceived. Applications that use the PeekMessage function should remove any
retrieved messages from the queue before calling WaitMessage.

The GetMessage, PeekMessage, and WaitMessage functions yield control to
other applications. Using these functions is the only way to allow other applica
tions to run. Applications that do not call any of these functions for long periods
prevent other applications from running.

GetMessage, PeekMessage

980 WaitSoundState

WaitSoundState
int WaitSoundState(frzState)
intfaState; I* state to wait for */

This function is obsolete. Use the Microsoft Windows multimedia audio functions
instead. For information about these functions, see the Microsoft Windows Multi
media Programmer's Reference.

WEP ~

int CALLBACK WEP(nExitType)
int nExitType; /*type of exit */

Parameters

Return Value

Comments

The WEP (Windows exit procedure) callback function performs cleanup for a
dynamic-link library (DLL) before the library is unloaded. This function is called
by Windows. Although a WEP function was required for every dynamic-link
library in previous versions of the Windows operating system, for version 3.1 the
WEP function is optional. Most dynamic-link libraries use the WEP function.

nExitType
Specifies whether all of Windows is shutting down or only the
individual library. This parameter can be either WEP _FREE_DLL or
WEP _SYSTEM_EXIT.

The return value should be 1 if the function is successful.

For Windows version 3.1, WEP is called on the stack of the application that is ter
minating. This enables WEP to call Windows functions. In Windows version 3.0,
however, WEP is called on a KERNEL stack that is too small to process most
calls to Windows functions. These calls, including calls to global-memory func
tions, should be avoided in a WEP function for Windows 3.0. Calls to MS-DOS
functions go through a KERNEL intercept and can also overflow the stack in Win
dows 3.0. There is no general reason to free memory from the global heap in a
WEP function, because the kernel frees this kind of memory automatically.

In some low-memory conditions, WEP can be called before the library initializa
tion function is called and before the library's DGROUP data-segment group has
been created. A WEP function that relies on the library initialization function
should verify that the initialization function has been called. Also, WEP functions
that rely on the validity of DGROUP should check for this. The following

See Also

WEP 981

procedure is recommended for dynamic-link libraries in Windows 3.0; for Win
dows 3.1, only step 3 is necessary.

1. Verify that the data segment is present by using a lar instruction and checking
the present bit. This will indicate whether DS has been loaded. (The DS register
always contains a valid selector.)

2. Set a flag in the data segment when the library initialization is performed. Once
the WEP function has verified that the data segment exists, it should test this
flag to determine whether initialization has occurred.

3. Declare WEP in the EXPORTS section of the module-definition file for the
DLL. Following is an example declaration:

WEP @1 RESIDENTNAME

The keyword RESIDENTNAME makes the name of the function (WEP) resi
dent at all times. (It is not necessary to use the ordinal reference 1.) The name
listed in the LIBRARY statement of the module-definition file must be in up
percase letters and must match the name of the DLL file.

Windows calls the WEP function by name when it is ready to remove the DLL.
Under low-memory conditions, it is possible for the DLL's nonresident-name
table to be discarded from memory. If this occurs, Windows must load the table to
determine whether a WEP function was declared for the DLL. Under low
memory conditions, this method could fail, causing a fatal exit. Using the
RESIDENTNAME option forces Windows to keep the name entry for WEP in
memory whenever the DLL is in use.

In Windows 3.0, WEP must be placed in a fixed code segment. If it is placed in
stead in a discardable segment, under low-memory conditions Windows must load
the WEP segment from disk so that the WEP function can be called before the
DLL is discarded. Under certain low-memory conditions, attempting to load the
segment containing WEP can cause a fatal exit. When WEP is in a fixed segment,
this situation cannot occur. (Because fixed DLL code is also page-locked, you
should minimize the amount of fixed code.)

If a DLL is explicitly loaded by calling the LoadLibrary function, its WEP func
tion is called when the DLL is freed by a call to the FreeLibrary function. (The
FreeLibrary function should not be called from within a WEP function.) If the
DLL is implicitly loaded, WEP is also called, but some debugging applications
will indicate that the application has been terminated before WEP is called.

The WEP functions of dependent DLLs can be called in any order. This order de
pends on the order in which the usage counts for the DLLs reach zero.

