Micmfoft@ |
Windows

Guide to Programming

New for Version 3

Microsoft’

)

Windows

Guide to Programming

New for Version 3

Written, edited, and produced by
Microsoft Corporation

Distributed by Microsoft Press

MICROSOFT,

m

Information in this document is subject to change without notice and does not represent

a commitment on the-part of Microsoft Corporation. The software described-in this docu-
ment is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. It is against
the law to copy the software on any medium except as specifically allowed in the license
or nondisclosure agreement. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying and record-
ing, for any purpose without the express written permission of Microsoft.

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

One Microsoft Way, Redmond, Washington 98052-6399

© Copyright Microsoft Corporation, 1990. All rights reserved.

Library of Congress Cataloging-in-Publication Data

Microsoft Windows : a guide to programming / Microsoft Corporation.
p. cm. -- (Microsoft Windows programmer’s reference library)
Includes index.
ISBN 1-55615-308-2
1. Microsoft Windows (Computer programs) I. Microsoft.
II. Series.
QA76.76.W56M53 1990
005.4'3--dc20 90-6035
CIP

Printed and bound in the United States of America.
23456789FGFG43210

Distributed to the book trade in Canada by General Publishing Company, Ltd.
Distributed to the book trade outside the United States and Canada

by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England

Penguin Books Australia Ltd., Ringwood, Victoria, Australia

Penguin Books N.Z. Lyd., 182-190 Wairan Road, Auckland 10, New Zealand
Microsoft, MS, MS-DOS, GW-BASIC, QuickC, CodeView, and XENIX are registered trademarks and
Windows, Windows/286, Windows/386, and Press are trademarks of Microsoft Corporation.

lépson is a registered trademark of Epson America, Inc.

IBM and PC/AT are a registered trademarks and PC/XT is a trademark of International Business
Machines Corporation. .

Intel is a registered trademark and 386 is a trademark of Intel Corporation.
Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.
Nokia is a trademark of Nokia Corporation. '
Paintbrush is a trademark of ZSoft Corporation.

Document No. SY03146-300-R00-1089

Foreword

The Microsoft Windows Programmer’s Reference Library is the core documenta-
tion for Windows programmers that Microsoft provides with the Microsoft®
Windows™ Software Development Kit (SDK). The information in these books is
the most accurate and up-to-date information on Windows programming avail-
able anywhere. The information represents everything Microsoft knows about
programming Windows version 3.0 with Microsoft C (the recommended
Windows programming language) and the tools we provide in the SDK.

Certain example programs and tools referred to in this book are available only
in the Microsoft Windows SDK or Microsoft C 6.0 Professional Development
System. However, if you are not currently programming for Windows, these
volumes will still provide an excellent overview of the services that Microsoft
Windows and the SDK provide to programmers—Microsoft Windows: A Guide
to Programming and Microsoft Windows Programming Tools in particular—and
an introduction to graphical user interface (GUI) programming. It is our hope
that once you have “kicked the tires” of the Windows SDK by reading these
books, you’ll be thoroughly convinced—and already prepared—to begin
Windows programming the Microsoft way.

Then as you continue to explore the Windows programming environment,
Microsoft Windows Programmer’s Reference will answer many of your program-
ming questions. The book provides information on each Windows application
programming interface (API) and describes its calls and services. For many
Windows programmers, this book is the most frequently “thumbed,” dog-eared,
and marked-up volume in the set.

The Microsoft Windows Software Development Kit is available from your
Microsoft product dealer. For further information on the Windows SDK or to
obtain the name of your nearest Microsoft dealer, call the Microsoft Information
Center at 1-800-426-9400.

The Windows Software Development Kit

The Windows high-level application programming interface consists of the
functions, messages, data structures, data types, and files you need to develop
applications that unleash the full capabilities of personal computers using Intel®
286 and 386™ processors. The API’s device independence ensures compatibility
with a broad array of displays, printers, and other devices, allowing you to con-
centrate on your applications and their features and implementation. Develop-
ment tasks are handled automatically, and advanced tools enable you to design
icons, dialog boxes, fonts, menus, and other interface elements.

Foreword

M
Here are some of the new or improved features:
®m Improved and comprehensive Guide to Programming, Advanced Interface
Design Guide, Reference, and Tools manuals.
®m More source-code examples for hands-on learning.

= Improved tools for editing visual resources.

® New online help-engine facility so you can include a Help system with your
applications.

u The Microsoft CodeView® for Windows debugger—the powerful yet easy-
to-use source-code debugger for any Windows application.

m New code-execution profiler and segment-swapping analysis facility.
Take advantage of the success of the Microsoft Windows environment—use the

Microsoft Windows Software Development Kit to develop powerful, feature-rich
graphical applications.

Other Recommended Reading

The following books are recommended for efficient Windows programming and
are available from Microsoft Press™:

8 Programming Windows. Charles Petzold. 862 pages, softcover. An updated
second edition will be available in October 1990.

® Windows: Programmer’ s Problem Solver. Richard Wilton. 400 pages, soft-
cover. Available November 1990.

® Microsoft C Run-Time Library Reference. Covers version 6. Microsoft
Corporation. 852 pages, softcover.

Table of Gontents

Introduction
What Should You Know Before YouStart? XXi
AboutThisGuidecuiirieiiiii it it iieennennsns Xxii
What Tools Do YouNeed?coiiiiiiniiinennennennns XXiv
Using the Sample Applicationsooiiiiiiiiniineenn. XXV
Document Conventionsc.ccceeviieenniennen.nn Xxvi

PART 1 Introduction to Writing Windows Applications

Chapter 1

1.1

1.2

1.3
1.4
1.5

1.6
1.7

An Overview of the Windows Environment

Microsoft Windows and DOS: a Comparison 1-1
1.1.1 TheUserlInterfaceccciiiiiioen, 1-2
.12 QueuedInputottt 1-2
1.1.3 Device-Independent Graphics 13
1.1.4 Multitaskingt 1-4
The Windows Programming Model 1-5
0 B 4 1T 1-5
122 MeNUS ...ttt ittt ettt 1-6
1.2.3 DialogBoxesccvviiiiiiii it 1-6
1.24 TheMessageLoopccoviviiiiiiienian., 1-7
The Windows Librariescoiiiiiiiiinn.. 19
Building a Windows Applicationc..covviivennnn 1-10
Software Development g) 1-12
151 CCompilercoiiiiiiiiiiiiiiiii 1-12
1.52 TheLinkercooiiiiiiiniiiiiiinninnnnn 1-12
1.53 The SDK Resource Editors 1-13
1.54 The Resource Compiler.....................o... 1-14
1.5.5 Debugging and Optimization Tools 1-14
1.5,6 The Program Maintainer 1-15
Tips for Writing Windows Applications 1-16

N1 1511 o 1-18

vi Contents
.. |

~ Chapter 2 A Generic Windows Application

2.1 TheGeneric Applicationcvveiiniienerinnnnnnn 2-1
22 AWindows Applicationciiiiiiiiiiiiiinaen. 2-2
23 TheWinMainFunctiono0viiiiii... 22
23.1 Data Types and Structures in Windows 2-3
232 Handlesiiiiiiiiiii it 2-4
233 INStANCESttt i e 2-5
2.3.4 Registering the Window Class 2-6
235 CreatingaWindowoiiiiiaa.. 29
23.6 Showing and Updatinga Window 2-11
2.3.7 Creating the MessageLoop 2-11
23.8 YieldingControlcooiiiiiiiiii... 2-13
2.3.9 Terminating an Application 2-13
2.3.10 Initialization Functions 2-14
2.3.11 The Application Command-Line Parameter 2-16
24 The Window Functioncoooiiiiiiiiii., 2-16
2.5 Creating an About DialogBox, 2-18
2.5.1 Creating a Dialog-Box Template 2-18
252 CreatinganInclude File 2-20
2.5.3 Creating a Dialog Function 2-20
254 Defining a Menu with an About Command 2-21
2.5.5 Processing the WM_COMMAND Message 2-22
2.6 Creating a Module-DefinitionFile 2-24
2.7 Putting Generic Togetheriiii... 2-26
' 2.7.1 Create the C-Language Source File 2-26
272 Createthe HeaderFile 2-32
27.3 Create the Resource ScriptFile 2-32
2.7.4 Create the Module-Definition File 2-33
275 CreateaMakeFileoiovtt. 2-33
2.7.6 Runthe MAKEProgram 2-35
28 UsingGenericasaTemplateccovn.n. 2-35

29 Summary ... e .. 2-36

Contents vii

PART 2 Programming Windows Applications

Chapter 3
3.1

32
33
34

35

Chapter 4
4.1

4.2

Output to a Window
The Display Contextttt iiiiiiiinnnen.. 3-1
3.1.1 Using the GetDC Function 32
3.1.2 The WM_PAINT Messageccovnvvvennn.. 3-2
3.13 Invalidating the Client Area 33
3.1.4 Display Contexts and Device Contexts 34
3.1.5 The Coordinate Systemccceuevvan.. 34
Creating, Selecting, and Deleting Drawing Tools 3-5
Drawingand Writingo, 3-6
A Sample Application: Outputccoviiiiiiiiiiinn., 3-8
34.1 Add New Variablesccoooiiiiaon.. 3-8
342 Addthe WM_CREATECase 3-9
343 Addthe WM_PAINTCase e 3-9
344 Modify the WM_DESTROY Case 3-13
345 CompileandLink00 v, 3-14
SUMMATY . ..ot e et e e 3-14

Keyboard and Mouse Input

Windows Input Messagescovvierieenieinnnnennnn. 4-1
4.1.1 Message Formatscoviiiiinennvnnnnn.. 4-2
412 KeyboardInput i, 4-2
4.1.3 CharacterInputcciiiiiiiennnnnenn. 4-3
414 MouseInput ...ttt 4-3
4.1.5 TimerInput 4-4
4.1.6 Scroll-BarInputot 4-5
417 Menulnput i 4-6
A Sample Application: Input i, 4-6
4.2.1 How the Input Application Displays Output 4-7
422 AddNew Variablesoiii.... 4-8
423 Set the Window-Class Style 4-9
424 Modify the CreateWindow Function 4-9
4.2.5 Setthe TextRectangles 4-9
426 Addthe WM_CREATECase 4-10

4.2.7 Modify the WM_DESTROY Case 4-10

viii Gontents

42.8 Add the WM_KEYUP and WM_KEYDOWN Cases . 4-10

429 Addthe WM _CHARCasecovivunnnn.. 4-11
4210 Add the WM_MOUSEMOVECase 4-11
4211 Add the WM_LBUTTONUP and
WM_LBUTTONDOWNC Casescouuunn. 4-11
4212 Add the WM. LBUTTONDBLCIK Case 4-12
4213 Addthe WM_TIMERCase 4-12
42,14 Add the WM_HSCROLL and WM_VSCROLL Cases 4-12
4215 Addthe WM _PAINTCasec.ccovvvennn... 4-13
4.2.16 CompileandLinkcooviiiiiia., 4-13
4.3 SUMMArY ...t i i i e e i 4-14

Chapter 5 Icons

5.1 Whatisanlcon? i i 5-1
5.1.1 UsingBuilt-Inlcons 5-2
52 UsingYourOwnlcons, 5-3
521 CreatinganIconFile53
5.2.2 Defining the Icon Resource 53
5.23 Loadingthe IconResource 5-3
5.3 SpecifyingaClassIcon e 5-4
5.4 Displaying YourOwnlconso iiviiin... 5-4
5.5 DisplayinganlconinaDialogBox..................... ... 5-6
5.6 ASample Application: Iconottt 5-7
56.1 Addan ICON Statementcoeeeenn.. 5-7
5.6.2 Add an ICON Control Statement 5-7
5.6.3 SettheClassIcon oo, 5-8
564 Add MYICON.ICOtothe MakeFile 5-8
56.5 CompileandLink, 5-8
57 SUMMATY ..ttt i i i e e 5-8

Chapter 6 The Cursor, the Mouse, and the Keyboard

6.1 Controlling the Shape of the Cursor 6-1
6.1.1 Using Built-In Cursor Shapes 6-1
6.1.2 Using Your Own Cursor Shapes 6-2
6.2 Displaying the Cursorcoeuiiieriunnnneereennnnn. 6-3
6.2.1 SpecifyingaClassCursor, 6-3

6.2.2 Explicitly Setting the Cursor Shape 6-4

Contents

ix

6.3

6.4

6.5

6.6

Chapter 7

7.1
7.2

13

7.4
1.5

6.2.3 Example: Displaying the Hourglass on a Lengthy

OPErationc.oveeeveiunneruneenenneennnens 6-4
Letting the User Select Information with the Mouse 6-5
6.3.1 Starting a Graphics Selection 6-6
6.3.2 Showingthe Selectionc.vvviiint, 69
6.33 Endingthe Selectioncouiieea... 6-10
Using the Cursor with the Keyboard e 6-11
6.4.1 Using the Keyboard to Move the Cursor 6-11
6.4.2 Using the Cursor when No Mouse Is Availabie 6-13
A Sample Application: Cursor e 6-14
6.5.1 Add the CURSOR Statement 6-16
6.52 AddNew Variablesc.ovviiiiinnn.. 6-16
6.5.3 Setthe Class Cursorcovviiveniennn. 6-16
6.54 Prepare the Hourglass Cursor 6-17
6.5.5 Add a Lengthy Operation 6-17

6.5.6 Add the WM_LBUTTONDOWN,
WM_MOUSEMOVE, and WM_LBUTTONUP

Cases ..o e e 6-18
6.57 Addthe WM_KEYDOWN and WM_KEYUP Cases . 6-20
658 Addthe WM_PAINTCaseoovvvuun. 6-21
6.59 Add BULLSEYE.CUR to the Make File 6-22
6.5.10 CompileandLinko il 6-22
SUMMALY . ..ttt e i e e i e e e 6-23

Menus

WhatisaMenu?ciiiiiiinennn.n. e 7-1
DefiningaMenu i 7-2
7.21 MenulDs ... 7-3
Including a Menu in Your Application 7-4
7.3.1 Specifying the Menu for a Window Class 7-4
7.3.2 Specifying a Menu for a Specific Window 7-4
Processing InputfromaMenuol 7-6
Working with Menus from Your Application 7-7
7.5.1 Enabling and Disabling Menultems 7-7
7.5.2 Checking and Unchecking Menultems 7-8
7.53 AddingMenultemscovviiiieienin .. 7-9
7.54 Changing ExistingMenus 7-10

7.5.5 DeletingaMenultem L 711

X Contenis , ;
... |

7.5.6 UsingaBitmapasaMenultem 7-12
757 ReplacingaMenu..............c it 7-13
7.5.8 CreatingaNewMenuvun.. 7-14
7.5.9 InitializingaMenu o L 7-14
7.6 Special MenuFeatures i, 7-15
7.6.1 Providing Menu-AcceleratorKeys 7-16
7.6.2 UsingCascadingMenus 7-19
7.6.3 Using Floating Pop-upMenus 7-21
7.6.4 Designing Your Own Checkmarks 7-22
7.6.5 UsingOwner-DrawMenusc.coouvunn.. 7-24
7.7 ASample Application: EditMenu 7-25
7.7.1 Add New Menus to the Resource File 7-26
7.7.2 Add Definitions to the Include File 7-27
713 Add an Accelerator Table to the Resource Script File . 7-28
774 AddaNew Variable 7-28
7.7.5 Load the Accelerator Table 7-28
7.7.6 Modify the Message Loop 7-29
7.7.7 Modify the WM_COMMANDCase 7-29
7.7.8 CompileandLinko ..., 7-30
7.8 SUMMATY ...ttt it it et e 7-30

Chapter 8 Controls

8.1 WhatisaControl?ccoiiiuiiiiiiinen e 8-1
82 CreatingaControloiuiiiiiiiiiiiiiiiiiannnn 8-1
8.2.1 Specifyinga Control Classccoviin. .. 8-2
822 ChoosingaControl Styleccn... 8-3
8.2.3 Setting the Parent Window 84
824 ChoosingaControlID, 8-4
83 UsingaControlcouiiiitiniinneiniinanennenenns 8-5
8.3.1 Receiving UserInput 8-5
8.3.2 Sending Control Messagesc.coveveeein.. 8-5
8.3.3 Disabling and Enabling Input to a Control 8-6
8.3.4 Moving and Sizing a Control e 8-6
83.5 DestroyingaControl e 8-7
84 Creating and Using Some Common Controls 8-7
8.4.1 Button Controlsoovviiiin i 8-7

8.4.2 Static Controls . . oo oo v e e 8-12

Contents xi

8.5

8.6

Chapter 9
9.1

9.2

9.3

9.4

843 ListBOXeSttt 8-12
844 ComboBoxescciviiiiiiiiiiininnnn, 8-22
84,5 EditControlsciiiiiiiiiiinnn, 8-23
84.6 - ScrollBarsciiiiiiiiiiiiiiii i, 8-26
A Sample Application: EditCntl 8-28
8.5.1 Add a Constant to the Include File 8-29
8.5.2 Add New Variablesc..eiiiiennen. 8-29
8.5.3 Add a CreateWindow Function 8-29
8.54 Modify the WM_COMMANDCase 8-31
8.5.5 AddaWM_SETFOCUSCaseccovvunnn 8-31
856 AddaWM_SIZECasecivvivvinennnnnn. 8-31
8.5.7 CompileandLinkccovivnnen, 8-32
SUMMATY ..ot ittt et 8-32

Dialog Boxes

WhatIsaDialogBox?o i it 9-1
9.1.1 Modal DialogBoxescoiiiiiiiiinn... 9-2
9.1.2 Modeless DialogBoxesccoovviiiiin.., 9-2
Using aDialog Box e 93
9.2.1 Creating aDialog Function 9-4
9.2.2 Using Controls in DialogBoxes 9-5
A Sample Application: FileOpen e 9-5
9.3.1 Add Constants to the Include File 9-6
9.3.2 Create the Open Dialog-Box Template 9-7
933 AddNew Variablesc...ooviiiiiinnnt 9-8
934 Addthe IDM_OPENCaseccovvvvuvennnn 9-8
9.3.5 Create the OpenDIlg Function 99
93.6 AddHelperFunctionsc....ovnn. 9-12
9.3.7 Export the Dialog Function 9-14
93.8 CompileandLinkccovvvennn... ...9-14
SUMMATY ..ottt ettt ettt eeneenann 9-14

Chapter 10 File Input and Qutput

10.1
10.2
103
104

Rules for Handling Files in the Windows Environment 10-1
Creating Files il 10-3
Opening Existing Files oo iienn. 10-4

Reading From and Writing ToFiles 10-5

Xii Contents
]

10.5 ReopeningFiles R .. 105
10.6 Prompting forFiles ..o 10-6
10.7 CheckingFileStatusc.coovviiiniiiniin ... 10-6
10.8 A Simple File Editor: EditFile 10-6
10.8.1 Add a Constant to the Include File e 10-7
1082 AddaSaveAsDialog BoXccovn.n.. 10-7
10.8.3 AddInclude Statementsviinnnn. 10-8
10.84 AddNew Variablesc.ovvviiiiionnn. 10-8
108.5 Replace the WM_COMMAND Case 10-9
10.8.6 Addthe WM_QUERYENDSESSION and
WM_CLOSECasesc.c.vvviiviiiinnnennnn 10-11
10.8.7 Modify the OpenDlg Dialog Function 10-12
10.8.8 Add the SaveAsDIg Dialog Function 10-13
10.89 AddHelperFunctions......................... 10-14
10.8.10 Export the SaveAsDIlg Dialog Function 10-17
10.8.11 AddSpacetotheHeap 10-18
10.8.12 CompileandLinkcoiiiininnnn, 10-18
109 Summarycoiiniiiiiii i e e 10-18

Chapter 11 Bitmaps

11.1 WhatisaBitmap?c.oviiiiiiiiiiiiiiiiiienins 11-1

11.2 Creating Bitmaps e 11-2

11.2.1 Creating and Loading Bitmap Files 11-2

11.2.2° Creating and Filling a Blank Bitmap 11-3

11.2.3 Creating a Bitmap with Hard-Coded Bits 11-5

1124 DrawingaColorBitmap......................... 11-8

11.3 Displaying Bitmapsccoiiiiiiiiiiiiiiiina, 11-9
11.3.1 Using the BitBlt Function to Display a Memory

Bitmapcoiviiiiiiiii i e 11-10

11.3.2 StretchingaBitmapcovnt.. 11-11

11.3.3 Using aBitmapinaPatternBrush 11-12

11.34 Displaying a Device-Independent Bitmap 11-14

11.3.5 Using aBitmapasaMenultem 11-15

11.4 Adding Color to Monochrome Bitmaps 11-15

11.5 Deleting Bitmapscoouiiiiiiniiiiiiinennennens 11-16

11.6 A Sample Application: Bitmap 0. 11-16

11.6.1 Modify the Include File 11-18

11.6.2 Addthe Bitmap Resources 11-18

Contents Xxiii
[SR R e e e

11.6.3 Add the Bitmap, Pattern, and Mode Menus 11-18
11.64 Add Global and Local Variables 11-19
11.6.5 Addthe WM_CREATECase 11-20
11.6.6 Modify the WM_DESTROYCase 11-23
11.6.7 Add WM_LBUTTONUP, WM_MOUSEMOVE, and
WM_LBUTTONDOWN Casescocuvun. 11-24
11.6.8 Add the WM_RBUTTONUPCase 11-25
11.69 Addthe WM_ERASEBKGND Case 11-25
11.6.10 Modify the WM_COMMAND Case 11-25
11.6.11 Modify the Make File 11-27
11.6.12 CompileandLinkcoovote. 11-28
117 Summaryoounrnieiiiinnn e iiniiaeeeaeennsss 11-28

Chapter 12 Printing

12.1 Printing in the Windows Environment 12-1
12.1.1 Using Printer Escapesooovvivin.. 12-2
12.2 Retrieving Information About the Current Printer 12-2
12.3 PrintingaLlineof Textoiiiiiiiiiinnnnnnenns 124
124 PrintingaBitmapc.. it 12-5
12.5 Processing Errors During Printing 12-7
12.6 Canceling a Print Operationcivviiiiunna, 12-8
12.6.1 Defining an Abort DialogBox 12-9
12.6.2 Defining an Abort Dialog Function 12-9
12.6.3 Defining an Abort Function..................... 12-10
12.6.4 Performing an Abortable Print Operation 12-12

12.6.5 Canceling a Print Operation with the ABORTDOC
Escapecoiiiiiiiiiiii e 12-13
12.7 Using Banding to PrintImages 12-13
12.8 A Sample Application: PmtFile 12-14
12.8.1 Addan AbortDlg DialogBox 12-15
12.8.2 Add Variables forPrintingc...... 12-15
1283 Addthe IDM_PRINTCasecovvvvvvnnnn. 12-16
12.8.4 Create the AbortDlg and AbortProc Functions 12-18
12.8.5 Add the GetPrinterDC Function 12-19
12.8.6 Export the AbortDlg and AbortProc Functions. 12-20
128.7 CompileandLinkccoviiiiioan. 12-20

129 Summarycoeuntii ittt i ettt 12-21

xiv Contents _
|

~ “Chapter 13 The Clipboard
13.1 Usingthe Clipboardooiiiiiiiiiiniinnnnnnnnn 13-1
13.1.1 Copying Text to the Clipboard 13-2
13.1.2 Pasting Text from the Clipboard 13-4
13.1.3 Pasting Bitmaps from the Clipboard 137
13.14 The Windows Clipboard Application 13-9
13.2 Use Special Clipboard Features 13-9
13.2.1 Rendering DataonRequest 13-10
13.2.2 Rendering Formats Before Termination 13-10
13.2.3 Registering Private Formats 13-10
13.24 Controlling Data Display in the Clipboard 13-11
13.3 A Sample Application: CHPTeXtc..oouevnen... 13-14
13.3.1 AddNew Variablesoun.n.. 13-14
13.3.2 Modify the Instance Initialization Code 13-15
133.3 Adda WM_INITMENUCase 13-15
13.34 Modify the WM_COMMAND Case 13-16
1335 AddaWM_PAINT Case e 13-18
13.3.6 Add the OutOfMemory Function 13-18
133.7 CompileandLinkot 13-19
134 SUmMmMArycvuiiiieennrennerennaeenarenaeannns 13-19

- PART 3 Advanced Programming Topics

Chapter 14 C and Assembly Language

14.1 ChoosingaMemoryModel, 14-1
142 UsingNULL.............. e e e 142
14.3 Using Command-Line Arguments and the DOS Environment .. 14-3
144 Writing Exported Functionscccooiivininan., .. 144
144.1 Creating a Callback Procedure 144
1442 = Creating the WinMain Function 14-5
145 Using CRun-Time Functionsccovveeinnn. 14-6
14.5.1 Using Windows C Libraries 14-6
1452 Allocating Memory P 14-7
14.5.3 Manipulating Strings 0., 14-7
1454 Using File Inputand Output cevees 14-9

1455 Using Console Inputand Output 14-10

Contents

Xv

14.6

14.7

14.5.6 Using Graphics Functions [N 14-10
14.5.7 Using Floating-Point Arithmetic 14-10
14.5.8 Executing Other Applications 14-11
1459 Using BIOS and MS-DOS Interface Functions 14-11
14.5.10 Eliminating C Run-Time Start-up Code 14-11
Writing Assembly-Language Code 14-13
14.6.1 = Modifying the Interrupt Flag 14-15
14.6.2 Writing Exported Functions in Assembly Language . 14-16
1463 Usingthe ESRegister 14-17
SUMMATY ..ttt ittt ittt it it e 14-18

Chapter 15 Memory Management

15.1

15.2

15.3

154

Using MEMOTY ...\ .vttteit it iieiiein e inaennatneens 15-1
15.1.1 UsingtheGlobalHeapcccouv.nn. 15-2
15.1.2 UsingtheLocalHeapcooi.e. 15-3
15.1.3 Working with Discardable Memory 15-5
Using Segmentscuiiniineineenennnennenannn 15-6
15.2.1 UsingCodeSegmentscovivuneunen. 15-7
1522 TheDATASegment..............covnn. e 15-8
A Sample Application: Memory oo 159
15.3.1 Split the C-Language Source File 159
1532 ModifytheIncludeFile 15-10
15.3.3 Add New Segment Definitions 15-10
153.4 Modifythe Make File 15-11
15.3.5 CompileandLinkt 15-12
Summary e e 15-12

Chapter 16 More Memory Management

16.1

16.2

Windows Memory Configurations 16-1
16.1.1 The Basic Memory Configuration 16-2
16.1.2 The EMS 4.0 Memory Configuration 16-4

16.1.3 The Windows Standard Mode Memory Configuration 16-9

16.1.4 The Windows 386 Enhanced Mode Memory

Configuration PR R 16-13
Using Data Storage in Windows Applications 16-16
16.2.1 Managing Automatic Data Segments 16-17

xvi Contents : e
L

1623 “Managing Global Memory Blocks 16-24
16.24 Using Extra Bytes in Window and Class Data

Structuresol 16-31

, 16.2.5 ManagingResources..................o ... 16-32

16.3 Using Memory Modelsciiienn.n.. 16-35

164 UsingHugeDatao, 16-36

16.5 Traps to Avoid in Managing Program Data 16-37

16.6 Managing Memory for ProgramCode e 16-40

16.6.1 Using Code-Segment Attributes 16-40

16.6.2 Using Multiple Code Segments 16-41

16.6.3 Balancing Code Segments e eeaeeaan 16-41

16.6.4 The Order of Code Segments in the .DEF File 16-41

16.7 SUMMATY ...ttt ettt it ittt eie e eineeiian s 16-42

Chapter 17 Print Settings

17.1 How Windows Manages Print Settings 17-2
17.1.1 Print Settings and the DEVMODE Structure 17-2
17.1.2 Print Settings and the Printer Environment 17-3
17.2 Using Device-Driver Functions 17-4
17.3 Finding Out the Capabilities of the Printer Driver 17-5
174 Working with Print Settingsccovveriernenn... 17-6
17.4.1 Specifying ExtDeviceMode Input and Output 17-7
1742 Getting a Copy of the Print Settings 17-8
17.4.3 Changing the Print Settings 179
17.44 Tailoring Print Settings for Use with CreateDC 17-10

17.45 Changing the Print Settings Without Affecting Other
Applications ol 17-12
17.46 Prompting the User for Changes to the Print Settings 17-13
17.5 Copying Print Settings Between Drivers 17-14
17.6 Maintaining Your Own Print Settings 17-15
17.7 Working with Older Printer Drivers 17-15
17.8 Summary e e e e 17-16

Chapter 18 Fonts

181 Writing Textot i it 18-1
18.2 Using Color when Writing Textcoiviiiioens. 18-2
183 UsingStockFonts i, 18-2

: . : Contents 'xVii
[e e e

18.4 CreatingaLogical Fontcovveiinenenianannn. 184

18.5 Using Multiple FontsinaLineovivnnnn. 18-5
18.6 Getting Information About the Selected Font 18-6
18.7 Getting Information About a Logical Font 18-7
18.8 EnumeratingFontscoiiiiiiiiiiiiia, 18-8
189 Checking a Device’s Text Capabilities 18-10
18.10 Adding aFONtRESOUICEoouveerireenrnnnnnnannnnnns 18-11
18.11 Setting the Text Alignmentcoevveneennnnn... 18-12
18.12 Creating Font-Resource Filesccuuevennn.... 18-13
18.12.1 Creating FontFiles 18-13
18.12.2 . Creating the Font-Resource Script 18-14
18.12.3 Creating the Dummy Code Module 18-14
18.124 Ci‘eating the Module-Definition File e 18-15
18.12.5 | Compiling and Linking the Font-Resource File 18-16
18.13 A Sample Applicatibn: ShowFontcovven, 18-16
18.14 Summarycciiteniinini ittt 18-17

Chapter 19 Color Palettes

19.1 Whata ColorPalette Doesc.covveiiennnnnnenn. 19-1
19.2 How ColorPalettes WOkcovevvnrnnnnnnnnnnnn. 19-2
19.3 Creating and Using a LogicalPalette 19-4
19.3.1 Creating a LOGPALETTE Data Structure 194
19.3.2 Creating a Logical Palette 19-7
19.3.3 Selecting the Palette Into a Device Context 19-7
1934 Realizingthe Palettecooveeeennn... 19-7
19.4 Drawing With Palette Colorsciounnnen. 19-8
19.4.1 Directly Specifying Palette Colors 19-8
19.4.2 Indirectly Specifying Palette Colors 19-9
19.4.3 Using a Palette When Drawing Bitmaps 19-10
19.5 Changing aLogicalPaletteovuun.. ... 19-11
19.6 Responding to Changes in the System Palette 19-13
19.6.1 Responding to WM_QUERYNEWPALETTE 19-13
19.6.2 Responding to WM_PALETTECHANGED........ 19-14
197 Summaryoiiiiiiiniit ittt i 19-16

Chapter 20 Dynamic-Link Libraries
20.1 WhatisaDLL?cvenerennnn... UTTRTRRRT 20-1

xviii Contents o

20.1.1 TImport Librariesand DLLs 202
20.1.2 DLL and Application Modules 20-3
20.13 DLLsandTasksccvvviennnnnnennnnnn.. 20-4
20.14 DLLsand Stackscovvvvvninennnnnennns. 204
20.1.5 How Windows Locates DLLs 20-5
202 WhentoUseaCustomDLLccooivviiniinnnan.. 20-6
y 20.2.1 Sharing Between Applications 20-6
20.2.2 Customizing an Application for Different Markets ... 20-8
2023 WindowsHOOKScovviiiiienninnnnnnn. 209
2024 DeVICe DIVETS .. .''evvrerneeeeeinanennnns 209
2025 Custom Confrols PO 20-10
20.2.6 Project Management 20-19
203 CreatingaDLL e 20-19
20.3.1 Creating the C-Language Source File 20-20
20.3.2 Creating the Module-Definition File 20-26
2033 Creatingthe Make Filecc.oovunnn.. 20-27
204 Application Access 0 DLLCOdEcvoevvrennnn.. 20-30
20.4.1 Creating a Prototype for the Library Function 20-30
20.4.2 Importing the Library Function 20-31
20.5 Rules for Windows Object Ownership 20-34
206 A Sample Library: Selectoouuuunneeeinnnnnnn.. 20-34
20.6.1 Createthe Functionscoounun.. 20-36
20.6.2 Create the Initialization Routine 20-40
20.6.3 Create the EXit ROutingu.... 20-41
20.64 Create the Module-Definition File 20-41
20.6.5 CreatethelIncludeFile 20-41
20.6.6 Compile and Link e i e 20-42
207 Summary B 20-42

Chapter 21 Multiple Document Interface

21.1 The Structure of an MDI Application 21-1
21.2 [Initializing an MDI Applicationccvveenvnnn.. 21-2
'21.2.1 Registering the Window Classes 21-3

2122 Creatingthe Windowsoo.n.. 213

21.3 Writing the Main Message Loopccoevunnnn. 21-5
"21.4 Writing the Frame Window Function 21-5

21.5 Writing the Child Window Function 21-6

Contents Xxix

21.6

21.7

21.8

Associating Data with Child Windows 21-6
21.6.1 Storing Data in the Window Structure 21-7
21.6.2 Using Window Propertiesouune. 21-7
Controlling Child Windowscoviiinann. 21-7
21.7.1 Creating ChildWindowse. 21-8
21.7.2 Destroying Child Windows 219
21.7.3 Activating and De-activating Child Windows 21-9
21.7.4 Arranging Child Windows on the Screen 21-10
SUMMALY ..ot ii et i it iae i tain i 21-10

Chapter 22 Dynamic Data Exchange

22.1

222

223
224

22,5
22,6

Data Exchange in Windowsovviviinnnnn, 22-1
22.1.1 Clipboard Transfersc.ooiuann. 22-2
22.1.2 Dynamic Link Librariescoo.... 22-2
22.1.3 Dynamic DataExchange 22-2
2214 Usesfor WindowsDDE 22-3
22.1.5 DDE from the User’s Pointof View 22-3
DDE Concepts e e e e 224
22.2.1 Client, Server,and Conversation 22-4
22.2.2 Application, Topic,andTtem 224
22.2.3 Permanent (“Hot” or “Warm”) Data Link 22-5
DDE MeESSAZES .o ovvvrinerierinensruecnnenernnsonennss 22-5
DDEMessage Flowcccoiiiiiiiiiiiiiiiinnn.. 22-6
22.4.1 Initiating a Conversationc.covoeun..n. 22-7
2242 Transferinga SingleItem 229
22.43 Establishing a Permanent DataLink 22-14
2244 Executing Commands in a Remote Application 22-19
2245 Terminating a Conversation 22-22
Sample DDE Client and Server Applications 22-24

SUMMATIY ...ttt eteneeeeennnanen 22-25

Tables

Table 8.1 User Interface for Standard List Box« .« 8-14

Table 8.2 User Interface for LBS_MULTIPLESEL ListBox 8-16
Table 8.3 User Interface for LBS_EXTENDEDSEL List BOX « « « « « 8-17
Table 8.4 User Interface for EditControl 8-24
Table 8.5 User Interface for ScrollBar 000 0., 8-27
Table 16.1 Segment Positionsinthe GlobalHeap 16-3
Table 16.2 Useof Expanded Memory oo 0. 16-8
Table 17.1 Values for the wMode Parameter 17-7
Table 20.1 Uses of the Three Library Types 20-3

Table 20.2 Windows SDK Import Libraries 20-31

Introduction

This introduction provides some background information that you should review
before you use this guide.

This introduction covers the following topics:

® Things you should know before you start

® The purpose and contents of this guide

® Tools you’ll need to create Windows applications

m Using the sample applications described in this guide
= Notational conventions used throughout this guide

® The manuals that come with the Microsofte Windows™ Software Develop-
ment Kit (SDK)

What Should You Know Before You Start?

To start using this guide, you will need the following:

= Experience using Windows and an understanding of the Windows user
interface.

Before starting any Windows application development, you should install
Windows version 3.0 on your computer and learn how to use it. Be sure to
learn the names, purposes, and operation of the various parts of a Windows
application (such as windows, dialog boxes, menus, controls, and scroll bars).
Because your own Windows applications will incorporate these features, it is
very important for you to understand them so that you can implement them

properly.
® An understanding of the Windows user-interface style guidelines.

One goal of Microsoft Windows is to provide a common user interface for all
applications. This ultimately helps the user by reducing the effort required to
learn the user interface of a Windows application; it helps you by clarifying
the choices you have to make when designing a user interface. To achieve

this goal, however, you must base your application’s user interface design on
the recommended application style guidelines described in the System Appli-
cation Architecture, Common User Access: Advanced Interface Design Guide.

® Experience writing C-language programs and using the standard C run-time
functions.

xxii Guide to Programming

The C programming language is the preferred development language for
Windows applications. Many of the programming features of Windows were
designed with the C programmer in mind. (Windows applications can also be
developed in Pascal and assembly language, but these languages present addi-
tional challenges that you typically bypass when writing applications in the C
language.)

About This Guide

This guide is intended to help the experienced C programmer make the transition
to writing applications that use the Microsoft Windows version 3.0 application
program interface. It explains how to use Windows functions, messages, and data
structures to carry out useful tasks common to all Windows applications, and il-
lustrates these explanations with sample applications that you can compile and
run with Windows version 3.0.

This guide consists of three parts, each of which contain several chapters.

Part 1, “Introduction to Writing Windows Applications,” gives an overview of
the Windows environment, and provides an in-depth look at a sample Windows
application. Part 1 consists of the following chapters:

® Chapter 1, “An Overview of the Windows Environment,” compares Windows
to the standard C environment, provides a brief overview of Windows, and de-
scribes the Windows programming model and the Windows application-
development process.

® Chapter 2, “A Generic Windows Application,” shows how to create a simple
Windows application called Generic. You'll then use this application as a
basis for subsequent examples in this learning guide.

Part 2, “Programming Windows Applications,” explains basic Windows program-
ming tasks, such as creating menus, printing, and using the clipboard. Each chap-
ter covers a specific topic, and provides a sample application that illustrates that
topic. Part 2 consists of the following chapters:

® Chapter 3, “Output to a Window,” introduces the graphics device interface
(GDI) and shows how to use GDI tools to create your own output.

m Chapter 4, “Keyboard and Mouse Input,” shows how to process input from
the mouse and keyboard.

® Chapter 5, “Icons,” shows how to create and display icons for your applica-
tions.

m Chapter 6, “The Cursor, the Mouse, and the Keyboard,” explains the purpose
of the cursor, the mouse, and the keyboard, and shows how to use them in
your applications.

Introduction xxiii

Chapter 7, “Menus,” shows how to create menus for your applications and
how to process input from menus.

Chapter 8, “Controls,” explains how to create and use controls, such as push
buttons and list boxes.

Chapter 9, “Dialog Boxes,” explains how to create and use dialog boxes, and
how to fill them with controls.

Chapter 10, “File Input and Output,” explains the OpenKFile function, as well
as rules about disk files.

Chapter 11, “Bitmaps,” shows how to create and display bitmaps.
Chapter 12, “Printing,” shows how to use a printer with Windows.

Chapter 13, “The Clipboard,” explains the clipboard and shows how to use it
in your applications.

Part 3, “Advanced Programming Topics,” introduces and explains some
advanced topics, such as memory management and Dynamic Data Exchange.
Each chapter covers a specific topic. Part 3 consists of the following chapters:

Chapter 14, “C and Assembly Language,” gives some guidelines for writing
C-language and assembly-language Windows applications.

Chapter 15, “Memory Management,” shows how to allocate global and local
memory.

Chapter 16, “More Memory Management,” provides a more in-depth look at
how your application can efficiently manage memory. This chapter also ex-
plains how Windows manages memory under different memory configura-
tions.

Chapter 17, “Print Settings,” explains how to tailor printerv settings (such as
page size and orientation) to your application’s needs.

Chapter 18, “Fonts,” shows how to create and load fonts, and how to use
them in the TextOut function.

Chapter 19, “Color Palettes,” shows how to use Windows color palettes to
make the most effective use of color in your application.

Chapter 20, “Dynamic-Link Libraries,” explains how to create and use
Windows dynamic-link libraries.

Chapter 21, “Multiple Document Interface,” explains how to create an appli-
cation that uses the Windows multiple document interface (MDI) to let users
work with more than one document at a time.

Chapter 22, “Dynamic Data Exchange,” explains how to pass data from one
application to another using the message-based Dynamic Data Exchange pro-
tocol. ‘

xxiv Guide to Programming.

‘What Tools Do You Need?

To build most Windows version 3.0 applications, you’ll need the following tools:

® Microsoft C Optimizing Compiler: CL

& Microsoft Segmented-Executable Linker: LINK
® Microsoft Windows Resource Compiler: RC

® Microsoft Windows SDKPaint: SDKPAINT

® Microsoft Windows Dialog Editor: DIALOG

To build Windows libraries and font resource files, you need the following addi-
tional tools:

® Microsoft Macro Assembler: MASM
= Microsoft Windows Font Editor: FONTEDIT
The following tools may also be useful in building and debugging Windows
applications:
® Microsoft Program Maintenance Utility: MAKE
" m Microsoft Symbolic Debugger: SYMDEB
®m Microsoft CodeViewe for Windows: CYW
® Microsoft Windows Profiler: PROFILER -
m Microsoft Windows Swap: SWAP
= Microsoft Windows Heap Walker: HEAPWALK
® Microsoft Windows Spy: SPY
Most of these tools are provided in the Microsoft Windows Software Develop-

ment Kit version 3.0. The C Compiler, the linker, the Macro Assembler, and the
Program Maintenance Utility are not. All are described more fully in Tools.

For a list of Windows 3.0 software and hardware requirements, see the
Installation and Update Guide.

Introduction xxv
]

Using the Sample Applications

The sample applications in this guide are written in the C programming language
and conform to the user-interface style recommended by Microsoft for Windows
applications.

The source files for all sample applications are on the Sample Source Code disk
that comes with the SDK. It’s a good idea to review the sample application
sources while reading the corresponding descriptions in this guide. For your con-
venience, the subdirectories containing the sample sources are named by chapter.
You can also use the sources as a basis for your own applications.

Special Terms

This guide is written for you, the Windows application developer. The word
“you” can refer either to you as a developer, or, sometimes, to your application.
For example:

“You create icons, cursors, and bitmaps using the SDKPaint editor.”

“You can display text using the TextOut function.”

“Your application will receive a WM_PAINT message when it needs to re-
fresh its client area.”

Throughout this document, the term “user” refers not to you, the application
developer, but to the person who will eventually use the applications you write.
For example:

“When the user selects the About menu item, your application displays the
About dialog box.”

“You can display a checkmark next to a menu item to indicate that the user
has selected that item.”

xxvi Guide to Programming

Document Conventions

- Throughout this manual, the term “DOS” refers to both MS-DOS® and
PC-DOS, except when noting features that are unique to one or the other.

The following document conventions are used throughout this manual:

Convention

Bold text

O

Italic text

Monospaced type

BEGIN

END

Description of Convention

Bold letters indicate a specific term or punctua-
tion mark intended to be used literally:
language key words or functions (such as
EXETYPE or CreateWindow), DOS com-
mands, and command-line options (such as
/Zi). You must type these terms and punctua-
tion marks exactly as shown. However, the use
of uppercase or lowercase letters is not always
significant. For instance, you can invoke the
linker by typing either LINK, link, or Link at
the DOS prompt.

In syntax statements, parentheses enclose one
or more parameters that you pass to a function.

Italic text indicates a placeholder; you are ex-
pected to provide the actual value. For
example, the following syntax for the SetCur-
sorPos function indicates that you must
substitute values for the X and Y coordinates,
separated by a comma:

SetCursorPos(X, Y)

Code examples are displayed in a nonpropor-
tional typeface.

A vertical ellipsis in a program example indi-
cates that a portion of the program is omitted.

Introduction xxvii

Convention

[

66

{}

SMALL CAPITAL LETTERS

Description of Convention

An ellipsis following an item indicates that
more items having the same form may appear.
In the following example, the horizontal ellip-
sis indicates that you can specify more than
one breakaddress for the g command:

g [=startaddress] [breakaddress]]...

Double brackets enclose optional fields or para-
meters in command lines and syntax
statements. In the following example, option
and executable-file are optional parameters of
the RC command:

RC [[option] filename [[executable-file])

A vertical bar indicates that you may enter one
of the entries shown on either side of the bar.
The following command-line syntax illustrates
the use of a vertical bar:

DB [[address | range]l

The bar indicates that following the DB
(Dump Bytes) command, you can specify
either an address or a range.

Quotation marks set off terms defined in the
text.

Curly braces indicate that you must specify
one of the enclosed items.

Small capital letters indicate the names of keys
and key sequences, such as:

ALT + SPACEBAR

xxviii Guide to Programming

Microsoft Windows Software Develapment Kit Documentation Set

Throughout this documentation set “SDK” refers specifically to the Microsoft
Windows Software Development Kit and its contents. The SDK includes the fol-

lowing manuals:

Title

Installation and Up-
date Guide

Guide to Programming

Tools

Reference

System Application
Architecture, Common
User Access:
Advanced Interface
Design Guide

Provides an orientation to the SDK, explains how to
install the SDK software, and highlights the changes
for version 3.0. :

Explains how to write Windows applications, and
provides sample applications that you can use as
templates for writing your own programs. The
Guide to Programming also addresses some
advanced Windows programming topics.

Explains how to use the software-development tools
you’ll need to build Windows applications, such as
debuggers and specialized SDK editors.

Is a comprehensive guide to all the details of the
Microsoft Windows application program interface
(API). The Reference lists in alphabetical order all
the current functions, messages, and data structures
of the API, and provides extensive overviews on
how to use the API.

Provides guidelines and recommendations for writ-
ing programs that appear and act consistently with
other Microsoft Windows applications.

Part

Introduction to

Writing Windows

Applications

Although they are usually written in the C language, Windows applications are,
in many ways, very different from standard C programs. This is because, to run
successfully in the Windows environment, an application must cooperate with
Windows and other applications; it must yield control to Windows whenever
possible, and must share system resources with Windows and other applications.

Part 1 introduces the Windows environment, and compares it to the environment
in which standard C programs normally run. It also explains the basic structure
of a Windows application, and describes a simple application that illustrates this
structure.

After reading the chapters in Part 1, you should have a basic understanding of
the Windows environment and the structure of a typical Windows application.

CHAPTERS

1 An Overview of the Windows Environment
2 A Generic Windows Application

Chapter | An Overview of the
1 | Windows Environment

Microsoft Windows version 3.0 has many features that the standard DOS en-
vironment does not. Because of this, Windows applications are in some ways
more complex than standard DOS programs.

This chapter covers the following topics:

® A comparison of Windows applications and standard DOS applications

m Features that the Windows environment offers, and the impact these features
have on the way you develop and write applications

® The Windows programming model

m The process you use to develop Windows applications

1.1 Microsoft Windows and DOS: a Comparison

Microsoft Windows has many features that the standard DOS environment does
not. For this reason, Windows applications may, at first, seem more complex
than standard DOS programs. This is understandable when you consider some of
the additional features that Windows offers. These include:

® A graphical user interface featuring windows, menus, dialog boxes, and con-
trols for applications

& Queued input

® Device-independent graphics

a Multitasking

® Data interchange between applications

When writing applications for the DOS environment, most C programmers use

the standard C run-time library to carry out a program’s input, output, memory

management, and other activities. The C run-time library assumes a standard

operating environment consisting of a character-based terminal for user input and
output, and exclusive access to system memory as well as to the input and output

1-2 Guide to Programming

devices of the computer. In Windows, these assumptions are no longer valid.
Windows applications share the computer’s resources, including the CPU, with
other applications. Windows applications interact with the user through a
graphics-based display, a keyboard, and a mouse.

The following sections describe some of the major differences between standard
DOS applications and Windows applications.

1.1.1 The User Interface

One of the principal design goals of Windows is to provide visual access to most,
if not all, applications at the same time. In a multitasking environment, it is im-
portant to give all applications some portion of the screen; this ensures that the
user can interact with all applications. Some systems do this by giving one pro-
gram full use of the screen while other programs wait in the background. In
Windows, every application has access to some part of the screen at all times.

An application shares the display with other applications by using a “window”
for interaction with the user. Technically, a window is little more than a rectangu-
lar portion of the system display that the system grants use of to an application.
In reality, a window is a combination of useful visual devices, such as menus,
controls, and scroll bars, that the user uses to direct the actions of the application.

In the standard DOS environment, the system automatically prepares the system
display for your application. Typically, it does so by passing a file handle to the
application. You can then use that file handle to send output to the system dis-
play using conventional C run-time routines or DOS system calls. In Windows,
you must create your own window before performing any output or receiving any
input. Once you create a window, Windows provides a great deal of information
about what the user is doing with the window. Windows automatically performs
many of the tasks the user requests, such as moving and sizing the window.

Another advantage to developing in the Windows environment is that, in contrast
to a standard C program, which has access to a single screen “surface,” a
Windows application can create and use any number of overlapping windows to
display information in any number of ways. Windows manages the screen for
you, controls the placement and display of windows, and ensures that no two
applications attempt to access the same part of the system display at the same
time.

1.1.2 Queued Input

One of the biggest differences between Windows applications and standard C
programs is the way they receive user input.

An Overview of the Windows Environment 1-3

In the DOS environment, a program reads from the keyboard by making an expli-
cit call to a function, such as getchar. The function typically waits until the user
presses a key before returning the character code to the program. In contrast, in
the Windows environment, Windows receives all input from the keyboard,
mouse, and timer, and places the input in the appropriate application’s “message
queue.” When the application is ready to retrieve input, it simply reads the next

input message from its message queue.

In the standard DOS environment, input is typically in the form of 8-bit
characters from the keyboard. The standard input functions, getchar and fscanf,
read characters from the keyboard and return ASCII or other codes correspond-
ing to the keys pressed. A program can also intercept interrupts from input dev-
ices such as the mouse and timer to use information from those devices as input.

In Windows, an application receives input in the form of “input messages” that
Windows sends it. A Windows input message contains information that far
exceeds the type of input information available in the standard DOS environ-
ment. It specifies the system time, the position of the mouse, the state of the key-
board, the scan code of the key (if a key is pressed), the mouse button pressed, as
well as the device generating the message. For example, there are two keyboard
messages, WM_KEYDOWN and WM_KEYUP, that correspond to the press and
release of a specific key. With each keyboard message, Windows provides a
device-independent virtual-key code that identifies the key, the device-dependent
scan code generated by the keyboard, as well as the status of other keys on the
keyboard, such as SHIFT, CONTROL, and NUMLOCK. Keyboard, mouse, and timer
messages all have the same format and are all processed in the same manner.

1.1.3 Device-Independent Graphics

In Windows, you have access to a rich set of device-independent graphics opera-
tions. This means your application can easily draw lines, rectangles, circles, and
complex regions. Because Windows provides device independence, you can use
the same functions to draw a circle on a dot-matrix printer or a high-resolution
graphics display.

Windows requires “device drivers” to convert graphics output requests to output
for a printer, plotter, display, or other output device. A device driver is a special
executable library that an application can load and connect to a specific output
device and port. A “device context” represents the device driver, the output
device, and perhaps the communications port. Your application carries out
graphics operations within the “context” of a specific device.

1-4 Guide to Programming

1.1.4 Multitasking

Windows is a multitasking system: more than one application can run at a time.
In the standard DOS environment, there are no patticular provisions for multi-
tasking. Programs written for the DOS environment typically assume that they
have exclusive control of all resources in the computer, including the input and
output devices, memory, the system display, and even the CPU itself. In
Windows, however, applications must share these valuable resources with all
other applications that are currently running. For this reason, Windows carefully
controls these resources, and requires Windows applications to use a specific pro-
gram interface that guarantees Windows’ control of those resources.

For example, in the standard DOS environment, a program has access to all of
memory that has not been taken up by the system, by the program, or by
terminate-but-stay-resident (TSR) programs. This means that programs are free
to use all of available memory for whatever they like and may access memory by
whatever method they like.

In Windows, memory is a shared resource. Since more than one application can
be running at the same time, each application must cooperatively share memory
to avoid exhausting the resource. Applications may allocate what they need from
system memory. Windows provides two sources of memory: global memory, for
large allocations, and local memory, for small allocations. To make the most effi-
cient use of memory, Windows often moves or even discards memory blocks.
This means you cannot assume that objects to which you have assigned a
memory location remain where you put them. If there are several applications
running, Windows may move and discard memory blocks often.

Another example of a shared resource is the system display. In the standard DOS
environment, the system typically grants your application exclusive use of the
system display. This means you can use the display in any manner you like, from
changing the color of text and background, to changing the video mode from text
to graphics. In Windows, your application must share the system display with
other applications, so it must not take control of the display.

M
v“" !

gﬁﬁ

An Overview of the Windows Environment 1-5

1.2 The Windows Programming Model

1.2.1 Windows

Most Windows applications use the following elements to interact with the user:

® Windows
® Menus
® Dialog boxes

® The message loop

The rest of this section describes these elements in detail.

A window is the primary input and output device of any Windows application. It
is an application’s only access to the system display. A window is a combination
of a title bar, a menu bar, scroll bars, borders, and other features that occupy a
rectangle on the system display. You specify the features you want for a window
when you create the window. Windows then draws and manages the window.
Figure 1.1 shows the main features of a window:

Control menu Title bar Minimize box
Control-menu box J’ l_ Menu bar [Maximize box

i [

otepad €d
Ip

Move Scroll box
Size

Minimize

Maximize

Close Al+F4
Switch To... Ctrl+Esc

«] E
r
~

Window border I Scroll bar
Figure 1.1 Window Features

1-6 Guide to Programming

1.2.2 Menus

Although an application creates a window and technically has exclusive rights to
it, the management of the window is actually a collaborative effort between the
application and Windows. Windows maintains the position and appearance of the
window, manages standard window features such as the border, scroll bars, and
title, and carries out many tasks initiated by the user that directly affect the
window. The application maintains everything else about the window. In particu-
lar, the application is responsible for maintaining the “client area” of the window
(the portion within the window borders). The application has complete control
over the appearance of its window’s client area.

To manage this collaborative effort, Windows advises each window of changes
that might affect it. Because of this, every window must have a corresponding
“window function.” The window function receives window-management mes-
sages that it must respond to appropriately. Window-management messages
either specify actions for the function to carry out, or are requests for information
from the function.

Menus are the principal means of user input in a Windows application. A menu
is a list of commands that the user can view and choose from. When you create
an application, you supply the menu and command names. Windows displays
and manages the menus for you, and sends a message to the window function
when the user makes a choice. The message is the application’s signal to carry
out the command.

1.2.3 Dialog Boxes

A dialog box is a temporary window that you can display to let the user supply
more information for a command. A dialog box contains one or more “controls.”
A control is a small window that has a very simple input or output function. For
example, an “edit control” is a simple window that lets the user enter and edit
text. The controls in a dialog box let the user supply filenames, choose options,
and otherwise direct the action of the command.

An Overview of the Windows Environment 1-7

1.2.4 The Message Loop

Since your application receives input through an application queue, the chief fea-
ture of any Windows application is the “message loop.” The message loop re-
trieves input messages from the application queue and dispatches them to the
appropriate windows.

Figure 1.2 shows how Windows and an application collaborate to process key-
board input messages. Windows receives keyboard input when the user presses
and releases a key. Windows copies the keyboard messages from the system
queue to the application queue. The message loop retrieves the keyboard mes-
sages, translates them into an ANSI character message, WM_CHAR, and dis-
patches the WM_CHAR message, as well as the keyboard messages, to the
appropriate window function. The window function then uses the TextQut func-
tion to display the character in the client area of the window.

