
Microsoft®

indows~
Guide to Programming

PROGRA \1 !\1ER"S
REFERE[\;CE
LIBRARY

New for Version 3

'---..

Microsoft®

·indows~
Guide to Programming

New for Version 3

Written, edited, and produced by
Microsoft Corporation

Distributed by Microsoft Press

MICROSOFT®
WlNDOWSTM
;PROGRAMM13R'~
R13F13R13NCE
LIBRARY

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software described in this docu
ment is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. It is against
the law to copy the software on any medium except as specifically allowed in the license
or nondisclosure agreement. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying and record
ing, for any purpose without the express written permission of Microsoft.

PUBLISHED BY

Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way, Redmond, Washington 98052-6399

© Copyright Microsoft Corporation, 1990. All rights reserved.

Library of Congress Cataloging-in-Publication Data

Microsoft Windows : a guide to programming I Microsoft Corporation.
p. cm. -- (Microsoft Windows programmer's reference library)

Includes index.
ISBN 1-55615-308-2
1. Microsoft Windows (Computer programs)

II. Series.
QA76.76.W56M53 1990
005.4'3--dc20

Printed and bound in the United States of America.

23456789FGFG43210

I. Microsoft.

90-6035
CIP

Distributed to the book trade in Canada by General Publishing Company, Ltd.
Distributed to the book trade outside the United States and Canada
by Penguin Books Ltd.
Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Lyd., 182-190 Wairau Road, Auckland 10, New Zealand

Microsoft, MS, MS-DOS, GW-BASIC, QuickC, CodeView, and XENIX are registered trademarks and
Windows, Windows/286, Windows/386, and Press are trademarks of Microsoft Corporation.

Epson is a registered trademark of Epson America, Inc.

IBM and PC/AT are a registered trademarks and PC/XT is a trademark of International Business
Machines Corporation.

Intel is a registered trademark and 386 is a trademark of Intel Corporation.

Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.

Nokia is a trademark of Nokia Corporation.

Paintbrush is a trademark of ZSoft Corporation.

Document No. SY03146-300-ROO-1089

Foreword
The Microsoft Windows Programmer's Reference Library is the core documenta
tion for Windows programmers that Microsoft provides with the Microsoft®
Windows™ Software Development Kit (SDK). The information in these books is
the most accurate and up-to-date information on Windows programming avail
able anywhere. The information represents everything Microsoft knows about
programming Windows version 3.0 with Microsoft C (the recommended
Windows programming language) and the tools we provide in the SDK.

Certain example programs and tools referred to in this book are available only
in the Microsoft Windows SDK or Microsoft C 6.0 Professional Development
System. However, if you are not currently programming for Windows, these
volumes will still provide an excellent overview of the services that Microsoft
Windows and the SDK provide to programmers-Microsoft Windows: A Guide
to Programming and Microsoft Windows Programming Tools in particular-and
an introduction to graphical user interface (GUI) programming. It is our hope
that once you have "kicked the tires" of the Windows SDK by reading these
books, you'll be thoroughly convinced-and already prepared-to begin
Windows programming the Microsoft way.

Then as you continue to explore the Windows programming environment,
Microsoft Windows Programmer's Reference will answer many of your program
ming questions. The book provides information on each Windows application
programming interface (API) and describes its calls and services. For many
Windows programmers, this book is the most frequently "thumbed," dog-eared,
and marked-up volume in the set.

The Microsoft Windows Software Development Kit is available from your
Microsoft product dealer. For further information on the Windows SDK or to
obtain the name of your nearest Microsoft dealer, call the Microsoft Information
Center at 1-800-426-9400.

The Windows Software Development Kit
The Windows high-level application programming interface consists of the
functions, messages, data structures, data types, and files you need to develop
applications that unleash the full capabilities of personal computers using Intel®.
286 and 386™ processors. The API's device independence ensures compatibility
with a broad array of displays, printers, and other devices, allowing you to con
centrate on your applications and their features and implementation. Develop
ment tasks are handled automatically, and advanced tools enable you to design
icons, dialog boxes, fonts, menus, and other interface elements.

Foreword

Here are some of the new or improved features:

• Improved and comprehensive Guide to Programming, Advanced Inteiface
Design Guide, Reference, and Tools manuals.

• More source-code examples for hands-on learning.

• Improved tools for editing visual resources.

• New online help-engine facility so you can include a Help system with your
applications.

• The Microsoft CodeView® for Windows debugger-the powerful yet easy
to-use source-code debugger for any Windows application.

• New code-execution profiler and segment-swapping analysis facility.

Take advantage of the success of the Microsoft Windows environment-use the
Microsoft Windows Software Development Kit to develop powerful, feature-rich
graphical applications.

Other Recommended Reading
The following books are recommended for efficient Windows programming and
are available from Microsoft Press™:

• Programming Windows. Charles Petzold. 862 pages, softcover. An updated
second edition will be available in October 1990.

• Windows: Programmer's Problem Solver. Richard Wilton. 400 pages, soft
cover. Available November 1990.

• Microsoft C Run-Time Library Reference. Covers version 6. Microsoft
Corporation. 852 pages, softcover.

Table of Contents
Introduction

What Should You Know Before You Start? xxi

About This Guide .. xxii

What Tools Do You Need? xxiv

Using the Sample Applications xxv

Document Conventions xxvi

PART 1 Introduction to Writing Windows Applications

Chapter 1 An Overview of the Windows Environment
1.1 Microsoft Windows and DOS: a Comparison 1-1

1.1.1 The User Interface 1-2

1.1.2 Queued Input 1-2

1.1.3 Device-Independent Graphics 1-3
1.1.4 Multitasking . 1-4

1.2 The Windows Programming Model .. 1-5

1.2.1 Windows 1-5

1.2.2 Menus 1-6

1.2.3 Dialog Boxes 1-6

1.2.4 The Message Loop 1-7

1.3 The Windows Libraries . 1-9

1.4 Building a Windows Application 1-10

1.5 Software Development Tools 1-12

1.5.1 C Compiler 1-12

1.5.2 The Linker 1-12

1.5.3 The SDK Resource Editors 1-13
1.5.4 The Resource Compiler 1-14

1.5.5 Debugging and Optimization Tools 1-14

1.5.6 The Program Maintainer 1-15

1.6 Tips for Writing Windows. Applications 1-16

1.7 Summary .. 1-18

vi Contents

Chapter-2- X-GeriericWiii(lo-ws-Applicafion
2.1 The Generic Application 2-1
2.2 A Windows Application 2-2
2.3 The WinMain Function 2-2

2.3.1 Data Types and Structures in Windows 2-3
2.3.2 Handles 2-4
2.3.3 Instances 2-5

2.3.4 Registering the Window Class 2-6
2.3.5 Creating a Window 2-9
2.3.6 Showing and Updating a Window 2-11
2.3.7 Creating the Message Loop 2-11
2.3.8 Yielding Control 2-13
2.3.9 Tenninating an Application 2-13

2.3.10 Initialization Functions 2-14
2.3.11 The Application Command-Line Parameter 2-16

2.4 The Window Function 2-16
2.5 Creating an About Dialog Box 2-18

2.5.1 Creating a Dialog-Box Template 2-18
2.5.2 Creating an Include File 2-20
2.5.3 Creating a Dialog Function 2-20
2.5.4 Defining a Menu with an About Command 2-21

2.5.5 Processing the WM_COMMAND Message 2-22
2.6 Creating a Module-Definition File 2-24
2.7 Putting Generic Together 2-26

2.7.1 Create the C-Language Source File 2-26
2;7.2 Create the Header File 2-32
2.7.3 Create the Resource Script File 2-32

2.7.4 Create the Module~Definition File 2-33
2.7.5 Create a Make File 2-33
2.7.6 Run the MA~E Program 2-35

2.8 Using Generic as a Template 2-35
2.9 Summary. .. 2-36

Contents vii

PART 2 Programming Windows Applications

Chapter 3 Output to a Window
3.1 The Display Context 3-1

3.1.1 Using the GetDC Function 3-2

3.1.2 The WM_PAINT Message 3-2

3.1.3 Invalidating the Client Area 3-3
3.1.4 Display Contexts and Device Contexts 3-4

3.1.5 The Coordinate System 3-4
3.2 Creating, Selecting, and Deleting Drawing Tools 3-5
3.3 Drawing and Writing 3-6

3.4 A Sample Application: Output 3-8
3.4.1 Add New Variables 3-8
3.4.2 Add the WM_CREATE Case 3-9

3.4.3 Add the WM_PAINT Case 3-9
3.4.4 Modify the WM_DESTROY Case 3-13

3.4.5 Compile and Link 3-14

3.5 Summary .. 3-14

Chapter 4 Keyboard and Mouse Input
4.1 Windows Input Messages 4-1

4.1.1 Message Formats 4-2

4.1.2 Keyboard Input 4-2
4.1.3 Character Input 4-3

4.1.4 Mouse Input 4-3
4.1.5 Timer Input 4-4

4.1.6 Scroll-Bar Input 4-5

4.1.7 Menu Input 4-6

4.2 A Sample Application: Input 4-6
4.2.1 How the Input Application Displays Output 4-7
4.2.2 Add New Variables 4-8

4.2.3 Set the Window-Class Style 4-9

4.2.4 Modify the CreateWindow Function 4-9
4.2.5 Set the Text Rectangles 4-9

4.2.6 Add the WM_CREATE Case 4-10
4.2.7 Modify the WM_DESTROY Case 4-10

viii Contents

4.2.8

4.2.9
4.2.10
4.2.11

4.2.12

4.2.13
4.2.14
4.2.15

Add the WM~KEYUPanaWM ____ KEYDOWN Cases . 4-10

Add the WM_ CHAR Case A-II

Add the WM_MOUSEMOVE Case A-II

Add the WM_LBUTTONUP and
WM_LBUTTONDOWN Cases 04-11
Add the WM~LBUTTONDBLCLK Case 4-12

Add the WM_TIMER Case 4-12
Add the WM_HSCROLL and WM_ VSCROLL Cases 4-12

Add the WM_PAINT Case 4-13

4.2.16 Compile and Link 4-13
4.3 Summary ... 4-14

Chapter 5 Icons
5.1 What is an Icon? .. 5-1

5.1.1 Using Built-In Icons 5-2

5.2 Using Your Own Icons 5-3
5.2.1 Creating an Icon File 5-3

5.2.2 Defining the Icon Resource 5-3

5.2.3 Loading the Icon Resource 5-3
5.3 Specifying a Class Icon 5-4

504 Displaying Your Own Icons 5-4

5.5 Displaying an Icon in a Dialog Box 5-6
5.6 A Sample Application: Icon 5-7

5.6.1 Add an ICON Statement 5-7

5.6.2 Add an ICON Control Statement 5-7

5.6.3 Set the Class Icon 5-8
5.604 Add MYICON.lCO to the Make File 5-8

5.6.5 Compile and Link 5-8

5.7 Summary ... 5-8

Chapter 6 The Cursor, the Mouse, and the Keyboard
6.1 Controlling the Shape of the Cursor 6-1

6.1.1 Using Built-In Cursor Shapes 6-1

6.1.2 Using Your Own Cursor Shapes 6-2
6.2 Displaying the Cursor 6-3

6.2.1 Specifying a Class Cursor 6-3

6.2.2 Explicitly Setting the Cursor Shape 6-4

6.2.3 Example: Displaying the Hourglass on a Lengthy
Operation ~ 6-4

6.3 Letting the User Select Information with the Mouse 6-5

6.3.1 Starting a Graphics Selection 6-6

6.3.2 Showing the Selection 6-9

6.3.3 Ending the Selection 6-10

6.4 Using the Cursor with the Keyboard 6-11

6.4.1 U sing the Keyboard to Move the Cursor 6-11

6.4.2 Using the Cursor when No Mouse Is Available 6-13

6.5 A Sample Application: Cursor 6-14

6.5.1 Add the CURSOR Statement 6-16

6.5.2 Add New Variables 6-16

6.5.3

6.5.4

6.5.5

6.5.6

6.5.7

6.5.8

6.5.9

6.5.10

Set the Class Cursor 6-16

Prepare the Hourglass Cursor 6-17
Add a Lengthy Operation' 6-17

Add the WM_LBUTTONDOWN,
WM_MOUSEMOVE, and WM_LBUTTONUP
Cases 6-18

Add the WM_KEYDOWN and WM_KEYUP Cases . 6-20

Add the WM_PAINT Case 6-21

Add BULLSEYE.CUR to the Make File. '" 6-22

Compile and Link 6-22

6.6 Summary .. 6-23

Chapter 7 Menus
7.1 What is a Menu? 7-1
7.2 Defining a Menu 7-2

7.2.1 Menu IDs 7-3

7.3 Including a Menu in Your Application 7-4

7.3.1 Specifying the Menu for a Window Class 7-4

7.3.2 Specifying a Menu for a Specific Window 7-4

7.4 Processing Input from a Menu 7-6

7.5 Working with Menus from Your Application 7-7

7.5.1 Enabling and Disabling Menu Items 7-7
7.5.2 Checking and Unchecking Menu Items 7,.8

7.5.3 Adding Menu Items 7-9

7.5.4 Changing Existing Menus 7-10

7.5.5 Deleting a Menu Item 7-11

Contents ix

x Contents

7~5.6 Using a Bifmap as aM-enll Item 7-12

7.5.7 Replacing a Menu 7-13

7.5.8 Creating a New Menu 7-14

7.5.9 Initializing a Menu 7-14
7.6 Special Menu Features 7-15

7.6.1 Providing Menu-Accelerator Keys 7-16
7.6.2 Using Cascading Menus 7-19
7.6.3 Using Floating Pop-up Menus 7-21

7.6.4 Designing Your Own Checkmarks 7-22
7.6.5 Using Owner-Draw Menus 7-24

7.7 A Sample Application: EditMenu 7-25

7.7.1 Add New Menus to the Resource File 7-26
7.7.2 Add Definitions to the Include File 7-27

7.7.3 Add an Accelerator Table to the Resource Script File. 7-28

7.7.4 Add a New Variable 7-28

7.7.5 Load the Accelerator Table 7-28

7.7.6 Modify the Message Loop 7-29

7.7.7 Modify the WM_COMMAND Case 7-29
7.7.8 Compile and Link 7-30

7.8 Summary ... 7-30

Chapter 8 Controls
8.1 What is a Control? 8-1

8.2 Creating a Control 8-1
8.2.1 Specifying a Control Class 8-2

8.2.2 Choosing a Control Style 8-3
8.2.3 Setting the Parent Window 8-4

8.2.4 Choosing a Control ID 8-4

8.3 Using a Control .. 8-5

8.3.1 Receiving User Input 8-5
8.3.2 Sending Control Messages 8-5

8.3.3 Disabling and Enabling Input to a Control 8-6
8.3.4 Moving and Sizing a Control 8-6

8.3.5 Destroying a C~mtrol 8-7

8.4 Creating and Using Some Common Controls 8-7

8.4.1 Button Controls 8-7
8.4.2 Static Controls 8-12

Contents xi

8.4.3 List Boxes 8-12
8.4.4 Combo Boxes 8-22
8.4.5 Edit Controls 8-23
8.4.6 Scroll Bars 8-26

8.5 A Sample Application: EditCntl 8-28

8.5.1 Add a Constant to the Include File 8-29
8.5.2 Add New Variables 8-29
8.5.3 Add a CreateWindow Function 8-29
8.5.4 Modify the WM_COMMAND Case 8-31
8.5.5 Add a WM_SETFOCUS Case 8-31
8.5.6 Add a WM_SIZE Case 8-31
8.5.7 Compile and Link 8-32

8.6 Summary .. 8-32

Chapter 9 Dialog Boxes
9.1 What Is a Dialog Box? 9-1

9.1.1 Modal Dialog Boxes 9-2
9.1.2 Modeless Dialog Boxes 9-2

9.2 Using a Dialog Box ~ 9-3
9.2.1 Creating aDialog Function 9-4
9.2.2 Using Controls in Dialog Boxes 9-5

9.3 A Sample Application: FileOpen 9-5

9.3.1 Add Constants to the Include File 9-6
9.3.2 Create the Open Dialog-Box Template 9-7
9.3.3 Add New Variables ; 9-8

9.3.4 Add the IDM_OPEN Case 9-8
9.3.5 Create the OpenDlg Function 9-9
9.3.6 Add Helper Functions 9-12

9.3.7 Export the Dialog Function 9-14
9.3.8 Compile and Link 9-14

9.4 Summary .. 9-14

Chapter 10 File Input and Output
10.1 Rules for Handling Files in the Windows Environment 10-1

10.2 Creating Files .. 10-3
10.3 Opening Existing Files 10-4
10.4 Reading From and Writing To Files 10-5

xii Contents

- . ------ rO~5---Reopening-Files--~-................................. -. . .. 10-5--
10.6 Prompting for Files 10-6
10.7 Checking File Status 10-6
10.8 A Simple File Editor: EditFile 10-6

10.8.1 Add a Constant to the Include File 10-7

10.8.2 Add a SaveAs Dialog Box 10-7
10.8.3 Add Include Statements 10-8
10.8.4 Add New Variables 10-8
10.8.5 Replace the WM_COMMAND Case 10-9
10.8.6 Add the WM_QUERYENDSESSION and

WM_ CLOSE Cases 10-11
10.8.7 Modify the OpenDlg Dialog Function 10-12
10.8.8 Add the SaveAsDlg Dialog Function 10-13
10.8.9 Add Helper Functions 10-14
10.8.10 Export the SaveAsDlg Dialog Function 10-17

10.8.11 Add Space to the Heap 10-18
10.8.12 Compile and Link 10-18

10.9 Summary .. 10-18

Chapter 11 Bitmaps
11.1 What is a Bitmap? 11-1

11.2 Creating Bitmaps 11-2
11.2.1 Creating and Loading Bitmap Files 11-2
11.2.2 Creating and Filling a Blank Bitmap 11-3

11.2.3 Creating a Bitmap with Hard-Coded Bits 11-5
11.2.4 Drawing a Color Bitmap 11-8

11.3 Displaying Bitmaps 11-9

11.3.1 Using the BitBlt Function to Display a Memory
Bitmap 11-10

11.3.2 Stretching a Bitmap 11-11
11.3.3 Using a Bitmap in a Pattern Brush 11-12
11.3.4 Displaying a Device-Independent Bitmap 11-14
11.3.5 Using a Bitmap as a Menu Item 11-15

11.4 Adding Color to Monochrome Bitmaps 11-15
11.5 Deleting Bitmaps 11-16
11.6 A Sample Application: Bitmap 11-16

11.6.1 Modify the Include File 11-18

11.6.2 Add the Bitmap Resources 11-18

Contents xii;

11.6.3 Add the Bitmap, Pattern, and Mode Menus 11-18
11.6.4 Add Global and Local Variables 11-19
11.6.5 Add the WM_CREATE Case 11-20
11.6.6 Modify the WM_DESTROY Case 11-23
11.6.7 Add WM_LBUTTONUP, WM_MOUSEMOVE, and

WM_LBUTTONDOWN Cases 11-24
11.6.8 Add the WM_RBUTTONUPCase 11-25
11.6.9 Add the WM_ERASEBKGND Case 11-25
11.6.10 Modify the WM_COMMAND Case 11-25

11.6.11 Modify the Make File 11-27
11.6.12 Compile and Link 11-28

11.7 Summary ... 11-28

Chapter 12 Printing
12.1 Printing in the Windows Environment 12-1

12.1.1 Using Printer Escapes 12-2
12.2 Retrieving Information About the Current Printer 12-2
12.3 Printing a Line of Text 12-4
12.4 Printing a Bitmap 12-5
12.5 Processing Errors During Printing 12-7
12.6 Canceling a Print Operation 12-8

12.6.1 Defining an Abort Dialog Box 12-9
12.6.2 Defining an Abort Dialog Function 12-9
12.6.3 Defining an Abort Function 12-10

12.6.4 Performing an Abortable Print Operation 12-12
12.6.5 Canceling a Print Operation with the ABORTDOC

Escape 12-13
12.7 Using Banding to Print Images 12-13

12.8 A Sample Application: PrntFile 12-14
12.8.1 Add an AbortDlg Dialog Box 12-15
12.8.2 Add Variables for Printing 12-15

12.8.3 Add the IDM_PRINT Case 12-16
12.8.4 Create the AbortDlg and AbortProc Functions 12-18
12.8.5 Add the GetPrinterDC Function 12-19
12.8.6 Export the AbortDlg and AbortProc Functions 12-20
12.8.7 Compile and Link 12-20

12.9 Summary ... 12-21

xiv Contents

-- -Cfiaplef-I3----TfieClij}-6oara

13.1 Using the Clipboard 13-1
13.1.1 Copying Text to the Clipboard 13-2

13.1.2 Pasting Text from the Clipboard 13-4

13.1.3 Pasting Bitmaps from the Clipboard 13-7
13.1.4 The Windows Clipboard Application 13-9

13.2 Use Special Clipboard Features 13-9

13.2.1 Rendering Data on Request 13-10
13.2.2 Rendering Formats Before Termination 13-10

13.2.3 Registering Private Formats 13-10

13.2.4 Controlling Data Display in the Clipboard 13-11
13.3 A Sample Application: ClipText 13-14

13.3.1 Add New Variables 13-14

13.3.2 Modify the Instance Initialization Code 13-15
13.3.3 Add a WM_INITMENU Case ,13-15

13.3.4 Modify the WM_COMMAND Case 13-16
13.3.5 Add a WM_PAINT Case 13-18

13.3.6 Add the OutOfMemory Function 13-18

13.3.7 Compile and Link 13-19
13.4 Summary .. 13-19

PART 3 Advanced Programming Topics

Chapter 14 C and Assembly Language
14.1 Choosing a Memory Model 14-1
14.2 Using NULL ... 14-2

14.3 Using Command-Line Arguments and the DOS Environment .. 14-3

14.4 Writing Exported Functions 14-4
14.4.1 Creating a Callback Procedure 14-4
14.4.2 Creating the WinMain Function 14-5

14.5 Using C Run-Time Functions 14-6

14.5.1 Using Windows C Libraries 14-6
14.5.2 Allocating Memory 14-7

14.5.3 Manipulating Strings 14-7

14.5.4 Using File Input and Output 14-9

14.5.5 Using Console Input and Output 14-10

14.5.6 Using Graphics Functions 14-10
14.5.7 Using Floating-Point Arithmetic 14-10

14.5.8 Executing Other Applications 14-11
14.5.9 Using BIOS and MS-DOS Interface Functions 14-11
14.5.10 Eliminating C Run-Time Start-up Code 14-11

14.6 Writing Assembly-Language Code 14-13
14.6.1 Modifying the Interrupt Flag 14-15
14.6.2 Writing Exported Functions in Assembly Language . 14-16

14.6.3 Using the ES Register 14-17
14.7 Summary ... 14-18

Chapter 15 Memory Management
15.1 Using Memory 15-1

15.1.1 Using the Global Heap 15-2
15.1.2 Using the Local Heap 15-3
15.1.3 Working with Discardable Memory 15-5

15.2 Using Segments 15-6
15.2.1 Using Code Segments 15-7
15.2.2 The DATA Segment 15-8

15.3 A Sample Application: Memory 15-9
15.3.1 Split the C-Language Source File 15-9
15.3.2 Modify the Include File 15-10
15.3.3 Add New Segment Definitions 15-10
15.3.4 Modify the Make File 15-11
15.3.5 Compile and Link 15-12

15.4 Summary ... 15-12

Chapter 16 More Memory Management
16.1 Windows Memory Configurations 16-1

16.1.1 The Basic Memory Configuration 16-2
16.1.2 The EMS 4.0 Memory Configuration 16-4

16.1.3 The Windows Standard Mode Memory Configuration 16-9
16.1.4 The Windows 386 Enhanced Mode Memory

Configuration . 16-13
16.2 Using Data Storage in Windows Applications 16-16

16.2.1 Managing Automatic Data Segments 16-17
16.2.2 Managing Local Dynamic-Data Blocks 16-19

Contents xv

xvi Contents

162~3 Managing-G1615aTMeinoryBIocks· 16-24

16.2.4 Using Extra Bytes in Window and Class Data
Structures 16-31

16.2.5 Managing Resources 16-32

16.3 Using Memory Models 16-35

16.4 Using Huge Data 16-36

16.5 Traps to Avoid in Managing Program Data 16-37

16.6 Managing Memory for Program Code. 16-40

16.6.1 Using Code-Segment Attributes 16-40

16.6.2 Using Multiple Code Segments 16-41

16.6.3 Balancing Code Segments 16-41

16.6.4 The Order of Code Segments in the .DEF File 16-41

16.7 Summary .. 16-42

Chapter 17 Print Settings
17.1 How Windows Manages Print Settings 17-2

17.1.1 Print Settings and the DEVMODE Structure 17-2

17.1.2 Print Settings and the Printer Environment 17-3

17.2 Using Device-Driver Functions 17-4

17.3 Finding Out the Capabilities of the Printer Driver 17-5

17.4 Working with Print Settings 17-6

17.4.1 Specifying ExtDeviceMode Input and Output 17-7

17.4.2 Getting a Copy of the Print Settings 17-8

17.4.3 Changing the Print Settings 17-9

17.4.4 Tailoring Print Settings for Use with CreateDC 17-10

17.4.5 Changing the Print Settings Without Affecting Other
Applications 17-12

17.4.6 Prompting the User for Changes to the Print Settings 17-13

17.5 Copying Print Settings Between Drivers 17-14

17.6 Maintaining Your Own Print Settings 17-15

17.7 Working with Older Printer Drivers 17-15

17.8 Summary .. 17-16

Chapter 18 Fonts
18.1 WritingText ... 18-1

18.2 Using Color when Writing Text 18-2

18.3 Using Stock Fonts 18-2

Contents xvii

18.4 Creating a Logical Font 18-4
18.5 Using Multiple Fonts in a Line 18-5

18.6 Getting Information About the Selected Font 18-6
18.7 Getting Information About a Logical Font 18-7

18.8 Enumerating Fonts 18-8

18.9 Checking a Device's Text Capabilities 18-10
18.10 Adding a Font Resource 18-11
18.i 1 Setting the Text Alignment . 18-12

18.12 Creating Font-Resource Files 18-13
18.12.1 Creating Font Files 18-13
18.12.2. Creating the Font-Resource Script 18-14

18.12.3 Creating the Dummy Code Module 18-14

18.12.4 Creating the Module-Definition File , .. 18-15

18.12.5 Compiling and Linking the Font-Resource File 18-16
18.13 A Sample Application: ShowFont 18-16

18.14 Summary ... 18-17

Chapter 19 Color Palettes
i 9.1 What a Color Palette Does 19-1

19.2 How Color Palettes Work 19-2

19.3 Creating and Using a Logical Palette 19-4
19.3.1 Creating a LOGPALETTE Data Structure 19-4

19.3.2 Creating a Logical Palette 19-7

19.3.3 Selecting the Palette Into a Device Context 19-7
19.3.4 Realizing the Palette 19-7

19.4 Drawing With Palette Colors 19-8
19.4.1 Directly Specifying Palette Colors 19-8

19.4.2 Indirectly Specifying Palette Colors ,. 19-9

19.4.3 Using a Palette When Drawing Bitmaps 19-10
19.5 Changing a Logical Palette 19-11
19.6 Responding to Changes in the System Palette , 19-13

19.6.1 Responding to WM_QUERYNEWPALETTE 19-13

19.6.2 Responding to WM_PALETTECHANGED 19-14

19.7 Summary ... 19-16

Chapter 20 Dynamic-Link Libraries
20.1 What is a DLL? 20-1

xviii Conlenls

------------------20-:1:r --IJnporfCi6ranes-ana-DLLs-::~~ 20-2

20.1.2 DLL and Application Modules 20-3

20.1.3 DLLs and Tasks 20-4

20.1.4 DLLs and Stacks .. 20-4

20.1.5 How Windows Locates DLLs 20-5

20.2 When to Use a Custom DLL 20-6

20.2.1 Sharing Between Applications 20-6

20.2.2 Customizing an Application for Different Markets ... 20-8

20.2.3 Windows Hooks 20-9

20.2.4 Device Drivers 20-9

20.2.5 Custom Controls ~ 20-10

20.2.6 Project Management .. 20-19

20.3 Creating a DLL 20-19

20.3.1 Creating the C-Language Source File 20-20

20.3.2 Creating the Module-Definition File 20-26

20.3.3 Creating the Make File 20-27

20.4 Application Access to DLL Code 20-30

20.4.1 Creating a Prototype for the Library Function 20-30

20.4.2 Importing the Library Function 20-31

20.5 Rules for Windows Object Ownership 20-34

20.6 A Sample Library: Select .. 20-34

20.6.1 Create the Functions 20-36

20.6.2 Create the Initialization Routine 20-40

20.6.3 Create the Exit Routine. .. 20-41

20.6.4 Create the Module-Definition File 20-41

20.6.5 Create the Include File 20-41

20.6.6 Compile and Link .. 20-42

20.7 Summary .. 20-42

Chapter 21 Multiple Document Interface
21.1 The Structure of an MDI Application 21-1

21.2 Initializing an MDI Application 21-2

21.2.1 Registering the Window Classes 21-3

21.2.2 Creating the Windows 21-3

21.3 Writing the Main Message Loop 21-5

'21.4 Writing the Frame Window Function 21-5

21.5 Writing the Child Window Function 21-6

Contents xix

21.6 Associating Data with Child Windows 21-6
21.6.1 Storing Data in the Window Structure 21-7
21.6.2 Using Window Properties 21-7

21.7 Controlling Child Windows ~ 21-7
21.7.1 Creating Child Windows 21-S
21.7.2 Destroying Child Windows 21-9
21.7.3 Activating and De-activating Child Windows 21-9
21.7.4 Arranging Child Windows on the Screen 21-10

21.S Summary ... 21-10

Chapter 22 Dynamic Data Exchange
22.1 Data Exchange in Windows 22-1

22.1.1 Clipboard Transfers 22-2
22.1.2 Dynamic Link Libraries 22-2
22.1.3 Dynamic Data Exchange 22-2
22.1.4 Uses for Windows DDE :. 22-3
22.1.5 DDE from the User's Point of View 22-3

22.2 DDE Concepts 22-4
22.2.1 Client, Server, and Conversation 22-4
22.2.2 Application, Topic, and Item 22-4
22.2.3 Permanent ("Hot" or "Warm") Data Link 22-5

22.3 DDE Messages 22-5
22.4 DDE Message Flow 22-6

22.4.1 Initiating a Conversation 22-7
22.4.2 Transfering a Single Item 22-9
22.4.3 Establishing a Permanent Data Link 22-14
22.4.4 Executing Commands in a Remote Application 22-19
22.4.5 Terminating a Conversation 22-22

22.5 Sample DDE Client and Server Applications 22-24
22.6 Summary ... 22-25

T: Ii-' -----,a ,es
Table 8.1 User Interface for Standard List Box

Table 8.2 User Interface for LBS_MULTIPLESEL List Box

Table 8.3 User Interface for LBS_EXTENDEDSEL List Box

Table 8.4 User Interface for Edit Control

Table 8.5 User Interface for Scroll Bar

Table 16.1 Segment Positions In the Global Heap

Table 16.2 Use of Expanded Memory

Table 17.1 Values for the w Mode Parameter

Table 20.1 Uses of the Three Library Types

Table 20.2 Windows SDK Import Libraries

· . 8-14

. 8-16

8-17

· . 8-24

... 8-27

16-3

16-8

17-7

· . 20-3

· .20-31

Introduction
This introduction provides some background infonnation that you should review
before you use this guide.

This introduction covers the following topics:

• Things you should know before you start

• The purpose and contents of this guide

• Tools you'll need to create Windows applications

• U sing the sample applications described in this guide

• Notational conventions used throughout this guide

• The manuals that come with the Microsoft® Windows™ Software Develop
ment Kit (SDK)

What Should You Know Before You Start?
To start using this guide, you will need the following:

• Experience using Windows and an understanding of the Windows user
interface.

Before starting any Windows application development, you should install
Windows version 3.0 on your computer and learn how to use it. Be sure to
learn the names, purposes, and operation of the various parts of a Windows
application (such as windows, dialog boxes, menus, controls, and scroll bars).
Because your own Windows applications will incorporate these features, it is
very important for you to understand them so that you can implement them
properly.

• An understanding of the Windows user-interface style guidelines.

One goal of Microsoft Windows is to provide a common user interface for all
applications. This ultimately helps the user by reducing the effort required to
learn the user interface of a Windows application; it helps you by clarifying
the choices you have to make when designing a user interface. To achieve
this goal, however, you must base your application's user interface design on
the recommended application style guidelines described in the System Appli
cation Architecture, Common User Access: Advanced Interface Design Guide.

• Experience writing C-Ianguage programs and using the standard C run-time
functions.

xxii Guide to Programming

The C programming language is the preferred development language for
Windows applications. Many of the programming features of Windows were
designed with the C programmer in mind. (Windows applications can also be
developed in Pascal and assembly language, but these languages present addi
tional challenges that you typically bypass when writing applications in the C
language.)

About This Guide
This guide is intended to help the experienced C programmer make the transition
to writing applications that use the Microsoft Windows version 3.0 application
program interface. It explains how to use Windows functions, messages, and data
structures to carry out useful tasks common to all Windows applications, and il
lustrates these explanations with sample applications that you can compile and
run with Windows version 3.0.

This guide consists of three parts, each of which contain several chapters.

Part 1, "Introduction to Writing Windows Applications," gives an overview of
the Windows environment, and provides an in-depth look at a sample Windows
application. Part 1 consists of the following chapters:

• Chapter 1, "An Overview of the Windows Environment," compares Windows
to the standard C environment, provides a brief overview of Windows, and de
scribes the Windows programming model and the Windows application
development process.

• Chapter 2,"A Generic Windows Application," shows how to create a simple
Windows application called Generic. You'll then use this application as a
basis for subsequent examples in this learning guide.

Part 2, "Programming Windows Applications," explains basic Windows program
ming tasks, such as creating menus, printing, and using the clipboard. Each chap
ter covers a specific topic, and provides a sample application that illustrates that
topic. Part 2 consists of the following chapters:

• Chapter 3, "Output to a Window," introduces the graphics device interface
(GDI) and shows how to use GDI tools to create your own output.

• Chapter 4, "Keyboard and Mouse Input," shows how to process input from
the mouse and keyboard.

• Chapter 5, "Icons," shows how to create and display icons for your applica
tions.

• Chapter 6, "The Cursor, the Mouse, and the Keyboard," explains the purpose
of the cursor, the mouse, and the keyboard, and shows how to use them in
your applications.

Introduction xxiii

• Chapter 7, "Menus," shows how to create menus for your applications and
how to process input from menus.

• Chapter 8, "Controls," explains how to create and use controls, such as push
buttons and list boxes.

• Chapter 9, "Dialog Boxes," explains how to create and use dialog boxes, and
how to fill them with controls.

• Chapter 10, "File Input and Output," explains the OpenFile function, as well
as rules about disk files.

• Chapter 11, "Bitmaps," shows how to create and display bitmaps.

• Chapter 12, "Printing," shows how to use a printer with Windows.

• Chapter 13, "The Clipboard," explains the clipboard and shows how to use it
in your applications.

Part 3, "Advanced Programming Topics," introduces and explains some
advanced topics, such as memory management and Dynamic Data Exchange.
Each chapter covers a specific topic. Part 3 consists of the following chapters:

• Chapter 14, "C and Assembly Language," gives some guidelines for writing
C-Ianguage and assembly-language Windows applications.

• Chapter 15, "Memory Management," shows how to allocate global and local
memory.

• Chapter 16, "More Memory Management," provides a more in-depth look at
how your application can efficiently manage memory. This chapter also ex
plains how Windows manages memory under different memory configura
tions.

• Chapter 17, "Print Settings," explains how to tailor printer settings (such as
page size and orientation) to your application's needs.

• Chapter 18, "Fonts," shows how to create and load fonts, and how to use
them in the TextOut function.

• Chapter 19, "Color Palettes," shows how to use Windows color palettes to
make the most effective use of color in your application.

• Chapter 20, "Dynamic-Link Libraries," explains how to create and use
Windows dynamic-link libraries.

• Chapter 21, "Multiple Document Interface," explains how to create an appli
cation that uses the Windows multiple document interface (MDI) to let users
work with more than one document at a time.

• Chapter 22, "Dynamic Data Exchange," explains how to pass data from one
application to another using the message-based Dynamic Data Exchange pro
tocol.

xxiv Guide to Programming

What Tools 00 You Need?
To build most Windows version 3.0 applications, you'll need the following tools:

• Microsoft C Optimizing Compiler: CL

• Microsoft Segmented-Executable Linker: LINK

• Microsoft Windows Resource Compiler: RC

• Microsoft Windows SDKPaint: SDKPAINT

• Microsoft Windows Dialog Editor: DIALOG

To build Windows libraries and font resource files, you need the following addi
tional tools:

• Microsoft Macro Assembler: MASM

• Microsoft Windows Font Editor: FONTEDIT

The following tools may also be useful in building and debugging Windows
applications:

• Microsoft Program Maintenance Utility: MAKE

• Microsoft Symbolic Debugger: SYMDEB

• Microsoft Code View® for Windows: CVW

• Microsoft Windows Profiler: PRO FILER

• Microsoft Windows Swap: SWAP

• Microsoft Windows Heap Walker: HEAPW ALK

• Microsoft Windows Spy: Spy

Most of these tools are provided in the Microsoft Windows Software Develop
ment Kit version 3.0. The C Compiler, the linker, the Macro Assembler, and the
Program Maintenance Utility are not. All are described more fully in Tools.

For a list of Windows 3.0 software and hardware requirements, see the
Installation and Update Guide.

Introduction xxv

Using the Sample Applications
The sample applications in this guide are written in the C programming language
and conform to the user-interface style recommended by Microsoft for Windows
applications.

The source files for all sample applications are on the Sample Source Code disk
that comes with the SDK. It's a good idea to review the sample application
sources while reading the corresponding descriptions in this guide. For your con
venience, the subdirectories containing the sample sources are named by chapter.
You can also use the sources as a basis for your own applications.

Special Terms
This guide is written for you, the Windows application developer. The word
"you" can refer either to you as a developer, Of, sometimes, to your application.
For example:

"You create icons, cursors, and bitmaps using the SDKPaint editor."

"You can display text using the TextOut function."

"Your application will receive a WM_P AINT message when it needs to re
fresh its client area."

Throughout this document, the term "user" refers not to you, the application
developer, but to the person who will eventually use the applications you write.
For example:

"When the user selects the About menu item, your application displays the
About dialog box."

"You can display acheckmatk next to a menu item to indicate that the user
has selected that item."

xxvi Guide to Programming

OOCUn7entConvenffons
Throughout this manual, the tenn "DOS" refers to both MS-DOS® and
PC-DOS, except when noting features that are unique to one or the other.

The following document conventions are used throughout this manual:

Convention

Bold text

()

Italic text

Monospaced type

BEGIN

END

Description of Convention

Bold letters indicate a specific tenn or punctua
tion mark intended to be used literally:
language key words or functions (such as
EXETYPE or Create Window), DOS com
mands, and command-line options (such as.
/Zi). You must type these tenns and punctua
tion marks exactly as shown. However, the use
of uppercase or lowercase letters is not always
significant. For instance, you can invoke the
linker by typing either LINK, link, or Link at
the DOS prompt.

In syntax statements, parentheses enclose one
or more parameters that you pass to a function.

Italic text indicates a placeholder; you are ex
pected to provide the actual value. For
example, the following syntax for the SetCur
sorPos function indicates that you must
substitute values for the X and Y coordinates,
separated by a comma:

SetCursorPos(X, Y)

Code examples are displayed in a nonpropor
tiona! typeface.

A vertical ellipsis in a program example indi
cates that a portion of the program is omitted.

Convention

[]

""

{ }

SMALL CAPITAL LEITERS

Introduction xxvii

Description of Convention

An ellipsis following an item indicates that
more items having the same form may appear.
In the following example, the horizontal ellip
sis indicates that you can specify more than
one breakaddress for the g command:

g [=startaddress] [breakaddress] ...

Double brackets enclose optional fields or para
meters in command lines and syntax
statements. In the following example, option
and executable-file are optional parameters of
the RC command:

R C [option] filename [executablelile]

A vertical bar indicates that you may enter one
of the entries shown on either side of the bar.
The following command-line syntax illustrates
the use of a vertical bar:

DB [address I range]

The bar indicates that following the DB
(Dump Bytes) command, you can specify
either an address or a range.

Quotation marks set off terms defined in the
text.

Curly braces indicate that you must specify
one of the enclosed items.

Small capital letters indicate the names of keys
and key sequences, such as:

ALT + SPACEBAR

xxviii Guide to Programming

Microsoft Windows Software Development Kit Documentation Set
Throughout this documentation set "SDK" refers specifically to the "Microsoft
Windows Software Development Kit and its contents. The SDK includes the fol
lowing manuals:

Title

Installation and Up
date Guide

Guide to Programming

Tools

Reference

System Application
Architecture, Common
User Access:
Advanced Interface
Design Guide

Contents

Provides an orientation to the SDK, explains how to
install the SDK software, and highlights the changes
for version 3.0.

Explains how to write Windows applications, and
provides sample applications that you can use as
templates for writing your own programs. The
Guide to Programming also addresses some
advanced Windows programming topics.

Explains how to use the software-development tools
you'll need to build Windows applications, such as
debuggers and specialized SDK editors.

Is a comprehensive guide to all the details of the
Microsoft Windows application program interface
(API). The Reference lists in alphabetical order all
the current functions, messages, and data structures
of the API, and provides extensive overviews on
how to use the API.

Provides guidelines and recommendations for writ
ing programs that appear and act consistently with
other Microsoft Windows applications.

Part

1
Introduction to
Writing Windows
Applications

Although they are usually written in the C language, Windows applications are,
in many ways, very different from standard C programs. This is because, to run
successfully in the Windows environment, an application must cooperate with
Windows and other applications; it must yield control to Windows whenever
possible, and must share system resources with Windows and other applications.

Part 1 introduces the Windows environment, and compares it to the environment
in which standard C programs normally run. It also explains the basic structure
of a Windows application, and describes a simple application that illustrates this
structure.

After reading the chapters in Part 1, you should have a basic understanding of
the Windows environment and the structure of a typical Windows application.

CHAPTERS
1 An Overview of the Windows Environment
2 A Generic Windows Application

Chapter

1
An Overview of the
Windows Environment

Microsoft Windows version 3.0 has many features that the standard DOS en
vironment does not. Because of this, Windows applications are in some ways
more complex than standard DOS programs.

This chapter covers the following topics:

• A comparison of Windows applications and standard DOS applications

• Features that the Windows environment offers, and the impact these features
have on the way you develop and write applications

• The Windows programming model

• The process you use to develop Windows applications

1. 1 Microsoft Windows and DOS: a Comparison
Microsoft Windows has many features that the standard DOS environment does
not. For this reason, Windows applications may, at first, seem more complex
than standard DOS programs. This is understandable when you consider some of
the additional features that Windows offers. These include:

• A graphical user interface featuring windows, menus, dialog boxes, and con-
trols for applications

• Queued input

• Device-independent graphics

• Multitasking

• Data interchange between applications

When writing applications for the DOS environment, most C programmers use
the standard C run-time library to carry out a program's input, output, memory
management, and other activities. The C run-time library assumes a standard
operating environment consisting of a character-based terminal for user input and
output, and exclusive access to system memory as well as to the input and output

1-2 Guide to Programming

devices of the computer. In Windows, these assumptions are no longer valid.
Windows applications share the computer's resources, including the CPU, with
other applications. Windows applications interact with the user through a
graphics-based display, a keyboard, and a mouse.

The following sections describe some of the major differences between standard
DOS applications and Windows applications.

1. 1. 1 The User Interface
One of the principal design goals of Windows is to provide visual access to most,
if not all, applications at the same time. In a multitasking environment, it is im
portant to give all applications some portion of the screen; this ensures that the
user can interact with all applications. Some systems do this by giving one pro
gram full use of the screen while other programs wait in the background. In
Windows, every application has access to some part of the screen at all times.

An application shares the display with other applications by using a "window"
for interaction with the user. Technically, a window is little more than a rectangu
lar portion of the system display that the system grants use of to an application.
In reality, a window is a combination of useful visual devices, such as menus,
controls, and scroll bars, that the user uses to direct the actions of the application.

In the standard DOS environment, the system automatically prepares the system
display for your application. Typically, it does so by passing a file handle to the
application. You can then use that file handle to send output to the system dis
play using conventional C run-time routines or DOS system calls. In Windows,
you must create your own window before performing any output or receiving any
input. Once you create a window, Windows provides a great deal of information
about what the user is doing with the window. Windows automatically performs
many of the tasks the user requests, such as moving and sizing the window.

Another advantage to developing in the Windows environment is that, in contrast
to a standard C program, which has access to a single screen "surface," a
Windows application can create and use any number of overlapping windows to
display information in any number of ways. Windows manages the screen for
you, controls the placement and display of windows, and ensures that no two
applications attempt to access the same part of the system display at the same
time.

1. 1.2 Queued Input
One of the biggest differences between Windows applications and standard C
programs is the way they receive user input.

An Overview of the Windows Environment 1-3

In the DOS environment, a program reads from the keyboard by making an expli
cit call to a function, such as getchar. The function typically waits until the user
presses a key before returning the character code to the program. In contrast, in
the Windows environment, Windows receives all input from the keyboard,
mouse, and timer, and places the input in the appropriate application's "message
queue." When the application is ready to retrieve input, it simply reads the next
input message from its message queue.

In the standard DOS environment, input is typically in the form of 8-bit
characters from the keyboard. The standard input functions, getchar and fscanf,
read characters from the keyboard and return ASCII or other codes correspond
ing to the keys pressed. A program can also intercept interrupts from input dev
ices such as the mouse and timer to use information from those devices as input.

In Windows, an application receives input in the form of "input messages" that
Windows sends it. A Windows input message contains information that far
exceeds the type of input information available in the standard DOS environ
ment. It specifies the system time, the position of the mouse, the state of the key
board, the scan code of the key (if a key is pressed), the mouse button pressed, as
well as the device generating the message. For example, there are two keyboard
messages, WM_KEYDOWN and WM_KEYUP, that correspond to the press and
release of a specific key. With each keyboard message, Windows provides a
device-independent virtual-key code that identifies the key, the device-dependent
scan code generated by the keyboard, as well as the status of other keys on the
keyboard, such as SHIFf, CONTROL, and NUMLOCK. Keyboard, mouse, and timer
messages all have the same format and are all processed in the same manner.

1.1.3 Device-Independent Graphics
In Windows, you have access to a rich set of device-independent graphics opera
tions. This means your application can easily draw lines, rectangles, circles, and
complex regions. Because Windows provides device independence, you can use
the same functions to draw a circle on a dot-matrix printer or a high-resolution
graphics display.

Windows requires "device drivers" to convert graphics output requests to output
for a printer, plotter, display, or other output device. A device driver is a special
executable library that an application can load and connect to a specific output
device and port. A "device context" represents the device driver, the output
device, and perhaps the communications port. Your application carries out
graphics operations within the "context" of a specific device.

1-4 Guide to Programming

1.1.4 Multitasking
Windows is a multitasking system: more than one application can run at a time.
In the standard DOS environment, there are no particular provisions for multi
tasking. Programs written for the DOS environment typically assume that they
have exclusive control of all resources in the computer, including the input and
output devices, memory, the system display, and even the CPU itself. In
Windows, however, applications must share these valuable resources with all
other applications that are currently running. For this reason, Windows carefully
controls these resources, and requires Windows applications to use a specific pro
gram interface that guarantees Windows' control of those resources.

For example, in the standard DOS environment, a program has access to all of
memory that has not been taken up by the system, by the program, or by
terminate-but-stay-resident (TSR) programs. This means that programs are free
to use all of available memory for whatever they like and may access memory by
whatever method they like.

In Windows, memory is a shared resource. Since more than one application can
be running at the same time, each application must coop~ratively share memory
to avoid exhausting the resource. Applications may allocate what they need from
system memory. Windows provides two sources of memory: global memory, for
large allocations, and local memory, for small allocations. To make the most effi
cient use of memory, Windows often moves or even discards memory blocks.
This means you cannot assume that objects to which you have assigned a
memory location remain where you put them. If there are several applications
running, Windows may move and discard memory blocks often.

Another example of a shared resource is the system display. In the standard DOS
environment, the system typically grants your application exclusive use of the
system display. This means you can use the display in any mann~r you like, from
changing the color of text and background, to changing the video mode from text
to graphics. In Windows, your application must share the system display with
other applications, so it must not take control of the display.

An Overview of the Windows Environment 1-5

1.2 The Windows Programming ModeJ

1.2. 1 Windows

Most Windows applications use the following elements to interact with the user:

• Windows

• Menus

• Dialog boxes

• The message loop

The rest of this section describes these elements in detail.

A window is the primary input and output device of any Windows application. It
is an application's only access to the system display. A window is a combination
of a title bar, a menu bar, scroll bars, borders, and other features that occupy a
rectangle on the system display. You specify the features you want for a window
when you create the window. Windows then draws and manages the window.
Figure 1.1 shows the main features of a window:

Control menu Title bar Minimize box

Scroll box

Window border Scroll bar

Figure 1.1 Window Features

1-6 Guide to Programming

1.2.2 Menus

Although an application creates a window and technically has exclusive rights to
it, the management of the window is actually a collaborative effort between the
application and Windows. Windows maintains the position and appearance of the
window, manages standard window features such as the border, scroll bars, and
title, and carries out many tasks initiated by the user that directly affect the
window. The application maintains everything else about the window. In particu
lar, the application is responsible for maintaining the "client area" of the window
(the portion within the window borders). The application has complete control
over the appearance of its window's client area.

To manage this collaborative effort, Windows advises each window of changes
that might affect it. Because of this, every window must have a corresponding
"window function." The window function receives window-management mes
sages that it must respond to appropriately. Window-management messages
either specify actions for the function to carry out, or are requests for information
from the function.

Menus are the principal means of user input in a Windows application. A menu
is a list of commands that the user can view and choose from. When you create
an application, you supply the menu and command names. Windows displays
and manages the menus for you, and sends a message to the window function
when the user makes a choice. The message is the application's signal to carry
out the command.

1.2.3 Dialog Boxes
A dialog box is a temporary window that you can display to let the user supply
more information for a command. A dialog box contains one or more "controls."
A control is a small window that has a very simple input or output function. For
example, an "edit control" is a simple window that lets the user enter and edit
text. The controls in a dialog box let the user supply filenames, choose options,
and otherwise direct the action of the command.

An Overview of the Windows Environment 1-7

1.2.4 The Message Loop
Since your application receives input through an application queue, the chief fea
ture of any Windows application is the "message loop." The message loop re
trieves input messages from the application queue and dispatches them to the
appropriate windows.

Figure 1.2 shows how Windows and an application collaborate to process key
board input messages. Windows receives keyboard input when the user presses
and releases a key. Windows copies the keyboard messages from the system
queue to the application queue. The message loop retrieves the keyboard mes
sages, translates them into an ANSI character message, WM_CHAR, and dis
patches the WM_ CHAR message, as well as the keyboard messages, to the
appropriate window function. The window function then uses the TextOut func
tion to display the character in the client area of the window.

User presses
the ~ key

Windows

Application

WinMain function

L..:..:--.-__ ~_..::l-~_f-t --+-\--+--I·M~~~~g~···/~~p··l

Windows receives the ~
message from the
application's message
loop and dispatches
message to the
application window

TextOut
Window
function

In response to the +--+--izr--r-+L __ .J
window function's
TextOut request,
Windows outputs a
"Z" to the application
window ---~--+-IZ

~ Application
~wmdow

Figure 1.2 Processing Keyboard Input

1-8 Guide to Programming

Windows can receive and distribute input messages for several applications at
once. As shown in Figure 1.3, Windows collects all input, in the form of mes
sages, in its system queue. It then copies each input message to the appropriate
application queue. The message loop in each application retrieves messages and
dispatches them, through Windows, to each application's appropriate window
function.

Windows

Application A

I
I Hardware I System queue

-' input I l

J WinMain function
.. l Application queue A ¢ ~ Message loop ..

• .,
Window II Window

function 1 function 2

Application B

WinMain function

I Application queue B {:
..

Message loop

• .,
Window II. Window

function 1 function 2

Figure 1.3 Processing Input for Two Applications

In contrast to keyboard input messages, which the application must retrieve from
its message queue, Windows sends window-management messages directly to
the appropriate window function. Figure 1.4 shows how Windows sends window
management messages directly to a window function. After Windows carries out
a request to destroy a window, it sends a WM_DESTROY message directly to
the window function, bypassing the application queue. The window function
must then signal the main function that the window is destroyed and the applica
tion should terminate. It does this by copying a WM_QUIT message into the
application queue by using the·PostQuitMessage function.

An Overview of the Windows Environment 1-9

User selects
"Exit" from
application
menu

Windows

Windows carries out
the request to destroy
the application window

Windows then sends
a WM DESTROY
message directly to
the window function

Application queue

,,:::;,::::::,::::::::::::::',,~,',",~ Application
window

Application

Message loop and
WinMain function
terminate on receiving
WM_QUIT message

Figure 1.4 Processing Window-Management Messages

When the message loop retrieves the WM_QVIT message, the loop terminates
and the main function exits.

1.3 The Windows Libraries
Windows functions, like C run-time functions, are defined in libraries. The
Windows libraries, unlike C run-time libraries, are special dynamic-link libraries
(DLLs) that the system links with your application when it loads your applica- .
tion. DLLs are an important feature of Windows because they minimize the
amount of code each application requires.

1-10 Guide 10 Programming

Windows consists of the following three main libraries:

Library

User

Kernel

GDI

Description

Provides window management. This library manages the over
all Windows environment, as well as your application's
windows.

Provides system services, such as multitasking, memory man
agement, and resource management.

Provides the graphics device interface.

1.4 Building a Windows Application
To build a Windows application, follow these steps:

1. Create C-Ianguage or assembly-language source files that contain the
WinMain function, window functions, and other application code.

2. Use the resource editors (SDKPaint, the Dialog Editor, and the Font Editor)
to create any cursor, icon, bitmap, dialog, and font resources the application
will need.

3. Create a resource script (.RC) file that defines all the application's resources.
The resource script file lists and names the resources you created in the pre
ceding step. It also defines menus, dialog boxes, and other resources.

4. Create the module-definition (.DEF) file, which defines the attributes of the
application modules, such as segment attributes, stack size, and heap size.

5. Compile and link all C-Ianguage sources; assemble all assembly-language
sources.

6. Use the Resource Compiler to compile the resource script file and add it to
the executable file.

Figure 1.5 shows the steps required to build a Windows application.

Create the source files.

Create the resource files.

Create the resource
script file.

Compile or assemble
the source files.

Create the module
definition file.

Link the source files
with Windows and C
run-time libraries.

Compile the resources.

Add the resources to
the executable file.

The result is a
Windows application.

An Overview of the Windows Environment 1-11

~ -.aB;!ll
[J9.QJ¥ ~ ~[.BMP I ~ c§J

Figure 1.5 Building a Windows Application l02_05

1-12 Guide to Programming

1.5 Software Development Tools
To create a Windows application, you use many new development tools, as well
as some familiar tools with new options. This section briefly describes the tools
you will use.

1.5.1 C Compiler

1.5.2 The Linker

To compile Windows applications, you use the Microsoft C Compiler, just as
you do for standard C programs. You can use many of the same CL command
line options you use for standard C programs. However, Windows also requires
two special options: -Gw and -Zp. The -Gw option adds the Windows prolog
and epilog code to each function; this code is required for the application to run
in the Windows environment. The -Zp option packs structures, ensuring that the
structures used in your application are the same size as the corresponding struc
tures used by Windows. The following shows a typical CL·command for compil
ing a small-model Windows application:

CL -c -AS -Gsw -Os -Zdp TEST.C

The -c option instructs the compiler to perform only the C compilation, but not
the linking. The -c option is necessary if you wish to compile multiple C source
files separately.

You use the linker supplied with the Microsoft C Compiler (LINK) to produce
Windows-format executable files. Unlike normal C applications, Windows appli
cations require a module-definition (.DEF) file. This file:

• Defines a name for the application.

• Marks the application as a Windows application.

• Specifies certain attributes of the application, such as whether a data segment
is moveable in memory.

• Lists and names any callback functions in the application.

The following is an example of a module-definition file:

NAME Generic ; application's module name

DESCRIPTION 'Sample Microsoft Windows Application'

EXETYPE WINDOWS ; Required for all Windows applications

An Overview of the Windows Environment 1-13

STUB 'WINSTUB.EXE'; The "stub" displays an error message if
; application is run without Windows

CODE PRELOAD MOVEABLE ; code can be moved in memory

;DATA must be MULTIPLE if program can be invoked more than once

DATA MOVEABLE MULTIPLE

HEAPSIZE 1024
STACKSIZE 5120 ; recommended minimum for Windows applications

All functions that will be called by any Windows routine
MUST be exported.

EXPORTS
MainWndProc
AboutDlgProc

@1 ; name of window-processing function
@2 ; name of About processing function

To link a Windows application, you specify the name of the object files created
by the compiler, the name of the Windows import library, the name of the mod
ule-definition file, and other options and files. The following example is a typical
LINK command:

LINK INOD GENERIC, , , SLIBCEW LIBW, GENERIC.DEF

For more information on LINK and the module-definition file, see Tools.

1.5.3 The SDK Resource Editors
You use the Windows resource editors to create application resources such as cur
sors, icons, and bitmaps. You must then list these resources in the application's
resource script file. The resource editors are included in the Microsoft Windows
Software Development Kit (SDK). They are:

• SDKPaint (SDKP AINT) , which creates icons, cursors, and bitmaps

• The Dialog Editor (DIALOG), which creates dialog-box descriptions

• The Font Editor (FONTEDIT), which creates font files

Because these editors are Windows applications, you run them within the
Windows environment. For more information on the Windows resource editors,
see Tools.

1-14 Guide to Programming

1.5.4 The Resource Compiler
Most Windows applications use a variety of resources, such as icons, cursors,
menus, and dialog boxes. You define these resources in a file called a "resource
script file," which always has the filename extension .RC. After creating the
resource script (.RC) file, you use the Resource Compiler (RC) to compile the
.RC file and add the compiled resources to the application's executable file.
When the application runs, it can load and use the resources from the executable
file.

The following is an example of a resource script file that defines two resources, a
cursor and an icon:

Bullseye CURSOR BULLSEYE.CUR
Generic ICON GENERIC.ICO

The first statement defines a cursor resource by naming it (Bullseye), declaring
its type (CURSOR), and specifing the file that contains the actual cursor image
(BULLSEYE.CUR). The second statement does the same for an icon resource.

To compile a resource script file and add the compiled resources to an executable
file, use the RC command. The following example shows a typical RC com
mand:

RC GENERIC.RC

For a description of how to use the Resource Compiler, see Tools. For a descrip
tion of the resource statements that make up a resource script file, see the
Reference, Volume 2.

1.5.5 Debugging and Optimization Tools
The SDK includes several tools you can use to debug your Windows application
and to optimize its peformance:

• CodeView for Windows (CVW) lets you debug Windows applications while
running with Windows in standard mode or 386 enhanced mode. CVW lets
you set breakpoints, view source-level code, and display symbolic informa
tion while debugging Windows applications.

• The Symbolic Debugger (SYMDEB) is a debugging tool you can use to
debug Windows applications while running in real mode.

• The Spy (SPY) message watcher is a Windows application that lets you moni
tor the messages that Windows sends to an application. This can be particu
larly useful when debugging.

An Overview 01 the Windows Environment 1-15

• Profiler (PROFILER) lets you find out the relative times it takes your appli
cation's code segments to execute; this lets you fine-tune your application's
performance.

• The Swap (SWAP) swapping analyzer lets you analyze and fine-tune your
application's memory-swapping behavior.

• Heap Walker (HEAPWALK) is a Windows applicatioh that lets you ex
amine the contents of the local or global memory heap.

For more information about these tools, see Tools.

1.5.6 The Program Maintainer
The MAKE program is a program maintainer that updates programs by keeping
track of the dates of its source files. MAKE is included with Microsoft C version
5.1. (NMAKE is a similar program that comes with version 6.0 of Microsoft C.)
Both programs work equally well with Windows; the one you use will depend on
the version of Microsoft C you have.

Although MAKE and NMAKE come with Microsoft C, not with the SDK, they
are especially important for Windows applications because of the number of files
required to create a Windows application. These program maintainers use a text
file, called a "make file," that contains a list of the commands and files needed to
build a Windows application. The commands compile and link the various files.
The program maintainer executes the commands only if the files named in those
commands have changed. This saves time if, for instance, you have made only a
minor change to a single file.

Make files for MAKE and NMAKE are almost identical; the only difference is
that NMAKE requires an additional line at the beginning.

The following example shows the content of a typical make file for a Windows
application:

The following line allows NMAKE to use this file as well
all: generic.exe

Update the resources if necessary

GENERIC.RES: GENERIC.RC GENERIC.H
RC -R GENERIC.RC

Update the object file if necessary

GENERIC.OBJ: GENERIC.C GENERIC.H
CL -AS -c -OLINT_ARGS -Gsw -Oat -W2 -Zped GENERIC.C

1-16 Guide to Programming

Update the executable file if necessary; if so, add the resources
to it.

GENERIC.EXE: GENERIC.OBJ GENERIC.OEF
LINK INOO GENERIC, , , SLIBCEW LIBW, GENERIC.OEF
MAPSYM GENERIC
RC GENERIC.RES

If the .RES file is new and the .EXE file is not,
compile only the resources. Note that the .RC file can
be updated without having to either recompile or
relink the file.

GENERIC.EXE: GENERIC. RES
RC GENERIC.RES

Typically, make files have the same name as the applications they build, al
though any name is allowed. The following example runs MAKE using the com
mands in the file GENERIC:

MAKE GENERIC

For more information about the MAKE program, see the documentation pro
vided with the Microsoft C Optimizing Compiler.

1.6 Tips for Writing Windows Applications
There are some programming practices that work well for standard C or
assembly-language applications, but will not work in the Windows environment.
Chapter 14, "c and Assembly Language," provides detailed information on using
those programming languages to write Windows applications.

In general, when writing Windows applications, remember the following rules:

• Do not take exclusive control of the CPU-it is a shared resource. Although
Windows is a multitasking system, it is non-preemptive. This means it cannot
take control back from an application until the application releases it. A
cooperative application carefully manages access to the CPU and gives other
applications ample opportunity to execute.

• Do not attempt to directly access memory or hardware devices such as the
keyboard, mouse, timer, display, and serial and parallel ports. Windows re
quires absolute control of these resources to ensure equal, uninterrupted
access for all applications that are running.

An Overview of the Windows Environment 1-17

• Within your application, all functions that Windows can call must be defined
with the PASCAL key word; this ensures that the function accesses argu
ments correctly. Functions that Windows can call are the WinMain function,
callback functions, and window functions.

• Every application must have a WinMain function. This function is the entry
point, or starting point, for the application. It contains statements and
Windows function calls that create windows and read and dispatch input in
tended for the application. The function definition has the following form:

int PASCAL WinMain(hlnst,hPrevlnst,lpCmdLine,nCmdShow)
HANDLE hlnst;
HANDLE hPrevlnst;
LPSTR lpCmdLine;
int nCmdShow;
{

The WinMain function must be declared with the PASCAL key word. Al
though Windows calls the function directly, WinMain must not be defined
with the FAR key word, since it is called from linked-in start-up code.

• When using Windows functions, be sure to check the return values. It's not a
good idea to ignore these return values, since unusual conditions sometimes
occur when a function fails.

• Do not use C run-time console input and output functions, such as getchar,
putchar, scaDf, and printf.

• Do not use C run-time file input and output functions to access serial and par
allel ports. Instead, use the communications functions, which are described in
detail in the Reference, Volume 1.

• You can use the C run-time file input and output functions to access disk
files. In particular, use the Windows OpenFile function and the low-level, C
run-time input and output functions. Although you can use the C run-time
stream input and output functions, you do not get the advantages that Open
File provides.

• You can use the C run-time memory-management functions malloc, calloc,
realloc, and free, but be aware that Windows translates these functions to its
own local-heap functions, LocalAlloc, LocalReAlloc, and LocalFree. Since
local-heap functions don't always operate exactly like C run-time memory
management functions, you may get unexpected results.

1-18 Guide to Programming

1.7 Summary
This chapter provided an overview of the Windows environment, and compared
Windows applications with standard C applications. For additional information
about Windows programming concepts, see the following:

Topic

The message loop

A simple Windows
application

Menus

Dialog boxes

Using C run-time routines
and assembly language in
Windows applications

Windows functions and
messages

Reference

Guide to Programming: Chapter 2, "A
Generic Windows Application"

Guide to Programming: Chapter 2, "A
Generic Windows Application"

Guide to Programming: Chapter 7, "Menus"

Guide to Programming: Chapter 9, "Dialog
Boxes"

Guide to Programming: Chapter 14, "C and
Assembly Language"

Reference, Volume 1

Software development tools Tools

Chapter

2
A Generic Windows
Application

This chapter explains how to create a simple Microsoft Windows application
called Generic, which demonstrates the principles explained in Chapter 1, "An
Overview of the Windows Environment."

This chapter covers the following topics:

• The essential parts of a Windows application

• Initializing a Windows application

• Writing the message loop

• Terminating an application

• The basic steps needed to build a Windows application

The Generic application will be used as basic code for all sample applications in
Part 2 of this guide. (The source files for Generic and the other sample applica
tions are included on the SDK Sample Source Code disk.)

2. 1 The Generic Application
Generic is a standard Windows application; that is, it meets the recommendations
for user-interface style given in the System Application Architecture, Common
User Access: Advanced Interface Design Guide. Generic has a main window, a
border, an application menu, and maximize and minimize boxes, but no other fea
tures. The application menu includes a Help menu with an About command,
which, when chosen by the user, displays an About dialog box describing
Generic. The completed Generic, with an About dialog box, looks like Figure 2.1
when displayed:

2-2 Guide to Programming

About dialog box

Generic Application

Version 3.0

Figure 2.1 Generic: A Template for Writing Windows Applications

Generic is important not for what it can do, but for what it provides: a template
for writing Windows applications. Building it helps you understand how
Windows applications are put together and how they work.

2.2 A Windows Application
A Windows application is any application that is specifically written to run with
Windows and that uses the Windows application program interface (API) to
carry out its tasks. A Windows application has the following basic components:

• A main function named WinMain

• A window function

The WinMain function is the entry point for the application and is similar to the
main function used in the standard C environment. It is always named WinMain.

A window function is something new. It is a "callback function" - a function
within your application that Windows calls. Your application never calls its
window functions directly. Instead, it waits for Windows to call the window func
tion with requests to carry out specific tasks or to return information.

2.3 The WinMain Function
Much like the main function in standard C programs, the WinMain function is
the entry point for a Windows application. Every Windows application must
have a WinMain function; no Windows application can run without it. In most
Windows applications, the WinMain function does the following:

A Generic Windows Application 2-3

• Calls initialization functions that register window classes, create windows,
and perform any other necessary initializations

• Enters a message loop to process messages from the application queue

• Terminates the application when the message loop retrieves a WM_QUIT
message

The WinMain function has the following form:

int PASCAL WinMainChlnstance,
HANDLE hlnstance;

hPrevlnstance, lpCmdLine, nCmdShow)
/* current instance */

HANDLE hPrevlnstance; /* previous instance */
LPSTR lpCmdLine; /* command line */
int nCmdShow; /* whether to show window or icon */
{

The WinMain function requires the PASCAL calling convention.

When the user starts an application, Windows passes the following four parame
ters to the application's Win Main function:

Parameter

hInstance

hPrevInstance

/pCmdLine

nCmdShow

Value Windows Passes to Application

The instance handle of the application.

The handle of another instance of the application, if one
is running. If no other instances of this application are
running, Windows sets this parameter to NULL.

A long pointer to a null-terminated command line.

An integer value that specifies whether to display the
application's window as a window or as an icon. The
application passes this value to the ShowWindow func
tion when calling that function to display the
application's main window.

For more information on handles, see Section 2.3.2, "Handles." For more infor
mation on the lpCmdLine parameter, see Section 2.3.11, "The Application
Command-Line Parameter."

2.3. 1 Data Types and Structures in Windows
The WinMain function uses several special data types to define its parameters.
For example, it uses the HANDLE data type to define the hInstance and hPrev
Instance parameters, and the LPSTR data type to define the /pCmdLine parame
ter. In general, Windows uses many more data types than you would find in a
typical C program. Although the Windows data types are often equivalent to

2-4 Guide to Programming

2.3.2 Handles

familiar C data types, they are intended to be more descriptive and should help
you better understand the purpose of a given variable or parameter in an applica
tion.

The Windows data types are defined in the WINDOWS.H include file. The
Windows include file is an ordinary C-Ianguage source file that contains defini
tions for all the Windows special constants, variables, data structures, and func
tions. To use these definitions; you must include the WINDOWS.H file in each
source file. Place the following line at the beginning of your source file:

#include "WINDOWS.H" /* Required for all Windows applications */

The following is a list of some of the more common Windows data types:

Type

WORD

LONG

HANDLE

HWND

LPSTR

FARPROC

Meaning

Specifies a 16-bit, unsigned integer.

Specifies a 32-bit, signed integer.

Identifies a 16-bit, unsigned integer to be used as a
handle.

Identifies a 16-bit, unsigned integer to be used as a
handle to a window.

Specifies a 32-bit pointer to a CHAR type.

Specifies a 32-bit pointer to a function.

The following is a list of some commonly used structures:

Structure

MSG

WNDCLASS

PAINTSTRUCT

RECT

Description

Defines the fields of an input message.

Defines a window class.

Defines a paint structure used to draw within a
window.

Defines a rectangle.

See the Reference, Volume 2, for a complete listing and description of Windows
data types and structures.

The WinMain function has two parameters, hPrevlnstance and hlnstance, that
are called "handles." A handle is a unique integer that Windows uses to identify
an object created or used by an application. Windows uses a wide variety of han-

2.3.3 Instances

A Generic Windows Application 2-5

dIes, identifying objects such as application instances, windows, menus, controls,
allocated memory, output devices, files, GDI pens and brushes, to name a few.

Most handles are index values for internal tables. Windows uses handle indexes
to access the information stored in the table. Typically, your application has
access only to the handle, and not to the data. When you need to examine or
change the data, you supply the handle and Windows does the rest. This is one
way that Windows protects data in its multitasking environment.

Not only can you run more than one application at a time in Windows, you can
also run more than one copy, or "instance" of the same application at a time. To
distinguish one instance from another, Windows supplies a unique "instance
handle" each time it calls the WinMain function to start the application. An in
stance is a separately executing copy of an application, and an instance handle is
an integer that uniquely identifies an instance.

In some multitasking systems, if you run multiple instances of the same applica
tion, the system loads a fresh copy of the application's code and data into
memory and executes it. In Windows, when you start a new instance of the appli
cation, only the data for the application is loaded. Windows uses the same code
for all instances of the application. This saves as much space as possible for other
applications and for data. However, this method requires that the code segments
of your application remain unchanged for the duration of the application. This
means that you must not store data in a code segment or change the code while
the program is running.

For most Windows applications, the first instance has a special role. Many of the
resources an application creates, such as window classes, are generally available
to all applications. Consequently, only the first instance of an application creates
these resources. All subsequent instances may use the resources without creating
them. To let you determine which is the first instance, Windows sets the hPrev
Instance parameter of WinMain to NULL if there are no previous instances. The
following example shows how to check that previous instance does not exist:

int PASCAL WinMain(hlnstance,
HANDLE hlnstance;
HANDLE hPrevlnstance;
LPSTR lpCmdLine;
int nCmdShow;
{

if (!hPrevlnstance)

hPrevlnstance, lpCmdLine, nCmdShow)
/* current instance*/
/* previous instance*/
/* command line */
/* whether to show window or icon */

To keep the user from starting more than one instance of your application, check
the hPrevInstance parameter when the application starts; return to Windows

2-6 Guide 10 Programming

immediately if the parameter is not NULL. The following example shows how to
do this:

if (hPrevlnstance)
return (NULl);

2.3.4 Registering the Window Class
Before you can create any window, you must have a "window class." A window
class is a template that defines the attributes of a window, such as the shape of
the window's cursor and the name of the window's menu. The window class also
specifies the window function that processes messages for all windows in the
class. Although Windows provides some predefined window classes, most appli
cations define their own window classes in order to control every aspect of the
way their windows operate.

You must register a window class before you can·create a window that belongs to
that class. You register a window class by filling a WNDCLASS structure with
information about the class, and passing it as a parameter to the RegisterClass
function.

Filling the WNDCLASS Structure
The WNDCLASS provides information to Windows about the name, attributes,
resources, and window function for a window class. The WNDCLASS data
structure contains the following fields:

Field

IpszClassName

hInstance

Ipfn WndProc

style

hbrBackground

hCursor

hIcon

IpszMenuName

Description

Points to the name of the window class. A window
class name must be unique; that is, different applica
tions must use different class names.

Specifies the application instance that is registering
the class.

Points to the window function used to carry out
work on the window.

Specifies the class styles, such as automatic redraw
ing of the window when moved or sized.

Specifies the brush used to paint the window back
ground.

Specifies the cursor used in the window.

Specifies the icon used to represent a minimized
window.

Points to the resource name of a menu.

Field

cbClsExtra

c1WndExtra

A Generic Windows Application 2-7

Description

Specifies the number of extra bytes to allocate for
this class structure.

Specifies the number of extra bytes to allocate for all
the window structures created with this class.

See the Reference, Volume 2, for more information about these fields.

Some fields, such as IpszClassName, hlnstance, and IpfnWndProc, must be as
signed values. Other fields can be set to NULL. When these fields are set to
NULL, Windows uses a default attribute for windows created using the class.
The following example shows how to fill a window structure:

BOOl InitApplication(hlnstance)
HANDLE hlnstance; /* current instance */
{

o WNOClASS we;

/* Fill in window class structure with parameters that describe the */
/* main window. */

~ wc.style = NUll;
C. wc.lpfnWndProc = MainWndProe;

~ wc.ebClsExtra = 0;
we.cbWndExtra = 0;

/* Class style(s). */
/* Function to retrieve messages for */
/* windows of this class. */

/* No per-class extra data. */
/* No per-window extra data. */

4D wc.hlnstance = hlnstance; /* Application that owns the class. */
~ wc.hlcon = loadlcon(NUlL, IOI_APPlICATION);
o wc.hCursor = LoadCursor(NUlL, IOC_ARROW);
«D wc.hbrBackground = GetStockObject(WHITE_BRUSH);
CD wc.lpszMenuName = "GenericMenu"; /* Name of menu in .RC file. */
~ wc.lpszClassName = "GenericWClass"; /* Name used with CreateWindow. */

/* Register the window class and return success/failure code. */

return (RegisterClass(&wc»;

In this example of a window class structure:

o The example first declares that this is a WNDCLASS structure named "wc".

~ The style field is set to NULL.

C. The Ipfn WndProc field contains a pointer to the window function named
MainWndProc. This means that the application's MainWndProc function will

2-8 Guide to Programming

then receive any inessages that Windows sends to that window, and will be
the function that carries out tasks for that window.

To assign the address of the Main WndProc function to the Ipfn WndProc
field, you must declare the function somewhere before the assignment state
ment. Windows applications should use function prototypes for function de
claration in order to take advantage of the C Compiler's automatic
type-checking and casting. The following is the correct prototype for a
window function with the name Main WndProc:

long FAR PASCAL MainWndProc (HWND, unsigned, WORD, LONG);

Note that the MainWndProc function must be exported in the module
definition file.

e The cbClsExtra and cb WndExtra fields are set to zero, so there is no addi
tional storage space associated with either the window class or each in
dividual window. (You can set these fields to allocate additional storage
space which you can then use to store information on a per-window basis.
See Chapter 16, "More Memory Management," for information on using this
extra space.)

o The hInstance field is set to hInstance, the instance handle that Windows
passed to the WinMain function when the application was started.

(5) The hIcon field receives a handle to a built-in icon. The LoadIcon function
can return a handle to either a built-in or an application-defined icon. In this
case, the NULL and IDI_APPLICATION arguments specify the built-in
application icon. (Most applications use their own icons instead of the built-in
application icon. Chapter 5, "Icons," explains how to create and use your own
icons.)

{I The hCursor field receives a handle to the standard arrow-shaped cursor
(pointer). The LoadCursor function can return a handle to either a built-in or
an application-defined cursor. In this case, the NULL and IDC_ARROW ar
guments specify the built-in arrow cursor. (Some applications use their own
cursors instead of built-in cursors. Chapter 6, "The Cursor, the Mouse, and
the Keyboard," explains how to create and use your own cursors.)

o The hbrBackground field determines the color of the brush that Windows
will use to paint the window's background. In this case, the application uses
the GetStockObject function to get the handle of the standard white back
ground brush. .

A Generic Windows Application 2-9

CD The IpszMenuName field specifies the name of the menu for this window
class, "GenericMenu." This menu will then appear for all windows in this
class. If the window class has no menu, this field is set to NULL.

@) The IpszClassName field specifies "GenericWClass" as the class name for
this window class.

Registering the Window Class
After you assign values to the WNDCLASS structure fields, you register the
class by using the RegisterClass function. If registration is successful, the func
tion returns TRUE; otherwise, it returns FALSE. Make sure you check the return
value because you cannot create your windows without first registering the
window class.

Although the RegisterClass function requires a 32-bit pointer to a WNDCLASS
structure, in the previous example, the address operator (&) generates only a 16-
bit address. This is an example of an implicit cast carried out by the C Compiler.
The Windows include file contains prototypes for all Windows functions. These
prototypes specify the correct types for each function parameter, and the com
piler casts to these types automatically.

2.3.5 Creating a Window
You can create a window by using the CreateWindow function. This function
tells Windows to create a window that has the specified style and belongs to the
specified class. Create Window takes several parameters:

• The name of the window class

• The window title

• The window's style

• The window position

• The parent window handle

• The menu handle

• The instance handle

• Thirty-two bits of additional data

2-10 Guide to Programming

The following example creates a window belonging to the "GenericWClass"
window class:

/* Create a main window for this application instance. */

hWnd = CreateWindowC

) ;

o "GenericWClass", /* See RegisterClassC) call. */
8 "Generic Sample Application",/* Text for window title bar. */
4D WS_OVERLAPPEDWINDOW, /* Window style. */
G) CW_USEDEFAULT, /* Default horizontal position. */
CW_USEDEFAULT, /* Default vertical position. */
CW_USEDEFAULT, /* Default width. */
CW_USEDEFAULT, /* Default height. */
~ NULL, /* Overlapped windows have no parent. */
~ NULL, /* Use the window class menu. */
~ hlnstance, /* This instance owns this window. */
(3 NUL L / * Po i n t ern 0 t nee d e d. * /

This example creates an overlapped window that has the style WS_OVER
LAPPED WINDOW and that belongs to the window class created by the code in
the preceding example. In this example:

o The first parameter of the Create Window function specifies the name of the
window class Windows should use when creating the window. In this ex
ample, the window class name is "Generic WClass."

8 The second parameter of Create Window specifies the window caption as
"Generic Sample Application".

4D The WS_OVERLAPPEDWINDOW style specifies that the window is a nor
mal "overlapped" window.

G) The next four Create Window parameters specify the position and dimen
sions of the window. Since the CW _USEDEFAULT value is specified for the
position, width, and height parameters, Windows will place the window at a
default position and give it a default width and height. The default position
and dimensions depend on the system and on how many other applications
have been started. (Note that Windows does not display the window until you
call the ShowWindow function.)

~ When you create a window, you can specify its parent (used with controls
and child windows). Because an overlapped window does not have a parent,
this parameter is set to NULL.

~ If you specify a menu when you create a window, the menu overrides the
class menu (if any) for the window. Because this window will use the class
menu, this parameter is set to NULL.

~ You must specify the instance of the application that is creating the window.
Windows uses this instance to make sure that the window function supporting
the window uses the data for this instance.

A Generic Windows Application 2-11

Ci) The last parameter is for additional data to be used by the window function
when the window is created. This window takes no additional data, so the par
ameter is set to NULL.

When CreateWindow successfully creates the window, it returns a handle to the
new window. You can use the handle to carry out tasks on the window, such as
showing it or updating its client area.

If Create Window cannot create the window, it returns NULL. Whenever you
create a window, you should check for a NULL handle and respond appro
priately. For example, in the WinMain function, if you cannot create your appli
cation's main window, you should terminate the application; that is, return
control to Windows.

2.3.6 Showing and Updating a Window
Although Create Window creates a window, it does not automatically display
the window. Instead, it is up to you to display the window by using the Show
Window function and to update the window's client area by using the
Update Window function.

The ShowWindow function tells Windows to display' the new window. For the
application's main window, WinMain should call ShowWindow soon after creat
ing the window, and should pass the nCmdShow parameter to it. The nCmdShow
parameter tells the application whether to display the window as an open window
or as an icon. After calling ShowWindow, WinMain should call the Update
Window function. The following example illustrates how to show and update a
window:

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

/* Shows the window */
/* Sends WM_PAINT message*/

NOTE Normally, the nCmdShowparameter of the ShowWindow function can be set to any
of the constants beginning with "SW_" that are defined in WINDOWS.H. The one exception
is when the application calls ShowWindow to display its main window; then, it uses the
nCmdShowparameter from the Win Main function. (See the Reference, Volume 1, for a
complete list of these constants.)

2.3.7 Creating the Message Loop
Once you have created and displayed a window, the WinMain function can begin
its primary duty: to read messages from the application queue and dispatch them
to the appropriate window. WinMain does this by using a message loop. A
"message loop" is a program loop, typically created by using a while statement,
in which WinMain retrieves messages and dispatches them.

2-12 Guide to Programming

Windows does not send input directly to an application. Instead, it places all
mouse and keyboard input into an application queue (along with messages posted
by Windows. and other applications). The application must read the application
queue, retrieve the messages, and dispatch them so that the appropriate window
function can process them.

The simplest possible message loop consists of the GetMessage and Dispatch
Message functions. This loop has the following form:

MSG msg;

while (GetMessage(&msg, NULL, NULL, NULL» {
DispatchMessage(&msg);

In this example, the GetMessage function retrieves a message from the applica
tion queue and copies it into the message structure named "msg". The NULL ar
guments indicate that all messages should be processed. The DispatchMessage
function directs Windows to send each message to the appropriate window func
tion. Every message an application receives, except the WM_ QUIT message,
belongs to one of the windows created by the application. Since an application
must not call a window function directly, it instead uses the DispatchMessage
function to pass each message to the appropriate function.

Depending on what your application does, you may need a more complicated
message loop. In particular, to process character input from the keyboard, you
must translate each message you receive by using the TranslateMessage func
tion. Your message loop should then look like this:

while (GetMessage(&msg, NULL, NULL, NULL» {
TranslateMessage(&msg);
DispatchMessage(&msg);

The TranslateMessage function looks for matching WM_KEYDOWN and
WM_KEYUP messages and generates a corresponding WM_ CHAR message for
the window that contains the ANSI character code for the given key.

A message loop may also contain functions to process menu accelerators and key
strokes within dialog boxes. Again, this depends on what your application actu
ally does.

Windows places input messages in an application queue when the user moves the
cursor in the window, presses or releases a mouse button when the cursor is in
the window, or presses or releases a keyboard key when the window has the
input focus. The window manager first collects all keyboard and mouse input in a
system queue, then copies the corresponding messages to the appropriate applica
tion queue.

A Generic Windows Application 2-13

The message loop continues until GetMessage returns NULL, which it does only
if it retrieves the WM_QUIT message. This message is a signal to terminate the
application, and is usually posted (placed in the application queue) by the
window function of the application's main window.

2.3.8 Yielding Control
Windows is a non-preemptive multitasking system. This means that Windows
cannot take control from an application. The application must yield control
before Windows can reassign control to another application.

To make sure that all applications have equal access to the CPU, the Get
Message function automatically yields control when there are no messages in an
application queue. This means that if there is no work for the application to do,
Windows can give control to another application. Since all applications have a
message loop, this implicit yielding of control guarantees sharing of control.

In general, you should rely on the GetMessage function to yield for your applica
tion. Although a function (Yield) is available that explicitly yields control, you
should avoid using it. Since there might be times when your application must
keep control for a long time, such as when writing a large buffer to a disk file,
you should try to minimize the work and provide a visual clue to the user that a
lengthy operation is underway.

2.3.9 Terminating an Application
Your application terminates when the WinMain function returns control to
Windows. You can return control at any time before starting the message loop.
Typically, an application checks each step leading up to the message loop to
make sure each window class is registered and each window is created. If there is
an error, the application can display a message before terminating.

Once the WinMain function enters the message loop, however, the only way to
terminate the loop is to post a WM_QUIT message in the application queue by
using the PostQuitMessage function. When the GetMessage function retrieves a
WM_QUIT message, it returns NULL, which terminates the message loop. Typi
cally, the window function for the application's main window posts a
WM_QUIT message when the main window is being destroyed (that is, when the
window function has received a WM_DESTROY message).

Although WinMain specifies a data type for its return value, Windows does not
currently use the return value. While you are debugging an application, however,
a return value can be helpful. In general, you might use the same return-code con
ventions that standard C programs use: zero for successful execution, nonzero for
error. The PostQuitMessage function lets the window function specify the return
value. This value is then copied to the wParam parameter of the WM_QUIT
message. To return this value after terminating the message loop, use the follow
ing statement:

2-14 Guide to Programming

return (msg.wParam); /* Returns the value from PostQuitMessage */

Although standard C programs typically clean up and free, resources just prior to
termination, Windows applications should clean up as each window is destroyed.
If you do not clean up as each window is destroyed, you lose some data. For ex
ample, when Windows itself terminates, it destroys each window, but does not re
turn control to the application's message loop. This means that the loop never
retrieves the WM_QUIT message and the statements after the loop are not ex
ecuted. (Windows does send each application a message before terminating, so
an application does have an opportunity to carry out tasks before terminating.
See Chapter 10, "File Input and Output," for an illustration of the WM_QUERY
ENDSESSION message.)

2.3.10 Initialization Functions
Most applications use two locally defined initialization functions:

• The main initialization function carries out work that only needs to be done
once for all instances of the application (for example, registering window
classes).

• The instance initialization function performs tasks that must be done for
every instance of the application.

Using initialization functions helps to keep the WinMain function simple and
readable; it also organizes initialization tasks so that they can be placed in a sepa
rate code segment and discarded after use. The Generic application does not dis
card its initialization functions. (In Chapter 15, "Memory Management," you will
encounter a sample application, Memory, that does discard its initialization func
tions.)

The Generic application's main initialization function looks like the following:

BOOl InitApplication(hlnstance)
HANDLE hlnstance; /* current instance */
{

WNOClASS wc;

/* Fill in window class structure with parameters that describe the */
/* main window. */

wc.style = NUll; /* Class style(s). */
wc.lpfnWndProc = MainWndProc; /* Function to retrieve messages for */

/* windows of this class. */

wC.cbClsExtra 0; /* No per-class extra data. */
wC.cbWndExtra 0; /* No per-window extra data. */

wC.hlnstance = hlnstance; /* Application that owns the class. */
wC.hlcon = loadlcon(NUll, IOI_APPlICATION);

A Generic Windows Application 2-15

wC.hCursor = LoadCursor(NULL, IDC_ARROW);
wC.hbrBackground = GetStockObject(WHITE_BRUSH);
wC.lpszMenuName = "GenericMenu"; /* Name of menu resource in .RC file. */
wc.lpszClassName = "GenericWClass"; /* Name used in call to CreateWindow. */

/* Register the window class and return success/failure code. */

return (RegisterClass(&wc));

Generic's instance initialization function looks like the following:

BOOL InitInstance(hInstance, nCmdShow)
HANDLE hInstance; /* Current instance identifier. */
i nt nCmdShow; /* Pa ram for fi rst ShowWi ndow() ca 11. * /

HWND hWnd; /* Main window handle. */

/* Save the instance handle in static variable, which will be used in */
/* many subsequence calls from this application to Windows. */

hInst = hInstance;

/* Create a main window for this application instance. */

hWnd = CreateWindow(
"GenericWClass",
"Generic Sample Application",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT ,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT ,

/* See RegisterClass() call. */
/* Text for window title bar. */
/* Window style. */
/* Default horizontal position. */
/* Default vertical position. */
/* Default width. */
/* Default height. */

NULL,
NULL,

/* Overlapped windows have no parent. */
/* Use the window class menu. */

hInstance,
NULL

) ;

/* This instance owns this window. */
/* Pointer not needed; */

/* If window could not be created, return "failure" */

if (! hWnd)
return (FALSE);

/* Make the window visible; update its client area; and return "success" */

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);
return (TRUE);

/* Show the window
/* Sends WM_PAINT message

*/
*/

2-16 Guide to Programming

2.3.11 The Application Command-Line Parameter
You can examine the command line that starts your application by using the
lpCmdLine parameter. The lpCmdLine parameter points to the start of a character
array that contains the command exactly as it was typed by the user. To extract
filenames or options from the command line, you need to parse the command
line into individual values. Alternatively, you can use the __ argc and __ argv
variables. For more information, see Chapter 14, "C and Assembly Language."

2.4 The Window Function
Every window must have a window function. The window function responds to
input and window-management messages received from Windows. The window
function can be a short function, processing only a message or two, or it can be
complex, processing many types of messages for a variety of application
windows.

A window function has the following form:

long FAR PASCAL MainWndProc(hWnd, message, wParam, lParam)
HWND hWnd; /* window handle */
unsigned message; /* type of message */
WORD wParam; /* additional information */
LONG lParam; /* additional information */
{

switch (message) {

default: /* Passes it on if unprocessed */
return (DefWindowProc(hWnd, message,

wParam, lParam»;

return (NULl);

The window function uses the PASCAL calling convention. Since Windows
calls this function directly and always uses this convention, PASCAL is re
quired. The window function also uses the FAR key word in its definition, since
Windows uses a 32-bit address whenever it calls a function. Also; you must
name the window function in an EXPORTS statement in the application's
module-definition file. See Section 2.6, "Creating a Module-Definition File," for
more information on module-definition files.

The window function receives messages from Windows. These may be input
messages that have been dispatched by the WinMain function or window-

A Generic Windows Application 2-17

management messages that come directly from Windows. The window function
must examine each message; it then either carries out some specific action based
on the message, or passes the message back to Windows for default processing
through the DefWindowProc function.

The message parameter defines the message type. You use this parameter in a
switch statement to direct processing to the correct case. The IParam and
wParam parameters contain additional information about the message. The
window function typically uses these parameters to carry out the requested ac
tion. If a window function doesn't process a message, it must pass it to the Def
WindowProc function. Passing the message to DefWindowProc ensures that
any special actions that affect the window, the application, or Windows itself can
be carried out.

Most window functions process the WM_DESTROY message. Windows sends
this message to the window function immediately after destroying the window.
The message gives the window function the opportunity to finish its processing
and, if it is the window function for the application's main window, to post a
WM_QUIT message in the application queue. The following example shows
how the main window function should process this message:

case WM_DESTROY:
PostOu;tMessage(0);
break;

The PostQuitMessage function places a WM_ QUIT message in the applica
tion's queue. When the GetMessage function retrieves this message, it will termi
nate the message loop and the application.

A window function receives messages from two sources. Input messages come
from the message loop and window-management messages come from Windows.
Input messages correspond to mouse input, keyboard input, and sometimes timer
input. Typical input messages are WM_KEYDOWN, WM_KEYUP,
WM_MOUSEMOVE, and WM_TIMER, all of which correspond directly to
hardware input.

Windows sends window-management messages directly to a window function
without going through the application queue or message loop. These window
messages are typically requests for the window function to carry out some action,
such as painting its client area or supplying information about the window. The
messages may also inforn1 the window function of changes that Windows has
made to the window. Some typical window-management messages are
WM_CREATE, WM_DESTROY, and WM_PAINT.

The window function should return a long value. The actual value to be returned
depends on the message received. The Reference, Volume 1, describes the return
values when they are significant (for most messages, the return value is arbi
trary). If the window function doesn't process a message, it should return the
DefWindowProc function's return value.

2-18 Guide to Programming

2.5 Creating an About Dialog Box
The System Application Architecture, Common User Access: Advanced Interface
Design Guide recommends that you include an About dialog box with every
application. A "dialog box" is a temporary window that displays information or
prompts the user for input. The About dialog box displays such information as
the application's name and copyright information. The user tells the application
to display the About dialog box by choosing the About command from a menu.
(See the System Application Architecture, Common User Access: Advanced Inter
face Design Guide for more information about design conventions for the About
dialog box.)

You create and display a dialog box by using the DialogBox function. This func
tion takes a dialog-box template, a procedure-instance address, and a handle to a
parent window, and creates a dialog box through which you can display output
and prompt the user for input.

To display and use an About dialog box, follow these steps:

1. Create a dialog-box template and add it to your resource script file.

2. Add a dialog function to your C-Ianguage source file.

3. Export the dialog function in your module-definition file.

4. Add a menu to your application's resource script file.

5. Process the WM_COMMAND mess~ge in your application code.

Once you have completed these steps, the user can display the dialog box by
choosing the About command from your application's menu. The following sec
tions explain these steps in more detail.

2.5.1 Creating a Dialog-Box Template
A dialog-box template is a textual description of the dialog style, contents, shape,
and size. You can create a template by hand or by using the Windows version 3.0
Dialog Editor. In this example, the template is created by hand. Tools explains
how to use the Dialog Editor to create a dialog box.

You create a dialog-box template by creating a resource script file. A resource
script file contains definitions of resources to be used by the application, such as
icons, cursors, and dialog-box templates. To create an About dialog-box tem
plate, you use a DIALOG statement and fill it with control statements, as shown
in the following example:

ct AboutBox DIALOG 22, 17, 144, 75
49 STYLE DS_MODALFRAME I WS_CAPTION WS_SYSMENU
CAPTION "About Generic"

• BEGIN
e CTEXT "Mi crosoft Wi ndows"

CTEXT "Generic Application"
CTEXT "Version 3.0"

o OEFPUSHBUTTON "OK"
END

In this example:

A Generic Windows Application 2-19

-1, 0, 5, 144, 8
-1, 0, 14, 144, 8
-1, 0, 34, 144, 8

lOOK, 53, 59, 32, 14, WS_GROUP

o The DIALOG statement starts the dialog-box template. The name,
AboutBox, identifies the template when the DialogBox function is used to
create the dialog box. The box's upper-left comer is placed at the point
(22,17) in the parent window's client area. The box is 144 units wide by 75
units high. The horizontal units are 14 of the dialog base width unit; the verti
cal units are V8 of the dialog base height unit. The current dialog base units
are computed from the height and width of the current system font. The
GetDialogBaseUnits function returns the dialog base units in pixels.

• The STYLE statement defines the dialog-box style. This particular style is a
window with a framed border, a caption bar, and a system menu, which is the
typical style used for modal dialog boxes.

• The BEGIN and END statements mark the beginning and end of the control
definitions. The dialog box contains text and a default push button. The push
button lets the user send input to the dialog function to terminate the dialog
box.

The statements, strings, and integers contained between the BEGIN and
END statements describe the contents of the dialog 'box. (Because you would
normally create such a description using the Dialog Editor, this guide does
not describe the numbers and statements that make up the description. See
Tools for a complete description of how to use the Dialog Editor.)

e CTEXT creates a rectangle with the quoted text centered in a rectangle. This
statement appears several times for the various texts that appear in the dialog
box.

o DEFPUSHBUTTON creates a push button that allows the user to give a de
fault response; in this case, to choose the "OK" button, causing the dialog box
to disappear.

The DS_MODALFRAME, WS_CAPTION, WM_SYSMENU, IDOK, and
WS_GROUP constants used in the dialog-box template are defined in the
Windows include file. You should include this file in the resource script file by
using the #include directive at the beginning of the script file.

The statements in this file were created with a text editor, and were based on a
dialog box used in another application. You can create many such resources by
copying them from other applications and modifying them using a text editor.
You can also create new dialog boxes by using the Dialog Editor. (The files

2-20 Guide to Programming

created by the Dialog Editor contain statements that are somewhat different from
the statements shown here, and such files usually are edited only by using the
Dialog Editor. For more information about using the Dialog Editor to create
dialog boxes, see Tools.)

2.5.2 Creating an Include File
It is often useful to create an include file in which to define constants and func
tion prototypes for your application. Most applications consist of at least two
source files that share common constants: the C-Ianguage source file and the
resource script file. Since the Resource Compiler (RC) carries out the same pre
processing as the C Compiler, it is useful and convenient to place constant defini
tions in a single include file and then include that file in both the C-Ianguage
source file and the resource script file.

For example, for the Generic application, you can place the function prototypes
for the WinMain, MainWndProc, About, InitApplication, and InitInstance func
tions, and the definition of the menu ID for the About command, in the
GENERIC.H include file. The file should look like this:

#define 10M_ABOUT 100

int PASCAL
Baal
Baal
long FAR PASCAL
lONG) ;
Baal FAR PASCAL

WinMain (HANDLE, HANDLE, lPSTR, int);
InitApplication (HANDLE);
InitInstance (HANDLE, int);
MainWndProc (HWND, unsigned, WORD,

About (HWND, unsigned, WORD, lONG);

Since GENERIC.H refers to Windows data types, you must include it after
WINDOWS.H, which defines those data types. That is, the beginning of your
source files should look like this:

#include "WINDOWS.H"
#include "GENERIC.H"

2.5.3 Creating a Dialog Function

/* required for all Windows applications */
/* specific to this program */

A "dialog box" is a special kind of window whose window procedure is built into
Windows. For every dialog box an application has, the application must have a
dialog function. Windows' built-in window procedure calls a dialog function to
handle input messages that can be interpreted only by the application.

The function that processes input for Generic's About dialog box is called About.
This function, like other dialog functions, uses the same parameters as a window
function, but processes only messages that are not handled by Windows' default
processing. (The dialog function returns TR DE if it processes a message, and
FALSE if it does not.) The dialog function, like the window function, uses the
PASCAL calling convention and the FAR key word.in its definition. You must

A Generic Windows Application 2-21

name the dialog function in an EXPORTS statement in the application's module
definition file. As with a window function, you must not call a dialog function
directly from your application.

Unlike a window function, a dialog function usually processes only user-input
messages, such as WM_COMMAND, and must not send unprocessed messages
to the DetWindowProc function. Generic's dialog function, About, looks like
this:

BaaL FAR PASCAL About(hDlg, message, wParam, lParam)
HWND hDlg; /* window handle of the dialog box */
unsigned message; /* type of message */
WORD wParam; /* message-specific information */
LONG lParam;
{

switch (message)
case WM_lNlTDlALOG:

return (TRUE);
1* message: initialize dialog box */

case WM_COMMAND:
if (wParam == lDOKl1
wParam == lDCANCEL) {

EndDialog(hDlg, TRUE);
return (TRUE);

break;

1* message: received a command *1
1* "OK" box selected? *1
1* System menu close command? */
/* Exits the dialog box */

return (FALSE); /* Didn't process a message */

The About dialog function processes two messages: WM_INITDIALOG and
WM_ COMMAND. Windows sends the WM_INITDIALOG message to a dialog
function to let the function prepare before displaying the dialog box. In this case,
WM_INITDIALOG returns TRUE so that the "focus" will be passed to the first
control in the dialog box that has the WS_TABSTOP bit set (this control will be
the default push button). If WM_INITDIALOG had returned FALSE, then
Windows will not set the focus to any control.

In contrast to WM_INITDIALOG messages, WM_COMMAND messages are a
result of user input. About responds to input to the OK button or the system
menu Close command by calling the End Dialog function, which directs
Windows to remove the dialog box and continue execution of the application.
The EndDialog function is used to terminate dialog boxes.

2.5.4 Oefining a Menu with an About Command
Now that you have an About dialog box, you need some way to let the user tell
your application when to display the dialog box. In most applications, the About
command would appear as the last command on the application's Help menu. If
the application does not have a Help menu, then it usually appears in the first

2-22 Guide to Programming

menu, most often the File menu. In Generic, About is the only command, so it ap
pears as the only item on the Help menu.

The most common way to create a menu is to define it in the resource script file.
Put the following statements in GENERIC.RC:

GenericMenu MENU
BEGIN

POPUP "&Help"
BEGIN

MENUITEM "About Generic ... ", IOM_ABOUT
END

END

These statements create a menu named "GenericMenu" with a single command
on it, "Help." The command displays a pop-up menu with the single menu item
"About Generic ... ".

Notice the ampersand (&) in the "&Help" string. This character immediately
precedes the command mnemonic. A mnemonic is a unique letter or digit with
which the user can access a menu or command. It is part of Windows' direct
access method. If a user presses the key for the mnemonic, together with the ALT
key, Windows selects the menu or chooses the command. In the case of
"&Help", Windows removes the ampersand and places an underscore under the
letter "H" when displaying the menu.

The user will see the About command when he or she displays the Help menu. If
the user chooses the About command, Windows sends the window function a
WM_ COMMAND message containing the About command's menu ID; in this
case,IDM_ABOUT.

2.5.5 Processing the WM_COMMANO Message
Now that you've added a command to Generic's menu, you need to be able to re
spond when the user selects the command. To do this, you need to process the
WM_COMMAND message. Windows sends this message to the window func
tion when the user chooses a command from the window's menu. Windows
passes the menu ID identifying the command in the wParam parameter, so you
can check to see which command was chosen. (In this case, you can use if and
else statements to direct the flow of control depending on the value of the
wParam parameter. As your application's message-processing becomes more
complex, you may want to use a switch statement instead.) You want to display
the dialog box if the parameter is equal to IDM_ABOUT, the About command's
menu ID. For any other value, you must pass the message on to the DefWindow
Proc function. If you do not, you effectively disable all other commands on the
menu.

A Generic Windows Application 2-23

The WM_ COMMAND case should look like this:

FARPROC lpProcAbout;

case WM_COMMANO: /* message: command from a menu */
if (wParam == 10M_ABOUT) {

ct lpProcAbout = MakeProc1nstance(About, h1nst);

8 OialogBox(h1nst, /* current instance */
"AboutBox", /* resource to use */
hWnd, /* parent handle */
lpProcAboutl; /* About() inst. address */
4D FreeProc1nstance(lpProcAbout);
break;

else /* Let Windows process it */
return (OefWindowProc(hWnd, message, wParam, lParam));

ct Before displaying the dialog box, you need the procedure-instance address of
the dialog function. You create the procedure-instance address by using the
MakeProcInstance function. This function binds the data segment of the cur
rent application instance to a function pointer. This guarantees that when
Windows calls the dialog function, the dialog function will use the data in the
current instance and not some other instance of the application.

MakeProclnstance returns the address of the procedure instance. This value
should be assigned to a pointer variable that has the F ARPROC type.

8 The DialogBox function creates and displays the dialog box. It requires the
current application's instance handle and the name of the dialog-box tem
plate.1t uses this information to load the dialog-box template from the exe
cutable file. DialogBox also requires the handle of the parent window (the
window to which the dialog box belongs) and the procedure-instance address
of the dialog function.

DialogBox does not return control until the user has closed the dialog box.
Typically, the dialog box contains at least a push-button control to permit the
user to close the box.

4D When the DialogBox function returns, the procedure-instance address of the
dialog function is no longer needed, so the FreeProcInstance function frees
the address. This invalidates the content of the pointer variable, making it an
error to attempt to use the value again.

2-24 Guide to Programming

2.6 Creating a Module-Definition File
Every Windows application needs a module-definition file. This file defines the
name, segments, memory requirements, and exported functions of the applica
tion. For a simple application, like Generic, you need at least the NAME,
ST ACKSIZE, HEAPSIZE, EXETYPE, and EXPORTS statements. However,
most applications include a complete definition of the module, as shown in the
following example:

;module-definition file for Generic - used by LINK.EXE

o NAME Generic ; application's module name

~ DESCRIPTION 'Sample Microsoft Windows Application'

~ EXETYPE WINDOWS

8 STUB 'WINSTUB.EXE

o CODE MOVEABLE DISCARDABLE

Required for all Windows applications

Generates error message if applicatior
is run without Windows

code can be moved in memory and
discarded/reloaded

;DATA must be MULTIPLE if program can be invoked more than once

o DATA MOVEABLE MULTIPLE

~ HEAPSIZE 1024
«D STACKSIZE 5120 ; recommended minimum for Windows applications

All functions that will be called by any Windows routine
MUST be exported.

@) EXPORTS
MainWndProc
AboutDlgProc

@1 ; name of window-processing function
@2 ; name of About processing function

The semicolon is the delimiter for comments in the module-definition file.

In this example:

o The NAME statement defines the name of the application. This name (in the
example, Generic) is used by Windows to identify the application. The
NAME statement is required.

• The DESCRIPTION statement is an optional statement that places the
message "Sample Microsoft Windows Application" in the application's exe
cutable file. This statement is typically used to add version control or copy
right information to the file.

A Generic Windows Application 2-25

8 The EXETYPE statement marks the executable file as either a Windows or
an OS/2 executable file. Windows application must contain the statement
EXETYPE WINDOWS, since, by default, the linker creates executable files
for the MS OS/2 environment.

e The STUB statement specifies another optional file that defines the exe
cutable stub to be placed at the beginning of the file. When a user tries to run
the application without Windows, the stub is executed instead. Most
Windows applications use the WINSTUB.EXE executable file supplied with
the SDK. WINSTUB displays a warning message and terminates the applica
tion if the user attempts to run the application without Windows. You can
also supply your own executable stub.

o The CODE statement defines the memory attributes of the application's code
segment. The code segment contains the executable code that is generated
when the GENERIC.C file is compiled. Generic is a small-model application
with only one code segment, which is defined as MOVEABLE DISCARD
ABLE. If the application is not running and Windows needs additional space
in memory, Windows can move the code segment to make room for other
segments and, if necessary, discard it. A discarded code segment is automati
cally reloaded on demand by the Windows operating system.

o The DATA statement defines the memory requirements of the application's
data segment. The data segment contains storage space for all the static varia
bles declared in the GENERIC.C file. It also contains space for the program
stack and local heap. The data segment, like the code segment, is
MOVEABLE. The MULTIPLE key word directs Windows to create a new
data segment for the application each time the user starts a new instance of
the application. Although all instances share the same code segment, each has
its own data segment. An application must have theMUL TIPLE key word if
the user can run more than one copy of it at a time.

o The HEAPSIZE statement defines the size, in bytes, of the application's
local heap. Generic uses its heap to allocate the temporary structure used to
register the window class, so it specifies 1024 bytes of storage. Applications
that use the local heap frequently should specify larger amounts of memory.

o The STACKSIZE statement defines the size, in bytes, of the application's
stack. The stack is used for temporary storage of function arguments. Any
application, like Generic, that calls its own local function must have a stack.
Generic specifies 5120 bytes of stack storage, the recommended minimum for
a Windows application.

(0 The EXPORTS statement defines the names and ordinal values of the func
tions to be exported by the application. Generic exports its window function,
MainWndProc, which has ordinal value 1 (this is an identifier; it could be any
integer, but usually such values are assigned sequentially as the exports are
listed). You must export all functions that Windows will call (except the Win
Main functiop). These functions are referred to as "callback" functions. Call
back functions include.the following:

2-26 Guide to Programming

• All window functions

• All dialog functions

• Special callback functions, such as enumeration functions, that certain
Windows API functions require

• Any other function that will be called from outside your application

For more information on callback functions, see Chapter 14, "C and Assembly
Language. "

For more information on module-definition statements, see the Reference,
Volume 2.

2.7 Putting Generic Together
At this point you are ready to put the sample application, Generic, together. (You
can find copies of the Generic source files on the SDK Sample Source Code
disk.)

To create the Generic application, you need to do the following:

1. Create the C-Ianguage source (.C) file.

2. Create the header (.R) file.

3. Create the resource script (.RC) file.

4. Create the module-definition (.DEF) file.

5. Create the make file.

6. Run the MAKE utility on the file to compile and link the application.

The following sections describe each step.

NOTE Rather than typing the code presented in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

2.7. 1 Create the C-Language Source File
The C-Ianguage source file contains the WinMain function, the Main WndProc
window function, the About dialog function, and the InitApplication and Init
Instance initialization functions. Name the file GENERIC.C.

The contents of the file GENERIC.C look like this:

A Generic Windows Application 2-27

/***
PROGRAM: GENERIC.C

PURPOSE: Generic template for Windows applications

FUNCTIONS:

WinMain() - calls initialization function, processes message loop
InitApplication() - initializes window data and registers window
InitInstance() - saves instance handle and creates main window
MainWndProc() - processes messages
About() - processes messages for "About" dialog box

COMMENTS:

Windows can have several copies of your application running
at the same time. The variable hInst keeps track of which
instance this application is so that processing will be to
the correct window.

/**/
#include "windows.h" /* required for all Windows applications */
#include "generic.h" /* specific to this program */

HANDLE hInst; /* current instance */

/**
FUNCTION: WinMainCHANDLE, HANDLE, LPSTR, int)

PURPOSE: calls initialization function, processes message loop

COMMENTS:

Windows recognizes this function by name as the initial entry point
for the program. This function calls the application initialization
routine, if no other instance of the program is running, and always
calls the instance initialization routine. It then executes a message
retrieval and dispatch loop that is the top-level control structure
for the remainder of execution. The loop is terminated when a WM_OUIT
message is received, at which time this function exits the application
instance by returning the value passed by PostOuitMessage().

If this function must abort before entering the message loop, it
returns the conventional value NULL.

**/
intPASCAL WinMain(hInstance, hPrevInstance, lpCmdLine, nCmdShow)
HANDLE hInstance; /* current instance */
HANDLE hPrevInstance; /* previous instance */
LPSTR lpCmdLine; /* command line */
int nCmdShow; /* show-window type (open/icon) */

2-28 Guide to Programming

MSG msg; /* message. */

if C!hPrevInstance)
if C!InitApplicationChInstance»

return CFALSE);

/* Other instances of app running? */
/* Initialize shared things */
/* Exits if unable to initialize */

/* Perform initializations that apply to a specific instance */

if C!InitInstanceChInstance, nCmdShow»
return CFALSE);

/* Acquire and dispatch messages until a WM_QUIT message is received. */

while CGetMessageC&msg, /* message structure */
NULL, /* handle of window receiving the message
NULL, /* lowest message to examine */
NULL)) /* highest message to examine */

TranslateMessageC&msg); /* Translates virtual key codes */
DispatchMessageC&msg); /* Dispatches message to window */

return Cmsg.wParam); /* Returns the value from PostQu;tMessage */

*/

/**
FUNCTION: InitApplicationCHANDLE)

PURPOSE: Initializes window data and registers window class

COMMENTS:

This function is called at initialization time only if no other
instances of the application are running. This function performs
initialization tasks that can be done once for any number of running
instances.

In this case, we initialize a window class by filling out a data
structure of type WNDCLASS and calling the Windows RegisterClassC)
function. Since all instances of this application use the same window
class, we only need to do this when the first instance is initialized.