FreeLibrary, LibMain, RegisterClass, UnRegisterClass

982 WindowFromPoint

WindowFromPoint
HWND WindowFromPoint(pt)
POINT pt; I* structure with point */

Parameters

The WindowFromPoint function retrieves the handle of the window that contains
the specified point.

pt
Specifies a POINT structure that defines the screen coordinates of the point to
be checked. The POINT structure has the following form:

typedef struct tagPOINT { /* pt */
int x;
int y;

} POINT;

For a full description of this structure, see the Microsoft Windows Program
mer's Reference, Volume 3.

Return Value The return value is the handle of the window in which the point lies, if the func
tion is successful. The return value is NULL if no window exists at the specified
point.

Comments The WindowFromPoint function does not retrieve the handle of a hidden, dis
abled, or transparent window, even if the point is within the window. An applica
tion should use the ChildWindowFromPointfunction for a nonrestrictive search.

See Also ChildWindowFrppiPoint

WindowProc lliJ
LRESULT CALLBACK WindowProc(hwnd, msg, wParam, lParam)
HWND hwnd; I* handle of window */
UINT msg; /*message */
WPARAM wParam; /*first message parameter */
LPARAM lParam; /*second message parameter */

The WindowProc function is an application-defined callback function that
processes messages sent to a window.

Win Exec 983

Parameters hwnd

Return Value

Comments

See Also

Win Exec

Identifies the window.

msg
Specifies the message.

wParam
Specifies 16 bits of additional message-dependent information.

IP a ram
Specifies 32 bits of additional message-dependent information.

The return value is the result of the message processing. The value depends on the
message being processed.

The WindowProc name is a placeholder for the application-defined function
name. The actual name must be exported by including it in an EXPORTS state
ment in the application's module-definition file.

DefWindowProc, RegisterClass

UINT WinExec(lpszCmdLine,fuCmdShow)
LPCSTR lpszCmdLine; /*address of command line */
UINT fuCmdShow; I* window style for new app. */

Parameters

The WinExec function runs the specified application.

lpszCmdLine
Points to a null-terminated Windows character string that contains the com
mand line (filename plus optional parameters) for the application to be run. If
the string does not contain a path, Windows searches the directories in this
order:

1. The current directory.

2. The Windows directory (the directory containing WIN.COM); the Get
WindowsDirectory function retrieves the path of this directory.

3. The Windows system directory (the directory containing such system files as
GD I.EXE); the GetSystemDirectory function retrieves the path of this
directory.

4. The directory containing the executable file for the current task; the Get
ModuleFileName function retrieves the path of this directory.

984 WinExec

Return Value

Errors

Comments

Example

5. The directories listed in the PA TH environment variable.

6. The directories mapped in a network.

fuCmdShow
Specifies how a Windows application window is to be shown. See the descrip
tion of the Show Window function for a list of the acceptable values for the
fuCmdShow parameter. For a non-Windows application, the program
information file (PIF), if any, for the application determines the window state.

The return value identifies the instance of the loaded module, if the function is
successful. Otherwise, the return value is an error value less than 32.

The error value may be one of the following:

Value

0

2

3

5

6

8

10

11

12

13

14

15

16

19

20

21

Meaning

System was out of memory, executable file was corrupt, or relocations were
invalid.

File was not found.

Path was not found.

Attempt was made to dynamically link to a task, or there was a sharing or
network-protection error.

Library required separate data segments for each task.

There was insufficient memory to start the application.

Windows version was incorrect.

Executable file was invalid. Either it was not a Windows application or
there was an error in the .EXE image.

Application was designed for a different operating system.

Application was designed for MS-DOS 4.0.

Type of executable file was unknown.

Attempt was made to load a real-mode application (developed for an earlier
version of Windows).

Attempt was made to load a second instance of an executable file contain
ing multiple data segments that were not marked read-only.

Attempt was made to load a compressed executable file. The file must be
decompressed before it can be loaded.

Dynamic-link library (DLL) file was invalid. One of the DLLs required to
run this application was corrupt.

Application requires Microsoft Windows 32-bit extensions.

The LoadModule function provides an alternative method for running an applica
tion.