Windows

User presses System queue
the @ key Application

WinMain function

Message loop

I Application queue 2

Windows recsives the v
message from the 2
application’s message C Z

' Y

loop and dispatches
message to the

application window Window

TextOut function
in response to the +———(2 <
window function’s)
TextOut request, L
Windows outputs a Application
"Z" to the applicatio z window

window »>- {Z—>

Figure 1.2 Processing Keyboard Input

1-8 Guide to Programming

Windows can receive and distribute input messages for several applications at
once. As shown in Figure 1.3, Windows collects all input, in the form of mes-
sages, in its system queue. It then copies each input message to the appropriate
application queue. The message loop in each application retrieves messages and
dispatches them, through Windows, to each application’s appropriate window

function.
Windows
ardh Application A
lardware [
input > System queue J

WinMain function

Message loop

A4

lApplication queue A $

Jr ¥ 3
v 4

¥ ¥

Window Window
function 1||function 2

Application B

WinMain function

Message loop

v
Application queue B

Y A
v A

.
Window || Window
function 1}|function 2

Figure 1.3 Processing Input for Two Applications

In contrast to keyboard input messages, which the application must retrieve from
its message queue, Windows sends window-management messages directly to
the appropriate window function. Figure 1.4 shows how Windows sends window-
management messages directly to a window function. After Windows carries out
arequest to destroy a window, it sends a WM_DESTROY message directly to
the window function, bypassing the application queue. The window function
must then signal the main function that the window is destroyed and the applica-
tion should terminate. It does this by copying a WM_QUIT message into the

~ application queue by using the PostQuitMessage function.

An Overview of the Windows Environment 1-9

Windows

. . Application
User selects s Windows carries out —»

ey . window
Exit" from the request to destroy
application the application window '

menu

Windows then sends Application

a WM_DESTROY
message directly to
the window function —‘-WM_DESTROY#’ Window

function
/ -

WM_QUIT

/ WinMain function

g
>WM_QUIT> Message /oop§

[Application queue

v

Message loop and
WinMain function
terminate on receiving
WM_QUIT message

Figure 1.4 Processing Window-Management Messages

When the message loop retrieves the WM_QUIT message, the loop terminates
and the main function exits.

1.3 The Windows Libraries

Windows functions, like C run-time functions, are defined in libraries. The
Windows libraries, unlike C run-time libraries, are special dynamic-link libraries
(DLLs) that the system links with your application when it loads your applica-
tion. DLLs are an important feature of Windows because they minimize the
amount of code each application requires.

1-10 Guide to Programming

Windows consists of the following three main libraries:

Library Description

User Provides window management. This library manages the over-
all Windows environment, as well as your application’s
windows.

Kernel Provides system services, such as multitasking, memory man-

agement, and resource management.

GDI Provides the graphics device interface.

1.4 Building a Windows Application
To build a Windows application, follow these steps:

1. Create C-language or assembly-language source files that contain the
WinMain function, window functions, and other application code.

2. Use the resource editors (SDKPaint, the Dialog Editor, and the Font Editor)
to create any cursor, icon, bitmap, dialog, and font resources the application
will need.

3. Create a resource script (.RC) file that defines all the application’s resources.
The resource script file lists and names the resources you created in the pre-
ceding step. It also defines menus, dialog boxes, and other resources.

4. Create the module-definition (.DEF) file, which defines the attributes of the
application modules, such as segment attributes, stack size, and heap size.

5. Compile and link all C-language sources; assemble all assembly-language
sources.

6. Use the Resource Compiler to compile the resource script file and add it to
the executable file.

Figure 1.5 shows the steps required to build a Windows application.

Create the source files. EC] ,E

Create the resource files.

Create the resource
script file.

Compile or assemble
the source files.

Create the module-
definition file.

Link the source files
with Windows and C
run-time libraries.

Compile the resources.

Add the resources to
the executable file.

The result is a
Windows application.

An Overview of the Windows Environment 1-11

.ASM

{.co|[.cur]|.BMP] [.DLG] [FNT |

—

/

[.oBJ |

(.oBJ |

.DEF

l

.EXE

C libraries
Windows libraries

EXE

Figure 1.5 Building a Windows Application Lﬁ2_05

[Ac]

1-12 Guide to Programming

1.5 Software Development Tools

To create a Windows application, you use many new development tools, as well
as some familiar tools with new options. This section briefly describes the tools
you will use.

1.5.1 C Compiler

To compile Windows applications, you use the Microsoft C Compiler, just as
you do for standard C programs. You can use many of the same CL command-
line options you use for standard C programs. However, Windows also requires
two special options: -Gw and —Zp. The —-Gw option adds the Windows prolog
and epilog code to each function; this code is required for the application to run
in the Windows environment. The —Zp option packs structures, ensuring that the
structures used in your application are the same size as the corresponding struc-
tures used by Windows. The following shows a typical CL command for compil-
ing a small-model Windows application:

CL -c -AS -Gsw -0Os -Zdp TEST.C

The —¢ option instructs the compiler to perform only the C compilation, but not
the linking. The —c option is necessary if you wish to compile multiple C source
files separately.

1.5.2 The Linker

You use the linker supplied with the Microsoft C Compiler (LINK) to produce
Windows-format executable files. Unlike normal C applications, Windows appli-
cations require a module-definition (.DEF) file. This file:

® Defines a name for the application.
m Marks the application as a Windows application.

m Specifies certain attributes of the application, such as whether a data segment
is moveable in memory.

m Lists and names any callback functions in the application.
The following is an example of a module-definition file:
NAME Generic ; application's module name
DESCRIPTION 'Sample Microsoft Windows Application’

EXETYPE WINDOWS ; Required for all Windows applications

An Overview of the Windows Environment 1-13
..]

STUB 'WINSTUB.EXE' ; The "stub" displays an error message if
; application is run without Windows

CODE PRELOAD MOVEABLE ; code can be moved in memory
;DATA must be MULTIPLE if program can be invoked more than once
DATA MOVEABLE MULTIPLE

HEAPSIZE 1024
STACKSIZE 5128 ; recommended minimum for Windows applications

; A11 functions that will be called by any Windows routine
; MUST be exported.

EXPORTS
MainWndProc @1 ; name of window-processing function
AboutDlgProc @2 ; name of About processing function

To link a Windows application, you specify the name of the object files created
by the compiler, the name of the Windows import library, the name of the mod-
ule-definition file, and other options and files. The following example is a typical
LINK command:

LINK /NOD GENERIC, , , SLIBCEW LIBW, GENERIC.DEF

For more information on LINK and the module-definition file, see Tools.

1.5.3 The SDK Resource Editors

You use the Windows resource editors to create application resources such as cur-
sors, icons, and bitmaps. You must then list these resources in the application’s
resource script file. The resource editors are included in the Microsoft Windows
Software Development Kit (SDK). They are:

m SDKPaint (SDKPAINT), which creates icons, cursors, and bitmaps

®m The Dialog Editor (DIALOG), which creates dialog-box descriptions
® The Font Editor (FONTEDIT), which creates font files

Because these editors are Windows applications, you run them within the

Windows environment. For more information on the Windows resource editors,
see Tools.

1-14 Guide to Pragmmminy

1.5.4 The Resource campiler

Most Windows applications use a variety of resources, such as icons, cursors,
menus, and dialog boxes. You define these resources in a file called a “resource
script file,” which always has the filename extension .RC. After creating the
resource script (.RC) file, you use the Resource Compiler (RC) to compile the
.RC file and add the compiled resources to the application’s executable file.
‘When the application runs, it can load and use the resources from the executable
file. '

The following is an example of a resource script file that defines two resources, a
cursor and an icon:

Bullseye CURSOR BULLSEYE.CUR
Generic ICON GENERIC.ICO

The first statement defines a cursor resource by naming it (Bullseye), declaring
its type (CURSOR), and specifing the file that contains the actual cursor image
(BULLSEYE.CUR). The second statement does the same for an icon resource.

To compile a resource script file and add the compiled resources to an executable
file, use the RC command. The following example shows a typical RC com-
mand:

RC GENERIC.RC

For a description of how to use the Resource Compiler, see Tools. For a descrip-
tion of the resource statements that make up a resource script file, see the
Reference, Volume 2.

1.5.5 Debugging and Optimization Tools

The SDK includes several tools you can use to debug your Windows application
and to optimize its peformance:

® . CodeView for Windows (CVW) lets you debug Windows applications while
running with Windows in standard mode or 386 enhanced mode. CVW lets
you set breakpoints, view source-level code, and display symbolic informa-
tion while debugging Windows applications.

® The Symbolic Debugger (SYMDEB) is a debugging tool you can use to
debug Windows applications while running in real mode.

® The Spy (SPY) message watcher is a Windows application that lets you moni-
tor the messages that Windows sends to an application. This can be particu-
larly useful when debugging.

An Overview of the Windows Environment 1-15

= Profiler (PROFILER) lets you find out the relative times it takes your appli-
cation’s code segments to execute; this lets you fine-tune your application’s
performance.

m The Swap (SWAP) swapping analyzer lets you analyze and fine-tune your
application’s memory-swapping behavior.

m Heap Walker (HEAPWALK) is a Windows applicatioh that lets you ex-
amine the contents of the local or global memory heap.

For more information about these tools, see Tools.

1.5.6 The Program Maintainer

The MAKE program is a program maintainer that updates programs by keeping
track of the dates of its source files. MAKE is included with Microsoft C version
5.1. (NMAKE is a similar program that comes with version 6.0 of Microsoft C.)
Both programs work equally well with Windows; the one you use will depend on
the version of Microsoft C you have.

Although MAKE and NMAKE come with Microsoft C, not with the SDK, they
are especially important for Windows applications because of the number of files
required to create a Windows application. These program maintainers use a text
file, called a “make file,” that contains a list of the commands and files needed to
build a Windows application. The commands compile and link the various files.
The program maintainer executes the commands only if the files named in those
commands have changed. This saves time if, for instance, you have made only a
minor change to a single file.

Make files for MAKE and NMAKE are almost identical; the only difference is
that NMAKE requires an additional line at the beginning.

The following example shows the content of a typical make file for a Windows
application:

The following line allows NMAKE to use this file as well
all: generic.exe

Update the resources if necessary

GENERIC.RES: GENERIC.RC GENERIC.H
RC -R GENERIC.RC

Updatehthe object file if necessary

GENERIC.OBJ: GENERIC.C GENERIC.H
CL -AS -c¢ -DLINT_ARGS -Gsw -0Oat -W2 -Zped GENERIC.C

1-16 Guide to Programming

Update the executable file if necessary; if so, add the resources
to it.

GENERIC.EXE: GENERIC.OBJ GENERIC.DEF
LINK /NOD GENERIC, , , SLIBCEW LIBW, GENERIC.DEF
MAPSYM GENERIC
RC GENERIC.RES

If the .RES file is new and the .EXE file is not,

compile only the resources. Note that the .RC file can
be updated without having to either recompile or

relink the file.

GENERIC.EXE: GENERIC.RES
RC GENERIC.RES

Typically, make files have the same name as the applications they build, al-
though any name is.allowed. The following example runs MAKE using the com-
mands in the file GENERIC:

MAKE GENERIC

For more information about the MAKE program, see the documentation pro-
vided with the Microsoft C Optimizing Compiler.

1.6 Tips for Writing Windows Applications

There are some programming practices that work well for standard C or
assembly-language applications, but will not work in the Windows environment.
Chapter 14, “C and Assembly Language,” provides detailed information on using
those programming languages to write Windows applications.

In general, when writing Windows applications, remember the following rules:

» Do not take exclusive control of the CPU—it is a shared resource. Although
Windows is a multitasking system, it is non-preemptive. This means it cannot
- take control back from an application until the application releases it. A
cooperative application carefully manages access to the CPU and gives other
applications ample opportunity to execute.

Do not attempt to directly access memory or hardware devices such as the
keyboard, mouse, timer, display, and serial and parallel ports. Windows re-
quires absolute control of these resources to ensure equal, uninterrupted
access for all applications that are running.

An Overview of the Windows Environment 1-17

® Within your application, all functions that Windows can call must be defined
with the PASCAL key word; this ensures that the function accesses argu-
ments correctly. Functions that Windows can call are the WinMain function,
callback functions, and window functions.

m Every application must have a WinMain function. This function is the entry
point, or starting point, for the application. It contains statements and
Windows function calls that create windows and read and dispatch input in-
tended for the application. The function definition has the following form:

int PASCAL WinMain(hInst,hPrevInst,IpCmdLine,nCmdShow)
HANDLE hlInst;

HANDLE hPreviInst;

LPSTR TpCmdLine;

int nCmdShow;

{

}

The WinMain function must be declared with the PASCAL key word. Al-
though Windows calls the function directly, WinMain must not be defined
with the FAR key word, since it is called from linked-in start-up code.

® When using Windows functions, be sure to check the return values. It’s not a
good idea to ignore these return values, since unusual conditions sometimes
occur when a function fails.

® Do not use C run-time console input and output functions, such as getchar,
putchar, scanf, and printf.

® Do not use C run-time file input and output functions to access serial and par-
allel ports. Instead, use the communications functions, which are described in
detail in the Reference, Volume 1.

® You can use the C run-time file input and output functions to access disk
files. In particular, use the Windows OpenFile function and the low-level, C
run-time input and output functions. Although you can use the C run-time
stream input and output functions, you do not get the advantages that Open-
File provides.

® You can use the C run-time memory-management functions malloc, calloc,
realloc, and free, but be aware that Windows translates these functions to its
own local-heap functions, LocalAlloc, LocalReAlloc, and LocalFree. Since
local-heap functions don’t always operate exactly like C run-time memory-
management functions, you may get unexpected results.

1-18 Guide to Programming

1.7 Summary

This chapter provided an overview of the Windows environment, and compared
Windows applications with standard C applications. For additional information
about Windows programming concepts, see the following:

Topic Reference

The message loop Guide to Programming: Chapter 2, “A
Generic Windows Application”

A simple Windows Guide to Programming: Chapter 2, “A

application Generic Windows Application”

Menus Guide to Programming: Chapter 7, “Menus”

Dialog boxes Guide to Programming: Chapter 9, “Dialog
Boxes”

Using C run-time routines Guide to Programming: Chapter 14, “C and

and assembly language in Assembly Language”

Windows applications

Windows functions and Reference, Volume 1

messages

Software development tools Tools

Chapter | A Generic Windows
2 Application

This chapter explains how to create a simple Microsoft Windows application
called Generic, which demonstrates the principles explained in Chapter 1, “An
Overview of the Windows Environment.”

This chapter covers the following topics:

® The essential parts of a Windows application
® Initializing a Windows application

® Writing the message loop

®m Terminating an application

m The basic steps needed to build a Windows application

The Generic application will be used as basic code for all sample applications in
Part 2 of this guide. (The source files for Generic and the other sample applica-
tions are included on the SDK Sample Source Code disk.)

2.1 The Generic Application

Generic is a standard Windows application; that is, it meets the recommendations
for user-interface style given in the System Application Architecture, Common
User Access: Advanced Interface Design Guide. Generic has a main window, a
border, an application menu, and maximize and minimize boxes, but no other fea-
tures. The application menu includes a Help menu with an About command,
which, when chosen by the user, displays an About dialog box describing
Generic. The completed Generic, with an About dialog box, looks like Figure 2.1
when displayed:

2-2 Guide to Programming

— Help menu — About dialog box

= B ot T<I=1

= M

icrosoft Windows
Generic Application

. Version 3.0

Figure 2.1 Generic: A Template for Writing Windows Applications

Generic is important not for what it can do, but for what it provides: a template
for writing Windows applications. Building it helps you understand how
Windows applications are put together and how they work.

2.2 A Windows Application

A Windows application is any application that is specifically written to run with
Windows and that uses the Windows application program interface (API) to
carry out its tasks. A Windows application has the following basic components:

® A main function named WinMain

® A window function

The WinMain function is the entry point for the application and is similar to the
main function used in the standard C environment. It is always named WinMain.

A window function is something new. It is a “callback function” — a function
within your application that Windows calls. Your application never calls its
window functions directly. Instead, it waits for Windows to call the window func-
tion with requests to carry out specific tasks or to return information.

- 2.3 The WinMain Function

Much like the main function in standard C programs, the WinMain function is
the entry point for a Windows application. Every Windows application must
have a WinMain function; no Windows application can run without it. In most
Windows applications, the WinMain function does the following:

A Generic Windows Application 2-3

m Calls initialization functions that register window classes, create windows,
and perform any other necessary initializations

m Enters a message loop to process messages from the application queue

= Terminates the application when the message loop retrieves a WM_QUIT
message ’

The WinMain function has the following form:

int PASCAL WinMain(hInstance, hPrevInstance, 1pCmdLine, nCmdShow)

HANDLE hInstance; /* current instance

HANDLE hPreviInstance; /* previous instance

LPSTR 1pCmdLine; /* command line

int nCmdShow; /* whether to show window or icon

{
}

The WinMain function requires the PASCAL calling convention.

When the user starts an application, Windows passes the following four parame
ters to the application’s WinMain function:

Parameter Value Windows Passes to Application
hinstance The instance handle of the application.
hPrevinstance The handle of another instance of the application, if one

is running. If no other instances of this application are
running, Windows sets this parameter to NULL.

IpCmdLine A long pointer to a null-terminated command line.

nCmdShow An integer value that specifies whether to display the
application’s window as a window or as an icon. The
application passes this value to the ShowWindow func-
tion when calling that function to display the
application’s main window.

For more information on handles, see Section 2.3.2, “Handles.” For more infor-
mation on the [pCmdLine parameter, see Section 2.3.11, “The Application
Command-Line Parameter.”

2.3.1 Data Types and Structures in Windows

The WinMain function uses several special data types to define its parameters.
For example, it uses the HANDLE data type to define the hlnstance and hPrev-

*/
*/
*/
*/

Instance parameters, and the LPSTR data type to define the [pCmdLine parame-

ter. In general, Windows uses many more data types than you would find in a
typical C program. Although the Windows data types are often equivalent to

2-4 Guide to Programming

familiar C data types, they are intended to be more descriptive and should help
you better understand the purpose of a given variable or parameter in an applica-
tion.

The Windows data types are defined in the WINDOWS.H include file. The
Windows include file is.an ordinary C-language source file that contains defini-
tions for all the Windows special constants, variables, data structures, and func-
tions. To use these definitions, you must include the WINDOWS.H file in each
source file. Place the following line at the beginning of your source file:

f#include "WINDOWS.H" /* Required for all Windows applications */

The following is a list of some of the more common Windows data types:

Type Meaning

WORD Specifies a 16-bit, unsigned integer.

LONG Specifies a 32-bit, signed integer.

HANDLE Identifies a 16-bit, unsigned integer to be used aé a
handle.

HWND Identifies a 16-bit, unsigned integer to be used as a
handle to a window.

LPSTR Specifies a 32-bit pointer to a CHAR type.

FARPROC Specifies a 32-bit pointer to a function.

The following is a list of some commonly used structures:

Structure Description

MSG Defines the fields of an input message.

WNDCLASS Defines a window class.

PAINTSTRUCT Defines a paint structure used to draw within a
: window.

RECT Defines a rectangle.

See the Reference, Volume 2, for a complete listing and description of Windows
data types and structures. :

2.3.2 Handles

The WinMain function has two parameters; hPrevinstance and hlnstance, that
are called “handles.” A handle is a unique integer that Windows uses to identify
an object created or used by an application. Windows uses a wide variety of han-

A Generic Windows Application 2-5

2.3.3 Instances

dles, identifying objects such as application instances, windows, menus, controls,
allocated memory, output devices, files, GDI pens and brushes, to name a few.

Most handles are index values for internal tables. Windows uses handle indexes
to access the information stored in the table. Typically, your application has
access only to the handle, and not to the data. When you need to examine or
change the data, you supply the handle and Windows does the rest. This is one
way that Windows protects data in its multitasking environment.

Not only can you run more than one application at a time in Windows, you can
also run more than one copy, or “instance” of the same application at a time. To
distinguish one instance from another, Windows supplies a unique “instance
handle” each time it calls the WinMain function to start the application. An in-
stance is a separately executing copy of an application, and an instance handle is
an integer that uniquely identifies an instance.

In some multitasking systems, if you run multiple instances of the same applica-
tion, the system loads a fresh copy of the application’s code and data into
memory and executes it. In Windows, when you start a new instance of the appli-
cation, only the data for the application is loaded. Windows uses the same code
for all instances of the application. This saves as much space as possible for other
applications and for data. However, this method requires that the code segments
of your application remain unchanged for the duration of the application. This
means that you must not store data in a code segment or change the code while
the program is running.

For most Windows applications, the first instance has a special role. Many of the
resources an application creates, such as window classes, are generally available
to all applications. Consequently, only the first instance of an application creates
these resources. All subsequent instances may use the resources without creating
them. To let you determine which is the first instance, Windows sets the #Prev-
Instance parameter of WinMain to NULL if there are no previous instances. The
following example shows how to check that previous instance does not exist:

int PASCAL WinMain(hInstance, hPrevInstance, 1pCmdLine, nCmdShow)

HANDLE hInstance; /* current instance*/

HANDLE hPrevInstance; /* previous instance*/

LPSTR 1pCmdLine; /* command Tine */

int nCmdShow; /* whether to show window or icon */

{
~if (IhPrevInstance)

}

To keep the user from starting more than one instance of your application, check
the hPrevInstance parameter when the application starts; return to Windows

2-6 Guide to Programming

immediately if the parameter is not NULL. The following example shows how to
do this: '

~if (hPrevInstance)
return (NULL);

2.3.4 Registering the Window Class

Before you can create any window, you must have a “window class.” A window
class is a template that defines the attributes of a window, such as the shape of
the window’s cursor and the name of the window’s menu. The window class also
specifies the window function that processes messages for all windows in the
class. Although Windows provides some predefined window classes, most appli-
cations define their own window classes in order to control every aspect of the
way their windows operate.

You must register a window class before you can create a window that belongs to
that class. You register a window class by filling a WNDCLASS structure with
information about the class, and passing it as a parameter to the RegisterClass
function.

Filling the WNDCLASS Structure

The WNDCLASS provides information to Windows about the name, attributes,
resources, and window function for a window class. The WNDCLASS data
structure contains the following fields:

Field Description

IpszClassName Points to the name of the window class. A window
class name must be unique; that is, different applica-
tions must use different class names.

hInstance Specifies the application instance that is registering
: the class.

IpfaWndProc Points to the window function used to carry out
work on the window.

style Specifies the class styles, such as automatic redraw-
ing of the window when moved or sized.

hbrBackground Specifies the brush used to paint the window back-
ground.

hCursor ' Specifies the cursor used in the window.

hlcon Specifies the icon used to represent a minimized
window.

IpszMenuName Points to the resource name of a menu.

A Generic Windows Application 2-7

Field Description

cbClsExtra Specifies the number of extra bytes to allocate for
this class structure.

clWndExtra Specifies the number of extra bytes to allocate for all
the window structures created with this class.

See the Reference, Volume 2, for more information about these fields.

Some fields, such as IpszClassName, hInstance, and IpfnWndProc, must be as-
signed values. Other fields can be set to NULL. When these fields are set to
NULL, Windows uses a default attribute for windows created using the class.
The following example shows how to fill a window structure:

BOOL InitApplication(hInstance)
HANDLE hlInstance; /* current instance */
{

@ UWNDCLASS wc;

/* Fi1l in window class structure with parameters that describe the */
/* main window. */

® wc.style = NULL; /* Class style(s). */
® wc.lpfnWndProc = MainWndProc; /* Function to retrieve messages for */
/* windows of this class. */

O wc.chClsExtra = @; /* No per-class extra data. */
wc.cbWndExtra = @; /* No per-window extra data. */
© wc.hInstance = hInstance; /* Application that owns the class. */

® wc.hlIcon = LoadIcon(NULL, IDI_APPLICATION);

@ wc.hCursor = LoadCursor(NULL, IDC_ARROW);

©® wc.hbrBackground = GetStockObject (WHITE_BRUSH);

© wc.1pszMenuName = "GenericMenu"; /* Name of menu in .RC file. */

® wc.1pszClassName = "GenericWClass"; /* Name used with CreateWindow. */

/* Register the window class and return success/failure code. */

return (RegisterC]ass(&Wc));

In this example of a window class structure:

© The example first declares that this is a WNDCLASS structure named “wc”.
@ The style field is set to NULL.

© The IpfnWndProc field contains a pointer to the window function named
MainWndProc. This means that the application’s MainWndProc function will

2-8 Guide to Programming

then receive any messages that Windows sends to that window, and will be
the function that carries out tasks for that window.

To assign the address of the MainWndProc function to the IpfaWndProc
field, you must declare the function somewhere before the assignment state-
ment. Windows applications should use function prototypes for function de-
claration in order to take advantage of the C Compiler’s automatic
type-checking and casting. The following is the correct prototype for a
window function with the name MainWndProc:

long FAR PASCAL MainWndProc (HWND, unsigned, WORD, LONG);

Note that the MainWndProc function must be exported in the module-
definition file.

The cbClsExtra and cbWndExtra fields are set to zero, so there is no addi-
tional storage space associated with either the window class or each in-
dividual window. (You can set these fields to allocate additional storage
space which you can then use to store information on a per-window basis.
See Chapter 16, “More Memory Management,” for information on using this
extra space.)

The hInstance field is set to hInstance, the instance handle that Windows
passed to the WinMain function when the application was started.

The hlcon field receives a handle to a built-in icon. The LoadIcon function
can return a handle to either a built-in or an application-defined icon. In this
case, the NULL and IDI_APPLICATION arguments specify the built-in
application icon. (Most applications use their own icons instead of the built-in
application icon. Chapter 5, “Icons,” explains how to create and use your own
icons.)

The hCursor field receives a handle to the standard arrow-shaped cursor
(pointer). The LoadCursor function can return a handle to either a built-in or
an application-defined cursor. In this case, the NULL and IDC. ARROW ar-
guments specify the built-in arrow cursor. (Some applications use their own
cursors instead of built-in cursors. Chapter 6, “The Cursor, the Mouse, and
the Keyboard,” explains how to create and use your own cursors.)

The hbrBackground field determines the color of the brush that Windows
will use to paint the window’s background. In this case, the application uses
the GetStockObject function to get the handle of the standard white back-
ground brush.

A Generic Windows Application 2-9

© The IpszMenuName field specifies the name of the menu for this window
class, “GenericMenu.” This menu will then appear for all windows in this
class. If the window class has no menu, this field is set to NULL.

@ The IpszClassName field specifies “GenericWClass™ as the class name for
this window class.

Registering the Window Class

After you assign values to the WNDCLASS structure fields, you register the
class by using the RegisterClass function. If registration is successful, the func-
tion returns TRUE; otherwise, it returns FALSE. Make sure you check the return
value because you cannot create your windows without first registering the
window class.

Although the RegisterClass function requires a 32-bit pointer to a WNDCLASS
structure, in the previous example, the address operator (&) generates only a 16-
bit address. This is an example of an implicit cast carried out by the C Compiler.
The Windows include file contains prototypes for all Windows functions. These
prototypes specify the correct types for each function parameter, and the com-

- piler casts to these types automatically.

2.3.5 Creating a Window

You can create a window by using the CreateWindow function. This function
tells Windows to create a window that has the specified style and belongs to the
specified class. CreateWindow takes several parameters:

® The name of the window class

® The window title

® The window’s style

® The window position

& The parent window handle

® The menu handle

® The instance handle

® Thirty-two bits of additional data

2-10 Guide to Programming

S
The following example creates a window belonging to the “GenericWClass”
window class:

/* Create a main window for this application instance. */

hWnd = CreateWindow(

@ "GenericWClass", /* See RegisterClass() call. */

® "Generic Sample Application”,/* Text for window title bar. */

© WS_OVERLAPPEDWINDOW, /* Window style. */

O CW_USEDEFAULT, /* Default horizontal position. */
CW_USEDEFAULT, /* Default vertical position. */
CW_USEDEFAULT, /* Default width. */

CW_USEDEFAULT, /* Default height. */

O NULL, /* Overlapped windows have no parent. */
O NULL, /* Use the window class menu. */

@ hinstance, /* This instance owns this w1ndow */
O NuLL /* Pointer not needed. */

This example creates an overlapped window that has the style WS_OVER-
LAPPEDWINDOW and that belongs to the window class created by the code in
the preceding example. In this example:

O The first parameter of the CreateWindow function specifies the name of the
window class Windows should use when creating the window. In thls ex-
ample, the window class name is “GenericWClass.”

® The second parameter of CreateWindow specifies the window caption as
“Generic Sample Application”.

® The WS_OVERLAPPEDWINDOW style specifies that the window is a nor-
mal “overlapped” window.

O The next four CreateWindow parameters specify the position and dimen-
sions of the window. Since the CW_USEDEFAULT value is specified for the
position, width, and height parameters, Windows will place the window at a
default position and give it a default width and height. The default position
and dimensions depend on the system and on how many other applications
have been started. (Note that Windows does not display the window until you
call the ShowWindow function.)

© When you create a window, you can specify its parent (used with controls
and child windows). Because an overlapped window does not have a parent,
this parameter is set to NULL.

@ If you specify a menu when you create a window, the menu overrides the
class menu (if any) for the window. Because this window will use the class
menu, this parameter is set to NULL.

©@ You must specify the instance of the application that is creating the window.
Windows uses this instance to make sure that the window function supporting
the window uses the data for this instance.

A Generic Windows Application 2-11

O The last parameter is for additional data to be used by the window function
when the window is created. This window takes no additional data, so the par-
ameter is set to NULL.

When CreateWindow successfully creates the window, it returns a handle to the
new window. You can use the handle to carry out tasks on the window, such as
showing it or updating its client area.

If CreateWindow cannot create the window, it returns NULL. Whenever you
create a window, you should check for a NULL handle and respond appro-
priately. For example, in the WinMain function, if you cannot create your appli-
cation’s main window, you should terminate the application; that is, return
control to Windows.

2.3.6 Showing and Updating a Window

Although CreateWindow creates a window, it does not automatically display
the window. Instead, it is up to you to display the window by using the Show-
Window function and to update the window’s client area by using the
UpdateWindow function.

The ShowWindow function tells Windows to display the new window. For the
application’s main window, WinMain should call ShowWindow soon after creat-
ing the window, and should pass the nCmdShow parameter to it. The nCmdShow
parameter tells the application whether to display the window as an open window
~or as an icon. After calling ShowWindow, WinMain should call the Update-
Window function. The following example illustrates how to show and update a

window:
ShowWindow(hWnd, nCmdShow); /* Shows the window */
UpdateWindow(hWnd); /* Sends WM_PAINT message*/

NOTE Normally, the nCmdShow parameter of the ShowWindow function can be set to any
of the constants beginning with “SW_" that are defined in WINDOWS.H. The one exception
is when the application calls ShowWindow to display its main window; then, it uses the
nCmdShow parameter from the WinMain function. (See the Reference, Volume 1, for a
complete list of these constants.)

~ 2.3.7 Creating the Message Loop

Once you have created and displayed a window, the WinMain function can begin
its primary duty: to read messages from the application queue and dispatch them
to the appropriate window. WinMain does this by using a message loop. A
“message loop” is a program loop, typically created by using a while statement,
in which WinMain retrieves messages and dispatches them.

2-12° Guide to Programming

Windows does not send input directly to an application. Instead, it places all
mouse and keyboard input into an application queue (along with messages posted
by Windows and other applications). The application must read the application
queue, retrieve the messages, and dispatch them so that the appropriate window
function can process them.

The simplest possible message loop consists of the GetMessage and Dispatch-
Message functions. This loop has the following form:

MSG msg;

while (GetMessage(&msg, NULL, NULL, NULL)) ¢
' DispatchMessage(&msg);
}

In this example, the GetMessage function retrieves a message from the applica-
tion queue and copies it into the message structure named “msg”. The NULL ar-
guments indicate that all messages should be processed. The DispatchMessage
function directs Windows to send each message to the appropriate window func-
tion. Every message an application receives, except the WM_QUIT message,
belongs to one of the windows created by the application. Since an application
must not call a window function directly, it instead uses the DispatchMessage
function to pass each message to the appropriate function.

Depending on what your application does, you may need a more complicated
message loop. In particular, to process character input from the keyboard, you
must translate each message you receive by using the TranslateMessage func-
tion. Your message loop should then look like this:

while (GetMessage(&msg, NULL, NULL, NULL)) {
TranstateMessage(&msg); ’
DispatchMessage(&msg);

}

The TranslateMessage function looks for matching WM_KEYDOWN and
WM_KEYUP messages and generates a corresponding WM_CHAR message for
the window that contains the ANSI character code for the given key.

A message loop may also contain functions to process menu accelerators and key
strokes within dialog boxes. Again, this depends on what your application actu-
ally does.

Windows places input messages in an application queue when the user moves the
cursor in the window, presses or releases a mouse button when the cursor is in
the window, or presses or releases a keyboard key when the window has the
input focus. The window manager first collects all keyboard and mouse input in a
system queue, then copies the corresponding messages to the appropriate applica-
tion queue.

A Generic Windows Application 2-13

The rhessage loop continues until GetMessage returns NULL, which it does only
if it retrieves the WM_QUIT message. This message is a signal to terminate the
application, and is usually posted (placed in the application queue) by the
window function of the application’s main window.

2.3.8 Yielding Control

Windows is a non-preemptive multitasking system. This means that Windows
cannot take control from an application. The application must yield control
before Windows can reassign control to another application.

To make sure that all applications have equal access to the CPU, the Get-
Message function automatically yields control when there are no messages in an
application queue. This means that if there is no work for the application to do,
Windows can give control to another application. Since all applications have a
message loop, this implicit yielding of control guarantees sharing of control.

In general, you should rely on the GetMessage function to yield for your applica-
tion. Although a function (Yield) is available that explicitly yields control, you
should avoid using it. Since there might be times when your application must
keep control for a long time, such as when writing a large buffer to a disk file,
you should try to minimize the work and provide a visual clue to the user that a
lengthy operation is underway.

2.3.9 Terminating an Application

Your application terminates when the WinMain function returns control to
Windows. You can return control at any time before starting the message loop.
Typically, an application checks each step leading up to the message loop to
make sure each window class is registered and each window is created. If there is
an error, the application can display a message before terminating.

Once the WinMain function enters the message loop, however, the only way to
terminate the loop is to post a WM_QUIT message in the application queue by
using the PostQuitMessage function. When the GetMessage function retrieves a
WM_QUIT message, it returns NULL, which terminates the message loop. Typi-
cally, the window function for the application’s main window posts a
WM_QUIT message when the main window is being destroyed (that is, when the
window function has received a WM_DESTROY message).

Although WinMain specifies a data type for its return value, Windows does not
currently use the return value. While you are debugging an application, however,
a return value can be helpful. In general, you might use the same return-code con-
ventions that standard C programs use: zero for successful execution, nonzero for
error. The PostQuitMessage function lets the window function specify the return
value. This value is then copied to the wParam parameter of the WM_QUIT
message. To return this value after terminating the message loop, use the follow-
ing statement:

2-14 Guide to Programming

return (msg.wParam); /* Returns the value from PostQuitMessage */

Although standard C programs typically clean up and free-resources just prior to
termination, Windows applications should clean up as each window is destroyed.
If you do not clean up as each window is destroyed, you lose some data. For ex-
ample, when Windows itself terminates, it destroys each window, but does not re-
turn control to the application’s message loop. This means that the loop never
retrieves the WM_QUIT message and the statements after the loop are not ex-
ecuted. (Windows does send each application a message before terminating, so
an application does have an opportunity to carry out tasks before terminating.

See Chapter 10, “File Input and Output,” for an illustration of the WM_QUERY-
ENDSESSION message.)

2.3.10 Initialization Functions

Most applications use two locally defined initialization functions:

® The main initialization function carries out work that only needs to be done
once for all instances of the application (for example, registering window
classes).

® The instance initialization function performs tasks that must be done for
every instance of the application.

Using initialization functions helps to keep the WinMain function simple and
readable; it also organizes initialization tasks so that they can be placed in a sepa-
rate code segment and discarded after use. The Generic application does not dis-
card its initialization functions. (In Chapter 15, “Memory Management,” you will
encounter a sample application, Memory, that does discard its initialization func- -
tions.)

The Generic application’s main initialization function looks like the following:

BOOL InitApplication(hInstance)
HANDLE hInstance; /* current instance */
{

WNDCLASS wc;

/* Fill in window class structure with parameters that describe the */
/* main window. */

wc.style = NULL; /* Class style(s). */
wc.1pfnWndProc = MainWndProc; /* Function to retrieve messages for */
/* windows of this class. */

wc.cbClsExtra = @; /* No per-class extra data. */
wc.cbWndExtra = 2; /* No per-window extra data. */
wc.hInstance = hlnstance; /* App]icatioh that owns the class. */

wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);

A Generic Windows Application 2-15

wc.hCursor = LoadCursor(NULL, IDC_ARROW);

wc.hbrBackground = GetStockObject(WHITE_BRUSH);

wc.1pszMenuName = "GenericMenu"; /* Name of menu resource in .RC file. */
wc.1pszClassName = "GenericWClass"; /* Name used in call to CreateWindow. */
/* Register the window class and return success/failure code. */

return (RegisterClass(&wc));

Generic’s instance initialization function looks like the following:

BOOL InitInstance(hInstance, nCmdShow)

HANDLE hinstance; /* Current instance identifier. */

int nCmdShow; /* Param for first ShowWindow() call. */
{

HWND hWnd; /* Main window handle. */

/* Save the instance handle in static variable, which will be used in */
/* many subsequence calls from this application to Windows. */

hinst = hInstance;
/* Create a main window for this application instance. */

hWnd = CreateWindow(

"GenericWClass", /* See RegisterCliass() call. */
"Generic Sample Application", /* Text for window title bar. */
WS_OVERLAPPEDWINDOW, /* Window style. */

CW_USEDEFAULT, /* Default horizontal position. */
CW_USEDEFAULT, /* Default vertical position. */
CW_USEDEFAULT, /* Default width. */

CW_USEDEFAULT, /* Default height. */

NULL, /* Overlapped windows have no parent. */
NULL, /* Use the window class menu. */
hInstance, /* This instance owns this window. */
NULL /* Pointer not needed. */

N
/* 1f window could not be created, return "failure" */

if (!thWnd)
return (FALSE);

/* Make the window visible; update its client area; and return "success™ */
ShowWindow(hWnd, nCmdShow); /* Show the window */

UpdateWindow(hWnd); /* Sends WM_PAINT message */
return (TRUE);

2-16 Guide to Programming

2.3.11 The Application Command-Line Parameter

You can examine the command line that starts your application by using the
IpCmdLine parameter. The [pCmdLine parameter points to the start of a character
array that contains the command exactly as it was typed by the user. To extract
filenames or options from the command line, you need to parse the command
line into individual values. Alternatively, you can use the __argc and __argv
variables. For more information, see Chapter 14, “C and Assembly Language.”

2.4 The Window Function

Every window must have a window function. The window function responds to
input and window-management messages received from Windows. The window
function can be a short function, processing only a message or two, or it can be
complex, processing many types of messages for a variety of application
windows.

A window function has the following form:

long FAR PASCAL MainWndProc(hWnd, message, wParam, 1Param)

HWND hWnd; /* window handle */
unsigned message; /* type of message */
WORD wParam; /* additional information */
LONG TParam; /* additional information */

{
switch (message) {

default: /* Passes it on if unprocessed */
return (DefWindowProc(hWnd, message,
wParam, 1Param));
}
return (NULL);
}

The window function uses the PASCAL calling convention. Since Windows
calls this function directly and always uses this convention, PASCAL is re-
quired. The window function also uses the FAR key word in its definition, since
Windows uses a 32-bit address whenever it calls a function. Also, you must
name the window function in an EXPORTS statement in the application’s
module-definition file. See Section 2.6, “Creating a Module-Definition File,” for
more information on module-definition files.

The window function receives messages from Windows. These may be input
messages that have been dispatched by the WinMain function or window-

A Generic Windows Application 2-17

management messages that come directly from Windows. The window function
must examine each message; it then either carries out some specific action based
on the message, or passes the message back to Windows for default processing
through the DefWindowProc function.

The message parameter defines the message type. You use this parameter in a
switch statement to direct processing to the correct case. The /[Param and
wParam parameters contain additional information about the message. The
window function typically uses these parameters to carry out the requested ac-
tion. If a window function doesn’t process a message, it must pass it to the Def-
WindowProc function. Passing the message to DefWindowProc ensures that
any special actions that affect the window, the application, or Windows itself can
be carried out.

Most window functions process the WM_DESTROY message. Windows sends
this message to the window function immediately after destroying the window.
The message gives the window function the opportunity to finish its processing
and, if it is the window function for the application’s main window, to post a
WM_QUIT message in the application queue. The following example shows
how the main window function should process this message:

case WM_DESTROY:
PostQuitMessage(d);
break;

The PostQuitMessage function places a WM_QUIT message in the applica-
tion’s queue. When the GetMessage function retrieves this message, it will termi-
nate the message loop and the application.

A window function receives messages from two sources. Input messages come
from the message loop and window-management messages come from Windows.
Input messages correspond to mouse input, keyboard input, and sometimes timer
input. Typical input messages are WM_KEYDOWN, WM_KEYUP,
WM_MOUSEMOVE, and WM_TIMER, all of which correspond directly to
hardware input.

Windows sends window-management messages directly to a window function
without going through the application queue or message loop. These window
messages are typically requests for the window function to carry out some action,
such as painting its client area or supplying information about the window. The
messages may also inform the window function of changes that Windows has
made to the window. Some typical window-management messages are
WM_CREATE, WM_DESTROY, and WM_PAINT.

The window function should return a long value. The actual value to be returned
depends on the message received. The Reference, Volume 1, describes the return
values when they are significant (for most messages, the return value is arbi-
trary). If the window function doesn’t process a message, it should return the
DefWindowProc function’s return value. :

2-18 Guide to Programming

2.5 Creating an About Dialog Box

The System Application Architecture, Common User Access: Advanced Interface
Design Guide recommends that you include an About dialog box with every
application. A “dialog box” is a temporary window that displays information or
prompts the user for input. The About dialog box displays such information as
the application’s name and copyright information. The user tells the application
to display the About dialog box by choosing the About command from a menu.
(See the System Application Architecture, Common User Access: Advanced Inter-
face Design Guide for more information about design conventions for the About
dialog box.)

You create and display a dialog box by using the DialogBox function. This func-
tion takes a dialog-box template, a procedure-instance address, and a handle to a
parent window, and creates a dialog box through which you can display output
and prompt the user for input.

To display and use an About dialog box, follow these steps:

1. Create a dialog-box template and add it to your resource script file.
2. Add a dialog function to your C-language source file.

3. Export the dialog function in your module-definition file.

4. Add a menu to your application’s resource script file.

5. Process the WM_COMMAND message in your application code.

Once you have completed these steps, the user can display the dialog box by
choosing the About command from your application’s menu. The following sec-
tions explain these steps in more detail.

2.5.1 Creating a Dialog-Box Template

A dialog-box template is a textual description of the dialog style, contents, shape,
and size. You can create a template by hand or by using the Windows version 3.0
Dialog Editor. In this example, the template is created by hand. Tools explains
how to use the Dialog Editor to create a dialog box.

You create a dialog-box template by creating a resource script file. A resource
script file contains definitions of resources to be used by the application, such as
icons, cursors, and dialog-box templates. To create an About dialog-box tem-
plate, you use a DIALOG statement and fill it with control statements, as shown
in the following example:

@ AboutBox DIALOG 22, 17, 144, 75

® STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About Generic"

A Generic Windows Application 2-19

© BEGIN
O CTEXT "Microsoft Windows" -1, @, 5, 144, 8
CTEXT "Generic Application” -1, @, 14, 144, 8
CTEXT "Version 3.0" -1, @, 34, 144, 8
© DEFPUSHBUTTON "OK" IDOK, 53, 59, 32, 14, WS_GROUP
END ‘

In this example:

O The DIALOG statement starts the dialog-box template. The name,
AboutBox, identifies the template when the DialogBox function is used to
create the dialog box. The box’s upper-left corner is placed at the point
(22,17) in the parent window’s client area. The box is 144 units wide by 75
units high. The horizontal units are /4 of the dialog base width unit; the verti-
cal units are 18 of the dialog base height unit. The current dialog base units
are computed from the height and width of the current system font. The
GetDialogBaseUnits function returns the dialog base units in pixels.

® The STYLE statement defines the dialog-box style. This particular style is a
window with a framed border, a caption bar, and a system menu, which is the
typical style used for modal dialog boxes.

©® The BEGIN and END statements mark the beginning and end of the control
definitions. The dialog box contains text and a default push button. The push
button lets the user send input to the dialog function to terminate the dialog
box.

The statements, strings, and integers contained between the BEGIN and
END statements describe the contents of the dialog box. (Because you would
normally create such a description using the Dialog Editor, this guide does
not describe the numbers and statements that make up the description. See
Tools for a complete description of how to use the Dialog Editor.)

O CTEXT creates a rectangle with the quoted text centered in a rectangle. This
statement appears several times for the various texts that appear in the dialog
box.

© DEFPUSHBUTTON creates a push button that allows the user to give a de-
fault response; in this case, to choose the “OK” button, causing the dialog box
to disappear.

The DS_MODALFRAME, WS_CAPTION, WM_SYSMENU, IDOK, and
WS_GROUP constants used in the dialog-box template are defined in the
Windows include file. You should include this file in the resource script file by
using the #include directive at the beginning of the script file.

The statements in this file were created with a text editor, and were based on a
dialog box used in another application. You can create many such resources by
copying them from other applications and modifying them using a text editor.
You can also create new dialog boxes by using the Dialog Editor. (The files

2-20 Guide to Programming

created by the Dialog Editor contain statements that are somewhat different from
the statements shown here, and such files usually are edited only by using the
Dialog Editor. For more information about using the Dialog Editor to create
dialog boxes, see To0ls.)

2.5.2 Creating an Include File

It is often useful to create an include file in which to define constants and func-
tion prototypes for your application. Most applications consist of at least two
source files that share common constants: the C-language source file and the
resource script file. Since the Resource Compiler (RC) carries out the same pre-
processing as the C Compiler, it is useful and convenient to place constant defini-
tions in a single include file and then include that file in both the C-language
source file and the resource script file.

For example, for the Generic application, you can place the function prototypes
for the WinMain, MainWndProc, About, InitApplication, and InitInstance func-
tions, and the definition of the menu ID for the About command, in the
GENERIC.H include file. The file should look like this:

fidefine IDM_ABOUT 100

int PASCAL) WinMain (HANDLE, HANDLE, LPSTR, int);
BOOL InitApplication (HANDLE);

BOOL . InitInstance (HANDLE, int);

Tong FAR PASCAL MainWndProc (HWND, unsigned, WORD,
LONG) ;

BOOL FAR PASCAL About (HWND, unsigned, WORD, LONG);

Since GENERIC.H refers to Windows data types, you must include it after
WINDOWS.H, which defines those data types. That is, the beginning of your
source files should look like this:

#inctude "WINDOWS.H" /* required for all Windows applications */
f#finclude "GENERIC.H" /* specific to this program */

2.5.3 Creating a Dialog Function

A “dialog box” is a special kind of window whose window procedure is built into
Windows. For every dialog box an application has, the application must have a
dialog function. Windows’ built-in window procedure calls a dialog function to
handle input messages that can be interpreted only by the application.

The function that processes input for Generic’s About dialog box is called About.
This function, like other dialog functions, uses the same parameters as a window
function, but processes only messages that are not handled by Windows’ default
processing. (The dialog function returns TRUE if it processes a message, and
FALSE if it does not.) The dialog function, like the window function, uses the
PASCAL calling convention and the FAR key word.in its definition. You must

A Generic Windows Application 2-21

name the dialog function in an EXPORTS statement in the application’s module-
definition file. As with a window function, you must not call a dialog function
directly from your application.

Unlike a window function, a dialog function usually processes only user-input
messages, such as WM_COMMAND, and must not send unprocessed messages
to the DefWindowProc function. Generic’s dialog function, About, looks like

this:
BOOL FAR PASCAL About(hDlg, message, wParam, 1Param)
HWND hD1g; /* window handle of the dialog box */
unsigned message; /* type of message */
WORD wParam; /* message-specific information */

LONG 1Param;
{
switch (message) {
case WM_INITDIALOG: /* message: initialize dialog box */
return (TRUE);

case WM_COMMAND: /* message: received a command */
if (wParam == IDOK|| /* "OK" box selected? */
wParam == IDCANCEL) { /* System menu close command? */
EndDialog(hDlg, TRUE); /* Exits the dialog box */
return (TRUE);
}
break;
}
return (FALSE); /* Didn't process a message */

The About dialog function processes two messages: WM_INITDIALOG and
WM_COMMAND. Windows sends the WM_INITDIALOG message to a dialog
function to let the function prepare before displaying the dialog box. In this case,
WM_INITDIALOG returns TRUE so that the “focus” will be passed to the first
control in the dialog box that has the WS_TABSTOP bit set (this control will be
the default push button). If WM_INITDIALOG had returned FALSE, then
Windows will not set the focus to any control.

In contrast to WM_INITDIALOG messages, WM_COMMAND messages are a
result of user input. About responds to input to the OK button or the system-
menu Close command by calling the EndDialeg function, which directs
Windows to remove the dialog box and continue execution of the application.
The EndDialog function is used to terminate dialog boxes.

2.5.4 Defining a Menu with an About Command

Now that you have an About dialog box, you need some way to let the user tell
your application when to display the dialog box. In most applications, the About
command would appear as the last command on the application’s Help menu. If
the application does not have a Help menu, then it usually appears in the first

2-22 Guide to Programming

menu, most often the File menu. In Generic, About is the only command, so it ap-
pears as the only item on the Help menu.

- The most common way to create a menu is to define it in the resource script file.

Put the following statements in GENERIC.RC:

GenericMenu MENU

BEGIN.
POPUP "&Help"
BEGIN
MENUITEM "About Generic...", IDM_ABOUT
END
END

These statements create a menu named “GenericMenu” with a single command
on it, “Help.” The command displays a pop-up menu with the single menu item
“About Generic...”.

Notice the ampersand (&) in the “&Help” string. This character immediately
precedes the command mnemonic. A mnemonic is a unique letter or digit with
which the user can access a menu or command. It is part of Windows’ direct-
access method. If a user presses the key for the mnemonic, together with the ALT
key, Windows selects the menu or chooses the command. In the case of
“&Help”, Windows removes the ampersand and places an underscore under the
letter “H” when displaying the menu.

The user will see the About command when he or she displays the Help menu. If
the user chooses the About command, Windows sends the window function a

- WM_COMMAND message containing the About command’s menu ID; in this

case, IDM_ABOUT.

2.5.5 Pracessing the WM_COMMAND Message

Now that you’ve added a command to Generic’s menu, you need to be able to re-
spond when the user selects the command. To do this, you need to process the
WM_COMMAND message. Windows sends this message to the window func-
tion when the user chooses a command from the window’s menu. Windows
passes the menu ID identifying the command in the wParam parameter, so you

can check to see which command was chosen. (In this case, you can use if and

else statements to direct the flow of control depending on the value of the
wParam parameter. As your application’s message-processing becomes more
complex, you may want to use a switch statement instead.) You want to display
the dialog box if the parameter is equal to IDM_ABOUT, the About command’s

~ menu ID. For any other value, you must pass the message on to the DefWindow-

Proc function. If you do not, you effectively disable all other commands on the
menu.

A Generic Windows Application 2-23

The WM_COMMAND case should look like this:
FARPROC TpProcAbout;

case WM_COMMAND: /* message: command from a menu */
if (wParam == IDM_ABOUT) {

@ 1pProcAbout = MakeProcInstance(About, hinst);

® DialogBox(hInst, /* current instance */
"AboutBox", /* resource to use */
hWnd, /* parent handle */
1pProcAbout); /* About() inst. address */
© FreeProcInstance(1pProcAbout);
break; :

}

else /* Let Windows process it */

return (DefWindowProc(hWnd, message, wParam, 1Param));

© Before displaying the dialog box, you need the procedure-instance address of
the dialog function. You create the procedure-instance address by using the
MakeProcInstance function. This function binds the data segment of the cur-
rent application instance to a function pointer. This guarantees that when
Windows calls the dialog function, the dialog function will use the data in the
current instance and not some other instance of the application.

MakeProcInstance returns the address of the procedure instance. This value
should be assigned to a pointer variable that has the FARPROC type.

@ The DialogBox function creates and displays the dialog box. It requires the
current application’s instance handle and the name of the dialog-box tem-
plate. It uses this information to load the dialog-box template from the exe-
cutable file. DialogBox also requires the handle of the parent window (the
window to which the dialog box belongs) and the procedure-instance address
of the dialog function. '

DialogBox does not return control until the user has closed the dialog box.
Typically, the dialog box contains at least a push-button control to permit the
user to close the box.

© When the DialogBox function returns, the procedure-instance address of the
dialog function is no longer needed, so the FreeProcInstance function frees
the address. This invalidates the content of the pointer variable, making it an
error to attempt to use the value again.

2-24 Guide to Programming

2.6 Creating a Module-Definition File

Every Windows application needs a module-definition file. This file defines the
name, segments, memory requirements, and exported functions of the applica-
tion. For a simple application, like Generic, you need at least the NAME,
STACKSIZE, HEAPSIZE, EXETYPE, and EXPORTS statements. However,
most applications include a complete definition of the module, as shown in the
following example:

;module-definition file for Generic — used by LINK.EXE

@ NAME Generic ; application’'s module name

® DESCRIPTION 'Sample Microsoft Windows. Application'

© EXETYPE WINDOWS ; Required for all Windows applications

O sSTUB 'WINSTUB.EXE ; Generates error message if applicatior
; 1s run without Windows

© CODE MOVEABLE DISCARDABLE ; code can be moved in memory and
; discarded/reloaded

;DATA must be MULTIPLE if program can be invoked more than once
O DATA MOVEABLE MULTIPLE

@ HEAPSIZE 1024
@ STACKSIZE 5120 ; recommended minimum for Windows applications

; A11 functions that will be called by any Windows routine
; MUST be exported.

© EXPORTS
MainWndProc @1 ; name of window-processing function
AboutDlgProc @2 ; name of About processing function

The semicolon is the delimiter for comments in the module-definition file.

In this example:

©® The NAME statement defines the name of the application. This name (in the
example, Generic) is used by Windows to identify the application. The
NAME statement is required.

® The DESCRIPTION statement is an optional statement that places the
message “Sample Microsoft Windows Application” in the application’s exe-
cutable file. This statement is typically used to add version control or copy-
right information to the file.

A Generic Windows Application 2-25

® The EXETYPE statement marks the executable file as either a Windows or
an 0S/2 executable file. Windows application must contain the statement
EXETYPE WINDOWS, since, by default, the linker creates executable files
for the MS OS/2 environment.

@ The STUB statement specifies another optional file that defines the exe-
cutable stub to be placed at the beginning of the file. When a user tries to run
the application without Windows, the stub is executed instead. Most
Windows applications use the WINSTUB.EXE executable file supplied with
the SDK. WINSTUB displays a warning message and terminates the applica-
tion if the user attempts to run the application without Windows. You can
also supply your own executable stub.

© The CODE statement defines the memory attributes of the application’s code
segment. The code segment contains the executable code that is generated
when the GENERIC.C file is compiled. Generic is a small-model application
with only one code segment, which is defined as MOVEABLE DISCARD-
ABLE. If the application is not running and Windows needs additional space
in memory, Windows can move the code segment to make room for other
segments and, if necessary, discard it. A discarded code segment is automati-
cally reloaded on demand by the Windows operating system.

O The DATA statement defines the memory requirements of the application’s
data segment. The data segment contains storage space for all the static varia-
bles declared in the GENERIC.C file. It also contains space for the program
stack and local heap. The data segment, like the code segment, is
MOVEABLE. The MULTIPLE key word directs Windows to create a new
data segment for the application each time the user starts a new instance of
the application. Although all instances share the same code segment, each has
its own data segment. An application must have the MULTIPLE key word if
the user can run more than one copy of it at a time.

@ The HEAPSIZE statement defines the size, in bytes, of the application’s
local heap. Generic uses its heap to allocate the temporary structure used to
register the window class, so it specifies 1024 bytes of storage. Applications
that use the local heap frequently should specify larger amounts of memory.

© The STACKSIZE statement defines the size, in bytes, of the application’s
stack. The stack is used for temporary storage of function arguments. Any
application, like Generic, that calls its own local function must have a stack.
Generic specifies 5120 bytes of stack storage, the recommended minimum for
a Windows application.

© The EXPORTS statement defines the names and ordinal values of the func-

" tions to be exported by the application. Generic exports its window function,
MainWndProc, which has ordinal value 1 (this is an identifier; it could be any
integer, but usually such values are assigned sequentially as the exports are
listed). You must export all functions that Windows will call (except the Win-
Main function). These functions are referred to as “callback” functions. Call-
back functions include the following:

2-26 Guide to Programming ;
L .__]

= All window functions

m All dialog functions

m Special callback functions, such as enumeration functions, that certain
Windows API functions require

m Any other function that will be called from outside your application
For more information on callback functions, see Chapter 14, “C and Assembly
Language.”