**/
BOOL InitApplicationChInstance)

,HANDLE hInstance; /* current instance */
{

WNDCLASS wc;

1* Fill in window class structure with parameters that describe the */
1* main window. */

wc.style = NULL;
wc.lpfnWndProc = MainWndProc;

A Generic Windows Application 2-29

/* Class style(s). */
/* Function to retrieve messages for */
/* windows of this class. */

wC.cbClsExtra = 0; /* No per-class extra data. */
wC.cbWndExtra = 0; /* No per-window extra data. */
wc.hInstance = hInstance; /* Application that owns the class. */
wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wC.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = GetStockObject(WHITE_BRUSH);
wc.lpszMenuName = "GenericMenu"; /* Name of menu resource in .RC file. */
wc.lpszClassName = "GenericWClass";/* Name used in call to CreateWindow. */

/* Register the window class and return success/failure code. */

return (RegisterClass(&wc));

/**
FUNCTION: Initlnstance(HANDLE, int)

PURPOSE: Saves instance handle and creates main window

COMMENTS:

This function is called at initialization time for every instance of
this application. This function performs initialization tasks that
cannot be shared by multiple instances.

In this case, we save the instance handle in a static variable and
create and display the main program window.

**/
BOOL InitInstance(hInstance, nCmdShow)

HANDLE hInstance; /* Current instance identifier. */
int nCmdShow; /* Param for first ShowWindow() call. */

HWND hWnd; /* Main window handle. */

/* Save the instance handle in static variable, which will be used in */
/* many subsequence calls from this application to Windows. */

hInst = hInstance;

/* Create a main window for this application instance. */

hWnd = CreateWindow(
"GenericWClass",
"Generic Sample Application",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,

/* See RegisterClass() call. */
/* Text for window title bar. */
/* Window style. */
/* Default horizontal position. */
/* Default vertical position. */
/* Default width. */

2-30 Guide to Programming

) ;

CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NULL

1* Default height. *1
1* Overlapped windows have no parent. *1
1* Use the window class menu. *1
1* This instance owns this window. *1
1* Pointer not needed. *1

1* If window could not be created, return "failure" *1

if (!hWnd)
return (FALSE);

1* Make the window visible; update its client area; and return "success" *1

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);
return (TRUE);

1* Show the window *1
1* Sends WM_PAINT message *1
1* Returns the value from PostOuitMessage *1

1**
FUNCTION: MainWndProc(HWND, unsigned, WORD, LONG)

PURPOSE: Processes messages

MESSAGES:

WM_COMMAND
WM_DESTROY

COMMENTS:

- application menu (About dialog box)
- destroy window

To process the 10M_ABOUT message, call MakeProcInstance to get the
current instance address of the About function. Then call DialogBox,
which will create the box according to the information in your
generic.rc file and turn control over to the About function. When
it returns, free the instance address.

**1
long FAR PASCAL MainWndProc(hWnd, message, wParam, lParam)
HWND hWnd; 1* window handle *1
unsigned message; 1* type of message *1
WORD wParam; 1* additional information *1
LONG lParam; 1* additional information *1
{

FARPROC lpProcAbout; 1* pointer to the "About" function *1

A Generic Windows Application 2-31

switch (message) {
case WM_COMMAND: /* message: command from application menu */
if (wParam == 10M_ABOUT) (

lpProcAbout = MakeProclnstance(About, hlnst);

DialogBox(hInst,
"AboutBox",
hWnd,
1 pProcAbout) ;

/* current instance */
/* resource to use */
/* parent handle */
/* About() instance address */

FreeProcInstance(lpProcAbout);
break;

else /* lets Windows process it */
return (DefWindowProc(hWnd, message, wParam, lParam));

case WM_DESTROY:
PostQuitMessage(0);
break;

/* message: window being destroyed */

default: /* Passes it on if unproccessed */
return (OefWindowProc(hWnd, message, wParam, lParam));

return (NU lU ;

/**
FUNCTION: About(HWND, unsigned, WORD, lONG)

PURPOSE: Processes messages for "About" dialog box

MESSAGES:

WM_INITDIAlOG - initialize dialog box
WM_COMMAND - Input received

COMMENTS:

No initialization is needed for this particular dialog box, but TRUE
must be returned to Windows.

Wait for user to click on "OK" button, then close the dialog box.

**/
Baal FAR PASCAL About(hDlg,
HWND hDlg;
unsigned message;
WORD wParam;
lONG lParam;

message, wParam, lParam)
/* window handle of the dialog box */
/* type of message */
/* message-specific information */

2-32 Guide to Programming

switch (message) {
case WM_INITDIAlOG:

return (TRUE);

case WM_COMMAND:
if (wParam == IDOK II

wParam == IDCANCEl)
EndDialog(hDlg, TRUE);
return <TRUE);
}

break;

return (FALSE);

/* message: initialize dialog box */

/* message: received a command */
/* "OK" box selected? */
/* System menu close command? */
/* Exits the dialog box */

/* Didn't process a message */

2.7.2 Create the Header File
The header file contains definitions and declarations required by the C-Ianguage
source file which are incorporated into the source code by an #include directive.
Name the file GENERIC.H and make sure it looks like this:

#define IDM_ABOUT 100

int PASCAL
BOOl
Baal
long FAR PASCAL
Baal FAR PASCAL

WinMain (HANDLE, HANDLE, lPSTR, int);
InitApplication (HANDLE);
Initlnstance (HANDLE, int);
MainWndProc (HWND, unsigned, WORD, lONG);
About (HWND, unsigned, WORD, lONG);

2.7.3 Create the Resource Script File
The resource script file must contain the Help menu and the dialog-box template
for the About dialog box. Name the file GENERIC.RC and make sure it looks
like this:

#include "windows.h"
#include "generic.h"

GenericMenu MENU
BEGIN

END

POPUP "&Help"
BEGIN

MENU ITEM "About Generic ... ", IDM_ABOUT
END

A Generic Windows Application 2-33

AboutBox DIALOG 22, 17, 144, 75
STYLE DS_MODALFRAME I WS_CAPTION
CAPTION "About Generic"
BEGIN

END

CTEXT "Microsoft Windows"
CTEXT "Generic Application"
CTEXT "Version 3.0"

-1, 0, 5, 144, 8
-1, 0, 14, 144, 8
-1, 0, 34, 144, 8

DEFPUSHBUTTON "OK" lOOK, 53, 59, 32, 14, WS_GROUP

2.7.4 Create the Module-Definition File
The module-definition file must contain the module definitions for Generic.
Name the file GENERIC.DEF and make sure it looks like this:

- ;module-definition file for Generic - used by LINK.EXE

NAME Generic application's module name

DESCRIPTION 'Sample Microsoft Windows Application'

EXETYPE WINDOWS Required for all Windows applications

STUB 'WINSTUB.EXE' Generates error message if application
is run without Windows

CODE MOVEABLE DISCARDABLE; code can be moved in memory and discarded/reloaded

;DATA must be MULTIPLE if program can be invoked more than once

DATA MOVEABLE MULTIPLE

HEAPSIZE 1024
STACKSIZE 5120 ; recommended minimum for Windows applications

; All functions that will be called by any Windows routine
; MUST be exported.

EXPORTS
MainWndProc @1
AboutDlgProc @2

name of window-processing function
name of About processing function

2.7.5 Create a Make File
Once you have the source files, you can create Generic's make file, then compile
and link the application by using the MAKE program. To compile and link
Generic, the make file must follow these steps:

2-34 Guide 10 Programming

• Use the C Compiler (eL) to compiie the GENERIC.C file.

• Use the linker (LINK) to link the GENERIC.OBJ object file with the
Windows library and the module-definition file, GENERIC.DEF.

• Use the Resource Compiler (RC) to create a binary resource file and add it to
the executable file of the Windows application.

The following will properly compile and link the files created for Generic:

Standard Windows make file. The utility MAKE.EXE compares the
creation date of the file to the left of the colon with the file(s)
to the right of the colon. If the file(s) on the right are newer
then the file on the left, MAKE will execute all of the command lines
following this line that are indented by at least one tab or space.
Any valid MS-DOS command line may be used.

Update the resource if necessary

t» generic. res: generic.rc generic.h
rc -r generic.rc

Update the object file if necessary

e. generic.obj: generic.c generic.h
cl -c -Gsw -Oas -Zpe generic.c

Update the executable file if necessary, and if so, add the resource back in .

.. generic.exe: generic.obj generic.def
link INOD generic, , , slibcew libw, generic.def
rc generic.res

If the .res file is new and the .exe file is not, update the resource.
Note that the .rc file can be updated without having to either
compile or link the file.

Gt generic.exe: generic.res
rc generic.res

t» The first two lines direct MAKE to create a compiled resource file,
GENERIC.RES, if the resource script file, GENERIC.RC, or the new include
file, GENERIC.H, has been updated. The -r option of the RC command
creates a compiled resource file without attempting to add it to an executable
file, since this must be done as the last step in the process.

e. The next two lines direct MAKE to create the GENERIC.OBJ file if
GENERIC.C or GENERIC.H has a more recent access date than the current
GENERIC.OBJ file. The cl command takes several command-line options
that prepare the application for execution under Windows. The minimum

A Generic Windows Application 2-35

required options are -c, -Gw, and -Zp. In this case, the C Compiler assumes
that Generic is a small-model application. Generic and all other applications
in this guide are small-model applications.

@) The MAKE program then creates the GENERIC.EXE file if the
GENERIC.OBJ or GENERIC.DEF file has a more recent access date than the
current GENERIC.EXE file. Small Windows applications, like Generic, must
be linked with the Windows SLIBW.LIB library and the Windows version of
the C run-time library, SLIBCEW.LIB. The object file, GENERIC.OBJ, and
the module-definition file, GENERIC.DEF, are used as arguments in the
LINK command line.

e The last RC command automatically appends the compiled resources in the
file GENERIC.RES to the executable file, GENERIC.EXE.

2.7.6 Run the MAKE Program
Once you have created the make file, you can compile and link your application
by running the MAKE utility. The following example runs MAKE using the
commands in the file GENERIC:

MAKE GENERIC

2.8 Using Gl!neric as a Template
Generic provides essentials that make it an appropriate starting point for your
applications. It conforms to the standards given in the System Application Archi
tecture, Common User Access: Advanced Interface Design Guide for appearance
and cooperation with other applications. It contains all the files an application
can have: .DEF, .H, .RC, .C, and a make file. The About dialog box, an applica
tion standard, is included, as is the About Generic ... command on the Help menu.

You can use Generic as a template to build your own applications. To do this,
copy and rename the sources of an existing application, such as Generic, then
change relevant function names, and insert new code. All sample applications in
this guide have been created by copying and renaming Generic's source files,
then modifying some of the function and resource names to make them unique to
each new application.

The following procedure explains how to use Generic as a template and adapt its
source files to your application:

1. Choose your application's filename.

2. Copy the following Generic source files, renaming them to match your appli
cation's filename: GENERIC.C, GENERIC.H, GENERIC.DEF,
GENERIC.RC, and GENERIC.

2-36 Guide to Programming

2.9 Summary

3. Use a text editor to change each occurrence of "Generic" in your applica
tion's C-Ianguage source file to your application's name. This includes chang
ing the following:

• The class name: Generic WClass

• The class menu: GenericMenu

• The window title: Generic Sample Application

• The include filename: GENERIC.H

4. Use a text editor to change each occurrence of "Generic" in your applica
tion's module-definition file to your application's name. This includes chang
ing the following:

• The application name: Generic

5. Use a text editor to change each occurrence of "Generic" in your applica
tion's resource script file to your application's name. This includes changing
the following:

• The include filename: GENERIC.H

• The application title: Generic Application

• The menu name: GenericMenu

6. Use a text editor to change each occurrence of "Generic" in your applica
tion's make file to your application's name. This includes changing the fol-
lowing: •

• The C-Ianguage source filename: GENERIC.C_

• The object filename: GENERIC.OBJ

• The executable filename: GENERIC.EXE

• The module-definition filename: GENERIC.DEF

As you add new resources and include files to your applications, be sure to use
your application's filename to ensure that these names are unique.

This chapter described the required elements of a Windows application, and ex
plained how to build Generic, a simple application that contains those elements.
You can use Generic as a template on which to build your own Windows applica
tions.

A Windows application must contain a WinMain function and a window func
tion. The WinMain function performs initializations, processes messages, and ter
minates the application. The window function responds to input and window
management messages that it receives from Windows.

A Generic Windows Application 2-37

For more information on topics related to simple Windows applications, see the
following:

Topic

The Windows programming
model

The message loop

Menus

Dialog boxes

Using C run-time routines
and assembly language in
Windows applications

Windows functions and
messages

The WM_COMMAND
message

Data types and structures

Software development tools

Reference

Guide to Programming: Chapter 1, "An
Overview of the Windows Environment"

Guide to Programming: Chapter 2, "A
Generic Windows Application"

Guide to Programming: Chapter 7, "Menus"

Guide to Programming: Chapter 9, "Dialog
Boxes"

Guide to Programming: Chapter 14, "C and
Assembly Language"

Reference, Volume 1

Reference, Volume 1: Chapter 6, "Messages
Directory"

Reference, Volume 2: Chapter 7, "Data Types
and Structures"

Tools

Part

2
Programming
Windows
Applications

Like most applications, Windows applications receive input from the user and
send output to the screen and printer. Unlike standard applications, however,
Windows applications must cooperate within a multitasking, graphics-based en
vironment. For this reason, they cannot read directly from the keyboard or write
directly to output devices. Instead, they must allow Windows to mediate be
tween the application and shared system resources. The apparent penalty this im
poses upon an application is offset by the built-in support Windows provides an
application for advanced user-interface and system-interface features.

For example, a user typically provides input to a Windows application by choos
ing commands from menus, and by entering and selecting information in dialog
boxes. In the Windows environment, you do not have to implement the details of
how these menus and dialog boxes are displayed and respond to the user's input.
Instead, you simply provide a high-level description of their contents and specify
the messages that your application will receive when the user interacts with the
item. Windows provides the low-level tasks of displaying the menus and dialog
boxes and of tracking the user's interaction with them.

Part 1 provided an overview of the Windows environment and the basic structure
of a Windows application, and introduced some typical application features,
such as windows, menus and dialog boxes.

Part 2 explains each of the major aspects of a Windows application in more
detail. In the chapters that follow, you 'llieam how to create and work with
windows, icons, cursors, menus, dialog boxes, and other features that make a
Windows application distinctive and easy to use.

Each chapter in Part 2 covers a particular topic in Windows programming, and
provides a sample application that illustrates the concepts in that chapter.

CHAPTERS
3 Output to a Window
4 Keyboard and Mouse Input
5 Icons
6 The Cursor, the Mouse, and the Keyboard
7 Menus
8 Controls
9 Dialog Boxes

10 File Input and Output
11 Bitmaps
12 Printing
13 The Clipboard

Chapter

3
Output to a Window

In Microsoft Windows, all output to a window is perfonned by the graphics
device interface (GDI).

This chapter covers the following topics:

• How the painting and drawing process works in the Windows environment

• The purpose of the display context and the WM_P AINT message

• Using GDI functions to draw within the client area of a window

• Drawing lines and figures, writing text, and creating pens and brushes

This chapter also explains how to build a sample application, Output, that il
lustrates some of these concepts.

3. 1 The Display Context
A display context defines the output device and the current drawing tools, colors,
and other drawing infonnation used by GDI to generate output. All GDI output
functions require a display-context handle. No output can be perfonned without
one.

To draw within a window, you need the handle to the window. You can then use
the window handle to get a handle to the display context of the window's client
area.

The method you use to retrieve the handle to the display context depends on
where you plan to perfonn the output operations. Although you can draw and
write anywhere within an application, including within the WinMain function,
most applications do so only in the window function. The most common time to
draw and write is in response to a WM_P AINT message. Windows sends this
message to a window function when changes to the window may have altered the
content of the client area. Since only the application knows what is in the client
area, Windows sends the message to the window function so that this function
can restore the client area.

For the WM_P AINT message, you typically use the BeginPaint function. If you
plan to draw within the client area at any time other than in response to a

3-2 Guide 10 Programming

WM_P AINT message, you must use the GetDC function to retrieve the handle
to the display context.

Whenever you retrieve a display context for a window, that context is only on
temporary loan from Windows to your application. A display context is a shared
resource; as long as one application has it, no other application can retrieve it.
Therefore, you must release the display context as soon as possible after using it
to draw within the window. If you retrieve a display context by using the GetDC
function, you must use the ReleaseDC function to release it. Similarly, for Begin
Paint, you use the EndPaint function.

3.1.1 USing the GetOC Function
You typically use the GetDC function to provide instant feedback to some action
by the user, such as drawing a line as the user moves the cursor (pointer) through
the window. The function returns a display-context handle that you can use in
any GDI output function.

The following example shows how to use the GetDC function to retrieve a
display-context handle and write the string "Hello Windows!" in the client area:

hOC = GetOC(hWnd);
TextOut(hOC, 10,10, "Hello Windows!", 14);
ReleaseOC(hWnd, hOC);

In this example, the GetDC function returns the display context for the window
identified by the hWnd parameter, and the TextOut function writes the string at
the point (10,10) in the window's client area. The ReleaseDC function releases
the display context.

Anything you draw in the client area will be erased the next time the window
function receives a WM_P AINT message that affects that part of the client area.
The reason is that Windows sends a WM_ERASEBKGND message to the
window function while processing the WM_P AINT message. If you pass
WM_ERASEBKGND on to the DetWindowProc function, DetWindowProc
fills the affected area by using the class background brush, erasing any output
you may have previously drawn there.

3.1.2 The WM_PAINT Message
Windows posts a WM_PAINT message when the user has changed the window.
For example, Windows posts a WM_P AINT message when. the user closes a
window that covers part of another window. Since a window shares the screen
with other windows, anything the user does in one window can have an impact
on the content and appearance of another window. However, you can do nothing
about the change until your application receives the WM_P AINT message.

Output to a Window 3-3

Windows posts a WM_P AINT message by making it the last message in the
application queue. This means any input is processed before the WM_P AINT
message. In fact, the GetMessage function also retrieves any input generated
after the WM_P AINT message is posted. That is, GetMessage retrieves the
WM_PAINT message from the queue only when there are no other messages.
The reason for this is to let the application carry out any operations that might af
fect the appearance of the window. In general, output operations should be car
ried out as infrequently as possible to avoid flicker and other distracting effects.
Windows helps ensure this by holding the WM_P AINT message until it is the
last message.

The following example shows how to process a WM_P AINT message:

PAINTSTRUCT ps;

case WM PAINT:
hDC = BeginPaint(hWnd, &ps);
1* Output operations *1
EndPaint(hWnd, &ps);
break;

The BeginPaint and EndPaint functions are required. BeginPaint fills the
PAINTSTRUCTstructure, ps, with information about the paint request, such as
the part of the client area that needs redrawing, and returns a handle to the dis
play context. You can use the handle in any GDI output functions. The EndPaint
function ends the paint request and releases the display context.

You must not use the GetDC and ReleaseDC functions in place of the Begin
Paint and EndPaint functions. BeginPaint and EndPaint carry out special
tasks, such as validating the client area and sending the WM_ERASEBKGND
message, that ensure that the paint request is processed properly. If you use
GetDC instead of BeginPaint, the painting request will never be satisfied and
your window function will continue to receive the same paint request.

3.1.3 Invalidating the Client Area
Windows is not the only source of WM_P AINT messages. You can also generate
WM_P AINT messages for your windows by using the InvalidateRect or
InvalidateRgn functions. These functions mark all or part of a client area as in
valid (in need of redrawing). For example, the following function invalidates the
entire client area:

InvalidateRect(hWnd, NULL, TRUE);

This example invalidates the entire client area for the window identified by the
hWnd parameter. The NULL argument, used in place of a rectangle structure,
specifies the entire client area. The TRUE argument causes the background to be
erased.

3 .. 4 Guide to Programming

When the client area is marked as invalid, Windows posts a WM_P AINT
message. If other parts of the client area are marked as invalid, Windows does
not post another WM_PAINT message. Instead, it adds the invalidated areas·to
the previous area, so that all areas are processed by the same WM_PAINT
message.

If you change your mind about redrawing the client area, you can validate parts
of it by using the ValidateRect and ValidateRgn functions. These functions re
move any previous invalidation and will remove the WM_P AINT message if no
other invalidated area remains.

If you do not want to wait for the WM_P AINT message to be retrieved from the
application queue, you can force an immediate WM_P AINT message by using
the Update Window function. If there is any invalid part of the client area,
UpdateWindow pulls the WM_PAINT message for the given window from the
queue and sends it directly to the window function.

3.1.4 ·Display Contexts and Device Contexts
A display context is actually a type of "device context" that has been especially
prepared for output to the client area of a window. A device context defines the
device, drawing tools, and drawing information for a complete device, such as a
display or printer; a display context defines these things only for a window's
client area. To prepare a display context, Windows adjusts the device origin so
that it aligns with the upper-left comer of the client area instead of with the upper
left comer of the display. It also sets a clipping rectangle so that output to a dis
play context is "clipped" to the client area. This means any output that would
otherwise appear outside the client area is not sent to the display.

3.1.5 The Coordinate System
The default coordinate system for a display context is very simple. The upper-left
comer of the client area is the origin, or point (0,0). Each pixel to the right repre
sents one unit along the positive x-axis. Each pixel down represents one unit
along the positive y-axis.

Y ouean modify this coordinate system by changing the mapping mode and dis
play origins. The mapping mode defines the coordinate-system units. The default
mode is MM_TEXT, or one pixel per unit. You can also specify mapping modes
that use inches or millimeters as units. The SetMapMode function changes the
mapping mode for a device. The origin of the coordinate system can be moved to
any point by calling the Set ViewportOrg function.

For simplicity, the examples in this chapter and throughout this guide use the de
fault coordinate system.

Output to a Window 3-5

3.2 Creating, Selecting, and Deleting Drawing Tools
GDI lets you use a variety of drawing tools to draw within a window. It provides
pens to draw lines, brushes to fill interiors, and fonts to write text. To create these
tools, use functions such as CreatePen and CreateSolidBrush. Then select them
into the display context by using the SelectObject function. When you are done
using a drawing tool, you can delete it by using the DeleteObject function.

Use the CreatePen function to create a pen for drawing lines and borders. The
function returns a handle to a pen that has the specified style, width, and color.
(Be sure to check the return value of CreatePen to ensure that it is a valid
handle.)

The following example creates a dashed, black pen, one pixel wide:

HPEN hDashPen;

hDashPen = CreatePenCPS_DASH, 1, RGBC0, 0, 0));
if ChDashPen) 1* make sure handle is valid *1

The RGB utility creates a 32-bit value representing a red, green, and blue color
value. The three arguments specify the intensity of the colors red, green, and
blue, respectively. In this example, all colors have zero intensity, so the specified
color is black.

You can create solid brushes for drawing and filling by using the Create
SolidBrush function. This function returns a handle to a brush that contains the
specified solid color. (Be sure to check the return value of CreateSolidBrush to

-ensure that it is a valid handle.)

The following example shows how to create a red brush:

HBRUSH hRedBrush

hRedBrush = CreateSolidBrushCRGBC255, 0, 0));
if ChRedBrush) 1* make sure handle is valid *1

3-6 Guide to Programming

Once you have created a drawing tool, you can select it into a display context by
using the SelectObject function. The following example selects the red brush for
drawing:

~BRUSH hOldBrush;

hOldBrush = SelectObject(hDC, hRedBrush);

In this example, SelectObject returns a handle to the previous brush. In general,
you should save the handle of the previous drawing tool so that you can restore it
later.

You do not have to create or select a drawing tool before using a display context.
Windows provides default drawing tools with each display context; for example,
a black pen, a white brush, and the system font.

You can delete drawing objects you no longer need by using the DeleteObject
function. The following example deletes the brush identified by the handle
hRedBrush:

DeleteObject(hRedBrush);

You must not delete a selected drawing tool. You should use the SelectObject
fUnction to restore a previous drawing tool and remove the tool to be deleted
from the selection, as shown in the following example:

SelectObject(hDC, hOldBrush);
DeleteObject(hRedBrush);

Although you can create and select fonts for writing text, working with fonts is a
fairly involved process and is not described in this chapter. For a full discussion
of how to create and select fonts, see Chapter 18, "Fonts."

3.3 Drawing and Writing
GDI provides a wide variety of output operations, from drawing lines to writing
text. Specifically, you can use the LineTo, Rectangle, Ellipse, Arc, Pie, Text
Out, and DrawText functions to draw lines, rectangles, circles, arcs, pie wedges,
and text, respectively. All these functions use the selected pen and brush to draw
borders and fill interiors, and the selected font to write text.

You can draw lines by using the LineTo function. You usually combine the
MoveTo and LineTo functions to draw lines. The following example draws a
line from the point (10,90) to the point (360,90):

MoveTo(hDC, 10, 90);
LineTo(hDC. 360, 90);

Output to a Window 3-7

You can draw a rectangle by using the Rectangle function. This function uses
the selected pen to draw the border, and the selected brush to fill the interior. The
following example draws a rectangle that has its upper-left and lower-right
comers at the points (10,30) and (60,80), respectively:

Rectangle (hOC, 10, 30, 60, 80);

You can draw an ellipse or circle by using the Ellipse function. The function
uses the selected pen to draw the border, and the selected brush to fill the
interior. The following example draws an ellipse that is bounded by the rectangle
specified by the points (160,30) and (210,80):

Ellipse (hOC, 160, 30, 210, 80);

You can draw arcs by using the Arc function. You draw an arc by defining a
bounding rectangle for the circle containing the arc, then specifying on which
points the arc starts and ends. The following example draws an arc within the
rectangle defined by the points (10,90) and (360,120); it draws the arc from the
point (10,90) to the point (360,90):

Arc(hOC, 10, 90, 360, 120, 10,90,360,90);

You can draw a pie wedge by using the Pie function. A pie wedge consists of an
arc and two radii extending from the focus of the arc to its endpoints. The Pie
function uses the selected pen to draw the border, and the selected brush to fill
the interior. The following example draws a pie wedge that is bounded by the
rectangle specified by the points (310,30) and (360,80) and that starts and ends at
the points (360,30) and (360,80), respectively:

Pie (hOC, 310, 30, 360, 80, 360, 30, 360,80);

You can display text by using the TextOut function. The function displays a
string starting at the specified point. The following example displays the string
"A Sample String" at the point (1,1):

TextOut(hOC, 1, 1, "A Sample String", 15);

You can also use the DrawText function to display text. This function is similar
to TextOut, except that it lets you write text on multiple lines. The following ex
ample displays the string "This long string illustrates the DrawText function" on
multiple lines in the specified rectangle:

RECT rcTextBox;
LPSTR lpText = "This long string illustrates the OrawText function";

SetRect(&rcTextBox, 1, 10, 160, 40);
OrawText(hOC, lpText, strlen(lpText), &rcTextBox, OT_LEFT);

3-8 Guide to Programming

This example displays the string pointed to by the IpText variable as one or more
left-aligned lines in the rectangle specified by the points (l,iO) and (160,40).

Although you can also create and display bitmaps in a window, the process is not
described in this chapter. For details, see Chapter 11, "Bitmaps."

3.4 A Sample Application: Output
The sample application Output illustrates how to lise the WM_P AINT message
to draw within the client area, as well as how to create and use drawing tools.
The Output application is a simple extension of the Generic application described
in the previous chapter. To create the Output application, copy and rename the
source files of the Generic application, then make the following modifications:

1. Add new variables.

2. Modify the WM_ CREATE case.

3. Add a WM_PAINT case.

4. Modify the WM_DESTROY case.

5. Compile and link the application.

You can find the source files for Output on the SDK Sample Source Code disk.

This sample assumes that you have a color display. If you do not, GDI will simu
late some of the color output by "dithering." Dithering is a method of simulating
a color by creating a unique pattern with two or more available colors. On a color
monitor that cannot display orange, for example, Windows simulates orange by
using a pattern of red and yellow pixels. On a monochrome monitor, Windows
represents colors with black, white, and shades of gray, instead of colors.

NOTE Rather than typing the code presented in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

3.4.1 Add New Variables
You need several new global variables for this sample application. Add the fol
lowing variables at the beginning of your C-language source file:

HPEN hDashPen;
HPEN hDotPen;
HBRUSH hOldBrush;
HBRUSH hRedBrush;

1* " __ A pen handle *1
1* " ... " pen handle *1
1* old brush handle *1
1* red brush handle *1

Output to a Window 3-9

HBRUSH hGreenBrush;
HBRUSH hBlueBrush;

1* green brush handle *1
1* blue brush handle *1

You also need new local variables in the window function. Declare the following
at the beginning of the Main WndProc function:

HDC hDC;
PAINTSTRUCT ps;
RECT rcTextBox;
HPEN hOldPen;

1* display-context variable *1
1* paint structure *1
1* rectangle around the text *1
1* old pen handle *1

3.4.2 Add the WM_CREATE Case
You must create the drawing tools to be used in Output's client area before any
drawing is carried out. Since you need to create these tools only once, a con
venient place to do so is in the WM_ CREATE message. Add the following state
ments to the MainWndProc function:

case WM_CREATE:

1* Create the brush objects *1

hRedBrush = CreateSolidBrush(RGB(255, 0, 0»;
hGreenBrush = CreateSolidBrush(RGB(0, 255, 0»;
hBlueBrush = CreateSolidBrush(RGB(0, 0, 255»;

1* Create the "--" pen *1

hDashPen = CreatePen(PS_DASH,
1,
RGB(0, 0, 0»;

1* Create the " ... " pen *1

hDotPen = CreatePen(PS_DOT,
I,
RGB (0, 0, 0»;

break;

1* style *1
1* width *1
1* color *1

1* style *1
1* width *1
1* color *1

The CreateSolidBrush functions create the solid brushes to be used to fill the
rectangle, the ellipse, and the circle that Output draws on the screen in response
to the WM_P AINT message. The CreatePen functions create the dotted and
dashed lines used to draw borders.

3.4.3 Add the WM_PAINT Case
The WM_P AINT message informs your application when it should redraw all or
part of its client area. To handle this message, add to the window function the fol
lowing case statement:

3-10 Guide to Programming

TEXTMETRIC textmetric;
int nOrawX;
int nOrawY;
char szText[300];

1* Set up a display context to begin painting *1

hOC = BeginPaint (hWnd, &ps);

1* Get the size characteristics of the current font. *1
1* This information will be used for determining the *1
1* vertical spacing of text on the screen. *1

GetTextMetrics (hOC, &textmetric);

1* Initialize drawing position to 1/4 inch from the top *1
1* and from the left of the top, left corner of the *1
1* client area of the main window. *1

nOrawX GetOeviceCaps (hOC, LOGPIXELSX) 1 4;
nOrawY GetOeviceCaps (hOC, LOGPIXELSY) 1 4;

1* 114 inch *1
1* 114 inch *1

1* Send characters to the screen. After displaying each *1
1* line of text, advance the vertical position for the *1
1* next line of text. The pixel distance between the top *1
1* of each line of text is equal to the standard height of *1
1* the font characters (tmHeight), plus the standard *1
1* amount of spacing (tmExternalLeading) between adjacent *1
1* lines. *1

strcpy (szText, "These characters are being painted using H);
TextOut (hOC, nOrawX, nOrawY, szText, strlen (szText»;
nOrawY += textmetric.tmExternalLeading + textmetric.tmHeight;

strcpy (szText, "the TextOut() function, which is fast and H);
TextOut (hOC, nOrawX, nOrawY, szText, strlen (szText»;
nOrawY += textmetric.tmExternalLeading + textmetric.tmHeight;

strcpy (szText, "allows programmer control of placement and H);
TextOut (hOC, nOrawX, nOrawY, szText, strlen (szText»;
nOrawY += textmetric.tmExternalLeading + textmetric.tmHeight;

strcpy (szText, "formatting details. However, TextOut() H);
TextOut (hOC, nOrawX, nOrawY, szText, strlen (szText»;
nOrawY += textmetric.tmExternalLeading + textmetric.tmHeight;

strcpy (szText, "does not provide any automatic formatting.");
TextOut (hOC, nOrawX, nOrawY, szText, strlen (szText»;
nOrawY += textmetric.tmExternalLeading + textmetric.tmHeight;

Output to a Window 3-11

1* Put text in a 5-inch by I-inch rectangle and display it. *1
1* First define the size of the rectangle around the text *1

nOrawY += GetOeviceCaps (hOC, LOGPIXELSY) 1 4; 1* 1/4 inch *1
SetRect (

&rcTextBox
, nOrawX
, nOrawY

nOrawX + (5 * GetOeviceCaps (hOC, LOGPIXELSX)) 1* 5" *1
~OrawY + (1 * GetOeviceCaps (hOC, LOGPIXELSY)) 1* 1" *1

) ;

1* Draw the text within the bounds of the above rectangle *1

strcpy (szText, "This text is being displayed with a single"
"call to OrawText(). OrawText() isn't as fast"
"as TextOut(), and it is somewhat more"
"constrained, but it provides numerous optional "
"formatting features, such as the centering and"
"line breaking used in this example.");

OrawText (
hOC

, szText
, strlen (szText)
, &rcTextBox
, OT_CENTER I OT_EXTERNALLEAOING I OT_NOCLIP

I OT_NOPREFIX I OT_WOROBREAK
) ;

1* Paint the next object immediately below the bottom of *1
1* the above rectangle in which the text was drawn. *1

nOrawY = rcTextBox.bottom;

1* The (x,y) pixel coordinates of the objects about to be *1
1* drawn are below, and to the right of, the current *1
1* coordinate (nOrawX,nOrawY). *1

1* Draw a red rectangle .. *1

hOldBrush SelectObject(hOC, hRedBrush);
Rectangle

) ;

hOC
, nOrawX
, nOrawY
, nOrawX + 50
, nOrawY + 30

3-12 Guide to Programming

1* Draw a green ellipse *1

SelectObject(hDC, hGreenBrush);
Ell ipse (

hOC
, nDrawX + 150
, nDrawY
, nDrawX + 150 + 50
, nDrawY + 30

) ;

1* Draw a blue pie shape *1

SelectObject(hDC, hBlueBrush);
Pi e (

hOC
, nDrawX + 300
, nDr'awY
, nDrawX + 300 + 50
, nDrawY + 50
, nDrawX + 300 + 50
, nDrawY
, nDrawX + 300 + 50
, nDrawY + 50

) ;

nDrawY += 50;

1* Restore the old brush *1

SelectObject(hDC, hOldBrush);

1* Select a "--" pen, save the old value *1

nDrawY += GetDeviceCaps (hOC, LOGPIXELSY) 1 4; 1* 1/4 inch *1
hOldPen SelectObject(hDC, hDashPen);

1* Move to a specified point *1

MoveTo(hDC, nDrawX, nDrawY);

1* Draw a line *1

LineTo(hDC, nDrawX + 350, nDrawY);

1* Select a " " pen *1

SelectObject(hDC, hDotPen);

Output to a Window 3-13

/* Draw an arc connecting the line */

Arc
hOC

, nDrawX
nDrawY - 20

, nDrawX + 350
, nDrawY + 20
, nDrawX
, nDrawY
, nDrawX + 350
, nDrawY

) ;

/* Restore the old pen */

SelectObject(hDC, hOldPen);

/* Tell Windows you are done painting */

EndPaint (hWnd, &ps);

break;

NOTE "Hard-coding" strings using functions such as strcpy can make it difficult to trans
late your application into other languages. If you plan to distribute your application in more

. than one language, you should use string tables instead. See the Reference, Volume 2, for
more information about string tables.

3.4.4 Modify the WM_DESTROY Case
Before terminating the Output application, you should delete the drawing tools
created for Output's window; this frees the memory that each drawing tool uses.
To do this, use the DeleteObject function to delete the various pens and brushes
in the WM_DESTROY case. Modify the WM_DESTROY case so that it looks
like this:

case WM_DESTROY:

DeleteObject(hRedBrush);
DeleteObject(hGreenBrush);
DeleteObject(hBlueBrush);
DeleteObject(hDashPen) ;
DeleteObject(hDotPen);
PostQuitMessage(0);
break;

You must include one DeleteObject function call for each object to be deleted.

3-14 Guide to Programming

3.4.5 Compile and Link

3.5 Summary

No changes are required to the make file to recompile and link the Output appli
cation. After compiling and linking Output, start Windows and the application.
The application should look like Figure 3.1:

These characters are being painted using
the TextOutO function. which is fast and
allows programmer control of placement and
formatting details. However. TextOutO
does not provide any automatic formatting.

This text is being displayed with a single call to DrawTextO. DrawTextO
isn't as fast as TextOutO. and it is somewhat more constrained. but it

provides numerous optional formatting features. such as the centering
and line breaking used in this example.

- - c
~-:-:-:--=-=-=-=-=-=-=-- - =-::-:-~

Figure 3.1 The Output Application's Window

You can use the WM_P AINT case of this application to experiment with a
variety of ODI functions. For information about other ODI output functions, see
the Reference, Volume 1.

This chapter described how the graphics device interface (ODI) portion of
Windows handles output to a window. ODI uses a "display context" to generate
output. A display context is a data structure, maintained by ODI, that contains
information about the display device you are using.

ODI lets you use a variety of drawing tools and output operations to draw within
a window.

Output to a Window 3-15

For more information on topics related to output, see the following:

Topic

Working with bitmaps

Working with fonts

Window functions and class
and private display contexts

Painting functions

WM_PAINT,
WM_CREATE, and
WM_DESTROY messages

Data types and structures

Reference

Guide to Programming: Chapter 11,
"Bitmaps"

Tools: Chapter 4, "Designing Images:
SDKPaint"

Guide to Programming: Chapter 18, "Fonts"

Tools: Chapter 6, "Designing Fonts: The
Font Editor"

Reference, Volume 1: Chapter 1, "Window
Manager Interface Functions"

Reference, Volume 1: Chapter 2, "Graphics
Device Interface Functions," and Chapter 4,
"Functions Directory"

Reference, Volume 1: Chapter 6, "Messages
Directory"

Reference, Volume 2: Chapter 7, "Data Types
and Structures"

Chapter

4
Keyboard and Mouse Input

Most applications require input from the user. Typically, input from the user
comes via the keyboard or the mouse. In Microsoft Windows, applications re
ceive keyboard and mouse input in the form of input messages.

This chapter covers the following topics:

• The input messages that Windows sends your application

• Responding to Windows input messages

This chapter also explains how to build a sample application, Input, that responds
to various types of input messages. .

4. 1 Windows Input Messages
Whenever the user presses a key, moves the mouse, or clicks a mouse button,
Windows responds by sending input messages to the appropriate application.
Windows also sends input messages in response to timer input.

Windows provides several types of input messages:

Message

Keyboard

Character

Mouse

Timer

Scroll-bar

Menu

Description

User input through the keyboard.

Keyboard input translated into character codes.

User input through the mouse.

Input from the system timer.

User input through a window's scroll bars and the mouse.

User input through a window's menus and the mouse.

The keyboard, mouse, and timer input messages correspond directly to hardware
input. Windows passes these messages to your application through the applica
tion queue.

The character, menu, and scroll-bar messages are created in response to mouse
and keyboard actions in the nonclient area of a window, or are the result of

4-2 Guide to Programming

translated keyboard messages. Normally, Windows sends these messages directly
to the appropriate window function.

4. 1. 1 Message Formats
Input messages come in two formats, depending on how your application re
ceives them:

• Messages that Windows places in the application queue take the form of a
MSG structure.

The MSG structure contains fields that identify and contain information
about the message. Your application's message loop retrieves this structure
from the application queue and dispatches it to the appropriate window
function.

• Messages that Windows sends directly to a window function take the form of
four arguments. The arguments correspond to the window function's hWnd,
message, wParam, and IParam parameters.

The only difference between these two message forms is that the MSG structure
contains two additional pieces of information: the current location of the cursor
(pointer) and the current system time. Windows does not pass this information to
the window function.

4.1.2 Keyboard Input
Much of an application's user input comes from the keyboard. Windows sends
keyboard input to an application when the user presses or releases a key.
Windows generates keyboard messages in response to the following keyboard
events:

Message

WM_KEYDOWN

WM_KEYUP

WM_SYSKEYDOWN

WM_SYSKEYUP

Event

User presses a key,

User releases a key.

User presses a system key.

User releases a system key.

The wParam parameter of a keyboard message specifies the "virtual-key code"
of the key the user pressed. A virtual-key code is a device-independent value for
a specific keyboard key. Windows uses virtual-key codes so that it can provide
consistent keyboard input no matter what computer your application is running
on.

Keyboard and Mouse Input 4-3

The lParam parameter contains the keyboard's actual scan code for the key, as
well as additional information about the keyboard, such as the state of the SHIff
key and whether the current key was previously up or down.

Windows generates system-key messages, WM_SYSKEYUP and WM_SYS
KEYDOWN. These are special keys, such as the ALT and FlO keys, that belong to
the Windows user interface and cannot be used by an application in any other
way.

An application receives keyboard messages only when it has the "input focus."
Your application receives the input focus when it is the active application; that is,
when the user has selected your application's window. You can also use the Set
Focus function to explicitly set the input focus for a given window, and the Get
Focus function to determine which window has the focus.

4.1.3 Character Input
Applications that read character input from the keyboard need to use the
TranslateMessage function in their message loops. TranslateMessage trans
lates a keyboard-input message into a corresponding ANSI-character message,
WM_ CHAR or WM_SYSCHAR. These messages contain the ANSI character
codes for the given key in the wParam parameter. The lParam parameter is iden
tical to lParam in the keyboard-input message.

4.1.4 Mouse Input
User input can also come from the mouse. Windows sends mouse messages to
the application when the user moves the cursor into and through a window or
presses or releases a mouse button while the cursor is in the window. Windows
generates mouse messages in response to the following events:

Message

WM_LBUTTONDOWN

WM_LBUTTONUP

WM_LBUTTONDBLCLK

WM_MBUTTONDOWN

WM_MBUTTONUP

Event

User moves the cursor into or
through the window.

User presses the left button.

User releases the left button.

User presses, releases, and presses
again the left button within the sys
tern's defined double-click time.

User presses the middle button.

User releases the middle button.

4-4· Guide to Programming

Message

WM_MBUTTONDBLCLK

WM_RBUTTONDOWN

WM_RBUTTONUP

WM_RBUTTONDBLCLK

Event

User presses, releases, and presses
again the middle button within the
system's defined double-click time.

User presses the right button.

User releases the right button.

User presses, releases, and presses
again the right button within the sys
tern's defined double-click time.

The wParam parameter of each button includes a bitmask specifying the current
state of the keyboard and mouse buttons, such as whether the mouse buttons,
SHIFT key, and CONTROL key are down. The lParam parameter contains the the x
and y-coordinates of the cursor.

Windows sends mouse messages to a window only if the cursor is in the window
or if you have captured mouse input by using the SetCapture function. The Set
Capture function directs Windows to send all mouse input, regardless of where
the cursor is, to the specified window. Applications typically use this function to
take control of the mouse when carrying out some critical operation with the
mouse, such as selecting something in the client area. Capturing the mouse pre
vents other applications from taking control of the mouse before the operation is
completed.

Since the mouse is a shared resource, it is important to release the captured
mouse as soon as you have finished the operation. You release the mouse by
using the ReleaseCapture function. Use the GetCapture function to determine
which window, if any, has the captured mouse.

Windows sends double-click messages to a window function only if the corre
sponding window class has the CS_DBLCLKS style. You must set this style
while registering the window class. A double-click message is always the third
message in a four-message series. The first two messages are the first button
press and release. The second button press is replaced with the double-click
message. The last message is the second release. Remember that a double-click
message occurs only if the first and second press occur within the system's de
fined double-click time. You can retrieve the current double-click time by using
the GetDoubleClickTime function. You can set it by using the SetDoubleClick
Time function, but be aware that this sets the double-click time for all applica
tions, not just your own.

4.1.5 Timer Input
Windows sends timer input to your application when the specified interval
elapses for a particular timer. To receive timer input, you must set a timer by
using the SetTimer function.

Keyboard and Mouse Input 4-5

You can receive timer input in two ways:

• Windows can place a WM_ TIMER message in your application's queue.

• Windows can call a callback function defined in your application. You
specify the callback function when you call the SetTimer function.

The following example shows how to set timer input for a five-second interval:

idTimer = SetTimer (hWnd, I, 5000, (FARPROC) NULL);

This example sets a timer interval of 5000 milliseconds. This means that the
timer will generate input every five seconds. The second argument is any non
zero value that your application uses to identify the particular timer. The last ar
gument specifies the callback function that will receive timer input. Setting this
argument to NULL tells Windows to provide timer input as a WM_ TIMER
message. Because there is no callback function specified for timer input,
Windows sends the timer input through the application queue.

The SetTimer function returns a "timer ID"-an integer that identifies the timer.
You can use this timer ID to turn the timer off by using it in the Kill Timer
function.

4.1.6 Scroll-Bar Input
Windows sends a scroll-bar input message, either WM_HSCROLL or
WM_ VSCROLL, to a window function when the user clicks with the cursor in a
scroll bar. Applications use the scroll-bar messages to direct scrolling within the
window. Applications that display text or other data that does not all fit in the
client area usually provide some form of scrolling. Scroll bars are an easy way to
let the user direct scrolling actions.

To get scroll-bar input, add scroll bars to the window. You can do this by specify
ing the WS_HSCROLL and WS_ VSCROLL styles when you create the window.
These direct the Create Window function to create horizontal and vertical scroll
bars for the window. The following example creates scroll bars for the given
window:

hWnd = CreateWindow("InputWCLass", 1* window class *1
"Input Sample Application", 1* window name *1
WS_OVERLAPPEDWINDOW I WS_HSCROLL I WS_VSCROLL,
CW_USEDEFAULT, 1* x position *1
CW_USEDEFAULT, 1* y position *1
CW_USEDEFAULT, 1* width *1
CW_USEDEFAULT, 1* height *1
NULL, 1* parent handle *1
NULL, 1* menu or child 10 *1
hInstance, 1* instance *1
NULL); 1* additional info *1

4-6 Guide to Programming

Windows displays the scroll bars when it displays the window. It automatically
maintains the scroll bars and sends scroll-bar messages to the window function
when the user moves the thumb of the scroll bar.

When Windows sends a scroll-bar message, it sets the wParam parameter of the
message to indicate the type of scrolling request made. For example, if the user
clicks the Up arrow of a vertical scroll bar, Windows sets the wParam parameter
to the value SB_LINEUP. Depending on the event, Windows sets the wParam
parameter to one of the following values:

Value Event

SB_LINEUP User clicks the Up or Left arrow.

SB_LINEDOWN User clicks the Down or Right arrow.

SB_PAGEUP User clicks between the scroll box and the Up or
Left arrow.

SB_PAGEDOWN User clicks between the scroll box and the Down or
Right arrow.

SB_THUMBPOSITION User releases the mouse button when the cursor is in
the scroll box, typically after dragging the box.

SB_THUMBTRACK User drags the scroll box with the mouse.

4. 1.7 Menu Input
Whenever the user chooses a command from a menu, Windows sends a menu
input message to the window function for that window.

There are two types of menu-input messages:

• WM_SYSCOMMAND, which indicates that the user has selected a com
mand from the System menu.

• WM_COMMAND, which indicates that the user has selected a command
from the application's menu.

Since menu input is often the primary source of input for an application, its pro
cessing can be complex. See Chapter 7, "Menus," for more information on
menus and menu input.

4.2 A Sample Application: Input
This sample application, Input, illustrates how to process input messages from
the keyboard, mouse, timer, and scroll bars. The Input application displays the
current or most recent state of each of these input mechanisms. To create the

Keyboard and Mouse Input 4-7

Input application, copy and rename the source files of the Generic application,
then make the following modifications:

1. Add new variables.

2. Set the window-class style.

3. Modify the CreateWindow function.

4. Set the text rectangles.

5. Add the WM_CREATE case.

6. Modify the WM_DESTROY case.

7. Add the WM_KEYUP and WM_KEYDOWN cases.

8. Add the WM_ CHAR case.

9. Add the WM_MOUSEMOVE case.

10. Add the WM_LBUTTONUP and WM_RBUTTONUP cases.

11. Add the WM_LBUTTONDBLCLK case.

12. Add the WM_ TIMER case.

13. Add the WM_HSCROLL and WM_ VSCROLL cases.

14. Add the WM_P AINT case.

15. Compile and link the Input application.

Although Windows does not require a pointing device, this sample assumes that
you have a mouse or other pointing device. If you do not have a mouse, the appli
cation will not receive mouse-input messages.

NOTE Rather than typing the code presented in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided in the
SDK.

4.2. 1 How the Input Application Displays Output
The Input application responds to input messages by displaying text that indi
cates the type of input message. It uses some simple functions to format and dis
play the output.

To create a formatted string, use wsprintf, the Windows version of the C run
time function sprintf. The Windows wsprintf function copies a formatted string
to a buffer; you can then pass the buffer address as an argument to the TextOut
function. In small-model applications, such as the sample applications described
in this guide, be careful when using the wsprintf function; the buffer you specify

4-8 Guide to Programming

must be defined within the application's data segment or stack. The following ex
ample shows how to create a formatted string:

char MouseText[48];

wsprintfCMouseText, "WM_MOUSEMOVE: lx, %d, %d", wParam,
LOWOROC1Param), HIWOROC1Param));

This example copies the formatted string to the MouseText array. The array is de
. clared a local variable so that it can be passed to the wsprintf function.

4.2.2 Add New Variables
You need several new global variables. Declare the following variables at the
beginning of the C-Ianguage source file:

char MouseText[48]; /* mouse state */
char ButtonText[48]; /* mouse-button state */
char KeyboardText[48]; /* keyboard state */
char CharacterText[48]; /* latest character */
cha r ScrollText[48]; /* scroll status */
char TimerText[48] ; /* timer state */
RECT rectMouse;
RECT rectButton;
RECT rectKeyboa rd;
RECT rectCharacter;
RECT rectScroll;
RECT rectTimer;
int idTimer; /* timer 10 */
int nTimerCount = 0; /* current timer count */

The character arrays hold strings that describe the current state of the keyboard,
mouse, and timer. The rectangles keep track of where the strings appear on the
screen; they facilitate the invalidation technique explained in Section 4.2.15,
"Add the WM_PAINT Case."

You also need some local variables for the window function. Declare the follow
ing variables at the beginning of the Main WndProc window function:

HOC hOC; /* display-context variable */
PAINTSTRUCT ps; /* paint structure */
char HorzOrVertText[12];
char ScrollTypeText[20];
RECT rect;

Keyboard and Mouse Input 4-9

Add the following variables to the Initlnstance function:

HDC
TEXTMETRIC
RECT

hde;
textmetrie;
reet;
nLineHeight; int

4.2.3 Set the Window-Class. Style
Set the window-class style to CS_DBLCLKS to enable double-click processing.
In the initialization function, find this statement:

we. style = NULL;

Change it to the following:

we. style = CS_DBLCLKS;

This enables double-click processing for windows that belong to this class.

4.2.4 Modify the Create Window Function
Modify the call to the CreateWindow function in order to create a window that
has vertical and horizontal scroll bars. Change the Create Window function call
in the WinMain function so that it looks like this:

hWnd = CreateWindow("InputWClass",
"Input Sample Window",
WS_OVERLAPPEOWINOOW I WS_HSCROLL I WS_VSCROLL,
CW_USEOEFAULT,
CW_~SEOEFAULT.

CW_USEOEFAULT,
CW_USEOEFAULT,
NULL,
NULL,
hInstanee,
NULL) ;

4.2.5 Set the Text Rectangles
Add the following statements to the Initlnstance function to establish the client
area rectangles in which different messages are displayed:

hOC = GetOC(hWnd);
GetTextMetrics(hOC, &textmetric);
ReleaseOC(hWnd, hOC);
nLineHeight = textmetric.tmExternalLeading + textmetric.tmHeight;

4 .. 10 Guide to Programming

recto 1 eft = GetDeviceCaps(hDC, LOGPIXELSX)
rect.right = GetDeviceCaps(hDC, HORZRES) ;
rect.top = GetDeviceCapsChDC, LOGPIXELSY)
rect.bottom = rect.top + nLineHeight;
rectMouse = rect;

rect.top += nLineHeight;
rect.bottom += nLineHeight;
rectButton = rect;

rect.top += nLineHeight;
rect.bottom += nLineHeight;
rectKeyboard = rect;

rect.top += nLineHeight;
rect.bottom += nLineHeight;
rectCharacter = rect;

rect.top += nLineHeight;
rect.bottom += nLineHeight;
rectScroll = rect;

rect.top += nLineHeight;
rect.bottom += nLineHeight;
rectTimer = rect;

4.2.6 Add the WM_CREATE Case

4 ; 1* 1/4

/ 4; 1* 1/4

Set a timer by using the SetTimer function. You can do this in the
WM.,.. CREATE case. Add the following statements:

case WM_CREATE:
1* Set the timer for five-second intervals *1
idTimer = SetTimer(hWnd, NULL, 5000, CFARPROC) NULL);
break;

4.2.7 Modify the WM_OESTROY Case

inch *1

inch *1

You also need to stop the timer before terminating the application. You can do
this in the WM_DESTROY case. Add the following statement:

KillTimer(hWnd, idTimer);

4.2.8 Add the WM_KEYUP and WM_KEYOOWN Cases
Add the WM_KEYUP and WM_KEYDOWN cases to process key presses. Add
the following statements to the window function:

Keyboard and Mouse Input 4-11

case WM_KEYDOWN:
wsprintf(KeyboardText, "WM_KEYDOWN: Ix, Ix, Ix",

wParam, LOWORD(lParam), HIWORD(lParam));
InvalidateReet(hWnd, &reetKeyboard, TRUE);
break;

case WM_KEYUP:
wsprintf(KeyboardText, "WM_KEYUP: Ix, Ix, Ix",

wParam, LOWORD(lParam), HIWORD(lParam));
InvalidateReet(hWnd, &reetKeyboard, TRUE);
break;

4.2.9 Add the WM_CHAR Case
Add a WM_CHAR case to process ANSI-character input. Add the following
statements to the window function:

case WM_CHAR:
wsprintf(CharaeterText, "WM_CHAR: %e, Ix, Ix",

wParam, LOWORD(lParam), HIWORD(lParam));
InvalidateReet(hWnd, &reetCharaeter, TRUE);
break;

4.2.10 Add the WM_MOUSEMOVE Case
Add a WM_MOUSEMOVE case to process mouse-motion messages. Add the
following statements to the window function:

case WM_MOUSEMOVE:
wsprintf(MouseText, "WM_MOUSEMOVE: Ix, %d, %d",

wParam, LOWORO(lParam), HIWORDClParam));
InvalidateRect(hWnd, &rectMouse, TRUE);
brea k;

4.2.11 Add the WM_LBUTTONUP and WM_LBUTTONDOWN Cases
Add the WM_LBUTTONUP and WM_LBUTTONDOWN cases to process
mouse-button input messages. Add the following statements to the window
function:

case WM_LBUTTONDOWN:
wsprintf(ButtonText, "WM_LBUTTONDOWN: Ix, %d, %d",

wParam, LOWORD(lParam), HIWORD(lParam));
InvalidateRect(hWnd, &rectButton, TRUE);
break;

4-12 Guide to Programming

case WM_LBUTTONUP:
wsprintf(ButtonText, "WM_LBUTTONUP: lx, %d, %d",

wParam, LOWORD(lParam), HIWORD(lParam»;
InvalidateRect(hWnd, &rectButton,TRUE);
break;

4.2.12 Add the WM_LBUTTONOBLCLK Case
Add a WM_LBUTTONDBLCLK case to process mouse-button inputmessages.
Add the following statements to the window function:

case WM_LBUTTONDBLCLK:
wsprintf(ButtonText, "WM_LBUTTONDBLCLK: lx, %d, %d",

wParam, LOWORD(lParam), HIWORD(lParam»;
InvalidateRect(hWnd, &rectButton, TRUE);
break;

4.2.13 Add the WM_TIMER Case
Add a WM_ TIMER case to process timer messages. Add the following state
ments to the window function:

cas e WM_ TI MER:
wsprintf(TimerText, "WM_TIMER: %d seconds",

nTimerCount += 5);
InvalidateRect(hWnd, &rectTimer, TRUE);
break;

4.2.14 Add the WM_HSCROLL and WM_VSCROLL Cases
Add the WM_HSCROLL and WM_ VSCROLL cases to process scroll-bar
messages. Add the following statements to the window function:

case WM_HSCROLL:
case WM_VSCROLL:

strcpy(HorzOrVertText,
(message == WM_HSCROLL) ? "WM HSCROLL" "WM_VSCROLL");

strcpy(ScrollTypeText,
(wParam == SB_LINEUP) ? "SB_LINEUP" :
(wParam == SB_LINEDOWN) ? "SB_LINEDOWN"
(wParam == SB_PAGEUP) ? "SB_PAGEUP" :
(wParam == SB PAGEDOWN) ? "SB_PAGEDOWN"
(wParam == SB THUMBPOSITION) ? "SB_THUMBPOSITION"
(wParam == SB_THUMBTRACK) ? "SB_THUMBTRACK"
(wParam == SB_ENDSCROLL) ? "SB_ENDSCROLL" : "unknown");

Keyboard and Mouse Input 4-13

wsprintf(ScrollText, "Is: Is, lx, Ix",
(LPSTR)HorzOrVertText,
(LPSTR)ScrollTypeText,
LOWORD (1 Pa ram) ,
HIWORD(l Param»;

InvalidateRect(hWnd, &rectScroll, TRUE);
break;

4.2.15 Add the WM_PAINT Case
You need to display the current state of the mouse, keyboard, and timer. The
most convenient way to do this is to use the WM_P AINT message to display the
states. Your application only repaints the parts of its client area that need
repainting.

Add the following statements to the window function:

case WM_PAINT:
hOC = BeginPaint (hWnd, &ps);

if (IntersectRect(&rect, &rectMouse, &ps.rcPaint»
TextOut(hOC, rectMouse. left, rectMouse.top,

MouseText, strlen(MouseText»;
if (IntersectRect(&rect, &rectButton, &ps.rcPaint»

TextOut(hOC, rectButton. left, rectButton.top,
ButtonText, strlen(ButtonText»;

if (IntersectRect(&rect, &rectKeyboard, &ps.rcPaint»
TextOut(hOC, rectKeyboard.1eft, rectKeyboard.top,

KeyboardText, str1en(KeyboardText»;
if (IntersectRect(&rect, &rectCharacter, &ps.rcPaint»

TextOut(hOC, rectCharacter.left, rectCharacter.top,
CharacterText, str1en(CharacterText»;

if (IntersectRect(&rect, &rectTimer, &ps.rcPaint»
TextOut(hOC, rectTimer.1eft, rectTimer.top,

TimerText, str1en(TimerText»;
if (IntersectRect(&rect, &rectScroll, &ps.rcPaint»

TextOut (hOC, rectScro 11 . 1 eft, rectSc roll. top,
Scro11Text, strlen(Scrol1Text»;

EndPaint(hWnd, &ps);
break;

4.2.16 Compile and Link
You can compile and link the Input application without changing the make file.
Once the application is compiled, start Windows and then the Input application.
To test the application, press keys on the keyboard, click the mouse button, move
the mouse, and use the scroll bars. The application should look like Figure 4.1:

4-14 Guide to Programming

4.3 Summary

Input disefays text when it receives r mouse, Keyboard, or timer messages.

1

WM MoLsEMOVE: D. 254. 179
WM - LBUTTONUP: D. 38. 71
WM-KEYUP: 47. 1. cD22
WM=:CHAR: g. 1. 22
WM VSCROLL: SB ENDSCROLL 81. 0
WM=:TIMER: 25 seconds

Figure 4.1 The Input Application's Window

!:!elp

This chapter explained how a Windows application receives input from the user.
All user input goes first to Windows, which then translates the input to an input
message and forwards it to the appropriate application. The application can re
cieve input messages either directly, through a window function's four argu
ments, or indirectly, via the application queue.

This chapter also described the different types of input messages and explained
how to respond to each type.

For more information on topics related to input, see the following:

Topic

The Windows
message-based pro
gramming model

Using the cursor for
mouse and keyboard
input

Menus and menu input

Scroll-bar controls

Reference

Guide to Programming: Chapter 1, "An Overview
of the Windows Environment"

Guide to Programming: Chapter 6, "The Cursor,
the Mouse, and the Keyboard"

Guide to Programming: Chapter 7, "Menus"

Guide to Programming: Chapter 8, "Controls"

Topic

Input functions

Input messages

Keyboard and Mouse Input 4-15

Reference

Reference, Volume 1: Chapter 1, "Window
Manager Interface Functions," and Chapter 4,
"Functions Directory"

Reference, Volume 1: Chapter 5, "Messages Over
view" and Chapter 6, "Messages Directory"

Chapter

5
Icons

A typical Windows application uses an icon to represent itself when its main
window is minimized.

This chapter covers the following topics:

• What an icon is

• Creating and using your own predefined icons

• Specifying an icon for your application's window class

• Changing your application's icon "on the fly"

• Displaying an icon ina dialog box

This chapter also explains how to create a sample application, Icon, that il
lustrates many of these concepts.

5.1 What is an Icon?
To the user, an icon is a small graphic image that represents an application when
that application's main window is minimized. For example, Microsoft Paintbrush
uses an icon that looks like a painter's palette to represent its minimized window.
Icons are also used in message and dialog boxes.

To the application, an icon is a type of resource. Before resource compilation,
each icon is a separate file that contains a set of bitmap images. The images may
be similar in appearance, but each is targeted for a different display device.
When the application wants to use an icon, it simply requests the icon resource
by name. Windows then decides which of that icon's images is most appropriate
for the current display. Because Windows handles this decision, the application
doesn't need to check the display type or determine which icon image is best
suited for the current display. Figure 5.1 illustrates what happens when anappli
cation requests an icon resource.

5-2 Guide to Programming

The application requests the
icon resource by its name, "My/con". _"".1 .•

Windows looks at the My/con
resource and finds that it provides
four different images for four
different display devices.

Mylcon

I w+ws I
! 1~~I::~.'esou~

Windows displays the icon image ··/···/··:f:·~ I that best fits the user's,/ / "
display type. /,/ .: ...

.•••••••••••••••••••..• • '" .. ' .. '.. ,1:/ "\"

k"'" ~/ ~ ~

~DDD
EGA
Display

VGA
Display

Figure 5.1 Using an Icon

Monochrome
Display

Custom
Display

5.1.1 Using Built-In Icons
Windows provides several built-in icons. You can use any of these icons in your
applications. Windows uses several built-in icons in message boxes to indicate
notes, cautions, warnings, and errors.

To use a built-in icon, you must first load it. To do this, you retrieve a handle to it
by using the LoadIcon function. The first argument to the function must be
NULL, indicating that you are requesting a built-in icon. The second argument
identifies the icon you want. For example, the following statement loads the built
in "exclamation" icon:

hHandlcon = LoadlconCNULL, IOI_EXCLAMATION);

After loading a built-in icon, your application can use it. For example, the appli
cation could specify the icon as the class icon for a particular window class. Or,
you could include the icon in a message box. For more information, see Section
5.3, "Specifying a Class Icon," and Section 5.4, "Displaying Your Own Icons."

Icons 5-3

5.2 Using Your Own Icons
Using an icon requires three steps:

1. Create the icon file with the SDKPaint tool.

2. Define the icon resource by using an ICON statement in your application's
resource script file.

3. Load the icon resource, when needed, by using the LoadIcon function in
your application code.

After loading an icon, you can use it; for example, you can then specify it as the
class icon.

The following sections explain each step in detail.

5.2. 1 Creating an Icon File
An icon file contains one or more icon images. You use the SDKPaint tool to
paint the images and save them in an icon file.

Follow the directions given in Tools for creating and saving an icon. The recom
mended file extension for an icon file is .ICO.

5.2.2 Defining the Icon Resource
Once you have an icon file, you must define that icon in your application's
resource script (.RC) file.

To define an icon resource, add an ICON statement to your resource script file.
The ICON statement defines a name for the icon, and specifies the icon file that
contains the icon. For example, the following resource statement adds the icon
named "Mylcon" to your application's resources:

Mylcon ICON MYICON.ICO

The filename MYICON.lCO specifies the file that contains the images for the
icon named "MyIcon." When the resource script file is compiled, the icon images
will be copied from the file MYICON.lCO into your application's resources.

5.2.3 Loading the Icon Resource
Once you have created an icon file and defined the icon resource in the .RC file,
your application can load the icon from its resources.

To load the icon from your resources, you use the LoadIcon function. The
LoadIcon function takes the application's instance handle and the icon's name,

5-4 Guide to Programming

and returns a handle to the icon. The following example loads "MyIcon" and
stores its harldle in the variable hMyIcon.

hMyIeon = LoadIeon ChInstanee, "MyIeon");

After loading it, the application can display the icon.

5.3 Specifying a Class Icon
A "class icon" is an icon that represents a particular window class whenever a
window in that class is minimized. You specify a class icon by supplying an icon
handle in the hlcon field of the window-class structure before registering the
class. Once the class icon is set, Windows automatically displays that icon when
any window you create using that window class is minimized.

The following example shows a definition of the window class "wc" before
registering the class. In this definition, the field hlcon is set to the handle re
turned by Loadlcon.

we.style = NULL;
we. lpfnWndProe = MainWndProe;
we.ebClsExtra = 0;
we.ebWndExtra = 0;
we.hInstanee = hInstanee;
t) we.hIeon = LoadIeon (NULL, IDI_APPLICATION);
we.hCursor = LoadCursor (NULL, IDC_ARROW);
we.hbrBackground = COLOR_WINDOW + 1;
wc. lpszMenuName = NULL;
wc.lpszClassName = "Generic";

t) The Loadlcon function returns a handle to the built-in application icon iden
tified by IDCAPPLICATION. If you minimize a window that has this class,
you will see a white rectangle with a black border. This is the built-in applica
tion icon.

5.4 Displaying Your Own Icons
Windows displays a class icon when the application is minimized, and removes it
when the application is maximized. All the application does is specify it as the
class icon. This meets the needs of most applications, since most applications do
not need to display additional information to the user when the application is min
imized.

However, sometimes your application may need to display its icon itself, instead
of letting Windows display a prespecified class icon. This is particularly useful

Icons 5-5

when you want your application's icon to be dynamic, like the icon in the Clock
application. (The Clock application continues to show the time even when it has
been minimized.) Windows lets applications paint within the client area of an
iconic window, so that they can paint their own icons.

If you want your application to display its own icon:

1. In the window class structure, set the class icon to NULL before registering
the window class. Use the following statement:

wc.hIcon = NULL;

This step is required because it signals Windows to continue sending
WMY AINT messages, as necessary, to the window function even though the
window has been minimized.

2. Add a WM_P AINT case to your window function that draws within the
icon's client area if the window receives a WM_PAINT message when the
window is iconic (minimized). Use the following statements:

PAINlSlRUCT ps;
HOC hOC;

case WM PAINT:
hOC = BeginPaintChWnd, &ps);
if CIsIconicChWnd))

else

{

/* Output functions for iconic state */
}

{

/* Output functions for non-iconic state */
}

EndPaintChWnd, &ps);
break;

Applications need to determine whether the window is iconic, since what they
paint in the icon may be different from what they paint in the open window. The
IsIconic function returns TRUE if the window is iconic.

The BeginPaint function returns a handle to the display context of the icon's
client area. BeginPaint takes the window handle, h Wnd, and a long pointer to
the paint structure, ps. BeginPaint fills the paint structure with information about
the area to be painted. As with any painting operation, after each call to Begin
Paint, the EndPaint function is required. EndPaint releases any resources that
BeginPaint retrieved and signals the end of the application's repainting of the
client area.

5-6 Guide to Programming

You can retrieve the size of the icon's client area by using the rePaint field of
the paint structure. For example, to draw an ellipse that fills the icon, you can use
the following statement:

Ellipse(hDC, ps.rcPaint.left, ps.rcPaint.top,
ps.rcPaint.right, ps.rcPaint.bottom);

You can use any GDI output functions to draw the icon, including the TextOut
function. The only limitation is the size of the icon, which varies from display to
display, so make sure that your painting does not depend on a specific icon size.

5.5 Displaying an Icon in a Dialog Box
You can place icons in dialog boxes by using the ICON control statement in the
DIALOG statement. You have already seen an example of a DIALOG state
ment in the About dialog box described with the Generic application. The
DIALOG statement for that box looks like this:

AboutBox DIALOG 22, 17, 144, 75
STYLE DS_MODALFRAME I WS_CAPTION
CAPTION "About Icon"
BEGIN

END

CTEXT "Microsoft Windows"
CTEXT "Generic Application"
CTEXT "Version 3.0"
DEFPUSHBUTTON "OK"

-1, 37, 5, 68, 8
-1, 0, 14, 144, 8
-1, 38, 34, 64, 8

lOOK, 53, 59, 32, 14, WS_GROUP

You can add an icon to the dialog box by inserting the following ICON state
ment immediately after the DEFPUSHBUTTON statement:

ICON "Mylcon", -1, 25, 14, 16, 21

When an icon is added to a dialog box, it is treated like any other control. It must
have a control ID, a position for its upper-left comer, a width, and a height. In
this example, -1 is the control ID, 25 and 14 specify the location of the icon in
the.dialog box, and 16 and 21 specify the height and width of the icon, respec
tively. However, Windows ignores the height and width, sizing the icon automati
cally.

The name "MyIcon" identifies the icon you want to use. The icon must be de
fined in an ICON statement elsewhere within the resource script file. For ex
ample, the following statement defines the icon "MyIcon."

Mylcon ICON MYICON.ICO

Icons 5-7

5.6 A Sample Application: Icon
This sample application shows how to incorporate icons in your applications, in
particular, how to do the following: .

• Use a custom icon as the class icon.

• Use an icon in the About dialog box.

To create the Icon application, copy and rename the source files of the Generic
application, then do the following:

1. Add an ICON statement to the resource script file.

2. Add an ICON control statement to the DIALOG statement in the resource
script file.

3. Load the custom icon and use it to set the class icon in the initialization func
tion.

4. Modify the make file to cause the Resource Compiler to add the icon to the
application's executable file.

5. Compile and link the application.

This sample assumes that you have created an icon using SDKPaint, and have
saved the icon in a file named MYICON.lCO.

NOTE Rather than typing the code provided in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

5.6. 1 Add an ICON Statement
Add an ICON statement to your resource script file. Insert the following line
at the beginning of the resource script file, immediately after the #include
directives:

Mylcon ICON MYICON.ICO

5.6.2 Add an ICON Control Statement
Add an ICON control statement to the DIALOG statement. Insert the following
line immediately after the DEFPUSHBUTTON statement:

I CO N "My I con", -1, 25, 14, 16, 21

5-8 Guide to Programming

5.6.3 Set the Class Icon
Set the class icon by adding the following statement to the initialization function
in the C-language source file:

we.hleon = Loadleon (hlnstanee, "Myleon");

5.6.4 Add MYICON.ICO to the Make File
In the make file, add the file MYICON.ICO to the list of files on which
ICON.RES is dependent. The relevant lines in the make file should look like the
following:

lCON.RES: lCON;RC lCON.H MYleON.lCO
RC -r lCON.RC

This ensures that, if the file MYICON.ICO changes, ICON.RC will be recom
piled to fonn a new ICON.RES file.

No other changes are required.

5.6.5 Compile and Link

5.7 Summary

Recompile and link the Icon application. When the application is recompiled,
start Windows and the Icon application. Now, if you choose the About com
mand, Icon displays the About dialog box, which now contains an icon.

This chapter explained how to create and use icons in your application. An icon
is a small graphic image that can represent an application when that application
is minimized. You can use one of Windows' built-in icons, or you can use the
SDKPaint tool to create your own icons. You can specify an icon when you
register a window class; then, Windows will automatically display that icon
whenever a window in that class is minimized. Your application can also display
icons itself, using the BeginPaint and EndPaint functions.

For more infonnation on topics related to icons, see the following:

Topic

Loadlcon, IsIconic, BeginPaint,
EndPaint, and TextOut functions

Resource script statements

Reference

Reference, Volume 1: Chapter 4,
"Functions Directory"

Reference, Volume 2: Chapter 8,
"Resource Script Statements"

Topic

Using SDKPaint

Using the Dialog Editor to add an
icon to a dialog box

Icons 5 .. 9

Reference

Tools: Chapter 4, "Designing Im
ages: SDKPaint"

Tools: Chapter 5, "Designing Dialog
Boxes: The Dialog Editor"

Chapter

6
The Cursor, the Mouse, and
the Keyboard

The cursor is a special bitmap that shows the user where actions initiated by the
m:ouse will take place. In most Windows applications, the user makes selections,
chooses commands, and directs other actions by using either the mouse or the
keyboard.

This chapter covers the following topics:

• Controlling the shape of the cursor

• Di~playing the cursor

• Letting the user select information using the mouse

• Letting the user move the cursor using the keyboard

This chapter also explains how to create a sample application, Cursor, that il
lustrates some of these concepts.

6. 1 Controlling the Shape of the Cursor
Since no one cursor shape can satisfy the needs of all applications, Windows lets
your application change the shape of the cursor to suit its own needs.

In order to use a particular cursor shape, you must first retrieve a handle to it
using the LoadCursor function. Once your application has loaded a cursor, it
can use that cursor shape whenever it needs to.

Your application can control the shape of the cursor using either of two methods:

• It can take advantage of the built-in cursor shapes that Windows provides.

• It can use its own customized cursor shapes.

The following sections explain each method.

6. 1. 1 Using Built-In Cursor Shapes
Windows provides several built-in cursor shapes. These include the arrow, hour
glass, I-beam, and cross-hair cursors. Most of the built-in cursor shapes have

6-2 Guide to Programming

specialized uses. For example, the I -beam cursor is normally used when the user
is editing text; the hourglass cursor is used to indicate that a lengthy operation is
in progress, such as reading a disk file.

To use a built-in cursor, use the LoadCursor function to retrieve a handle to the
built-in cursor. The first argument to LoadCursor must be NULL (indicating
that a built-in cursor is requested); the second argument must specify the cursor
to load. The following example loads the I-beam cursor, IDC_IBEAM, and as
signs the resulting cursor handle to the variable hCursor.

hCursor = LoadCursor(NULL, IDC_IBEAM);

Once you have loaded a cursor, you can use it. For example, you could display
the I-beam cursor to indicate that the user is currently editing text. Section 6.2,
"Displaying the Cursor," explains methods for displaying the cursor.

6.1.2 Using Your Own Cursor Shapes
To create and use your own cursor shapes, follow these steps:

1. Create the cursor shape itself by using the SDKPaint tool.

2. Define the cursor in your resource script file by using the CURSOR state
ment.

3. Load the cursor by using the LoadCursor function.

4. Display the cursor using one of the techniques described in Section 6.2, "Dis
playing the Cursor."

The following sections explain each step.

Creating a Cursor Shape
The first step is to create the cursor shape itself. You do this by using SDKPaint,
which lets you see an actual-size version of the cursor shape while you're editing
it.

When you have created the cursor, save it in a cursor file. The recommended ex
tension for cursor files is .CUR.

For information about using SDKPaint, see Tools.

Adding the Cursor to Your Application Resources
Next, add a CURSOR statement to your resource script file. The CURSOR state
ment specifies the file that contains the cursor, and defines a name for the cursor.
The application will use this cursor name when loading the cursor. The following
is an example of a CURSOR statement:

The Cursor, the Mouse, and the Keyboard 6-3

bullseye CURSOR BULLSEYE.CUR

In this example, the name of the cursor is "bullseye", and the cursor is in the file
BULLSEYE.CUR.

Loading the Cursor Resource
In your application code, retrieve a handle to the cursor using the LoadCursor
function. For example, the following code loads the cursor resource named
"bullseye" and assigns its handle to the variable hCursor:

hCursor = LoadCursor(hInstance,(LPSTR) "bullseye");

In this example, the LoadCursor function loads the cursor from the application's
resources. The instance handle, hInstance, identifies the application's resources
and is required. The name "bullseye" identifies the cursor. It is the same name
given in the resource script file.

6.2 Displaying the Cursor
Once you have loaded a cursor shape, you can display it using one of two
methods:

• Specifying it as the "class cursor" for all windows in a window class

• Explicitly setting the cursor shape when the cursor moves within the client
area of a particular window

The following sections explain each method.

6.2. 1 Specifying a Class Cursor
The "class cursor" defines the shape the cursor will take when it enters the client
area of a window that belongs to that window class. To specify a class cursor,
load the cursor you want, and assign its handle to the hCursor field of the
window-class structure before registering the class. For example, to use the built
in arrow cursor (IDC_ARROW) in your window, add the following statement to
your initialization function:

wc.hCursor = LoadCursor(NULL, IDC_ARROW);

For each window created using this class, the built-in arrow cursor will appear au
tomatically when the user moves the cursor into the window.

6-4 Guide to Programming

6.2.2 Explicitly Setting the Cursor Shape
Your application does not have to specify a class cursor. Instead, you can set the
hCursor field to NULL to indicate that the window class has no class cursor. If a
window has no class cursor, Windows will not automatically change the shape of
the cursor when it moves into the client area of the window. This means that your
application will need to display the cursor itself.

To use any cursor, whether built-in or custom, you must load it first. For ex
ample, to load the custom cursor "MyCursor" (defined in your application's
resource script file) add the following statements to your initialization function:

static HCURSOR hMyCursor; /* static variable */
hMyCursor = LoadCursor (hInstance, (LPSTR) "MyCursor");

Then, to change the cursor shape, use the SetCursor function to set the shape
each time the cursor moves in the client area. Since Windows sends a
WM_MOUSEMOVE message to the window on each cursor movement, you can
manage the cursor by adding the following statements to the window function:

case WM_MOUSEMOVE:
SetCursor(hMyCursor);
break;

NOTE If your application needs to display the cursor itself, you must set the class-cursor
field to NULL. Otherwise, Windows will attempt to set the cursor shape on each
WM_MOUSEMOVE message, even though your application is also setting the cursor shape.
This will result in a noticeable flicker as you move the cursor through the window.

6.2.3 Example: Displaying the Hourglass on a Lengthy Operation
Whenever your application begins a lengthy operation, such as reading or writing
a large block of data to a disk file, you should change the shape of the cursor to
the hourglass. This lets users know that a lengthy operation is in progress and
that they should wait before attempting to continue their work. Once the opera
tion is complete, your application should restore the cursor to its previous shape.

To change the cursor to an hourglass, use the following statements:

~ HCURSOR hSaveCursor;
HCURSOR hHourGlass;

hHourGlass LoadCursor(NULL, IDC_WAIT);

The Cursor, the Mouse, and the Keyboard 6-5

.. SetCapture(hWnd);
4D hSaveCursor = SetCursor(hHourGlass);

/* Lengthy operation */

e SetCursor(hSaveCursor);
~ ReleaseCapture();

In this example:

o The application defines the variables that will be used to store the cursor han
dles. Both variables are type HCURSOR.

.. The application first captures the mouse input, using the SetCapture func
tion. This keeps the user from attempting to use the mouse to carry out work
in another application while the lengthy operation is in progress. When the
mouse input is captured, Windows directs all mouse input messages to the
specified window, regardless of whether the mouse is in that window. The
application can then process the messages as appropriate.

4D The application then changes the cursor shape using the SetCursor function.
SetCursor returns a handle to the previous cursor shape, so that the shape can
be restored later. The application saves this handle in the variable hSave
Cursor.

e After the lengthy operation is complete, the application restores the previous
cursor shape.

~ The ReieaseCapture function releases the mouse input.

6.3 Letting the User Select Information with the Mouse
The mouse is a hardware device that lets the user move the cursor and enter
simple input by pressing a button. In a typical Windows application, the user per
forms many types of tasks with the mouse; for example, choosing commands
from a menu, selecting text or graphics, or directing scrolling operations. For
most of these tasks, Windows automatically handles the mouse input; for ex
ample, when the user chooses a menu command, Windows automatically sends
the application a message that contains the command ID.

However, one common task, selection of information within the client area, must
be handled by the application itself. In order to let the user select such informa
tion using the mouse, the application must perform the following tasks:

6·6 Guide to Programming

• Start processing the selection.

When the user presses the mouse button to start selecting information, the
application must note the location of the cursor and temporarily capture all
mouse input to ensure that other applications do not interfere with the selec
tion process.

• Provide visual feedback during the selection.

While the user drags the mouse across the screen, the application should
show the user what information is currently being selected. For example,
some applications highlight selected information; others draw a dotted
rectangle around it.

• Complete the selection.

When the user releases the mouse button, the application must note the final
location of the cursor and signal the end of the selection process.

When the selection process is complete, the user can then choose an action to per
form on the selected information. For example, in a word processor, the user
might select several words, then choose a command that changes the selected
text to a different font. The following sections discuss each step in more detail,
and explain how to let the user select graphics in a window's client area.

NOTE The mouse is just one of many possible system pointing devices. Other pOinting
devices such as graphics tablets, joysticks, and light pens may operate differently but still
provide input identical to that of a mouse. The following examples can be used with these
devices as well. Remember that when a pointing device is present, Windows automatically
controls the position and shape of the cursor as the user moves the pointing device.

6.3.1 Starting a Graphics Selection
Because graphics can be virtually any shape, they are potentially more difficult
to select than simple text. The simplest approach to selecting graphics is to let the
user "stretch" a selection rectangle so that it encloses the desired information.

This section explains how to use the "rubber rectangle" method of selecting
graphics. You can use the messages WM_LBUTTONDOWN, WM_LBUT
TONUP, and WM_MOUSEMOVE to create the rectangle. This lets the user
create the selection by choosing a point, pressing the left button, and dragging to
another point before releasing. While the user drags the mouse, the application
can provide instant feedback by inverting the border of the rectangle described
by the starting and current points.

The Cursor, the Mouse, and the Keyboard 6-7

For this method, you start the selection when you receive the message
WM_LBUTIONDOWN. You need to do three things: capture the mouse input,
save the starting (original) point, and save the current point, as follows:

BOOl bTrack = FALSE; /* these are global variables */
int OrgX = 0, OrgY = 0;
int PrevX = 0, PrevY = 0;
int X = 0, Y = 0;

.. case WM_lBUTTONDOWN:
bTrack = TRUE;
PrevX = lOWORD(lParam);
PrevY = HIWORD(lParam);
OrgX = lOWORD(lParam);
OrgY = HIWORD(lParam);
~ InvalidateRect (hWnd, NUll, TRUE);
UpdateWindow (hWnd);

/* Capture all input even if the mouse goes outside of window */

@t SetCapture(hWnd);
break;

.. When the application receives the WM_LBUTIONDOWN message, the
bTrack variable is set to TRUE to indicate that a selection is in progress. As
with any mouse message, the IParam parameter contains the current x- and y
coordinates of the mouse in the low- and high-order words, respectively.
These are saved as the origin x and y values, OrgX and OrgY, as well as the
previous values, PrevX and PrevY. The PrevX and PrevYvariables will be
updated immediately on the next WM_MOUSEMOVE message. The OrgX
and OrgY variables remain unchanged and will be used to determine a comer
of the bitmap to be copied. (The variables bTrack, OrgX, OrgY, Prev X, and
PrevY must be global variables.)

~ To provide immediate visual feedback in response to the WM_LBUTION
DOWN message, the application invalidates the screen and notifies the
window function that it needs to repaint the screen. It does this by calling
InvalidateRect and UpdateWindow.

@t The SetCapture function directs all subsequent mouse input to the window
even if the cursor moves outside of the window. This ensures that the selec
tion process will continue uninterrupted.

6-8 Guide 10 Programming

Respond to the WM_P AINT message by redrawing the invalidated portions of
the screen:

PAINTSTRUCT ps;
HOC hOC;

hOC = BeginPaint (hWnd, &ps);
if (OrgX 1= PrevX II OrgY 1= PrevY)

MoveTo(hOC, OrgX, OrgY);
LineTo(hOC, OrgX, PrevY);
LineTo(hOC, PrevX, PrevY);
LineTo(hOC, PrevX, OrgY);
LineTo(hOC, OrgX, OrgY);

EndPaint (hWnd, &ps);

break;

In some applications, you might want to be able to extend an existing selection.
One way to do this is to have the user hold the SHIFf key when making a selec
tion. Since the wParam parameter contains a flag that specifies whether the SHIFf
key is being pressed, it is easy to check for this, and to extend the selection as
necessary. In this case, extending a selection means preserving its previous OrgX
and OrgY values when you start it. To do this, change the WM_LBUTTON
DOWN case so it looks like this:

case WM_LgUTTONOOWN:
bTrack = TRUE;
PrevX = LOWORO(lParam);
PrevY = HIWORO(lParam);
if (l(wParam & MK_SHIFT))

}

OrgX = LOWORO(lParam);
OrgY = HIWORO(lParam);

InvalidateRect (hWnd, NULL, TRUE);
UpdateWindow (hWnd);

1* If shift key is
not pressed *1

1* Capture all input even if the mouse goes
outside the window *1

SetCapture(hWnd);
break;

The Cursor, the Mouse, and the Keyboard 6-9

6.3.2 Showing the Selection
As the user makes the selection, you need to provide feedback about his or her
progress. You can do this by drawing a border around the rectangle by.using the
LineTo function on each new WM_MOUSEMOVE message. To prevent losing
information already on the display, you need to draw a line that inverts the screen
rather than drawing over it. You can do this by using the SetROP2 function to
set the binary raster mode to R2_NOT. The following statements perform this
function:

case WM_MOUSEMOVE:
(

RECT rectClient;
int NextX;
int NextY;

if C bTrack) (
NextX LOWOROC1Param);
NextY HIWOROC1Param);

1* Do not draw outside the window's client area *1

GetClientRect ChWnd, &rectClient);
if CNextX < rectClient.left) {

NextX = rectClient.left;
} else if CNextX >= rectClient.right)

NextX rectClient.right - 1;

if CNextY < rectClient.top) (
NextY rectClient.top;

else if CNextY >= rectClient.bottom)
NextY = rectClient.bottom - 1;

1* If the mouse position has changed, then clear the *1
1* previous rectangle and draw the new one. *1

if CCNextX 1= PrevX) I I CNextY 1= PrevY)) (
hOC = GetOCChWnd);
SetROP2ChOC, R2_NOT); 1* Erases the previous box *1
MoveToChOC, OrgX, OrgY);
LineToChOC, OrgX, PrevY);
LineToChDC, PrevX, PrevY);
LineToChDC, PrevX, OrgY);
LineToChDC, OrgX, OrgY);

6-10 Guide to Programming

break;

/* Get the current mouse position */

PrevX = Nextx;
PrevY = NextY;
MoveTo(hOC, OrgX, OrgY);
LineTo(hOC, OrgX, PrevY);
LineTo(hOC, PrevX, PrevY);
LineTo(hOC, PrevX, OrgY);
LineTo(hOC, OrgX, OrgY);
ReleaseOC(hWnd, hOC);

/* Draws the new box */

The application processes the WM_MOUSEMOVE message only if bTrack is
TRUE (that is, if a selection is in progress). The purpose of the WM_MOUSE
MOVE processing is to remove the border around the previous rectangle and
draw a new border around the rectangle described by the current and original
positions. Since the border is actually the inverse of what was originally on the
display, inverting again restores it completely. The first four LineTo functions re
move the previous border. The next four draw a new border. Before drawing the
new border, the PrevX and PrevYvalues are updated by assigning them the cur
rent values contained in the IParam parameter.

6.3.3 Ending the Selection
Finally, when the user releases the left button, save the final point and signal the
end of the selection process. The following statements complete the selection:

case WM_LBUTTONUP:
bTrack = FALSE;
ReleaseCapture();

/* No longer carrying out a selection */
/* Release hold on mouse input */

x = LOWORD(lParam); /* Save the current value */
Y = HIWORD(lParam);
break;

When the application receives a WM_LBUTTONUP message, it immediately
sets bTrack to FALSE to indicate that selection processing has been completed.
It also releases the mouse capture by using the ReleaseCapture function. It then
saves the current mouse position in the variables, X and Y. This, together with
the selection-origin information saved on WM_LBUTTONDOWN, records the
selection the user has made. The application can now operate on the selection,
and can redraw the selection rectangle when necessary.

The Cursor, the Mouse, and the Keyboard 6-11

For some applications, you might want to check the final cursor position to make
sure it represents a point to the lower right of the original point. This is the way
most rectangles are described-by their upper-left and lower-right comers.

The ReleaseCapture function is required since a corresponding SetCapture
function was called. In general, you should release the mouse immediately after
the mouse capture is no longer needed.

6.4 Using the Cursor with the Keyboard
Because Windows does not require a pointing device, applications should pro
vide the user with a way to duplicate mouse actions with the keyboard. To allow
the user to move the cursor using the keyboard, use the SetCursorPos, Set
Cursor, GetCursorPos, Clip Cursor, and ShowCursor functions to display and
move the cursor.

6.4. 1 Using the Keyboard to Move the Cursor
You can use the SetCursorPos function to move the cursor directly from your
application. This function is typically used to let the user move the cursor by
using the keyboard.

To move the cursor, use the WM_KEYDOWN message and filter for the virtual
key values of the direction keys: VK_LEFT, VK_RIGHT, VK_UP, and
VK_DOWN. On each key stroke, the application should update the position of
the cursor. The following example shows how to retrieve the cursor position and
convert the coordinates to client coordinates:

POINT ptCursor;
int repeat = 1;
RECT Rect;

case WM KEYDOWN:

/* these are global variables */

o if CwParam 1= VK_LEFT &&wParam 1= VK_RIGHT
&& wParam 1= VK_UP && wParam 1= VK_DOWN)

break;

49 GetCursorPosC&ptCursor);

/* Convert screen coordinates to client coordinates */

4D ScreenToClientChWnd, &ptCursor);
Ore pea t ++ ; / * Inc rea s est her e p.e a t rat e * /

6-12 Guide to.Programming

switch CwParam) (

/* Adjust cursor position according to which key was pressed. */
/* Accelerate by adding the repeat variable to the cursor

position. */

cas e V K_ LEFT :
ptCursor.x
break;

case VK_RIGHT:

repeat;

ptCursor.x += repeat;
break;

case VK_UP:
ptCursor.y
break;

case VK_DOWN:

repeat;

ptCursor.y += repeat;
break;

default :
retu rn C NU LU ;

/* ensure that cursor doesn't go outside client area */

CD GetClientRectChWnd, &Rect);

~ if CptCursor.x)= Rect.right)
ptCursor.x = Rect.right - 1;

else if CptCursor.x < Rect.left)
ptCursor.x = Rect.left;

if CptCursor.y)= Rect.bottom)
ptCursor.y = Rect.bottom - 1;

else if CptCursor.y < Rect.top)
ptCursor.y = Rect.top;

tt ClientToScreenChWnd, &ptCursor);
~ SetCursorPosCptCursor.x, ptCursor.y);
break;

case WM_KEYUP:
o repeat = 1;
break;

In this example:

/* Clears the repeat rate */

o The first if statement filters for the virtual-key values of the direction keys
VK_LEFT, VK_RIGHT, VK_UP, and VK_DOWN.

The Cursor, the Mouse, and the Keyboard 6-13

• The GetCursorPos function retrieves the current cursor position. If the
mouse is available, the user could potentially move the cursor with the mouse
at any time; therefore, there is no guarantee that the position values you saved
on the last key stroke are correct.

@) The ScreenToClient function converts the cursor position to client coordi
nates. The application does this for two reasons: mouse messages give the
mouse position in client coordinates, and client coordinates do not need to be
updated if the window moves. In other words, it is convenient to use client
coordinates because the system uses them and because it usually means less
work for the application.

e The repeat variable provides accelerated cursor motion. Advancing the cursor
one unit for each key stroke can be frustrating for users if they need to move
to the other side of the screen. You can accelerate the cursor motion by in
creasing the number of units the cursor advances when the user holds down a
key. When the user holds down a key, Windows sends multiple WM_KEY
DOWN messages without matching WM_KEYUP messages. To accelerate
the cursor, you simply increase the number of units to advance on each
WM_KEYDOWN message.

@) The GetClientRect function retrieves the current size of the client area and
stores it in the Rect structure. You then use that information to ensure that the
cursor motion remains within the client area.

o These if statements check the current cursor position to ensure that it is within
the client area. If necessary, the application then adjusts the cursor position .

• In preparation for the SetCursorPos function, the ClientToScreen function
converts the values in the ptCursor structure from client coordinates to screen
coordinates. Because SetCursorPos requires screen coordinates rather than
client coordinates, you must convert the coordinates before calling SetCur
sorPos.

(i) The SetCursorPos function moves the cursor to the desired location.

@) Within the WM_KEYUP case, the application restores the initial value of the
repeat variable when the user releases the key.

6.4.2 Using the Cursor when No Mouse Is Available
When no mouse is available, the application must display and move the cursor in
response to keyboard actions. To determine whether a mouse is present, you can
use the GetSystemMetrics function and specify the SM_MOUSEPRESENT
option:

GetSystemMetrics(SM_MOUSEPRESENT);

This function returns TRUE if the mouse is present.

6-14 Guide to Programming

You will need to display the cursor and update the cursor position when the appli
cation is activated, and hide the cursor when the application is deactivated. The
following statements carry out both activation functions:

case WM_ACTIVATE:
if (!GetSystemMetrics(SM_MOUSEPRESENT))

if (!HIWORD(lParam)) {

break;

if (wParam) {
SetCursor(hMyCursor);
ClientToScreen(hWnd, &ptCursor);
SetCursorPos(ptCursor.x, ptCursor.y);

ShowCursor(wParam);

The cursor functions are called only if the system has no mouse; that is, if the
GetSystemMetrics function returns FALSE. Since Windows positions and up
dates the cursor automatically if a mouse is present, the cursor functions, if car
ried out, would disrupt this processing.

The next step is to determine whether the window is iconic. The cursor must not
be displayed or updated if the window is an icon. In a WM_ACTIVATE
message, the high-order word is nonzero if the window is iconic, so the cursor
functions are called only if this value is zero.

The final step is to check the wParam parameter to determine whether the
window is being activated or deactivated. This parameter is nonzero if the
window is being activated. When a window is activated, the SetCursor function
sets the shape and the SetCursorPos function positions it. The ClientToScreen
function converts the cursor position to screen coordinates as required by the Set
CursorPos function. Finally, the ShowCursor function shows or hides the
cursor depending on the value of wParam.

When the system has no mouse installed, applications must be careful when
using the cursor. In general, applications must hide the cursor when the window
is closed, 'destroyed, or relinquishes control. If an application fails to hide the
cursor, it prevents subsequent windows from using the cursor. For example, if an
application sets the cursor to the hourglass, displays the cursor, then relinquishes
control to a dialog box, the cursor remains on the screen (possibly in a new
shape), but cannot be used by the dialog box.

6.5 A Sample Application: Cursor
This sample application" Cursor, illustrates how to incorporate cursors and how
to use the mouse and keyboard in your applications. It illustrates the following:

The Cursor, the Mouse, and the Keyboard 6-15

• U sing a custom cursor as the class cursor

• Showing the hourglass cursor during a lengthy operation

• Using the mouse to select a portion of the client area

• U sing the keyboard to move the cursor

To create the Cursor application, copy and rename the source files of the Generic
application, then make the following modifications:

1. Add a CURSOR statement to your resource script file.

2. Add new variables.

3. Load the custom cursor and use it to set the class cursor in the initialization
function.

4. Prepare the hourglass cursor.

5. Add a lengthy operation to the window function (for simplicity, use the
ENTER key to trigger the operation).

6. Add the WM_LBUTTONDOWN, WM_MOUSEMOVE, and WM_LBUT
TONUP cases to the window function to support selection.

7. Add the WM_KEYDOWN case to the window function to support keyboard
controlled cursor movement.

8. Add the WM_PAINT case to the window function to redraw the client area
after it has been invalidated.

9. Add BULLSEYE.CUR to the make file.

10. Compile and link the application.

This sample assumes that your system has a mouse; if your system does not, the
application might not operate as described. However, it is a fairly straightforward
task to adjust the sample to work with both the mouse and the keyboard or with
only the keyboard.

NOTE Rather than typing the code provided in the following sections, you might find it
more convenient to simply compile and execute the sample source files provided with the
SDK.

6-16 Guide to Programming

6.5.1 Add the CURSOR Statement
To use a custom cursor, you need to create a cursor file using SDKPaint, and
give the name of the file in a CURSOR statement in the resource script file. Add
the following statement to your resource script file:

bullseye CURSOR BULLSEYE.CUR

Make sure that the cursor file, BULLSEYE.CUR, contains a cursor.

6.5.2 Add New Variables
You will need several new variables for this sample application. Place the follow
ing statements at the beginning of your C-Ianguage source file:

char str[255]; /* general-purpose string buffer */

HCURSOR hSaveCursor; /* handle to current cursor */
HCURSOR hHourGlass; /* handle to hourglass cursor */

BOOl bTrack = FALSE; /* TRUE if left button clicked */
int OrgX = 0, OrgY = 0; /* original cursor position */
int PrevX = 0, PrevY = 0; /* current cursor position */
int X = 0, Y = 0; /* last cursor position */
RECT Rect; /* selection rectangle */

POINT ptCursor; /* x and y coordinates of cursor */
int repeat = 1; /* repeat count of key stroke */

The hSaveCursor and hHourGlass variables hold the cursor handles to be used
for the lengthy operation. The bTrack variable holds a Boolean flag indicating
whether a selection is in progress. The variables OrgX, OrgY, Prev X, and Prev Y
hold the original and current cursor positions as a selection is being made. OrgX
and OrgY, along with the variables X and Y, hold the original and final coordi
nates of the selection when the selection process is complete. The ptCursor struc
ture holds the current position of the cursor in the client area. This is updated
when the user presses a DIRECTION key. The Rect structure holds the current di
mensions of the client area and is used to make sure the cursor stays within the
client area. The repeat variable holds the current repeat count for each keyboard
motion.

6.5.3 Set the Class Cursor
To set the class cursor, you need to modify a statement in the initialization func
tion. Specifically, you need to assign the cursor handle to the hCursor field of
the window-class structure. Make the following change in the C-Ianguage source
file. Find this line:

wc.hCursor = LoadCursor(NULL, IDC_ARROW);

The Cursor, the Mouse, and the Keyboard 6-17

Change it to the following:

wc.hCursor = LoadCursor(hInstance, "bullseye");

6.5.4 Prepare the Hourglass Cursor
Since you will be using the hourglass cursor during a lengthy operation, you need
to load it. The most convenient place to load it is during the initialization tasks
handled by the Initlnstance function. Add the following statement to Initlnstance:

hHourGlass = LoadCursor(NULL, IDC_WAIT);

This makes the hourglass cursor available whenever it is needed.

6.5.5 Add a Lengthy Operation
A lengthy operation can take many forms. This sample is a function named
"sieve" that computes several hundred prime numbers. The operation begins
when the user presses ENTER. Add the following statements to the window func
tion:

case WM_CHAR:
if (wParam == '\r')
SetCapture(hWnd);

/* Set the cursor to an hourglass */

hSaveCursor = SetCursor(hHourGlass);

strcpy (str, "Calculating prime numbers ... ");
InvalidateRect (hWnd, NULL, TRUE);
UpdateWindow (hWnd);
sprintf(str, "Calculated %d primes. ", sieve(»;
InvalidateRect (hWnd, NULL, TRUE);
UpdateWindow (hWnd);

SetCursor(hSaveCursor); /* Restores previous cursor */
ReleaseCapture();

break;

When the user presses ENTER, Windows generates a WM_ CHAR message whose
wParam parameter contains an ANSI value representing the carriage return.
When the window function receives a WM_ CHAR message, it checks for this
value and carries out the sample lengthy operation, sieve. This function, called
Eratosthenes Sieve Prime-Number Program, is from Byte, January 1983. It is de
fined as follows:

#define NITER 20
#define SIZE 8190

6-18 Guide to Programming

char flags[SIZE+1] {0};

sieve()
i nt i, k;
int iter, count;

for (iter = 1; iter <= NITER; iter++)
count = 0;
for (i = 0; i <= SIZE; i++)

flags[i] = TRUE;

for (i = 2; i <= SIZE; i++) {
if (flags[i]) {

for (k=i +i; k<=SIZE; k+=i)
flags[k] = FALSE;

count++;

retu rn (count);

6.5.6 Add the WM_LBUTTONOOWN, WM_MOUSEMOVE, and
WM_LBUTTONUP Cases

To carry out a selection, you can use the statements described in Section 6.3,
"Letting the User Select Information with the Mouse." Add the following state
ments to your window function:

case WM LBUTTONDOWN:
bTrack = TRUE;
strcpy (str, 1111);

PrevX = LOWORD(lParam);
PrevY = HIWORD(lParam);
if (! (wPa ram & MK_SH IFT))

OrgX LOWORD(lParam);
OrgY = HIWORD(lParam);

InvalidateRect (hWnd, NULL, TRUE);
UpdateWindow (hWnd);

/* If shift key is not pressed */

/* Capture all input even if the mouse goes outside of window */

SetCapture(hWnd);
break;

The Cursor, the Mouse, and the Keyboard 6-19

case WM_MOUSEMOVE:
{

RECT rectClient;
int NextX;
int NextY;

if CbTrack) {

break;

NextX LOWORDC1Param);
NextY HIWORDC1Param);

/* Do not draw outside the window's client area */

GetClientRect ChWnd, &rectClient);
if CNextX < rectClient.left) {

NextX = rectClient.left;
else if CNextX >= rectClient.right)

NextX rectClient.right - 1;

if CNextY < rectClient.top) {
NextY rectClient.top;

else if CNextY >= rectClient.bottom)
NextY = rectClient.bottom - 1;

/* If the mouse position has changed, then clear the */
/* previous rectangle and draw the new one. */

if CCNextX != PrevX) I I CNextY != PrevY)) {
hDC = GetDCChWnd);
SetROP2ChDC, R2_NOT); /* Erases the previous box */
MoveToChDC, OrgX, OrgY);
LineToChDC, OrgX, PrevY);
LineToChDC, PrevX, PrevY);
L i neToC hDC, PrevX, OrgY);
LineToChDC, OrgX, OrgY);

/* Get the current mouse position */

PrevX = Nextx;
PrevY = NextY;
MoveToChDC, OrgX, OrgY);
LineToChDC, OrgX, PrevY);
LineToChDC, PrevX, PrevY);
LineToChDC, PrevX, OrgY);
LineToChDC, OrgX, OrgY);
ReleaseDCChWnd, hDC);

/* Draws the new box */

6-20 Guide to Programming

case WM_LBUTTONUP:
bTrack = FALSE;
ReleaseCapture();

1* Ignores mouse input *1
1* Releases hold on mouse input *1

x = LOWORD(lParam);
Y = HIWORD(lParam);
break;

1* Saves the current value

6.5.7 Add the WM_KEYOOWN and WM_KEYUP Cases

*1

In order to use the keyboard to control the cursor, you need to add WM_KEY
DOWN and WM_KEYUP cases to the window function.

The statements in the WM_KEYDOWN case retrieve the current position of the
cursor and update the position when a DIRECTION key is pressed. Add the follow
ing statements to the window function:

case WM KEYDOWN:
GetCursorPos(&ptCursor);
if (wParam != VK_LEFT II wParam != VK_RIGHT II

wParam != VK_UP I I wParam != VK_DOWN
break;

ScreenToClient(hWnd, &ptCursor);
repeat++; 1* Increases the repeat rate *1

switch (wPa ram)

case VK_LEFT:
ptCursor.x - repeat;
break;

case VK_RIGHT:
ptCursor.x += repeat;
break;

case VK_UP:
ptCursor.y
break;

case VK_DOWN:

repeat;

ptCursor.y += repeat;
break;

default :
return (NULl);

GetClientRect(hWnd, &Rect); 1* Gets the client boundaries *1

The Cursor, the Mouse, and the Keyboard 6-21

if (ptCursor.x)= Rect.right)
ptCursor.x = Rect.right - 1;

else if (ptCursor.x < Rect.left)
ptCursor.x = Rect.left;

if (ptCursor.y)= Rect.bottom)
ptCursor.y = Rect.bottom - 1;

else if (ptCursor.y < Rect.top)
ptCursor.y = Rect.top;

ClientToScreen(hWnd, &ptCursor);
SetCursorPos(ptCursor.x, ptCursor.y);
break;

The GetCursorPos function retrieves the cursor position in screen coordinates.
To check the position of the cursor within the client area, the coordinates are con
verted to client coordinates by using the ScreenToClient function. The switch
statement checks for the DIRECTION keys; each time it encounters a DIRECTION

key, the statement adds the current contents of the repeat variable to the appro
priate coordinate of the cursor location.

The new position is checked to make sure it is still in the client area, using the
GetClientRect function to retrieve the dimensions of the client area. The posi
tion is adjusted, if necessary. Finally, the ClientToScreen function converts the
position back to screen coordinates and the SetCursorPos function sets the new
position.

The WM_KEYUP case restores the initial value of the repeat variable when the
user releases the key, as shown in the following example:

case WM_KEYUP:
repeat = 1;
break;

/* Clears the repeat count */

6.5.8 Add the WM_PAINT Case
To be sure that the text string and selection rectangle are redrawn when neces
sary (for example, when another window has temporarily covered the client
area), add the following case to the window function:

case WM_PAINT:
{

PAINTSTRUCT ps;

hOC = BeginPaint (hWnd, &ps);
if (OrgX 1= PrevX II OrgY 1= PrevY)

MoveTo(hOC, OrgX, OrgY);
LineTo(hOC, OrgX, PrevY);
LineTo(hOC, PrevX, PrevY);
LineTo(hOC, PrevX, OrgY);
LineTo(hOC, OrgX, OrgY);

6-22 Guide to Programming

TextOut (hOC, 1, 1, str, strlen (str»;
EndPaint (hWnd, &ps);

break;

6.5.9 Add BULLSEYE. CUR to the Make File
In the make file, add the file BULLSEYE.CUR to the list of files on which
CURSOR.RES is dependent. The relevant lines in the make file should look like
the following:

CURSOR.RES: CURSOR.RC CURSOR.H BULLSEYE.CUR
RC -r CURSOR.RC

This ensures that, if the file BULLSEYE.CUR changes, CURSOR.RC will be re
compiled to form a new CURSOR.RES file.

6.5.10 Compile and Link
Recompile and link the Cursor application. When the application is recompiled,
start Windows and the Cursor application. When you move the cursor into the
client area, it changes to the bull's-eye shape.

Press and hold down the left mouse button, then drag the mouse to a new posi
tion and release the mouse button. You should see a selection that looks like
Figure 6.1:

r Starting point

""" I I- II ... 1 ...

HelJ

/ ..

'- Endin gp oint

Figure 6.1 A Selection in the Cursor Application

Now press the DIRECTION keys to move the cursor. Then press ENTER to see the
application display the hourglass cursor to indicate that the lengthy operation is
in progress.

6.6 Summary

The Cursor, the Mouse, and the Keyboard 6-23

This chapter explained how to use the cursor in a Windows application. A cursor
is a special bitmap that allows the user to track actions initiated via the mouse.
Windows lets you change the shape of the cursor to suit your application's needs.
You can use one of Windows' built-in cursor shapes, or create your own cursors
using SDKPaint.

Windows automatically carries out most mouse actions; however, one action,
selection, must be carried out by the application.

Because Windows does not require a mouse or other pointing device, you will
probably want to include functions that allow the user tq move the cursor using
the keyboard.

For more information on topics related to cursors, see the following:

Topic

Mouse and keyboard input

Cursor functions

Window-management messages and
input messages

Resource script statements

Using SDKPaint

Reference

Guide to Programming: Chapter 4,
"Keyboard and Mouse Input"

Reference, Volume 1: Chapter 1,
"Window Manager Interface Func
tions" and Chapter 4, "Functions
Directory"

Reference, Volume 1: Chapter 5,
"Messages Overview" and Chapter
6, "Messages Directory"

Reference, Volume 2: Chapter 8,
"Resource Script Statements"

Tools: Chapter 4, "Designing Im
ages: SDKPaint"

Chapter

7
Menus

Most Windows applications use menus to let the user select commands or
actions.

This chapter covers the following topics:

• What a menu is

• Defining a menu

• Including a menu in your application

• Processing input from a menu

• Modifying an existing menu

• Working with special menu features

This chapter also explains how to create a sample application, EditMenu, that
uses and processes input from menus.

7. 1 What is a Menu?
A menu is a list of items which, to the user, are the application's commands. A
menu item can be displayed using text or a bitmap. The user tells the application
to perform a command by selecting a menu item using the mouse or the key
board. When a user chooses a menu item, Windows sends the application a
message that indicates which item the user selected.

To use a menu in your application, follow these general steps:

1. Define the menu in your resource script file.

2. Specify the menu in your application code. There are two common ways to
do this:

• When registering the window class, specify a menu for that entire window
class (the "class menu").

• When creating a window, specify a menu for that window.

3. Initialize the menu, if necessary.

7-2 Guide to Programming

Once the menu exists and has been initialized, the following can take place:

• The user can select commands from the menu.

When the user selects a command (menu item), Windows sends your applica
tion an input message that includes the identifier for that menu item.

• Your application can add, change or replace menu items, or even the entire
menu, as necessary.

7.2 Oefining a Menu
The first step in using a menu is to define it in your application's resource script
(.Re) file using a MENU statement. The MENU statement specifies:

• The name of the menu

• Items on the menu

• The menu ID of each item

• The text or bitmap that appears for each item

• Special attributes of each item

A MENU statement consists of the menu name, the MENU key word, and a pair
of BEGIN and END key words that enclose one or more of the following menu
definition statements:

• The MENUITEM statement defines a menu item, its appearance, and its
identifier.

When the user chooses a menu item, Windows notifies the application of the
user's selection.

• The POPUP statement defines a "POP-UP menu, which contains a list of menu
items.

When the user selects a pop-up menu, Windows displays the list of items.
The user can then select an item from the pop-up menu; Windows then noti
fies the application of the user's selection.

For example, the following MENU statement defines a menu named
SampleMenu:

~ SampleMenu MENU
BEGIN

8 MENUITEM "Exit!", IOM_EXIT
MENUITEM "Recalculate!", IOM_RECALC
.. POPUP "Options"

7.2. 1 Menu IDs

BEGIN

END
END

e MENU ITEM "Scyll a", IDM_SCY LLA
MENU ITEM "Charybdis", 10M_CHARYBDIS

In this example:

Menus 7-3

o This line tells the Resource Compiler that this is the beginning of a menu defi
nition, and names the menu SampleMenu. A MENU statement consists of the
menu name, the MENU key word, and a pair of BEGIN and END key words
which enclose the item-definition statements for that menu.

8 This MENUITEM statement defines the first item on the menu. The text
"Exit!" will appear as the leftmost command on the menu bar. When the user
selects the Exit! command, Windows sends the application a WM_COM
MAND message that specifies the menu ID "IDM_EXIT" in the message's
wParam parameter. The next MENUITEM statement defines the Recalcu
late! command in the same way.