The following example uses the WinExec function to run DRAW.EXE:

See Also

Win Help

WORD wReturn;
char szMsg[80J;

wReturn = WinExec("draw", SW_SHOW);

if CwReturn < 32) {

Win Help 985

sprintf(szMsg, "WinExec failed; error code= %d", wReturn);
MessageBox(hwnd, szMsg, "Error", MB_ICONSTOP);

else {

}

sprintf(szMsg, "WinExec returned %d", wReturn);
MessageBox(hwnd, szMsg, "", MB_OK);

GetModuleFileName, GetSystemDirectory, GetWindowsDirectory, Load
Module, ShowWindow

BOOL WinHelp(hwnd, lpszHelpFile,fuCommand, dwData)
HWND hwnd; /*handle of window requesting help */
LPCSTR lpszHelpFile; /* address of directory-path string */
UINT fuCommand; /*type of help */
DWORD dwData; /* additional data */

The WinHelp function starts Windows Help (WINHELP.EXE) and passes op
tional data indicating the nature of the help requested by the application. The appli
cation specifies the name and, where required, the path of the help file that the
Help application is to display. For information about creating and using help files,
see Microsoft Windows Programming Tools.

Parameters hwnd
Identifies the window requesting Help. The WinHelp function uses this handle
to keep track of which applications have requested Help.

lpszHelpFile
Points to a null-terminated string containing the path, if necessary, and the
name of the help file that the Help application is to display.

The filename may be followed by an angle bracket (>) and the name of a sec
ondary window if the topic is to be displayed in a secondary window rather
than in the primary window. The name of the secondary window must have
been defined in the [WINDOWS] section of the Help project (.HPJ) file.

986 WinHelp

Return Value

Comments

Ju Command

HELP _CONTEXT

HELP _CONTENTS

Ju Command
Specifies the type of help requested. For a list of possible values and how they
affect the value to place in the dwData parameter, see the following Comments
section.

dwData
Specifies additional data. The value used depends on the value of the
fuCommand parameter. For a list of possible values, see the following
Comments section.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Before closing the window that requested the help, the application must call Win
Help withfuCommand set to HELP _QUIT. Until all applications have done this,
Windows Help does not terminate.

The following table shows the possible values for the Ju Command parameter and
the corresponding formats of the dwData parameter:

dwData

An unsigned long integer contain
ing the context number for the
topic.

Ignored; applications should
set to OL.

Action

Displays Help for a particular topic iden
tified by a context number that has been
defined in the [MAP] section of the .HPJ
file.

Displays the Help contents topic as de
fined by the Contents option in the
[OPTIONS] section of the .HPJ file.

HELP _SETCONTENTS An unsigned long integer contain
ing the context number for the
topic the application wants to
designate as the Contents topic.

Determines which Contents topic Help
should display when a user presses the
Fl key.

HELP_CONTEXTPOPUP

HELP_KEY

An unsigned long integer contain
ing the context number for a topic.

A long pointer to a string that con
tains a keyword for the desired
topic.

Displays in a pop-up window a particular
Help topic identified by a context number
that has been defined in the [MAP] sec
tion of the .HPJ file.

Displays the topic found in the keyword
list that matches the keyword passed in
the dwData parameter if there is one
exact match. If there is more than one
match, displays the Search dialog box
with the topics listed in the Go To list
box. If there is no match, displays the
Search dialog box.

ju Command

HELP _PARTIALKEY

HELP _MULTIKEY

HELP _COMMAND

HELP _SETWINPOS

HELP _FORCEFILE

HELP _HELPONHELP

HELP_QUIT

dwData

A long pointer to a string that con
tains a keyword for the desired
topic.

A long pointer to the MULTI
KEYHELP structure, as defined
in WINDOWS.H. This structure
specifies the table footnote charac
ter and the keyword.

A long pointer to a string that con
tains a Help macro to be executed.

A long pointer to the
HELPWININFO structure, as de
fined in WINDOWS.H. This struc
ture specifies the size and position
of the primary Help window or a
secondary window to be displayed.

Ignored; applications should
set to OL.

Ignored; applications should
set to OL.

Ignored; applications should
set to OL.

WinHelp 987

Action

Displays the topic found in the keyword
list that matches the keyword passed in
the dwData parameter if there is one
exact match. If there is more than one
match, displays the Search dialog box
with the topics found listed in the Go To
list box. If there is no match, displays the
Search dialog box. If you just want to
bring up the Search dialog box without
passing a keyword (the third result), you
should use a long pointer to an empty
string.

Displays the Help topic identified by a
keyword in an alternate key word table.

Executes a Help macro.

Displays the Help window if it is min
imized or in memory, and positions it
according to the data passed.