For more information on module-definition statements, see the Reference,
Volume 2.

2.7 Putting Generic Together

At this point you are ready to put the sarﬁple applicatioh, Generic, together. (You
can find copies of the Generic source files on the SDK Sample Source Code
disk.)

To create the Generic application, you need to do the following:

1. Create the C-language source (.C) file.

2. Create the header (.H) file.

3. Create the resource script (.RC) file.

4. Create the module-definition (.DEF) file.

5. Create the make file.

6. Run the MAKE utility on the file to compile and link the application.

The following sections describe each step.

NOTE Rather than typing the code presented in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

2.7.1 Create the C-Language Source File

The C-language source file contains the WinMain function, the MainWndProc
window function, the About dialog function, and the InitApplication and Init-
Instance initialization functions. Name the file GENERIC.C.

The contents of the file GENERIC.C look like this:

U

A Generic Windows Application 2-27

/***

PROGRAM: GENERIC.C

PURPOSE: Generic template for Windows applications

FUNCTIONS:

WinMain() - calls initialization function, processes message 100p
InitApplication() - initializes window data and registers window
InitInstance() - saves instance handle and creates main window
MainWndProc() - processes messages

About() - processes messages for "About" dialog box

COMMENTS:

Windows can have several copies of your application running
at the same time. The variable hinst keeps track of which
instance this application is so that processing will be to
the correct window.

/**/

#include "windows.h" /* required for all Windows applications */
#include "generic.h" /* specific to this program */
HANDLE hlinst; /* current instance */

/**

FUNCTION: WinMain(HANDLE, HANDLE, LPSTR, int)
PURPOSE: calls initialization function, processes message loop

COMMENTS:

Windows recognizes this function by name as the initial entry point
for the program. This function calls the application initialization
routine, if no other instance of the program is running, and always
calls the instance initialization routine. It then executes a message
retrieval and dispatch loop that is the top-level control structure
for the remainder of execution. The loop is terminated when a WM_QUIT
message is received, at which time this function exits the application
instance by returning the value passed by PostQuitMessage().

If this function must abort before entering the message loop, it
returns the conventional value NULL.

**/

int PASCAL WinMain(hInstance, hPrevInstance, 1pCmdLine, nCmdShow)

HANDLE hlInstance: /* current instance */
HANDLE hPrevInstance; i /* previous instance */
LPSTR 1pCmdLine; /* command line */

int nCmdShow; - /* show-window type (open/icon) */

2-28 Guide fa Programming

}

/**

Fokkdkokdkdkkdokkkk ok kkkokkk bk ok dokdkkdkkdkkkkdkdkkkkkdkhkkhkkkkkdhkhkhhkkhkkkhdkkkkkkhhkkhkk /

MSG msg; /*

if (!hPrevInstance)) /*

if (!InitApplication(hInstance)) /* Initialize shared things */
return (FALSE); /* Exits if unable to initialize
/* Perform initializations that apply to a specific instance */
if (!InitInstance(hInstance, nCmdShow))
return (FALSE);
/* Acquire and dispatch messages until a WM_QUIT message is received. */
while (GetMessage(&msg, /* message structure */
NULL, /* handle of window receiving the message */
CNULL, /* lTowest message to examine */
NULL)) /* highest message to examine */
{
TranslateMessage(&msg); /* Translates virtual key codes */
DispatchMessage(&msg); /* Dispatches message to window */

}

message. */

Other instances of app running? */

return (msg.wParam); /* Returns the value from PostQuitMessage */

FUNCTION: InitApplication(HANDLE)

PURPOSE: Initializes window data and registers window class

COMMENTS:

This function is called at initialization time only if no other
instances of the application are running. This function performs

initialization tasks that can be done once for any number of -running

instances.

In this case, we initialize a window class by filling out & data
structure of type WNDCLASS and calling the Windows RegisterClass()

function. Since all instances of this application use the same window
class, we only need to do this when the first instance is initialized.

BOOL InitApplication(hInstance)
"HANDLE hlInstance;

{

WNDCLASS wc;

/* current instance */

/* Fill in window class structure with parameters that describe the

/* main window. */

*/

A Generic Windows Application 2-29

}

wc.style = NULL; /* Class style(s). */

wc.1pfnWndProc = MainWndProc; /* Function to retrieve messages for */
/* windows of this class. */

wc.cbClsExtra = 0; /* No per-class extra data. */

wc.cbhWndExtra = 0; /* No per-window extra data. */

wc.hInstance = hlnstance; /* Application that owns the class. */

wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);

wc.hCursor = LoadCursor(NULL, IDC_ARROW);

wc.hbrBackground = GetStockObject(WHITE_BRUSH);

wc.1pszMenuName = "GenericMenu"; /* Name of menu resource in .RC file. */
wc.lpszClassName = "GenericWClass";/* Name used in call to CreateWindow. */

/* Register the window class and return success/failure code. */

return (RegisterCiass(&wc));

/**

FUNCTION: InitInstance(HANDLE, int)

PURPOSE: Saves instance handle and creates main window

COMMENTS:
This function is called at initialization time for every instance of
this application. This function performs initialization tasks that

cannot be shared by multiple instances.

In this case, we save the instance handle in a static variable and
create and display the main program window.

**/

BOOL InitInstance(hIinstance, nCmdShow)

HANDLE hInstance; /* Current instance identifier. */
int nCmdShow; /* Param for first ShowWindow() call. */
HWND hWnd; /* Main window handle. */

/* Save the 1n§tance handle in static variable, which will be used in */
/* many subsequence calls from this application to Windows. */

hinst = hinstance;
/* Create a main window for this application instance. */

hWnd = CreateWindow(

"GenericWClass", /* See RegisterClass() call. */
"Generic Sample Application”, /* Text for window title bar. */
WS_OVERLAPPEDWINDOW, /* Window style. */

CW_USEDEFAULT, /* Default horizontal position. */
CW_USEDEFAULT, /* Default vertical position. */

CW_USEDEFAULT, /* Default width. */

2-30 Guide to Programming

CW_USEDEFAULT, /* Default height. */

NULL, . /* Overlapped windows have no parent. */
NULL, /* Use the window class menu. */
hInstance, /* This instance owns this window. */
NULL /* Pointer not needed. */

/* 1f window could not be created, return "failure" */

if (lhWnd)
return (FALSE);

/* Make the window visible; update its client area; and return "success" */

ShowWindow(hWnd, nCmdShow); /* Show the window */
UpdateWindow(hWnd); /* Sends WM_PAINT message */
return (TRUE); /* Returns the value from PostQuitMessage */

}

[FxFIr Ak ALk kk bk kkhhhhhhdhhdhhhhhhhbhdhhdhhhhhhhhhhkkhdhhhhhhhhhhdhhhkhhkkkdkhkrx

FUNCTION: MainWndProc(HWND, unsigned, WORD, LONG)

PURPOSE: Processes messages

MESSAGES:
WM_COMMAND - application menu (About dialog box)
WM_DESTROY - destroy window

COMMENTS:

To process the IDM_ABOUT message, call MakeProcInstance to get the
current instance address of the About function. Then call DialogBox,
which will create the box according to the information in your
generic.rc file and turn control over to the About function. When

it returns, free the instance address.

**/

long FAR PASCAL MainWndProc(hWnd, message, wParam, 1Param)

HWND hWnd; /* window handle */

unsigned message; : /* type of message */

WORD wParam; /* additional information */
LONG TParam; /* additional information */

{
FARPROC 1pProcAbout; /* pointer to the "About" function */

A Generic Windows Application 2-31

switch (message) {
case WM_COMMAND: /* message: command from application menu */
if (wParam == IDM_ABOUT) {
TpProcAbout = MakeProcInstance(About, hInst);

DialogBox(hInst, /* current instance */
"AboutBox", /* resource to use */
hWnd, /* parent handle */
1pProcAbout); /* About() instance address */

FreeProcInstance(1pProcAbout);
break;

)

else /* Lets Windows process it */
return (DefWindowProc(hWnd, message, wParam, 1Param));

case WM_DESTROY: /* message: window being destroyed */
PostQuitMessage(d);

break;

default: /* Passes it on if unproccessed */

return (DefWindowProc(hWnd, message, wParam, 1Param));
}
return (NULL);
}

/**

FUNCTION: About(HWND, unsigned, WORD, LONG)

PURPOSE: Processes messages for "About" dialog box

MESSAGES:
WM_INITDIALOG - initialize dialog box
WM_COMMAND - Input received
COMMENTS:

No initialization is needed'for this particular dialog box, but TRUE
must be returned to Windows. :

Wait for user to click on "OK" button, then close the dialog box.

**/

BOOL FAR PASCAL About(hD1g, message, wParam, 1Param)

HWND hD1g; /* window handle of the dialog box */
unsigned message; /* type of message : */
~WORD wParam; /* message-specific information */

LONG TParam;

2-32 Guide to Programming

switch (message) {
case WM_INITDIALOG: /* message: initialize dialog box */
return (TRUE);

case WM_COMMAND: /* message: received a command */
if (wParam == IDOK || /* "O0K" box selected? */
wParam == IDCANCEL) { /* System menu close command? */
EndDialog(hDlg, TRUE); /* Exits the dialog box */
return (TRUE);
}
break;
}
return (FALSE); /* Didn't process a message */

2.7.2 Create the Header File

The header file contains definitions and declarations required by the C-language
source file which are incorporated into the source code by an #include directive.
Name the file GENERIC.H and make sure it looks like this:

ffdefine IDM_ABOUT 108

int PASCAL WinMain (HANDLE, HANDLE, LPSTR, int);
BOOL InitApplication (HANDLE);

BOOL InitInstance (HANDLE, int);

long FAR PASCAL MainWndProc (HWND, unsigned, WORD, LONG);
BOOL FAR PASCAL About (HWND, unsigned, WORD, LONG);

2.7.3 Create the Resource Script File

The resource script file must contain the Help menu and the dialog-box template
for the About dialog box. Name the file GENERIC.RC and make sure it looks
like this:

#include "windows.h"
#include "generic.h"

GenericMenu MENU

BEGIN
POPUP "&Help"
BEGIN
MENUITEM "About Generic...", IDM_ABOUT
END

END

A Generic Windows Application 2-33

AboutBox DIALOG 22, 17, 144, 75
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About Generic"

BEGIN
CTEXT "Microsoft Windows" -1, a, 5, 144, 8
CTEXT "Generic Application" -1, g, 14, 144, 8
CTEXT "Version 3.0" -1, @, 34, 144, 8
DEFPUSHBUTTON "OK" IDOK, 53, 59, 32, 14, WS_GROUP
END

2.7.4 Create the Module-Definition File

The module-definition file must contain the module definitions for Generic.
Name the file GENERIC.DEF and make sure it looks like this:

.smodule-definition file for Generic — used by LINK.EXE

NAME Generic ; app]icatidn's module name

DESCRIPTION 'Sample Microsoft Windows Application'

EXETYPE WINDOWS ; Required for all Windows applications

STUB 'WINSTUB.EXE' ; Generates error message if application
; 1s run without Windows

CODE MOVEABLE DISCARDABLE; code can be moved in memory and discarded/reloaded
;DATA must be MULTIPLE if program can be invoked more than once
DATA MOVEABLE MULTIPLE

HEAPSIZE 1024
STACKSIZE 5128 ; recommended minimum for Windows applications

; A11 functions that will be called by any Windows routine
; MUST be exported.

EXPORTS .
MainWndProc @1 ; name of window-processing function
AboutDlgProc @2 ; name of About processing function

2.7.5 Create a Make File

Once you have the source files, you can create Generic’s make file, then compile
and link the application by using the MAKE program. To compile and link
Generic, the make file must follow these steps:

2-34 Guide to Programming

& Use the C Compiler (CL) to compile the GENERIC.C file.

= Use the linker (LINK) to link the GENERIC.OBJ object file with the
Windows library and the module-definition file, GENERIC.DEF.

8 Use the Resource Compiler (RC) to create a binary resource file and add it to
the executable file of the Windows application.

The following will properly compile and link the files created for Generic:

Standard Windows make file. The utility MAKE.EXE compares the

creation date of the file to the left of the colon with the file(s)
to the right of the colon. If the file(s) on the right are newer

then the file on the left, MAKE will execute all of the command lines
following this line that are indented by at least one tab or space.

Any valid MS-DOS command Tine may be used.

Update the resource if necessary

@ generic.res: generic.rc generic.h
rc -r generic.rc

Update the object file if necessary

@® generic.obj: generic.c generic.h
cl -¢ -Gsw -0as -Zpe generic.c

Update the executable file if necessary, and if so, add the resource back in.

® generic.exe: generic.obj generic.def
1ink /NOD generic, , , slibcew 1ibw, generic.def
rc generic.res

If the .res file is new and the .exe file is not, update the resource.
Note that the .rc file can be updated without having to either
compile or link the file.

O generic.exe: generic.res
rc generic.res

© The first two lines direct MAKE to create a compiled resource file,
GENERIC.RES, if the resource script file, GENERIC.RC, or the new include
file, GENERIC.H, has been updated. The -r option of the RC command
creates a compiled resource file without attempting to add it to an executable
file, since this must be done as the last step in the process.

® The next two lines direct MAKE to create the GENERIC.OBI file if
GENERIC.C or GENERIC.H has a more recent access date than the current
GENERIC.OBI file. The ¢l command takes several command-line options
that prepare the application for execution under Windows. The minimum

A Generic Windows Application 2-35

required options are —c, —Gw, and —Zp. In this case, the C Compiler assumes
that Generic is a small-model application. Generic and all other applications
in this guide are small-model applications.

©® The MAKE program then creates the GENERIC.EXE file if the
GENERIC.OBJ or GENERIC.DEEF file has a more recent access date than the
current GENERIC.EXE file. Small Windows applications, like Generic, must
be linked with the Windows SLIBW.LIB library and the Windows version of
the C run-time library, SLIBCEW.LIB. The object file, GENERIC.OBJ, and
the module-definition file, GENERIC.DEF, are used as arguments in the
LINK command line.

® The last RC command automatically appends the compiled resources in the
file GENERIC.RES to the executable file, GENERIC.EXE.

2.7.6 Run the MAKE Program

Once you have created the make file, you can compile and link your application
by running the MAKE utility. The following example runs MAKE using the
commands in the file GENERIC:

MAKE GENERIC

2.8 Using Generic as a Template

Generic provides essentials that make it an appropriate starting point for your
applications. It conforms to the standards given in the System Application Archi-
tecture, Common User Access: Advanced Interface Design Guide for appearance
and cooperation with other applications. It contains all the files an application
can have: .DEF, .H, .RC, .C, and a make file. The About dialog box, an applica-
tion standard, is included, as is the About Generic... command on the Help menu.

You can use Generic as a template to build your own applications. To do this,
copy and rename the sources of an existing application, such as Generic, then
change relevant function names, and insert new code. All sample applications in
this guide have been created by copying and renaming Generic’s source files,
then modifying some of the function and resource names to make them unique to
each new application.

The following procedure explains how to use Generic as a template and adapt its
source files to your application:

1. Choose your application’s filename.

2. Copy the following Generic source files, renaming them to match your appli-
cation’s filename: GENERIC.C, GENERIC.H, GENERIC.DEF,
GENERIC.RC, and GENERIC.

2-36 Guide to Programming

3. Use a text editor to change each occurrence of “Generic” in your applica-
tion’s C-language source file to your application’s name. This includes chang-
ing the following:

m The class name: GenericWClass

m The class menu: GenericMenu

s The window title: Generic Sample Application
m The include filename: GENERIC.H

4. Use a text editor to change each occurrence of “Generic” in your applica-
tion’s module-definition file to your application’s name. This includes chang-
ing the following:

m The application name: Generic

5. Use a text editor to change each occurrence of “Generic” in your applica-
tion’s resource script file to your application’s name. This includes changing
the following:

m The include filename: GENERIC.H
m The application title: Generic Application
» The menu name: GenericMenu
6. Use a text editor to change each occurrence of “Generic” in your applica-

tion’s make file to your application’s name. This includes changing the fol-
lowing: '

m The C-language source filename: GENERIC.C.
m The object filename: GENERIC.OBJ

m The executable filename: GENERIC.EXE

m The module-definition filename: GENERIC.DEF

As you add new resources and include files to your applications, be sure to use
your application’s filename to ensure that these names are unique.

2.9 Summary

This chapter described the required elements of a Windows application, and ex-
plained how to build Generic, a simple application that contains those elements.
You can use Generic as a template on which to build your own Windows applica-
tions.

A Windows application must contain a WinMain function and a window func-
tion. The WinMain function performs initializations, processes messages, and ter-
minates the application. The window function responds to input and window-
management messages that it receives from Windows.

A Generic Windows Application 2-37

For more information on topics related to simple Windows applications, see the

following:

Topic Reference

The Windows programming Guide to Programming: Chapter 1, “An

model Overview of the Windows Environment”

The message loop Guide to Programming: Chapter 2, “A
Generic Windows Application”

Menus Guide to Programming: Chapter 7, “Menus”

Dialog boxes Guide to Programming: Chapter 9, “Dialog
Boxes”

Using C run-time routines Guide to Programming: Chapter 14, “C and

and assembly language in Assembly Language”

Windows applications '

Windows functions and Reference, Volume 1

messages

The WM_COMMAND Reference, Volume 1: Chapter 6, “Messages

message Directory”

Data types and structures Reference, Volume 2: Chapter 7, “Data Types

and Structures”

Software development tools Tools

Part

Programming

Windows

~ Applications

Like most applications, Windows applications receive input from the user and
send output to the screen and printer. Unlike standard applications, however,
Windows applications must cooperate within a multitasking, graphics-based en-
vironment. For this reason, they cannot read directly from the keyboard or write
directly to output devices. Instead, they must allow Windows to mediate be-
tween the application and shared system resources. The apparent penalty this im-
poses upon an application is offset by the built-in support Windows provides an
application for advanced user-interface and system-interface features.

For example, a user typically provides input to a Windows application by choos-
ing commands from menus, and by entering and selecting information in dialog
boxes. In the Windows environment, you do not have to implement the details of
how these menus and dialog boxes are displayed and respond to the user’s input.
Instead, you simply provide a high-level description of their contents and specify
the messages that your application will receive when the user interacts with the
item. Windows provides the low-level tasks of displaying the menus and dialog
boxes and of tracking the user’s interaction with them.

Part 1 provided an overview of the Windows environment and the basic structure
of a Windows application, and introduced some typical application features,
such as windows, menus and dialog boxes.

Part 2 explains each of the major aspects of a Windows application in more
detail. In the chapters that follow, you’ll learn how to create and work with
windows, icons, cursors, menus, dialog boxes, and other features that make a
Windows application distinctive and easy to use.

Each chapter in Part 2 covers a particular topic in Windows programming, and
provides a sample application that illustrates the concepts in that chapter.

—
CHAPTERS
Output to a Window
Keyboard and Mouse Input

J
4
5 Icons

6 The Cursor, the Mouse, and the Keyboard
7

8

9

Menus

Controls

Dialog Boxes
10 File Input and Output
11 Bitmaps |
12 Printing
13 The Clipboard

Chapter |\ Qutput to a Window

In Microsoft Windows, all output to a window is performed by the graphics
device interface (GDI).

This chapter covers the following topics:

u How the painting and drawing process works in the Windows environment
® The purpose of the display context and the WM_PAINT message
® Using GDI functions to draw within the client area of a window

® Drawing lines and figures, writing text, and creating pens and brushes

This chapter also explains how to build a sample application, Output, that il-
lustrates some of these concepts.

3.1 The Display Context

A display context defines the output device and the current drawing tools, colors,
and other drawing information used by GDI to generate output. All GDI output
functions require a display-context handle. No output can be performed without
one.

To draw within a window, you need the handle to the window. You can then use
the window handle to get a handle to the display context of the window’s client
area.

The method you use to retrieve the handle to the display context depends on
where you plan to perform the output operations. Although you can draw and
write anywhere within an application, including within the WinMain function,
most applications do so only in the window function. The most common time to
draw and write is in response to a WM_PAINT message. Windows sends this
message to a window function when changes to the window may have altered the
content of the client area. Since only the application knows what is in the client
area, Windows sends the message to the window function so that this function
can restore the client area.

For the WM_PAINT message, you typically use the BeginPaint function. If you
plan to draw within the client area at any time other than in response to a

3-2 Guide to Programming

WM_PAINT message, you must use the GetDC function to retrieve the handle
to the dispiay context.

Whenever you retrieve a display context for a window, that context is only on
temporary loan from Windows to your application. A display context is a shared
resource; as long as one application has it, no other application can retrieve it.
Therefore, you must release the display context as soon as possible after using it
to draw within the window. If you retrieve a display context by using the GetDC
function, you must use the ReleaseDC function to release it. Similarly, for Begin-
Paint, you use the EndPaint function.

3.1.1 Using the GetDC Function

You typically use the GetDC function to provide instant feedback to some action
by the user, such as drawing a line as the user moves the cursor (pointer) through
the window. The function returns a display-context handle that you can use in
any GDI output function.

The following example shows how to use the GetDC function to retrieve a
display-context handle and write the string “Hello Windows!” in the client area:

hDC = GetDC(hWnd);
TextOut(hDC, 10,10, "Hello Windows!", 14);
ReleaseDC(hWnd, hDC);

In this example, the GetDC function returns the display context for the window
identified by the #Wnd parameter, and the TextOut function writes the string at
the point (10,10) in the window’s client area. The ReleaseDC function releases
the display context.

Anything you draw in the client area will be erased the next time the window
function receives a WM_PAINT message that affects that part of the client area.
The reason is that Windows sends a WM_ERASEBKGND message to the
window function while processing the WM_PAINT message. If you pass
WM_ERASEBKGND on to the DefWindowProc function, DefWindowProc
fills the affected area by using the class background brush, erasing any output
you may have previously drawn there.

3.1.2 The WM_PAINT Message

Windows posts a WM_PAINT message when the user has changed the window.
For example, Windows posts a WM_PAINT message when the user closes a
window that covers part of another window. Since a window shares the screen
with other windows, anything the user does in one window can have an impact
on the content and appearance of another window. However, you can do nothing
about the change until your application receives the WM_PAINT message.

Output to a Window 3-3

Windows posts a WM_PAINT message by making it the last message in the
application queue. This means any input is processed before the WM_PAINT
message. In fact, the GetMessage function also retrieves any input generated
after the WM_PAINT message is posted. That is, GetMessage retrieves the
WM_PAINT message from the queue only when there are no other messages.
The reason for this is to let the application carry out any operations that might af-
fect the appearance of the window. In general, output operations should be car-
ried out as infrequently as possible to avoid flicker and other distracting effects.
Windows helps ensure this by holding the WM_PAINT message until it is the
last message.

The following example shows how to process a WM_PAINT message:

PAINTSTRUCT ps;

case WM_PAINT:
hDC = BeginPaint(hWnd, &ps);
/* Qutput operations */
EndPaint(hWnd, &ps);
break;

The BeginPaint and EndPaint functions are required. BeginPaint fills the
PAINTSTRUCT structure, ps, with information about the paint request, such as
the part of the client area that needs redrawing, and returns a handle to the dis-
play context. You can use the handle in any GDI output functions. The EndPaint
function ends the paint request and releases the display context.

You must not use the GetDC and ReleaseDC functions in place of the Begin-
Paint and EndPaint functions. BeginPaint and EndPaint carry out special
tasks, such as validating the client area and sending the WM_ERASEBKGND
message, that ensure that the paint request is processed properly. If you use
GetDC instead of BeginPaint, the painting request will never be satisfied and
your window function will continue to receive the same paint request.

3.1.3 Invalidating the Client Area

Windows is not the only source of WM_PAINT messages. You can also generate
WM_PAINT messages for your windows by using the InvalidateRect or
InvalidateRgn functions. These functions mark all or part of a client area as in-
valid (in need of redrawing). For example, the following function invalidates the
entire client area:

InvalidateRect(hWnd, NULL, TRUE);

This example invalidates the entire client area for the window identified by the
hWnd parameter. The NULL argument, used in place of a rectangle structure,
specifies the entire client area. The TRUE argument causes the background to be
erased.

3-4 Guide to Programming
L T

itk

When the client area is marked as invalid, Windows posts a WM_PAINT
message. If other parts of the client area are marked as invalid, Windows does
not post another WM_PAINT message. Instead, it adds the invalidated areas to
the previous area, so that all areas are processed by the same WM_PAINT
message. ' '

If you change your mind about redrawing the client area, you can validate parts
of it by using the ValidateRect and ValidateRgn functions. These functions re-
move any previous invalidation and will remove the WM_PAINT message if no
other invalidated area remains.

If you do not want to wait for the WM_PAINT message to be retrieved from the
application queue, you can force an immediate WM_PAINT message by using
the UpdateWindow function. If there is any invalid part of the client area,
UpdateWindow pulls the WM_PAINT message for the given window from the
queue and sends it directly to the window function.

3 1.4 Dlsplay Contexts and Device Contexts

A display context is actually a type of “device context” that has been especially
prepared for output to the client area-of a window. A device context defines the
device, drawing tools, and drawing information for a complete device, such as a
display or printer; a display context defines these things only for a window’s
client area. To prepare a display context, Windows adjusts the device origin so
that it aligns with the upper-left corner of the client area instead of with the upper-
left corner of the display. It also sets a clipping rectangle so that output to a dis-
play context is “clipped” to the client area. This means any output that would
otherwise appear outside the client area is not sent to the display.

3.1.5 The Coordinate System

The default coordinate system for a display context is very simple. The upper—left
corner of the client area is the origin, or point (0,0). Each pixel to the right repre-
sents one unit along the positive x-axis. Each pixel down represents one unit
along the positive y-axis.

You can modify this coordinate system by changing the mapping mode and dis-
play origins. The mapping mode defines the coordinate-system units. The default
mode is MM_TEXT, or one pixel per unit. You can also specify mapping modes
that use inches or millimeters as units. The SetMapMode function changes the
mapping mode for a device. The origin of the coordinate system can be moved to
any point by calling the SetViewportOrg function.

For simplicity, the examples in this chapter and throughout this guide use the de-
fault coordinate system. :

Output to a Window 3-5

3.2 Creating, Selecting, and Deleting Drawing Tools

GDI lets you use a variety of drawing tools to draw within a window. It provides
pens to draw lines, brushes to fill interiors, and fonts to write text. To create these
tools, use functions such as CreatePen and CreateSolidBrush. Then select them
into the display context by using the SelectObject function. When you are done
using a drawing tool, you can delete it by using the DeleteObject function.

Use the CreatePen function to create a pen for drawing lines and borders. The
function returns a handle to a pen that has the specified style, width, and color.
(Be sure to check the return value of CreatePen to ensure that it is a valid
handle.)

The following example creates a dashed, black pen, one pixel wide:

HPEN hDashPen;

hDashPen = CreatePen(PS_DASH, 1, RGB(@, @, @));
if (hDashPen) /* make sure handle is valid */

The RGB utility creates a 32-bit value representing a red, green, and blue color
value. The three arguments specify the intensity of the colors red, green, and
blue, respectively. In this example, all colors have zero intensity, so the specified
color is black.

You can create solid brushes for drawing and filling by using the Create-
SolidBrush function. This function returns a handle to a brush that contains the
specified solid color. (Be sure to check the return value of CreateSolidBrush to
-ensure that it is a valid handle.)

The following example shows how to create a red brush:

HBRUSH hRedBrush

hRedBrush = CreateSolidBrush(RGB(255, @, 0));
if (hRedBrush) /* make sure handle is valid */

3-6 Guide to Programming

Once you have created a drawing tool, you can select it into a display context by
using the SelectObject function. The following example selects the red brush for
drawing:

HBRUSH h01dBrush;

h01dBrush - SelectObject(hDC, hRedBrush);

In this example, SelectObject returns a handle to the previous brush. In general,
you should save the handle of the previous drawing tool so that you can restore it
later.

You do not have to create or select a drawing tool before using a display context.
Windows provides default drawing tools with each display context; for example,
a black pen, a white brush, and the system font.

You can delete drawing objects you no longer need by using the DeleteObject
function. The following example deletes the brush identified by the handle
hRedBrush:

DeleteObject(hRedBrush);

You must not delete a selected drawing tool. You should use the SelectObject
function to restore a previous drawing tool and remove the tool to be deleted
from the selection, as shown in the following example:

SelectObject(hDC, h01dBrush);
DeleteObject(hRedBrush);

Although you can create and select fonts for writing text, working with fonts is a
fairly involved process and is not described in this chapter. For a full discussion
of how to create and select fonts, see Chapter 18, “Fonts.”

3.3 Drawing and Writing

GDI provides a wide variety of output operations, from drawing lines to writing
text. Specifically, you can use the LineTo, Rectangle, Ellipse, Arc, Pie, Text-
Out, and DrawText functions to draw lines, rectangles, circles, arcs, pie wedges,
and text, respectively. All these functions use the selected pen and brush to draw
borders and fill interiors, and the selected font to write text.

You can draw lines by using the LineTo function. You usually combine the
MoveTo and LineTo functions to draw lines. The following example draws a
line from the point (10,90) to the point (360,90):

MoveTo(hDC, . 1@, 99);
LineTo(hDC, 368, 90);

Output to a Window 3-7

You can draw a rectangle by using the Rectangle function. This function uses
the selected pen to draw the border, and the selected brush to fill the interior. The
following example draws a rectangle that has its upper-left and lower-right
corners at the points (10,30) and (60,80), respectively:

Rectangle (hDC, 10, 3@, 60, 80);

You can draw an ellipse or circle by using the Ellipse function. The function
uses the selected pen to draw the border, and the selected brush to fill the
interior. The following example draws an ellipse that is bounded by the rectangle
specified by the points (160,30) and (210,80):

Ellipse (hDC, 16@, 3@, 218, 80);

You can draw arcs by using the Arc function. You draw an arc by defining a
bounding rectangle for the circle containing the arc, then specifying on which
points the arc starts and ends. The following example draws an arc within the
rectangle defined by the points (10,90) and (360,120); it draws the arc from the
point (10,90) to the point (360,90):

Arc(hDC, 1@, 90, 360, 120, 10, 90, 368, 99);

You can draw a pie wedge by using the Pie function. A pie wedge consists of an
arc and two radii extending from the focus of the arc to its endpoints. The Pie
function uses the selected pen to draw the border, and the selected brush to fill
the interior. The following example draws a pie wedge that is bounded by the
rectangle specified by the points (310,30) and (360,80) and that starts and ends at
the points (360,30) and (360,80), respectively:

Pie (hDC, 318, 30, 360, 80, 360, 30, 360, 80);

You can display text by using the TextOut function. The function displays a
string starting at the specified point. The following example displays the string
“A Sample String” at the point (1,1):

TextOut(hbDC, 1, 1, "A Sample String", '15);

You can also use the DrawText function to display text. This function is similar
to TextOut, except that it lets you write text on multiple lines. The following ex-
ample displays the string “This long string illustrates the DrawText function” on
multiple lines in the specified rectangle:

RECT rcTextBox;
LPSTR 1pText = "This long string illustrates the DrawText function";

SetRect(&rcTextBox, 1, 14, 168, 40);
DrawText(hDC, 1pText, strlen(1pText), &rcTextBox, DT_LEFT);

3-8 Guide to Programming

This example displays the string pointed to by the lpText variable as one or more
left-aligned lines in the reciangie specified by the points (1,10) and (160,40).
Although you can also create and display bitmaps in a window, the process is not
described in this chapter. For details, see Chapter 11, “Bitmaps.”

3.4 A Sample Application: Output

The sample application Output illustrates how to use the WM_PAINT message
to draw within the client area, as well as how to create and use drawing tools.
The Output application is a simple extension of the Generic application described
in the previous chapter. To create the Output application, copy and rename the
source files of the Generic application, then make the following modifications:

1. Add new variables.

2. Modify the WM_CREATE case.
3. Add a WM_PAINT case.

4. Modify the WM_DESTROY case.

5. Compile and link the application.

You can find the source files for Output on the SDK Sample Source Code disk.

This sample assumes that you have a color display. If you do not, GDI will simu-
late some of the color output by “dithering.” Dithering is a method of simulating
a color by creating a unique pattern with two or more available colors. On a color
monitor that cannot display orange, for example, Windows simulates orange by
using a pattern of red and yellow pixels. On a monochrome monitor, Windows
represents colors with black, white, and shades of gray, instead of colors.

NOTE Rather than typing the code presented in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

3.4.1 Add New Variables

You need several new global variables for this sample application. Add the fol-
lowing variables at the beginning of your C-language source file:

HPEN hDashPen; /* "—-" pen handle */
HPEN hDotPen; /* "..." pen handle */
HBRUSH h01dBrush; /* old brush handle */

HBRUSH hRedBrush; /* red brush handle = */

Output to a Window 3-9

HBRUSH hGreenBrush; /* green brush handle */
HBRUSH hBlueBrush; /* blue brush handle */

You also need new local variables in the window function. Declare the following
at the beginning of the MainWndProc function:

HDC hDC; /* display-context variable */
PAINTSTRUCT ps; /* paint structure */
RECT rcTextBox; /* rectangle around the text */
HPEN hO1dPen; /* old pen handle */

3.4.2 Add the WM_CREATE Case

You must create the drawing tools to be used in Output’s client area before any
drawing is carried out. Since you need to create these tools only once, a con-
venient place to do so is in the WM_CREATE message. Add the following state-
ments to the MainWndProc function:

case WM_CREATE:
/* Create the brush objects */
hRedBrush = CreateSolidBrush(RGB(255, 2, 3));
hGreenBrush = CreateSolidBrush(RGB(@, 255, 8));
hBlueBrush = CreateSolidBrush(RGB(@, B, 255));

/* Create the "—" pen */

hDashPen = CreatePen(PS_DASH, /* style */
-1, /* width */
RGB(@, @,‘ﬂ)); /* color */

/* Create the "..." pen */

hDotPen = CreatePen(PS_DOT, /* style */
1, /* width */
RGB(@, B, 0)); /* color */
break;

The CreateSolidBrush functions create the solid brushes to be used to fill the
rectangle, the ellipse, and the circle that Output draws on the screen in response
to the WM_PAINT message. The CreatePen functions create the dotted and
dashed lines used to draw borders.

3.4.3 Add the WM_PAINT Case

The WM_PAINT message informs your application when it should redraw all or
part of its client area. To handle this message, add to the window function the fol-
lowing case statement:

3-10 Guide to Programming

case WM_PAINT:
{

i

TEXTMETRIC textmetric;
int nDrawX;

int nDrawY;

char szText[3001;

/f Set up a display context to begin painting */

hDC = BeginPaint (hWnd, &ps);

/* Get the size characteristics of the current font. */

/* This information will be used for determining the */
/* vertical spacing of text on the screen. */
GetTextMetrics (hDC, &textmetric);

/* Initialize drawing position to 1/4 inch from the top */
/* and from the left of the top, left corner of the */

/* client area of the main window. */

nDrawX = GetDeviceCaps (hDC, LOGPIXELSX) / 4; /* 174 inch */
nDrawY = GetDeviceCaps (hDC, LOGPIXELSY) / 4; /* 1/4 dinch */

/* Send characters to the screen. After displaying each */
/* Tine of text, advance the vertical position for the */
/* next line of text. The pixel distance between the top */
/* of each line of text is equal to the standard height of */
/* the font characters (tmHeight), plus the standard */
/* amount of spacing (tmExternalleading) between adjacent */
/* lines. */

strcpy (szText, "These characters are being painted using ");
TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText));
nDrawY += textmetric.tmExternalleading + textmetric.tmHeight;

strcpy (szText, "the TextQut() function, which is fast and ");
TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText));
nDrawY += textmetric.tmExternalleading + textmetric.tmHeight;

strcpy (szText, "allows programmer control of placement and ");
TextOut (hDC, nDrawX, nDrawY, szText, strien (szText));
nDrawY += textmetric.tmExternalleading + textmetric.tmHeight;

strcpy (szText, "formatting details. However, TextOut() ");
TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText));
nDrawY += textmetric.tmExternalleading + textmetric.tmHeight;

strcpy (szText, "does not provide any automatic formatting.");
TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText));
nDrawY += textmetric.tmExternalleading + textmetric.tmHeight;

Output to a Window 3-11

/* Put text in a 5-inch by 1-inch rectangle and display it. */
/* First define the size of the rectangle around the text */

nDrawY += GetDeviceCaps (hDC, LOGPIXELSY) / 4; /* 1/4 inch */
SetRect (:
&rcTextBox

, nDrawX

, nDrawY

, nDrawX + (5 * GetDeviceCaps (hDC, LOGPIXELSX)) /* 5" */

, nDrawY + (1 * GetDeviceCaps (hDC, LOGPIXELSY)) /* 1" */
);

/* Draw the text within the bounds of the above rectangle */

strcpy (szText, "This text is being displayed with a single "
"call to DrawText(). DrawText() isn't as fast "
"as TextOut(), and it is somewhat more "
"constrained, but it provides numerous optional
"formatting features, such as the centering and "
"line breaking used in this example.");

DrawText (
hDC

, SzText

, strien (szText)

, &rcTextBox

, DT_CENTER | DT_EXTERNALLEADING | DT_NOCLIP

| DT_NOPREFIX | DT_WORDBREAK

)3

/* Paint the next object immediately below the bottom of */
/* the above rectangle in which the text was drawn. */

nDrawY = rcTextBox.bottom;

/* The (x,y) pixel coordinates of the objects about to be */
/* drawn are below, and to the right of, the current */
/* coordinate (nDrawX,nDrawY). */

/* Draw a red rectangle.. */

h0O1dBrush = SelectObject(hDC, hRedBrush);
Rectangle (
hDC
, nDrawX
, nDrawY
, nDrawX + 5@
, nDrawY + 30

3-12 Guide to Programming

I R

/* Draw a green ellipse */

SelectObject(hDC, hGreenBrush);
Ellipse (

hDC

nDrawX + 150

nDrawY

nDrawX + 150 + 50

nDrawY + 30

);
/* Draw a blue pie shape */

SelectObject (hDC, hBlueBrush);
Pie (

hDC

nDrawX + 300
nDrawY

nDrawX + 300 + 50
nDrawY + 50
nDrawX + 300 + 50
nDrawY

nDrawX + 300 + 50
nDrawY + 50

W w e e e e v e

);

nDrawY += 50;

/* Restore the old brush */
SelectObject(hDC, hO1dBrush);

/* Select a "—" pen, save the old value */

nDrawY += GetDeviceCaps (hDC, LOGPIXELSY) / 4; /* 1/4 inch */
hO1dPen = SelectObject(hDC, hDashPen);

/* Move to a specified point */
MoveTo(hDC, nDrawX, nDrawY);

/* Draw a line */

LineTo(hDC, nDrawX + 358, nDrawY);
/* Select a "..." pen */

SelectObject(hDC, hDotPen);

Output to a Window 3-13

/* Draw an arc connecting the line */

‘Arc

)

(

hDC

nDrawX
nDrawY - 20
nDrawX + 350
nDrawY + 20
nDrawX
nDrawY
nDrawX + 350
nDrawY

e e e e e e e e

/* Restore the old pen */

SelectObject(hDC, hO1dPen);

/* Tell Windows you are done painting */

EndPaint (hWnd, &ps);

}
break;

NOTE “Hard-coding” strings using functions such as strepy can make it difficult to trans-
late your application into other languages. If you plan to distribute your application in more

.than one language, you should use string tables instead. See the Reference, Volume 2, for

more information about string tables.

3.4.4 Modify the WM_DESTROY Case

Before terminating the Output application, you should delete the drawing tools
created for Output’s window; this frees the memory that each drawing tool uses.
To do this, use the DeleteObject function to delete the various pens and brushes
in the WM_DESTROY case. Modify the WM_DESTROQY case so that it looks
like this:

case WM_DESTROY:

DeleteObject (hRedBrush);
DeleteObject(hGreenBrush);
DeleteObject(hBlueBrush);
DeleteObject (hDashPen);
DeleteObject(hDotPen);
PostQuitMessage(d);

break;

You must include one DeleteObject function call for each object to be deleted.

3-14 Guide to Programming

3.4.5 Compile and Link

No changes are required to the make file to recompile and link the Output appli-
cation. After compiling and linking Output, start Windows and the application.
The application should look like Figure 3.1:

D nle App 0 v|a

[Help

These characters are being painted using
the TextOut{ function, which is fast and
allows programmer control of placement and
formatting details. However, TextOut{)

does not provide any automatic formatting.

This textis being displayed with a single call to DrawText(). DrawText]
isn't as fast as TextOut{), and it is hat more trained, but it
provides numerous optional formatting features, such as the centering
and line breaking used in this example.

Figure 3.1 The Output Application’s Window

You can use the WM_PAINT case of this application to experiment with a
variety of GDI functions. For information about other GDI output functions, see
the Reference, Volume 1.

3.5 Summary

This chapter described how the graphics device interface (GDI) portion of
Windows handles output to a window. GDI uses a “display context” to generate
output. A display context is a data structure, maintained by GDI, that contains
information about the display device you are using.

GDI lets you use a variety of drawing tools and output operations to draw within
a window.

Output to a Window 3-15

For more information on topics related to output, see the following:

Topic

Working with bitmaps

Working with fonts

Window functions and class
and private display contexts

Painting functions

WM_PAINT,
WM_CREATE, and
WM_DESTROY messages

Data types and structures

Reference

Guide to Programming: Chapter 11,
“Bitmaps”

Tools: Chapter 4, “Designing Images:
SDKPaint”

Guide to Programming: Chapter 18, “Fonts”

Tools: Chapter 6, “Designing Fonts: The
Font Editor”

Reference, Volume 1: Chapter 1, “Window
Manager Interface Functions”

Reference, Volume 1: Chapter 2, “Graphics
Device Interface Functions,” and Chapter 4,
“Functions Directory”

Reference, Volume 1: Chapter 6, “Messages
Directory”

Reference, Volume 2: Chapter 7, “Data Types
and Structures”

chapter | Keyboard and Mouse Input

4

Most applications require input from the user. Typically, input from the user
comes via the keyboard or the mouse. In Microsoft Windows, applications re-
ceive keyboard and mouse input in the form of input messages.

This chapter covers the following topics:

® The input messages that Windows sends your application
® Responding to Windows input messages

This chapter also explains how to build a sample application, Input, that responds
to various types of input messages. ‘

4.1 Windows Input Messages

Whenever the user presses a key, moves the mouse, or clicks a mouse button,
Windows responds by sending input messages to the appropriate application.
Windows also sends input messages in response to timer input.

Windows provides several types of input messages:

Message Description

Keyboard User input through the keyboard.

Character Keyboard input translated into character codes.

Mouse User input through the mouse.

Timer Input from the system timer.

Scroll-bar User input through a window’s scroll bars and the mouse.
Menu User input through a window’s menus and the mouse.

The keyboard, mouse, and timer input messages correspond directly to hardware
input. Windows passes these messages to your application through the applica-
tion queue.

The character, menu, and scroll-bar messages are created in response to mouse
and keyboard actions in the nonclient area of a window, or are the result of

4-2 Guide to Programming

translated keyboard messages. Normally, Windows sends these messages directly
to the appropriate window function.

4.1.1 Message Formats

Input messages come in two formats, depending on how your application re-
ceives them:

m Messages that Windows places in the application queue take the form of a
MSG structure.

The MSG structure contains fields that identify and contain information
about the message. Your application’s message loop retrieves this structure
from the application queue and dispatches it to the appropriate window
function.

m Messages that Windows sends directly to a window function take the form of
four arguments. The arguments correspond to the window function’s hWnd,
message, wParam, and IParam parameters.

The only difference between these two message forms is that the MSG structure
contains two additional pieces of information: the current location of the cursor
(pointer) and the current system time. Windows does not pass this information to
the window function.

4.1.2 Keyboard Input

Much of an application’s user input comes from the keyboard. Windows sends
keyboard input to an application when the user presses or releases a key.
Windows generates keyboard messages in response to the following keyboard
events: ‘

Message Event

WM_KEYDOWN User presses a key.
WM_KEYUP User releases a key.
WM_SYSKEYDOWN User presses a system key.
WM_SYSKEYUP User releases a system key.

The wParam parameter of a keyboard message specifies the “virtual-key code”
of the key the user pressed. A virtual-key code is a device-independent value for
a specific keyboard key. Windows uses virtual-key codes so that it can provide
consistent keyboard input no matter what computer your application is running
on.

Keyboard and Mouse Input 4-3

The IParam parameter contains the keyboard’s actual scan code for the key, as
well as additional information about the keyboard, such as the state of the SHIFT
key and whether the current key was previously up or down.

Windows generates system-key messages, WM_SYSKEYUP and WM_SYS-
KEYDOWN. These are special keys, such as the ALT and F10 keys, that belong to
the Windows user interface and cannot be used by an application in any other
way.

An application receives keyboard messages only when it has the “input focus.”
Your application receives the input focus when it is the active application; that is,
when the user has selected your application’s window. You can also use the Set-
Focus function to explicitly set the input focus for a given window, and the Get-
Focus function to determine which window has the focus.

4.1.3 Character Input

Applications that read character input from the keyboard need to use the
TranslateMessage function in their message loops. TranslateMessage trans-
lates a keyboard-input message into a corresponding ANSI-character message,
WM_CHAR or WM_SYSCHAR. These messages contain the ANSI character
codes for the given key-in the wParam parameter. The I[Param parameter is iden-
tical to [Param in the keyboard-input message.

4.1.4 Mouse Input

User input can also come from the mouse. Windows sends mouse messages to
the application when the user moves the cursor into and through a window or
presses or releases a mouse button while the cursor is in the window. Windows
generates mouse messages in response to the following events:

Message Event

WM_MOUSEMOVE User moves the cursor into or
through the window.

WM_LBUTTONDOWN User presses the left button.

WM_LBUTTONUP User releases the left button.

WM_LBUTTONDBLCLK User presses, releases, and presses

again the left button within the sys-
tem’s defined double-click time.

WM_MBUTT ONDOWN User presses the middle button.
WM_MBUTTONUP User releases the middle button.

4-4 Guide to Programming

Message ‘ Event

WM_MBUTTONDBLCLK User presses, releases, and presses
again the middle button within the
system’s defined double-click time.

WM_RBUTTONDOWN User presses the right button.
WM_RBUTTONUP User releases the right button.

WM_RBUTTONDBLCLK User presses, releases, and presses v
. again the right button within the sys-
tem’s defined double-click time.

The wParam parameter of each button includes a bitmask specifying the current
state of the keyboard and mouse buttons, such as whether the mouse buttons,
SHIFT key, and CONTROL key are down. The /Param parameter contains the the x-
and y-coordinates of the cursor.

Windows sends mouse messages to a window only if the cursor is in the window
or if you have captured mouse input by using the SetCapture function. The Set-
Capture function directs Windows to send all mouse input, regardless of where
the cursor is, to the specified window. Applications typically use this function to
take control of the mouse when carrying out some critical operation with the
mouse, such as selecting something in the client area. Capturing the mouse pre-
vents other applications from taking control of the mouse before the operation is
completed.

Since the mouse is a shared resource, it is important to release the captured
mouse as soon as you have finished the operation. You release the mouse by
using the ReleaseCapture function. Use the GetCapture function to determine
which window, if any, has the captured mouse.

Windows sends double-click messages to a window function only if the corre-
sponding window class has the CS_DBLCLKS style. You must set this style
while registering the window class. A double-click message is always the third
message in a four-message series. The first two messages are the first button
press and release. The second button press is replaced with the double-click
message. The last message is the second release. Remember that a double-click
message occurs only if the first and second press occur within the system’s de-
fined double-click time. You can retrieve the current double-click time by using
the GetDoubleClickTime function. You can set it by using the SetDoubleClick-
Time function, but be aware that this sets the double-click time for all applica-
tions, not just your own.

4.1.5 Timer Input

Windows sends timer input to your application when the specified interval
elapses for a particular timer. To receive timer input, you must set a timer by
using the SetTimer function.

Keyboard and Mouse Input 4-5 |

You can receive timer input in two ways:

= Windows can place a WM_TIMER message in your application’s queue.

B Windows can call a callback function defined in your application. You
specify the callback function when you call the SetTimer function.

The following example shows how to set timer input for a five-second interval:

idTimer = SetTimer (hWnd, 1, 5008, (FARPROC) NULL);

This example sets a timer interval of 5000 milliseconds. This means that the
timer will generate input every five seconds. The second argument is any non-
zero value that your application uses to identify the particular timer. The last ar-
gument specifies the callback function that will receive timer input. Setting this
argument to NULL tells Windows to provide timer input as a WM_TIMER
message. Because there is no callback function specified for timer input,
Windows sends the timer input through the application queue.

The SetTimer function returns a “timer ID”—an integer that identifies the timer.
You can use this timer ID to turn the timer off by using it in the KillTimer
function.

4.1.6 Scroll-Bar Input

Windows sends a scroll-bar input message, either WM_HSCROLL or
WM_VSCROLL, to a window function when the user clicks with the cursor in a
scroll bar. Applications use the scroll-bar messages to direct scrolling within the
window. Applications that display text or other data that does not all fit in the
client area usually provide some form of scrolling. Scroll bars are an easy way to
let the user direct scrolling actions.

To get scroll-bar input, add scroll bars to the window. You can do this by specify-
ing the WS_HSCROLL and WS_VSCROLL styles when you create the window.
These direct the CreateWindow function to create horizontal and vertical scroll
bars for the window. The following example creates scroll bars for the given

window:

hWind = CreateWindow("InputWClLass", /* window class */
"Input Sample Application", /* window name */
WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,
CW_USEDEFAULT, /* x position */
CW_USEDEFAULT, /* y position */
CW_USEDEFAULT, /* width */
CW_USEDEFAULT, /* height */
NULL, /* parent handle */
NULL, /* menu or child ID */
hinstance, /* instance */

NULL) ; /* additional info */

4-6 Guide to Programming

Windows displays the scroll bars when it displays the window. It automatically
maintains the scroll bars and sends scroll-bar messages to the window function
when the user moves the thumb of the scroll bar.

When Windows sends a scroll-bar message, it sets the wParam parameter of the
message to indicate the type of scrolling request made. For example, if the user
clicks the Up arrow of a vertical scroll bar, Windows sets the wParam parameter
to the value SB_LINEUP. Depending on the event, Windows sets the wParam
parameter to one of the following values:

Value Event
SB_LINEUP User clicks the Up or Left arrow.
SB_LINEDOWN User clicks the Down or Right arrow.
SB_PAGEUP User clicks between the scroll box and the Up or
: Left arrow.
SB_PAGEDOWN User clicks between the scroll box and the Down or
Right arrow.

SB_THUMBPOSITION User releases the mouse button when the cursor is in
the scroll box, typically after dragging the box.

SB_THUMBTRACK User drags the scroll box with the mouse.

4.1.7 Menu Input

Whenever the user chooses a command from a menu, Windows sends a menu-
input message to the window function for that window.

There are two types of menu-input messages:

8. WM_SYSCOMMAND, which indicates that the user has selected a com-
mand from the System menu.

] ‘WM_COMMAND, which indicates that the user has selected a command

from the application’s menu.

Since menu input is often the primary source of input for an application, its pro-
cessing can be complex. See Chapter 7, “Menus,” for more information on
menus and menu input.

4.2 A Sample Application: Input

This sample application, Input, illustrates how to process input messages from
the keyboard, mouse, timer, and scroll bars. The Input application displays the
current or most recent state of each of these input mechanisms. To create the

Keyboard and Mouse Input 4-7

Input application, copy and rename the source files of the Generic application,
then make the following modifications:

. Add new variables.

. Set the window-class style.

. Modify the CreateWindow function.

. Set the text rectangles.

. Add the WM_CREATE case.

. Modify the WM_DESTROY case.

. Add the WM_KEYUP and WM_KEYDOWN cases.

. Add the WM_CHAR case.

. Add the WM_MOUSEMOVE case.

. Add the WM_LBUTTONUP and WM_RBUTTONUP cases.
. Add the WM_LBUTTONDBLCLK casé.

. Add the WM_TIMER case.

. Add the WM_HSCROLL and WM_VSCROLL cases.
. Add the WM_PAINT case.

O 00 XN L A WD~

e e ek e
A WO = O

15. Compile and link the Input application.

Although Windows does not require a pointing device, this sample assumes that
you have a mouse or other pointing device. If you do not have a mouse, the appli-
cation will not receive mouse-input messages.

NOTE Rather than typing the code presented in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided in the .
SDK. '

4.2.1 How the Input Applicatian Displays Output

The Input application responds to input messages by displaying text that indi-
cates the type of input message. It uses some simple functions to format and dis-
play the output.

To create a formatted string, use wsprintf, the Windows version of the C run-
time function sprintf. The Windows wsprintf function copies a formatted string
to a buffer; you can then pass the buffer address as an argument to the TextOut
function. In small-model applications, such as the sample applications described
in this guide, be careful when using the wsprintf function; the buffer you specify

4-8 Guide to Programming

must be defined within the application’s data segment or stack. The following ex-
ample shows how to create a formatted string:

char MouseText[48];

wsprintf(MouseText, "WM_MOUSEMOVE: %x, %d, %d", wParam,
LOWORD(1Param), HIWORD(1Param));

This example copies the formatted string to the MouseText array. The array is de-
- clared a local variable so that it can be passed to the wsprintf function.

4.2.2 Add New Variables

You need several new global variables. Declare the following variables at the
beginning of the C-language source file:

char MouseText[48]; /* mouse state */
char ButtonText[48]; /* mouse-button state */
char KeyboardText[48]; /* keyboard state */
char CharacterText[48]; /* latest character */
char Scroll1Text[48]; /* scroll status */
char TimerText[48]; /* timer state */

RECT rectMouse;

RECT rectButton;

RECT rectKeyboard;

RECT rectCharacter;

RECT rectScroltl;

RECT rectTimer;

int idTimer; /* timer ID */
int nTimerCount = 0; /* current timer count */

The character arrays hold strings that describe the current state of the keyboard,
mouse, and timer. The rectangles keep track of where the strings appear on the
screen; they facilitate the invalidation technique explained in Section 4.2.15,
“Add the WM_PAINT Case.”

You also need some local variables for the window function. Declare the follow-
ing variables at the beginning of the MainWndProc window function:

HDC hDC; /* display-context variable */
PAINTSTRUCT ps; /* paint structure */
char HorzOrVertText[12];

char ScrollTypeText[20];

RECT rect;

Keyboard and Mouse Input 4-9

Add the following variables to the InitInstance function:

HDC hdc;
TEXTMETRIC textmetric;
RECT rect;
int nLineHeight;

4.2.3 Set the Window-Class Style

Set the window-class style to CS_DBLCLKS to enable double-click processing.
In the initialization function, find this statement:

wc.style = NULL;
Change it to the following:
wc.style = CS_DBLCLKS;

This enables double-click processing for windows that belong to this class.