@) The POPUP statement defines a pop-up menu. The text "Options" appears
on the menu bar. When the user selects the Options command, a menu ap
pears that lets the user choose between the Scylla and Charybdis commands.

e Within the POPUP statement are the definitions for the items on that pop-up
menu. For the Options pop-up menu, there are two menu items, each with its
own text and menu ID.

When the user selects the Exit!, Recalculate!, Scylla or Charybdis command,
Windows notifies the application of the user's selection by passing it that item's
menu ID. Note that Windows does not notify the application when the user
selects the Options command; instead, Windows simply displays the Options pop
up menu.

For more information about the MENU, POPUP and MENUITEM resource
statements, see the Reference, Volume 2.

Each menu item has a unique identifier, usually called a "menu ID." When the
user chooses a command, Windows passes the command's menu ID to the appli
cation. Menu IDs must be unique constants. You can define each menu ID as a
constant by using the #define directive in the resource script file or the include
file. For example:

#define 10M_EXIT 111
#define IDM_RECALC 112
#define 10M_SCYLLA 113
#define 10M_CHARYBDIS 114

7-4 Guide to Programming

You use a menu ID to direct the flow of control depending on which menu item
the user selects. For more information on handling menu input, see Section 7.4,
"Processing Input from a Menu."

7.3 Including a Menu in Your Application
Once you have defined a menu in the resource script file, you can include it in
your application code. You specify a menu by associating it with a window. Any
overlapped or pop-up window can have a menu; a child window cannot (al
though child windows can have system menus).

There are two common ways to specify a menu in your application:

• Specify the menu as the class menu when registering a window class. All
windows of that class will then include that menu.

• Specify the menu when creating a window. That window will then include
that menu.

The following sections explain these two methods.

7.3. 1 Specifying the Menu for a Window Class
When you register a window class, you are setting the default attributes for
windows in that class. You can specify a menu as the default menu for a window
class; this default menu is known as the class menu. You specify the class menu
when you register the window class. To do so, you assign the name of the menu,
as given in the resource file, to the IpszMenuName field of the window-class
structure. For example:

wc.lpszMenuName = "SampleMenu";

In this example, the IpszMenuName field is part of a WNDCLASS data struc
ture named we. The menu name "SampleMenu" is the name given to the menu in
the application's resource script file.

Once a window class has been registered, each window of that class will have the
specified class menu. You can override this default menu by explicitly supplying
a menu handle when you create a window of that class.

7.3.2 Specifying a Menu for a Specific Window
A window need not use the class menu; the class menu is simply a default, not a
requirement. To use a menu other than the class menu, specify the menu you
want when you create the window.

To specify a menu when creating a window:

Menus 7-5

1. Load the menu from your application resources using the LoadMenu func
tion. This function returns a menu handle.

2. When you call Create Window to create the window, pass the menu handle
as the function's hMenu parameter.

The following example shows how to load and specify a menu by using
Create Window:

HWND hWnd; /* Initialize a variable to hold the
handle to the current window*/

HMENU hSampleMenu;/* Initialize a variable to hold the
handle to the menu */

o hSampleMenu = LoadMenu (hInstance, "SampleMenu");
• hWnd = CreateWindow ("SampleWindow",

"SampleWindow",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
(HWND) NULL,

o hSampleMenu,
hInstance,
(LPSTR) NULL);

In this example:

o The LoadMenu function loads the menu named SampleMenu. The hInstance
variable specifies that the resource is to be loaded from the application's
resources. LoadMenu returns a menu handle, which is stored in the
hSampleMenu variable.

• The application then calls Create Window to create a new window named
Sample Window.

o The application passes hSampleMenu, the menu handle that LoadMenu re
turned, to the CreateWindow function. This tells Windows to use
SampleMenu for this window, instead of the class menu (if any).

7-6 Guide to Programming

7,,4 Processing Input from a Menu
When a user chooses a command in a menu, Windows sends a WM_COM
MAND message to the corresponding window function. The message contains
the menu ID of the command in its wParam parameter.

The window function is responsible for carrying out any tasks associated with the
selected command. For example, if the user chooses the Open command, the
window function prompts for the filename, opens the file, and displays the file in
the window's client area.

The most common way to process menu input is with a switch statement in the
window function. Usually, the switch statement directs processing according to
the value of the wParam parameter of the WM_COMMAND message. Each
case processes a different menu ID.

For example:

case WM_COMMANO:
«» switch (wParam)

{

• ca se 10M_NEW:
/* perform operations for creating a new file */

break;
case 10M_OPEN:

/* perform operations for opening a file */
break;

case 10M_SAVE:
/* perform operations for saving this file */
break;

case 10M_SAVEAS:
/* perform operations for saving this file */
break;

case 10M_EXIT:
/* perform operations for exiting the application */
break;

break;

In this example:

«» The wParam parameter contains the menu ID of the item the user just
selected.

• For each menu ID (menu item), the application performs the appropriate
operations.

Menus 7-7

7.5 Working with Menus from Your Application
Windows provides functions you can use to change existing menus and create
new menus, while your application runs. This section explains:

• How to enable and disable menu items

• How to check and uncheck menu items

• How to add, change, and delete menu items

• How to use bitmaps as menu items

• How to replace a menu

• How to create and initialize·a menu from your application

When a window is created, it receives a private copy of the class menu. The
application can alter that window's copy of the menu without affecting other
windows' menus.

NOTE Whenever you make changes to items on the menu bar, you need to call the
DrawMenuBar function to display the changes.

7.5.1 Enabling and Disabling Menu Items
Normally, a menu item is enabled; its text appears normal, and the user can select
it. A disabled menu item appears normal, but does not respond to mouse clicks or
keyboard selection. A "grayed" item has dimmed text, and does not respond to
mouse clicks or keyboard selection. Typically, you disable or gray a menu item
when the action it represents is not appropriate. For example, you might gray the
Print command in the File menu when the system does not have a printer in
stalled.

Setting the Initial State of a Menu Item
In the resource script file, you can specify whether a menu item is initially dis
abled or grayed. To do so, use the INACTIVE or GRAYED options with the
MENUITEM statement. For example, the following statement specifies that the
Print command is initially grayed:

MENUITEM "Print", 10M_PRINT, GRAYED

The information in the resource script file applies only to the initial state of the
menu. You can change the menu item's state later, using the EnableMenuItem
function in your C-Ianguage source file. EnableMenultem enables, disables, or
grays a menu item.

7-8 Guide to Programming

Disabling a Menu Item
A "disabled" menu item appears normal, but does not respond to mouse clicks or
selection by the keyboard. A disabled menu item is commonly used as a title for
related menu options. The following statement disables a menu item:

EnableMenultem (hMenu, 10M_SAVE, MF_OISABLEO);

This example disables a command on the menu represented by the menu handle
hMenu. The menu ID of the command is IDM_SA VE. By specifying the value
MF _DISABLED, you tell Windows to disable the specified menu item.

Disabling and Graying a Menu Item
So that the user can tell that a menu item is not currently available, it's a good
idea to disable a menu item by "graying" it rather than simply disabling it. Gray
ing a menu item disables the item and redisplays the item text in dimmed letters.

To disable and gray a menu item, specify the value MF _ GRA YED when you call
EnableMenuItem. For example:

EnableMenultem (hMenu, 10M_PRINT, MF_GRAYEO);

This example disables a command on the menu represented by the menu handle
hMenu. The menu ID of the command is IDM_PRINT. By specifying the value
MF _GRAYED, you tell Windows to disable the specified menu item, and redis
play the item text in gray letters.

Enabling a Menu Item
You can enable a disabled menu item by calling EnableMenuItem and specify
ing the MF _ENABLED value.

The following example enables the command identified by ID _EXIT:

EnableMenultem (hMenu, IO_EXIT, MF_ENABLEO);

7.5.2 Checking and Unchecking Menu Items
You can display a checkmark next to an item to indicate that the user has
selected it. Typically, you check a menu item when it is part of a group of items
that are mutually exclusive. The checkmark indicates the user's latest choice. For
example, if a group consists of the items Left, Right, and Center, you might
check the Left item to indicate that the user chose that item most recently.

Menus 7-9

Setting an Initial Checkmark
In the resource script file, you can specify whether a menu item is initially
checked. To do so, use the CHECKED option in the MENUITEM statement.
For example, the following MENUITEM statement specifies that the Left com
mand is initially checked:

MENUITEM "Left", 10M_LEFT, CHECKEO

Checking a Menu Item
The information in the resource script file applies only to the initial state of the
menu. You can check or remove a checkmark from a menu item later, using the
CheckMenultem function in your C-Ianguage source file. CheckMenultem
checks or removes a checkmark from a specified menu item.

The following example places a checkmark next to the item whose menu ID is
IDM_LEFT:

CheckMenultem (hMenu, 10M_LEFT, MF_CHECKED);

Removing a Menu-Item Check mark
To remove a checkmark from a menu item, you call the CheckMenultem func
tion and specify the value MF _UNCHECKED. The following example removes
the check (if any) from the item whose menu ID is IDM_RIGHT:

CheckMenultem (hMenu, 10M_RIGHT, MF_UNCHECKEO);

If you change menu items in the menu bar, you need to call the DrawMenuBar
function to display the changes.

7.5.3 Adding Menu Items
You can add a new menu item to the end of an existing menu, or insert one after
a particular menu item.

Appending a Menu Item
To append an item to the end of an existing menu, you use the AppendMenu
function. This function adds a new item to the end of the specified menu, and lets
you specify whether the new item is checked, enabled, grayed, and so on.

The following example appends the item "Raspberries" to the end of the Fruit
menu. The example disables and grays the new item if raspberries are not cur
rently in season.

7-10 Guide to Programming

if (!RasberriesInSeason)
AppendMenu (hFruitMenu,

MF_GRAYEO,
10M_RASPBERRIES,
"Raspberries");

else
AppendMenu (hFruitMenu,

MF_ENABLEO,
TOM_RASPBERRIES,
"Raspberries");

Inserting a Menu Item
To insert an item in an existing menu, you use the InsertMenu function. This
function inserts the specified item at the specified position, and moves sub
sequent items down to accommodate the new item. Like AppendMenu, Insert
Menu lets you specify the state of the new item when you insert it.

The following example inserts the item "Kumquats" before the existing item
"Melons." The example disables and grays the new item.

InsertMenu (hFruitMenu,
10M_MELONS,
MF_BYCOMMANO I MF_GRAYEO,
10M_KUMQUATS,
"Kumquats") ;

You can also insert items by numerical position rather than before a specific
item. The following example inserts the item "Bananas" so that it becomes the
third item in the Fruit menu. (The first item has position 0, the second item 1, and
so on.)

InsertMenu (hFruitMenu,
2,
MF_BYPOSITION I MF_GRAYEO,
10M_BANANAS,
"Bananas");

7.5.4 Changing Existing Menus
You can change existing menus and menu items by using the ModifyMenu
function. For example, you might need to change the text of a menu item.
ModifyMenu lets you enable, disable, gray, check or uncheck the item.

In the following example, the ModifyMenu function changes the text of the
Water command to "Wine". The example also changes the item's menu ID.

ModifyMenu (hMenu,
10M_WATER,
MF_BYCOMMANO,
10M_WINE,
"Wine");

Menu.s 7-11

When you use ModifyMenu, you are essentially telling Windows to replace a
specific menu item with a new item. The third, fourth and fifth ModifyMenu par
ameters specify the attributes of the new item.

For example, the following statement changes the item text from "Wine" to "Cab
emet". Although only the menu item's text is changing, the statement nonethe
less respecifies all the attributes of the item (in this case, just the menu ID).

ModifyMenu (hMenu,
10M_WINE,
MF_BYCOMMANO,
10M_WINE,
"Cabernet");

Performing Several Changes at Once
When you use ModifyMenu to change a menu item, you can also check or
uncheck the item, and can enable, disable, or gray it as well.

The following example not only changes the Water command to "Wine"; it ena
bles the command (if not already enabled), checks it, and changes its menu ID.

ModifyMenu (hMenu,
10M_WATER,
MF_BYCOMMANO MF_ENABLEO I MF_CHECKED,
10M_WINE,
"Wine");

7.5.5 Deleting a Menu Item
You can remove a menu item, and any pop-up menus associated with that item,
by using the DeleteMenu function. DeleteMenu permanently removes the
specified menu item from the specified menu, and moves subsequent items up to
fill the gap.

OeleteMenu (hFruitMenu,
1,
MF _BYPOSITION);

/* handle to menu */
/* delete the second item */
1* we are specifying the

item by its position
on the menu */

This example deletes the· Fruit menu's second item. Windows moves any sub
sequent items up to fill the gap.

7 .. 12 Guide to Programming

The following example deletes the same item, but specifies it by its menu ID
rather than by its position on the menu:

OeleteMenu (hFruitMenD,
10M_ORANGES,
MF_BYCOMMANO);

7.5.6 Using a Bitmap as a Menu Item

1* handle to menu */
1* delete "Oranges" item */
/* we are specifying the

item by its menu 10 */

Windows lets you use bitmaps as menu items. There are two ways to do this:

• When you insert or append a new menu item, specify that you want to use a
bitmap instead of text for that item.

• Use the ModifyMenu function to change an existing item so that it appears
as a bitmap instead of text.

You cannot specify a bitmap as a menu item in the .Re file.

The following example loads a bitmap named "Apples", then uses the Modify
Menu function to replace the text of the Apples command with a bitmap image
of an apple.

HMENU hMenu;
HBITMAP hBitmap;

o hBitmap = LoadBitmap (hInstance, "Apples");

~ hMenu = GetMenu(hWnd);
ModifyMenu (hMe~u,

.. 10M_APPLES, 1* item to replace */
~ MF_BYCOMMANO I MF_BITMAP,
CD 10M_APPLES, 1* Menu 10 of new item * /
~ (LPSTR) MAKELONG (hBitmap, 0»

In this example:

o The LoadBitmap function loads the bitmap from the file and returns a handle
to the bitmap, saved in the hBitmap variable.

~ The GetMenu function retrieves the handle of the current window's menu,
and places it in the variable hMenu. This variable is then passed as the first
parameter of the ModifyMenu function, which specifies which menu to
change.

Menus 7-13

• The second parameter of the ModifyMenu function, in this case set to
IDM_APPLES, specifies the menu item to modify.

e The third parameter specifies how to make the changes. MF _BYCOMMAND
tells Windows that we are specifying the item to change by its menu ID rather
than by its position. MF _BITMAP indicates that the new item will be a bit
map rather than text.

@) The fourth parameter of the ModifyMenu function, set to IDM_APPLES,
specifies the new menu ID for the item we are modifying. In this example, the
menu ID does not change.

0} The new bitmap handle must be passed as the low-order word of the fifth par
ameter of Modify Menu. The MAKELONG utility combines the 16-bit
handle with a 16-bit constant to make the 32-bit argument. Casting the para
meter to an LPSTR prevents the compiler from issuing a warning, since the
compiler expects this parameter to be a string.

7.5.7 Replacing a Menu
You can replace· a window's menu by using the SetMenu function. Typically,
you replace a menu when the application changes modes and needs a completely
new set of commands. For example, an application might replace a spreadsheet
menu with a charting menu when the user changes from a spreadsheet to a
charting mode.

In the following example, the GetMenu function retrieves the menu handle of
the spreadsheet menu and saves it for restoring the menu later. The SetMenu
function replaces the spreadsheet menu with a charting menu loaded from the
application's resources.

HMENU hMenu;
HMENU hSpreadsheetMenu;

hOldMenu = GetMenu(hWnd);
hMenu = LoadMenu(hInstance, "ChartMenu");
SetMenu(hWnd, hMenu);

You can also load menus from resources other than those belonging to the appli
cation (by using the module handle of a library).

7-14 Guide·to Programming

7.5.8 Creating a New Menu
You can create new menus while your application runs, using the CreateMenu
function. CreateMenu creates anew, empty menu; you can then add items to it
using AppendMenu or InsertMenu.

The following example creates an empty pop-up menu and appends it to the
window's menu. It then appends three items to the new pop-up menu.

HMENU hWinMenu;
HMENU hVeggieMenu;

hVeggieMenu = CreateMenu ();

AppendMenu (hWinMenu,
MF_POPUP I MF_ENABLEO,
hVeggieMenu,
"Veggies");

AppendMenu (hVeggieMenu,
MF_ENABLEO,
10M_CELERY,
"Celery");

AppendMenu (hVeggieMenu,
MF_ENABLEO,
10M_LETTUCE,
"Lettuce") ;

AppendMenu (hVeggieMenu,
MF _ENABLED,
10M_PEAS,
"Peas");

7.5.9 Initializing a Menu
If necessary, your application can initialize a menu before Windows displays that
menu. Although you can specify a menu item's initial state (disabled, grayed, or
checked) in the resource script file, this method doesn't work if the initialization
differs from time to time. For example, to disable the Print menu item only if the
user's system has no printer installed, you could disable the Print item when you
initialize that menu. (Disabling "Print" in the .Re file wouldn't work, since you
won't know whether or not there's a printer available until the application is run
ning.)

Just before Windows displays a menu, it sends a WM_INITMENV message to
the window function for the window that owns that menu. This lets the window
function check the state of the menu items and, if necessary, modify them, before

Menus 7-15

Windows displays the menu. In the following example, the window function
processes the WM_INITMENU message, and sets the state of a command based
on the value of the wChecked variable:

WORD wChecked = 10M_LEFT;

t» case WM_INITMENU:
f) if (GetMenu(hWnd)!= wParam)

break;
CheckMenuItem(wParam, 10M_LEFT,

10M_LEFT == wChecked ? MF_CHECKEO MF_UNCHECKEO);
CheckMenuItem(wParam, 10M_CENTER,

10M_CENTER == wChecked ? MF_CHECKEO : MF_UNCHECKEO);
CheckMenuItem(wParam, 10M_RIGHT,

10M_RIGHT == wChecked ? MF_CHECKED : MF_UNCHECKEO);
break;

In this example:

t» The WM_INITMENU message passes the given menu handle in the wParam
message parameter.

f) To make sure that Windows is about to display the correct menu, the Get
Menu function retrieves a handle to the current window's menu and com
pares that handle with the value of wParam. If these are not equal, the
window's menu should not be initialized. Otherwise, the menu is correct, and
you can use the CheckMenuItem function to initialize the commands in the
menu.

7.6 Special Menu Features
So far, this chapter has discussed "standard" menus, which drop down from a
menu bar, and which contain items the user selects using the mouse, the
DIRECTION keys, or command mnemonics. In addition to these . menu features,
Windows provides the following special features:

• Accelerator keys, which provide a keyboard shortcut for selecting menu items

• Cascading menus, which let you have several levels of pop-up menus

• Floating pop-up menus, which are normal pop-up menus except that they can
appear anywhere on the screen (usually at the current mouse position)

• Customized checkmarks, which let you use your own bitmaps for checkmarks
instead of the standard Windows checkmark

The rest of this section explains how to use these features.

7-16 Guide to Programming

756.1 Providing Menu-Accelerator Keys
Accelerator keys are. shortcut keys that let the user choose a command from a
menu using.a single key stroke. For example, an application could let the user
select the Delete command simply by pressing the DELETE key. Accelerator keys
are part of the resource script file, and are tied into the application through the
C-Ianguage source code.

To provide menu-accelerator keys in your application:

1. In the resource script file, mark the accelerator key for each menu item in the
MENUITEM statements.

2. In the resource script file, create an accelerator table. An accelerator table
lists the accelerator keys and corresponding menu IDs. You create it using the
ACCELERATORS resource statement.

3. In the C-Ianguage source file, load the accelerator table by using the
LoadAccelerators function.

4. Change the message loop so that it processes accelerator-key messages.

The remainder of this section describes each step in more detail.

Adding Accelerator Text to a Menu Item
The menu text should indicate each item's accelerator key so that the user can
tell which key to use. Add the key designations to the MENUITEM definitions
in the .RC file.

For example, suppose your application has the following pop-up menu defined in
its resource script file:

GroceryMenu MENU
POPUP

ENO

BEGIN

ENO

MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM

"&Meats"

"&Beef\tF9",
"&Chicken\tShift+F9" ,
"&Lamb\tCtrl+F9",
"&Pork\tAlt+F9" ,

10M_BEEF
10M_CHICKEN
10M_LAMB
10M_PORK

The pop-up menu "Meats" has the four menu items Beef, Chicken, Lamb, and
Pork. Each menu item has a mnemonic, indicated by the ampersand (&), and an
accelerator key separated from the name with a tab (\1). Whenever a command

Menus 7-17

has a corresponding accelerator, it should be displayed in this way. The accel
erator keys in this sample are F9, SHIFf+F9, CONTROL+F9, and ALT+F9.

Creating an Acce/erator Tab/e
To use accelerator keys, add an accelerator table to the resource script file
using the ACCELERATORS statement. The statement lists the accelerator
keys and the corresponding menu IDs of the associated commands. In the
ACCELERATORS statement, as with other resource statements, BEGIN starts
the entry and END marks its end. For example:

GroceryMenu
BEGIN

VK_F9,
VK_F9,
VK_F9,
V K_F9,

END

ACCELERATORS

10M_BEEF,
10M_CHICKEN,
10M_LAMB,
10M_PORK,

V I RTKEY
VIRTKEY, SHIFT
VIRTKEY, CONTROL
V I RTKEY, ALT

This example defines four accelerator keys, one for each command. The first
accelerator key is simply the F9 key; the other three accelerators are key-stroke
combinations using the ALT, SHIFT, or CONTROL key in combination with the F9

key.

The accelerator keys are defined using the Windows virtual-key code, as indi
cated by the VIRTKEY option. Virtual keys are device-independent key values
that Windows translates for each computer. They are a way to guarantee that the
same key is used on all computers without knowing what the actual value of the
key is on any computer. You may also use ASCII key codes for accelerators, in
which case, you would use the ASCII option.

The ACCELERATORS statement associates each accelerator with a menu ID.
In the preceding example, the IDM_BEEF, IDM_CHICKEN, IDM_LAMB, and
IDM_PORK constants are the menu IDs of the commands on the Grocery menu.
When the user presses an accelerator key, these are the values that are passed to
the window function.

Loading the Acce/erator Table
The accelerator table, like any other resource, needs to be loaded before your
application can use it. To load the accelerator table, use the LoadAccelerators
function. This function takes a handle to the current instance of the application
and the name of the accelerator table (as defined in the .RC file); it returns a
handle to the accelerator table for the associated menu. Typically, you load a

7-18 Guide to Programming

menu's acceleratnr table when that menu's windnw has just been created-that
is, within the WM_ CREATE case nf the windnw functinn. Fnr example:

HANDLE hlnst;
HANDLE hAccTable;

/* handle to current instance */
/* handle to accelerator table */

o hAccTab 1 e = LoadAcce 1 erators (h I ns t, "GroceryMenu");
break;

In this example:

o This statement lnads the acceleratnr table fnr GroceryMenu into' memnry; it
assigns the handle identifying the table to' the hAccTable variable. The hInst
variable identifies the applicatinn's resnurce file; "GroceryMenu" is the name
nf the acceleratnr table.

Once the table is lnaded, the applicatinn can use the TranslateAccelerator func
tinn to' translate acceleratnrs for that menu.

Changing the Message Loop to Process Accelerators
Tn use the acceleratnr table, ynu must add the Tran~lateAccelerator functinn to'
the message lnnp. When the message lnnp receives a keybnard-input message
cnntaining an acceleratnr key, TranslateAccelerator cnnverts the message to' a
WM_COMMAND message cnntaining the apprnpriate menu ID fnr that accel
eratnr, and sends the resulting WM_COMMAND message to' the windnw
functinn.

The message lnnp shnuld test each message to' see if it is an acceleratnr-key
message. If it is, the lnnp shnuld translate and dispatch the message using
TranslateAccelerator. If the message is nnt an acceleratnr-key message, the
lnnp shnuld process it nnrmally.

NOTE TranslateAccelerator also translates accelerators for commands chosen from the
system menu. In such cases, it translates the message into a WM_SYSCOMMAND
message.

After ynu add the TranslateAccelerator functinn, the message lnnp shnuld lnnk
like this:

Menus 7-19

while (GetMessage(&msg, NULL, NULL, NULL)) {

«» if (!TranslateAccelerator(hWnd, hAccTable, &msg))
(

.. TranslateMessage(&msg);
DispatchMessage(&msg);

In this example:

«» This statement checks each message to see whether it is an accelerator-key
message. The window handle, h Wnd, identifies the window whose messages
are to be translated. The window handle must identify the window that con
tains the menu with the accelerators. The accelerator handle, hAccTable,
specifies the accelerator table to use when translating the accelerators.

If the message was generated via an accelerator key, the Translate
Accelerator function converts the keystroke to a WM_ COMMAND message
containing the appropriate menu ID, and sends that WM_COMMAND
message to the window function.

.. If the message is not an accelerator-key message, the application processes it
as usual, by using the TranslateMessage and DispatchMessage functions.

7.6.2 Using Cascading Menus
Windows lets you provide more than one level of pop-up menus. Such multilevel
pop-up menus are called cascading menus. Such a menu structure can help min
imize the number of commands on a single pop-up menu, without requiring a
dialog box to let the user refine his or her choice.

Figure 7.1 shows an example of cascading menus.

Figure 7 .1 Cascading Menus

C.5..1
Q.uick C

7-20 Guide to Programming

In this example, the user chose the Software menu, then chose the Languages
command from the Software menu. At this point, the Languages pop-up menu ap
peared to the right of the cursor. The user then moved the cursor over the Lan
guages pop-up menu and chose "C." The C pop-up menu then appeared, and let
the user choose either C version 5.1 or QuickC.

Cascading menus are simply nested pop-up menus. The menu definition for the
example in Figure 7 .1 looks like this:

MenuMenu MENU
BEGIN

POPUP "&Software"
BEGIN

END

POPUP "&Word Processing"
BEGIN
MENUITEM "&Word 5.0", IOM_WORO
MENU ITEM "W&rite", IOM_WRITE
END

POPUP "&Spreadsheet"
BEGIN
MENUITEM "&Microsoft Excel"i IOM_EXCEL
MENU ITEM "&1+2=4", IOM_124
END

POPUP "&Languages"
BEGIN

END

POPUP "&C"
BEGIN
MENU ITEM "C &5.1", IOM_C51
MENUITEM "&Quick C", IOM_QUICKC
END

MENUITEM "Quick &Basic", IOM_QUICKBASIC
MENUITEM "&PASCAL", IOM_PASCAL
END

NOTE A cascading pOp-,up menu has its own menu handle. To manipulate items on a
cascading pop-up menu, you must first get its menu handle by calling the GetSubMenu
function.

Menus 7-21

7.6.3 Using Floating PDP-UP Menus
Usually, pop-up menus are "attached" to another menu; they appear when the
user selects a command on that menu. However, Windows also lets you provide
"floating" pop-up menus, which appear at the current cursor position when the
user presses a certain key or clicks a mouse button.

To provide a floating pop-up menu, you use the CreatePopupMenu and Track
PopupMenu functions. If you want the floating pop-up menu to appear when the
user presses a certain key or mouse button, create the floating pop-up menu
within the case statement that handles the input message from that key or button.

The following example displays a floating pop-up menu when the user depresses
the right mouse button:

POINT currentpoint;

case WM RBUTTONDOWN:
{

HWND hWnd; /* handle to current window */
HMENU hFloatingPopup; /* handle for floating pop-up */
Ct currentpoint = MAKEPOINT (lParam);

/* pOint at which the user
pressed the button */

8 hFloatingPopup =CreatePopupMenu();

C. AppendMenu (hFloatingPopup,
MF_ENABLED,
10M_CALC,
"Calculator");

AppendMenu (hFloatingPopup,
MF_ENABLED,
IOM_CAROFILE,
"Cardfile");

AppendMenu (hFloatingPopup,
MF_ENABLEO,
10M_NOTEPAD,
"Notepad") ;

~ ClientToScreen (hWnd, (LPPOINT)¤tpoint);

7-22 Guide to Programming

~ TrackPopupMenu (hFloatingPopup,
NULL,
ct currentpoint.x,
currentpoint.y,
NULL,
hWnd,
NULl) ;

tt DestroyMenu (hFloatingPopup);

break;
}

In this example:

o The lParam parameter of the WM_RBUTTONDOWN message contains the
current position of the mouse. The MAKEPOINT function converts this long
value to a point, which is then stored in the currentpoint data structure.

8 The CreatePopupMenu function creates an empty pop-up menu, and returns
a handle to that menu. The new menu's handle is placed in the variable
hFloatingPopup.

• After creating the empty pop-up menu, the application appends three items to
it: Calculator, Cardfile, and Notepad.

e The ClientToScreen function converts the coordinates of the current cursor
position so that they describe the position relative to the entire screen's upper
left comer. (Initially, the coordinates describe the cursor position relative to
the client window instead).

~ Once the menu is complete, the application displays it at the current cursor
position by calling TrackPopupMenu.

ct The x and y fields of the currentpoint data structure contain the current
screen coordinates of the cursor.

tt After the user has made a selection from the menu, the application destroys
the menu, thereby freeing up the memory the menu used. The application re
creates the menu each time the user depresses the right mouse button.

7.6.4 Designing Your Own Checkmarks
Normally, when you check a menu item, Windows displays the standard
Windows checkmark next to the item text. A menu item that is not checked has
no special mark next to it at all.

However, you can specify a bitmap, instead of the standard Windows checkmark,
to display when an item is checked. You can also specify a bitmap to display
when a menu item is not checked.

Menus 7-23

Custom checkmarks can be particularly useful for helping the user distinguish
between menu commands that perform an action and commands that can be
checked but are not currently checked. Some Windows applications use the
following conventions:

Type of Menu Item

Menu items that perform an action
(for example, display another menu
or a dialog box)

Menu items that are currently
checked

Menu items that can be checked but
are not currently checked

To provide your own checkmark bitmaps:

Convention

Do not display a checkmark for such
an item.

Display either a normal Windows
checkmark or a custom checkmark.
When the user chooses a checked
item again, remove the checkmark.

Display a custom checkmark. When
the user chooses an unchecked item,
display either a standard Windows
checkmark or a different custom
checkmark.

1. Use SDKPaint to create the bitmaps you want to use as checkmarks.

Windows requires that your checkmark bitmaps be the same size as the stand
ard checkmarks. Although you can, during run time, stretch or shrink your
checkmark bitmaps to the right size, it's a good idea to start with a bitmap
that's close to the right size. (The size of the standard checkmarks depends on
the current display device. To find out the current size of the standard check
marks, use the GetMenuCheckMarkDimensions function.)

You can also create a bitmap "by hand" - by coding the individual bits.
Chapter 11, "Bitmaps," explains how to do this.

2. In your application's resource script file, define each bitmap's name and
source file using the BITMAP statement. For example:

BitmapChecked BITMAP CHECK.BMP
BitmapNotChecked BITMAP NOCHECK.BMP

3. In your application source code, use the LoadBitmap function to load each
bitmap from your application resources.

4. Use the GetMenuCheckMarkDimensions function to find out the size of
the standard checkmarks on the current display device.

5. If necessary, use the StretchBlt function to stretch or shrink each bitmap to
the right size.

7-24 Guide to Programming

6. Use the SetMenultemBitmaps function to specify the checkmark bitmaps
for each menu item.

7. Before your application terminates, it should destroy the bitmaps to free
memory.

The following example shows how to specify checkmark bitmaps for a menu
item:

SetMenuItemBitmaps (hMenu, /* handle to menu */
0, /* position of menu item */
MF _BYPOSITION,
hbmCheckOff, /* bitmap for unchecked item */
hbmCheckOn); /* bitmap for checked item */

7.6.5 Using Owner-Draw Menus
Your application can take complete control over the appearance of menu items
by using owner-draw menu items. An owner-draw menu item is a menu for
which the application has total responsibility for drawing the item in its normal,
selected (highlighted), checked, and unchecked states.

For example, suppose your application provides a menu that allows the user to
select a font. Your application could draw each menu item using the font that the
menu item represents: the item for roman would be drawn with a roman font, the
item for italic would be drawn in italic, and so on.

You cannot define an owner-draw menu item in your application's resource
script (.Re) file. Instead, you must create a new menu item or modify an existing
menu item with the MF _OWNERDRA W menu flag. You can use any of the fol
lowing functions to specify an owner-draw menu item:

• AppendMenu

• InsertMenu

• ModifyMenu

When you call any of these functions, you can pass a 32-bit value as the
lpNewltem parameter. This 32-bit value can represent any information that is
meaningful to your application, and will be available to your application when
the menu item is to be displayed. For example, the 32-bit value could contain a
pointer to a data structure; the data structure, in turn, might contain a string and
the handle of a logical font that your application will use to draw the string.

Before Windows displays an owner-draw menu item for the first time, it sends
the WM_MEASUREITEM message to the window that owns the menu. This
message's lParam parameter points to a MEASUREITEMSTRUCT data struc
ture that identifies the menu item and contains the optional 32-bit value for the

Menus 7-25

item. When your application receives the WM_MEASUREITEM message, it
must fill in the item Width and item Height fields of the data structure before re
turning from processing the message. Windows uses the information in these
fields when creating the bounding rectangle in which your application draws the
menu item; it also uses the information to detect the user's interaction with the
item.

When the item needs to be drawn (for example, when it is first displayed, or
when the user chooses it), Windows sends the WM_DRA WITEM message to the
window that owns the menu. The lParam parameter of the WM_DRA WITEM
message points to a DRA WITEMSTRUCT data structure. Like MEASURE
ITEMSTRUCT, the DRA WITEMSTRUCT data structure contains identifying
information about the menu item and its optional 32-bit data. In addition,
DRA WITEMSTRUCT contains flags that indicate the state of the item (such as
grayed or checked) as well as a bounding rectangle and device context with
which your application will draw the item.

In response to the WM_DRA WITEM message, your application must perform
the following actions before returning from processing the message:

1. Determine the type of drawing that is needed. To do so, check the item
Action field of the DRA WITEMSTRUCT data structure.

2. Draw the menu item appropriately, using the rectangle and device context ob
tained from the DRA WITEMSTRUCT data structure. Your application
must draw only within the bounding rectangle. For performance reasons,
Windows does not clip portions of the image that are drawn outside the
rectangle.

3. Restore all GDI objects selected for the menu item's device context.

For example, if the menu item is selected, Windows sets the itemAction field of
the DRA WITEMSTRUCT data structure to aDA_SELECT, and sets the
ODS_SELECTED bit in the itemState field. This is your application's cue to
redraw the menu item so that the item indiates that it has been selected.

7.7 A Sample Application: EditMenu
The EditMenu sample application illustrates the following:

• The two most common menus, the Edit menu and the File menu

• How to use accelerator keys in an application

NOTE The accelerator keys shown in this sample are specifically reserved, and should be
used only as accelerator keys for the Edit menu. See the System Application Architecture,
Common User Access: Advanced Interface Design Guide for more information about stand
ard accelerator-key assignments.

7-26 Guide to Programming

To create the EditMenu application, copy and rename the Generic source files.
Then do the following:

1. Add the Edit and File menus to the resource script file.

2. Add definitions to the include file.

3. Add an accelerator table to the resource file.

4. Add a new variable.

5. Load the accelerator table.

6. Modify the message loop in WinMain.

7. Modify the WM_COMMAND case.

8. Compile and link the application.

EditMenu does not show how to use the clipboard. This task is described in Chap
ter 13, "The Clipboard."

NOTE Rather than typing the code provided in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided in the
SDK.

7.7. 1 Add New Menus to the Resource File
You need to add an Edit and a File menu to the MENU statement in the resource
file. The MENU statement should now look likethis:

EditMenuMenu MENU
BEGIN

POPUP
BEGIN

ENO

MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM

"&File"

"&New",
"&Open ... ",
"&Save",
"Save &As ... ",
"&Print",
SEPARATOR
"E&xit",
SEPARATOR
"&About EditMenu ... ",

10M_NEW
10M_OPEN
10M_SAVE
10M_SAVEAS
10M_PRINT

ENO

POPUP
BEGIN

ENO

MENU ITEM
MENU ITEM
MENUITEM
MENUITEM
MENU ITEM
MENU ITEM

"&Edit"

"&Undo\tAlt+BkSp",
SEPARATOR
"Cu&t\tShift+Oel",
"&Copy\tCtrl+lns",
"&Paste\tShift+Ins",
"C&lear\tOel",

10M_CUT
10M_COPY
10M_PASTE
10M_CLEAR

Menus 7-27

,GRAYEO

,GRAYEO
,GRAYEO

The File menu has seven commands and two separators; each command has a
mnemonic, indicated by the ampersand (&).

The Edit menu has five commands and a separator. Each command has both a
mnemonic and an accelerator key, separated from the name with a tab (\t). When
ever a command has a corresponding accelerator, it should be displayed in this
way. In the Edit menu, the five accelerator keys are ALT+BACKSPACE, DELETE,

CONTROL+INSERT, SHIFf +INSERT, and SHIFf +DELETE. The separator between the
Undo and Cut commands places a horizontal bar between these commands in the
menu. A separator is recommended between menu commands that otherwise
have nothing in common. For example, Undo affects only the application,
whereas the remaining commands affect the clipboard.

NOTE The purpose and content of the File and Edit menus are described in the System
Application Architecture, Common User Access: Advanced Interface Design Guide.

7.7.2 Add Oefinitions to the Include File
You must declare each menu ID in your application's include file. These con
stants are used both in the C-Ianguage source file and in the resource script file.

A menu ID can have any integer value. The only restriction is that menu IDs
must be unique within a menu; no two commands in a menu can have the same
menu ID.

Add the following to the include file:

#define 10M_ABOUT 100

/* file menu items */

#define
#define
#define
1fdefi ne
#define
#define

10M_NEW 101
10M_OPEN 102
10M_SAVE 103
IOM_SAVEAS 104
10M_PRINT 105
10M_EXIT 106

7-28 Guide to Programming

/* edit menu items */

#define
#define
#define
#define
#define

10M_UNDO
10M_CUT
10M_COPY
10M_PASTE
10M_CLEAR

200
201
202
203
204

7.7.3 Add an Accelerator Table to the Resource Script File
Add the following ACCELERATORS statement to the resource script file:

EditMenu ACCELERATORS
BEGIN

END

VK_BACK,
VK_OELETE,
VK_INSERT,
VK_INSERT,
VK_OELETE,

10M_UNDO,
10M_CUT,
10M_COPY,
10M_PASTE,
10M_CLEAR,

VIRTKEY, ALT
VIRTKEY, SHIFT
VIRTKEY, CONTROL
VIRTKEY, SHIFT
VIRTKEY

This statement defines five accelerator keys, one for each command. Four accel
erators are key-stroke combinations using the ALT, SHIFT, or CONTROL key.

The ACCELERATORS statement associates each accelerator with a menu ID.
The IDM_UNDO, IDM_CUT, IDM_COPY, IDM_PASTE, and IDM_CLEAR
constants are the menu IDs of the Edit-menu commands. When the user presses
an accelerator key, these are the values that are passed to the window function.

7.7.4 Add a New Variable
Add the following statement to the beginning of the source file:

HANDLE hAccTable; /* handle to accelerator table */

The hAccTable variable is a handle to the accelerator table. It receives the return
value of the LoadAccelerators function and is used in the Translate
Accelerator function to identify the accelerator table.

7.7.5 Load the Accelerator Table
Before using the accelerator table, you must load it from the application's
resources. Add the following statements to the application's InitInstance function:

hAccTable = LoadAccelerators(hInst, "EditMenu");

This statement loads the accelerator table into memory and assigns the handle
identifying the table to the hAccTable variable. The hInstance variable identifies

Menus 7-29

the application's resource file, and EditMenu is the name of the accelerator table.
Once the table is loaded, it can be used in the TranslateAccelerator function.

7.7.6 Modify the Message Loop
To use the accelerator table, you must add the TranslateAccelerator function to
the message loop. After you add the function, the message loop should look like
this:

while (GetMessage(&msg, NULL, NULL, NULL» {

if (!TranslateAccelerator(hWnd, hAccTable, &msg» {
TranslateMessage(&msg);
OispatchMessage(&msg);

7.7.7 Modify the WM_COMMANO Case
You need to process menu commands. In this application, instead of performing
tasks, all menu commands activate a "Command not implemented" message box.
Replace the WM_ COMMAND case with the following statements:

case WM_COMMANO:
switch (wParam) {

case 10M_ABOUT:
lpProcAbout = MakeProcInstance(About, hInst);
OialogBox(hlnst, "AboutBox", hWnd, lpProcAbout);
FreeProclnstance(lpProcAbout);

"break;

/* file menu commands */

case 10M_NEW:
case 10M_OPEN:
case 10M_SAVE:
case IOM_SAVEAS:
case IDM_PRINT:

MessageBox (
GetFocus(),

break;

"Command not implemented",
"EditMenu Sample Application",
MB_ICONASTERISK 1MB_OK); .

case 10M_EX IT:
OestroyWindow(hWnd);
break;

7-30 Guide to Programming

/* edit menu commands */

case IOM_UNOO:
case IOM_CUT:
case IOM_COPY:
case IOM_PASTE:
case IOM_CLEAR:

break;

MessageBox (
GetFocus(),

break;

"Command not implemented",
"EditMenu Sample Application",
MB_ICONASTERISK 1MB_OK);

7.7.8 Compile and Link

7.8 Summary

No changes are required to the make file to compile and link the EditMenu appli
cation. Start Windows, then the EditMenu application, and, without opening the
pop-up menus, press any of the five accelerator keys. You will notice that the
"Command not implemented" message appears when a command is chosen.

This chapter explained how to use menus in your application. A menu provides
and organizes a list of commands the user can choose. Windows handles most
menu features automatically; for example, when the user chooses a command on
the menu bar, Windows automatically displays the menu associated with that
command. When the user chooses a command from a menu, Windows sends the
application a WM_COMMAND message that contains the command ID. The
application can then carry out the action appropriate to that command.

Windows also provides advanced menu features such as cascading menus, cus
tom checkmarks, and owner-draw menus.

For more information on topics related to menus, see the following:

Topic

Processing input messages

Bitmaps

Reference

Guide to Programming: Chapter 4,
"Keyboard and Mouse Input"

Guide to Programming: Chapter 11,
"Bitmaps"

Tools: Chapter 4, "Designing
Images: SDKPaint"

Topic

Menu functions

Resource script statements

The sample application
MENU.EXE, which illustrates the
use of cascading menus, custom
checkmarks, and owner-draw menus

Menus 7-31

Reference

Reference, Volume 1: Chapter 1,
"Window Manager Interface Func
tions," and Chapter 4, "Functions
Directory"

Reference, Volume 2: Chapter 8,
"Resource Script Statements"

SDK Sample Source Code disk

Chapter

8
Controls

Controls are special windows that provide easy methods for interaction with the
user.

This chapter covers the following topics:

• What is a control?

• Creating a control

• U sing controls in application windows

This chapter also explains how to create a sample application, EditCntl, that il
lustrates those concepts.

8. 1 What is a Control?
A "control" is a predefined child window that carries out a specific kind of input
or output. For example, to get a filename from the user, you can create and dis
play an edit control to let the user type the name. An "edit control" is a prede
fined child window that receives and displays keyboard input.

A control, like any other window, belongs to a window class. The window class
defines the control's window function and the default attributes of the control.
The window function is important because it determines what the control will
look like and how it will respond to user input. Control window functions are pre
defined in Windows, so no extra coding is required in your application when you
use a control.

B.2 Creating a Control
Windows provides two ways to create a control:

• Within a dialog box

• Within the client area of any other type of window

This chapter discusses using controls in a standard window. Chapter 9, "Dialog
Boxes," explains how to create controls within a dialog box.

8-2 Guide to Programming

To create a control in a window other than a dialog box, use the Create Window
function, just as you would to create any window. When creating a control,
specify the following information:

• The control's window class

• The control style

• The control's parent window

• The control ID

The Create Window function returns a handle to the control that you can use in
subsequent functions to move, size, paint, or destroy a window, or to direct a
window to carry out tasks.

The following example shows how to create a push-button control:

hButtonWnd = CreateWindow(
"Button", /* window control class */
"OK" , /* button 1 abel */
BS_PUSHBUTTON WS_CHlLD I WS_VlSlBLE, /* control styles */
2O, /* x-coordinate */
4O, /* y-coordinate */
3O, /* width in pixels */
12, /* height in pixels */
hWnd, /* parent window */
lOOK, /* control lO */
hlnstance, /* instance handle */
NU Ll) ;

This example creates a push-button control that belongs to the "Button" window
class and has the BS_PUSHBUTION style. The control is a child window and
will be visible when first created. The WS_CHILD style is required, but you do
not need to specify the WS_ VISIBLE style if you plan to use the ShowWindow
function to show the control. Create Window places the control at the point
(20,40) in the parent window's client area. The width and height are 30 and 12
pixels, respectively. The parent window is identified by the hWnd handle. The
constant IDOK is the control identifier.

The rest of this section explains how to specify the control's window class, con
trol style, parent window, and control ID.

B.2.1 Specifying a Control Class
The control's window class, or "control class," defines the control window func
tion and the default attributes of the control. You sp6cify a control class when
you create the control. To do so, include the class name (for example, BUTTON)
as the lpClassName parameter for the CreateWindow function.

Controls 8-3

Windows provides the following built-in control classes:

Class

BUTTON

EDIT

LISTBOX

COMBOBOX

SCROLLBAR

STATIC

8.2.2 Choosing a Control Style

Description

Produces small, labeled windows that the user can
choose to generate yes/no, on/off type of input.

Produces windows in which the user can enter and
edit text.

Produces windows that contain lists of names from
which the user can select one or more names.

Produces combination controls consisting of an edit
or static control linked with a list box. The user can
select items from the list box and/or enter text in the
edit box.

Produces windows that look and function like scroll
bars in a window.

Produces small windows containing text or simple
graphics. These are often used to label other controls
or to separate a group of controls.

The control styles, which depend on the control class, determine the control's ap
pearance and function. You specify a control style when you create the control.
To do so, include the control style (for example, BS_PUSHBUTTON) as the
dwStyle parameter for the Create Window function.

Windows provides many predefined control styles. The following styles are
some of the most commonly used:

Style Description

BS_PUSHBUTTON Specifies a push-button control. This is a small
window containing a label that the user can choose
in order to notify the parent window.

BS_DEFPUSHBUTTON Specifies a default push-button control. A default
push-button control is identical to a push-button con
trol except that it has a special border.

BS_CHECKBOX Specifies a check-box control. The user can select
the box to tum the control on and off. When the con
trol is on, the box contains an "X".

8-4 Guide to Programming

Style

BS_RADIOBUTTON

ES_LEFf

ES_MULTILINE

SS_LEFT

SS_RIGHT

LBS_STANDARD

Description

Specifies a radio-button control. The user can select
a circle to tum the control on and off. When the con
trol is on, the circle contains a solid bullet.

Specifies a single-line, left-adjusted edit control.

Specifies a multiple-line edit control.

Specifies a left-adjusted, static text control.

Specifies a right-adjusted, static text control.

Specifies a standard list box. A standard list box in
cludes a scroll bar and notifies its parent window
when the user makes a selection.

Specifies a combo box consisting of an edit control
and a list box that is displayed when the user selects
a box next to the selection field. If an item in the list
box is selected, the edit control displays the selected
item.

For a complete list of control styles, see the Reference, Volume 2.

8.2.3 Setting the Parent Window
Because every control is a child window, it requires a parent window. You
specify the parent window when you create the control. To do so, include the
handle of the parent window as the hWndParent parameter for the Create
Window function.

As with any child window, a control is affected by changes to its parent window.
For example, if Windows disables the parent window, it disables the control as
well. If Windows paints, moves, or destroys the parent window, it also paints,
moves, or destroys the control.

Although a control can be any size, and can be moved to any position, it is re
stricted to the client area of the parent window. Windows clips the control if you
move it outside the parent window's client area or make it bigger than the client
area.

8.2.4 Choosing a Control 10
When you create a control, you give it a unique identifier, or control ID. You
specify the control ID when you create the control. To do so, include the control
ID as the hM enu parameter for the Create Window function. The control sup
plies the control ID in any notification message it sends to the window function
of the parent window. The control ID is especially useful if you have several

Controls 8-5

controls in a window. It is the quickest, easiest way to distinguish one control
from another.

8.3 Using a Control
Once you have created a control, you can:

• Receive user input through the control.

• Tell the control to perform specialized tasks, such as returning a string of text.

• Enable or disable input to the control.

• Move or size the control.

• Destroy the control.

This seCtion explains how to perform these tasks.

8.3.1 Receiving User Input
As the user interacts with the control, the control sends information about that in
teraction, in the form of a notification message, to the parent window. A notifica
tion message is a WM_COMMAND message in which:

• The wParam parameter contains the control ID.

• The IParam parameter contains the notification code and the control handle.

For example, when the user clicks a button control, that control sends a
WM_COMMAND message to the window function of the parent window. The
WM_COMMAND message's wParam parameter contains the button control's
ID; the high-order word of IParam parameter contains the notification code
BN_ CLICKED, which indicates that the user has clicked that control.

Since a notification message has the same basic form as menu input, you process
notification messages much as you would menu input. If you have carefully
selected control IDs so that they do not conflict with menu IDs, you can process
notification messages in the same switch statement you use to process menu
input.

8.3.2 Sending Control Messages
Most controls accept and process a variety of control messages-special mes
sages that tell the control to carry out some task that is unique to the control. For
example, the WM_GETTEXTLENGTH message tells an edit control to return
the length of a selected line of text.

8-6 Guide to Programming

To send a control message to a control, use the SendMessage function. Supply
the message number and any required wParam and IParam parameter values. For
example, the following statement sends the WM_GETTEXTLENGTH message
to the edit control identified by the handle hEditWnd; it then returns the length of
the selected line in the edit control:

nLength = SendMessage(hEditWnd, WM_GETTEXTLENGTH, 0, 0L);

Many controls also process standard window messages, such as WM_HSCROLL
and WM_ VSCROLL. To send such messages to controls, use the same method
you use to send control messages.

8.3.3 Disabling and Enabling Input to a Control
To disable or enable input to a control, ~se the EnableWindow function.

When you disable a control, it does not respond to user input. Windows "grays"
the control (displays it dimly) so that the user can tell that the control is disabled.
To disable a control, use EnableWindow; specify the value FALSE, as follows:

EnableWindow(hButton, FALSE);

To restore input to the disabled control, enable it using the Enable Window func
tion with the value TRUE, as follows:

EnableWindow(hButton, TRUE);

8.3.4 Moving and Sizing a Control
To move or size a control, use the Move Window function. This function moves
the control to the specified point in the parent window's client area and sets the
control to the given width and height. The following example shows how to
move and size a control:

MoveWindow(hButtonWnd, 10,10, 30,12, TRUE);

This example moves a control to the point (10,10) in the client area and sets the
width and height to 30 and 12 pixels, respectively. The value TRUE specifies
that the control should be repainted after moving.

Windows automatically moves a control when it moves the parent window. A
control's position is always relative to the upper-left comer of the parent's client
area, so when the parent moves, the control remains fixed in the client area but
moves relative to the display. Although Windows does not size a control when it
sizes the parent window, it sends a WM_SIZE message to the parent to indicate
the new size of the parent window. You can use this message to give the control
anew size.

Controls 8-7

8.3.5 Destroying a Control
To destroy a control, use the DestroyWindow function. This function deletes
any internal record of the control and removes the control from the parent
window's client area. The following example shows how to destroy a control:

DestroyWindow(hEditWnd);

Windows automatically destroys a control when it destroys the parent window.
In general, you will need to destroy a control only if you no longer need it in the
parent window.

8.4 Creating and Using Some Common Controls
The rest of this chapter explains more about the following common controls:

• Button controls

• Static controls

• List-box controls

• Combo-box controls

• Edit controls

• Scroll-bar controls

8.4.1 Button Controls
A button control is a small window used for simple yes/no, on/off type of input.
The following are some of the most commonly used types of button controls:

• Push button

• Default push button

• Check box

• Radio button

• Owner-draw button

• Group box

Push Buttons
A push button is a button that the user can select to carry out a specific action.
The button contains text that indicates what that button does. When the user
clicks a push button, the application normally carries out the associated action

8-8 Guide to Programming

immediately. For example, if the user clicks the Cancel button in a dialog box,
the application immediately removes the dialog box and cancels the user's
changes to the dialog (if any).

To create a button control, specify "Button" as the control's window class, and
specify the button style(s) in the dwStyle parameter. For example, the following
call to the Create Window function creates a push-button control with the label
"Cancel":

HWNO hCancelButton;

hCancelButton = CreateWindow(
"Button", "Cancel",
BS_PUSHBUTTON I WS_CHlLO I WS_VlSlBLE,
20,40, 80,20, hWnd, lOCANCEL, hlnstance, NULL);

Because this example specifies the WS_ VISIBLE style, Windows displays the
control after creating it. The control ID is IDCANCEL. This constant is defined
in the WINDOWS.H file and is intended to be used with Cancel push buttons.

Default Push Buttons
A default push button typically lets the user signal the completion of some activ
ity, such as filling in an edit control with a filename. A default push-button con
trol, as with other button controls, responds to both mouse and keyboard input. If
the user moves the cursor into the control and clicks it, the button sends a
BN_CLICKED notification message to the parent window. The button does not
have to have the input focus in order to respond to mouse input. It does, however,
require the focus in order to respond to keyboard input. To let the user use the
keyboard, use the SetFocus function to give the input focus to the button. The
user can then press the SPACEBAR to direct the button to send a BN_CLICKED
notification message to the parent window.

Creating a default push-button control is similar to creating a push-button con
trol. Specify "Button" as the control's window class, and specify the button
style(s) in the dwStyle parameter. For example, the following call to the
CreateWindow function creates a default push-button control with the label
"OK":

HWNO hOefButton;

hOefButton = CreateWindow(
"Button", "OK",
BS_OEFPUSHBUTTON I WS_CHlLO I WS_VlSlBLE,
20,40, 80,20, hWnd, lOOK, hlnstance, NULL);

Controls .8-9

This example specifies the WS_ VISIBLE style, so Windows displays the control
after creating it. The control ID is IDOK. This constant is defined in the
WINDOWS.H file and is intended to be used with default push buttons, such as
this OK button.

Check Boxes
A check box typically lets the user select an option to use in the current task. By
convention, within a group of check boxes, the user can select more than one
option. (To present options that are mutually exclusive, use radio buttons instead
of check boxes.)

For example, you might present a group of check boxes that lets the user select
font properties for the next output operation. The user could choose both bold
and italic by checking both the "Bold" and the "Italic" check boxes.

To create a check-box control, use the BS_CHECKBOX style, as in the follow
ing example:

#define IDC_ITALIC 201
HWND hCheckBox;

hCheckBox = CreateWindow("Button", "Italic",
BS_CHECKBOX I WS_CHILD I WS_VISlBLE,
20,40, 80,20, hWnd, IDC_ITALIC, hInstance, NULL);

In this example, the check-box label is "Italic" and the control ID is
IDC_ITALIC.

A check box responds to mouse and keyboard input much as a push-button con
trol would. That is, it sends a notification message to the parent window when
the user clicks the control or presses the SPACEBAR. However, a check box can
display a check (an "X") in its box to show that it is currently on (it has been
selected).

To tell a control to display a check, send the control the BM_SETCHECK
message. You can also test to see if the check box has a check by sending the
control the BM_ GETCHECK message. For example, to place a check in the
check box, use the following function:

SendMessage(hCheckBox, BM_SETCHECK, 1, 0L);

This means you can place or remove a check in the check box whenever you
want; for example, when the parent window function receives a BN_CLICKED
notification message. Windows also provides a BS_AUTOCHECKBOX style
that automatically toggles its state (places or removes a check) each time the user
clicks it.

8-10 Guide to Programming

Radio Buttons
Radio-button controls work in much the same way as check boxes. However,
radio buttons are usually used in groups and represent mutually exclusive op
tions. For example, you might use a group of radio buttons to let the user specify
text justification (right-justified, left-justified, or centered). The radio buttons
would let the user select only one type of justification at a time.

Create a radio-button control as you would any button control. Specify "Button"
as the control's window class, and specify the button style(s) in the dwStyle para
meter. For example, the following call to the Create Window function creates a
radio-button control with the label "Right":

HWND HRightJustifyButton
#define IDC_RIGHTJUST

hRightJustifyButton = CreateWindow("Button", "Right",
BS_RADIOBUTTON I WS_CHILD I WS_VISIBLE,
20,40, 80,20, hWnd, IDC_RIGHTJUST, hlnstance, NULL);

As with a check box, you must send a BM_SETCHECK message to the radio but
ton to display a "check" (actually, a solid circle) in the button when the user
selects that button. Also, since radio buttons represent mutually exclusive
choices, you should also send the BM_SETCHECK message to the previously
checked radio button (if any) to clear its check. You can determine which radio
button in a group is checked by sending the BM_ GETCHECK message to each
button.

In a dialog box, you can create radio buttons with the BS_AUTORADIO
BUTTON style. When all the radio buttons in a group box have the BS_AUTO
RADIOBUTTON style, Windows automatically removes the check from the
previously checked button when the user selects a different radio button.

You can also use the CheckRadioButton function to check a radio button and re
move the check from other buttons in a dialog box. When you call Check
RadioButton, you specify the IDs of the first and last buttons in a range of
buttons and the ID of the radio button (within that range) that is to be checked.
Windows removes the check from all the buttons in the specified range and then
checks the appropriate radio button. For example, in a group of buttons repre
senting types of text justification, you would call CheckRadioButton to check
the "Right" button, as in the following example:

CheckRadioButton(hDlg, ID_RIGHTLEFTJUST, ID_LEFTJUST,
ID_RIGHTJUST)

In this example, CheckRadioButton would check the radio button identified by
ID_RIGHTJUST and remove the check from all the other buttons whose IDs fall
within the range specified by ID_RIGHTLEFTJUST and ID_LEFTJUST.

Controls 8-11

Owner-Draw Buttons
An owner-draw button is similar to other button styles, except that the applica
tion is responsible for maintaining the button's appearance, including whether
the button has focus, is disabled, or is selected. Windows simply notifies your
application when the button has been clicked.

To create an owner-draw button, use the BS_OWNERDRA W style, as shown in
the following example:

hMyOwnButton = CreateWindow("Button", NULL,
BS_OWNERDRAW I WS_CHILD I WS_VISIBLE,
20, 40, 30, 12, hWnd, ID_MYBUTTON,
hlnstance, NULl);

Whenever the button needs to be drawn, Windows sends the WM_DRA WITEM
message to the window that owns the button. The lParam parameter of the
WM_DRA WITEM message contains a pointer to a DRA WITEMSTRUCT data
structure. This structure contains, among other infonnation, the control ID, a
value specifying the type of drawing action required, a value indicating the state
of the button, a bounding rectangle for the button, and a handle to the device con-
text of the button. .

In response to the WM_DRA WITEM message, your application must perfonn
the following actions before returning from processing the message:

1. Detennine the type of drawing that is needed. To do so, examine the item
Action field of the DRA WITEMSTRUCT data structure.

2. Draw the button appropriately, using the rectangle and device context ob
tained from the DRA WITEMSTRUCT data structure.

3. Restore all GDI objects selected for the button's device context.

For example, if the button has lost input focus, Windows sets the itemAction
field of the DRA WITEMSTRUCT data structure to ODA_FOCUS, but not the
ODS_FOCUS bit in the itemState field. This is your application's cue to redraw
the button so that it no longer appears to have focus.

Group Boxes
Group boxes are rectangles that enclose two or more related buttons or other con
trols. You can send the WM_SETTEXT message to the group box to place a cap
tion in the upper-left comer of the box. Group boxes do not respond to user
input; that is, they do not generate notification messages.

8-12 Guide to Programming

8.4.2 Static Controls

8.4.3 List Boxes

A static control is a small window that contains text or graphics. You typically
use a static control to label some other control or to create boxes and lines that
separate one group of controls from another.

The most commonly used static control is the SS_LEFT style-a left-adjusted
line of text. That is, the control writes the line's text starting at the left end of the
control, displaying as much of the label as will fit in the control and clipping the
rest. The control uses the system font for the text, so you can compute an appro
priate size for the control by retrieving the font metrics for this font (see Chapter
18, "Fonts," for details).

Like group boxes, static controls do not respond to user input; that is, they do not
generate notification messages when chosen. However, you can change the ap
pearance and location of a static control at any time. For example, you can
change the text associated with a static control by using the SetWindowText
function or the WM_SETTEXT message.

A list box is a box that contains a list of selectable items, such as filenames. You
typically use a list box to display a list of items from which the user can select
one or more. There are several styles associated with a list box. The following
are the most commonly used styles:

List-Box Style

LBS_BORDER

LBS_NOTIFY

LBS_SORT

WS_VSCROLL

Description

The list box has a surrounding border.

The list box sends notification messages to the
parent window when the user selects an item.

The list box alphabetically sorts its items.

The list box has a vertical scroll bar.

These four styles are included in the LBS_STANDARD style. The following ex
ample creates a standard list box:

HWND hListBox
#define IDC_LISTBOX 203

hListBox = CreateWindow("Listbox", NULL,
LBS_STANDARD I WS_CHILD I WS_VISIBLE,
20, 40, 120, 56, hWnd, IDC_LISTBOX,
hInstance, NULL);

Controls 8-13

Adding a String to a List Box
Use the LB_ADDSTRING message to add a string to a list box .. This message co
pies the given string to the list box, which displays it in the list. If the list box has
the LBS_SORT style, the string is sorted alphabetically. Otherwise, Windows
simply places the string at the end of the list. The following example shows how
to add a string:

int nIndex;

nIndex = SendMessageChListBox,
LB_ADDSTRING,NULL,
CLONG)CLPSTR) "Horseradish");

The LB_ADDSTRING message returns an integer that represents the index of
the string in the list. You can use this index in subsequent list-box messages to
identify the string, but only as long as you do not add, delete, or insert any other
string. Doing so may change the string's index.

Deleting a String from a List Box
You can delete a string from the list box by supplying the index of the string with
the LB_DELETESTRING message, as in the following example:

SendMessageChListBox, LB_DELETESTRING, nIndex, CLPSTR) NULL);

You can also add a string to a list box is by sending the LB_INSERTSTRING
message to the list box. Unlike LB_ADDSTRING, LB_INSERTSTRING lets
you specify where Windows should place the new string in the list box. When it
receives the LB_INSERTSTRING message, the list box does not sort the list,
even if the list box was created with the LBS_SORT style.

Adding Filenames to a List Box
As noted earlier, a common use for a list box is to display a list of filenames,
directories, and/or disk drives. The LB_DIR message instructs the list box to fill
itself with such a list. The message's wParam parameter contains a value specify
ing the DOS attributes of the files, and the lParam parameter points to a string
containing a file specification.

For example, to fill a list box with the names of all files in the current directory
that have the .TXT extension, plus a list of subdirectories and disk drives, you
would send the LB_DIR message as shown in the following example:

#define FILE_LIST 4010;

int nFiles;

8-14 Guide to Programming

nFiles = SendMessage(hListBox, LB_DIR, FILE_LIST,
(LPSTR) "*.TXT");

The return value of the LB_DIR message indicates how many items the list box
contains.

NOTE If the list box is in a dialog box, you can call the DlgDirList function to perform the
same task.

A list box responds to both mouse and keyboard input. If the user clicks a string
or presses the SPACEBAR in the list box, the list box selects the string and indi
cates the selection by inverting the string text and removing the selection from
the last item that was selected, if any. The user can also press a character key to
select an item in the list box; the next item in the list box that begins with the
character is selected. If the list box has the LBS_NOTIFY style, the list box also
sends an LBN_SELCHANGE notification message to the parent window. If the
user double-clicks a string and LBS_NOTIFY is specified; the list box sends the
LBN_SELCHANGE and LBN_DBLCLK messages to the parent window.

You can always retrieve the index of the selected string by using the LB_GET
CURSEL and LB _ GETTEXT messages. The LB_ GETCURSEL message re
trieves the selection's index in the list box, and the LB_GETTEXT message
retrieves the selection from the list box, copying it to a buffer that you supply.

Table 8.1 summarizes the mouse and keyboard interface for a standard list box.

Table 8.1 User Interface for Standard List Box

Action

Mouse Interface

Single click

Double click

Keyboard Interface

SPACEBAR

RIGHT ARROW,

DOWN ARROW

LEFf ARROW, UP ARROW

Result

Selects the item and removes the selection from the pre
viously selected item (if any).

Is the same as a single click.

Selects the item.

Selects the next item in the list and removes the selec
tion from the previously selected item (if any).

Selects the preceding item in the list and removes the
selection from the previously selected item (if any).

Controls 8-15

Table 8.1 User Interface for Standard List Box (continued)

Action Result

PAGE UP Scrolls the currently selected item to the bottom of the
list box, selects the first visible item in the list box, and
removes the selection from the previously selected item
(if any).

PAGE DOWN Scrolls the currently selected item to the top of the list
box, selects the last visible item in the list box, and re
moves the selection from the previously selected item (if
any).

HOME Scrolls the first item in the list box to the top of the list
box, selects the first item, and removes the selection
from the previously selected item (if any).

END Scrolls the last item in the list box to the bottom of the
list box, selects the last item, and removes the selection
from the previously selected item (if any).

Using Multiple-Selection List Boxes
By default, a list box lets the user select only one item at a time. To allow the
user to select more than one item from a list box, create the list box with either of
the following styles:

Style

LBS_MULTIPLESEL

LBS_EXTENDEDSEL

Description

A list box created with the LBS_MULTIPLESEL
style is essentially the same as a standard list box, ex
cept that the user can select more than one item in
the list box.

A list box created with the LBS_EXTENDEDSEL
style provides an easy method for selecting several
contiguous items in the list box, as well as for select
ing separate items.

The rest of this section describes each style of multiple-selection list box.

List Boxes with the LBS_MULTIPLESEL Style
A list box created with the LBS_MULTIPLESEL style is essentially the same as
a standard list box, except that the user can select more than one item in the list
box. Clicking or pressing the SPACEBAR on an item in the list box toggles the

8·16 Guide to Programming

selection state of the item. If the user presses a character key while the list box
has focus, the list-box cursor moves to the next item in the list that begins with
that character; the item is not actually selected unless the user presses the
SPACEBAR. Table 8.2 describes the mouse and keyboard interface for a list box
with the LBS_MULTIPLESEL style.

Table 8.2 User Interface for LBS MUL TIPLESEL List Box

Action

Mouse Interface

Single click

Double click

Keyboard Interface

SPACEBAR

RIGHT ARROW,

DOWN ARROW

LEFf ARROW, UP ARROW

PAGE UP

PAGE DOWN

HOME

END

Result

Toggles the selection status of the item, but does not re
move the selection from other selected items (if any).

Is the same as a single click.

Toggles the selection status of item, but does not remove
the selection from other selected items (if any).

Moves the list-box cursor to next item in the list.

Moves the list-box cursor to the preceding item in the
list.

Scrolls the currently selected item to the bottom of the
list box and moves the list-box cursor to the first visible
item in the list box.

Scrolls the currently selected item to the top of the list
box and moves the list-box cursor to the last visible item
in the list box.

Scrolls the first item in the list box to the top of the list
box and moves the list-box cursor to the first item.

Scrolls the last item in the list box to the bottom of the
list box and moves the list-box cursor to the last item.

List Boxes with the LBS_EXTENDEDSEL Style
A list box created with the LBS_EXTENDEDSEL style provides an easy method
for selecting several contiguous items in the list box, as well as for selecting sepa
rate items. Table 8.3 describes the mouse and keyboard interface for a list box
with the LBS_EXTENDEDSEL style.

Controls 8-17

Table 8.3 User Interface for LBS EXTEND EDSEL List Box

Action

Mouse Interface

Single click

SHIFf+single click

Double click,
SHIFf+double click

CONTROL+single click

CONTROL+SHIFf+single
click

Drag

Result
(Add mode disabled)

Selects the item, removes
the selection from other
items, and drops the selec
tion anchor on the
selected item.

Selects all items between
the selection anchor and
the selected item, and re
moves the selection from
items not in that range.

Same as single click and
sHIFf+single click.

Drops the selection an
chor and toggles the
selection state of the
selected item, but does
not remove the selection
from other items.

Does not remove the
selection from other items
(except for those th.at are
part of the selection range
established by the most re
cent selection anchor) and
toggles all items (to the
same selection state as the
item at the anchor point)
from the anchor point to
the selected item. Does
not move the selection an
chor.

Drops the selection an
chor where the user
pressed the mouse button,
selects items from the
selection anchor to the
item where the the user
released the button, and
removes the selection
from all other items.

Result
(Add mode enabled)

Same as if add mode is
disabled; in addition, disa
bles add mode.

Same as if add mode is
disabled, plus disables
add mode.

Same as if add mode is
disabled, plus disables
add mode.

Same as if add mode is
disabled, plus disables
add mode.

Same as if add mode is
disabled, plus disables
add mode.

Same as if add mode is
disabled, plus disables
add mode.

8-18 Guide to Programming

Table 8.3 User Interface for LBS _ EXTEND EDSEL List Box (continued)

Action

SHIFf+drag

CONTROL+drag

CONTROL+SHIFf+drag

Keyboard Interfacea

SHIFf+F8

SPACEBAR

Result
(Add mode disabled)

Selects items from the
selection anchor to the
item where the user
released the button and re
moves the selection from
all other items. Does not
move the selection an
chor.

Drops the selection an
chor on the item where
the user pressed the
mouse button. Does not
remove the selection from
other items, but toggles
all items (to the same
selection state as the item
at the anchor point) from
the anchor point to the
item where the user
released the mouse but
ton.

Does not remove the
selection from other items·
(except for those that are
part of the selection range
established by the most re
cent selection anchor), but
toggles all items (to the
same selection state as the
item at the anchor point)
from the anchor pointto
the item where the user
released the mouse but
ton. Does not move the
selection anchor.

Enables add mode. Add
mode is indicated by a
flashing list-box cursor.

Selects the item, removes
the selection from pre
viously selected items,
and drops the selection an
chor.

Result
(Add mode enabled)

Same as if add mode is
disabled, plus disables
add mode.

Same as if add mode is
disabled, plus disables
add mode.

Same as if add mode is
disabled, plus disables
add mode.

Disables add mode.

Toggles the selection sta
tus of the item and drops
the selection anchor, but
does not remove the selec
tion from other items.

Controls 8-1 9

Table 8.3 User Interface for LBS_EXTENDEDSEL List Box (continued)

Action

SHIFf+SPACEBAR

Navigation kel

SHIFf+Navigation key

Result
(Add mode disabled)

Removes the selection
from previously selected
items and toggles all
items (to the same selec
tion state as the item at
the selection anchor) from
the anchor point to the
current position. Does not
move the selection an
chor.

Moves the list-box cursor
as defined by the key and
selects the item at the
cursor, drops the selection
anchor at selected item,
and removes the selection
from all previously
selected items.

Removes the selection
from all other items,
moves the list-box cursor
as defined by the key,
toggles all items (to the
same selection state as the
item at the selection an
chor) from the selection
anchor to the item at the
cursor. Does not move the
selection anchor.

Result
(Add mode enabled)

Does not remove the
selection from other items
(except for those that are
part of the selection estab
lished by the most recent
anchor point) and toggles
all items (to the same
selection state as the item
at the selection anchor)
from the selection anchor
to the current position.
Does not move the selec
tion anchor.

Moves the list-box cursor
as defined by the key, but
does not select the item,
remove the selection from
other items, or move the
s.election anchor.

Does not remove the
selection from other items
(except for those that are
part of the selection range
established by the most re
cent selection anchor),
moves the list-box cursor
as defined by the key, and
to"ggles all items (to the
same selection state as the
item at the anchor point)
from the anchor point to
the item at the list-box
cursor. Does not move the
selection anchor.

a Except for the SHIFf+F8, all keys and key combinations can be combined with CONTROL. For ex
ample, CONTROL+SHIFf+SPACEBAR has the same effect as SHIFf+SPACEBAR.

b Navigation keys include the DIRECTION (arrow) keys and the HOME, END, PAGE UP, and PAGE DOWN

keys. See Table 8.2, "User Interface for LBS_MUL TIPLESEL List Box," for a description of how
each key moves the list-box cursor.

8-20 Guide to Programming

Using Multicolumn List Boxes
Normally, a list box displays its items in a single column. If you anticipate that a
list box will contain a large number of items, you may want to create the list box
with the LBS_MUL TICOLUMN style. This style specifies a list box that can dis
play its items in several columns. A multicolumn list box "snakes" its items from
the bottom of one column to the next. Because of this, the list box never needs to
be scrolled vertically. However, if the list box may contain more items than it can
display at one time, you should create it with the WM_HSCROLL style to allow
the user to scroll the list box horizontally. The following example shows how to
create a multicolumn list box that occupies the entire client area of the parent
window:

#define IDC_MULTILISTBOX
RECT Rect;
HWND hMultiListBox

GetClientRect(hWnd, (LPRECT) &Rect);

hMultiListBox = CreateWindow("Listbox",
NULL,
WS_CHILD I WS_VISIBLE I LBS_SORT I
LBS_MULTICOLUMN I WS_HSCROLL I LBS_NOTIFY,
Rect.l eft,
Rect.top,
Rect.right,
Rect.bottom,
hWnd,
IDC_MULTILISTBOX,
hlnst,
NULL);

In this example, the GetClientRect function retrieves the coordinates of the
client area of the parent window, which are then passed to Create Window to set
the location and size of the list box.

The directory window displayed by the Windows File Manager is an example of
a window that contains a multicolumn list box.

To set the width of the columns in a multicolumn list box, send the LB_SET
COLUMNWIDTH message to the list box.

Using Owner-Draw List Boxes
Like a button, a list box can be created as an owner-draw control. In the case of
list boxes, however, your application is responsible for drawing only the items in
the list box.

To create an owner-draw list box, use either the LBS_OWNERDRAWFIXED
or LBS_OWNERDRA WV ARIABLE style. LBS_OWNERDRA WFIXED

Controls 8-21

designates an owner-draw list box in which all the items are the same height;
LBS_OWNERDRAWVARIABLE specifies a list box whose items can vary in
height.

To add an item to the list box, send the LB_ADDSTRING or LB_INSERT
STRING message to the list box. The IParam parameter can contain any 32-bit
value that you want to associate with the item. If IParam contains a pointer to a
string, the LBS_HASSTRINGS list-box style lets the list box maintain the
memory and pointers for the string. This allows the application to use the
LB_GETTEXT message to retrieve the text for the particular item. Also, if you
created the list box with the LBS_SORT and LBS_HASSTRINGS style,
Windows automatically sorts the items in the list box.

If you create the list box with the LBS_SORT style but without LBS_HAS
STRINGS, Windows has no way to determine the order of the items within the
list box. In this case, when you add an item to the list box (using the LB_ADD
STRING message), Windows will send one or more WM_COMPAREITEM
messages to the owner of the list box. This message's IP aram parameter points to
a COMPAREITEMSTRUCT data structure containing identifying information
for two items in the list box. When your application returns from processing the
message, the return value specifies which, if any, of two items should appear
above the other. Windows sends this message repeatedly until it has sorted all the
items in the list box.

When you add or insert an item in a list box, Windows determines the size of the
item by sending. the WM_MEASUREITEM message to the owner of the list box.
Windows needs this information so it can detect the user's interaction with items
in the list box. If you created the list box with the LBS_OWNERDRA WFIXED
style, Windows sends the message only once, since all the items in the list box
will be the same size. For a list box that was created with the LBS_OWNER
DRA WV ARIABLE style, Windows sends a WM_MEASUREITEM message for
each item when that item is added to the list box.

The IParam parameter of WM_MEASUREITEM contains a pointer to a
MEASUREITEMSTRUCT data structure. In addition to the control type and
ID, this data structure also contains the list-box item number of the item to be
measured (if the list box is the LBS_OWNERDRAWVARIABLE style) and op
tional 32-bit data associated with the item. Each time the owner window receives
the WM_MEASUREITEM message, it must fill in the itemHeight field of the
MEASUREITEMSTRUCT structure with the height of the item before return
ing from processing the message. The height is measured in vertical dialog units.
A vertical dialog unit is 118 of the current vertical dialog base unit, which is com
puted from the height of the system font. To determine the size in pixels of the
dialog base units, call the GetDialogBaseUnits function.

When Windows displays the list box, or whenever the appearance of an item in
the list box should change, Windows sends the WM_DRA WITEM message to
the window that owns the list box. The IParam parameter of the WM_DRA W
ITEM message contains a pointer to a DRA WITEMSTRUCT data structure.
This structure contains information identifying the list box item and the type of

8-22 Guide to Programming

drawing required. As with an owner-draw button, your application uses this infor
mation to determine how to draw the item.

To delete an item from an owner-draw list box, send the LB_DELETESTRING
message to the list box. When this happens, Windows in tum sends the
WM_DELETEITEM message to the owner window. (Windows also sends this
message for each item when the list box is destroyed.) The lParam parameter of
this message points to a DELETEITEMSTRUCT data structure; this structure
identifies the list box and list-box item that is being deleted and the 32-bit op
tional data associated with the item. Your application should use this information
to clean up any memory which was used for the item.

8.4.4 Combo Boxes
A combo box is a single control that consists of a list box combined with a static
or edit control. Depending on the style you use to create the list box, the list box
can be displayed at all times, or the list box can be hidden until the user displays
it. Except where noted, the mouse and keyboard interface for the edit field and
list box of a combo box is identical to that of a standard edit control or list box.

The CBS_SIMPLE style creates a combo box with an edit field and a list box
that is always displayed below the edit field. When the combo box has focus, the
user can type in the edit field. If an item in the list box matches what the user has
typed, the matching item moves to the top of the list box. The user can also select
items from the list box by using the DOWN ARROW and UP ARROW keys or the
mouse.

The CBS_DROPDOWN style is similar to CBS_SIMPLE except that the list box
is displayed only if the user selects the icon next to the edit field or presses
ALT+DOWN ARROW or ALT+UP ARROW. Even when the list box is hidden, the
user can select items from the list box by using UP ARROW and DOWN ARROW.

A combo box created with the CBS_DROPDOWNLIST appears identical to a
CBS_DROPDOWN combo box, except that the edit field is replaced with a
static text field. Instead of typing in the edit field, the user can select items from
the list box by typing the first letter of the item. Of course, the user can also use
the UP ARROW and DOWN ARROW keys or the mouse to select items in the combo
box.

You add and delete items to the list-box portion of a combo box in much the
same way as a plain list box, but using the CB_ADDSTRING, CB_INSERT
STRING, CB_DIR, and CB_DELETESTRING messages. Windows also pro
vides additional combo-box messages for retrieving the contents of the edit field,
matching text with a list-box item, and dealing with the contents of the edit field.

In many respects, a combo box is quite similar to a list box in the way it reports
the user's interaction with the control. All of the list-box notification codes have
parallel combo-box notification codes. In addition to these, Windows sends noti
fication codes to indicate the following:

Controls 8-23

• The list box of the combo box is being dropped down (CBN_DROPDOWN).

• The user has changed the text in the edit field, and Windows has updated the
display (CBN_EDITCHANGE).

• The user has changed the text in the edit field, but Windows has not yet up
dated the display (CBN_EDITUPDATE).

• The combo box has lost input focus (CBN_KILLFOCUS). In the case of
CBS_DROPDOWN and CBS_DROPDOWNLIST combo boxes, this causes
Windows to remove the list box from the display.

• The combo box has gained focus (CBN_SETFOCUS).

Like a list box, a combo box can be created with a fixed- or variable-height
owner-draw style. In the case of combo boxes, however, the owner is responsible
for drawing items in the list box and in the selection (edit or static) field. For ex
ample, if the user selects an item in the list box, the owner of the combo box re
ceives a WM_DRA WITEM message for the list-box item (to draw it as selected)
and another WM_DRA WITEM message for the selection field:

You can also designate the CBS_SORT style for a combo box; Windows sorts
owner-draw combo boxes in the same manner as owner-draw list boxes.

There is no multicolumn style for combo boxes.

8.4.5 Edit Controls
An edit control is a rectangular child window in which the user can enter and edit
text. Edit controls have a variety of features, such as multiple-line editing and
scrolling. You specify the features you want by specifying a control style.

Edit control styles define how the edit control will appear and operate. For ex
ample, the ES_MULTILINE style creates an edit control in which you can enter
more than one line of text. The ES_AUTOHSCROLL and ES_AUTOVSCROLL
styles direct the edit control to scroll horizontally or vertically if the user enters
more text than can fit in the control's client area. If these styles are not specified
and the user enters more text than can fit on one line, the text wraps to the next
line if it is a multiline edit control. You can also use the WS_HSCROLL and (for
a multiline edit control) WS_ VSCROLL styles to an edit control to allow the
user to scroll the text in the control.

Your application can use an edit control to let a user enter a password or other
private text without displaying the password. The ES_PASSWORD style creates
an edit control that does not display text as the user types it; instead, the edit con
trol displays an arbitrary character for each character that the user types. By de
fault, this character is an asterisk (*). To change the character displayed by the
edit control, send the EM_SETP ASSWORDCHAR message to the control.

8-24 Guide to Programming

You can set tab stops in a multiline edit control by sending the EM_SETT AB
STOPS message to the control. This message specifies the number of tab stops
the edit control should contain and the distances between the tab stops.

An edit control sends notification messages to its parent window. For example,
an edit control sends an EN_CHANGE message when the user makes a change
to the text. An edit control can also receive messages, such as EM_ GETLINE
and EM_LINELENGTH. An edit control carries out the specified action when it
receives a message.

A particularly powerful feature of edit controls allows you to "undo" a change to
the contents of the edit control. To determine whether an edit control can undo an
action, send the EM_ CANUNDO message to the control; the control will return
a nonzero value if it can undo the last change. If it can, your application can send
the EM_UNDO message to the control to reverse the last change made to the edit
control.

Table 8.4 describes the mouse and keyboard interface for edit controls.

Table 8.4 User Interface for Edit Control

Action

Mouse Interface

Single click

Double click

sHIFI'+Single click

Drag

Keyboard Interface

DIRECfION

SHIFI'+DIRECTION

CONTROL+LEFr ARROW,
CONTROL+RIGHT ARROW

SHIFI'+CONTROL+LEFT
ARROW, SHIFT+CON
TROL+RIGHT ARROW

Result

Positions the insertion point and drops the selection an
chor.

Selects a word.

Positions the insertion point and extends the selection
from the selection anchor to the insertion point.

Drops the selection anchor, moves the insertion point,
and extends the selection from the selection anchor to
the insertion point.

Removes the selection from any text and moves the in
sertion point in the indicated direction.

Drops the selection anchor (if it is not already dropped),
moves the insertion point, and selects all text between
the selection anchor and the insertion point.

Moves the insertion point to the beginning of the word
in the indicated direction.

Drops the selection anchor (if it is not already dropped),
moves the insertion point to the beginning of the word
in the indicated direction, and selects all text between
the selection anchor and the insertion point.

Controls 8-25

Table 8.4 User Interface for Edit Control (continued)

Action Result

HOME Removes the selection from any text and moves the in
sertion point to the beginning of the line.

SHIFf+HOME Drops the selection anchor (if it is not already dropped),
moves the insertion point to the beginning of the line,
and selects all text between the selection anchor and the
insertion point.

CONTROL+HOME

SHIFf+CONTROL+HOME

END

SHIFf+END

CONTROL+END

SHIFf+CONTROL+END

DELETE

SHIFf+DELETE

SHIFf+INSERT

CONTROL+INSERT

PAGE UP

CONTROL+PAGE UP

PAGE DOWN

CONTROL+PAGE DOWN

P.laces the insertion point before the first character in the
edit control.

Drops the selection anchor (if it is not already dropped),
places the insertion point before the first character in the
edit control, and selects all text between the selection an
chor and the insertion point.

Removes the selection from any text and moves the in
sertion point to the end of the line.

Drops the selection anchor (if it is not already dropped),
moves the insertion point to the end of the line, and
selects all text between the selection anchor and the in
sertion point.

Places the insertion point after the last character in the
edit control.

Drops the selection anchor (if it is not already dropped),
places the insertion point after the last character in the
edit control, and selects all text between the selection an
chor and the insertion point.

If text is selected, deletes (clears) the text. Otherwise, de
letes the character following the insertion point.

If text is selected, cuts the text to the clipboard. Other
wise, deletes the character before the insertion point.

Pastes (inserts) the contents of the clipboard at the inser
tion point.

Copies selected text to the clipboard, but does not delete
it.

In a multiline edit control, scrolls text up one line less
than the height of the edit control.

In a multiline edit control, scrolls text left one character
less than the width of the edit control.

In a multiline edit control, scrolls text down one line
less than the height of the edit control.

In a multiline edit control, scrolls text right one
character less than the width of the edit control.

8-26 Guide 10 Programming

Table 8.4 User Interface for Edit Control (continued)

Action

CONTROL+ENTER

CONTROL+TAB

Result

In a multiline edit control in a dialog box, ends the line
and moves the cursor to the next line.

In a multiline edit control ina dialog box, inserts a tab
character.

The EditCntl sample application described at the end of this chapter illustrates
how to use a multiline edit control to provide basic text entry and editing.

8.4.6 Scroll Bars
Scroll bars are predefined controls that can be positioned anywhere in a window.
They allow a user to select a value from a continuous range of values. The scroll
bar sends a notification message to its parent window whenever the user clicks
the control with the mouse or moves the scroll-bar thumb using the keyboard;
this allows the parent window to process the messages so that it can determine
the value selected by the user and position the thumb appropriately.

To create a child-window scroll bar, use the SBS_HORZ or SBS_ VERT style.
You can create a scroll bar with any desired size. If you want the width (of a ver
tical scroll bar) or height (of a horizontal scroll bar) to match the size of a
window scroll bar, you can use the appropriate system metrics, as shown in the
following example:

hScrollBar = CreateWindow("Scrollbar", NULL,
WS_CHILD I WS_VISIBLE I SBS_VERT,
20, 20,
GetSystemMetrics (SM_CXVSCROLL), 50,
hWnd, IDSCROLLBAR, hlnst, NULL);

The GetSystemMetrics function returns the current value for
SM_CXVSCROLL, which is the width of a standard window scroll bar.

Scroll-bar controls do not have a special set of notification messages. Instead,
they send the same messages (WM_HSCROLL and WM_ VSCROLL) sent by
window scroll bars. The wParam parameter of these messages contains a value
that indicates what kind of scrolling is being performed. Your application uses
this information to determine how to position the scroll-bar thumb and what that
position means to your application. Table 8.5 lists these wParam values and de
scribes the user action which generates them.

Controls 8-27

Table 8.S User Interface for Scroll Bar

Message wParam Value Mouse Keyboard

SB_LINEUP User clicked the Up or User pressed LEFT ARROW

Left arrow of the scroll or UPARROW.

bar.

SB_LINEDOWN User clicked the Down or User pressed RIGHT

Right arrow of the scroll ARROW or DOWN ARROW.

bar.

SB_PAGEUP User clicked above or to User pressed PAGE UP.

the left of the scroll-bar
thumb.

SB_PAGEDOWN User clicked below or to User pressed PAGE DOWN.

the right of the scroll-bar
thumb.

SB_ENDSCROLL User clicked anywhere on None.
the scroll bar except the
thumb.

SB_THUMBTRACK User is dragging the None.
thumb.

SB_THUMBPOSITION User stopped dragging None.
the thumb.

SB_TOP None. User pressed HOME.

SB_BOTTOM None. User pressed END.

Windows is capable of properly positioning the thumb of a scroll bar associated
with a list box or an edit control based on the contents of the control. However, a
scroll bar that is a child-window control represents a range of values known only
to your application. As a result, it is the responsibility of your application to set
the scrolling range for the scroll bar and to position the thumb each time the user
moves it.

The SetScrollRange function establishes the range of values that the scroll bar
represents. For example, if your application has a scroll bar with which the user
can select a day in a given month, you would call SetScrollRange to set the
scroll range to the number of days in a particular month. The following shows
how your application could set the range from the month of January:

SetScrollRangeChScrollBar, SB_CTL, 1, 31, 1)

8-28 Guide to Programming

In this example, SB_CTL informs Windows that the scroll bar is a separate scroll
bar control, not a scroll bar associated with a window. The third and fourth para
meters specify the scroll-bar range, and the fourth parameter is set to 1 to direct
windows to redraw the scroll bar to reflect the new range.

Even though you have established the range of values that the scroll bar repre
sents, Windows still cannot properly position the thumb of the scroll bar when
the user moves it; that remains the responsibility of your application. Each time
your application receives a WM_HSCROLL or WM_ VSCROLL message for the
scroll bar, you must check the wParam parameter of the message to determine
how far the user moved the thumb. You then call the SetScrollPos function to
position the thumb. Also, if your application allows the user to change the value
represented by the thumb position without using the scroll bar (such as by typing
in an edit control), your application must reposition the thumb based on the new
value.

8.5 A Sample Application: EditCntl
This sample application illustrates how you can use an edit control in an applica
tion's main window to provide multiple-line text entry and editing. The EditCntl
application fills the client area of its main window with a multiple-line edit con
trol and monitors the size of the client area to ensure that the edit control always
just fits. When completed, the EditCntl application appears as shown in Figure
8.1:

file Edit Help
[The EditCntl application lets you type and edit multiple r!
lines of text.

The entire client area
is a single edit control.

Figure 8.1 The EditCntl Application's Window

To create the application, copy and rename the source files of the EditMenu
application, then make the following modifications:

Controls 8-29

1. Add a new constant to the include file.

2. Add new variables.

3. Add a Create Window function;

4. Modify the WM_COMMAND case.

5. Add a WM_SETFOCUS case.

6. Add a WM_SIZE case.

7. Compile and link the application.

NOTE Rather than typing the code presented in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

8.5.1 Add a Constant to the Include File
You need to add a constant to the include file to serve as the control ID for the
edit control. Add the following statement:

#define IOC_EOIT 300

8.5.2 Add New Variables
You need a global variable to hold the window handle of the edit control. Add
the following statement to the beginning of the C-Ianguage source file:

HWNO hEditWnd /* handle to edit window */

You also need a local variable in the WinMain function to hold the coordinates
of the client-area rectangle. These coordinates are used to determine the size of
the control. Add the following statement to the beginning of the WinMain
function:

RECT Rect;

8.5.3 Add a Create Window Function
First, you need to retrieve the dimensions of the client area so that you can set the
size of the control. Once you have the dimensions of the client area, use the
Create Window function to create the edit control.

8-30 Guide to Programming

Add the following statements to the WinMain function immediately after creat
ing the main window:

GetClientRect(hWnd, (LPRECT) &Rect);

hEditWnd = CreateWindow("Edit",
NU LL, .
WS_CHILD I WS_VISIBLE I
ES_MULTILINE I
WS_VSCROLL I WS_HSCROLL I
ES_AUTOHSCROLL I ES_AUTOVSCROLL,
0,
0,
(Rect.right-Rect.left),
(Rect.bottom-Rect.top),
hWnd,
I DC_EDIT,
hlnst,
NU LL) ;

if (lhEditWnd)
DestroyWindow(hWnd);
return (NULL);

The GetClientRect function retrieves the dimensions of the the main window's
client area and places that information in the Rect structure. The Create Window
function creates the edit control, using the width and height computed by the
Reet structure.

The CreateWindow function creates the edit window. To create an edit control,
you need to use the predefined "Edit" control class and you need to specify the
WS_CHILD window style. The predefined controls may be used as child
windows only. They cannot be used as main or pop-up windows. Since a child
window requires a parent window, the handle of the main window, hWnd, is
specified in the function call.

For this edit control, a number of edit-control styles are also specified. Edit
control styles, like window styles, define how the control will look and operate.
This edit control is a multiple-line control, meaning the user will be able to enter
more than one line of text in the control window. Also, the control will automati
cally scroll horizontally or vertically if the user types more text than can fit in the
window.

The upper-left comer of the edit control is placed at the upper-left comer of the
parent window's client area. A child window's coordinates are always relative to
the parent window's client area. The next two arguments, Rect.right-Rect.left
and Rect.bottom-Recttop, define the height and width of the edit control, ensur
ing that the edit control fills the client area when the window is first displayed.

Controls 8-31

Since an edit control sends notification messages to its parent window, the con
trol must be given a control ID. Child windows cannot have menus, so the menu
argument in the CreateWindow function is used to specify the control ID in
stead. For this edit control, the ID is set to IDC_EDIT. Any notification messages
sent to the parent window by the edit control will contain this ID.

If the edit control cannot be created, the Create Window function returns NULL.
In this case, the application cannot continue, so the DestroyWindow function is
used to destroy the main window before terminating the application.

8.5.4 Modify the WM_COMMANO Case
Child-window controls notify the parent window of events by using a
WM_COMMAND message. The wParam parameter of the WM_COMMAND
message identifies the control that generated the message.

To recognize an out-of-memory notification from the edit control, add the follow
ing code to the WM_ COMMAND case:

case IDC_EDIT:
if (HIWORD (lParam) == EN_ERRSPACE)

MessageBox (

) ;

break;

Get Focus (),
"Out of memory.",
"EditCntl Sample Application",
MB_ICONHAND 1MB_OK

8.5.5 Add a WM_SETFOCUS Case
To set the input focus to the edit control whenever the parent window is acti
vated, add the following statements to the window procedure:

case WM_SETFOCUS:
Set Focus (hEditWnd);
break;

8.5.6 Add a WM_SIZE Case
You need to add a WM_SIZE case to the window function. Windows sends a
WM_SIZE message to the window function whenever the width or height of a
window changes. Since changing the main window size does not automatically
change the size of the edit control, the WM_SIZE case is needed to change the
size of the control.

8-32 Guide to Programming

Add the following statements to the window function:

case WM_SIZE:
MoveWindow(hEditWnd, 0, 0, LOWORD(lParam},

HIWORD(lParam), TRUE);
break;

B.5.7 Compile and Link

8.6 Summary

No changes are required to the make file. Compile and link the EditCntl applica
tion, then start Windows and run the application. Now, you can insert text, back
space to delete text, and you can use the mouse instead of the keyboard to select
text. And since you specified ES_MULTILINE, ES_AUTOVSCROLL, and
ES_AUTOHSCROLL when creating the control, the control can edit a full
screen of text, then scroll and edit more.

The EditCntl application illustrates the first step required to make a simple text
editor. To make a complete editor, you can add a File menu to the main window
to open and save text files and to copy or retrieve text from the edit control, and
add an Edit menu to the main window to copy, cut, and paste text through the
clipboard. Later chapters illustrate some simple ways to incorporate these fea
tures into your application.

This chapter explained how to provide controls in your application. A control is a
special type of child window that you can add to your application's windows to
facilitate user input. Windows provides automatic support for most types of con
trols. For example, Windows can automatically draw a control in the location
you specify; when the user selects a control, Windows sends your application a
message containing the control ID.

This chapter also explained how to use each of the most common types of con
trols.

For more information on topics related to controls, see the following:

Topic

Processing input messages

U sing controls in dialog boxes

Control functions

Reference

Guide to Programming: Chapter 4,
"Keyboard and Mouse Input"

Guide to Programming: Chapter 9,
"Dialog Boxes"

Reference, Volume 1: Chapter 1,
"Window Manager Interface Functions"

Topic

Resource script statements

The sample application OWN
COMBO.EXE, which
illustrates the use of combo
boxes and owner-draw controls

Controls 8-33

Reference

Reference, Volume 2: Chapter 8,
"Resource Script Statements"

SDK Sample Source Code disk

Chapter

9
Dialog Boxes

Dialog boxes are pop-up windows that applications use to interact with the user.
Typically, dialog boxes contain one or more controls.

This chapter covers the following topics:

• What is a dialog box?

• Creating and using both modal and modeless dialog boxes

• Creating a dialog function

• U sing controls in dialog boxes

This chapter also explains how to create a sample application, FileOpen, which
shows how to build and use a modal dialog box that contains controls.

9. 1 What Is a Dialog Box?
A dialog box is a pop-up window that an application uses to display or prompt
for information. Dialog boxes are typically used to prompt the user for the infor
mation needed to complete a command. A dialog box contains one or more con
trols with which the user can enter text, choose options, and direct the action of a
particular command.

You have already seen a dialog box in the Generic application: the About dialog
box. This dialog box contains static text controls that provide information about
the application, and a push-button control that the user can use to close the dialog
box and return to the main window. To process a dialog box, you need to supply
a dialog-box template, a dialog function, and some means to call up the dialog
box.

A dialog-box template is text that describes the dialog box and the controls it con
tains. You can use either a text editor or the Windows 3.0 Dialog Editor to create
the template. Once you have created the template, add it to your resource script
file.

A dialog function is a callback function; Windows calls the dialog function and
passes it messages for the dialog box. Although a dialog function is similar to a
window function, Windows carries out special processing for dialog boxes.

9-2 Guide to Programming

Therefore, the dialog function does not have the same responsibilities as a
window function.

The most common way to display a dialog box is in response to menu input. For
example, the Open and Save As commands in the File menu both require addi
tional information to complete their tasks; both display dialog boxes to prompt
for the additional information.

There are two types of dialog boxes: modal and modeless.

9.1.1 ModalDialog Boxes
You have already seen a modal dialog box (About) in the Generic application. A
modal dialog box temporarily disables the parent window and forces the user to
complete the requested action before returning control to the parent window.
Modal dialog boxes are particularly useful for gathering information your appli
cation requires in order to proceed. For example, Windows Notepad displays a
modal dialog box when the user chooses the Open command from the File menu.
Notepad cannot proceed with the Open command until the user specifies a file.

Although you can give a modal dialog box almost any window style, the recom
mended styles are DS_MODALFRAME, WS_CAPTION, and WS_SYSMENU.
The DS_MODALFRAME style gives the dialog box its characteristic thick
border.

A modal dialog box starts its own message loop to process messages from the
application queue without returning to the WinMain function. To keep input
from going to the parent window, the dialog box disables the parent window
before processing input. For this reason, a modal dialog box must never be
created using the WS_CHILD style, since disabling the parent window also
disables all child windows belonging to the parent.

To display a modal dialog box, use the DialogBox function. To terminate a
modal dialog box, use the EndDialog function.

9.1.2 Modeless Dialog Boxes
A modeless dialog box, unlike a modal dialog box, does not disable the parent
window. This means that the user can continue to work in the parent window
while the modeless dialog box is displayed. For example, Windows Write uses a
modeless dialog box for its Find command. This allows the user to continue
editing the document without having to close the Find dialog box.

Dialog Boxes 9-3

Most modeless dialog boxes have the WS_POPUP, WS_CAPTION,
WS_BORDER, and WS_SYSTEMMENU styles. The typical modeless dialog
box has a system menu, a title bar, and a thin black border.

Although Windows automatically disables some of the system-menu commands
for the dialog box, the menu still contains a Close command. The user can use
this command instead of a push button to terminate the dialog box. You can also
include controls in the dialog box, such as edit controls and check boxes.

A modeless dialog box receives its input through the message loop in the Win
Main function. If the dialog box has controls, and you want to let the user move
to and select those controls using the keyboard, call the IsDialogMessage func
tion in the main message loop. This function determines whether a keyboard
input message is for the dialog box and, if necessary, processes it. The WinMain
message loop for an application that has a modeless dialog box will look like this:

while (GetMessage(&msg, NULL, NULL, NULL) {
if (hDlg == NULL I I !IsDialogMessage(hDlg, &msg)) {

TranslateMessage(&msg);
DispatchMessage(&msg);

Since a modeless dialog box may not be present at tall times, you need to check
the hDlg variable that holds the handle in order to see if it is valid. If it is valid,
IsDialogMessage determines whether the message is for the dialog box. If so,
the message is processed and must not be further processed by the Translate
Message and DispatchMessage functions.

To terminate a modeless dialog box, use the DestroyWindow function.

9.2 Using a Dialog Box
To create and use a dialog box, follow these steps:

1. Create a dialog-box template and add it to the resource script file.

2. Create a dialog function to support the box.

3. Export the dialog function.

4. Display the dialog box by calling either the DialogBox function (for a modal
dialog box) or the CreateDialog function (for a modeless dialog box).

5. Close the dialog box by calling either the EndDialog function (for modal
dialog boxes) or the DestroyWindow function (for modeless dialog boxes).

The following sections explain each step.

9-4 Guide 10 Programming

9.2. 1 Creating a Dialog Function
A dialog function has the following form:

Baal FAR PASCAL DlgFunc(hDlg, message, wParam, lParam)
HWND hDlg;
unsigned message;
WORD wParam;
DWORD lParam;
{

switch (message)

/* Place message cases here */

default :
return FALSE;

This is basically a window function, except that the DefWindowProc function is
not called. Default processing of dialog-box messages is handled internally, so
the dialog function must not call the DefWindowProc function.

The dialog function must be defined as aFAR PASCAL procedure, and must
have the parameters given here. BOOL is the required return type.

Just as it does with window functions, Windows sends messages to a dialog func
tion when it has information to give the function or wants the function to carry
out some action. Unlike a window function, a dialog function responds to a
message by returning a Boolean value. If the function processes the message, it
returns TRUE. Otherwise, it returns FALSE.

In this function, the hDlg variable receives the handle of the dialog box. The
other parameters serve the same purpose as in a window function. The switch
statement is used as a filter for different messages. Most dialog functions process
the WM_INITDIALOG and WM_COMMAND messages, but very little else.

The WM_INITDIALOG message, sent to the dialog box just before it is dis
played, gives the dialog function the opportunity to give the input focus to any
control in the dialog box. If the function returns TRUE, Windows will set the
input focus to the control of its choosing.

The WM_COMMAND message is sent to the dialog function by the controls in
the dialog box. If there are controls in the dialog box, they send notification mes
sages when the user carries out some action within them. For example, a dialog
function with a push button can check WM_ COMMAND messages for the con
trol ID of the push button. The control ID is in the message's wParam parameter.
When it finds the ID, the dialog function can carry out the corresponding task.

If you create the dialog box with the WS_SYSMENU style, you should include a
WM_ COMMAND switch statement for the IDCANCEL control ID which is

Dialog Boxes 9-5

sent when the user chooses the close option in the dialog-box system menu. The
statement should include a call to the EndDialog function.

9.2.2 Using Controls in Dialog Boxes
You use controls in dialog boxes much as you use them in regular windows.
When a control is in a dialog box, however, you can use several special functions
to access the control and send messages to it. For example, the SendDlgltem
Message function sends a message to a control in the dialog box, and the Set
DlgltemText function sets the text of a control. You do not need to supply the
control handle in these functions. Instead, you supply the dialog handle and the
control ID. If you want the control handle, you can use the GetDlgltem function.

9.3 A Sample Application: FileOpen
This sample application shows how to build and use a modal dialog box to sup
port the Open command in the File menu. The purpose and operation of the
dialog box is fully described in the System Application Architecture, Common
User Access: Advanced lnteiface Design Guide. Figure 9.1 shows the dialog box
that the FileOpen application displays when the user chooses the Open command:

Edit control

List box control Push-button controls

Figure 9.1 The FileOpen Application's Dialog Box

The dialog box contains the following controls:

• A default push-button control labeled "Open" that lets the user tell the appli
cation to open the selected file.

• A button control labeled "Cancel" thatlets the user cancel the Open com
mand.

9·6 Guide to Programming

• A single-line edit control in which the user can enter the name of the file to
open.

• A list box containing the names of files in the current directory from which
the user can select the file to be opened.

The list box also contains directory and drive names that the user can select to
change the current directory or drive.

• Several static text controls that label the list box and edit control, and display
the current directory name.

To create the FileOpen application, copy and rename the source files for the
EditCntl application, then make the following modifications:

1. Add new constants to the include file.

2. Create the Open dialog-box template and add it to the resource script file.

3. Add new variables.

4. Add an IDM_OPEN case to the WM_COMMAND case.

5. Create the OpenDlg dialog function.

6. Add helper functions to support the OpenDlg dialog function.

7. Export the OpenDlg dialog function.

8. Compile and link the application.

NOTE Rather than typing the code provided in the following sections, you might find it
more convenientto simply examine and compile the sample source files provided with the
SDK.

9.3. 1 Add Constants to the Include File
You need several new constants in the include file to identify the controls of the
FileOpen dialog box. Add the following statements:

#define
#define
#define
#define
#define

IDC_FILENAME 400
IDC_EDIT 401
IDC_FILES 402
IDC_PATH 403
IDC_LISTBOX 404

Although you may choose any integer for a control ID, the ID for each control in
a given dialog box must be unique. By convention, a predefined ID, such as
IDOK or IDCANCEL, is less than 100, so any number greater than 100 can be
used for other controls.

Dialog Boxes 9-7

9.3.2 Create the Open Dialog-Box Template
You need a dialog-box template in your resource script file to define the size and
appearance of the Open dialog box. The DIALOG statement specifies the name
and dimensions of a dialog box, as well as the controls the dialog box contains.
Add the following statements:

o Open DIALOG 10, 10, 148, 112
STYLE DS_MODALFRAME I WS_CAPTION WS_SYSMENU
CAPTION "About FileOpen"
e} BEGIN

END

@) L TEXT "Open Fi 1 e &Name:", IDC_FILENAME, 4, 4, 60, 10
G) EDITTEXT IDC_EDIT, 4, 16, 100, 12, ES_AUTOHSCROLL
LTEXT "&Files in", IDC_FILES, 4, 40, 32, 10
o LISTBOX, IDC_LISTBOX, 4, 52, 70, 56, WS_TABSTOP
(3 LTEXT "", IDC_PATH, 40, 40, 100, 10
o DEFPUSHBUTTON "&Open", lOOK, 87, 60, 50, 14
$ PUSHBUTTON "Cancel", IDCANCEL, 87, 80, 50, 14

In this DIALOG statement:

o The dialog box has a width and height (in dialog units) of 148 and 112, re
spectively. Dialog units are fractions of the default system-font character size
and are used with dialog boxes to ensure that a dialog box has the same rela
tive size, no matter which computer it is displayed on.

e} The BEGIN and END statements are required.

@) The first L TEXT statement creates a left-adjusted static control that contains
the string, "Open File &Name:". This string serves as the label to the list box.
In some dialog boxes, all static controls have this same ID. Although the
general rule is to have a unique ID for each control in a dialog box, it is ac
ceptable to use -1 for static controls, as long as the dialog function does not

. need to distinguish between them (for example, as long as the dialog function
does not attempt to change the static-control text or position).

G) The EDITTEXT statement adds an edit control to the dialog box and identi
fies it with IDC_EDIT. The ES_AUTOHSCROLL style is given so that the
user can enter filenames that are longer than the control is wide.

o The LISTBOX statement creates a list box. The ID of the list box is
IDC_LISTBOX. The width and height (in dialog units) of the list box are 70
and 56, respectively. The WS_ TAB STOP style is given so that the user can
move the focus to the list box using the keyboard. Without this style, the user
can get to the list box only by clicking it with the mouse.

(3 The last L TEXT statement creates a left-adjusted static control used to dis
play the current directory and drive. The control is initially empty; the

9-8 Guide to Programming

pathname is added later. This control also has a unique control ID,
IDC_P ATH, to distinguish it from other static controls. This is important
since you will use the DlgDirList function to fill the control.

o The DEFPUSHBUTTON statement creates a default push button that is
labeled "Open" and has the control ID IDOK, a predefined ID found in the
WINDOWS.H file. In modal dialog boxes, pressing ENTER generates a notifi
cation message that uses the same ID, so you can permit the user to click the
button or press ENTER to open the selected file.

o The PUSHBUTTON statement creates the "Cancel" push button. Its ID is ID
CANCEL, a predefined ID found in the WINDOWS.H file. In modal dialog
boxes, pressing ESCAPE generates a notification message by using the same
ID, so you can permit the user to click the button or press ESCAPE to cancel
the Open command.

9.3.3 Add New Variables
You need to deClare several new global and local variables in order to hold the
filename and the various pieces used to build the filename. Add the following
statements at the beginning of your source file:

char Fil eName[128] ; /* current filename */
char PathName[128]; /* current pathname */
cha r OpenName[128]; /* filename to open */
char DefPath[128] ; /* default path for list box */
cha r DefSpec[13] = "*.*"; /* default search spec */
cha r DefExt[] = ".txt"; /* default extension */
char str[255]; /* string for sprintf() ca 11 s */

You need a new local variable to hold the procedure-
instance address of the FileOpen dialog box. Add the following statement at the
beginning of the window function:

FARPROC lpOpenDlg;

9.3.4 Add the 10M_OPEN Case
You need to fill in the IDM_OPEN case for the WM_COMMAND message.
When the user chooses the command, the application should display the Open
dialog box. Add the following statements to the window function:

case 1DM_OPEN:
lpOpenDlg = MakeProc1nstance((FARPROC) OpenDlg, h1nst»;
DialogBox(h1nst, "Open", hWnd, lpOpenDlg);
FreeProclnstance(lpOpenDlg);
break;

The MakeProcInstance function creates a procedure-instance address for the
OpenDlg function. The function ensures that the data segment for the current

Dialog Boxes 9·9

instance is used when the dialog function is called. Functions, such as OpenDlg,
that are exported by an application may be called only through a procedure
instance address and must not be called directly.

The FreeProcInstance function is used to free a procedure-instance address
when it is no longer needed. After the DialogBox function returns, the procedure
instance address, IpOpenDlg, is not needed and can be freed. It will be re-created
the next time the dialog box is invoked.

The DialogBox function returns control to WinMain only after the dialog func
tion has terminated the dialog box. This means the dialog box will complete any
actions the user requests, before the application can continue execution. Such a
dialog box is called a modal dialog box, since while it remains on the screen, the
application is in a new mode of operation. This means the user can respond only
to the dialog box. It also means that commands that apply to the application are
not available while the dialog box is present.

9.3.5 Create the OpenOlg Function
You need to create a dialog-box function to process the controls in the Open
dialog box. When the dialog box is first displayed, the dialog function needs to
fill the list box and the edit control, then give the input focus to the edit control
and select the entire specification. If the user selects a filename in the list box,
the dialog function should copy the name to the edit control. If the user clicks the
Open button, the dialog function should retrieve the filename from the edit con
trol and prepare to op~n the file. If the user double-clicks a filename in the list
box, the dialog function should retrieve the filename, copy it to the edit control,
and prepare to open the file.