Ensures that WinHelp is displaying the
correct Help file. If the correct Help file
is currently displayed, there is no action.
If the incorrect Help file is displayed,
WinHelp opens the correct file.

Displays the Contents topic of the desig
nated Using Help file.

Informs the Help application that Help is
no longer needed. If no other applications
have asked for Help, Windows closes the
Help application.

The MUL TIKEYHELP structure has the following form:

typedef struct tagMULTIKEYHELP
UINT mkSize;
BYTE mkKeylist;
BYTE szKeyphrase[lJ;

} MULTIKEYHELP;

/* mkh */

988 WinMain

WinMain

For a full description of this structure, see the Microsoft Windows Programmer's
Reference, Volume 3.

int PASCAL WinMain(hinstCurrent, hinstPrevious, lpszCmdLine, nCmdShow)
HINSTANCE hinstCurrent; /*handle of current instance */
HINSTANCE hinstPrevious; /* handle of previous instance */
LPSTR lpszCmdLine; /*address of command line */
int nCmdShow; /*show-window type (open/icon) */

Parameters

The WinMain function is called by the system as the initial entry point for a
Windows application.

hinstCurrent
Identifies the current instance of the application.

hinstPrevious
Identifies the previous instance of the application.

lpszCmdLine
Points to a null-terminated string specifying the command line for the applica
tion.

nCmdShow
Specifies how the window is to be shown. This parameter can be one of the fol
lowing values:

Value

SW_HIDE

SW _MINIMIZE

SW_RESTORE

SW_SHOW

SW _SHOWMAXIMIZED

Meaning

Hides the window and passes activation to
another window.

Minimizes the specified window and activates the
top-level window in the system's list.

Activates and displays a window. If the window
is minimized or maximized, Windows restores it
to its original size and position (same as
SW _SHOWNORMAL).

Activates a window and displays it in its current
size and position.

Activates a window and displays it as a maxi
mized window.

Return Value

Comments

Example

Value

SW _SHOWMINIMIZED

SW _SHOWMINNOACTIVE

SW_SHOWNA

SW _SHOWNOACTIVATE

SW _SHOWNORMAL

WinMain 989

Meaning

Activates a window and displays it as an icon.

Displays a window as an icon. The window that is
currently active remains active.

Displays a window in its current state. The win
dow that is currently active remains active.

Displays a window in its most recent size and
position. The window that is currently active re
mains active.

Activates and displays a window. If the window
is minimized or maximized, Windows restores it
to its original size and position (same as
SW _RESTORE).

The return value is the return value of the PostQuitMessage function if the func
tion is successful. This function returns NULL if it terminates before entering the
message loop.

The WinMain function calls the instance-initialization function and, if no other in
stance of the program is running, the application-initialization function. It then per
forms a message retrieval-and-dispatch loop that is the top-level control structure
for the remainder of the application's execution. The loop is terminated when a
WM_ QUIT message is received, at which time this function exits the application
instance by returning the value passed by the PostQuitMessage function.

The following example uses the WinMain function to initialize the application (if
necessary), initialize the instance, and establish a message loop:

int PASCAL WinMain(HINSTANCE hinstCurrent, HINSTANCE hinstPrevious,
LPSTR lpszCmdLine, int nCmdShow)

MSG msg;

if (hinstPrevious == NULL)
if (!InitApplication(hinstCurrent))

return FALSE;

/* other instances? */
/* shared items *I
/* initialization failed */

/* Perform initializations for this instance. */

if (!Initinstance(hinstCurrent, nCmdShow))
return FALSE;

990 WNetAddConnection

See Also

}

/* Get and dispatch messages until WM_QUIT message. */

while (GetMessage(&msg, NULL, 0, 0)) {

}

TranslateMessage(&msg); /*translates virtual key codes */
DispatchMessage(&msg); /*dispatches message to window*/

return ((int) msg.wParam); /* return value of PostQuitMessage */

DispatchMessage, GetMessage, PostQuitMessage, TranslateMessage

WNetAddConnection
UINT WNetAddConnection(lpszNetPath, lpszPassword, lpszLocalName)
LPSTR lpszNetPath; /* address of network device */
LPSTR lpszPassword; /* address of password */
LPSTR lpszLocalName; /* address of local device */

Parameters

Return Value

The WNetAddConnection function redirects the specified local device (either a
disk drive or a printer port) to the given shared device or remote server.

lpszNetPath
Points to a null-terminated string specifying the shared device or remote server.

lpszPassword
Points to a null-terminated string specifying the network password for the given
device or server.

lpszLocalName
Points to a null-terminated string specifying the local drive or device to be re
directed. All lpszLocalName strings (such as LPTI) are case-independent. Only
the drive names A through Z and the device names LPTl through LPT3 are
used.