4.2.4 Modify the CreateWindow Function

Modify the call to the CreateWindow function in order to create a window that
has vertical and horizontal scroll bars. Change the CreateWindow function call
in the WinMain function so that it looks like this:

hWnd = CreateWindow("InputWClass",
"Input Sample Window",
WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NULL)Y;

4.2.5 Set the Text Rectangles

Add the following statements to the InitInstance function to establish the client-
area rectangles in which different messages are displayed:

hDC = GetDC(hWnd);

GetTextMetrics(hDC, &textmetric);

ReleaseDC(hWnd, hDC);

nLineHeight = textmetric.tmExternalleading + textmetric.tmHeight;

4-10 Guide to Programming

rect.left = GetDeviceCaps(hDC, LOGPIXELSX) / 4; /* 1/4 inch */
rect.right = GetDeviceCaps(hDC, HORZRES);
rect.top = GetDeviceCaps(hDC, LOGPIXELSY) / 4; /* 1/4 inch */
rect.bottom = rect.top + nkineHeight;

~rectMouse = rect;

rect.top += nlLineHeight;
rect.bottom += nlLineHeight;
rectButton = rect;

rect.top += nlLineHeight;
rect.bottom += nlineHeight;
rectKeyboard = rect;

rect.top += nlLineHeight;
rect.bottom += nlLineHeight;
rectCharacter = rect;

rect.top += nlineHeight;
rect.bottom += nlineHeight;
rectScroll = rect;

rect.top += nlineHeight;
rect.bottom += nLineHeight;
rectTimer = rect;

4.2.6 Add the WM_CREATE Case

Set a timer by using the SetTimer function. You can do this in the
WM_CREATE case. Add the following statements:

case WM_CREATE:
/* Set the timer for five-second intervals */
idTimer = SetTimer(hWnd, NULL, 5008, (FARPROC) NULL);
break;

4.2.7 Modify the WM_DESTROY Case

You also need to stop the timer before terminating the application. You can do
this in the WM_DESTROY case. Add the following statement:

KillTimer(hWnd, idTimer);

4.2.8 Add the WM_KEYUP and WM_KEYDOWN Cases

Add the WM_KEYUP and WM_KEYDOWN cases to process key presses. Add
the following statements to the window function:

Keyboard and Mouse Input 4-11

case WM_KEYDOWN:
wsprintf(KeyboardText, "WM_KEYDOWN: %x, %x, %x",
wParam, LOWORD(1Param), HIWORD(1Param));
InvatidateRect(hWnd, &rectKeyboard, TRUE);
break;

case WM_KEYUP:
wsprintf(KeyboardText, "WM_KEYUP: %x, %x, %x",
wParam, LOWORD(1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectKeyboard, TRUE);
break;

4.2.9 Add the WM_CHAR Case

Add a WM_CHAR case to process ANSI-character input. Add the following
statements to the window function:

case WM_CHAR:
wsprintf(CharacterText, "WM_CHAR: %c, %x, %x",
wParam, LOWORD(1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectCharacter, TRUE);
break;

4.2.10 Add the WM_MOUSEMOVE Case

Add a WM_MOUSEMOVE case to process mouse-motion messages. Add the
following statements to the window function:

case WM_MOUSEMOVE:
wsprintf(MouseText, "WM_MOUSEMOVE: %x, %d, %d",
wParam, LOWORD(1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectMouse, TRUE);
break;

4.2.11 Add the WM_LBUTTONUP and WM_LBUTTONDOWN Cases

Add the WM_LBUTTONUP and WM_LBUTTONDOWN cases to process
mouse-button input messages. Add the following statements to the window
function:

case WM_LBUTTONDOWN:
wsprintf(ButtonText, "WM_LBUTTONDOWN: %x, %d, %d",
wParam, LOWORD(1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectButton, TRUE);
break;

4-12 Guide to Programming

case WM_LBUTTONUP:
wsprintf(ButtonText, "WM_LBUTTONUP: %x, %d, %d",
wParam, LOWORD(TParam), HIWORD(TParam));
InvalidateRect(hWnd, &rectButton, TRUE);
break;

4.2.12 Add the WM_LBUTTONDBLCLK Case

Add a WM_LBUTTONDBLCLK case to process mouse-button input messages.
Add the following statements to the window function:

case WM_LBUTTONDBLCLK:
wsprintf(ButtonText, "WM_LBUTTONDBLCLK: %x, %d, %d",
wParam, LOWORD(TParam), HIWORD(1Param));
InvalidateRect(hWnd, &rectButton, TRUE);
break;

4.2.13 Add the WM_TIMER Case

Add a WM_TIMER case to process timer messages. Add the following state-
ments to the window function:

case WM_TIMER:
wsprintf(TimerText, "WM_TIMER: %d seconds",
nTimerCount += 5);
InvalidateRect(hWnd, &rectTimer, TRUE);
break;

4.2.14 Add the WM_HSCROLL and WM_VSCROLL Cases

Add the WM_HSCROLL and WM_VSCROLL cases to process scroll-bar
messages. Add the following statements to the window function:

case WM_HSCROLL:
case WM_VSCROLL:
strcpy(HorzOrVertText,
(message == WM_HSCROLL) ? "WM_HSCROLL" : "WM_VSCROLL");
strcpy(ScrollTypeText,
(wParam == SB_LINEUP) ?- "SB_LINEUP" :
(wParam == SB_LINEDOWN) ? "SB_LINEDOWN" :
(wParam == SB_PAGEUP) ? "SB_PAGEUP" :
(wParam == SB_PAGEDOWN) ? "SB_PAGEDOWN" :
(wParam == SB_THUMBPOSITION) ? "SB_THUMBPOSITION" :
(wParam == SB_THUMBTRACK) ? "SB_THUMBTRACK" :
(wParam == SB_ENDSCROLL) ? "SB_ENDSCROLL" : "unknown");

Keyboard and Mouse Input 4-13

wsprintf(ScrollText, "%s: %s, %x, %x",
(LPSTR)HorzOrVertText,
(LPSTR)Scrol1TypeText,
LOWORD(1Param),

HIWORD(1Param));

InvalidateRect(hWnd, &rectScroll, TRUE);

break;

4.2.15 Add the WM_PAINT Case

You need to display the current state of the mouse, keyboard, and timer. The
most convenient way to do this is to use the WM_PAINT message to display the
states. Your application only repaints the parts of its client area that need
repainting.

Add the following statements to the window function:

case WM_PAINT:
hDC = BeginPaint (hWnd, &ps);

if (IntersectRect(&rect, &rectMouse, &ps.rcPaint))
TextOut(hDC, rectMouse.left, rectMouse.top,
MouseText, strlen(MouseText));
if (IntersectRect(&rect, &rectButton, &ps.rcPaint))
TextOut(hDC, rectButton.left, rectButton.top,
ButtonText, strien(ButtonText));
if (IntersectRect(&rect, &rectKeyboard, &ps.rcPaint))
TextOut(hDC, rectKeyboard.left, rectKeyboard.top,
KeyboardText, strlen(KeyboardText));
if (IntersectRect(&rect, &rectCharacter, &ps.rcPaint))
TextQut(hDC, rectCharacter.left, rectCharacter.top,
CharacterText, strlen(CharacterText));
if (IntersectRect(&rect, &rectTimer, &ps.rcPaint))
TextOut(hDC, rectTimer.left, rectTimer.top,
TimerText, strlen(TimerText));
if (IntersectRect(&rect, &rectScroll, &ps.rcPaint))
TextOut(hDC, rectScroll.left, rectScroll.top,
Scrol1Text, strlen(ScrollText));

EndPaint(hWnd, &ps);
break;

4.2.16 Compile and Link

You can compile and link the Input application without changing the make file.
Once the application is compiled, start Windows and then the Input application.
To test the application, press keys on the keyboard, click the mouse button, move
the mouse, and use the scroll bars. The application should look like Figure 4.1:

4-14 Guide to Programming
-]

_ Input dis/ola ys text when it receives
mouse, Keyboard, or limer messages.

= p ample App 0 |~

WM_MOUSEMOVE: 0, 254, 179
WM_LBUTTONUP: 0, 38, 71
WM_KEYUP: 47, 1, €022

WM_CHAR: g, 1, 22

WM_VSCROLL: SB_ENDSCROLL, 81, 0
WM_TIMER: 25 seconds

|

Figure 4.1 The Input Application’s Window

4.3 Summary

This chapter explained how a Windows application receives input from the user.
All user input goes first to Windows, which then translates the input to an input
message and forwards it to the appropriate application. The application can re-
cieve input messages either directly, through a window function’s four argu-
ments, or indirectly, via the application queue.

This chapter also described the different types of input messages and explained
how to respond to each type.

For more information on topics related to input, see the following:

Topic Reference

The Windows Guide to Programming: Chapter 1, “An Overview
message-based pro- of the Windows Environment”

gramming model

Using the cursor for Guide to Programming: Chapter 6, “The Cursor,
mouse and keyboard the Mouse, and the Keyboard”

input

Menus and menu input Guide to Programming: Chapter 7, “Menus”

Scroll-bar controls Guide to Programming: Chapter 8, “Controls”

Keyboard and Mouse Input 4-15

Topic

Input functions

Input messages

Reference

Reference, Volume 1: Chapter 1, “Window
Manager Interface Functions,” and Chapter 4,
“Functions Directory”

Reference, Volume 1: Chapter 5, “Messages Over-
view” and Chapter 6, “Messages Directory”

Chapter Icons

A typical Windows application uses an icon to represent itself when its main
window is minimized.

This chapter covers the following topics:

® What an icon is

® Creating and using your own predefined icons

® Specifying an icon for yoﬁr application’s window class
= Changing your application’s icon “on the fly”

® Displaying an icon in a dialog box

This chapter also explains how to create a sample application, Icon, that il-
lustrates many of these concepts.

5.1 What is an Icon?

To the user, an icon is a small graphic image that represents an application when
that application’s main window is minimized. For example, Microsoft Paintbrush
uses an icon that looks like a painter’s palette to represent its minimized window.
Icons are also used in message and dialog boxes.

To the application, an icon is a type of resource. Before resource compilation,
each icon is a separate file that contains a set of bitmap images. The images may
be similar in appearance, but each is targeted for a different display device.
When the application wants to use an icon, it simply requests the icon resource
by name. Windows then decides which of that icon’s images is most appropriate
for the current display. Because Windows handles this decision, the application
doesn’t need to check the display type or determine which icon image is best
suited for the current display. Figure 5.1 illustrates what happens when an appli-
* cation requests an icon resource.

5-2 Guide to Programming

The application requests the —
icon resource by its name, “Mylcon”.

Mylcon

Windows looks at the Mylcon Myicon resource
resource and finds that it provides '
four different images for four
different display devices.

Windows displays the icon image .~ e
that best fits the user's .~ /
display type. .7

sinlsls

EGA VGA Monochrome Custom
Display Display Display Display

Figure 5.1 Using an Icon

5.1.1 Usmg Built-In Icons

Windows provides several built-in icons. You can use any of these icons in your
applications. Windows uses several built-in icons in message boxes to indicate
notes, cautions, warnings, and errors.

To use a built-in icon, you must first load it. To do this, you retrieve a handle to it
by using the LoadIcon function. The first argument to the function must be
NULL, indicating that you are requesting a built-in icon. The second argument
identifies the icon you want. For example, the following statement loads the built-
in “exclamation” icon:

hHandIcon = LoadIcon(NULL, IDI_EXCLAMATION);

After loading a built-in icon, your application can use it. For example, the appli-
cation could specify the icon as the class icon for a particular window class. Or,
you could include the icon in a message box. For more information, see Section
5.3, “Specifying a Class Icon,” and Section 5.4, “Displaying Your Own Icons.”

Icons 5-3

9.2 Using Your Own Icons

Using an icon requires three steps:

1. Create the icon file with the SDKPaint tool.

2. Define the icon resource by using an ICON statement in your application’s
resource script file.

3. Load the icon resource, when needed, by using the LoadIcon function in
your application code.
After loading an icon, you can use it; for example, you can then specify it as the

class icon.

The following sections explain each step in detail.

5.2.1 Creating an Icon File

An icon file contains one or more icon images. You use the SDKPaint tool to
paint the images and save them in an icon file.

Follow the directions given in Tools for creating and saving an icon. The recom-
mended file extension for an icon file is .ICO.

5.2.2 Defining the Icon Resource

Once you have an icon file, you must define that icon in your application’s
resource script (.RC) file.

To define an icon resource, add an ICON statement to your resource script file.
The ICON statement defines a name for the icon, and specifies the icon file that
contains the icon. For example, the following resource statement adds the icon
named “Mylcon” to your application’s resources:

MyIcon ICON MYICON.ICO

The filename MYICON.ICO specifies the file that contains the images for the
icon named “Mylcon.” When the resource script file is compiled, the icon images
will be copied from the file MYICON.ICO into your application’s resources.

5.2.3 Loading the Icon Resource

Once you have created an icon file and defined the icon resource in the .RC file,
your application can load the icon from its resources.

To load the icon from your resources, you use the LoadIcon function. The
LoadIcon function takes the application’s instance handle and the icon’s name,

5-4 Guide to Programming

and returns a handle to the icon. The following example loads “Mylcon” and
stores its handle in the variable hMylcon.

hMyIcon = LoadIcon (hInstance, "MylIcon");

After loading it, the application can display the icon.

5.3 Specifying a Class Icon

A “class icon” is an icon that represents a particular window class whenever a
window in that class is minimized. You specify a class icon by supplying an icon
handle in the hlcon field of the window-class structure before registering the
class. Once the class icon is set, Windows automatically displays that icon when
any window you create using that window class is minimized.

The following example shows a definition of the window class “wc” before
registering the class. In this definition, the field hlcon is set to the handle re-
turned by LoadIcon.

wc.style = NULL;

wc. pfnWndProc = MainWndProc;

wc.cbClsExtra = 0;

wc.cbWndExtra ?;

wc.hinstance = hlnstance;

@ wc.hlcon = LoadIcon (NULL, IDI_APPLICATION);
wc.hCursor = LoadCursor (NULL, IDC_ARROW);
wc.hbrBackground = COLOR_WINDOW + 1;
wc.lpszMenuName = NULL;

wc.IpszClassName = "Generic";

© The LoadlIcon function returns a handle to the built-in application icon iden-
tified by IDI_APPLICATION. If you minimize a window that has this class,
you will see a white rectangle with a black border. This is the built-in applica-
tion icon.

5.4 Displaying Your Own Icons

Windows displays a class icon when the application is minimized, and removes it
when the application is maximized. All the application does 1s specify it as the
class icon. This meets the needs of most applications, since most applications do
not need to display additional information to the user when the application is min-
imized.

However, sometimes your application may need to display its icon itself, instead
of letting Windows display a prespecified class icon. This is particularly useful

Icons 5-5

when you want your application’s icon to be dynamic, like the icon in the Clock
application. (The Clock application continues to show the time even when it has
been minimized.) Windows lets applications paint within the client area of an
iconic window, so that they can paint their own icons.

If you want your application to display its own icon:

1. In the window class structure, set the class icon to NULL before registering
the window class. Use the following statement:

wc.hlIcon = NULL;

This step is required because it signals Windows to continue sending
WM_PAINT messages, as necessary, to the window function even though the
window has been minimized.

2. Add a WM_PAINT case to your window function that draws within the
icon’s client area if the window receives a WM_PAINT message when the
window is iconic (minimized). Use the following statements:

PAINTSTRUCT ps;
HDC hDC; :

case WM_PAINT:

hDC = BeginPaint(hWnd, &ps);

if (IsIconic(hWnd))
{
/* Output functions for iconic state */
}

else
{
/* Output functions for non-iconic state */
}

EndPaint (hWnd, &ps);

break;

Applications need to determine whether the window is iconic, since what they
paint in the icon may be different from what they paint in the open window. The
IsIconic function returns TRUE if the window is iconic.

The BeginPaint function returns a handle to the display context of the icon’s
client area. BeginPaint takes the window handle, hWnd, and a long pointer to
the paint structure, ps. BeginPaint fills the paint structure with information about
the area to be painted. As with any painting operation, after each call to Begin-
Paint, the EndPaint function is required. EndPaint releases any resources that
BeginPaint retrieved and signals the end of the application’s repainting of the
client area. '

5-6 Guide to Programming

— B

‘5.5 Displaying

You can retrieve the size of the icon’s client area by using the rcPaint field of
the paint structure. For example, to draw an ellipse that fills the icon, you can use
the following statement:

E11ipse(hDC, ps.rcPaint.left, ps.rcPaint.top,
ps.rcPaint.right, ps.rcPaint.bottom);

You can use any GDI output functions to draw the icon, including the TextOut
function. The only limitation is the size of the icon, which varies from display to
display, so make sure that your painting does not depend on a specific icon size.

an Icon in a Dialog Box

You can place icons in dialog boxes by using the ICON control statement in the
DIALOG statement. You have already seen an example of a DIALOG state-
ment in the About dialog box described with the Generic application. The
DIALOG statement for that box looks like this:

AboutBox DIALOG 22, 17, 144, 75
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About Icon"

BEGIN
CTEXT "Microsoft Windows" -1, 37, 5, 68, 8
CTEXT "Generic Application" -1, @, 14, 144, 8
CTEXT "Version 3.8" -1, 38, 34, 64, 8
DEFPUSHBUTTON "OK" IDOK, 53, 59, 32, 14, WS_GROUP
END

You can add an icon to the dialog box by inserting the following ICON state-
ment immediately after the DEFPUSHBUTTON statement:

ICON "MyIcon", -1, 25, 14, 16, 21

When an icon is added to a dialog box, it is treated like any other control. It must
have a control ID, a position for its upper-left corner, a width, and a height. In
this example, —1 is the control ID, 25 and 14 specify the location of the icon in
the.dialog box, and 16 and 21 specify the height and width of the icon, respec-
tively. However, Windows ignores the helght and width, sizing the icon automati-
cally.

The name “Mylcon” identifies the icon you want to use. The icon must be de-
fined in an ICON statement elsewhere within the resource script file. For ex-
ample, the following statement defines the icon “Mylcon.”

MyIcon ICON MYICON.ICO

lcons 5-7

5.6 A Sample Application: Icon

This sample application shows how to incorporate icons in your applications, in
particular, how to do the following:
m Use a custom icon as the class icon.
® Use an icon in the About dialog box.
To create the Icon application, copy and rename the source files of the Generic
application, then do the following:

1. Add an ICON statement to the resource script file.

2. Add an ICON control statement to the DIALOG statement in the resource
script file.

3. Load the custom icon and use it to set the class icon in the initialization func-
tion.

4, Modify the make file to cause the Resource Compiler to add the icon to the
application’s executable file.

5. Compile and link the application.

This sample assumes that you have created an icon using SDKPaint, and have
saved the icon in a file named MYICON.ICO.

NOTE Rather than typing the code provided in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK. '

5.6.1 Add an ICON Statement

Add an ICON statement to your resource script file. Insert the following line
at the beginning of the resource script file, immediately after the #include
directives:

MyIcon ICON MYICON.ICO

5. 6.2 Add an ICON Control Statement

Add an ICON control statement to the DIALOG statement. Insert the following
line immediately after the DEFPUSHBUTTON statement:

ICON "MyIcon", -1, 25, 14, 16, 21

5-8 Guide to Programming

5.6.3 Set the Class lcon

Set the class icon by adding the following statement to the initialization function
in the C-language source file:

wc.hIcon = LoadIcon (hinstance, "MylIcon");

5.6.4 Add MYICON.ICO to the Make File

In the make file, add the file MYICON.ICO to the list of files on which
ICON.RES is dependent. The relevant lines in the make file should look like the
following:

ICON.RES: ICON.RC ICON.H MYICON.ICO
RC -r ICON.RC

This ensures that, if the file MYICON.ICO changes, ICON.RC will be recom-
piled to form a new ICON.RES file.

No other changes are required.

5.6.5 Compile and Link

Recompile and link the Icon application. When the application is recompiled,
start Windows and the Icon application. Now, if you choose the About com-
mand, Icon displays the About dialog box, which now contains an icon.

5.7 Summary

This chapter explained how to create and use icons in your application. An icon
is a small graphic image that can represent an application when that application
is minimized. You can use one of Windows’ built-in icons, or you can use the
SDKPaint tool to create your own icons. You can specify an icon when you
register a window class; then, Windows will automatically display that icon
whenever a window in that class is minimized. Your application can also display
icons itself, using the BeginPaint and EndPaint functions.

For more information on topics related to icons, see the following:

Topic Reference

LoadIcon, IsIconic, BeginPaint, Reference, Volume 1: Chapter 4,
EndPaint, and TextOut functions “Functions Directory”
Resource script statements Reference, Volume 2: Chapter 8,

“Resource Script Statements”

lcons 5-9

Topic

Using SDKPaint

Using the Dialog Editor to add an
icon to a dialog box

Reference

Tools: Chapter 4, “Designing Im-
ages: SDKPaint”

Tools: Chapter 5, “Designing Dialog
Boxes: The Dialog Editor”

Chapter | The Cursor, the Mouse, and
6 | the Keyboard

The cursor is a special bitmap that shows the user where actions initiated by the
mouse will take place. In most Windows applications, the user makes selections,
chooses commands, and directs other actions by using either the mouse or the
keyboard.

This chapter covers the following topics:

= Controlling the shape of the cursor
s Displaying the cursor
m Letting the user select information using the mouse

m Letting the user move the cursor using the keyboard

This chapter also explains how to create a sample apphcatlon Cursor, that il-
lustrates some of these concepts.

6.1 Controlling the Shape of the Cursor

Since no one cursor shape can satisfy the needs of all applications, Windows lets
your application change the shape of the cursor to suit its own needs.

In order to use a particular cursor shape, you must first retrieve a handle to it
using the LoadCursor function. Once your application has loaded a cursor, it
can use that cursor shape whenever it needs to.

Your application can control the shape of the cursor using either of two methods:

m It can take advantage of the built-in cursor shapes that Windows provides.

® It can use its own customized cursor shapes.
The following sections explain each method.

6.1.1 Using Built-In Cursor Shapes

Windows provides several built-in cursor shapes. These include the arrow, hour-
glass, I-beam, and cross-hair cursors. Most of the built-in cursor shapes have

6-2 Guide to Programming

specialized uses. For example, the I-beam cursor is normally used when the user
is editing text; the hourglass cursor is used to indicate that a lengthy operation is
in progress, such as reading a disk file.

To use a built-in cursor, use the LoadCursor function to retrieve a handle to the
built-in cursor. The first argument to LoadCursor must be NULL (indicating
that a built-in cursor is requested); the second argument must specify the cursor
to load. The following example loads the I-beam cursor, IDC_IBEAM, and as-
signs the resulting cursor handle to the variable hCursor.

hCursor = LoadCursor(NULL, IDC_IBEAM);

Once you have loaded a cursor, you can use it. For example, you could display
the I-beam cursor to indicate that the user is currently editing text. Section 6.2,
“Displaying the Cursor,” explains methods for displaying the cursor.

6.1.2 Using Your Own Cursor Shapes

To create and use your own cursor shapes, follow these steps:

1. Create the cursor shape itself by using the SDKPaint tool.

2. Define the cursor in your resource script file by using the CURSOR state-
ment.

3. Load the cursor by using the LoadCursor function.
4. Display the cursor using one of the techniques described in Section 6.2, “Dis-
playing the Cursor.”

The following sections explain each step.

Creating a Cursor Shape

The first step is to create the cursor shape itself. You do this by using SDKPaint,
which lets you see an actual-size version of the cursor shape while you’re editing
it. .

When you have created the cursor, save it in a cursor file. The recommended ex-
tension for cursor files is .CUR.

For information about using SDKPaint, see Tools.

Adding the Cursor to Your Application Resources

Next, add a CURSOR statement to your resource script file. The CURSOR state-
ment specifies the file that contains the cursor, and defines a name for the cursor.
The application will use this cursor name when loading the cursor. The following
is an example of a CURSOR statement:

The Cursor, the Mouse, and the Keyboard 6-3

bullseye CURSOR BULLSEYE.CUR

In this example, the name of the cursor is “bullseye”, and the cursor is in the file
BULLSEYE.CUR.

Loading the Cursor Resource

In your application code, retrieve a handle to the cursor using the LoadCursor
function. For example, the following code loads the cursor resource named
“bullseye” and assigns its handle to the variable hCursor:

hCursor = LoadCursor(hInstance,(LPSTR) "bullseye");

In this example, the LoadCursor function loads the cursor from the application’s
resources. The instance handle, hInstance, identifies the application’s resources
and is required. The name “bullseye” identifies the cursor. It is the same name
given in the resource script file.

6.2 Displaying the Cursor

Once you have loaded a cursor shape, you can display it using one of two
methods:

® Specifying it as the “class cursor” for all windows in a window class
m Explicitly setting the cursor shape when the cursor moves within the client

area of a particular window

The following sections explain each method.

6.2.1 Specifying a Class Cursor

The “class cursor” defines the shape the cursor will take when it enters the client
area of a window that belongs to that window class. To specify a class cursor,
load the cursor you want, and assign its handle to the hCursor field of the
window-class structure before registering the class. For example, to use the built-
in arrow cursor (IDC_ARROW) in your window, add the following statement to
your initialization function:

wc.hCursor = LoadCursor(NULL, IDC_ARROW) ;

For each window created using this class, the built-in arrow cursor will appear au-
tomatically when the user moves the cursor into the window.

6-4 Guide to Programming

6.2.2 Explicitly Setting the Cursor Shape

Your application does not have to specify a class cursor. Instead, you can set the
hCursor field to NULL to indicate that the window class has no class cursor. If a
window has no class cursor, Windows will not automatically change the shape of
the cursor when it moves into the client area of the window. This means that your
application will need to display the cursor itself.

To use any cursor, whether built-in or custom, you must load it first. For ex-
ample, to load the custom cursor “MyCursor” (defined in your application’s
resource script file) add the following statements to your initialization function:

static HCURSOR hMyCursor; /* static variable */
hMyCursor = LoadCursor (hInstance, (LPSTR) "MyCursor");

Then, to change the cursor shape, use the SetCursor function to set the shape
each time the cursor moves in the client area. Since Windows sends a
WM_MOUSEMOVE message to the window on each cursor movement, you can
manage the cursor by adding the following statements to the window function:

case WM_MOUSEMOVE:
SetCursor(hMyCursor);
break;

NOTE If your application needs to display the cursor itself, you must set the class-cursor
field to NULL. Otherwise, Windows will attempt to set the cursor shape on each
WM_MOUSEMOVE message, even though your application is also setting the cursor shape.
This will result in a noticeable flicker as you move the cursor through the window.

6.2.3 Example: Displaying the Hourglass on a Lengthy Operation

Whenever your application begins a lengthy operation, such as reading or writing
a large block of data to a disk file, you should change the shape of the cursor to
the hourglass. This lets users know that a lengthy operation is in progress and
that they should wait before atterpting to continue their work. Once the opera-
tion is complete, your application should restore the cursor to its previous shape.

To change the cursor to an hourglass, use the following statements:

@ HCURSOR hSaveCursor;
HCURSOR hHourGlass;

hHourGlass = LoadCursor(NULL, IDC_WAIT);

The Cursor, the Mouse, and the Keyhoard 6-5

@ SetCapture(hWnd);
® hSaveCursor = SetCursor(hHourGlass);

/* Lengthy operation */

O SetCursor(hSaveCursor);
© ReleaseCapture();

In this example:

O The application defines the variables that will be used to store the cursor han-
dies. Both variables are type HCURSOR.

® The application first captures the mouse input, using the SetCapture func-
tion. This keeps the user from attempting to use the mouse to carry out work
in another application while the lengthy operation is in progress. When the
mouse input is captured, Windows directs all mouse input messages to the
specified window, regardless of whether the mouse is in that window. The
application can then process the messages as appropriate.

© The application then changes the cursor shape using the SetCursor function.
SetCursor returns a handle to the previous cursor shape, so that the shape can
be restored later. The application saves this handle in the variable hSave-
Cursor.

O After the lengthy operation is complete, the application restores the previous
cursor shape.

© The ReleaseCapture function releases the mouse input.

6.3 Letting the User Select Information with the Mouse

The mouse is a hardware device that lets the user move the cursor and enter
simple input by pressing a button. In a typical Windows application, the user per-
forms many types of tasks with the mouse; for example, choosing commands
from a menu, selecting text or graphics, or directing scrolling operations. For
most of these tasks, Windows automatically handles the mouse input; for ex-
ample, when the user chooses a menu command, Windows automatically sends
the application a message that contains the command ID.

However, one common task, selection of information within the client area, must
be handled by the application itself. In order to let the user select such informa-
tion using the mouse, the application must perform the following tasks:

6-6 Guide to Programming
L___ |

® Start processing the selection.

When the user presses the mouse button to start selecting information, the
application must note the location of the cursor and temporarily capture all
mouse input to ensure that other applications do not interfere with the selec-
tion process.

® Provide visual feedback during the selection.

While the user drags the mouse across the screen, the application should
show the user what information is currently being selected. For example,
some applications highlight selected information; others draw a dotted
rectangle around it.

® Complete the selection.

When the user releases the mouse button, the application must note the final
location of the cursor and signal the end of the selection process.

When the selection process is complete, the user can then choose an action to per-
form on the selected information. For example, in a word processor, the user
might select several words, then choose a command that changes the selected

text to a different font. The following sections discuss each step in more detail,
and explain how to let the user select graphics in a window’s client area.

NOTE The mouse is just one of many possible system pointing devices. Other pointing
devices such as graphics tablets, joysticks, and light pens may operate differently but still
provide input identical to that of a mouse. The following examples can be used with these
devices as well. Remember that when a pointing device is present, Windows automatically
controls the position and shape of the cursor as the user moves the pointing device.

6.3.1 Starting a Graphics Selection

Because graphics can be virtually any shape, they are potentially more difficult
to select than simple text. The simplest approach to selecting graphics is to let the
user “stretch” a selection rectangle so that it encloses the desired information.

This section explains how to use the “rubber rectangle” method of selecting
graphics. You can use the messages WM_LBUTTONDOWN, WM_LBUT-
TONUP, and WM_MOUSEMOVE to create the rectangle. This lets the user
create the selection by choosing a point, pressing the left button, and dragging to
another point before releasing. While the user drags the mouse, the application
can provide instant feedback by inverting the border of the rectangle described
by the starting and current points.

The Cursor, the Mouse, and the Keyboard 6-7
. ___|]

For this method, you start the selection when you receive the message
WM_LBUTTONDOWN. You need to do three things: capture the mouse input,
save the starting (original) point, and save the current point, as follows:

BOOL bTrack = FALSE; /* these are global variables */
int OrgX = @, OrgY = 0;

int PrevX = @, PrevY = 0;

int X =0, Y =0;

© case WM_LBUTTONDOWN:
bTrack = TRUE;
PrevX = LOWORD(1Param);

PrevY = HIWORD(1Param);
OrgX = LOWORD(1Param);
OrgY = HIWORD(1Param);

® InvalidateRect (hWnd, NULL, TRUE);
UpdateWindow (hWnd);

/* Capture all input even if the mouse goes outside of window */

© SetCapture(hWnd);
break;

©® When the application receives the WM_LBUTTONDOWN message, the
bTrack variable is set to TRUE to indicate that a selection is in progress. As
with any mouse message, the [Param parameter contains the current x- and y-
coordinates of the mouse in the low- and high-order words, respectively.
These are saved as the origin x and y values, OrgX and OrgY, as well as the
previous values, PrevX and PrevY. The PrevX and PrevY variables will be
updated immediately on the next WM_MOUSEMOVE message. The OrgX
and OrgY variables remain unchanged and will be used to determine a corner
of the bitmap to be copied. (The variables bTrack, OrgX, OrgY, PrevX, and
PrevY must be global variables.)

® To provide immediate visual feedback in response to the WM_LBUTTON-
DOWN message, the application invalidates the screen and notifies the
window function that it needs to repaint the screen. It does this by calling
InvalidateRect and UpdateWindow. '

© The SetCapture function directs all subsequent mouse input to the window
even if the cursor moves outside of the window. This ensures that the selec-
tion process will continue uninterrupted.

6-8 Guide to Programming

Respond to the WM_PAINT message by redrawing the invalidated portions of
the screen:

case WM_PAINT:
{
PAINTSTRUCT ps;
HDC hDC;

hDC = BeginPaint (hWnd, &ps);
if (OrgX != PrevX || OrgY != PrevY) {
MoveTo(hDC, OrgX, OrgY);
LineTo(hDC, OrgX, PrevY);
LineTo(hDC, PrevX, PrevY);
LineTo(hDC, PrevX, OrgY);
LineTo(hDC, OrgX, OrgY);
}
EndPaint (hWnd, &ps);
b
break;

In some applications, you might want to be able to extend an existing selection.
One way to do this is to have the user hold the SHIFT key when making a selec-
tion. Since the wParam parameter contains a flag that specifies whether the SHIFT
key is being pressed, it is easy to check for this, and to extend the selection as
necessary. In this case, extending a selection means preserving its previous OrgX
and OrgY values when you start it. To do this, change the WM_LBUTTON-
DOWN case so it looks like this:

case WM_LBUTTONDOWN:
bTrack = TRUE;
PrevX = LOWORD(1Param);
PrevY = HIWORD(1Param);
if (!l(wParam & MK_SHIFT)) { /* If shift key is
not pressed */
OrgX
OrgyY

LOWORD(1Param);
HIWORD(1Param);

}
InvalidateRect (hWnd, NULL, TRUE);
UpdateWindow (hWnd);

/* Capture all input even if the mouse goes
outside the window */

SetCapture(hWnd);
break;

The Cursor, the Mouse, and the Keyboard 6-9

6.3.2 Showing the Selection

As the user makes the selection, you need to provide feedback about his or her
progress. You can do this by drawing a border around the rectangle by using the
LineTo function on each new WM_MOUSEMOVE message. To prevent losing
information already on the display, you need to draw a line that inverts the screen
rather than drawing over it. You can do this by using the SetROP2 function to
set the binary raster mode to R2_NOT. The following statements perform this
function:

case WM_MOUSEMOVE:

{

RECT
int
int

if (

rectClient;
NextX;
NextY;
bTrack) {
NextX = LOWORD(1Param);
NextY = HIWORD(1Param);

/* Do not draw outside the window's client area */

GetClientRect (hWnd, &rectCiient);

if (NextX < rectClient.left) {
NextX = rectClient.left;

) else if (NextX >= rectClient.right) f{
NextX = rectClient.right - 1;

}

if (NextY < rectClient.top) {
NextY = rectClient.top;

} else if (NextY >= rectClient.bottom) {
NextY = rectClient.bottom - 1;

}

/* 1f the mouse position has changed, then clear the */
/* previous rectangle and draw the new one. */

if ((NextX != PrevX) || (NextY .!= PrevY)) {
hDC = GetDC(hWnd);
SetROP2(hDC, R2_NOT); /* Erases the previous box */
MoveTo(hDC, OrgX, OrgY);
LineTo(hDC, OrgX, PrevY);
LineTo(hDC, PrevX, PrevY);
LineTo(hDC, PrevX, OrgY);
LineTo(hDC, OrgX, OrgY);

6-10 Guide to Programming

/* Get the current mouse position */

PrevX = NextX;

PrevY = NextY;

MoveTo(hDC, OrgX, OrgY); /* Draws the new box */
- LineTo(hDC, OrgX, PrevY);

LineTo(hDC, PrevX, PrevY);

LineTo(hDC, PrevX, OrgY);

LineTo(hDC, OrgX, OrgY);

ReleaseDC(hWnd, hDC);

break;

The application processes the WM_MOUSEMOVE message only if bTrack is
TRUE (that is, if a selection is in progress). The purpose of the WM_MOUSE-
MOVE processing is to remove the border around the previous rectangle and
draw a new border around the rectangle described by the current and original
positions. Since the border is actually the inverse of what was originally on the
display, inverting again restores it completely. The first four LineTo functions re-
move the previous border. The next four draw a new border. Before drawing the
new border, the PrevX and PrevY values are updated by assigning them the cur-
rent values contained in the [Param parameter.

6.3.3 Ending the Selection

Finally, when the user releases the left button, save the final point and signal the
end of the selection process. The following statements complete the selection:

case WM_LBUTTONUP:

bTrack = FALSE; /* No longer carrying out a selection */
ReleaseCapture(); /* Release hold on mouse input */

X = LOWORD(1Param); /* Save the current value */

Y = HIWORD(1Param);

break;

When the application receives a WM_LBUTTONUP message, it immediately
sets bTrack to FALSE to indicate that selection processing has been completed.
It also releases the mouse capture by using the ReleaseCapture function. It then
saves the current mouse position in the variables, X and Y. This, together with
the selection-origin information saved on WM_LBUTTONDOWN, records the
selection the user has made. The application can now operate on the selection,
and can redraw the selection rectangle when necessary.

The Cursor, the Mouse, and the Keyboard 6-11

For some applications, you might want to check the final cursor position to make
sure it represents a point to the lower right of the original point. This is the way
most rectangles are described—by their upper-left and lower-right corners.

The ReleaseCapture function is required since a corresponding SetCapture
function was called. In general, you should release the mouse immediately after
the mouse capture is no longer needed.

6.4 Using the Cursor with the Keyboard

Because Windows does not require a pointing device, applications should pro-
vide the user with a way to duplicate mouse actions with the keyboard. To allow
the user to move the cursor using the keyboard, use the SetCursorPos, Set-
Cursor, GetCursorPos, ClipCursor, and ShowCursor functions to display and
move the cursor. :

6.4.1 Using the Keyboard to Move the Cursor

You can use the SetCursorPos function to move the cursor directly from your
application. This function is typically used to let the user move the cursor by
using the keyboard.

To move the cursor, use the WM_KEYDOWN message and filter for the virtual-
key values of the direction keys: VK_LEFT, VK_RIGHT, VK_UP, and
VK_DOWN. On each key stroke, the application should update the position of
the cursor. The following example shows how to retrieve the cursor position and
convert the coordinates to client coordinates:

POINT ptCursor; /* these are global variables */
int repeat = 1;

RECT Rect;

case WM_KEYDOWN:
Q@ if (wParam != VK_LEFT && wParam != VK_RIGHT

&& wParam != VK_UP && wParam != VK_DOWN)
break;
® GetCursorPos(&ptCursor);

/* Convert screen coordinates to client coordinates */

©® ScreenToClient(hWnd, &ptCursor);
O repeat++; /* Increases the repeat rate */

6-12 Guide to Programming

switch (wParam) ({

/* Adjust cursor position according to which key was pressed. */
/* Accelerate by adding the repeat variable to the cursor
position. */

case VK_LEFT:
-ptCursor.x -= repeat;
break;

case VK_RIGHT:
ptCursor.x += repeat;
break;

case VK_UP:
ptCursor.y -= repeat;
break;

case VK_DOWN:
ptCursor.y += repeat;
break;

default:
return (NULL);

}

/* ensure that cursor doesn't go outside client area */
® GetClientRect(hWnd, &Rect);

@ if (ptCursor.x >= Rect.right)
ptCursor.x = Rect.right - 1;

else if (ptCursor.x < Rect.left)
ptCursor.x = Rect.left;

if (ptCursor.y >= Rect.bottom)
ptCursor.y = Rect.bottom - 1;

else if (ptCursor.y < Rect.top)
ptCursor.y = Rect.top;

@ ClientToScreen(hWnd, &ptCursor);

@ SetCursorPos(ptCursor.x, ptCursor.y);
break;

case WM_KEYUP:
O repeat = 1; /* Clears the repeat rate */
break;

In this example:

@ The first if statement filters for the virtual-key values of the direction keys
VK_LEFT, VK_RIGHT, VK_UP, and VK_DOWN.

The Cursor, the Mouse, and the Keyboard 6-13

® The GetCursorPos function retrieves the current cursor position. If the
mouse is available, the user could potentially move the cursor with the mouse
at any time; therefore, there is no guarantee that the position values you saved
on the last key stroke are correct.

©® The ScreenToClient function converts the cursor position to client coordi-
nates. The application does this for two reasons: mouse messages give the
mouse position in client coordinates, and client coordinates do not need to be
updated if the window moves. In other words, it is convenient to use client
coordinates because the system uses them and because it usually means less
work for the application.

® The repeat variable provides accelerated cursor motion. Advancing the cursor
one unit for each key stroke can be frustrating for users if they need to move
to the other side of the screen. You can accelerate the cursor motion by in-
creasing the number of units the cursor advances when the user holds down a
key. When the user holds down a key, Windows sends multiple WM_KEY-
DOWN messages without matching WM_KEYUP messages. To accelerate
the cursor, you simply increase the number of units to advance on each
WM_KEYDOWN message.

© The GetClientRect function retrieves the current size of the client area and
stores it in the Rect structure. You then use that information to ensure that the
cursor motion remains within the client area.

O These if statements check the current cursor position to ensure that it is within
the client area. If necessary, the application then adjusts the cursor position.

© In preparation for the SetCursorPos function, the ClientToScreen function
converts the values in the ptCursor structure from client coordinates to screen
coordinates. Because SetCursorPos requires screen coordinates rather than
client coordinates, you must convert the coordinates before calling SetCur-
sorPos.

()

The SetCursorPos function moves the cursor to the desired location.

© Within the WM_KEYUP case, the application restores the initial value of the
repeat variable when the user releases the key.

6.4.2 Using the Cursor when No Mouse Is Available

When no mouse is available, the application must display and move the cursor in
response to keyboard actions. To determine whether a mouse is present, you can
use the GetSystemMetrics function and specify the SM_MOUSEPRESENT
option:

GetSystemMetrics (SM_MOUSEPRESENT);

This function returns TRUE if the mouse is present.

6-14 Guide to Programming

You will need to display the cursor and update the cursor position when the appli-
cation is activated, and hide the cursor when the application is deactivated. The
following statements carry out both activation functions:

case WM_ACTIVATE:
if (!GetSystemMetrics(SM_MOUSEPRESENT)) {
if (IHIWORD(1Param)) {
if (wParam) {
SetCursor(hMyCursor);
ClientToScreen(hWnd, &ptCursor);
SetCursorPos(ptCursor.x, ptCursor.y);
1
ShowCursor(wParam);
}
}
break;

The cursor functions are called only if the system has no mouse; that is, if the
GetSystemMetrics function returns FALSE. Since Windows positions and up-
dates the cursor automatically if a mouse is present, the cursor functions, if car-
ried out, would disrupt this processing.

The next step is to determine whether the window is iconic. The cursor must not
be displayed or updated if the window is an icon. In a WM_ACTIVATE
message, the high-order word is nonzero if the window is iconic, so the cursor
functions are called only if this value is zero.

The final step is to check the wParam parameter to determine whether the
window is being activated or deactivated. This parameter is nonzero if the
window is being activated. When a window is activated, the SetCursor function
sets the shape and the SetCursorPos function positions it. The ClientToScreen
function converts the cursor position to screen coordinates as required by the Set-
CursorPos function. Finally, the ShowCursor function shows or hides the
cursor depending on the value of wParam.

- When the system has no mouse installed, applications must be careful when

using the cursor. In general, applications must hide the cursor when the window
is closed, destroyed, or relinquishes control. If an application fails to hide the
cursor, it prevents subsequent windows from using the cursor. For example, if an
application sets the cursor to the hourglass, displays the cursor, then relinquishes
control to a dialog box, the cursor remains on the screen (possibly in a new
shape), but cannot be used by the dialog box.

6.5 A Sample Application: Cursor

This sample application, Cursor, illustrates how to incorporate cursors and how
to use the mouse and keyboard in your applications. It illustrates the following:

The Cursor, the Mouse, and the Keyboard 6-15

Using a custom cursor as the class cursor
Showing the hourglass cursor during a lengthy operation
Using the mouse to select a portion of the client area

Using the keyboard to move the cursor

To create the Cursor application, copy and rename the source files of the Generic
application, then make the following modifications:

1.
2.
3.

9.
10.

Add a CURSOR statement to your resource script file.
Add new variables.

Load the custom cursor and use it to set the class cursor in the initialization
function.

. Prepare the hourglass cursor.

. Add a lengthy operation to the window function (for simplicity, use the

ENTER key to trigger the operation).

Add the WM_LBUTTONDOWN, WM_MOUSEMOVE, and WM_LBUT-
TONUP cases to the window function to support selection.

Add the WM_KEYDOWN case to the window function to support keyboard-
controlled cursor movement.

Add the WM_PAINT case to the window function to redraw the client area
after it has been invalidated.

Add BULLSEYE.CUR to the make file.

Compile and link the application.

This sample assumes that your system has a mouse; if your system does not, the
application might not operate as described. However, it is a fairly straightforward
task to adjust the sample to work with both the mouse and the keyboard or with
only the keyboard.

NOTE Rather than typing the code provided in the following sections, you might find it
more convenient to simply compile and execute the sample source files provided with the
SDK.

6-16 Guide to Programming

6.5.1 Add the CURSOR Statement

- To use a custom cursor, you need to create a cursor file using SDKPaint, and

give the name of the file in a CURSOR statement in the resource script file. Add
the following statement to your resource script file:

- bullseye CURSOR BULLSEYE.CUR

Make sure that the cursor file, BULLSEYE.CUR, contains a cursor.

6.5.2 Add New Variables

You will need several new variables for this sample application. Place the follow-
ing statements at the beginning of your C-language source file:

char étr[255]; /* general-purpose string buffer */
HCURSOR hSaveCursor; /* handle to current cursor */
HCURSOR hHourGlass; /* handle to hourglass cursor */
BOOL bTrack = FALSE; - /* TRUE if left button clicked */
int OrgX = @, OrgY = @; /* original cursor position */
int PrevX = @, PrevY = 0; /* current cursor position */
int X =0, Y = 0; /* last cursor position */
RECT Rect; /* selection rectangle */
POINT ptCursor; /* x and y coordinates of cursor */
int repeat = 1; /* repeat count of key stroke */

The hSaveCursor and hHourGlass variables hold the cursor handles to be used
for the lengthy operation. The bTrack variable holds a Boolean flag indicating
whether a selection is in progress. The variables OrgX, OrgY, PrevX, and PrevY
hold the original and current cursor positions as a selection is being made. OrgX
and OrgY, along with the variables X and Y, hold the original and final coordi-
nates of the selection when the selection process is complete. The ptCursor struc-
ture holds the current position of the cursor in the client area. This is updated
when the user presses a DIRECTION key. The Rect structure holds the current di-
mensions of the client area and is used to make sure the cursor stays within the
client area. The repeat variable holds the current repeat count for each keyboard
motion.

6.5.3 Set the Class Cursor

To set the class cursor, you need to modify a statement in the initialization func-
tion. Specifically, you need to assign the cursor handle to the hCursor field of
the window-class structure. Make the following change in the C-language source
file. Find this line:

wc.hCursor = LoadCursor(NULL, IDC_ARROW);

The Cursor, the Mouse, and the Keyboard 6-17

Change it to the following: .

wc.hCursor = LoadCursor{(hInstance, "bullseye");

6.5.4 Prepare the Hourglass Cursor

Since you will be using the hourglass cursor during a lengthy operation, you need
to load it. The most convenient place to load it is during the initialization tasks
handled by the InitInstance function. Add the following statement to InitInstance:

hHourGlass = LoadCursor(NULL, IDC_WAIT);

This makes the hourglass cursor available whenever it is needed.

6.5.5 Add a Lengthy Operation

A lengthy operation can take many forms. This sample is a function named
“sieve” that computes several hundred prime numbers. The operation begins
when the user presses ENTER. Add the following statements to the window func-
tion:

case WM_CHAR:
if (wParam == "\r') {
SetCapture(hWnd);

/* Set the cursor to an hourglass */
hSaveCursor = SetCursor(hHourGlass);

strcpy (str, "Calculating prime numbers...");
InvalidateRect (hWnd, NULL, TRUE);

UpdateWindow (hWnd);

sprintf(str, "Calculated %d primes. ", sieve());
InvalidateRect (hWnd, NULL, TRUE);

UpdateWindow (hWnd);

SetCursor(hSaveCursor); /* Restores previous cursor */
ReleaseCapture();

}

break;

When the user presses ENTER, Windows generates a WM_CHAR message whose
wParam parameter contains an ANSI value representing the carriage return.
When the window function receives a WM_CHAR message, it checks for this
value and carries out the sample lengthy operation, sieve. This function, called
Eratosthenes Sieve Prime-Number Program, is from Byte, January 1983. It is de-

fined as follows:
Ed

f#define NITER 20
fidefine SIZE 8198

6-18 Guide to Pragramming

char flags[SIZE+1]1 = { @};

sieve() {
int i,k;
int iter, count;

for (iter = 1; iter <= NITER; iter++) {
count /K
for (i = @; i <= SIZE; i++)
flags[i] = TRUE;

for (i = 2; i <= SIZE; i++) |
if (flags[il) {
for (k =1 + i; k <= SIZE; k += 1)
flags[k]l = FALSE;
count++;

}
} .
return (count);

6.5.6 Add the WM_LBUTTONDOWN, WM_MOUSEMOVE, and
WM_LBUTTONUP Cases

To carry out a selection, you can use the statements described in Section 6.3,
“Letting the User Select Information with the Mouse.” Add the following state-
ments to your window function:

case WM_LBUTTONDOWN:

bTrack = TRUE;

strcpy (str, "");

PrevX = LOWORD(T1Param);

PrevY = HIWORD(1Param);

if (!(wParam & MK_SHIFT)) { /* If shift key is not pressed */
OrgX = LOWORD(1Param);
Orgy HIWORD(1Param);

I

}
InvalidateRect (hWnd, NULL, TRUE);
UpdateWindow (hWnd);

/* Capture all input even if the mouse goes outside of window */

SetCapture(hWnd);
break;

The Cursor, the Mouse, and the Keyboard 6-19

case WM_MOUSEMOVE:
{

RECT rectClient;
int NextX;
int NextY;

if (bTrack) {
NextX = LOWORD(TParam);
NextY = HIWORD(I1Param);

/* Do.not draw outside the window's client area */

GetClientRect (hWnd, &rectClient);

if (NextX < rectClient.left) {
NextX = rectClient.left;

} else if (NextX >= rectClient.right) {
NextX = rectClient.right - 1;

}

if (NextY < rectClient.top) {
NextY = rectClient.top;

} else if (NextY >= rectClient.bottom) {
NextY = rectClient.bottom - 1;

}

/* 1f the mouse position has changed, then clear the */
/* previous rectangle and draw the new one. */

if ((NextX != PrevX) || (NextY != PrevY)) {
hDC = GetDC(hWnd);
SetROP2(hDC, R2_NOT); /* Erases the previous box */
MoveTo(hDC, OrgX, OrgY):
LineTo(hDC, OrgX, PrevY);
LineTo(hDC, PrevX, PrevY);
LineTo(hDC, PrevX, OrgY);
LineTo(hDC, OrgX, OrgY);

/* Get the current mouse position */

‘PrevX = NextX;

PrevY = NextY;

MoveTo(hDC, OrgX, OrgY); ~/* Draws the new box */
LineTo(hDC, OrgX, PrevY);

LineTo(hDC, PrevX, PrevY);

LineTo(hDC, PrevX, 0rgY);

LineTo(hDC, OrgX, OrgY);

ReleaseDC(hWnd, hDC);

break;

6-20 Guide to Programming

case WM_LBUTTONUP:

bTrack = FALSE; /* Ignores mouse input */

ReleaseCapture(); /* Releases hold on mouse input */
X = LOWORD(1Param); /* Saves the current value */

Y = HIWORD(1Param);

break;

6.5.7 Add the WM_KEYDOWN and WM_KEYUP Cases

In order to use the keyboard to control the cursor, you need to add WM_KEY-
DOWN and WM_KEYUP cases to the window function.

The statements in the WM_KEYDOWN case retrieve the current position of the
cursor and update the position when a DIRECTION key is pressed. Add the follow-
ing statements to the window function:

case WM_KEYDOWN:
GetCursorPos(&ptCursor);
if (wParam != VK_LEFT || wParam != VK_RIGHT ||
wParam != VK_UP || wParam != VK_DOWN)
break;

ScreenToClient(hWnd, &ptCursor);
repeat++; /* Increases the repeat rate */

switch (wParam) {

case VK_LEFT:
ptCursor.x -= repeat;
break;

case VK_RIGHT:
ptCursor.x += repeat;
break;

case VK_UP{
ptCursor.y -= repeat;
break;

case VK_DOWN:
ptCursor.y += repeat;
break;

default:
return (NULL);
}

GetClientRect(hWnd, &Rect}; /* Gets the client boundaries */

The Cursor, the Mouse, and the Keyboard 6-21

if (ptCursor.x >= Rect.right)
ptCursor.x = Rect.right - 1;

else if (ptCursor.x < Rect.left)
ptCursor.x = Rect.left;

if (ptCursor.y >= Rect.bottom)
ptCursor.y = Rect.bottom - 1;

else if (ptCursor.y < Reet.top)
ptCursor.y = Rect.top;

ClientToScreen(hWnd, &ptCursor);
SetCursorPos(ptCursor.x, ptCursor.y);
break;

The GetCursorPos function retrieves the cursor position in screen coordinates.
To check the position of the cursor within the client area, the coordinates are con-
verted to client coordinates by using the ScreenToClient function. The switch
statement checks for the DIRECTION keys; each time it encounters a DIRECTION
key, the statement adds the current contents of the repeat variable to the appro-
priate coordinate of the cursor location.

The new position is checked to make sure it is still in the client area, using the
GetClientRect function to retrieve the dimensions of the client area. The posi-
tion is adjusted, if necessary. Finally, the ClientToScreen function converts the
position back to screen coordinates and the SetCursorPos function sets the new
position.

The WM_KEYUP case restores the initial value of the repeat variable when the
user releases the key, as shown in the following example:

case WM_KEYUP:
reépeat = 1; /* Clears the repeat count */
break;

6.5.8 Add the WM_PAINT Case

To be sure that the text string and selection rectangle are redrawn when neces-
sary (for example, when another window has temporarily covered the client
area), add the following case to the window function:

case WM_PAINT:
{
PAINTSTRUCT psS;

hDC = BeginPaint (hWnd, &ps);

if (OrgX != PrevX || OrgY != PrevY) {
MoveTo(hDC, OrgX, OrgY);
LineTo(hDC, OrgX, PrevY);
LineTo(hDC, PrevX, PrevY);
LineTo(hDC, PrevX, OrgY);
LineTo(hDC, OrgX, OrgY);

6-22 Guide to Programming

TextOut (hDC, 1, 1, str, strlen (str));
EndPaint (hWnd, &ps);

}

break;

6.5.9 Add BULLSEYE.CUR to the Make File

In the make file, add the file BULLSEYE.CUR to the list of files on which
CURSOR .RES is dependent. The relevant lines in the make file should look like
the following:

CURSOR.RES:" CURSOR.RC CURSOR.H BULLSEYE.CUR
RC -r CURSOR.RC

This ensures that, if the file BULLSEYE.CUR changes, CURSOR.RC will be re-
compiled to form a new CURSOR.RES file.

6.5.10 Compile and Link

Recompile and link the Cursor application. When the application is recompiled,
start Windows and the Cursor application. When you move the cursor into the
client area, it changes to the bull’s-eye shape.

Press and hold down the left mouse button, then drag the mouse to a new posi-
tion and release the mouse button. You should see a selection that looks like
Figure 6.1:

Starting point

Cursor Sample Application

O

L Ending point
Figure 6.1 A Selection in the Cursor Application
Now press the DIRECTION keys to move the cursor. Then press ENTER to see the

application display the hourglass cursor to indicate that the lengthy operation is
in progress.

6.6 Summary

The Cursor, the Mouse, and the Keyboard 6-23

This chapter explained how to use the cursor in a Windows application. A cursor
is a special bitmap that allows the user to track actions initiated via the mouse.
Windows léts you change the shape of the cursor to suit your application’s needs.
You can use one of Windows’ built-in cursor shapes, or create your own cursors
using SDKPaint.

Windows automatically carries out most mouse actions; however, one action,
selection, must be carried out by the application.

Because Windows does not require a mouse or other pointing device, you will
probably want to include functions that allow the user to move the cursor using

the keyboard.

For more information on topics related to cursors, see the following:

Topic

Mouse and keyboard input

Cursor functions

Window-management messages and
input messages

Resource script statements

Using SDKPaint

Reference

Guide to Programming: Chapter 4,
“Keyboard and Mouse Input”

Reference, Volume 1. Chapter 1,
“Window Manager Interface Func-
tions” and Chapter 4, “Functions
Directory”

Reference, Volume 1: Chapter 5,
“Messages Overview” and Chapter
6, “Messages Directory”

Reference, Volume 2: Chapter 8,
“Resource Script Statements”

Tools: Chapter 4, “Designing Im-
ages: SDKPaint”

Chapter Menus

Most Windows applications use menus to let the user select commands or
actions.

This chapter covers the following topics:

® What a menu is

® Defining a menu

® Including a menu in your application
® Processing input from a menu

® Modifying an existing menu

® Working with special menu features

This chapter also explains how to create a sample application, EditMenu, that
uses and processes input from menus.

7.1 What is a Menu?

A menu is a list of items which, to the user, are the application’s commands. A
menu item can be displayed using text or a bitmap. The user tells the application
to perform a command by selecting a menu item using the mouse or the key-
board. When a user chooses a menu item, Windows sends the application a
message that indicates which item the user selected.

To use a menu in your application, follow these general steps:

1. Define the menu in your resource script file.

2. Specify the menu in your application code. There are two common ways to
do this: : :

m When registering the window class, specify a menu for that entire window
class (the “class menu”).

m When creating a window, specify a menu for that window.

3. Initialize the menu, if necessary.

7-2 Guide to Programming

Once the menu exists and has been initialized, the following can take place:

The user can select commands from the menu.

