
Part of the five-volume
Networking Services Developer's Reference Ubrary

The essential reference set for developing with
Microsoft® Windows® networking technologies

David Iseminger
Series Editor - ,-

RPCand
~ndows· NebNo~ng

David Iseminger
Series Editor

RPCand
Window~ Networking

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation; portions © 2000 by David Iseminger.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Iseminger, David, 1969-

Networking Services Developer's Reference Library / David Iseminger.
p. cm.

ISBN 0-7356-0993-4
1. Application Software--Development. 2. Microsoft Windows (Computer file). 3.

Computer networks. I. Title.
QA76.76.A65 184 2000
005.4'4769--dc21 00-020241

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCWC 5 4 3 2 1 0

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Intel is a registered trademark of Intel Corporation. Active Directory, BackOffice, FrontPage, Microsoft,
Microsoft Press, MSDN, MS-DOS, Visual Basic, Visual C++, Visual FoxPro, Visual InterDev, Visual
J++, Visual SourceSafe, Visual Studio, Win32, Windows, and Windows NT are either registered trade
marks or trademarks of Microsoft Corporation in the United States and/or other countries. Other product
and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious.
No association with any real company, organization, product, person, or event is intended or should
be inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Wendy Zucker

Part No. 097-0002785

Acknowledgements
First, thanks to Ben Ryan at Microsoft Press for continuing to share my enthusiasm
about the series. Many thanks to Ben and Steve Guty for also managing the business
details associated with publishing this series. We're just getting started!

Wendy Zucker again kept step with the difficult and tight schedule at Microsoft Press
and orchestrated things in the way only project editors can endure. John Pierce was
also instrumental in seeing the publishing process through completion, many thanks to
both of them. The cool cover art that will continue through the series is directed by Greg
Hickman-thanks for the excellent work. I'm a firm believer that artwork and packaging
are integral to the success of a project.

Thanks also to the marketing team at Microsoft Press that handles this series: Cora
McLaughlin and Cheri Chapman on the front lines and Jocelyn Paul each deserve
recognition for their coordination efforts with MSDN, openness to my ideas and
suggestions, creative marketing efforts, and other feats of marketing ingenuity.

On the Windows SDK side of things, thanks again to Morgan Seeley for introducing me
to the editor at Microsoft Press, and thereby routing this series to the right place.

Thanks also to Margot (Maley) Hutchison for doing all those agent-ish things so well.

Author's Note In Part 2 you'll see some code blocks that have unusual margin
settings, or code that wraps to a subsequent line. This is a result of physical page
constraints of printed material; the original code in these places was indented too much
to keep its printed form on one line. I've reviewed every line of code in this library in an
effort to ensure it reads as well as possible (for example, modifying comments to keep
them on one line, and to keep line-delimited comment integrity). In some places,
however, the word wrap effect couldn't be avoided. As such, please ensure that you
check closely if you use and compile these examples.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I.

v

Contents

Acknowledgements .. iii

Part 1

Chapter 1: Getting Around in the Networking Services Library ... 1
How the Networking Services Library Is Structured .. 2

How the Networking Services Library Is Designed ... 3

Chapter 2: What's In This Volume? .. 5
Microsoft RPC Model ... 5

Installing The RPC Programming Environment ... 6

Building RPC Applications ... 6

Connecting the Client and the Server .. 6

Tutorial ... 6

IDL and ACF Files .. 6

Data and Language Features .. 6

Arrays and Pointers .. 6

Pipes ... 6

Binding and Handles .. 6

Memory Management .. 6

Serialization Services ... 6

Security ... 7

Installing and Configuring RPC Applications ... 7

Asynchronous RPC .. 7

RPC Message Queuing .. 7

Remote Procedure Calls Using HTTP ... 7

Samples ... 7

RPC Reference .. 7

Chapter 3: Using Microsoft Reference Resources .. 9
The Microsoft Developer Network .. 10

Comparing MSDN with MSDN Online ... 11

MSDN Subscriptions ... 13

MSDN Library Subscription .. 13

MSDN Professional Subscription ... 14

MSDN Universal Subscription .. 14

vi Volume 3 RPC and WNet

Purchasing an MSDN Subscription ... 14

Using MSDN ... 15
Navigating MSDN .. 16

Quick Tips .. 18

Using MSDN Online .. 20

Navigating MSDN Online ... 22
MSDN Online Features .. 23

MSDN Online Registered Users .. 29

The Windows Programming Reference Series .. 30

Chapter 4: Finding the Developer Resources You Need .. 31
Developer Support ... 31

Online Resources ... 33

Internet Standards .. 34

Learning Products .. 35

Conferences ... 37

Other Resources .. 37

Chapter 5: Avoiding Common RPC Programming Errors .. 39
Solution Summary .. 39

Common RPC Programming Errors .. 40

Pointecdefault(unique) and embedded pOinters40

A valid switch_is value in an RPC-capable structure doesn't ensure a
non-NULL pointer ... 41

A NULL DACL affords no protection .. 41

Call RpclmpersonateClientO before any security-relevant operation 42

Starting and stopping impersonation ... 43

Strings are only zero-terminated when declared with string in the .idl 44

Don't copy arbitrary length data into independently sized buffers45

size_is may result in a zero-length structure .. .45

Calculations in a size_is or length_is specification are susceptible to overflow 46

Strict context handles ... 46

Part 2

Chapter 6: Microsoft RPC Model .. 47
The Programming Model ... 47

The Client-Server Model .. 49

The Compute-Server Model ... 51

How RPC Works .. 51

Contents vii

OSF Standards for RPC ... 53

Microsoft RPC Components ... 54

RPC Extends Client-Server Computing ... 55

Chapter 7: Installing the RPC Programming Environment ... 57
Developing 32-Bit Windows Applications ... 57