The return value is one of the following:

Value

WN_SUCCESS

WN_NOT _SUPPORTED

WN_OUT_OF _MEMORY

WN_NET_ERROR

WN_BAD_POINTER

WN_BAD_NETNAME

Meaning

The function was successful.

The function was not supported.

The system was out of memory.

An error occurred on the network.

The pointer was invalid.

The network resource name was invalid.

See Also

Value

WN_BAD_LOCALNAME

WN_BAD _PASSWORD

WN_ACCESS_DENIED

WN_ALREADY_CONNECTED

WNetCancelConnection 991

Meaning

The local device name was invalid.

The password was invalid.

A security violation occurred.

The local device was already connected to
a remote resource.

WNetCancelConnection, WNetGetConnection

WNetCancelConnection
UINT WNetCancelConnection(lpszName,fForce)
LPSTR lpszName; /* address of device or resource *I

*/ BOOLfForce; /*forced closure flag

Parameters

Return Value

The WNetCancelConnection function cancels a network connection.

lpszName
Points to the name of the redirected local device (such as LPTl or D:).

fForce
Specifies whether any open files or open print jobs on the device should be
closed before the connection is canceled. If this parameter is FALSE and there
are open files or jobs, the connection should not be canceled and the function
should return the WN_OPEN_FILES error value.

The return value is one of the following:

Value

WN_SUCCESS

WN_NOT_SUPPORTED

WN_OUT_OF _MEMORY

WN_NET _ERROR

WN_BAD _POINTER

WN_BAD _VALUE

Meaning

The function was successful.

The function was not supported.

The system was out of memory.

An error occurred on the network.

The pointer was invalid.

The lpszName parameter was not a valid local device
or network name.

992 WNetGetConnection

See Also

Value

WN_NOT_CONNECTED

WN_ OPEN_FILES

Meaning

The lpszName parameter was not a redirected local
device or currently accessed network resource.

Files were open and thefForce parameter was FALSE.
The connection was not canceled.

WNetAddConnection, WNetGetConnection

WNetGetConnection
UINT WNetGetConnection(lpszLocalName, lpszRemoteName, cbRemoteName)
LPSTR lpszLocalName; I* address of local device name */
LPSTR lpszRemoteName; I* address of remote device name */
UINT FAR* cbRemoteName; /*max. number of bytes in buffer */

Parameters

Return Value

The WNetGetConnection function returns the name of the network resource as
sociated with the specified redirected local device.

lpszLocalName
Points to a null-terminated string specifying the name of the redirected local
device.

lpszRemoteName
Points to the buffer to receive the null-terminated name of the remote network
resource.

cbRemoteName
Points to a variable specifying the maximum number of bytes the buffer
pointed to by lpszRemoteName can hold. The function sets this variable to the
number of bytes copied to the buffer.

The return value is one of the following:

Value

WN_SUCCESS

WN_NOT_SUPPORTED

WN_OUT_OF _MEMORY

WN_NET_ERROR

WN_BAD_POINTER

WN_BAD_VALUE

Meaning

The function was successful.

The function was not supported.

The system was out of memory.

An error occurred on the network.

The pointer was invalid.

The szLocalName parameter was not a valid local
device.

See Also

Value

WN_NOT_CONNECTED

WN_MORE_DATA

WordBreakProc 993

Meaning

The s:zLocalName parameter was not a redirected local
device.

The buffer was too small.

WNetAddConnection, WNetCancelConnection

WordBreakProc
int CALLBACK WordBreakProc(lpszEditText, ichCurrentWord, cbEditText, action)
LPSTR lpszEditText; /* address of edit text */
int ichCurrentWord; /* index of starting point */
int cbEditText; /*length of edit text *I
int action; /* action to take */

Parameters

Return Value

The WordBreakProc function is an application-defined callback function that the
system calls whenever a line of text in a multiline edit control must be broken.

lpszEditText
Points to the text of the edit control.

ichCurrentWord
Specifies an index to a word in the buffer of text that identifies the point at
which the function should begin checking for a word break.

cbEditText
Specifies the number of bytes in the text.

action
Specifies the action to be taken by the callback function. This parameter can be
one of the following values:

Value

WB_LEFT

WB_RIGHT

WB_ISDELIMITER

Action

Look for the beginning of a word to the left of the current
position.