When the user selects a command (menu item), Windows sends your applica-
tion an input message that includes the identifier for that menu item.

Your application can add, change or replace menu items, or even the entire
menu, as necessary.

7.2 Defining a Menu

The first step in using a menu is to define it in your application’s resource script
(.RCQ) file using a MENU statement. The MENU statement specifies:

The name of the menu

Items on the menu

The menu ID of each item

The text or bitmap that appears for each item

Special attributes of each item

A MENU statement consists of the menu name, the MENU key word, and a pair
of BEGIN and END key words that enclose one or more of the following menu-
definition statements:

The MENUITEM statement defines a menu item, its appearance, and its
identifier.

When the user chooses a menu item, Windows notifies the application of the
user’s selection.

The POPUP statement defines a pop-up menu, which contains a list of menu
items. ‘

When the user selects a pop-up menu, Windows displays the list of items.
The user can then select an item from the pop-up menu; Windows then noti-
fies the application of the user’s selection.

For example, the following MENU statement defines a menu named
SampleMenu:

@ SampleMenu MENU

BEGIN

@ MENUITEM "Exit!", IDM_EXIT
MENUITEM "Recalculate!", IDM_RECALC

© POPUP "Options”

Menus 7-3

7.2.1 Menu IDs

BEGIN
© MENUITEM "Scylla", IDM_SCYLLA
MENUITEM "Charybdis", IDM_CHARYBDIS
END
END

In this example:

© This line tells the Resource Compiler that this is the beginning of a menu defi-
nition, and names the menu SampleMenu. A MENU statement consists of the
menu name, the MENU key word, and a pair of BEGIN and END key words
which enclose the item-definition statements for that menu.

® This MENUITEM statement defines the first item on the menu. The text
“Exit!” will appear as the leftmost command on the menu bars When the user
selects the Exit! command, Windows sends the application a WM_COM-
MAND message that specifies the menu ID “IDM_EXIT” in the message’s
wParam parameter. The next MENUITEM statement defines the Recalcu-
late! command in the same way.

©® The POPUP statement defines a pop-up menu. The text “Options” appears
on the menu bar. When the user selects the Options command, a menu ap-
pears that lets the user choose between the Scylla and Charybdis commands.

© Within the POPUP statement are the definitions for the items on that pop-up
menu. For the Options pop-up menu, there are two menu items, each with its
own text and menu ID.

When the user selects the Exit!, Recalculate!, Scylla or Charybdis command,
Windows notifies the application of the user’s selection by passing it that item’s
menu ID. Note that Windows does not notify the application when the user
selects the Options command; instead, Windows simply displays the Options pop-
up menu.

For more information about the MENU, POPUP and MENUITEM resource
statements, see the Reference, Volume 2.

Each menu item has a unique identifier, usually called a “menu ID.” When the
user chooses a command, Windows passes the command’s menu ID to the appli-
cation. Menu IDs must be unique constants. You can define each menu ID as a
constant by using the #define directive in the resource script file or the include
file. For example:

ftdefine IDM_EXIT 111

ftdefine IDM_RECALC 112
ftdefine IDM_SCYLLA 113

jtdefine IDM_CHARYBDIS 114

7-4 Guide to Programming

You use a menu ID to direct the flow of control depending on which menu item
the user selects. For more information on handling menu input, see Section 7.4,
“Processing Input from a Menu.”

7.3 Including a Menu in Your Application

Once you have defined a menu in the resource script file, you can include it in
your application code. You specify a menu by associating it with a window. Any
overlapped or pop-up window can have a menu; a child window cannot (al-
though child windows can have system menus).

There are two common ways to specify a menu in your application:

m Specify the menu as the class menu when registering a window class. All
windows of that class will then include that menu.

m Specify the menu when creating a window. That window will then include
that menu.

The following sections explain these two methods.

7.3.1 Specifying the Menu for a Window Class

When you register a window class, you are setting the default attributes for
windows in that class. You can specify a menu as the default menu for a window
class; this default menu is known as the class menu. You specify the class menu
when you register the window class. To do so, you assign the name of the menu,
as given in the resource file, to the IpszMenuName field of the window-class
structure. For example:

wc.1pszMenuName = "SampleMenu";

In this example, the IpszMenuName field is part of a WNDCLASS data struc-
ture named wc. The menu name “SampleMenu” is the name given to the menu in
the application’s resource script file.

Once a window class has been registered, each window of that class will have the
specified class menu. You can override this default menu by explicitly supplying
a menu handle when you create a window of that class.

7.3.2 ‘Specifying a Menu for a Specific Window

A window need not use the class menu; the class menu is simply a default, not a
requirement. To use a menu other than the class menu, specify the menu you
want when you create the window.

To specify a menu when creating a window:

Menus 7-5
e

1. Load the menu from your application resources using the LoadMenu func-
tion. This function returns a menu handie.

2. When you call CreateWindow to create the window, pass the menu handle
as the function’s ~”Menu parameter.

The following example shows how to load and specify a menu by using
CreateWindow:

HWND hWnd; /* Initialize a variable to hold the
handle to the current window*/

HMENU hSampleMenu;/* Initialize a variable to hold the
handle to the menu */

@ nSampleMenu = LoadMenu (hInstance, "SampleMenu");
@ hWnd = CreateWindow ("SampleWindow",

"SampleWindow",

WS_OVERLAPPEDWINDOW,

CW_USEDEFAULT,

CW_USEDEFAULT,

CW_USEDEFAULT,

CW_USEDEFAULT,

(HWND) NULL,

© hSampleMenu,
hInstance,
(LPSTR) NULL J;

In this example:

© The LoadMenu function loads the menu named SampleMenu. The hInstance
variable specifies that the resource is to be loaded from the application’s
resources. LoadMenu returns a menu handle, which is stored in the
hSampleMenu variable. ’

@ The application then calls Create Window to create a new window named
SampleWindow.

® The application passes hSampleMenu, the menu handle that LoadMenu re-
turned, to the CreateWindow function. This tells Windows to use
SampleMenu for this window, instead of the class menu (if any).

7-6 Guide to Programming

7.4 Processing Input from a Menu

When a user chooses a command in a menu, Windows sends a WM_COM-
MAND message to the corresponding window function. The message contains
the menu ID of the command in its wParam parameter.

The window function is responsible for carrying out any tasks associated with the
selected command. For example, if the user chooses the Open command, the
window function prompts for the filename, opens the file, and displays the file in
the window’s client area.

The most common way to process menu input is with a switch statement in the
window function. Usually, the switch statement directs processing according to
the value of the wParam parameter of the WM_COMMAND message. Each
case processes a different menu ID.

For example:

case WM_COMMAND:
@ switch (wParam)
{
® case IDM_NEW:
/* perform operations for creating a new file */
bredk;
case IDM_OPEN:
/* perform operations for opening a file */
break;
case IDM_SAVE: »
/* perform operations for saving this file */
break;
case IDM_SAVEAS:
/* perform operations for saving this file */
break;
case IDM_EXIT:
/* perform operations for exiting the application */
break; .
1
break;

In this example:

© The wParam parameter contains the menu ID of the item the user just
selected.

® For each menu ID (menu item), the application performs the appropriate
operations.

Menus 7-7

7.5 Working with Menus from Your Application

Windows provides functions you can use to change existing menus and create
new menus, while your application runs. This section explains:

= How to enable and disable menu items

= How to check and uncheck menu items

= How to add, change, and delete menu items
= How to use bitmaps as menu items

m How to replace a menu

= How to create and initialize a menu from your application

When a window is created, it receives a private copy of the class menu. The
application can alter that window’s copy of the menu without affecting other
windows’ menus.

NOTE Whenever you make changes to items on the menu bar, you need to call the
DrawMenuBar function to display the changes.

7.5.1 Enabling and Disabling Menu Items

Normally, a menu item is enabled; its text appears normal, and the user can select
it. A disabled menu itém appears normal, but does not respond to mouse clicks or
keyboard selection. A “grayed” item has dimmed text, and does not respond to
mouse clicks or keyboard selection. Typically, you disable or gray a menu item
when the action it represents is not appropriate. For example, you might gray the
Print command in the File menu when the system does not have a printer in-
stalled.

Setting the Initial State of a Menu Item

In the resource script file, you can specify whether a menu item is initially dis-
abled or grayed. To do so, use the INACTIVE or GRAYED options with the
MENUITEM statement. For example, the following statement specifies that the
Print command is initially grayed:

MENUITEM "Print", IDM_PRINT, GRAYED

The information in the resource script file applies only to the initial state of the
menu. You can change the menu item’s state later, using the EnableMenultem
function in your C-language source file. EnableMenultem enables, disables, or
grays a menu item.

7-8 Guide to Programming

Disabling a Menu Item

A “disabled” menu item appears normal, but does not respond to mouse clicks or
selection by the keyboard. A disabled menu item is commonly used as a title for
related menu options. The following statement disables a menu item:

EnableMenultem (hMenu, IDM_SAVE, MF_DISABLED);

This example disables a command on the menu represented by the menu handle
hMenu. The menu ID of the command is IDM_SAVE. By specifying the value
MF_DISABLED, you tell Windows to disable the specified menu item.

Disabling and Graying a Menu Item

So that the user can tell that a menu item is not currently available, it’s a good
idea to disable a menu item by “graying” it rather than simply disabling it. Gray-
ing a menu item disables the item and redisplays the item text in dimmed letters.

To disable and gray a menu item, specify the value MF_GRAYED when you call
EnableMenultem. For example:

EnableMenultem (hMenu, IDM_PRINT, MF_GRAYED);

This example disables a command on the menu represented by the menu handle
hMenu. The menu ID of the command is IDM_PRINT. By specifying the value
MF_GRAYED, you tell Windows to disable the specified menu item, and redis-
play the item text in gray letters.

Enabling a Menu Item

You can enable a disabled menu item by calling EnableMenultem and specify-
ing the MF_ENABLED value.

The following example enables the command identified by ID_EXIT:
EnableMenultem (hMenu, ID_EXIT, MF_ENABLED);

7.5.2 Checking and Unchecking Menu Items

You can display a checkmark next to an item to indicate that the user has
selected it. Typically, you check a menu item when it is part of a group of items
that are mutually exclusive. The checkmark indicates the user’s latest choice. For
example, if a group consists of the items Left, Right, and Center, you might
check the Left item to indicate that the user chose that item most recently.

Menus 7-9

Setting an Initial Checkmark

In the resource script file, you can specify whether a menu item is initially
checked. To do so, use the CHECKED option in the MENUITEM statement.
For example, the following MENUITEM statement specifies that the Left com-
mand is initially checked:

MENUITEM “Left", IDM_LEFT, CHECKED

Checking a Menu Item

The information in the resource script file applies only to the initial state of the
menu. You can check or remove a checkmark from a menu item later, using the
CheckMenultem function in your C-language source file. CheckMenultem
checks or removes a checkmark from a specified menu item.

The following example places a checkmark next to the item whose menu ID is
IDM_LEFT:

CheckMenultem (hMenu, IDM_LEFT, MF_CHECKED);

Removing a Menu-Iltem Checkmark

To remove a checkmark from a menu item, you call the CheckMenulItem func-
tion and specify the value MF_UNCHECKED. The following example removes
the check (if any) from the item whose menu ID is IDM_RIGHT:

CheckMenultem (hMenu, IDM_RIGHT, MF_UNCHECKED);

If you change menu items in the menu bar, you need to call the DrawMenuBar
function to display the changes.

7.5.3 Adding Menu Items

You can add a new menu item to the end of an existing menu, or insert one after
a particular menu item.

Appending a Menu Item

To append an item to the end of an existing menu, you use the AppendMenu
function. This function adds a new item to the end of the specified menu, and lets
you specify whether the new item is checked, enabled, grayed, and so on.

The following example appends the item “Raspberries” to the end of the Fruit
menu. The example disables and grays the new item if raspberries are not cur-
rently in season.

7-10 Guide.to Programming

if (!RasberriesInSeason)
AppendMenu. (hFruitMenu,

: MF_GRAYED,
IDM_RASPBERRIES,
"Raspberries");

else
AppendMenu (hFruitMenu,
MF_ENABLED,
IDM_RASPBERRIES,
"Raspberries");

Inserting a Menu Item

To insert an item in an existing menu, you use the InsertMenu function. This
function inserts the specified item at the specified position, and moves sub-
sequent items down to accommodate the new item. Like AppendMenu, Insert-
Menu lets you specify the state of the new item when you insert it.

The following example inserts the item “Kumquats” before the existing item
“Melons.” The example disables and grays the new item.

InsertMenu (hFruitMenu,
IDM_MELONS,
MF_BYCOMMAND | MF_GRAYED,
IDM_KUMQUATS,
"Kumquats");

You can also insert items by numerical position rather than before a specific
item. The following example inserts the item “Bananas” so that it becomes the
third item in the Fruit menu. (The first itern has position 0, the second item 1, and
SO on.)

InsertMenu (hFruitMenu,
2,
MF_BYPOSITION | MF_GRAYED,
IDM_BANANAS,
"Bananas");

7.5.4 Changing Existing Menus

You can change existing menus and menu items by using the ModifyMenu
function. For example, you might need to change the text of a menu item.
ModifyMenu lets you enable, disable, gray, check or uncheck the item.

In the following example, the ModifyMenu function changes the text of the
Water command to “Wine”. The example also changes the item’s menu ID.

Menus 7-11

L N 0

ModifyMenu (hMenu,
IDM_WATER,
MF_BYCOMMAND,
IDM_WINE,
"Wine");

‘When you use ModifyMenu, you are essentially telling Windows to replace a
specific menu item with a new item. The third, fourth and fifth ModifyMenu par-
ameters specify the attributes of the new item.

For example, the following statement changes the item text from “Wine” to “Cab-
ernet”. Although only the menu item’s text is changing, the statement nonethe-
less respecifies all the attributes of the item (in this case, just the menu ID).

ModifyMenu (hMenu,
IDM_WINE,
MF_BYCOMMAND,
IDM_WINE,
"Cabernet");

Performing Several Changes at Once

When you use ModifyMenu to change a menu item, you can also check or
uncheck the item, and can enable, disable, or gray it as well.

The following example not only changes the Water command to “Wine”; it ena-
bles the command (if not already enabled), checks it, and changes its menu ID.

ModifyMenu (hMenu,
IDM_WATER,
MF_BYCOMMAND | MF_ENABLED | MF_CHECKED,
IDM_WINE,
"Wine");

7.5.5 Deleting a Menu Item

You can remove a menu item, and any pop-up menus associated with that item,
by using the DeleteMenu function. DeleteMenu permanently removes the
specified menu item from the specified menu, and moves subsequent items up to

fill the gap.

DeleteMenu (hFruitMenu, /* handle to menu */
1, /* delete the second item */
MF_BYPOSITION); /* we are specifying the

item by its position
on the menu */

This example deletes the Fruit menu’s second item. Windows moves any sub-
sequent items up to fill the gap.

7-12 Guide to Programming

The following example deletes the same item, but specifies it by its menu ID
rather than by its position on the menu:

DeleteMenu. (hFruitMenu, /* handle to menu */
IDM_ORANGES, /* delete "Oranges" item */
MF_BYCOMMAND) ; /* we are specifying the

item by its menu ID */

7.5.6 Using a Bitmap as a Menu Item

Windows lets you use bitmaps as menu items. There are two ways to do this:

® When you insert or append a new menu item, specify that you want to use a
bitmap instead of text for that item.

m Use the ModifyMenu function to change an existing item so that it appears
as a bitmap instead of text.

You cannot specify a bitmap as a menu item in the .RC file.

The following example loads a bitmap named “Apples”, then uses the Modifly-
Menu function to replace the text of the Apples command with a bitmap image
of an apple.

HMENU hMenu;
HBITMAP hBitmap;

@ hBitmap = LoadBitmap (hInstance, "Apples");

A hMenu = GetMenu(hWnd);
ModifyMenu (hMenu,

(3] IDM_APPLES, /* item to replace */
(4] MF_BYCOMMAND | MF_BITMAP,

(5] IDM_APPLES, /* Menu ID of new item */
(6] (LPSTR) MAKELONG (hBitmap, 0))

In this example:

© The LoadBitmap function loads the bitmap from the file and returns a handle
to the bitmap, saved in the hBitmap variable.

® The GetMenu function retrieves the handle of the current window’s menu,
and places it in the variable hMenu. This variable is then passed as the first
parameter of the ModifyMenu function, which specifies which menu to
change.

Menus 7-13

© The second parameter of the ModifyMenu function, in this case set to
IDM_APPLES, specifies the menu item to modify.

O The third parameter specifies how to make the changes. MF_BYCOMMAND
tells Windows that we are specifying the item to change by its menu ID rather
than by its position. MF_BITMAP indicates that the new item will be a bit-
map rather than text.

© The fourth parameter of the ModifyMenu function, set to IDM_APPLES,
specifies the new menu ID for the item we are modifying. In this example, the
menu ID does not change.

@ The new bitmap handle must be passed as the low-order word of the fifth par-
ameter of ModifyMenu. The MAKELONG utility combines the 16-bit
handle with a 16-bit constant to make the 32-bit argument. Casting the para-
meter to an LPSTR prevents the compiler from issuing a warning, since the
compiler expects this parameter to be a string.

7.5.7 Replacing a Menu

You can replace a window’s menu by using the SetMenu function. Typically,
you replace a menu when the application changes modes and needs a completely
new set of commands. For example, an application might replace a spreadsheet
menu with a charting menu when the user changes from a spreadsheet to a
charting mode.

. In the following example, the GetMenu function retrieves the menu handle of
the spreadsheet menu and saves it for restoring the menu later. The SetMenu
function replaces the spreadsheet menu with a charting menu loaded from the
application’s resources.

HMENU hMenu
HMENU hSpreadsheetMenu;

hO1dMenu = GetMenu(hWnd);
hMenu = LoadMenu(hInstance, "ChartMenu");
SetMenu(hWnd, hMenu);

You can also load menus from resources other than those belonging to the appli-
cation (by using the module handle of a library).

7-14 Guide to Programming

7.5.8 Creating a New Menu

You can create new menus while your application runs, using the CreateMenu
function. CreateMenu creates a new, empty menu; you can then add items to it
using AppendMenu or InsertMenu.

The following example creates an empty pop-up menu and appends it to the
window’s menu. It then appends three items to the new pop-up menu.

HMENU hWinMenu;
HMENU hVeggieMenu;

hVeggieMenu = CreateMenu ();

AppendMenu (hWinMenu,
MF_POPUP | MF_ENABLED,
hVeggieMenu,
"Veggies");

AppendMenu (hVeggieMenu,
MF_ENABLED,
IDM_CELERY,
"Celery");

AppendMenu (hVeggieMenu,
MF_ENABLED,
IDM_LETTUCE,
"Lettuce");

AppendMenu (hVeggieMenu,
MF_ENABLED,
IDM_PEAS,
"Peas");

7.5.9 Initializing a Menu

If necessary, your application can initialize a menu before Windows displays that
menu. Although you can specify a menu item’s initial state (disabled, grayed, or
checked) in the resource script file, this method doesn’t work if the initialization
differs from time to time. For example, to disable the Print menu item only if the
user’s system has no printer installed, you could disable the Print item when you
initialize that menu. (Disabling “Print” in the .RC file wouldn’t work, since you

won’t know whether or not there’s a prmter available until the application is run-
ning.)

Just before Windows displays a menu, it sends a WM_INITMENU message to
the window function for the window that owns that menu. This lets the window
function check the state of the menu items and, if necessary, modify them, before

Menus 7-15

Windows displays the menu. In the following example, the window function
processes the WM_INITMENU message, and sets the state of a command based
on the value of the wChecked variable:

WORD wChecked = IDM_LEFT;

case WM_INITMENU:

if (GetMenu(hWnd)!= wParam)

break;
CheckMenultem(wParam, IDM_LEFT,

IDM_LEFT == wChecked ? MF_CHECKED : MF_UNCHECKED);
CheckMenultem(wParam, IDM_CENTER,

IDM_CENTER == wChecked ? MF_CHECKED : MF_UNCHECKED);
CheckMenultem(wParam, IDM_RIGHT,

IDM_RIGHT == wChecked ? MF_CHECKED : MF_UNCHECKED);
break;

In this example:

2]

The WM_INITMENU message passes the given menu handle in the wParam
message parameter.

To make sure that Windows is about to display the correct menu, the Get-
Menu function retrieves a handle to the current window’s menu and com-
pares that handle with the value of wParam. If these are not equal, the
window’s menu should not be initialized. Otherwise, the menu is correct, and
you can use the CheckMenultem function to initialize the commands in the
menu.

7.6 Special Menu Features

So far, this chapter has discussed “standard” menus, which drop down from a
menu bar, and which contain items the user selects using the mouse, the
DIRECTION keys, or command mnemonics. In addition to these menu features,
Windows provides the following special features:

Accelerator keys, which provide a keyboard shortcut for selecting menu items
Cascading menus, which let you have several levels of pop-up menus

Floating pop-up menus, which are normal pop-up menus except that they can
appear anywhere on the screen (usually at the current mouse position)

Customized checkmarks, which let you use your own bitmaps for checkmarks
instead of the standard Windows checkmark

The rest of this section explains how to use these features.

7-16 Guide to Programming

7.6.1 Providing Menu-Accelerator Keys

Accelerator keys are.shortcut keys that let the user choose a command from a
menu using a single key stroke. For example, an application could let the user
select the Delete command simply by pressing the DELETE key. Accelerator keys
are part of the resource script file, and are tied into the application through the
C-language source code.

To provide menu-accelerator keys in your application:
1. In the resource script file, mark the accelerator key for each menu item in the
MENUITEM statements.

2. In the resource script file, create an accelerator table. An accelerator table
lists the accelerator keys and corresponding menu IDs. You create it using the
ACCELERATORS resource statement.

3. In the C-language source file, load the accelerator table by using the
LoadAccelerators function.

4. Change the message loop so that it processes accelerator-key messages.

The remainder of this section describes each step in more detail.

Adding Accelerator Text to a Menu Item

The menu text should indicate each item’s accelerator key so that the user can
tell which key to use. Add the key designations to the MENUITEM definitions
in the .RC file.

For example, suppose your application has the following pop-up menu defined in
its resource script file:

GroceryMenu MENU

POPUP "&Meats"

BEGIN) .
MENUITEM "&Beef\tF9", IDM_BEEF
MENUITEM "&Chicken\tShift+F9", IDM_CHICKEN
MENUITEM "&Lamb\tCtri+F9", IDM_LAMB
MENUITEM "&Pork\tA1t+F9", . IDM_PORK

END

END

The pop-up menu “Meats™ has the four menu items Beef, Chicken, Lamb, and
Pork. Each menu item has a mnemonic, indicated by the ampersand (&), and an
accelerator key separated from the name with a tab (). Whenever a command

Menus 7-17

- S

has a corresponding accelerator, it should be displayed in this way. The accel-
erator keys in this sample are F9, SHIFT+F9, CONTROL+F9, and ALT+F9.

Creating an Accelerator Table

To use accelerator keys, add an accelerator table to the resource script file

using the ACCELERATORS statement. The statement lists the accelerator
keys and the corresponding menu IDs of the associated commands. In the
ACCELERATORS statement, as with other resource statements, BEGIN starts
the entry and END marks its end. For example:

GroceryMenu ACCELERATORS

BEGIN
VK_F9, IDM_BEEF, VIRTKEY
VK_F9, IDM_CHICKEN, VIRTKEY, SHIFT
VK_F9, IDM_LAMB, VIRTKEY, CONTROL
VK_F9, IDM_PORK, VIRTKEY, ALT

END

This example defines four accelerator keys, one for each command. The first
accelerator key is simply the F9 key; the other three accelerators are key-stroke
combinations using the ALT, SHIFT, or CONTROL key in combination with the F9
key.

The accelerator keys are defined using the Windows virtual-key code, as indi-
cated by the VIRTKEY option. Virtual keys are device-independent key values
that Windows translates for each computer. They are a way to guarantee that the
same key is used on all computers without knowing what the actual value of the
key is on any computer. You may also use ASCII key codes for accelerators, in
which case, you would use the ASCII option.

The ACCELERATORS statement associates each accelerator with a menu ID.
In the preceding example, the IDM_BEEF, IDM_CHICKEN, IDM_LAMB, and
IDM_PORK constants are the menu IDs of the commands on the Grocery menu.
When the user presses an accelerator key, these are the values that are passed to
the window function.

Loading the Accelerator Table

The accelerator table, like any other resource, needs to be loaded before your
application can use it. To load the accelerator table, use the LoadAccelerators
function. This function takes a handle to the current instance of the application
and the name of the accelerator table (as defined in the .RC file); it returns a
handle to the accelerator table for the associated menu. Typically, you load a

7-18 Guide to Programming
L. ___ |

menu’s accelerator table when that menu’s window has just been created—that
is, within the WM_CREATE case of the window function. For example:

HANDLE hlnst; /* handle to current instance */
HANDLE hAccTable; /* handle to accelerator table */

case WM_CREATE:

©® hAccTable = LoadAccelerators (hInst, "GroceryMenu");
break;

In this example:

© This statement loads the accelerator table for GroceryMenu into memory; it
assigns the handle identifying the table to the hAccTable variable. The hlnst
variable identifies the application’s resource file; “GroceryMenu” is the name
of the accelerator table.

Once the table is loaded, the application can use the TranslateAccelerator func-
tion to translate accelerators for that menu.

Changing the Message Loop to Pracess Accelerators

To use the accelerator table, you must add the TranslateAccelerator function to
the message loop. When the message loop receives a keyboard-input message
containing an accelerator key, TranslateAccelerator converts the message to a
WM_COMMAND message containing the appropriate menu ID for that accel-
erator, and sends the resulting WM_COMMAND message to the window
function. '

The message loop should test each message to see if it is an accelerator-key
message. If it is, the loop should translate and dispatch the message using
TranslateAccelerator. If the message is not an accelerator-key message, the
loop should process it normally.

‘NOTE TransiateAccelerator also translates accelerators for commands chosen from the
system menu. In such cases, it translates the message into a WM_SYSCOMMAND
message.

After you add the TranslateAccelerator function, the message loop should look
like this:

Menus 7-19

while (GetMessage(&msg, NULL, NULL, NULL)) {

(1] if (!TranslateAccelerator(hWnd, hAccTable, &msg))
{
(2] TranslateMessage(&msg);
DispatchMessage(&msg);

}

In this example:

© This statement checks each message to see whether it is an accelerator-key
message. The window handle, hWnd, identifies the window whose messages
are to be translated. The window handle must identify the window that con-
tains the menu with the accelerators. The accelerator handle, hAccTable,
specifies the accelerator table to use when translating the accelerators.

If the message was generated via an accelerator key, the Translate-
Accelerator function converts the keystroke to a WM_COMMAND message
containing the appropriate menu ID, and sends that WM_COMMAND
message to the window function.

@® If the message is not an accelerator-key message, the application processes it
as usual, by using the TranslateMessage and DispatchMessage functions.

7.6.2 Using Cascading Menus

Windows lets you provide more than one level of pop-up menus. Such multilevel
pop-up menus are called cascading menus. Such a menu structure can help min-
imize the number of commands on a single pop-up menu, without requiring a
dialog box to let the user refine his or her choice.

Figure 7.1 shows an example of cascading menus.

Menu Example

File Colors States
Down Word Processing Pppup menu
Spreadsheet

Languages

C

Chi1
Quick C

Quick Ea (]
PASCAL

Figure 7.1 Cascading Menus

7-20 Guide to Programming

In this example, the user chose the Software menu, then chose the Languages
command from the Software menu. At this point, the Languages pop-up menu ap-
peared to the right of the cursor. The user then moved the cursor over the Lan-
guages pop-up menu and chose “C.” The C pop-up menu then appeared, and let
the user choose either C version 5.1 or QuickC.

Cascading menus are simply nested pop-up menus. The menu definition for the
example in Figure 7.1 looks like this:

MenuMenu MENU
BEGIN

POPUP "&Software"
BEGIN

POPUP "&Word Processing”
BEGIN
MENUITEM "&Word 5.@", IDM_WORD
MENUITEM "W&rite", IDM_WRITE
END

POPUP "&Spreadsheet"
BEGIN
MENUITEM "&Microsoft Excel™, IDM_EXCEL
MENUITEM "&1+2=4", IDM_124
END

POPUP "&Languages"
BEGIN
POPUP ."&C"
BEGIN
MENUITEM "C &5.1", IDM_C51
MENUITEM "&Quick C", IDM_QUICKC
END
MENUITEM "Quick &Basic", IDM_QUICKBASIC
MENUITEM "&PASCAL", IDM_PASCAL
END
END

END

NOTE A cascading pop-up menu has its own menu handle. To manipulate items on a
cascading pop-up menu, you must first get its menu handle by calling the GetSubMenu
function.

Menus 7-21

7.6.3 Using Floating Pop-up Menus

Usually, pop-up menus are “attached” to another menu; they appear when the
user selects a command on that menu. However, Windows also lets you provide
“floating” pop-up menus, which appear at the current cursor position when the
user presses a certain key or clicks a mouse button.

To provide a floating pop-up menu, you use the CreatePopupMenu and Track-
PopupMenu functions. If you want the floating pop-up menu to appear when the
user presses a certain key or mouse button, create the floating pop-up menu

within the case statement that handles the input message from that key or button.

The following example displays a floating pop-up menu when the user depresses
the right mouse button:

POINT currentpoint;

case WM_RBUTTONDOWN:
{
HWND hWnd; /* handle to current window. */
HMENU hFloatingPopup; /* handle for floating pop-up */
©® currentpoint = MAKEPOINT (1Param);
. /* point at which the user
pressed the button */

® hFloatingPopup = CreatePopupMenu();

© AppendMenu (hFloatingPopup,
MF_ENABLED,
IDM_CALC,
"Calculator");

AppendMenu (hFloatingPopup,
MF_ENABLED,
IDM_CARDFILE,
"Cardfile");

AppendMenu (hFloatingPopup,
MF_ENABLED,
IDM_NOTEPAD,
"Notepad");

O ClientToScreen (hWnd, (LPPOINT)¤tpoint);

7-22 Guide to Programming

(5] TrackPopupMenu (hFloatingPopup,
NULL,
@ currentpoint.x,
currentpoint.y,
NULL,
hWnd,
NULL);

@ DestroyMenu (hFloatingPopup);

break;
)

In this example:

@ The /Param parameter of the WM_RBUTTONDOWN message contains the
current position of the mouse. The MAKEPOINT function converts this long
value to a point, which is then stored in the currentpoint data structure.

® The CreatePopupMenu function creates an empty pop-up menu, and returns
a handle to that menu. The new menu’s handle is placed in the variable
hFloatingPopup.

© After creating the empty pop-up menu, the application appends three items to
it: Calculator, Cardfile, and Notepad.

® The ClientToScreen function converts the coordinates of the current cursor
position so that they describe the position relative to the entire screen’s upper-
left corner. (Initially, the coordinates describe the cursor position relative to
the client window instead).

© Once the menu is complete, the application displays it at the current cursor
position by calling TrackPopupMenu.

@ The x and y fields of the currentpoint data structure contain the current
screen coordinates of the cursor.

@ After the user has made a selection from the menu, the application destroys
the menu, thereby freeing up the memory the menu used. The application re-
creates the menu each time the user depresses the right mouse button.

7.6.4 Designing Your Own Checkmarks

Normally, when you check a menu item, Windows displays the standard
Windows checkmark next to the item text. A menu item that is not checked has
no special mark next to it at all.

However, you can specify a bitmap, instead of the standard Windows checkmark,
to display when an item is checked. You can also specify a bitmap to display
when a menu item is not checked. »

Menus 7-23

Custom checkmarks can be particularly useful for helping the user distinguish
between menu commands that perform an action and commands that can be
checked but are not currently checked. Some Windows applications use the

following conventions:

Type of Menu Item Convention

Menu items that perform an action Do not display a checkmark for such

(for example, display another menu an item.

or a dialog box)

Menu items that are currently Display either a normal Windows

checked checkmark or a custom checkmark.
When the user chooses a checked
item again, remove the checkmark.

Menu items that can be checked but Display a custom checkmark. When

are not currently checked the user chooses an unchecked item,

display either a standard Windows
checkmark or a different custom
checkmark.

To provide your own checkmark bitmaps:

1. Use SDKPaint to create the bitmaps you want to use as checkmarks.

Windows requires that your checkmark bitmaps be the same size as the stand-
ard checkmarks. Although you can, during run time, stretch or shrink your
checkmark bitmaps to the right size, it’s a good idea to start with a bitmap
that’s close to the right size. (The size of the standard checkmarks depends on
the current display device. To find out the current size of the standard check-
marks, use the GetMenuCheckMarkDimensions function.)

You can also create a bitmap “by hand” — by coding the individual bits.
Chapter 11, “Bitmaps,” explains how to do this.

2. In your application’s resource script file, define each bitmap’s name and
source file using the BITMAP statement. For example:

BitmapChecked BITMAP CHECK.BMP
BitmapNotChecked BITMAP NOCHECK.BMP

3. In your application source code, use the LoadBitmap function to load each
bitmap from your application resources.

4. Use the GetMenuCheckMarkDimensions function to find out the size of
the standard checkmarks on the current display device.

5. If necessary, use the StretchBlIt function to stretch or shrink each bitmap to
the right size.

7-24 Guide to Programming

6. Use thé SetMenultemBitmaps function to specify the checkmark bitmaps
for each menu item.

7. Before your application terminates, it should destroy the bitmaps to free
memory.

The following example shows how to specify checkmark bitmaps for a menu
item: '

SetMenultemBitmaps (hMenu, /* handle to menu */
a, /* position of menu item */
MF_BYPOSITION,
hbmCheckOff, /* bitmap for unchecked item */
hbmCheckOn); /* bitmap. for checked item */

7.6.5 Using Owner-Draw Menus

Your application can take complete control over the appearance of menu items
by using owner-draw menu items. An owner-draw menu item is-a menu for
which the application has total responsibility for drawing the item in its normal,
selected (highlighted), checked, and unchecked states.

For example, suppose your application provides a menu that allows the user to
select a font. Your application could draw each menu item using the font that the
menu item represents: the item for roman would be drawn with a roman font, the
item for italic would be drawn in italic, and so on.

You cannot define an owner-draw menu item in your application’s resource-
script (.RC) file. Instead, you must create a new menu item or modify an existing
menu item with the MF_OWNERDRAW menu flag. You can use any of the fol-
lowing functions to specify an owner-draw menu item:

= AppendMenu
® InsertMenu

s ModifyMenu

When you call any of these functions, you can pass a 32-bit value as the
IpNewltem parameter. This 32-bit value can represent any information that is
meaningful to your application, and will be available to your application when
the menu item is to be displayed. For example, the 32-bit value could contain a
pointer to a data structure; the data structure, in turn, might contain a string and
the handle of a logical font that your application will use to draw the string.

Before Windows displays an owner-draw menu item for the first time, it sends
the WM_MEASUREITEM message to the window that owns the menu. This
message’s [Param parameter points to a MEASUREITEMSTRUCT data struc-
ture that identifies the menu item and contains the optional 32-bit value for the

Menus 7-25

item. When your application receives the WM_MEASUREITEM message, it
must fill in the itemWidth and itemHeight fields of the data structure before re-
turning from processing the message. Windows uses the information in these
fields when creating the bounding rectangle in which your application draws the
menu item; it also uses the information to detect the user’s interaction with the
item.

When the item needs to be drawn (for example, when it is first displayed, or
when the user chooses it), Windows sends the WM_DRAWITEM message to the
window that owns the menu. The /Param parameter of the WM_DRAWITEM
message points to a DRAWITEMSTRUCT data structure. Like MEASURE-
ITEMSTRUCT, the DRAWITEMSTRUCT data structure contains identifying
information about the menu item and its optional 32-bit data. In addition,
DRAWITEMSTRUCT contains flags that indicate the state of the item (such as
grayed or checked) as well as a bounding rectangle and device context with
which your application will draw the item.

In response to the WM_DRAWITEM message, your application must perform
the following actions before returning from processing the message:

1. Determine the type of drawing that is needed. To do so, check the item-
Action ficld of the DRAWITEMSTRUCT data structure.

2. Draw the menu item appropriately, using the rectangle and device context ob-
tained from the DRAWITEMSTRUCT data structure. Your application
must draw only within the bounding rectangle. For performance reasons,
Windows does not clip portions of the image that are drawn outside the
rectangle.

3. Restore all GDI objects selected for the menu item’s device context.

For example, if the menu item is selected, Windows sets the itemAction field of
the DRAWITEMSTRUCT data structure to ODA_SELECT, and sets the
ODS_SELECTED bit in the itemState field. This is your application’s cue to
redraw the menu item so that the item indiates that it has been selected.

7.7 A Sample Application: EditMenu

The EditMenu sample application illustrates the following:

® The two most common menus, the Edit menu and the File menu

= How to use accelerator keys in an application

NOTE The accelerator keys shown in this sample are specifically reserved, and should be
used only as accelerator keys for the Edit menu. See the System Application Architecture,
Common User Access: Advanced Interface Design Guide for more information about stand-
ard accelerator-key assignments.

7-26 Guide to Programming
]

To create the EditMenu application, copy and rename the Generic source files.
Then do the following:

1." Add the Edit and Filé menus to the resource script file.
. Add definitions to the include file.

. Add an accelerator table to the resource file.

. Add a new variable.

. Load the accelerator table.

. Modify the message loop in WinMain.

. Modify the WM_COMMAND case.

0 N N W A~ WN

. Compile and link the application.

EditMenu does not show how to use the clipboard. This task is described in Chap-
ter 13, “The Clipboard.”

NOTE Rather than tybing the code provided in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided in the
SDK.

7.7.1 Add New Menus to the Resource File

You need to add an Edit and a File menu to the MENU statement in the resource
file. The MENU statement should now look like this:

EditMenuMenu MENU

BEGIN

POPUP "&File"

BEGIN
MENUITEM "&New", IDM_NEW
MENUITEM "&0pen...", IDM_OPEN
MENUITEM "&Save", IDM_SAVE
MENUITEM "Save &As...", IDM_SAVEAS
MENUITEM "&Print", IDM_PRINT
MENUITEM SEPARATOR
MENUITEM "E&xit", IDM_EXIT
MENUITEM SEPARATOR

MENUITEM "&About EditMenu...", IDM_ABOUT
END .

Menus 7-27

POPUP "&Edit"
BEGIN
MENUITEM "&Undo\tATt+BkSp", IDM_UNDO ,GRAYED
MENUITEM SEPARATOR
MENUITEM "Cu&t\tShift+Del™, IDM_CUT
MENUITEM "&Copy\tCtri+Ins", IDM_COPY
MENUITEM "&Paste\tShift+Ins", IDM_PASTE ,GRAYED
MENUITEM "C&lear\tDel", IDM_CLEAR ,GRAYED
END

END

The File menu has seven commands and two separators; each command has a
mnemonic, indicated by the ampersand (&).

The Edit menu has five commands and a separator. Each command has both a
mnemonic and an accelerator key, separated from the name with a tab (\t). When-
ever a command has a corresponding accelerator, it should be displayed in this
way. In the Edit menu, the five accelerator keys are ALT+BACKSPACE, DELETE,
CONTROL+INSERT, SHIFT+INSERT, and SHIFT+DELETE. The separator between the
Undo and Cut commands places a horizontal bar between these commands in the
menu. A separator is recommended between menu commands that otherwise
have nothing in common. For example, Undo affects only the apphcatlon
whereas the remaining commands affect the clipboard.

NOTE The purpose and content of the File and Edit menus are described in the System
Application Architecture, Common User Access: Advanced Interface Design Guide.

7.7.2 Add Definitions to the Include File

You must declare each menu ID in your application’s include file. These con-
stants are used both in the C-language source file and in the resource script file.

A menu ID can have any integer value. The only restriction is that menu IDs
must be unique within a menu; no two commands in a menu can have the same
menu ID.

Add the following to the include file:

fidefine IDM_ABOUT 10¢

/* file menu items */

fdefine IDM_NEW 191
fidefine IDM_OPEN 102
fidefine I1DM_SAVE 183
jtdefine - IDM_SAVEAS 104
fdefine IDM_PRINT 105

fdefine IDM_EXIT 106

7-28 Guide to Programming

/* edit menu items */

f#define - IDM_UNDO 200
fidefine oM_cutT - 201
fdefine IDM_COPY 202
ftdefine IDM_PASTE 203
fdefine IDM_CLEAR 204

7.7.3 Add an Accelerator Table to the Resource Script File

Add the following ACCELERATORS statement to the resource script file:

EditMenu ACCELERATORS

BEGIN
VK_BACK, IDM_UNDO, VIRTKEY, ALT
VK_DELETE, IDM_CUT, VIRTKEY, SHIFT
VK_INSERT, IDM_COPY, VIRTKEY, CONTROL
VK_INSERT, IDM_PASTE, VIRTKEY, SHIFT
VK_DELETE, IDM_CLEAR, VIRTKEY

END

This statement defines five accelerator keys, one for each command. Four accel-
erators are key-stroke combinations using the ALT, SHIFT, or CONTROL key.

The ACCELERATORS statement associates each accelerator with a menu ID.
The IDM_UNDO, IDM_CUT, IDM_COPY, IDM_PASTE, and IDM_CLEAR
constants are the menu IDs of the Edit-menu commands. When the user presses
an accelerator key, these are the values that are passed to the window function.

7.7.4 Add a New Variable

Add the following statement to the beginning of the source file:

HANDLE hAccTable; /* handle to accelerator table */

The hAccTable variable is a handle to the accelerator table. It receives the return
value of the LoadAccelerators function and is used in the Translate-
Accelerator function to identify the accelerator table.

7.7.5 Load the Accelerator Table

Before using the accelerator table, you must load it from the application’s
resources. Add the following statements to the application’s InitInstance function:

hAccTable = LoadAccelerators(hlInst, "EditMenu");

This statement loads the accelerator table into memory and assigns the handle
identifying the table to the hAccTable variable. The hlnstance variable identifies

Menus 7-29

the application’s resource file, and EditMenu is the name of the accelerator table.
Once the table is loaded, it can be used in the TranslateAccelerator function.

7.7.6 Modify the Message Loop

To use the accelerator table, you must add the TranslateAccelerator function to
the message loop. After you add the function, the message loop should look like
this:

while (GetMessage(&msg, NULL, NULL, NULL)) {

if (!TranslateAccelerator(hWnd, hAccTable, &msg)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

7.7.7 Modify the WM_COMMAND Case

You need to process menu commands. In this application, instead of performing
tasks, all menu commands activate a “Command not implemented” message box.
Replace the WM_COMMAND case with the following statements:

case WM_COMMAND:
switch (wParam) {
case IDM_ABOUT:
TpProcAbout = MakeProcInstance(About, hInst);
DialogBox(hInst, "AboutBox", hWnd, 1pProcAbout);
FreeProcInstance(1pProcAbout);
break;

/* file menu commands */

case IDM_NEW:
case IDM_OPEN:
case IDM_SAVE:
case IDM_SAVEAS:
case IDM_PRINT:
MessageBox (
GetFocus(),
"Command not implemented"”,
"EditMenu Sample Application”,
MB_ICONASTERISK | MB_OK);
break;

case IDM_EXIT:
DestroyWindow(hWnd);
break;

7-30 Guide to Programming

/* edit menu commands */

case IDM_UNDO:
case IDM_CUT:
case IDM_COPY:
case IDM_PASTE:
case IDM_CLEAR:
MessageBox (
GetFocus(),
"Command not implemented",
"EditMenu Sample Application",
MB_ICONASTERISK | MB_OK);
break;
}
break;

7.7.8 GCompile and Link

No changes are required to the make file to compile and link the EditMenu appli-
cation. Start Windows, then the EditMenu application, and, without opening the
pop-up menus, press any of the five accelerator keys. You will notice that the
“Command not implemented” message appears when a command is chosen.

7.8 Summary

This chapter explained how to use menus in your application. A menu provides
and organizes a list of commands the user can choose. Windows handles most
menu features automatically; for example, when the user chooses a command on
the menu bar, Windows automatically displays the menu associated with that
command. When the user chooses a command from a menu, Windows sends the
application a WM_COMMAND message that contains the command ID. The
application can then carry out the action appropriate to that command.

Windows also provides advanced menu features such as cascading menus, cus-
tom checkmarks, and owner-draw menus.

For more information on topics related to menus, see the following:

Topic Reference

Processing input messages Guide to Programming: Chapter 4,
“Keyboard and Mouse Input”

Bitmaps : Guide to Programming: Chapter 11,
“Bitmaps”

Tools: Chapter 4, “Designing
Images: SDKPaint”

Menus 7-31

Topic

Menu functions

Resource script statements

The sample application
MENU.EXE, which illustrates the
use of cascading menus, custom
checkmarks, and owner-draw menus

Reference

Reference, Volume 1: Chapter 1,
“Window Manager Interface Func-
tions,” and Chapter 4, “Functions
Directory”

Reference, Volume 2: Chapter 8,
“Resource Script Statements”

SDK Sample Source Code disk

Chapter | Gontrols

Controls are special windows that provide easy methods for interaction with the
user.

This chapter covers the following topics:

® What is a control?
8 (Creating a control
= Using controls in application windows

This chapter also explains how to create a sample application, EditCntl, that il-
lustrates those concepts.

8.1 What is a Control?

A “control” is a predefined child window that carries out a specific kind of input
or output. For example, to get a filename from the user, you can create and dis-
play an edit control to let the user type the name. An “edit control” is a prede-
fined child window that receives and displays keyboard input.

A control, like any other window, belongs to a window class. The window class
defines the control’s window function and the default attributes of the control.
The window function is important because it determines what the control will
look like and how it will respond to user input. Control window functions are pre-
defined in Windows, so no extra coding is required in your application when you
use a control.

8.2 Creating a Control

Windows provides two ways to create a control:

= Within a dialog box

= Within the client area of any other type of window

This chapter discusses using controls in a standard window. Chapter 9, “Dialog
Boxes,” explains how to create controls within a dialog box.

8-2 Guide to Programming

To create a control in a window other than a dialog box, use the CreateWindow
function, just as you wouid to create any window. When creating a control,
specify the following information:

® The control’s window class

u_ The control style

®m The control’s parent window

m The control ID

The CreateWindow function returns a handle to the control that you can use in

subsequent functions to move, size, paint, or destroy a window, or to direct a
window to carry out tasks. :

The following example shows how to create a push-button control:

hButtonWnd = CreateWindow(

"Button", /* window control class */
"0K", /* button Tabel */
BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE, /* control styles */
20, /* x-coordinate */
49, /* y-coordinate */
30, /* width in pixels */
12, /* height in pixels */
hWind, /*-parent window */
IDOK, /* control ID */
hInstance, /* instance handle */
NULL);

This example creates a push-button control that belongs to the “Button” window
class and has the BS_PUSHBUTTON style. The control is a child window and
will be visible when first created. The WS_CHILD style is required, but you do
not need to specify the WS_VISIBLE style if you plan to use the ShowWindow
function to show the control. CreateWindow places the control at the point
(20,40) in the parent window’s client area. The width and height are 30 and 12
pixels, respectively. The parent window is identified by the hWnd handle. The
constant IDOK is the control identifier.

The rest of this section explains how to specify the control’s window class, con-
trol style, parent window, and control ID.

8.2.1 Specifying a Control Class

The control’s window class, or “control class,” defines the control window func-
tion and the default attributes of the control. You specify a control class when

- you create the control. To do so, include the class name (for example, BUTTON)
as the IpClassName parameter for the CreateWindow function.

Controls 8-3

Windows provides the following built-in control classes:

Class Description

BUTTON Produces small, labeled windows that the user can
choose to generate yes/no, on/off type of input.

EDIT Produces windows in which the user can enter and
edit text.

LISTBOX Produces windows that contain lists of names from

which the user can select one or more names.

COMBOBOX Produces combination controls consisting of an edit
or static control linked with a list box. The user can
select items from the list box and/or enter text in the
edit box.

SCROLLBAR Produces windows that look and function like scroll
, bars in a window.

STATIC Produces small windows containing text or simple
graphics. These are often used to label other controls
or to separate a group of controls.

8.2.2 Choosing a Control Style

The control styles, which depend on the control class, determine the control’s ap-
pearance and function. You specify a control style when you create the control.
To do so, include the control style (for example, BS_PUSHBUTTON) as the
dwStyle parameter for the CreateWindow function.

Windows provides many predefined control styles. The following styles are
some of the most commonly used:

Style Description

BS_PUSHBUTTON Specifies a push-button control. This is a small
window containing a label that the user can choose
in order to notify the parent window.

BS_DEFPUSHBUTTON Specifies a default push-button control. A default
push-button control is identical to a push-button con-
- trol except that it has a special border.

BS_CHECKBOX Specifies a check-box control. The user can select
the box to turn the control on and off. When the con-
trol is on, the box contains an “X”.

8-4 Guide to Programming

Style _ Description

BS_RADIOBUTTON Specifies a radio-button control. The user can select
a circle to turn the control on and off. When the con-
trol is on, the circle contains a solid bullet.

ES_LEFT Specifies a single-line, left-adjusted edit control.
ES_MULTILINE Specifies a multiple-line edit control.

SS_LEFT Specifies a left-adjusted, static text control.
SS_RIGHT " Specifies a right-adjusted, static text control.
LBS_STANDARD Specifies a standard list box. A standard list box in-

cludes a scroll bar and notifies its parent window
when the user makes a selection.

CBS_DROPDOWN Specifies a combo box consisting of an edit control
and a list box that is displayed when the user selects
a box next to the selection field. If an item in the list
box is selected, the edit control displays the selected
item.

For a complete list of control styles, see the Reference, Volume 2.

8.2.3 Setting the Parent Window

Because every control is a child window, it requires a parent window. You
specify the parent window when you create the control. To do so, include the
handle of the parent window as the #WndParent parameter for the Create-
Window function.

As with any child window, a control is affected by changes to its parent window.
For example, if Windows disables the parent window, it disables the control as
well. If Windows paints, moves, or destroys the parent window, it also paints,
moves, or destroys the control.

Although a control can be any size, and can be moved to any position, it is re-
stricted to the client area of the parent window. Windows clips the control if you
move it outside the parent window’s client area or make it bigger than the client
area.

8.2.4 Choosing a Control ID

When you create a control, you give it a unique identifier, or control ID. You
specify the control ID when you create the control. To do so, include the control
ID as the AMenu parameter for the CreateWindow function. The control sup-
plies the control ID in any notification message it sends to the window function
of the parent window. The control ID is especially useful if you have several

Controls 8-5

controls in a window. It is the quickest, easiest way to distinguish one control
from another.

8.3 Using a Control

Once you have created a control, you can:

®m Receive user input through the control.

= Tell the control to perform specialized tasks, such as returning a string of text.
m Enable or disable input to the control.

m Move or size the control.

m Destroy the control.

This section explains how to perform these tasks.

8.3.1 Receiving User Input

As the user interacts with the control, the control sends information about that in-
teraction, in the form of a notification message, to the parent window. A notifica-
tion message is a WM_COMMAND message in which:

®m The wParam parameter contains the control ID.

®m The /Param parameter contains the notification code and the control handle.

For example, when the user clicks a button control, that control sends a
WM_COMMAND message to the window function of the parent window. The
WM_COMMAND message’s wParam parameter contains the button control’s
ID; the high-order word of /Param parameter contains the notification code
BN_CLICKED, which indicates that the user has clicked that control.

Since a notification message has the same basic form as menu input, you process
notification messages much as you would menu input. If you have carefully
selected control IDs so that they do not conflict with menu IDs, you can process
notification messages in the same switch statement you use to process menu
input.

8.3.2 Sending Control Messages

Most controls accept and process a variety of control messages—special mes-
sages that tell the control to carry out some task that is unique to the control. For
example, the WM_GETTEXTLENGTH message tells an edit control to return
the length of a selected line of text. :

8-6 Guide to Programming

To send a control message to a control, use the SendMessage function. Supply
the message number and any required wParam and [Param parameter values. For
example, the following statement sends the WM_GETTEXTLENGTH message
to the edit control identified by the handle hEditWnd; it then returns the length of
the selected line in the edit control:

nLength = SendMessage(hEditWnd, WM_GETTEXTLENGTH, @, @L);

Many controls also process standard window messages, such as WM_HSCROLL
and WM_VSCROLL. To send such messages to controls, use the same method
you use to send control messages.

8.3.3 Disabling and Enabling Input to a Control

To disable or enable input to a control, use the EnableWindow function.

When you disable a control, it does not respond to user input. Windows “grays”
the control (displays it dimly) so that the user can tell that the control is disabled.
To disable a control, use EnableWindow; specify the value FALSE, as follows:

EnableWindow(hButton, FALSE);

To restore input to the disabled control, enable it using the EnableWindow func-
tion with the value TRUE, as follows:

EnableWindow(hButton, TRUE);

8.3.4 Moving and Sizing a Gontrol

To move or size a control, use the MoveWindow function. This function moves
the control to the specified point in the parent window’s client area and sets the
control to the given width and height. The following example shows how to
move and size a control:

MoveWindow(hButtonWnd, 10,10, 30,12, TRUE);

This example moves a control to the point (10,10) in the client area and sets the
width and height to 30 and 12 pixels, respectively. The value TRUE specifies
that the control should be repainted after moving.

Windows automatically moves a control when it moves the parent window. A
control’s position is always relative to the upper-left corner of the parent’s client
area, so when the parent moves, the control remains fixed in the client area but
moves relative to the display. Although Windows does not size a control when it
sizes the parent window, it sends a WM_SIZE message to the parent to indicate
the new size of the parent window. You can use this message to give the control
anew size.

Controls 8-7

8.3.5 Destroying a Control

To destroy a control, use the DestroyWindow function. This function deletes
any internal record of the control and removes the control from the parent
window’s client area. The following example shows how to destroy a control:

DestroyWindow(hEditWnd);

Windows automatically destroys a control when it destroys the parent window.
In general, you will need to destroy a control only if you no longer need it in the
parent window. '

8.4 Creating and Using Some Common Controls
The rest of this chapter explains more about the following common controls:

m Button controls

® Static controls

m List-box controls.

= Combo-box controls
= Edit controls

m Scroll-bar controls

8.4.1 Button Gontrols

A button control is a small window used for simple yes/no, on/off type of input.
The following are some of the most commonly used types of button controls:

® Push button

® Default push button
® Check box

m Radio button

® Owner-draw button

= Group box

Push Buttons

A push button is a button that the user can select to carry out a specific action.
The button contains text that indicates what that button does. When the user
clicks a push button, the application normally carries out the associated action

8-8 Guide to Programming

e y S— D

immediately. For example, if the user clicks the Cancel button in a dialog box,
the application immediately removes the dialog box and cancels the user’s
changes to the dialog (if any).

To create a button control, specify “Button” as the control’s window class, and
specify the button style(s) in the dwStyle parameter. For example, the following
call to the CreateWindow function creates a push-button control with the label
“Cancel”:

HWND hCancelButton;

hCancelButton = CreateWindow(
"Button", "Cancel",
BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE,
20,40, 80,20, hWnd, IDCANCEL, hInstance, NULL);

Because this example specifies the WS_VISIBLE style, Windows displays the
control after creating it. The control ID is IDCANCEL. This constant is defined
in the WINDOWS . H file and is intended to be used with Cancel push buttons.

Default Push Buttons

A default push button typically lets the user signal the completion of some activ-
ity, such as filling in an edit control with a filename. A default push-button con-
trol, as with other button controls, responds to both mouse and keyboard input. If
the user moves the cursor into the control and clicks it, the button sends a
BN_CLICKED notification message to the parent window. The button does not
have to have the input focus in order to respond to mouse input. It does, however,
require the focus in order to respond to keyboard input. To let the user use the
keyboard, use the SetFocus function to give the input focus to the button. The
user can then press the SPACEBAR to direct the button to send a BN_CLICKED
notification message to the parent window.

Creating a default push-button control is similar to creating a push-button con-
trol. Specify “Button” as the control’s window class, and specify the button
style(s) in the dwStyle parameter. For example, the following call to the
CreateWindow function creates a default push-button control with the label
‘GOKQ?:

HWND hDefButton;

hDefButton = CreateWindow(
"Button", "OK",
BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE,
20,48, 80,20, hWnd, IDOK, hInstance, NULL);

Controls 8-9

This example specifies the WS_VISIBLE style, so Windows displays the control
after creating it. The control ID is IDOK. This constant is defined in the
WINDOWS . H file and is intended to be used with default push buttons, such as
this OK button.