Developing Macintosh Client Applications ... 59

Chapter 8: Building RPC Applications ... 61
General Build Procedure .. 61

Developing the Interface ... 62

Generating Interface UUIDs ... 63

Using MIDL ... 64

Developing the Server ... 66

Developing the Client .. 67

Environment, Compiler, and API Set Choices ... 68

Exception Handling ... : 69

Chapter 9: Connecting the Client and the Server .. 71
Essential RPC Binding Terminology .. 71

How the Server Prepares for a Connection ... 72

Registering the Interface ... 73

Creating Binding Information ... 73

Advertising the Server Program , .. 74

Registering Endpoints ... 75

Listening for Client Calls .. 75

How the Client Establishes a Connection .. 76

Making a Remote Procedure Call ... 78

Finding the Server Host Computer .. 78

Finding the Server Program .. 79

Creating a Binding ... , 79

Chapter 10: An RPC Tutorial ... 81
The Stand-Alone Application .. 81

Defining the Interlace ... 82

Generating the UUID .. 82
The IDL File .. 83

The ACF File .. 83

Generating the Stub Files ... 84

The Client Application .. 86
The Server Application ... 88

viii Volume 3 RPC and WNet

Stopping the Server Application ... 90

Compiling and Linking .. 91

Running the Application ... 92

Chapter 11 : The IDL and ACF Files .. 93
The Interface Definition Language (IDL) File ... 93

The IDL Interface Header ... 94
The IDL Interface Body ... 95

The Application Configuration File (ACF) .. 96

The ACF Header ... 96

The ACF Body ... 96

MIDL Compiler Output ... 97

Chapter 12: Data and Language Features ... 99
Strong Typing ... 99

Base Types ... 100

Signed and Unsigned Types ... 101

Wide-Character Types .. 101

Structures .. 101
Unions ... 101

Enumerated Types .. 103

Arrays .. 103

Function Attributes .. 103
Field Attributes .. 103

Three Pointer Types ... 104

Type Attributes .. 105

Directional (Parameter) Attributes .. 106

Data Representation .. 108

The transmiCas and represenCas Attributes ... 109

The transmiCas Attribute ... 109

The type_to_xmit Function ... : 111

The type_fromjmit Function .. 112

The type_free_xmit Function ... 114

The type_free_inst Function .. 114

The represenCas Attribute .. 115

The named_type_from_local Function .. 118

The named_type_to_local Function ... 118

The named_type_free_local Function ... 118

The named_type_free_inst Function ... 118

The wire_marshal and usecmarshal Attributes ... 119

Contents ix

The wire_marshal Attribute .. 119

The user_marshal Attribute .. 120

The type_UserSize Function .. 121

The type_UserMarshal Function .. 122

The type_UserUnmarshal Function ... 123

The type_UserFree Function ... 124

Marshaling Rules for user_marShal and wire_marshal ~ ; 124

Chapter 13: Arrays and Pointers ... 127
Arrays and RPC .. 127

Kinds of Arrays .. 127

Fixed Arrays ... 127

Varying Arrays .. 128

Contormant Arrays < .. 129

Array Attributes , ... 130

MIDL Array Attributes Used in RPC ... 132

The [size_is] Attribute , .. 132

The [length_is] Attribute ... 133

The [firsUs] and [lasUs] Attributes ... 133
The [max_is] Attribute '" ... 134

Combining Array Attributes .. < 134

The [string] Attribute in Arrays ; < 135

Multidimensional Arrays .. 135

Pointers and RPC ... 137

Kinds of Pointers ... 137

Reference Pointers ... 137

Unique Pointers .. , < 139

Full Pointers ... 140

Pointers and Memory Allocation : ... " 141

Default Pointer Types .. , ... 142

Pointer-Attribute Type Inheritance ; < ... 143

USing Arrays, Strings, and Pointers ... 144

Counted Character Arrays .. ~ , 145

[in, out, size_is] Prototype ... < <., 145
[in, size_is and out, size_is] Prototype , , ;.: , 146

Strings : .. 147

[in, out, string] Prototype ; ; , 148

[in, string] and [out, string] Prototype ... 149

Multiple Levels of POinters .. j 149

x Volume 3 RPC and WNet

Chapter 14: Pipes ... 151
Essential Pipe Terminology ... 151

The Pipe State ... 152

Defining Pipes in IDL Files ... 152

Client-Side Pipe Implementation .. 153

Implementing Input Pipes on the Client.. .. 154

Implementing Output Pipes on the Client ... 157

Server-Side Pipe Implementation .. 159

Implementing Input Pipes on the Server. .. 159

Implementing Output Pipes on the Server .. 160

Rules for Multiple Pipes ... 161

Combining Pipe and Nonpipe Parameters .. 162

Chapter 15: Binding and Handles ... 163
Binding Handles ... 163

Types of Binding Handles ... 163

Automatic Binding Handles .. 164

Implicit Binding Handles ... 165

Explicit Binding Handles .. 167

Primitive and Custom Binding Handles ... 167

Client-Side Binding ... 170

Selecting a Protocol Sequence .. 171

Finding Server Host Systems .. 172

Finding Endpoints .. 176

Server-Side Binding .. 177

Registering Interfaces .. 177

Specifying Protocol Sequences ... 186

Specifying Endpoints ... 187

AdvertiSing Server Interfaces ... 189

Listening for Remote Procedure Calls ... 190

Fully and Partially Bound Handles .. 191
Interpreting Binding Information .. 191

Microsoft RPC Binding-Handle Extensions .. 193

Binding-Handle Functions ... 194

The RPC Name-Service Database ... 195
Name-Service Application Guidelines ... 196

An Overview of the Name Service Entry ... 197

Criteria for Name Service Entries .. 197

Name Service Entry Cleanup .. 198

Contents xi

What Happens During a Query .. 198

Using Microsoft Locator. ... 199

Using the Cell Directory Service (CDS) ... 200

Name Syntax ... 201

Context Handles ... 201

Interface Development Using Context Handles .. 202

Server Development Using Context Handles .. 203

Client Development Using Context Handles ... 205

Server Context Rundown Routine ... 207

Client Context Reset ... 208

Multi-Threaded Clients and Context Handles ... 208

Chapter 16: Memory Management .. 209
Introduction to RPC Memory Management .. 209