Look for the beginning of a word to the right of the current
position.

Check whether the character at the current position is a
delimiter.

If the action parameter specifies WB_ISDELIMITER, the return value is non-zero
(TRUE) if the character at the current position is a delimiter, or zero if it is not.

994 Write Comm

Comments

Otherwise, the return value is an index to the begining of a word in the buffer of
text.

A carriage return (CR) followed by a linefeed (LF) must be treated as a single
word by the callback function. Two carriage returns followed by a linefeed also
must be treated as a single word.

An application must install the callback function by specifying the procedure
instance address of the callback function in a EM_SETWORDBREAKPROC
message.

WordBreakProc is a placeholder for the library-defined function name. The
actual name must be exported by including it in an EXPORTS statement in the
library's module-definition file.

See Also SendMessage

WriteComm CI!J
int WriteComm(idComDev, lpvBuf, ch Write)
int idComDev; /* identifier of comm. device */
const void FAR* lpvBuf; /*address of data buffer */
int cb Write; /* number of bytes to write *I

Parameters

Return Value

Comments

The WriteComm function writes to the specified communications device.

idComDev
Specifies the device to receive the bytes. The OpenComm function returns this
value.

lpvBuf
Points to the buffer that contains the bytes to be written.

ch Write
Specifies the number of bytes to be written.

The return value specifies the number of bytes written, if the function is success
ful. The return value is less than zero if an error occurs, making the absolute value
of the return value the number of bytes written.

To determine what caused an error, use the GetCommError function to retrieve
the error value and status.

See Also

WritePrivateProfileStri ng 995

For serial ports, the WriteComm function deletes data in the transmission queue
if there is not enough room in the queue for the additional bytes. Before calling
WriteComm, applications should check the available space in the transmission
queue by using the GetCommError function. Also, applications should use the
OpenComm function to set the size of the transmission queue to an amount no
smaller than the size of the largest expected output string.

GetCommError, OpenComm, TransmitCommChar

Write Private Prof i I e String
BOOL WritePrivateProfileString(lpszSection, lpszEntry, lpszString, lpszFilename)
LPCSTR lpszSection; /* address of section */
LPCSTR lpszEntry; I* address of entry */
LPCSTR lpszString; /* address of string to add */
LPCSTR lpszFilename; /* address of initialization filename */

Parameters

Return Value

Comments

The WritePrivateProfileString function copies a character string into the
specified section of the specified initialization file.

lpszSection
Points to a null-terminated string that specifies the section to which the string
will be copied. If the section does not exist, it is created. The name of the sec
tion is case-independent; the string may be any combination of uppercase and
lowercase letters.

lpszEntry
Points to the null-terminated string containing the entry to be associated with
the string. If the entry does not exist in the specified section, it is created. If this
parameter is NULL, the entire section, including all entries within the section,
is deleted.

lpszString
Points to the null-terminated string to be written to the file. If this parameter is
NULL, the entry specified by the lpszEntry parameter is deleted.

lpszFilename
Points to a null-terminated string that names the initialization file.

The return value is nonzero if the function is successful. Otherwise, it is zero.

To improve performance, Windows keeps a cached version of the most-recently
accessed initialization file. If that filename is specified and the other three parame
ters are NULL, Windows flushes the cache.

996 WritePrivateProfileString

Example

See Also

Sections in the initialization file have the following form:

[section]
entry=string

If lpszFilename does not contain a fully qualified path and filename for the file,
WritePrivateProfileString searches the Windows directory for the file. If the file
does not exist, this function creates the file in the Windows directory.

If lpszFilename contains a fully qualified path and filename and the file does not
exist, this function creates the file. The specified directory must already exist.

An application should use a private (application-specific) initialization file to re
cord information that affects only that application. This improves the performance
of both the application and Windows itself by reducing the amount of information
that Windows must read when it accesses the initialization file. The exception to
this is that device drivers should use the SYSTEM.IN! file, to reduce the number
of initialization files Windows must open and read during the startup process.

An application can use the WriteProfileString function to add a string to the
WIN.IN! file.