Add the following function to your source file:

HANDLE FAR PASCAL OpenDlg(hDlg, message, wParam, lParam)
HWND hDlg;
unsigned message;
WORD wParam;
LONG lParam;
{

WORD index;
PSTR pTptr;
HANDLE hFile;

switch (message)

/* index to the filenames in the list box */
/* tempora ry poi nter * /
/* handle to the opened file */

case WM_COMMAND:
switch (wPa ram)

case IDC_LISTBOX:
switch (HIWORD(lParam))

case LBN_SELCHANGE:
if (!DlgDirSelect(hDlg, str, IDC_LISTBOX))

SetDlgItemText(hDlg, IDC_EDIT, str);
SendDlgItemMessage(hDlg, IDC_EDIT,

9-10 Guide to Programming

openfile:

else

EM_SETSEL,
NULL,
MAKELONG(0, 0x7fff));

strcat(str, DefSpec);
DlgDirList(hDlg, str, IDC_LISTBOX,

IDC_PATH, 0x4010);

b rea k;
case LBN_DBLCLK:

goto openfile;

return (TRUE);
1* Ends IDC_LISTBOX case *1

case lOOK:

GetDlgItemText(hDlg, IDC_EDIT, OpenName, 128);
if (strchr(OpenName, '*') II

strchr(OpenName, '?')) {

SeparateFile(hDlg, (LPSTR) str, (LPSTR) DefSpec,
(LPSTR) OpenName);

if (str[0])
strcpy(DefPath, str);

ChangeDefExt(DefExt, DefSpec);
UpdateListBox(hDlg);
return (TRUE);

if (!OpenName[0]) {

}

MessageBox(hDlg, "No filename specified.",
NULL, MB_OK I MB_ICONQUESTION);

return (TRUE);

AddExt(OpenName, DefExt);
EndDialog(hDlg, NULL);
return (TRUE) ;

case I DCANCEL:

break;

EndDialog(hDlg, NULL);
return (TRUE) ;

case WM_INITDIALOG: 1* Request to initalize *1
UpdateListBox(hDlg);
SetDlgItemText(hDlg, IDC_EDIT, DefSpec);
SendDlgItemMessage(hDlg, 1* dialog handle *1

IDC_EDIT, 1* where to send message *1
EM_SETSEL, 1* select characters *1
NULL, 1* additional information *1
MAKELONG(0, 0x7fff)); 1* Accept entire contents *1

SetFocus(GetDlgItem(hDlg, IDC_EDIT));
return (FALSE); 1* Indicates focus is set to a control *1

Dialog Boxes 9-11

return (FALSE);

When the dialog function receives the WM_INITDIALOG message, the Set
DlgItemText function copies the initial filename to the edit control, and the
SendDlgItemMessage function sends the EM_SETSEL message to the control
in order to select the entire contents of the edit control for editing. The SetFocus
function gives the input focus to the edit control. (The GetDlgItem function re
trieves the window handle of the edit control.) The UpdateListBox function,
given at the beginning of the WM_INITDIALOG case, is a locally defined func
tion that fills the list box with a list of files in the current directory.

When the dialog function receives the WM_COMMAND message, it looks for
three different values: IDC_LISTBOX, IDOK, and IDCANCEL.

For IDC_LISTBOX, the dialog function checks the notification-message type. If
it is LBN_SELCHANGE, the dialog function retrieves the new selection using
the DlgDirSelect function. It then copies the new filename to the edit control
using the SetDlgItemText function and selects it for editing by sending a
EM_SETSEL message. If the current selection is not a filename, the dialog func
tion uses DlgDirList to copy the default specification to the list box. This fills
the list box with all files in the current directory.

If the IDC_LISTBOX notification type is LBN_DBLCLK, the dialog function
carries out the same action as for the IDOK case. A list box sends an
LBN_DBLCLK message only after sending an LBN_SELCHANGE message.
This means you do not have to retrieve the new filename when you receive a
double-click notification.

For IDOK, the dialog function retrieves the contents of the edit control and
checks the filename to see if it is valid. The strchr function searches for wildcard
characters in the name. If it finds a wildcard character, it divides the filename
into separate path and filename parts using the locally defined SeparateFile func
tion. The strcpy function updates the DefPath variable with a new default path, if
any. The locally defined ChangeDetExt function updates the DetExt variable
with a new default filename extension, if any. After the default path, filename,
and filename extension are updated, the UpdateListBox function updates the con
tents of the list box, and the dialog function returns to let the user select a valid
filename from the new list.

If a filename has no wildcard characters, the dialog function makes sure the file
is not empty. If it is empty, the dialog function displays a warning message, but
does not terminate the dialog box. This lets the user try again. If the filename has
no wildcards and the file is not empty, and if the user has entered a filename that
does not have an extension, the dialog function uses the locally defined AddExt
function to append the default filename extension. The dialog function then calls
the EndDialog function to terminate the modal dialog box and sets the dialog
box return value to NULL.

9-12 Guide to Programming

For IDCANCEL, the dialog function calls the EndDialog function to terminate
the dialog box and cancel the command. The return value is set to NULL.

The dialog function can also check the existence and access mode of the given
file before terminating the dialog box. The existence check, not given in this ex
ample, is entirely up to the application. Some simple ways of checking whether a
file exists and is accessible are shown in Chapter 10, "File Input and Output."

9.3.6 Add Helper Functions
You need to add several functions to your C-Ianguage source file to support the
OpenDlg dialog function. These functions are listed as follows:

Function

UpdateListBox

SeparateFile

ChangeDetExt

AddExt

Description

Fills the list box in the Open dialog box with the
specified files.

Divides a pathname into separate path and filename
parts.

Copies the filename extension from a filename to a
buffer, as long as the extension has no wildcard
characters.

Appends an extension to a filename if one does not
already exist.

The UpdateListBox function builds a pathname by concatenating the default path
and filename, then passes this pathname to the list box using the DlgDirList func
tion. This function fills the list box with the names of the files and directories
identified by the pathname. Add the following statements to the C-Ianguage
source file:

void UpdateListBox(hDlg)
HWND hDlg;
{

strcpyCstr, DefPath);
strcatCstr, DefSpec);
DlgDirListChDlg, str, IDC_LISTBOX, IDC_PATH, 0x4010);
SetDlgItemTextChDlg, IDC_EDIT, DefSpec);

The SetDlgltemText function copies the default filename to the dialog box's
edit control.

The SeparateFile function divides a pathname into two parts and copies them to
separate buffers. It first moves to the end of the path name and uses the AnsiPrev
function to back through it, looking for a drive or directory separator. Add the fol
lowing statements to your C-language source file:

Dialog Boxes 9-13

void SeparateFile(hDlg, lpDestPath, lpDestFileName, lpSrcFileName)
HWND hDlg;
LPSTR lpDestPath, lpDestFileName, lpSrcFileName;
{

LPSTR lpTmp;
CHAR cTmp;

lpTmp = lpSrcFileName + (long) lstrlen(lpSrcFileName);

while (*lpTmp 1= ':' && *lpTmp 1= '\\' && lpTmp > lpSrcFileName)
lpTmp = AnsiPrev(lpSrcFileName, lpTmp);

if (*lpTmp 1= ':' && *lpTmp 1= '\\') {
lstrcpy(lpDestFileName, lpSrcFileName);
lpDestPath[0] = 0;
return;

lstrcpy(lpDestFileName, lpTmp + 1);
cTmp = *(lpTmp + 1);
lstrcpy(lpDestPath, lpSrcFileName);
*(lpTmp + 1) = cTmp;
lpDestPath[(lpTmp - lpSrcFileName) + 1] = 0;

The ChangeDetExt and AddExt functions all use standard C-Ianguage statements
to carry out their tasks. Add the following statements to the C-Ianguage source
file:

void ChangeDefExt(Ext, Name)
PSTR Ext, Name;
{

PSTR pTptr;

pTptr = Name;
while (*pTptr && *pTptr 1= '. ')

pTptr++;
if (*pTptr) /* true if this is an extension */

if (lstrchr(pTptr, '*') && Istrchr(pTptr, '?'»
strcpy(Ext, pTptr); /* Copies the extension */

void AddExt(Name, Ext)
PSTR Name, Ext;
{

PSTR pTptr;

pTptr = Name;
while (*pTptr && *pTptr 1= '. ')

pTptr++;
if (*pTptr 1= '. ') /* If no extension, add the default */

strcat(Name, Ext);

9-14 Guide to Programming

9.3.7 Export the Dialog Function
You need to export the OpenDlg dialog function, since it is a callback function
and will be called by Windows. Add the following line to the EXPORTS state
ment in your module-definition file:

OpenDlg @3

9.3.8 Compile and Link

9.4 Summary

No changes are required to the make file. Compile and link the application, start
Windows, then run the FileOpen application. When you open the File menu and
choose the Open command, the FileOpen application displays the Open dialog
box, as shown in Figure 9.1 at the beginning of this section. You can select a file
from the list box, or enter a filename in the edit control, then choose the Open
button.

This chapter explained how to create. and use dialog boxes in your application. A
dialog box is a special type of window that overlaps your application's main
window. There are two types of dialog boxes: modal and modeless. Modal dialog
boxes require the user to complete them before returning to the main application
window. Modeless dialog boxes do not require completion before the user can
move to other application windows.

Windows provides a special set of functions for handling controls in dialog
boxes.

You can use the Dialog Editor to design dialog boxes.

For more information on topics related to dialog boxes, see the following:

Topic

Processing input messages

Controls

Control and dialog-box functions

Resource script statements

Reference

Guide to Programming: Chapter 4,
"Keyboard and Mouse Input"

Guide to Programming: Chapter 8,
"Controls"

Reference, Volume 1: Chapter 1,
"Window Manager Interface
Functions"

Reference, Volume 2: Chapter 8,
"Resource Script Statements"

Topic

Using the Dialog Editor

The sample application OWN
COMBO.EXE, which illustrates the
use of combo boxes and owner-draw
controls in dialog boxes

Dialog Boxes 9-15

Reference

Tools: Chapter 5, "Designing Dialog
Boxes: The Dialog Editor"

SDK Sample Source Code disk

Chapter

10
File Input and Output

File input and output in Microsoft Windows applications are similar to file input
and output in standard C run-time programs. However, there are enough differ
ences between the two environments to make a review of file input and output
important. For example, although you can use C run-time, stream input and out
put (110) functions in Windows, it's preferable to use the low-level, C run-time
input and output functions. Also, since Windows is a multitasking environment,
you need to manage open files carefully.

In Windows, your application should use the OpenFile function to work with
files. OpenFile opens and manages your files; it returns a file handle that you
can use with the low-level, C run-time functions to read and write data.

This chapter covers the following topics:

• Handling files in the Windows environment

• Using the OpenFile function to create, open, close, reopen, prompt for, and
check the status of disk files

• Using the low-level, C run-time input and output functions to read from and
write to disk files

This chapter also explains how to create a sample application, EditFile, that
illustrates some of these concepts.

10.1 Rules for Handling Files in the Windows Environment
In the Windows environment, multitasking imposes some special restrictions on
file access that you do not encounter in the standard C environment. Since there
may be several applications working with files at the same time, you need to fol
low some simple rules to avoid conflicts and potential overwriting of files.

The rest of this section lists and explains these rules.

Keep a file open only while you have execution control.
You should close the file before calling the GetMessage function, or any other
function that may yield execution control. Closing the file prevents it from being
affected by changes in the disk environment that may be caused by other appli
cations. For example, suppose your application is writing to a floppy disk and

10 .. 2 Guide 10 Programming

affected by changes in the disk environment that may be caused by other appli
cations. For example, suppose your application is writing to a floppy disk and
temporarily relinquishes control to another application, and the other application
tells the user to remove the floppy disk and replace it with another. When your
application gets control back and tries to write to the disk as before, without
having closed and reopened the file, it could destroy data on the new disk.

Another reason to keep files closed is the DOS open-file limit. DOS sets a limit
on the number of open files that can exist at one time. If many applications at
tempt to open and use files, they can quickly exhaust the available files.

To prevent open-fiie problems, the OpenFile function provides an OF_REOPEN
option that lets you easily close and reopen files. Whenever you open or create a
file, OpenFile automatically copies the relevant facts about the file, including the
full pathname and the current position of the file pointer, in an OFSTRUCT
structure. This means you can close the file, then reopen it by supplying nothing
more than the structure.

If the user changes disks while working in another application, when your appli
cation calls the OpenFile function, the function will fail to reopen your file. If
your application specifies the OF_PROMPT option when reopening a file, Open
File automatically displays a message box asking the user to insert the correct
disk.

Follow DOS conventions when carrying out file
operations.
Ultimately, Windows depends on the DOS file-handling functions to carry out
all file input and output. This means that you must follow DOS conventions
when carrying out file operations. For example, with DOS, a filename can have
from one to eight characters and a filename extension can have from zero to three
characters. The name must not contain spaces or special-purpose characters.
Furthermore, filenames must be specified in the OEM character set, not the
Windows default character set, ANSI.

It is up to you to make sure that your application uses filenames that are the ap
propriate length and contain the appropriate characters. However, if you use the
OpenFile function, you do not have to worry about translating character sets;
OpenFile automatically translates filenames from the ANSI character set to the
OEM set. It does so using the AnsiToOem function.

NOTE All edit controls and list boxes use the ANSI character set by default, so if you plan
to display DOS filenames or let users enter filenames, they may see unexpected characters
wherever an OEM character is not identical to an ANSI character.

If your application processes international filenames, it must be prepared to handle
filenames that do not contain conventional single-byte character values. For such filenames,
use the AnsiNext and AnsiPrev functions to move forward and backward in a string. These

File Input and Output 10-3

functions correctly handle strings that contain characters that are not one byte in length,
such as strings in machines that are using Japanese characters.

Use unique filenames for each instance of your
application.
Since more than one instance of an application can run at a time, one instance
can end up overwriting the temporary file of another instance. You can prevent
this by using unique filenames for each instance of your application.

To create unique filenames, use the GetTempFilename function. This function
creates a unique name by combining a unique integer with a prefix and filename
extension that you supply. GetTempFilename creates names that follow the
DOS filename requirements.

NOTE The GetTempFileName function uses the TEMP environment variable to create the
full pathname of the temporary file. If the user has not set the variable, the temporary file
will be placed in the root directory of the current drive. If the variable does not specify a
valid directory, you will not be able to create the temporary file.

Close files before displaying a message box, or use
system-modal error message boxes.
As mentioned earlier, your application should not relinquish control while it
has open files on floppy disks. If your application uses a message box that's not
system-modal, the user can move to another application while the message box is
on display. If your application still has open files, switching applications like this
can cause file I/O problems.

To avoid such problems, whenever your application displays an alert or error
message by using the MessageBox function, it should do at least one of the
following:

• Close any open files before displaying the message box.

• If closing files is not feasible, make the message box system-modal.

10.2 Creating Files
To create a new file, use the OpenFile function with the OF_CREATE option.
When you call the OpenFile function, you specify:

• A null-terminated filename for the file you're creating

• A buffer with the type OFSTRUCT

• The OF_CREATE option

10-4 Guide to Programming

The following example creates the FILE. TXT file and returns a handle to the file.
The application can then use this file handle with low-level, C run-time I/O
functions:

int hFile;
OFSTRUCT OfStruct;

hFile = OpenFileC"FILE.TXT", &OfStruct, OF_CREATE);

The OpenFile function creates the file, if necessary, and opens it for writing. If
the file already exists, the function truncates it to zero length and opens it for
writing.

If you want to avoid overwriting an existing file, you can check whether the file
exists, before creating a new file, by calling OpenFile as follows:

hFile = OpenFileC"FILE.TXT", &OfStruct, OF_EXIST);
if ChFile)= 0) {

wAction = MessageBoxChWnd,
CLPSTR) "File exists. Overwrite?",
CLPSTR) "File",
MB_OKCANCE l) ;

if CwAction == IDCANCEL)

/* End this processing */
}

/* Open the file */

10.3 Opening Existing Files
You can open an existing file by using the OF_READ, OF ...:WRlTE, or
OF _READ WRITE option. These options direct the OpenFile function to open
existing files for reading, writing, or reading and writing. The following example
opens the FILE. TXT file for reading:

hFile = OpenFileC"FILE.TXT", &OfStruct, OF_READ);

If the file fails to open, you can display a dialog box to indicate that the file was
not found. You can also use OpenFile to prompt for the file, as described in
Section 10.6, "Prompting for Files."

File Input and Output 10-5

10.4 Reading From and Writing To Files
Once you have opened a file, you can read from it or write to it using low-level,
C run-time functions. The following example opens the FILE.TXT file for read
ing and then reads 512 bytes from it:

char buffer[512];
int count;

hFile = OpenFileC"FILE.TXT", &OfStruct, OF_READ);
if ChFile)= 0) {

count = readChFile, buffer, 512);
closeChFile);

In this example, the file handle is checked before bytes are read from the file.
OpenFile returns -1 if the file could not be found or opened. The close function
closes the file immediately after reading.

The following example opens the FILE. TMP file for writing and then writes
bytes from the character-array buffer:

hFile = OpenFileC"FILE.TMP", &OfStruct, OF_WRITE);
if ChFile)= 0) {

writeChFile, buffer, count);
closeChFile) ;

You should always close floppy-disk files after reading or writing. This is to pre
vent problems if you remove the current disk while working with another applica
tion. You can always reopen a disk file by using the OF_REOPEN option.

10.5 Reopening Files
If you open a file on a floppy disk, you should close it before your application
relinquishes control to another application. The most convenient time is immedi
ately after reading or writing the file. The file can always be reopened using
OpenFile with the OF_REOPEN option:

hFile = OpenFileCCLPSTR) NULL, &OfStruct, OF_REOPEN I OF_READ);

In this example, OpenFile uses the filename in the OfStruct structure to open the
file. When a file is reopened, the file pointer marking the current position in the
file is moved to the same position it was in just before the file was closed.

10-6 Guide to Programming

10.6 Prompting for Files
You can automatically prompt the user to insert the correct disk before reopening
a file by using the OF PROMPT option. OpenFile uses the filename to create a
prompt string. If you are reopening a file, you need to use the OF_REOPEN and
OF_PROMPT options in addition to specifying how you want to open the file:

hFile = OpenFileCCLPSTR)NULL, &OfStruct, OF_PROMPT I OF_REOPEN
I OF_READ);

If you reopen a file as read only, Windows will check whether the date and time
match the date and time of the file when it was first opened.

10.7 Checking File Status
You can retrieve the current status of an open file by using the low-level, C run
time function fstat. This function fills a structure with information about a file,
such as its length in bytes (specified in the size field) and the date and time it was
created. The following example fills the FileStatus structure with information
about the FILE. TXT file:

stat FileStatus;

fstatChFile, FileStatus);

10.8 A Simple File Editor: EditFile
This example shows how to create a simple Windows application that uses the
OpenFile and C run-time functions to open and save small text files. To create
the EditFile sample application, copy and rename the FileOpen application
sources, described in Chapter 9, "Dialog Boxes," and modify them as follows:

I. Add constants to the include file.

2. Create a SaveAs dialog-box template and add it to the resource script file.

3. Add new include statements to the C-Ianguage source file.

4. Add new variables.

5. Replace the WM_COMMAND case.

6. Add the WM_QUERYENDSESSION and WM_CLOSE cases.

7. Modify the OpenDlg dialog function.

8. Create a SaveAsDlg dialog function.

File Input and Output 10-7

9. Create helper functions for the SaveAsDlg dialog function.

10. Export the SaveAsDlg dialog function.

11. Modify the application's HEAPSIZE statement.

12. Compile and link the application.

When this application is completed, you will be able to view text files in an edit
control. The application's Open command in the File menu will let you specify
the file to be opened. You will also be able to make changes to a file or enter new
text, and save the text using the Save or Save As command in the dialog box.

NOTE Rather than typing the code provided in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

10.8.1 Add a Constant to the Include File
You need to add a constant definition to the include file to support the SaveAs
dialog box. Add the following statement to the include file:

#define MAXFILESIZE 0x7FFF

10.8.2 Add a SaveAs Dialog Box
You need a new dialog box to support the Save As command. The SaveAs dialog
box prompts for a filename, and lets the user enter the name in an edit control.
Add the following DIALOG statement to the resource file:

SaveAs DIALOG 10, 10, 180, 53
STYLE DS_MODALFRAME I WS_CAPTION I WS_SYSMENU
CAPTION "Save As"
BEGIN

LTEXT "Save As File &Name:", IDC_FILENAME, 4, 4,
LTEXT "", IDC_PATH, 84, 4,
ED ITTEXT IDC_EDIT, 4, 16,
DEFPUSHBUTTON "Save", lOOK, 120, 16,
PUSHBUTTON "Cancel", IDCANCEL, 120, 36,

END

72, 10
92, 10

100, 12
50, 14
50, 14

The constants, IDC_PATH, IDC_FILENAME, IDC_EDIT, IDCANCEL, and
IDOK, are the same as those used in the Open dialog box. Since the Open and
SaveAs dialog boxes will never be open at the same time, there is no need to
worry about conflicting control IDs.

10-8 Guide to Programming

10.8.3 Add Include Statements
You need to include additional C run-time include files to support the file input
and output operations. Add the following statements to the beginning of the
C-Ianguage source file:

#include <sys\types.h>
#include <sys\stat.h>

10.8.4 Add New Variables
The following global variables should be declared at the beginning of the file:

HANDLE hEditBuffer; /* handle to editing buffer */
HANDLE hOldBuffer; /* old buffer handle */
HANDLE hHourGlass; /* handle to hourglass cursor

/* current cursor handle
*/
*/
*/

HANDLE hSaveCursor;
int hFile; /* file handle
int count;
PSTR pBuffer;

/* number of chars read or written */
/* address of read/write buffer */

OFSTRUCT OfStruct;
struct stat FileStatus;
BOOl bChanges = FALSE;
BOOl bSaveEnabled = FALSE;
PSTR pEditBuffer;

char Untitled[] =
"Edit File - Cuntitled)";

/* information from OpenFileC) */
/* information from fstatC) */
/* TRUE if the file is changed */
/* TRUE if text in the edit buffer */
/* address of the edit buffer */

/* default window title */

The hEditBuffer variable holds the handle of the current editing buffer. This buf
fer, located in the application's heap, contains the current file text. To load a file,
you allocate the buffer, load the file, then pass the buffer handle to the edit con
trol. The hOldBuffer variable is used to replace an old buffer with a new one.
The hHourGlass and hSaveCursor handles hold cursor handles for lengthy
operations.

The hFile variable holds the file handle returned by the OpenFile function. The
count variable holds a count of the number of characters to be read or written.
The pBuffer variable is a pointer, and holds the address of the character that con
tains the characters to be read or written. The OfStruct structure holds informa
tion about the file.

The FileStatus structure holds information about the file. The bChanges variable
is TRUE if the user has changed the contents of the file. The bSaveEnabled varia
ble is TRUE if the user has given a valid name for the file to be saved. The
Untitled variable holds the main window's caption, which changes whenever a
new file is loaded.

File Input and Output 10·9

10.8.5 Replace the WM_COMMANO Case
Replace the WM_COMMAND case so that it processes all File-menu commands
except Print. The New command should clear the current filename and empty the
edit control if there is any text in it. The Open command should retrieve the
selected filename, open the file, and fill the edit control. The Save command
should write the contents of the edit control back to the current file. Finally, the
Save As command should prompt the user for a filename and write the contents
of the edit control.

If the user chooses the New command and there is text in the current file that
has been modified, you should prompt the user with a message box to determine
whether the changes should be saved. Add the following statements to the
WM_COMMAND case:

case 10M_NEW:
if (!QuerySaveFile(hWnd»

return (NULL);
bChanges = FALSE;
FileName[0] = 0;
SetNewBuffer(hWnd, NULL, Untitled);
break;

The locally defined QuerySaveFile function checks the file for changes and
prompts the user to save the changes. If the changes are saved, the filename is
cleared and the editing buffer is emptied by using the locally-defined SetNew
Buffer function.

If the user chooses the Open command and there is text in the current file that has
been modified, you should prompt the user to determine whether the changes
should be saved before opening the new file. Add the following statements to the
WM_COMMAND case:

case 10M_OPEN:
if (!QuerySaveFile(hWnd»

return (NULL);
lpOpenOlg = MakeProc1nstance((FARPROC) OpenOlg, h1nst);
hFile = Oial~gBox(h1nst, "Open", hWnd, lpOpenOlg);
FreeProc1nstance(lpOpenOlg);
if (!hFile)

return (NULL);
hEditBuffer =

LocalAlloc(LMEM_MOVEABLE I LMEM_ZER01N1T,
FileStatus.st_size+l);

if (! hEditBuffer) {
MessageBox(hWnd, "Not enough memory.",

NULL, MB_OK I MB_1CONHANO);
return (NULL);

hSaveCursor = SetCursor(hHourGlass);
pEditBuffer = LocalLock(hEditBuffer);

10-10 Guide to Programming

IOStatus = read(hFile, pEditBuffer, FileStatus.st_size);
close(hFile);
if (IOStatus != FileStatus.st_size) {

sprintf(str, "Error reading %s.", FileName);
SetCursor(hSaveCursor); /* Remove the hourglass */
MessageBox(hWnd, str, NULL,

MB_OK I MB_ICONEXCLAMATION);

LocalUnlock(hEditBuffer);
sprintf(str, "EditFile - Is", FileName);
SetNewBuffer(hWnd, hEditBuffer, str);
SetCursor(hSaveCursor); /* Restore the cursor */
break;

When the IDM_OPEN case is processed, the QuerySaveFile function checks the
existing file for changes before displaying the Open dialog box. The DialogBox
function returns a file handle to the open file. This handle is created in the
OpenDlg dialog function. If the file can't be opened, the function returns NULL
and processing ends. Otherwise, the LocalAlloc function allocates the space
needed to load the file into memory. The amount of space needed is determined
by the FileStatus structure, which is filled with information about the open file by
the OpenDlg dialog function. If there is no available memory, a message box is
displayed and processing ends. Otherwise, the SetCursor function displays the
hourglass, the LocalLock function locks the new buffer, and the C run-time read
function copies the contents of the file into memory. If the file was not read
completely, a message box is displayed. SetCursor restores the cursor before the
MessageBox function is called. The LocalUnlock function unlocks the editing
buffer, and after a new window caption is created, the locally defined SetNew
Buffer function changes the editing buffer and caption.

If the user chooses the Save command and there is no current filename, carry out
the same action as the Save As command. Add the following statements to the
WM_COMMAND case:

case IOM_SAVE:
if (!FileName[0])

goto saveas;
if (bChanges)

SaveFile(hWnd);
break;

The IDM_SA VE case checks for a filename and, if none exists, skips to the
IDM_SA VEAScase. If a filename does exist, the locally defined SaveFile func
tion saves the file only if changes have been made to it.

The Save As command should always prompt for a filename. You should save
the file only if the user gives a valid filename. Add the following statements to
the WM_COMMAND case:

case IDt'-LSAVEAS:
saveas:

File Input and Output 10-11

lpSaveAsDlg = MakeProclnstance(SaveAsDlg, hlnst);
Success = DialogBox(hlnst, "SaveAs", hWnd, lpSaveAsDlg);
FreeProclnstance(lpSaveAsDlg);
if (Success == IDOK) {

sprintf(str, "EditFile - Is", FileName);
SetWindowText(hWnd, str);
SaveFile(hWnd) ;

break; /* User canceled */

The DialogBox function displays the SaveAs dialog box. The MakeProc
Instance and FreeProcInstance functions create and free the procedure-instance
address for the SaveAsDlg dialog function. The DialogBox function returns
IDOK from the SaveAsDlg dialog function if the user enters a valid filename.
The SetWindowText function then changes the window caption, and the Save
File function saves the contents of the editing buffer to the file.

The Exit command should now prompt the user to determine whether the current
file should be saved. Also, to keep track of the changes to the file, you should
process notification messages from the edit-control window. Modify the
IDM_EXIT cas'e and add the IDC_EDIT case to the WM_COMMAND case, as
follows:

case IDM_EXIT:
QuerySaveFile(hWnd);
DestroyWindow(hWnd);
break;

case IDC_EDIT:
if (HIWORD(lParam) EN CHANGE)

bChanges = TRUE;
retu rn (NU LU ;

10.8.6 Add the WM_QUERYENOSESSION and WM_CLOSE Cases
You need to process the WM_QUERYENDSESSION and WM_CLOSE mes
sages to prevent the contents of your files from being lost when the user closes
a file or ends a session. Add the following statements to the window function:

case WM_QUERYENDSESSION: /* message: to end the session? */
return (QuerySaveFile(hWnd));

case WM_CLOSE:
if (QuerySaveFile(hWnd))

DestroyWindow(hWnd);
break;

/* message: close the window */

10-12 Guide to Programming

Windows sends a WM_QUERYENDSESSION message to the window function
when the user has chosen to exit Windows. The session ends only if TRUE is re
turned. The QuerySaveFile function checks for changes to the file, saves them if
desired, and returns TRUE or FALSE depending on whether the user canceled or
confirmed the operation.

Windows sends the WM_ CLOSE message to the window function when the user
has chosen the Close command in the main window's system menu. The Query
SaveFile function carries out the same task as in the WM_QUERYENDSES
SION message, but in order to complete the WM_CLOSE case, you must also
destroy the main window by using the DestroyWindow function.

10.B.7 Modify the OpenOlg Dialog Function
You need to modify the IDOK case in the OpenDlg function in order to open and
check the size of the file that is selected by the user. Add the following state
ments immediately after the call to the AddExt function in the IDOK case of the
OpenDlg function:

if «hFile = OpenFile(OpenName, (LPOFSTRUCT) &OfStruct,
OF_READ» < 0) {

sprintf(str, "Error %d opening %s.",
OfStruct.nErrCode, OpenName);

MessageBox(hDlg, str, NULL, MB_OK I MB_ICONHAND);

else {
fstat(hFile, &FileStatus);
if (FileStatus.st_size > MAXFILESIZE)

sprintf(str,
"Not enough memory to load %s.\n%s exceeds %ld bytes.",
OpenName, OpenName, MAXFILESIZE);

MessageBox(hDlg, str, NULL,
MB_OK I MB_ICONHAND);

return (TRUE);
}

strcpy(FileName, OpenName);
EndDialog(hDlg, hFile);
return (TRUE);
}

The OpenFile function opens the specified file for reading and, if successful, re
turns a file handle. If the file cannot be opened, the case displays a message box
containing the error number generated by DOS. If the file is opened, the C run
time fstat function copies information about the file into the FileStatus structure.
The file size is checked to make sure the file does not exceed the maximum size
given by the MAXFILESIZE constant. The case displays an error message if the
size is too big. Otherwise, the strcpy function copies the new name to the
FileName variable and the EndDialog function terminates the dialog box and
returns the file handle, hFile, to the DialogBox function.

File Input and Output 10-13

10.8.8 Add the SaveAsDlg Dialog Function
You need to supply a dialog function for the SaveAs dialog box. The function
will retrieve a filename from the edit control and copy the name to the global
variable, FileName. The dialog function should look like this:

int FAR PASCAL SaveAsDlg(hDlg, message, wParam, lParam)
HWND hDlg;
unsigned message;
WORD wParam;
LONG lParam;
{

char TempName[128];

switch (message) {
case WM_INITDIALOG:

if (!FileName[0])
bSaveEnabled = FALSE;

else {
bSaveEnabled = TRUE;
DlgDirList(hDlg, DefPath, NULL, IDC_PATH, 0x4010);
SetDlgltemText(hDlg, IDC_EDIT, FileName);
SendDlgltemMessage(hDlg, IDC_EDIT, EM_SETSEL, 0,

MAKELONG(0, 0x7fff));
}

EnableWindow(GetDlgltem(hDlg, lOOK), bSaveEnabled);
SetFocus(GetDlgltem(hDlg, IDC_EDIT));
return (FALSE); /* FALSE since Focus was changed */

case WM_COMMAND:
switch (wParam) {

case IDC_EDIT:
if (HIWORD(lParam) == EN_CHANGE && !bSaveEnabled)

EnableWindow(GetDlgltem(hDlg, lOOK),
bSaveEnabled = TRUE);

return (TRUE);
case lOOK:

GetDlgltemText(hDlg, IDC_EDIT, TempName, 128);
if (CheckFileName(hDlg, FileName, TempName)) {

SeparateFile(hDlg, (LPSTR) str, (LPSTR) DefSpec,
(LPSTR) FileName);

}

if (str[0]) strcpy(DefPath, str);
EndDialog(hDlg, lOOK);

return (TRUE);
case IDCANCEL:

break;

ret\Jrn (FALSE);

EndDialog(hDlg, IDCANCEL);
return (TRUE);

10-14 Guide to Programming

The WM_INITDIALOG case enables or disables the Save button. The button
should be disabled if there is no current filename. The Enable Window function,
along with the bSaveEnabled variable, enables or disables the button. If there is a
current filename, it should be the proposed name. The SetDIgltemText function
copies the filename to the edit control, and the SendDIgltemMessage function
selects the entire name for editing. The DlgDirList function sets the IDC_PATH
control to the current directory. Since there is no list box to fill, no list-box ID is
given.

The WM_COMMAND case processes notification messages from the controls in
the dialog box. When the function receives the EN_CHANGE notification from
the edit control, IDC_EDIT, it uses the EnableWindow function to enable the
Save button, if it is not already enabled.

When the function receives a notification from the Save button, it uses the Get
DIgltemText function to retrieve the filename in the edit control, then checks the
validity of the filename by using the locally defined CheckFileName function.
This function checks the filename to make sure it contains no path separators or
wildcard characters. It then checks to see if the file already exists; if it does,
CheckFileN arne uses the MessageBox function to ask the user whether the file
should be overwritten. Finally, the dialog function uses the SeparateFile function
to copy the filename to the DefSpec and DefPath variables.

10.8.9 Add Helper Functions
You need to add several functions to your C-Ianguage source file to support the
EditFile application. These functions are as follows:

Function

CheckFileName

SaveFile

QuerySaveFile

SetNewBuffer

Description

Checks a filename for wildcards, adds the default
filename extension if one is needed, and checks for
the existence of the file.

Saves the contents of the editing buffer in a file.

Prompts the user to save changes if the file has
changed without having been saved.

Frees the existing editing buffer and replaces it with
anew one.

The CheckFileName function verifies that a filename is not empty and that it con
tains no wildcards. It also checks to see whether the file already exists by using
the OpenFile function and the OF_EXIST option. If the file exists, Check
FileName prompts the user to see whether the file should be overwritten. Add
the following statements:

File Input and Output 10-15

BOOl CheckFileName(hWnd, pDest, pSrc)
HWND hWnd;
PSTR pDest, pSrc;
{

PSTR pTmp;

if (!pSrc[IO])
return (FALSE);

pTmp = pSrc;
while (*pTmp)

switch (*pTmp++)
case '*':
case I?':

/* Indicates no filename was specified */

/* Searches the string for wildcards */

MessageBox(hWnd, "Wildcards not allowed.",
NUll, MB_OK I MB_ICONEXClAMATION);

return (FALSE);

AddExt(pSrc, DefExt); /* Adds the default extension if needed */

if (OpenFile(pSrc, (lPOFSTRUCT) &OfStruct, OF_EXIST))= (0) {

sprintf(str, "Replace existing Is?", pSrc);
if (MessageBox(hWnd, str, "EditFile",

MB_OKCANCEl I MB_ICONHAND) == IDCANCEl);
return (FALSE);

strcpy(pDest, pSrc);
return (TRUE);

The SaveFile function uses the OF _ CREATE option of the OpenFile function in
order to open a file for writing. The OF_CREATE option directs OpenFile to de
lete the existing contents of the file. The SaveFile function then retrieves a file
buffer handle from the edit control, locks the buffer, and copies the contents to
the file. Add the following statements:

BOOl SaveFile(hWnd)
HWND hWnd;
{

BOOl bSuccess;
int IOStatus; /* result of a file write */

if «hFile = OpenFile(FileName, &OfStruct,
OF_PROMPT I OF_CANCEL I OF_CREATE» < (0)
sprintf(str, "Cannot write to %s.", FileName);
MessageBox(hWnd, str, NUll, MB_OK I MB_ICONEXClAMATION);
return (FALSE);

hEditBuffer
pEditBuffer

SendMessage(hEditWnd, EM_GETHANDlE, 10, IOl);
locallock(hEditBuffer);

10-16 Guide to Programming

hSaveCursor = SetCursorChHourGlass);
IOStatus = writeChFile, pEditBuffer, strlen(pEditBuffer));
closeChFile) ;
SetCursorChSaveCursor);
if (IOStatus != strlenCpEditBuffer))

sprintfCstr, "Error writing to %s.", FileName);
MessageBoxChWnd, str, NUll, MB_OK I MB_ICONHAND);
bSuccess = FALSE;

else {
bSuccess = TRUE;
bChanges = FALSE;

/* Indicates the file was saved */
/* Indicates changes have been saved */

}

localUnlockChEditBuffer);
return CbSuccess);

The EM_GETHANDLE message, sent by using the SendMessage function,
directs the edit control to return the handle of its editing buffer. This buffer is
located in local memory, so it is locked by using the LocalLock function. Once
locked, the contents are written to the file by using the C run-time write function.
The SetCursor function displays the hourglass cursor to indicate a lengthy opera
tion. If write fails to write all bytes, the SaveFile function displays a message
box. The LocaIUnlock function unlocks the editing buffer before the SaveFile
function returns.

The QuerySaveFile function checks for changes to the file and prompts the user
. to save or delete the changes, or cancel the operation. If the user wants to save

the changes, the function prompts the user for a filename by using the SaveAs
dialog box. Add the following statements:

BOOl QuerySaveFileChWnd)
HWNO hWnd;
{

int Response;
FARPROC lpSaveAsOlg;

if CbChanges) {
sprintfCstr, "Save current changes: Is", FileName);
Response = MessageBoxChWnd, str,

"EditFile", MB_VESNOCANCEl I MB_ICONEXClAMATION);
if CResponse == lOVES) {

check name:
if C!FileName[0]) {

lpSaveAsOlg = MakeProclnstanceCSaveAsDlg, hlnst);
Response = OialogBoxChlnst, "SaveAs",

hWnd, lpSaveAsDlg);
FreeProclnstanceClpSaveAsOlg);
if CResponse == lOOK)

goto check_name;
else

return CFAlSE);

else

SaveFile(hWnd);

else if (Response == IDCANCEL)
return (FALSE);

return (TRUE);

File Input and Output 10-17

The SetNewBuffer function retrieves and frees the editing buffer before allocat
ing and setting a new editing buffer. It then updates the edit control window. Add
the following statements to the C-language source file:

void SetNewBuffer(hWnd, hNewBuffer, Title)
HWND hWnd;
HANDLE hNewBuffer;
PSTR Title;
{

HANDLE hOldBuffer;

hOldBuffer = SendMessage(hEditWnd, EM_GETHANDLE, 0, 0L);
LocalFree(hOldBuffer);
if (!hNewBuffer) /* Allocates a buffer if none exists */

hNewBuffer = LocalAlloc(LMEM_MOVEABLE I LMEM_ZEROINIT, 1);

SendMessage(hEditWnd, EM_SETHANDLE, hNewBuffer, 0L);
InvalidateRect(hEditWnd, NULL, TRUE); /* Updates the buffer */
UpdateWindow(hEditWnd);
SetWindowText(hWnd, Title);
SetFocusChEditWnd);
bChanges = FALSE;

The new text will not be displayed until the edit control repaints its client area.
The InvalidateRect function invalidates part of the edit control's client area. The
NULL argument means that the entire control needs repainting, and TRUE speci
fies that the background should be erased before repainting. All of this prepares
the control for painting. The Update Window function causes Windows to send
the edit control a WM_P AINT message immediately.

10.8.10 Export the SaveAsOlg Dialog Function
You need to export the SaveAsDlg dialog function. Add the following line to the
EXPORTS statement in your module-definition file:

SaveAsDlg @4

10-18 Guide to Programming

10.8.11 Add Space to the Heap
You need to add extra sp~ce to the local heap. This space is required to support
the edit control, which uSeS memory from the local heap to store its current text.
Make the following chaI1ge to the Ipodule-definition file:

HEAPSIZE 0xAFFF

This statement limits the size of the edit-control buffer to slightly less than
32,767 (32K -1) bytes. Files larger than this cannot be opened.

10.8.12 Compile and Link

10.9 Summary

No changes are required to the make file. Compile and link the application, then
start Windows and the EditFile application. Choose the Open command, select a
file, and EditFile will read and display the file. If the file is larger than can fit in
the window, you can use the DIRECTION keys to scroll left and right or up and
down.

This chapter explained how to work with files in the Windows environment, and
provided a list of file-management guidelines.

Because Windows is a multitasking system, your application needs to manage
files carefully to avoid conflicts with other applications. Y QU use the Windows
OpenFile function to create, open, close and otherwise work with disk files.
When performing file input and output, use the low-level, C run-time input and
output functions rather than the C run-lime stream input and output functions.

For more information on topics related to files, see the following:

Topic

A comparison of the
Windows environment to
the standard C environment

Using C and assembly lan
guage in a Windows
application

The OpenFile message

Reference

Guide to Programming: Chapter 1, "An
Overview of the Windows Environment"

Guide to Programming: Chapter 14, "C and
Assembly Language"

Reference, Volume 1: Chapter 3, "System
Services Interface Functions" and Chapter 4,
"Functions Directory"

Chapter

11
Bitmaps

Your application can use bitmaps to display images that are otherwise too cum
bersome to draw using GDI output functions. This chapter shows how to create
and display bitmaps for monochrome as well as color displays.

This chapter covers the following topics:

• What is a bitmap?

• Creating bitmaps

• Displaying bitmaps

• Adding color to monochrome bitmaps

• Deleting bitmaps

This chapter also explains how to create a sample application, Bitmap, which
illustrates many of the concepts explained in this chapter.

11.1 What is a Bitmap?
In general, the term "bitmap" refers to an image formed by a pattern of bits,
rather than by a pattern of lines. In Microsoft Windows, there are two kinds of
bitmaps:

• A "device-dependent" bitmap is a pattern of bits in memory which can be dis
played on an output device. Because there is a close correlation between the
bits in memory and the pixels on the display device, a memory bitmap is said
to be device dependent. For such bitmaps, the way the bits are arranged in
memory depends on the intended output device.

• A "device-independent" bitmap (DIB) describes the actual appearance of an
image, rather than the way that image is internally represented by a particular
display device. Because this external definition can be applied to any display
device, it is referred to as device independent.

11-2 Guide to Programming

11.2 Creating Bitmaps
You create a bitmap by supplying GDI with the dimensions and color format of
the bitmap, and, optionally, the initial value of the bitmap bits. GDI then returns
a handle to the bitmap. You can use this handle in subsequent GDI functions to
select and display the bitmap.

You can create bitmaps in the following ways:

• You can use the Windows SDKPaint application to draw the bitmap image
and save it in a file. You then add the bitmap file to your application's
resources. Your application loads the bitmap using the LoadBitmap function.

• Your application can first create a blank bitmap and then use GDI output
functions to draw the bitmap bits.

• To hard-code a bitmap, your application can create a blank bitmap and
initialize its bits using an array of bits.

• Your application can create a bitmap and initialize its bits using the image in
an existing DIB.

The following sections explain how to use each of these methods to create
bitmaps.

11.2.1 Creating and Loading Bitmap Files
You can create bitmaps with SDKPaint. SDKPaint lets you specify the dimen-

/ sions of a bitmap, then fill it in by "painting" in the blank area with such tools as
a brush, spray can, and even text. Any of these tools can produce images using
colors from a palette of up to 28 colors, which you can define.

To create and load a bitmap using this method, follow these steps:

1. Start SDKPaint and create the bitmap by following the directions given in
Tools.

2. After creating the bitmap image, save it in a file that has the filename
extension .BMP.

3. In your application's resource script (.Re) file, add a BITMAP statement that
defines that bitmap as an application resource.

For example, the following statement specifies that the bitmap resource
named "dog" resides in the file DOG.BMP:

dog BITMAP DOG.BMP

The name "dog" identifies the bitmap; the filename DOG.BMP specifies the
file that contains the bitmap.

Bitmaps 11-3

4. In your application's source file, load the bitmap using the LoadBitmap
function.

The LoadBitmap function takes the bitmap's resource name, loads the bit
map into memory, and returns a handle to the bitmap. For example, the fol
lowing statement loads the bitmap resource named "dog", and stores the
resulting bitmap handle in the variable hDogBitmap:

hOogBitmap = LoadBitmap (hInstance, "dog");

5. Select the bitmap into a device context using the SelectObject function.

For example, the following statement loads the bitmap specified by hDogBit
map into the device context specified by hMemoryDC:

SelectObject(hMemoryOC, hOogBitmap);

6. Display the bitmap using the BitBIt function.

For example, the following statement displays a copy of the bitmap in the
memory device context hMemoryDC on the device represented by hDC:

BitBlt (hOC, 10, 10, 100, 150, hMemoryOC, 0, 0, SRCCOPy)

This example displays the bitmap beginning at location (10, 10) of the desti
nation device context. The bitmap is 100 units wide and 150 units high. The
bitmap is taken from the memory device context beginning at location (0,0).
The SRCCOPY value specifies that Windows should copy the source bitmap
to the destination.

11.2.2 Creating and Filling a Blank Bitmap
You can create a bitmap "on the fly" by creating a blank bitmap and then filling
it in using GDI output functions. With this method, your application is not
limited to external bitmap files, preloaded bitmap resources, or bitmaps that are
hard-coded in your application source code.

Follow these general steps:

1. Create a blank bitmap by using the CreateBitmap or CreateCompatible
Bitmap functions.

2. Select the bitmap into a memory device context using the SelectObject
function.

3. Draw in the bitmap image using GDI output functions.

The following example creates a "star" bitmap by first making a bitmap that is
compatible with the display, and then filling the compatible bitmap using the
Polygon function:

11-4 Guide to Programming

HOC hOC;
HOC hMemoryOC;
HBITMAP hBitmap;
HBITMAP hOldBitmap;
POINT Points[5] = { 32,0, 16,63, 63,16, 0,16, 48,63 I;

t» hOC = GetOC(hWnd);
~ hMemoryOC = CreateCompatibleOC(hOC);
@) hBitmap = CreateCompatibleBitmap(hOC, 64, 64);
Q hOldBitmap = SelectObject(hMemoryOC, hBitmap);
CD PatBlt(hMemoryOC, 0, 0, 64, 64, WHITENESS);
o Polygon(hMemoryOC, Points, 5);
~ BitBlt (hOC, 0, 0, 64, hMemoryOC, 0, 0, SRCCOPY);
• SelectObject(hMemoryOC, hOldBitmap);
OeleteOC(hMemoryOC);
(0 ReleaseOC(hWnd, hOC);

In this example:

t» The GetDC function retrieves a handle to the device context. The bitmap
will be compatible with the display. (If you want a bitmap that is compatible
with some other device, you should use theCreateDC function to retrieve a
handle to that device.)

~ The CreateCompatibleDC function creates the memory device context in
which the image of the bitmap will be drawn.

@) The CreateCompatibleBitmap function creates the blank bitmap. The size
of the bitmap is set to 64 by 64 pixels. The actual number of bits in the bit
map depends on the color format of the display. If the display is a color dis
play, the bitmap will be a color bitmap and might have many bits for each
pixel.

Q The SelectObject function selects the bitmap into the memory device context
and prepares it for drawing. The handle of the previously selected bitmap is
saved in the variable hOldBitmap.

CD The PatBlt function clears the bitmap and sets all pixels white. This, or a
similar function, is required since, initially, the- image in a blank bitmap is
undefined. You cannot depend on having a clean bitmap in which to draw.

o The Polygon function draws the star by using the endpoints specified in the
array of structures, Points.

~ The BitBIt function copies the bitmap from the memory device context to the
display. '

Bitmaps 11-5

• The SelectObject and DeleteDC functions restore the previous bitmap
and delete the memory device context. Once the bitmap has been drawn,
the memory device context is no longer needed. You cannot delete a device
context when any bitmap other than the context's original bitmap is selected.

CD Finally, the ReleaseDC function releases the device context. The bitmap
handle, hBitmap, may now be used in subsequent GDI functions.

11.2.3 Creating a Bitmap with Hard-Coded Bits
You can create a bitmap ancl set its initial image to an array of bitmap bits by
using the CreateDIBitmap function. This function creates a memory bitmap of
a given size with a device-dependent color format; it initializes the bitmap image
by translating a device-independent bitmap definition into the device-dependent
format required by the display device and copying this device-dependent informa
tion to the memory bitmap. Typically, this method is used to create small bit
maps for use with pattern brushes, but it can also be used to create larger
bitmaps.

NOTE Unless the bitmap is monochrome (that is, a bitmap having a single color plane and
one bit per pix~I), the memory bitmap created by CreateBitmap is device-specific, and there
fore might not be suitable for display on some devices.

The following example creates a 64-by-32-pixel, monochrome bitmap; the
example initializes the bitmap by using the bits in the array Square.

HBITMAP hBitmap;
HOC hOC;
BYTE Square[] = {

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0~,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0xff,0xff,0xff,0xff,0x00,~x00,

0x00,0x00,0xff,0xff,0xff,0xff,0x00,0x00,
0x00,0x00,0xff,0xff,0xff,0xff,0x00,0x00,
0x00,0x00,0xff,0xff,0xff,0xff,0x00,0x00,
0x00,0x00,0xff,0xff,0xff,0xff,0x00,0x00,
0x00,0x00,0xff,0xff,0xff,0xff,0x00,0x00,
0x00,0x00,0xff,0xff,0xff,0xff,0x00,0x00,
0x00,0x00,0xff,0xff,0xff,0xff,0x00,0x00,
0x00,0x00,0xff,0xff,0xff,0xff,0x00,0x00,

11-6 Guide to Programming

0x00~0x00,0xff,0xff,0xff,0xff,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0X00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 J;

HANDLE
PBITMAPINFO

hDibInfo;
pDibInfo;

if CpDibInfo = CPBITMAPINFO)LocalAllocCLMEM_FIXED,
sizeofCBITMAPINFOHEADER)+2*sizeofCRGBQUAD»)

HBRUSH hOldBrush,hBrush;
pDibInfo->bmiHeader.biSize

Clong)sizeofCBITMAPINFOHEADER);
pDibInfo->bmiHeader.biWidth = 64L;
pDibInfo->bmiHeader.biHeight = 32;
pDibInfo->bmiHeader.biPlanes = 1;
pDibInfo->bmiHeader.biBitCount = 1;
pDibInfo->bmiHeader.biCompression=0L;
pDibInfo->bmiHeader.biSizeImage=0L;
pDibInfo->bmiHeader.biXPelsPerMeter=0L;
pDibInfo->bmiHeader.biYPelsPerMeter=0L;
pDibInfo->bmiHeader.biClrUsed=0L;
pDibInfo->bmiHeader.biClrImportant=0L;
pDibInfo->bmiColors[0].rgbRed = 0;
pDibInfo->bmiColors[0].rgbGreen = 0;
pDibInfo->bmiColors[0].rgbBlue = 0;
pDibInfo->bmiColors[l].rgbRed = 0xff;
pDibInfo->bmiColors[l].rgbGreen = 0xff;
pDibInfo->bmiColors[l].rgbBlue = 0xff;
hOC = GetDCChWnd);
hBitmap = CreateDIBitmap ChDC,

CLPBITMAPINFOHEADER)&CpDibInfo->bmiHeader),
CBM_INIT ,

C LPSTR) Squa re,
CLPBITMAPINFO)pDibInfo, DIB_RGB_COLORS);

ReleaseDC ChWnd, hOC);
DeleteObjectChBitmap);
LocalFreeCCHANDLE)pDibInfo);

The CreateDIBitmap function creates and initializes the bitmap before returning

Bitmaps 11-7

the bitmap handle. The width and height of the bitmap are 64 and 32 pixels,
respectively. The bitmap has one bit for each pixel, making it a monochrome
bitmap.

The Square array contains the bits used to initialize the bitmap. The BITMAP
INFO data structure determines how the bits in the array are interpreted. It de
fines the width and height of the bitmap, how many bits (1, 4, 8 or 24) are used in
the array to represent each pixel, and a table of colors for the pixels. Since the
Square array defines a monochrome bitmap, the bit count per pixel is one and the
color table contains only two entries, one for black and one for white. If a given
bit in the array is zero, then GDI draws a black pixel for that bit; if it is one, then
GDI draws a white pixel.

Since the Square array defines a monochrome bitmap, you could also call
CreateBitmap to create the bitmap:

hBitmap = CreateBitmap (64, 32, 1, 1, (LPSTR) Square);

This is possible because all monochrome memory bitmaps are device inde
pendent. For color bitmaps, however, CreateBitmap cannot use the same
bitmap~bit specification as can CreateDIBitmap.

Once you have created and initialized the bitmap, you can use its handle in
subsequent GDI functions. If you want to change the bitmap, you can draw in
it by selecting it into a memory device context as described in Section 11.2.2,
"Creating and Filling a Blank Bitmap." If you want to replace the bitmap image
with another or change a portion of it, you can use the SetDIBits function to
copy another array of bits into the bitmap. For example, the following function
call replaces the current bitmap image with the bits in the array Circle:

BYTE Circle[] = {

} ;

SetDIBits(hDC, hBitmap, 0, 32, (LPSTR) Circle,
(LPBITMAPINFO)&myDIBlnfo, DIB_RGB_COLORS);

The SetDIBits function copies the bits in the Circle array into the bitmap
specified by the hBitmap variable. The array contains 32 scan lines, representing
the image of a 64-by-32-pixel monochrome bitmap. If you want to retrieve the
current bits in a bitmap before replacing them, you can use the GetDIBits func- .
tion. It copies a specified number of scan lines from the bitmap into a device
independent bitmap specification. You can also use GetBitmapBits to retrieve
bits from a monochrome bitmap.

Again, since the Circle array defines a monochrome bitmap, you could call Set
BitmapBits instead to change the bitmap:

SetBitmapBits (hBitmap, 256, (LPSTR) Circle);

11-8 Guide to Programming

The preceding examples show how to create and modify a small bitmap. Typi
cally you will not want to hard-code larger bitmaps in your application source
code. Instead, you can store a larger bitmap in a device-independent bitmap file
created by SDKPaint or other tools. A device-independent bitmap file consists of
a BITMAPFILEHEADER data structure followed by a BITMAPINFO struc
ture and an array of bytes that together define the bitmap.

The sample application ShowDIB demonstrates how to display device-inde
pendent bitmaps with colors controlled by a color palette. ShowDIB is located on
the Sample Source Code disk, supplied with the SDK. See Chapter 19, "Color
Palettes," for more information on Windows color palettes.

11.2.4 Drawing a C%r Bitmap
Since hard-coding a color bitmap may require considerable effort, it is usually
simpler to create a compatible bitmap and draw in it. For example, to create a
color bitmap that has a red, green, and blue plaid pattern, you simply create a
blank bitmap and use the PatBlt function, with the red, green, and blue brushes,
to draw the pattern. This method has the advantage of generating a reasonable bit
map even if the display does not support color. This is because GDI provides
dithered brushes for monochrome displays when a color brush is requested. A
dithered brush is a unique pattern of pixels that represents a color when that color
is not available for the device.

The following statements create the color bitmap by drawing it:

define PATOROEST
HOC hOC;
HOC hMemoryOC;
HBITMAP hBitmap;
HBITMAP hOldBitmap;
HBRUSH hRedBrush;
HBRUSH hGreenBrush;
HBRUSH hBlueBrush;
HBRUSH hOldBrush;

hOC = GetOC(hWnd);

0x00FA0089L

hMemoryOC = CreateCompatibleOC(hOC);
hBitmap = CreateCompatibleBitmap(hOC, 64, 32);
hOldBitmap = SelectObject(hMemoryOC, hBitmap);

hRedBrush = CreateSolidBrush(RGB(255,0,0));
hGreenBrush = CreateSolidBrush(RGB(0,255,0));
hBlueBrush = CreateSolidBrush(RGB(0,0,255));

PatBlt(hMemoryOC, 0, 0, 64, 32, BLACKNESS);
hOldBrush = SelectObject(hMemoryOC, hRedBrush);
PatBlt(hMemoryOC, 0, 0, 24, 11, PATOROEST);

PatBlt(hMemoryDC, 40, 10, 24, 12, PATORDEST);
PatBlt(hMemoryDC, 24, 22, 24, 11, PATORDEST);
SelectObject(hMemoryDC, hGreenBrushl;
PatBlt(hMemoryDC, 24, 0, 24, 11, PATORDEST);
PatBlt(hMemoryDC, 0, 10, 24, 12, PATORDEST);
PatBlt(hMemoryDC, 40, 22, 24, 11, PATORDEST);
SelectObject(hMemoryDC, hBlueBrush);
PatBlt(hMemoryDC, 40, 0, 24, 11, PATORDEST);
PatBlt(hMemoryDC, 24, 10, 24, 12, PATORDEST);
PatBlt(hMemoryDC, 0, 22, 24, 11, PATORDEST);

BitBlt(hDC, 0, 0, 64, 32, hMemoryDC, 0, 0, SRCCOPY)

SelectObject(hMemoryDC, hOldBrush);
DeleteObject(hRedBrush);
DeleteObject(hGreenBrush);
DeleteObject(hBlueBrush);

SelectObject(hMemoryDC, hOldBitmap);
DeleteDC(hMemoryDC);
ReleaseDC(hWnd, hDC);

Bitmaps 11-9

In this example, the CreateSolidBrush function creates the red, green, and blue
brushes needed to make the plaid pattern. The SelectObject function selects each
brush into the memory device context as that brush is needed, and the PatBlt
function paints the colors into the bitmap. Each color is painted three times, each
time into a small rectangle. In this example, the application instructs PatBlt to
overlap the different color rectangles a little. Since the PATORDEST raster
operation code is given, PatBlt combines the brush color with the color already
in the bitmap by using a Boolean OR operator. The result is a different color
border around each rectangle. After the bitmap is complete, BitBIt copies it
from the memory device context to the screen.

11.3 Displaying Bitmaps
Windows provides several ways to display a bitmap:

• You can display a memory bitmap by using the BitBlt function to copy the
bitmap from the memory device context to a device surface.

• You can use the StretchBIt function to copy a stretched or compressed bit
map from a memory device context to a device surface.

• You can use the CreatePatternBrush function to create a brush that incor
porates the bitmap. Any subsequent GDI functions that use the brush, such
as PatBlt, will display that bitmap.

• You can use the SetDIBitsToDevice function to display a device
independent bitmap directly on the output device.

11-10 Guide 10 Programming

• You can display the bitmap in a menu. In such a case, the bitmap is used as a
menu item that the user can choose to carry out an action. For details, see
Chapter 7, "Menus."

This section explains each method of displaying a bitmap.

11.3.1 Using the BitBlt Function to Display a Memory Bitmap
You can display any bitmap by using the BitBIt function. This function copies a
bitmap from a source to a destination device context. To display a bitmap with
BitBlt, you need to create a memory device context and select the bitmap into it
first. The following example displays the bitmap by using BitBlt:

HOC hOC, hMemoryOC;

hOC = GetOC(hWnd);
hMemoryOC = CreateCompatibleOC(hOC);

hOldBitmap = SelectObject(hMemoryOC, hBitmap);

if (hOldbitmap)
{

BitBlt(hOC, 100, 30, 64, 32, hMemoryOC, 0, 0, SRCCOPY);

SelectObject(hMemoryOC, hOldBitmap);

OeleteOC(hMemoryOC);
ReleaseOC(hWnd, hOC);

The GetDC function specifies the device context for the client area of the
window identified by the h Wnd variable. The CreateCompatibleDC function
creates a memory device context that is compatible with the device context. The
SelectObject function selects the bitmap, identified by the hBitmap variable, into
the memory device context and returns the previously selected bitmap. If Select
Object cannot select the bitmap, it returns zero.

The BitBIt function copies the bitmap from the memory device context to the
screen device context. The function places the upper-left comer of the bitmap
at the point (100,30). The entire bitmap, 64 bits wide by 32 bits high, is copied.
The hDC and hMemoryDC variables identify the destination and source context- .
s, respectively. The constant, SRCCOPY, is the raster-operation code. It directs
BitBIt to copy the source bitmap without combining it with patterns or colors al
ready at the destination.

The SelectObject, DeleteDC, and ReleaseDC functions clean up after the bit
map has been displayed. In general, when you have finished using memory and
device contexts, you should release them as soon as possible--especially device
contexts, which are a limited resource. Windows maintains a cache of device

Bitmaps 11-11

contexts that all applications draw from. If an application does not release a
device context after using it, other applications might not be able to retrieve a
context when needed. If you get a device context by using GetDC, you must
later release it using ReleaseDC; if you instead create the device context using
CreateCompatibleDC, you must later delete it using DeleteDC. Before deleting
a device context, you must call SelectObject, since you must not delete a device
context while any bitmap other than the context's original bitmap is selected.

In the previous example, the width and height of the bitmap were assumed to be
64 and 32 pixels, respectively. Another way to specify the width and height of
the bitmap to be displayed is to retrieve them from the bitmap itself. You can do
this by using the GetObject function, which fills a specified structure with the
dimensions of the given object. For example, to retrieve the width and height of
a bitmap, you would use the following statements:

BITMAP Bitmap;

GetObjectChBitmap, sizeofCBITMAP), CLPSTR) &Bitmap);

The next example copies the width and height of the bitmap to the bm Width and
bmHeight fields of the structure, Bitmap. You can use these values in BitBIt as
follows:

BitBltChDC, 100, 30, Bitmap.bmWidth, Bitmap.bmHeight,
hMemoryDC, 0, 0, SRCCOPY);

The BitBIt function can display both monochrome and color bitmaps. No special
steps are required to display bitmaps of different formats. However, you should
be aware that BitBIt may convert the bitmap if its color format is not the same as
that of the destination device. For example, when displaying a color bitmap on a
monochrome display, BitBIt converts the pixels having the current background
color to white and all other pixels to black.

11.3.2 Stretching a Bitmap
Your bitmaps are not limited to their original size. You can stretch or compress
them by using the StretchBIt function in place of BitBIt. For example, you can
double the size of a 64-by-32-pixel bitmap by using the following statement:

StretchBltChDC, 100, 30, 128, 64, hMemoryDC,
0, 0, 64, 32, SRCCOPY);

The StretchBIt function has two additional parameters that BitBIt does not. In
particular, StretchBIt specifies the width and height of the source bitmap. The
first width and height, given as 128 and 64 pixels in the previous example, apply
only to the final size of the bitmap on the destination device context.

11-12 Guide to Programming

To compress a bitmap, StretchBlt removes pixels from the copied bitmap. This
means that some of the information in the bitmap is lost when it is displayed. To
minimize the loss, you can set the current stretching mode to tell StretchBlt to
combine some of the information with the pixels that will be displayed. The
stretching mode can be one of the following:

Mode

WHITEONBLACK

BLACKONWHITE

COLORONCOLOR

Purpose

Preserves white pixels at the expense of black pix
els; for example, a white outline on a black back
ground.

Preserves black pixels at the expense of white pix
els; for example, a black outline on a white back
ground.

Displays color bitmaps. Attempting to combine
colors in a bitmap can lead to undesirable effects.

The SetStretchBltMode function sets the stretching mode. In the following ex
ample, SetStretchBltMode sets the stretching mode to WHITEONBLACK:

SetStretchBltMode(hDC, WHITEONBLACK);

11.3.3 Using a Bitmap in a Pattern Brush
You can use bitmaps in a brush by creating a pattern brush. Once the pattern
brush is created, you can select the brush into a device context and use the PatBlt
function to copy it to the screen; or the Rectangle, Ellipse, and other draWing
functions can use the brush to fill interiors. When Windows draws with a pattern
brush, it fills the specified area by repeatedly copying the bitmap horizontally
and vertically as necessary. It does not adjust the size of the bitmap to fit in the
area as the StretchBlt function does.

If you use a bitmap in a pattern brush, the bitmap should be at least 8 pixels wide
by 8 pixels high-the default pattern size used by most display drivers. (You can
use large bitmaps, but only the upper-left, 8-by-8 comer will be used.) You may
hard-code the bitmap, create and draw it, or load it as a resource. In any case,
once you have the bitmap handle, you can create the pattern brush by using the
CreatePatternBrush function. The following example loads a bitmap and uses
it to create a pattern brush:

hBitmap = LoadBitmap(hlnstance, "checks");
hBrush = CreatePatternBrush(hBitmap);

Once a pattern brush is created, you can select it into a device context by using
the SelectObject function:

hOldBrush = SelectObject(hDC, hBrush);

Bitmaps 11:.13

Since the bitmap is part of the brush, this call to the SelectObject function does
not affect the device context's selected bitmap.

After selecting the brush, you can use the PatBlt function to fill a specified area
with the bitmap. For example, the following statement fills the upper-left comer
of a window with the bitmap:

PatBltChDC, 0, 0, 100, 100, PATCOPY);

The P A TCOPY raster operation directs PatBlt to completely replace the destina
tion image with the pattern brush.

You can also use a pattern brush as a window's background brush. To do this,
simply assign the brush handle to the hbrBackground field of the window-class
structure as in the following example:

pWndClass-)hbrBackground = CreatePatternBrushChBitmap);

Thereafter, Wiridows uses the pattern brush when it erases the window's back
ground. Y oli can also change the current background brush for a window class by
using the SetClassWordfunctioh. For example, if you want to use a new pattern
brush after a window has been created, you can use the. following statement:

SetClassWordChWnd, GCW_HBRBACKGROUND, hBrush);

Be aware that this statement changes the background brush for all windows
of this class. If you only want to change the background for one window, you
need to explicitly process the WM_ERASEBKGND messages that the window
receives. The following example shows how to process this message:

RECT Rect;
HBRUSH hOldBrush;

case WM_ERASEBKGND:
UnrealizeObjectChMyBkgndBrush);
hOldBrush = SelectObjectCwParam, hMyBkgndBrush);
GetUpdateRectCwParam, CLPRECT)&Rect, FALSE);
PatBltCwParam, Rect.left, Rect.top,

Rect.right - Rect.left, Rect.bottom - Rect.top,
PATCOPy) ;

SelectObjectCwParam, hOldBrush);
break;

The WM_ERASEBKGND message passes a handle to a device context in the
wParam parameter. The SelectObject function selects the desired background
brush into the device context. The GetUpdateRect function retrieves the area
that needs to be erased (this is not always the entire client area). The PatBlt func
tion copies the pattern, overwriting anything already in the update rectangle. The
final SelectObject function restores the previous brush to the device context.

11-14 Guide to Programming

The UnrealizeObject function is used in the preceding example. Whenever your
application or the user moves a window in which you have used or will use a
pattern brush, you need to align your pattern brushes to the new position by using
the UnrealizeObject function. This function resets a brush's drawing origin so
that any patterns displayed after the move match the patterns displayed before the
move.

You can use the DeleteObject function to delete a pattern brush when it is no
longer needed. This function does not, however, delete the bitmap along with the
brush. To delete the bitmap, you need to use DeleteObject again and specify the
bitmap handle.

11.3.4 Displaying a Device-Independent Bitmap
One of the advantages of device-independent bitmaps is that you can display
them directly without having to create an intermediate memory bitmap. The
SetDIBitsToDevice function sets all or part of a device-independent bitmap
directly to an output device, significantly reducing the memory required to dis
play the bitmap. When you call SetDIBitsToDevice to display a bitmap, you
supply it this information:

• The device context of the target output device

• The location in the device context where the bitmap will appear

• The size of the bitmap on the output device

• The number of scan lines in the source bitmap buffer from which you are
copying the bitmap

• The location of the first pixel in the source bitmap to copy to the output device

• The device-independent bitmap information structure and a buffer containing
the bitmap to be displayed

• Whether the color table of the DIB specification contains literal RGB color
values or logical-palette indexes

NOTE The origin for device-independent bitmaps is the lower-left corner of the bitmap,
not the upper-left corner as for other graphics operations.

The following is an example of how an application calls SetDIBitsToDevice:

SetDIBitsToDevice(hDC, 0, 0, lpbi->bmciHeader.bcWidth,
lpbi->bmciHeader.bcHeight, 0, 0, 0,
lpbi->bmciHeader.bcHeight,
pBuf, (LPBITMAPINFO)lpbi,
DIB_RGB_COLORS)~

Bitmaps 11-15

In this example, hDC identifies the device context of the target output device;
SetDIBitsToDevice uses this infonnation to identify the device surface and deter
mine the correct color fonnat for the device bitmap.

The next two parameters specify the point on the display surface where SetDI
BitsToDevice will begin drawing the bitmap; in this case, it is the origin of the
. device context itself. The next two parameters supply the width and height of the
bitmap.

The sixth and seventh parameters, both of which are set to zero in this example,
specify the first pixel in the source bitmap to be set on the display device; again,
since both are zero, SetDIBitsToDevice begins with the first pixel in the bitmap
buffer.

The next two parameters are used for banding purposes. The first of these two
parameters is set to zero, indicating that the beginning scan line should be the
first in the buffer; the second of the two is set to the height of the bitmap. As a
result, the entire source bitmap will be set on the display surface in a single band.

The actual bitmap bits are contained in the pBuf buffer, and the lpbi parameter
supplies the BITMAPINFO data structure that describes the color fonnat of the
source bitmap.

The last parameter is a usage flag that indicates whether the bitmap color table
contains actual RGB color values or indexes into the currently realized logical
palette. DIB_RGB_COLORS specifies that the color table contains explicit color
values.

11.3.5 Using a Bitmap as a Menu Item
You can use a bitmap as an item in a menu. To do so, replace the original menu
item text, defined in the.RC file, with the bitmap. (You cannot specify a bitmap
as a menu item in the .RC file.)

Chapter 7, "Menus," explains how to replace a menu item with a bitmap.

11.4 Adding C%r to Monochrome Bitmaps
If your computer has a color display, you can add color to a monochrome bitmap
by setting the foreground and background colors of the display context. The fore
ground and background colors specify which colors the white and black bits of
the bitmap will have when displayed. You set the foreground and background
colors by using the SetTextColor and SetBkColor functions. The following ex
ample shows how to set the foreground color to red and the background color to
green:

SetTextColor(hDC, RGB(255,0,0));
SetBkColor(hDC, RGB(0,255,0));

11-16 Guide to Programming

The hDC variable holds the handle to the device context. The SetTextColor
function sets the foreground color to red. The SetBkColor function sets the back
ground color to green. The RGB utility creates an RGB color value by using the
three specified values. Each value represents an intensity for each of the primary
display colors-red, green, and blue-with the value 255 representing the
highest intensity, and zero, the lowest. You can produce colors other than red and
green by combining the color intensities. For example, the following statement
creates a yellow RGB value:

RGB(255,255,0)

Once the foreground and background colors are set, no frlrther action is required.
You can display a bitmap (as described earlier) and Windows will automatically
add the foreground arid background colors. The foreground color is applied to the
white bits (the bits set to 1) and the background color to the black bits (the bits
set to zero). Note that the background mode, as specified by the SetBkMode
function, does not apply to bitmaps. Also, the foreground and background colors
do not apply to color bitmaps.

When displayed in color, the bitmap named "dog" will be red, the background
will be green.

11.5 Deleting Bitmaps
A bitmap, like any resource, occupies memory while in use. After you have
finished using a bitmap or before your application terminates, it is important
that you delete the bitmaps you have created in order to make that memory
available to other applications. To delete a bitmap, first remove it from any
device context in which it is currently selected. Then, delete it by using the
DeleteObject function.

The following example deletes the bitmap identified by the hBitmap parameter,
after removing it as the currently selected bitmap in the memory device context
identified by the hM emoryDC parameter:

SelectObject(hMemoryDC, hOldBitmap);
DeleteObject(hBitmap);

The SelectObject function removes the bitmap from selection by replacing it
with a previous bitmap identified by the hOldBitmap parameter. The Delete
Object function deletes the bitmap. Thereafter, the bitmap handle in the hBitmap
parameter is no longer valid and must not be used.

11.6 A Sample Application: Bitmap
This sample shows how to incorporate a variety of bitmap operations in an
application. In particular, it shows how to do the following:

Bitmaps 11-17

• Load and display a monochrome bitmap

• Create and display a color bitmap

• Stretch and compress a bitmap using the mouse

• Set the stretching mode

• Create and use a pattern brush

• Use a pattern brush for the window background

In this application, the user specifies (by using the mouse) where and how the bit
map will be displayed. If the user drags the mouse while holding down the left
button, and then releases that button, the application uses the StretchBlt function
to fill the selected rectangle with the current bitmap. If the user clicks the right
button, the application uses the BitBIt function to display the bitmap.

To create the Bitmap application, copy and rename the source files for the
Generic application, then make the following modifications:

1. Add constant definitions and a function declaration to the include file.

2. Add two monochrome bitmaps, created by using SDKPaint, to the resource
script file. .

3. Add Bitmap, Pattern, and Mode menus to the resource script file.

4. Add global and local variables.

5. Add the WM_CREATE case to the window function to create bitmaps and
add bitmaps to the menus.

6. Modify the WM_DESTROY case in the window function to delete bitmaps.

7. Add the WM_LBUTTONUP, WM_MOUSEMOVE, and WM_LBUTTON
DOWN cases to the window function to create a selection rectangle and dis
play bitmaps.

8. Add the WM_RBUTTONUP case to the window function to display bitmaps.

9. Add the WM_ERASEBKGND case to the window function to erase the
client area.

10. Modify the WM_COMMAND case to support the menus.

11. Modify the LINK command line in the make file to include the SELECT.LIB
library file.

12. Compile and link the application.

11-18 Guide to Programming

NOTE Rather than typing the code presented in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

The following sections explain each step in detail.

11.6.1 Modify the Include File
Add the following function declarations and constant definitions to the include
file:

/ldefine I DM_B ITMA P 1 200
/ldefine I DM_B ITMAP2 201
/ldefine I DM_B ITMAP3 202

/ldefine IDM_PATTERN1 300
/ldefine IDM_PATTERN2 301
/ldefine IDM_PATTERN3 302
/ldefine IDM_PATTERN4 303

/ldefine I DM_B LAC KONWH ITE 400
/ldefine IDM_WHITEONBLACK 401
/ldefine IDM_COLORONCOLOR 402

/ldefine PATORDEST 0x00FA0089L

HBITMAP MakeColorBitmap(HWND);

11.6.2 Add the Bitmap Resources
Add two BITMAP statements to your resource script file. The two statements
add the bitmaps "dog" and "caf' to your application resources. Add the following
statements:

dog BITMAP dog.bmp
cat BITMAP cat.bmp

The "dog" bitmap is the white outline of a dog on a black background. The "cat"
bitmap is the black outline of a cat on a white background.

11.6.3 Add the Bitmap, Pattern, and Mode Menus
You need to add a MENU statement to your resource script file. This statement
defines the Bitmap, Pattern, and Mode menus used to choose the various bitmaps
and modes that are used in the application. Add the following MENU statement
to the resource script file:

BitmapMenu MENU
BEGIN

POPUP "&Bitmap"
BEGIN

MENU ITEM 10M BITMAPl
END

POPUP "&Pattern"
BEGIN

MENUITEM IOM_PATTERNl
END

POPUP "&Mode"
BEGIN

Bitmaps 11-19

MENU ITEM "&WhiteOnBlack", IOM_WHITEONBLACK, CHECKED
MENUITEM "&BlackOnWhite", IOM_BLACKONWHITE
MENUITEM "&ColorOnColor", IOM_COLORONCOLOR

END
END

The Bitmap and Pattern menus each contain a single MENUITEM statement.
This statement defines a command that serves as a placeholder only. The applica
tion will add the actual commands to use in the menu by using the AppeodMeoll
function.

11.6.4 Add Global and Local Variables
You need to declare the pattern arrays, the bitmap handles and context handles,
and other global variables used to create and display the bitmaps. To define these
global variables, add the following statements to the beginning of your source
file:

BYTE White[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
BYTE Black[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
BYTE Zigzag[] = { 0xFF, 0xF7, 0xEB, 0xOO, 0xBE, 0x7F, 0xFF, 0xFF };
BYTE CrossHatch[] {0xEF, 0xEF, 0xEF, 0xEF, 0x00, 0xEF, 0xEF, 0xEF };

HBITMAP hPatternl;
HBITMAP hPattern2;
HBITMAP hPattern3;
HBITMAP hPattern4;
HBITMAP hBitmapl;
HBITMAP hBitmap2;
HBITMAP hBitmap3;
HBITMAP hMenuBitmapl;
HBITMAP hMenuBitmap2;
HBITMAP hMenuBitmap3;
HBITMAP hBitmap;
HBITMAP hOldBitmap;

11-20 Guide to Programming

HBRUSH hBrush;
WORD fStretchMode;

/* brush
/* type

handle
of stretch

*/
mode to use */

HOC hOC;
HOC hMemoryOC;
BITMAP B itma p ;

/* handle
/* handle
/* bitmap

to device context */
to memory device context */
structure */

Baal bTrack = FALSE;
RECT Rect;

/* TRUE if user is selecting a region */

WORD wPrevBitmap = IOM_BITMAP1;
WORD wPrevPattern = IOM_PATTERN1;
WORD wPrevMode = IOM_WHITEONBlACK;
WORD wPrevItem;

int Shape = Sl_BlOCK; /* shape to use for the selection rectangle */

The pattern arrays White, Black, Zigzag, and CrossHatch contain the bits
defining the 8-by-8-pixel bitmap images. The variables hPatternl, hPattern2,
hPattern3, and hPattern4 hold the bitmap handles of the brush patterns. The varia
bles hBitmap 1, hBitmap2, and hBitmap3 hold the bitmap handles of the bitmaps
to be displayed. The variables hMenuBitmapl, hMenuBitmap2, and hMenuBit
map3 hold the bitmap handles of bitmaps to be displayed in the Bitmaps menu.
The variables hBrush, hBitmap, and fStretchMode hold the current background
brush, bitmap, and stretching mode. The variables hDC, hMemoryDC, and hOld
Bitmap hold handles used with the memory device context. The Bitmap structure
holds the dimensions of the current bitmap. The bTrack variable is used to indi
cate a selection in progress. The Rect structure holds the current selection
rectangle. The variables wPrevBitmap, wPrevPattern, wPrevMode, and wPrevI
tern hold the menu IDs of the previously chosen bitmap, pattern, and stretching
mode. These are used to place and remove checkmarks in the menus.

Add the following local variables to the Main WndProc function:

HMENU hMenu;
HBRUSH hOldBrush;
HBITMAP hOurBitmap;

11.6.5 Add the WM_CREATE Case
You need a WM_ CREATE case and supporting variable and function declara
tions to create or load the bitmaps and to set the menus. The WM_ CREATE case
creates four 8-by-8-pixel, monochrome bitmaps to be used as patterns in a
pattern brush for the window background. It also creates or loads three 64-by-32-
pixel bitmaps to be displayed in the window. To let the user choose a bitmap or
pattern for viewing, the WM_CREATE case adds them to the Bitmap and Pattern
menus by using the AppendMenu function. Finally, the case sets the initial
values of the brush, bitmap, and stretching modes and creates the memory device
context from which the bitmaps are copied.

Bitmaps 11-21

The WM_ CREATE case creates the four patterns by using the CreateBitmap
function. It loads two bitmaps, "dog" and "cat", and creates a third by using the
MakeColorBitmap function defined within the application. Once the patterns
and bitmaps have been created, the WM_ CREATE case creates pop-up menus,
appends the patterns and bitmaps to the menus, and replaces the existing Bitmap
and Pattern menus with the new pop-up menus. Next, the hBrush, hBitmap, and
fStretchMode variables are set to the initial values for the background brush, bit
map, and stretching modes. Finally, the case creates the memory device context
from which the bitmaps will be copied to the display. Add the following state
ments to your window function:

case WM_CREATE: 1* message: create window *1

hPatternl = CreateBitmapCS, S, 1, 1, CLPSTR) White);
hPattern2 = CreateBitmapCS, S, 1, 1, CLPSTR) Black);
hPattern3 = CreateBitmapCS, S, 1, 1, CLPSTR) Zigzag);
hPattern4 = CreateBitmapCS, S, 1, 1, CLPSTR) CrossHatch);

hBitmapl = LoadBitmapChInst, "dog");
hBitmap2 = LoadBitmapChInst, "cat");
hBitmap3 = MakeColorBitmapChWnd);

hMenuBitmapl = LoadBitmapChInst, "dog");
hMenuBitmap2 = LoadBitmapChInst, "cat");
hMenuBitmap3 = MakeColorBitmapChWnd);

hMenu = CreateMenuC);
AppendMenuChMenu, MF_STRING I MF_CHECKED, IDM_PATTERNl, "&White");
AppendMenuChMenu, MF_STRING, IDM_PATTERN2, "&Black");
AppendMenuChMenu, MF_BITMAP, IDM_PATTERN3, CLPSTR) CLONG) hPattern3);
AppendMenuChMenu, MF_BITMAP, IDM_PATTERN4, CLPSTR) CLONG) hPattern4);
ModifyMenuCGetMenuChWnd), 1, MF_POPUP I MF_BYPOSITION, hMenu, "&Pattern");

hMenu = CreateMenuC);

AppendMenuChMenu, MF_BITMAP I MF_CHECKED, IDM_BITMAPl, CLPSTR) CLONG)
hMenuBi tmapl) ;

AppendMenuChMenu, MF_BITMAP, IDM_BITMAP2, CLPSTR) CLONG) hMenuBitmap2);
AppendMenuChMenu, MF_BITMAP, IDM_BITMAP3, CLPSTR) CLONG) hMenuBitmap3);

ModifyMenuCGetMenuChWnd), 0, MF_POPUP I MF_BYPOSITION, "&Bitmap", hMenu);

hBrush = CreatePatternBrushChPatternl);
fStretchMode = IDM_BLACKONWHITE;

hDC = GetDCChWnd);
hMemoryDC = CreateCompatibleDCChDC);
ReleaseOCChWnd, hOC);
hOldBitmap = SelectObjectChMemoryDC, hBitmapl);
GetObjectChBitmapl, 16, CLPSTR) &Bitmap);

break;

11-22 Guide to Programming

The CreateBitmap and LoadBitmap functions work as described in earlier sec
tions in this chapter. The MakeColorBitmap function is created for this applica
tion. It creates and draws a color bitmap, using the same method described in
Section 11.2.2, "Creating and Filling a Blank Bitmap." The statements of this
function are given later in this section. Notice that each bitmap is loaded or
created twice. This is required since no single bitmap handle may be selected into
two device contexts at the same time. To display in a menu requires a selection,
and to display in the client area also requires a selection.

The CreateMenu function creates an empty menu and returns a handle to the
menu. The ChangeMenu functions that specify the pattern handles add the pat
terns as menu items to the new menu. The MF _BITMAP option specifies that a
bitmap will be added. The CheckMenultem function places a checkmark next to
the current menu item, and the last ChangeMenu function replaces the existing
Pattern menu. The same steps are then repeated for the Bitmap menu.

The CreateCompatibleDC function creates a memory device context that is
compatible with the display. The SelectObject function selects the current bit
map into the memory device context so that it is ready to be copied to the dis
play. The GetObject function copies the dimensions of the bitmap into the
Bitmap structure. The structure can then be used in subsequent BitBlt and
StretchBlt functions to specify the width and height of the bitmap.

The following MakeColorBitmap function creates a color bitmap by creating a
bitmap that is compatible with the display, then paints a plaid color pattern by
using red, green, and blue brushes and the PatBlt function. Add the following
function definition to the end of your source file:

HBITMAP MakeColorBitmapChWnd)
HWNO hWnd;
{

HOC hOC;
HOC hMemoryOC;
HBITMAP hBitmap;
HBITMAP hOldBitmap;
HBRUSH hRedBrush;
HBRUSH hGreenBrush;
HBRUSH hBlueBrush;
HBRUSH hOldBrush;

hOC = GetOCChWnd);
hMemoryOC = CreateCompatibleOCChDC);
hBitmap = CreateCompatibleBitmapChOC, 64, 32);
hOldBitmap = SelectObjectChMemoryOC, hBitmap);
hRedBrush = CreateSolidBrushCRGBC255,0,0»;
hGreenBrush = CreateSolidBrush(RGBC0,255,0»;
hBlueBrush = CreateSolidBrushCRGBC0,0,255»;

PatBltChMemoryOC, 0, 0, 64, 32, BLACKNESS);
hOldBrush = SelectObjectChMemoryOC, hRedBrush);
PatBltChMemoryOC, 0, 0, 24, 11, PATOROEST);

PatBltChMemoryDC, 40, 10, 24, 12, PATORDEST);
PatBltChMemoryDC, 20, 21, 24, 11, PATORDEST);
SelectObjectChMemoryDC, hGreenBrush);
PatBltChMemoryDC, 20, 0, 24, 11, PATORDEST);
PatBltChMemoryDC, 0, 10, 24, 12, PATORDEST);
PatBltChMemoryDC, 40, 21, 24, 11, PATORDEST);
SelectObjectChMemoryDC, hBlueBrush);
PatBltChMemoryDC, 40, 0, 24, 11, PATORDEST);
PatBltChMemoryDC, 20, 10, 24, 12, PATORDEST);
PatBltChMemoryDC, 0, 21, 24, 11, PATORDEST);

SelectObjectChMemoryDC, hOldBrush);
DeleteObjectChRedBrush);
DeleteObject(hGreenBrush);
DeleteObjectChBlueBrush);
SelectObjectChMemoryDC, hOldBitmap);
DeleteDCChMemoryDC);
ReleaseDCChWnd, hDC);
return ChBitmap);

Bitmaps 11-23

This function carries out the same steps described at the end of Section 11.2.3,
"Creating a Bitmap with Hard-Coded Bits."

11.6.6 Modify the WM_OESTROY Case
You need to delete the bitmaps, patterns, brushes, and memory device context
you have created before terminating the application. You delete bitmaps, pat
terns, and brushes by using the DeleteObject function. You delete the memory
device context by using the DeleteDC function. Modify the WM_DESTROY
case so that it looks like this:

case WM_DESTROY: /* message: destroy window */
SelectObjectChMemoryDC, hOldBitmap);
DeleteDCChMemoryDC);
DeleteObjectChBrush);
DeleteObjectChPatternl);
DeleteObjectChPattern2);
DeleteObjectChPattern3);
DeleteObjectChPattern4);
DeleteObjectChBitmapl);
DeleteObjectChBitmap2);
DeleteObjectChBitmap3);
DeleteObjectChMenuBitmapl);
DeleteObjectChMenuBitmap2);
DeleteObjectChMenuBitmap3);

PostOuitMessage(0);
break;

11-24 Guide to Programming

11.6.7 Add WM_LBUTTONUp, WM_MOUSEMOVE, and
WM_LBUTTONDOWN Cases

You need to add WM_LBUTTONUP, WM_MOUSEMOVE, and WM_LBUT
TON-DOWN cases to the window function to let the user select a rectangle in
which to copy the current bitmap. These cases use the selection functions
(described in Ch;:tpter 20, "Dynamic-Link Libraries") to create a selection
rectangle and supply feedback to the user. The WM_LBUTTONUP case then
llses the StretchBlt function to fill the rectangle. Add the following statements
to your window function:

case WM_LBUTTONOOWN: /* message: left mouse button pressed */

bTrack = TRUE;
SetRectEmpty«LPRECT) &Rect);
StartSelection(hWnd, MAKEPOINT(lParam), (LPRECT) &Rect,

(wParam & MK_SHIFT> ? (SL_EXTENO I Shape) : Shape);
break;

case WM_MOUSEMOVE: /* message: mouse movement */

if (bTrack)
UpdateSelection(hWnd, MAKEPOINT(lParam), (LPRECT) &Rect,

Shape);
break;

case WM_LBUTTONUP: /* message: left mouse button released */

bTrack = FALSE;
EndSelection(MAKEPOINT(lParam), (LPRECT) &Rect);
ClearSelection(hWnd, (LPRECT) &Rect, Shape);

hOC = GetOC(hWnd);
SetStretchBltMode(hOC, fStretchMode);
StretchBltChOC, Rect.left, Rect.top,

Rect.right - Rect.left, Rect.bottom -Rect.top,
hMemoryOC, 0, 0,
Bitmap.bmWidth, Bitmap.bmHeight,
SRCCOPY) ;

ReleaseOC(hWnd, hOC);
break;

To use these functions, you also must include the SELECT.R file (defined in
Chapter 20, "Dynamic-Link Libraries"). Add the following statement to the
beginning of your source file:

#include "SELECT.H"

Bitmaps 11-25

11.6.8 Add the WM_RBUTTONUP Case
You need to add a WM_RBUTTONUP case to display the current bitmap by
using the BitBIt function. Add the following statements to your window function:

case WM_RBUTTONUP: /* message: right mouse button released */

hDC = GetDC(hWnd);
BitBlt(hDC, LOWORD(lParam), HIWORD(lParam),

Bitmap.bmWidth, Bitmap.bmHeight,
hMemoryDC, 0, 0, SRCCOPY);

ReleaseDC(hWnd, hDC);
break;

11.6.9 Add the WM_ERASEBKGNO Case
You need to add aWM_ERASEBKGND case to make sure the selected back
ground brush is used. Add the following statements to your window function:

case WM_ERASEBKGND: /* message: erase background */

UnrealizeObject(hBrush);
hOldBrush = SelectObject(wParam, hBrush);
GetClientRect(hWnd, (LPRECT) &Rect);
PatBlt(wParam, Rect.left, Rect.top,

Rect.right-Rect. left, Rect.bottom-Rect.top,
PATCOPy) ;

SelectObject(wParam, hOldBrush);
return TRUE;

The hOldBrush variable is declared as a local variable. The UnrealizeObject
function sets the pattern alignment if the window has moved. The SelectObject
function sets the background brush and the GetClientRect function determines
which part of the client area needs to be erased. The PatBIt function copies the
pattern to the update rectangle. The final SelectObject function restores the
previous brush.

11.6.10 Modify the WM_COMMANO Case
You need to change the WM_COMMAND case to support the Bitmap, Pattern,
and Mode menus. In the window function, replace the WM_COMMAND case
with the following statements:

case WM_COMMAND:" /* message: Windows command */
switch (wParam) {

11-26 Guide to Programming

case IDM_ABOUT:
lpProcAbout = MakeProclnstance (About, Inst);
DialogBox (hInst,

"AboutBox",
hWnd,
1 pProcAbout);

FreeProcInstance (lpProcAbout);
break; .

case IDM_BITMAP1:
wPrevItem = wPrevBitmap;
wPrevBitmap = wParam;
GetObject(hBitmap1, 16, CLPSTR) &Bitmap);
SelectObjectChMemoryDC, hBitmap1);
break;

case IDM_BITMAP2:
wPrevItem = wPrevBitmap;
wPrevBitmap = wParam;
GetObjectChBitmap2, 16, (LPSTR) &Bitmap);
SelectObjectChMemoryDC, hBitmap2);
break;

case IDM_BITMAP3:
wPrevItem = wPrevBitmap;
wPrevBitmap = wParam;
GetObjectChBitmap3, 16, CLPSTR) &Bitmap);
hOurBitmap = SelectObjectChMemoryDC, hBitmap3);
break;

case rDM_PATTERN1:
wPrevItem = wPrevPattern;
wPrevPattern = wParam;
DeleteObjectChBrush);
hBrush = CreatePatternBrushChPattern1);
InvalidateRectChWnd, CLPRECT) NULL, TRUE);
UpdateWindow(hWnd);
break;

case IDM_PATTERN2:
wPrevItem = wPrevPattern;
wPrevPattern = wParam;
DeleteObject(hBrush);
hBrush = CreatePatternBrushChPattern2);
I n val ida t e Re etC h W n d, C L PRE C l) NUL L, T RUE) ;
UpdateWindowChWnd);
break;

case IDM_PATTERN3:
wPrevItem = wPrevPattern;
wPrevPattern = wParam;
DeleteObjectChBrush); ,
hBrush = CreatePatternBrushChPattern3);

InvalidateRectChWnd, CLPRECT) NULL, TRUE);
UpdateWindowChWnd);
break;

case IDM_PATTERN4:
wPrevltem = wPrevPattern;
wPrevPattern = wParam;
DeleteObjectChBrush);
hBrush = CreatePatternBrushChPattern4);
InvalidateRectChWnd, CLPRECT) NULL, TRUE);
UpdateWindowChWnd);
break;

case IDM_BLACKONWHITE:
wPrevltem = wPrevMode;
wPrevMode = wParam;
fStretchMode = BLACKONWHITE;
break;

case IDM_WHITEONBLACK:
wPrevltem = wPrevMode;
wPrevMode = wParam;
fStretchMode = WHITEONBLACK;
break;

case IDM_COLORONCOLOR:
wPrevltem = wPrevMode;
wPrevMode = wParam;
fStretchMode = COLORONCOLOR;
break;

Bitmaps 11-27

CheckMenuItemCGetMenuChWnd), wPrevItem,MF_UNCHECKED);
CheckMenuItemCGetMenuChWnd), wParam, MF_CHECKED);
break;

Note that this new WM_COMMAND case handles the IDM_ABOUTcase using
a switch statement rather than an if statement.

11.6.11 Modify the Make File
The resource file BITMAP.RES depends on the bitmap files DOG.BMP and
CAT.BMP. To ensure that the Resource Compiler updates BITMAP.RES when
ever DOG.BMP or CAT.BMP change, add the following to the make file:

BITMAP. RES: BITMAP.RC BITMAP.H DOG.BMP CAT.BMP
RC - r BITMAP. RC

You need to modify the LINK command line in the make file to include the
SELECT.LIB library file. This file contains the import declarations for the selec
tion routines that are used with the WM_LBUTTONUP, WM_MOUSEMOVE,

11-28 Guide to Programming

and WM_LBUTTONDOWN cases. You create the library as described in
Chapter 20, "Dynamic-Link Libraries."

To include the SELECT.LIB library file, modify the LINK command line so that
it looks like this:

LINK INDO BITMAP, , , SLIBCEW LIBW SELECT.LIB, BITMAP.OEF

11.6.12 Compile and Link

11.7 Summary

After making the necessary changes, compile and link the Bitmap application.
Start Windows, then start the Bitmap application.

To display the "dog" or "cat" bitmaps, depress the left mouse button, drag the
mouse to form a rectangle, and release the button.

Use the menus to change the background and the stretching mode. Note the ef
fect of the stretching mode on the "dog" and "cat" bitmaps.

This chapter explained how to create and use monochrome and color bitmaps. A
bitmap is an image formed by a pattern of bits. In Windows, there are two kinds
of bitmaps: device-dependent and device-independent. The simplest way to use a
bitmap is to draw it using SDKPaint, then add it to your application's resources
and load it using the LoadBitmap function. There are also several methods your
application can use to create and display bitmaps during run time. The applica-:
tion can use GDI output to draw each bit. It can also initialize the bits in a bitmap
by using an array of bits, or by using the image in an existing device-independent
bitmap.

Windows provides several functions for displaying and manipulating bitmaps.
You can also use a bitmap as a menu item, or as a menu checkmark.

For more information on topics related to bitmaps, see the following:

Topic

Selection functions

U sing bitmaps in
menus

Reference

Guide to Programming: Chapter 6, "The Cursor,
the Mouse, and the Keyboard"

Guide to Programming: Chapter 20, "Dynamic
Link Libraries"

Guide to Programming: Chapter 7, "Menus"

Topic

Bitmap functions

Using SDKPaint

Bitmaps 11-29

~eference

Reference, Volume 1: Chapter 2, "Graphics Device
Interface Functions" and Chapter 4, "Functions
Directory"

Tools: Chapter 4, "Designing Images: SDKPaint"

Chapter

12
Printing

Most applications provide a way for users to get printed copies of their program
data. In most environments, your application must deal with the varied capabili
ties and requirements of many different printers. In Microsoft Windows, your
application need not provide any printer-specific code; it can simply print to the
current printer. Windows, and the Windows printer drivers, translate your appli
cation's print request to information each printer can use.

This chapter covers the following topics:

• Printing in the Windows environment

• Getting information about the printer

• Printing a line of text

• Printing a bitmap

• Processing printing errors

• Canceling print operations

• U sing banding to print graphics images

This chapter also explains how to create a sample application, PrntFile, that
illustrates many of the concepts explained in the chapter.

12.1 Printing in the Windows Environment
In Windows, your application does not print by interacting directly with the
printer. Instead, you print by sending output to a printer device context. This
means that your application need not concern itself with each printer's specific
capabilities or requirements.

Printing in Windows is handled by GD!. In general, the procedure for printing
information is similar to that for displaying information; you get a handle to a
device context, then send output to that device context. Normally, an application
follows these steps in order to print to the current printer:

1. The application first retrieves information about the current printer, such as
its type, device driver, and printer port, from the WIN.INI initialization file.

This information is necessary in order to create a device context for the
current printer.

12-2 Guide to Programming

2. When you send output to a printer device context, Windows activates the
print spooler to manage your print request.

3. Your application uses printer escapes to communicate with the printer's
device driver.

12.1.1 Using Printer Escapes
Your application uses escapes to communicate with the device driver associated
with the printer. These sequences tell the device driver what to do, and also
gather printer-specific information, such as page size, for the application. To
send escape sequences to the device driver, the application uses the Escape
function.

For example, to tell the printer device driver to start a print request, use the
Escape function with the ST ARTDOC escape. The following example sends
the ST ARTDOC escape to the printer device context identified by the variable
hPrinterDC; it starts a print request named "My Print Request".

EscapeChPrinterDC, STARTDOC, 0, CLPSTR) "My Print Request", 0L);

When sending output to the printer, you follow the same general rules as for
other types of GDI output. If you are printing text, or primitives such as
rectangles, arcs, and circles, you can send them directly to the printer device
context. You can also send text and primitives to a memory device context.
This lets you create complex images before sending them to the printer.

12.2 Retrieving Information About the Current Printer
In order to create a printer device context, you need information about the
printer, such as its type and the computer port to which it is connected. The
Windows Control Panel application adds information about the current printer to
the device= field in the [windows] section of the WIN .INI file. Any application
can retrieve this information by using the GetProfileString function. You can
then ~se the information with the CreateDC function to create a printer device
cOQ-text for a particular printer on a particular computer port.

Printer information from the WIN .INI file consists of three fields, separated by
~ommas:

• The type of the current printer (for example, "EPSON")

• The device driver for the current printer (for example, "EPSON FX-80")

• The current printer port (for example, LPTl:)

The following example shows how to retrieve the printer information and divide
the fields into separate strings:

char pPrintlnfo[80];
LPSTR lpTemp;
LPSTR lpPrintType;
LPSTR lpPrintDriver;
LPSTR lpPrintPort;

8 GetProfileString("windows",
"device",
pPri ntI nfo,

(LPSTR) NULL, 80);
lpTemp = lpPrintType = pPrintlnfo;
lpPrintDriver = lpPrintPort = 0;
4D while (*lpTemp) {

.. if (*lpTemp == ',') {
*lpTemp++ = 0;
8 while (*lpTemp == ' ')

lpTemp++;
if (!lpPrintDriver)

lpPrintDriver = lpTemp;
else {

lpPrintPort = lpTemp;
break;

else
lpTemp=AnsiNext(lpTemp);

CD hPr = CreateDC(lpPrintDriver,
pPrinterType,

In this example:

1 pPri ntPort,
(LPSTR) NULL);

Printing 12-3

8 The GetProtiieString function retrieves the device= field from the
[windows] section of the WIN.INI file. The function then copies the line to
the pPrintlnfo array. .

4D A while statement divides the line into three separate fields: the printer type,
the printer device-driver name, and the printer port.

.. Because the fields are separated by commas, an if statement checks for
a comma and, if necessary, replaces the comma with a zero in order to
terminate the field.

12-4 Guide to Programming

e. Another while statement skips any leading spaces in the next field.

Each pointer-lpPrintType, IpPrintDriver, and IpPrintPort-receives the
address of the beginning of its respective field.

o These pointers are then used in the CreateDC function to create a printer
device context for the current printer.

12.3 Printing a Line of Text
Printing a single line of text requires the following steps:

1. Create the device context for the printer.

2. Start the print request.

3. Print the line.

4. Start a new page.

5. End the print request.

6. Delete the device context.

The following example shows how to print a single line of text on an Epson
FX -80 printer that is connected to the printer port, LPT 1:

o hPr = CreateOC("EPSON",

if (hPr != NUlU

"EPSON FX-80",
"lPTl:",
(lPSTR) NUlU;

• Escape(hPr, STARTOOC, 5, (lPSTR) "Test", 0U;
@) TextOut(hPr, 10, 10, "A single line of text. " , 22);
e Escape(hPr, NEWFRAME, 0, 0l, 0l);
o Escape(hPr, ENOOOC, 0, 0l, 0l);
~ OeleteOC(hPr);

In this example:

o The CreateDC function creates the device context for the printer, and returns
a handle to the printer device context. This example stores the handle in the
variable hPr. When calling CreateDC, an application must supply the first
three parameters; the fourth parameter can be set to NULL. In this example,
the application supplies the following parameters:

• The first parameter specifies the name of the device driver, "EPSON".

Printing 12-5

• The second parameter specifies the name of the printer device driver,
"EPSON FX-80".

• The third parameter specifies the printer port, "LPT 1 :".

• The last parameter to CreateDC specifies how to initialize the printer.
NULL specifies the default print settings. (Chapter 17, "Print Settings,"
explains how to specify print settings that differ from the default.)

• The Escape function starts the print request by sending the ST ARTDOC
escape sequence to the device context. The name "Test" identifies the re
quest; the third parameter is the length of the string "Test," plus a null termi
nator: Because the other parameter is not used, it is set to zero.

@) TextOut copies the line of text to the printer. The line will be placed starting
at the coordinates (10,10) on the printer paper (the printer coordinates are al
ways relative to the upper-left comer of the paper). The default units are
printer pixels.

e The NEWFRAME escape completes the page and signals the printer to ad
vance to the next page. Because the other parameters are not used, they are
set to zero.

CD The ENDDOC escape signals the end of the print request. Because the other
parameters are not used, they are set to zero.

(;) The DeleteDC function deletes the printer device context.

NOTE You should not expect the line of text to be printed immediately. The spooler col
lects all output for a print request before sending it to the printer, so actual printing does not
begin until after the ENDDOC escape.

12.4 Printing a Bitmap
Printing a bitmap is similar to printing a line of text. To print a bitmap, follow
these steps:

1. Create a memory device context that is compatible with the bitmap.

2. Load the bitmap and select it into the memory device context.

3. Start the print request.

4. Use the BitBIt function to copy the bitmap from the memory device context
to the printer.

5. End the print request.

6. Remove the bitmap from the memory device context and delete the device
context.

12-6 Guide to Programming

The following example shows how to print a bitmap named "dog" that has been
added to the resource file:

HOC hOC;
HOC hMemoryDC;
HOC hPr;
BITMAP B itma p ;

.. hOC = GetDC(hWnd);
hMemoryDC = CreateCompatibleDC(hDC);
ReleaseDC(hWnd, hOC);

.. hBitmap = LoadBitmap(hlnstance, "dog");
4D GetObject(hBitmap, sizeofCBITMAP), CLPSTR) &Bitmap);
~ hOldBitmap = SelectObjectChMemoryDC, hBitmap);

(;) hPr = CreateDCC"EPSON",
"EPSON FX-80",
"LPT1:",
CLPSTR) NULL);

if ChPr != NULL) {
Escape ChPr, STARTDOC, 4, CLPSTR) "Dog", 0L);
o BitBltChPr, 10, 30,

Bitmap.bmWidth,
Bitmap.bmHeight,
hMemDC, 0, 0, SRCCOPY);

tt EscapeChPr, NEWFRAME, 0, 0L, 0L);
EscapeChPr, ENDDOC, 0, 0L, 0L);
DeleteDCChPr);

C. SelectObjectChMemoryDC, hOldBitmap);
DeleteDCChMemoryDC);
DeleteObjectChBitmap);

In this example:

.. The application retrieves the current window's display context using the
GetDC function. The CreateCompatibleDC function then creates a memory
device context that is compatible with that display context. After creating the
memory device context, the application releases the window's display context
using the ReleaseDC function .

.. The LoadBitmap function loads the bitmap "dog" from the application's
resources.

Printing 12-7

8 The GetObject function retrieves infonnation about the bitmap, such as its
height and width. These values are used later in the BitBlt function.

e The SelectObject function selects the bitmap into the memory device context.

o The statements for creating the printer device context and starting the print
request are identical to those used in the example that printed a line of text.

(3 To send the bitmap image to the printer, the application uses the BitBlt func
tion. BitBlt copies the bitmap from the memory device context to the printer,
placing the bitmap at the coordinates (10,30). (The BitBlt function takes the
place of the TextOut function, used in the previous example to print a line of
text.)

o The statements that send the N~WFRAME and END DOC escape sequences
are identical to those used in the previous example.

@) After the print request is complete, the SelectObject and DeleteDC functions
remove the bitmap from selection and deJete the memory device context.
Since the bitmap is no longer needed, the DeleteObject function removes it
from memory.

12.5 Processing Errors During Printing
Although GDI and the spooler attempt to report all printing errors to the user,
your application must be prepared to report out-of-disk and out-of-memory condi
tions. When there is an error in processing a particular escape, such as ST ART -
DOC or NEWFRAME, the Escape function returns a value less than zero.
Out-of-disk and out-of-memory errors usually occur on a NEWFRAME escape.
In this case, the return value includes an SP _NOTREPORTED bit. If the bit is
clear, GDI has already notified the user. If the bit is set, the application needs to
notify the user. The bit is typically set for general-failure, out-of-disk-space, and
out-of-memory errors.

The following example shows how to process unreported errors during printing:

int status;

status = Escape(hPrDC, NEWFRAME, 0, 0L, 0L);

«t if (status < 0) { /* Any unreported errors? */
if (status & SP_NOTREPORTED) { /* Yes */

8 swi tch (status) {
case SP_OUTOFDISK:

/* inform user of situation
and perform any necessary processing */

break;

12-8 Guide to Programming

}

case SP_OUTOFMEMORY:
1* inform user of situation

and perform any necessary processing *1
break;

default :
1* inform user of situation

and perform any necessary processing *1
break;

~ else 1* Reported, but may need further action *1
switch (statusISP_NOTREPORTED) {

case SP_OUTOFDISK:
1* perform any necessary processing *1
break;

case SP_OUTOFMEMORY:
1* perform any necessary processing *1
break;

In this example:

o The first if statement checks to see if the value that the Escape function re
turns, status, is less than zero and the SP _NOTREPORTED bit is set. (When
Windows sets the SP _NOTREPORTED bit, it indicates that this error has not
been reported to the user.) If these two conditions are met, then the applica
tion must process the unreported error.

8 In this example, the application uses a switch to provide special responses
to the SP _OUTOFDISK error and the SP _OUTOFMEMORY error. For all
other unreported errors, the application simply provides a general failure alert.

~ If the status variable is less than zero but SP _NOTREPORTEDis not set,
then Windows'has already reported the error to the user. However, the appli
cation can still process these reported errors.

In most cases, the correct response to an unreported error is to display a message
box explaining the error and to terminate the print request. If the error has al
ready been reported, you can terminate the request, then restart it after additional
disk or memory space has been made available.

12.6 Canceling a Print Operation
Applications should always give the user a chance to cancel a lengthy printing
operation. A common way to do this' is to display a dialog box when the printing
operation begins. During printing, the user can click the dialog's Cancel button to
cancel the print operation.

Printing 12-9

To provide a dialog box that lets the user cancel a printing operation:

1. In your application's resource script (.RC) file, define a modeless AbortDlg
dialog box that lets the user cancel a print operation.

2. In your application source code, provide a dialog function to drive the
AbortDlg dialog box.

3. In your application source code, provide an Abort function that processes
messages for the AbortDlg dialog box.

4. Modify your application's printing procedure so that it displays the AbortDlg
dialog box and correctly processes messages.

The sections that follow describe each step in detail.

12.6.1 Defining an Abort Dialog Box
In your application's resource script file, provide a dialog-box template for the
Abort dialog box. For example:

AbortDlg DIALOG 20,20,90, 64
STYLE DS_MODAlFRAME I WS_CAPTION
CAPTION "PrntFile"
BEGIN

DefPushButton "Cancel", IDCANCEl, 29, 44, 32, 14, WS_GROUP
Ctext "Sending", -1, 0, 8, 90, 8
Ctext "text", IDC_FIlENAME, 0, 18, 90, 8
Ctext "to print spooler.", -1, 0, 28, 90, 8

END

12.6.2 Defining an Abort Dialog Function
In your application source code, provide a dialog function for the Abort dialog
box. The function should process the WM_INITDIALOG and WM_COM
MAND messages. To let the user choose the Cancel button with the keyboard,
the function takes control of the input focus when the dialog box is initialized. It
then ignores all messages until a WM_ COMMAND message appears. Command
input causes the function to destroy the window and set the abort flag to TRUE.
The following example shows the required statements for the dialog function:

BOOl bAbort=FAlSE; /* global variable */

int FAR PASCAL AbortDlg(hWnd, msg, wParam, lParam)
HWND hWnd;
unsigned msg;
WORD wParam;

12-10 Guide to Programming

LONG 1 Pa ram;

/* Watch for Cancel button, RETURN key,
ESCAPE key, or SPACE BAR */
if (msg == WM_COMMAND) {

/* User has aborted operation */
bAbort = TRUE;

/* Destroy Abort dialog box */
DestroyWindow(hWnd);
return (TRUE);

}

else if (msg == WM_INITDIALOG)

/* Need input focus for user input */
SetFocus(hWnd);
return (TRUE);

}

return (FALSE);

12.6.3 Defining an Abort Function
In your application code, provide an abort function to process messages for the
Abort dialog box.

An abort function retrieves messages from the application queue and dispatches
them if they are intended for the Abort dialog box. The function continues to
loop until it encounters the WM_DESTROY message or until the print operation
is complete.

Applications that make lengthy print requests must pass an abort function to GDI
to handle special situations during printing operations. The most common situa
tion occurs when a printing operation fills the available disk space before the
spooler can copy the data to the printer. Since the spooler can continue to print
even though disk space is full, GDI calls the abort function to see if the applica
tion wants to cancel the print operation or simply wait until disk space is free.

To specify the abort function, first get the procedure-instance address for the
function:

lpAbortProc = MakeProclnstance (AbortProc, hlnst);

Then call the Escape function with the SETABORTPROC value and the Abort
function's address:

Printing 12-11

Escape(hOC, SETABORTPROC, 0, lpAbortProc, 0L);

GDI will then call the abort function during spooling. An abort function must
have the following form:

int FAR PASCAL AbortProc(hPr, Code)
o HOC hPr;
8 int Code;

where:

o The hPr argument is a handle to the printer device context.

8 The Code argument specifies the nature of the call. It can take one of two
values:

Value Meaning

o

Spooler has run out of disk space while spooling the
data file. The printing operation will continue if the
application waits for disk space to become free.

Spooler operation is continuing without error.

Once GDI has called the abort function, the function can return TRUE to con
tinue the spooler operation immediately, or return FALSE to cancel the printing
operation. Most abort functions call the PeekMessage function to temporarily·
yield control, then return TRUE to continue the print operation. Yielding control
typically gives the spooler enough time to free some disk space.

If the abort function returns FALSE, the printing operation is canceled and an
error value is returned by the application's next call to the Escape function.

IMPORTANT If your application encounters a printing error or a canceled print operation,
it must not attempt to terminate the operation by using the Escape function with either the
ENOOOC or ABORTOOC escape. GOI automatically terminates the operation before returning
the error value.