How Memory Is Allocated and Deallocated ... 210

The midl_usecallocate Function .. 21 0

The midl_user_free Function ... 211

RpcSs Memory Management Package ... 212

Memory-Management Models .. 213

Node-by-Node Allocation and Deallocation .. 213

Stub-Allocated Buffers .. ,214

Application-Allocated Buffer .. 214

Persistent Storage on the Server ... , 215

Who Manages Memory? .. 216

Top-Level and Embedded Pointers ... 216

Directional Attributes Applied to the Parameter .. 216

Length, Size, and Directional Attributes .. 217
Pointer Attributes Applied to the Parameter. ... 219

Combining Pointer and Directional Attributes ... 219

Embedded Out-Only Reference Pointers ; ... 219

Out-Only Unique or Full Pointer Parameters, Not Accepted ~ 220
Function Return Values ... 220

Memory Orphaning ... 221

Summary of Memory Allocation Rules ... 221

Chapter 17: Serialization Services .. 223
Using Serialization Services ... 224

Procedure Serialization ... : 225

Type Serialization ... 225

Serialization Handles ... 226

xii Volume 3 RPC and WNet

Implicit Versus Explicit Handles .. 227

Serialization Styles .. 227

Fixed Buffer Serialization ... 228
Dynamic Buffer Serialization .. 230

I ncremental Serialization ; .. 230

Obtaining an Encoding Identity ... 233

Chapter 18: Security .. 235
RPC Security Essentials .. 235

Principal Names•.. 235

Authentication Levels .. 236

Authentication Services .. 237

Client Authentication Credentials .. 237

Authorization Services .. 237

Quality of Service .. 237
Authorization Functions .. 238

Key Acquisition Functions ... 239

Client Impersonation ... 239

Security Methods ... 240
Security Support Provider Interface (SSPI) ... ; 240

SSPI Architectural Overview .. 240

Security Support Providers (SSPs) .. 241

Writing an Authenticated SSPI Client .. , 242
Writing an Authenticated SSPI Server ... 245

Windows NT and Windows 2000 Transport Security ... 246

Using Transport-Level Security on the Server ... 247

Using Transport-Level Security on the Client .. 247

Chapter 19: Installing and Configuring RPC Applications ... 249
Configuring the Name Service Provider. .. 249

Configuring the Name Service for Windows 95 .. 250
Editing the Windows 95 Registry ... 250

Configuring the Name Service for Windows NT or Windows2000 251

Configuring the Name Service for Windows 3.x or MS-DOS 252

Starting and Stopping Microsoft Locator. .. 253

Registry Information ... 253

Using RPC Registry Entries .. 253

Configuring the Windows NT and Windows 2000 Registry for Port Allocations and
Selective Binding .. ·255

Using RPC with Winsock Proxy .. ; 257

Contents xiii

SPXlIPX Installation ... 258

Configuring RPC for SPXlIPX ... 258

Configuring SAP and RPC .. 260

Configuring the Security Server ... 261

Chapter 20: Asynchronous RPC ... 263
Declaring Asynchronous Functions .. 264

Client-Side Asynchronous RPC ... 264

Making the Asynchronous Call .. 265

Waiting for the Asynchronous Reply ... 267

Receiving the Asynchronous Reply .. 268

Server-Side Asynchronous RPC .. 269

Handling Asynchronous Calls ... 269

Receiving Cancellations .. 269

Sending the Asynchronous Reply ... 269
Asynchronous I/O and Asynchronous RPC .. 271

Causal Ordering of Asynchronous Calls .. 272

Error Handling .. 272

Asynchronous RPC Over the Named-Pipe Protocol .. 273

Using Asynchronous RPC with DCE Pipes .. 274

Asynchronous Pipes .. 274

Declaring Asynchronous Pipes ... , 274

Client-Side Asynchronous Pipe Handling ... 275

Server-Side Asynchronous Pipe Handling .. 276

Asynchronous DCOM ... 280

Chapter 21: RPC Message Queuing .. 281
Overview of Message Queuing Services Architecture ... 281

Message and Message Queue Properties ... 283

Using MSMQ as an RPC Transport ... 283

System Requirements for RPC-MQ Applications ... 284

Developing RPC-MQ Applications ... 284

MSMQ Security Services ... 286

Chapter 22: Remote Procedure Calls Using HTIP .. 287
Using HTTP as an RPC Transport ... 287

HTTP RPC Security .. ,.; 290

System Requirements for HTTP RPC .. 291

Configuring Computers for HTTP RPC .. 291

Chapter 23: RPC Samples .. 293

xiv Volume 3 RPC and WNet

Chapter 24: RPC Data Types, Structures, and Constants .. 295
RPC Structures .. 295

RPC Enumerated Types .. 315

Other RPC Types ... 316

RPC Constants .. 329

RPC Return Values .. 340

Chapter 25: RPC Function Reference .. 347
RPC Functions ... 347

Chapter 26: RPC Callback and Notification Functions ... 575

Chapter 27: RPC Macros ... 583

Chapter 28: Windows Networking (WNet) ... 591
About Windows Networking ... 591

WNet Functions .. 592

Windows Networking Operations .. 594

Using Windows Networking ... 595

Using the Connections Dialog Box ... 595

Enumerating Network Resources ... 595

Adding a Network Connection .. 599

Assigning a Drive to a Share .. 600

Determining the Location of a Share .. 601

Retrieving the Connection Name .. 603

Retrieving the User Name ... 604

Canceling a Network Connection .. 605

Retrieving Network Errors ... 606

Windows Networking Reference .. 608

Windows Networking Functions .. 608

Obsolete Functions ... 608

Windows Networking Structures ... 656

Part 3

Glossary ..•... 669

Index: Networking Services Programming Elements - Alphabetical Listing 677

Part 1

CHAPTER 1

Getting Around in the Networking
Services Library

Networking is pervasive in this digital age in which we live. Information at your fingertips,
distributed computing, name resolution, and indeed the entire Internet-the advent
of which will be ascribed to our generation for centuries to come-imply and require
networking. Everything that has become the buzz of our business and personal lives,
including e-mail, cell phones, and Web surfing, is enabled by the fact that networking
has been brought to the masses (and we've barely scraped the beginning of the trend).
You, the network-enabled Windows application developer, need to know how to lasso
this all-important networking services capability and make it a part of your application.
You've come to the right place.