Check Boxes

A check box typically lets the user select an option to use in the current task. By
convention, within a group of check boxes, the user can select more than one
option. (To present options that are mutually exclusive, use radio buttons instead
of check boxes.)

For example, you might present a group of check boxes that lets the user select
font properties for the next output operation. The user could choose both bold
and italic by checking both the “Bold” and the “Italic” check boxes.

To create a check-box control, use the BS_CHECKBOX style, as in the foilow-
ing example:

fidefine IDC_ITALIC 201
HWND hCheckBox;

hCheckBox = CreateWindow("Button", "Italic",
BS_CHECKBOX | WS_CHILD | WS_VISIBLE,
20,48, 80,20, hWnd, IDC_ITALIC, hInstance, NULL);

In this example, the check-box label is “Italic” and the control ID is
IDC_ITALIC.

A check box responds to mouse and keyboard input much as a push-button con-
trol would. That is, it sends a notification message to the parent window when
the user clicks the control or presses the SPACEBAR. However, a check box can
display a check (an “X”) in its box to show that it is currently on (it has been
selected).

To tell a control to display a check, send the control the BM_SETCHECK
message. You can also test to see if the check box has a check by sending the
control the BM_GETCHECK message. For example, to place a check in the
check box, use the following function:

SendMeésage(hCheckBox, BM_SETCHECK, 1, @L);

This means you can place or remove a check in the check box whenever you
want; for example, when the parent window function receives a BN_CLICKED
notification message. Windows also provides a BS_AUTOCHECKBOX style
that automatically toggles its state (places or removes a check) each time the user
clicks it.

8-10 Guide to Programming

Radio Buttons

Radio-button controls work in much the same way as check boxes. However,
radio buttons are usually used in groups and represent mutually exclusive op-
tions. For example, you might use a group of radio buttons to let the user specify
text justification (right-justified, left-justified, or centered). The radio buttons
would let the user select only one type of justification at a time.

Create a radio-button control as you would any button control. Specify “Button”
as the control’s window class, and specify the button style(s) in the dwStyle para-
meter. For example, the following call to the CreateWindow function creates a
radio-button control with the label “Right”:

HWND HRightJustifyButton
Jdefine IDC_RIGHTJUST

hRightJustifyButton = CreateWindow("Button", "Right",
BS_RADIOBUTTON | WS_CHILD | WS_VISIBLE,
20,40, 80,20, hWnd, IDC_RIGHTJUST, hinstance, NULL);

As with a check box, you must send a BM_SETCHECK message to the radio but-
ton to display a “check” (actually, a solid circle) in the button when the user
selects that button. Also, since radio buttons represent mutually exclusive

choices, you should also send the BM_SETCHECK message to the previously
checked radio button (if any) to clear its check. You can determine which radio
button in a group is checked by sending the BM_GETCHECK message to each
button.

In a dialog box, you can create radio buttons with the BS_AUTORADIO-
BUTTON style. When all the radio buttons in a group box have the BS_AUTO-
RADIOBUTTON style, Windows automatically removes the check from the
previously checked button when the user selects a different radio button.

You can also use the CheckRadioButton function to check a radio button and re-
move the check from other buttons in a dialog box. When you call Check-
RadioButton, you specify the IDs of the first and last buttons in a range of
buttons and the ID of the radio button (within that range) that is to be checked.
Windows removes the check from all the buttons in the specified range and then
checks the appropriate radio button. For example, in a group of buttons repre-
senting types of text justification, you would call CheckRadioButton to check
the “Right” button, as in the following example:

CheckRadioButton(hDlg, ID_RIGHTLEFTJUST, ID_LEFTJUST,
ID_RIGHTJUST)

In this example, CheckRadioButton would check the radio button identified by
ID_RIGHTIJUST and remove the check from all the other buttons whose IDs fall
within the range specified by ID_RIGHTLEFTJUST and ID_LEFTJUST.

Controls 8-11

Owner-Draw Buttons

An owner-draw button is similar to other button styles, except that the applica-
tion is responsible for maintaining the button’s appearance, including whether

the button has focus, is disabled, or is selected. Windows simply notifies your

application when the button has been clicked.

To create an owner-draw button, use the BS_OWNERDRAW style, as shown in
the following example:

hMyOwnButton = CreateWindow("Button", NULL,
BS_OWNERDRAW | WS_CHILD | WS_VISIBLE,
20, 40, 30, 12, hWnd, ID_MYBUTTON,
hlnstance, NULL);

Whenever the button needs to be drawn, Windows sends the WM_DRAWITEM
message to the window that owns the button. The /Param parameter of the
WM_DRAWITEM message contains a pointer to a DRAWITEMSTRUCT data
structure. This structure contains, among other information, the control ID, a
value specifying the type of drawing action required, a value indicating the state
of the button, a bounding rectangle for the button, and a handle to the device con-
text of the button. '

In response to the WM_DRAWITEM message, your application must perform
the following actions before returning from processing the message:

1. Determine the type of drawing that is needed. To do so, examine the item-
Action field of the DRAWITEMSTRUCT data structure.

2. Draw the button appropriately, using the rectangle and device context ob-
tained from the DRAWITEMSTRUCT data structure.

3. Restore all GDI objects selected for the button’s device context.

For example, if the button has lost input focus, Windows sets the itemAction
field of the DRAWITEMSTRUCT data structure to ODA_FOCUS, but not the
ODS_FOCUS bit in the itemState field. This is your application’s cue to redraw
the button so that it no longer appears to have focus.

Group Boxes

Group boxes are rectangles that enclose two or more related buttons or other con-
trols. You can send the WM_SETTEXT message to the group box to place a cap-
tion in the upper-left corner of the box. Group boxes do not respond to user
input; that is, they do not generate notification messages.

8-12 Guide to Programming

8.4.2 Static Controls

8.4.3 List Boxes

A static control is a small window that contains text or graphics. You typically
use a static control to label some other control or to create boxes and lines that
separate one group of controls from another.

The most commonly used static control is the SS_LEFT style—a left-adjusted
line of text. That is, the control writes the line’s text starting at the left end of the
control, displaying as much of the label as will fit in the control and clipping the
rest. The control uses the system font for the text, so you can compute an appro-
priate size for the control by retrieving the font metrics for this font (see Chapter
18, “Fonts,” for details).

Like group boxes, static controls do not respond to user input; that is, they do not
generate notification messages when chosen. However, you can change the ap-
pearance and location of a static control at any time. For example, you can
change the text associated with a static control by using the SetWindowText
function or the WM_SETTEXT message.

A list box is a box that contains a list of selectable items, such as filenames. You
typically use a list box to display a list of items from which the user can select
one or more. There are several styles associated with a list box. The following
are the most commonly used styles:

List-Box Style Description

LBS_BORDER The list box has a surrounding b_order.

LBS_NOTIFY The list box sends notification messages to the
parent window when the user selects an item.

LBS_SORT The list box alphabetically sorts its items.

WS_VSCROLL The list box has a vertical scroll bar.

These four styles are included in the LBS_STANDARD style. The following ex-
ample creates a standard list box:

HWND hbListBox
#idefine IDC_LISTBOX 203

hiistBox = CreateWindow("Listbox", NULL,
LBS_STANDARD | WS_CHILD | WS_VISIBLE,
20, 40, 128, 56, hWnd, IDC_LISTBOX,
hinstance, NULL);

Controls 8-13

Adding a String to a List Box

Use the LB_ADDSTRING message to add a string to a list box. This message co-
pies the given string to the list box, which displays it in the list. If the list box has
the LBS_SORT style, the string is sorted alphabetically. Otherwise, Windows
simply places the string at the end of the list. The following example shows how
to add a string:

int nlndex;

nindex = SendMessage(hListBox,
LB_ADDSTRING,NULL,
(LONG) (LPSTR) "Horseradish");

The LB_ADDSTRING message returns an integer that represents the index of
the string in the list. You can use this index in subsequent list-box messages to
identify the string, but only as long as you do not add, delete, or insert any other
string. Doing so may change the string’s index.

Deleting a String from a List Box

You can delete a string from the list box by supplying the index of the string with
the LB_DELETESTRING message, as in the following example:

SendMessage(hListBox, LB_DELETESTRING, nIndex, (LPSTR) NULL);

You can also add a string to a list box is by sending the LB_INSERTSTRING
message to the list box. Unlike LB_ADDSTRING, LB_INSERTSTRING lets
you specify where Windows should place the new string in the list box. When it
receives the LB_INSERTSTRING message, the list box does not sort the list,
even if the list box was created with the LBS_SORT style.

Adding Filenames to a List Box

As noted earlier, a common use for a list box is to display a list of filenames,
directories, and/or disk drives. The LB_DIR message instructs the list box to fill
itself with such a list. The message’s wParam parameter contains a value specify-
ing the DOS attributes of the files, and the [Param parameter points to a string
containing a file specification.

For example, to fill a list box with the names of all files in the current directory
that have the .TXT extension, plus a list of subdirectories and disk drives, you
would send the LB_DIR message as shown in the following example:

ftdefine FILE_LIST 4010;

int nFiles;

8-14 Guide to Programming

nFiles = SendMessage(hlListBox, LB_DIR, FILE_LIST,
(LPSTR) "*.TXT");

The return value of the LB_DIR message indicates how many items the list box
contains.

NOTE |f the list box is in a dialog box, you can call the DigDirList function to perform the
same task.

A list box responds to both mouse and keyboard input. If the user clicks a string
or presses the SPACEBAR in the list box, the list box selects the string and indi-
cates the selection by inverting the string text and removing the selection from
the last item that was selected, if any. The user can also press a character key to
select an item in the list box; the next item in the list box that begins with the
character is selected. If the list box has the LBS_NOTIFY style, the list box also
sends an LBN_SELCHANGE notification message to the parent window. If the
user double-clicks a string and LBS_NOTIFY is specified, the list box sends the
LBN_SELCHANGE and LBN_DBLCLK messages to the parent window.

You can always retrieve the index of the selected string by using the LB_GET-
CURSEL and LB_GETTEXT messages. The LB_GETCURSEL message re-
trieves the selection’s index in the list box, and the LB_GETTEXT message
retrieves the selection from the list box, copying it to a buffer that you supply.

Table 8.1 summarizes the mouse and keyboard interface for a standard list box.

Table 8.1 User Interface for Standard List Box

Action Result

Mouse Interface

Single click Selects the item and removes the selection from the pre-
viously selected item (if any).

Double click Is the same as a single click.

Keyboard Interface

SPACEBAR Selects the item.

RIGHT ARROW, Selects the next item in the list and removes the selec-

DOWN ARROW tion from the previously selected item (if any).

LEFT ARROW, UP ARROW Selects the preceding item in the list and removes the

selection from the previously selected item (if any).

Controls 8-15

Tgble 8.1

User Interface for Standard List Box (continued)

Action

Result

PAGE UP

PAGE DOWN

HOME

END

Scrolls the currently selected item to the bottom of the
list box, selects the first visible item in the list box, and
removes the selection from the previously selected item
(if any).

Scrolls the currently selected item to the top of the list
box, selects the last visible item in the list box, and re-
moves the selection from the previously selected item (if
any).

Scrolls the first item in the list box to the top of the list
box, selects the first item, and removes the selection
from the previously selected item (if any).

Scrolls the last item in the list box to the bottom of the
list box, selects the last item, and removes the selection
from the previously selected item (if any).

Using Multiple-Selection List Boxes

By default, a list box lets the user select only one item at a time. To allow the
user to select more than one item from a list box, create the list box with either of

the following styles:

Style
LBS_MULTIPLESEL

LBS_EXTENDEDSEL

Description

A list box created with the LBS_ MULTIPLESEL
style is essentially the same as a standard list box, ex-
cept that the user can select more than one item in
the list box.

A list box created with the LBS_ EXTENDEDSEL
style provides an easy method for selecting several
contiguous items in the list box, as well as for select-
ing separate items.

The rest of this section describes each style of multiple-selection list box.

List Boxes with the LBS_MULTIPLESEL Style

A list box created with the LBS_MULTIPLESEL style is essentially the same as
a standard list box, except that the user can select more than one item in the list
box. Clicking or pressing the SPACEBAR on an item in the list box toggles the

8-16 Guide to Programming

selection state of the item. If the user presses a character key while the list box
has focus, the list-box cursor moves to the next item in the list that begins with
that character; the item is not actually selected unless the user presses the
SPACEBAR. Table 8.2 describes the mouse and keyboard interface for a list box
with the LBS_ MULTIPLESEL style. '

Table 8.2

User Interface for LBS_MULTIPLESEL List Box

Action Result

Mouse Interface

Single click Toggles the selection status of the item, but does not re-
move the selection from other selected items (if any).

Double click Is the same as a single click.

Keyboard Interface

'SPACEBAR Toggles the selection status of item, but does not remove
the selection from other selected items (if any).

RIGHT ARROW, Moves the list-box cursor to next item in the list.

DOWN ARROW

LEFT ARROW, UP ARROW

PAGE UP

PAGE DOWN

HOME

END

Moves the list-box cursor to the preceding item in the
list.

Scrolls the currently selected item to the bottom of the
list box and moves the list-box cursor to the first visible
item in the list box.

Scrolls the currently selected item to the top of the list
box and moves the list-box cursor to the last visible item
in the list box. .

Scrolls the first item in the list box to the top of the list
box and moves the list-box cursor to the first item.

Scrolls the last item in the list box to the bottom of the
list box and moves the list-box cursor to the last item.

List Boxes with the LBS_EXTENDEDSEL Style

A list box created with the LBS_EXTENDEDSEL style provides an easy method
for selecting several contiguous items in the list box, as well as for selecting sepa-
rate items. Table 8.3 describes the mouse and keyboard interface for a list box
with the LBS_EXTENDEDSEL style.

Controls 8-17

Table 8.3

User Interface for LBS_EXTENDEDSEL List Box

Action

Result
(Add mode disabled)

Result
(Add mode enabled)

Mouse Interface

Single click

SHIFT+single click

Double click,
SHIFT+double click

CONTROL+single click

CONTROL+SHIFT+single
click

Drag

Selects the item, removes
the selection from other
items, and drops the selec-
tion anchor on the
selected item.

Selects all items between
the selection anchor and
the selected item, and re-
moves the selection from
items not in that range.

Same as single click and
SHIFT+single click.

Drops the selection an-
chor and toggles the
selection state of the
selected item, but does
not remove the selection
from other items.

Does not remove the
selection from other items
(except for those that are
part of the selection range
established by the most re-
cent selection anchor) and
toggles all items (to the
same selection state as the
item at the anchor point)
from the anchor point to
the selected item. Does
not move the selection an-
chor.

Drops the selection an-
chor where the user
pressed the mouse button,
selects items from the
selection anchor to the
item where the the user
released the button, and
removes the selection
from all other items.

Same as if add mode is
disabled; in addition, disa-
bles add mode.

Same as if add mode is
disabled, plus disables
add mode.

Same as if add mode is
disabled, plus disables
add mode.

Same as if add mode is
disabled, plus disables
add mode.

Same as if add mode is
disabled, plus disables
add mode.

Same as if add mode is
disabled, plus disables
add mode.

8-18 Guide to Programming

Table8.3 User Interface for LBS_EXTENDEDSEL List Box (continued)

Action

Result
(Add mode disabled)

Result
(Add mode enabled)

SHIFT+drag

CONTROL+drag

CONTROL-+SHIFT+drag

Selects items from the
selection anchor to the
item where the user
released the button and re-
moves the selection from
all other items. Does not
move the selection an-
chor.

Drops the selection an-
chor on the item where
the user pressed the
mouse button. Does not
remove the selection from
other items, but toggles
all items (fo the same
selection state as the item
at the anchor point) from
the anchor point to the
item where the user
released the mouse but-
ton.

Does not remove the
selection from other items’
(except for those that are
part of the selection range
established by the most re-
cent selection anchor), but
toggles all items (to the
same selection state as the
item at the anchor point)
from the anchor point to
the item where the user
released the mouse but- -
ton. Does not move the
selection anchor.

Same as if add mode is
disabled, plus disables
add mode.

Same as if add mode is
disabled, plus disables
add mode.

Same as if add mode is
disabled, plus disables
add mode.

Keyboard Interface®

SHIFT+F8

SPACEBAR

Enables add mode. Add
mode is indicated by a
flashing list-box cursor.

Selects the item, removes
the selection from pre-
viously selected items,
and drops the selection an-
chor.

Disables add mode.

Toggles the selection sta-
tus of the item and drops
the selection anchor, but
does not remove the selec-
tion from other items.

Controls 8-19

Table 8.3 User Interface for LBS_EXTENDEDSEL List Box (continued)

Action Result Result
(Add mode disabled) (Add mode enabled)

SHIFT+SPACEBAR Removes the selection Does not remove the
from previously selected selection from other items
items and toggles all (except for those that are
items (to the same selec- part of the selection estab-
tion state as the item at lished by the most recent
the selection anchor) from anchor point) and toggles
the anchor point to the all items (to the same
current position. Does not selection state as the item
move the selection an- at the selection anchor)
chor. from the selection anchor

to the current position.
Does not move the selec-
tion anchor.

Navigation keyb Moves the list-box cursor Moves the list-box cursor
as defined by the key and as defined by the key, but
selects the item at the does not select the item,
cursor, drops the selection remove the selection from
anchor at selected item, other items, or move the
and removes the selection selection anchor.
from all previously

, selected items. ‘

SHIFT+Navigation key Removes the selection Does not remove the

from all other items,
moves the list-box cursor
as defined by the key,
toggles all items (to the
same selection state as the
item at the selection an-
chor) from the selection
anchor to the item at the
cursor. Does not move the
selection anchor.

selection from other items
(except for those that are
part of the selection range
established by the most re-
cent selection anchor),
moves the list-box cursor
as defined by the key, and
toggles all items (to the
same selection state as the
item at the anchor point)
from the anchor point to
the item at the list-box
cursor. Does not move the
selection arichor.

2 Except for the SHIFT+Fs, all keys and key-combinations can be combined with CONTROL. For ex-
ample, CONTROL+SHIFT+SPACEBAR has the same effect as SHIFT+SPACEBAR.

b Navigation keys include the DIRECTION (arrow) keys and the HOME, END, PAGE UP, and PAGE DOWN
keys. See Table 8.2, “User Interface for LBS_ MULTIPLESEL List Box,” for a description of how
each key moves the list-box cursor.

8-20 Guide to Programming

Using Multicolumn List Boxes

Normally, a list box displays its items in a single column. If you anticipate that a
list box will contain a large number of items, you may want to create the list box
with the LBS_MULTICOLUMN style. This style specifies a list box that can dis-
play its items in several columns. A multicolumn list box “snakes” its items from

. the bottom of one column to the next. Because of this, the list box never needs to
be scrolled vertically. However, if the list box may contain more items than it can
display at one time, you should create it with the WM_HSCROLL style to allow
the user to scroll the list box horizontally. The following example shows how to
create a multicolumn list box that occupies the entire client area of the parent
window: '

ftdefine IDC_MULTILISTBOX
RECT Rect;
HWND hMuTtilistBox

GetClientRect(hWnd, (LPRECT) &Rect);

hMultilListBox = CreateWindow("Listbox",
NULL,
WS_CHILD | WS_VISIBLE | LBS_SORT |
LBS_MULTICOLUMN | WS_HSCROLL | LBS_NOTIFY,
Rect.left,
Rect.top,
Rect.right,
Rect.bottom,
hWnd,
IDC_MULTILISTBOX,
hinst,
NULL);

In this example, the GetClientRect function retrieves the coordinates of the
client area of the parent window, which are then passed to CreateWindow to set
the location and size of the list box.

The directory window displayed by the Windows File Manager is an example of
a window that contains a multicolumn list box.

To set the width of the columns in a multicolumn list box, send the LB_SET-
COLUMNWIDTH message to the list box.

Using Owner-Draw List Boxes

Like a button, a list box can be created as an owner-draw control. In the case of
list boxes, however, your application is responsible for drawing only the items in
the list box. '

To create an owner-draw list box, use either the LBS_OWNERDRAWEFIXED
or LBS_OWNERDRAWVARIABLE style. LBS_OWNERDRAWFIXED

Controls 8-21

designates an owner-draw list box in which all the items are the same height;
LBS_OWNERDRAWVARIABLE specifies a list box whose items can vary in
height.

To add an item to the list box, send the LB_ADDSTRING or LB_INSERT-
STRING message to the list box. The [Param parameter can contain any 32-bit
value that you want to associate with the item. If /Param contains a pointer to a
string, the LBS_HASSTRINGS list-box style lets the list box maintain the
memory and pointers for the string. This allows the application to use the
LB_GETTEXT message to retrieve the text for the particular item. Also, if you
created the list box with the LBS_SORT and LBS_HASSTRINGS style,
Windows automatically sorts the items in the list box.

If you create the list box with the LBS_SORT style but without LBS_HAS-
STRINGS, Windows has no way to determine the order of the items within the
list box. In this case, when you add an item to the list box (using the LB_ADD-
STRING message), Windows will send one or more WM_COMPAREITEM
messages to the owner of the list box. This message’s [Param parameter points to
a COMPAREITEMSTRUCT data structure containing identifying information
for two items in the list box. When your application returns from processing the
message, the return value specifies which, if any, of two items should appear
above the other. Windows sends this message repeatedly until it has sorted all the
items in the list box.

When you add or insert an item in a list box, Windows determines the size of the
item by sending the WM_MEASUREITEM message to the owner of the list box.
Windows needs this information so it can detect the user’s interaction with items
in the list box. If you created the list box with the LBS_OWNERDRAWFIXED
style, Windows sends the message only once, since all the items in the list box
will be the same size. For a list box that was created with the LBS_ OWNER-
DRAWVARIABLE style, Windows sends a WM_MEASUREITEM message for
each item when that item is added to the list box.

The IParam parameter of WM_MEASUREITEM contains a pointer to a
MEASUREITEMSTRUCT data structure. In addition to the control type and
ID, this data structure also contains the list-box item number of the item to be
measured (if the list box is the LBS_OWNERDRAWYVARIABLE style) and op-
tional 32-bit data associated with the item. Each time the owner window receives
the WM_MEASUREITEM message, it must fill in the itemHeight field of the
MEASUREITEMSTRUCT structure with the height of the item before return-
ing from processing the message. The height is measured in vertical dialog units.
A vertical dialog unit is 14 of the current vertical dialog base unit, which is com-
puted from the height of the system font. To determine the size in pixels of the
dialog base units, call the GetDialogBaseUnits function.

When Windows displays the list box, or whenever the appearance of an item in
the list box should change, Windows sends the WM_DRAWITEM message to
the window that owns the list box. The [Param parameter of the WM_DRAW-
ITEM message contains a pointer to a DRAWITEMSTRUCT data structure.

This structure contains information identifying the list box item and the type of

8-22 Guide to Programming

drawing required. As with an owner-draw button, your application uses this infor-
mation to determine how to draw the item.

To delete an item from an owner-draw list box, send the LB_DELETESTRING
message to the list box. When this happens, Windows in turn sends the
WM_DELETEITEM message to the owner window. (Windows also sends this
message for each item when the list box is destroyed.) The /Param parameter of
this message points to a DELETEITEMSTRUCT data structure; this structure

~ identifies the list box and list-box item that is being deleted and the 32-bit op-

tional data associated with the item. Your application should use this information
to clean up any memory which was used for the item.

8.4.4 Combo Boxes

A combo box is a single control that consists of a list box combined with a static
or edit control. Depending on the style you use to create the list box, the list box
can be displayed at all times, or the list box can be hidden until the user displays
it. Except where noted, the mouse and keyboard interface for the edit field and
list box of a combo box is identical to that of a standard edit control or list box.

The CBS_SIMPLE style creates a combo box with an edit field and a list box
that is always displayed below the edit field. When the combo box has focus, the
user can type in the edit field. If an item in the list box matches what the user has
typed, the matching item moves to the top of the list box. The user can also select
items from the list box by using the DOWN ARROW and UP ARROW keys or the
mouse.

The CBS_DROPDOWN style is similar to CBS_SIMPLE except that the list box
is displayed only if the user selects the icon next to the edit field or presses
ALT+DOWN ARROW or ALT+UP ARROW. Even when the list box is hidden, the
user can select items from the list box by using UP ARROW and DOWN ARROW.

A combo box created with the CBS_DROPDOWNLIST appears identical to a
CBS_DROPDOWN combo box, except that the edit field is replaced with a
static text field. Instead of typing in the edit field, the user can select items from
the list box by typing the first letter of the item. Of course, the user can also use
the UP ARROW and DOWN ARROW keys or the mouse to select items in the combo
box.

You add and delete items to the list-box portion of a combo box in much the
same way as a plain list box, but using the CB_ADDSTRING, CB_INSERT-
STRING, CB_DIR, and CB_DELETESTRING messages. Windows also pro-
vides additional combo-box messages for retrieving the contents of the edit field,
matching text with a list-box item, and dealing with the contents of the edit field.

In many respects, a combo box is quite similar to a list box in the way it reports
the user’s interaction with the control. All of the list-box notification codes have
parallel combo-box notification codes. In addition to these, Windows sends noti-
fication codes to indicate the following:

Controls 8-23

m The list box of the combo box is being dropped down (CBN_DROPDOWN).

m The user has changed the text in the edit field, and Windows has updated the
display (CBN_EDITCHANGE).

® The user has changed the text in the edit field, but Windows has not yet up-
dated the display (CBN_EDITUPDATE).

= The combo box has lost input focus (CBN_KILLFOCUS). In the case of
CBS_DROPDOWN and CBS_DROPDOWNLIST combo boxes, this causes
Windows to remove the list box from the display.

m The combo box has gained focus (CBN_SETFOCUS).

Like a list box, a combo box can be created with a fixed- or variable-height
owner-draw style. In the case of combo boxes, however, the owner is responsible
for drawing items in the list box and in the selection (edit or static) field. For ex-
ample, if the user selects an item in the list box, the owner of the combo box re-
ceives a WM_DRAWITEM message for the list-box item (to draw it as selected)
and another WM_DRAWITEM message for the selection field.

You can also designate the CBS_SORT style for a combo box; Windows sorts
owner-draw combo boxes in the same manner as owner-draw list boxes.

There is no multicolumn style for combo boxes.

8.4.5 Edit Gontrols

An edit control is a rectangular child window in which the user can enter and edit
text. Edit controls have a variety of features, such as multiple-line editing and
scrolling. You specify the features you want by specifying a control style.

Edit control styles define how the edit control will appear and operate. For ex-
ample, the ES_ MULTILINE style creates an edit control in which you can enter
more than one line of text. The ES_AUTOHSCROLL and ES_AUTOVSCROLL
styles direct the edit control to scroll horizontally or vertically if the user enters
more text than can fit in the control’s client area. If these styles are not specified
and the user enters more text than can fit on one line, the text wraps to the next
line if it is a multiline edit control. You can also use the WS_HSCROLL and (for
a multiline edit control) WS_VSCROLL styles to an edit control to allow the
user to scroll the text in the control.

Your application can use an edit control to let a user enter a password or other
private text without displaying the password. The ES_PASSWORD style creates
an edit control that does not display text as the user types it; instead, the edit con-
trol displays an arbitrary character for each character that the user types. By de-
fault, this character is an asterisk (¥). To change the character displayed by the
edit control, send the EM_SETPASSWORDCHAR message to the control.

8-24 GQuide to Programming

You can set tab stops in a multiline edit control by sending the EM_SETTAB-
STOPS message to the control. This message specifies the number of tab stops
the edit control should contain and the distances between the tab stops.

An edit control sends notification messages to its parent window. For example,
an edit control sends an EN_CHANGE message when the user makes a change
to the text. An edit control can also receive messages, such as EM_GETLINE
and EM_LINELENGTH. An edit control carries out the specified action when it
receives a message.

A particularly powerful feature of edit controls allows you to “undo” a change to
the contents of the edit control. To determine whether an edit control can undo an
action, send the EM_CANUNDO message to the control; the control will return
a nonzero value if it can undo the last change. If it can, your application can send
the EM_UNDO message to the control to reverse the last change made to the edit

control.

Table 8.4 describes the mouse and keyboard interface for edit controls.

Table 8.4

User Interface for Edit Control

Action

_ Result

Mouse Interface

Single click Positions the insertion point and drops the selection an-
chor.

Double click Selects a word.

SHIFT+Single click Positions the insertion point and extends the selection
from the selection anchor to the insertion point.

Drag Drops the selection anchor, moves the insertion point,
and extends the selection from the selection anchor to
the insertion point.

Keyboard Interface

DIRECTION Removes the selection from any text and moves the in-
sertion point in the indicated direction.

SHIFT+DIRECTION Drops the selection anchor (if it is not already dropped),
moves the insertion point, and selects all text between
the selection anchor and the insertion point.

CONTROL+LEFT ARROW, Moves the insertion point to the beginning of the word

CONTROL+RIGHT ARROW in the indicated direction.

SHIFT+CONTROL+LEFT Drops the selection anchor (if it is not already dropped),

ARROW, SHIFT+CON- moves the insertion point to the beginning of the word

TROL+RIGHT ARROW in the indicated direction, and selects all text between

the selection anchor and the insertion point.

Table 8.4

Controls 8-25

User Interface for Edit Control (continued)

Action

Result

HOME

SHIFT+HOME

CONTROL+HOME

SHIFT+CONTROL+HOME

END

SHIFT+END

CONTROLAEND

SHIFT+CONTROL+END

DELETE
SHIFT+DELETE
SHIFT-+INSERT
CONTROLAINSERT
PAGE UP
CONTROL+PAGE UP
PAGE DOWN

-CONTROL+PAGE DOWN

Removes the selection from any text and moves the in-
sertion point to the beginning of the line.

Drops the selection anchor (if it is not already dropped),
moves the insertion point to the beginning of the line,
and selects all text between the selection anchor and the
insertion point.

Places the insertion point before the first character in the
edit control.

Drops the selection anchor (if it is not already dropped),

places the insertion point before the first character in the
edit control, and selects all text between the selection an-
chor and the insertion point.

Removes the selection from any text and moves the in-
sertion point to the end of the line.

Drops the selection anchor (if it is not already dropped),
moves the insertion point to the end of the line, and
selects all text between the selection anchor and the in-
sertion point.

Places the insertion point after the last character in the
edit control.

Drops the selection anchor (if it is not already dropped),
places the insertion point after the last character in the
edit control, and selects all text between the selection an-
chor and the insertion point.

If text is selected, deletes (clears) the text. Otherwise, de-
letes the character following the insertion point.

If text is selected, cuts the text to the clipboard. Other-
wise, deletes the character before the insertion point.

Pastes (inserts) the contents of the clipboard at the inser-
tion point.

Copies selected text to the clipboard, but does not delete
it.

In a multiline edit control, scrolls text up one line less
than the height of the edit control.

In a multiline edit control, scrolls text left one character
less than the width of the edit control.

In a multiline edit control, scrolls text down one line
less than the height of the edit control.

In a multiline edit control, scrolls text right one
character less than the width of the edit control.

8-26 Guide to Programming

Table 8.4 User Interface for Edit Control (continued)

Action Result

CONTROL+ENTER In a multiline edit control in a dialog box, ends the line
and moves the cursor to the next line.

CONTROL+TAB In a multiline edit control in a dialog box, inserts a tab
character.

The EditCntl sample application described at the end of this chapter illustrates
how to use a multiline edit control to provide basic text entry and editing.

8.4.6 Scroll Bars

Scroll bars are predefined controls that can be positioned anywhere in a window.
They allow a user to select a value from a continuous range of values. The scroll
bar sends a notification message to its parent window whenever the user clicks
the control with the mouse or moves the scroll-bar thumb using the keyboard;
this allows the parent window to process the messages so that it can determine
the value selected by the user and position the thumb appropriately.

To create a child-window scroll bar, use the SBS_HORZ or SBS_VERT style.
You can create a scroll bar with any desired size. If you want the width (of a ver-
tical scroll bar) or height (of a horizontal scroll bar) to match the size of a
window scroll bar, you can use the appropriate system metrics, as shown in the
following example: : '

hScrol1Bar = CreateWindow("Scrollbar", NULL,
WS_CHILD | WS_VISIBLE | SBS_VERT,
20, 20,
GetSystemMetrics (SM_CXVSCROLL), 5@,
hWnd, IDSCROLLBAR, hInst, NULL);

The GetSystemMetrics function returns the current value for
SM_CXVSCROLL, which is the width of a standard window scroll bar.

Scroll-bar controls do not have a special set of notification messages. Instead,
they send the same messages (WM_HSCROLL and WM_VSCROLL) sent by
window scroll bars. The wParam parameter of these messages contains a value
that indicates what kind of scrolling is being performed. Your application uses
this information to determine how to position the scroll-bar thumb and what that
position means to your application. Table 8.5 lists these wParam values and de-
scribes the user action which generates them.

Controls 8-27

Table 8.5 User Interface for Scroll Bar

Message wParam Value Mouse Keyboard

SB_LINEUP User clicked the Up or User pressed LEFT ARROW
Left arrow of the scroll or UP ARROW.
bar.

SB_LINEDOWN User clicked the Down or User pressed RIGHT
Right arrow of the scroll ARROW or DOWN ARROW.
bar.

SB_PAGEUP User clicked above or to User pressed PAGE UP.
the left of the scroll-bar
thumb.

SB_PAGEDOWN User clicked below or to User pressed PAGE DOWN.
the right of the scroll-bar
thumb.

SB_ENDSCROLL User clicked anywhereon ~ None.
the scroll bar except the
thumb. ’

SB_THUMBTRACK User is dragging the None.
thumb.

SB_THUMBPOSITION User stopped dragging None.
the thumb.

SB_TOP None. User pressed HOME.

SB_BOTTOM None. User pressed END.

Windows is capable of properly positioning the thumb of a scroll bar associated
with a list box or an edit control based on the contents of the control. However, a
scroll bar that is a child-window control represents a range of values known only
to your application. As a result, it is the responsibility of your application to set
the scrolling range for the scroll bar and to position the thumb each time the user
moves it.

The SetScrollRange function establishes the range of values that the scroll bar
represents. For example, if your application has a scroll bar with which the user
can select a day in a given month, you would call SetScrollRange to set the
scroll range to the number of days in a particular month. The following shows
how your application could set the range from the month of January:

SetScroll1Range(hScrol1Bar, SB_CTL, 1, 31, 1)

8-28 Guide to Programming

In this example, SB_CTL informs Windows that the scroll bar is a separate scroll-
bar control, not a scroll bar associated with a window. The third and fourth para-
meters specify the scroll-bar range, and the fourth parameter is set to 1 to direct
windows to redraw the scroll bar to reflect the new range.

Even though you have established the range of values that the scroll bar repre-
sents, Windows still cannot properly position the thumb of the scroll bar when
the user moves it; that remains the responsibility of your application. Each time
your application receives a WM_HSCROLL or WM_VSCROLL message for the
scroll bar, you must check the wParam parameter of the message to determine
how far the user moved the thumb. You then call the SetScrollPos function to
position the thumb. Also, if your application allows the user to change the value
represented by the thumb position without using the scroll bar (such as by typing
in an edit control), your application must reposition the thumb based on the new
value.

8.5 A Sample Application: EditCnt/

This sample application illustrates how you can use an edit control in an applica-
tion’s main window to provide multiple-line text entry and editing. The EditCntl
application fills the client area of its main window with a multiple-line edit con-
trol and monitors the size of the client area to ensure that the edit control always
just fits. When completed, the EditCntl application appears as shown in Figure
8.1:

I EditCntl Sample Application
File Edit Help

The EditCntl application lets you type and edit multiple]
rlines of text.

L The entire client area
is a single edit control.

Figure 8.1 The EditCntl Application’s Window

To create the application, copy and rename the source files of the EditMenu
application, then make the following modifications:

Controls 8-29

Add a new constant to the include file.
Add new variables.

. Add a CreateWindow function.

. Modify the WM_COMMAND case.

. Adda WM_SETFOCUS case.

. Add a WM_SIZE case.

I Y N S

. Compile and link the application.

NOTE Rather than typing the code presented in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

8.5.1 Add a Constant to the Include File

You need to add a constant to the include file to serve as the control ID for the
edit control. Add the following statement:

jtdefine IDC_EDIT 300

8.5.2 Add New Variables

You need a global variable to hold the window handle of the edit control. Add
the following statement to the beginning of the C-language source file:

HWND hEditWnd /* handle to edit window */

You also need a local variable in the WinMain function to hold the coordinates
of the client-area rectangle. These coordinates are used to determine the size of
the control. Add the following statement to the beginning of the WinMain
function:

RECT Rect;

8.5.3 Add a CreateWindow Function

First, you need to retrieve the dimensions of the client area so that you can set the
size of the control. Once you have the dimensions of the client area, use the
CreateWindow function to create the edit control.

8-30 Guide to Programming

Add the following statements to the WinMain function immediately after creat-
ing the main window:

GetClientRect(hWnd, (LPRECT) &Rect);

hEditWnd = CreateWindow("Edit",
NULL,
WS_CHILD | WS_VISIBLE |
ES_MULTILINE. |
WS_VSCROLL | WS_HSCROLL |
ES_AUTOHSCROLL | ES_AUTOVSCROLL,
g)
2,
(Rect.right-Rect.left),
(Rect.bottom-Rect.top),
hind,
IDC_EDIT,
hlnst,
NULL) ;

if (!hEditWnd) {
DestroyWindow(hWnd);
return (NULL);

}

The GetClientRect function retrieves the dimensions of the the main window’s
client area and places that information in the Rect structure. The CreateWindow
function creates the edit control, using the width and height computed by the
Rect structure.

The CreateWindow function creates the edit window. To create an edit control,
you need to use the predefined “Edit” control class and you need to specify the
WS_CHILD window style. The predefined controls may be used as child
windows only. They cannot be used as main or pop-up windows. Since a child
window requires a parent window, the handle of the main window, hWnd, is
specified in the function call.

For this edit control, a number of edit-control styles are also specified. Edit-
control styles, like window styles, define how the control will look and operate.
This edit control is a multiple-line control, meaning the user will be able to enter
more than one line of text in the control window. Also, the control will automati-
cally scroll horizontally or vertically if the user types more text than can fit in the
window.

The upper-left corner of the edit control is placed at the upper-left corner of the
parent window’s client area. A child window’s coordinates are always relative to
the parent window’s client area. The next two arguments, Rect.right-Rect.left
“and Rect.bottom—Rect.top, define the height and width of the edit control, ensur-
ing that the edit control fills the client area when the window is first displayed.

Controls 8-31

Since an edit control sends notification messages to its parent window, the con-
trol must be given a control ID. Child windows cannot have menus, so the menu
argument in the CreateWindow function is used to specify the control ID in-
stead. For this edit control, the ID is set to IDC_EDIT. Any notification messages
sent to the parent window by the edit control will contain this ID.

If the edit control cannot be created, the CreateWindow function returns NULL.
In this case, the application cannot continue, so the DestroyWindow function is
used to destroy the main window before terminating the application.

8.5.4 Modify the WM_COMMAND Case

Child-window controls notify the parent window of events by using a
WM_COMMAND message. The wParam parameter of the WM_COMMAND
message identifies the control that generated the message.

To recognize an out-of-memory notification from the edit control, add the follow-
ing code to the WM_COMMAND case:

case IDC_EDIT:
if (HIWORD (1Param) == EN_ERRSPACE) {
MessageBox (
GetFocus (),
"Qut of memory.",
"EditCnt1 Sample Application",
MB_ICONHAND | MB_OK
)3
}
break;

8.5.5 Add a WM_SETFOCUS Case

To set the input focus to the edit control whenever the parent window is acti-
vated, add the following statements to the window procedure:

case WM_SETFOCUS:
SetFocus (hEditWnd);
break;

8.5.6 Add a WM_SIZE Case

You need to add a WM_SIZE case to the window function. Windows sends a
WM_SIZE message to the window function whenever the width or height of a
window changes. Since changing the main window size does not automatically
change the size of the edit control, the WM_SIZE case is needed to change the
size of the control.

8-32 Guide to Programming

Add the following statements to the window function:

case WM_SIZE:
MoveWindow(hEditWnd, @, @, LOWORD(1Param),
HIWORD(1Param), TRUE);
break;

8.5.7 Compile and Link

8.6 Summary

No changes are required to the make file. Compile and link the EditCntl applica-
tion, then start Windows and run the application. Now, you can insert text, back-
space to delete text, and you can use the mouse instead of the keyboard to select
text. And since you specified ES_MULTILINE, ES_AUTOVSCROLL, and
ES_AUTOHSCROLL when creating the control, the control can edit a full
screen of text, then scroll and edit more.

The EditCntl application illustrates the first step required to make a simple text
editor. To make a complete editor, you can add a File menu to the main window
to open and save text files and to copy or retrieve text from the edit control, and
add an Edit menu to the main window to copy, cut, and paste text through the
clipboard. Later chapters illustrate some simple ways to incorporate these fea-
tures into your application.

This chapter explained how to provide controls in your application. A control is a
special type of child window that you can add to your application’s windows to
facilitate user input. Windows provides automatic support for most types of con-
trols. For example, Windows can automatically draw a control in the location
you specify; when the user selects a control, Windows sends your application a
message containing the control ID.

This chapter also explained how to use each of the most common types of con-
trols.

For more information on topics related to controls, see the following:

Topic Reference
Processing input messages Guide to Programming: Chapter 4,
‘ “Keyboard and Mouse Input”
Using controls in dialog boxes Guide to Programming: Chapter 9,
“Dialog Boxes”
Control functions Reference, Volume I: Chapter 1,

“Window Manager Interface Functions”

Controls 8-33

Topic

Resource script statements

The sample application OWN-
COMBO.EXE, which
illustrates the use of combo
boxes and owner-draw controls

Reference

Reference, Volume 2: Chapter 8,
“Resource Script Statements”

SDK Sample Source Code disk

Chapter || Djalog Boxes

9

Dialog boxes are pop-up windows that applications use to interact with the user.
Typically, dialog boxes contain one or more controls.

This chapter covers the following topics:

® What is a dialog box?
® Creating and using both modal and modeless dialog boxes
= Creating a dialog function

= Using controls in dialog boxes

This chapter also explains how to create a sample application, FileOpen, which
shows how to build and use a modal dialog box that contains controls.

9.1 What Is a Dialog Box?

A dialog box is a pop-up window that an application uses to display or prompt
for information. Dialog boxes are typically used to prompt the user for the infor-
mation needed to complete a command. A dialog box contains one or more con-
trols with which the user can enter text, choose options, and direct the action of a
particular command.

You have already seen a dialog box in the Generic application: the About dialog
box. This dialog box contains static text controls that provide information about
the application, and a push-button control that the user can use to close the dialog
box and return to the main window. To process a dialog box, you need to supply
a dialog-box template, a dialog function, and some means to call up the dialog
box.

A dialog-box template is text that describes the dialog box and the controls it con-
tains. You can use either a text editor or the Windows 3.0 Dialog Editor to create
the template. Once you have created the template, add it to your resource script
file.

A dialog function is a callback function; Windows calls the dialog function and
passes it messages for the dialog box. Although a dialog function is similar to a
window function, Windows carries out special processing for dialog boxes.

9-2 Guide to Programming

Therefore, the dialog function does not have the same responsibilities as a
window function.

The most common way to display a dialog box is in response to menu input. For
example, the Open and Save As commands in the File menu both require addi-
tional information to complete their tasks; both display dialog boxes to prompt
for the additional information.

There are two types of dialog boxes: modal and modeless.

9.1.1 Modal Dialog Boxes

You have already seen a modal dialog box (About) in the Generic application. A
modal dialog box temporarily disables the parent window and forces the user to
complete the requested action before returning control to the parent window.
Modal dialog boxes are particularly useful for gathering information your appli-
cation requires in order to proceed. For example, Windows Notepad displays a
modal dialog box when the user chooses the Open command from the File menu.
Notepad cannot proceed with the Open command until the user specifies a file.

Although you can give a modal dialog box almost any window style, the recom-
mended styles are DS_ MODALFRAME, WS_CAPTION, and WS_SYSMENU.
The DS_MODALFRAME style gives the dialog box its characteristic thick
border.

A modal dialog box starts its own message loop to process messages from the
application queue without returning to the WinMain function. To keep input
from going to the parent window, the dialog box disables the parent window
before processing input. For this reason, a modal dialog box must never be
created using the WS_CHILD style, since disabling the parent window also
disables all child windows belonging to the parent.

To display a modal dialog box, use the DialogBox function. To terminate a
modal dialog box, use the EndDialog function.

9.1.2 Modeless Dialog Boxes

A modeless dialog box, unlike a modal dialog box, does not disable the parent
window. This means that the user can continue to work in the parent window
while the modeless dialog box is displayed. For example, Windows Write uses a
modeless dialog box for its Find command. This allows the user to continue
editing the document without having to close the Find dialog box.

Dialog Boxes 9-3

Most modeless dialog boxes have the WS_POPUP, WS_CAPTION,
WS_BORDER, and WS_SYSTEMMENU styles. The typical modeless dialog
box has a system menu, a title bar, and a thin black border.

Although Windows automatically disables some of the system-menu commands
for the dialog box, the menu still contains a Close command. The user can use
this command instead of a push button to terminate the dialog box. You can also
include controls in the dialog box, such as edit controls and check boxes.

A modeless dialog box receives its input through the message loop in the Win-
Main function. If the dialog box has controls, and you want to let the user move
to and select those controls using the keyboard, call the IsDialogMessage func-
tion in the main message loop. This function determines whether a keyboard
input message is for the dialog box and, if necessary, processes it. The WinMain
message loop for an application that has a modeless dialog box will look like this:

while (GetMessage(&msg, NULL, NULL, NULL) {

if (hDlg == NULL || !IsDialogMessage(hDlg, &msg)) {

TranslateMessage(&msg);

) DispatchMessage(&msg);

} v
}
Since a modeless dialog box may not be present at‘all times, you need to check
the hDlg variable that holds the handle in order to see if it is valid. If it is valid,
IsDialogMessage determines whether the message is for the dialog box. If so,
the message is processed and must not be further processed by the Translate-
Message and DispatchMessage functions.

To terminate a modeless dialog box, use the DestroyWindow function.

9.2 Using a Dialog Box

To create and use a dialog box, follow these steps:

1. Create a dialog-box template and add it to the resource script file.
2. Create a dialog function to support the box.

3. Export the dialog function.
4.

Display the dialog box by calling either the DialogBox function (for a modal
dialog box) or the CreateDialog function (for a modeless dialog box).

5. Close the dialog box by calling either the EndDialog function (for modal
dialog boxes) or the DestroyWindow function (for modeless dialog boxes).

The following sections explain each step.

9-4 Guide to Programming

9.2.1 Creating a

Dialog Function

A dialog function has the following form:

BOOL FAR PASCAL D1gFunc(hDlg, message, wParam, 1Param)
HWND hDlg;
unsigned message;
WORD wParam;
DWORD TParam;
{
switch (message) {

/* Place message cases here */

default:
return FALSE;

}

This is basically a window function, except that the DefWindowProc function is
not called. Default processing of dialog-box messages is handled internally, so
the dialog function must not call the DefWindowProc function.

The dialog function must be defined as a FAR PASCAL procedure, and must
have the parameters given here. BOOL is the required return type.

Just as it does with window functions, Windows sends messages to a dialog func-
tion when it has information to give the function or wants the function to carry
out some action. Unlike a window function, a dialog function responds to a
message by returning a Boolean value. If the function processes the message, it
returns TRUE. Otherwise, it returns FALSE.

In this function, the hDIg variable receives the handle of the dialog box. The
other parameters serve the same purpose as in a window function. The switch
statement is used as a filter for different messages. Most dialog functions process
the WM_INITDIALOG and WM_COMMAND messages, but very little else.

The WM_INITDIALOG message, sent to the dialog box just before it is dis-
played, gives the dialog function the opportunity to give the input focus to any
control in the dialog box. If the function returns TRUE, Windows will set the -
input focus to the control of its choosing.

The WM_COMMAND message is sent to the dialog function by the controls in
the dialog box. If there are controls in the dialog box, they send notification mes-
sages when the user carries out some action within them. For example, a dialog
function with a push button can check WM_COMMAND messages for the con-
trol ID of the push button. The control ID is in the message’s wParam parameter.
When it finds the ID, the dialog function can carry out the corresponding task.

If you create the dialog box with the WS_SYSMENU style, you should include a
WM_COMMAND switch statement for the IDCANCEL control ID which is

Dialog Boxes 9-5

sent when the user chooses the close option in the dialog-box system menu. The
statement should include a call to the EndDialog function.

9.2.2 Using Controls in Dialog Boxes

You use controls in dialog boxes much as you use them in regular windows.
When a control is in a dialog box, however, you can use several special functions
to access the control and send messages to it. For example, the SendDigltem-
Message function sends a message to a control in the dialog box, and the Set-
DigltemText function sets the text of a control. You do not need to supply the
control handle in these functions. Instead, you supply the dialog handle and the
control ID. If you want the control handle, you can use the GetDlgltem function.

9.3 A Sample Application: FileOpen

This sample application shows how to build and use a modal dialog box to sup-
port the Open command in the File menu. The purpose and operation of the
dialog box is fully described in the System Application Architecture, Common
User Access: Advanced Interface Design Guide. Figure 9.1 shows the dialog box
that the FileOpen application displays when the user chooses the Open command:

Edit control
Static text

-

Open File' Name:
|

Filesin ciwindevisamplesinewest

editfile.exe

List box control l. Push-button controls

Figure 9.1 The FileOpen Application’s Dialog Box
The dialog box contains the following controls:

m A default push-button control labeled “Open” that lets the user tell the appli-
cation to open the selected file.

= A button control labeled “Cancel” that lets the user cancel the Open com-
mand.

9-6 Guide to Programming
. ____________________________________]

® A single-line edit control in which the user can enter the name of the file to
open. :

m A list box containing the names of files in the current directory from which
the user can select the file to be opened.

The list box also contains directory and drive names that the user can select to
change the current directory or drive.

m Several static text controls that label the list box and edit control, and display
the current directory name.

To create the FileOpen application, copy and rename the source files for the
EditCntl application, then make the following modifications:

. Add new c‘onstantS to the include file.

. Create the Open dialog-box template and add it to the resource script file.
. Add new variables.

. Add an IDM_OPEN case to the WM_COMMAND case.

. Create the OpenDlg dialog function.

. Add helper functions to support the OpenDlg dialog function.

. Export the OpenDlg dialog function.

0 NN N L bW e

. Compile and link the application.

NOTE Rather than typing the code provided in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

9.3.1 Add Constants to the Include File

You need several new constants in the include file to identify the controls of the
FileOpen dialog box. Add the following statements:

fidefine IDC_FILENAME 400
fdefine IDC_EDIT 401
fidefine IDC_FILES 492.
fidefine IDC_PATH 403
ftdefine IDC_LISTBOX 404

Although you may choose any integer for a control ID, the ID for each control in
a given dialog box must be unique. By convention, a predefined ID, such as
IDOK or IDCANCEL, is less than 100, so any number greater than 100 can be
used for other controls.

Dialog Boxes 9-7

9.3.2 Create the Open Dialog-Box Template

You need a dialog-box template in your resource script file to define the size and
appearance of the Open dialog box. The DIALOG statement specifies the name
and dimensions of a dialog box, as well as the controls the dialog box contains.
Add the following statements:

@ Open DIALOG 10, 10, 148, 112
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About FileOpen”

@ BEGIN
© LTEXT "Open File &Name:", IDC_FILENAME, 4, 4, 608, 10

© EDITTEXT IDC_EDIT, 4, 16, 1008, 12, ES_AUTOHSCROLL
LTEXT "&Files in", IDC_FILES, 4, 40, 32, 18

© (ISTBOX, IDC_LISTBOX, 4, 52, 7@, 56, WS_TABSTOP
O LTEXT "", IDC_PATH, 4@, 4@, 100, 10
© DEFPUSHBUTTON "&Open", IDOK, 87, 6@, 5@, 14

© PUSHBUTTON "Cancel", IDCANCEL, 87, 80, 50, 14
END

In this DIALOG statement:

@ The dialog box has a width and height (in dialog units) of 148 and 112, re-
spectively. Dialog units are fractions of the default system-font character size
and are used with dialog boxes to ensure that a dialog box has the same rela-
tive size, no matter which computer it is displayed on.

The BEGIN and END statements are required.

©

© The first LTEXT statement creates a left-adjusted static control that contains
the string, “Open File &Name:”. This string serves as the label to the list box.
In some dialog boxes, all static controls have this same ID. Although the
general rule is to have a unique ID for each control in a dialog box, it is ac-
ceptable to use —1 for static controls, as long as the dialog function does not
- need to distinguish between them (for example, as long as the dialog function
does not attempt to change the static-control text or position).

© The EDITTEXT statement adds an edit control to the dialog box and identi-
fies it with IDC_EDIT. The ES_AUTOHSCROLL style is given so that the
user can enter filenames that are longer than the control is wide.

© The LISTBOX statement creates a list box. The ID of the list box is
IDC_LISTBOX. The width and height (in dialog units) of the list box are 70
and 56, respectively. The WS_TABSTORP style is given so that the user can
move the focus to the list box using the keyboard. Without this style, the user
can get to the list box only by clicking it with the mouse.

©® The last LTEXT statement creates a left-adjusted static control used to dis-
play the current directory and drive. The control is initially empty; the

9-8 Guide to Programming

pathname is added later. This control also has a unique control ID,
IDC_PATH, to distinguish it from other static controls. This is important
since you will use the DigDirList function to fill the control. -

@ The DEFPUSHBUTTON statement creates a default push button that is
* labeled “Open” and has the control ID IDOK, a predefined ID found in the
WINDOWS.H file. In modal dialog boxes, pressing ENTER generates a notifi-
cation message that uses the same ID, so you can permit the user to click the
button or press ENTER to open the selected file.

© The PUSHBUTTON statement creates the “Cancel” push button, Its ID is ID-
CANCEL, a predefined ID found in the WINDOWS.H file. In modal dialog
boxes, pressing ESCAPE generates a notification message by using the same
ID, so you can permit the user to click the button or press ESCAPE to cancel
the Open command.

9.3.3 Add New Variables

You need to declare several new global and local variables in order to hold the
filename and the various pieces used to build the filename. Add the following
statements at the beginning of your source file:

char FileName[1281; /* current filename */
char PathName[128]; /* current pathname */
char OpenName[1287; /* filename to open */
char DefPath[128]; /* default path for Tist box */
char DefSpec[13] = "> *"; /* default search spec */
char DefExt[] = ".txt"; /* default extension */
char str[2557; /* string for sprintf() calls */

You need a new local variable to hold the procedure-
instance address of the FileOpen dialog box. Add the following statement at the

- beginning of the window function:

FARPROC 1pOpenDig;

9.3.4 Add the IDM_OPEN Case

You need to fill in the IDM_OPEN case for the WM_COMMAND message.
When the user chooses the command, the application should display the Open
dialog box. Add the following statements to the window function:

case IDM_OPEN: o
1p0penDlg = MakeProcInstance((FARPROC) OpenDlg, hInst));
DialogBox(hInst, "Open", hWnd, 1pOpenDlg);
FreeProcInstance(1p0OpenDig);
break;

The MakeProcInstance function creates a procedure-instance address for the

‘OpenDlg function. The function ensures that the data segment for the current

Dialog Boxes 9-9

instance is used when the dialog function is called. Functions, such as OpenDlg,
that are exported by an application may be called only through a procedure-
instance address and must not be called directly.

The FreeProcInstance function is used to free a procedure-instance address
when it is no longer needed. After the DialogBox function returns, the procedure-
instance address, [pOpenDlg, is not needed and can be freed. It will be re-created
the next time the dialog box is invoked.

The DialogBox function returns control to WinMain only after the dialog func-
tion has terminated the dialog box. This means the dialog box will complete any
actions the user requests, before the application can continue execution. Such a
dialog box is called a modal dialog box, since while it remains on the screen, the
application is in a new mode of operation. This means the user can respond only
to the dialog box. It also means that commands that apply to the application are
not available while the dialog box is present.