The following example shows the statements required for the abort function:

int FAR PASCAL AbortProc(hPr, Code)
HOC hPr; /* for multiple printer

display contexts */
int Code; /* for printing status */
{

MSG msg;

12-12 Guide to Programming

1* Process messages intended
for the abort dialog box *)

while (PeekMessage«LPMSG) &msg,
NULL, NULL, NULL, PM_REMOVE))

if (!IsDialogMessage(hAbortDlgWnd,
(LPMSG) &msg))

TranslateMessage«LPMSG) &msg);
DispatchMessage«LPMSG) &msg);

1* bAbort is TRUE (return is FALSE)
if the user has aborted *1
return (!bAbort);

12.6.4 Performing an Abortab/e Print Operation
Before beginning a print operation, your application should do the following in
order to let th~ user cancel the operation:

1. Define an abort function as described in the preceding section.

2. Use the MakeProcInstance function to get the procedure-instance address
for the abort function.

When your application begins a print operation, it should do the following:

1. Use the Escape function to specify the abort function the application will use
during the print operation. When calling Escape, specify the SETABORT
PROC value and the procedure-instance address of the application's abort
function.

2. Use the CreateDialog, ShowWindow, and Update Window functions to
create and display the Abort dialog box.

3. Use the EnableWindow function to disable your parent window.

4. Start the normal print operation, but check the return value from the Escape
function after each NEWFRAME escape call. If the return value is less than
zero, the user has canceled the operation or an error has occurred.

5. Use the DestroyWindow function to destroy the Abort dialQg box, if neces
sary. (Windows destroys the box automatically if the user cancels the print
operation.)

6. Use the EnableWindow function to reenable the parent window.

See the PmtFile sample application, included on the Guide to Programming
sample disk, for an illustration of how an application performs these steps.

Printing 12-13

12.6.5 Canceling a Print Operation with the ABORTDOC Escape
You can use the ABORTDOC escape to cancel a print operation, even if you do
not have an abort function or an Abort dialog box. Applications that do not have
an abort function can use the ABORTDOC escape to cancel the operation at any
time. Applications that do have abort functions can use the ABORTDOC escape
only before the first NEWFRAME or NEXTBAND escape.

12.7 Using Banding to Print Images
Banding is a printing technique used to print full-page graphics on raster devices
such as dot-matrix printers. In banding, an application prints an image by divid
ing the image into several bands (or slices) and sending each band to the printer
separately. Banding lets you print complex graphics images without first creating
the complete image in memory. This can reduce the memory requirements for
printing and enhance system performance while printing operations are in effect.
You can use banding with any printing device that has banding capability.

To use banding to print an image, follow these steps:

1. Use the CreateDC function to retrieve a device context for the printer.

2. Use the GetDeviceCaps function to make sure the printer is a banding device:

if (GetDeviceCaps(hPrinterDC, RASTERCAPS) & RC_BANDING)

3. Use the Escape function and the NEXTBAND escape to retrieve the coordi
nates of a band:

Escape(hPrinterDC, NEXTBAND, 0, (LPSTR) NULL, (LPRECT) &rcRect);

The function sets the rcRect structure to the coordinates of the current band.
Coordinates are in device units, and all subsequent GDI calls are clipped to
this rectangle.

4. Check the rcRect structure to see if it is an empty rectangle. The empty
rectangle marks the end of the banding operation. If it is empty, terminate the
banding operation.

S. Use the DPtoLP function to translate the rcRect points from device units to
logical units.

DPtoLP(hPr, (LPRECT) &rcRect, 2);

6. Use GDI output and other functions to draw within the band. To save time,
the application should carry out only those GDI calls that affect the current
band. If an application does not need to save time, GDI will clip all output
that does not appear in the band, so no special action is required.

7. Repeat steps 4 through 6.

12-14 Guide to Programming

Once the banding operation is complete, use the DeleteDC function to remove
the printer device context.

The following example shows how to print using banding:

hPr - CreateOC("EPSON",
"EPSON FX-80",
"LPTl:",
(LPSTR) NULL);

if (hPr !- NULl) {
if (GetOeviceCaps(hPr, RASTERCAPS) & RC_BANOING) {

Escape(hPr, STARTOOC, 4, (LPSTR) "Dog", (LPSTR)NULL);
Escape(hPr, NEXTBANO, 0, (LPSTR)NULL, (LPRECT) &rcRect);
while (!IsRectEmpty(&rcRect» {

OPtoLP(hPr, (LPRECT) &rcRect, 2);

1* Place your output function here.
* To save time, use rcRect to determine
* which functions need to be called for
* this band.

*/

Escape(hPr, NEXTBANO, 0, (LPSTR)NULL, (LPRECT) &rcRect);

Escape(hPr, NEWFRAME, 0, (LPSTR)NULL, (LPSTR)NULL);
Escape(hPr, ENOOOC, 0, (LPSTR)NULL, (LPSTR)NULL);

}

OeleteOC(hPr);

12.8 A Sample Application: PrntFile
This section explains how to add printing capability to the EditFile application,
described in Chapter 10, "File Input and Output," by copying the current text
from the edit control and printing it by using the methods described in this chap
ter. To add printing capability, copy and rename the EditFile sources to PmtFile,
then modify the sources as follows:

1. Add an AbortDlg dialog-box template to the resource script file.

2. Add new variables for printing.

3. Add the IDM_PRINT case to the WM_COMMAND case.

4. Create the AbortDlg dialog function and AbortProc function.

5. Add the GetPrinterDC function.

6. Export the AbortDlg dialog function and AbortProc function.

7. Compile and link the application.

Printing 12-15

This example shows how to print the contents of the edit control, including the
statements required to support the abort function and the dialog function for the
Abort dialog box.

NOTE Rather than typing the code provided in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

12.8.1 Add an AbortDlg Dialog Box
You need a new dialog box to support printing. The AbortDlg dialog box permits
the user to cancel a printing operation by choosing the Cancel button. Add the fol
lowing DIALOG statement to the resource file:

AbortDlg DIALOG 210,210,910, 64
STYLE DS_MODALFRAME I WS_CAPTION WS_SYSMENU
CAPTION "PrntFile"
BEGIN

DefPushButton "Cancel", IDCANCEL,
Ctext "Sending", -1,
Ctext "text", IDC_FILENAME,
Ctext "to print spooler.", -1,

END

12.8.2 Add Variables for Printing

29, 44, 32, 14, WS_GROUP
10 , 8, 910, 8

(0, 18, 910, 8
10 , 28, 910, 8

You need to declare new variables to support printing. Add the following declara
tions to the beginning of your source file:

HDC hPr; 1* handle for printer device context *1
int LineSpace; 1* spacing between lines *1
int LinesPerPage; 1* lines per page *1
int CurrentLine; 1* current line *1
int LineLength; 1* line length *1
DWORD dwLines; 1* number of lines to print *1
DWORD dwIndex; 1* index into lines to print *1
char pLine[128]; 1* buffer to store lines before printing *1
TEXTMETRIC TextMetric; 1* information about character size *1
POINT PhysPageSize; 1* information about the page *1
BOOL bAbort; 1* FALSE if user cancels printing *1
HWND hAbortDlgWnd;
FARPROC lpAbortDlg, lpAbortProc;

The hPr variable is the handle for the printer device context. It receives the
return value from the CreateDC function call. The variables LineSpace and
LinesPerPage hold the amount of spacing between lines and the number of lines
that can be printed per page, respectively. The CurrentLine variable is a counter
that keeps track of the current line on the current page. Lines of text are printed

12-16 Guide to Programming

one line at a time. The dwLines variable holds the number of lines in the .edit
control. The TextMetric structure receives infonnation about the font to be used
to print the lines; this example uses only the TextMetric.tmHeight and Text
Metric.tmExtemalLeading fields. The PhysPageSize structure receives the physi
cal width and height of the printer paper. The height is used to detennine how
many lines per page can be printed.

12.8.3 Add the 10M_PRINT Case
To carry out the printing operation, you need to add an IDM_PRINT case to
the WM_COMMAND case of the main window function. Add the following
statements:

case IDM PRINT:
hPr = GetPrinterDC();
if (!hPr) {

}

sprintf(str, "Cannot print Is", FileName);
MessageBox(hWnd, str, NULL, MB_OK I MB_ICONHAND);
break;

lpAbortDlg = MakeProcInstance(AbortDlg, hInst);
lpAbortProc = MakeProcInstance(AbortProc, hInst);
Escape(hPr, SETABORTPROC, NULL,

(LPSTR) (long) lpAbortProc, (LPSTR) NULL);
if (Escape(hPr, STARTDOC, 14, (LPSTR) "PrntFile text",

(LPSTR) NULL) < 0) {
MessageBox(hWnd, "Unable to start print job",

NULL, MB_OK I MB_ICONHAND);
FreeProcInstance(AbortDlg);
FreeProcInstance(AbortProc);
DeleteDC(hPr);
break;

bAbort = FALSE; /* Clears the abort flag */
hAbortDlgWnd = CreateDialog(hInst, "AbortDlg", hWnd, lpAbortDlg);
ShowWindow(hAbortDlgWnd, SW_NORMAL);
UpdateWindow(hAbortDlgWnd);
EnableWindow(hWnd, FALSE);
GetTextMetrics(hPr, &TextMetric);
LineSpace = TextMetric.tmHeight + TextMetric.tmExternalLeading;
Escape(hPr, GETPHYSPAGESIZE, NULL, (LPSTR) NULL, (LPSTR) &PhysPageSize);
LinesPerPage = PhysPageSize.y / LineSpace;
dwLines = SendMessage(hEditWnd, EM_GETLINECOUNT, 0, 0L);
CurrentLine = 1;
for (dwIndex = IOStatus = 0; dwIndex < dwLines; dwIndex++)

pLine[0] = 128; /* Maximum buffer size */
pLine[1] = 0;
LineLength = SendMessage(hEditWnd, EM_GETLINE,

(WORD) dwIndex, (LONG) «LPSTR) pLine»;
TextOut(hPr, 0, CurrentLine*LineSpace, (LPSTR) pLine, LineLength);

if (++CurrentLine > LinesPerPage) {
Escape(hPr, NEWFRAME, 0, 0L, 0L);
CurrentLine = 1;
IOStatus = Escape(hPr, NEWFRAME, 0, 0L, 0L);
if (IOStatus < 0 I I bAbort)

break;

Printing 12-17

if (IOStatus >= 0 && !bAbort) {
Escape(hPr, NEWFRAME, 0, 0L, 0L);
Escape(hPr, ENOOOC, 0, 0L, 0L);

}

EnableWindow(hWnd, TRUE);
OestroyWindow(hAbortOlgWnd);
FreeProclnstance(AbortOlg);
FreeProclnstance(AbortProc);
OeleteOC(hPr);
break;

The locally-defined GetPrinterDC function checks the WIN.INI file for the cur
rent printer and creates a device context for that printer. If there is not a current
printer or the device context cannot be created, the function returns NULL and
processing ends with a warning. Otherwise, the MakeProcInstance function
creates procedure instance addresses for the AbortDlg dialog function and the
AbortProc function. The SET ABORTPROC escape used with the Escape func
tion sets the abort function. The STARTDOC escape starts the printing job and
sets the printing title (shown in the Print Manager application). If the START
DOC escape fails, the FreeProcInstance function frees the AbortDlg and Abort
Proc procedure instances and the DeleteDC function deletes the device context
before processing ends.

The CreateDialog function creates the AbortDlg dialog box and the Enable
Window function disables the main window. This prevents users from attempt
ing to work in the main window while printing. Users can, however, continue to
work in some other application.

Since the edit control may contain more than one line, it is important to provide
adequate spacing between lines. This keeps one line from overwriting or touch
ing another. The GetTextMetrics function retrieves current font information,
such as height and external leading, which can be used to compute adequate line
spacing. The height is the maximum height of characters in the font. The external
leading is the recommended amount of space, in addition to the height, that
should be used to separate lines of text in this font. The line spacing,.assigned
to the LineSpace variable, is the sum of the height and external leading fields,
TextMetric. tmHeight and TextMetric. tmExternalLeading.

Since the edit control might contain more lines than can fit on a single page, it is
important to determine how many lines can fit on a page and to advance to the
next page whenever this line limit is reached. The GETPHYSP AGESIZE escape
retrieves the physical dimensions of the page and copies the dimensions to the

12-18 Guide 10 Programming

PhysPageSize structure. PhysPageSize contains both the width and height of the
page. The lines per page, assigned to the LinesPerPage variable, is the quotient of
the physical height of the page, PhysPageSize.y, and the line spacing, LineSpace.

The TextOut function can print only one line at a time, so a for statement pro
vides the loop required to print more than one line of text. The EM_GETLINE
COUNT message, sent to the edit control by using the SendMessage function,
retrieves the number of lines to be printed and determines the number of times to
loop. On each execution of the loop, the EM_ GETLINE message copies the con
tents of a line from the edit control to the line buffer, pLine. The loop counter,
dw Index, is used with the EM_ GETLINE message to specify which line to re
trieve from the edit control. The EM_ GETLINE message also causes Send
Message to return the length of the line. The length is assigned to the LineLength
variable.

Once a line has been copied from the edit control, it is printed by using the Text
Out function. The product of the variables CurrentLine and LineSpacing deter
mines the y-coordinate of the line on the page. The x-coordinate is set to zero.
After a line is printed, the value of the CurrentLine variable is increased by one.
If CurrentLine is greater than LinesPerPage, it is time to advance to the next
page. Any text printed beyond the physical bottom of a page is clipped. There is
no automatic page advance, so it is important to keep track of the number of lines
printed on a page and to use the NEWFRAME escape to advance to the next
page when necessary. If there are any errors during printing, the NEWFRAME
escape returns an error number and processing ends.

After all lines in the edit control have been printed, the NEWFRAME escape ad
vances the final page and the ENDDOC escape terminates the print request. The
DeleteDC function deletes the printer device context since it is no longer needed,
and the DestroyWindow function destroys the AbortDlg dialog box.

12.8.4 Create the AbortOlg and AbortProc Functions
You need to create the AbortDlg and AbortProc functions to support the printing
process. The AbortDlg dialog function provides support for the AbortDlg dialog
box that appears while the printing is in progress. The dialog box lets the user
cancel the printing operation if necessary. The AbortProc function processes mes
sages intended for the AbortDlg dialog box and terminates the printing operation
if the user has requested it.

The AbortDlg dialog function sets the input focus and sets the name of the file
being printed. It also sets the bAbort variable to TRUE if the user chooses the
Cancel button. Add the following statements to the C-Ianguage source file:

int FAR PASCAL AbortDlg(hDlg, msg, wParam, lParam)
HWND hDlg;
unsigned msg;
WORD wParam;
LONG lParam;

switch (msg) {
case WM_COMMAND:

return (bAbort = TRUE);

case WM_INITDIALOG:
SetFocus(GetDlgItem(hDlg, IDCANCEL));
SetDlgItemText(hDlg, IDC_FILENAME, FileName);
return (TRUE);

return (FALSE);

Printing 12-19

The AbortProc function checks for messages in the application queue and dis
patches them to the AbortDlg dialog function or to other windows in the applica
tion. If one of these messages causes the AbortDlg dialog function to set the
bAbort variable to TRUE, the AbortProc function returns this value, directing
Windows to stop the printing operation. Add the following statements to the
C-Ianguage source file:

int FAR PASCAL AbortProc(hPr, Code)
HOC hPr; 1* for multiple printer display contexts *1
int Code; 1* printing status *1
{

MSG msg;

while (!bAbort && PeekMessage(&msg, NULL, NULL, NULL, TRUE))
if (!IsDialogMessage(hAbortDlgWnd, &msg)) {

TranslateMessage(&msg);
DispatchMessage(&msg);

return (!bAbort);

12.8.5 Add the GetPrinterDC Function
You need to add a function to your C-Ianguage source file to support the printing
operation. The GetPrinterDC function retrieves the device= field from the
[windows] section of the WIN.INI file, divides the entry into its separate com
ponents, then creates a printer device context using the device name and printer
port given in the entry. Add the following statements to the C-Ianguage source
file:

HANDLE GetPrinterDC()
{

char pPrintlnfo[80];
LPSTR lpTemp;
LPSTR lpPrintType;
LPSTR lpPrintDriver;
LPSTR lpPrintPort;

12-20 Guide·to Programming

if (!GetProfileString("windows", "device",
(LPSTR) "", pPrintInfo, 80»

retu rn (NU LU ;
lpTemp = lpPrintType = pPrintlnfo;
lpPrintDriver = lpPrintPort = 0;
while (*lpTemp) {

if (* 1 P Temp == ',') {

*lpTemp++ = 0;

else

whil e (*1 pTemp == ' ')
lpTemp = AnsiNext(lpTemp);

if (!lpPrintDriver)
lpPrintDriver = lpTemp;

else {
lpPrintPort = lpTemp;
break;

lpTemp = AnsiNext(lpTemp);

return (CreateDC(lpPrintDriver, lpPrintType, lpPrintPort, (LPSTR) NULL»;

To separate the device= field into its three components, the AnsiNext function
advances through the field one character at a time.

12.8.6 Export the AbortOlg and AbortProc Functions

AbortDlg
AbortProc

You need to export the AbortDlg dialog function and the AbortProc function.
Add the following lines to your module-definition file under the EXPORTS
statement:

@5
@6

Called so user can cancel the print function
Processes messages intended for the Abort dialog box

12.8.7 Compile and Link
No changes are required to the make file. Compile and link the PmtFile applica
tion, then start Windows and activate PmtFile; you will see that the Print com
mand has been added to the File menu. You can print by opening a file or by
entering text from the keyboard, then choosing the Print command.

12.9 Summary

Printing 12-21

This chapter explained how to print from a Windows application. In Windows,
your application does not interact directly with the printer. Instead, you print by
sending output to a device context for the printer. Your application communi
cates with the printer device driver using escape sequences.

For more information on topics related to printing, see the following:

Topic

Device contexts

Controlling printer settings

Using fonts

Functions for working with
device contexts

Reference

Guide to Programming: Chapter 3, "Output
to a Window"

Guide to Programming: Chapter 17, "Print
Settings"

Guide to Programming: Chapter 18, "Fonts"

Reference, Volume 1: Chapter 2, "Graphics
Device Interface Functions" and Chapter 4,
"Functions Directory"

Chapter

13
The Clipboard

The clipboard is the main data-exchange feature of Microsoft Windows. It is a
common area to store data handles through which applications can exchange for
matted data. The clipboard holds any number of different data formats and corre
sponding data handles, all representing the same data, but in as many different
formats as an application is willing to supply. For example, a pie chart might be
held in the clipboard as both a metafile picture and a bitmap. An application past
ing the pie chart would have to decide which representation it wanted. In general,
the format that provides the most information is the most desirable, as long as the
application understands that format.

This chapter covers the following topics:

• Copying text to the clipboard

• Pasting text from the clipboard

• Pasting a bitmap from the clipboard

• Using special clipboard features such as private data formats

This chapter also explains how to build a sample application, ClipText, that
illustrates many of the concepts explained in the chapter.

13.1 Using the Clipboard
To copy data to the clipboard, you format the data using either a predefined or
private format. For most formats, you allocate global memory and copy the data
into it. You then use the SetClipboardData function to copy the memory handle .
to the clipboard.

In Windows applications, copying and pasting are carried out through Edit-menu
commands. To add the Edit menu to an application, follow the steps described in
Chapter 7, "Menus."

Windows provides several predefined data formats for use in data interchange.
Following is a list of common formats and their contents:

13-2 Guide to Programming

Format

CFTEXT

CF_OEMTEXT

CF _METAFILEPICT

CF_BITMAP

CF_DIB

CF_SYLK

CF_DIF

CF_TIFF

Contents

Null-terminated text

Null-terminated text in the OEM character set

Metafile-picture structure

A device-dependent bitmap

A device-independent bitmap

SYLK standard data-interchange format

DIF standard data-interchange format

TIFF standard data-interchange format

When you paste data from the clipboard using the GetClipboardData function,
you specify the format you expect. The clipboard supplies the data only if it has
been copied in that format.

Windows supports two formats for text, CF _TEXT and CF _OEMTEXT.
CF _TEXT is the default Windows text clipboard format. Windows uses the
CF _ OEMTEXT format for text in non-Windows applications. If you call Get
ClipboardData to retrieve data in one text format and the other text format is
the only available text format, Windows automatically converts the text to the
requested format before supplying it to your application.

NOTE Clipboard data objects can be any size. Your application must be able to work with
clipboard data objects larger than 64K. For more information on working with large data ob
jects, see Chapter 16, "More Memory Management."

13.1.1 Copying Text to the Clipboard
To copy a short string of text to the clipboard, follow these steps:

1. Copy the string to global memory.

2. Open the clipboard.

3. Clear the clipboard.

4. Give the global memory handle to the clipboard.

5. Close the clipboard.

You copy text to the clipboard when the user chooses the Copy command
from the Edit menu. To process the menu input and copy the text string to

The Clipboard 13-3

the clipboard, add a WM_COMMAND case to the window function. Add the
following statements:

case WM_COMMAND:
switch CwParam) {

case 1DM_COPY:
if C!ChData = GlobalAllocCGMEM_MOVEABLE, GlobalSize

ChText»» {

}

OutOfMemory C) ;
return (TRUE);

if C!ClpData = GlobalLockChData»)
GlobalFreeChData);
OutOfMemoryC);
return (TRUE);

if C! C 1 pszText = Gl oba Hock C hText») {
OutOfMemoryC);
retu rn (TRUE);

}

lstrcpyClpData, lpszText);
GlobalUnlockChData);
GlobalUnlock ChText);

1* Clear the current contents of the clipboard, and set
* the data handle to the new string.
*1

if COpenClipboardChWnd»
EmptyClipboardC);
SetClipboardDataCCF_TEXT, hData);
CloseClipboardC);

hData = NULL;
break;

The GlobalAlIoc function allocates enough memory to hold the string. The
GMEM_MOVEABLE flag specifies moveable memory. The clipboard can take
either fixed or moveable memory, but should not be given discardable memory.
Moveable memory is the most efficient.

NOTE You should always check the return value when allocating or locking memory; a
NULL return value indicates an out.:of-memory condition.

You must lock moveable memory in order to retrieve the memory address. Use
the Windows Istrcpy function instead of the C run-time strcpy function, since
strcpy cannot handle mixed pointers (string is a short pointer and IpData is a
long pointer). The clipboard requires the string to have a terminating null

13-4 Guide to Programming

character. Finally, the memory must be unlocked before it can be copied to the
clipboard.

Each time you copy the string to the clipboard, this code allocates another global
memory block. The reason is that once you have passed a data handle to the clip
board, the clipboard takes ownership of it. This means that you can no longer use
the handle other than to view contents, and you must not attempt to free the
handle or change its contents.

Copy the global memory handle to the clipboard by following these steps:

1. Open the clipboard.

2. Empty the clipboard.

3. Set the data handle.

4. Close the clipboard.

The following statements carry out these steps:

ct if COpenClipboardChWnd)) {
49 EmptyClipboardC);
~ SetClipboardDataCCF_TEXT, hData);
CloseClipboardC);

}

e hData = NULL;

ct The OpenClipboard function opens the clipboard for the specified window.
Open Clipboard will fail if another window already has the clipboard open.

49 The EmptyClipboard function clears all existing handles in the clipboard
and assigns ownership of the clipboard to the window that has it open. An
application must empty the clipboard before copying data to it.

@) The SetClipboardData function copies the memory handle to the clipboard
and identifies the data format, CF _TEXT. The clipboard is then closed by the
CloseClipboard function.

e Since the clipboard now owns the global memory identified by hData, it is
convenient to set this handle to zero to prevent attempts to free or change the
memory.

13.1.2 Pasting Text from the Clipboard
You can paste text from the clipboard into your client area. That is, you can re
trieve a text handle from .the clipboard and display it in the client area by using
the TextOut function. To do this you will need to do the following:

The Clipboard 13-5

1. Open the clipboard.

2. Retrieve the data handle associated with CF _TEXT or CF _OEMTEXT.

3. Close the clipboard.

You should let the user paste only if there is text in the clipboard. To prevent
attempts to paste when no text is present, check the clipboard before Windows
displays the Edit menu by processing the WM_INITMENU message. If the clip
board is empty, disable the Paste command; if text is present, enable it. Add the
following statements to the window function:

case WM_INITMENU:
~ if CwParam == hEditMenu) {

if COpenClipboardChWnd)) {

else

~ if CIsClipboardFormatAvailableCCF_TEXT)
I I IsClipboardFormatAvailableC(F_OEMTEXT))

@) EnableMenuItem(wParam, IOM_PASTE, MF_ENABLEO);
else

EnableMenuItemCwParam, IOM_PASTE, MF_GRAYEO);
CloseClipboard();
return (TRUE);

/* Clipboard is not available */
return (FALSE);

In this example:

~ The first if statement checks the WM_INITMENU's wParam parameter
against the menu handle returned by the GetMenu function. Since many
applications have at least two menus, including a System menu, it is impor
tant to ensure that the message applies to the Edit menu.

~ The two calls to the IsClipboardFormatA vailable function check for the
CF _TEXT or CF _OEMTEXT format.

@) The EnableMenultem function enables or disables the Paste command based
on whether the CF _TEXT or CF _OEMTEXT format is found.

You can paste from the clipboard when the user chooses the Paste command
from the Edit menu. To process the menu input and retrieve the text from the clip
board, add an IDM_PASTE case to the WM_COMMAND casein the window
function. Add the following statements immediately after the IDM_COPY case:

case IOM_PASTE:
~ if (0 pen C 1 i P boa r d (h W n d)) {

/* get text from the clipboard */

13-6 Guide to Programming

49 if C!ChClipOata = GetClipboardOataCCF_TEXT»)
CloseClipboardC);
break;

}

4D if C!ClpClipOata = GlobalLockChClipOata»)
OutOfMemory();
CloseClipboardC);
break;

C) hOC = GetOCChWnd);
TextOutChOC, 10, 10, lpClipOata);
ReleaseOCChWnd, hOC);
GlobalUnlockChClipOata);
CloseClipboardC);

break;

In this example:

o The Open Clipboard function opens the clipboard for the specified window
if it is not already open.

49 The GetClipboardData function retrieves the data handle for the text; if
there is no such data, the function retrieves zero. You should check this
handle before using it.

4D The GetClipboardData function returns a handle to global memory. Because
the clipboard format is CF _TEXT, the global memory is assumed to contain a
null-terminated ANSI string. This means the global memory can be locked by
using the GlobalLock function, and the contents can be displayed in the
client area by using the TextOut function.

C) So that you will be able to see that your application has copied the contents of
the clipboard, the TextOut function writes to the coordinates (10,10) in your
client area. You will need a display context to use TextOut, so the GetDC
function is required; and since you must release a display context immedi
ately after using it, the ReleaseDC function is also required.

This method of displaying the text in the client area is for illustration only. Since
the application does not save the content of the string, there is no way to repaint
the text if the client-area background is erased, such as during processing of a
WM_P AINT message. (The ClipText sample application, described later in this
chapter, demonstrates one method of saving text so that the client -area display
can be redrawn.)

You must not modify or delete the data you have retrieved from the clipboard.
You can examine it or make a copy of it, but you must not change it. To examine

The Clipboard 13-7

the data, you might need to lock the handle, as in this example; but you must
never leave a data handle locked. Unlock it immediately after using it.

Data handles returned by the GetClipboardData function are for temporary
use only. Handles belong to the clipboard, not to the application requesting data.
Accordingly, handles should not be freed and should be unlocked immediately
after they are used. The application should not rely on the handle remaining valid
indefinitely. In general, the application should copy the data associated with the
handle, then release it without changes.

The CloseClipboard function closes the clipboard; you should always close the
clipboard immediately after it has been used so that other applications can use it.
Before closing the clipboard, be sure you unlock the data retrieved by GetClip
boardData.

13.1.3 Pasting Bitmaps from the Clipboard
In addition to text, Windows lets you retrieve a bitmap from the clipboard and
display it in your client area. To retrieve and display a bitmap, use the same
technique as for pasting text, but make a few changes to accommodate bitmaps.

First, you must modify the WM_INITMENU case in the window function so that
it recognizes the CF _BITMAP format. After you change it, the WM_INIT
MENU case should look like this:

case WM_1N1TMENU:
if (wParam == GetMenu(hWnd))

if (OpenClipboard(hWnd))
if (1sClipboardFormatAvailable(CF_B1TMAP))

EnableMenu1tem(wParam, 10M_PASTE, MF_ENABLEO);
else

EnableMenu1tem(wParam, 10M_PASTE, MF_GRAYEO);
CloseClipboard();
return <TRUE);

else /* Clipboard is not avaiJable */.
return (FALSE);

Although retrieving a bitmap from the clipboard is as easy as retrieving text, dis
playing a bitmap requires more work than does displaying text. In general, you
need to do the following:

1. Retrieve the bitmap data handle from the clipboard. Bitmap data handles
from the clipboard are GDI bitmap handles (created by using functions such
as CreateBitmap).

2. Create a compatible display context and select the data handle into it.

13-8 Guide to Programming

3. Use the BitBIt function to copy the bitmap to the client area.

4. Release the bitmap handle from the current selection.

After you have changed the IDM_P ASTE case, it should look like this:

case 10M_PASTE:
if (OpenClipboard(hWnd»

1* get text from the clipboard *1

if (!(hClipOata = GetClipboardOata(CF_B1TMAP»)
CloseClipboard();
break;

}

if (!(lpClipOata = GlobalLock(hClipOata»)
OutOfMemory() ;
CloseClipboard();
break; -

}

hOC = GetOC(hWnd);
o hMemoryOC = CreateCompaUbleOC(hOC);
if (hMemoryOC != NULL) {

}

e. GetObject(hClipOata, sizeof(B1TMAP),
&PasteBitmap) ;

• hOldBitmap = SelectObject(hMemoryOC,
hClipOata);

if (!hOldBitmap) {

}

BitBlt(hOC, 10, 10,
PasteBitmap.bmWidth,
PasteBitmap.bmHeight,
hMemoryOC, 0, 0, SRCCOPY);

SelectObject(hMemo~yOC, hOldBitmap);

~ OeleteOC(hMemoryOC);

ReleaseDC(hWnd, hOC);
GlobalUnlock(hClipOata);
CloseClipboard();
GlobalUnlock(hText);

break;

In this example:

o The CreateCompatibleDC function returns a handle to a display context,
in memory, that is compatible with your computer's display. This means any
bitmaps that you select for this display context can be copied directly to the
client area. If CreateCompatibleDC fails (returns NULL), the bitmap cannot
be displayed.

The Clipboard 13-9

8 The GetObject function retrieves the width and height of the bitmap, as well
as a description of the bitmap format. It copies this information into the Paste
Bitmap structure, whose size is specified by the sizeof function. In this ex
ample, only the width and height are used and then only in the BitBIt
function.

8 The SelectObject function selects the bitmap into the compatible display con
text. If it fails (returns NULL), the bitmap cannot be displayed. SelectObject
may fail if the bitmap has a different format than that of the compatible dis
play context. This can happen, for example, if the bitmap was created for a
display on some other computer.

e The DeleteDC function removes the compatible display context. Before a dis
play context can be deleted, its original bitmap must be restored by using the
SelectObject function.

13.1.4 The Windows Clipboard Application
The Windows Clipboard application, CLIPBRD.EXE, lets the user view the con-

o tents of the clipboard; for this reason, it is also known as the "clipboard viewer."
It lists the names of all the formats for which handles (NULL or otherwise) exist
in the clipboard, and displays the contents of the clipboard in one of these for
mats.

The clipboard viewer can display all the standard data formats. If there are han
dles for more than one standard data format, the clipboard viewer displays only
one format, choosing from the following list, in decreasing order of priority:
CF _TEXT, CF _OEMTEXT, CF _METAFILEPICT, CF _BITMAP, CF _SYLK,
andCF_DIF.

For additional information on clipboard formats, see the Reference, Volume 1.

13.2 Using Special Clipboard Features
The clipboard provides several features that an application can use to improve
the usability of the clipboard and save itself some work. These features are as
follows:

• Applications can delay the formatting of data passed to the clipboard until the
data is needed. If the data format is complex and no other application is likely
to use that format, an application can save time by not formatting that data
until necessary.

• Applications can draw within the Clipboard application's client area. This
lets an application "display data formats that Clipboard does not know how
to display.

The following sections describe these features in more detail.

13-10 Guide to Programming

13.2.1 Rendering Data on Request
If an application uses many data fonnats, it can save fonnatting time by passing
NULL data handles to the SetClipboardData function instead of generating all
the data handles when a Cut or Copy command is used. The application does not
actually have to generate a data handle until another application requests a
handle by calling the GetClipboardData function.

When the application calls the GetClipboardData function with a request for a
fonnat for which a NULL data handle has been set, Windows sends a WM_REN
DERFORMAT message to the clipboard owner. When an application receives
this message, it can do the following:

1. Fonnat the data last copied to the clipboard (the wParam parameter of
WM_RENDERFORMAT specifies the fonnat being requested).

2. Allocate a global memory block and copy the fonnatted data to it.

3. Pass the global memory handle and the format number to the clipboard by
using the SetClipboardData function.

In order to accomplish these steps, the application needs to keep a record of the
last data copied to the clipboard. The application may get rid of this data when it
receives the WM_DESTROYCLIPBOARD message, which is sent to the clip
board owner whenever the clipboard is emptied by a call to the EmptyClip
board function.

13.2.2 Rendering Formats Before Termination
When an application is destroyed, it loses its knowledge of how to render data
it has copied to the clipboard. Accordingly, when the application that owns the
clipboard is being destroyed, Windows sends that application a special message,
WM_RENDERALLFORMATS. Upon receiving a WM_RENDERALLFOR
MATS message, an application should follow the steps described in Section
13.2.1, "Rendering Data on Request," for all fonnats that the application is
capable of generating.

13.2.3 Registering Private Formats
In addition, an application can create and use private fonnats, or even new public
ones. To create and use a new data-interchange fonnat, an application must do
the following:

1. Call the RegisterClipboardFormat function to register the name of the new
fonnat.

The Clipboard 13-11

2. Use the value returned by RegisterClipboardFormat as the code for the new
format when calling the SetClipboardData function.

Registering the format name ensures that the application is using a unique format
number. In addition, it allows the Clipboard application to display the correct
name of the data being held in the clipboard. For more information about display
ing private data types in Clipboard, see Section 13.2.4, "Controlling Data
Display in the Clipboard."

If two or more applications register formats with the same name, they will all re
ceive the same format code. This allows applications to create their own public
data types. If two or more applications register a format called WORKSHEET,
for example, they will all have the same format number when calling the SetClip
boardData and GetClipboardData functions, and will have a common basis for
transferring WORKSHEET data between them.

13.2.4 Controlling Data Display in the Clipboard
There are two reasons why an application might wish to control the display of
information in the Clipboard application: '

• The application may have a private data type that is difficult or impossible to
display in a meaningful way.

• The application may have a private data type that requires special knowledge
to display.

Using a Display Format for Private Data
You can use a display format to represent a private data format that would other
wise be difficult or impossible to display. The data associated with display for
mats are text, bitmaps, or metafile pictures that the clipboard viewer can display
as substitutes for the corresponding private data. To use a display format, you
copy both the private data and the display data to the clipboard. When the clip
board viewer chooses a format to display, it chooses the display format instead
of the private data.

There are three display formats: CF _DSPTEXT, CF _DSPBITMAP, and
CF _DSPMETAFILEPICT. The data associated with these formats are identical
to the text, bitmap, and metafile-picture formats, respectively. Since text, bit
maps, and metafile pictures are also standard formats, the clipboard viewer can
display them without help from the application.

The following description assumes that the application· has already followed the
steps described in Section 13.1.1, "Copying Text to the Clipboard," to take
ownership of the clipboard and set data handles.

13-12 Guide to Programming

To force the display of a private data type in a standard data fonnat, the applica
tion must take the following steps:

1. Open the clipboard for alteration by calling the Open Clipboard function.

2. Create a global handle that contains text, a bitmap, or a metafile picture,
specifying the infonnation that should be displayed in the clipboard viewer.

3. Set the handle to the clipboard by calling the SetClipboardData function.
The fonnat code passed should be CF _DSPTEXT if the handle is to text,
CF _DSPBITMAP if the handle is for a bitmap, and CF _DSPMETA
FILEPICT if it is for a metafile picture.

4. Signal that the application has finished altering the clipboard by calling the
CloseClipboard function.

Taking Full Control of the Clipboard-Viewer Display
An application can take complete control of the display and scrolling of infonna
tion in the clipboard viewer. This control is useful when the application has a
sophisticated private data type that only it knows how to display. Microsoft
Write uses this facility for displaying fonnatted text.

The following description assumes that the application has already followed the
steps described in Section 13.1.1, "Copying Text to the Clipboard," to take
ownership of the clipboard and set data handles.

To take control of the display of infonnation in the clipboard viewer:

1. Open the clipboard for alteration by calling the Open Clipboard function.

2. Call the SetClipboardData function, using CF _OWNERDISPLA Y as the
data fonnat, with a NULL handle.

3. Signal that the application has finished altering the clipboard by calling the
CloseClipboard function.

The clipboard owner will then receive special messages associated with the
display of infonnation in the clipboard viewer:

Message

WM_PAINTCLIPBOARD

WM_SIZECLIPBOARD

WM_ VSCROLLCLIPBOARD

Action

Paint the specified portion of the
window.

Take note of the window size change.

Scroll the window vertically.

The Clipboard 13-13

Message Action

WM_HSCROLLCLIPBOARD

WM_ASKCBFORMATNAME

Scroll the window horizontally.

Supply the name of the displayed
format.

For full descriptions of these messages, see the Reference, Volume 1.

Using the Clipboard-Viewer Chain
Chaining together clipboard-viewer windows provides a way for applications
to be notified whenever a change is made to the clipboard. The notification, in
the form of a WM_DRA WCLIPBOARD message, is passed down the viewer
chain whenever the CloseClipboard function is called. The recipient of the
WM_DRA WCLIPBOARD message must determine the nature of the change
(Empty, Set, etc.) by calling the EnumClipboardFormats function, the GetClip
boardData function, and other functions, as desired.

Any window that has made itself a link in the viewer chain must be prepared to
do the following:

1. Remove itself from the chain before it is destroyed.

2. Pass along WM_DRA WCLIPBOARD messages to the next link in the chain.

The code for this action looks like this:

case WM_DESTROY:
ChangeClipboardChain(hwnd, my_save_next);

1* rest of processing for WM_DESTROY *1

break;
case WM_DRAWCLIPBOARD:

if (my_save_next 1= NULL)
SendMessage(my_save_next, WM~DRAWCLIPBOARD, wParam, lParam);

1* rest of processing for WM_DRAWCLIPBOARD *1

break;

The my _save_next string is the value returned from the SetClipboardViewer
function. These clipboard-viewer chain actions should be the first steps taken by
the switch-statement branches that process the WM_DESTROY and
WM_DRA WCLIPBOARD messages.

13-14 Guide to Programming

13.3 A Sample Application: ClipText
This sample application illustrates how to copy and paste from the clipboard. To
create the ClipText application, copy and rename the source files of the Edit
Menu application, then make the following modifications:

1. Add new variables.

2. Modify the instance initialization code.

3. Add a WM_INITMENU case.

4. Modify the WM_COMMAND case to process the IDM_CUT, IDM_COPY,
and IDM_PASTE cases.

5. Add a WM_PAINT case.

6. Add the OutOfMe(Ilory function.

7. Compile and link the application.

This sample uses global memory to store the text to be copied. For a full explana
tion of global memory, see Chapter 15, "Memory Management."

NOTE Rather than typing the code provided in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

13.3.1 Add New Variables

HANDLE
char
HANDLE
LPSTR

You need to add new global variables to hold the handle of the client area text
string and its initial data. Add the following to the beginning of your C-Ianguage
source file:

hClientText = NULL; /* handle for current client-area text */
szInitialClientAreaText[] = "This program demonstrates ... "
hOata, hClipOata; /* handles to clip data */
lpOata, lpClipOata; /* pointers to clip data */

You also need to add variables for painting and clipboard data manipulation. Add
the following to the beginning of your Main WndProc main window function:

HOC hOC;
PAINTSTRUCT ps;
RECT rectClient;
LPSTR lpszText;

The Clipboard 13-15

13.3.2 Modify the Instance Initialization Code
When an instance of ClipText is started, it must allocate a global memory object
and fill it with an initial client-area text string. Add the following statements to
the instance initialization code:

if C!ChText = GlobalAllocCGMEM_MOVEABLE,
COWORO)sizeofCsz1nitialClientAreaText))))

OutOfMemoryC);
return C FALSE);

if C!ClpszText = GlobalLockChText)))
OutOfMemo ry C) ;
return C FALSE) ;

lstrcpyClpszText, szInitialClientAreaText);
GlobalUnlockChText);

13.3.3 Add a WM_INITMENU Case
You need to add a WM_INITMENU case to your window function to prepare
the Edit menu for pasting. In general, the Paste command should not be available
unless there is selected text in the clipboard to paste. Add the following state
ments to the window function:

case WM_IN1TMENU:
if CwParam == GetMenuChWnd)) {

if COpenClipboardChWnd)) {

else

if CIsClipboardFormatAvailableCCF_TEXT)
I I 1sClipboardFormatAvailableCCF_OEMTEXT))

EnableMenuItemCwParam, 10M_PASTE, MF_ENABLEO);
else

EnableMenultemCwParam, 10M_PASTE, MF_GRAYEO);
CloseClipboardC);
return (TRUE);

/* Clipboard is not available */
return CFALSE);

These statements process the WM_INITMENU message only if the specified
menu is the menu bar. The IsClipboardFormatA vailable function determines
whether text data is present on the clipboard. If it is, the EnableMenuItem func
tion enables the Paste command. Otherwise, the Paste command is disabled.

13-16 Guide to Programming

13.3.4 Modify the WM_COMMANO Case
You need to modify the IDM_CUT, IDM_COPY, and IDM_PASTE cases in the
WM_COMMAND case to process the Edit menu commands. The IDM_CUT
and IDM_ COpy cases must create a global memory block, fill it with text, and
copy the handle of the block to the clipboard, and the IDM_ CUT case must also
discard the current client-area text. The IDM_PASTE case must retrieve a handle
from the clipboard, use its contents to replace the current client-area text, and re
quest a client -area repaint.

Replace the existing IDM_CUT and IDM_COPY cases with the following state
ments:

case IOM_CUT:
case IOM_COPY:

if ChText != NULl) {

/* Allocate memory and copy the string to it */

if C! C hOata

}

= GlobalAllocCGMEM_MOVEABLE, GlobalSize ChText)))) {
OutOfMemoryC) ;
return (TRUE);

if C !ClpOata = GlobalLockChOata)))
Global FreeChOata);

OutOfMemoryC);
return (TRUE);

if C!ClpszText = GlobalLock ChText))) {
OutOfMemoryC);
return (TRUE);

}

lstrcpyClpOata, lpszText);
GlobalUnlockChOata);
GlobalUnlock ChText);

/* Clear the current contents of the clipboard, and set
* the data handle to the new string.
*/

if COpenClipboardChWnd))
EmptyClipboardC);
SetClipboardOataCCF_TEXT, hOata);
CloseClipboardC);

}

hOata = NULL;

if (wParam == 10M_CUT) {
GlobalFree (hText);
hText = NULL;

The Clipboard 13-17

EnableMenuItem(GetMenu (hWnd), 10M_CUT, Mf_GRAYEO);
EnableMenultem(GetMenu(hWnd), 10M_COPY, MF_GRAYEO);
InvalidateRect (hWnd, NULL, TRUE);
UpdateWindow (hWnd);

return (TRUE);

The GlobalAlIoc function allocates the global memory block used to pass text
data to the clipboard. The Istrcpy function copies the client-area text into the
block after the handle has been locked by the GlobalLock function. The handle
must be unlocked before copyjng the handle to the clipboard. The EmptyClip
board function is used to remove any existing data from the clipboard.

Replace the IDM_P AST-E case with the following statements:

case 10M_PASTE:
if (OpenClipboard(hWnd))

/* get text from the clipboard */

if (!(hClipOata = GetClipboardOata(CF_TEXT)))
CloseClipboard();
break;

if (hText != NULL) {
GlobalFree(hText);

if (!(hText = GlobalAlloc(GMEM_MOVEABLE

OutOfMemory();
CloseClipboard();
break;

, GlobalSize(hClipOata))))

if (!(lpClipOata = GlobalLock(hClipOata)))
OutOfMemory () ;
CloseClipboard();
break;

if (!(lpszText = GlobalLock(hText)))
OutOfMemory();
CloseClipboard();
break;

}

lstrcpy(lpszText,lpClipOata);
GlobalUnlock(hClipOata);
CloseClipboard();

13-18 Guide to Programming

else

break;

GlobalUnlock(hText);
EnableMenuItem(GetMenuChWnd), rOM_CUT, MF_ENABLEO);
EnableMenuItem(GetMenu(hWnd), 10M_COPY, MF_ENABLEO);

/* copy text to the application window */

InvalidateRect(hWnd, NULL, TRUE);
UpdateWindow(hWnd);
return <TRUE);

return (FALSE);

The GetClipboardData function returns a handle to a global memory block. The
GlobalLock function locks this handle, returning the block address that is used
to make a copy of the new client -area text.

13.3.5 Add a WM_PAINT Case
A WM_PAINT case is necessary in order to draw the current client-area text on
the screen when the window has been minimized, resized, or overlaid. Add the
following case to the window procedure:

case WM_PAINT:
hOC = BeginPaint (hWnd, &ps);
if (hText != NULl) {

}

if (!(lpszText = GlobalLock (hText») {
OutOfMemory();

else {
GetClientRect (hWnd, &rectClient);
OrawText (hOC, lpszText, -1, &rectClient

, OT_EXTERNALLEAOING I OT_NOPREFIX I OT_WOROBREAK);
GlobalUnlock (hText);

EndPaint (hWnd, &ps);
break;

13.3.6 Add the OutOfMemory Function
You need to add a function that displays a message box when the application is
out of memory. Add the following function to the application source file:

void OutOfMemory(void)
{

MessageBox(
Get Focus () ,
"Out of Memory",
NULL,
MB_ICONHAND I MB_SYSTEMMODAL);

return;

The Clipboard 13-19

In the application's include file, add a forward reference to the OutOfMemory
function:

void OutOfMemory(void);

13.3.7 Compile and Link

13.4 Summary

No changes are required to the make file to recompile and link the ClipText appli
cation. After compiling and linking it, start Windows, the Clipboard application,
and ClipText. Then, choose the Copy command in the Edit menu. You should
see something like Figure 13.1:

Text in the clipboard

"""I Clipboard 1·1· 1j d . Cf 1j
File fdit Qisplay Help r ext paste mto Ip ext

L! '::, from the clipboard.
This text was first typed into I

Notepad. thenl ~~'iijjiiiiiliil_~~ clipboard. FroWU-- .• I ·1·
it was pasted i file fdit Help I
using ClipText rrhis text was first typed into I

Notepad. then copied to the
clipboard. From the clipboard.
it was pasted into ClipText
using ClipText's Paste command.

1:r:+~'I-':I:::i::1

Figure 13.1 Pasting Text into ClipText from the Clipboard

This chapter explained how to use the clipboard to exchange data with other
applications. The clipboard is an area in memory in which an application can
store data handles; other applications can then retrieve the associated data. The
application can provide the same data to the clipboard in several different for
mats at once; this helps 'to ensure that the data will be compatible with many
different applications.

13-20 Guide to Programming

A simple use of the clipboard is to copy text or bitmaps to and from it. More
advanced uses of the clipboard include controlling the clipboard data display and
registering private data formats.

See the following for more information about topics related to the clipboard:

Topic

Display contexts

Working with bitmaps

Handling memory

Exchanging data using the
Windows DDE ,message
passing protocol instead of
the clipboard

Clipboard-management
functions

Clipboard formats

Clipboard file formats

Reference

Guide to Programming: Chapter 3, "Output
to a Window"

Guide to Programming: Chapter 11,
"Bitmaps"

Guide to Programming: Chapter 15,
"Memory Management," and Chapter 16,
"More Memory Management"

Guide to Programming: Chapter 22,
"Dynamic Data Exchange"

Reference, Volume 1: Chapter 1, "Window
Manager Interface Functions"

Reference, Volume 2: Chapter 4, "Functions
Directory"

Reference, Volume 2: Chapter 9, "File
Formats"

Part

3
Advanced
Programming Topics

The Microsoft Windows environment provides many standard features that
make it easy to create an attractive, easy-to-use application. However, the differ
ence between a good application and a great application is that, while a good
application simply works, a great application works fast and efficiently, has addi
tional user-interface features such as color and attractive fonts, and provides the
power and flexibility for the user to accomplish large or complicated tasks.

The chapters in Part 2 provided a good foundation for you to get started with
your own application development. Once you've been programming in Windows
for a while, you will probably want to expand or refine your application-for ex
ample, use memory more efficiently, or provide more powerful printing capabili
ties.

Part 3 explores some more advanced Windows programming topics. It assumes
that you've read Parts 1 and 2 of this guide, and are familiar with the Windows
environment. Each chapter addresses a different topic. Because the sample appli
cations for Part 3 are more complex than those in Part 2, the chapters do not in
clude the complete code for each sample. You can find the complete source files
for each sample application on the Sample Source Code disk provided with the
SDK.

CHAPTERS
14 C and Assembly Language
15 Memory Management
16 More Memory Management
17 Print Settings
18 Fonts
19 Color Palettes
20 Dynamic-Link Libraries
21 Multiple Document Interface
22 Dynamic Data Exchange

Chapter

14
C and Assembly Language

Parts 1 and 2 introduced the Microsoft Windows functions which you use in the
context of a c- or assembly-language program to create a Windows application.
The focus in these parts was on the Windows-specific elements of a Windows
application.

A complete Windows application is not likely to rely exclusively on these
Windows-specific functions, however. Instead, your application will probably
use standard C run-time library routines and your own routines, which will be
called back by Windows or by other modules in your application. It is important,
therefore, for you to know how to incorporate these routines properly in your
application. '

This chapter covers the following topics:

• Choosing a memory model

• Using NULL

• Using command-line arguments and the DOS environment

• Writing exported functions

• Using C run-time functions

• Writing assembly-language code

14.1 Choosing a Memory Model
Like any DOS application, a Windows application can contain one or more code
segments and one or more data segments, depending on the memory model you
select when compiling the source-code modules of your application. Chapter 16,
"More Memory Management," discusses in detail the memory-model options
that are available to you.

The memory model you choose will affect how efficiently your application will
run in the Windows environment. In most cases, the best model is the mixed
model. When using the mixed model, you compile your modules to have default
small- or medium-model settings and to name the data segments. You then over
ride these default settings by using explicit FAR calls (in coded segments with
the small-model settings) or explicit NEAR calls (in segments with the medium
model settings) to call functions in other segments.

14-2 Guide to Programming

The advantages of the mixed model are:

• Near calls reduce the amount of code generated by the compiler and make the
function calls execute more quickly.

• Compiling the modules with named code segments partitions the code
segments into smaller segments, which are easier for Windows to manage as
it moves the code segments in memory.

To create an application using the mixed model (with the small-model default set
tings), follow these steps:

1. Provide prototypes for all functions in your source code that are called from
outside the code segment that defines them. For the sake of convenience, you
can place these prototypes in a header (.H) file. You must prototype all func
tion calls made by one data segment to another as far calls using the FAR key
word. The following is an example of a function prototype for a far call:

int FAR MyCalculation(int,int);

2. Compile your C modules using the -AS switch to create the application using
the small memory model.

3. Compile your C modules using the -NT switch to name the code segments of
your application.

See Tools for more information on these and other compiler switches.

Creating an application using the mixed model with medium-model default
settings is similar, except that you would explicitly declare as NEAR those func
tions which are called only within the data segment that defines them, and com
pile the modules using the -AM switch to produce the medium-model default
settings.

14.2 Using NULL
The symbolic constant NULL has different definitions for Windows and the
Microsoft C Compiler version 6.0. The WINDOWS.H header file defines NULL
as:

ffdefine NULL (3

On the other hand, C 6.0 library header files (such as STDDEF.H) define NULL
as:

ffifndef NU LL
ffdefine NULL ((void *)0)
ffendif

C and Assembly Language 14-3

To avoid compiler warnings, you should use NULL only for pointers, such as the
LPSTR parameters in Windows functions. You should not use NULL for varia
bles that you declare as primary data types, such as int, WORD, HANDLE, and
so on. WINDOWS.H defines HANDLE as a WORD.

You can avoid such compiler warnings by making sure that your program in
cludes WINDOWS.H before any header file from the C run-time library that
defines NULL, as shown in the following example:

#include <WINDOWS.H>
#include <STDDEF.H>

Because the header files in the C run-time library do not define NULL if it has
already been defined, the preprocessor does not override the initial definition in
WINDOWS.H.

14.3 Using Command-Line Arguments and the DOS
Environment

Your application can obtain the command-line arguments used when the user
started the application, as well as the current DOS environment.

When a Windows application executes, the Windows start-up routine copies the
command-line arguments to the argc and argv variables. Like their counter
parts in a standard C program, these variables represent the number of arguments
and an array of strings containing the actual arguments. In addition, the environ
variable receives a pointer to an array of strings that contain the current DOS
environment when the application was started.

To use these variables, you must declare them as external to your application, as
shown:

extern int _argc;
extern char * _argv[];
extern char * _environ[];

If you want, you can also obtain the command-line parameters by parsing the
lpCommandLine parameter, which Windows passes to your application's Win
Main function.

If your application does not require access to the command-line arguments or the
DOS environment, you can reduce the size of your heap, and code by eliminating
C run-time initialization code. Section 14.5.10, "Eliminating C Run-Time Start
up Code," explains how to do this.

Dynamic-link libraries (DLLs) cannot access the argc, argv, and environ vari
ables. Instead, to obtain the command-line arguments, the DLL must parse the
lpCommandLine parameter, which Windows passes to the LibEntry routine. See
Chapter 20, "Dynamic-Link Libraries," for more information on LibEntry.

14-4 Guide to Programming

Since a DLL does not have access to the environ variable, it must call the
GetDOSEnvironment function to retrieve the environment string.

14.4 Writing Exported Functions
Normally, the functions you define in your application do not require any special
treatment. There are two exceptions to this rule, however:

• Functions in a DLL that are called outside of the library

• Callback functions

Refer to Chapter 20, "Dynamic-Link Libraries," for information on writing func
tions in a DLL.

Callback functions are functions in your application that are called by Windows,
not your application. The following lists the common types of callback functions:

• WinMain. This is the entry point for your application.

• Application window procedures. These functions process messages sent to
the window.

• Application dialog procedures. These functions process messages sent to the
dialog box.

• Enumeration callback procedures. These functions handle the results of
Windows enumeration functions.

• Memory-notification procedures. These functions are called by Windows to
notify your application that a block of memory is about to be discarded.

• Window-hook procedures (filters). These functions process messages sent to
the windows of other applications. Most window-hook callback functions
must be in a library.

14.4. 1 Crea"ling a Callback Procedure
For all callback functions, you must follow these steps:

1. Define the callback procedure using the PASCAL key word. This causes the
function parameters to be pushed onto the stack "from right to left," just like
standard Windows functions.

2. Define the callback procedure using the FAR key word. This allows the func
tion to be called outside the code segment that contains the function. This rule
does not apply to the WinMain function.

C and Assembly Language 14-5

3. Compile the module containing the callback procedure with the -Gw switch
(not the -GW switch). This adds the proper Windows prolog and epilog code
to the function, ensuring that the currect data segment is used by the function
when it executes.

4. List the callback procedure in the EXPORTS statement of the application's
module-definition (.DEF) file. This defines the ordinal value and attributes of
the callback function.

With the exception of the WinMain function, your application passes the pro
cedure-instance address of the callback procedure to a Windows function to tell
Windows when it should execute the callback procedure. For example, when you
create a dialog box, one of the parameters of the function that creates the dialog
box is the procedure-instance address of the function that will handle the mes
sages sent to the dialog box.

To create aprocedure-instance address of a function, call the MakeProclnstance
function. This function returns a procedure-instance address that points to prolog
code that is executed before the function is executed. The prolog binds the data
segment of the instance of your application to the callback function. Thus, when
the function is executed, it has access to variables and data in the data segment of
the application instance. You do not need to create a procedure-instance address
for the WinMain function or any window procedure that your application
registers with the RegisterClass function.

When your application no longer needs the callback procedure (that is, when you
are certain Windows will no longer call it), you should call FreeProclnstance to
free the function from the data segment.

14.4.2 Creating the WinMain Function
Every Windows application must have a WinMain function; like the main func
tion of a standard C-Ianguage program, the WinMain function in effect serves as
the entry point for your application. It contains statements and Windows function
calls that create windows and read and dispatch input intended for the applica
tion. The function definition has the following form:

int PASCAL WinMainChlnst,hPrevlnst,lpCmdLine,nCmdShow)
HANDLE hlnst;
HANDLE hPrevlnst;
LPSTR lpCmdLine;
int nCmdShow;
{

14-6 Guide to Programming

Like all Windows functions, WinMain is declared with the PASCAL key word.
As a result, your definition of WinMain must contain all four parameters, even if
your application does not use them all.

Even though Windows calls it directly, WinMain must not be declared with the
FAR key word or exported in the definition file because it is called from start-up
code added by the linker to the same data segment. WinMain is implicitly de
clared NEAR or FAR, depending on the memory model that you use to compile
the module that defines WinMain. This memory model must be consistent with
the memory model of the C run-time link library containing the start-up code
which calls WinMain.

14.5 Using C Run-Time Functions
The SDK contains special versions of the C-Ianguage run-time libraries that
differ from the equivalent libraries supplied with the Microsoft C Optimizing
Compiler. The following sections describe other ways in which the Windows C
run-time libraries differ from those supplied with the C Compiler.

14.5.1 "Sing Windows C Libraries
You can use the Windows C run-time libraries with the Microsoft C Compiler,
versions 5.1 and later. The Windows-specific versions of the C run-time libraries
are adapted for the Windows environment. The Windows prolog and epilog have
been added to all C run-time routines that require them. This prevents problems
associated with code-segment movement in low-memory situations. Many C run
time routines have been rewritten to avoid the assumption that DS equals SS,
which is not true for Windows DLLs. See Chapter 20, "Dynamic-Link Librar
ies," for information on calling C run-time library functions that assume DS
equals SS from a DLL.

The Windows SDK contains two sets of run-time libraries. One set is linked with
Windows applications, while the other set is linked with Windows DLLs. These
libraries contain application- or DLL-start-up code as well as all C run-time
routines, including memory model-dependent replacement routines. As a result,
the SDK requires only one import library, LIBW.LIB. This import library is
memory-model independent.

The SDK 3.0 INSTALL program always names the Windows versions of the C
run-time libraries according to the following naming convention:

{SIMICIL}{LIBIDLL}C{AIE}W.LIB

S, M, C, and L represent small, medium, compact, or large memory modellibrar
ies, respectively. LIB and DLL indicate libraries intended to be linked with appli
cation and DLL modules, respectively. A and E indicate alternate math or

C and Assembly Language 14-7

emulated math libraries. Because of this naming convention, you must explicitly
name the Windows version of the C run-time library when linking your applica
tion. The following shows an example of using the LINK command to link an
application module to a Windows C run-time library:

LINK GENERIC, , , INOD SLIBCEW LIBW, GENERIC.DEF

The /NOD (no default directory search) option is recommended to prevent LINK
from searching for a C run-time function in a DOS version of the C run-time li
brary if it does not find the function in the Windows version of the library. When
you use this option, your application will not compile if you inadvertently called
a C run-time function that is not supported by the Windows C run-time libraries.

The SDK also contains Windows-specific versions of the C run-time header files.
These files help you detect during compilation whether you have inadvertently
called a C run-time routine that is not supported in the Windows environment. To
perform this check, add the following directive to your module header file prior
to any #include directives for the C run-time header files:

#define _WINDOWS

The set of C run-time routines that support calling from Windows applications in
cludes a subset that support calling from Windows DLLs. The Windows-specific
header files identify this subset. If you are creating a DLL, you should include
both of these directives before any #include directives for the C run-time header
files as shown:

#define _WINDOWS
#define _WINDLL

14.5.2 Allocating Memory
Although the Windows versions of the C run-time libraries supply replacements
for such memory -allocation functions as malloe and free, you should instead use
Windows-specific memory-allocation functions. For example, while malloe allo
cates a fixed memory object in the local heap, the Windows LoealAlloe function
allows you to define the object as moveable in the local heap.

14.5.3 Manipulating Strings
You can use the C run-time string functions to manipulate strings. However, in
the small and medium memory models, these functions do not handle strings de
clared as far pointers or arrays, such as a dynamically allocated global memory
object created by the GlobalAlIoe function. The C run-time buffer-manipulation
routines (such as memepy and memset) are subject to the same restrictions in the
small and medium models.

14-8 Guide to Programming

Windows provides the following functions for manipulating far strings:

• Istrcat

• lstrcmp

• lstrcmpi

• lstrcpy

• lstrlen

To compare or test characters in the ANSI character set, use the following
functions instead of the equivalent C run-time functions:

• AnsiLower

• AnsiLowerBuff

• AnsiNext

• AnsiPrev

• AnsiUpperBuff

• IsChar Alpha

• IsChar AlphaNumeric

• IsCharLower

• IsCharUpper

Windows uses a different collating sequence than do the C run-time functions.

Windows also provides the wsprintf and wvsprintf functions as replacements
for the C run-time sprintf and vsprintffunctions. The following are advantages
of the Windows versions:

• The Windows versions use far buffers rather than near buffers.

• The Windows versions are much smaller.

• The Windows versions allow you to eliminate the C start-up code if your
application does not need other C run-time functions. See Section 14.5.10,
"Eliminating C Run-Time Start-up Code," for more information.

C and Assembly Language 14-9

However, the Windows versions support only a subset of the string format speci
fications. In particular, floating-point formats, pointer format and octal base are
not supported.

IMPORTANT If you replace a sprintf or vsprintffunction call with the equivalent Windows
function, be sure to type-cast any string passed as a %s argument to a far pointer:

char buffer[100];
char *strl; /* near pointer in small or medium model */

sprintfCbuffer,"Strl=%s",strl); /* Valid */
wsprintfCbuffer,"Strl=%s",CLPSTR)strl); /* Valid */
wsprintCbuffer,"Strl=%s",strl); /* INVALID */

14.5.4 Using File Input and Output
Use the Windows OpenFile function to create, open, reopen, or delete a file.
OpenFile returns a DOS file handle that you can use with such C run-time func
tions as read, write, lseek, and close. If you compile your C module using the
small or medium memory model, the buffer parameter of read and write is a
near pointer (char near *). If you want to read to or write from a buffer declared
in your application as a far pointer or array, use the Windows functions _lread
and _lwrite. There are particularly useful for reading into or writing out of dy
namically allocated global memory objects. You can also use buffered file input
and output C routines, such as fop en, fread, and fwrite.

You can also use the Windows functions _lopen and _lcreat to create or open a
file.

Since Windows is a multitasking environment, other applications may attempt
to access the same file that your application is reading or writing. You can con
trol access by other applications when your application opens a file by setting the
appropriate share bit in the wStyle parameter. You should leave files open only
while you are actually reading and writing from them unless your application
needs to control access to the file at other times.

NOTE If a DLL opens a file, the file handle belongs to the application that called the OLL. If
the DLL opens more than one file on behalf of multiple applications, it is possible that the
same file handle value will be assigned more than once by DOS.

14-10 Guide to Programming

14.5.5 Using Console Input and Output
Your application must share the system console with other applications. Con
sequently, the Windows versions of the C run-time libraries exclude the follow-
ing C run-time console input and output functions: .

• cgets

• cprintf

• cputs

• getch

• getche

• kbhit

• putch

• ungetch

Instead, your application should accept console input through the WM_KEY
DOWN, WM_KEYUP, and WM_CHAR messages to your window and dialog
procedures. If you require more advanced techniques, you can call the Peek
Message function to look ahead at keyboard input, or you can install a keyboard
filter function in a DLL by calling the SetWindowsHook function.

14.5.6 Using Graphics Functions
The Windows graphics device interface (ODI) provides device-independent
graphics functions. Consequently, the C run-time library functions are not in
cluded in the Windows versions of the C run-time libraries.

14.5.7 Using Floating-Point Arithmetic
If your application uses floating-point variables, you must link your application
using the -FPi, -FPc, or -FPa options on the LINK command line.

An application compiled with the -FPi option will use an 80x87 math coproces
sor if it is present at run time. Otherwise, the application will use a floating-point
emulator.

An application compiled with the -FPc option compiles the same as an applica
tion compiled with the -FPi option, except that it can be linked with the alternate
math library instead, if desired.

An application compiled with the -FPa option uses an alternative math library
if no coprocessor is present at run time. This is the smallest and fastest option

C and Assembly Language 14-11

available without a coprocessor, but this option sacrifices some accuracy for
speed, relative to the emulator library.

If you use the -FPi or -FPc option, you must include WIN87EM.LIB on the
LINK command line, as shown:

LINK SAMPLE, , , SLIBCEW WIN87EM LIBW, SAMPLE.DEF

The Windows version 3.0 retail SETUP program automatically installs
WIN87EM.DLL in the user's Windows system directory.

You can use the SIGFPE (signal floating-point error) option of the C run-time
signal function to trap floating-point run-time errors, such as overflow and divi
sion by zero. To do so, you must prepare the address of your error-handling func
tion by calling MakeProcInstance.

Non-Windows applications typically use the C run-time setjrnp and longjrnp
functions to isolate floating-point exceptions. A Windows application should call
the Windows Catch and Throw functions instead.

14.5.8 Executing Other Applications
Windows provides the WinExec and LoadModule functions to allow your
application to execute another application. LoadModule executes Windows
applications only, while WinExec executes both Windows and non-Windows
applications. Your application should call these functions instead of the C run
time exec and spawn family of functions. Like the spawn function family,
WinExec and LoadModule are nonpreemptive; that is, they allow your applica
tion to continue running while the spawned application executes.

WinExec provides a simple interface for spawning a child process. LoadModule
is more difficult to use because it requires a parameter block for the application
you are executing, but this also allows you greater control over the environment
in which the application executes.

14.5.9 USing BIOS and MS-OOS Interface Functions
Do not use the C run-time BIOS interface routines with Windows.

You can use the C run-time INT 21H routines intdos, intdosx and some of the
dos functions such as dos getdrive. You can also use the int86 and int86x

routines to invoke interrupts-other than INT 21H. However, you should use inter
rupts with extreme caution and only if necessary.

14.5.10 Eliminating C Run-Time Start-up Code
Normally when you link a Windows application or DLL, the linker adds C run
time start-up code to the _TEXT code segment. For Windows applications (but

14-12 Guide 10 Programming

not DLLs), this start-up code in turn allocates memory for C run-time variables
from the application's automatic data segment.

The Windows version 3.0 SDK allows you to eliminate this code and data over
head required by the C run-time libraries. You can eliminate this overhead if all
of the following conditions are true:

• Your application or DLL does not explicitly call any C run-time routines.

• Your application does not use the _argc or _argv command-line arguments
or the environ variable. See Section 14.3, "Using Command-Line Argu
ments and the DOS Environment" for more information on how to retrieve
the command line and the DOS environment. DLLs cannot use argc, argv,
and _environ in any case. - -

• Your application or DLL does not implicitly call any C run-time routines,
such as to perform stack checking or long division. Stack checking is enabled
by default, but you can disable it use the C Compiler -Gs option.

Eliminating C Run-Time Start-Up Code from a Windows
Application
To eliminate the C run-time start-up code from a Windows application, link the
library named xNOCRT.LIB instead of the usual C run-time library xLIB-
CA W.LIB or xLIBCEW.LIB (the x placeholder stands for the memory-model
specifier S, M, L, or C).

The following example shows the linker command line for an application named
SAMPLE that does not make explicit or implicit calls to C run-time functions:

link /nod sample, , , snocrt libw, sample.def

The xNOCRT.LIB library includes the Windows start-up code that ultimately
calls your application's WinMain function.

If you link your application using xNOCRT.LIB instead of xLIBCA W.LIB or
xLIBCEW.LIB and the linker reports unresolved external symbols that do not
belong to your application, your application is probably calling C run-time
routines implicitly. In this case, you can still elminate C run-time start-up code
and data required for explicit C run-time calls and for the use of the _argc,

argv, and environ variables. To do this, include xNOCRT.LIB on your linker
command line before (rather than instead of) xLIBCEW.LIB or xLIBCA W.LIB.
You must also specify the linker /NOE option.

The following example shows the linker command line for Sample if it makes
implicit C run-time calls, but not explicit C run-time calls:

link /nod /noe sample, ,., snocrt slibcew libw, sample.def

C and Assembly Language 14-13

Eliminating CRun-Time Start-Up Code from a Windows
OLL
To eliminate the C run-time start-up code from a Windows DLL, link the static
library xNOCRTD.LIB in place of the usual C run-time library xDLLCA W.LIB
or xDLLCEW.LIB.

The following example shows the linker command line for a DLL named
SAMPDLL that does not make explicit or implicit calls to C run-time functions:

link Inod sampdll libentry, sampdll.dll, , snocrtd libw, sampdll.def

The xNOCRTD.LIB library includes the Windows start-up code that ultimately
calls your DLL's LibMain routine.

As with an application, if the linker reports unresolved external references that
do not belong to your DLL, the DLL is probably making implicit C run-time
calls. In this case, you can eliminate the start-up code required for explicit C
run-time calls by linking xNOCRTD.LIB along with xDLLCAW.LIB or
xDLLCEW.LIB, as shown:

link Inod Inoe sampdll libentry, sampdll.dll, ,snocrtd sdllcew,
sampdll . def

Be sure to include the required /NOE option.

14.6 Writing Assembly-Language Code
Assembly-language Windows applications are highly structured assembly
language programs that use high-level-language calling conventions as well as
Windows functions, data types, and programming conventions. Although you
assemble assembly-language Windows programs using the Microsoft Macro
Assembler, the goal is to generate object files that are similar to object files
generated using the C Compiler. The following is a list of guidelines designed to
help you meet this goal and create assembly-language Windows applications:

1. Include the CMACROS.INC file in the application source files. This file con
tains high-level-language macros that define the segments, programming
models, function interfaces, and data types needed to create Windows applica
tions. See the Reference, Volume 2 for more information on Windows as
sembly-language macros.

2. Define the programming model, setting one of the options memS, memM,
memC, or memL to 1. This option must be set before you specify the state
ment that includes the CMACROS.INC file.

14-14 Guide to Programming

3. Set the calling convention to Pascal by setting the ?PLM option to 1.
This option must be set before you specify the statement that includes the
CMACROS.lNC file. Pascal calling conventions are required only for func
tions that are called by Windows.

4. Set the Windows prolog and epilog option ?WIN to 1. This option must be
set before you specify the statement that includes the CMACROS.lNC file.
This option is required only for callback functions (or for exported functions
in Windows libraries).

5. Create the application entry point, WinMain, and make sure that it is declared
a public function. It should have the following form:

cProc WinMain, <PUBLIC>, <si ,dD
parmW hlnstance
parmW hPrevlnstance
parmD lpCmdLine
parmW nCmdShow

cBegin WinMain

cEnd WinMain

The WinMain function should be defined within the standard code segment
CODE.

6. Make sure that your callback functions are declared:

cProc TestWndProc, <FAR,PUBLIC>, <si ,dD
parmW hWnd
parmW message
parmW wParam
parmD lParam

cBegin TestWndProc

cEnd TestWndProc

Callback functions must be defined within a code segment.

7. Link your application with the appropriate C-Ianguage library for Windows
and C run-time libraries. To link properly, you might need to add an external
definition for the absolute symbol __ acrtused in your application source file.

NOTE All Windows functions destroy all registers except DI, SI, BP, and DS.

C and Assembly Language 14-15

14.6.1 Modifying the Interrupt Flag
Windows in 386 enhanced mode runs at I/O Privilege Level 0 (lOPLO). At
10PLO, the POPF and IRET instructions will not change the state of the inter
rupt flag. (Other flags will still be saved and restored.) This means, for example,
that the following code will leave interrupts disabled upon completion:

pushf
eli

popf

; this is no longer valid code

; will leave interrupts disabled

In this 10PLO environment, STI and eLI are the only instructions that will
change the interrupt flag. Upon exiting a critical section of code in which you
require interrupts to be disabled, you cannot rely on the POPF instruction to re
store the state of the interrupt flag. Instead, you should explicitly set the interrupt
flag upon examination to its saved value (saved by a previous PUSHF). The fol
lowing code illustrates the proper method for restoring the interrupt flag:

SkipSTI:

pushf ; this code illustrates the proper technique
eli

pop ax
test ah,2
jz SkipSTI
sti

If you have a software interrupt hook which calls the next interrupt handler in the
chain, you similarly cannot rely on the IRET of the next interrupt handler to re
turn the state of the interrupt flag. The following code is incorrect:

My_SW_Int_Hook: ; the following is incorrect
sti

pushf ; simulate interrupt call with a pushf
cli and a cli

14-16 Guide to Programming

call [Next_Handler_In_ChainJ

i ret

; the IRET of the next interrupt handler will not restore the
; interrupt flag, so it may be left cleared (interrupts disabled)

The proper technique is to place a STI instruction immediately after the call to
the next interrupt handler, to once again enable interrupts in case the next inter
rupt handler left interrupts disabled. This proper technique is illustrated here:

My _SW_I nt_Hook: ; the fall owi ngi s correct
s t i

pushf ; simulate interrupt call with a pushf
cli ; and a cli
call [Next_Handler_In_ChainJ
sti ; enable interrupts again, in case next handler ~isabled them

i ret

14.6.2 Writing Exported Functions in Assembly Language
When you write an exported function in assembly language, do not begin the
function with the following code:

mov ax,xxxx

In this example, xxxx is any constant value.

This code at the beginning of an exported function is identical to the beginning
of a library code segment that has been cached in extended memory by Windows
running in real mode. When Windows attempts to reload the code segment, it as
sumes that the constant value is the address of the library's data segment and
fixes up the constant value to the new address of the data segment.

To ensure that Windows does not treat your code segment as a cached library
segment, simply precede the MOV AX instruction with a NOP instruction, as
shown:

nop
mov ax,xxxx

C and Assembly Language 14-17

14.6.3 Using the ES Register
You must take special care when using the ES register in an assembly-language
program. Under certain circumstances, a selector that points to a discarded data
object in the ES register can cause your application to produce a general-protec
tion (OP) fault when running in standard mode or 386 enhanced mode. Also, a
rare combination of circumstances can cause Windows to enter an infinite loop.

A OP fault occurs when a program pops the ES stack and the selector in the ES
register refers to a segment that has been discarded.

For example, in the following code sample, ES refers to a globally allocated
memory object. Freeing the object invalidates the selector that was temporarily
pushed onto the stack.

push es

cCall Global Free <es>

pop es

Your program does not have to discard a segment explicitly for it to be dis
carded. The following sample shows how a segment can be indirectly discarded:

push es ; ES refers to a discardable data segment

ca11 far Procl ; Procl directly or indirectly causes the memory
; object pOinted to by ES to be discarded

pop es

Windows handles code segment faults in standard and 386 enhanced modes. It
does not handle data segment faults however, so this example would result in a
OP fault.

An unusual situation can arise that puts Windows in an infinite loop when the ES
register holds the selector to a discardable code segment. In such cases, you
should clear it before making a call from one discardable segment to another.

14-18 Guide to Programming

14.7 Summary

The following sample shows how to make such a call:

moves, _CODESEGI

xor ax, ax
moves, ax
call far Procl

; CODESEGI is discardable

This sample clears the ES register before
calling from a discardable segment to a
discardable segment

If you fail to clear the ES register in this situation, the Windows segment fault
handler can enter an infinite loop discarding and reloading the three discardable
code segments when memory is low. During this process, the ES stack is pushed
and popped, forcing CODESEG 1 to be unnecessarily reloaded when the "code
fence" only has room for the other two segments.

This chapter discussed how to write a Windows application using the C and
assembly programming languages. It explained how to choose the appropriate
memory model for your application, how to use the NULL constant in your appli
cation, and how to make command-line arguments and DOS environment varia
bles available to your application. This chapter also described how to write
exported functions, and explained special considerations for writing applications
using C run-time functions and assembly language.

For more information on topics related to creating Windows applications using
the C and assembly languages, see the following:

Topic

Managing memory

Creating dynamic-link
libraries

Windows assembly
language macros

Compiling and linking
applications

Reference

Guide to Programming: Chapter 15, "Memory
Management," and Chapter 16, "More Memory
Management"

Guide to Programming: Chapter 20, "Dynamic
Link Libraries"

Reference, Volume 2: Chapter 13, "Assembly
Language Macros Overview," and Chapter 14,
"Assembly-Language Macros Directory"

Tools: Chapter 1, "Compiling Applications: The C
Compiler," and Chapter 2, "Linking Applications:
The Linker"

Chapter

15
Memory Management

All applications must use memory in order to run. Because Microsoft Windows
is a multitasking system, several applications may use memory simultaneously.
Windows manages the available memory to make sure all applications have
access to it, and to make the use of memory as efficient as possible.

This chapter provides a brief introduction to the Microsoft Windows memory
management system.

This chapter covers the following topics:

• U sing memory in the Windows environment

• Using code and data segments efficiently

This chapter also explains how to build a sample application, Memory, that
illustrates these concepts.

15.1 USing Memory
The Windows memory-management system lets your application allocate blocks
of memory. You can allocate blocks of memory from either the global or the
local heap. The global heap is a pool of free memory available to all applications.
The local heap is a pool of free memory available to just your application. In
managing the system memory, Windows also manages the code and data
segments of your application.

In some memory-management systems, the memory you allocate remains fixed
at a specific memory location until you free it. In Windows, allocated memory
can be also be moveable and discardable. A moveable memory block does not
have a fixed address; Windows can move it at any time to a new address.
Moveable memory blocks let Windows make the best use of free memory. For
example, if a moveable memory block separates two free blocks of memory,
Windows can move the moveable block to combine the free blocks into one con
tiguous block. A discardable memory block is similar to moveable memory in
that windows can move it, but Windows can also reallocate a discardable block
to zero length if it needs the space to satisfy an allocation request. Reallocating a
memory block to zero length destroys the data the block contains, but an applica
tion always has the option of reloading the discarded data whenever it is needed.

15-2 Guide 10 Programming

When you allocate a memory block, you receive a handle, rather than a pointer,
to that memory block. The handie identifies the allocated block. You use it to
retrieve the block's current address when you need to access the memory.

To access a memory block, you lock the memory handle. This temporarily fixes
the memory block and returns a pointer to its beginning. While a memory handle
is locked, Windows cannot move or discard the block. Therefore, after you have
finished using the block, you should unlock the handle as soon as possible. Keep
ing a memory handle locked makes Windows' memory management less effi
cient and can cause subsequent allocation requests to fail.

Windows lets you compact memory. By squeezing the free memory from be
tween allocated memory blocks, Windows collects the largest contiguous free
memory block possible, from which you may allocate additional blocks of
memory. This squeezing is a process of moving and (if necessary) discarding
memory blocks. Windows also lets you discard individual memory blocks if
you temporarily have no need for them.

15.1.1 Using the Global Heap
The global heap contains all of system memory. Windows allocates the memory
it needs for code and data from the global heap when it first starts. Any remain
ing free memory in the global heap is available to applications and Windows
libraries.

Applications typically use the global heap for large memory allocations (greater
than a kilobyte or so). Although you can allocate larger memory objects from the
global heap than you can from the local heap, there is a tradeoff: because it's eas
ier to manipulate local data than it is to manipulate global data, your application
will be easier to write if you use only local data.

You can allocate any size of memory block from the global heap. Applications
typically allocate large blocks from the global heap; these blocks can exceed 64K
if the applications need that much contiguous space. Windows provides special
services for accessing data past the first 64K segment. Chapter 16, "More
Memory Management," explains how to use these services.

To allocate a block of global memory, use the GlobalAlIoc function. You specify
the size and type (fixed, moveable, or discardable); GlobalAlloc returns a handle
to the memory block. Before you can use the memory block, you must lock it by
using the GlobalLock function, which returns the full 32-bit address of the first
byte in the memory block. You can then use this long pointer to access the bytes
in the block.

In the following example, the GlobalAlIoc function allocates 4096 bytes of
moveable memory and the GlobalLock function locks it so that the first 256
bytes can be set to OxFF:

HANDLE hMem;
LPSTR lpMem;
int ;;

Memory Management 15-3

if CChMem = GlobalAllocCGMEM_MOVEABLE, 4096)) != NULL)
if CClpMem = GlobalLockChMem)) != CLPSTR) NULL) {

for C; = 0; i < 256; i++)
lpMem[;] = 0xFF;

GlobalUnlock(hMem);

In this example, the application unlocks the memory handle by using the
GlobalUnlock function immediately after accessing the memory block. Once a
moveable or discardable memory block is locked, Windows guarantees that the
block will remain fixed in memory until it is unlocked. This means the address
remains valid as long as the block remains locked, but this also keeps Windows
from making the best use of memory if other allocation requests are made.
Cooperative applications unlock memory.

The GlobalAlloc function returns NULL if an allocation request fails. You
should always check the return value to ensure that it is a valid handle. If desired,
you can check to see how much memory is available in the global heap by using
the GlobalCompact function. This function returns the number of bytes in the
largest contiguous free block of memory.

You should also check the address returned by the GlobalLock function. This
function returns a null pointer if the memory handle was not valid or if the con
tents of the memory block have been discarded.

You can free any global memory you may no longer need by using the
GlobalFree function. In general, you should free memory as soon as you no
longer need it so that other applications can use the space. You should always
free global memory before your application terminates.

15.1.2 Using the Local Heap
The local heap contains free memory that may be allocated for private use by
the application. The local heap is located in the application's data segment and
is therefore accessible only to a specific instance of the application. You can allo
cate memory from the local heap in blocks of up to 64K and the memory can be
fixed, moveable, or discardable, as needed.

Windows does not automatically supply an application with a local heap. To re
quest a local heap for your application, use the HEAPSIZE statement in the
application's module-definition file. This statement sets the initial size, in bytes,
of the local heap. (For more information on module-definition statements, see
the Reference, Volume 2.) If the local heap is in a fixed data segment, you may

15-4 Guide to Programming

allocate up to the specified heap size. If the local heap is in a moveable data
segment, you may allocate beyond the initial heap size and up to 64K, since
Windows will automatically allocate additional space for the local heap until
the data segment reaches the 64K maximum. You should note, however, that if
Windows allocates additional local memory to satisfy a local allocation, it may
move the data segment, making invalid any long pointers to blocks in local
memory.

The maximum size of any local heap depends on the size of the application's
stack, static data, and global data. The local heap shares the data segment with
the stack and this data. Since a data segment can be no larger than 64K, an appli
cation's local heap can be no larger than 64K minus the size of the application's
stack, global data, and static data. The application's stack size is defined by the
ST A CKSIZE statement in the application's module-.definition file. (For more
information, see the Reference, Volume 2.) The global and static data size de
pends on how many strings and global or static variables are declared in the appli
cation. Windows enforces a minimum stack size of 5K; if the module-definition
file specifies a smaller stack size, Windows sets the stack size to 5K.

You can allocate local memory by using the LocalAlloc function. The function
allocates a block of memory in the application's local heap and returns a handle
to the memory. You lock the local memory block by using the LocalLock func
tion. This returns a near address (a 16-bit offset) to the first byte in the memory
block. The offset is relative to the beginning of your data segment. In the follow
ing example, the LocalAlloc function allocates 256 bytes of moveable memory
and the LocalLock function locks it so that the first 256 bytes can be set to OxFF:

HANDLE hMem;
PSTR pMem;
i nt i;

if ((hMem = LocalAlloc(LMEM_MOVEABLE, 256» != NULL) {
if ((pMem = LocalLock(hMem» != NULl) {

for (i = 0; i < 256; i++)
pMem[iJ = 0xFF;

LocalUnlock(hMem);

In this example, the application unlocks the memory handle by using the Local
Unlock function immediately after accessing the memory block. Once a
moveable or discardable memory block is locked, Windows guarantees that the
block will remain fixed in memory until it is unlocked. This means the address re
mains valid as long as the block remains locked, but this also keeps Windows
from making the best use of memory if other allocation requests are made. If you
want to ensure that you are getting the best performance from your application's
local heap, make sure you unlock memory after using it.

Memory Management 15-5

The LocalAlloc returns NULL if an allocation request fails. You should always
check the return value to ensure that a valid handle exists. If desired, you can
check to see how much memory is available in the local heap by using the Local
Compact function. This function returns the number of bytes in the largest con
tiguous free block of memory in the local heap.

You should also check the address returned by the LocalLock function. This
function returns NULL if the memory handle was not valid or if the contents of
the memory block have been discarded.

15.1.3 Working with Discardab/e Memory
You create a discardable memory block by combining the GMEM_DISCARD
ABLE and GMEM_MOVEABLE options when allocating the block. The result
ing block will be moved as necessary to make room for other allocation requests;
or if there is not enough memory to satisfy the request, the block may be dis
carded. The following example allocates a discardable block from global
memory:

hMem = GlobalAlloc(GMEM_MOVEABLE I GMEM_DISCARDABLE, 4096L);

When Windows discards a memory block, it empties the block by reallocating it,
with zero bytes given as the new size. The contents of the block are lost, but the
memory handle to this block remains valid. Any attempt to lock the handle and
access the block will fail, however.

Windows determines which memory blocks to discard by using a least-recently
used (LRU) algorithm. It continues to discard memory blocks until there is
enough memory to satisfy an allocation request. In general, if you have not
accessed a discardable block in some time, it is a candidate for discarding. A
locked block cannot be discarded.

You can discard your own memory blocks by using the GlobalDiscard function.
This function empties the block but preserves the memory handle. You can also
discard other applications' memory blocks by using the GlobalCompact func
tion. This function moves and discards memory blocks until the specified or
largest possible amount of memory is available. One way to discard all discard
able blocks is to supply -1 as the argument. This is a request for every byte of
memory. Although the request will fail, it will discard all discardable blocks and
leave the largest possible block of free memory.

Since a discarded memory block's handle remains valid, you can still retrieve
information about the block by using the GlobalFlags function. This is useful for
verifying that the block has actually been discarded. GlobalFlags sets the
GMEM_DISCARDED bit in its return value when the specified memory block
has been discarded. Therefore, if you attempt to lock a discardable block and the
lock fails, you can check the block's status by using GlobalFlags.

15-6 Guide to Programming

Once a discardable block has been discarded, its contents are lost. If you wish to
use the block again, you need to reallocate it to its appropriate size and fill it with
the data it previously contained. You can reallocate it by using the Global
ReAlloc function. The following example checks the block's status, then fills it
with data if it has been discarded:

lpMem = GlobalLockChMem);

if ClpMem == CLPSTR) NULL) !
if CGlobalFlagsChMem) & GMEM_DISCARDED)

hMem = GlobalReAllocChMem, 4096L,
GMEM_MOVEABLE I GMEM_DISCARDABLE);

lpMem = GlobalLockChMem);

1* More program lines *1
1* Fill with data *1
GlobalUnlockChMem);

You can make a discardable object nondiscardable (or vice versa) by using the
GlobalReAlloc function and the GMEM_MODIFY flag. The following example
changes a moveable block, identified by the hMem memory handle, to a
moveable, discardable block:

hMem = GlobalReAllocChMem, 0, GMEM_MODIFY I GMEM_DISCARDABLE);

The following example changes a discardable block to a nondiscardable block:

hMem = GlobalReAllocChMem, 0, GMEM_MODIFY);

15.2 Using Segments
One of the principal features of Windows is that it lets the user run more than
one application at a time. Since multiple applications place greater demands on
memory than does a single application, Windows' ability to run more than one
application at a time has a significant impact on how you write applications. Al
though many computers have at least 640K of memory, this memory rapidly be
comes limited as the user loads and runs more applications. In Windows, you
must be conscious of how your application uses memory and be prepared to min
imize the amount of memory your application occupies at any given time.

To help you manage your application's use of memory, Windows uses the same
memory-management system for your application's code and data segments that
you use within your application to allocate and manage global memory blocks.
When the user starts your application, Windows allocates space for the code and
data segments in global memory, then copies the segments from the executable
file into memory. These segments can be fixed, moveable, and even discardable.
You specify their attributes in the application's module-definition file.

Memory Management 15-7

You can reduce the impact your application has on memory by using moveable
code and data segments. Using moveable segments lets Windows take advantage
of free memory as it becomes available.

You can minimize your application's impact on memory by using discardable
code segments. If you make a code segment discardable, Windows discards it, if
necessary, to satisfy requests for global memory. Unlike ordinary memory blocks
that you may allocate, discarded code segments are monitored by Windows,
which automatically reloads them if your application attempts to execute code
within these segments. This means that your application's code segments are in
memory only when they are needed.

Discarding a segment destroys its contents. Windows does not save the current
contents of a discarded segment. Instead it assumes that the segment is no differ
ent than when originally loaded and will load the segment directly from the exe
cutable file when it is needed.

15.2.1 Using Code Segments
A code segment is one or more bytes of machine instructions. It represents all or
part of an application's program instructions. A code segment is never larger
than 64K.

IMPORTANT You must not store writeable data in code segments; writing to a code seg
ment causes a general protection fault when your application runs in protected mode.
Windows will, however, allow you to store read-only data, such as a jump table, in a code
segment. For more information on protected mode, see Chapter 16, "More Memory
Management. "

Every application has at least one code segment. For example, the sample appli
cations described in previous chapters have one and only one code segment. You
can also create an application that has multiple code segments. In fact, most
Windows applications have multiple code segments. Using multiple code
segments lets you reduce the size of any given code segment to the number of
instructions needed to carry out some task. If you also make these segments
discardable, you effectively minimize the memory requirements of your applica
tion's code segments.

When you create medium- or large-model applications, you are creating applica
tions that use multiple code segments. Medium- and large-model applications
typically have one or more source files for each segment. Compile each source
file separately and explicitly name the segment to which the compiled code will
belong. Then link the application, defining the segments' attributes in the applica
tion's module-definition file.

To define a segment's attributes, use the SEGMENTS statement in the module
definition file. The following example shows definitions for three segments:

15-8 Guide to Programming

SEGMENTS
PAINT_TEXT MOVEABLE DISCARDABLE
INIT_TEXT MOVEABLE OISCARDABLE
WNDPROC_TEXT MOVEABLE OISCARDABLE

You may also use the CODE statement in the module-definition file to define
the default attributes for all code segments. The CODE statement also defines at
tributes for any segments that are not explicitly defined in the SEGMENTS state
ment. The following example shows how to make all segments not listed in the
SEGMENTS statement discardable:

CODE MOVEABLE DISCARDABLE

If you use discardable code segments in your application, you need to balance
discarding with the number of times the segment may be accessed. For example,
the segment containing your main window function should probably not be
discardable since Windows calls the function often. Since a discarded segment
has to be loaded from disk when needed, the savings in memory you may realize
by discarding the window function may be offset by the loss in performance that
comes with accessing the disk often.

NOTE In a library, all code segments must be both moveable and discardable. If a library's
module-definition file specifies that a code segment is moveable but not discardable,
Windows will make that code segment discardable instead.

15.2.2 The DATA Segment
Every application has aDA T A segment. The DATA segment contains the appli
cation's stack, local heap, and static and global data. Like a code segment, the
DA T A segment cannot be larger than 64K.

A DATA segment can be fixed or moveable, but not discardable. If the DATA
segment is moveable, Windows automatically locks the segment when it passes
control to the application. Otherwise, a moveable DATA segment may move if
an application allocates global memory, or the application attempts to allocate
more memory than is currently available in the local heap. For this reason, it is
important not to keep long pointers to variables in the DATA segment.

You can define the attributes of the DATA segment by using the DATA state
ment in the module-definition file. The default attributes are MOVEABLE and
MULTIPLE. The MULTIPLE attribute directs Windows to create one copy of
an application's data segment for each instance of the application. This means
the contents of the DATA segment are unique to each instance of the application.

A large-model application may have additional data segments, but only one
DATA segment.

For more information on module-definition statements, see the Reference,
Volume 2.

Memory Management 15-9

15.3 A Sample Application: Memory
This sample application illustrates how to create a medium-model Windows
application that uses discardable code segments. To create the Memory applica
tion,copy and rename the source files of the Generic application, then make the
following modifications:

1. Split the C-Ianguage source file into four separate files.

2. Modify the include file.

3. Add new segment definitions to the module-definition.

4. Modify the make file.

5. Compile and link the application.

The following sections describe each step in detail.

NOTE Rather than typing the code presented in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

15.3.1 Split the C-Language Source File
You need to split the C-Ianguage source file into separate files so that the func
tions within the file are compiled as separate segments. For this application, you
can split the source file into four parts, as described in the following list:

Source File

MEMORY1.C

MEMORY2.C

Content

Contains the WinMain function. Since Windows ex
ecutes WinMain fairly often, the segment created
from this source file is not discardable. This pre
vents a situation in which the segment has to be
loaded from the disk often. Since WinMain is rela
tively small anyway, keeping this segment in
memory has very little impact on available global
memory.

Contains the Memorylnit function. Since the
Memorylnit function is used only when the applica
tion first starts, the segment created from this source
file can be discardable.

15-10 Guide 10 Programming

Source File

MEMORY3.C

MEMORY4.C

Content

Contains the MemoryWndProc function. Although
the segment created from this source file can be
discardable, the MemoryWndProc function is likely
to be called at least as often as the WinMain func
tion receives control. In this case, the segment is
moveable but not discardable.

Contains the About function. Since the About func
tion is seldom called (only when the About dialog
box is displayed), the code segment created from
this source file can be discardable.

You must include the WINDOWS.R and MEMORY.R files in each source file.

15.3.2 Modify the Include File
You need to move the declaration of the hInst variable into the MEMORY.R file.
This ensures that the variable is accessible in all segments. The hInst variable is
used in the WinMain and MemoryWndProc functions.

15.3.3 A:dd.New Segment Oefinitions
You need to add segment definitions to the module-definition file to specify the
attributes of each code segment. This means you need to add a SEGMENTS
statement to the file and list each segment by name in the application. Mter
making the changes, the module-definition file should look like the following:

NAME Memory

DESCRIPTION 'Sample Microsoft Windows Application'

EXETYPE WINDOWS

STUB 'WINSTUB.EXE'

o SEGMENTS
MEMORY_MAIN PRELOAD MOVEABLE
MEMORY_INIT LOADONCALL MOVEABLE DISCARDABLE
MEMORY_WNDPROC LOADONCALL MOVEABLE
MEMORY_ABOUT LOADONCALL MOVEABLE OISCARDABLE

49 CODE MOVEABLE

DATA MOVEABLE MULTIPLE

HEAPS I ZE H!J24
STACKSIZE 8192

Memory Management 15-11

EXPORTS
MainWndProc @l
About @2

In this module-definition file:

o The SEGMENTS statement defines the attributes of each segment:

• The MEMORY _MAIN segment contains WinMain.

• The MEMORY _INIT segment contains the initialization functions.

• The MEMORY _ WNDPROC segment contains the window function.

• The MEMORY _ABOUT segment contains the dialog function.

Each segment has the MOVEABLE attribute, but only MEMORY _INIT and
MEMORY_ABOUT have the DISCARDABLE attribute.

Also, only the MEMORY_MAIN segment is loaded when the application is
started. The other segments have the LOADONCALL attribute, which
means they are loaded when needed.

8 Although each segment is explicitly defined, the CODE statement is still
given. This statement specifies the attributes of any additional segments the
linker may add to the application; for example, segments containing C run
time functions called in the application source files.

15.3.4 Modify the Make File
You need to modify the make file to separately compile the new C-Ianguage
sources. Since this application is a medium-model application, you need to use
the -AM option when compiling. For clarity, you should also name each seg
ment by using the -NT option when compiling.

You will also need to change the LINK command line so that it refers to the
medium-model library, MLIBCEW.LIB, rather than the small-model library
SLIBCEW.LIB.

After changes, the make file should look like this:

MEMORY.RES: MEMORY.RC MEMORY.H
RC - r MEMORY. RC

MEMORYl.OBJ: MEMORYl.C MEMORY.H
CL -c -AM -Gsw -Zp -NT MEMORY_MAIN MEMORYl.C

MEMORY2.0BJ: MEMORY2.C MEMORY.H
CL -c -AM -Gsw -Zp -NT MEMORY_INIT MEMORY2.C

MEMORY3.0BJ: MEMORY3.C MEMORY.H
CL -c -AM -Gsw -Zp -NT MEMORY_WNDPROC MEMORY3.C

15-12 Guide to Programming

MEMORY4.0BJ: MEMORY4.C MEMORY.H
CL -c -AM -Gsw -Zp -NT MEMORY_ABOUT MEMORY4.C

MEMORY.EXE: MEMORYl.OBJ MEMORY2.0BJ MEMORY3.0BJ MEMORY4.0BJ MEMORY.DEF
LINK MEMORYI MEMORY2 MEMORY3 MEMORY4,MEMORY.EXE"MLIBCEW LIBW,MEMORY.DEF
RC MEMORY.RES

MEMORY.EXE: MEMORY.RES
RC MEMORY.RES

15.3.5 Compile and Link

15.4 Summary

After compiling and linking the Memory application, start Windows, the Heap
Walker application (provided with the SDK), and Memory. Use Heap Walker to
view the various segments of the Memory application.

This chapter explained how to allocate and use memory in the Windows environ
ment. Because Windows is a multitasking system, your application should handle
memory cooperatively.

This chapter also explained how to use code and data segments in your app
lication.

For more information on topics related to memory management, see the
following:

Topic

More about memory
management

Memory-management
functions

Module-definition
statements

Reference

Guide to Programming: Chapter 16, "More
Memory Management"

Reference, Volume 1: Chapter 4, "Functions
Directory"

Reference, Volume 2: Chapter 10, "Module
Definition Statements"

Chapter

16
More Memory Management

Chapter 15, "Memory Management," presented the basic information you need
to know about using memory in a Windows program. Some applications require
more advanced memory-management techniques, however. This chapter pro
vides more detailed information about Windows memory management and how
you should write your application to make the best use of Windows' advanced
memory features.

This chapter covers the following topics:

• Windows memory configurations

• Using data storage in Windows applications

• U sing memory models

• U sing huge data

• Managing program data

• Managing memory for program code

16.1 Windows Memory Configurations
You should expect that your application may run under any of several memory
configurations; most often, the particular memory configuration depends on the
type of the system CPU and the amount and configuration of memory. Windows
supports four memory configurations:

• The basic (640K) memory configuration (Windows real mode)

• The Lotus-Intel-Microsoft (LIM) Expanded Memory Specification (EMS) 4.0
memory configuration (Windows real mode)

• The standard mode memory configuration

• The 386 enhanced mode memory configuration

16-2 Guide to Programming

The amount of memory available to Windows will be less than that installed in
the system if the user s-tarted other programs before starting Windows.

Because Windows uses different memory configurations on different systems,
your application should be able to run successfully with each memory configura
tion. The best way to ensure this is to write the application following all the
Windows memory-management rules. See Section 16.5, "Traps to Avoid in
Managing Program Data," for a list of these rules.

Wherever possible, your application should not contain code that is dependent
upon a particular memory configuration. However, in some instances an applica
tion must be able to determine the memory configuration under which it is run
ning.

To determine the current memory configuration, call the GetWinFlags function.
This function returns a 32-bit value which contains flags indicating the memory
configuration under which Windows is running and other information about the
user's system.

The remainder of this section describes the four primary Windows memory con
figurations.

16.1.1 The Basic Memory Configuration
The basic Windows memory configuration assumes that the system has 640K of
physical memory. Before the user starts Windows, the lowest portion of conven
tional memory has already been allocated by the system's BIOS and by DOS.
The lowest portion of memory includes the following:

• The interrupt table

• RAM BIOS data

• DOS device drivers

• Any terminate-and-stay-resident (TSR) programs the user started before
Windows

Windows, and applications running under Windows, can use only the remaining
(upper) portion of conventional memory. This portion of memory is called the
global heap.

Figure 16.1 illustrates the basic Windows memory configuration.

Discardable code segments

l

t
Moveable segments (code and data)

and
Discardable data segments

t
Fixed segments (code and data)

TSR's

Device drivers

More Memory Management 16-3

AOOOh (640K)

Global heap

MS-DOS

RAM BIOS data

Interrupt table
~ __________a OOOOh

Figure 16.1 Windows Basic Memory Configuration

Chapter 15, "Memory Management," explains how Windows applications use
the global heap. The data and code segments of all applications are located in the
global heap; the position of each segment in the heap depends on whether that
segment is fixed, moveable and discardable, or moveable but not discardable.
Table 16.1 lists segment attributes and types, and indicates where Windows
places each type in the global heap.

Table 16.1 Segment Positions in the Global Heap

Attribute Segment Type

Fixed Code or data

Discardable Code

Discardable Data

Moveable (but not Code or data
discardable)

Position in Global Heap

Bottom of global heap

Top of global heap

Lower portion of global heap, but above
fixed segments

Above fixed segments

16-4 Guide to Programming

If an application allocates a fixed segment after moveable segments or discard
able data segments have already been allocated, Windows tries to rearrange
moveable segments and discardable data segments in order to place the new
fixed segment as low in the heap as possible. Rearranging memory helps to re
duce fragmentation of the heap but requires many more CPU cycles. Because
of this, you should avoid declaring or allocating fixed segments.

With the basic memory configuration, if your application's module-definition
(.DEF) file declares some code segments discardable, then the application can be
larger than the physical memory that's available in the global heap. If physical
memory is fully allocated and an application tries to call a code segment that is
not currently in physical memory, Windows makes memory available for that
code segment by discarding other code or data segments. Removing discardable
code segments from memory is transparent to the application; if a discarded seg
ment is needed again, Windows simply reloads it from the disk. On the other
hand, removing discardable data segments can result in a loss of data. If your
application declares a data segment as discardable, you should make sure that
information in the segment can be reread from disk or re-created by some other
method.

Under the basic memory configuration, Windows makes more memory available
by simply removing discardable segments from memory; it does not perform true
disk swapping (swapping code or data segments from memory to the disk and
back). If your application requires a larger virtual data space than is available
with the basic memory configuration, it can perform its own virtual memory
management by swapping data to and from the disk.

16.1.2 The EMS 4.0 Memory Configuration
Windows can use the EMS 4.0 memory configuration if the user's system has
EMS memory and an EMS 4.0 device driver. With the EMS configuration, the
global heap is larger (from the application's perspective) than it is with the basic
memory configuration: the physical address space of the global heap extends
above the AOOOh (640K) line to FOOOh. Physical addresses FOOOh to FFFFh are
reserved for the ROM BIOS. Some areas between AOOOh and FOOOh are also re
served for such hardware support as video memory and network cards. There
fore, the amount of physical memory available to Windows between AOOOh and
FOOOh is less than 320K. This amount may be as much as 288K, but usually is
less.

Figure 16.2 compares the basic memory and EMS 4.0 configurations.

TSR's

Device drivers

MS-DOS

RAM BIOS data

AOOOh
(640K)

Global
heap

~ ____ '_nt_e~_ru_p_t_~_b_re ____ ~OOOOh

More Memory Management 16-5

System ROM

Available memory

Video memory

Available memory

TSR's

Device drivers

MS-DOS

RAM BIOS data

Interrupt table

FFFFh
FOOOh

AOOOh
(640K)

Global
heap

OOOOh

Figure 16.2 Comparison of Basic Memory and EMS 4.0 Configurations

EMS Memory and Banking
Windows can provide applications with more memory when using the EMS con
figuration. It does this by "banking" memory objects between expanded memory
and part of the physical space of the global heap. Banking occurs when Windows
resets certain EMS registers to change the mapping of the lower 1 megabyte
address space to another area of expanded memory. Resetting the EMS registers
is much faster than actually moving data. Figure 16.3 illustrates how Windows
maps physical address space to expanded memory.

16-6 Guide to Programming

t
A
~

1
B

1

Physical Address Space

System ROM

Windows
bankable memory

Video memory

Windows
bankable memory

---,-------

Windows
nonbank able memory

TSR's

Device drivers

MS-DOS

RAM BIOS data

Interrupt table

Expanded Memory

Application 1

Application 1

Application 2 >< ~~
~~tline~

Application 2

Application 3

Application 3

OOOOh

Figure 16.3 Mapping from a Physical Address Space to Expanded Memory

t
A
~

t
B

!
t
A
~

t
B

!
t
A
~

t
B

!

Windows banks code and data between the global heap and expanded memory
during a "task context switch," which takes place when one application yields
control to another application. Windows banks the first application's code and
data from the bankable portion of the global heap to expanded memory; it then
banks the second application's code and data into the global heap.

Banking of expanded memory takes place only at task context switches. Code
and data are banked in and out for an entire application. Banking does not occur
for individual memory blocks. As a result, the total memory available to a given
application is not increased by adding to the total amount of expanded memory.
Rather, the total memory available to an application depends on the usable por
tion of memory between AOOOh and FOOOh. This increase still significantly bene
fits an application. Also, the total amount of expanded memory influences how
many applications can be banked out and, thus, how many applications the user
can run simultaneously with Windows.

Bankab/e and Nonbankab/e Memory
When banking code and data between the global heap and expanded memory,
Windows banks only certain types of objects. Such bankable code and data is

More Memory Management 16-7

said to be above the EMS bank line. Bankable information includes the follow
ing:

• Task (application) code that is fixed or moveable

• Task resources (resources added to an executable file by the Resource
Compiler (RC))

• Private-library code and data segments. A library is declared private to the
calling application when it is compiled with the Resource Compiler -p option

• Task module (.EXE) headers (in Windows version 3.0 and later)

Some kinds of memory objects are never banked. In particular, Windows
never banks data that must always be available when needed by Windows or a
dynamic-link library (DLL). Such nonbankable objects are said to be below the
EMS bank line. Nonbankable information always includes the following:

• Task databases (task-specific data used by Windows to manage tasks)

• Library data segments

• Library fixed code

• Library module (.DLL) headers

Other kinds of code and data can reside either below or above the EMS bank
line, depending upon where Windows sets the bank line. The location of the bank
line depends on the size of the global heap.

If the global heap is smaller than a certain minimum size, then the EMS bank line
is set at AOOOh (640K), resulting in a relatively small bankable area of memory.
In this case, Windows is said to be running in small-frame EMS mode. In small
frame EMS mode, the following categories of code and data segments are non
bankable, and are placed below the EMS bank line:

• Library resources

• Discardable DLL code

• Task data segments

• Task global-memory allocations

• All module headers

If there is sufficient memory available, Windows may set the bank line so that
there is a relatively large bankable area of memory. In this case, Windows runs
in large-frame EMS mode. The bank line can be set as high as AOOOh in large
frame mode if there is more memory available above AOOOh than below.

16-8 Guide to Programming

Table 16.2 summarizes how different categories of code and data are placed
above or below the EMS bank line, depending on whether Windows is running
in small-frame or large-frame mode.

Table 16.2 Use of Expanded Memory

Object Above or Below EMS Bank Line

Task database

Library data segment

Library code segment (fixed)

Li brary resource

Task code segment

Task resource

Task data segment

Library code segment (discardable)

Task module (.EXE) header

Library module (.DLL) header

Dynamically-allocated memory

Small-Frame

Below

Below

Below

Below

Above/Below

Above/Below

Below

Below

Below

Below

Below

Large-Frame

Below

Below

Below

Above

Above

Above

Above

Above

Above

Below

Above

If there is not enough memory above the bank line in small-frame EMS mode to
accommodate the entire amount of bankable code and task resources, the remain
ing segments are located below the bank line.

Compiling a DLL with the Resource Compiler -p option will change how
Windows loads DLL memory objects in the large-frame EMS mode. See Chapter
20, "Dynamic-Link Libraries," for more information.

Working Directly with Expanded Memory
Because Windows performs the banking automatically, your application does not
have to do anything special to benefit from EMS memory. However, if you want,
your application can manipulate expanded memory directly, through a 64K page
frame. Using EMS directly gives your application an even larger address space,
similar to DOS overlays, but faster. In order to do this:

• You must compile your application using the Resource ~ompiler's -I switch.

• Your application must follow the LIM EMS 3.2 specification.

• Your application must not use any EMS 4.0-specific functions (with the ex
ception of reallocation function 17). Using these functions can conflict with
Windows memory management.

More Memory Management 16-9

When an application allocates expanded memory, it is competing with Windows
(and thus with other applications). Therefore, your application should not allo
cate all of expanded memory for its private use.

16.1.3 The Windows Standard Mode Memory Configuration
Windows uses the standard mode memory configuration by default on systems
that meet the following criteria:

• An 80286-based system with at least 1 megabyte of memory.

• An 80386-based system with at least 1 megabyte of memory, but less than 2
megabytes. On 80386-based systems with 2 megabytes or more, Windows
uses the 386 enhanced mode memory configuration by default. Section
16.1.4, "The Windows 386 Enhanced Mode Memory Configuration,"
describes the memory configuration of the 386 enhanced mode.

When Windows is running in standard mode, the global heap is made up of at
least two, usually three, distinct blocks of memory, depending on the amount of
available memory.

The first block of memory that Windows uses for the global heap is in conven
tional memory, much like the basic memory configuration. This area begins
above any TSR programs, device drivers, DOS, and so on, and extends to the top
of conventional memory. This conventional memory is usually 640K, but can be
less on some systems.

The second required block of memory for the Windows standard mode configura
tion is in extended memory. Windows allocates the block in extended memory
through an extended-memory (XMS) driver and then accesses the block directly,
without using the XMS driver. The size and location of this block can vary, de
pending on what the user loaded into extended memory before starting Windows.

Windows adds a third block of memory to the Windows standard mode global
heap if it is available when Windows starts. This third block is the high memory
area (HMA) and is controlled by the XMS driver. This block is not available if
the user loaded software in the HMA before starting Windows. However, not
much software is currently available that loads itself into this area, so it is likely
that the HMA will be available to Windows in standard mode.

Windows links the two or three blocks of memory to form the Windows global
heap. The start (bottom) of the conventional memory block is the start (bottom)
of the global heap, and the end (top) of the extended memory block is the end
(top) of the global heap. If Windows uses the HMA, Windows links the HMA
block between the other two blocks.

Figure 16.4 shows a typical Windows standard mode memory configuration.

16-10 Guide to Programming

r---------------. Top of extended memory
Discardable code segments

!
1--__________ ----1 At or above 11000h

Optional high-memory area (64K)
1-------------1 10000h
I--------------t: AOOOh (640K)

t
Moveable segments (code and data)

and
Discardable data segments

t
Fixed segments (code and data)

TSRs

Device drivers

MS-DOS

RAM BIOS data

Interrupt table
'---__________;1 OOOOh

Figure 16.4 Typical Windows Standard Mode Configuration

As with other memory configurations, Windows allocates discardable code
segments from the top of the heap, fixed segments from the bottom of the heap,
and moveable code and data segments above fixed segments.

Some Windows data items must be allocated in the conventional memory block
so they can be accessed when the processor is in real mode instead of protected
mode. These items are program segment prefix (PSP) blocks and serial com
munications data queues.