Networking isn't magic, but it can seem that way to those who aren't accustomed to
it (or to the programmer who isn't familiar with the technologies or doesn't know how to
make networking part of his or her application). That's why the Networking Services
Developer's Reference Library isn't just a collection of programmatic reference
information; it would be only half-complete if it were. Instead, the Networking Services
Library is a collection of explanatory and reference information that combine to provide
you with the complete set that you need to create today's network-enabled Windows
application.

The Networking Services Library is the comprehensive reference guide to network
enabled application development. This library, like all libraries in the Windows
Programming Reference Series (WPRS), is designed to deliver the most complete,
authoritative, and accessible reference information available on a given subject of
Windows network programming--without sacrificing focus. Each book in each library is
dedicated to a logical group of technologies or development concerns; this approach has
been taken specifically to enable you to find the·information you need quickly, efficiently,
and intuitively.

In addition to its networking services development information, th~ Networking Services
Library contains tips designed to make your programming life easier. For example,
a thorough explanation and detailed tour of MSDN Online is included, as is a section
that helps you get the most out of your MSDN subscription. Just in case you don't have
an MSDN subscription, or don't know why you should, I've included information about
that too, including the differences between the three levels of MSDN subscription, what
each level offers, and why you'd want a subscription when MSDN Online is available
over the Internet. .

2 Volume 3 RPC and WNet

To ensure that you don't get lost in all the information provided in the Networking
Services Library, each volume's appendixes provide an all-encompassing programming
directory to help you easily find the particular programming element you're looking for.
This directory suite, which covers all the functions, structures, enumerations, and other
programming elements found in network-enabled application development, gets you
quickly to the volume and page you need, saving you hours of time and bucketsful
of frustration.

How the Networking Services Library Is Structured
The Networking Services Library consists of five volumes, each of which focuses on
a particular aspect of network programming. These programming reference volumes
have been divided into the following:

• Volume 1: Winsock and QOS

• Volume 2: Network Interfaces and Protocols

• Volume 3: RPC and WNet

• Volume 4: Remote Access Services

• Volume 5: Routing

Dividing the Networking Services Library into these categories enables you to quickly
identify the Networking Services volume you need, based on your task, and facilitates
your maintenance of focus for that task. This approach enables you to keep one
reference book open and handy, or tucked under your arm while researching that aspect
of Windows programming on sandy beaches, without risking back problems (from toting
around all 3,000+ pages of the Networking Services Library) and without having to
shuffle among multiple less-focused books.

Within the Networking Services Library-and in fact, in all WPRS Libraries-each
volume has a deliberate structure. This per-volume structure has been created to further
focus the reference material in a developer-friendly manner, to maintain consistency
within each volume and each Library throughout the series, and to enable you to easily
gather the information you need. To that end, each volume in the Networking Services
Library contains the following parts:

• Part 1: Introduction and Overview

• Part 2: Guides, Examples, and Programmatic Reference

• Part 3: Intelligently Structured Indexes

Chapter 1 Getting Around in the Networking Services Library 3

Part 1 provides an introduction to the Networking Services Library and to the WPRS
(what you're reading now), and a handful of chapters designed to help you get the most
out of networking technologies, MSDN, and MSDN Online. MSDN and WPRS Libraries
are your tools in the developer process; knowing how to use them to their fullest will
enable you to be more efficient and effective (both of which are generally desirable
traits). In certain volumes (where appropriate), I've also provided additional information
that you'll need in your network-enabled development efforts, and included such
information as concluding chapters in Part 1. For example, Volume 3 includes a chapter
that explains terms used throughout the RPC development documentation; by putting
it into Chapter 5 of that volume, you always know where to go when you have a question
about an RPC term. Some of the other volumes in the Networking Services Library
conclude their Part 1 with chapters that include information crucial to their volume's
contents, but I've been very selective about including such information. Publishing
constraints have limited the amount of information I can provide in each volume
(and in the library as a whole), so I've focused on the priority: getting you the most
useful information possible within the number of pages I have to work with.

Part 2 contains the networking reference material particular to its volume. You'll notice
that each volume contains much more than simple collections of function and structure
definitions. A comprehensive reference resource should include information about how
to use a particular technology, as well as definitions of programming elements.
Consequently, the information in Part 2 combines complete programming element
definitions with instructional and explanatory material for each programming area.

Part 3 is a collection of intelligently arranged and created indexes. One of the biggest
challenges of the IT professional is finding information in the sea of available resources
and network programming is probably one of the most complex and involved of any
development discipline. In order to help you get a handle on network programming
references (and Microsoft technologies in general), Part 3 puts all such information into
an understandable, manageable directory (in the form of indexes) that enables you
to quickly find the information you need.

How the Networking Services Library Is Designed
The Networking Services Library (and all libraries in the WPRS) is designed to deliver
the most pertinent information in the most accessible way possible. The Networking
Services Library is also designed to integrate seamlessly with MSDN and MSDN Online
by providing a look and feel consistent with their electronic means of disseminating
Microsoft reference information. In other words, theway a given function reference
appears on the pages of this book has been designed specifically to emulate the way
that MSDN and MSDN Online present their function reference pages.

The reason for maintaining such integration is simple: to make it easy for you to use the
tools and get the ongoing information you need to create quality programs. Providing a
"common interface" among reference resources allows your familiarity with the
Networking Services Library reference material to be immediately applied to MSDN or
MSDN Online, and vice-versa. In a word, it means consistency.