9.3.5 Create the OpenDlg Function

You need to create a dialog-box function to process the controls in the Open
dialog box. When the dialog box is first displayed, the dialog function needs to
fill the list box and the edit control, then give the input focus to the edit control
and select the entire specification. If the user selects a filename in the list box,
the dialog function should copy the name to the edit control. If the user clicks the
Open button, the dialog function should retrieve the filename from the edit con-
trol and prepare to open the file. If the user double-clicks a filename in the list
box, the dialog function should retrieve the filename, copy it to the edit control,
and prepare to open the file.

Add the following function to your source file:

HANDLE FAR PASCAL OpenDlg(hDlg, message, wParam, 1Param)
HWND hD1g;

unsigned message;

WORD wParam;

LONG 1Param;

{

WORD index; /* index to the filenames in the list box */
PSTR pTptr; /* temporary -pointer */
HANDLE hFile; /* handle to the opened file */

switch (message) {
case WM_COMMAND:
switch (wParam) {
case IDC_LISTBOX:
switch (HIWORD(1Param)) f
case LBN_SELCHANGE:
if (1D1gDirSelect(hDlg, str, IDC_LISTBOX))
SetDlgltemText(hDlg, IDC_EDIT, str);
SendDlgItemMessage(hD1g, IDC_EDIT,

9-10 Guide to Programming

EM_SETSEL,
NULL,
MAKELONG(@, Ox7fff));
}
else |{ .
strcat(str, DefSpec);
DlgDirList(hDlg, str, IDC_LISTBOX,
IDC_PATH, 2x4018);
}
break;
case LBN_DBLCLK:
goto openfile;
| .
return (TRUE);

/* Ends IDC_LISTBOX case */

case IDOK:
openfile:
GetDlgltemText(hDlg, IDC_EDIT, OpenName, 128);
if (strchr(OpenName, '*') ||
strchr(OpenName, '?')) {
SeparateFile(hDlg, (LPSTR) str, (LPSTR) DefSpec,
(LPSTR) OpenName);
if (strl@8])
strcpy(DefPath, str);
ChangeDefExt (DefExt, DefSpec);
UpdatelistBox(hD1g);
return (TRUE);
}
if (!OpenName[@]) {
MessageBox(hD1g, "No filename specified.”,
NULL, MB_OK | MB_ICONQUESTION);
return (TRUE);
}
AddExt(OpenName, DefExt);
EndDialog(hD1g, NULL);
return(TRUE) ;

case IDCANCEL:
EndDialog(hDlg, NULL);
-return(TRUE) ;
}
break;

case WM_INITDIALOG: : /* Request to initalize */

UpdatelistBox(hD1g);

SetDlgltemText (hDlg, IDC_EDIT, DefSpec);

SendD1gltemMessage(hDlg, /* dialog handle */
IDC_EDIT, /* where to send message */
EM_SETSEL, /* select characters */
NULL, /* additional information */
MAKELONG(@, Ox7fff)); /* Accept entire contents */

SetFocus(GetDlgltem(hDlg, IDC_EDIT));

return (FALSE); /* Indicates focus is set to a control */

Dialog Boxes 9-11

}

return (FALSE);

When the dialog function receives the WM_INITDIALOG message, the Set-
DigltemText function copies the initial filename to the edit control, and the
SendDlgltemMessage function sends the EM_SETSEL message to the control
in order to select the entire contents of the edit control for editing. The SetFocus
function gives the input focus to the edit control. (The GetDlgltem function re-
trieves the window handle of the edit control.) The UpdateListBox function,
given at the beginning of the WM_INITDIALOG case, is a locally defined func-
tion that fills the list box with a list of files in the current directory.

When the dialog function receives the WM_COMMAND message, it looks for
three different‘ values: IDC_LISTBOX, IDOK, and IDCANCEL.

For IDC_LISTBOX, the dialog function checks the notification-message type. If
it is LBN_SELCHANGE, the dialog function retrieves the new selection using
the DigDirSelect function. It then copies the new filename to the edit control
using the SetDlgltemText function and selects it for editing by sending a
EM_SETSEL message. If the current selection is not a filename, the dialog func-
tion uses DIgDirList to copy the default specification to the list box. This fills
the list box with all files in the current directory.

If the IDC_LISTBOX notification type is LBN_DBLCLK, the dialog function
carries out the same action as for the IDOK case. A list box sends an
LBN_DBLCLK message only after sending an LBN_SELCHANGE message.
This means you do not have to retrieve the new filename when you receive a
double-click notification. :

For IDOK, the dialog function retrieves the contents of the edit control and
checks the filename to see if it is valid. The strchr function searches for wildcard
characters in the name. If it finds a wildcard character, it divides the filename
into separate path and filename parts using the locally defined SeparateFile func-
tion. The strcpy function updates the DefPath variable with a new default path, if
any. The locally defined ChangeDefExt function updates the DefExt variable
with a new default filename extension, if any. After the default path, filename,
and filename extension are updated, the UpdateListBox function updates the con-
tents of the list box, and the dialog function returns to let the user select a valid
filename from the new list.

If a filename has no wildcard characters, the dialog function makes sure the file
is not empty. If it is empty, the dialog function displays a warning message, but
does not terminate the dialog box. This lets the user try again. If the filename has
no wildcards and the file is not empty, and if the user has entered a filename that
does not have an extension, the dialog function uses the locally defined AddExt
function to append the default filename extension. The dialog function then calls
the EndDialog function to terminate the modal dialog box and sets the dialog-
box return value to NULL. \

9-12 Guide to Programming

For IDCANCEL, the dialog function calls the EndDialog function to terminate
the dialog box and cancel the command. The return value is set to NULL.

The dialog function can also check the existence and access mode of the given
file before terminating the dialog box. The existence check, not given in this ex-
ample, is entirely up to the application. Some simple ways of checking whether a
file exists and is accessible are shown in Chapter 10, “File Input and Output.”

9.3.6 Add Helper Functions

You need to add several functions to your C-language source file to support the
OpenDlg dialog function. These functions are listed as follows:

Function Description

UpdateListBox Fills the list box in the Open dialog box with the
specified files.

SeparatcFile Divides a pathname into separate path and filename
parts.

ChangeDefExt Copies the filename extension from a filename to a

: buffer, as long as the extension has no wildcard

characters.

AddExt Appends an extension to a filename if one does not
already exist.

The UpdateListBox function builds a pathname by concatenating the default path
and filename, then passes this pathname to the list box using the DlgDirList func-
tion. This function fills the list box with the names of the files and directories
identified by the pathname. Add the following statements to the C-language
source file:

void UpdatelListBox(hD1g)
HWND hD1g;
{
strcpy(str, DefPath);
strcat(str, DefSpec);
DigDirList(hD1g, str, IDC_LISTBOX, IDC_PATH, #x4010);
SetDlgltemText(hD1g, IDC_EDIT, DefSpec);
}

The SetDlgltemText function copies the default filename to the dialog box’s
edit control. v

The SeparateFile function divides a pathname into two parts and copies them to

separate buffers. It first moves to the end of the pathname and uses the AnsiPrev

function to back through it, looking for a drive or directory separator. Add the fol-
- lowing statements to your C-language source file:

Dialog Boxes 9-13

void SeparateFile(hD1g, 1pDestPath, 1pDestFileName, 1pSrcFileName)
HWND hD1g;
LPSTR 1pDestPath, 1pDestFileName, 1pSrcFileName;
{
LPSTR 1pTmp;
CHAR cTmp;

TpTmp = 1pSrcFileName + (long) Tstrien(1pSrcFileName);

while (*1pTmp != ':' && *1pTmp != '\\' && 1pTmp > 1pSrcFileName)
1pTmp = AnsiPrev(1pSrcFileName, 1pTmp);

if (*1pTmp != ':' && *1pTmp I= "\\') {
Tstrcpy(1pDestFileName, 1pSrcFileName);
1pDestPath[@] = 0;
return;

}

Tstrcpy(1pDestFileName, 1pTmp + 1);

cTmp = *(1pTmp + 1);

1strcpy(1pDestPath, 1pSrcFileName);

*(1pTmp + 1) = cTmp;

TpDestPath{(1pTmp - 1pSrcFileName) + 1] = @;

The ChangeDefExt and AddExt functions all use standard C-language statements
to carry out their tasks. Add the following statements to the C-language source
file:

void ChangeDefExt(Ext, Name)
PSTR Ext, Name;
{

PSTR pTptr;

pTptr = Name;
while (*pTptr && *pTptr = '.")
pTptr++;
if (*pTptr) /* true if this is an extension */
if (Istrchr(pTptr, '*') && Istrchr(pTptr, '2'))
strcpy(Ext, pTptr); /* Copies the extension */
}

void AddExt(Name, Ext)
PSTR Name, Ext;
{

PSTR pTptr;

pTptr = Name;
while (*pTptr && *pTptr I= '.")
pTptr+t;
if (*pTptr I= '.") /* If no extension, add the default */

strcat(Name, Ext);

9-14 Guide to Programming

9.3.7 Export the Dialog Function

You need to export the OpenDlg dialog function, since it is a callback function
and will be called by Windows. Add the following line to the EXPORTS state-
ment in your module-definition file:

OpenDlg @3

9.3.8 Compile and Link

9.4 Summary

No changes are required to the make file. Compile and link the application, start
Windows, then run the FileOpen application. When you open the File menu and
choose the Open command, the FileOpen application displays the Open dialog
box, as shown in Figure 9.1 at the beginning of this section. You can select a file
from the list box, or enter a filename in the edit control, then choose the Open
button.

This chapter explained how to create and use dialog boxes in your application. A
dialog box is a special type of window that overlaps your application’s main
window. There are two types of dialog boxes: modal and modeless. Modal dialog
boxes require the user to complete them before returning to the main application
window. Modeless dialog boxes do not require completion before the user can
move to other application windows.

Windows provides a special set of functions for handling controls in dialog
boxes.

You can use the Dialog Editor to design dialog boxes.

For more information on topics related to dialog boxes, see the following:

Topic Reference

Processing input messages Guide to Programming: Chapter 4,
“Keyboard and Mouse Input”

Controls ' Guide to Programming: Chapter 8,
“Controls”

Control and dialog-box functions Reference, Volume 1: Chapter 1,
“Window Manager Interface
Functions”

Resource scripp statements Reference, Volume 2: Chapter 8,

“Resource Script Statements”

Dialog Boxes 9-15

- Topic

Using the Dialog Editor

The sample application OWN-
COMBO.EXE, which illustrates the
use of combo boxes and owner-draw
controls in dialog boxes

Reference

Tools: Chapter 5, “Designing Dialog
Boxes: The Dialog Editor”

SDK Sample Source Code disk

Chapter | Fjle Input and Output

10

File input and output in Microsoft Windows applications are similar to file input
and output in standard C run-time programs. However, there are enough differ-
ences between the two environments to make a review of file input and output
important. For example, although you can use C run-time, stream input and out-
put (I/O) functions in Windows, it’s preferable to use.the low-level, C run-time
input and output functions. Also, since Windows is a multitasking environment,
you need to manage open files carefully.

In Windows, your application should use the OpenFile function to work with
files. OpenFile opens and manages your files; it returns a file handle that you
can use with the low-level, C run-time functions to read and write data.

This chapter covers the following topics:

m Handling files in the Windows environment

® Using the OpenFile function to create, open, close, reopen, prompt for, and
check the status of disk files

® Using the low-level, C run-time input and output functions to read from and
write to disk files

This chapter also explains how to create a sample application, EditFile, that
illustrates some of these concepts.

10.1 Rules for Handling Files in the Windows Environment

In the Windows environment, multitasking imposes some special restrictions on

file access that you do not encounter in the standard C environment. Since there

may be several applications working with files at the same time, you need to fol-
low some simple rules to avoid conflicts and potential overwriting of files.

The rest of this section lists and explains these rules.

Keep a file open only while you have execution control.

You should close the file before calling the GetMessage function, or any other
function that may yield execution control. Closing the file prevents it from being
affected by changes in the disk environment that may be caused by other appli-
cations. For example, suppose your application is writing to a floppy disk and

10-2 Guide to Programming

affected by changes in the disk environment that may be caused by other appli-
cations. For example, suppose your application is writing to a floppy disk and
temporarily relinquishes control to another application, and the other application
tells the user to remove the floppy disk and replace it with another. When your
application gets control back and tries to write to the disk as before, without
having closed and reopened the file, it could destroy data on the new disk.

Another reason to keep files closed is the DOS open-file limit. DOS sets a limit
on the number of open files that can exist at one time. If many applications at-
tempt to open and use files, they can quickly exhaust the available files.

To prevent open-file problems, the OpenFile function provides an OF_REOPEN
option that lets you easily close and reopen files. Whenever you open or create a
file, OpenFile automatically copies the relevant facts about the file, including the
full pathname and the current position of the file pointer, in an OFSTRUCT
structure. This means you can close the file, then reopen it by supplying nothing
more than the structure.

If the user changes disks while working in another application, when your appli-
cation calls the OpenFile function, the function will fail to reopen your file. If
your application specifies the OF_PROMPT option when reopening a file, Open-
File automatically displays a message box asking the user to insert the correct
disk.

Follow DOS conventions when carrying out file
operations.

Ultimately, Windows depends on the DOS file-handling functions to carry out

all file input and output. This means that you must follow DOS conventions
when carrying out file operations. For example, with DOS, a filename can have
from one to eight characters and a filename extension can have from zero to three
characters. The name must not contain spaces or special-purpose characters.
Furthermore, filenames must be specified in the OEM character set, not the
Windows default character set, ANSI.

It is up to you to make sure that your application uses filenames that are the ap-
propriate length and contain the appropriate characters. However, if you use the
OpenFile function, you do not have to worry about translating character sets;
OpenFile automatically translates filenames from the ANSI character set to the
OEM set. It does so using the AnsiToOem function.

NOTE Al edit controls and list boxes use the ANSI character set by default, so if you plan
to display DOS filenames or let users enter filenames, they may see unexpected characters
wherever an OEM character is not identical to an ANSI character.

If your application processes international filenames, it must be prepared to handle
filenames that do not contain conventional single-byte character values. For such filenames,
use the AnsiNext and AnsiPrev functions to move forward and backward in a string. These

File Input and Output 10-3

functions correctly handle strings that contain characters that are not one byte in length,
such as strings in machines that are using Japanese characters.

Use unique filenames for each instance of your
application.
Since more than one instance of an application can run at a time, one instance

can end up overwriting the temporary file of another instance. You can prevent
this by using unique filenames for each instance of your application.

To create unique filenames, use the GetTempFilename function. This function
creates a unique name by combining a unique integer with a prefix and filename
extension that you supply. GetTempFilename creates names that follow the
DOS filename requirements.

NOTE The GetTempFileName function uses the TEMP environment variable to create the
full pathname of the temporary file. If the user has not set the variable, the temporary file
will be placed in the root directory of the current drive. If the variable does not specify a
valid directory, you will not be able to create the temporary file.

Close files before displaying a message box, or use
system-modal error message boxes.

As mentioned earlier, your application should not relinquish control while it

has open files on floppy disks. If your application uses a message box that’s not
system-modal, the user can move to another application while the message box is
on display. If your application still has open files, switching applications like this
can cause file I/O problems.

To avoid such problems, whenever your application displays an alert or error
message by using the MessageBox function, it should do at least one of the
following:

m Close any open files before displaying the message box.

m If closing files is not feasible, make the message box system-modal.

10.2 Creating Files

To create a new file, use the OpenFile function with the OF_CREATE option.
When you call the OpenFile function, you specify: »

® A null-terminated filename for the file you’re creating
= A buffer with the type OFSTRUCT
® The OF_CREATE option

10-4 Guide to Programming

The following example creates the FILE.TXT file and returns a handle to the file.
The application can then use this file handle with low-level, C run-time I/O
functions:

int hFile;
OFSTRUCT OfStruct;

hFile = OpenFile("FILE.TXT", &0fStruct, OF_CREATE);

The OpenFile function creates the file, if necessary, and opens it for writing. If
the file already exists, the function truncates it to zero length and opens it for
writing.

If you want to avoid overwriting an existing file, you can check whether the file
exists, before creating a new file, by calling OpenFile as follows:

hFile = OpenFile("FILE.TXT", &0fStruct, OF_EXIST);
if (hFile >= @) {
wAction = MessageBox(hWnd,
(LPSTR) "File exists. Overwrite?",
(LPSTR) "File",
MB_OKCANCEL);
if (wAction == IDCANCEL)

/* End this processing */
}
}

/* Open the file */

10.3 Opening Existing Files

You can open an existing file by using the OF_READ, OF_WRITE, or
OF_READWRITE option. These options direct the OpenFile function to open
existing files for reading, writing, or reading and writing. The following example
opens the FILE.TXT file for reading:

hFile = OpenFile("FILE.TXT", &0fStruct, OF_READ);

If the file fails to open, you can display a dialog box to indicate that the file was
not found. You can also use OpenFile to prompt for the file, as described in
- Section 10.6, “Prompting for Files.”

File Input and Output 10-5

10.4 Reading From and Writing To Files

Once you have opened a file, you can read from it or write to it using low-level,
C run-time functions. The following example opens the FILE.TXT file for read-
ing and then reads 512 bytes from it:

char buffer[512];
int count;

hFile = OpenFile("FILE.TXT", &0fStruct, OF_READ);
if (hFile >=0) {
count = read(hFile, buffer, 512);
close(hFile);
}

In this example, the file handle is checked before bytes are read from the file.
OpenFile returns —1 if the file could not be found or opened. The close function
closes the file immediately after reading.

The following example opens the FILE.TMP file for writing and then writes
bytes from the character-array buffer:

hFile = OpenFile("FILE.TMP", &0fStruct, OF_WRITE);
if (hFile >= @) {

write(hFile, buffer, count);

close(hFile);
}

You should always close floppy-disk files after reading or writing. This is to pre-
vent problems if you remove the current disk while working with another applica-
tion. You can always reopen a disk file by using the OF_REOPEN option.

10.5 Reopening Files

If you open a file on a floppy disk, you should close it before your application
relinquishes control to another application. The most convenient time is immedi-
ately after reading or writing the file. The file can always be reopened using
OpenFile with the OF_REOPEN option:

hfile = OpenFile((LPSTR) NULL, &0fStruct, OF_REOPEN | OF_READ);

In this example, OpenFile uses the filename in the OfStruct structure to open the
file. When a file is reopened, the file pointer marking the current position in the
file is moved to the same position it was in just before the file was closed.

10-6 Guide to Programming

10.6 Prompting for Files

You can automatically prompt the user to insert the correct disk before reopening
a file by using the OF_PROMPT option. OpenFile uses the filename to create a
prompt string. If you are reopening a file, you need to use the OF_REOPEN and
OF_PROMPT options in addition to specifying how you want to open the file:

hFile = OpenFile((LPSTRINULL, &0fStruct, OF_PROMPT | OF_REOPEN
| OF_READ);

If you reopen a file as read only, Windows will check whether the date and time
match the date and time of the file when it was first opened.

10.7 Checking File Status

You can retrieve the current status of an open file by using the low-level, C run-
time function fstat. This function fills a structure with information about a file,
such as its length in bytes (specified in the size field) and the date and time it was
created. The following example fills the FileStatus structure with information
about the FILE.TXT file: ’

stat FileStatus;

fstat(hFile, FileStatus);

10.8 A Simple File Editor: EditFile

This example shows how to create a simple Windows application that uses the
OpenfFile and C run-time functions to open and save small text files. To create
the EditFile sample application, copy and rename the FileOpen application
sources, described in Chapter 9, “Dialog Boxes,” and modify them as follows:
. Add constants to the include file.

. Create a SaveAs dialog-box template and add it to the resource script file.

. Add new include statements to the C-language source file.

Add new variables.

. Replace the WM_COMMAND case.

. Add the WM_QUERYENDSESSION and WM_CLOSE cases.

. Modify the OpenDlg dialog function.

©® N WA W N =

. Create a SaveAsDig dialog function.

File Input and Output 10-7

9. Create helper functions for the SaveAsDIg dialog function.

10. Export the SaveAsDlg dialog function.

v

11. Modify the application’s HEAPSIZE statement.
12. Compile and link the application.

When this application is completed, you will be able to view text files in an edit
control. The application’s Open command in the File menu will let you specify
the file to be opened. You will also be able to make changes to a file or enter new
text, and save the text using the Save or Save As command in the dialog box.

NOTE Rather than typing the code provided in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

10.8.1 Add a Constant to the ‘Include File

You need to add a constant definition to the include file to support the SaveAs
dialog box. Add the following statement to the include file:

ftdefine MAXFILESIZE @x7FFF

10.8.2 Add a SaveAs Dialog Box

You need a new dialog box to support the Save As command. The SaveAs dialog
box prompts for a filename, and lets the user enter the name in an edit control.
Add the following DIALOG statement to the resource file:

SaveAs DIALOG 10, 18, 188, 53
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "Save As"

BEGIN
LTEXT "Save As File &Name:", IDC_FILENAME, 4, 4, 72, 18
LTEXT "", IDC_PATH, 84, 4, 92, 10
EDITTEXT IDC_EDIT, 4, 16, 100, 12
DEFPUSHBUTTON "Save", IDOK, 120, 16, 5@, 14
PUSHBUTTON “Cancel™, IDCANCEL, 128, 36, 50, 14
END

The constants, IDC_PATH, IDC_FILENAME, IDC_EDIT, IDCANCEL, and
IDOK, are the same as those used in the Open dialog box. Since the Open and
SaveAs dialog boxes will never be open at the same time, there is no need to
worry about conflicting control IDs.

10-8 Guide to Programming

10.8.3 Add Include Statements

You need to include additional C run-time include files to support the file input
and output operations. Add the following statements to the beginning of the
C-language source file:

finclude <sys\types.h>
#include <sys\stat.h>

10.8.4 Add New Variables

The following global variables should be declared at the beginning of the file:

HANDLE hEditBuffer; /* handle to editing buffer */
HANDLE hOldBuffer; /* 01d buffer handle */
HANDLE hHourGlass; /* handle to hourglass cursor */
HANDLE hSaveCursor; /* current cursor handle */
int hFile; /* file handle C */
int count; /* number of chars read or written */
PSTR pBuffer; /* address of read/write buffer */
OFSTRUCT OfStruct; /* information from Openfile() */
struct stat FileStatus; /* information from fstat() */
BOOL bChanges = FALSE; /* TRUE if the file is changed */
BOOL bSaveEnabled = FALSE; /* TRUE if text in the edit buffer */
PSTR pEditBuffer; /* address of the edit buffer */
char Untitled[] = /* default window title */

"Edit File - (untitled)";

The hEditBuffer variable holds the handle of the current editing buffer. This buf-
fer, located in the application’s heap, contains the current file text. To load a file,
you allocate the buffer, load the file, then pass the buffer handle to the edit con-
trol. The hOldBuffer variable is used to replace an old buffer with a new one.
The hHourGlass and hSaveCursor handles hold cursor handles for lengthy
operations.

The hFile variable holds the file handle returned by the OpenFile function. The
count variable holds a count of the number of characters to be read or written.
The pBuffer variable is a pointer, and holds the address of the character that con-
tains the characters to be read or written. The OfStruct structure holds informa-
tion about the file.

The FileStatus structure holds information about the file. The bChanges variable
is TRUE if the user has changed the contents of the file. The bSaveEnabled varia-
ble is TRUE if the user has given a valid name for the file to be saved. The
Untitled variable holds the main window’s caption, which changes whenever a
new file is loaded. '

File Input and Ouiput 10-9

10.8.5 Replace the WM_COMMAND Case

Replace the WM_COMMAND case so that it processes all File-menu commands
except Print. The New command should clear the current filename and empty the
edit control if there is any text in it. The Open command should retrieve the
selected filename, open the file, and fill the edit control. The Save command
should write the contents of the edit control back to the current file. Finally, the
Save As command should prompt the user for a filename and write the contents
of the edit control.

If the user chooses the New command and there is text in the current file that
has been modified, you should prompt the user with a message box to determine
whether the changes should be saved. Add the following statements to the
WM_COMMAND case:

case IDM_NEW:
if (!QuerySaveFile(hWnd))
return (NULL);
bChanges = FALSE;
FiteName[@] = @;
SetNewBuffer(hWnd, NULL, Untitled);
break;

The locally defined QuerySaveFile function checks the file for changes and
prompts the user to save the changes. If the changes are saved, the filename is
cleared and the editing buffer is emptied by using the locally-defined SetNew-
Buffer function.

If the user chooses the Open command and there is text in the current file that has
been modified, you should prompt the user to determine whether the changes
should be saved before opening the new file. Add the following statements to the
WM_COMMAND case: ' '

case IDM_OPEN:
if ('QuerySaveFile(hWnd))
return (NULL);
1pOpenDlg = MakeProcInstance((FARPROC) OpenDlg, hinst);
hFile = DialogBox(hInst, "Open", hWnd, 1pOpenDlg);
FreeProcInstance(1pOpenDlg);
if (!'hFile)
return (NULL);
hEditBuffer =
LocalAlToc(LMEM_MOVEABLE | LMEM_ZEROQINIT,
FileStatus.st_size+l);
if (!hEditBuffer) {
MessageBox(hWnd, "Not enough- memory.",
NULL, MB_OK | MB_ICONHAND);
return. (NULL);
) .
hSaveCursor = SetCursor(hHourGlass);
pEditBuffer = Locallock(hEditBuffer);

I

10-10 Guide to Programming

I0Status = read(hFile, pEditBuffer, FileStatus.st_size);
close(hFile);
if (I0Status != FileStatus.st_size) {
sprintf(str, "Error reading %s.", FileName); -
SetCursor(hSaveCursor); /* Remove the hourglass */
MessageBox(hWnd, str, NULL,
MB_OK | MB_ICONEXCLAMATION);
}
LocalUntock(hEditBuffer);
sprintf(str, "EditFile - %s", FileName);
SetNewBuffer(hWnd, hEditBuffer, str);
SetCursor(hSaveCursor); /* Restore the cursor */
break;

When the IDM_OPEN case is processed, the QuerySaveFile function checks the
existing file for changes before displaying the Open dialog box. The DialogBox
function returns a file handle to the open file. This handle is created in the
OpenDlg dialog function, If the file can’t be opened, the function returns NULL
and processing ends. Otherwise, the LocalAlloc function allocates the space
needed to load the file into memory. The amount of space needed is determined
by the FileStatus structure, which is filled with inforniation about the open file by
the OpenDlg dialog function. If there is no available memory, a message box is
displayed and processing ends. Otherwise, the SetCursor function displays the
hourglass, the LocalLock function locks the new buffer, and the C run-time read
function copies the contents of the file into memory. If the file was not read
completely, a message box is displayed. SetCursor restores the cursor before the
MessageBox function is called. The LocalUnlock function unlocks the editing
buffer, and after a new window caption is created, the locally defined SetNew-
Buffer function changes the editing buffer and caption.

If the user chooses the Save command and there is no current filename, carry out
the same action as the Save As command. Add the following statements to the
WM_COMMAND case:

case IDM_SAVE:
if (IFileName(@])
goto saveas;
if (bChanges)
SaveFile(hWnd);
break;

The IDM_SAVE case checks for a filename and, if none exists, skips to the
IDM_SAVEAS case. If a filename does exist, the locally defined SaveFile func-
- tion saves the file only if changes have been made to it.

The Save As command should always prompt for a filename. You should save
the file only if the user gives a valid filename. Add the following statements to
the WM_COMMAND case:

File Input and Output 10-11

case IDM_SAVEAS:
saveas: :
1pSaveAsD1g = MakeProcInstance(SaveAsDlg, hlInst);
Success = DialogBox(hInst, "SaveAs", hWnd, 1pSaveAsDlg);
FreeProcInstance(1pSaveAsDlg);
if (Success == IDOK) {
sprintf(str, "EditFile - %s", FileName);
SetWindowText (hWnd, str);
SaveFile(hWnd);
}
break; /* User canceled */

The DialogBox function displays the SaveAs dialog box. The MakeProc-
Instance and FreeProcInstance functions create and free the procedure-instance
address for the SaveAsDIg dialog function. The DialogBox function returns
IDOK from the SaveAsDlg dialog function if the user enters a valid filename.
The SetWindowText function then changes the window caption, and the Save-
File function saves the contents of the editing buffer to the file.

The Exit command should now prompt the user to determine whether the current
file should be saved. Also, to keep track of the changes to the file, you should
process notification messages from the edit-control window. Modify the
IDM_EXIT case and add the IDC_EDIT case to the WM_COMMAND case, as
follows:

case IDM_EXIT:
QuerySaveFile(hWnd);
DestroyWindow(hWnd) ;
break;

case IDC_EDIT:
if (HIWORD(1Param) == EN_CHANGE)
bChanges = TRUE;
return (NULL);

10.8.6 Add the WM_QUERYENDSESSION and WM_CLOSE Cases

You need to process the WM_QUERYENDSESSION and WM_CLOSE mes-
sages to prevent the contents of your files from being lost when the user closes
afile or ends a session. Add the following statements to the window function:

case WM_QUERYENDSESSION: ' /* message: to end the session? */

return (QuerySaveFile(hWnd));
case WM_CLOSE: /* message: close the window */
if (QuerySaveFile(hWnd))
DestroyWindow(hWnd);

break;

10-12 Guide to Programming

Windows sends a WM_QUERYENDSESSION message to the window function
when the user has chosen to exit Windows. The session ends only if TRUE is re-
turned. The QuerySaveFile function checks for changes to the file, saves them if
desired, and returns TRUE or FALSE depending on whether the user canceled or
confirmed the operation.

Windows sends the WM_CLOSE message to the window function when the user
has chosen the Close command in the main window’s system menu. The Query-
SaveFile function carries out the same task as in the WM_QUERYENDSES-
SION message, but in order to complete the WM_CLOSE case, you must also
destroy the main window by using the DestroyWindow function.

10.8.7 Modify the OpenDIg Dialog Function

You need to modify the IDOK case in the OpenDIg function in order to open and
check the size of the file that is selected by the user. Add the following state-
ments immediately after the call to the AddExt function in the IDOK case of the
OpenDlg function:

if ((hFile = OpenFile(OpenName, (LPOFSTRUCT) &0fStruct,
OF_READ)) < @) {
sprintf(str, "Error %d opening %s.",
0fStruct.nErrCode, OpenName);
MessageBox(hD1g, str, NULL, MB_OK | MB_ICONHAND);
}
else {
fstat(hFile, &FileStatus);
if (FileStatus.st_size > MAXFILESIZE) {
sprintf(str,
"Not enough memory to load %s.\n%s exceeds %1d bytes.",
OpenName, OpenName, MAXFILESIZE);
MessageBox(hDlg, str, NULL,
MB_OK | MB_ICONHAND);
return (TRUE);
}
strcpy(FileName, OpenName);
EndDialog(hD1g, hFite);
return (TRUE);
}

The OpenFile function opens the specified file for reading and, if successful, re-
turns a file handle. If the file cannot be opened, the case displays a message box
containing the error number generated by DOS. If the file is opened, the C run-
time fstat function copies information about the file into the FileStatus structure.
The file size is checked to make sure the file does not exceed the maximum size
given by the MAXFILESIZE constant. The case displays an error message if the
size is too big. Otherwise, the strcpy function copies the new name to the
FileName variable and the EndDialog function terminates the dialog box and
returns the file handle, hFile, to the DialogBox function.

File Input and Output 10-13

10.8.8 Add the SaveAsDIg Dialog Function

You need to supply a dialog function for the SaveAs dialog box. The function
will retrieve a filename from the edit control and copy the name to the global
variable, FileName. The dialog function should look like this:

int FAR PASCAL SaveAsDlg(hDlg, message, wParam, 1Param)
HWND hD1g;

unsigned message;

WORD wParam;

LONG 1Param;

{

char TempName[128];

switch (message) {
case WM_INITDIALOG:
if (1FileName[@1)
bSaveEnabled = FALSE;
else {
bSaveEnabled = TRUE;
D1gDirList(hDig, DefPath, NULL, IDC_PATH, @x4010);
SetDlgltemText(hDlg, IDC_EDIT, FileName);
SendDlgitemMessage(hDlg, IDC_EDIT, EM_SETSEL, @,
MAKELONG(@, Bx7fff));
)
EnableWindow(GetDl1gItem(hDlg, IDOK), bSaveEnabled);
SetFocus(GetDlgItem(hDlg, IDC_EDIT));
return (FALSE); /* FALSE since Focus was changed */
case WM_COMMAND:
switch (wParam) {
case IDC_EDIT:
if (HIWORD(1Param) == EN_CHANGE && !bSaveEnabled)
EnabieWindow(GetD1gIltem(hDlg, IDOK),
, bSaveEnabled = TRUE);
return (TRUE);
case IDOK:
GetDlgItemText(hDlg, IDC_EDIT, TempName, 128);
if (CheckFileName(hD1g, FileName, TempName)) {
SeparateFilte(hDlg, (LPSTR) str, (LPSTR) DefSpec,
(LPSTR) .FileName);
if (str[@1) strcpy(DefPath, str);
EndDialog(hD1g, IDOK);
}
return (TRUE);
case IDCANCEL:
EndDialog(hDlg, IDCANCEL);
return (TRUE);
}
break;
}
return (FALSE);

10-14 Guide to Programming

The WM_INITDIALOG case enables or disables the Save button. The button
should be disabled if there is no current filename. The EnableWindow function,
along with the bSaveEnabled variable, enables or disables the button. If there is a
current filename, it should be the proposed name. The SetDlgltemText function
copies the filename to the edit control, and the SendDIgItemMessage function
selects the entire name for editing. The DlgDirList function sets the IDC_PATH
control to the current directory. Since there is no list box to fill, no list-box ID is
given.

The WM_COMMAND case processes notification messages from the controls in
the dialog box. When the function receives the EN_CHANGE notification from
the edit control, IDC_EDIT, it uses the EnableWindow function to enable the
Save button, if it is not already enabled.

When the function receives a notification from the Save button, it uses the Get-
DigltemText function to retrieve the filename in the edit control, then checks the
validity of the filename by using the locally defined CheckFileName function.
This function checks the filename to make sure it contains no path separators or
wildcard characters. It then checks to see if the file already exists; if it does,
CheckFileName uses the MessageBox function to ask the user whether the file
should be overwritten. Finally, the dialog function uses the SeparateFile function
to copy the filename to the DefSpec and DefPath variables.

10.8.9 Add Helper Functions

You need to add several functions to your C-language source file to support the
EditFile application. These functions are as follows:

Function Description

CheckFileName Checks a filename for wildcards, adds the default
filename extension if one is needed, and checks for
the existence of the file.

SaveFile Saves the contents of the editing buffer in a file.

QuerySaveFile Prompts the user to save changes if the file has
changed without having been saved.

SetNewBuffer Frees the existing editing buffer and replaces it with
anew one.

The CheckFileName function verifies that a filename is not empty and that it con-
tains no wildcards. It also checks to see whether the file already exists by using
the OpenFile function and the OF_EXIST option. If the file exists, Check-
FileName prompts the user to see whether the file should be overwritten. Add

the following statements:

File Input and Output 10-15

BOOL CheckFileName(hWnd, pDest, pSrc)
HWND hWnd;
PSTR pDest, pSrc;

{

PSTR pTmp;

if (!pSrcl[@]1)
return (FALSE); /* Indicates no filename was specified */

pTmp = pSrc;
while (*pTmp) { /* Searches the string for wildcards */
switch (*pTmp++) {
case '*':
case '?':
MessageBox(hWnd, "Wildcards not allowed.",
NULL, MB_OK | MB_ICONEXCLAMATION);
return (FALSE);

}
AddExt(pSrc, DefExt); /* Adds the default extension if needed */

if (OpenFile(pSrc, (LPOFSTRUCT) &0fStruct, OF_EXIST) >= 0) {
sprintf(str, "Replace existing %s?", pSrc);
if (MessageBox(hWnd, str, "EditFile",
MB_OKCANCEL | MB_ICONHAND) == IDCANCEL);
return (FALSE);
}
strcpy(pDest, pSrc);
return (TRUE);

The SaveFile function uses the OF_CREATE option of the OpenFile function in
order to open a file for writing. The OF_CREATE option directs OpenFile to de-
lete the existing contents of the file. The SaveFile function then retrieves a file-
buffer handle from the edit control, locks the buffer, and copies the contents to
the file. Add the following statements:

BOOL SaveFile(hWnd)
HWND hWnd;

{

BOOL bSuccess;
int I0Status; /* result of a file write */

if ((hFile = OpenFile(FileName, &0fStruct,
OF_PROMPT | OF_CANCEL | OF_CREATE)) < @) {
sprintf(str, "Cannot write to %s.", FileName);
MessageBox(hWnd, str, NULL, MB_OK | MB_ICONEXCLAMATION);
return (FALSE);
}
hEditBuffer
pEditBuffer

I

SendMessage(hEditWnd, EM_GETHANDLE, @, @L);
Localtlock(hEditBuffer);

10-16 Guide to Programming

| o

hSaveCursor = SetCursor(hHourGlass);
I0Status = write(hFile, pEditBuffer, strien(pEditBuffer));
close(hFile);
SetCursor(hSaveCursor);
if (I0Status != strien(pEditBuffer)) {
“sprintf(str, "Error writing to %s.", FileName);
MessageBox(hWnd, str, NULL, MB_OK | MB_ICONHAND);
bSuccess = FALSE;
}
else { .
bSuccess = TRUE; /* Indicates the file was saved */
bChanges FALSE; /* Indicates changes have been saved */

}
LocalUnlock(hEditBuffer);
return (bSuccess);

The EM_GETHANDLE message, sent by using the SendMessage function,
directs the edit control to return the handle of its editing buffer. This buffer is
located in local memory, so it is locked by using the LocalLock function. Once
locked, the contents are written to the file by using the C run-time write function.
The SetCursor function displays the hourglass cursor to indicate a lengthy opera-
tion. If write fails to write all bytes, the SaveFile function displays a message
box. The LocalUnlock function unlocks the editing buffer before the SaveFile
function returns.

The QuerySaveFile function checks for changes to the file and prompts the user

_ to save or delete the changes, or cancel the operation. If the user wants to save
the changes, the function prompts the user for a filename by using the SaveAs
dialog box. Add the following statements:

BOOL QuerySaveFile(hWnd)
HWND hWnd;
{
int Response;
FARPROC 1pSaveAsDlg;

if (bChanges) { :
sprintf(str, "Save current changes: %s", FileName);
Response = MessageBox(hWnd, str,
"EditFile", MB_YESNOCANCEL | MB_ICONEXCLAMATION);
if (Response == IDYES) {
check_name:
if (!FileName[@]) {
1pSaveAsDlg = MakeProcInstance(SaveAsDlig, hlInst);
Response = DialogBox(hInst, "SaveAs",
hWnd, 1pSaveAsDlg);
FreeProcInstance(1pSaveAsD1g);
if (Response == IDOK)
goto check_name;
else
return (FALSE);

File Input and Output 10-17

}
SaveFile(hWnd);
}
else if (Response == IDCANCEL)
return (FALSE);
}
else .
return (TRUE);

The SetNewBuffer function retrieves and frees the editing buffer before allocat-
ing and setting a new editing buffer. It then updates the edit control window. Add
the following statements to the C-language source file:

void SetNewBuffer(hWnd, hNewBuffer, Title)
HWND hWnd;

HANDLE hNewBuffer;

PSTR Title;

{

HANDLE hO1dBuffer;

h01dBuffer = SendMessage(hEditWnd, EM_GETHANDLE, @, @L);

LocalfFree(h01dBuffer);

if (!hNewBuffer) /* Allocates a buffer if none exists */
hNewBuffer = LocalAlloc(LMEM_MOVEABLE | LMEM_ZEROINIT, 1);

SendMessage(hEditWnd, EM_SETHANDLE, hNewBuffer, @L);
InvalidateRect(hEditWnd, NULL, TRUE); /* Updates the buffer */
UpdateWindow(hEditWnd);

SetWindowText(hWnd, Title);

SetFocus(hEditWnd);

bChanges = FALSE;

The new text will not be displayed until the edit control repaints its client area.
The InvalidateRect function invalidates part of the edit control’s client area. The
NIJLL argument means that the entire control needs repainting, and TRUE speci-
fies that the background should be erased before repainting. All of this prepares
the control for painting. The UpdateWindow function causes Windows to send
the edit control a WM_PAINT message immediately.

10.8.10 Export the SavéAsDIg Dialog Function

You need to export the SaveAsDlg dialog function. Add the following line to the
EXPORTS statement in your module-definition file:

SaveAsDlg @4

10-18 Guide to Programming

10.8.11 Add Space to the Heap

You need to add extra space to the local heap. This space is required to support
the edit control, which uses memory from the local heap to store its current text.
Make the following change to the module-definition file:

HEAPSIZE @xAFFF

This statement limits the size of the edit-control buffer to slightly less than
32,767 (32K — 1) bytes. Files larger than this cannot be opened.

10.8.12 Gompile and Link

No changes are required to the make file. Compile and link the application, then
start Windows and the EditFile application. Choose the Open command, select a
file, and EditFile will read and display the file. If the file is larger than can fit in
the window, you can use the DIRECTION keys to scroll left and right or up and
down.

10.9 Summary

This chapter explained how to work with files in the Windows environment, and
provided a list of file-management guidelines.

Because Windows is a multitasking system, your application needs to manage
files carefully to avoid conflicts with other applications. You use the Windows
OpenfFile function to create, open, close and otherwise work with disk files.
When performing file input and output, use the low-level, C run-time input and
output functions rather than the C run-time stream input and output functions.

For more information on topics related to files, see the following:

Topic Reference
A comparison of the Guide to Programming: Chapter 1, “An
Windows environment to _Overview of the Windows Environment”

the standard C environment

Using C and assembly lan- Guide to Programming: Chapter 14, “C and
guage in a Windows Assembly Language”

~ application
The OpenFile message Reference, Volume 1: Chapter 3, “System

Services Interface Functions” and Chapter 4,
“Functions Directory”

chapter | Bitmaps

11

Your application can use bitmaps to display images that are otherwise too cum-
bersome to draw using GDI output functions. This chapter shows how to create
and display bitmaps for monochrome as well as color displays.

This chapter covers the following topics:

® What is a bitmap?

® Creating bitmaps

® Displaying bitmaps

® Adding color to monochrome bitmaps

m Deleting bitmaps

This chapter also explains how to create a sample application, Bitmap, which
illustrates many of the concepts explained in this chapter.

11.1 What is a Bitmap?

In general, the term “bitmap” refers to an image formed by a pattern of bits,
rather than by a pattern of lines. In Microsoft Windows, there are two kinds of
bitmaps: :

® A “device-dependent” bitmap is a pattern of bits in memory which can be dis-
played on an output device. Because there is a close correlation between the
bits in memory and the pixels on the display device, a memory bitmap is said
to be device dependent. For such bitmaps, the way the bits are arranged in
memory depends on the intended output device.

®m A “device-independent” bitmap (DIB) describes the actual appearance of an
image, rather than the way that image is internally represented by a particular
display device. Because this external definition can be applied to any display
device, it is referred to as device independent.

11-2 Guide to Programming

11.2 Creating Bitmaps

You create a bitmap by supplying GDI with the dimensions and color format of
the bitmap, and, optionally, the initial value of the bitmap bits. GDI then returns
a handle to the bitmap. You can use this handle in subsequent GDI functions to
select and display the bitmap.

You can create bitmaps in the following ways:

® You can use the Windows SDKPaint application to draw the bitmap image
and save it in a file. You then add the bitmap file to your application’s
resources. Your application loads the bitmap using the LoadBitmap function.

® Your application can first create a blank bitmap and then use GDI output
functions to draw the bitmap bits.

m To hard-code a bitmap, your application can create a blank bitmap and
initialize its bits using an array of bits.

® Your application can create a bitmap and initialize its bits using the image in
an existing DIB. :

The following sections explain how to use each of these methods to create
bitmaps.

11.2.1 Creating and Loading Bitmap Files

You can create bitmaps with SDKPaint. SDKPaint lets you specify the dimen-

s sions of a bitmap, then fill it in by “painting” in the blank area with such tools as
a brush, spray can, and even text. Any of these tools can produce images using
colors from a palette of up to 28 colors, which you can define.

To create and load a bitmap using this method, follow these steps:

1. Start SDKPaint and create the bitmap by following the directions given in
Tools.

2. After creating the bitmap image, save it in a file that has the filename
extension .BMP.

3. In your application’s resource script (.RC) file, add a BITMAP statement that
defines that bitmap as an application resource.

For example, the following statement specifies that the bitmap resource
named “dog” resides in the file DOG.BMP:

dog BITMAP DOG.BMP

The name “dog” identifies the bitmap; the filename DOG.BMP specifies the
file that contains the bitmap.

Bitmaps 11-3

4. In your application’s source file, load the bitmap using the LoadBitmap
function.

The LoadBitmap function takes the bitmap’s resource name, loads the bit-
map into memory, and returns a handle to the bitmap. For example, the fol-
lowing statement loads the bitmap resource named “dog”, and stores the
resulting bitmap handle in the variable hDogBitmap:

hDogBitmap = LoadBitmap (hInstance, "dog");

5. Select the bitmap into a device context using the SelectObject function.

For example, the following statement loads the bitmap specified by hDogBit-
map into the device context specified by hMemoryDC:

SelectObject(hMemoryDC, hDogBitmap);

6. Display the bitmap using the BitBIt function.

For example, the following statement displays a copy of the bitmap in the
memory device context hMemoryDC on the device represented by hDC:

BitB1t (hDC, 19, 10, 109, 150, hMemoryDC, @, @, SRCCOPY)

This example displays the bitmap beginning at location (10, 10) of the desti-
nation device context. The bitmap is 100 units wide and 150 units high. The
bitmap is taken from the memory device context beginning at location (0,0).
The SRCCOPY value specifies that Windows should copy the source bitmap
to the destination.

11.2.2 Creating and Filling a Blank Bitmap

You can create a bitmap “on the fly” by creating a blank bitmap and then filling
it in using GDI output functions. With this method, your application is not
limited to external bitmap files, preloaded bitmap resources, or bitmaps that are
hard-coded in your application source code.

Follow these general steps:
1. Create a blank bitmap by using the CreateBitmap or CreateCompatible-
Bitmap functions.

2. Select the bitmap into a memory device context using the SelectObject
function.

3. Draw in the bitmap image using GDI output functions.
The following example creates a “star” bitmap by first making a bitmap that is

compatible with the display, and then filling the compatible bitmap using the
" Polygon function:

11-4 Guide to Programming

HDC hDC;

HDC hMemoryDC;

HBITMAP hBitmap;

HBITMAP h01dBitmap;

POINT Points[5] = { 32,0, 16,63, 63,16, 0,16, 48,63 };

© hDC = GetDC(hWnd);

® hMemoryDC = CreateCompatibleDC(hDC);

© hBitmap = CreateCompatibleBitmap(hDC, 64, 64);

@ h01dBitmap = SelectObject(hMemoryDC, hBitmap);

©® PatBl1t(hMemoryDC, @, @, 64, 64, WHITENESS);

® Polygon(hMemoryDC, Points, 5);

@ BitBit (hDC, @, @, 64, hMemoryDC, @, @, SRCCOPY);
© SelectObject(hMemoryDC, h01dBitmap);
DeleteDC(hMemoryDC);

© ReleaseDC(hWnd, hDC);

In this example:

@ The GetDC function retrieves a handle to the device context. The bitmap
will be compatible with the display. (If you want a bitmap that is compatible
with some other device, you should use the CreateDC function to retrieve a
handle to that device.)

® The CreateCompatibleDC function creates the memory device context in
which the image of the bitmap will be drawn.

© The CreateCompatibleBitmap function creates the blank bitmap. The size
of the bitmap is set to 64 by 64 pixels. The actual number of bits in the bit-
map depends on the color format of the display. If the display is a color dis-
play, the bitmap will be a color bitmap and might have many bits for each
pixel. '

@ The SelectObject function selects the bitmap into the memory device context
and prepares it for drawing. The handle of the previously selected bitmap is
saved in the variable hOldBitmap.

© The PatBIt function clears the bitrhap and sets all pixels white. This, or a
similar function, is required since, initially, the image in a blank bitmap is
undefined. You cannot depend on having a clean bitmap in which to draw.

O The Polygon function draws the star by using the endpoints specified in the
array of structures, Points. :

@ The BitBIt function copies the bitmap from the memory device context to the
display.

Bitmaps 11-5

O The SelectObject and DeleteDC functions restore the previous bitmap
and delete the memory device context. Once the bitmap has been drawn,
the memory device context is no longer needed. You cannot delete a device
context when any bitmap other than the context’s original bitmap is selected.

O Finally, the ReleaseDC function releases the device context. The bitmap
handle, hBitmap, may now be used in subsequent GDI functions.

11.2.3 Creating a Bitmap with Hard-Coded Bits

You can create a bitmap and set its initial image to an array of bitmap bits by
using the CreateDIBitmap function. This function creates a memory bitmap of

a given size with a device-dependent color format; it initializes the bitmap image
by translating a device-independent bitmap definition into the device-dependent
format required by the display device and copying this device-dependent informa-
tion to the memory bitmap. Typically, this method is used to create small bit-
maps for use with pattern brushes, but it can also be used to create larger

bitmaps.

NOTE Unless the bitmap is monochrome (that is, a bitmap having a single color plane and
one bit per pixel), the memory bitmap created by CreateBitmap is device-specific, and there-
fore might not be suitable for display on some devices.

The following example creates a 64-by-32-pixel, monochrome bitmap; the
example initializes the bitmap by using the bits in the array Square.

HBITMAP hBitmap;

HDC hDC;

BYTE Square[] = {
0x00,0x00,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00,
Ox00,0x00,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00,
Ox00,0x00,0x00 ,0x00 ,0x00,0x00 ,0x00 ,0x00,
Ox00,0x00,0x00,0x00,0x00,0x00,0x00 ,3x00,
Ox00,0x00,0x00 ,0x00 ,0x00 ,0x00,0x00 ,0x00,
Ox00,0x00,0x00 ,0x00 ,0x00,0x00 ,0x00 ,0x00,
Px00,0x00 ,0x00,0x00,0x00,0x00 ,0x0@,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
Ox00,0x00,0x00,0x00 ,0x00,0x00,0x00 ,0x00,
Ox00,0x00,0x00 ,0x00 ,0x00,0x00,0x00 ,0x00,
Ox00 ,0x00,0x00 ,0x00,0x00,0x00 ,0x00 ,0x00,
Ox00,0x00,0xff,0xff,0xff,0xff,0x00,0x00,
Ox00,0x00,0xff,0xff,0xff,0xff,0x00,0x00,
Ox00 ,0x08,0xTf,0xff,0xff,0xff,0x00,0x00,
Ox00 ,0x08 ,0xff,0xff,@xff,0xff,0x00,0x00,
Ox00,0x00,0xff,0xff,0xff,0xff,0x00,0x00,
Ox00,0x00,0xff,0xff,0xff,0xff,0x00,0x00,
Ox00,0x00,0xff,0xff,0xff,0xff,0x00,0x00,
Ox00,0x00,0xff,0xff,0xff,0xff,0x00,0x00,
Ox00,0x00,0xff,0xff,0xff,0xff,0x00,0x00,

11-6 Guide to Programming

Ox00 ,0x00 ,0xff,@xff,@xff,0xff,0x00,0x00,
Bx00 ,0x00 ,0x00 ,0x00,0x00,0x00 ,0x00 ,0x00,
Ox00,0x00,0x00 ,0x00,0x00,0x00,0x30 ,3x00
Ox00,0x00,0x00,0x00,0x00,0x00,0x00 ,3x00,
Ox00 ,0x00 ,0x00 ,0x00 ,0x00,0x00 ,0x00 ,0x00,
0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,
 OxP0,0x00,0x00,0x00 ,09x00 ,0x00 ,0x00 ,0x00 ,
Ox00,0x00,0x00,0x00,0x00,0x00,3x00 ,0x00,
Ox00,0x00,0x00 ,0x00,0x00,0x00,0x00 ,3x00,
Ox00,0x00,0x00 ,9x00 ,0x00,0x00 ,0x00 ,3x00,
Ox00,0x00,0x00,0x00,0x00,0x00,0x00 ,0x00,
Ox00 ,0x00 ,0x00,0x00,0x00,0x00 ,0x00,0x00 };

HANDLE
PBITMAPINFO

hDibInfo;
pDibInfo;

if (pDibInfo =

(PBITMAPINFO)LocalAlloc(LMEM_FIXED,

$izeof (BITMAPINFOHEADER)+2*sizeof (RGBQUAD)))

{

HBRUSH hOt1dBrush,hBrush;

pDibInfo~>bmiHeader

pDibInfo->bmiHeader.
pDibInfo->bmiHeader.
pDibInfo->bmiHeader.
.biBitCount = 1;
.biCompression=0L;
.biSizelmage=0L;
.biXPelsPerMeter=0L;
pDibInfo->bmiHeader.
pDibInfo->bmiHeader.
pDibInfo->bmiHeader.

pDibInfo->bmiHeader
pDibInfo->bmiHeader
pDibInfo->bmiHeader
pDibInfo->bmiHeader

.biSize =

(Tong)sizeof (BITMAPINFOHEADER) ;
biWidth = 64L;
biHeight = 32;
biPlanes = 1;

biYPelsPerMeter=@L;
biClrUsed=0L;
biClrImportant=@L;

pDibInfo->bmiColors[@].
pDibInfo->bmiColors[@].
pDibInfo->bmiColors[@].
pDibInfo->bmiColors[1].
pDibInfo->bmiColors[1].

rgbRed = @;
rgbGreen = @;
rghBlue = @;

rgbRed = @xff;
rgbGreen = @xff;

pDibInfo->bmiColors[1].rghBlue = @xff;

hDC = GetDC(hWnd);

hBitmap = CreateDIBitmap (hDC,
(LPBITMAPINFOHEADER)&(pDibInfo->bmiHeader),
CBM_INIT,

(LPSTR) Square,
(LPBITMAPINFO)pDibInfo, DIB_RGB_COLORS);

ReleaseDC (hWnd, hDC);

DeleteObject(hBitmap);

LocalFree((HANDLE)pDibInfo);

The CreateDIBitmap function creates and initializes the bitmap before returning

Bitmaps 11-7

the bitmap handle. The width and height of the bitmap are 64 and 32 pixels,
respectively. The bitmap has one bit for each pixel, making it a monochrome
bitmap.

The Square array contains the bits used to initialize the bitmap. The BITMAP-
INFO data structure determines how the bits in the array are interpreted. It de-
fines the width and height of the bitmap, how many bits (1, 4, 8 or 24) are used in
the array to represent each pixel, and a table of colors for the pixels. Since the
Square array defines a monochrome bitmap, the bit count per pixel is one and the
color table contains only two entries, one for black and one for white. If a given
bit in the array is zero, then GDI draws a black pixel for that bit; if it is one, then
GDI draws a white pixel.

Since the Square array defines a monochrome bitmap, you could also call
CreateBitmap to create the bitmap:

hBitmap = CreateBitmap (64, 32, 1, -1, (LPSTR) Square);

This is possible because all monochrome memory bitmaps are device inde-
pendent. For color bitmaps, however, CreateBitmap cannot use the same
bitmap-bit specification as can CreateDIBitmap.

Once you have created and initialized the bitmap, you can use its handle in
subsequent GDI functions. If you want to change the bitmap, you can draw in

it by selecting it into a memory device context as described in Section 11.2.2,
“Creating and Filling a Blank Bitmap.” If you want to replace the bitmap image
with another or change a portion of it, you can use the SetDIBits function to
copy another array of bits into the bitmap. For example, the following function
call replaces the current bitmap image with the bits in the array Circle:

BYTE Circlel] = {

¥

SetDIBits(hDC, hBitmap, @, 32, (LPSTR) Circle,
(LPBITMAPINFO)&myDIBInfo, DIB_RGB_COLORS);

The SetDIBits function copies the bits in the Circle array into the bitmap
specified by the hBitmap variable. The array contains 32 scan lines, representing
the image of a 64-by-32-pixel monochrome bitmap. If you want to retrieve the
current bits in a bitmap before replacing them, you can use the GetDIBits func-
tion. It copies a specified number of scan lines from the bitmap into a device-
independent bitmap specification. You can also use GetBitmapBits to retrieve
bits from a monochrome bitmap.