Using Huge Memory Blocks in the Standard-Mode
Memory Configuration
Under the standard mode memory configuration, Windows uses the protected
mode of the 80286 or 80386 processor. In real mode, a far address is created
from a I6-bit segment address and a 16-bit offset. The segment address points to
paragraphs that are aligned on 16-byte increments in a I-megabyte address space.
The offset portion of the far address provides addressing within a range 0 to 64K
relative to the segment paragraph address. In standard mode, the I6-bit segment
address is a selector, similar to a Windows handle. The selector points to an entry
in a local or global descriptor table (LDT or GDT). The table entry indicates
whether the segment referred to by the selector currently resides in memory. If
the segment resides in memory, then the table entry provides the linear address
of the segment.

More Memory Management 16-11

If you allocate a huge memory block (larger than 64K), the Microsoft C Com
piler generates huge-pointer code that performs segment arithmetic to advance
a far pointer across segment 64K boundaries. However, it does this only if the
block is explicitly declared huge or if the module was compiled with the huge
memory model. Do not directly change the segment address portion of a far
pointer. Attempting to increment the segment address with the intent of advanc
ing the physical paragraph address will only result in an invalid selector. When
the invalid selector is subsequently used to read or write to the memory location,
either Windows will report a general protection (GP) fault, or possibly worse, the
invalid selector might inappropriately point to unintended data or code.

If you are programming in assembly language, the proper technique for in
crementing a far pointer is to use the external variable ahincr, defined in
MACROS.INC. The value for the external variable __ ahincr gets fixed up by
Windows at load time to be lOOOh in real mode, so adding it to the segment
address portion of a far pointer will advance the pointer by 1000h paragraphs. In
standard mode, Windows fixes up __ ahincr with the correct constant to incre
ment the segment selector. This is possible because when Windows allocates the
huge memory block, it assigns related selector values to the related memory
segments that are 64K (lOOOh paragraphs) in size. This is called "selector tiling."
The following example illustrates the proper method for incrementing a far
pointer by 64K (the only increment provided):

extrn ahincr:abs

mov ax, es ; es is the segment address you
; wish to increment

add ax, ahincr
moves, ax

Overall, the largest block of memory that you can allocate in standard mode is
1 megabyte in size. In standard mode, all parts of an application (code and data)
are normally moveable in linear memory.

Using Global Selectors
To perform memory-mapped input and output, you can use the following global
selector constants in an assembly-language program to access the corresponding
locations in memory:

• __ AOOOH

• __ BOOOH

• __ B800H

• COOOH --

• __ DOOOH

16-12 Guide to Programming

• __ EOOOH

• __ FOOOH

The following example illustrates how to use these selectors properly:

mov ax, ~ _A000H
mov eS,ax

Do not use these selectors except to support hardware devices that perform
memory-mapped input and output.

Code-Segment and Data-Segment Aliasing
Normally you cannot execute code stored in a data segment. Under standard
mode, an attempt to execute code in a data segment results in a general protec
tion fault.

In rare cases, however, this may be necessary, and can be performed by aliasing
the data segment in question. Aliasing involves copying a segment selector and
then changing the TYPE field of the copy so that an operation that is not nor
mally permitted can be performed on the segment.

Windows provides two functions which perform segment aliasing:

• AllocDStoCSAlias

• ChangeSelector

AllocDStoCSAlias accepts a data-segment selector and returns a code-segment
selector. This permits you to write machine instructions on your data stack,
create an alias for the stack segment, and then execute the code on the stack.

This function allocates a new selector; after calling AllocDStoCSAlias, you must
call the FreeSelector function when you no longer need the selector.

You must be careful not to use a selector returned by AllocDStoCSAlias if it is
possible that the segment has moved. The only way to prevent a segment from
moving is by calling the GlobalFix function to fix it in linear address space
before aliasing the segment.

You can also be sure that a segment has not moved if your application does not
yield to another task and does not take any action that could result in memory
being allocated. Normally this would require you to allocate and free a new selec
tor each time your application yields or allocates memory. However, you can
avoid allocating and freeing a selector so frequently by using a temporary selec
tor. ChangeSelector provides a convenient method for aliasing a temporary
selector. This function accepts two selectors: a temporary selector, and the selec
tor you wish to alias. To alias this selector repeatedly, you would perform the fol
lowing steps:

More Memory Management 16-13

1. Call AlIocateSelector to create a temporary selector.

2. As often as necessary, call ChangeSelector, passing it the temporary selector
and the selector you want to alias. Since ChangeSelector uses a previously al
located selector, you do not have to free the selector each time you alias it.
You only need to call ChangeSelector each time you need the aliased selec
tor after the aliased segment might have moved.

3. When you no longer need to alias the selector, call FreeSelector to free the
temporary selector.

16.1.4 The Windows 386 Enhanced Mode Memory Configuration
If the user's system has at least 2 megabytes of extended memory available and
an Intel 80386 microprocessor, then Windows and Windows applications will
run in 386 enhanced mode, a form of protected mode. In this mode, by taking
advantage of certain features of the 80386 processor, Windows implements a
virtual-memory management scheme using disk swapping. The result of this
scheme is that the amount of memory available to all applications can be several
times the amount of extended memory on the system. In this mode, Windows can
theoretically address 4 gigabytes of memory, but is actually limited by the
amount of RAM and disk space available for swapping. The largest object that
can be allocated in 386 enhanced mode is 64 megabytes. In 386 enhanced mode,
all parts of an application (code and data) are normally moveable as well as page
able in linear memory.

NOTE Because 386 enhanced mode uses the protected-mode features of the 80386 pro
cessor, the restrictions for using memory in standard mode also apply to using memory in
386 enhanced mode.

The following describes the memory configuration of 386 enhanced mode:

• The global heap is essentially one large virtual address space. Unlike the
EMS 4.0 memory configuration, Windows does not bank code and data for
individual applications between a I-megabyte address space and secondary
memory. Instead, all applications share the same virtual address space.

• The size of the global heap's virtual address space is not bounded by the
amount of extended memory. The disk serves as a secondary memory
medium that ex tends the virtual address space.

The 386 enhanced mode memory configuration is much more like the basic
memory configuration than it is like the EMS 4.0 memory configuration or the
standard mode memory configuration. Figure 16.5 compares the basic and 386
enhanced mode memory configurations.

16-14 Guide to Programming

Basic Memory
Configuration

AOOOh
Discardable code segments ' (640K)

l

t
Moveable segments > Global

(code and data) heap in
and physical

Discardable data segments address

t
space

Fixed segments
(code and data)

TSR's

Device drivers

MS-DOS

RAM BIOS data

Interrupt table
OOOOh

386 Enhanced Mode
Memory

r--__ C_o_n_fi ... lgl-Iu_ra_t_io_n __ '" Top of
Discardable code segments extended

l memo~

> Global
heap in

t virtual
address

Moveable segments space
(code and data)

and
Discardable data segments

t
Fixed segments
(code and data)

I'

TSR's

Device drivers

MS-DOS

RAM BIOS data

Interrupt table
OOOOh

Figure 16.5 Comparison of Basic Memory and
386 Enhanced Mode Memory Configurations

In both the basic memory configuration and the 386 enhanced mode memory
configuration, fixed code and data segments are located lower in memory. Non
discardable, moveable code and data segments, and discardable data segments
are allocated above the fixed code and data segments. Discardable code segments
are allocated from the top of memory. Windows minimizes memory fragmenta
tion under the 386 enhanced mode memory configuration just as it does in the
basic memory configuration.

The 386 enhanced mode memory configuration is distinct from the others be
cause in this mode, Windows swaps code and data between physical memory
and the disk. Under the other memory configurations, Windows may remove

More Memory Management 16-15

discardable data from memory, but it does not save the data to disk so that it may
be read back into memory when needed.

With the 386 enhanced mode memory configuration, Windows continues allocat
ing physical memory until it is used up. Windows then begins moving 4K pages
of code and data from physical memory to disk in order to make additional physi
cal memory available. Windows pages 4K blocks, rather than unequal-sized code
and data segments. The swapped 4K block may be only part of a given code or
data segment, or it may cross over two or more code or data segments.

This memory paging is transparent to the application. If the application attempts
to access a code or data segment of which some part has been paged out to disk,
the 80386 microprocessor issues an interrupt, called a "page fault," to Windows.
Windows then swaps other pages out of memory and restores the pages that the
application needs. Windows chooses the pages that it swaps to disk based on a
least-recently-used (LRU) algorithm.

This virtual memory system provides as much additional memory as the size of
the Windows swap file that is reserved on the user's disk. Windows determines
the size of the swap file based on the total amount of physical memory on the sys
tem and the amount of disk space available. The user can modify the size of the
swap file by changing an entry in the SYSTEM.lNI file and can establish a per
manent swap file using the SWAPFILE utility.

Windows' demand loading of code and data segments operates on top of
Windows' virtual memory paging scheme. That is, Windows treats virtual
memory as though it were basic 640K memory for purposes of determining what
code and data segments to discard. However, Windows removes discardable
code and data segments only when virtual memory is exhausted.

Preventing Memory from Being Paged to Disk
Occasionally, it is necessary to ensure that certain memory is always present in
physical memory and is never paged to disk. For example, a DLL routine may be
required to respond immediately to an interrupt instead of waiting for the system
to generate a page fault and load the data from the disk. In such cases, a block of
memory can be page locked to prevent it from being paged to disk.

To page-lock a block of memory, call the GlobalPageLock function, passing it
the global selector of the segment that is to be locked. This function increments a
page-lock count for the segment; as long as the page-lock count for a given seg
ment is nonzero, the segment will remain at the same physical address and will
not be paged out to disk. When you no longer require the memory to be locked,
call the GlobalPageUnlock to decrement the page-lock count. In other modes,
these functions have no effect.

NOTE You should page-lock memory only in critical situations. Do not routinely page-lock
memory to lock down a spreadsheet, for example. Page-locking memory adversely affects
the performance of all applications, including yours.

16-16 Guide to Programming

16.2 Using Data Storage in Windows Applications
Windows supports seven types of data storage, each of which is appropriate for
different situations. The following list describes each type of data storage, and
suggests how to decide which type to use.

Type

Static data

Automatic data

Local dynamic data

Global dynamic data

Description

Static data includes all C variables that the program
source code implicitly or explicity declares using the
static key word. Static data also includes all C varia
bles declared as external, either explicitly (using the
extern key word) or by default (by declaring it at
the top of the source module before any function
bodies).

Automatic data are variables allocated in the stack
when a function is called. The variables include the
function parameters and any locally declared varia
bles. See Section 16.2.1, "Managing Automatic Data
. Segments," for more information.

Local dynamic data is data allocated using the Local
Alloc function. Local dynamic data is allocated out
of a local heap in the automatic data segment to
which an application's DS register is set. Allocating
memory blocks from the local heap of a Windows
application is similar to allocating memory with the
malloc C run-time library function in a non
Windows application that uses the small or medium
memory models. See Section 16.2.2, "Managing
Local Dynamic-Data Blocks," for more information.

Global dynamic data is data allocated out of the
Windows global heap using the GlobalAlloc func
tion. The global heap is a system-wide memory
resource. Allocating memory blocks from the global
heap is roughly equivalent to allocating with malloc
in a non-Windows application that uses the compact
or large memory models. The difference is that in
Windows, your application allocates memory ob
jects out of a heap potentially shared by other appli
cations, while a non-Windows application
essentially has the whole heap to itself. See Section
16.2.3, "Managing Global Memory Blocks," for
more information.

Type

Window extra bytes

Class extra bytes

Resources

More Memory Management 16-17

Description

Your application can create a window so that extra
bytes are allocated in the data structure that
Windows maintains internally for that window. To
do so, register the class for the window (by calling
the RegisterClass function) and request that extra
bytes be allocated for each window that is a member
of the class. You request the extra bytes by specify
ing a nonzero value for the cbWndExtra field of
the WNDCLASS data structure which you pass to
RegisterClass. You can then store and retrieve data
from this area by making calls to SetWindowWord,
SetWindowLong, GetWindowWord and GetWin
dowLong. See Section 16.2.4, "Using Extra Bytes
in Window and Class Data Structures," for more
information.

A window class may be defined so that extra bytes
are allocated at the end of the WNDCLASS struc
ture created for the class. When you register the
window class, you specify a nonzero value for the
cbClsExtra field. You can then store and retrieve
data from this area by making calls to Set Class
Word, SetClassLong, GetClassWord and Get
ClassLong. See Section 16.2.4, "Using Extra Bytes
in Window and Class Data Structures," for more
information.

Resources are nonmodifiable collections of data
stored in the resource portion of an executable file.
This data can be loaded into memory where your
application can use it conveniently. You can define
private resources that contain whatever kind of read
only data you want to store. You compile a resource
into your .EXE or .DLL file using the Resource
Compiler. At run time, you can then access the
resource data using various Windows library func
tions. See Section 16.2.5, "Managing Resources,"
for more information.

16.2.1 Managing Automatic Data Segments
Each application has one data segment called the "automatic data segment,"
which may contain up to 64K. The automatic data segment contains the follow
ing kinds of data:

16-18 Guide to Programming

Type

Task header

Static data

Stack

Local heap

Description

Sixteen bytes of information that Windows main
tains for each application. It is always located in the
first 16 bytes of the automatic data segment.

All C variables that are declared as static or extern,
either explicitly or by default.

The stack is used to store automatic data. The stack
has a fixed size, but the active area within the stack
grows and contracts as functions execute and return.
Each time a function is called, the return address is
pushed onto the active portion of the stack, along
with the parameter values passed to the function.

Contains all local dynamic data, which is data allo
cated using the LocalAlloc function.

Figure 16.6 shows the layout of the application's automatic data segment.

Local heap

Stack
Up to 64K bytes

Static data

Task header

Figure 16.6 Automatic Data Segment

The size of the stack is always fixed for a given application. You specify the
size (in bytes) of the stack using the STACKSIZE statement in the application's
module-definition (.DEF) file. Windows enforces a minimum stack size of SK.
You should experiment with your application to determine an optimum stack
size. The results of a stack overflow, however, are unpredictable.

The size of the local heap is set to an initial value for the application according to
the HEAPSIZE statement in the .DEF file for the application. The local heap
will grow as needed when you call LocalAlloc. For applications, the initial size
of the local heap must be at least large enough to hold the current environment
variables; a minimum heap size of 1 K is recommended. If your application does

More Memory Management 16-19

not require access to environment information, you can link your application to
an object file that will prevent this initialization information from being placed in
the heap. For more information, see Chapter 14, "C and Assembly Language."

If your application's automatic data segment is not fixed or locked, it is possible
that the data segment will move when your application calls LocalAlIoc. If the
local heap must grow, Windows may have to find another location in physical
memory to accommodate the larger size of the local heap and, thus, the data seg
ment. As long as your application uses near addresses for variables in the auto
matic data segment, this relocation of the automatic data segment will not present
a problem. If necessary, you can temporarily prevent the application's automatic
data segment from moving, even when it calls LocalAlIoc, by calling LockData.
However, locking the automatic data segment may cause LocalAlIoc to fail if the
data segment cannot be moved and a fixed segment is above the locked segment.

If your application requests memory from the local heap beyond what is availa
ble, the heap can grow until the total data segment reaches 64K.1f some of the
local heap objects are freed, however, the size of the heap does not automatically
shrink. You can recover this area by calling LocalShrink. This function first
compacts the local heap, then truncates the automatic data segment to the
specified number of bytes. LocalShrink will neither truncate below the highest
currently allocated memory object, nor below the originally specified heap size.

You can declare the automatic data segment to be fixed or moveable in the appli
cation's .DEF file, just as you can any data or code segment. Unless you have a
good reason to do otherwise, the automatic data segment should be declared as
moveable and multiple. The automatic data segment is always preloaded. The fol
lowing example shows how to declare the automatic data segment in the .DEF
file:

DATA MOVEABLE MULTIPLE

By declaring the application's automatic data segment as moveable, you allow
Windows to relocate the data segment in memory as its size changes. If the auto
matic data segment is fixed, Windows increases the size of the local heap only if
adjacent memory happens to be available. Consequently, if you declare the auto
matic data segment to be fixed, you should be careful to specify in the .DEF file
an adequate initial HEAPSIZE value.

You should specify the MULTIPLE attribute for DATA to provide a separate
automatic data segment for each instance of your application. Only dynamic-link
libraries can be declared with the SINGLE attribute for DATA. In fact, dynamic
link libraries must be declared this way, since a DLL can have only one instance.

16.2.2 Managing Local Dynamic-Data Blocks
In Windows, a local heap can be set up in any data segment. The application's au
tomatic data segment, however, is by far the most common place a local heap is
used.

16-20 Guide to Programming

The Locallnit function establishes a specified area within any data segment as a
local heap. Calls to LocaiAlioc and other local-memory functions operate on the
data segment currently referred to by the DS register. As long as this data seg
ment was previously initialized by Locallnit, the local memory functions will
work. .

If you are developing a DLL that requires a local heap, then you should call
Locallnit during the initialization of the library. Note that Locallnit leaves one
outstanding lock on the data segment. After calling Locallnit ina DLL, you may
want to call UnlockData to allow Windows to move the segment as needed.

If you are developing a Windows application, as opposed to a DLL, then you
should not call Locallnit for the application's automatic data segment. Based on
the location of other data in the automatic data segment (the task header, static
data, and stack) and the heap size specified in the application's .DEF file,
Windows itself calls Locallnit with the correct vaiues for the location and size
of the local heap.

The organization of a local heap is similar to that of a global heap:

• Fixed blocks are located at the bottom of the local heap.

• Nondiscardable, moveable blocks are allocated above the fixed blocks.

• Discardable blocks are allocated from the top of the local heap.

Figure 16.7 illustrates this organization.

~ ____________________ ~Top

Discardable objects

t
Moveable objects

t
Fixed objects

........ ___________ --.1 Bottom

Figure 16.7 Organization of a Local Heap

As Windows adds new blocks to an application's local heap, moveable blocks
may move as Windows compacts the heap. Also, Windows may discard blocks
to make room for new blocks. Windows never moves fixed blocks when they are
allocated in a local heap.

More Memory Management 16-21

Allocating Memory in the Local Heap
The LocalAlloc function allocates a specified size block in a local heap and al
lows you to specify certain characteristics of the block. The most important
characteristic is whether the block is fixed or moveable, and if moveable whether
it is discardable. The valid combinations of the flags which set these attributes
are:

• LMEM_FIXED

• LMEM_MOVEABLE

• LMEM_MOVEABLE and LMEM_DISCARDABLE

When you allocate a block in a local heap, other blocks may be moved or dis
carded. In certain cases, you may not want the local heap to be reorganized as
the new block is added. You may want to guarantee that pointers previously set
to moveable blocks remain unchanged. To guarantee that no blocks will be dis
carded from the local heap when you call LocalAlloc, set LMEM_NODISCARD
in the wFlags parameter. To guarantee that no blocks in the local heap will be
moved or discarded, specify LMEM_NOCOMPACT.

LocalAlioc returns a handle to the allocated local memory block. If memory in
the local heap is not available, LocalAlioc returns NULL. In managing a block
using all other Windows memory functions described below, you should use the
handle returned by LocalAlloc.

Locking and Unlocking a Block of Local Memory
To many C programmers who are used to using the C run-time library function
malloc, using memory handles may seem foreign at first. Because allocated ob
jects in the local heap may move around as new objects are added, you cannot
always expect a pointer to an allocated object to remain valid. The purpose of a
local memory handle is to provide a constant reference to a moveable object.

Since a memory handle is an indirect reference, you must "dereference" the
handle to obtain the near address of the local object. You do this by calling the
Windows function LocalLock. LocalLock temporarily fixes the object at a con
stant location in the local heap. Therefore, the near address returned by Local
Lock is guaranteed to remain valid until you subsequently call LocalUnlock.
The following example shows how to use LocalLock to dereference the handle
of a moveable object.

HANDLE hLocalObject;
char NEAR * pclocalObject; /*NEAR is not */

/* necessary in small and medium models*/

if (hLocalObjecl
LocalAlloc(LM~M MOVEABLE, 32»

16-22 Guide to Programming

else
1

if (pcLocalObject = LocalLock(hLocalObject))

else
1

/* Use pcLocalObject as the near */
/* address the locally allocated */
/* object . */

LocalUnlockChLocalObject);

/* The lock failed. React accordingly. */

/* The 32 bytes cannot be allocated. */
/* React accordingly. */

If you allocate a local memory block with the LMEM_FIXED attribute, it is al
ready guaranteed not to move in memory. Consequently, you do not have to call
LocalLock to lock the object temporarily at a fixed address. Also, you do not
have to dereference the handle, as you nonnally do using LocalLock because the
16-bit handle is simply the 16-bit near address of the local memory block. The
fopowing example illustrates this:

char NEAR * pcLocalObject; /* NEAR is not */
/* necessary in small or medium models */

if (pcLocalObject = LocalAlloc(LMEM_FIXED,32))
1

else
1

}

/* Use pcLocalObject as the near address */
/* to the locally allocated object. */
/* It is not necessary to lock and unlock */
/* the fi xed 1 oca 1 obj ect * /

/* The 32 bytes cannot be allocated. */
/* React accordingly. */

You should avoid leaving a moveable block locked if your application needs to
allocate other blocks in the local heap. Otherwise, Windows' memory manage
ment is less efficient. WIndows has to work around the locked block as it tries to
make room for another block in the moveable area of the local heap.

~ore Memory Management 16-23

Changing a Block of Local Memory
You call LocalReAlloc to change the size of a block while preserving its con
tents. If you specify a smaller size, Windows truncates the block. If you specify
a larger size, Windows fills the new area of the block with zeros if you specify
LMEM_ZEROINIT; otherwise, the contents of the new area are undefined. Cal
ling LocalReAlloc may cause blocks in the local heap to be discarded or moved,
just as when you call LocalAlloc. To prevent Windows from discarding blocks,
specify the LMEM_NODISCARD value; to prevent Wmdows from moving
blocks, specify LMEM_NOCOMPACT.

You can also call LocalReAlloc to change the block'.s attribute from
LMEM_MOVEABLE to LMEM_DISCARDABLE or vice versa. To do so, you
must also specify LMEM_MODIFY, as follows.

hLocalObject
LocalAlloc (32, LMEM_MOVEABLE);

hLocalObject
LocalReAlloc(hLocalObject,

32,
LMEM_MODIFY I LMEM_DISCARDABLE);

You cannot use LMEM_MODIFY with LocalReAlloc to change the attribute of
the local memory block to or from LMEM_FIXED.

Freeing and Discarding Blocks of Local Memory
The Windows functions LocalDiscard and LocalFree discard and free local
blocks, respectively.

There is a difference between freeing a local block and discarding it. When you
discard a local block, its content is removed from the local heap, but its handle re
mains valid. When you free a local block, not only are its contents removed from
the local heap, but its handle is removed from th~ table of valid local memory
handles. A local memory block can be discarded or freed only if there are no
outstanding locks on it.

You may want to discard a block rather than free it if you want to reuse its
handle. To reuse the handle, call LocalReAlloc with the handle and a nonzero
size value. By reusing the handle in this way, you save Windows the time re'"
quired to free an old handle and create a new one. Reusing a handle allows you
to determine how much local memory is available before attempting to allocate
a local memory block.

Freezing Local Memory
You can call the LocalFreeze function to temporarily guarantee that no blocks
will be relocated or discarded when you make subsequent calls to LocalAlloc

16-24 Guide 10 Programming

and LocalReAlloc. You may call LocalFreeze as an alternative to specifying
LMEM_NOCOMPACT in each subsequent call to LocalAlloc and Local
ReAlloc.

You reverse the effect of LocalFreeze by calling the LocalMelt function.

Obtaining Information About a Local Memory Block
The LocalSize and LocalFlags functions provide you information about a local
memory block. LocalSize returns the size of the block. LocalFlags indicates
whether the memory block is discardable and, if so, whether the block has been
discarded. LocalFlags also reports the lock count for the memory block.

16.2.3 Managing Global Memory Blocks
The global heap is the Windows system-wide memory resource that is shared
among applications. An application may request Windows to allocate memory
blocks out of the global heap by calling GlobalAlloc, the same function that
Windows itself calls to allocate internally used memory blocks. By using the
global memory functions described in this section, you can take advantage of the
same memory management mechanisms Windows uses for its own purposes. In
addition, these functions let your application compete or cooperate with the sys
tem itself with essentially the same privileges. Misusing these priveleges reduces
your application's ability to cooperate with Windows and other applications.

The following considerations may help you determine whether to allocate
memory for a given data block out of the global or the local heap:

• You should address a memory block allocated from the local heap with a near
pointer (after you dereference the handle using LocaILock). On the other
hand, you should address a memory block allocated from the global heap
with a far pointer (after you dereference the handle using GlobaILock).

• An application's local heap is a relatively scarce memory resource, since it
must fit in the application's automatic data segment (limited to 64K bytes)
along with the stack and static data; the global heap is much larger.

If a memory object is in the current "working set" of your application, you
should attempt to design it as a local object to take advantage of the more effi
cient near addressing. The current working set is data that you must frequently
access during a fairly lengthy operation. Objects that are less frequently accessed
belong in the global heap. In some applications, it might make sense to transfer
data between the application's local heap and the global heap as the working set
of data changes.

In designing the structure of global memory objects, you often have the choice of
breaking them down into elementary objects, or consolidating them into larger
objects. In making this choice, you should consider the following:

More Memory Management 16-25

• Each global memory object carries an overhead of at least 20 bytes.

• Global memory objects are aligned on 32-byte boundaries. The first 16 bytes
are reserved for certain overhead information. Under the Windows standard
mode and 386 enhanced mode memory configurations, there is a system-wide
limit of 8192 global memory handles, only some of which are available to
any given application.

In general, you should avoid allocating small global memory objects. A small
object (128 bytes or less) carries at least a IS-percent space overhead, plus the
memory that is wasted if the object's size (plus 16 bytes) is not a mUltiple of 32
bytes. This overhead may be justifiable in some cases, but you should weigh care
fully the overhead involved. You should especially avoid allocating a large num
ber (many hundreds) of small global objects if they can be consolidated into
fewer, larger global objects. This 'not only eliminates space overhead but also
avoids unnecessary use of the limited number of global memory handles.

With these considerations in mind, the programming task of managing memory
blocks in the global heap is very similar to that of managing memory blocks in a
local heap.For information on managing local memory, see Section 16.2.2,
"Managing Local Dynamic-Data Blocks."

The following sections discuss the functions that manage global memory.

Allocating Memory in the Global Heap
You call the GlobalAlIoc function to allocate a specified size block in the global
heap. Windows manages blocks of memory in the global heap according to the
same classifications as those for blocks of memory in a local heap: fixed,
moveable, and discardable. Thus, the analogous flags that may be specified in
a call to GlobalAlIoc are:

• GMEM_FlXED

• GMEM_MOVEABLE

• GMEM_MOVEABLE and GMEM_DISCARDABLE

The same mechanisms for compacting memory that are applied in the manage
ment of a local heap also apply to the global heap. Thus, you may specify
GMEM_NODISCARD or GMEM_NOCOMPACT when you call GlobalAlIoc.
For details, see the discussion of LMEM_NODISCARD and LMEM_NOCOM
PACT under the description of LocalAlIoc in "Allocating Memory in the Local
Heap" in Section 16.2.2.

GlobalAlIoc returns a handle to the allocated global memory block. If memory
in the global heap is not available, GlobalAlloc returns NULL. It is always im
portant to check the return value from GlobalAlIoc, since you have no guarantee
that your allocation requests can be satisfied. Most of the functions that manage

16-26 Guide to Programming

global memory described in the following sections require this handle to identify
the memory block.

Allocating Global Memory in a Dynamic-Link Library Under the
EMS Memory Configuration
By default, Windows satisfies GlobalAlloc requests by a DLL differently de
pending on how the library is loaded. If a library is loaded explicitly with a Load
Library call, Windows allocates global blocks from memory below the EMS
bank line. For libraries that are loaded implicitly by an IMPORTS statement in
the application's .DEF file, Windows allocates global blocks from memory
above the EMS bank line in large-frame EMS mode. In small-frame EMS mode,
all global memory blocks are allocated from below the EMS bank line.

Global memory objects allocated below the EMS bank line may be a hindrance
for certain kinds of libraries, such·as printer drivers, which typically need to buf
fer large amounts of data. If their data had to be allocated below the EMS bank
line, this scarce system-wide memory resource would be poorly used. To avoid
this problem, you can compile your DLL with the Resource Compiler using the
-e option on the RC command line. This switch changes the default placement of
global objects for libraries from below the EMS bank line to above the line.

A library that has been compiled with the Resource Compiler -e option must be
written to compensate for the fact that global memory objects located above the
EMS bank line will be banked out at a task context switch. The library may re
quire that a particular global memory object reside below the EMS bank line so
that the global handle remains valid, even as system control changes between
applications. To accomplish this, the library can call GlobalAlloc with the
GMEM_NOT_BANKED flag set.

Locking and Unlocking a Block 01 Global Memory
You can dereference the handle to a global memory object by calling the·Global
Lock function. In real mode, this temporarily fixes the object at a constant loca
tion in the global heap. In all modes, GlobalLock returns a far pointer that is
guaranteed to remain valid until you subsequently call GlobalUnlock.

In real mode, GlobalLock must lock the object by fixing it in memory to ensure
that the pointer it returns will remain valid until you call GlobalUnlock. Because
it has actually locked the object, GlobalLock increments a lock count for the ob
ject. This lock count helps prevent the object from being discarded or freed while
it is still being used.

In protected (standard and 386 enhanced) mode, Windows does not have to fix
the object in memory unless it is discardable. The pointer will always be valid
whenever the object moves in linear memory. Because Windows does not actu
ally lock the object in memory, GlobalLock does not increment the lock count
for a nondiscardable object in protected mode. GlobalUnlock decrements the
lock count of an object only if GlobalLock incremented it for the object.

More Memory Management 16-27

However, you must still call GlobalUnlock in protected mode when you no
longer need the pointer returned by GlobalLock.

In addition to GlobalLock and GlobalUnlock, several other functions affect the
lock count for an object.' The following lists these functions:

Increases Lock Count

GlobalFix

GlobalWire

LockSegment

Decreas~s Lock Count

GlobalUntix

GlobalUq Wire

UnlockSegment

See the descriptions of these functions in the Reference, Volume 1 for more infor
mation about how they affect a global memory block and its lock count. The
GlobalFlags function returns the lock count of a global memory block as set by
these functions. .

Earlier it was noted that it is not necessary to call LocalLock to dereference a
local handle if the object is allocated as LMEM_FIXED. There is no similar capa
bility for fixed global objectS. Even fixed global objects must always be locked
to dereference the handle.

The following example illustrates how to use GlobalLock to dereference the
handle of a moveable global object:

HANDL~ hGlobalObject;
LPSTR lpGlobalObject;

if (hGlobalObject
= GlobalAlloc(GMEM_MOVEABLE,1024))

if (lpGlobalObject
GlobalLock(hGlobalObject))

else
{

/* Use lpGlobalOBject as the far */
/* address to the globally allocated */
/* object. */

GlobalUnlock(hGlobalObject);

/* Lock failed. React accordingly. */

16-28 Guide to Programming

else
{

/* The 1024 bytes cannot be allocated. */
/* React accordingly. */

If you allocate art object that is 64K or larger, you should cast and save the
pointer returned by GlobalLock as a huge pointer. The following example
illustrates the allocation of a 128K memory block:

HANDLE hGlobalObject;
char huge * hpGlobalObject;

if (hGlobalObject
GlobalAllocCGMEM_MOVEABLE,0x20000L»

if (hpGlobalObject
(char huge *)GlobalLock(hGlobalObject»

else
{

else
{

/* Use hpGlobalOBject as the far */
/* address to the globally allocated */
/* object. */

GlobalUnlock(hGlobalObject);

1* Lock failed. React accordingly. */

/* The 128K cannot be allocated. */
/* React accordingly. */

Changing a Block of Global Memory
You can change the size or attributes of a global block while preserving its con
tents by calling GlobalReAlloc. If you specify a smaller size, Windows truncates
the block. If you specify a larger size and also specify GMEM_ZEROINIT,
Windows fills the new area of the block with zeros. By specifying GMEM_DIS
CARD or GMEM_NOCOMPACT, you ensure that Windows will not discard or
move blocks to satisfy the GlobalReAlloc request.

You can also call GlobalReAlloc to change the block's attribute from nondiscar
dable to discardable, or vice versa. Unlike LocalReAlloc, however, you also can
change a GEM_FIXED block to GMEM_MOVEABLE or GMEM_DISCARD
ABLE. But you cannot change a moveable or discardable block to a fixed block.
To change the attribute of a global block, you must also specify the

More Memory Management 16-29

GMEM_MODIFY flag. See the example in "Changing a Block of Local
Memory" in Section 16.2.2.

You must take care when you are changing the size of a global block if its size in
creases across a multiple of 64K. Windows may return a new global handle for
the reallocated memory block. For example, this applies if you change the size of
the block from 50K to 70K, or 120K to 130K. In standard mode, this applies if
you change the size of the block across a multiple of 65,519 bytes (17 bytes less
than 64K).

Because of the selector tiling technique employed by Windows when under the
standard mode or 386 enhanced mode memory configuration, Windows might
have to search for a larger set of related selectors when the size of a global block
increases across a multiple of 64K. If so, Windows returns the first selector of the
larger set as the global handle. "Using Huge Memory Blocks in the Standard
Mode Memory Configuration" in Section 16.1.3 describes selector tiling.

The following code example shows how not to increase the size of a block of
global memory. It is valid for the basic and EMS memory configurations, but is
invalid for the standard mode and 386 enhanced mode memory configurations:

/* DON'T FOLLOW THIS EXAMPLE */
GlobalReAllocChHugeObject,

0x20000L,
GMEM_MOVEABLE);

In the preceding example, the handle hHugeObject might be invalidated, depend
ing on how Windows satisfied the reallocation request. The following example
shows how to reallocate a global memory block in any memory configuration.

/* FOLLOW THIS EXAMPLE */
if ChTempHugeObject = GlobalReAllocChHugeObject,

0x20000L,
GMEM_MOVEABLE))

else
{

hHugeObject hTempObject;

/* Object could not be allocated. */
/* React accordingly. */

In this example, the temporary handle, hTempHugeObject, is employed to pre
serve the original handle in case GlobalReAlIoc returns a NULL handle to indi
cate a failure to reallocate.

Freeing and Discarding Blocks of Global Memory
The GlobalFree and GlobalDiscard functions are identical to LocalFree and
LocalDiscard, except that they operate on global rather than local memory

16-30 Guide to Programming

objects. For more information, see the discussion on LocalFree and Local
Discard in "Freeing and Discarding Blocks of Local Memory" in Section 16.2.2.

Obtaining Information About a Global Memory Block
The GlobalSize and GlobalFhigs functions provide current information about a
global memory block. GlobalSize returns the current size of the block. Global
Flags indicates whether the memory block is dlscardable and, if so, whether the
block has been discarded. It also indicates whether the block was allocated with
the GMEM_DDESHARE or GMEM_NOT_BANKED flags.

Locking a Global Memory Block for Extended Periods
when you call GlobalLock to prevent a moveable object from moving as other
objects are manipulated in the global heap, you can hinder the ability of
Windows to manage these other objects efficiently. Locking the object for only
a short time is acceptable. To lock an object for a long time, use GlobalWire in
stead of GlobalLock. This function relocates the moveable object to the lower
area of the global heap reserved for fixed objects and then locks it. Moving the <

locked object to low memory allows Windows to compact upper memory more
efficiently, but requires additional CPU cycles to move the object. Call
GlobalUn Wire to unlock the object. After the object is unlocked, it can migrate
out of the fixed portion of the global heap.

Being Notified When a Global Block is To Be Discarded
If you want your application to be notified whenever Windows is about to dis
card a global block, call the GlobalNotify function. GlobalNotify is useful if
you are writing a custom virtual-memory management system that swaps data to
and from disk, for example. You specify the address of the notification callback
function in your application.

Changing When a Global Block is Discarded
As Windows manages the global heap, it employs a least-recently-used (LRU) al
gorithm for determining which global objects should be discarded when memory
must be freed. You can call the GlobalLRUOldest function to move an object to
the oldest position in the LRU list. This means that this object will be the most
likely object to be discarded if Windows subsequently needs more memory. Con
versely, by calling GlobalLRUNewest, you ensure that an object is least likely
to be discarded.

These functions are useful, for example, for discarding initialization code when it
is no longer needed. You could also use these functions if you are writing a cus
tom virtual-memory management system that swaps data to and from disk. With
these functions, you can influence which objects are least or most likely to be dis
carded by Windows to minimize the amount of disk swapping.

More Memory Management 16-31

Freeing Global Memory in Low-Memory Conditions
Global memory is a shared resource; the performance of all applications depends
on the willingness of all applications to share that resource. When system
memory is low, your application should be prepared to free global memory that it
has allocated.

Windows sends the WM_COMPACTING message to all top-level windows
when Windows detects that more than 15 percent of system time over a 30- to
60-second interval is being spent compacting memory. This indicates that system
memory is low.

When your application receives this message, it should free as much memory as
possible, taking into account the current level of activity of the application and
the total number of applications running in Windows. The application can call
the GetNumTasks function to determine how many applications are running.

16.2.4 Using Extra Bytes in Window and Class Data Structures
You can store extra, application-defined data with the data structures that de
scribe the attributes of a window or a window class. This extra data is known as
"window extra bytes" and "class extra bytes," respectively.

This private data resides at the end of a data structure that Windows maintains
for the window. When you call RegisterClass, the cbWndExtra field of the
WNDCLASS data structure specifies the number of extra bytes of information
that will be maintained for each window member of that class.

The technique of using the private data area of a window is particularly useful in
cases in which you have two or more windows that belong to the same class, and
you want to associate different data with each window. Without the private data
facility, you would have to maintain a list of private data structures for each
window. Then, each time you needed to access the data for a particular window,
you first would have to locate the corresponding entry in the list. However, by
using the private data facility you can directly access the private data through the
window handle rather than using a separate list.

An additional advantage of using the window's private area to store data is that
you can encapsulate the data associated with each window better than if you
were to store the same information as static data in the same module as the
window procedure, for example.

To write to the window's private data area, call SetWindowWord and Set
WindowLong. These two functions accept a 1Jyte offset within the area you set
aside for private data. A zero offset refers to the first WORD or LONG in the
private area. An offset of 2 (bytes) refers to the second WORD in the private
area. An offset of 4 (bytes) refers to the third WORD or the second LONG in the
private area. Note that SetWindowWord and SetWindowLong also accept con
stants such as GWW _STYLE and GWL_ WNDPROC, which are defined in
WINDOWS.H. These constants are negative offsets within the window's data

16-32 Guide 10 Programming

structure. The length of the data structure (minus the private area) is thus added
to the offset you provide in the call to SetWindowWord or SetWindowLong to
determine the actual offset relative to the beginning of the data structure.

To read from the private data area of a window, call the GetWindowWord and
GetWindowLong functions. The offsets you specify work the same way as for
SetWindowWord and SetWindowLong.

In the EMS memory configuration, the data structure for a window is allocated in
the relatively scarce memory area below the EMS bank line. If you wish to as
sociate a large amount of data (more than 10 bytes) with the window, you should
store a global handle in the window's private area instead of the actual data. The
handle points to the actual data. This way, you increase the size of the window's
data structure only by the two bytes needed for the global handle, rather than by
the large size of the private data itself.

Just as you can associate private data with a particular window, you can also as
sociate private data with a window class. The functions provided for this purpose
are SetClassWord, SetClassLong, GetClassWord, and GetClassLong. There
are probably fewer occasions for associating private data with a window class
than with a window. Using the private area for the window class is appropriate
for data that is logically related to the window class as a whole and that is com
mon among multiple windows of the same class.

16.2.5 Managing Resources
A resource is read-only data stored in your application's .EXE or library's .DLL
file that Windows reads from disk on demand. Certain types of resources have
prescribed formats recognized by Windows. These include bitmaps, icons, cur
sors, dialog boxes, and fonts. You can create these resources using the Windows
SDK resource editors SDKPAINT, DIALOG, and FONTEDIT. You link these
resources into your .EXE or .DLL file using the Resource Compiler (RC). You
take advantage of Windows' knowledge of these resource formats by calling as
sociated functions such as LoadIcon and CreateDialog.

A resource is read into memory by Windows as a single data segment. The
resource may be declared in the resource script to be fixed, moveable, or discard
able. When determining whether a resource should be fixed, moveable, or
discardable, you should take into account the same considerations as you do for a
global memory block.

If you declare resource with the PRELOAD option, Windows loads it into
memory during the start-up of your application. Otherwise, Windows loads it
when it is needed (the LOADONCALL option). This option is particularly im
portant when the application is running in the EMS small-frame configuration.
See Section 16.6.4, "The Order of Code Segments in the .DEF File," for a discus
sion on loading resources in the EMS small-frame configuration.

More Memory Management 16-33

In addition to resources whose formats are recognized by Windows, you can also
develop resources recognized only by your application. The data may be in any
format that you design, including ASCII text, binary data, or a mixture of these.

When deciding whether to maintain data as a resource or as a separate file, you
should keep the following in mind:

• By compiling the resource into your application's .EXE file, you simplify the
packaging of your application. You and your user do not need to worry about
installing ~dditional data files along with the application's .EXE file.

• On the other hand, maintaining the data as a resource means that you must re
compile your application's .EXE file if you change the data. If you anticipate
having several users to whom you may at some time distribute the updated
data, it may be easier to distribute a new version of a data file than it is to dis
tribute a new version of the .EXE file.

The steps for compiling a user-defined resource into an .EXE or .DLL file are de
scribed in Tools.

The following sections describe the Windows functions that access a custom
resource.

Locating a Custom Resource
The FindResource function determines the location of the resource according to
the name specified in your resource script. The function returns a handle which
you can then use in a call to the LoadResource function to load the resource.
The resource handle returned by FindResource refers to information that de
scribes the resource type declared in the resource script, the position of the
resource in the .EXE or .DLL file, and the size of the resource.

For example, suppose you wish to maintain an ASCII text file as a resource. The
source text file is named MYTEXT. TXT . You name the resource "my text, " and
you arbitrarily name the resource type "TEXT." The resource script for this
resource is:

my text TEXT my text. txt

In your application, you obtain the resource handle by calling FindResource as
shown:

HANDLE hMyTextResLoc;

hMyTextResLoc
- FindResourceChInstance, "TEXT", "my text");

16-34 Guide to Programming

Loading a Custom Resource
The call to FindResource does not load the resource from the.EXE or .DLL
disk file to memory. Rather, it only finds the location of the resource and returns
the result of the find as a handle that points to the resource location information.
To actually load the resource into memory, you call LoadResource, as follows:

HANDLE hMyTextResLoc;
HANDLE hMyTextRes;

hMyTextResLoc
= FindResource(hInstance, "TEXT", "my text");

if (!hMyTextRes
= LoadResource(hlnstance, hMyTextResLoc»

/* Handle case that memory is not available */
/* to load resource */

LoadResource itself calls GlobalAlloc to allocate the memory block for the
resource data, and then copies the data from disk to the memory block.

Locking and Unlocking a Custom Resource
To access the resource data now residing in a global memory block, you must
call the LockResource function to lock the resource and obtain a far pointer to
the data. This is equivalent to using GlobalLock to obtain the far pointer to a
memory block allocated by GlobalAlloc. The following continues the previous
example:

LPSTR lpstrMyText;

lpstrMyText = LockResource(hMyTextRes);

Once you have the far address to the resource, you can read it as you would from
a global memory block locked by GlobalLock.

If you have defined the resource as discardable and it has been discarded,
LockResource will first load the resource back from disk. Unlike GlobalLock,
LockResource saves you the trouble of calling LoadResource again if the
resource has been discarded.

You should call UnlockResource when you are not in the process of accessing
the resource data. This function is equivalent to GlobalUnlock. If you declare
the resource as moveable or discardable, this provides Windows the flexibility to
move or discard the resource from memory as necessary to satisify other memory
allocation requests.

More Memory Management 16-35

Freeing a Custom Resource
The FreeResource function is similar to GlobalFree. It discards the memory
used by the resource data as well as by the resource handle. If you need to load
the resource. again, you can call LoadResource using the resource location
handle returned by your initial call to FindResource.

16.3 Using Memory Models
A Windows applic~tion, like a non-Windows DOS application, may have one or
more code segments and one or more data segments. The memory model, which
you specify when you compile your source code modules, determines whether
compiler-generated instructions use near or far addresses. If you use a memory
model that specifies only one, code or data segment, the compiler generates in
structions that employ near (16-bit) addresses for, respectively, code or data
references. If you compil~ using a memory model that specifies multiple code
or data segments, the compiler generates instructions that employ far (32-bit)
addresses for code or data references. Figure 16.8 shows how the memory model
affects the way the application addresses code and data.

Number of code segments

One Multiple

Small Medium
Number One memory memory

of model model
data

segments Compact Large
memory memory
model model

Multiple

Figure 16.8 Microsoft Language Memory Models

There are two memory models, large and huge, for compiling a module that
generates far addresses for both code and data references. In the large memory
model, far pointers can be incremented only within the 64K offset range of a seg
ment. In the huge memory model, far pointers can be incremented across 64K
boundaries, causing both the segment address and the offset to be incremented.
Also, if a module is compiled with the large memory model, its data segments
are always fixed in real mode, and in all modes Windows will be able to load
only one instance of the module.

Generally, it is best to use the small or medium model for Windows applications.
Under the basic and EMS memory configurations, using the compact, large or
huge model requires far data segments to be fixed in memory; this constrains
Windows' memory management. The far data segments must be fixed because
Windows provides no mechanisms for redirecting references to far data segments

16-36 Guide to Programming

as they move in memory. However, Windows does provide mechanisms for
redirecting references to an application's automatic data segment and code
segments as they move.

If you are using the Microsoft C Compiler, compile your Windows application's
C-Ianguage source code modules using the -AS switch for the small model or the
-AM switch for the medium model.

Windows also lets you use a "mixed" memory model. In the mixed model, you
compile modules with the -AS switch, assign the same code segment name to
those modules whose code segments you want to group together, and assign
different code segment names to those modules for which you want to generate
different code segments. To assign a code segment name to a module, use the C
Compiler -NT switch. A function that is called from a different code segment
must be declared as a far function in the module where the call is made, as
follows:

WORD FAR PASCAL FunclnAnotherCodeSeg(WORD, LONG);
WORD wReturn;

wReturn FunclnAnotherCodeSeg(0,0L);

The advantage of using the mixed memory model is that you only need to define
calls made between code segments as far. Functions that are declared far in
crease code size and require more machine cycles to be called.

In another form of the mixed memory model, you can compile modules with the
-AM switch, which makes function calls far by default. Then, instead of declar
ing far functions, you prototype as near those functions that are called only
within the same segment. The disadvantage of this method is that all C run-time
library functions will also be far functions.

16.4 Using Huge Data
You can declare data as huge in C-Ianguage modules. The C Compiler will cor
rectly perform the arithmetic required to increment the pointer across segment
boundaries. You can pass a huge pointer to Windows library routines or to your
own routines that expect a far pointer, but only if the routine is not expected to in
ternally increment the far pointer to point to an object that straddles a 64K bound
ary. For example, the following code is acceptable because 16 is a factor of 64K
(65,356):

char huge Record[10000][16];
i nt i ;

TextOut(hDC, x, y, (LPSTR)Record[i], 16);

More Memory Management 16-37

The following example violates this limitation because the pointer passed to
the TextOut function will eventually point to an object that straddles a 64K
boundary:

char huge Record[10000][15];
i nt i ;

TextOutChDC, x, y, CLPSTR)Record[i], 15);
/* DON'T DO THIS */

Since 15 is not a factor of 64K, the pointer would be incremented across a seg
ment boundary.

16.5 Traps to Avoid in Managing Program Data
The previous sections of this chapter explained the basics of how Windows
memory management works. They provided guidelines for choosing between
methods for allocating program data and for effectively using a particular
method.

This section focuses on common Windows programming errors that you should
avoid in managing program data. If you understand how Windows manages
memory, the following guidelines will be quite clear.

Do not assume the privilege level in which your application is
running.
Future versions of Windows applications will change the privilege-level ring in
which applications will run.

Avoid far pOinters to static data in small and medium models.
Suppose a module contains the following declaration:

static LPSTR lpstrDlgName = "MyOlg";
/* DON'T FOLLOW THIS EXAMPLE */

hDlg = CreateOialogChInstance,
lpstrDlgName,
hWndParent,
lpDialogFunc) ;

The LPSTR (char FAR *) pointer initially set by the Windows loader will be
made invalid if the automatic data segment that contains the literal "My DIg"
moves in memory (unless, of course, the automatic data segment is a fixed
segment).

16-38 Guide to Programming

The proper way to write the preceding code is to declare the string with a near
pointer, PSTR (char NEAR *), and cast it to the LPSTR required by Create
Dialog, as shown in the following example:

/* FOLLOW THIS EXAMPLE */
static PSTR pstrDlgName = "MyDlg";

hDlg = CreateDialogChInstance,
CLPSTR)pstrDlgName,

hWndParent,
lpDialogFunc) ;

The cast to LPSTR dynamically pushes the current value of the DS register
instead of the value of the DS register when the module was loaded.

Do not pass data to other applications via a global handle.
You may not use a global handle to share data with another application because
you should assume that your application and other Windows applications have
disjoint address spaces. For example, if your application is running in the large
frame EMS configuration, a global handle will dereference to an address in your
EMS bank. If your application passes the global handle to another application
which then attempts to dereference it (by calling GlobaILock), the resulting far
address will be at the same position in the I-megabyte physical address space.
However, the handle will be pointing to the data currently banked in by the
other application rather than to the data that was previously banked in for your
application.

Consider the following bad example:

WORD wMyMsg;
HANDLE hGlobalObject;

wMyMsg = RegisterWindowsMessageC
CLPSTR)"MyMessage");

hGlobalObject = GlobalAllocCGMEM_FIXED, 100h);

PostMessageC-l, wMyMsg, hGlobalObject, 0L);
/* DON'T FOLLOW THIS EXAMPLE */

This code broadcasts a specially registered message to all windows, including
those of other applications. If another application has called RegisterWindows
Message with the same message name, "MyMessage", the other application will
detect this special message in one of its window procedures. If that other applica
tion then attempts to dereference the global handle hGlobalObject, the far pointer
returned by GlobalLock will be invalid in large-frame EMS mode. Even though

More Memory Management 16-39

the global object was allocated with the GMEM_FIXED attribute, the global data
owned by the first application will be banked out into EMS memory.

In addition, in future versons of Windows, the address spaces of applications will
be disjoint in the standard and 386 enhanced mode memory configurations.

The only methods supported by Windows to pass data between applications are
the clipboard and the Dynamic Data Exchange (DDE) protocol. If you pass a
global handle through DDE to another application, the global object must have
been allocated with the GMEM_DDESHARE flag. To share memory, you
should always use DDE.

You can pass a global handle between applications by following the DDE proto
col because Windows does some extra work when the other application derefer
ences the handle. When the second application calls GlobalLock for the handle,
Windows reads the data from the EMS bank of the first application into a tem
porary global memory block of the currently banked-in second application. The
far address returned by GlobalLock points to this temporary memory block. The
currently banked-in application can only read this temporary memory block.
When the application calls GlobalUnlock, Windows deletes the data from the
global heap associated with the currently banked-in application.

Do not assume any relationship between a handle and a far
pointer in any mode.
When using global memory blocks, you must always call the GlobalLock func
tion to dereference a handle to a far pointer, regardless of the mode in which
Windows is running.

Do not load a segment register with a value other than one
provided by Windows or DOS.
Under the Windows standard mode and 386 enhanced mode memory configura
tions, segment registers are interpreted as selectors, not phYSIcal paragraph
addresses. Therefore do not read the interrupt table by setting ES or DS to 0, for
example. Use only the appropriate DOS call to hook an interrupt vector.

Do not perform segment arithmetic.
Do not increment the segment address of a far pointer in an attempt to increment
the pointer. This technique is not supported under the Windows standard mode
and 386 enhanced mode memory configurations. See "Locking and Unlocking a
Block of Global Memory" in Section 16.2.3.

Do not compare segment addresses.
Do not compare the selector values that Windows assigns to memory objects
to determine which object is lower in memory. Thistechnique is not supported
under the Windows standard mode and 386 enhanced mode memory configura
tions.

16-40 Guide to Programming

Do not read or write past the ends of memory objects.
Do not read or write past the ends of memory objects under any circumstances.
Although this may go undetected in other memory configurations, this error will
be reported by Windows as a general protection cap) fault under the standard
mode and 386 enhanced mode memory configurations.

16.6 Managing Memory for Program Code
You should plan how Windows will manage the code segments that make up the
executable portion of your application or library. This planning should involve
the following considerations:

• Whether your code segments should be fixed, moveable, or discardable

• Whether your application or library will contain one or more code segments

• How to maintain a balance of size and far calls between your code segments

• The order in which Windows loads the code segments

This section provides information on how Windows manages application and li
brary code, and provides details and guidelines on how you should write your
application with this information in mind.

16.6.1 Using Code-Segment Attributes
Windows uses the same memory management facilities for handling code
segments as it does for handling data segments. You can, and generally should,
partition your application into separate code segments. You can declare a particu
lar code segment to be fixed, moveable, or discardable, just as you can for the
application's automatic data segment and global objects.

In your application's .DEF file, you can use the CODE statement to specify
whether the code segments are by default fixed, moveable or discardable. For
example, the following statement declares that the default attribute of all code
segments will be MOVEABLE.

CODE MOVEABLE;

You can override this default for specific code segments using the method de
scribed in Section 16.6.2, "Using Multiple Code Segments."

If you declare your code segments discardable, Windows can free memory held
by those code segments when it needs to allocate additional memory. Because a
code segment is always unmodifiable, there is no risk that information will be
lost when it is discarded. When your application makes a call to a code segment
that is not currently in memory, Windows will first load it from the .EXE file.
However, if a discardable code segment is not in memory, it takes extra time for

More Memory Management 16-41

Windows to load the segment from disk. On the other hand, this penalty is min
imized because Windows uses a least-recently-used (LRU) algorithm for dis
carding segments, and so Windows does not discard frequently used segments.

16.6.2 Using Multiple Code Segments
Most Windows applications should be compiled using the mixed memory model.
The code should be partitioned into relatively small (approximately 4K)
segments. This allows Windows to move the code segments fluidly in memory.
For more information on the mixed model, see Section 16.3, "Using Memory
Models."

When you compile a C module, the code segment is assigned the name ~ TEXT
by default. You can assign the code segment a different name, using the -NT
option of the cl command. You partition the code by assigning different names to
the code segments for different modules. The following compilation produces a
code segment name CODESEG 1.

el -u -e -AS -Gsw -Oas -Zpe -NT CODESEGI modolel.e

You can assign attributes in the application's .DEF file that override the values
you specified for the default CODE. For example, the following .DEF file ex
cerpt declares all code segments to be moveable except the code segment named
CODESEG 1, which is discardable.

CODE LOADONCALL MOVEABLE

SEGMENTS
CODESEGI MOVEABLE DISCARDABLE

16.6.3 Balancing Code Segments
Although it is desirable to keep code segments small, compare the cost of a far
call between code segments to a near call within a code segment. A far call costs
more for Windows applications than it does for non-Windows DOS applications.
Each far call carries the overhead of extra instructions because Windows has to
direct the call to a code segment that may have been moved or discarded.

The task of balancing code segments in an application is a matter of minimizing
the frequency of far calls that must be made between. segments , while maintain
ing roughly equal-sized segments that do not significantly exceed 4K. Functions
that frequently call each other should be grouped in the'same·code segment, sub
ject to the code size guideline:

16.6.4 The Order of Code Segments in the . OfF File
In EMS small-frame mode, code segments and resources are loaded above the
EMS bank line according to the chronological order in which they are loaded

16-42 Guide 10 Programming

16.7 Summary

into memory by Windows. Once a code segment is loaded above the EMS bank
line, it will never be discarded.

To take maximum advantage of expanded memory in the small-frame configura
tion, you should declare frequently accessed code segments as PRELOAD and
MOVEABLE in the application .DEF file. You should list the most frequently
accessed code segments first since they will be preloaded first. If you do not, less
important code segments are likely to be loaded into the EMS bank. For ex
ample, initialization code thafis only needed once at program start-up could re
main in the EMS bank for the entire life of the application. This means that other
code segments that are more frequently accessed might still have to be discarded
if not enough memory is available below the EMS bank line.

You can use Profiler to help determine which segments are most frequently used.
For more information on Profiler, see Tools.

Declaring a code segment MOVEABLE or DISCARDABLE does not imply
that it can be moved or discarded once it is loaded above the EMS bank line in
the small-frame configuration. If you declare the code segment FIXED, it might
still be loaded above the EMS bank line. You should not declare the code seg
ment FIXED, however, if that is not what you would do for other memory con
figurations, such as the EMS large-frame configuration or the basic memory
configuration.

Application resources may also be located above the EMS bank line. You can
influence whether a resource is loaded above the line, just as you can a code seg
ment. To do so, declare the resource with the PRELOAD option in the resource
script, as follows:

mycursor CURSOR PRELOAD point.cur

Note that code segments are preloaded before resources.

Windows manages memory carefully to ensure the most efficient use of the avail
able memory. There are four basic Windows m~mory configurations, which
more or less correspond to the Windows operating modes. Windows manages
memory differently for each configuration. Applications must follow certain
memory-management guidelines in order to run successsfully with Windows in
standard mode or 386 enhanced mode.

Topic

Using C and assembly
language in a Windows.
application,

Reference

Guide to Programming: Chapter 14, "C and
Assembly Language"

Topic

~emory-management

functions

~odule-definition

statements

More Memory Management 16-43

Reference

Reference, Volume 1: Chapter 4, "Functions
Directory"

Reference, Volume 2: Chapter 1 0, "~odule
Definition Statements"

Chapter

17
Print Settings

When a user prints from your application, the resulting output depends not only
on the data your application sends to the printer; it also depends on the current
print settings for that printer. Print settings can include information such as page
size, print orientation, or which paper bin to use.

The simplest way to print (illustrated in Chapter 12, "Printing") uses the current
print settings without validating or changing them. This approach works as long
as the settings are appropriate for your application's needs. However, if not, your
application's printed output could be less than ideal. For example, if your applica
tion prints a spreadsheet that requires a "landscape" print orientation on a printer
that's set up for "portrait" orientation, your application's data will probably run
off the right side of the paper.

Microsoft Windows version 3.0 lets your application change the print settings to
fit its own needs (for example, change the print orientation to landscape, or
specify a different paper bin). After your application has tailored the print set
tings, it can print using those settings.

Because print settings differ from printer to printer, an application must interact
with a printer's device driver in order to change the settings for that printer. Most
Windows printer drivers provide special functions that let your application
manipulate print settings easily.

This chapter explains how to use these printer-driver functions to manipulate
print settings.

This chapter covers the following topics:

• How Windows manages print settings

• U sing device-driver functions

• Finding out the capabilities of a printer device driver

• Manipulating print settings

• Copying print settings from one driver to another

• Letting the user change the print settings

• Working with drivers written for previous versions of Windows

17-2 Guide to Programming

17.1 How Windows Manages Print Settings
When your application performs printing, it uses a printer device context that it
created using the CreateDC function. When creating a device context for a
printer, the application specifies the printer driver and name, the output port, and,
optionally, print settings for that driver. These settings are device-specific; each
collection of print settings applies to a specific printer and printer driver. Because
the exact settings can differ from printer to printer, the application must be care
ful to supply the specific information each printer driver expects.

When an application calls CreateDC to create a printer device context in prepara
tion for printing, Windows creates the device context using the first print settings
it can find. It looks for print settings in the follQ~ing order:

I. Windows first tries to use the print settings (if any) that the application passed
using the lplnitData parameter of the CreateDC function.

2. If the application did not pa~s any print s~ttings when calling CreateDC,
Windows looks for the print settings that the printer driver most recently
stored in memory using the SetEnvironment function.

3. If the printer driver has not yet stored any print settings in memory using
SetEnvironment, Windows looks for the print settings in WIN .INI.

4. If the WIN .INI file does not contain complete print settings for this printer
and port, the printer driver fills any gaps using its own built-in default settings.

Your application has the most cop-trol over print settings if you specify settings
when calling CreateDC. If you specify print settings using CreateDC, Windows
uses those settings instead of other settings that may be available from the driver
orWIN.lNI.

17.1.1 Print Settings and the OEVMOOE Structure
Usually, print settings come in the form of a DEVMODE structure. For ex
ample, when you pass print settings to CreateDC, you are actually passing a
pointer to a DEVMODE structure. (A. notable exception is the WIN.lNI file,
which contains print settings in the form of strings.) Normally, your application
does not create the DEVMODE structure itself; instead, it gets a complete struc
ture from the printer driver, and modifies it as necessary. This method ensures
that the structure is complete and correct.

The DEVMODE structure includes three types of information:

Information

Header information

Device-independent
settings

Device-specific data

Print Settings 17-3

Description

The first five fields in the DEVMODE structure
make up the structure's header information. This
information includes the printer name (for example,
"PCL/HP Laserjet"), version information, and infor
mation about the size of the DEVMODE structure.
You should always provide complete header infor
mation.

Most of the fields in the DEVMODE structure are
device-independent settings, such as print orienta
tion, papersize, and number of copies. Although a
complete DEVMODE structure always includes all
the device-independent settings, some printers do
not support all the settings. For example, many print
ers can print only on one side of the paper; printer
drivers for those printers would therefore ignore the
DEVMODE structure's dmDuplex field, which
specifies two-sided printing.

The DEVMODE structure's dmDriverData field
contains device-specific data that is defined by each
device driver. Normally, an application would
simply pass this data on withoqt modifying it in any
way.

The best way to supply a complete DEVMODE structure when calling
CreateDC is to first use the ExtDeviceMode function (included in printer
drivers written for Windows version 3.0). This function tells the printer driver to
create a DEVMODE structure using its current print settings. Because the driver
itself creates the DEVMODE structure and includes its device-specific data,
your application can assume that the structure is complete and correct. Your
application can then pass the resulting DEVMODE structure when calling the
CreateDC function.

For details on theDEVMODE data structure, see the Reference, Volume 2. For
details on the CreateDC function, see the Reference, Volume 1.

17.1.2 Print Settings and the Printer Environment
A "printer environment" is a collection of print settings in memory. There can be
one printer environment for each printer port. The current printer driver
(whatever the user has installed for that port) is responsible for creating and main
taining the port's printer environment.

The settings in each port's environment are the same as those in the WIN .INI
file, except that the WIN .INI information consists of character strings in a file,
while the environment is the same information in the form of a DEVMODE

17-4 Guide to Programming

structure in memory. Having the information in memory speeds up the process of
creating a printer device context for that port.

When an application creates a printer device context without specifying its own
customized print settings, Windows uses the settings in the printer environment.

Because the printer environment is associated with a printer port, changes to the
settings in a printer environment affect any application that does not provide its
own print settings when creating a printer device context for that port.

When using printer drivers written for Windows version 3.0, an application can
manipulate the print settings to suit its own needs; the changes need not affect
other applications that are using the same port. (When using printer drivers writ
ten for earlier versions of Windows, applications can change the print settings
only by changing the WIN.INI file and the printer environment; this affects all
applications that use that port without providing their own print settings.)

17.2 Using Device-Driver Functions
Most printer drivers include special functions that an application can use to
manipulate print settings for that driver and printer port.

• Older printer drivers provide the DeviceMode function. This function dis
plays a dialog box that lets the user select print settings, such as page orienta
tion and paper size, for the printer. The user's changes affect the WIN.lNI file

. and the print environment.

• Windows version 3.0 printer drivers provide the ExtDeviceMode function,
which provides many ways for the application to manipulate print settings
without affecting other applications. This function also lets an application get
a copy of the settings in a driver's DEVMODE structure; the application can
then modify those settings, rather than creating a DEVMODE structure from
scratch. (ExtDeviceMode also includes the functionality that DeviceMode
provides in older drivers.)

• Windows version 3.0 drivers CJ.lso provide the DeviceCapabilities function.
This function lets the application find out which DEVMODE fields a particu
lar driver supports.

Device-driver functions are actually part of the device driver, and not regular
Wip.dows functions. Because of this, you must use the following procedure to
call a device-driver function:

1. Load the device driver into memory by calling the LoadLibrary function.

2. Use the GetProcAddress function to retrieve the address of the function you
want. (If GetProcAddress returns a null pointer, then that device driver does
not provide the function you requested.)

Print Senings 17-5

3. Use the pointer returned by GetProcAddress to call the device-driver
function.

4. After you have finished using the device-driver function, call the Windows
FreeLibrary function to unload the device driver from the system.

The following example shows the code necessary to call the ExtDeviceMode
function of the PSCRIPT.DRV printer driver:

FARPROC lpfnExtDeviceMode;
FARPROC lpfnDeviceMode;
HANDLE hDriver;

hDriver = LoadLibrary("PSCRIPT.DRV");
lpfnExtDeviceMode = GetProcAddress(hDriver, "ExtDeviceMode");

if (lpfnExtDeviceMode != NULL)
{

else

/* If the driver supports ExtDeviceMode, call the *
* driver's ExtDeviceMode function using the *
* procedure address in lpfnExtDeviceMode. */

/* The driver is not a Version 3.0 driver and
* does not support the newer functions;
* use the DeviceMode function instead. */

*
*

lpfnDeviceMode = GetProcAddress(hDriver, "DeviceMode");

if (lpfnDeviceMode != NULL)
{

/* If the dri ver supports Devi ceMode;' call
* the driver's DeviceMode function using
* the procedure address in lpfnDeviceMode. */

*
*

FreeLibrary(hDriver); /* When finished, unload driver from memory. */

17.3 Finding Out the Capabilities of the Printe·, Driver
The DeviceCapabilities device-driver function lets you find out the capabilities
of a particular printer, including the DEVMODE fields that the driver supports.
For example, if your application depends on printing in landscape oriehtation, it
might call DeviceCapabilities to find out if the current printer supports land- .
scape orientation.

The Reference, Volume 1, provides detailed information on the DeviceCapabili
ties function.

17-6 Guide to Programming

17.4 Working with Print Settings
The ExtDeviceMode device-driver function lets you perform one or more ac
tions at a time. You can use ExtDeviceMode to:

• Retrieve a DEVMODE structure containing the driver's current print settings

• Change one or more of the driver's current print settings

• Prompt the user for print settings

• Reset the print environment and the information in WIN.lNI

Because ExtDeviceMode provides so many different features, you will probably
find that your application calls ExtDeviceMode repeatedly during the process of
retrieving, altering, and maintaining print settings.

When calling the ExtDeviceMode function, you specify:

• The module handle of the printer driver you want (returned by the Load
Library or GetModuleHandle function).

• The name of the printer device (for example, "PCL/HP LaserJet").

• The name of the port to which the printer is connected (for example,
"LPT2:").

• The operation(s) that you want the device driver to perform.

You request different operations by setting the values that make up the
wMode parameter. To request several operations at once, you can combine
two or more values using the OR (I) operator.

• The input buffer (if any).

The application can supply a partial or ·complete DEVMODE data structure
as input. (Unlike other functions that use a DEVMODE structure, ExtDevice
Mode does not require that the input DEVMODE structure be complete.)

• The output buffer (if any).

At the application's request, the driver writes a complete DEVMODE struc
ture to the output buffer.

NOTE The ExtOeviceMode function actually requires eight parameters in all; the list above
includes only parameters that are directly relevant to this discussion. See the Reference,
Volume 1, for a complete list of parameters for the ExtDeviceMode function.

Print Settings 17-7

17.4.1 Specifying ExtDeviceJ¥lode. Input and Output
By setting the wMode parameter, you specify how a driver's ExtDeviceMode
function will receive input, and where it will send output. The driver's response
d,iffers depending on the value(s) you use.

If you set wMode to zero, ExtDeviceMode simply returns the size of the output
DEVMQDE data structure in bytes. This is often the first call you'll make to
ExtDeviceMode, since it lets you know how large to make the output buffer.

You can set wM ode to one or more values other than zero. Table 17.1 lists these
val:tles. The table shows the following for each value:

• The name of the value

• Whether the value controls input or output

• A brief description of what each value does

Table 17.1 Values for the wMode Parameter

Value Input/Output

Input

Input

Output

Output

Description

Tells the driver to change its current
print settings to match those the
application supplied as a
DEVMODE structure in the input
bqffer.

Tells the driver to display its Print
Setup dialog box, then change its
current print settings to match those
the user specifies.

Writes the driver's current print set
tings to the output buffer in the
fonn of a DEVMODE structure.

Writes the driver's current print set
tings to the printer environment and
the WIN .INI file.

You can use a combination of wMode values to let both your application and the
user manipulate the print settings.

IMPORTANT In order to change the settings, you must specify at least one input value
and one output value. For example, you could use a combination of the input value
OM_IN_PROMPT and the output value OM_OUT _OEFAUL T to tell the driver to take input
from the user and write the resulting settings to the current print environment and WIN.INI.

17-8 Guide to Programming

If you specify only output values (OM_OUT _BUF or OM_OUT _OEFAUL T), the driver pro
vides its current settings, and ignores any input you provide. If you specify only input values
(OM_IN_PROMPT or OMJN_BUF), calling ExtOeviceMode generates no output, so your
input has no real effect.

17.4.2 Getling a Copy 01 the Print Settings
It is often useful, when working with print settings, to find out a particular printer
driver's current settings. This lets your application determine whether the set
tings are appropriate for its own printing needs.

To get a copy of a driver's print settings:

1. Detennine how much space the output DEVMODE structure will require. To
do this, call ExtDeviceMode with wMode set to zero.

ExtDeviceMode returns the size in bytes of the output DEVMODE structure
(the one the driver would create if you set wMode to DM_OUT _BUF).

2. Allocate a buffer of this size.

3. Call ExtDeviceMode again. The parameters you specify should include the
following information:

Parameter

lpDEVMODEOutput

wMode

Value

A pointer to the output buffer you just allocated

The printer driver then puts a DEVMODE structure contal~ing its current print
settings into the buffer you specified.

Because the output buffer contains a complete DEVMOD structure, you can
easily pass that data to the CreateDC or SetEnvironment unction, since both of
these functions accept the DEVMODE structure as input. i

NOTE Calling ExtOeviceMode using only the OM_OUT _BUF value for the wMode para
meter is similar to calling GetEnvironment, since both return the default print settings. The
difference between the two is that ExtDeviceMode always works because it gets the settings
directly from the driver; GetEnvironment, on the other hand, retrieves valid settings only if
the device driver has previously called SetEnvironment.

Print Settings 17-9

17.4.3 Changing the Print Settings
Often, when printing information, your application may need to change the print
settings to suit its own printing needs.

To change the print settings, set wMode to both an input value (DM_IN_BUF or
DM_IN_PROMPT) and an output value (DM_OUT_BUF or DM_OUT_DE
FAULT). You can specify multiple values, as long as you use at least one input
and one output value. (To change the settings without affecting other applica
tions, do not specify the DM_OUT_DEFAULT output value; that value causes
the driver to change the default printer settings to those you specify.)

There are several different ways to provide new print settings as input. For each
method, you set wMode to a different combination of values. The input methods
are:

• Provide a partial DEVMODE structure with the new settings you want.
(When calling ExtDeviceMode, specify the value DM_IN_BUF.)

• Display the driver's Printer Setup dialog box so that the user can change the
settings. (When calling ExtDeviceMode, specify the value
DM_IN_PROMPT.)

• Provide a partial DEVMODE structure and, in addition, display the driver's
Printer Setup dialog box. This method lets both your application and the user
change the settings. (When calling ExtDeviceMode, specify both the
DM_IN_BUF and DM_IN_PROMPT values.)

When changing the print settings, you not only provide new print settings as
input; you also specify where you want the driver to place the updated print set
tings. The driver provides as output a complete, valid DEVMODE structure that
reflects the changes your application and/or the user has just made to the print set
tings. Your instructions tell the driver where to put this output structure. You de
termine the driver's output by specifying one or more output values for the
wM ode parameter of the ExtDeviceMode function.

You can direct the driver to do one of the following:

• Place the updated DEVMODE structure in the output buffer. Your applica
tion can then pass this output structure to CreateDC and other Windows func
tions. (When calling ExtDeviceMode, specify the value DM_OUT_BUF.)

• Write the updated DEVMODE structure to memory using SetEnvironment.
When the printer driver does this, it resets the print environment for that
printer port and changes the relevant entries in WIN.lNI. The new settings

17-10 Guide to Programming

affect any application that uses that port and does not provide its own print
settings. (When calling ExtDeviceMode, specify the value DM_OUT_DE
FAULT.)

• Place the updated DEVMODE structure in the output buffer, reset the print
environment, and update WIN .IN!. (When calling ExtDeviceMode, specify
both the DM_OUT_BUF and DM_OUT_DEFAULT values.)

The rest of this section describes some common ways to use and combine
ExtDeviceMode features.

17.4.4 Tailoring Print Settings for Use with CreateOC
In order to use a printer, your application must first create a printer device con
text using the CreateDC function. This function has an optional parameter,
lplnitData, which specifies the print settings to use when creating the printer
device context. The simplest way to print is to set lplnitData to NULL; Windows
then creates the device context using the current print settings for that printer port.

To print using your own print settings instead of the current default settings, you
can pass the print settings you want to CreateDC. Windows then creates the
device context using your customized print settings instead.

To pass print settings to CreateDC, provide a complete DEVMODE structure
that contains the print settings you want.

When calling the CreateDC function, you should provide only DEVMODE
structures that you have received directly from the printer driver. Although it is
possible to simply edit a DEVMODE structure and then immediately pass it to
CreateDC, it's not a good idea to do so. CreateDC requires a perfectly correct
and complete DEVMODE structure. Therefore, any minor inconsistencies in the
structure can result in an invalid device context. To ensure that a DEVMODE
structure is valid, you pass it to the printer driver as input. The driver then pro
vides a complete, correct D.f:VMODE structure that incorporates your changes;
you can safely pass this output structure to CreateDC.

To use particular print settings, provide, as input to the ExtDeviceMode func
tion, a partial DEVMODE structure that contains the settings you want. The
driver changes only those settings for which you supply a new value. This means
that you can use this method to change a single print setting-for example, to
change from portrait to landscape orientation-without affecting the driver's
other print settings. In response to the ExtDeviceMode function, the driver pro
vides as output a complete DEVMODE structure that includes your changes.

To change the print settings, follow these steps:

1. Set up a partial or complete DEVMODE structure that contains the fields
you want to change.

Print Settings 17-11

If you are supplying a partial structure:

• Be sure to include all five header fields (dmDeviceName, dmSpec
Version, dmDriverVersion, dmSize, and dmDriverExtra). Set the
dmDriverVersion and dmDriverExtra fields to zero if you are not
passing any driver-specific information.

• Set the dmFields field to indicate which of the device-independent set-
tings you are providing.

For example, to request that a printer driver use landscape orientation with
letter-sized paper, you could set up the following DEVMODE structure:

DEVMODE dm;
lstrcpy(dm.dmDeviceName,szDeviceName);
1* Header information *1
dm.dmVersion = DM_SPECVERSION;
dm.dmDriverVersion = 0;
dm.dmSize = sizeof(DEVMODE);
dm.dmDriverExtra = 0;
1* Device-independent settings */
dm.dmFields = OM_ORIENTATION I DM_PAPERSIZE;
dm.dmOrientation = DMORIENT_LANDSCAPE;
dm.dmPaperSize = DMPAPER_LETTER;

The first five fields make up the structure's header information. The
szDeviceName value is a string that contains the name of the device, such
as "PCL/HP Laserjet". Chapter 12, "Printing," explains how to retrieve this
value from the WIN.INI initialization file.

2. Call ExtDeviceMode.

The parameters you specify should include the following information:

Parameter

/pDevM odelnput

/pDevM odeOutput

wMode

Value

A pointer to the buffer that contains the partial
or complete DEVMODE structure you are
supplying

A pointer to the output buffer

DM_IN_BUF I DM_OUT_BUF

The driver then changes its settings to match those in your input structure,
and writes the resulting settings to the output buffer as a complete
DEVMODE structure.

3. Pass the output DEVMODE structure to CreateDC to create a printer device
context that uses the new settings.

17-12 Guide to Programming

After modifying its DEVMODE structure, the driver copies the modified
DEVMODE structure to the output buffer. The output DEVMODE structure
will be a complete structure, and will include the changes you specified in your
partial structure. Because the driver has just "validated" your changes, it is safe
to pass this output structure to the CreateDC function.

17.4.5 Changing the Print Settings Without Affecting Other
Applications

Your application can manipulate the print settings without affecting other applica
tions. To do so, follow these steps:

1. Call ExtDeviceMode.

The parameters you specify should include the following information:

Parameter

/pDevModelnput

/pDevM odeOutput

wMode

Value

A pointer to the buffer that contains the partial
or complete DEVMODE structure you are
supplying

A pointer to the output buffer

or

or

DM_IN_BUF I DM_IN_PROMPT I
DM_OUT_BUF

Note that you can specify either or both input values (DM_IN_PROMPT and
DM_IN_BUF). This call to ExtDeviceMode saves a private copy of the print
settings in a buffer that your application maintains. Since the call omits the
DM_OUT_DEFAULT output value, the driver does not copy the new print
settings to the printer environment and WIN.INI. Therefore, other applica
tions will not be affected by your private print settings.

2. Pass the output DEVMODE structure to CreateDC to create a printer device
context that uses the new settings.

NOTE You can save the output DEVMODE structure to a permanent location such as a re
served area in your application's document file. Then, in a later session, your application can

Print Settings 17-13

can read the DEVMODE structure from the document file, and pass it directly to CreateDC
without having to first call ExtDeviceMode.

17.4.6 Prompting the User for Changes to the Print Settings
Your application can tell the printer driver to display its Printer Setup dialog box.
This dialog box lets the user specify changes to the print settings. The driver
changes its current settings to reflect the user's selections. The driver's output
DEVMODE structure (if any) then includes the user's changes.

To prompt the user for print settings, follow these steps:

1. Call ExtDeviceMode.

The parameters you specify can include the following information:

Parameter

IpDevM odeOutput

wMode

Value

A pointer to the output buffer

OM_IN_PROMPT I DM_OUT_BUF

The driver then displays its Printer Setup dialog box, which lets the user
select new print settings.

If the user clicks the OK button after changing the print settings, the Ext
DeviceMode function returns the value lOOK, and the driver places a
DEVMODE structure in the output buffer. This output structure includes
the user's changes. If the user clicks the Cancel button instead, the function
returns the value IOCANCEL, and the driver's output structure will not
include any of the user's selections.

2. To set up a printer device context that includes the user's changes, pass the
output DEVMODE structure to CreateDC.

Setting the Values in the Printer Setup Dialog Box
To preset the values that appear in the driver's Printer Setup dialog box, your
application can supply a DEVMODE structure with its own settings, and tell
the driver to display its dialog box. The driver's Printer Setup dialog box would
then appear with the settings you specified in the input DEVMODE structure.
The user can then change some or all of the settings. After the user clicks the OK
button, the driver provides an output DEVMODE structure that reflects the set
tings as they appeared when the user clicked OK. The output structure includes
settings your application passed as input, with any changes the user made.

To prompt the user with a dialog box that reflects your application's print set
tings, follow these steps:

17-14 Guide to Programming

1. Set up a partial or complete DEVMODE structure that contains any settings
you want to change. (See Section 17.4.4, "Tailoring Print Settings for Use
with CreateDC," for information on providing a partial DEVMODE
structure.)

2. Call ExtDeviceMode.

The parameters you specify should include the following information:

Parameter

/pDevM odelnput

/pDevM odeOutput

wMode

Value

A pointer to the buffer that contains the partial
or complete DEYMODE structure you are
supplying

A pointer to the output buffer

DM_IN_BUF I DM_IN_PROMPT I
DM_OUT_BUF

The driver first changes its current settings to reflect the settings you pro
vided. It then displays its Printer Setup dialog box with the new settings; the
user can change some or all of the settings in the dialog box.

If the user clicks the OK button after changing the print settings, the Ext
DeviceMode function returns the value IDOK, and the driver places in the
output buffer a DEVMODE structure that includes your changes as updated
by the user. If the user clicks the Cancel button instead, the function returns
the value IDCANCEL, and the driver's output DEVMODE structure in
cludes only the changes your application provided.

3. To set up a printer device context that includes the new settings, pass the out
put DEVMODE structure to CreateDC.

17.5 Copying Print Settings Between Drivers
To copy print settings from one driver to another, follow these steps:

1. Copy the first driver'sDEVMODE structure using the steps outlined in
Section 17.4.2, "Getting a Copy of the Print Settings."

2. Delete the device-specific information in the output DEVMODE structure
by setting the dmDriverVersion and dmDriverExtra fields to zero.

3. Change the dmDeviceName field to the name of the second device.

4. Call the second driver's ExtDeviceMode function.

The parameters you specify should include the following information:

Parameter

lpDevM odelnput

lpDevM odeOutput

wMode

Print Settings 17-15

Value

A pointer to the buffer that contains the altered
DEVMODE structure

A pointer to the output buffer

The second driver then places a valid, complete DEVMODE structure in the out
put buffer. The output structure reflects the device-independent settings your
application copied from the first driver, but contains the second driver's device
specific information.

17.6 Maintaining Your Own Print Settings
Windows version 3.0 lets your application maintain application-specific default
print settings, or even settings specific to a particular document. To do this, store
the DEVMODE structure containing the settings you want to use as defaults.
You can store the structure in an application setup file to provide application
wide defaults, or as part of a document, for document-specific setups.

17.7 Working with Older Printer Drivers
Printer drivers written for previous versions of Windows provide only the Device
Mode function, which displays a dialog box that lets the user specify print set
tings, such as page orientation and paper size, for the printer. Changes made to
the print settings affect the entire system, not just the calling application.

Like other device-driver functions, the QeviceMode function is part of the
driver, not part of GDI. (Section 17.2, "Using Device-Driver Functions," ex
plains how to call device-driver functions.) When you call a driver's Device
Mode function, the driver displays its Printer Setup dialog box. The user can
then change the print settings for that printer and printer port.

The following example shows how to use the function's procedure address,
IpfnDeviceMode, to call the DeviceMode function:

if (lpfnDeviceMode 1= NULL) /* if driver supports this function */
{

(*lpfnDeviceMode)(
(HWND)hWnd,
(HANDLE)hDriver,
(LPSTR)"PSCRIPT",
(LPSTR) "LPTl : ") ;

/* handle to parent window */
/* handle to driver module */
/* printer name */
/* port name */

17-16 Guide to Programming

17.8 Summary
This chapter explains how to use device-driver functions to manipulate print set
tings. The main reason to change print settings is so that your application can
pass its own tailored settings to the CreateDC function when preparing to print.
Windows then sets up the printer device context using the application's settings
instead of the printer driver's default settings, the settings in the print environ
ment, or the settings in WIN.INI. In addition, device-driver functions let your
application change print settings without affecting other applications that are
using the same printer driver.

For more information on topics related to print settings, see the following:

Topic

Printing from a Windows
application

The ExtDeviceMode, Device
Capabilities, DeviceMode,
and CreateDC functions

The DEVMODE structure

An example of simple printer
ini tialization

Writing printer device drivers

Reference

Guide to Programming: Chapter 12,
"Printing"

Reference, Volume 1: Chapter 2,
"Graphics Device Interface Functions"
and Chapter 4, "Functions Directory"

Reference, Volume 2: Chapter 7, "Data
Types and Structures"

The sample application MULTIPAD.EXE,
included on the SDK Sample Source Code
disk

Microsoft Windows Device Development
Kit

Chapter

18
Fonts

Microsoft Windows offers a rich array of text-writing capabilities that goes far
beyond simple terminal-based text output. In particular, Windows lets you
choose the font to be used for text output.

A font is a collection of characters that have a unique combination of height,
width, typeface, character set, and other attributes. An application uses fonts to
display or print text of various faces and sizes. For example, a word-processing
application uses fonts to give the user a "what you see is what you get" interface.

This chapter covers the following topics:

• Using fonts in your applications .
• Creating font resources that your application and others can use

This chapter also explains how to create a sample application, ShowFont, that
illustrates these concepts.

18.1 Writing Text
You can write text in a given font by selecting the font and using the TextOut
function to write it. TextOut writes the characters of the string by using the font
that is currently selected in the device context. The following example shows
how to write the string "This is a sample string":

hOC = GetOC(hWnd);
TextOut(hOC, 10, 10, "This is a sample string", 23);
ReleaseDC(hWnd, hOC);

In this example, TextOut starts the string at the coordinates (10,10) and prints all
23 characters of the string.

The default font for a device context is the system font. This is a variable-width
font representing characters in the ANSI character set. Its font name is "System".
Windows uses the system font for menus, window captions, and other text.

18-2 Guide to Programming

18.2 Using C%r when Writing Text
You can add color to the text you write by setting the text and background colors
of the device context. The text color determines the color of the character to be
written; the background color determines the color of everything in the character
cell except the character. GDI writes the entire character cell (the rectangle en
closing the character) when it writes text. A character cell usually has the same
width and height as the character.

You can set the text and background colors by using the SetTextColor and
SetBkColor functions. The following example sets the text color to red and
the background color to green:

SetTextColor(hDC, RGB(255,0,0));
SetBkColor(hDC, RGB(0,255,0));

When you first create a device context, the text color is black and the background
color is white. You can change these colors at any time.

NOTE If you are using a common display context obtained with GetDe or BeginPaint,
your colors are lost each time you release the context, so you need to set them each time
you retrieve the display context.

The background color applies only when the background mode is opaque. The
background mode determines whether the background color in the character cell
has any effect on what is already on the display surface. If the mode is opaque,
the background color overwrites anything already on the display surface; if it is
transparent, anything on the display surface that would otherwise be overwritten
by the background is preserved. You can set the background mode by using the
SetBkMode function, or you can retrieve the current mode by using the GetBk
Mode function. Similarly, you can retrieve the current text and background color
by using the GetTextColor and GetBkColor functions.

18.3 USing Stock Fonts
You are not limited to using the system font in your application. GDI offers a
variety of stock fonts that you can retrieve and use as desired. To use stock fonts
in your application, you must specify the type of font you want in the GetStock
Object function. GetStockObject creates the font you request and returns a
handle to the font that you can use to select into a device context. GDI offers
the following stock fonts:

Font

DEVICEDEFAULT_FONT

Fonts 18-3

Description

Specifies a fixed-pitch font based on
the ANSI character set. For example,
a Courier font is typically used, if one
is available.

Specifies a variable-width font based
on the ANSI character set. For ex
ample, a Helv font is typically used,
if it is available.

Specifies a font preferred by the
given device. This font depends on
how the GDI font mapper interprets
font requests, so the font may vary
widely from device to device.

Specifies a fixed-pitch font based
on an OEM character set. OEM
character sets vary from system to
system. For IBM computers and com
patibles, the OEM font is based on
the IB M PC character set.

Specifies the system font. This is a
variable-pitch font based on the
ANSI character set, and is used by
the system to display window cap
tions, menu names, and text in dialog
boxes. The system font is always
available. Other fonts are available
only if they have been installed.

To use a stock font, create it by using the GetStockObject function, then select
the font handle into the device context by using the SelectObject function. Any
subsequent calls to TextOut will use the selected font. The following example
shows how to use the variable-width ANSI font:

HFONT hFont;
HFONT hOldFont;

hFont = GetStockObjectCANSI_VAR_FONT);
if ChOldFont = SelectObject(hDC, hFont))

TextOut(hDC, 10, 10, "This is a sample string", 23);
SelectObject(hD"C, hOldFont);

18-4 Guide to Programming

As you would with any other GDI object, you must select a font before it can be
used in an output operation. The SelectObject function selects the font you have
created and returns a handle to the previous font. The system stock font is always
available, even if no other stock font is. If no other stock fonts are available, Get
StockObject returns a handle to the system font.

18.4 Creating a Logical Font
A logical font is a list of font attributes, such as height, width, character set, and
typeface, that you want GDI to consider when choosing a font for writing text.
You can create a logical font by using the CreateFont function. CreateFont
returns a handle to the logical font. You can use this handle in the SelectObject
function to select the font for the device context. When you select a logical font,
GD! chooses a physical font, based on your request, to write subsequent text.
GD! attempts to choose a physical font that matches your logical font exactly,
but if it cannot find an exact match in its internal pool of fonts, it chooses the
closest matching font.

In the following example, the CreateFont function creates a logical font:

hFont = CreateFontC
10, /* 1 fHei ght */
8, /* lfWidth */
0, /* lfEscapement */
0, /* lfOrientation */
FW_NORMAL, /* lfWeight */
FALSE, /* lfItalic */
FALSE, /* lfUnderline */
FALSE, /* lfStrikeOut */
ANSI_CHARSET, /* lfCharSet */
OUT_DEFAULT_PRECIS, /* lfOutPrecision */
CLIP_DEFAULT_PRECIS, /* lfClipPrecision */
DEFAULT_QUALITY, /* 1 fQua 1 ity */
FIXED_PITCH I FF_MODERN, /* lfPitchAndFamily */
"System" /* lfFaceName */
) ;

This logical font asks for a fixed-pitch font in which each character is 10 pixels
high and 8 pixels wide. Font dimensions are always described in pixels. The re
quested escapement and orientation are zero, which means the baseline along
which the characters are displayed is horizontal and none of the characters
will be rotated. FW _NORMAL is the requested weight. Other typical weights
are FW _BOLD (for darker, heavier characters) and FW _LIGHT (for lighter
characters). Italic, underlined, or strikethrough characters are not desired in
this example. The requested character set is ANSI, the standard character set
of Windows. Default output precision, clipping precision, and quality are re
quested. These attributes affect the way the characters are displayed. Setting
these attributes to default values lets the display device take advantage of its own

Fonts 18-5

capabilities to display characters. The requested font family is FF _MODERN.
The font name is "System".

When you supply a logical font to SelectObject, the function examines the pool
of available fonts to find a font that satisfies the requested attributes. If it finds an
exact match, it returns a handle to that font. If it fails to find an exact match, it
chooses the closest possible font and returns that handle. In some cases, Select
Object might not find an exact match but nevertheless can synthesize the re
quested font by using an existing font that is close. For example, if the only
available system font were 5 pixels high and your logical font specified a height
of 10 pixels, SelectObject could synthesize the requested font by doubling the
height. In such cases, SelectObject returns the synthesized font for writing text.

18.5 Using Multiple Fonts in a Line
If you are developing an application that uses a variety of fonts-a word proces
sor, for instance-you will probably want to use more than one font in a line of
text. To do so, you will need to write the text in each font separately. The Text
Out function cannot change fonts for you.

The main difficulty with using more than one font in a line of text is that you
need to keep track of how far each call to TextOut advances the line of text, so
that you can supply the appropriate starting location for the next part of the line.
If you are using variable-width fonts, keeping track of the length of a written
string can be difficult. However, Windows provides the GetTextExtent function,
which computes the length of a given string by using the widths of characters in
the current font.

One way to write a line of text that contains multiple fonts is to use the GetText
Extent function after each call to TextOut and add the length to a current posi
tion. The following example shows how to write the line "This is a sample
string.", using italic characters for the word "sample", and bold characters for
all others:

x = 10;
SelectObject(hDC, hBoldFont);
TextOut(hDC, X, 10, "This is a" 10);

X = X + LOWORO(GetTextExtent(hOC, "This is a 10));
SelectObject(hDC, hltalicFont);
TextOut(hDC, X, 10, "sample ", 7);

X = X + LOWORD(GetTextExtent(hDC, "sample" 7));
SelectObject(hDC, hBoldFont);
TextOut(hOC, X, 10, "string.", 7);

In this example, the SelectObject function sets the font to be used in the sub
sequent TextOut function. The hBoldFont and hItalicFont font handles are as
sumed to have been previously created using the CreateFont function. Each

18-6 Guide to Programming

TextOut function writes a part of the line, then the GetTextExtent function com
putes the length of that part. GetTextExtent returns a double-word value contain
ing both the length and height. You need to use the LOWORD utility to retrieve
the length. This length is added to the current position to determine the starting
location of the next part of the line.

Another way to write a line with multiple fonts is to create a function that consoli
dates all the required actions into a single call. The following example shows
such a function:

WORD StringOut(hDC, X, Y, lpString, hFont)
HDC hDC;
short X;
short Y;
LPSTR lpString;
HANDLE hFont;
{

HANDLE hPrevFont;

hPrevFont = SelectObject(hDC, hFont);
TextOut(hDC, X, Y, lpString, lstrlen(lpString));
SelectObject(hDC, hPrevFont);
return (LOWORD(GetTextExtent(hDC, lpString, lstrlen(lpString)));

This function writes the string in the given font, then resets the font to its pre
vious setting and returns the length of the written string. The following example
shows how to write the line, "This is a sample string.":

X 10;
X = X + StringOut(hDC, X, 10, "This is a ", hBoldFont);
X = X + StringOut(hDC, X, 10, "sample ", hltalicFont);
StringOut(hDC, X, 10, "string.", hBoldFont);

18.6 Getting Information About the Selected Font
You can retrieve information about the selected font from a device context by
using the GetTextMetrics and GetTextFace functions.

The GetTextMetrics function copies a TEXTMETRIC structure into a buffer
that you supply. The structure contains a description of the font, including the
average dimensions of the character cells within the font, the number of
characters in the font, and the character set on which the font is based. You can
use the text metrics to determine how much space you'll need between lines of
text, or which character values have corresponding characters and which are rep
resented by the font's default character.

The text metrics are most often used to determine how much space you need be
tween lines of text to prevent one line from overwriting another. For example, to
compute an appropriate value for single-line spacing, you add the values of the

Fonts 18-7

tmHeight and tmExternalLeading fields of the TEXTMETRIC structure.
The tmHeight field specifies the height of each character cell and tmExternal
Leading specifies the font designer's recommended spacing between the bottom
of one character cell and the top of the next. The following example shows how
to write several lines with single-spacing:

TEXTMETRIC TextMetric;
int nLineSpacing;
i nt i;

GetTextMetrics(hDC, &TextMetric);
nLineSpace = TextMetric.tmHeight + TextMetric.tmExternalLeading;

Y = 0;
for (i = 0; i < 4; i ++) {

TextOut(hDC, 0, Y, "Single-line spacing", 19);
Y += nLineSpace;

You can also use the text metrics to verify that the selected font has the charac
teristics you need, such as weight, character set, pitch, and family. This is useful
if you did not prepare the device context; for example, if you received it as part
of a window message from a child window or control. For more information
about the fields of the TEXTMETRIC structure, see the Reference, Volume 2.

The GetTextFace function copies a name identifying the typeface of the selected
font into a buffer that you supply. The name of the typeface together with the text
metrics let you fully specify the font. The following example copies the name of
the current font into the character array FaceName.

char FaceName[32];

GetTextFace(hDC, 32, FaceName);

18.7 Getting Information About a Logical Font
You can retrieve information about a font from the font handle by using the
GetObject function. The GetObject function copies logical-font information,
such as the height, width, weight, and character set, to a structure that you
supply. You can use the logical-font information to see if the given font meets
your needs. GetObject is often used after creating a font with the CreateFont
function to see how closely the font matches the requested font. In the following
example, GetObject retrieves logical-font information for a newly created font
and compares the character-set values and facenames:

18-8 Guide to Programming

HFONT hFont;
LOG FONT LogFont;

hFont CreateFontC
10, /* Height */
10, /* Width */
0, /* Escapement */
0, /* Orientation */
FW_NORMAL, /* Weight */
FALSE, /* Ita 1 i c */
FALSE, /* Underline */
FALSE, /* StrikeOut */
OEM_CHARSET, /* CharSet */
OUT_DEFAULT_PRECIS, /* OutPrecision */
CLIP_DEFAULT_PRECIS, /* ClipPrecision */
DEFAULT_QUALITY, /* Qua 1 ity */
FIXED_PITCH I FF_MODERN, /* PitchAndFamily */
"Courier" , /* Typeface */

) ;

GetObjectChFont, sizeofCLogFont), CLPSTR) &LogFont);

if CLogFont.lfCharSet != OEM_CHARSET) {

if CstrcmpCLogFont.lfFaceName, "Courier")) {

The font that GDI uses when you actually select a font by using the SelectObject
function may vary widely from system to system. The selected font, which de
pends on the fonts available at the time of the selection, mayor may not closely
match your request. The only way to guarantee a request is to determine which
fonts are actually available and request only those fonts, or add the appropriate
font resource to the system font table before making the request, or change the
method the font mapper uses to choose a font.

18.8 Enumerating Fonts
You can find out which fonts are available for a given device by using the Enum
Fonts function. This function sends information about the available fonts to a
callback function that you supply. The callback function receives both logical-

Fonts 18-9

font and text-metric information. From this information you can determine which
fonts you want to use and create appropriate font handles for them. If YOll create
font handles by using the supplied information, you are guaranteed to get an
exact match for the font when you select it for writing text.

The EnumFonts function usually provides font information about all the fonts
that have a specific typeface name. You can supply the name when you call
EnumFonts. If you do not supply a name, EnumFonts supplies information
about arbitrarily selected fonts, each representing a typeface currently available.
The way to examine all available fonts is to get a list of the available typefaces,
then examine each font in each typeface.

The following example shows how to use EnumFonts to find out how many
fonts having the Courier typeface are available. The callback function, Enum
Func, receives the font information and creates handles for each font:

FARPROC lpEnumFunc;

int FAR PASCAL EnumFunc()
{

}

hDC = GetDC(hWnd);
lpEnumFunc = MakeProclnstance(EnumFunc, hlnst);
EnumFonts(hDC, "Courier", lpEnumFunc, NULL);
FreeProclnstance(lpEnumFunc);

To use the EnumFonts function, you must supply a callback function. As with
all callback functions, EnumFunc must be explicitly named in the EXPORTS
statement in your module-definition file and must be declared with the FAR and
PASCAL attributes. For each font to be enumerated, the EnumFunc callback
function receives a pointer to a logical-font structure, a pointer to a text-metrics
structure, a pointer to any data you may have passed in the EnumFonts function
call, and an integer specifying the font type. The following example shows a
simple callback function that creates a list of all the sizes (in terms of height) of
a given set of raster fonts:

short SizeList[10];
short SizeCnt = 0;

int FAR PASCAL EnumFunc(lpLogFont, lpTextMetric, FontType, lpData)
LPLOGFONT lpLogFont;
LPTEXTMETRIC lpTextMetric;
short FontType;
LPSTR lpData;

18-10 Guide to Programming

if (FontType & RASTER_FONTTYPE) {
SizeList[SizeCnt++] = lpLogFont->lfHeight;
if (SizeCnt)= 10)

return (0);

return (1);

This example first checks the font to make sure it is a raster font. If the
RASTER_FONTTYPE bit is 1, the font is a raster font; otherwise, it is a vector
font. The next step is to save the value of the IfHeight field in the SizeList array.
The callback function saves the first 10 sizes, then returns zero to stop the
enumeration.

You can also use the DEVICE_FONTTYPE bit of the FontType parameter to
distinguish GDI-supplied fonts from device-supplied fonts. This is useful if you
want GDI to simulate bold, italic, underline, and strikeout attributes. GDI can
simulate these attributes forGDI-supplied fonts, but not for device-supplied fonts.

18.9 Checking a Oevice's Text Capabilities
You can determine the extent of a device's text-writing capabilities by using the
GetDeviceCaps function and the TEXTCAPS index. This index directs the func
tion to return a bit flag identifying the text capabilities of the device. For ex
ample, you can use the text-capability flag to determine if the given device can
use vector fonts, rotate characters, or simulate font attributes such as underlining
and italicizing. GDI can simulate vector fonts on a device that does not directly
support them by drawing lines.

Most of the text capabilities apply to fonts that are supplied by the device as op
posed to those supplied by GD!. Typically, GDI can scale fonts and simulate at
tributes for the fonts it supplies, but it cannot do so for device-supplied fonts.
You can determine how many device fonts there are by using the GetDevice
Caps function with the NUMFONTS index. You can retrieve information
about the device fonts by using the EnumFonts function and checking the
DEVICE_FONTTYPE bit in the nF ontType parameter each time your Enum
Fonts callback function is called.

The following example shows how to make a list of device-supplied fonts. The
GetDeviceCaps function returns the number of device-supplied fonts and Enum
Fonts creates font handles for each font:

HOC hOC;
HANDLE hDevFonts;
FARPROC lpEnumFunc;
short NumFonts;

Fonts 18-11

int FAR PASCAL EnumFunc(lpLogFont, lpTextMetric, FontType, Data)
LPLOGFONT lpLogFont;
LPTEXTMETRIC lpTextMetric;
short FontType;
LONG Data;
{

PSTR pDevFonts;
short index;
int code = 1;

if (FontType & DEVICE_FONTTYPE) {
pDevFonts = LocalLock(LOWORD(Data));
if (pDevFonts != NULl) {

index = ++pDevFonts[0];
if (index < HIWORD(Data))

pDevFonts[index] = CreateFontlndirect(lpLogFont);
else

code = 0;
}

LocalUnlock(LOWORD(Data));

return (code);

hOC = GetDC(hWnd);
NumFonts = GetDeviceCaps(hDC, NUMFONTS);
hDevFonts = LocalAlloc(LMEM_FIXED I LMEM_ZEROINIT,

sizeof(HANDLE)*(NumFonts + 1));
lpEnumFunc = MakeProclnstance(EnumFunc, hlnst);
EnumFonts(hDC, NULL, lpEnumFunc, MAKELONG(hDevFonts, NumFonts));
FreeProclnstance(lpEnumFunc);

18.10 Adding a Font Resource
GDI keeps a system font table that contains all the fonts that applications can
use. GDI chooses a font from this table when an application makes a request for
a font by using the CreateFont function.

A font resource is a group of individual fonts representing characters in a given
character set that have various combinations of heights, widths, and pitches. For
example, the system font resource contains a collection of fonts representing
different sizes of characters in the ANSI character set. Similarly, the OEM font
resource contains a collection of fonts representing different sizes of characters
in an OEM character set.

An application can have up to 253 entries in the system font table.

18-12 Guide to Programming

Applications can load font resources and add the fonts in the resource to the sys
tem font table by using the AddFontResource function. Once a font resource is
added, the individual fonts in the resource are accessible to the application. In
other words, the CreateFont function considers the fonts when it tries to match a
physical font with the specified logical font. (Fonts in the system font table are
never directly accessible to an application. They are available only through the
CreateFontlndirect and CreateFont functions, which return handles to the
fonts, not memory addresses.)

You can add a font resource to the system font table by using the AddFont
Resource function. Similarly, to make room for other font resources, you can
remove a font resource from the system font table by using the RemoveFont
Resource function.

Whenever an application adds or removes a font resource, it should inform all
other applications of the change by sending a WM_FONTCHANGE message to
them. You can use the following call to the SendMessage function to send the
message to all windows:

SendMessage(-l, WM_FONTCHANGE, 0, 0L);

If the user has installed fonts by using the Control Panel application, you can re
trieve a list of those fonts by using the GetProfileString function to search the
[fonts] section of the WIN.lNI file.

18.11 Setting the Text Alignment
The TextOut function uses a device context's current text alignment to deter
mine how to position text relative to a given location. For example, the default
text alignment is top-left, so TextOut places the upper-left comer of the
character cell of the first character in the string at the specified location. That is,
a function call such as the following places the upper-left comer of the letter "A"
at the coordinates (10,10):

TextOut(hDC, 10, 10, "ABCDEF", 6);

You can change the text alignment for a device context by using the SetText
Align function. If you think of TextOut as filling a rectangle with a text string,
then you can think of the text alignment as specifying what part of the rectangle
to place the specified point of the string in. SetTextAlign recognizes the left end,
the center, and the right end of the rectangle, as well as the rectangle's top and
bottom and the baseline within it. You can combine anyone horizontal position
with one vertical position to specify several, combinations of alignment. For ex
ample, the following function sets the text alignment to right-bottom:

SetTextAlign(hDC, TA_RIGHT ITA_BOTTOM);
TextOut(hDC, 10, 10, "ABCDEF", 6);

Fonts 18-13

This example places the lower-right comer of the letter "F" at the coordinates
(10,10).

You can always determine the current text alignment by using the GetTextAlign
function.

18.12 Creating Font-Resource Files
You can create your own font resources for your application and others by creat
ing font files and adding them as resources to a font-resource file. To create a
font-resource file, you must follow these steps:

1. Create the font files.

2. Create a font-resource script.

3. Create a dummy code module.

4. Create a module-definition file that describes the fonts and the devices that
use the fonts.

5. Compile and link the sources.

A font-resource file is actually an empty Windows library; it contains no code or
data, but does contain resources. Once you have font files, you can add them to
the empty library by using the Resource Compiler. You can also add other
resources to the library, such as icons, cursors, and menus.

The following sections explain how to create font-resource files.

18.12.1 Creating Font Files
Before creating a font resource, you need one or more font files. You can create
font files by using the Font Editor, described in Tools. You are free to determine
the number, size, and type of font files in a font resource. In most cases, you
should include enough fonts to reasonably satisfy most logical-font requests for
the device the fonts are to be used with.

When planning font sizes, remember that GDI can scale device-independent
raster fonts by 1 to 8 times vertically and 1 to 5 times horizontally. GDI can
also simulate bold, underlined, strikethrough, and italic fonts.

18-14 Guide to Programming

18.12.2 Creating the Font-Resource Script
You add the resources to the file by adding one or more FONT statements to
your resource script file. The resource script can, alternatively, add .FNT files
toa Windows library, a device driver, or a resource-only file that contains only
icons, cursor, fonts, and other resources. Because font resources are available to
all applications, you should not add them to application modules.

The FONT statement has the following form:

number FONT filename

One statement is required for each font file to be placed in the resource. The
number must be unique since it is used to identify the font later. The following
is a typical resource script file for a font resource:

1 FONT FntFi101.FNT
2 FONT FntFi102.FNT
3 FONT FntFi103.FNT
4 FONT FntFi104.FNT
5 FONT FntFi105.FNT
6 FONT FntFi106.FNT

Fonts can be added to modules that contain other resources by adding them to the
existing resource script. This means you can have icon, menu, cursor, and dialog
box definitions in the resource script file, as well as in FONT statements.

18.12.3 Creating the Dummy Code Module
The dummy code module provides the object file from which the font-resource
file is made. You create the dummy code module by using the assembler and the
Cmacros. The module's source file should like like this:

TITLE FONTRES - Stub file to build a .FON resource file

.xlist
include cmacros.inc
. 1 is t

sBegin CODE
sEnd CODE
end

Assemble this source file by using the masm command. It will create an object
file that contains no code and no data, but which can be linked to an empty
Windows library to which you can add the font resources.

Fonts 18-15

18.12.4 Creating the Module-Oefinition File
You need to create a module-definition file for the font resource. The file must
contain a LIBRARY statement defining the resource name, a DESCRIPTION
statement that describes the font-resource characteristics, and a DATA statement.
The module-definition file for a font resource should look like this:

LIBRARY FontRes

DESCRI PTION 'FONTRES 133,96,72 System, Termi na 1 (Set #3)'

STUB 'WINSTUB.EXE'
DATA NONE

The DESCRIPTION statement provides device-specific information about the
font that is used to match a font with a given display or printer. The following are
the three possible formats for the DESCRIPTION statement in a font resource:

DESCRIPTION 'FONTRES Aspect, LogPixelsX, LogPixelsY: emt'

DESCRIPTION 'FONTRES CONTINUOUSSCALING: emt'

DESCRIPTION 'FONTRES DEVICESPECIFIC DeviceTypeGroup: emt'

The first format specifies a font that was designed for a specific aspect ratio and
logical pixe!. width and height, and can be used with any device having the same
aspect and logical pixel dimensions. Aspect is the value (lOO*Aspecty)/AspectX
rounded to an integer. The AspectX, AspectY, LogPixelsX, and LogPixels Yvalues
are the same as given in the corresponding device's GDIINFO structure (the
values of which are accessible by using the GetDeviceCaps function). You can
give mor~ than one set of Aspect, LogPixelX, and LogPixelY values, if desired.
The emt value is a comment. The following statements are examples:

DESCRIPTION 'FONTRES 133,96,72: System, Terminal (Set #3)'
DESCRIPTION 'FONTRES 200 J 96,48; 133,96,72; 83,60,72; 167,120,72: Helv'

The second format specifies a continuous scaling font. This typically corresponds
to vector fonts that can be drawn to any size and that do not depend on the
aspect or logical pixel width of the output device. The following statement is
an example:

DESCRIPTION 'FONTRES CONTINUOUSSCALING : Modern, Roman, Script'

The third format specifies a font that is specific to a particular device or group of
devices. The DeviceTypeList can be DISPLAY or a list of device-type names,
the same names you would specify as the second parameter in a call to the
CreateDC function. For example:

DESCRIPTION 'FONTRES DISPLAY: HP 7470 plotters'
DESCRIPTION 'FONTRES DEVICESPECIFIC HP 7470A, HP 7475A: HP 7470 plotters'

18-16 Guide 10 Programming

NOTE The maximum length of a DESCRIPTION line is 127 characters.

Because Windows is capable of synthesizing attributes, such as bold~ italic, and underline,
you do not need to create separate .FNT files for fonts with these attributes. However, you
are free to do so if you want.

Windows may use other fonts that do not correspond to the user's display aspect ratio.
These are generic raster fonts that are intended for output devices such as bitmap printers,
which rely on the display driver to draw their text.

18.12.5 Compiling and Linking the Font-Resource File
The following MAKE file lists the commands required to compile and link the
font-resource file:

fontres.obj: fontres.asm
masm fontres;

fontres.exe: fontres.def fontres.obj fontres.rc fontres.exe
FntFi101.FNT FntFi102.FNT FntFi103.FNT \
FntFi104.FNT FntFi105.FNT FntFi106.FNT

link4 fontres.obj, fontres.€xe, NUL, INDO, fontres.def
rc fontres.rc
rename fontres.exe fontres.fon

By convention, all font-resource files have the .FON filename extension. The last
line in the make file renames the executable file to FONTRES.FON.

18.13 A Sample Application: ShowFont
This sample application illustrates how to use fonts in a Windows application. Al
though the ShowFont application has the same basic structure as any application
described in this guide, it contains considerably more statements, in a far greater
variety, than any other sample application. For this reason, a full description of
the application is given in the application source files found on the SDK Sample
Source Code disk.

The ShowFont application illustrates more than how to use fonts. It also shows
how to modify many of the tasks previously described in this guide in order to
carry out slightly different tasks. For example, it shows how to create and use
modeless dialog boxes, how to use list boxes with your own strings (instead of
the current directory), and how to use Windows' direct-access method for group
boxes and radio buttons in a dialog box.

Fonts 18-17

18.14 Summary
A font is a set of characters that have common attributes such as height, width,
typeface, and so on. Applications use fonts to display or print text. Windows
offers several stock fonts you can use in your application. You can also define
your own fonts using the Font Editor, and then include them as application
resources.