4 Volume 3 RPe and WNet

You'll find this philosophy of consistency and simplicity applied throughout WPRS
publications. I've designed the series to go hand-in-hand with MSDN and MSDN Online
resources. Such consistency lets you leverage your familiarity with electronic reference
material, then apply that familiarity to enable you to get away from your computer if you'd
like, take a book with you, and-in the absence of keyboards and e-mail and upright
chairs-get your programming reading and research done. Of course, each of the
Networking Services Library volumes fits nicely right next to your mouse pad as well,
even when opened to a particular reference page.

With any job, the simpler and more consistent your tools are, the more time you can
spend doing work rather than figuring out how to use your tools. The structure and
design of the Networking Services Library provide you with a comprehensive,
presharpened toolset to build compelling Windows applications.

CHAPTER 2

What's In This Volume?

Volume 3 of the Networking Services Developer's Reference Library provides in-depth
information about the world of Remote Procedure Calls (RPC), as well as detailed
information about Microsoft Windows Networking (WNet) programming.

5

This volume also has information about how you can use development resources such
as MSDN, MSDN Online, and developer support resources. This helpful information is
found in various chapters in Part 1, chapters common to all WPRS volumes. By including
this information in each library and volume, a few goals of the WPRS are achieved:

• I don't presume you have bought, or expect you to have to buy another WPRS Library
to get access to this information. Maybe your primary focus is network programming
and your budget doesn't allow for you to purchase the Active Directory Developer's
Reference Library. Since I've included this information in this library, you don't have
to.

• You can access this important and useful information regardless of which volume you
have in your hand. You don't have to (nor should you have to) fumble with another
physical book to access information about how to get the most out of MSDN or where
to get support for questions you have about a particular Windows development
problem you're having.

• Each volume becomes more useful, more portable, and more complete in and of
itself. This goal of the WPRS ma.kes it easier for you to grab one of its libraries'
volumes and take it with you, rather than feeling like you must bring multiple volumes
with you to have access to the library's important overview and usability information.

These goals have steered this library's content and choices of included technologies;
I hope you find its information is useful, portable, a good value, and as accessible as it
can be.

Part 2 of this volume is broken into two sections:

• RPC programmer's guide and reference information, in Chapters 6-27

• WNet information, all wrapped up in Chapter 28

The following provides information about what you will find in this volume's treatment
of RPC:

Microsoft RPe Model
Provides an overview of the client-server programming model, standards for distributed
application programming, and a description of how Microsoft RPC works.

6 Volume 3 RPe and WNet

Installing The RPC Programming Environment
Tells how to install the files and tools needed to develop distributed applications with
Microsoft RPC.

Building RPC Applications
Describes the MIDL compiler and the necessary environment for building distributed
applications with Microsoft RPC.

Connecting the Client and the Server
Provides an overview of the process of initializing and running distributed applications.

Tutorial
Provides an overview of the development of a small distributed application. This example
demonstrates all the steps in developing a distributed application, the tools you use, and
the components that make up the executable programs.

IDL and ACF Files
Describes the IDL and ACF files used to specify the interface to the remote procedure
call and the MIDL compiler switches that control how these files are processed.

Data and Language Features
Demonstrates the use of standard data types.

Arrays and Pointers
Explains how to pass arrays pOinters as parameters.

Pipes
Describes how to use named pipes as the transport mechanism for remote procedure

, calls.

Binding and Handles
Describes the binding handle-the data structure that allows the developer to bind the
calling application to the remote procedure.

Memory Management
Offers ideas about how to manage memory on the client and server when performing
remote procedure calls.

Serialization Services
Describes the methods for encoding or decoding data.

Chapter 2 What's In This Volume? 7

Security
Describes the methods for implementing security features in your distributed
applications.

Installing and Configuring RPC Applications
Discusses installing your client and server applications in the MS-DOS, Microsoft
Windows 3.x, Windows 95, and Windows NTlWindows 2000 environments. Describes
how to configure the name service provider and the security service. This section also
contains network transport information for RPC.

Asynchronous RPC
Presents information on the Microsoft asynchronous extensions to the RPC definition.
Asynchronous remote procedure calls return immediately without waiting for output.
When the remote procedure finishes executing on the server, it transfers return data to
the client.

RPC Message Queuing
Describes the use of the Message Queuing Service (MSMQ), which lets users
communicate across networks and systems regardless of the current state of the
communicating applications and systems.

Remote Procedure Calls Using HTTP
Provides RPC clients with the ability to securely connect across the Internet to RPC
server programs and execute remote procedure calls.

Samples
Contains a description of the example RPC programs shipped with the Microsoft
Platform Software Developer's Kit.

RPCReference
This collection of chapters provides a complete treatment of RPC programming
reference elements.

CHAPTER 3

Using Microsoft Reference
Resources

9

Keeping current with all the latest information on the latest networking technology is like
trying to count the packets going through routers at the MAE-WEST Internet service
exchange by watching their blinking activity lights: It's impossible. Often times,
application developers feel like those routers might feel at a given day's peak activity; too
much information is passing through them, none of which is being absorbed or passed
along fast enough for their boss' liking.

For developers, sifting through all the available information to get to the required
information is often a major undertaking, and can impose a significant amount of
overhead upon a given project. What's needed is either a collection of information that
has been sifted for you, shaking out the information you need the most and putting that
pertinent information into a format that's useful and efficient, or direction on how to sift
the information yourself. The Networking Services Developer's Reference Library does
the former, and this chapter and the next provide you with the latter.

This veritable white noise of information hasn't always been a problem for network
programmers. Not long ago, getting the information you needed was a challenge
because there wasn't enough of it; you had to find out where such information might be
located and then actually get access to that location, because it wasn't at your fingertips
or on some globally available backbone, and such searching took time. In short, the
availability of information was limited.

Today, the volume of information that surrounds us sometimes numbs us; we're
overloaded with too much information, and if we don't take measures to filter out what
we don't need to meet our goals, soon we become inundated and unable to discern
what's "white noise" and what's information that we need to stay on top of our respective
fields. In short, the overload of available information makes it more difficult for us to find
what we really need, and wading through the deluge slows us down.