The following example uses the WritePrivateProfileString function to add the
string "testcode.c" to the LastFile entry in the [My App] section of the
TESTCODE.INI initialization file:

BOOL fSuccess;

DebugBreak();

fSuccess = WritePrivateProfileString("MyApp",
"Last File", "testcode. c", "testcode. i ni ");

if (fSuccess)
MessageBox(hwnd, "String added successfully",

"WritePrivateProfileString", MB_OK);
else

MessageBox(hwnd, "String could not be added",
"WritePrivateProfileString", MB_ICONSTOP);

WriteProfileString

WriteProfileString 997

WriteProfileString ~

BOOL WriteProfileString(lpszSection, lpszEntry, lpszString)
LPCSTR lpszSection; /* address of section */
LPCSTR lpszEntry; /*address of entry */
LPCSTR lpszString; /* address of string to write */

Parameters

Return Value

Comments

Example

The WriteProfileString function copies a string into the specified section of the
Windows initialization file, WIN.IN!.

lpszSection
Points to a null-terminated string that specifies the section to which the string is
to be copied. If the section does not exist, it is created. The name of the section
is case-independent; the string may be any combination of uppercase and lower
case letters.

lpszEntry
Points to the null-terminated string containing the entry to be associated with
the string. If the entry does not exist in the specified section, it is created. If this
parameter is NULL, the entire section, including all entries within the section,
is deleted.

lpszString
Points to the null-terminated string to be written to the file. If this parameter is
NULL, the entry specified by the lpszEntry parameter is deleted.

The return value is nonzero if the function is successful. Otherwise, it is zero.

Windows keeps a cached version of WIN.IN! to improve performance. If all three
parameters are NULL, Windows flushes the cache.

Sections in the WIN.IN! initialization file have the following form:

[section]
entry=string

The following example calls the GetWindowRect function to retrieve the dimen
sions of the current window, converts the dimensions of a string, and writes the
string to WIN.IN! by using the WriteProfileString function. The next time the ap
plication is run, it could call the GetProfileString function to read the string, con
vert it to numbers, and pass the numbers as parameters to the Create Window
function, thereby creating the window again with the same dimensions it had when
the application terminated.

998 wsprintf

See Also

wsprintf

RECT rect;
BOOL fSuccess;
char szBuf[20];

GetWindowRect(hwnd, &rect);

sprintf(szBuf, "%u %u %u %u",
rect.left, rect.right - rect.left,
rect.top, rect.bottom - rect.top);

fSuccess = WriteProfileString("MySection",
"Window dimensions", szBuf);

if (fSuccess)

else

MessageBox(hwnd, "String added successfully",
"WriteProfileString", MB_OK);

MessageBox(hwnd, "String could not be added",
"WriteProfileString", MB_ICONSTOP);

GetProfileString, WritePrivateProfileString

int _cdecl wsprintf(lpszOutput, lpszFormat, ...)
LPSTR lpszOutput; I* address of string for output */
LPSTR lpszFormat; /* address of format-control string */

Parameters

The wsprintf function formats and stores a series of characters and values in a
buffer. Each argument (if any) is converted according to the corresponding format
specified in the format string.

lpszOutput
Points to a null-terminated string to receive the string formatted as specified in
the lpszF ormat parameter.

lpszFormat
Points to a null-terminated string that contains the format-control string. In addi
tion to the standard ASCII characters, a format specification for each argument
appears in this string. For more information about the format specification, see
the following Comments section.

Specifies zero or more optional arguments. The number and type of the op
tional arguments depend on the corresponding format-control character
sequences specified in the lpszFormatparameter.

Return Value

Comments

wsprintf 999

The return value is the number of bytes stored in the lpszOutput string, not count
ing the terminating null character, ifthe function is successful.

The largest buffer that wsprintf can create is lK.

Unlike most Windows functions, wsprintfuses the C calling convention (_cdecl)
rather than the Pascal calling convention. As a result, the calling function must
pop arguments off the stack. Also, arguments must be pushed on the stack from
right to left. In C-language modules, the C compiler performs this task. (The
wvsprintffunction uses the Pascal calling convention.)

The format-control string contains format specifications that determine the output
format for the arguments that follow the lpszFormat parameter. Format specifica
tions always begin with a percent sign (%). If a percent sign is followed by a char
acter that has no meaning as a format field, the character is not formatted. For
example, % % produces a single percent-sign character.