For more information on topics related to fonts, see the following:

Topic

U sing the Font Editor

Printing

Displaying text

Reference

Tools: Chapter 6, "Designing Fonts: The Font
Editor"

Guide to Programming: Chapter 12, "Printing"

Guide to Programming: Chapter 3, "Output to a
Window"

Chapter

19
C%r Palettes

Windows color palettes provide an interface between an application and a color
output device (such as a display device). This interface allows the application to
take full advantage of the color capabilities of the output device without severely
interfering with the colors displayed by other applications. Windows takes color
infonnation contained in an application's logical palette (a GDI object that is
essentially a list of colors needed by the application) and applies it to a system
palette (the list of colors that is actually available on the system and that is shared
by all Windows applications). When more than one application displays colors
from a logical palette, Windows intervenes, controlling which application has
primary access to the system palette and maintaining a high-level of color quality
for the remaining applications.

This chapter covers the following topics:

• Creating a logical palette for your application and preparing it for use

• U sing colors in the palette for painting in a window's client area

• Making changes in your logical palette and controlling when Windows
displays those changes

• Responding to changes in the system palette made by other applications

Where indicated, C-Ianguage program-code examples in this chapter are ex
tracted from the source code for the ShowDIB sample application, which can be
found on the Sample Source Code disk supplied with the SDK. This application
demonstrates how to display device-independent bitmaps with colors controlled
by a color palette.

19.1 What a Color Palette Does
Many color graphics displays are capable of displaying a wide range of colors.
In most cases, however, the actual number of colors that the display can render
at any given time is more limited. For example, a display that is potentially able
to produce 26,000 different colors may be able to show only 256 of those colors
simultaneously because of hardware limitations. When such a limitation exists,
the display device often maintains a palette of colors. When an application

19-2 Guide to Programming

requests a color that is not currently displayed, the display device adds the
requested color to the palette. However, when the number of requested colors
exceeds the maximum number for the device, it replaces an existing color with
the requested color, and so the actual colors displayed are incorrect.

Windows color palettes provide a buffer between a color-intensive application
and the system. A color palette allows an application to use as many colors as
needed without interfering with colors displayed by other windows. When a
window uses a color palette and has input focus, Windows ensures that it will
display all the colors it requests, up to the maximum number available simul
taneously on the display, and displays additional colors by matching them to
available colors. In addition, Windows matches the colors requested by inactive
windows as closely as possible to the available colors. This reduces undesirable
changes in the color display in inactive windows.

19.2 How Color Palettes Work
Windows provides a device-independent method for accessing the color capabili
ties of a display device by managing the device's system palette, if the device has
one.

As noted previously, your application employs the system palette by creating and
using one or more logical palettes. A logical palette is a GDI object that specifies
the colors to be drawn in the device context. Each entry in the palette contains a
specific color. Then, when performing graphics operations, the application does
not indicate which color is to be displayed by supplying an explicit RGB value.
Instead, you access the palette either directly or indirectly. Using the direct
method, you indicate which color to use in your logical palette by specifying an
index into the palette entries. Using the indirect method, you specify a palette
relative RGB value similar to an explicit RGB value. Sections 19.4.1, "Directly
Specifying Palette Colors," and 19.4.2, "Indirectly Specifying Palette Colors,"
describe these two methods more completely.

When a window requests that the system use the colors in the window's logical
palette (a process known as "realizing"the window's palette), Windows first ex
actly matches entries in the logical palette to current entries of the system palette.

If an exact match for a given logical-palette entry is not possible, Windows sets
the entry in the logical palette into an unused entry in the system palette.

Finally, when all entries in the system palette have been used, Windows matches
logical-palette entries as closely as possible to entries in the system palette.
Windows sets aside 20 static colors (called the default palette) in the system
palette to aid this color matching.

Color Palettes 19-3

Windows always satisfies the color requests of the foreground window first; this
ensures that the active window will have the best color display. For the remain
ing windows, Windows satisfies the color requests of the window which most
recently received input focus, and so on. Figure 19.1 illustrates this process.

o
1

2

3

4

5

6

7

System Palette

:-
A

B~~~

Logical Palette 1
(Active Window)

============~ ~~
2
3
4
5
6

'---_____ ----17

----1mmIalmmIalm 0
1

~~~~~~~2 
3 

~~~~!!!!!!!!!!!li 
---- 7

8

Figure 19.1 Logical Palettes and the System Palette

In Figure 19.1, a hypothetical display has a system palette capable of containing
12 colors. The application that created Logical Palette 1 owns the active window
and was the first to realize its logical palette. Logical Palette 1 consists of eight
colors. Logical Palette 2 is owned by a window which realized its logical palette
while it was inactive. Logical Pallette 2 contains nine colors.

Because the active window was active when it realized its palette, Windows
mapped all of the colors in Logical Palette 1 directly to the system palette.

Three of the colors (1, 3, and 5) in Logical Palette 2 are identical to colors in the
system palette. When the second application realized its logical palette, Windows
simply matched those colors to the existing system colors to save space in the
palette. Colors 0, 2, 4, and 6 of Logical Palette 2 were not already in the system
palette, however, and so Windows mapped those colors into the system palette.

Colors 7 and 8 in Logical Palette 2 do not exactly match colors in the system
palette. Because the system palette is now full, Windows could not map these
two colors into the system palette. Instead, it matched them to the closest colors
in the system palette.

19-4 Guide to Programming

19.3 Creating and Using a Logical Palette
In order to use a logical palette, your application must first perform four steps:

1. Create a LOGPALETTE data structure that describes the palette.

2. Create the palette itself.

3. Select the palette into a device context.

4. Realize the palette.

The following sections describe how to perform each of these steps.

19.3.1 Creating a LOGPALETTE Data Structure
The LOGPALETTE data structure describes the logical palette you plan to use.
It contains:

• A Windows version number (for Windows 3.0, it is 300H)

• The number of entries in the palette

• An array of P ALETTEENTRY data structures, each of which contains one
byte values for red, green, and blue, and a flags field. The flags field can be
set to either of the following values:

• PC_EXPLICIT

• PC_RESERVED

Setting the PC_EXPLICIT flag infotms Windows that the palette entry does not
contain color values; instead, the low-order word of the entry specifies an index
into the system palette. For example, the SDK sample application MyPal shows
the current state of the system palette. MyPal does this by setting the PC_EXPLI
CIT flag in all the entries in its own logical palette, specifying a system-palette
index in each logical palette entry, and then drawing in its client area using the
entries in its logical palette.

An application sets PC_RESERVED in a palette entry when it is going to ani
mate the entry (that is, change it dynamically using the AnimatePalette func
tion). Setting this flag prevents Windows from attempting to match colors from

. other logical palettes to this color while the entry is mapped to the system palette.

C%r Palettes 19-5

The ShowDIB sample application creates its LOGPALETTE structure as
shown:

#define PALETTESIZE 256

/* make space for our logical palette */
pLogPal (NPLOGPALETTE) LocalAlloc(LMEM_FIXED,

(sizeof(LOGPALETTE) +
(sizeof(PALETTEENTRY)*(PALETTESIZE))));

ShowDIB initializes the palette structure with 256 entries; however, you can
make a palette any size you need.

ShowDIB fills in the palette entries by opening a bitmap (.BMP) file and
copying the color values in the BITMAPINFO data structure color table to
the corresponding palette entries:

HPALETTE CreateBIPalette (lpbi)
LPBITMAPINFOHEADER lpbi;
{

LOGPALETTE
HPALETTE
WORD
BYTE
BYTE
BYTE

*pPa 1 ;
hpal = NULL;
nNumColors;
red;
green;
blue;
i . , int

RGBOUAD FAR *pRgb;

if (! 1 pbi)
return NULL;

if (lpbi->biSize != sizeof(BITMAPINFOHEADER))
return NULL;

/* Get a pointer to the color table and the number of colors in it */
pRgb = (RGBOUAD FAR *)«LPSTR)lpbi + (WORD)lpbi->biSize);
nNumColors = DibNumColors(lpbi);

if (nNumColors){
/* Allocate for the logical palette structure */
pPal = (LOGPALETTE*)LocalAlloc(LPTR,sizeof(LOGPALETTE) + nNumColors *

sizeof(PALETTEENTRY));
if (!pPal)

return NULL;

pPal->palNumEntries = nNumColors;
pPal->palVersion = 0x300;

19·6 Guide to Programming

/* Fill in the palette entries from the DIB color table and
* create a logical color palette.
*/

for (i = 0; i < nNumColors; i++){
pPal->palPalEntry[i].peRed = pRgb[i].rgbRed;
pPal->palPalEntry[i].peGreen = pRgb[i].rgbGreen;
pPal->palPalEntry[i].peBlue pRgb[i].rgbBlue;
pPal->palPalEntry[i].peFlags = (BYTE)0;

)

hpal = CreatePalette(pPal);
Local Free((HANDLUpPal);

else if (lpbi->biBitCount == 24){
/* A 24 bitcount DIB has no color table ~ntries so, set the number of
* to the maximum value (256).
*/

nNumColors = MAXPALETTE;
pPal = CLOGPALETTE*)LocalAllocCLPTR,sizeofCLOGPALETTE) + nNumColors *

sizeofCPALETTEENTRY));
if (!pPal)

return NULL;

pPal->palNumEntries = nNumColors;
pPal->palVersion = 0x300;

red = green = blue = 0;

/* Generate 256 C= 8*8*4) RGB combinations to fill the palette
* entries.
*/

for Ci = 0; i < pPal->palNumEntries; i++){
pPal->palPalEntry[i].peRed = red;
pPal->palpalEntry[i].peGreen = green;
pPal->palPalEntry[i].peBlue = blue;
pPal->palPalEntry[i].peFlags = CBYTE)0;

}

if C!Cred += 32))
if (!(green += 32))

blue += 64;

hpal = CreatePaletteCpPal);
LocalFreeC(HANDLE)pPal);

retu rn hpa 1 ;

ShowDIB first calls the DibNumColors function to determine the number of
colors in the color table. If there is a color table (that is, the biClrUsed field is
not 0 and the biBitCount field is not 24), it copies the RGBQUAD values in

C%r Palettes 19-7

each bmiColors field in the BITMAPINFO structure to the corresponding
palette entry. If there is no color table, ShowDIB creates a palette of 256 entries
containing a "spread" of colors. When ShowDIB displays the bitmap, Windows
matches the c()lors in the bitmap to the colors in this palette.

19.3.2 Creating a Logical Palette
Once the application has created the LOGP ALETTE data structure, the next
step is to create a logical palette by calling the CreatePalette function:

hPal = CreatePalette((LPSTR)pLogPal)

CreatePalette accepts a long pointer to the LOGPALETTE structure as its only
parameter and returns a handle to the palette (HP ALETTE).

19.3.3 Selecting the Palette Into a Oevice Context
As you would any other GDI object, you must select the palette into the device
context in which it is to be used. The usual way of selecting an object into a
device context is by calling the SelectObject function. However, because Select
Object does not recognize a palette object, you must instead call SelectPalette to
select the palette into the device context:

hOC = GetOC(hWnd);
SelectPalette (hOC, hPal, 0);

This associates the palette with the device context so that any reference to a
palette (such as a palette index passed to a GDI function instead of a color) will
be to the selected palette.

To delete a logical-palette object, you use the DeleteObject function.

Since the palette is independent of any particular device context, it can be shared
by several windows. However, Windows does not make a copy of the palette ob
ject when an application selects the palette into a device context; consequently,
any change to the palette affects all device contexts using the same palette. Also,
if an application selects a palette object into more than one device context, the
device contexts must all belong to the same physical device (such as a display
or printer). In other respects, however, a palette object is like other Windows
objects.

19.3.4 Realizing the Palette
After your application has selected its palette into a device context, it must real
ize the palette before using it:

Real;zePalette(hOC);

19-8 Guide to Programming

When your application calls the RealizePaleUe function, Windows compares the
system palette with your logical palette and matches identical colors. If there is
room in the system palette, Windows then maps unmatched colors in the logical
palette to the system palette. Finally, if there are unmatched colors that could not
be mapped to the system palette, Windows matches the remaining colors to the
nearest color in the system palette.

19.4 Drawing With Palette Colors
Once your application has created a logical palette, selected it into a device con
text, and realized it, you can use the palette to control the colors used by GDI
functions that draw within the client area of the device. For functions that require
a color (such as CreatePen and CreateSolidBrosh), you specify which palette
color you wish to use either directly or indirectly.

19.4.1 Directly Specifying Palette Colors
Use the direct method to specify a palette color by supplying an index into your
logical palette instead of an explicit RGB value to functions that expect a color.
The P ALETTEINDEX macro accepts an integer representing an index into
your logical palette and returns a palette-index COLORREF value which you
would use as the color specifier for such functions. For example, to fill a region
bounded by pure green with a solid brush consisting of pure red, you could use a
sequence similar to the following:

pLogPal->palPalEntry[5].pRed = 0xFF;
pLogPal->palPalEntry[5].pGreen = 0x00;
pLogPal->palPalEntry[5].pBlue = 0x00;
pLogPal->palPalEntry[5].pFlags = (BYTE) 0;
pLogPal->palPalEntry[6].pRed = 0x00;
pLogPal->palPalEntry[6].pGreen = 0xFF;
pLogPal->palPalEntry[6].pBlue = 0x00;
pLogPal->palPalEntry[6].pFlags = (BYTE) 0;

hPal = CreatePalette«LPSTR)pLogPal);
hDC = GetDC(hWnd);
SelectPalette(hDC, hPal, 0);
RealizePalette(hDC);
lSolidBrushColor = PALETTEINDEX(5);
lBoundaryColor = PALETTEINDEX(6);
hSolidBrush = CreateSolidBrush(lSolidBrushColor);
hOldSolidBrush = SelectObject(hDC,hSolidBrush);
hPen = CreatePen(lBoundaryColor);
hOldPen = SelectObject(hDC,hPen);
Rectangle(hDC, xl, yl, x2, y2);

Color Palettes 19-9

This code fragment informs Windows that it should draw a rectangle bounded by
the color in the palette entry at index 6 (green) and filled with the color located in
the entry at index 5 (red).

It is important to note that the brush created by CreateSolidBrush is indepen
dent of any device context. As a result, the color specified by the ISolidBrush
Color parameter is whatever color is located in the sixth entry of the palette that
is currently selected when the brush is selected into the device context, not when
the application creates the brush. Selecting and realizing a different palette and
selecting the brush again would change the color drawn by the brush. Thus, when
using a logical palette, you need only create a brush for each type needed (such
as solid or vertical hatch). You can then change the color of the brush by using
different palettes or by changing the color in the palette entry to which the brush
refers.

19.4.2 Indirectly Specifying Palette Colors
Using an index into a logical palette allows your application greater control over
the actual colors displayed. However, this method becomes impractical when
dealing with a device that has 224 colors with no system palette. On a device
capable of supporting full 24-bit color, this limits the colors that your application
can display to the colors in your logical palette. Specifying palette colors in
directly allows you to avoid this limitation.

You specify a palette color indirectly by using a palette-relative RGB
COLORREF value instead of a palette index. A palette-relative RGB is a 32-bit
value that has the second bit in the high-order byte set to 1 and one-byte values
for red, green, and blue in the remaining bytes. The PALETTERGB macro ac
cepts three values indicating relative intensities of red, green, and blue, and re
turns a palette-relative RGB COLORREF value which, like a palette-index
COLORREF value, you can use in place of an explicit RGB COLORREF
value for functions that-require a color.

By specifying a palette-relative RGB instead of a palette index, your application
can draw to an output device using palette colors without having to determine
first whether the device supports a system palette. The following shows how
Windows interprets a palette-relative RGB value.

Device Supports a
System Palette?

Yes

No

How Windows Uses
a Palette-Relative RGB Value

Windows matches the RGB information to the
nearest color in the currently selected logical
palette and uses that palette entry as though the
application had directly specified the entry.

Windows uses the RGB information as though the
palette-relative RGB were an explicit RGB value.

19-10 Guide to Programming

For example, assume your application does the following:

pLogPal->palPalEntry[5].pRed = 0xFF;
pLogPal->palPalEntry[5].pGreen = 0x00;
pLogPal->palPalEntry[5].pBlue = 0x00;
CreatePalette«LPSTR)&pa);
erRed = PALETTERGB(0xFF,0x00,0x00);

If the target output device supports a system palette, then crRed would be
equivalent to:

erRed = PALETTEINDEX(5);

However, if the output device does not support a system palette, then crRed
would be equivalent to:

erRed = RGB(0xFF,0x00,0x00);

Even when using a logical palette, an application can use an explicit RGB value
to specify color. In such cases, Windows displays the color as it would for an
application that does not use a color palette by displaying the nearest color in the
default palette. If an application creates a solid brush with an' explicit RGB value,
Windows simulates the color by "dithering," that is, producing a pattern of pixels
made up of colors in the default palette.

19.4.3 Using a Palette When Drawing Bitmaps
As shown in Section 19.3.1, "Creating a LOGPALETTE Data Structure," a
device-independent bitmap can directly access the colors in the currently selected
logical palette by filling the bitmap color table with indexes into the palette in
stead of explicit RGB values. Then, when an application creates the bitmap by
calling CreateDIBitmap, retrieves bits from a bitmap with GetDIBits, sets bits
in the bitmap using SetDIBits, or sets bitmap bits directly on a device surface
with SetDIBitsToDevice, the application passes a flag parameter to the function
indicating that the color table contains palette indices. The following shows how
ShowDIB sets bits in a previously created memory bitmap:

SetDIBits(hMemDC, hBitmap, 0,
pBitmaplnfo-)bmeiHeader.beHeight,
pBuf, (LPBITMAPINFO) pBitmaplnfo,
CCpBitmaplnfo-)bmeiHeader.beBitCount
DIB_RGB_COLORS :
DIB_PAL_COLORS»;

24) ?

Depending on whether the original DIB used 24-bit pixels, ShowDIB sets the
wUsage parameter of SetDIBits to DIB_RGB_COLORS (for a 24-bit bitmap) or
DIB_PAL_COLORS (for all other bitmaps). DIB_RGB_COLORS instructs

Color Palettes 19-11

Windows to use the color values in the BITMAPINFO color table when setting
the bits in the device-dependent memory bitmap. If the wU sage parameter is set
to DIB_PAL_COLORS, however, Windows interprets the color table as 16-bit
indexes into a logical palette and sets the bits in the memory bitmap using the in
dicated color values in the logical palette of the current device context.

If, instead of palette indexes, the BITMAPINFO color table contains explicit
RGB values, Windows matches those values to the nearest colors in the currently
selected logical palette, as though they were palette-relative RGBs.

NOTE If the source and destination device contexts have selected and realized different
palettes, the BitBlt function does not properly move bitmap bits to or from a memory
device context. In this case, you must call the GetDlBits with the wUsage parameter set
to DIB_RGB_COLORS to retrieve the bitmap bits from the source bitmap in a device
independent format. You then use the SetDlBits function to set the retrieved bits in the
destination bitmap. This ensures that Windows will properly match colors between the
two device contexts.

BitBlt can successfully move bitmap bits between two screen display contexts, even if they
have selected and realized different palettes. The StretchBlt function properly moves bitmap
bits between device contexts whether or not they use different palettes.

19.5 Changing a Logical Palette
You can change one or more entries in a logical palette by calling the Set
PaletteEntries function. This function accepts the following parameters:

• The handle of the palette to be changed, an integer specifying the first palette
entry to be changed

• An integer specifying the number of entries to be changed

• An array of PALETTEENTRY data structures, each of which contains the
red, green, and blue intensities and flags for each entry

Windows does not map changes made to the palette until the application calls
RealizePalette for any device context in which the palette is selected. Because
this changes the system palette, colors displayed in the client area will likewise
change. Section 19.6, "Responding to Changes in the System Palette," explains
how to respond when Windows changes the system palette.

A second method of updating a logical palette is by animating it. In most cases,
an application animates its logical palette when it wants to change the palette
rapidly and to make tho.se changes immediately apparent.

19-12 Guide to Programming

To animate a palette, the application must first set the flags in the affected palette
entries to PC_RESERVED. This flag has two functions:

• It enables animation for the palette entry.

• It prevents Windows from matching colors displayed in other device contexts
to the corresponding color in the system palette.

The following example illustrates how ShowDIB sets the PC_RESERVED flag
in all the entries in an existing logical palette:

/* create a palette for animation purposes */
for (i = 0; i < pLogPal->palNumEntries; i++) {

pLogPal->palPalEntry[i].peFlags
(BYTE)(PC_RESERVEO);

SetPaletteEntries(hPal, 0, pLogPal->palNumEntries,
(LPSTR) &(pLogPal->palPalEntry[0]»;

The AnimatePalette function accepts the same parameters as SetPaletteEntries.
However, unlike SetPaletteEntries, AnimatePalette changes only those palette
entries with the PC_RESERVED flag set.

When an application calls AnimatePalette, Windows immediately maps the
changed entries to the system palette, but it does not rematch the colors displayed
in the device contexts using the palette for which the application called Animate
Palette. In other words, if a pixel was displaying the colorin the fifth entry in the
system palette before the application called AnimatePalette, it will continue to
display the color in that entry after AnimatePalette is called, even if the fifth
entry now contains a different color.

To demonstrate palette animation, ShowDIB sets a system timer and then calls
AnimatePalette to shift each entry in the palette each time its window receives
a WM_ TIMER message:

case WM_TIMER:
/* Signal for palette animation */
hOC = GetOC(hWnd);
hOldPal = SelectPalette(hOC, hpalCurrent, 0);
{

PALETTEENTRY peTemp;

/* Shift all palette entries left by one position and wrap
* around the first entry
*/

peTemp = pLogPal->palPalEntry[0];
for (i = 0; i < (pLogPal->palNumEntries - 1); i++)

pLogPal->palPalEntry[i] = pLogPal->palPalEntry[i+1];
pLogPal->palPalEntry[i] = peTemp;

C%r Pa/enes 19-13

/* Replace entries in logical palette with new entries*/
AnimatePaletteChpalCurrent, 0, pLogPal->palNumEntries, pLogPal->palPalEntry);

SelectPaletteChDC, hOldPal, 0);
ReleaseDCChWnd, hOC);

/* Decrement animation count and terminate animation
* if it reaches zero
*/

if C !C--nAnimating»
PostMessageChWnd,WM_COMMAND,IDM_ANIMATE0,0L);

break;

Animating an entire logical palette will degrade colors displayed by other appli
cations' windows if the active window is using the animated palette, particularly
if the animated palette is large enough to "take over" the system palette. For this
reason, your application should animate no more entries than it requires.

19.6 Responding to Changes in the System Palette
Whenever an application realizes a logical palette for a particular device context,
Windows maps colors in that logical palette into the system palette if the system
palette does not already contain those colors and if there are available entries in
the system palette. Because the system palette has changed, many or all of the
colors displayed in the client areas of all windows using palettes likewise change.
To allow applications to respond appropriately to these changes, Windows sends
two messages to overlapped and pop-up windows to deal with the changes.
These messages are:

• WM_QUERYNEWPALETTE

• WM_PALETTECHANGED

19.6.1 Responding to WM_QUERYNEWPALETTE
Windows sends the WM_ QUERYNEWP ALETTE message to the window that
is about to become active. When a window receives this message, the application
that owns the window should realize its logical palette, invalidate the contents of
the window's client area, and then return TRUE to inform Windows that it has
changed the system palette.

ShowDIB responds to the WM_QUERYNEWPALETTE message as follows:

case WM_QUERYNEWPALETTE:

/* if palette realization causes a palette
change, we need to do a full redraw. */

19-14 Guide to Programming

if (bLegitOraw) {

} else

break;

hOC = GetOC(hWnd);
hOldPal = SelectPalette (hOC, hPal, 0);

i = RealizePalette(hOC);

ReleaseOC(hWnd, hOC);

if C i)

InvalidateRectChWnd,

} else

UpdateCount = 0;
return (1) ;

return(0);

return(0);

(LPRECT) (NU Ll), 1);

19.6.2 Responding to WM_PALETTECHANGEO
Windows sends the WM_P ALETTECHANGED message to all overlapped and
pop-up windows when the active window changes the system palette by realizing
its logical palette. The wParam parameter of this message contains the handle of
the window that realized its palette. If your window responds to this message by
realizing its own palette, you should first determine that this handle is not the
handle of your window to avoid creating a loop.

When an inactive window receives the WM_PALETTECHANGED message, it
has three options:

• It can do nothing. In this case, the colors displayed in the window's client
area will potentially be incorrect until the window updates its client area.
You should consider this option only if color quality is unimportant to your
application when its windows are inactive or if your application does not use
a palette.

• It can realize its logical palette and redraw its client area. This option
ensures that the colors displayed in the window's client area will be as correct
as possible because Windows updates the colors in the client area using the
window's logical palette. This accuracy is at the cost of the time required to
redraw the client area, however. If the quality of the colors displayed by your
inactive window is crucial to your application, or if the image contained in
your window's client area can be redrawn quickly, then you should choose
this option.

Color Palettes 19-15

• It can realize its logical palette and directly update the colors in its client
area. This option provides a reasonable compromise between performance
and color quality. A window directly updates the colors in its client area by
realizing its palette and then calling UpdateCoiors. When an application
calls UpdateCoiors, Windows quickly updates the client area by matching
the current colors in the client area to the system palette on a pixel-by-pixel
basis. Since the match is made based on the color of the pixel before the
system palette changed rather than on the contents of the window's logical
palette, the accuracy of the match decreases each time the window calls
UpdateCoiors. Consequently, if color accuracy is of any importance to your
application when your windows are inactive, your application should limit the
number of times it calls UpdateCoiors for a window before repainting the
window's client area.

The following demonstrates how ShowDIB updates its client area in response to
the WM_PALETTECHANGED message:

case WM_PALETTECHANGED:
if (wParam 1= hWnd) {

break;

if (bLegitDraw) {
hDC = GetOC(hWnd);
hOldPal = SelectPalette (hOC, hPal, 0);

i = RealizePalette(hOC);

if (i && bUpdateColors) {
UpdateColors(hDC);
UpdateCount++;

} else if (i)
InvalidateRect(hWnd,

(LPRECT) (NULl), 1);

ReleaseOC(hWnd, hOC);
}

When ShowDIB receives the WM_PALETTECHANGED message, it first deter
mines whether the wParam message parameter contains its own window handle.
This would indicate that it was the window which had realized its logical palette
and so no response is needed. Then, after selecting and realizing its logical
palette, it determines whether a flag was set indicating that the user had selected
Update Colors from the Options menu. If this is true, it calls UpdateCoiors to up
date its client area and sets a flag to indicate that it has directly updated its colors.
Otherwise, it invalidates its client area to force redrawing of the client area.

19·16 Guide to Programming

19.7 Summary
By using a color palette, your application can display as many colors as possible
on a given display device. Instead of specifying explicit color values when per
forming graphics operations, your application creates a palette of colors from
which it selects when drawing on the display. It can select the color directly by
specifying an index into the palette or indirectly by specifying a palette-relative
color which Windows matches to your color palette. When your window has
input focus, Windows guarantees that the colors specified in its palette will be
displayed (up to the maximum available) and will match remaining colors as
closely as possible to available colors. Even when your window is in the back
ground, Windows continues to display the window's colors as correctly as
possible by matching its colors to the colors currently available on the display.

For more information on topics related to Windows color palettes, see the
following:

Topic

Displaying color bitmaps

Color-palette and GDI func
tions

Data types and· structures
used by logical palettes

Reference

Guide to Programming: Chapter 11,
"Bitmaps"

Reference, Volume 1: Chapter 2, "Graphics
Device Interface Functions" and Chapter 4,
"Functions Directory"

Reference, Volume 2: Chapter 7, "Data·
Types and Structures"

Chapter

20
Dynamic-Link Libraries

Microsoft Windows provides special libraries, called "dynamic-link libraries,"
(DLLs) that let applications share code and resources. Windows uses DLLs to
provide code and resources that all Windows applications can use. In addition,
you can create your own DLLs to share code and resources among your applica
tions.

This chapter covers the following topics:

• What is a DLL?

• When to use a DLL

• Building a DLL

This chapter also explains how to build a sample library, SELECT.DLL, that
illustrates the concepts this chapter covers.

20. 1 What is a OLL?
A DLL is an executable module containing functions that Windows applications
can call in order to perform useful tasks. DLLs exist primarily to provide services
to application modules. DLLs play an important role in the Windows environ
ment; Windows uses them to make Windows functions and resources available
to Windows applications.

DLLs are similar to run-time libraries, such as the C run-time libraries. The main
difference is that DLLs are linked with the application at run time, not when you
link the application files using the linker (LINK). Linking a library with an appli
cation at run time is called "dynamic linking"; linking a library with an applica
tion using the linker is called "static linking."

One way to understand DLLs is to compare them to static-link libraries. An ex
ample of a static-link library is MLIBCEW.LIB, the medium-model Windows C
run-time library. MLIBCEW.LIB contains the executable code for C run-time
routines such as strcpy and strlenr. You use C run-time routines in your applica
tion without having to include the source code for those routines. When you link
your C application, the linker incorporates information from the appropriate
static-link library. Wherever the application's code uses a C run-time routine,
the linker copies that routine to the application's .EXE file.

20-2 Guide to Programming

The primary advantage of static-link libraries is that they make a standard set of
routines available to applications, and do not require the applications to include
the original source code for those routines.

However, static-link libraries can be inefficient in a multitasking environment
like Windows. If two applications are running simultaneously, and they use the
same static-library routine, there will be two copies of that routine present in the
system. This is an inefficient use of memory. It would be more efficient for both
applications to share a single copy of the routine; however, static-link libraries
provide no facility for sharing code between applications.

DLLs, on the other hand, allow several applications to share a single copy of
a routine. Every standard Windows function, such as GetMessage, Create
Window and TextOut, resides in one of three DLLs: KERNEL.EXE,
USER.EXE, and GDI.EXE. If two Windows applications are running at the
same time, and both use a particular Windows function, both share a single
copy of the source code for that function.

In addition to letting applications share code, DLLs can be used to share other
resources, such as data and hardware. For example, Windows fonts are actually
text-drawing data that applications can share via DLLs. Likewise, Windows
device drivers are actually DLLs that allow applications to share hardware
resources.

All Windows libraries are DLLs. For example, the GDI.EXE, USER.EXE, and
KERNEL.EXE files that comprise the major part of Windows are DLLs. You
can develop your own custom DLLs to share code, data, or hardware among your
applications.

20. 1. 1 Import Libraries and OLLs
Thus far, we have described two types of libraries: static link libraries and DLLs.
There is a third type of library that is important when working with DLLs: import
libraries. An import library contains information which helps Windows locate
code in a DLL.

During linking, the linker uses static-link libraries and import libraries to resolve
references to external routines. When an application uses a routine from a static
link library, the linker copies the code for that routine into the application's .EXE
file. However, when the application uses a routine from a DLL, the linker does
not copy any code. Instead, it copies information from the import library which
indicates where to find the desired code in the DLL at run time. During applica
tion execution, this relocation information creates a "dynamic link" between the
executing application and the DLL.

Table 20.1 summarizes the uses of each of the three types of libraries.

Oynamic-Link Libraries 20-3

Table 20.1 Uses of the Three Library Types

Library Linked at Linked at Example Example
Type Link Time Run Time Library Routine

Static Yes No MLIB- strcpy
CEW.LIB

Import Yes No LIBW.LIB TextOut

Dynamic No Yes GDI.EXE TextOut

As this table indicates, when an application calls the strcpy function in the C run
time library, the linker links the application to the library by copying the code of
the routine from the MLIBCEW.LIB run-time library into the application's .EXE
file. But when the application calls the TextOut Windows GDI function, the
linker copies location information for TextOut from the LIBW.LIB import li
brary into the .EXE file. It does not copy the code of the function itself. Then, at
run time, when the application makes the call to TextOut, Windows uses the lo
cation information in the .EXE file to locate TextOut in the dynamic-link library
GDI.EXE.1t then executes the actual TextOut function in GDI.EXE. In other
words, import libraries provide the connection between application modules and
DLL modules.

20. 1.2 OLL and Application Modules
Modules are a fundamental structural unit in Windows. There are two types of
modules: application modules and DLL modules. You should already be familiar
with application modules; the .EXE file for every Windows application is con
sidered a module. Examples of dynamic-link modules include any Windows sys
tem file with an extension of .DLL, .DRV, or .FON. (Some Windows system
modules have a filename extension of .EXE instead of .DLL.)

Application and library modules have the same file format. (In fact, OS/2 shares
this file format for OS/2 applications and OS/2 DLLs.) This file format, which is
sometimes called the "New EXE Header Format," allows dynamic linking to
take place. You can use the EXEHDR utility to read the header of a module file.
EXEHDR provides information about the functions that the module imports or
exports. EXEHDR is included with the Microsoft C Optimizing Compiler; see
the C Compiler documentation for information about how to run EXEHDR.

A module exports a function in order to make the function available to other mod
ules. Thus, DLLs export functions for use by applications and other DLLs. For
example, the Windows dynamic-link library GDI.EXE exports all the graphics
device interface (GDI) functions. Unlike DLLs, however, application modules
cannot export functions for use by other applications.

A module imports a function contained in another module if it needs to use
that function. Importing a function creates a dynamic link to the code for that
function.

20-4 Guide to Programming

There are two ways to import a function into a module:

• By linking the module with an import library that contains information for
that function

• By listing the individual function in the IMPORTS section of the module's
.DEFfile

While both application and DLL modules can import and export functions, they
differ in one important respect: unlike applications modules, DLL modules are
not tasks.

20. 1.3 OLLs and Tasks
One of the basic differences between an application module and a dynamic-link
module is reflected in the notion of the "task." A task is the fundamental unit of
scheduling in Windows. An application module is said to be a "tasked exe
cutable" module. When an application module is loaded, a call is made to its
entry point, the WinMain function, which typically contains tpe message loop.
As the application module creates windows and begins to interact with the user,
the message loop connects the application module to the Windows scheduler. As
long as the user is interacting with the application's windows, messages are fed
to the application module, and the module retains control of the processor.

A DLL is sometimes said to be a "nontasked executable" module. Like the appli
cation module, a dynamic-link module -may contain an entry point. When it is
loaded, the entry point for the library is called, but typically, it performs only
minor initialization. Unlike the application module, a DLL does not interact with
the Windows scheduler via a message loop; instead, the DLL waits for tasks to
request its services.

Application modules are the active components of Windows. They receive
system- and user-generated messages, and, when necessary, call library modules
for specific data and services. Library modules exist to provide services to appli
cation modules.

NOTE Some DLLs are not completely passive. For example, some DLLs are device drivers
for interrupt-driven devices like the keyboard, mouse, and communication ports. However,
the interaction of such libraries is carefully controlled to avoid disrupting the Windows
scheduler. DLLs that require such an active role should be written according to the guide
lines described in Section 20.2.4, "Device Drivers."

20. 1.4 OLLs and Stacks
Unlike a task module, a DLL module does not have its own stack. Instead, it uses
the stack segment of the task that called the DLL. This can create problems when
a DLL calls a function that assumes the DS register and the SS register hold the

Dynamic-Link Libraries 20-5

same address. This problem is most likely to occur in small- and medium-model
DLLs, since pointers in these models are, by default, near pointers.

Many C run-time library routines, for example, assume that DS and SS are equal.
You must take care when you call these functions from within your DLL.

Your DLL can also encounter difficulties when calling user-written functions.
Consider, for example, a DLL that contains a function that declares a variable
within the body of the function. The address of this function will be relative to
the stack of the task which called the DLL. If this function passes that variable to
a second function that expects a near pointer, the second function will assume
that the address it receives is relative to the DLL's data segment rather than to
the stack segment of the task which called the DLL.

The following code fragment shows a function in a DLL passing a variable from
the stack, rather than from its data segment:

void DLLFunction(WORD wMyWord)
WORD my Word
{

char szMyString[10];

AnotherFunction(szMyString);

If AnotherFunction was declared as accepting a near pointer to a character array
(char NEAR *), it will interpret the address it receives as being an offset of the
data segment, rather than of the stack segment of the task that called the DLL.

To ensure that your DLL does not attempt to pass stack variables to functions
that expect near pointers, you should compile your DLL modules using the C
Compiler -Aw option. This will produce warning messages that indicate when
the DLL is making a call to a function that assumes that DS and SS are equal.
When you receive a warning for a particular function, you can either remove that
function call from your DLL, or rewrite the DLL source module so that it does
not pass a stack variable to that function.

20.1.5 How Windows Locates OLLs
Windows locates a DLL by searching the same directories it searches to find an
application module. To be found by Windows, the DLL must be in one of the fol
lowing directories:

1. The current directory

2. The Windows directory (the directory containing WIN.COM); the Get
WindowsDirectory function obtains the pathname of this directory

20-6 Guide to Programming

3. The Windows system directory (the directory containing such system files as
KERNEL.EXE); the GetSystemDirectory function obtains the pathname of
this directory

4. Any of the directories listed in the PATH environment variable

5. Any directory in the list of directories mapped in a network

Windows searches the directories in the listed order.

Implicitly loaded libraries must be named with the .DLL extension.

This section explained what a DLL does in the context of the Windows environ
ment. The next section explains what a custom DLL can do for your application.

20.2 When to Use a Custom OLL
Although DLLs are central to the architecture of Windows, they are not neces
sary components of most Windows applications. Your application does not have
to use a DLL simply to maximize Windows' management of memory. If you
split your application into multiple code segments, Windows provides a type of
dynamic linking between code segments that allows for optimal memory usage.
See Chapter 16, "More Memory Management," for more information on using
multiple code segments.

However, among other purposes, DLLs are useful for:

• Sharing code and resources among applications.

• Easily customizing your application for different markets.

• Filtering messages on a system-wide basis.

• Creating device drivers.

• Allowing the Dialog Editor (DIALOG) to support your custom-designed
controls.

• Facilitating the development of a complex application.

In this section, we discuss some criteria for deciding when to develop a custom
DLL.

20.2. 1 Sharing Between Applications
DLLs can be used to share objects between applications. Certain types of objects,
including code and resources, can be freely shared using a DLL. The sharing of
other types of objects, including data and file handles, is much more limited. This
is because file handles and data are created in an application's private address

Dynamic-Link Libraries 20~7

space. Attempts to share file handles, or to share data (outside of DDE, the clip
board, and the library's data segment) will lead to unpredictable results, and
could be incompatible with future versions of Windows.

This section describes how to use a DLL so applications can share code and
resources.

Sharing Code
If you are developing a family of applications, you may want to consider using
one or more DLLs. A DLL saves memory when two or more applications that
use a common set of DLL routines are running at the same time. DLLs allow
multiple applications to share common routines that would be duplicated for
each application if static-link libraries were used.

Suppose, for example, that you are creating two graphics applications, one a
vector (draw) program and the other a bitmap (paint) application. A common
requirement of both programs is the ability to import drawings created by other
applications. You could create DLLs for each supported "foreign" file format
that would convert it into an intermediate format. Your paint and draw applica
tions could then convert this intermediate data into their own formats. The appli
cations themselves would be required to contain only the code to convert from a
single format to their own format. To support the importing ofa new file type,
you would simply develop a new DLL and distribute it to the user, instead of
modifying, recompiling, and distributing the application modules themselves.

Sharing Resources
Resources are read-only data objects that are bound into an executable file by the
Resource Compiler. Resources can be bound into an application's .EXE file, as
well as into a library's .DLL file. Windows has built-in support for eight resource
types:

• Accelerator tables

• Bitmaps

• Cursors

• Dialog box templates

• Fonts

• Icons

• Menu templates

• String tables

20-8 Guide to Programming

In addition to using the standard Windows resources, you can create custom
resources and install them into an executable file. See Chapter 16, "More
Memory Management," for more information on resources.

A DLL's resources can be shared between applications; this saves memory when
multiple applications are running.

Resources that reside in a DLL can be freely used by any application. However,
it is important for each application to explicitly request each resource object it
needs. For example, if an application uses a menu resource called MainMenu in a
library named MENULIB.DLL, it would have to contain code like the following:

HANDLE hLibrary;
HMENU hMenu;

hLibrary = LoadLibrary ("MENULIB.DLL");

hMenu = LoadMenu (hLibrary, "MainMenu");

20.2.2 Customizing an Application for Different Markets
You can use DLLs for customizing your application for different markets. For
each market, you would create a DLL for which would contain code, data, and
resources which would make your application more appropriate for that market.
You don't have to design and compile a completely separate application module
for each market. Instead, you can create a general-purpose application which
would draw upon the market-specific information contained in the DLL.

DLLs are often used to customize applications for international markets. DLLs
can supply language- and culture-specific data for applications that are to be
marketed in different countries. For example, an application could be shipped
with its application module, APPFILE.EXE, and with three language-specific
DLLs: ENGLISH.DLL, FRENCH.DLL, and GERMAN.DLL.

When the product is installed, the correct language library could be selected and
used for all dialog box templates, menus, string information, and other language
specific information.

You use an instance handle of the library to identify the library when you use the
resources of the library. You obtain the library instance handle by calling the
LoadLibrary function:

HANDLE hLibrary;

hLibrary = LoadLibrary ("FRENCH.DLL");

The hLibrary value could be used anywhere that an hInstance value is requested
for normal resource loading. For example, if the FRENCH.DLL library contains
a menu template named "MAINMENU", the application loads the library and
then accesses the menu with the following call:

Dynamic-Link Libraries 20-9

HANDLE hMenu;

hMenu = LoadMenu (hLibrary, "MAINMENU");

20.2.3 Windows Hooks
Windows lets applications use "hooks" to filter messages on a system-wide basis.
A Windows hook is a function that receives and processes events before they are
sent to an application's message loop. For example, a function that provides
special-purpose processing of key strokes before passing them to an application
is a Windows hook function.

There are seven types of Windows hooks, which are explained more fully in the
Reference, Volume 1.

System-wide Windows hooks must be implemented using DLLs, and must reside
in fixed code segments. This is because, as a system-wide resource, the code as
sociated with a hook must be available at all times. Certain EMS memory con
figurations place all code except fixed library code segments in application
specific EMS memory. This location is sometimes referred tp as "above the EMS
line." When a code segment is above the EMS line, its availability is limited to
the application that owns the EMS memory. Furthermore, this code is not called
within the context of the application that sets the hook. In protected mode,
Windows treats fixed library code as a special case so that this code can still
be called. The only Windows hook that does not have to reside in a DLL is the
WH_MSGFIL TER hook, which is application specific. In addition, Windows
in protected (standard or 386 enhanced) mode assumes that system hooks are
located in fixed DLL code segments.

20.2.4 Device Drivers
The standard Windows device drivers are implemented as DLLs. The following
lists the default name for many of the standard Windows device drivers:

Device Driver Purpose

COMM.DRV Serial communication

DISPLAY.DRV Video display

KEYBOARD.DRV Keyboard input

MOUSE.DRV Mouse input

SOUND.DRV Sound output

SYSTEM.DRV Timer

20-10 Guide to Programming

The SYSTEM.INI file identifies the drivers that are to be installed when
Windows boots.

Device drivers for nonstandard devices also must be implemented using custom
DLLs. Different applications can then access the device; the device driver pro
vides the necessary synchronization to prevent conflict between the applications.

Because interrupts can occur at any time, not just during the execution of the
application that is using the device, device interrupt-handling code must reside in
a fixed code segment. In the large-frame EMS memory configuration, the only
type of code that is guaranteed to be available at all times to service such an inter
rupt is the code in a DLL's fixed code segment. The protected mode memory con
figuration requires that interrupt code be in such a DLL code segment. For more
information about memory configurations, see Chapter 16, "More Memory
Management. "

Interrupt-handling code in a device driver should not call client applications
directly. In addition, such device drivers must not call application code using the
SendMessage routine, because there is no mechanism to synchronize such calls
with an application's normal message processing. Such calls can lead to race con
ditions, data corruption, and indeterminate results.

Instead, interrupt-handling code must wait to be polled by the client applications,
in much the same way that the communication driver must be polled by its client
applications. Alternatively, a device driver can use the PostMessage routine to
place a message on the application's message queue.

20.2.5 Custom Controls
If you have developed custom controls, you can place the code for the controls
in a DLL. As detailed in Tools, the Dialog Editor (DIALOG) can then access
the DLL to display your custom control during a dialog-box editing session.

For your control library to be used by the Dialog Editor and other applications,
you will need to define and export the functions described in this section. The
Rainbow example on the Sample Source Disk illustrates how to write a custom
control DLL.

In the following function descriptions, Class is used as a placeholder for the class
name of your control. The name of your custom control is the same name the
Dialog Editor user employs to identify the control. The name of the control is
typically the same as the module name of the DLL, but not necessarily.

Structure definitions, such as for CTLINFO, and constants that define the inter
face of a custom control with the Dialog Editor, are provided in CUSTCNTL.H.

Dynamic-link Libraries 20-11

This section describes six functions that your custom-control DLL must export.
The DLL should export these functions by ordinal value, as shown in the follow
ing list:

Exported
Function Ordinal Value

WEP Any number except 2-6

ClassInit or Not required
LibMain

ClassInfo 2

ClassStyle 3

ClassFlags 4

ClassWndFn 5

ClassDlgFn 6

For example, the functions exported by the example Rainbow custom control are
declared in the RAINBOW.DEF file as shown in the following example:

EXPORTS
WEP
RAINBOWINFO
RAI NBOWSTY LE
RAINBOWFLAGS
RAINBOWWNDFN
RAINBOWDLGFN

@l RESIDENTNAME
@2
@3
@4
@5
@6

For more information on the LibMain function, see "Initiating a DLL" in Section
20.3.1. For more information on the WEP function, see "Terminating a DLL." in
Section 20.3.1.

The C/asslnit Function

Syntax
HANDLE FAR PASCAL Classlnit(hlnstance, wDataSegment, wHeapSize,
lpszCmdLine)

The C lasslnit function is responsible for all the initialization necessary to use the
dynamic-link control library. Your assembly-language entry point to the library
normally calls this function. In addition to saving the library instance handle with

20-12 Guide to Programming

a global static variable, this function should register the control window class
and initialize the local heap by calling the Locallnit function if your assembly
language entry routine does not initialize the local heap.

If you link the custom-control DLL with LIBENTRY.OBJ instead of providing
your own assembly-language entry point, this function is named LibMain. See
"Initializing a DLL" in Section 20.3.1 for more information about DLL entry
points and initialization.

Parameter

hlnstance

wDataSegment

wHeapSize

IpszCmdLine

Return Value

Type/Description

HANDLE Identifies the instance of the library.

WORD Specifies the library data segment.

WORD Specifies the default library heap size.

LPSTR Specifies the initial command line arguments.

The return value is a library-instance handle if the control class has been
registered and if initialization has succeeded. The return value is NULL if the
initialization process failed.

The C/asslnfo Function

Syntax
HANDLE FAR PASCAL Classlnfo()

The Classlnfo function provides the calling process with basic information about
the controllibrat."Y. Based on the information returned, the application can create
instances of the control using one of the supported styles. For example, the
Dialog Editor calls this function to query a library about the different control
styles it can display.

This function has no parameters.

The return value identifies a CTLINFO data structure. This information be
comes the property of the caller. The caller must explicitly release it using the
GlobalFree function when the data structure is no longer needed. If memory
was insufficient to allocate and define this structure, the return value is a NULL
handle.

The CTLINFO structure defines the class name and version number. The
CTLINFO data structure also contains an array of CTL TYPE data structures
that lists commonly used combinations of control styles (called "variants") with
a short description and suggested size information.

Dynamic-Link Libraries 20-13

The following shows the definition of these structures and related values:

1* general style & size defi niti ons *1
#define CTLTYPES 12
#define CTLDESCR 22
#define CTLCLASS 20
11defi ne CTLTITLE 94

1* control information structure *1
typedef struct

WORD
WORD
WORD
DWORD
char

CTLTYPE;

typedef struct
WORD
WORD
char
char
char
CTLTYPE

CTLl NFO;

wType;
wWidth;
wHeight;
dwStyle;
szDescr[CTLDESCR];

wVersion;
wCtlTypes;
szClass[CTLCLASS];
szTitle[CTLTITLE];
szReserved[l0] ;
Type[CTLTYPES];

typedef CTLINFO * PCTLINFO;
typedef CTLINFO FAR *LPCTLINFO;

The CTLTYPE structure has the following fields:

Field

wType

wWidth

wHeight

Description

Is reserved for future implementation. This field should
be set to zero.

Specifies the suggested width of the control when created
with the Dialog Editor. If the most significant bit of this
field is zero, then the lower byte is the default width in
Resource Compiler coordinates. If the most significant
bit is 1, then the remaining bits specify the default width
in pixels.

Specifies the suggested height of the control when
created using the Dialog Editor. If the most significant
bit of this field is zero, then the lower byte is the default
height in Resource Compiler coordinates. If the most sig
nificant bit is 1, then the remaining bits specify the
default height in pixels.

20-14 Guide to Programming

Field

dwStyle

szDescr

Description

Specifies the initial style bits used to obtain this control
type. This value includes both the control-defined flags in
the high-order word and the Windows-defined flags in
the low-order word.

Defines the name to be used by other development tools
when referring to this particular variant of the base con
trol class. The Dialog Editor does not refer to this
information.

The CTLINFO structure has the following fields:

Field

wVersion

wCtlTypes

szClass

szTitie

Type[]

Description

Specifies the control version number. Although you can
start your numbering scheme from one, most implementa
tions use the lower two digits to represent minor releases.

Specifies the number of control types supported by this
class. This value should always be greater than zero and
less than or equal to CTLTYPES.

Specifies a null-terminated string that contains the con
trol class name supported by the DLL.

Specifies a null-terminated string that contains various
copyright or author information relating to the control
library. .

Specifies an array of CTLTYPE data structures which
contain information relating to each of the control types
supported by the class.

The ClassSlyle Function

Syntax
BOOL FAR PASCAL ClassStyle(hWnd, hCtlStyle, lpfnStrTold, lpfnldToStr)

The Dialog Editor calls the ClassStyle function to display a dialog box to edit
the style of the selected control. When this function is called, it should display a
modal dialog box that enables the user to edit the CTLSTYLE parameters. The
user interface of this dialog box should be consistent with that of the predefined
controls supported by the Dialog Editor.

Parameter

hWnd

hCtlStyle

lpfnStrTold

lpfnldToStr

Return Value

Dynamic-Link Libraries 20-15

Type/Description

HWND Identifies the parent window of the dialog box.

HANDLE Identifies the CTLSTYLE data structure.

LPFNSTRTOID Points to a function supplied by the
Dialog Editor that converts a string to a numerical ID
value. See the following "Comments" section for more
information.

LPFNIDTOSTR Points to a function supplied by the
Dialog Editor that converts a numerical ID value to a
string. See the following "Comments" section for more
information.

The return value is TRUE if the CTLSTYLE data structure was changed. If the
user canceled the operation or an error occurred, the return value is FALSE.

Comments
The CTLSTYLE structure specifies the attributes of the selected control, includ
ing the current style flags, location, dimensions, and associated text. The follow
ing shows the definition of the CTLSTYLE data structure:

1* control style structure *1
typedef struct {

WORD wX;
WORD wY;
WORD wCx;
WORD wCy;
WORD wId;
DWORD dwStyle;
char szClass[CTLCLASS];
char szTitle[CTLTITLE];

CTLSTYLE;

typedef CTLSTYLE * PCTLSTYLE;
typedef CTLSTYLE FAR * LPCTLSTYLE;

The CTLSTYLE structure has the following fields:

Field

wX

Description

Specifies in screen coordinates the x-origin of the control
relative to the client region of the parent window.

20-16 Guide to Programming

Field

wY

wCx

wCy

wId

dwStyle

szClass

szTitle

Description

Specifies in screen coordinates the y-origin of the control
relative to the client region of the parent window.

Specifies the current width of the control in screen
coordinates.

Specifies the current height of the control in screen
coordinates.

Specifies the current ID number of the control. In most
cases you should not allow the user to change this value
as it is automatically coordinated by the Dialog Editor
with an include file.

Specifies the current style of the control. The high-order
word contains the control-specific flags, while the low
order word contains the Windows-specific flags. You
may let the user change these flags to any values sup
ported by your control library.

Specifies a null-terminated string representing the name
of the current control class. You should not allow the user
to edit this field, as it is provided for informational pur
poses only.

Specifies with a null-terminated string the text associated
with the control. This text is usually displayed inside the
control or may be used to store other associated informa
tion required by the control.

The Dialog Editor keeps track of user-specified control ID names and their corre
sponding symbolic-constant names, maintaining them in a header file which is in
cluded when the application is compiled. The control style function accesses this
information by using the /pfnStrTold and /pfnldToStr functions.

The /pfnStrTold and /pfnldToStr parameters point to two function entry points
within the Dialog Editor itself. To call these functions, you should prototype
them as shown:

/* ID to string translation function prototypes */
typedef WORD (FAR PASCAL *LPFNIDTOSTR)(WORD, LPSTR, WORD);
typedef DWORD (FAR PASCAL *LPFNSTRTOID)(LPSTR);

The /pfnldToStr entry point into the Dialog Editor allows you to translate the
numeric ID provided in the CTLSTYLE data structure into a text string contain
ing the symbolic-constant name defined in the include file. This text string can
then be displayed in place of a numeric value in your custom control's style
dialog box. The first parameter is the control ID. The second parameter is a long
pointer to a buffer that receives the string, and the third parameter is the maxi-

Dynamic-Link Libraries 20-17

mum length of that buffer. The IpfnldToStr function returns the number of
characters copied to the string. If the function returns zero, the function call
failed.

The IpfnStrTold function works in reverse, translating a string to a numeric ID
value. The function accepts the string containing a symbolic-constant name and
returns the corresponding control ID value. If the low-order word of the return
value is nonzero, the high-order word contains the control ID value which you
can use to update the wID field of the CTLSTYLE data structure. If the low
order word of the return value is zero, the constant name was undefined and
ClassStyle should generate an error message.

Typically, whenever ClassStyle is called, it will call1pfnldToStr, passing it the
value contained in the CTLSTYLE.wID field. If IpfnldToStr returns a value
greater than zero, then ClassStyle displays the resulting string in an edit field so
the user can change it. Otherwise, it displays the numerical value of the control
ID. If the user changes the edit field, ClassStyle calls IpfnStrTold to verify that
the string does, in fact, contain a valid symbolic-constant name and replaces the
CTLSTYLE.wID field with the high-order word of the return value.

The ClassDlgFn Function

Syntax
BOOL FAR PASCAL ClassDlgFn(hDlg, wMessage, wParam, IParam)

The ClassDlgFn function is the dialog procedure responsible for processing all
the messages sent to the style dialog box. The style dialog box is invoked when
the ClassStyle function is called. The ClassDlgFn function should enable the
user to edit selected portions of the CTLSTYLE data structure passed to the
C lassStyle function.

Parameter

hDlg

wMessage

wParam

IParam

Return Value

Type/Description

HWND Identifies the window receiving the message.

WORD Specifies the message.

WORD Specifies the 16-bit message parameter.

LONG Specifies the 32-bit message parameter.

The return value is TRUE if the dialog procedure processed the message. Other
wise, it is FALSE.

20-18 Guide to Programming

The ClassFlags Function

Syntax
WORD FAR PASCAL ClassFlags(dwFlags, IpStyle, wMaxString)

The ClassFlags function translates the class style flags provided into a corre
sponding text string for output to a resource script (.Re) file. This function
should not interpret the flags contained in the high-order word since these are
managed by Dialog Editor. Note that you should use the same control style
definitions specified in your control include file.

Parameter

dwFlags

IpStyle

wMaxString

Return Value

Type/Description

DWORD Specifies the current control flags.

LPSTR Points to a buffer to receive the style string.

WORD Specifies the maximum length of the style
ring.

The return value is the number of characters copied to the buffer identified by the
IpStyle parameter. If an error occurred, the return value is zero.

The ClassWndFn Function

Syntax
LONG FAR PASCAL ClassWndFn(hWnd, wMessage, wParam, IParam)

The ClassWndFn function is the window procedure responsible for processing
all the messages sent to the control.

Parameter

hWnd

wMessage

wParam

IParam

Type/Description

HWND Identifies the window receiving the message.

WORD Specifies the message.

WORD Specifies the 16-bit message parameter.

LONG Specifies the 32-bit message parameter.

Dynamic-Link Libraries 20-19

Return Value
The return value indicates the result of message processing and depends on the
actual message sent.

20.2.6 ProjectAfanagelnent
If you are developing a large or complex application, you can use DLLs to
facilitate application development. Splitting an application into clearly defined
subsystems can provide a logical way to divide work between different groups
of developers. Each subsystem can then be developed as a separate DLL.

One of the challenges in such a project is defining the interface between each
subsystem. Since DLL code can freely call routines in other DLLs, Windows im
poses no constraints on subsystem definitions. In addition, Windows manages
the movement and discarding of code segments to minimize the problems that
memory limitations often cause for DOS development projects. To take advan
tage of this feature, code segments should be defined as MOVEABLE, or
MOVEABLE and DISCARDABLE, in the module-definition (.DEF) file.

One benefit in using multiple DLLs is that, because each DLL has its own data
segment, data contamination between subsystems is minimized. This type of en
capsulation is useful in developing large applications.

There is another type of encapsulation, however, that might cause problems in
large projects that require mUltiple applications to run simultaneously. Due to the
fact that each application is treated as if it has its own private address space,
applications can move global data to other applications only by using Dynamic
Data Exchange (DDE). See Chapter 22, "Dynamic Data Exchange," for more
information on using DDE.

20.3 Creating a OLL
This section provides sample code that can be used as a basis for creating a DLL.

To create a DLL, you must have at least three files:

• A C-Ianguage source file

• A module-definition (.DEF) file

• A make file

Once you have created these files, you run the MAKE utility to compile and link
the source file. The remainder of this section explains how to create these files.

20-20 Guide to Programming

20.3.1 Creating the C-Language Source File
This section provides C source code as a template for creating a DLL. Like any
other type of C program, DLLs can contain multiple functions. Each function
that other applications or DLLs will use must be declared as FAR, and must be
listed in the EXPORTS section of the library's module-definition (.DEF) file.
The module-definition file for this sample library is discussed further in Section
20.3.2, "Creating the Module-Definiti~n File."

/* MINDLL.C -- Sample DLL code to demonstrate minimum code needed
to create a dynamic-link library. */

#include WINDOWS.H

int FAR PASCAL LibMain (HANDLE hInstance,
WORD wDataSeg,
WORD cbHeapSize,
LPSTR lpszCmdLine)

/* Perform DLL initialization. */

if (cbHeapSize != 0)
UnlockData(0);

return (1);
}

/* If DLL data seg is MOVEABLE */

/* Initialization successful. */

VOID FAR PASCAL MinRoutine (int iParam1,
LPSTR lpszParam2)

char cLocalVariable; /* Local variables on stack. */

/* MinRoutine Code goes here. */

VOID FAR PASCAL WEP (int nParameter)
{

if (nParameter == WEP_SYSTEMEXIT)
{

/* System shutdown in progress. Respond accordingly.*/
return (1);

else
{if (nParameter == WEP_FREE_DLL)

{

Dynamic-Link Libraries 20-21

1* DLL use count is zero. Every application that had
loaded the DLL has freed it. *1

else

return (1);

1* Undefined value. Ignore. *1
return (1);

DLL source code uses WINDOWS.H in the same way as does application source
code. WINDOWS.H contains data-type definitions, API entry-point definitions,
and other useful parameter information.

The PASCAL declaration defines the parameter-passing and stack-cleanup con
vention for this routine. This is not required for DLL routines, but its use results
in slightly smaller and faster code, and therefore its use is strongly recom
mended. The Pascal calling convention cannot be used for routines with a varia
ble number of parameters, or for calling C run-time routines. In such cases, the
CDECL calling convention is required.

There are two parameters shown on the MinRoutine parameter list, but DLL
routines can have as few or as many parameters as are required. The only require
ment is that pointers passed from outside the DLL module must be long pointers.

Initializing a OLL
You must include an automatic initialization function in a DLL. The initialization
function performs one-time start-up processing. Windows calls the initialization
function once, when the library is initially loaded. When subsequent applications
that use the library load the library, Windows does not call the initialization func
tion. Instead, Windows simply increments the DLL's use count.

Windows maintains a library in memory as long as its use count is greater than
zero. If a library's use count becomes zero, it is removed from memory. When an
application causes the library to be reloaded into memory, the initialization func
tion will again be called.

Following are some typical tasks a DLL's initialization function might perform:

• Registering window classes for window procedures contained in the DLL

• Initializing the DLL' s local heap

• Setting initial values for the DLL's global variables

20-22 . Guide to Programming

The library initialization procedure is required in order to allocate the local heap
of your DLL. The local heap must be created before the DLL calls any local heap
functions, such as LocalAlIoc. While Windows automatically initializes the local
heap for Windows applications, DLLs must explicitly initialize the local heap by
calling the Locallnit function.

In addition, you should include the following declaration in the initialization
procedure:

extrn __ acrtused:abs

This ensures that the DLL will be linked with the DLL start-up code in the
Windows DLL C run-time libraries (xDLLCyW.LIB) if the DLL does not call
any C run-time routines.

Initialization information is passed in hardware registers to a library when it is
loaded. Since hardware registers are not accessible from the C language, you
must provide an assembly language routine to obtain these values. The location
and value of the heap information are as follows:

Register

DI

DS

CX

ES:SI

Value

The DLL's instance handle

The DLL's data segment, if any

The heap size specified in the DLL's .DEF file

The command line (in the lpCmdLine field of
the LoadModule function's lpParameterBlock
parameter)

The SDK disks contain an assembly language file, LIBENTRY.ASM, that can
be used to create a DLL initialization function. (You can find this file in the
SELECT directory of the Sample Source Code disk.) The LibEntry ftinction in
this file is defined as follows:

..
""""""""" t"""""""""""""""""""""""""""",

LI BENTRY . ASM

Windows dynamic link library entry routine

This module generates a code segment called INIT_TEXT.
It initialises the local heap if one exists and then calls
the C routine libMain() which should have the form:
Baal FAR PASCAL LibMain(HANDlE hInstance,

WORD wDataSeg,
WORD cbHeapSize,
lPSTR lpszCmdline);

The result of the call to libMain is returned to Windows.

Dynamic-Link Libraries 20-23

The C routine should return TRUE if it completes initialisation
successfully, FALSE if some error occurs .

... .
""""""""""""""""""""""""""""""""""""", ,

extrn LibMain:far the C routine to be called
extrn LocalInit:far Windows heap init routine

extrn acrtused:abs ; ensures that Win DLL startup code is linked

public LibEntry entry point for the DLL

INIT_TEXT segment byte public 'CODE'
assume cs:INIT_TEXT

LibEntry proc far

push di handle of the library instance
push ds ; library data segment push cx

push es command line segment
push si command line offset

; if we have some heap then initialize it
jcxz callc ; jump if no heap specified

call the Windows function LocalInit() to set up the heap
LocalInit«LPSTR)start, WORD cbHeap);

push ds ; Heap segment
xor aX,ax

push ax Heap start offset in segment
push cx ; Heap end offset in segment
call LocalInit ; try to initialise it
or aX,ax ; did it do it ok ?
jz exit ; quit if it failed

; invoke the C routine to do any special initialisation

ca 11 c:
call LibMain invoke the 'C' rout i ne (result in AX)

exit :
ret return the result

LibEntry endp

INIT_TEXT ends

end LibEntry

heap size

The SDK disks also contain an assembled copy of this function in the file
LIBENTRY.OBJ. (You can find this file in the SELECT directory of the Sample
Source Code disk.) The LibEntry function allows a C language initialization

20-24 Guide to PrQgramming

function to be created. To qse the LibEntry function unchanged, just add its
filename, LIBENTRY.QBJ, to your LINK command line as follows:

LINK MINDLL.OBJ LIBENTRY.OBJ, MINDLL.DLL,MINDLL.MAP/map,
MDLLCEW.LIB LIBW.LIB/NOE/NOD,MINDLL.DEF

LibEntry calls aFAR PASCAL function named LibMain. Your DLL must con
tain tile LibMain function if you link the DLL with the file LIBENTRY.OBJ.

The following is a sample LibMain function:

int FAR PASCAL LibMain (HANDLE hInstance,
WORD wDataSeg,
WORD cbHeapSize,
LPSTR lpszCmdLine)

1* Perform DLL initialization. *1

if (cbHeapSize != 0) 1* If DLL data seg is MOVEABLE
*1

UnlockData(0);

return (1); 1* Successful installation. Otherwise,
return(0); *1
}

LibMain takes four parameters: hlnstance, wDataSeg, cbHeapSize, and
lpszCmdLine. The first parameter, hlnstance, is the instance handle of the DLL.
The wDataSeg parameter is the value of the data-segment (DS) register. The
cbHeapSize parameter is the size of the heap defined in the module-definition
file. LibEntry uses this value to initialize the local heap. The lpszCmdLine para
meter contains command line information and is rarely used by DLLs.

If you do not want the DLL data segment to be locked, the call to UnlockData
is necessary because the Locallnit function leaves the data segment locked.
UnlockData restores the data segment to its normal unlocked state.

If the DLL initialization has been successful, the DLL should return a value of 1.
A valu~ of zero indicates that initialization was not successful, and the DLL is un
loaded from system memory.

NOTE If you are writing the DLL entirely in assembly language, you must reserve the first
16 bytes of the DLL data segment and initialize the area with zeros. However, if the DLL
module contains any C-Ianguage code, the C Compiler automatically reserves and initializes
this area.

Dynamic-Link Libraries 20-25

Terminating a OLL
Windows DLLs must include a tennination function. A tennination function,
sometimes called an exit procedure, perfonns cleanup for a DLL before it is
unloaded.

DLLs that contain window procedures that have been registered (using Register
Class) are not required to remove the class registration (using UnRegisterClass);
Windows does this automatically when the DLL tenninates.

A sample tennination function is shown next. The tennination function should be
defined as shown here. A single argument is passed, nParameter, which indicates
whether all of Windows is shutting down (nParameter==WEP _SYSTEMEXIT),
or just the single DLL (WEP _FREE_DLL). It always returns 1 to indicate
success.

VOID FAR PASCAL WEP (int nParameter)
{

if (nParameter == WEP_SYSTEMEXIT)
{

else

/* System shutdown in progress. Respond accordingly.*/
return (1);

{if (nParameter == WEP_FREE_DLL)
{

else

}
}

/* DLL use count is zero. Every application that had
loaded the DLL has freed it. */

return (1);
}

/* Undefined value. Ignore. */
return (1);

The name of the tennination function must be WEP, and it must be included
in the EXPORTS section of the DLL's module-definition file. It is strongly
recommended, for perfonnance reasons, that the ordinal entry value and the
RESIDENT NAME key word be used, to minimize the time used to find this
function. Since the use of the RESIDENTNAME key word causes the export
infonnation for this routine to stay in memory at all times, it is not recommended
for use with other exported functions.

See the following section for more infonnation.

20-26 Guide to Programming

20.3.2 Creating the Module-Oefinition File
This section contains the module-definition file for the minimum DLL. This file
provides input to the linker (LINK) to define various attributes of the DLL. Note
that there is no ST ACKSIZE statement, since DLLs make use of the calling
application's stack. For a more complete discussion of module-definition files,
see the Reference, Volume 2.

LI BRARY Mi nO LL

DESCRIPTION 'MinDLL - Minimum Code Required for DLL.'

EXETYPE WINDOWS

STUB 'WINSTUB.EXE'

CODE MOVEABLE DISCARDABLE

DATA MOVEABLE SINGLE

HEAPSIZE 0

EXPORTS
MinRoutine @1
WEP @2 RESIDENTNAME

The LIBRARY key word identifies this module as a DLL. The name of the li
brary, MinDLL, follows this key word and must be the same as the name of the
library's .DLL file.

The EXETYPE WINDOWS statement is required for every Windows applica
tion and DLL.

The DESCRIPTION statement takes a string that can be up to 128 characters in
length. It is typically used to hold module description information, and perhaps a
copyright notice. This statement is optional in a DLL.

The STUB statement defines a DOS 2.x program that is copied into the body of
the library's executable (.DLL) file. The purpose of the stub is to provide infor
mation to users who attempt to run Windows modules from the DOS command
prompt. If no STUB statement is provided, the linker inserts one automatically.

The CODE statement is used to define the default memory attributes of the li
brary's code segments. Moveable and discardable code segments allow the most
freedom to the Windows memory manager, which will make sure that the proper
code segment is available when it is needed. The SEGMENTS statement, which
is not included in this example, can also be used to define the attributes for in
dividual code segments.

The DATA statement is required. It defines memory attributes of the library's
data segment. The MOVEABLE key word allows the memory manager to move

Dynamic-Link Libraries 20-27

the segment if needed. The SINGLE key word is required for DLLs. The reason
is that DLLs always have a single data segment, regardless of the number of
applications that access it.

The HEAPSIZE statement is used to define the initial (and minimum) size of
a DLL's local heap. DLLs that perform local memory allocation (using Local
Alloc) must initialize the heap at library start-up time. The heap size is passed to
the DLL's LibEntry routine, which, in tum, can call Locallnit to initialize the
DLL's local heap using that heap size. See "Initializing a DLL" in Section 20.3.1
for more information. In our example, the heap size is set to zero since the local
heap is not used. .

The EXPORTS statement defines the routines that will be used as entry points
from applications or from other DLLs. This information is used by Windows to
establish the proper data segment to be used by each DLL routine. Each routine
should have a unqiue ordinal entry value, which in this example is specified after
the "@" as the value 1. The ordinal entry value is an optimization that allows the
dynamic-link mechanism to operate faster and to use less memory.

20.3.3 Creating the Make File
The MAKE utility is used to control the creation of executable files to insure that
only the minimum required processing is performed. Four utilities are used in the
creation of the DLL:

• The C Compiler (CL)

• The linker (LINK)

• The import library creation utility (IMPLIB)

• The Resource Compiler (RC)

The make file to create the sample DLL is as follows.

MINDLL.OBJ: MINDLL.C
CL -ASw -c -Gsw -as -W2 MINDLL.C

MINDLL.DLL: MINDLL.OBJ
LINK MINDLL.OBJ LIBENTRY.OBJ, MINDLL.DLL,MINDLL.MAP/map,

MDLLCEW.LIB LIBW.LIB/NOE/NOD,MINDLL.DEF
MAPSYM MINDLL.MAP
IMPLIB MINDLL.LIB MINDLL.DEF
RC MINDLL.DLL

More information on MAKE is provided in the Microsoft C Compiler documen
tation.

20-28 Guide to Programming

C Compiler Switches
The C Compiler uses five sets of switches, which are briefly described below.
For more information, please consult the Microsoft C Compiler reference set, ver
sion 4.0 or later. The following example shows the switches used to compile the
sampleDLL:

CL -ASw -c -Gsw -Os -W2 MINDLL.C

The -ASw switch controls the default addressing to be created by the compiler.
The S option specifies the small model, which uses short data pointers and near
code pointers. The w option tells the compiler that the stack is not part of the de
fault data segment, or, to put it another way, SS != DS. This causes the compiler
to generate an error message when it detects the improper creation of a near
pointer to an automatic variable.

The -c switch requests compile-only operation. This is required if your DLL has
multiple C source code modules.

The -Gsw switch consists of two parts. The s option disables normal C Compiler
stack checking. This is required since the stack checking is incompatible with
Windows. The w option requests that Windows prolog and epilog code be at
tached to every FAR routine. This code is used for two purposes: to assist in the
establishment of the correct data segment, and to allow the memory manager to
move code segments at any time during system operation.

The -Os switch tells the C Compiler to optimize for size rather than for speed.
This switch is optional, but recommended.

The -W2 switch sets the warning level to "2" (the highest warning level is "3").
It's a good idea to use this switch during development to allow the C Compiler to
perform various checks on data types and routine prototypes, among others. The
use of this switch is optional, but recommended.

Linker Command Line
The LINK command takes five arguments, each separated by a comma:

LINK MINDLL.OBJ LIBENTRY.OBJ, MINDLL.DLL,MINDLL.MAP/map,
MDLLCEW.LIB LIBW.LIB/NOE/NOD,MINDLL.DEF

The first argument lists the object (.OBJ) files that are to be used to create the
DLL. If you use the standard DLL initialization routine, include
LIBENTRY.OBJ as an object.

The second argument specifies the name of the final DLL executable file. The
linker uses the .DLL extension for dynamic-link libraries. Implicitly loaded li
braries must be named with the .DLL extension. An implictly loaded library is
imported in the application's module-definition file rather than explicitly loaded
with the LoadLibrary function. See Section 2004, "Application Access to DLL
Code," for more information on loading a DLL.

Dynamic-Link Libraries 20-29

The third argument is the name of the .MAP file, which is created when the Imap
switch is used. This file contains symbol information for the global variables and
functions. It is used as input to the MAPSYM utility, which is described later.

The fourth argument lists the import libraries and the static-link libraries required
to create the DLL. There are two listed in this example: MDLLCEW.LIB and
LIBW.LIB. MDLLCEW.LIB is a C run-time library which contains some DLL
start-up code and C run-time library routines and math support. LIBW.LIB con
tains import information for KERNEL.EXE library routines. The fourth argu
ment also includes two linker switches, INOD and INOE. The /NOD switch is
used to disable default library searches based on memory model selection. If C
run-time routines are used, the appropriate C run-time library would have to be
included in this library list. The /NOR switch is used to disable extended library
searches. This inhibits the error messages created by the linker when a symbol is
identified in multiple libraries.

The fifth argument is the name of the module-definition file, described in Section
20.3.2 "Creating the Module-Definition File."

MAPSYM
The MAPSYM utility reads the .MAP file created by the linker, and creates a
symbol file having the .SYM extension. The symbol file is used by the Symbolic
Debugger (SYMDEB), and is also used by the debugging version of Windows to
create stack trace information wben a fatal error occurs.

IMPLIB
The IMPLIB utility creates an import library with the .LIB extension from a
DLL's module-definition file. An import library is listed on the linker command
line of applications that wish to use the routines in the DLL. In this way,
references to DLL routines in an application can be properly resolved.

For more information on IMPLIB, see Tools.

The Resource Compiler
All DLLs must be compiled with the Resource Compiler to mark them as com
patible with Windows version 3.0.

You can compile a DLL with the Resource Compiler -p option. This marks the
library as private to the calling application; no other applications should attempt
to use the library. In the large-frame EMS memory configuration, Windows
places the code and data segments of a private library above the EMS bank line.
In the small-frame EMS memory configuration, Windows loads all library ob
jects below the bank line, even if the library is private.) See Chapter 16, "More
Memory Management," for more information on Windows memory configura
tions.

20-30 Guide to Programming

The following list summarizes the difference between private and nonprivate
libraries in the two EMS memory configurations.

Nonprivate Library Private Library

Library Small Large Small Large
Memory Object Frame Frame Frame Frame

Data segment Below Below Below Above

Fixed code segment Below Below Below Above

Resource Below Above Below Above

Discardable code segment Below Above Below Above

20.4 Application Access to OLL Code
This section describes the three steps necessary to allow an application to access
a routine in a DLL:

1. Create a prototype for the library function.

2. Call the library function.

3. Import the library function.

20.4.1 Creating a Prototype for the Library Function
A prototype statement should be used to define each DLL routine in each
application source file. The prototype statement for our sample DLL routine is
as follows:

VOID FAR PASCAL MinRoutine (int, LPSTR);

The purpose of a prototype statement is to define a routine's parameters and re
turn value to the compiler. The compiler is then able to create the proper code for
the library routine. In addition, the compiler is able to issue warning messages
when a routine's prototype differs from its usage and when the -W2 compiler
switch has been selected. It is strongly recommended that prototypes be created
for application routines as well, to minimize the problems that can occur from er
rors of this type. For example, a warning message would be generated if Min
Routine, as defined previously, were to be used with the wrong number of
parameters, as shown next:

MinRoutine (5);

Dynamic-Link Libraries 20-31

Calling the Library Function
The call to a DLL function is indistinguishable from a call to a static-link library
function, or to other routines in the application itself. Once the proper prototype
definition has been made, the exported DLL functions can be called using normal
C syntax.

20.4.2 Importing the Library Function
There are three ways an application can import DLL functions:

• Import implicitly at link time

• Import explicitly at link time

• Import dynamically at run time

In each case, dynamic-link information contained in the application identifies the
name of the library and the function name or function's ordinal entry value. The
implicit import is the most commonly used method, and it is discussed first.

Implicit Link-Time Import
An implicit import is performed by listing the import library for the DLL on the
linker command line for an application. The import library is created using the
IMPLIB utility, as discussed in section 20.3.3, "Creating the Make File"

The SDK contains a set of import libraries to allow linking to Windows DLLs.
Table 20.2 lists these files and the purpose of each.

Table 20.2 Windows SDK Import Libraries

Filename Purpose

LIB W. LIB Import infonnation for USER.EXE, KERNEL.EXE, and
GDI.EXE.

SDLLCEW.LIB

MDLLCEW.LIB

CDLLCEW.LIB

Start-up code for Windows DLLs, C run-time library
routines, and emulated math packages for small-model
DLLs.

Start-up code for Windows DLLs, C run-time library
routines, and emulated math packages for medium
model DLLs.

Start-up code for Windows DLLs, C run-time library
routines, and emulated math packages for compact
modelDLLs.

20-32 Guide to Programming

Table 20.2 Windows SDK Import Libraries (continued)

Filename Purpose

LDLLCEW.LIB

SDLLCAW.LIB

MDLLCAW.LIB

CDLLCAW.LIB

LDLLCAW.LIB

SLIBCEW.LIB

MLIBCEW.LIB

CLIBCEW.LIB

LLIBCEW.LIB

SLIBCAW.LIB

MLIBCAW.LIB

CLIBCAW.LIB

LLIBCAW.LIB

WIN87EM.LIB

Start-up code for Windows DLLs, C run-time library
routines, and emulated math packages for large-model
DLLs.

Start-up code for Windows DLLs, C run-time library
routines, and alternate math packages for small-model
DLLs.

Start-up code for Windows DLLs, C run-time library
routines, and alternate math packages for medium
model DLLs.

Start-up code for Windows DLLs, C run-time library
routines, and alternate math packages for compact
modelDLLs.

Start-up code for Windows DLLs, C run-time library
routines, and alternate math packages for large-model
DLLs.

Start-up code fot Windows applications, C run-time
library routines, and emulated math packages for
small-model applications.

Start-up code for Windows applications, C run-time
library routines, and emulated math packages for
medium-model applications.

Start-up code for Windows applications, C run-time
library routines, and emulated math packages for
compact-model applications.

Start-up code for Windows applications, C run-time
library routines, and emulated math packages for
large-model applications.

Start-up code for Windows applications, C run-time
library routines,and alternate math packages for
small-model applications.

Start-up code for Windows applications, C run-time
library routines, and alternate math packages for
medium-model applications.

Start-up code for Windows applications, C run-time
library routines, and alternate math packages for
compact-model applications.

Start-up code for Windows applications, C run-time
library routines, and alternate math packages for
large-model applications.

Import information for Windows' floating- point DLL.

Dynamic-Link Libraries 20-33

Explicit Link-Time Import
Like an implicit import, an explicit import is perfomed at link time. An explicit
import is performed by listing each routine in the IMPORTS section of the appli
cation's module definition file. In the following example, there are three parts:
the imported routine name (MinRoutine), the DLL name (MinDLL), and the ordi
nal entry value of the function in the library (1).

IMPORTS
MinRoutine=MinDLL.1

Due to performance and size considerations, it is strongly advised that applica
tion developers define ordinal entry values for all exported DLL routines.
However, if you do not assign an ordinal entry value, you perform the explicit
import as shown in the following example:

IMPORTS
MinDlL.MinRoutine

Dynamic Run-Time Import
In dynamic run-time imports, the application must first load the library and expli
citly ask for the address of the desired function. Once this is done, the application
can call the function. In the following example, an application links dynamically
with the CreateInfo function in the Windows library INFO.DLL.

HANDLE hLibrary;
FARPROC lpFunc;

hLibrary = LoadLibrary ("INFO.DLL");
if (hLibrary)= 32)

{

lpFunc = GetProcAddress (hLibrary, "CreateInfo");
if (lpFunc != (FARPROC) NULL)

(*lpFunc) «LPSTR) Buffer, 512);

FreeLibrary (hLibrary);
}

In this example, the LoadLibrary function loads the desired Windows library
and returns a module handle to the library. The GetProcAddress function re
trieves the address of the CreateInfo function by using the function's name,
"CreateInfo". The function address can then be used to call the function. The fol
lowing statement is an indirect function call that passes two arguments (Buffer
and the integer 512) to the function:

*(lpFunc) «LPSTR) Buffer, 512);

Finally, the FreeLibrary function decrements the library's use count. When the
use count becomes zero (that is, no application is using the library), the Windows
library is removed from memory.

20-34 Guide to Programming

Slightly better performance would be obtained if the CreateInfo function had an
ordinal value assigned in the library's module-definition file. The following is an
example of such a .DEF file entry:

EXPORTS
Create Info @27

This statement defines the ordinal value of CreateInfo as 27. Using this value
involves changing the call to GetProcAddress to the following:

GetProcAddress ChLibrary, MAKEINTRESOURCE(27));

20.5 Rules for Windows Object Ownership
Windows memory "objects" can be in global or local memory. Windows objects
include:

• Bitmaps

• Metafiles

• Application code segments

• Resources (except fonts)

Windows treats memory objects as follows:

• An application that allocates memory owns that memory.

• When a DLL allocates a global object, the application that called the DLL
owns that object.

• When an application or DLL terminates, Windows purges the system of all
objects and window classes owned by that application or DLL.

• Data sharing should be performed using the clipboard or dynamic data ex
change (DDE), although you can also share data using the data segment of a
DLL. When using the clipboard or DDE, the Windows copies the data into
the private address space of the receiving application.

• ODI objects (pens, brushes, device contexts, and regions) are not typical
Windows objects in that they are not purged when the owning application ter
minates. For this reason, an application or DLL must explicitly destroy any
ODI objects it created before it terminates.

20.6 A Sample Library: Select
This sample library contains functions that you can use to carry out selections
by using the mouse. The functions are based on the graphics selection method

Dynamic-Link Libraries 20-35

described in Chapter 6, "The Cursor, the Mouse, and the Keyboard." These func
tions provide two kinds of selection feedback: a box that shows the outline of the
selection, and a block that shows the entire selection inverted. The library exports
the following functions:

Function

StartS election

UpdateSelection

EndSelection

ClearSelection

Action

Starts the selection and initializes the selection
rectangle. When selecting with the mouse, you call
this function when you receive a WM_LBUTTON
DOWN message.

Updates the selection box or block. When selecting
with the mouse, you call this function when you re
ceive a WM_MOUSEMOVE message.

Ends the selection and fills in the selection rectangle
with the final selection dimensions. When selecting
with the mouse, you call this function when you re
ceive a WM_LBUTTONUP message.

Clears the selection box or block from the screen
and empties the selection rectangle.

The selection rectangle is a RECT structure that the application supplies and the
library functions fill in. The coordinates given in the rectangle are client coordi
nates.

To create this library you need to create several files:

File

SELECT.C

SELECT.DEF

SELECT.H

SELECT

S ELECT. LIB

Contents

The C-Ianguage source for selection functions

The module~definition file for the Select library

The include file for the Select library

The make file for the Select library

The import library for the Select library

The Select library does not have an initialization file because the functions do not
use a local heap and because no other initialization is necessary.

NOTE Rather than typing the code presented in the following sections, you might find it
more convient simply to examine and compile the sample source files provided with the
SDK.

20-36 Guide to Programming

20.6.1 Create the Functions
You can create the library functions by following the description given in Chap
ter 6, "The Cursor, the Mouse, and the Keyboard." Simply copy the statements
used to make the graphics selection into the corresponding functions. Also, to
make the selection functions more flexible, add the additional block capability.

After you change it, the StartS election function should look like this:

int FAR PASCAL StartSelection(hWnd, ptCurrent, lpSelectRect, fFlags)
HWND hWnd;
POINT ptCurrent;
LPRECT lpSelectRect;
i nt fFl ags ;
{

if (!IsEmptyRect(lpSelectRect»
ClearSelection(hWnd, lpSelectRect, fFlags);

if (!fFlags & SL_EXTEND) {
lpSelectRect-)left = ptCurrent.x;
lpSelectRect-)top = ptCurrent.y;

lpSelectRect-)right = ptCurrent.x;
lpSelectRect-)bottom = ptCurrent.y;
SetCapture(hWnd);

This function receives four parameters: a window handle, hWnd; the current
mouse location, ptCurrent; a long pointer to the selection rectangle, lpSelectRect;
and the selection flags,jFlags.

The first step is to clear the selection if the selection rectangle is not empty. The
IsRectEmpty function returns TRUE if the rectangle is empty. The StartSelec
tion function clears the selection by calling the ClearSelection function, which is
also in this library.

The next step is to initialize the selection rectangle. The StartSelection function
extends the selection (it leaves the upper-left corner of the selection unchanged),
if the SS_EXTEND bit in the jFlags argument is set. Otherwise, it sets the upper
left and lower-right corners of the selection rectangle to the current mouse loca
tion. The SetCaptnre function directs all subsequent mouse input to the window
even if the cursor moves outside of the window. This is to ensure that the selec
tion process continues uninterrupted. To call this function, an application would
use the following statements: r

case WM_LBUTTONDOWN:
bTrack = TRUE;
StartSelection(hWnd, MAKEPOINT(lParam), &SelectRect,

(wParam & MK_SHIFT) ? SL_EXTEND : NULL);
break;

After you change it, the UpdateSelection function should look like this:

Dynamic-Link Libraries 20-37

int FAR PASCAL UpdateSelection(hWnd, ptCurrent, lpSelectRect, fFlags)
HWNO hWnd;
POINT ptCurrent;
LPRECT lpSelectRect;
int fFlags;

HOC hOC;
short OldROP;

hOC = GetOC(hWnd);
switch (fFlags & SL_TYPE)

case SL_BOX:
OldROP = SetROP2(hOC, R2_XORPEN);
MoveTo(hOC, lpSelectRect->left,

lpSelectRect->top);
LineTo(hOC j lpSelectRect->right,

lpSelectRect->top);
LineTo(hOC, lpSel~ctRect->right,

lpSelectRect->bottom):
LineTo(hOC, lpSelectRect->left,

lpSelectRect->bottom);
LineTo(hOC, lpSelectRect->left,

lpSelectRect->top);
LineTo(hOC, ptCurrent.x, lpSelectRect->top);
LineTo(hDC, ptCurrent.x, ptCurrent.y);
LineTo(hOC, lpSelectRect->left, ptCurrent.y);
LineTo(hOC, lpSelectRect->left, lpSelectRect->top);
SetROP2(hOC, OldROP);

break;

case SL_BLOCK:
PatBlt(hOC,

lpSelectRect->left, lpSelectRect->bottom,
lpSelectRect->right - lpSelectRect->left,
ptCurrent.y - lpSelectRect->bottom,
DSTI NVERT) ;

PatBlt(hOC, PrevX, OrgY,

break;

lpSelectRect->right, lpSelectRect->top,
ptCurrent.x - lpSelectRect->right,
ptCurrent.y - lpSelectRect->top, OSTINVERT);

lpSelectRect->right = ptCurrent.x;
lpSelectRect->bottom = ptCurrent.y;
ReleaseOC(hWnd, hOC);

As the user makes the selection, the UpdateSelection function provides feedback
about the user's progress. For the box selection, the function first clears the cur
rent box by drawing over it, then draws the new box. This requires eight calls to
the LineTo function.

20-38 Guide to Programming

To update a block selection, the UpdateSelection function inverts the rectangle
by using the PatBIt function. To avoid flicker while the user selects, Update
Selection inverts only the portions of the rectangle that are different from the pre
vious selection rectangle. This means the function inverts two separate pieces of
the screen. It assumes that the only area that needs inverting is the area between
the previous and current mouse locations. Figure 20.1 shows the typical coordi
nates for describing the areas being inverted:

t-----...... ~--r-+x
Origin B

Rectangle Height B 1 B

Height A Rectangle j
-------!..-l ___ A ____ -

Width A -.1..- Width B -+1
y

Figure 20.1 Inverting a Rectangle

The first PatBIt call inverts the left-most rectangle by using IpSelectRect->left,
the original location on the x-coordinate of the mouse button when first pressed,
and IpSelectRect->bottom, the most recent update of the location of the mouse
on the y-coordinate, to set the origin of the area to be inverted. The width
of the first area is determined by subtracting IpSelectRect->left from
IpSelectRect->right, the most recent update of the location of the mouse on
the x-coordinate. The height of this area is determined by subtracting
IpSelectRect->bottom fromptCurrent.y, the current location of the mouse
on the y-coordinate.

The second PatBIt call inverts the right-most rectangle by using
IpSelectRect->right, the most recent location on the x-coordinate of the mouse
button, and IpSelectRect->top, the original location on the y-coordinate of the
mouse, to set the origin of the area to be inverted. The width of this second area
is determined by subtracting IpSelectRect->bottom, the most recent update of the
location of the mouse on the x-coordinate, from ptCurrent.x, the current location
of the mouse on the x-coordinate. The height of this area is determined by sub
tracting IpSelectRect->top from ptCurrent.y, the current location of the mouse on
the y-coordinate.

Dynamic-Link Libraries 20-39

When the selection updating is complete, the values IpSelectRect->right and
IpSelectRect->bottom are updated by assigning them the current values con
tained in ptCurrent.

To update a box selection, the application should call the UpdateSelection func
tion as follows:

case WM_MOUSEMOVE:
if (bTrack)

UpdateSelection(hWnd, MAKEPOINT(lParam), &SelectRect,
SL_BOX);

break;

After you change it, the EndSelection function should look like this:

int FAR PASCAL EndSelection(ptCurrent, lpSelectRect)
POINT ptCurrent;
LPRECT lpSelectRect;
{

if (ptCurrent.x < lpSelectRect->left) {
lpSelectRect->right = lpSelectRect->left;
lpSelectRect->left = ptCurrent.x;

else
lpSelectRect->right = ptCurrent.x;

if (ptCurrent.y < lpSelectRect->top) {
lpSelectRect->bottom = lpSelectRect->top;
lpSelectRect->top = ptCurrent.y;

else
lpSelectRect->bottom = ptCurrent.y;

ReleaseCapture();

The EndSelection function saves the current mouse position in the selection
rectangle. For convenience, the final mouse position is checked to make sure it
represents a point to the lower right of the original point. Rectangles typically are
described by upper-left and lower-right comers. If the final position is not to the
lower right (that is, if either the x- or y-coordinate of the position is less than the
original x- and y-coordinates), the values of the original point and the final point
are swapped as necessary. The ReleaseCapture function is required since a
corresponding SetCapture function was called. In general, you should release
the mouse immediately after mouse capture is no longer needed.

Finally, when the user releases the left button, the application should call the End
Selection function to save the final point:

case WM_LBUTTONUP:
bTrack = FALSE;
EndSelection(MAKEPOINT(lParam), &SelectRect);
break;

20-40 Guide 10 Programming

After you change it, the ClearSelection function should look like this:

int FAR PASCAL ClearSelectionChWnd, lpSelectRect, fFlags)
HWND hWnd;
LPRECT lpSelectRect;
int fFlags;
{

HOC hOC;
short OldROP;

hOC = GetDCChWnd);
switch CfFlags & SL_TYPE)

}

case 5L_BOX:
OldROP = SetROP2ChDC, R2_XORPEN);
MoveToChDC, lpSelectRect->left, lpSelectRect->top);
LineToChDC, lpSelectRect->right, lpSelectRect->top);
LineToChDC, lpSelectRect->right, lpSelectRect->bottom);
LineToChDC, lpSelectRect->left, lpSelectRect->bottom);
LineToChDC, lpSelectRect->left, lpSelectRect->top);
SetROP2(hDC, OldROP);

break;

case SL_BLOCK:
PatBlt(hDC,

break;

lpSelectRect->left, lpSelectRect->top,
lpSelectRect->right - lpSelectRect->left,
lpSelectRect->bottom - lpSelectRect->top,
DSTINVERT) ;

ReleaseDC(hWnd, hOC);

Clearing a box selection means removing it from the screen. You can remove the
outline by drawing over it with the XOR pen. Clearing a block selection means
restoring the inverted screen to its previous state. You can restore the inverted
screen by inverting the entire selection.

20.6.2 Create the Initialization Routine
Select uses the standard LibEntry function contained in the LIBENTRY.OBJ file.
This function in turn calls a function named LibMain, which is expected to be de
fined in the source code of the DLL and which perfonns library-specific initiali
zation. Since Select does not require initialization beyond that provided by
LibEntry, it simply returns a value of 1 to indicate success. The LibMain routine
of the Select DLL is defined as follows:

int FAR PASCAL LibMain(hlnstance, wDataSeg, cbHeapSize, lpszCmdLine)
WORD wDataSeg,
HANDLE hlnstance;
WORD cbHeapSize;

Dynamic-Link Libraries 20-41

LPSTR lpszCmdLine;

return 1;

20.6.3 Create the Exit Routine
Like every DLL, Select must include the standard exit routine, WEP. Again,
since Select does not require any cleanup tasks, the WEP routine simply returns:

VOID FAR PASCAL WEP(nParameter)
int nParameter;
{

return;

20.6.4 Create the Module-Definition File
To link the Select library, you need to create a module-definition file containing
the following:

LIBRARY Select

CODE MOVEABLE DISCARDABLE
DATA SINGLE
HEAPSIZE 1024

EXPORTS
WEP
StartSelection
UpdateSelection
EndSelection
ClearSelection

@1 RESIDENTNAME
@2
@3
@4
@5

Since the selection functions do not use global or static variables and there is no
local heap, the DATA statement is used to specify no data segment, and the
HEAPSIZE statement is used to set the heap size to zero.

20.6.5 Create the Include File
You need to create the SELECT.H include file for the Select library. This file
contains the definitions for the constants used in the functions, as well as func
tion definitions. The include file should look like this:

int FAR PASCAL StartSelection(HWND, POINT, LPRECT, int);
int FAR PASCAL UpdateSelection(HWND, POINT, LPRECT, int);
int FAR PASCAL EndSelection(POINT, LPRECT);
int FAR PASCAL ClearSelection(HWND, LPRECT, int);

20-42 Guide to Programming

You should also use the include file in applications that use the selection func
tions. This will ensure that proper parameter and return types are used with the
functions.

20.6.6 Compi/eand Link

20.7 Summary

To compile and link the Select library you need to create the make file as follows:

select.obj: select.c select.h
cl -c -Asnw -Gsw -Os -Zp select.c

select.dll: select.obj
link select libentry, select.dll, , INOE INOO sdllcew libw,
select.def

rc select.dll implib select. lib select.def

Once you have compiled and linked the Select library, you can create a small test
application to confirm that it is working properly. For a description of an applica
tion that uses the selection functions, see Chapter 11, "Bitmaps" or Chapter 13,
"The Clipboard."

This chapter described dynamic-link libraries (DLLs), a special type of library
that permits applications to share code and resources. DLLs exist primarily to
provide services to applications. For example, the Windows DLLs make
Windows functions available to applications; therefore, the applications need
not contain the code that defines each function. You can create your own DLLs
in order to share code and resources among your own applications.

With a static-link library, such as MLIBCEW.LIB, the linker copies the code
for a particular routine to the application's executable file. In contrast, with a
dynamic-link library, two or more applications can share a single copy of the
source code for a routine. Applications link to DLL routines at run time, rather
than at build time.

A typical use of a DLL is for defining custom controls. Your applications can
then use those controls, and you can include the controls in your dialog boxes
using the Dialog Editor.

Dynamic-Link Libraries 20-43

For more information on topics related to dynamic-link libraries, see the follow
ing:

Topic

Special considerations when
creating DLLs using the C
language

Managing memory in a DLL

Linking and importing DLLs

Installing a custom control
using the Dialog Editor

Reference

Guide to Programming: Chapter 14, "C and
Assembly Language"

Guide to Programming: Chapter 16, "More
Memory Management"

Tools: Chapter 2, "Linking Applications: The
Linker"

Tools: Chapter 5, "Designing Dialog Boxes:
The Dialog Editor"

Chapter

21
Multiple Document Interface

The multiple document interface (MDI) is a user interface standard for pre
senting and manipulating multiple documents within a single application. An
MDI application has one main window, within which the user can open and work
with several documents. Each document appears in its own separate child
window within the main application window. Because each child window has a
frame, system menu, maximize and minimize buttons, and icon; the user can
manipulate it just as if it were a normal, independent window. The difference is
that the child windows cannot move outside the main application window.

This chapter covers the following topics:

• The structure of an MDI application

• Writing procedures for an MDI application

• Controlling an MDI application's child windows

This chapter uses as its example a simpie text editor called Multipad, supplied
on the SDK Sample Source Code disk. Multipad is an MDI variation of the
Windows Notepad desktop application. (Multipad actually serves as a sample
application for several of the chapters in this manual. This chapter will discuss
in detail only the parts of Multipad that are relevant to the MDI interface.)

21.1 The Structure of an MOl Application
Like most Windows applications, an MDI application contains a message loop
for dispatching messages to the application's various windows. The MDI
message loop is similar to normal message loops, except for the way it handles
menu accelerators.

The main window of ari MDI application is similar to that of most Windows
applications. In an MDI application, the main window is called the "frame
window." The frame window differs from a nonnal main window in that its
client area is filled by a special child window called the "client window." Be
cause Windows maintains the MDI client window and controls the MDI inter
face, the application needs to store very little infonnation about the MDI user
interface. (In this sense, the MDI client window is similar to a standard control,
such as a radio button; it has a standard behavior that Windows provides

21-2 Guide to Programming

automatically. The application can use the client window, but need not provide
code that defines how the window appears or behaves.)

Visually, an MDI client window is simply a large monochromatic rectangle. To
the user, the client window is part of the main window; it provides a background
upon which the child windows appear. The application defines the child
windows; normally, there is one child window per document. The MDI child
windows look much like the main window: they have window frames, system
menus, and minimize and maximize buttons. The main difference to the user is
that each child window contains a separate document; also, the child windows
cannot move outside the client window.

Figure 21.1 shows the sample application Multipad, which is a typical MDI
application.

Frame window Client window

File Edit Search Window

Untitled U ...
CONTROLINI m

... Child windows

Figure 21.1 Multipad: A Sample MDI Application

In general, an application controls the MDI interface by passing messages up and
down the hierarchy of MDI windows. The MDI client window, which Windows
controls, carries out many operations on behalf of the application.

The rest of this chapter explains how to write an MDI application, and how to
use messages to control the MDI child windows.

21.2 Initializing an MOl Application
The first place in which an MDI application differs from a normal Windows
application is in the initialization process. Although the overall process is the

Multiple Document Interface 21-3

same, an MDI application requires that you set certain values in the window class
structure.

To initialize an MDI application, you first register its window classes (if there is
no previous instance of the application) just as you would for a normal applica
tion. You then create and display any windows that will be initially visible.

21.2.1 Registering the Window Classes
In general, a typical MDI application needs to register two window classes:

• A window class for the application's MDI frame window. The class structure
for the frame window is similar to the class structure for the main window in
non-MDI applications.

• A window class for the application's MDI child windows. The class structure
for the MDI child windows is slightly different from the structure for child
windows in non-MDI applications.

An application may have more than one window class for its MDI child
windows, if there is more than one type of document available in the
application.

Note that the application does not register a class for the MDI client window,
which is defined by Windows.

The class structure for MDI child windows differs from that for normal child
windows in the following ways:

• The class structure should have an icon, because the user can minimize an
MDI child window as if it were a normal application window.

• The menu name should be NULL, because MDI child windows cannot have
their own menus.

• The class structure should reserve extra space in the window structure. This
lets the application associate data, such as a filename, with a particular child
window.

In the Multipad application, the locally-defined function InitializeApplication
registers Multipad's MDI window classes.

21.2.2 Creating the Windows
After registering its window classes, your MDI application can create its
windows. It first creates its frame window using the Create Window function.
(The System Application Architecture, Common User Access: Advanced

21-4 Guide to Programming

Interface Design Guide describes how an MDI application's frame window
should look.)

After creating its frame window, the application can then create its client window
using the CreateWindow function. It should specify MDICLIENT as the client
window's class name. MDICLIENT is a preregistered window class, defined by
Windows. The lParam parameter to the CreateWindow function should point to
a CLIENTCREATESTRUCT data structure. A CLIENTCREATESTRUCT
structure contains the following fields:

Field

h WindowMenu

idFirstChiid

Description

A handle to a pop-up menu used for controlling
MDI child windows.

As child windows are created, the application adds
their titles to the pop-up menu as menu items. The
user can then activate a child window by selecting
its title from the window menu. Multipad places this
pop-up menu in its "Window" menu, and obtains a
handle to the pop-up menu with the GetSubMenu
function.

The window ID of the first MDI child window.

The first MDI child window created will be assigned
this ID. Additional windows will be created with
subsequent window IDs; when a child window is de
stroyed, Windows immediately reassigns the
window IDs to keep the range of IDs continuous.

When a child window's title is added to the window menu, the menu item is as
signed the child window's ID, which means that the frame window will receive
WM_COMMAND messages with these IDs in the wParam parameter. Thus, the
value for the idFirstChiid field should be chosen so as not to conflict with menu
item IDs in the frame window's menu.

The MDI client window is created with WS_CLIPCHILDREN style bit, since
the window must not paint over its child windows.

The Multipad's locally-defined InitializeInstance function creates Multipad's
frame window. However, Multipad does not create its client window at this
point. Instead, it does this as part of the frame window's WM_ CREATE message
processing. Multipad handles the WM_CREATE messagein its MPFrameWnd
Proc function. After creating the frame window and the client window, Multipad
performs additional initialization, such as loading the accelerator table and check
ing a printer driver.

Multipad then creates its first MDI child window, either empty or containing a
file appearing on the command line. (For information on creating MDI child
windows, see Section 21.7.1, "Creating Child Windows.")

Multiple Document Interface 21-5

21.3 Writing the Main Message Loop
The main message loop for an MDI application is similar to a normal message
loop, except that the MDI application uses the TranslateMDISysAccel function
to translate child-window accelerators.

The system-menu accelerators for an MDI child window are similar to accel
erators for a normal window's system menu. The difference is that child window
accelerators respond to the CONTROL key rather than the ALT (Menu) key.

A typical MDI application's message loop looks like this:

while (GetMessage(&msg,NULL,0,0))
{

if (!TranslateMDISysAccel(hwndMDIClient,&msg)
&& lTranslateAccelerator(hwndFrame,hAccel,&msg))

{

TranslateMessage(&msg);
DispatchMessage(&msg);
}

This example MDI message loop is similar to a normal message loop that han
dles accelerators. The difference is that the MDI message ~oop calls Translate
MDISysAccel before checking for application-defined accelerators or
dispatching the message normally.

The TranslateMDISysAccel function translates WM_KEYDOWN messages
into WM_SYSCOMMAND messages to the active MDI child window. It returns
FALSE if the message is not an MDI accelerator message; in that case, the appli
cation uses the TranslateAccelerator function to see if any of the application
defined accelerators were invoked. If not, the loop dispatches the message to the
appropriate window function.

21.4 Writing the Frame Window Function
The frame window function for an MDI application is very similar to a normal
application's main window function. However, there are a few differences:

• Normally, a window function passes all messages it does not handle to the
DefWindowProcfunction. The window function for an MDI frame window
passes messages to the DefFrameProc function instead.

• The frame window function passes DefFrameProc all messages it does not
handle; in addition, it also passes some messages that the application does
handle. See the Reference, Volume 1, for a list of messages your application
must pass to DefFrame~roc.

21-6 Guide to Programming

DefFrameProc also handles WM_SIZE messages by resizing the MDI client to
fit into the new client area. The application can calculate a smaller area for the
MDI client if it chooses (for example, to allow room for status or ribbon
windows).

DefFrameProc will also set the focus to the client window when it sees a
WM_SETFOCUS message. The client window sets the focus to tge active child
window, if there is one. As noted previously, the WM_CREATE message causes
the frame window to create its MDI client window.

Multipad's frame window procedure is called MPFrameWndProc. The handling
of other messages by Multipad's MPFrameWndProc function is similar to that of
non-MDI applications. WM_COMMAND messages in Multipad are handled by
Multipad's locally-defined CommandHandler function, which calls the Def
FrameProc function for command messages Multipad does not handle. If Multi
pad did not do this, then the user would not be able to activate a child window
from the Window menu, since the WM_ COMMAND message sent by selecting
the window's item would be lost.

21.5 Writing the Child Window Function
Like the frame window function, MDI child window functions use a special func
tion for processing messages by default. All messages the child window function
does not handle must be passed to the DefMDIChildProc function rather than
the DefWindowProc function. In addition, some window-management messages
(such as WM_SIZE, WM_MOVE, WM_GETMINMAXINFO) must be passed
to DefMDIChildProc even if the application handles the message, in order for
the MDI interface to function correctly. See the Reference, Volume 1, for a
complete list of messages the application must pass to DefMDIChildProc.

Multipad's child-window function is named MPChildWndProc.

21.6 Associating Data with Child Windows
Since the number of child windows varies depending on how many documents
the user opens, the MDI application must be able to associate data (for example,
the name of the current file) with each child window. There are two ways to do
this:

• Storing data in the window structure

• Using window properties

The rest of this section explains how to use these data-storage techniques.

Multiple Document Interface 21-7

21.6.1 Storing Data in the Window Structure
When the application registers the class of a window, it may reserve extra space
in the window structure for application data specific to this particular class of
windows. To store and retrieve data in this extra space, the application uses the
functions GetWindowWord, SetWindowWord, GetWindowLong, and
SetWindowLong.

If the application needs to maintain a large amount of data for a document
window, the application can allocate memory for a data structure, then store the
handle to the data structure in the extra space of the window structure.

Multipad uses this technique. For example, the WM_ CREATE message pro
cessing in Multipad's MPChildWndProc function creates a multiple-line edit
control used as the text-editor window. Multipad stores the handle to this control
in its child window structure using the SetWindowWord function. Whenever
Multipad needs to manipulate the edit control, it uses the GetWindowWord
function to retrieve the handle to the edit control. Multipad maintains several
per-document variables this way.

21.6.2 Using Window Properties
Your application can also store per-document data using window properties.
Properties are different from extra space in the window structure in that no extra
space needs to be allocated when the window class is registered. A window can
have any number of properties. Also, where offsets are used to access the extra
space in window structures, properties are referred to by string names.

Associated with each property is a handle. For example, Multipad could have
used a property called "EditControl" to store the edit control window handle dis
cussed previously. The handle could actually be any two-byte value, and could
be a handle to a data structure. Properties are often more convenient than extra
space in the window structure. This is because, when using properties, the appli
cation does not need to reserve extra space in advance or calculate offsets to vari
ables. On the other hand, accessing extra space by offset is generally faster than
accessing properties.

21.7 Controlling Child Windows
To control its child windows, the MDI application sends messages to its MDI
client window. This includes creating, destroying, activating or changing the
state of a child window.

Generally, an application will only be concerned with the current active child
window. For example, in Multipad, most of the File menu commands and all of
the Edit and Search menu commands refer to the current active window. Thus,

21-8 Guide to Programming

Multipad maintains the hwndActive and hwndActiveEdit variables, since only
those two windows will receive messages.

There are exceptions. For example, the application might send messages to all
child windows in order to inquire about the window's state. MUltipad does this
when closing, to ensure that all files have been saved.

Since MDI child windows may be iconic, the application must be careful to
avoid manipulating icon title windows as if they were normal MDI child
windows. Icon title windows will show up when the application enumerates child
windows of the MDI client, but icon titles differ from other child windows in that
they are owned by an MDI child window. Thus, the GetWindow function with
the GW _OWNER index can be used to detect when a child window is an icon
title. Non-title windows will return NULL. Note that this test is insufficient for
top-level windows since pop-ups and dialog boxes are owned windows as well.

The rest of this section explains how to create, destroy, activate or deactivate,
and rearrange MDI child windows.

21.7.1 Creating Child Windows
To create an MDI child window, the application sends a WM_MDICREATE
message to the MDI client. (The application must not use the CreateWindow
function to create MDI child windows.) The lParam parameter of a
WM_MDICREATE message is a far pointer to a structure called an MDI
CREATESTRUCT, which contains fields similar to CreateWindow function
parameters.

Multipad creates its MDI child windows using its locally-defined AddFile func
tion (located in the source file MPFILE.C). The AddFile function sets the title of
the child window by assigning the szTitle field of the window's MDICREATE
STRUCT structure to either the name of the file being edited or to "Untitled."
The szClass field is set to the name of the MDI child window class registered in
Multipad's InitializeApplication function. The owner field, hOwner, is set to the
application's instance handle.

The MDICREATESTRUCTcontains four dimension fields: x and y, which are
the position of the window, and ex and ey, the horizontal and vertical extents of
the window. Any of these may be either explicitly assigned by the application or
may be set to CW _ USEDEFAUL T, in which case Windows picks a position
and/or size according to a cascading algorithm. All four fields must be initialized
in all cases. Multipad uses CW _USEDEFAULT for all dimensions.

The last field is the style field, which may contain style bits for the window.
Windows requires certain style bits for MDI child windows, and allows certain
others, masking off inappropriate bits.

Multiple Document Interface 21-9

The bits WS_MINIMIZE or WS_MAXIMIZE may be used to set the original
state of the window.

The pointer passed in the lParam parameter of the WM_MOICREATE message
is passed to create window and appears as the first field in the CREA TE
STRUCT passed in the WM_CREATE message. In Multipad, the child window
initializes itself during WM....;CREA TE message processing by initializing docu
ment variables in its extra data and by creating the edit control child window.

21.7.2 Destroying C"i/~ Windows
To destroy an MOl child window, use the WM_MOIOESTROY message. Pass
the child window's window handle in the message's wParam parameter.

21.7.3 Activating and Deactivating Child Windows
Activation may be changed using the WM_MOINEXT and WM_MOIACTI
VA. TE messages. WM_MOINEXT activates the next MOl child window in the
window list, and WM_MOIACTIV ATE activates the child window specified by
the message's wParam parameter. Activation is usually controlled by the user
through the use of the MOl user interface. Multipad does not use either of these
messages directly.

A more common use of WM_MOIACTIV ATE is following activation changes.
WM_MOIACTIV ATE is also sent to the MDI child windows losing and gaining
the MDI activation, so by watching WM_MOIACTIV ATE messages sent to
child windows, the application call follow the active window.

Multipad maintains two global variables, hwndActive and hwndActiveEdit,
which are the windows handles of the current active MOl child and its edit con
trol, respectively. Keeping these variables makes sending messages to these
windows simple.

At any time, the active MDI child can be retrieved using the WM_MOIGET
ACTIVE message, which returns the active child in its low-order word. The
application could then use the GetWindowWord function to get a window
handle to the document's edit control. To explicitly maximize and restore a child
window, the application could use the WM_MDIMAXIMIZE and WM_MOIRE
STORE messages, with the wParam parameter of each message set to the handle
of the child window the application wants to change. Again, these are messages
that an application will not normally use, since Windows manages the MOl user
interface on behalf of the application.