This fact applies equally to Microsoft's reference material, because there is so much
information that finding what you need can be as challenging as figuring out what to do
with it once you have it. Developers need a way to cut through what isn't pertinent to
them and to get what they're looking for. One way to ensure you can get to the.
information you need is to understand the tools you use; carpenters know how to use
nail-guns, and it makes them more efficient. Bankers know how to use ten-keys, and it
makes them more adept. If you're a developer of Windows applications, two tools you
should know are MSDN and MSDN Online. The third tool for developers--reference
books from the WPRS--can help you get the most out of the first two.

10 Volume 3 RPC and WNet

Books in the WPRS, such as those found in the Networking Services Developer's
Reference Library, provide reference material that focuses on a given area of Windows
programming. MSDN and MSDN Online, in comparison, contain all of the reference
material that all Microsoft programming technologies have amassed over the past few
years, and create one large repository of information. Regardless of how well such
information is organized, there's a lot of it, and if you don't know your way around,
finding what you need (even though it's in there, somewhere) can be frustrating, time
consuming, and just an overall bad experience.

This chapter will give you the insight and tips you need to navigate MSDN and MSDN
Online and enable you to use each of them to the fullest of their capabilities. Also, other
Microsoft reference resources are investigated, and by the end of the chapter, you'll
know where to go for the Microsoft reference information you need (and how to quickly
and efficiently get there).

The Microsoft Developer Network
MSDN stands for Microsoft Developer Network, and its intent is to provide developers
with a network of information to enable the development of Windows applications. Many
people have either worked with MSDN or have heard of it, and quite a few have one of
the three available subscription levels to MSDN, but there are many, many more who
don't have subscriptions and could use some concise direction on what MSDN can do
for a developer or development group. If you fall into any of these categories, this
section is for you.

There is some clarification to be done with MSDN and its offerings; if you've heard of
MSDN, or have had experience with MSDN Online, you may have asked yourself one of
these questions during the process of getting up to speed with either resource:

• Why do I need a subscription to MSDN if resources such as MSDN Online are
accessible for free over the Internet?

• What is the difference between the three levels of MSDN subscriptions?

• Is there a difference between MSDN and MSDN Online, other than the fact that one is
on the .Internet and the other is on a CD? Do their features overlap, separate,
coincide, or what?

If you have asked any of these questions, then lurking somewhere in the back of your
thoughts has probably been a sneaking suspicion that maybe you aren't getting the most
out of MSDN. Maybe you're wondering whether you're paying too much for too little, or
not enough to get the resources you need. Regardless, you want to be in the know and
not in the dark. By the end of this chapter, you'll know t~e answers to all these questions
and more, along with some effective tips and hints on how to make the most effective
use of MSDN and MSDN Online.

Chapter 3 Using Microsoft Reference Resources 11

Comparing MSDN with MSDN Online
Part of the challenge of differentiating between MSDN and MSDN Online comes with
determining which has the features you need. Confounding this differentiation is the fact
that both have some content in common, yet each offers content unavailable with the
other. But can their difference be boiled down? Yes, if broad strokes and some
generalities are used:

• MSDN provides reference content and the latest Microsoft product software, all
shipped to its subscribers on CD or DVD.

• MSDN Online provides reference content and a development community forum, and
is available only over the Internet.

Each delivery mechanism for the content that Microsoft is making available to Windows
developers is appropriate for the medium, and each plays on the strength of the medium
to provide its "customers" with the best possible presentation of material. These
strengths and medium considerations enable MSDN and MSDN Online to provide
developers with different feature sets, each of which has its advantages.

MSDN is perhaps less "immediate" than MSDN Online because it gets to its subscribers
in the form of CDs or DVDs that come in the mail. However, MSDN can sit in your
CD/DVD drive (or on your hard drive), and isn't subject to Internet speeds or failures.
Also, MSDN hasa software download feature that enables subscribers to automatically
update their local MSDN content over the Internet, as soon as it becomes available,
without having to wait for the update CD/DVD to come in the mail. The interface with
which MSDN displays its material-which looks a whole lot like a specialized browser
window-is also linked to the Internet as a browser-like window. To further coordinate
MSDN with the immediacy of the Internet, MSDN Online has a section of the site
dedicated to MSDN subscribers that enable subscription material to be updated (on their
local machines) as soon as it's available.

MSDN Online has lots of editorial and technical columns that are published directly to
the site, and are tailored (not surprisingly) to the issues and challenges faced by
developers of Windows applications or Windows-based Web sites. MSDN Online also
has a customizable interface (somewhat similar to MSN.com) that enables visitors to
tailor the information that's presented upon visiting the site to the areas of Windows
development in which they are most interested. However, MSDN Online, while full of
up-tO-date reference material and extensive online developer community content,
doesn't come with Microsoft product software, and doesn't reside on your local machine.

Because it's easy to confuse the differences and similarities between MSDN and MSDN
Online, it makes sense to figure out a way to quickly identify how and where they depart.
Figure 3-1 puts the d·ifferences-and similarities-between MSDN and MSDN Online
into a quickly identifiable format.

12 Volume 3 RPC and WNet

Figure 3-1: The similarities and differences in coverage between MSDN and
MSDN Online.

One feature you'll notice is shared between MSDN and MSDN Online is the interface
they are very similar. That's almost certainly a result of attempting to ensure that
developers' user experience with MSDN is easily associated with the experience had on
MSDN Online, and vice-versa.

Chapter 3 Using Microsoft Reference Resources 13

Remember, too, that if you are an MSDN subscriber, you can still use MSDN Online and
its features. So it isn't an "either/or" question with regard to whether you need an MSDN
subscription or whether you should use MSDN Online; if you have an MSDN
subscription, you will probably continue to use MSDN Online and the additional features
provided with your MSDN subscription.

MSDN Subscriptions
If you're wondering whether you might benefit from a subscription to MSDN, but you
aren't quite sure what the differences between its subscription levels are, you aren't
alone. This section aims to provide a quick guide to the differences in subscription levels,
and even provides an estimate for what each subscription level costs.