Again, since the Circle array defines a monochrome bitmap, you could call Set-
BitmapBits instead to change the bitmap:

SetBitmapBits (hBitmap, 256, (LPSTR) Circle);

11-8 Guide to Programming
, A

The preceding examples show how to create and modify a small bitmap. Typi-
cally you will not want to hard-code larger bitmaps in your application source
code. Instead, you can store a larger bitmap in a device-independent bitmap file
created by SDKPaint or other tools. A device-independent bitmap file consists of
a BITMAPFILEHEADER data structure followed by a BITMAPINFO struc-
ture and an array of bytes that together define the bitmap.

The sample application ShowDIB demonstrates how to display device-inde-
pendent bitmaps with colors controlled by a color palette. ShowDIB is located on
the Sample Source Code disk, supplied with the SDK. See Chapter 19, “Color
Palettes,” for more information on Windows color palettes.

11.2.4 Drawing a Color Bitmap

Since hard-coding a color bitmap may require considerable effort, it is usually
simpler to create a compatible bitmap and draw in it. For example, to create a
color bitmap that has a red, green, and blue plaid pattern, you simply create a
blank bitmap and use the PatBIt function, with the red, green, and blue brushes,
to draw the pattern. This method has the advantage of generating a reasonable bit-
map even if the display does not support color. This is because GDI provides
dithered brushes for monochrome displays when a color brush is requested. A
dithered brush is a unique pattern of pixels that represents a color when that color
is not available for the device.

The following statements create the color bitmap by drawing it:

define PATORDEST Ox00FAQB8IL
HDC hDC; :

HDC hMemoryDC;

HBITMAP hBitmap;

HBITMAP hO1dBitmap;

HBRUSH hRedBrush;

HBRUSH hGreenBrush;

HBRUSH hBlueBrush;

HBRUSH hO1dBrush;

hDC = GetDC(hWnd);

hMemoryDC = CreateCompatibleDC(hDC);

hBitmap = CreateCompatibleBitmap(hDC, 64, 32);
h01dBitmap = SelectObject(hMemoryDC, hBitmap);

hRedBrush = CreateSolidBrush(RGB(255,0,8));
hGreenBrush = CreateSolidBrush(RGB(@,255,0));
‘hBlueBrush = CreateSolidBrush(RGB(@,d,255));

PatB1t(hMemoryDC, @, @, 64, 32, BLACKNESS);
hO1dBrush = SelectObject(hMemoryDC, hRedBrush);
PatB1t(hMemoryDC, @, @, 24, 11, PATORDEST);

Bitmaps 11-9
.]

PatB1t(hMemoryDC, 40, 10, 24, 12, PATORDEST);
PatBl1t(hMemoryDC, 24, 22, 24, 11, PATORDEST);
SelectObject(hMemoryDC, hGreenBrush);
PatB1t(hMemoryDC, 24, @, 24, 11, PATORDEST);
PatB1t(hMemoryDC, @, 10, 24, 12, PATORDEST);
PatB1t(hMemoryDC, 40, 22, 24, 11, PATORDEST);
SelectObject(hMemoryDC, hBlueBrush);
PatBlt(hMemoryDC, 4@, @, 24, 11, PATORDEST);
PatB1t(hMemoryDC, 24, 10, 24, 12, PATORDEST);
PatB1t(hMemoryDC, @, 22, 24, 11, PATORDEST);

BitB1t(hDC, @, @, 64, 32, hMemoryDC, @, @, SRCCOPY)

SelectObject (hMemoryDC, hO1dBrush);
DeleteObject(hRedBrush);
DeleteObject(hGreenBrush);
DeleteObject(hBlueBrush);

SelectObject(hMemoryDC, h01dBitmap);
DeleteDC(hMemoryDC);
ReleaseDC(hWnd, hDC);

In this example, the CreateSolidBrush function creates the red, green, and blue
brushes needed to make the plaid pattern. The SelectObject function selects each
brush into the memory device context as that brush is needed, and the PatBIt
function paints the colors into the bitmap. Each color is painted three times, each
time into a small rectangle. In this example, the application instructs PatBlt to
overlap the different color rectangles a little. Since the PATORDEST raster-
operation code is given, PatBIlt combines the brush color with the color already
in the bitmap by using a Boolean OR operator. The result is a different color
border around each rectangle. After the bitmap is complete, BitBIt copies it

from the memory device context to the screen.

11.3 Displaying Bitmaps
Windows provides several ways to display a bitmap:
® You can display a memory bitmap by using the BitBIt function to copy the
bitmap from the memory device context to a device surface.

= You can use the StretchBlt function to copy a stretched or compressed bit-
map from a memory device context to a device surface.

® You can use the CreatePatternBrush function to create a brush that incor-
porates the bitmap. Any subsequent GDI functions that use the brush, such
as PatBIt, will display that bitmap.

® - You can use the SetDIBitsToDevice function to display a device-
independent bitmap directly on the output device.

11-10 Guide to Programming

® You can display the bitmap in a menu. In such a case, the bitmap is used as a
menu item that the user can choose to carry out an action. For details, see
Chapter 7, “Menus.”

This section explains each method of displaying a bitmap.

11.3.1 Using the BitBIt Function to Display a Memory Bitmap

You can display any bitmap by using the BitBIt function. This function copies a
bitmap from a source to a destination device context. To display a bitmap with
BitBIt, you need to create a memory device context and select the bitmap into it
first. The following example displays the bitmap by using BitBIt:

HDC hDC, hMemoryDC;

hDC = GetDC(hWnd);
hMemoryDC = CreateCompatibleDC(hDC);

hOldBitmap = SelectObject(hMemoryDC, hBitmap);

if (h0ldbitmap)
{
BitB1t(hDC, 100, 3@, 64, 32, hMemoryDC, @, @, SRCCOPY);

SelectObject (hMemoryDC, hO1dBitmap);
}
DeleteDC(hMemoryDC);
ReleaseDC(hWnd, hDC);

The GetDC function specifies the device context for the client area of the
window identified by the hWnd variable. The CreateCompatibleDC function
creates a memory device context that is compatible with the device context. The
SelectObject function selects the bitmap, identified by the hBitmap variable, into
the memory device context and returns the previously selected bitmap. If Select-
Object cannot select the bitmap, it returns zero.

The BitBIt function copies the bitmap from the memory device context to the
screen device context. The function places the upper-left corner of the bitmap

at the point (100,30). The entire bitmap, 64 bits wide by 32 bits high, is copied.
The hDC and hMemoryDC variables identify the destination and source context-
s, respectively. The constant, SRCCOPY, is the raster-operation code. It directs
BitBlt to copy the source bitmap without combining it with patterns or colors al-
ready at the destination.

The SelectObject, DeleteDC, and ReleaseDC functions clean up after the bit-
map has been displayed. In general, when you have finished using memory and
device contexts, you should release them as soon as possible—especially device
contexts, which are a limited resource. Windows maintains a cache of device

Bitmaps 11-11

contexts that all applications draw from. If an application does not release a
device context after using it, other applications might not be able to retrieve a
context when needed. If you get a device context by using GetDC, you must
later release it using ReleaseDC; if you instead create the device context using
CreateCompatibleDC, you must later delete it using DeleteDC. Before deleting
a device context, you must call SelectObject, since you must not delete a device
context while any bitmap other than the context’s original bitmap is selected.

In the previous example, the width and height of the bitmap were assumed to be
64 and 32 pixels, respectively. Another way to specify the width and height of

- the bitmap to be displayed is to retrieve them from the bitmap itself. You can do
this by using the GetObject function, which fills a specified structure with the
dimensions of the given object. For example, to retrieve the width and height of
a bitmap, you would use the following statements:

BITMAP Bitmap;

GetObject(hBitmap, sizeof(BITMAP), (LPSTR) &Bitmap);

The next example copies the width and height of the bitmap to the bmWidth and
bmHeight fields of the structure, Bitmap. You can use these values in BitBlt as
follows:

BitB1t(hDC, 100, 3@, Bitmap.bmWidth, Bitmap.bmHeight,
hMemoryDC, @, @, SRCCOPY);

The BitBIt function can display both monochrome and color bitmaps. No special
steps are required to display bitmaps of different formats. However, you should
be aware that BitBlt may convert the bitmap if its color format is not the same as
that of the destination device. For example, when displaying a color bitmap on a
monochrome display, BitBlt converts the pixels having the current background
color to white and all other pixels to black.

11.3.2 Stretching a Bitmap

Your bitmaps are not limited to their original size. You can stretch or compress
them by using the StretchBIt function in place of BitBIt. For example, you can
double the size of a 64-by-32-pixel bitmap by using the following statement:

StretchB1t(hDC, 100, 30, 128, 64, hMemoryDC,
@, @, 64, 32, SRCCOPY);

The StretchBIt function has two additional parameters that BitBlt does not. In
particular, StretchBlt specifies the width and height of the source bitmap. The
first width and height, given as 128 and 64 pixels in the previous example, apply
only to the final size of the bitmap on the destination device context.

11-12 Guide to Programming

To compress a bitmap, StretchBlt removes pixels from the copled bitmap. This
means that some of the information in the bitmap is lost when it is displayed. To
minimize the loss, you can set the current stretching mode to tell StretchBlt to
combine some of the information with the pixels that will be displayed. The
stretching mode can be one of the following:

Mode Purpose
. WHITEONBLACK Preserves white pixels at the expense of black pix-
els; for example, a white outline on a black back-
ground.
BLACKONWHITE Preserves black pixels at the expense of white pix-
' els; for example, a black outline on a white back-
ground.
COLORONCOLOR Displays color bitmaps. Attempting to combine

colors in a bitmap can lead to undesirable effects.

The SetStretchBltMode function sets the stretching mode. In the following ex-
ample, SetStretchBltMode sets the stretching mode to WHITEONBLACK:

SetStretchBl1tMode(hDC, WHITEONBLACK);

11.3.3 Using a Bitmap in a Pattern Brush

You can use bitmaps in a brush by creating a pattern brush. Once the pattern
brush is created, you can select the brush into a device context and use the PatBIt
function to copy it to the screen; or the Rectangle, Ellipse, and other drawing
functions can use the brush to fill interiors. When Windows draws with a pattern
brush, it fills the specified area by repeatedly copying the bitmap-horizontally
and vertically as necessary. It does not adjust the size of the bitmap to fit in the
area as the StretchBlIt function does.

If you use a bitmap in a pattern brush, the bitmap should be at least 8 pixels wide
by 8 pixels high—the default pattern size used by most display drivers. (You can
use large bitmaps, but only the upper-left, 8-by-8 corner will be used.) You may
hard-code the bitmap, create and draw it, or load it as a resource. In any case,
once you have the bitmap handle, you can create the pattern brush by using the
CreatePatternBrush function. The following example loads a bitmap and uses
it to create a pattern brush:

hBitmap = LoadBitmap(hInstance, "checks");
hBrush = CreatePatternBrush(hBitmap);

Once a pattern brush is created, you can select it into a dev1ce context by using
the SelectObject function:

h01dBrush = SelectObject(hDC, hBrush);

_ Bitmaps 11-13
L

Since the bitmap is part of the brush, this call to the SelectObject function does
not affect the device context’s selected bitmap.

After selecting the brush, you can use the PatBIt function to fill a specified area
with the bitmap. For example, the following statement fills the upper-left corner
of a window with the bitmap:

PatB1t(hDC, @, @, 100, 108, PATCOPY);

The PATCOPY raster operation directs PatBIt to completely replace the destina-
tion image with the pattern brush.

You can also use a pattern brush as a window’s background brush. To do this,
simply assign the brush handle to the hbrBackground field of the window-class
structure as in the following example:

pWndClass->hbrBackground = CreatePatternBrush(hBitmap);

Thereafter, Windows uses the pattern brush when it erases the window’s back-
ground. You can also change the current background brush for a window class by
using the SetClassWord function. For example, if you want to use a new pattern
brush after a window has been created, you can use the.following statement:

SetClassWord(hWnd, GCW_HBRBACKGROUND, hBrush);

Be aware that this statement changes the background brush for all windows

of this class. If you only want to change the background for one window, you
need to explicitly process the WM_ERASEBKGND messages that the window
receives. The following example shows how to process this message:

RECT Rect;
HBRUSH hO1dBrush;

case WM_ERASEBKGND:

UnrealizeObject (hMyBkgndBrush);

h01dBrush = SelectObject(wParam, hMyBkgndBrush);

GetUpdateRect(wParam, (LPRECT)&Rect, FALSE);

PatBlt(wParam, Rect.left, Rect.top,
Rect.right - Rect.left, Rect.bottom - Rect.top,
PATCOPY);

SelectObject (wParam, h01dBrush);

break;

The WM_ERASEBKGND message passes a handle to a device context in the
wParam parameter. The SelectObject function selects the desired background
brush into the device context. The GetUpdateRect function retrieves the area
that needs to be erased (this is not always the entire client area). The PatBIt func-
tion copies the pattern, overwriting anything already in the update rectangle. The
final SelectObject function restores the previous brush to the device context.

11-14 Guide to Programming

The UnrealizeObject function is used in the preceding example. Whenever your
application or the user moves a window in which you have used or will use a
pattern brush, you need to align your pattern brushes to the new position by using
the UnrealizeObject function. This function resets a brush’s drawing origin so
that any patterns displayed after the move match the patterns displayed before the
move.

You can use the DeleteObject function to delete a pattern brush when it is no
longer needed. This function does not, however, delete the bitmap along with the
brush. To delete the bitmap, you need to use DeleteObject again and specify the
bitmap handle.

11.3.4 Displaying a Device-Independent Bitmap

One of the advantages of device-independent bitmaps is that you can display
them directly without having to create an intermediate memory bitmap. The
SetDIBitsToDevice function sets all or part of a device-independent bitmap
directly to an output device, significantly reducing the memory required to dis-
play the bitmap. When you call SetDIBitsToDevice to display a bitmap, you
supply it this information:

m The device context of the target output device
® The location in the device context where the bitmap will appear

m The size of the bitmap on the output device

& The number of scan lines in the source bitmap buffer from which you are
copying the bitmap

& The location of the first pixel in the source bitmap to copy to the output device

m The device-independent bitmap information structure and a buffer containing
the bitmap to be displayed

m Whether the color table of the DIB specification contains literal RGB color
values or logical-palette indexes

NOTE The origin for device-independent bitmaps is the lower-left corner of the bitmap,
not the upper-left corner as for other graphics operations.

The following is an example of how an application calls SetDIBitsToDevice:

SetDIBitsToDevice(hDC, @, @, 1pbi->bmciHeader.bcWidth,
1pbi->bmciHeader.bcHeight, @, 4, 0,
1pbi->bmciHeader.bcHeight,
pBuf, (LPBITMAPINFO)Ipbi,

DIB_RGB_COLORS);

Bitmaps 11-15

In this example, hDC identifies the device context of the target output device;
SetDIBitsToDevice uses this information to identify the device surface and deter-
mine the correct color format for the device bitmap.

The next two parameters specify the point on the display surface where SetDI-
BitsToDevice will begin drawing the bitmap; in this case, it is the origin of the
-device context itself. The next two parameters supply the width and height of the
bitmap.

The sixth and seventh parameters, both of which are set to zero in this example,
specify the first pixel in the source bitmap to be set on the display device; again,
since both are zero, SetDIBitsToDevice begins with the first pixel in the bitmap
buffer. :

The next two parameters are used for banding purposes. The first of these two
parameters is set to zero, indicating that the beginning scan line should be the
first in the buffer; the second of the two is set to the height of the bitmap. As a
result, the entire source bitmap will be set on the display surface in a single band.

The actual bitmap bits are contained in the pBuf buffer, and the /pbi parameter
supplies the BITMAPINFO data structure that describes the color format of the
source bitmap.

The last parameter is a usage flag that indicates whether the bitmap color table
contains actual RGB color values or indexes into the currently realized logical
palette. DIB_RGB_COLORS specifies that the color table contains explicit color
values.

11.3.5 Using a Bitmap as a Menu Item

You can use a bitmap as an item in a menu. To do so, replace the original menu
item text, defined in the .RC file, with the bitmap. (You cannot specify a bitmap
as a menu item in the .RC file.)

Chapter 7, “Menus,” explains how to replace a menu item with a bitmap.

11.4 Adding Color to Monochrome Bilmaps

If your computer has a color display, you can add color to a monochrome bitmap
by setting the foreground and background colors of the display context. The fore-
ground and background colors specify which colors the white and black bits of
the bitmap will have when displayed. You set the foreground and background
colors by using the SetTextColor and SetBkColor functions. The following ex-
ample shows how to set the foreground color to red and the background color to
green:

SetTextColor(hDC, RGB(255,0,8));
SetBkColor(hDC, RGB(@,255,08));

11-16 Guide to Programming

The hDC variable holds the handle to the device context. The SetTextColor
function sets the foreground color to red. The SetBkColor function sets the back-
ground color to green. The RGB utility creates an RGB color value by using the
three specified values. Each value represents an intensity for each of the primary
display colors—red, green, and blue—with the value 255 representing the
highest intensity, and zero, the lowest. You can produce colors other than red and
green by combining the color intensities. For example, the following statement
creates a yellow RGB value:

RGB(255,255,9)

Once the foreground and background colors are set, no further action is required.
You can display a bitmap (as described earlier) and Windows will automatically
add the foreground and background colors. The foreground color is applied to the
white bits (the bits set to 1) and the background color to the black bits (the bits
set to zero). Note that the background mode, as specified by the SetBkMode
function, does not apply to bitmaps. Also, the foreground and background colors
do not apply to color bitmaps.

When displayed in color, the bitmap named “dog” will be red, the background
will be green.

11.5 Deleting Bitmaps

A bitmap, like any resource, occupies memory while in use. After you have
finished using a bitmap or before your application terminates, it is important
that you delete the bitmaps you have created in order to make that memory
available to other applications. To delete a bitmap, first remove it from any
device context in which it is currently selected. Then, delete it by using the
DeleteObject function.

The following example deletes the bitmap identified by the 4Bitmap parameter,
after removing it as the currently selected bitmap in the memory device context
identified by the AMemoryDC parameter:

SelectObject(hMemoryDC, hO1dBitmap);
DeleteObject(hBitmap);

The SelectObject function removes the bitmap from selection by replacing it
with a previous bitmap identified by the #OldBitmap parameter. The Delete-
Object function deletes the bitmap. Thereafter, the bitmap handle in the hBitmap
parameter is no longer valid and must not be used.

11.6 A Sample Application: Bitmap

This sample shows how to-incorporate a variety of bitmap operations in an
application. In particular, it shows how to do the following:

Bitmaps 11-17

Load and display a monochrome bitmap
Create and display a color bitmap

Stretch and compress a bitmap using the mouse
Set the stretching mode

Create and use a pattern brush

Use a pattern brush for the window background

In this application, the user specifies (by using the mouse) where and how the bit-
map will be displayed. If the user drags the mouse while holding down the left
button, and then releases that button, the application uses the StretchBlt function
to fill the selected rectangle with the current bitmap. If the user clicks the right
button, the application uses the BitBIt function to display the bitmap.

To create the Bitmap application, copy and rename the source files for the
Generic application, then make the following modifications:

1.
2.

Add constant definitions and a function declaration to the include file.

Add two monochrome bitmaps, created by using SDKPaint, to the resource
script file.

3. Add Bitmap, Pattern, and Mode menus to the resource script file. |

. Add global and local variables.

5. Add the WM_CREATE case to the window function to create bitmaps and

10.
11.

12.

add bitmaps to the menus.

. Modify the WM_DESTROY case in the window function to delete bitmaps.
. Add the WM_LBUTTONUP, WM_MOUSEMOVE, and WM_LBUTTON-

DOWN cases to the window function to create a selection rectangle and dis-
play bitmaps.

. Add the WM_RBUTTONUP case to the window function to display bitmaps.
. Add the WM_ERASEBKGND case to the window function to erase the

client area.
Modify the WM_COMMAND case to support the menus.

Modify the LINK command line in the make file to include the SELECT.LIB
library file.

Compile and link the application.

11-18 Guide to Programming

NOTE Rather than typing the code presented in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

The following sections explain each step in detail.

11.6.1 Modify the Include File

Add the following function declarations and constant definitions to the include

file: .

#define IDM_BITMAP1 200
f##idefine IDM_BITMAP2 201
#define IDM_BITMAP3 202
fidefine IDM_PATTERN1 300
fidefine IDM_PATTERN2 301
j#define IDM_PATTERN3 302
fidefine IDM_PATTERN4 303
ffidefine IDM_BLACKONWHITE 400
f#fdefine IDM_WHITEONBLACK 491
#idefine IDM_COLORONCOLOR 402
jfdefine PATORDEST DxBOFABB8IL

HBITMAP MakeColorBitmap(HWND);

11.6.2 Add the Bitmap Resources

Add two BITMAP statements to your resource script file. The two statements
add the bitmaps “dog” and “cat” to your application resources. Add the following
statements:

dog BITMAP dog.bmp
cat BITMAP cat.bmp

The “dog” bitmap is the white outline of a dog on a black background. The “cat”
bitmap is the black outline of a cat on a white background. -

11.6.3 Add the Bitmap, Pattern, and Mode Menus

You need to add a MENU statement to your resource script file. This statement
defines the Bitmap, Pattern, and Mode menus used to choose the various bitmaps
and modes that are used in the application. Add the following MENU statement
to the resource script file: -

Bitmaps 11-19

BitmapMenu MENU
BEGIN
POPYP "&Bitmap"
BEGIN
MENUITEM "", IDM_BITMAP1
END

POPUP "&Pattern"”
BEGIN

MENUITEM "", IDM_PATTERNI1
END

POPUP "&Mode"
BEGIN
MENUITEM "&WhiteOnBlack", IDM_WHITEONBLACK, CHECKED
MENUITEM "&BlackOnWhite", IDM_BLACKONWHITE
MENUITEM "&ColorOnColor", IDM_COLORONCOLOR
END
END

The Bitmap and Pattern menus each contain a single MENUITEM statement.
This statement defines a command that serves as a placeholder only. The applica-
tion will add the actual commands to use in the menu by using the AppendMenu
function.

11.6.4 Add Global and Local Variables

“You need to declare the pattern arrays, the bitmap handles and context handles,
and other global variables used to create and display the bitmaps. To define these
global variables, add the following statements to the beginning of your source
file:

BYTE White[] = { @OxFF, OxFF, OxFF, OxFF, @xFF, @xFF, OxFF, @xFF };

BYTE Black[]

{ Ox00, Ox00, 0x00, 0x00, Ox00, Ox00, Ox02, Ox00 };

BYTE Zigzagl[] = { OxFF, @xF7, @OxEB, @xDD, @xBE, @x7F, @xFF, @xFF };
BYTE CrossHatch[] = { @xEF, @OxEF, @xEF, OxEF, Ox@@, OxEF, @OxEF, OXEF };

HBITMAP
HBITMAP
HBITMAP
HBITMAP
HBITMAP
HBITMAP
HBITMAP
HBITMAP
HBITMAP
HBITMAP
HBITMAP
HBITMAP

hPatternl;
hPattern2;
hPattern3;
hPattern4;
hBitmapl;
hBitmap2;
hBitmap3;
hMenuBitmapl;
hMenuBitmap2;
hMenuBitmap3;
hBitmap;
hO1dBitmap;

11-20 Guide to Programming

HBRUSH hBrush; /* brush handle ' */
WORD fStretchMode; /* type of stretch mode to use */
HDC hDC; /* handle to device context */
HDC hMemoryDCy /* handle to memory device context */
BITMAP Bitmap; /* bitmap structure %/
BOOL bTrack = FALSE; /* TRUE if user is selecting a region */
RECT Rect;

WORD wPrevBitmap = IDM_BITMAPL;
WORD wPrevPattern = IDM_PATTERNL;
WORD wPrevMode = IDM_WHITEONBLACK;
WORD wPrevItem;

int Shape = SL_BLOCK; /* shape to use for the selection rectangle */

The pattern arrays White, Black, Zigzag, and CrossHatch contain the bits
defining the 8-by-8-pixel bitmap images. The variables hPattern1, hPattern2,
hPattern3, and hPattern4 hold the bitmap handles of the brush patterns. The varia-
bles hBitmap1, hBitmap2, and hBitmap3 hold the bitmap handles of the bitmaps
to be displayed. The variables hMenuBitmap1, hMenuBitmap2, and hMenuBit-
map3 hold the bitmap handles of bitmaps to be displayed in the Bitmaps menu.
The variables hBrush, hBitmap, and fStretchMode hold the current background
brush, bitmap, and stretching mode. The variables hDC, hMemoryDC, and hOld-
Bitmap hold handles used with the memory device context. The Bitmap structure
holds the dimensions of the current bitmap. The bTrack variable is used to indi-
cate a selection in progress. The Rect structure holds the current selection
rectangle. The variables wPrevBitmap, wPrevPattern, wPrevMode, and wPrevI-
tem hold the menu IDs of the previously chosen bitmap, pattern, and stretching
mode. These are used to place and remove checkmarks in the menus.

Add the following local variables to the MainWndProc function:

HMENU hMenu;
HBRUSH hO1dBrush;
HBITMAP hQurBitmap;

11.6.5 Add the WM_CREATE Case

You need a WM_CREATE case and supporting variable and function declara-
tions to create or load the bitmaps and to set the menus. The WM_CREATE case
creates four 8-by-8-pixel, monochrome bitmaps to be used as patterns in a
pattern brush for the window background. It also creates or loads three 64-by-32-
pixel bitmaps to be displayed in the window. To let the user choose a bitmap or
pattern for viewing, the WM_CREATE case adds them to the Bitmap and Pattern
menus by using the AppendMenu function. Finally, the case sets the initial
values of the brush, bitmap, and stretching modes and creates the memory device
context from which the bitmaps are copied.

Bitmaps 11-21

The WM_CREATE case creates the four patterns by using the CreateBitmap
function. It loads two bitmaps, “dog” and “cat”, and creates a third by using the
MakeColorBitmap function defined within the application. Once the patterns
and bitmaps have been created, the WM_CREATE case creates pop-up menus,
appends the patterns and bitmaps to the menus, and replaces the existing Bitmap
and Pattern menus with the new pop-up menus. Next, the hBrush, hBitmap, and
fStretchMode variables are set to the initial values for the background brush, bit-
map, and stretching modes. Finally, the case creates the memory device context
from which the bitmaps will be copied to the display. Add the following state-
ments to your window function:

case WM_CREATE: /* message: create window */

hPatternl = CreateBitmap(8, 8, 1, 1, (LPSTR) White);
hPattern2 = CreateBitmap(8, 8, 1, 1, (LPSTR) Black};
hPattern3 = CreateBitmap(8, 8, 1, 1, (LPSTR) Zigzag);
hPatternd = CreateBitmap(8, 8, 1, 1, (LPSTR) CrossHatch);

hBitmapl = LoadBitmap(hInst, "dog");
hBitmap2 = LoadBitmap(hInst, "cat");
hBitmap3 = MakeColorBitmap(hWnd);

hMenuBitmapl
hMenuBitmap2
hMenuBitmap3

LoadBitmap(hInst, "dog");
LoadBitmap(hInst, "cat");
MakeColorBitmap(hWnd);

hMenu = CreateMenu();

AppendMenu(hMenu, MF_STRING | MF_CHECKED, IDM_PATTERN1, "&White");
AppendMenu(hMenu, MF_STRING, IDM_PATTERNZ2, "&Black");

AppendMenu(hMenu, MF_BITMAP, IDM_PATTERN3, (LPSTR) (LONG) hPattern3);
AppendMenu(hMenu, MF_BITMAP, IDM_PATTERN4, (LPSTR) (LONG) hPatternd);
ModifyMenu(GetMenu(hWnd), 1, MF_POPUP | MF_BYPOSITION, hMenu, "&Pattern");

hMenu = CreateMenu();

AppendMenu(hMenu, MF_BITMAP | MF_CHECKED, IDM_BITMAP1, (LPSTR) (LONG)
hMenuBitmapl);

AppendMenu(hMenu, MF_BITMAP, IDM_BITMAP2, (LPSTR) (LONG) hMenuBitmap2);

AppendMenu(hMenu, MF_BITMAP, IDM_BITMAP3, (LPSTR) (LONG) hMenuBitmap3);

ModifyMenu(GetMenu(hWnd), @, MF_POPU# | MF_BYPOSITION, "&Bitmap", hMenu);

hBrush = CreatePatternBrush(hPatterni);
fStretchMode = IDM_BLACKONWHITE;

hDC = GetDC(hWnd);

hMemoryDC = CreateCompatibleDC(hDC);
ReleaseDC(hWnd, hDC);

hOTdBitmap = SelectObject(hMemoryDC, hBitmapl);
GetObject(hBitmapl, 16, (LPSTR) &Bitmap);

break;

11-22 Guide fo Programming

The CreateBitmap and LoadBitmap functions work as described in earlier sec-
tions in this chapter. The MakeColorBitmap function is created for this applica-
tion. It creates and draws a color bitmap, using the same method described in
Section 11.2.2, “Creating and Filling a Blank Bitmap.” The statements of this
function are given later in this section. Notice that each bitmap is loaded or
created twice. This is required since no single bitmap handle may be selected into
two device contexts at the same time. To display in a menu requires a selection,
and to display in the client area also requires a selection.

The CreateMenu function creates an empty menu and returns a handle to the
menu. The ChangeMenu functions that specify the pattern handles add the pat-
terns as menu items to the new menu. The MF_BITMAP option specifies that a
bitmap will be added. The CheckMenultem function places a checkmark next to
the current menu item, and the last ChangeMenu function replaces the existing
Pattern menu. The same steps are then repeated for the Bitmap menu.

The CreateCompatibleDC function creates a memory device context that is
compatible with the display. The SelectObject function selects the current bit-
map into the memory device context so that it is ready to be copied to the dis-
play. The GetObject function copies the dimensions of the bitmap into the
Bitmap structure. The structure can then be used in subsequent BitBlt and
StretchBlt functions to specify the width and height of the bitmap.

The following MakeColorBitmap function creates a color bitmap by creating a
bitmap that is compatible with the display, then paints a plaid color pattern by
using red, green, and blue brushes and the PatBIt function. Add the following
function definition to the end of your source file:

HBITMAP MakeColorBitmap(hWnd)

HWND hWnd;

{
HDC hDC;
HDC hMemoryDC;
HBITMAP hBitmap;
HBITMAP hO1dBitmap;
HBRUSH hRedBrush;
HBRUSH hGreenBrush;
HBRUSH hBlueBrush;
HBRUSH h01dBrush;

hDC = GetDC(hWnd);

hMemoryDC = CreateCompatibleDC(hDC);

hBitmap = CreateCompatibleBitmap(hDC, 64, 32);
hO1dBitmap = SelectObject(hMemoryDC, hBitmap);
hRedBrush = CreateSolidBrush(RGB(255,@,3));
hGreenBrush = CreateSolidBrush(RGB(@,255,8));
hBlueBrush = CreateSolidBrush(RGB(#,d,255));

PatB1t(hMemoryDC, @, @, 64, 32, BLACKNESS);
hO1dBrush = SelectObject(hMemoryDC, hRedBrush);
PatBl1t(hMemoryDC, @, @, 24, 11, PATORDEST);

Bitmaps 11-23

PatB1t(hMemoryDC, 4@, 10, 24, 12, PATORDEST);
PatB1t(hMemoryDC, 2@, 21, 24, 11, PATORDEST);
SelectObject (hMemoryDC, hGreenBrush);
PatB1t(hMemoryDC, 20, @, 24, 11, PATORDEST);
PatB1t(hMemoryDC, @, 10, 24, 12, PATORDEST);
PatBit(hMemoryDC, 4@, 21, 24, 11, PATORDEST);
SelectObject (hMemoryDC, hBlueBrush);
PatB1t(hMemoryDC, 4@, @, 24, 11, PATORDEST);
PatBlt(hMemoryDC, 2@, 1@, 24, 12, PATORDEST);
PatB1t(hMemoryDC, @, 21, 24, 11, PATORDEST);

SelectObject (hMemoryDC, hO1dBrush);
DeleteObject(hRedBrush);
DeleteObject (hGreenBrush);
DeleteObject (hBlueBrush);
SelectObject(hMemoryDC, hO1dBitmap);
DeleteDC(hMemoryDC);
ReleaseDC(hWnd, hDC);
return (hBitmap);

}

This function carries out the same steps described at the end of Section 11.2.3,
“Creating a Bitmap with Hard-Coded Bits.”

11.6.6 Modify the WM_DESTROY Case

You need to delete the bitmaps, patterns, brushes, and memory device context
you have created before terminating the application. You delete bitmaps, pat-
terns, and brushes by using the DeleteObject function. You delete the memory
device context by using the DeleteDC function. Modify the WM_DESTROY
case so that it looks like this:

case WM_DESTRQOY: /* message: destroy window */
SelectObject (hMemoryDC, hO1dBitmap);
DeleteDC(hMemoryDC);
DeleteObject(hBrush);
DeleteObject(hPatternl);
DeleteObject(hPattern2);
DeleteObject(hPattern3);
DeleteObject(hPatternd);
DeleteObject(hBitmapl);
DeleteObject(hBitmap2);
DeleteObject(hBitmap3);
DeleteObject(hMenuBitmapl);
DeleteObject(hMenuBitmap2);
DeleteObject(hMenuBitmap3};

PostQuitMessage(d);
break;

11-24 Guide to Programming

11.6.7 Add WM_LBUTTONUP, WM_MOUSEMOVE, and
WM_LBUTTONDOWN Cases

You need to add WM_LBUTTONUP, WM_MOUSEMOVE, and WM_LBUT-
TONDOWN cases to the window function to let the user select a rectangle in
which to copy the current bitmap. These cases use the selection functions
(described in Chapter 20, “Dynamic-Link Libraries™) to create a selection
rectangle and supply feedback to the user. The WM_LBUTTONUP case then
uses the StretchBIt function to fill the rectangle. Add the following statements
to your window function:

case WM_LBUTTONDOWN: /* message: left mouse button pressed */

bTrack = TRUE;

SetRectEmpty((LPRECT) &Rect);

StartSelection(hWnd, MAKEPOINT(1Param), (LPRECT) &Rect,
(wParam & MK_SHIFT) ? (SL_EXTEND | Shape) : Shape);

break; .

case WM_MOUSEMOVE: /* message: mouse movement */

if (bTrack)
UpdateSelection(hWnd, MAKEPOINT(1Param), (LPRECT) &Rect,
Shape); ' '
break;

case WM_LBUTTONUP: /* message: left mouse button released */

bTrack = FALSE; .
EndSelection(MAKEPOINT(TParam), (LPRECT) &Rect):
ClearSelection(hWnd, (LPRECT) &Rect, Shape);

hDC = GetDC(hWnd); :
SetStretchBl1tMode(hDC, fStretchMode);
StretchB1t(hDC, Rect.left, Rect.top,
Rect.right - Rect.left, Rect.bottom - Rect.top,
hMemoryDC, @, @,
Bitmap.bmWidth, Bitmap.bmHeight,
SRCCOPY);
ReleaseDC(hWnd, hDC);
break;

To use these functions, you also must include the SELECT.H file (defined in
Chapter 20, “Dynamic-Link Libraries™). Add the following statement to the
beginning of your source file:

f#include "SELECT.H"

Bitmaps 11-25

11.6.8 Add the WM_RBUTTONUP Case

You need to add a WM_RBUTTONUP case to display the current bitmap by
using the BitBIt function. Add the following statements to your window function:

case WM_RBUTTONUP: /* message: right mouse button released */

hDC = GetDC(hWnd);

BitB1t(hDC, LOWORD(1Param), HIWORD(1Param),
Bitmap.bmWidth, Bitmap.bmHeight,
hMemoryDC, @, @, SRCCOPY);

ReleaseDC(hWnd, hDC);

break;

11.6.9 Add the WM_ERASEBKGND Case

You need to add a WM_ERASEBKGND case to make sure the selected back-
ground brush is used. Add the following statements to your window function:

case WM_ERASEBKGND: /* message: erase background */

UnrealizeObject(hBrush);

h01dBrush =. SelectObject(wParam, hBrush);

GetClientRect(hWnd, (LPRECT) &Rect);

PatB1t(wParam, Rect.left, Rect.top,
Rect.right-Rect.left, Rect.bottom-Rect.top,
PATCOPY) ;

SelectObject(wParam, hO1dBrush);

return TRUE;

The hOldBrush variable is declared as a local variable. The UnrealizeObject
function sets the pattern alignment if the window has moved. The SelectObject
function sets the background brush and the GetClientRect function determines
which part of the client area needs to be erased. The PatBlt function copies the
pattern to the update rectangle. The final SelectObject function restores the
previous brush.

11.6.10 Modify the WM_COMMAND Case

You need to change the WM_COMMAND case to support the Bitmap, Pattern,
and Mode menus. In the window function, replace the WM_COMMAND case
with the following statements:

case WM_COMMAND: /* message: Windows command */
switch (wParam) {

11-26 Guide to Programming

case IDM_ABOUT:

ipProcAbout = MakeProcInstance (About, Inst);

DialogBox (hlnst,
"AboutBox",
hind,
1pProcAbout);

FreeProcInstance (1pProcAbout);
break;

case IDM_BITMAPL:
wPrevitem = wPrevBitmap;
wPrevBitmap = wParam;
GetObject(hBitmapl, 16, (LPSTR) &Bitmap);
SelectObject(hMemoryDC, hBitmapl);
break;

case IDM_BITMAP2:
wPrevItem = wPrevBitmap;
wPrevBitmap = wParam;
GetObject(hBitmap2, 16, (LPSTR) &Bitmap);
SelectObject(hMemoryDC, hBitmap2); :
break; :

case IDM_BITMAP3:
wPrevitem = wPrevBitmap;
wPrevBitmap = wParam;
GetObject(hBitmap3, 16, (LPSTR) &Bitmap);
hOQurBitmap = SelectObject(hMemoryDC, hBitmap3);
break;

case IDM_PATTERNI:
wPrevitem = wPrevPattern;
wPrevPattern = wParam;
DeleteObject(hBrush);
hBrush = CreatePatternBrush(hPatternl);
InvalidateRect(hWnd, (LPRECT) NULL, TRUE);
UpdateWindow(hWnd);
break;

case IDM_PATTERNZ:
wPrevItem = wPrevPattern;
wPrevPattern = wParam;
DeleteObject(hBrush);
hBrush = CreatePatternBrush(hPattern2);
InvalidateRect(hWnd, (LPRECT) NULL, TRUE);
UpdateWindow(hWnd) ;
break;

case IDM_PATTERN3:
wPrevitem = wPrevPattern;
wPrevPattern = wParam;
DeleteObject(hBrush); A
hBrush = CreatePatternBrush(hPattern3);

Bitmaps 11-27

InvalidateRect(hWnd, (LPRECT) NULL, TRUE);
UpdateWindow(hWnd);
break;

case IDM_PATTERN4:
wPrevIitem = wPrevPattern;
wPrevPattern = wParam;
DeleteObject(hBrush);
hBrush = CreatePatternBrush(hPattern4);
InvalidateRect(hWnd, (LPRECT) NULL, TRUE);
UpdateWindow(hWnd);
break;

case IDM_BLACKONWHITE:
wPrevitem = wPrevMode;
wPrevMode = wParam;
fStretchMode = BLACKONWHITE;
break;

case IDM_WHITEONBLACK:
wPrevIitem = wPrevMode;
wPrevMode = wParam;
fStretchMode = WHITEONBLACK;
break;

case IDM_COLORONCOLOR:
wPrevitem = wPrevMode;
wPrevMode = wParam;
fStretchMode = COLORONCOLOR;
break;
)

CheckMenultem(GetMenu(hWnd), wPrevItem, MF_UNCHECKED);
CheckMenulItem(GetMenu(hWnd), wParam, MF_CHECKED);
break;

Note that this new WM_COMMAND case handles the IDM_ABOUT case using
a switch statement rather than an if statement.

11.6.11 Modify the Make File

The resource file BITMAP.RES depends on the bitmap files DOG.BMP and
CAT.BMP. To ensure that the Resource Compiler updates BITMAP.RES when-
ever DOG.BMP or CAT.BMP change, add the following to the make file:

BITMAP.RES: BITMAP.RC BITMAP.H DOG.BMP CAT.BMP
RC -r BITMAP.RC

You need to modify the LINK command line in the make file to include the
SELECT.LIB library file. This file contains the import declarations for the selec-
tion routines that are used with the WM_LBUTTONUP, WM_MOUSEMOVE,

11-28 Guide to Programming

and WM_LBUTTONDOWN cases. You create the library as described in
Chapter 20, “Dynamic-Link Libraries.”

To include the SELECT.LIB library file, modify the LINK command line so that
it looks like this:

LINK /NOD BITMAP, , , SLIBCEW LIBW SELECT.LIB, BITMAP.DEF

11.6.12 Compile and Link

After making the necessary changes, compile and link the Bitmap application.
Start Windows, then start the Bitmap application.

To display the “dog” or “cat” bitmaps, depress the left mouse button, drag the
mouse to form a rectangle, and release the button.

Use the menus to change the background and the stretching mode. Note the ef-
fect of the stretching mode on the “dog” and “cat” bitmaps.

11.7 Summary

This chapter explained how to create and use monochrome and color bitmaps. A
bitmap is an image formed by a pattern of bits. In Windows, there are two kinds
of bitmaps: device-dependent and device-independent. The simplest way to use a
bitmap is to draw it using SDKPaint, then add it to your application’s resources
and load it using the LoadBitmap function. There are also several methods your
application can use to create and display bitmaps during run time. The applica-
tion can use GDI output to draw each bit. It can also initialize the bits in a bitmap
by using an array of bits, or by using the image in an existing device-independent
bitmap.

- Windows provides several functions for displaying and manipulating bitmaps.
You can also use a bitmap as a menu item, or as a menu checkmark.

For more information on topics related to bitmaps, see the following:

Topic Reference

Selection functions Guide to Programming. Chapter 6, “The Cursor,
the Mouse, and the Keyboard”

Guide to Programming: Chapter 20, “Dynamic-
Link Libraries”

Using bitmaps in Guide to Programming: Chapter 7, “Menus”
menus

Bitmaps 11-29

Topic

Bitmap functions

Using SDKPaint

Reference

Reference, Volume I: Chapter 2, “Graphics Device
Interface Functions” and Chapter 4, “Functions
Directory”

Tools: Chapter 4, “Designing Images: SDKPaint”

Chapter | Printing

Most applications provide a way for users to get printed copies of their program
data. In most environments, your application must deal with the varied capabili-
ties and requirements of many different printers. In Microsoft Windows, your
application need not provide any printer-specific code; it can simply print to the
current printer. Windows, and the Windows printer drivers, translate your appli-
cation’s print request to information each printer can use.

This chapter covers the following topics:

m Printing in the Windows environment
® Getting information about the printer

® Printing a line of text |

® Printing a bitmap

m Processing printing errors

m Canceling print operations

® Using banding to print graphics images

This chapter also explains how to create a sample application, PrntFile, that
illustrates many of the concepts explained in the chapter.

12.1 Printing in the Windows Environment

In Windows, your application does not print by interacting directly with the
printer. Instead, you print by sending output to a printer device context. This
means that your application need not concern itself with each printer’s specific
capabilities or requirements.

Printing in Windows is handled by GDI. In general, the procedure for printing
information is similar to that for displaying information; you get a handle to a
device context, then send output to that device context. Normally, an application
follows these steps in order to print to the current printer:

1. The application first retrieves information about the current printer, such as
its type, device driver, and printer port, from the WIN.INI initialization file.

This information is necessary in order to create a device context for the
current printer.

12-2 Guide to Programming

2. When you send output to a printer device context, Windows activates the
print spooler to manage your print request.

3. Your application uses printer escapes to communicate with the printer’s
device driver.

12.1.1 Using Printer Escapes

Your application uses escapes to communicate with the device driver associated
with the printer. These sequences tell the device driver what to do, and also
gather printer-specific information, such as page size, for the application. To
send escape sequences to the device driver, the application uses the Escape
function.

For example, to tell the printer device driver to start a print request, use the
Escape function with the STARTDOC escape. The following example sends
the STARTDOC escape to the printer device context identified by the variable
hPrinterDC; it starts a print request named “My Print Request”.

Escape(hPrinterDC, STARTDOC, @, (LPSTR) "My Print Request", @L);

When sending output to the printer, you follow the same general rules as for
other types of GDI output. If you are printing text, or primitives such as
rectangles, arcs, and circles, you can send them directly to the printer device
context. You can also send text and primitives to a memory device context.
This lets you create complex images before sending them to the printer.

12.2 Retrieving Information About the Current Printer

In order to create a printer device context, you need information about the
printer, such as its type and the computer port to which it is connected. The
Windows Control Panel application adds information about the current printer to
the device= field in the [windows] section of the WIN.INI file. Any application
can retrieve this information by using the GetProfileString function. You can
then use the information with the CreateDC function to create a printer device
context for a particular printer on a particular computer port.

Printer information from the WIN.INI file consists of three fields, separated by
commas:

m The type of the current printer (for example, “EPSON”)

m The device driver for the current printer (for example, “EPSON FX-80")

m The current printer port (for example, LPT1:)

The following example shows how to retrieve the printer information and divide
the fields into separate strings:

Printing 12-3

char pPrintInfo[8071;
LPSTR 1pTemp;

LPSTR TpPrintType;
LPSTR TpPrintDriver;
LPSTR 1pPrintPort;

© GetProfileString("windows",
"device",
pPrintiInfo,
(LPSTR) NULL, 8@);
ipTemp = 1pPrintType = pPrintlInfo;
1pPrintDriver = 1pPrintPort = @;
@ while (*1pTemp) {
© if (*IpTemp == ',") |
*1pTemp++ = @;
O while (*1pTemp == ' ')
1pTemp++;
if (I1pPrintDriver)
1pPrintDriver = 1pTemp;
else {
1pPrintPort = 1pTemp;
break;

}
else
1pTemp=AnsiNext(1pTemp);
}

© hPr = CreateDC(1pPrintDriver,
pPrinterType,
1pPrintPort,
(LPSTR) NULL);

}

In this example:

© The GetProfileString function retrieves the device= field from the
[windows] section of the WIN.INI file. The function then copies the line to
the pPrintInfo array.

@ A while statement divides the line into three separate fields: the printer type,
the printer device-driver name, and the printer port.

© Because the fields are separated by commas, an if statement checks for
a comma and, if necessary, replaces the comma with a zero in order to
terminate the field.

12-4 Guide to Programming

O Another while statement skips any leading spaces in the next field.

Each pointer—IpPrintType, lpPrintDriver, and IpPrintPort—receives the
address of the beginning of its respective field.

© These pointers are then used in the CreateDC function to create a printer
device context for the current printer.

12.3 Printing a Line of Text

Printing a single line of text requires the following steps:

1. Create the device context for the printer.
. Start the print request.

. Print the line.

. Start a new page.

. End the print request.

A U A WN

. Delete the device context.

The following example shows how to print a single line of text on an Epson
FX-80 printer that is connected to the printer port, LPT1:

@ hPr = CreateDC("EPSON",
"EPSON FX-80",
“LPT1:", :
(LPSTR) NULL);

if (hPr != NULL) {
® Escape(hPr, STARTDOC, 5, (LPSTR) "Test", OL);
© TextOut(hPr, 1@, 18, "A single line of text.", 22);
O Escape(hPr, NEWFRAME, @, OL, OL);
© Escape(hPr, ENDDOC, @, OL, OL);
@ DeleteDC(hPr);
}

In this example:

© The CreateDC function creates the device context for the printer, and returns
a handle to the printer device context. This example stores the handle in the
variable hPr. When calling CreateDC, an application must supply the first
three parameters; the fourth parameter can be set to NULL. In this example,
the application supplies the following parameters:

a The first parameter specifies the name of the device driver, “EPSON”.

Printing 12-5

(5]

(6]

m The second parameter specifies the name of the printer device driver,
“EPSON FX-80”. :

s The third parameter specifies the printer port, “LPT1:”.

m The last parameter to CreateDC specifies how to initialize the printer.
NULL specifies the default print settings. (Chapter 17, “Print Settings,”
explains how to specify print settings that differ from the default.)

The Escape function starts the print request by sending the STARTDOC
escape sequence to the device context. The name “Test” identifies the re-
quest; the third parameter is the length of the string “Test,” plus a null termi-
nator. Because the other parameter is not used, it is set to zero.

TextOut copies the line of text to the printer. The line will be placed starting
at the coordinates (10,10) on the printer paper (the printer coordinates are al-
ways relative to the upper-left corner of the paper). The default units are
printer pixels.

The NEWFRAME escape completes the page and signals the printer to ad-
vance to the next page. Because the other parameters are not used, they are
set to zero.

The ENDDOC escape signals the end of the print request. Because the other
parameters are not used, they are set to zero.

The DeleteDC function deletes the printer device context.

NOTE You should not expect the line of text to be printed immediately. The spooler col-
lects all output for a print request before sending it to the printer, so actual printing does not
begin until after the ENDDOC escape.

12.4 Printing a Bitmap

Printing a bitmap is similar to printing a line of text. To print a bitmap, follow
these steps:

1.

U

Create a memory device context that is compatible with the bitmap.

2. Load the bitmap and select it into the memory device context.
3.
4

. Use the BitBIt function to copy the bitmap from the memory device context

Start the print request.

to the printer.

. End the print request.

6. Remove the bitmap from the memory device context and delete the device

context.

12-6 Guide to Programming

The following example shows how to print a bitmap named “dog” that has been:
added to the resource file:

HDC hDC;
HDC hMemoryDC;
HDC hPr;
BITMAP Bitmap;

@ hDC = GetDC(hWnd);
hMemoryDC = CreateCompatibleDC(hDC);
ReleaseDC(hWnd, hDC);

® nhBitmap = LoadBitmap(hInstance, "dog");
© GetObject(hBitmap, sizeof(BITMAP), (LPSTR) &Bitmap);
O h01dBitmap = SelectObject(hMemoryDC, hBitmap);

© hPr = CreateDC("EPSON",
"EPSON FX-8@",
"LPT1:",
(LPSTR) NULL);

if (hPr != NULL) {
Escape (hPr, STARTDOC, 4, (LPSTR) "Dog", @L);
® BitB1t(hPr, 18, 30,
Bitmap.bmWidth,
Bitmap.bmHeight,
hMemDC, @, @, SRCCOPY);
@ Escape(hPr, NEWFRAME, @, @L, OL);
- Escape(hPr, ENDDOC, @, OL, OL);
DeleteDC(hPr);
}

© SelectObject(hMemoryDC, hO1dBitmap);
DeleteDC(hMemoryDC);
DeleteObject(hBitmap);

In this example:

© The application retrieves the current window’s display context using the
GetDC function. The CreateCompatibleDC function then creates a memory -
device context that is compatible with that display context. After creating the
memory device context, the application releases the window’s display context
using the ReleaseDC function.

@ The LoadBitmap function loads the bitmap “dog” from the application’s
resources.

Printing 12-7

® The GetObject function retrieves information about the bitmap, such as its
height and width. These values are used later in the BitBlt function.

©

The SelectObject function selects the bitmap into the memory device context.

@ The statements for creating the printer device context and starting the print
request are identical to those used in the example that printed a line of text.

O To send the bitmap image to the printer, the application uses the BitBIt func-
tion. BitBlt copies the bitmap from the memory device context to the printer,
placing the bitmap at the coordinates (10,30). (The BitBIt function takes the
place of the TextOut function, used in the previous example to print a line of
text.)

@ The statements that send the NEWFRAME and ENDDOC escape sequences
are identical to those used in the previous example.

O After the print request is complete, the SelectObject and DeleteDC functions
remove the bitmap from selection and delete the memory device context.
Since the bitmap is no longer needed, the DeleteObject function removes it
from memory.

12.5 Processing Errors During Printing

Although GDI and the spooler attempt to report all printing errors to the user,
your application must be prepared to report out-of-disk and out-of-memory condi-
tions. When there is an error in processing a particular escape, such as START-
DOC or NEWFRAME, the Escape function returns a value less than zero.
Qut-of-disk and out-of-memory errors usually occur on a NEWFRAME escape.
In this case, the return value includes an SP_ NOTREPORTED bit. If the bit is
clear, GDI has already notified the user. If the bit is set, the application needs to
notify the user. The bit is typically set for general-failure, out-of-disk-space, and
out-of-memory errors.

The following example shows how to process unreported errors during printing:

int status;

status = Escape(hPrDC, NEWFRAME, @, @L, OL);

@ if (status < @) { /* Any unreported errors? */
if (status & SP_NOTREPORTED) { . /* Yes */
® switch (status) f
case SP_OUTOFDISK:
/* inform user of situation
and perform any necessary processing */
break;

12-8 Guide to Programming

}

case SP_QUTOFMEMORY:
/* inform user of situation
and perform any necessary processing */
break;
default:
/* inform user of situation
and perform any necessary processing */
break;
}
}

O else /* Reported, but may need further action */
switch (status|SP_NOTREPORTED) {

case SP_OUTOFDISK:
/* perform any necessary processing */
break;

case SP_OUTOFMEMORY:
/* perform any necessary processing */
break;

In this example:.

@ The first if statement checks to see if the value that the Escape function re-

turns, status, is less than zero and the SP_ NOTREPORTED bit is set. (When
Windows sets the SP_ NOTREPORTED bit, it indicates that this error has not
been reported to the user.) If these two conditions are met, then the applica-
tion must process the unreported error.

In this example, the application uses a switch to provide special responses
to the SP_OUTOFDISK error and the SP_OUTOFMEMORY error. For all
other unreported errors, the application simply provides a general failure alert.

If the status variable is less than zero but SP_NOTREPORTED is not set,
then Windows has already reported the error to the user. However, the appli-
cation can still process these reported errors. ‘

In most cases, the correct response to an unreported error is to display a message
box explaining the error and to terminate the print request. If the error has al-
ready been reported, you can terminate the request, then restart it after additional
disk or memory space has been made available.

12.6 Canceling a Print Operation

Applications should always give the user a chance to cancel a lengthy printing
operation. A common way to do this is to display a dialog box when the printing
operation begins. During printing, the user can click the dialog’s Cancel button to
cancel the print operation.

Printing 12-9

To provide a dialog box that lets the user cancel a printing operation:

1. In your application’s resource script (.RC) file, define a modeless AbortDlg
dialog box that lets the user cancel a print operation.

2. In your application source code, provide a dialog function to drive the
AbortDlg dialog box.

3. In your application source code, provide an Abort function that processes
messages for the AbortDlg dialog box.

4. Modify your application’s printing procedure so that it displays the AbortDlg
dialog box and correctly processes messages.

The sections that follow describe each step in detail.

12.6.1 Defining an Abort Dialog Box

In your application’s resource script file, provide a dialog-box template for the
Abort dialog box. For example:

AbortDlg DIALOG 20,20,90, 64
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "PrntFile”

BEGIN
DefPushButton "Cancel", IDCANCEL, 29, 44, 32, 14, WS_GROUP
Ctext "Sending", -1, g, 8, 90, 8
Ctext "text", . IDC_FILENAME, @, 18, 90, 8
Ctext "to print spooler.", -1, g, 28, 90, 8
END

12.6.2 Defining an Abort D‘ialag Function

In your application source code, provide a dialog function for the Abort dialog
box. The function should process the WM_INITDIALOG and WM_COM-
MAND messages. To let the user choose the Cancel button with the keyboard,
the function takes control of the input focus when the dialog box is initialized. It
then ignores all messages until a WM_COMMAND message appears. Command
input causes the function to destroy the window and set the abort flag to TRUE.
The following example shows the required statements for the dialog function:

BOOL bAbort=FALSE; /* global variable */

int FAR PASCAL AbortDlg(hWnd, msg, wParam, 1Param)
HWND hWnd;

unsigned msg;

WORD wParam;

12-10 Guide to Programming

LONG 1Param;
{

/* Watch for Cancel button, RETURN key,
ESCAPE key, or SPACE BAR */
if (msg == WM_COMMAND) ¢

/* User has aborted operation */
bAbort = TRUE;

/* Destroy Abort dialog box */
DestroyWindow(hWnd) ;
return (TRUE);
}
else if (msg == WM_INITDIALOG) ¢{

/* Need input focus for user input */
SetFocus{hWnd);
return (TRUE);
}
return (FALSE);

12.6.3 Defmmg an Abort Function

In your application code, provide an abort function to process messages for the
Abort dialog box.

An abort function retrieves messages from the application queue and dispatches
them if they are intended for the Abort dialog box. The function continues to
loop until it encounters the WM_DESTR