21-10 Guide to Programming

21.7.4 Arranging Child Windows on the Screen

21.8 Summary

Windows also provides three utility messages you can use to arrange MOl child
windows:

Message

WM_MDICASCADE

Description

Arranges all the noniconic child
windows in order, diagonally from
upper-left to lower-right. (This
message also arranges child icons.)

WM_MDIICONARRANGE Arranges all iconic child windows
along the bottom of the MOl client
window.

Arranges all noniconic child
windows so that they are tiled within
the MOl client window. (This
message also arranges child icons.)

This chapter introduced the Windows multiple document interface, and ex
plained the structure of an MOl application. It also explained how to write an
MOl application.

For more information on topics related to MOl, see the following:

Topic

Creating and manag
ing windows

The window class
structure

MOl functions

A sample MOl
application

Reference

Reference, Volume 1: Chapter 1, "Window
Manager Interface Functions"

Reference, Volume 1: Chapter 1, "Window
Manager Interface Functions"

Reference, Volume 1: Chapter 1, "Window
Manager Interface Functions" and Chapter 4,
"Functions Directory"

The sample application Multipad, supplied on
the SDK Sample Source Code disk

Chapter

22
Dynamic Data Exchange

Microsoft Windows provides several methods for transferring data between appli
cations. One way to transfer data is to use Windows Dynamic Data Exchange
(DDE). DDE is a message protocol for data exchange between Windows pro
grams; It allows software developers to share data among applications, and
thereby provides the user a more integrated Windows environment.

This chapter provides a guide to implementing Dynamic Data Exchange in your
Windows application. The Reference, Volume 2, provides details of the protocol.

This chapter covers the following topics:

• Data exchange in Windows

• DDE concepts

• DDE messages

• DDE message flow

This chapter also explains how to use two sample applications, Client and Server,
that illustrate these concepts.

22. 1 Data Exchange in Windows
In general, the Windows environment supports three mechanisms that applica
tions can use to exchange data with one another:

• Clipboard transfers

• Dynamic link libraries

• Dynamic Data Exchange

Windows does not support sharing global memory handles directly. Due to ex
panded memory considerations, as well as compatibility with future versions of
Windows, you should not dereference (using GlobaIUnlock), or otherwise
manipulate, global memory handles created by another application. DDE is the
only Windows mechanism that supports passing of global memory handles be
tween applications.

22-2 Guide to Programming

22. 1. 1 Clipboard Transfers
The clipboard lets a user transfer data between applications in the system. The
user issues a command in an application to copy selected data to the clipboard.
Then, in another application the user issues a command to paste the data from the
clipboard into the second application's workspace. In general, the clipboard is a
temporary repository of information that requires direct involvement of the user
to initiate and complete the transfer.

22. 1.2 Dynamic Link Libraries
A dynamic-link library (DLL) can be designed to serve as a repository for data
shared between applications. The DLL offers an application interface for storing
and retrieving data. The actual data is stored in the DLL' s local heap, or in the
static data area of its data segment. Handles or addresses to this data can be
passed to applications only as logical identifications, never to be deferenced by
the applications themselves. Only the DLL can dereference its handles or
address, using GlobalUnlock, LocalUnlock, or address indirection. In general,
you can use only the DLL's data segment for data exchange.

22. 1.3 Dynamic Data Exchange
The Windows DDE protocol is a standard for cooperating applications that
allows them to exchange data and invoke remote commands by means of
Windows messages.

Because Windows is based on a message-based architecture, message passing is
the most appropriate method for automatically transferring information between
applications. However, Windows messages contain only two parameters
(wParam and lParam) for passing data. As a result, these parameters must refer
indirectly to other pieces of data if more than a few words of information is to be
passed between applications.

The DDE protocol defines exactly how the wParam and lParam message para
meters are used to pass larger pieces of data by means of global atoms and global
shared-memory handles.

A global atom is a reference to a character string. In the DDE protocol, atoms are
used to identify the applications exchanging data, the nature of the data being ex
changed, and the data items themselves.

A global shared-memory handle is a handle to a block of memory allocated with
GlobalAlloc, using the GMEM_DDESHARE option. In the DDE protocol,
global shared-memory objects store data items passed between applications, pro
tocol options, and remo~e command execution strings.

The DDE protocol has very specific rules for assigning responsibility to the appli
cations involved in a DDE exchange for allocating and deleting global atoms and

Dynamic Data Exchange 22-3

shared memory objects. Chapter 15 in the Reference, Volume 2, provides these
rules in detail for each message.

22. 1.4 Uses for Windows DOE
DDE is most appropriate for data exchanges that do not require ongoing user in
teraction. Normally an application provides a method for the user to establish the
link between the applications exchanging data. But once that link is established,
the applications exchange data without further user involvement.

DDE can be used to implement a broad range of application features, including:

• Linking to real-time data, such as to stock market updates, scientific instru
ments, or process control.

• Creating compound documents, such as a word-processing document that in
cludes a chart produced by a graphics program. Using DDE, the chart will
change when the source data is changed, while the rest of the document re
mains the same.

• Performing data queries between applications, such as a spreadsheet querying
a database application for accounts past due.

22.1.5 ODE from the User's Point of View
The following example illustrates two cooperating Windows DDE applications,
as seen from the user's point of view.

A Microsoft Excel spreadsheet user wishes to track the price of a particular stock
on the New York Stock Exchange. The user has a Windows application called
Quote that in tum has access to NYSE data. The DDE conversation between
Excel and Quote takes place as follows:

• The user initiates the conversation by supplying the name of the application
(Quote) that will supply the data and the particular topic of interest (NYSE).
The resulting DDE conversation is used to request quotes on specific stocks.

• Excel broadcasts the application and topic names to all DDE applications cur
rently running in the system. Quote responds, establishing a conversation
with Excel about the NYSE topic.

• The user can then request that the spreadsheet be automatically updated when
ever a particular stock quotation changes by entering a spreadsheet formula in
a cell. For example, the user could request an automatic update whenever a
change in the selling price of IBM stock occurs, by specifying the following
Excel formula:

='Quote'l 'NYSE' !IBM

22-4 Guide to Programming

• The user can terminate the automatic updating of the IBM stock quotation at
any time. Other data links that were established separately (such as for quota
tions for other stocks) still will remain active under the same NYSE conversa
tion.

• The user can also terminate the entire conversation between Excel and Quote
on the NYSE topic, so that no specific data links may be subsequently estab
lished on that topic without initiating a new conversation.

22.2 ODE Concepts
Certain concepts and terminology are key to understanding Dynamic Data
Exchange. The following sections explain the most important of these.

22.2.1 Client, Server, and Conversation
Two applications participating in dynamic data exchange are engaged in a DDE
"conversation." The application that initiates the conversation is the "client"
application; the application responding to the client is the "server" application.
An application can be engaged in several conversations at the same time, acting
as the client in some and as the server in others.

A DDE conversation takes place between two windows, one for each of the par
ticipating applications. The window may be the main window of the application,
a window associated with a specific document (as in a multiple document inter
face (MDI) application), or a hidden (invisible) window whose only purpose is to
process DDE messages.

Since a DDE conversation is identified by the pair of handles of the windows en
gaged in the conversation, no window should be engaged in more than one con
versation with another window. Either the client application or the server
application must provide a different window for each of its conversations with a
particular server or client application.

An application can ensure that a pair of client and server windows is never in
volved in more than one conversation by creating a hidden window for each con
versation. The sole purpose of this window is to process DDE messages.

22.2.2 Application, TopiC, and Item
DDE identifies the units of data passed between the client and server with a three
level hierarchy of item, topic, and application name.

Each DDE conversation is uniquely defined by the application name and topic.
At the beginning of a DDE conversation, the client and server agree upon the
application name and topic. The applkation is normally the name of the server

Dynamic Data Exchange 22-5

application. For example, in a conversation in which Microsoft Excel acts as the
server, the conversation application name is "Excel".

The DDE topic is a general classification of data within which multiple data
items may be discussed (exchanged) during the conversation. For applications
that operate on file-based documents, the topic is usually a file name. For other
applications, the topic is an application-specific name.

Because·the client and server window handles together identify a DDE conversa
tion, the application name and topic that define a conversation cannot be changed
during the course of the conversation.

A DDE data item is the actual information related to the conversation topic that
is exchanged between the applications. Values for the data item can be passed
from the server to the client, or from the client to the server. The format of the
data item may be any of several clipboard formats defined for DDE (see the
Reference, Volume 1).

22.2.3 Permanent ("Hot" or "Warm") Data Link
Once a DDE conversation has begun, the client can establish one or more per
manent data links with the server. A data link is a communication mechanism by
which the server notifies the client whenever the value of a given data item
changes. The data link is permanent in the sense that this notification process con
tinues until the data link or the DDE conversation itself is terminated.

There are two kinds of permanent DDE data links: "hot" and "warm." In a warm
data link, the server notifies the client that the value of the data item has changed,
but the server does not actually send the data value to the client until the client re
quests it. In a hot data link, the server immediately sends the changed data value
to the client.

Applications that support hot or warm links typically provide a Copy or Paste
Link command in their Edit menu to permit the user to establish links between
applications. See "Initiating a Data Link With the Paste Link Command," in
Section 22.4.3 for more information.

22.3 ODE Messages
Because DDE is a message-based protocol, DDE employs no special Windows
functions or libraries. All DDE transactions are conducted by passing certain de
fined DDE messages between the client and server windows.

There are nine DDE messages; the symbolic constants for these messages are de
fined in the SDK header file DDE.H, not WINDOWS.H. Certain data structures
for the various DDE messages are also defined in DDE.H.

22-6 Guide to Programming

The nine DDE messages are summarized as follows. A detailed description of
each DDE message is provided in the Reference, Volume 2.

Message

WM_DDE_TERMINATE

WM_DDE_UNADVISE

22.4 DOE Message Flow

Description

Sent in response to a received message. Pro
vides a positive or negative acknowledge
ment of the message receipt.

Requests the server application to supply an
update or notification for a data item when
ever it changes. This establishes a pennanent
data link.

Sends a data-item value to the client applica
tion.

Sends a string to the server application,
which is expected to process it as a series of
commands.

Initiates a conversation between the client
and server applications.

Sends a data-item value to the server applica
tion.

Requests the server application to provide
the value of a data item.

Tenninates a conversation.

Tenninates a pennanent data link.

A typical DDE conversation consists of the following events:

1. The client application initiates the conversation, and the server application
responds.

2. The applications exchange data by any or all of the following methods:

• The server application sends data to the client at the client's request.

• The client application sends unsolicited data to the server application.

• The client application requests the server application to send data when
ever the data changes (hot link).

Dynamic Data Exchange 22-7

• The client application requests the server application to notify the client
whenever a data item changes (warm link).

• The server application executes a command at the client's request.

3. Either the client or server application terminates the conversation.

The following sections describe the normal flow of DDE messages between the
client and server applications.

22.4.1 Initiating a Conversation
To initiate a DDE conversation, the client sends a WM_DDE_INITIATE
message. Usually, the client broadcasts this message by calling the SendMessage
with -1 as the first parameter. If the application already has the window handle
of the server application, however, it can send the message directly to that
window. The client prepares atoms for the application and topic names by calling
GlobalAddAtom. The client may request conversations with any potential server
application and for any potential topic by supplying null (wildcard) atoms for,
respectively, the application and topic.

The following example illustrates how the client initiates a conversation, where
both the application and topic are specified.

o atomApplication = GlobalAddAtom("Server");
atomTopic = GlobalAddAtom(szTopic);
Et SendMessage(-l,

WM_DDE_INITIATE,
hwndClientDDE,
MAKELONG(atomApplication, atomTopic»;

.. GlobalDeleteAtom(atomApplication);
GlobalDeleteAtom(atomTopic);

In this example:

o The client application creates two global atoms containing the name of the
server and the name of the topic, respectively.

Et The client application sends a WM_DDE_INITIATE message with the
application-name and topic-name atoms in the lP aram parameter of the
message. The special window handle -1 in the SendMesage call instructs
Windows to send this message to all other active applications. The Send
Message function does not return to the client application until all applica
tions that receive the message have, in tum, returned control to Windows.
This means that all WM_DDE_ACK messages sent in reply by the server
applications are guaranteed to have been processed by the client by the time
the SendMessage call has returned.

.. After SendMessage returns, the client application deletes the global atoms.

22-8 Guide to Programming

Server applications respond according to the logic shown in Figure 22.1.

Post a positive
WM DOE ACK
to the client for
the requested

topic.

Post a positive
WM DOE ACK to

>----~ the client Tor each
topic supported by

the application.

Figure 22.1 Responding to WM_DDE_INITIATE

Do nothing
(return).

To acknowledge one or more topics, the server must create atoms for each con
versation (requiring duplicate application-name atoms if there are multiple top
ics) and send a WM_DDE_ACK message for each conversation, as follows:

atomApplication = GlobalAddAtom("Server");
atomTopic = GlobalAddAtom(szTopic);
if (!SendMessage(hwndClientDDE,

WM_DDE_ACK,
hwndServerDDE,
MAKELONG(atomApplication, atomTopic)))

GlobalDeleteAtom(atomApplication);
GlobalDeleteAtom(atomTopic);

Dynamic Data Exchange 22-9

When a server responds with a WM_DDE_ACK message, the client application
should save the handle of the server window. The client application receives this
handle as the wParam parameter of the WM_DDE_ACK message. The client
application then sends all subsequent DDE messages to the server window iden
tified by this handle.

If the client appliction uses null (wildcard) atoms for the application or topic,
the client should expect to receive acknowledgments from more than one server
application. As stated in Section 22.2.1, "Client, Server, and Conversation," creat
ing a unique, hidden window for each DDE conversation ensures that a pair of
client and server windows is never involved in more than one conversation. To
follow this practice, however, the client application must terminate conversations
with all but one of the server applications that respond to the same
WM_DDE_INITIATE message from the client.

22.4.2 Transfering a Single Item
Once a DDE conversation has been established, the client can obtain the value of
a data item from the server by issuing the WM_DDE_REQUEST message, or the
client can submit a data item value to the server by issuing the WM_DDE_POKE
message.

Obtaining an Item from the Server
To obtain an item from the server, the client sends the server a WM_DDE_RE
QUEST message specifying the desired item and format, as follows:

atomltem = GlobalAddAtom(szItemName);
if (!PostMessage(hwndServerDDE,

WM_DDE_REQUEST,
hwndClientDDE,
MAKELONG(CF_TEXT, atomltem)))

GlobalDeleteAtom(atomltem);

In this example, the client specifies the clipboard format CF _TEXT as the
desired format for the requested data item.

The receiver (server) of the WM_DDE_REQUEST message is normally re
sponsible for deleting the item atom; but if the PostMessage call itself fails,
then the client must delete the atom.

If the server has access to the requested item and can render it in the requested
format, the server copies the item value as a global shared memory object and
sends the client a WM_DDE_DATA message, as follows:

22-10 Guide to Programming

1* Allocate size of DDE data header, plus the data: a string, *1
1* <CR><LF><NULL>. The byte for the string null terminator *1
1* is counted by DDEDATA.Value[lJ. *1

t» if (!(hData = GlobalAlloc(GMEM_MOVEABLE I GMEM_DDESHARE,
(LONG)sizeof(DDEDATA)+strlen(szItemValue)+2)))

return;
tt if (!(lpData = (DDEDATA FAR *)GlobalLock(hData)))
{ GlobalFree(hData);

return;

~ lpData->cfFormat = CF_TEXT;
e lstrcpy«LPSTR)lpData->Value, (LPSTR)szItemValue);
1* each line of CF_TEXT data ;s terminated by CR/LF *1
lstrcat«LPSTR)lpData->Value, (LPSTR)"\r\n");
CD GlobalUnlock(hData);
c& atomltem = GlobalAddAtom«LPSTR)szItemName);
tt if (!PostMessage(hwndClientDDE,

WM_DDE_DATA,
hwndServerDDE,
MAKELONG(hData, atomltem)))

GlobalFree(hData);
GlobalDeleteAtom(atomltem);

In this example:

t» The server application allocates a block of memory to contain the data item.
The memory is allocated with the GMEM_DDESHARE; this allows the
memory to be shared by the server and client applications.

tt Next, the server application locks the block of memory so it can obtain its
address. The data block is initialized as a DDEDAT A data structure.

~ The server application sets the ctFormat field of the data block to CF _TEXT
to inform the client application that the data is in text format.

e The client copies the value of the requested data into the Value field of the
DDEDAT A structure.

CD Now that the server has filled the data block, the server unlocks the data.

c& Next, the server creates a global atom containing the name of the data item.

tt Finally, the server issues the WM_DDE_DATA message by calling the Post-
Message function. The handle of the data block and the atom containing the
item name are contained in the lParam parameter of the message.

Dynamic Data Exchange 22-11

If the server is unable to satisfy the request, it sends the client a negative
WM_DDE_ACK message, as follows:

1* negative acknowledgement *1
PostMessage(hwndClientDDE,

WM_DDE_ACK,
hwndServerDDE,
MAKELONG(0, atomltem));

Upon receiving a WM_DDE_DAT A message, the client processes the
data item value as appropriate. Then, if the fAckReq bit specified in the
WM_DDE_DATA message is 1, the client is expected to send the server a
positive WM_DDE_ACK message, as illustrated:

hData = LOWORD(lParam); 1* of WM_DDE_DATA message *1
atomltem = HIWORD(lParam);
4) if (!(lpDDEData = (DDEDATA FAR*)GlobalLock(hData))

I I (lpDDEData-)cfFormat != CF_TEXT))

PostMessage(hwndServerDDE,
WM_DDE_ACK,
hwndClientDDE,
MAKELONG(0, atomltem)); 1* negative ACK *1

1* copy data from lpDDEData here *1

.. if (lpDDEData-)fAckReq)
{

}

PostMessage(hwndServerDDE,
WM_DDE_ACK,
hwndClientDDE,
MAKELONG(0x8000, atomltem)); 1* positive ACK *1

4D bRelease = lpDDEData-)fRelease;
GlobalUnlock(hData);
if (bRelease)

GlobalFree(hData);

In this example:

4) The client examines the format of the data; if it is not CF _TEXT (or if the
client cannot lock the memory for the data), the client sends a negative
WM_DDE_ACK message to indicate that it could not process the data.

.. If it can process the data, the client examines the fAckReq flag of the DDE
DATA structure to determine if the server requested that it be informed that
the client received and processed the data successfully. If so, the client sends
a positive WM_DDE_ACK message to the server.

22-12 Guide to Programming

• The client saves the !Release flag before unlocking the block of data, since
unlocking the data invalidates the pointer to the data. Then it examines the
value of the flag to determine whether the server application requested the
client to free the global memory containing the data and acts accordingly.

Upon receiving a negative WM_DDE_ACK message, the client may ask for
the same item value again, specifying a different clipboard format. Typically, a
client will first ask for the most complex format it can support, then step down if
necessary through progressively simpler formats until it finds one the server can
provide.

If the server supports the Formats item of the System topic, the client can deter ..
mine once what clipboard formats the server supports, instead of determining
them each time the client requests an item. See the Reference, Volume 2 for more
information on the System topic.

Submitting an Item to the Server
The client may send an item value to server by using the WM_DDE_POKE
message. The client renders the item to be sent and sends the WM_DDE_POKE
message, as illustrated:

if (!ChPokeData
= GlobalAllocCGMEM_MOVEABLE I GMEM_DDESHARE,

CLONG)sizeof(DDEPOKE) + lstrlen(szValue) + 2)))
return;

if (!(lpPokeData
= (DDEPOKE FAR*)GlobalLock(hPokeData)))

GlobalFree(hPokeData);
return;

I
lpPokeData-)fRelease = TRUE;
lpPokeData-)cfFormat = CF_TEXT;
lstrcpy«LPSTR)lpPokeData-)Value, CLPSTR)szValue);
1* each line of CF_TEXT data is terminated by CR/LF *1
lstrcat(CLPSTR)lpPokeData-)Value, (LPSTR)"\r\n");
GlobalUnlock(hPokeData);
atomltem = GlobalAddAtomC(LPSTR)szItem);

if (!PostMessageChwndServerDDE,
WM_DDE_POKE,
hwndClientDDE,
MAKELONG(hPokeData, atomltem)))

GlobalDeleteAtomCatomItem);
GlobalFree(hPokeData);

Dynamic Data Exchange 22-13

Note that sending data with a WM_DDE_POKE message is essentially the same
as sending it with a WM_DDE_DATA message except that WM_DDE_POKE is
sent from the client to the server.

If the server is able to accept the data item value in the format in which it was
rendered by the client, the server processes the item value as appropriate, and
sends a positive WM_DDE_ACK message. If it is unable to process the
item value, due to format or other reasons, the server sends a negative
WM_DDE_ACK message.

hPokeData = LOWORD(lParam);
atomltem = HIWORD(lParam);
.. GlobalGetAtomName(atomltem, szItemName, ITEM_NAME_MAX_SIZE);
tt if (!(lpPokeData = (DDEPOKE FAR *)GlobalLock(hPokeData))

I I lpPokeData->cfFormat != CF_TEXT
I I !IsItemSupportedByServer(szItemName)))

}

PostMessage(hwndClientDDE,
WM_DDE_ACK,
hwndServerDDE,
MAKELONG(0, atomltem));

lstrcpy(szItemValue, lpPokeData->Value);
bRelease = lpPokeData->fRelease;
GlobalUnlock(hPokeData);
if (bRelease)
{

}

GlobalFree(hPokeData);
GlobalDeleteAtom(atomltem);

PostMessage(hwndClientDDE,
WM_DDE_ACK,
hwndServerDDE,

/* negative
acknowledgement */

/* copy the value*/

MAKELONG(0x8000, atomltem)); /* positive ACK */

In this example:

.. The server calls GlobalGetAtomName to retrieve the name of the item sent
by the client.

tt The server then determines whether it supports the item and whether the item
is rendered in the correct format (CF _TEXT). If not, or if the server cannot
lock the memory for the data, it sends a negative acknowledgment back to the
client application.

22-14 Guide to Programming

22.4.3 Establishing a Permanent Data Link
A client application can use DDE to establish a link to an item in a server applica
tion. When such a link is established, the server sends periodic updates of the
linked item to the client (typically, whenever the value of the item changes).
Thus, a permanent data stream is established between the two applications and
remains in place until it is explicitly disconnected.

Initiating the Data Link
The client initiates a data link by sending a WM_DDE_ADVISE message, as
illustrated:

if C!hOptions = GlobalAllocCGMEM_MOVEABLE I GMEM_DDESHARE,
sizeofCDDEADVISE))))

return;
if C!ClpOptions CDDEADVISE FAR *)GlobalLockChOptions)))
{

GlobalFreeChOptions);
return;

lpOptions-)cfFormat = CF_TEXT;
lpOptions-)fAckReq = TRUE;
~ lpOptions-)fDeferUpd = FALSE;
GlobalUnlockChOptions);
atomltem = GlobalAddAtomCszltemName);
if C!CPostMessageChwndServerDDE,

WM_DDE_ADVISE,
hwndClientDDE,
MAKELONGChOptions, atomltem)))

GlobalDeleteAtomCatomltem);
GlobalFreeChOptions);

In this example:

~ The client application sets the fDeferUpd flag of the WM_DDE_ADVISE
message to FALSE. This informs the server application that the server appli
cation should send the actual data to the client whenever the data changes.

If the server has access to the requested item and can render it in the desired for
mat, the server notes the new link (remembering the flags specified in hOptions),
and sends the client a positive WM_DDE_ACK message. From then on, until the
client issues a matching WM_DDE_UNADVISE message, the server sends the
new data to the client every time the value of the item changes in the server appli
cation.

If the server is unable to service the WM_DDE_ADVISE request, it sends the
client a negative WM_DDE_ACK message.

Dynamic Data Exchange 22-15

Initiating a Data Link With the Paste Link Command
Applications that support hot or wann links typically support a registered clip
board format named "Link". When associated with the application's Copy and
Paste Link commands, this clipboard format allows the user to establish DOE
conversations between applications simply by copying a data item in the server
application and pasting it into the client application.

A server application supports the Link clipboard format by placing in the clip
board a string containing the application, topic, and item names when the user
selects the Edit Copy command. The following shows the standard Link format:

application\Otopic\Oitem\O\O

A single null character separates the names and two null characters terminate the
entire string.

Both the client and server applications must register the Link clipboard fonnat,
as shown:

cfLink = RegisterClipboardFormatC"Link");

A client application supports the Link clipboard format by offering a Paste Link
command in its Edit menu. When the user selects this command, the client appli
cation parses the application, topic, and item names from the Link-fonnat clip
board data. Using these names, the client application initiates a conversation for
the application and topic if such a conversation does not already exist. The client
application then sends a WM_DDE_ADVISE message to the server application,
specifying the item name contained in the Link-format clipboard data. The fol
lowing shows an example of a client application's response to the Paste Link
command:

void DoPasteLinkChwndClientDDE)
HWND hwndClientDDE;

HANDLE
LPSTR
HWND
char
char
char
int

hData;
lpData;
hwndServerDDE;
szApplication[APP_MAX_SIZE+l];
szTopic[TOPIC_MAX_SIZE+l];
szItem[ITEM_MAX_SIZE+l];
nBufLen;

tt if COpenClipboardChwndClientDDE))
(

if C!(hData = GetClipboardData(cfLink)) I I
!ClpData = GlobalLock(hData)))

CloseClipboardC);
return;

22-16 Guide to Programming

1* Parse clipboard data *1
if «nBufLen = lstrlen(lpData)))= APP_MAX_SIZE)
{

CloseClipboard();
GlobalUnlock(hData);
return;

lstrcpy(szApplication, lpData);
lpData += (nBufLen+l); 1* skip over null *1
if «nBufLen = lstrlen(lpData)))= TOPIC_MAX_SIZE)
{

CloseClipboard();
GlobalUnlock(hData);
return;

lstrcpy(szTopic, lpData);
lpData += (nBufLen+l); 1* skip over null *1
if «nBufLen = lstrlen(lpData)))= ITEM_MAX_SIZE)
{

}

CloseClipboard();
GlobalUnlock(hData);
return;

lstrcpy(szItem, lpData);

GlobalUnlock(hData);
CloseClipboard();

if (hwndServerDDE = FindServerGivenAppTopic(szApplication, szTopic))
{ 1* app/topic conversation already started *1

if (DoesAdviseAlreadyExist(hwndServerDDE, szItem))
MessageBox(hwndMain,"Advisory already established",

"Client", MB_ICONEXCLAMATION 1MB_OK);
else

SendAdvise(hwndClientDDE, hwndServerDDE, szItem);

G) else
{ 1* must initiate new conversation first *1

Sendlnitiate(szApplication, szTopic);

return;

if (hwndServerDDE = FindServerGivenAppTopic(szApplication, szTopic))
{

SendAdvise(hwndServerDDE, szItem);

Dynamic Data Exchange 22-17

In this example:

o The client application opens the clipboard and checks whether the clipboard
contains data in the Link format (ctLink) which it had previously registered.
If not, or if it cannot lock the data in the clipboard, it returns.

8 Once the client application has obtained a pointer to the clipboard data, it
parses the data to extract the application, topic, and item names.

@) The client application determines whether a conversation already exists be
tween it and the server application on the topic. If it does, the client applica
tion checks whether a link already exists for the item. If such a link exists, the
application displays a message box to the user; otherwise, it calls its own
SendAdvise routine to send a WM_DDE_ADVISE message to the server for
the item.

e If a conversation does not already exists between the client and server for
the topic, the client calls its own SendInitiate routine to broadcast the
WM_DDE_INITIATE message to request a conversation and then calls its
own FindServerGivenAppTopic function to establish the conversation with
the window that responds on behalf of the server application. Once the con
versation has begun, the client application calls SendAdvise to request the
link.

Notifying the Client that the Data Has Changed
When the client establishes a link with the WM_DDE_ADVISEjDeferUpd flag
not set (that is, equal to zero), the client has requested the server to send the data
item each time the item value changes. In such cases, the server renders the new
value of the data item in the previously specified format, and sends the client a
WM_DDE_DAT A message, as illustrated:

1* Allocate size of DDE data header, plus data Ca string), plus *1
a <CR><LF><NULL>
if C!ChData = GlobalAllocCGMEM_MOVEABLE I GMEM_DDESHARE),

sizeofCDDEDATA)+strlenCszltemValue)+3»)
return;

if C !ClpData = CDDEDATA FAR *)GlobalLockChData»)
{

Global~reeChData);
return;

}

lpData->fAckReq = bAckRequest; 1* as specified in original
WM_DDE_ADVISE message *1

lpData->cfFormat = CF_TEXT;
lstrcpyClpData->Value, szItemValue); 1* copy value to be sent *1
lstrcatClpData->Value, "\r\n"); 1* CR/LF for CF_TEXT format */
GlobalUnlockChData);
atomltem = GlobalAddAtomCszltemName);

22-18 Guide to Programming

if (!PostMessage(hwndClientDDE,
WM_DDE_DATA,
hwndServerDDE,
MAKELONG(hData, atomItem)))

GlobalFree(hData);
GlobalDeleteAtom(atomItem);

The client processes the item value as appropriate. If the fAckReq bit for the item
is set, the client sends the server a positive WM_DDE_ACK message.

When the client establishes the link with afDeferUpd flag set (that is, equal to 1),
the client has requested that only a notification, not the data itself, be sent each
time the data changes. In such cases, when the item value changes, the server
does not render the value, but simply sends the client a WM_DDE_DAT A
message with a null data handle, as illustrated:

if (bDeferUpd) /* checking the flag originally set
in the WM_DDE_ADVISE message */

atomItem = GlobalAddAtom(szItemName);
if (!PostMessage(hwndClientDDE,

WM_DDE_DATA,
hwndServerDDE,
MAKELONG(0, atomItem)))

/* notify client with null data */

GlobalDeleteAtom(atomItem);

At its discretion, the client can then request the latest value of the data item by
issuing a normal WM_DDE_REQUEST message, or it can simply ignore the no
tice from the server that the data has changed. In either case, iffAckReq is equal
to 1, the client is expected to send a positive WM_DDE_ACK message to the
server.

Terminating the Data Link
If the client wishes to terminate a specific data link, the client sends the server a
WM_DDE_UNADVISE message, as illustrated:

atomItem = GlobalAddAtom(szItemName);
if (!PostMessage(hwndServerDDE,

WM_DDE_UNADVISE,
hwndClientDDE,
MAKELONG(0, atom~tem)))

GlobalDeleteAtom(atomltem);

Dynamic Data Exchange 22-19

The server checks whether the client currently has a link to the specific item in
this conversation. If so, the server sends the client a positive WM_DDE_ACK
message; it is then no longer responsible for sending updates about the item. If
the server has no such link, it sends a negative WM_DDE_ACK message.

To terminate all links for a conversation, the client sends the server a
WM_DDE_UNADVISE message with a null item atom. The server checks
whether the conversation has at least one link currently established. If so,
the server sends a positive WM_DDE_ACK message; it is then no longer re
sponsible for sending any updates in the conversation. The server sends a nega
tive WM_DDE_ACK message if the server has no links in the conversation.

22.4.4 Executing Commands in a Remote Application
A Windows application can use the WM_DDE_EXECUTE message to cause a
certain command or series of commands to be executed in another application.
The client sends the server a WM_DDE_EXECUTE message containing a
handle to a command string, as follows:

if (!(hCommand = GlobalAlloc(GMEM_MOVEABLE I GMEM_DDESHARE,
sizeof(szCommandString)+l»)

return;
if (!(lpCommand = GlobalLock(hCommand»)

{

GlobalFree(hCommand);
return;

lstrcpy(lpCommand, szCommandString);
GlobalUnlock(hCommand);
if (!PostMessage(hwndServerDDE,

WM_DDE_EXECUTE,
hwndClientDDE,
MAKELONG(0, hCommand»)

GlobalFreeChCommand);

The server attempts to execute the specified command string. If successful, the
server sends the client a positive WM_DDE_ACK message; if unsuccessful, a
negative WM_DDE_ACK message. This WM_DDE_ACK message reuses the
hCommand handle passed in the original WM_DDE_EXECUTE message.

Program Manager ODE Command Set
Windows Program Manager features a DDE command-string interface that al
lows other applications to create, display, and delete groups; add items to groups;
and to close Program Manager. The following commands perform these actions:

22·20 Guide to Programming

• CreateGroup

• AddItem

• DeleteGroup

• ShowGroup

• ExitProgman

Your application's setup program can use these commands to instruct Program
Manager to install your application's icon in a group, for example.

NOTE The user can configure Windows to use a default shell other than Program
Manager. As a result, your application should not assume that Program Manager will be
available for a DOE conversation.

To use these commands, your application must first initiate a conversation with
Program Manager. The application and topic names for the conversation are both
"PROGMAN". Your application then sends the WM_DDE_EXECUTE message,
specifying the appropriate command and its parameters. For example, the follow
ing set of commands would add WINAPP.EXE to the Windows Applications
group:

[CreateGroup(Windows Applications)]
[ShowGroup(l)]
[AddItem(winapp.exe,Win App,winapp.exe,2)]

The following paragraphs describe the Program Manager DDE command strings
in detail.

CreateGroup
The following is the syntax for the CreateGroup command:

CreateGroup(GroupName[,GroupPath])

The CreateGroup command instructs Program Manager to create a new group
or activate the window of an existing group.

The required GroupName parameter is a string that names the group to be
created. If a group already exists with the name specified by GroupName,
CreateGroup activates the group window.

The optional GroupPath parameter is a string that contains the pathname of the
group file. If you do not supply this parameter, Windows will use a default
filename for the group in the Windows directory.

Dynamic Data Exchange 22-21

Add/tern
The following is the syntax for the AddItem command:

AddItem(CmdLine[, Name[,IconPath[,Iconlndex[,xPos,yPos]]]])

The AddItem command adds an icon to an existing group.

The required CmdLine parameter is a string that contains the full command line
required to execute the application. At a minimum, this is the name of the appli
cation's executable file. It can also include the full pathname of the application
and any parameters required by the· application.

The optional Name parameter is a string that supplies the title displayed below
the icon in the group window.

The optional I conP ath parameter is a string that contains the name of the file
containing the icon to be displayed in the group window. This file can be either
a Windows executable file or an icon file created by SDKPaint. If you do not
supply IconPath, Program Manger uses the first icon in the file specified by
CmdLine; if that file does not contain an icon, then Program Manager uses a
default icon.

The optional Iconlndex parameter is an integer that specifies the index
of the icon in the IconPath file which Program Manager is to display.
PROGMAN.EXE contains five built-in icons which you can use for non
Windows programs.

The optional xPos and yPos parameters are integers that specify the horizontal r

and vertical position of the icon in the group window. You must use both para
meters to specify the icon's position. If you do not specify the position, Program
Manager places the icon in the next available space.

DeleteGroup
The following is the syntax for the DeieteGroup command:

DeieteGroup(GroupName)

The DeieteGroup command deletes the group specified by the GroupName
parameter.

ShowGroup
The following is the syntax for the ShowGroup command:

ShowGroup(GroupName,showCommand)

The ShowGroup command minimizes, maximizes, or restores the window of the
group specified by the GroupName parameter.

22-22 Guide to Programming

The required ShowCommand parameter is an integer that specifies the action that
Program Manager is to perform on the group window, and must be one of the fol
lowing values:

Value Meaning

Activates and displays the group window. If the window is min
imized or maximized, Windows restores it to its original size and
position.

2 Activates the group window and displays it as iconic.

3 Activates the group window and displays it as a maximized
window.

4 Displays the group window in its most recent size and position.
The window that is currently active remains active.

5 Activates the group window and displays it in its current size and
position.

6 Minimizes the group window.

7 Displays the group window as iconic. The window that is cur
rently active remains active.

8 Displays the group window in its current state. The window that is
currently active remains active.

ExitProgman
The following is the syntax for the ExitProgman command:

ExitProgman(bSaveState)

The ExitProgman instructs Program Manager to exit and optionally save its
state. The bSaveState parameter is a Boolean value which, if TRUE, instructs
Program Manager to save its state before closing. If bSaveState is FALSE,
Program Manager does not save its state.

22.4.5 Terminating a Conversation
Either the client or server can issue a WM_DDE_TERMINATE message to ter
minate a conversation at any time. Similarly, both the client and server applica
tions should be prepared to receive this message at any time. An application must
terminate all of its conversations before shutting down.

The application terminating the conversation sends a WM_DDE_ TERMINATE
message, as follows:

Dynamic Data Exchange 22-23

PostMessage(hwndServerDDE, WM_DDE_TERMINATE, hwndClientDDE, 0L);

This informs the other application that the sending application will send no
further messages and that the recipient can close its window. The recipient is
expected in all cases to send a WM_DDE_TERMINATE message promptly
in response. It is not permissible to send a negative, busy, or positive
WM_DDE_ACK message.

Once an application has sent the WM_DDE_TERMINATE message to the
partner of a DDE conversation, it must not respond to any messages from that
partner, since the partner might already have destroyed the window to which the
response would be sent.

When an application is about to terminate, it should end all active DDE conversa
tions before completing processing of the WM_DESTROY message. Your appli
cation should include time-out logic to allow for the possibility that one of its
DDE partners is unable to respond to the WM_DDE_ TERMINATE message as
expected. The following routine illustrates how a server application terminates
all DDE conversations:

void TerminateConversations(hwndServerDDE)
HWND hwndServerDDE;

HWND hwndClientDDE;
LONG 1 Ti meOut;
MSG msg;

1* Terminate each active conversation *1
hwndClientDDE = NULL;
while (hwndClientDDE = GetNextLink(hwndClientDDE))
{

SendTerminate(hwndServerDDE, hwndClientDDE);

1* Wait for all conversations to terminate OR for time out *1
lTimeOut = GetTickCount() + (LONG)nAckTimeOut;
while (PeekMessage(&msg, NULL, WM_DDE_FIRST, WM_DDE_LAST, PM_REMOVE))
{

DispatchMessage (&msg);
if (msg.message == WM_DDE_TERMINATE)
{

if (!AtLeastOneLinkActive())
break;

if (GetTickCount() > lTimeOut)
break;

return;

22-24 Guide to Programming

22.5 Sample ODE Client and Server Applications
The SDK Sample Source Code disk directory named DDE has two source code
examples named Client and Server. These examples illustrate most of the DDE
transactions discussed above.

The Server application contains a window with three edit controls, labeled
"Item I ", "Item2", and "Item3". These represent data items for which a per
manent data link may be established.

Multiple instances of the Server application may be run. Each instance is as
sociated with a distinct filename ("File!", "File2", and so forth), which serves as
the topic name for a DDE conversation.

The Client application contains a menu with commands for issuing the following
DDE transactions:

• Initiate

• Terminate

• Advise

• Unadvise

• Request

• Poke

• Execute

In addition, the Edit menus of the Client and Server applications support the
Paste Link feature which initiates a hot link for a selected item.

The Client window displays all current conversations by indicating the client and
server window handles, and the application and topic names. Below each dis
played conversation, the Client window lists any data links that have been estab
lished using the Advise or Paste Link commands. The display of the data link
includes the current value notified by the server.

The Client application supports conversations with multiple servers, multiple top
ics for a given server, and multiple data links for a given topic. Similarly, the
Server application supports conversations with multiple clients, multiple topics
for a given client, and mUltiple data links for a given topic.

The Client and Server applications are designed with parallel modular structures.
Each application has three modules. The first module (CLIENT.C and SER
VER.C) handles all user interface transactions, and therefore includes all window
and dialog procedures. The second module (CLIDATA.C and SERVDATA.C)
manages the data base of all active conversations and data links. The third mod
ule (CLIDDE.C and SERVDDE.C) isolates all logic specific to DDE transac-

22.6 Summary

Dynamic Data Exchange 22-25

tions. Given this modular structure, these two source code examples can be more
readily adapted to suit your particular application requirements.

This chapter explained how to use Windows Dynamic Data Exchange (DDE) to
exchange data between two Windows applications. It introduced the core con
cepts of DDE and described how an application initiates a DDE conversation,
requests data or responds to a request for data, and then terminates the conversa
tion. It also explained how to establish "hot" or "warm" links between applica
tions, and how one application can request another application to execute a
command.

For more information on topics related to data exchange, see the following:

Topic

Exchanging data using the
clipboard

Allocating and using
memory blocks for exchang
ing data in a DDE
conversation

Sending messages to other
applications

A full description of the
Windows DDE protocol

Reference

Guide to Programming: Chapter 13, "The
Clipboard"

Guide to Programming: Chapter 15,
"Memory Management," and Chapter 16,
"More Memory Management"

Reference, Volume 1: Chapter 1, "Window
Manager Interface Functions," and Chapter
4, "Functions Directory"

Reference, Volume 2: Chapter 15, "Windows
DDE Protocol Definition"

Index
Special Characters
{ } (curly braces), as document convention, xxv
IT n (double brackets), as document convention, xxv
... (ellipses), as document convention, xxv
() (parentheses), as document convention, xxiv
" "(quotation marks), as document convention, xxv
I (vertical bar), as document convention, xxv

A
ABORTOOC escape, 12-13
About dialog box, 2-18
Accelerator keys

adding accelerator text to menu items, 7-16
ASCII keycodes for, 7-17
virtual keycodes for, 7-17

Accelerator table
creating, 7-17
defined, 7-16
loading, 7-18

ACCELERATORS statement, 7-16 to 7-17
Activating child windows, 21-9
AddFontResource function, 18-12
Adding

See also Pasting
bitmaps to resource script files, 11-2
checkmarks to menu items, 7-9
colors

to monochrome bitmaps, 11-15
to text, 18-2

cursors
to applications, 6-14, 6-22
to resource script files, 6-2

font resources, 18-11
icons

to applications, 5-7
to dialog boxes, 5-6

menu items,.7-9
strings to list-box controls, 8-13
text to clipboard, 13-2 to 13-3

AnimatePalettefunction, 19:-4, 19-11 to 19-12
Animating palettes, 19-11 to 19-13
AnsiToOem function, 10-2
AppendMenu function

described, 7-9, 7-14
specifying owner-draw menu items with, 7-24

Application
See also Applications
command line, 2-16

data segment, 15-3
entry point, 1-17
Pascal calling convention in, 1-17
queue, 1-7,2-3
WinMain function in, 1-17

Application dialog callback functions defined, 14-4
Application modules, 20-3, 20-4
Application window callback functions defined, 14-4
Applications

See also Application
cursors incorporated in, 6-14, 6-22
customizing, 20-8
icons incorporated in, 5-7
MOl applications. See MOl (multiple document interface)
terminating, 2-13
tools for building, xxii
writing well-behaved, 1-16

Arc function, 3-7
Arranging child windows on screen, 21-10
Arrow cursor, 6-2
Assembly language Windows applications, writing, 14-13
Associating data with child windows, 21-6
Automatic data

B

defined, 16-16
managing segments

described, 16-19
types of, 16-17 to 16-18

Background brush, changing, 11-13
Background color, setting, 18-2
Banding described, 12-13

. Banking
defined, 16-5
of expanded memory, 16-6

BEGIN statement, 2-19
BeginPaint function, 3-2 to 3-3, 5-5
BitBIt function

and color palettes, 19-11
described, 11-10 to 11-11
vs. StretchBlt function, 11-11

Bitmap files
creating, 11-2
loading, 11-2

BITMAP resource statement, 11-2
BITMAP statement, 7-23
BITMAPFILEHEADER data structure, 11-8
BITMAPINFO color table, 19-11

2 Guide to Programming

BITMAPINFO data structure, 11-7 to 11-8, 19-5
Bitmaps

adding color to monochrome, 11-15
adding to resource script file, 11-2
creating

blank,II-3
"on the fly", 11-3
using CreateBitmap function, 11-2
using CreateCompatibleBitmap function, 11-2
using CreateDIBitmap function, 11-2
using SDKPAINT, 11-2

deleting, 11-16
device:"dependent, defined, 11-1
device-independent

defined, 11-1
using .color palettes with, 19-10 to 19-11

displaying
using BitBlt function, 11-10 to 11-11
using CreatePatternBrush function, 11-10
using SetDIBitsToDevice function, 11-10, 11-14

to 11-15
drawing color, 11-8 to 11-9
hard-coding, 11-5, 11-7 to 11-8
loading, 11-2 to 11-3
pasting from clipboard, 13-7 to 13-8
printing, 12-5, 12-7
sample application, 11-16, 11-18 to 11-25, 11-27

to 11-28
stretching, 11-11 to 11-12
using as customized checkmarks, 7-15, 7-22 to 7-23
using as menu items, 7-12
using in pattern brush, 11-12

Bold text, as document convention, xxiv
Border, 1-5
Braces, curly ({ }), as document convention, xxv
Brackets, double ([]]), as document convention, xxv
Brushes

background,II-13
creating, 3-5

Button controls
creating, 8-7, 8-9
styles, 8-7

c
CCompiler

overview, 1-12
registering a window class, 2-9
switches, 20-28

C language, Pascal calling convention, 1-17
C language application

and assembly language programs, 14-1
vs. Windows application, 1-1 to 1-2

-c option, 1-12
C run-time functions

allocating memory, 14-7
checking file status, 10-6
creating files, 10-4
manipulating strings, 14-7
spawning child processes, 14-11
using BIOS interface routines, 14-11
using console input and output, 14-10
using file input and output, 14-9
using floating-point arithmetic, 14-10
using graphics functions, 14-10
using MS-DOS interface routines, 14-11
using Windows C libraries, 14-6
writing Windows applications, 1-17

C run-time libraries
linked with Windows applications, 14-6
linked with Windows dynamic-link libraries, 14-6

Callback function
common types of

application dialog procedures, 14-4
application window procedures, 14-4
enumeration callback procedures, 14-4
memory -notification procedures, 14-4
window-hook procedures, 14-4
WinMain, 14-4

creating, 14-5
defined, 2-2
for enumerating fonts, 18-9

Calling convention, Pascal, 1-17, 2-3
calloc run-time routine, 1-17
Canceling print operations, 12-10 to 12-11, 12-13
Capital letters, small, as document convention, xxv
Cascading menus, 7-15, 7-19
Character input messages, 4-2 to 4-3
Check box controls, 8-7 to 8-9
Checking

file status, 10-6
menu items, 7-8
previous instance, 2-5

Checkmarks
adding to menu items, 7-9
customized, 7-15, 7-22 to 7-23
removing from menu items, 7-9
setting initial, 7-8

CheckMenultem function, 7-9
Child windows

activating, deactivating, 21-9
arranging on screen, 21-10
associating data with, 21-6
controlling, 21-7
creating, 21-8
described, 21-1

destroying, 21-9
functions described, 21-6
registering window class for, 21-3

CL command, 1-12
Class cursor, 6-3
Class extra bytes

associating private data with window class, 16-31
defined, 16-17

Class icons
defined, 5-4
displaying your own, 5-5 to 5-6
setting to NULL, 5-5

Class menu
changing, 7-7
defined, 7-1
overriding, 7-4
specifying, 7-4

Client area, invalidating, 3-3
Client coordinates vs. screen coordinates, 6-13
Client window defined~ 21-2
CLIENTCREATESTRUCT data structure, 21-4
ClientToScreen function, 6-13 to 6-14
Clipboard

controlling data display in
chaining clipboard-viewer windows, 13-13
display formats, 13-11
taking full control of clipboard-viewer display,

13-12
copying text to, 13-2 to 13-3
described, 13-1
pasting bitmaps from, 13-7 to 13-8
pasting text from, 13-4, 13-7
and predefined data formats, 13-1
registering private data formats, 13-10
rendering data formats

before terminating, 13-10
on request, 13-10

sample application, copying and pasting text, 13-14
to 13-19

viewing contents of, 13-9
Clipboard-viewer windows

chaining, 13-13
described, 13-13

Clipping, 3-4
Code segments

aliasing, 16-12
described, 15-7
discardable, 15-7 to 15-8
and memory management, 15-6

Code, sharing between applications, 20-7
CODE statement, 2-25, 15-7
Code View for Windows. See CVW
Color palettes

See also Logical palettes
associating with device contexts, 19-7
defined, 19-1
deleting, 19-7
described, 19-2 to 19-3, 19-16
drawing color bitmaps, 11-8 to 11-9
drawing with colors, 19-8
realizing, for window, 19-2
sharing between windows, 19-7
using with bitmaps, 19-10
using with color bitmaps, 19-10 to 19-11

COLORREF value, 19-8 to 19-9
Colors

adding to monochrome bitmaps, 11-15
adding to text, 18-2

Combo box controls
creating, 8-22 to 8-23
notification codes for, 8-22 to 8-23

Command line, for application, 2-16
Command mnemonic, 2-22
Commands

CL,I-12
RC,I-14

Control
execution, 10-2
yielding, 2-13

Control class, 8-2
Control ID, 8-5
Control messages, 8-6
Control style

predefined styles, 8-3 to 8-4
specifying, 8-3

Controlling child windows, 21-7
Controls

control window functions, 8-1
creating

button controls, 8-7, 8-9
combo box controls, 8-22
edit controls, 8-23
list boxes, 8-12
multi-column list box controls, 8-20
owner-draw button controls, 8-11
owner-draw combo box controls, 8-23
owner-draw list box controls, 8-20
scroll bars, 8-26
static controls, 8-12
with CreateWindow function, 8-2

defined, 8-1
destroying, 8-7
disabling, 8-6
enabling, 8-6
moving, 8-6
predefined control styles, 8-3 to 8-4

Index 3

4 Guide to Programming

receiving input from, 8-5
sample application using edit controls, 8-28 to 8-31
sending messages to, 8-6
sizing, 8-6
specifying

control classes, 8-2
control ID, 8-5
control styles, 8-3
parent window of, 8-4

using in dialog boxes, 9-5
Conventional memory defined, 16-9
Coordinate system, 3-4
Copying

print settings, 17-8
print settings between drivers, 17-14
text to clipboard, 13-2 to 13-3

CPU, 1-16
CPU Profiler. See Profiler
CreateBitmap function, 11-3, 11-7
CreateCompatibleBitmap function, 11-3, 11-5
CreateDCfunction, 12-2, 17-1 to 17-3, 17-8,17-10,

17-12
C .. eateD IBitmap function, 11-7, 19-10
CreateMenu function, 7-14
CreatePalette function, 19-7
CreatePatternBrush function, 11-12
CreatePen function, 3-9
CreatePopupMenu function, 7-21
CreateSolidBrush function, 3-5, 3-9, 19-9
CreateWindow function, 2-9 to 2-10, 21-4, 21-8
Creating

addresses, procedure-instance, 2-23
bitmaps

described, 11-2 to 11-3
hard-coded, 11-5, 11-7 to 11-8

brushes,3-5,11-12
controls

button, 8-7, 8-9
button, owner-draw, 8-11
combo box, 8-22 to 8-23
combo box, owner-draw, 8-23
described, 8-2
edit, 8-23
list box, 8-12
list box, owner-draw, 8-20
multi-column list box, 8-20
static, 8-12

data structures, LOGPALETTE, 19-4 to 19-5
dialog boxes

About dialog box, 2-18, 2-20
described,9-3
templates for, 2-18, 2-20

dialog functions, 2-21, 9-4

drawing tools, 3-5, 3-9
files

C-language source, 2-26
font-resource, 18-13
header, 2-32
include, 2-20
module-definition, 2-24, 2-33, 18-15
with OpenFile function, 10-4
resource script, 2-32

fonts, logical, 18-4 to 18-5
icons, 5-3
MDI child windows, 21-8
message loops, 2-11, 2-13
palettes, logical, 19-7
pens, 3-5
scroll bars, 8-26
window, 2-9 to 2-10

Cross-hair cursor, 6-2
CS_DBLCLKS style, 4-4
Curly braces ({ }), as document convention, xxv
currentpoint data structure, 7-22
Cursor (.CUR) files, 6-2
CURSOR statement, 6-2
Cursors

accelerating cursor motion, 6-13
arrow cursor, 6-2
built-in shapes, 6-2
changing shape of, for lengthy operations, 6-4 to 6-5
class cursor, 6-3
controlling shape of, 6-1
creating, 6-2
cross-hair cursor, 6-2
displaying, 6-4
hourglass cursor, 6-2, 6-4 to 6-5
incorporating in applications, 6-14, 6-22
loading built-in, 6-2
loading cursor resource, 6-3
moving with keyboard, 6-11, 6-13
system cursor, 6-1
using with no mouse installed, 6-13 to 6-14

CVW, 1-14

o
Data

automatic. See Automatic data
dynamic. See Dynamic Data Exchange; Global dynamic

data; Local dynamic data
Data exchange

See also Dynamic Data Exchange
clipboard transfer, 22-2

Data formats
predefined (list), 13-1

private, 13-10
Data segments

aliasing, 16-12 to 16-3
application, 15-3
described, 15-8
and memory management, 15-6

DATA statement, 2-25,15-8
Data storage

MDI application 21-6
types of, 16-16

Data structures. See Structures
Data types, 2-4
DDE. See Dynamic Data Exchange
Deactivating child windows, 21-9
Debugging tools. See CVW; SPY; SYMDEB
Default palette, 19-2
Default push-button control, 8-7
DefFrameProc function, 21-5
DefMDIChildProc function, 21-6
DEFPUSHBUTTON statement, 2-20
DefWindowProc function, 2-17, 2-22, 21-5
DeleteMenu function, 7-11
DeleteObject function, 3-6, 19-7
Deleting

bitmaps, 11-16
drawing tools, 3-5, 3-13
font resources, 18-12
menu items, 7-11
pattern brushes, 11-14
strings from list-box controls, 8-13

DESCRIPTION statement, 2-25
Destroying child windows, 21-9
DestroyWindow function, 8-7
Device context

colors for, 19-2
defined, 1-3
vs. display context, 3-4
for printing, 17-2
selecting color palette for, 19-7

Device drivers
default names of, 20-9 to 20-10
interrupt-handling code in, 20-10 to 20-12, 20-14

Device-independent
bitmaps

defined, 11-1
displaying, 11-14 to 11-15
using color palette with, 19-10 to 19-11

graphics, 1-3
print settings, 17-3

DeviceCapabilities function, 17-4 to 17-5
DeviceMode function, 17-4
DEVMODE structure, 17-3, 17-6, 17-8 to 17-10, 17-12

to 17-13

Dialog-box template, 2-18, 2-20, 9-1
Dialog boxes

About dialog box, 2-18
adding icons to, 5-6
creating

dialog functions for, 9-4
modal,9-3
modeless, 9-3
templates for, 2-18, 2-20

defined, 1-6, 9-1

Index 5

dialog function. See Dialog function; DialogBox function
icons in, 5-6
sample application, building a FileOpen dialog box, 9-5

to 9-14
using, 2-18
using controls in, 9-5

Dialog Editor, 1-13
Dialog function

creating, 2-21, 9-4
procedure-instance address of, 2-23

DIALOG statement, 2-18
DialogBox function, 2-18,2-23
DIB. See Device-independent bitmaps
Discardable memory

blocks, 15-1, 15-5
changing, 15-6
creating, 15-5
described, 15-1
getting information about, 15-5
reallocating, 15-6

Dispat~hMessage function, 2-12
Display context

and default drawing tools, 3-6
described,3-2
vs. device context, 3-4

Displaying
device-independent bitmaps, 11-14 to 11-15
your own icons, 5-5

"Dithered" brush, 11-8
Dithering, 3-8, 19-10
DLLs. See Dynamic-link libraries
Document conventions

bold text, xxiv
curly braces ({ }), xxv
double brackets err]]), xxv
horizontal ellipses (...), xxv
italic text, xxiv
monospaced type,xx~

parentheses (), xxiv
quotation marks (" "), xxv
SMALL CAPITAL LETTERS, xxv
vertical bar (I), xxv
vertical ellipses, xxiv

6 Guide to Programming

DOS
environment, vs. Windows, 1-1
and open-file limit, 10-2
requirements for filenames, 10-2 to 10-3

Double brackets ([[]D, as document convention, xxv
DPtoLP function, 12-14
Drawing

bitmaps, 11-3
color bitmaps, 11-8 to 11-9
icons, 5-6
with palette colors, 19-8
within window, 3-1

Drawing tools
creating, 3-5, 3-9
default, 3-6
deleting, 3-5, 3-13
selecting, 3-5 to 3-6

DrawMenuBar function, 7-7, 7-9
DrawText function, 3-7
Dummy code module, 18-14
Dynamic data. See Global dynamic data; Local dynamic

data
Dynamic Data Exchange (DDE)

concepts and terminology in; 22-4 to 22-5
defined, 22~1
examples of, 22-3
message flow, 22-6 .

establishing permanent data link, 22-14, 22-17 to
22-18

executing commands in remote applications, 22-19
initiating conversation, 22-7
terminating conversation, 22-22
transfering single item, 22-9 to 22-10, 22-12 to

22-13
messages, listing, 22-5
moving global data between applications, 20-19
Program Manager commands, 22-19
protocol,22-2
sample applications, 22-24 to 22-25
uses for, 22-3
in Windows, global memory handles, 22-1

Dynamic linkup defined, 20-1 to 20-2
Dynamic-link libraries (DLLs)

and application modules, 20-3
custom controls, 20-19
custom DLLs

creating device drivers, 20-9 to 20-10
customizing for different markets, 20-8
filtering message system-wide, 20-9
purposes of, 20-6 to 20-8
writing custom controls, 20-10 to 20-12, 20-14,

20-17 to 20-18
defined, 20-1

exit procedure, 20-25
and import libraries, 20-2 to 20-4
and resource sharing, 20-2
run-time libraries, 20-1 to 20-2
sample code for

creating C-Ianguage source files, 20-20 to 20-21
creating MAKE file, 20-27 to 20-28
creating module-definition file, 20-26 to 20-27
creating prototype statement, 20-30
importing DLL functions, 20-31 to 20-33
initializing DLLs, 20-21 to 20-22,20-24
overview, 20-19
terminating DLLs, 20-25

sample library
compiling and linking sample library, 20-42
creating exit routines, 20-41
creating include file, 20-41
creating initialization routines, 20-40
creating library functions, 20-35 to 20-37,20-39
creating module-definition file, 20-41

and tasks, 20-4
in Windows environment, 20-5

Dynamic-link modules, 20-3

E
Edit controls, creating, 8-23
Ellipse function, 3-7
Ellipses

horizontal, as document convention, xxv
vertical, as document convention, xxiv

EnableMenu function, 13-5
EnableMenultem function, 7-7 to 7-8
Enable Window function, 8-6
Enabling menu items, 7-7 to 7-8
END statement, 2-19
EndDialog function, 2-21
EndPaint function, 3-3
Entry point for application, 1-17
Enumerating fonts, 18-9
Enumeration callback functions defined, 14-4
EnumFonts function, 18-9
Epilog code, Windows, 1-12
Erasing. See Deleting
Errors

out-of-disk, 12-7
out-of-memory, 12-7

Escape function, 12-2
Escapes

ABORTDOC, 12-13
NEXTBAND,12-13

Examples
adding icons to dialog boxes, 5-6

checking for previous instances, 2-5
creating

drawing tools, 3-9
header files, 2-32
Make files, 2-33
module-definition files, 2-33
push-button controls, 8-2
resource script files, 2-32
scroll bars, 4-6
source files, 2-26
window, 2-9 to 2-10

declaring new variables, 3-8
defining

menus, 7-2 to 7-3
modules, 2-24

deleting drawing tools, 3-13
displaying

current mouse, keyboard, and timer states, 4-13
formatted output, 4-8

processing
ANSI input, 4-11
key presses, 4-10
mouse-button input messages, 4-11 to 4-12
mouse-motion messages, 4-11
scroll-bar messages, 4-12
timer messages, 4-12

registering window class, 2-6, 2-9
writing initialization functions, 2-14

Execution control, 10-2
EXETYPE statement, 2-25
Exported functions, writing in assembly language, 14-16
ExtDeviceMode function

described, 17-3 to 17-4
features of, 17-6, 17-10
input and output for, 17-7
and print settings copying, 17-8, 17-13 to 17-14
sample code for, 17-5

Extended memory defined, 16-9

F
FAR keyword, 1-17
F ARPROC data type, 2-4
File input and output

See also Files; Input; Output
checking file status, 10-6
creating files, 10-4
filenames, 10-2 to 10-3
and multitasking, 10-1 to 10-3
opening existing files, 10-4
preventing open-file problems, 10-1
prompting for files, 10-6
reading and writing files, 10-4

Index 7

reopening files, 10-5
sample application, opening and saving text files, 10-6,

10-8 to 10-15, 10-17 to 10-18
in Windows vs. standard C run-time programs, 10-1

Filenames
and Dos requirements, 10-2
temporary, 10-3

Files
cursor (.CUR), 6-2
font, 18-14
font resource, 18-13 to 18-14, 18-16
include, 2-20
MAKE, 1-15,2-33,3-14
module-definition. See Module-definition (.DEF) files
resource script. See Resource script (.RC) files
WIN.INI, 17-2, 17-4

Floating-point arithmetic, 14-10
Floating pop-up menus, 7-15, 7-21
Font Editor, 1-13
Font files, creating, 18-13
Font-resource files

compiling and linking, 18-16
creating, 18-13 to 18-14
described, 18-13

Font-resource script, 18-14
Font resources

adding to system-font tables, 18-11
defined, 18-11
removing from system-font tables, 18-12

Fonts
checking device text-writing capabilities, 18-10
current, getting information about, 18-6 to 18-7
described, 18-1
enumerating, 18-9
font-resource files

compiling and linking, 18-16
creating, 18-13

font-resource script, creating, 18-14
font resources

adding, 18-11
creating module-definition files for, 18-15
removing, 18-12

logical
creating, 18-4 to 18-5
defined, 18-4
getting information about, 18-7

multiple, 18-5 to 18-6
sample application, using fonts in Windows application,

18-16
scaled sizes, 18-13
selecting, 18-4
setting text alignment, 18-12
simulated attributes, 18-13

8 Guide 10 Programming

stock (list), 18-2 to 18-3
system, defined, 18-1
using more than one per line, 18-5 to 18-6

Frame window
defined,21-2
function described, 21'-5
registering window class for, 21-3

free run-time routine, 1-17
FreeLibrary function, 17-5
FreeProcInstance function, 2-23
Functions

AnimatePalette, 19-4, 19-11 to 19-12
AppendMenu, 7-9, 7-14, 7-24
Are, 3-7
BeginPaint, 3-2 to 3-3, 5-5
BitBIt, 11-10 to 11-11, 19-11
callback, 1-17
CheckMenultem, 7-9
ClientToScreen, 6-13 to 6-14
CreateBitmap, 11-3, 11-7
CreateCompatibleBitmap, 11-3, 11-5
CreateDC, 12-2, 17-1 to 17-3, 17-8,17-10,17-12
CreateDlBitmap, 11-7, 19-10
CreateMenu, 7-14
CreatePalette, 19-7
CreatePatternBrush, 11-12
CreatePen, 3-9
CreatePopupMenu, 7-21
CreateSolidBrush, 3-5, 3-9, 19-9
CreateWindow, 2-9 to 2-10, 21-4, 21-8
DefFrameProc, 21-5
DefMDIChildProc, 21-6
DefWindowProc, 2-17, 2-22, 21-5
DeleteMenu, 7-11
DeleteObject, 3-6, 19-7
DestroyWindow, 8-7
DeviceCapabilities, 17-4 to 17-5
DeviceMode, 17-4
DialogBox, 2-18, 2-23
DispatchMessage, 2-12
DPtoLP, 12-14
DrawMenuBar, 7-7, 7-9
DrawText, 3-7
Ellipse, 3-7
EnableMenultem, 7-7 to 7-8
EnableWindow, 8-6
End Dialog, 2-21
EndPaint, 3-3
EnumFonts, 18-9
Escape, 12-2
ExtDeviceMode, 17-3 to 17-8, 17-10, 17-13 to 17-14
FreeLibrary, 17-5
FreeProcInstance, 2-23

GetBitmapBits, 11-7
GetBkColor, 18-2
GetBkMode, 18-2
GetCapture, 4-4
GetClientRect, 6-13
GetClipboardData, 13-6
GetCursorPos, 6-13
GetDC, 3-2 to 3-3
GetDeviceCaps, 12-13, 18-10
GetDeviceMode, 17-8
GetDIBits, 19-10
GetDlgltem, 9-5
GetDoubleClickTime, 4-4
GetEnvironment, 17-8
GetFocus, 4-3
GetMenu, 7-12,13-5
GetMenuCheckMarkDimensions, 7-24
GetMessage, 2-12 to 2-13
GetObject, 18-7
GetProcAddress, 17-5
GetProflleString, 12-2
GetStockObject, 18-3
GetSubMenu, 21-4
GetSystemMetrics, 6-13 to 6-14
GetTextColor, 18-2
GetTextFace, 18-6 to 18-7
GetTextMetrics, 18-6
GetWindowLong, 21-7
GetWindowWord,21-7
GlobalAIIoc, 15-2
GlobalCompact, 15-3
GlobalFlags, 15-5
GlobalFree, 15-3
GlobaILoc~, 15-2
GlobalReAlloc, 15-6
GlobalUnlock, 15-3
initialization, 2-14
InsertMenu, 7-10,7-14, 7-24
InvalidateRect, 3-3
InvalidateRgn, 3-3
IsClipboardFormatA vailable, 13-5
IsIconic, 5-5
LineTo, 3-6, 6-9
LoadAccelerators, 7-16, 7-18
LoadBitmap, 7-12, 7-23, 11-2
LoadCursor, 6-2 to 6-3
Loadlcon, 5-3 to 5-4
LoadLibrary, 17-4
LocalAlloc, 1-17, 15-4
LocalCompact, 15-5
LocalFree, 1-17
LocaILock,15-4
LocalReAlloc, 1-17

LocaIUnlock,15-4
MAKELONG,7-13
MAKEPOINT,7-22
MakeProcInstance, 2-23
ModifyMenu, 7-10 to 7-12, 7-24
MoveWindow, 8-6
Open Clipboard, 13-4
OpenFile, 1-17, 10-1 to 10-2, 10-4
Pie, 3-7
Polygon, 11-3, 11-5
PostQuitMessage, 1-8,2-13
RealizePalette, 19-8, 19-11
Rectangle, 3-7
RegisterClass, 2-6 .
ReleaseCapture, 4-4, 6-10
ReleaseDC, 3-2
RemoveFontResource, 18-12
RGB,11-16
SelectObject, 3-6, 19-7
SelectPalette, 19-7
SendDlgltemMessage, 9-5
SendMessage, 8-6
SetBitmapBits, 11-7
SetBitsToDevice, 11-14
SetBkColor, 11-15, 18-2
SetBkMode, 18-2
SetCapture, 4-4, 6-7
SetClassWord,II-13
SetCursor, 6-4 to 6-5,6-14
SetCursor Pos, 6-14
SetDIBits, .19-10
SetDIBitsToDevice, 11-14 to 11-15, 19-10
SetDlgltemText, 9-5
SetDoubleClickTime, 4-4
SetEnvironment, 17-2, 17-8
SetFocus, 4-3, 8-8
SetMenu, 7-13
SetMenultemBitmaps, 7-24
SetPaletteEntries, 19-11
SetROP2, 6-9
SetStretchBItMode, 11-12
SetTextColor, 11-15, 18-2
SetTimer, 4-5
SetWindowLong, 21-7
SetWindowWord,21-7
ShowCursor, 6-14
ShowWindow, 2-10
sprintf, 4-8
StretchBlt, 7-23, 11-10 to 11-11, 19-11
TextOut, 1-8,3-2,3-7,4-8, 13-4, 18-1
TrackPopupMenu, 7-21
TranslateAccelerator, 21-5
TranslateMDISysAcce~ 21-5

G

TranslateAccelerator, 7-18
TranslateMessage, 2-12, 4-3
UpdateColors, 19-15
UpdateWindow, 2-11, 3-4
ValidateRect, 3-4
ValidateRgn, 3-4
WinMain, 1-12, 1-17,2-2,2-5

GDI (Graphics Device Interface)
See also Bitmaps
display context

default coordinate system, 3-4
default drawing tools for, 3-6
described, 3-1 to 3-2
vs. device context, 3-4
invalidating client area,3-3 to 3-4
using GetDC function, 3-2
WM_PAINT message, 3-2 to 3-3

drawing tools
creating, 3-5
deleting, 3-6
selecting, 3-6

output operations
displaying text, 3-7
drawing, 3-6 to 3-7
sample application, 3-8 to 3-13

Windows library, 1-10
Generic application

About dialog box, creating, 2-18 to 2-23
control, yielding, 2-13
creating Input application, 4-7
creating Output application, 3-8
data types and structures, 2-3 to 2-4
features of, 2-1
handles, 2-4 to 2-5
header file, code, 2-32
initialization functions, 2-14 to 2-15
instances of application running, 2-5 to 2-6
make file, 2-33 to 2-35
message loop, 2-11 to 2-13
module-definition file

code, 2-33
creating, 2-24 to 2-26

Qverview, 2-1 to 2-2
resource script file, code, 2-32 to 2-33
source code for, 2-26 to 2-32
terminating application, 2-13 to 2-14
using as template, 2-35 to 2-36
window

creating, 2-9 to 2-11
showing and updating, 2-11

Index 9

10 Guide to Programming

window class, registering, 2-6 to 2-9
window function, 2-16 to 2-17
Windows application, components of, 2-2
WinMain function, 2-2 to 2-16

GetBitmapBits function, 11-7
GetBkColor function, 18-2
GetBkMode function, 18-2
GetCapture function, 4-4
getchar run-time routine, 1-17
GetClientRect function, 6-13
GetClipboardData function, 13-6
GetCursorPos function, 6-13
GetDC function, 3-2 to 3-3
GetDeviceCaps function

described, 18-10
printing in bands, 12-13

GetDeviceMode function, 17-8
GetDIBits function, 11-7, 19-10 to 19-11
GetDlgItem function, 9-5
GetDoubleClickTime function, 4-4
GetEnvironment function, 17-8
GetFocus function, 4-3
GetMenu function, 7-12, 13-5
GetMenuCheckMarkDimensions function, 7-24
GetMessage function, 2-12 to 2-13
GetObject function, 18-7
GetProcAddress function, 17-5
GetProfileString function, 12-2
GetStockObject function, 18-3
GetSubMenu function, 21-4
GetSystemMetrics function, 6-13 to 6-14
GetTextColor function, 18-2
GetTextFace function, 18-6 to 18-7
GetTextMetrics function, 18-6
GetWindow function, 21-8
GetWindowLong function, 21-7
GetWindowWord function, 21-7
Global dy~amic data

defined, 16-16
managing blocks of, 16-24

allocating in global heap, 16-25
changing sizes and attributes, 16-28
discarding global blocks, 16-30
discarding memory blocks, 16-30
freeing global memory, 16-31
freeing memory blocks, 16-30
global vs. local heap, 16-24
locking and unlocking, 16-26
locking for extended periods, 16-30
obtaining information about, 16-30

Global heap
allocating memory in, 16-25
defined, 15-1,16-2

formed by Windows, 16-9
relationship to EMS bank line, 16-7
segment positions in, 16-3
using, 15-1 to 15-2

Global memory
allocating, 15-2, 16-25
changing blocks of, 16-28
checking for availability of, 15-3
discarding blocks, 16-30
freeing, 16-31
locking, 15-2, 16-30
managing, 16-24
obtaining information about, 16-30
unlocking, 15-2

Global selectors, 16-11
Global variables, 3-8
GlobalAlloc function, 15-2
GlobalCompact function, 15-3
GlobalFlags function, 15-5
GlobalFree function, 15-3
GlobalLock function, 15-2
GlobalReAlloc function, 15-6
GlobalUnlock function, 15-3
Graphics, device-independent, 1-3
Graphics device interface. See GDI
Graphics tablets, 6-6
Graying menu items, 7-7 to 7-8
Group box controls, 8-11
·Gw option, 1-12

H
Handle, 2-5
HANDLE data type, 2-4
Header file, creating, 2-32
Heap Walker, 1-15
HEAPSIZE statement, 2-25,15-4
High memory area (HMA) defined, 16-9
Hook defined, 20-9
Hourglass cursor, 6-2, 6-4 to 6-5
hPrevlnstance parameter, 2-5 to 2-6
HWND data type, 2-4

I
I-beam cursor, 6-2
ICON control statement, 5-6 to 5-7
ICON statement, 5-3 to 5-4, 5-7
Icons

class icon
described, 5-4
setting to NULL, 5-5

creating, 5-3
defined, 5-1

in dialog boxes, 5-6
displaying your own, 5-5 to 5-6
drawing, 5-6
sample application, incorporating icons in applications,

5-7
title windows, 21-8
titles, 21-8

IMPLIB utility, creating DLLs with, 20-29
Import libraries, 20-2 to 20-4
Include files, 2-20
Initialization

in dynamic-link libraries, 20-21 to 20-22,20-24
functions, 2-14

Initializing
MDI applications, 21-3
menus, 7-14

Input
character, 4-3
DOS environmentvs. Windows, 1-1 to 1-4
"input focus," defined, 4-3, 19-2
keyboard, 1-3, 1-7,4-2 to 4-3
menu, 4-6, 7-6
message formats, 4-2
messages, 1-3, 1-7,4-1 to 4-2
mouse, 4-3 to 4-4
sample application, 4-7 to 4-13
scroll-bar, 4-5 to 4-6
timer, 4-4 to 4-5

Input focus. See Input
InsertMenu function

insertingitem in menu, 7-10, 7-14
specifying owner-draw menu items with, 7-24

Instance, 2-5
Instance handle, 2-5
Integer

signed,2-4
unsigned, 2-4

InvalidateRect function, 3-3
InvalidateRgn function, 3-3
Invalidating the client area, 3-3
IsClipboardFormatA vailable function, 13-5
IsIconic function, 5-5
Italic text, as document convention, xxiv

J
Joysticks, 6-6

K
Kernel Windows library, 1-10
Key codes

ASCII,7-17
virtual, 4-3, 7-17

Keyboard
in applications, 6-15, 6-22
messages, 1-3, 1-7,4-2
moving cursor with, 6-11, 6-13

Keys. See Accelerator keys; Virtual keys
Keywords

FAR,I-17
PASCAL, 1-17

L
Libraries

creating, 20-1
described, 20-1

Light pens, 6-6
LineTo function, 3-6, 6-9
Linker, 1-12
Linker command line, creating DLLs with, 20-28
Linking, 1-12
List box controls

adding strings to, 8-13
creating, 8-12 to 8-13
deleting strings from, 8-13
getting selections from, 8-14
multiple-selection, 8-15

LoadAccelerators function, 7-16, 7-18
LoadBitmap function, 7-12, 7-23, 11-2
LoadCursor function, 6-2 to 6-3
Loadlcon function, 5-3 to 5-4
Loading bitmaps, 11-2 to 11-3
LoadLibrary function, 17-4
Local dynamic data

defined, 16-16
managing blocks of

allocating memory in, 16-21
changing size, 16-23
discarding local blocks, 16-23
freeing local blocks, 16-23
freezing local memory, 16-24
locking and unlocking, 16-21 to 16-22
obtaining information, 16-24
overview, 16-19

Local heap
allocating memory in, 16-21
defined, 15-1
location of, 15-3
organization of, 16-20

Local memory
allocating, 15-4
changing block size, 16-23
checking for availability of, 15-5
discarding blocks of, 16-23
freeing blocks of, 16-23

Index 11

12 Guide to Programming

freezing, 16-24
locking, 15-4
obtaining infonnation about, 16-24
unlocking, 15-4

Local variables, 3-9
LocalAlloc function, 1-17, 15-4
LocalCompact function, 15-5
LocalFree function, 1-17
LocalLock function, 15-4
LocalReAlloc function, 1-17
LocalUnlock function, 15-4
Logical fonts

creating, 18-5
described, 18-4
getting infonnation about, 18-7

Logical palettes
changing, 19-11 to 19-13
creating, 19-7
creating LOGPALETTE data structures, 19-4 to 19-5
defined, 19-1
described, 19-2 to 19-3
directly specifying colors in, 19-8 to 19-9
drawing with palette colors, 19-8
indirectly specifying colors in, 19-9 to 19-10
realizing, 19-7
selecting into device context, 19-7
using with color bitmaps, 19-10 to 19-11

LOGPALETTE data structure, 19-4 to 19-5
LONG data type, 2-4
LOWORD utility, 18-6
lpCmdLine parameter, 2-16
LPSTR data type, 2-4

nI ________________________ _
Macros

PALETTEINDEX, 19-8
PALETTERGB, 19-9

Main window, 2-3
MAKE file, creating, 2-33
MAKE program, 1-15,2-33
MAKE utility, for dynamic-link libraries, 20-27 to 20-28
MAKELONG function, 7-13
MAKEPOINT function, 7-22
MakeProcInstance function, 2-23
malloc run-time routine, 1-17
Mapping mode, 3-4
MAPSYM utility, creating DLLs with, 20-29
MDI (multiple document interface)

applications
associating data with child windows, 21-6
controlling child windows, 21-7 to 21-9
creating windows for, 21-4

initializing, 21-3 to 21-4
reserving extra space in window structure, 21-7
storing data in, 21-7
structure of, 21-1 to 21-2
vs. Windows applications, 21-3
writing child window functions, 21-6
writing frame window function, 21-5

child windows
activating, deactivating, 21-9
arranging on screen, 21-10
controlling, 21-7
creating, 21-8
data storage in window structure, 21-6
data storage via window properties, 21-7
described, 21-1 to 21-2
destroying, 21-9
functions described, 21-6
registering window class for, 21-3
system-menu accelerators for, 21-5
window ID, 21-4

client windows
class registration not required, 21-3
creating, 21-4
described,21-2
resizing, 21-6
standard behavior of, 21-2

frame windows
creating, 21-4
defined,21-2
described,21-5
registering window class for, 21-3

message loop, 21-1, 21-5
MDICREATESTRUCTstructure, 21-8
Memory

allocating, 15-1
bankable and nonbankable, 16-7
bitmap, displaying, 11-10 to 11-11
blocks

discardable, 15-1, 15-5
huge, 16-10 to 16-11

changing discardable, 15-6
compacting, 15-2
conventional, defined, 16-9
expanded, working directly with, 16-9
freeing, 15-3
global. See Global memory
global heap, using, 15-2
handle

dereferencing, 16-21
to memory block, 15-2

local. See Local memory
local heap, using, 15-3
locking, 15-2

management, and module-definition files, 15-4
managing for program code

balancing code segments, 16-41
ordering code segments, 16-42
using code-segment attributes, 16-40
using multiple code segments, 16-41

models. See Memory models
page-locking, 16-15
sample application, creating a memory application,

15-9 to 15-11
system, 15-2
unlocking, 15-3

Memory configurations
386 enhanced mode, 16-1, 16-13, 16-15
basic, 16-1 to 16-2, 16-4
basic VS. 386 enhanced mode, 16-13
basic vs. EMS 4.0, 16-4
determining current, 16-2
EMS 4.0, 16-1, 16-4 to 16-8
standard mode

aliasing code or data segments, 16-13
aliasing data segments, 16-12
overview, 16-9 to 16-10
using global selectors, 16-11
using huge memory blocks in, 16-10 to 16-11

Memory model, mixed
using with medium-model default settings, 14-2
using with small-model default settings, 14-1

Memory models
huge, 16-35
large, 16-35
medium, 16-36
mixed, 16-36
small, 16-36

Memory-notification callback functions defined, 14-4
Menu-accelerator keys, 7-16 to 7-19
Menu bar

changing items on, 7-7
described, 1-5

Menu identifiers. See Menu IDs
Menu IDs

and About command, 2-22
and accelerator keys, 7-17
defined, 7-3
defining as constant, T-3
and processing menu input, 7...;6

Menu input messages, 4-2, 4-6
Menu items

accelerator keys for, 7-16
adding checkmarks to, 7-9
appending to existing menus, 7-9
changing existing, 7-10 to 7-11
defined, 7-1

deleting, 7-11
disabled, 7-7
disabling, 7-8
enabled, 7-7
enabling, 7-7 to 7-8
grayed,7-7
graying, 7-7 to 7-8
inserting in existing menus, 7-10
removing checkmarks from, 7-9
and selecting commands, 7-2
setting initial checkmark for, 7-8
setting initial state of, 7-7, 7-14
using bitmaps as, 7-12

MENU statement, 7-2
MENUITEM definitions, 7-16
MENUITEM statement, 7-2, 7-7 to 7-8
Menus

cascading, 7-15, 7-19
class menu

changing, 7-7
defined, 7-1
overriding, 7-4
specifying, 7-4

creating new, 7-14
defined, 1-6
defining, 7-2
described, 7-1 to 7-2
initializing, 7-14
menu-accelerator keys, 7-16 to 7-19
menu bar. See Menu bar
menu IDs. See Menu IDs
menu items. See Menu items
owner-draw

defining menu items, 7-24
described, 7-24 to 7-25

processing input from, 7-6
replacing, 7-13
special features of

accelerator keys, 7-15
cascading menus, 7-15, 7-19

Index 13

customized checkmarks, 7-15, 7-22 to 7-23
floating pop-up menus, 7-15, 7-21

specifying
for specific window, 7-1, 7-4 to 7-5
for window class, 7-1, 7-4

Message format, 4-2
Message loops

changing, to process accelerators, 7-18
creating, 2-11, 2.;.13
defined, 1-7 to 1-8
for MDI application, 21-5
for MDI applications, 21-1
terminating, 2-13

14 Guide to Programming

and WinMain function, 2-3
Messages

See also Character input messages; Control messages;
Input; Keyboard; Mouse input messages

WM_ACTIV ATE, 6-14
WM_CHAR,I-7
WM_COMMAND, 2-21 to 2-22, 4-6, 7-18
WM_CREATE, 21-9
WM_DESTROY, 1-8,2-13,2-17
WM_DRA W, 8-11
WM_DRA WITEM, 7-25
WM_GETACTIVE,21-9
WM_INITDIALOG, 2-21
WM_INiTMENU, 7-15
WM_KEYDOWN, 4-3,6-11,6-13,21-5
WM_KEYUP, 4-3, 6-13
WM_LBUTTONDBLCLK,4-4
WM_LBUTTONDOWN, 4-4, 6-6 to 6-7, 6-9
WM_LBUTTONUP, 4-4,6-6 to 6-7, 6-9
WM_MDIACTIV ATE, 21-9
WM_MDICASCADE,21-1O
WM_MDICREATE,21-8
WM_MDIDES TROY , 21-9
WM_MDIICONARRANGE,21-1O
WM_MDINEXT,21-9
WM_MEASUREITEM,7-25
WM_MOUSEMOVE, 4-4, 6-4, 6-6 to 6-7, 6-9
WM_PAINT, 3-2 to 3-4
WM_PALETTECHANGED,19-14
WM_QUERYNEWPALETTE,19-13
WM_QUIT,I-8
WM_SETFOCUS, 21-6
WM_SIZE, 21-6
WM_SYSCOMMAND, 4-6, 7-18, 21-5
WM_SYSKEYDOWN,4-3
WM~SYSKEYUP, 4-3
WM_TIMER,4-5

Modal dialog box, 9-3
Modeless dialog box, 9-3
ModifyMenu function

changing existing menus, 7-10 to 7-12
specifying owner-draw menu items with, 7-24

Module-definition (.DEF) files
creating, 2-24,2-33
creating for font resource, 18-15
and memory management, 15-4

Module-definition in file for dynamic-link: libraries,
20-26 to 20-27

Monochrome bitmaps, adding colorto, 11-15
Monospaced type, as document convention, xxiv
Mouse

described, 6-6
determining when present, 6-13 to 6-14

duplicating input with keyboard, 6-11, 6-13
messages. See Mouse input messages
using in applications, 6':'14, 6-22
using input to select graphics, 6-6 to 6-7, 6-9 to 6-10

Mouse input messages
described, 1-3,4-2 to 4-4
WM_LBUTTONDBLCLK,4-4
WM_LBUTTONDOWN, 4-4,6-6 to 6-7, 6-9
WM_LBUTTONUP, 4-4, 6-6 to 6-7, 6-9
WM_MBUTTONDBLCLK,4-4
WM_MBUTTONDOWN,4-4
WM_MBUTTONUP, 4-4
WM_MOUSEMOVE, 4-4, 6-4, 6-6 to 6-7, 6-9
WM_RBUTTONDBLCLK,4-4
WM_RBUTTONDOWN,4-4
WM_RBUTTONUP, 4-4

Mouse messages. See Mouse input messages
MOVEABLE statement, 15-7
Move Window function, 8-6
MSG data structure, 2-4, 4-2
Multipad

child-window function, 21-6
controlling child windows, 21-8
data storage technique, 21-7
as desktop application, 21-1
frame-window procedure, 21-6
initialization of child window, 21-9
as sample application, 21-2 to 21-3

Multiple document interface. See MDI
Multiple fonts, 18-5 to 18-6
Multitasking

N

defined, 1-4
environment, 1-2
and file access, 10-1
and filenames, 10-2 to 10-3

NAME statement, 2-25
NEXTBAND escape, 12-13
Notification codes, combo boxes, 8-22, 8-23
Notification message, 8-5
NULL, Windows vs. C 6.0 compiler, 14-2

o
OFSTRUCT structure, 10-2
Open Clipboard function, 13-4
OpenFile function, 1-17, 10-1 to 10-2, 10-4
Opening existing files, 10-4
Optimization tools. See Heap Walker; Profiler; Swap
Options

-c,I-12
-Gw, 1-12

VIRTKEY, 7-17
.Zp, 1-12

Out-of-disk errors, 12-7
Out-of-memory errors, 12-7
Output

displaying formatted, 4-8
DOS environment vs. Windows, 1-1 to 1-4
and ODI operations, 3-6, 3-8
sample application, 3-8 to 3-13
to window, 3-1 to 3-8

Owner-draw button controls, 8-11

p
Page-locking memory blocks, 16-15
PAINTSTRUCT data structure, 2-4, 3-3
Palette entry, 19-4
Palette-relative ROB value, 19-2
PALETTEENTRY structure, 19-4, 19-11
PALETTEINDEX macro, 19-8
PALETTERGB macro, 19-9
Palettes. See Color palettes; Default palette; Logical

palettes; System palettes
Parallel ports, 1-17
Parameters

hPrev/nstance, 2-5 to 2-6
IpCmdLine, 2-16

Parent window, specifying, 8-4
Parentheses (), as document convention, xxiv
Pascal calling convention, 1-17, 2-3
PASCAL keyword, 1-17
Pasting

bitmaps from clipboard, 13-7 to 13-8
text from clipboard, 13-4, 13-7

Pattern brushes
changing background brush, 11-13
creating, 11-12
deleting, 11-14

Pens
creating, 3-5
light pens, 3-5

Pie function, 3-7
Pointing devices

See also Mouse
using with Windows, 6-6

Polygon function, 11-3, 11-5
Pop-up menus

cascading, 7-15, 7-19 to 7-20
floating, 7-15, 7-21

POPUP statement, 7-2
Ports, 1-17
PostQuitMessage function, 1-8,2-13
Print settings

See also Printer drivers
changing, 17-9 to 17-10
copying, 17-8
described, 17-16
device..:independent, 17-3
and device-specific data, 17-3
and DEVMODE structure, 17-3
and header information, 17-3
maintaining, 17-15
manipulating, 17-6 to 17-7
overview of, 17-1 to 17-2
and printer environment, 17-4
prompting user for, 17-9, 17-13
tailoring, 17'-10
using device-driver functions, 17-4

Printer
See also Printing
current, 12-2
environment, 17-4
information from WIN.INI file, 12-2
print request, starting, 12-5
using, 12-4 to 12-5, 12-7

Printer device context
See also Device context
creating, 12-5
deleting, 12-5

Printer drivers
copying settings between, 17-14
finding capabilities of, 17-5
settings for, 17-2, 17-4
working with older, 17-15

Printer-initialization settings. See Print settings
Printer Setup dialog box

displaying, 17 -13
pre-setting values in, 17-13

printf run-time routine, 1-17
Printing

banding, 12-13 to 12-14
bitmaps, 12-5, 12-7
canceling

described, 12-8 to 12-11, 12-13
using ABORTDOC escape, 12-13

lines of text, 12-4
processing errors during, 12-7 to 12-8

Index 15

sample application, adding printing capability, 12-14 to
12-20

Private data formats, 13-10
Procedure-instance addresses, creating, 2-23
Processing input from menus, 7-6
Profiler, 1-15
Program Manager, Dynamic Data Exchange commands,

22-19
Programs

16 Guide to Programming

MAKE, 1-15,2-33
terminate-but-stay-resident, 1-4

Prolog code, Windows, 1-12
Prompting for files, 10-6
Push-button controls, 8-7
putchar run-time routine, 1-17

Q
Queue

application, 1-7
system, 1-8

Queued input, 1-2 to 1-3
Quotation marks (" "), as document convention, xxv

R
Radio-button controls, 8-10
RC command, 1-14
Reading and writing files, 10-4
RealizePalette function, 19-8, 19-11
Realizing window's palette, 19-2
realloc run-time routine, 1-17
RECT data structure, 2-4
Rectangle, 2-4
Rectangle function, 3-7
RegisterClass function, 2-6
Registering window classes, 2-6 to 2-7, 21-3
ReleaseCapture function, 4-4, 6-10
ReleaseDC function, 3-2
RemoveFontResource function, ·18-12
Removing font resources, 18-12
Reopening files, 10-5
Resource Compiler

compiling DLLs with, 20-29
overview, 1-14

Resource data collection
defined, 16-17
managing, 16-32

freeing custom resource, 16-35
loading custom resource, 16-34
locating custom resource, 16-33
locking and unlocking custom resources, 16-34

Resource editors, 1-13
Resource script (.RC) files

and accelerator keys, 7-16
adding bitmaps to, 11-2
checking menu items in, 7-8
creating, 2-32
adding cursor to, 6-2
and customized checkmarks, 7-23
defined, 1-14
and defining menus, 7-2
described,2-18

setting initial state of menu item in, 7-7
Resources

computer, 1-4, 1-14
defined, 16-32
shared, 1-4, 3-2
sharing between applications, 20-7 to 20-8
types of, 20-7

RGB function, 11-16
Routines, C run-time

getchar, 1-17
printf, 1-17
putchar, 1-17
scanf,I-17

s
Sample applications

adding printing capability, 12-14 to 12-20
bitmap operations, 11-16, 11-18 to 11-25, 11-27 to 11-28
building a FileOpen dialog box, 9-5, 9-7 to 9-9, 9-11 to

9-12,9-14
copying and pasting text from clipboard, 13-14 to 13-15,

13-17 to 13-19
creating EditFile application, 10-6, 10-8 to 10-15, 10-17

to 10-18
creating memory application, 15-9 to 15-11
creating and processing Edit menu, 7-25
described, xxiii
incorporating cursors in, 6-14, 6-22
incorporating icons in, 5-7
Multipad, 21-1 to 21-3, 21-6 to 21-9
output, 3-8
processing input messages, 4-7
source files for, xxiii
using accelerator keys in applications, 7-25
using edit control, 8-28 to 8-32
using fonts in Windows applications, 18-16
using keyboard, 6-14, 6-22
using mouse, 6-14, 6-22

SB_LINEDOWN value, 4-6
SB_LINEUP value, 4-6
SB_PAGEDOWN value, 4-6
SB_PAGEUP value, 4-6
SB_ THUMB POSITION value, 4-6
SB_ THUMB TRACK value, 4-6
scanf run-time routine, 1-17
Screen coordinates vs. client coordinates, 6-13
Script files, creating, 2-32
Scroll-bar input messages, 4-2, 4-5
Scroll bars

creating, 8-26
defined, 1-5

SDKPaint

creating bitmaps with, 11-2
defined, 1-13
editing cursor in, 6-2

Segments
code, 15-6 to 15-8
data, 15-3, 15-6, 15-8
specifying in module-definition (.DEF) files, 15-6

to 15-8
SEGMENTS statement, 15-7
Selecting drawing tools, 3-5
SelectObject function, 3-6, 19-7
SelectPalette function, 19-7
SendDlgltemMessage function, 9-5
SendMessage function, 8-6
Serial ports, 1-17
SetBitmapBits function, 11-7
SetBitsToDevice function, 11-14
SetBkColor function, 11-15, 18-2
SetBkMode function, 18-2
SetCapture function, 4-4, 6-7
SetClassWord function, 11-13
SetCursor function, 6-4 to 6-5,6-14
SetCursorPos function, 6-14
SetDIBits function, 11-7, 19-10 to 19-11
SetDIBitsToDevice function, 11-14 to 11-15, 19-10
SetDlgltemText function, 9-5
SetDoubleClickTime function, 4-4
SetEnvironment function, 17-2, 17-8
SetFocus function, 4-3,8-8
SetMenu function, 7-13
SetMenultemBitmaps function, 7-24
SetPaletteEntries function, 19-11
SetROP2 function, 6-9
SetStretchBItMode function, 11-12
SetTextColor function, 11-15, 18-2
SetTimer function, 4-5
SetWindowLong function, 21-7
SetWindowWord function, 21-7
Shared resources, 1-4, 3-2
ShowCursor function, 6-14
Show Window function, 2-10
SMALL CAPITAL LETTERS, as document convention, xxv
Spawning child processes, 14-11
sprintf function, 4-8
SPY, 1-14
Stack

defined, 15-4
size, 15-4

STACKSIZE statement, 2-25, 15-4
Standard mode memory configuration, 16-9
Starting point. See Entry point
Statements

ACCELERATORS,7-16 to 7-17

BEGIN,2-19
BITMAP, 7-23
CODE, 2-25, 15-7
CURSOR,6-2
DATA, 2-25,15-8
DEFPUSHBUTTON, 2-20
DESCRIPTION, 2-25
DIALOG,2-18
END,2-19
EXETYPE, 2-25
HEAPSIZE,2-25,15-4
ICON, 5-3 to 5-4, 5-7
ICON control, 5-6 to 5-7
MENU, 7-2
MENUITEM, 7-2, 7-7 to 7-8
MOVEABLE,15-7
NAME,2-25
POPUP, 7-2
SEGMENTS, 15-7
STACKSIZE, 2-25, 15-4
STUB,2-25
STYLE,2-19

Static controls, creating, 8-12
Static data defined, 16-16
Static-link libraries, 20-2 to 20-4
Static linkup defined, 20-1 to 20-2
Stock fonts, 18-2 to 18-3
StretchBlt function

vs. BitBIt function, 11-11
and color palettes, 19-11
displaying bitmaps with, 11-10
stretching checkmark bitmaps with, 7-23

Stretching bitmaps, 11-11 to 11-12
Structures

BITMAPFILEHEADER, 11-8
BITMAPINFO, 11-7 to 11-8,19-5
CLIENTCREATESTRUCT,21-4
currentpoint, 7-22

Index 17

DEVMODE, 17-3, 17-6, 17-8 to 17-10, 17-12 to 17-13
LOGPALETTE, 19-4 to 19-5
MDICREATESTRUCT, 21-8
MSG, 2-4, 4-2
OFSTRUCT, 10-2
PAINTSTRUCT, 2-4, 3-3
PALETTEENTRY, 19-4, 19-11
RECT,2-4
TEXTMETRIC, 18-7
WNDCLASS, 2-4, 2-6, 7-4

STUB statement, 2-25
Style, CS_DBLCLKS, 4-4
STYLE statement, 2-19
Swap, 1-15
Swapping Analyzer, 1-15

18 Guide to Programming

Symbolic debugger. See SYMDEB
SYMDEB, 1-14
System cursor, 6-1
System font, 18-1
System font table

adding resources to, 18-11
notifying applications of changes to, 18-12
removing resources from, 18-12

System memory, 15-2
System palettes

and creating logical palettes, 19-4
defined, 19-1
described, 19-2 to 19-3
responding to changes in, 19-13 to 19-15

System queue, 1-8

T
Task defined, 20-4
Template, 2-35
Terminate-but-stay-resident programs, 1-4
Terminating applications, 2-13
Termination in dynamic-link libraries, 20-25
Text

adding colors to, 18-2
color, setting, 18-2
copying to clipboard, 13-2 to 13-3
pasting from clipboard, 13-4, 13-7
setting alignment of, 18-12
writing, 18-1, 18~10

Text editors, Multipad, 21-1 to 21-3, 21-6 to 21-9
Text metrics, 18-6 to 18-7
TEXTMETRIC structure, 18-7
TextOut function, 1-8,3-2,3-7,4-8, 13-4, 18-1
Timer input messages, 1-3,4-2,4-5
Title bar, 1-5
Title windows, 21-8
TrackPopupMenu function, 7-21
TranslateAccelerator function, 7-18, 21-5
TranslateMDISysAccel function, 21-5
TranslateMessagefunction, 2-12 to 2-13, 4-3

u
UpdateColors function, 19-15
UpdateWindow function, 2-11, 3-4
User interface, 1-1 to 1-2
User Windows library, 1-10

v
ValidateRect function, 3-4
ValidateRgn function, 3-4
Variables

global,3-8

local,3-8
Vertical bar (I), as document convention, xxv
VIRTKEY option, 7-17
Virtual-key code, 4-3
Virtual keys, 7-17

Hr ______ ~ ________________ _
WIN .INI .files

print information from, 12-2
print settings in, 17-2, 17-4

Window
See also Child windows; Client window; Clipboard-

viewer windows; Frame window; Parent window
creating, 2-9 to 2-10
defined, 1-2,1-5
determining if iconic, 5-5
drawing within, 3-1
features of, 1-6
input focus of, 19-2
main window, 2-3
management of, 1-6
properties described, 21-7
realizing color palette of, 19-2
reserving extra space in class structure, 21-3, 21-7
sharing color palette between windows, 19-7
showing and updating, 2-11
specifying a menu for, 7-1, 7-4 to 7-5

Window class
defined, 2-4, 2-6
for MDI applications, 21-3
for MDI child windows vs. normal child windows, 21-3
registering, 2-6 to 2-7, 2-9, 6-3, 21-3
specifying a menu for, 7-1, 7-4
structure, 6-3, 21-3, 21-7

Window extra bytes
associating private data with particular window, 16-31
defined, 16-17

Window function
calling, 2-12
described, 1-6, 1-17, 2-2, 2-17

Window-hook callback functions defined, 14-4
Window-management messages, 1-6
Windows

epilog code, 1-12
icon ti tie, 21-8
libraries, 1-9 to 1-10
memory-management system, 15-1, 15-4
memory objects, rules for object ownership, 20-34
overview, 1-1 to 1-4
programming model, 1-1, 1-4 to 1-5, 1-9
prolog code, 1-12
user interface, 1-2

Windows applications
building, 1-12 to 1-13, 1-15
vs. C language applications, 1-1
guidelines for writing, xix
linking, 1-13
managing memory for program code, 16-40
MDI,21-1
program errors to avoid, 16-37, 16-40
template for writing, 2-2
tips for writing, 1-16
using data storage in, 16-16
using fonts in, 18-16
using "huge" data in, 16-36
writing

accessing command-line arguments, 14-3 to
14-4

callback functions, 14-4
choosing memory model, 14-1
creating WinMain function, 14-6
using assembly language, 14-13, 14-15 to

14-16
using C run-time libraries, 14-6 to 14-7
using NULL, 14-2

Windows hook function defined, 20-9
Windows Message Watcher. See SPY
WINDOWS.H include file, 2-4
WinMain callback function

creating, 14-6
defined, 14-4

WinMain function, 1-12,2-2,2-5
definition, 1-17
form, 1-17

WM_ACTIV ATE message, 6-14
WM_CHAR message, 1-7
WM_COMMAND message, 2-21 to 2-22,4-6, 7-18
WM_CREATE message, 21-9
WM_DESTROY message, 1-8, 2-13, 2-17
WM_DRA W message, 8-11
WM_DRAWITEM message, 7-25
WM_INITDIALOG message, 2-21
WM_INITMENU message, 7-15
WM_KEYDOWN message, 4-3, 6-11, 6-13, 21-5
WM_KEYUP message, 4-3, 6-13
WM_LBUTTONDBLCLK message, 4-4
WM_LBUTTONDOWN message, 4-4, 6-6 to 6-7, 6-9
WM_LBUTTONUP message, 4-4, 6-6 to 6-7, 6-9
WM_MBUTTONDBLCLK message, 4-4
WM_MBUTTONDOWN message, 4-4
WM_MBUTTONUP message, 4-4
WM_MDIACTIVATE message, 21-9
WM_MDICASCADE message, 21-10
WM_MDICREATEmessage, 21-8
WM_MDIDESTROY message, 21-9

WM_MDIGETACTIVE message, 21-9
WM_MDIICONARRANGE message, 21-10
WM_MDINEXT message, 21-9

Index 19

WM_MDITILE message, 21-10
WM_MEASUREITEM message, 7-25
WM_MOUSEMOVE message, 4-4,6-4,6-6 to 6-7,6-9
WM_PAINT message, 3-2 to 3-4
WM_PALETTECHANGED message, 19-14
WM_QUERYNEWPALETTE message, 19-13
WM_QUIT message, 1-8
WM_RBUTTONDBLCLK message, 4-4
WM_RBUTTONDOWN message, 4-4
WM_RBUTTONUP message, 4-4
WM_SETFOCUS message, 21-6
WM_SIZE message, 21-6
WM_SYSCOMMAND message, 4-6, 7-18, 21-5
WM_SYSKEYDOWN message, 4-3
WM_SYSKEYUP message, 4-3
WM_TIMER message, 4-5
WNDCLASS data structure, 2-4, 2-6, 7-4
WORD data type, 2-4
Writing

MDI applications
child window function, 21-6
frame window function, 21-5
main message loop, 21-5

text
adding color to, 18-2
checking device' s text-writing capabilities, 18-10
using TextOut function, 18-1

y -------------------------
Yielding control, 2-13

z
-Zp option, 1-12

Other Titles from Microsoft Press

MICROSOFT®WINDOWS™ PROGRAMMER'S REFERENCE
Microsoft Corporation
If you are a Windows programmer, you need this up-to-date, comprehensive reference to each component in the
Windows Application Programming Interface (API). Included is detailed information on every Windows version 3
function, message, data type, resource-compiler statement, assembly-language macro, and file format. This informa
tion is the foundation for any program that takes advantage of Windows' special capabilities: data interchange with
other applications; device-independent graphics; multitasking; dynamic linking and shared display; and memory,
keyboard, mouse, and system timer resources.
1136 pages, softcover 73/8 x 9 1/4 $39.95 Order Code WIPRRE

MICROSOFT®WINDOWS™ PROGRAMMING TOOLS
Microsoft Corporation
MICROS Off WINDOWS PROGRAMMING TOOLS provides detailed information on using the C Compiler and
the linker to compile and link source files and the Resource Compiler to compile application resources. In addition,
you'll find details on debugging and on using the Resource Editors and optimizing tools (including CodeView) that
come with the Microsoft Windows Software Development Kit. Of special importance is the section on the Windows
Help system, its design, and its programming guidelines.
384 pages, softcover 7 3/8 X 9 1/4 $24.95 Order Code WIPRTO

WINDOWS™ 3 COMPANION
Lori L. Lorenz and R. Michael O'Mara
This up-to-date resource thoroughly covers Windows version 3--everything from installing and starting Windows to
using all its built-in applications and desktop accessories. Novices will value the book for its step-by-step tutorials
and great examples; more experienced users will tum to it again and again for its expert advice, tips, and information.
The authors detail the features and use of Windows' Program Manager, File Manager, and Print Manager so that
users will be able to expertly maneuver through Windows, control the environment, and easily manage files, disks,
and printers. Includes a special 8-page section-printed in full color-that highlights Windows' exciting capabilities.
536 pages, softcover 7 112 x 9 1/4 $27.95 Order Code WI3CO

TOOLBOOK® COMPANION
Joseph R. Pierce
The first and definitive book on using and understanding ToolBook-the software construction set that makes it
possible for users to "desktop program" in the Windows environment. This authoritative tutorial is for anyone
regardless of Windows programming experience-who wants to create Windows applications with ToolBook. Along
with step-by-step instructions are dozens of practical examples that show how to create buttons, fields, and other
elements in the typical Windows application. Most importantly, there is a special section on using OpenScript,
ToolBook's built-in programming language.
720 pages,softcover 7 112 x 9 1/4 $27.95 Order Code TOCO

WORKING WITH WORD FOR WINDOWS™
Russell Borland
WORKING WITH WORD FOR WINDOWS is the most comprehensive book available for intermediate users of
Microsoft Word for Windows. Written by a member of the Word for Windows development team, this example
packed book will be your primary reference to all the exciting document processing, desktop publishing, and
WYSIWYG features of Microsoft Word for Windows. In-depth information, advice, and hands-on examples show
you how to customize the user interface, use a variety of fonts and type sizes, insert graphics into documents, use
macros to automate routine editing, position text and graphics, link text and graphics within documents, and more.
656 pages, softcover 7 3/8 X 9 1/4 $22.95 Order Code WOWOWI

MICROSOFT® WORD TECHNICAL REFERENCE
For Windows™ and OS/2 Presentation Manager
Microsoft Corporation
The extraordinary power of Microsoft Word for Windows and Word for OS/2 Presentation Manager places them far
ahead of conventional word processors and document processors--even desktop-publishing software. They are an
ideal platform for developing sophisticated business applications for individual, work-group, or companywide needs.
MICROSOFT WORD TECHNICAL REFERENCE is the single source of detailed, authoritative information for
advanced users and corporate developers creating applications and document-processing systems with Microsoft
Word in the PC environment. This guide includes in-depth coverage on macros and fields, WordBASIC, external file
converters, Rich Text Format (RTF), Dynamic Data Exchange (DDE), and Dynamic Link Libraries (DLL).

450 pages, softcover 7 3/8 X 9 1/4 $22.95 Order Code WOTERE

RUNNING MICROSOFT® EXCEL
The Complete Reference to Microsoft Excel on the IBM® PC, PS/2,® and Compatibles
The Cobb Group: Douglas Cobb and Judy Mynhier
Here is the most complete and authoritative guide to Microsoft Excel available anywhere. No matter what your level
of expertise-seasoned spreadsheet user, beginning or occasional Microsoft Excel user, or longtime Lotus 1-2-3
user-RUNNING MICROSOFT EXCEL will be your primary source of information, advice, and tutorials. It's
packed with step-by-step instructions, scores of examples and tips, and dozens of illustrations, and it covers every sig
nificant function and command of the spreadsheet, database, and charting environments. The easy-to-follow tutorial
will help you quickly learn both the basics and most advanced features of Microsoft Excel.
736 pages, softcover 7 3/8 X 9 1/4 $24.95 Order Code RUEX

Microsoft Press® books are available wherever quality computer books are sold.
Or call 1-800-MSPRESS for ordering information or placing credit card orders.

Please refer to BBK when placing your order.

IIIIicIOsoftIJniversify'

Training That Makes Sense
At Microsoft University, we believe the proof of excellent
training is in a student's ability to apply it. That's not a
complicated philosophy. And, it's not a new idea. But it
does represent an uncommon approach to training in the
microcomputer industry, mainly because it requires
extensive technical and educational resources, as well as
leading-edge programming expertise.

. When you attend Microsoft University, our courses
take you to the heart of our microcomputer software
architecture. Lab sessions provide practical, hands-on
experience and show you how to develop and debug soft
ware more efficiently. Our qualified instructors explain the
philosophy and principles that drive our systems designs.

OUR LAB-BASED DISTINCTION
Because our courses are lab-based, when you graduate from
Microsoft University, you'll begin applying what you've
learned immediately. Throughout our courses, you'll be de
signing a software application that demonstrates the
principles you'vejust learned in class.

The power of our sheepskin pays off in the increased
knowledge and time savings as soon as you begin your next
development project.

PLOT YOUR OWN COURSE
Our curriculum allows you to customize your course of
study from timely, fundamental courses for support
personnel to highly focused, technical courses for sophisti
cated developers. We offer courses on Microsoft Windows;"
Microsoft OS/2, Microsoft OS/2 Presentation Manager,
Microsoft LAN Manager, Microsoft SQL Server, and
Microsoft C.

TIME IS OF THE ESSENCE
To find out more about Microsoft University, call our
registrar at (206) 867-5507, extension 607. We'll send you
our current course schedule, which describes our courses in
detail and provides complete registration information for our
campus facilities in Seattle, Boston, and Baltimore, as well
as our growing, nationwide network of Microsoft University
Authorized Training Centers.

Microsoft University also offers our courses on-site at
your location, when it's convenient for you and your staff.
To find out more about hosting an on-site course, contact
the Microsoft University Sales Manager at (206) 867-5507,
extension 607.

Our courses fill up quickly-so don't delay.

----------------------------------I'D LIKE TO KNOW MORE!

D Please send me the most current course schedule.

D Please send me the Microsoft University catalog.

D Please have a representative call me regarding an on-site course for

Course / Topic

D Please send me more information on the Authorized Training Center
program.

D Please send me the latest information on The Lecture Series:"*

D Please send me more information on the following Microsoft
University courses:

D MS® OS/2 D Microsoft SQL Server

D MS OS/2 Presentation Manager D Microsoft Windows'"

D MS LAN Manager D Microsoft C

When it's available, please send me information on:

D Microsoft University Technical Training Video Courses

Course / Topic

* Seminars and lectures on highly focused topics

X607

PLEASE PRINT

Name:

Job Title/Function:

Company (if applicable):

Street Address:

City: State: Zip

Daytime Phone:

Please clip along dotted line and mail to:

MictosottIJniversity'
One Microsoft Way, Redmond, WA 98052-6399
Microsoft, the Microsoft logo, and MS are'registered trademarks, and Windows and
The Lecture Series are trademarks of Microsoft Corporation.

Look for all three
books in the
Microsoft Windows'" Programmer's
Reference Library.

Here, for the experienced C programmer, is an example-packed introduction
to writing applications using the Microsoft Windows version 3 applica

tion programming interface (API). You'll discover how to use Windows func
tions, messages, and data structures to build efficient and reliable applications. If
you've never programmed in the Windows environment before, you'll appreciate
the step-by-step instructions accompanied by dozens of code excerpts that you can
incorporate into your own Windows programs.

Some of the topics include _ using the graphics device interface (GDI) to create
your own output _ processing input from the keyboard and mouse _ creating and
building icons _ developing menus and processing input from menus _ using
push buttons and list boxes _ creating dialog boxes _ working with the OpenFile
function and with disk files _ displaying bitmaps _ using the Clipboard _
working with printers

You'll also find introductory information on advanced topics, including memory
management, dynamic data exchange, and printer initialization.

Look for these other books in the Microsoft Windows Programmer's Reference Library:

Microsoft Windows l'rogrtuIuur's Refere"ce. An up-t<Hlate, comprehensive reference to
each component in the Windows API. Indispensable to the Windows programmer.

Microsoft Windows progrtlllUlling Tools. Detailed instructions on using the specialized
Windows software development tools: the C Compiler, the linker, the Resource Compiler,
the resource editors, and the debugging and optimization tools. A special section addresses
the Windows Help system and its programming guidelines.

Please Note: The three books in the Microsoft Windows Programmer's Reference Library are
included in the Microsoft Windows Software Development Kit (SDK).

U.S.A.

U.K.

$29.95

£27.95
[Recommended] The Authorized

Editions

ISBN 1-55615-308-2