The three subscription levels for MSDN are: Library, Professional, and Universal. Each
has a different set of features. Each progressive level encompasses the lower level's
features, and includes additional features. In other words, with the Professional
subscription, you get everything provided in the Library subscription plus additional
features; with the Universal subscription, you get everything provided in the Professional
subscription plus even more features.

MSDN Library Subscription
The MSDN Library subscription is the basic MSDN subscription. While the Library
subscription doesn't come with the Microsoft product software that the Professional and
Universal subscriptions provide, it does come with other features that developers may
find necessary in their development effort. With the Library subscription, you get the
following:

• The Microsoft reference library, including SDK and DDK documentation, updated
quarterly

• Lots of sample code, which you can cut-and-paste into your projects, royalty free

• The complete Microsoft Knowledge Sase-the collection of bugs and workarounds

• Technology specifications for Microsoft technologies

• The complete set of product documentation, such as Microsoft Visual Studio,
Microsoft Office, and others

• Complete (and in some cases, partial) electronic copies of selected books and
magazines

• Conference and seminar papers-if you weren't there, you can use MSDN's notes

In addition to these items, you also get:

• Archives of MSDN Online columns

• Periodic e-mails from Microsoft chock full of development-related information

• A subscription to MSDN News, a bi-monthly newspaper from the MSDN folks

• Access to subscriber-exclusive areas and material on MSDN Online

14 Volume 3 RPC and WNet

MSDN Professional Subscription
The MSDN Professional subscription is a superset of the Library subscription. In addition
to the features outlined in the previous section, MSDN Professional subscribers get the
following:

• Complete set of Windows operating systems, including release versions of
Windows 95, Windows 98, and Windows NT 4 Server and Workstation.

• Windows SDKs and DDKs in their entirety

• International versions of Windows operating systems (as chosen)

• Priority technical support for two incidents in a development and test environment

MSDN Universal Subscription
The MSDN Universal subscription is the all-encompassing version of the MSDN
subscription. In addition to everything provided in the Professional subscription,
Universal subscribers get the following:

• The latest version of Visual Studio, Enterprise Edition

• The Microsoft BackOffice test platform, which includes all sorts of Microsoft product
software incorporated in the BackOffice family, each with a special 10-connection
license for use in the development of your software products

• Additional development tools, such as Office Developer, Microsoft FrontPage, and
Microsoft Project

• Priority technical support for two additional incidents in a development and test
environment (for a total of four incidents)

Purchasing an MSDN Subscription
Of course, all the features that you get with MSDN subscriptions aren't free. MSDN
subscriptions are one-year subscriptions, which are current as of this writing. Just as
each MSDN subscription escalates in functionality of incorporation of features, so does
each escalate in price. Please note that prices are subject to change.

The MSDN Library subscription has a retail price of $199, but if you're renewing an
existing subscription you get a $100 rebate in the box. There are other perks for existing
Microsoft customers, but those vary. Check out the Web site for more details.

The MSDN Professional subscription is a bit more expensive than the Library, with a
retail price of $699. If you're an existing customer renewing your subscription, you again
get a break in the box, this time in the amount of a $200 rebate. You also get that break
if you're an existing Library subscriber who's upgrading to a Professional subscription.

The MSDN Universal subscription takes a big jump in price, sitting at $2,499. If you're
upgrading from the Professional subscription, the price drops to $1,999, and if you're
upgrading from the Library subscription level, there's an in-the-box rebate for $200.

Chapter 3 Using Microsoft Reference Resources 15

As is often the case, there are academic and volume discounts available from various
resellers, including Microsoft, so those who are in school or in the corporate environment
can use their status (as learner or learned) to get a better deai-and in most cases, the
deal is in fact much better. Also, if your organization is using lots of Microsoft products,
whether or not MSDN is a part of that group, ask your purchasing department to look into
the Microsoft Open License program; the Open License program gives purchasing
breaks for customers who buy lots of products. Check out www.microsoft.com//icensing
for more details. Who knows, if your organization qualifies you could end up getting an
engraved pen from your purchasing department, or if you're really lucky maybe even a
plaque of some sort for saving your company thousands of dollars on Microsoft products.

You can get MSDN subscriptions from a number of sources, including online sites
specializing in computer-related information, such as www.iseminger.com (shameless
self-promotion, I know), or from your favorite online software site. Note that not all
software resellers carry MSDN subscriptions; you might have to hunt around to find one.
Of course, if you have a local software reseller that you frequent, you can check out
whether they carry MSDN subscriptions.

As an added bonus for owners of this Networking Services Developer's Reference
Library, in the back of Volume 1, you'll find a $200 rebate good toward the purchase of
an MSDN Universal subscription. For those of you doing the math, that means you
actually make money when you purchase the Networking Services Developer's
Reference Library and an MSDN Universal subscription. With this rebate, every
developer in your organization can have the Networking Services Developer's Refence
Library on their desk and the MSDN Universal subscription on thier desktop, and still
come out $50 ahead. That's the kind of math even accountants can like.

Using MSDN
MSDN subscriptions come with an installable interface, and the Professional and
Universal subscriptions also come with a bunch of Microsoft product software such as
Windows platform versions and BackOffice applications. There's no need to tell you how
to use Microsoft product software, but there's a lot to be said for providing some quick
but useful guidance on getting the most out of the interface to present and navigate
through the seemingly endless supply of reference material provided with any MSDN
subscription.

To those who have used MSDN, the interface shown in Figure 3-2 is likely familiar; it's
the navigational front-end to MSDN reference material.

The interface is familiar and straightforward enough, but if you don't have a grasp on its
features and navigation tools, you can be left a little lost in its sea of information. With a
few sentences of explanation and some tips for effective navigation, however, you can
increase its effectiveness dramatically.

16 Volume 3 RPC and WNet

Navigating MSDN
One of the primary features of MSDN-and to many, its primary drawback-is the sheer
volume of information it contains, over 1.1 GB and growing. The creators of MSDN likely
realized this, though, and have taken steps to assuage the problem. Most of those steps
relate to enabling developers to selectively navigate through MSDN's content.