The format-control string is read from left to right. When the first format specifica
tion is encountered, it causes the value of the first argument after the format
control string to be converted according to the format specification. The second
format specification causes the second argument to be converted, and so on. If
there are more arguments than there are format specifications, the extra arguments
are ignored. The results are undefined if there are not enough arguments for all of
the format specifications.

A format specification has the following form:

% [-] [#][O][width] [.precision]type

Each field of the format specification is a single character or number signifying a
particular format option. The type characters, for example, determine whether the
associated argument is interpreted as a character, a string, or a number. The sim
plest format specification contains only the percent sign and a type character (for
example, %s). The optional fields (in brackets) control other aspects of the format
ting. Following are the optional and required fields and their meanings:

Field Meaning

0

Pad the output value with blanks or zeros to the right to fill the field
width, aligning the output value to the left. If this field is omitted, the out
put value is padded to the left, aligning it to the right.

Prefix hexadecimal values with Ox (lowercase) or OX (uppercase).

Pad the output value with zeros to fill the field width. If this field is
omitted, the output value is padded with blank spaces.

1000 wvsprintf

See Also

wvsprintf

Field

width

precision

Meaning

Convert the specified minimum number of characters. The width field is a
nonnegative integer. The width specification never causes a value to be
truncated; if the number of characters in the output value is greater than
the specified width, or if the width field is not present, all characters of
the value are printed, subject to the value of the precision field.

Convert the specified minimum number of digits. If there are fewer digits
in the argument than the specified value, the output value is padded on
the left with zeros. The value is not truncated when the number of digits
exceeds the specified precision. If the specified precision is zero or
omitted entirely, or ifthe period(.) appears without a number following
it, the precision is set to 1.

For strings, convert the specified maximum number of characters.

type Format the corresponding argument as a character, a string, or a number.

wvsprintf

This field may be any of the following character sequences:

Sequence

c

d, i
Id, Ii
u
lu
Ix, IX

s

Meaning

Insert a single character argument. The wsprintf func
tion ignores character arguments with a numeric value of
zero.

Insert a signed decimal integer argument.

Insert a long signed decimal integer argument.

Insert an unsigned integer argument.

Insert a long unsigned integer argument.

Insert a long unsigned hexadecimal integer argument in
lowercase or uppercase.

Insert a string.

int wvsprintf(lpszOutput, lpszFormat, lpvArglist)
LPSTR lpszOutput; /*address of output destination */
LPCSTR lpszFormat; /*address of format string */
const void FAR* lpvArglist; I* address of array of arguments */

The wvsprintf function formats and stores a series of characters and values in a
buffer. The items pointed to by the argument list are converted according to the
corresponding format specification in the format string.

Parameters

Return Value

See Also

Yield
void Yield(void)

Parameters

Return Value

Comments

See Also

Yield 1001

lpszOutput
Points to a null-terminated string to receive the string formatted as specified in
the lpszF ormat parameter.

lpszFormat
Points to a null-terminated string that contains the format-control string. In addi
tion to the standard ASCII characters, a format specification for each argument
appears in this string. For more information about the format specification, see
the description of the wsprintf function.

lpvArglist
Points to an array of 16-bit values, each of which specifies an argument for the
format-control string. The number, type, and interpretation of the arguments de
pend on the corresponding format-control character sequences specified in the
lpszFormatparameter. Each character or 16-bit integer (%c, %d, %x, %i) re
quires one word in lpvArglist. Long integers (%ld, %li, %lx) require two
words, the low-order word of the integer followed by the high-order word. A
string (%s) requires two words, the offset followed by the segment (which to
gether make up a far pointer).

The return value is the number of bytes stored in the lpszOutput string, not count
ing the terminating null character, if the function is successful.

wsprintf

The Yield function stops the current task and starts any waiting task.

This function has no parameters.

This function does not return a value.

Use the Yield function only when the application will not receive any messages.

Applications that contain windows should use a DispatchMessage, PeekMessage,
or TranslateMessage loop rather than call the Yield function directly. The mes
sage-loop functions handle message synchronization properly and yield at the ap
propriate times.

DispatchMessage, PeekMessage, TranslateMessage

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

0392 Part No. 28916

vu~ lVH\...-lU~Vll vva.y

Redmond, WA 98052-639

Mietosott®

0392 Part No. 28917