Windows Resource Kits
Tools and Technologies
Knowledge 8 ase
Technical Articles

Welcome to the October 1999
release of the MSDN Library.

The MSDN Library is the essential reference for developers. with
more than a gigabyte of technical programming information,
including sample code, documentation, technical articles, the
Microsoft Developer Knowledge Base, and anything else you
might need to develop solutions that implement Microsoft
technology.

•.• a".;,.Ii'I,·4i6'
Dr. GUI introduces the October 1999 release of the MSDN Library. The
good doctor examines new Library content, including articles and
documentation about Windows 2000, Windows CE, Office 2000, and
databases and data access, plus several new technical article sample
suites .

• I4M.I'4'I.I,"5'''I'.
Read through this document for summaries of what's new and follow
the links to the new titles.

Figure 3-2: The MSDN interface.

Basic navigation through MSDN is simple and is a lot like navigating through Microsoft
Windows Explorer and its folder structure. Instead of folders, MSDN has books into
which it organizes its topics; expand a book by clicking the + box to its left, and its
contents are displayed with its nested books or reference pages, as shown in Figure 3-3.
If you don't see the left pane in your MSDN viewer, go to the View menu and select
Navigation Tabs and they'll appear.

The four tabs in the left pane of MSDN-increasingly referred to as property sheets
these days-are the primary means of navigating through MSDN content. These four
tabs, in coordination with the Active Subset drop-down box above the four tabs, are the
tools you use to search through MSDN content. When used to their full extent, these
coordinated navigation tools greatly improve your MSDN experience.

III i We/come to the MSDN Lit.ary
tt:l Visual Studio S.O Documentation
IE Office Developer Documentation
I±J Windows CE Documentation
E3 (QJ Platform SDK

III • Getting Storted
EfJ • Design Strategies and Standards
It] • Base Services

III I Component Services
f±I OataAccess Services
f£l Graphics and Mu~imedia Services
IE Managemert Services
IE Mess~ng and CoUaboration Services
B tQJ Directory Services

[tl Active Directory, ADS!. and Directory Services
[tl Comroon Internet F~e System Protocol
IE Fax Service
III Internet Protoccj Helper
III Li!t>twei!t>t Directory Acce .. Protocol {lDAPI : i~~~~---III III

Chapter 3 Using Microsoft Reference Resources 17

MADCAP, or Multicast Address
Dynamic Client Allocation
Protocol, is a technology
aimed at making it easy for
clients to renew and release
Multicast addresses, snabling
clients to dynamically
I'connect" and "disconnect"
from multicast network
transmissions,

The development of
standards for MADCAP is
ongoing, and falls under the
Multicast Addnsss Allocation
(malloc) Working Group at the
IETF.

Whe Applicable

Overview

General
information
about
MADCAP.

Reference

Documentation
of MADCAP
functions and
structures.

Feedback

Make error
reports and
feature
requests
dinsctly to
Microsoft.

Figure 3-3: Basic navigation through MSDN.

The Active Subset drop-down box is a filter mechanism; choose the subset of MSDN
information you're interested in working with from the drop-down box, and the
information in each of the four Navigation Tabs (including the Contents tab) limits the
information it displays to the information contained in the selected subset. This means
that any searches you do in the Search tab, and in the index presented in the Index tab,
are filtered by their results and/or matches to the subset you define, greatly narrowing
the number of potential results for a given inquiry. This enables you to better find the
information you're really looking for. In the Index tab, results that might match your
inquiry but aren't in the subset you have chosen are grayed out (but still selectable). In
the Search tab, they simply aren't displayed. '

MSDN comes with the following predefined subsets (these subsets are subject to
change, based on documentation updates and TOC reorganizations):

Entire Collection Platform SDK, Networking Services
MSDN, Books and Periodicals Platform SDK, Security
MSDN, Content on Disk 2 only Platform SDK, Tools and Languages
(CD only - not in DVD version) Platform SPK, User Interface Services

MSDN, Content on Disk 3 only Platform SDK, Web Services
(CD only - not in DVD version) Platform SDK, Win32 API

MSDN, Knowledge Base Repository 2.0 Documentation
MSDN, Technical Articles and Visual Basic Documentation
Backgrounders Visual C++ Documentation

18 Volume 3 RPC and WNet

Office Developer Documentation
Platform SDK, BackOffice
Platform SDK, Base Services
Platform SDK, Component Services
Platform SDK, Data Access Services
Platform SDK, Getting Started _
Platform SDK, Graphics and
Multimedia Services

Platform SDK, Management Services
Platform SDK, Messaging and
Collaboration Services

Visual C++, Platform SDK and
WinCE Docs

Visual C++, Platform SDK, and
Enterprise Docs

Visual FoxPro Documentation
. Visual InterDev Documentation
Visual J++ Documentation
Visual SourceSafe Documentation
Visual Studio Product Documentation
Windows CE Documentation

As you can see, these filtering options essentially mirror the structure of information
delivery used by MSDN. But what if you are interested in viewing the information in a
handful of these subsets? For example, what if you want to search on a certain keyword

. through the Platform SDK's ADSI, Networking Services, and Management Services
subsets, as well as a little section that's nested way into the Base Services subset?
Simple-you define your own subset by choosing the View menu, and then selecting the
Define Subsets menu item. You're presented with the window shown in Figure 3-4.

Defining a subset is easy; just take the following steps:

1. Choose the information you want in the new subset; you can choose entire subsets or
selected books/content within available subsets.

2. Add your selected information to the subset you're creating by clicking the Add button.

3. Name the newly created subset by typing in a name in the Save New Subset As box.
Note that defined subsets (including any you create) are arranged in alphabetical
order.

You can also delete entire subsets from the MSDN installation. Simply select the subset
you want to delete from the Select Subset To Display drop-down box, and then click the
nearby Delete button.

Once you have defined a subset, it becomes available in MSDN just like the predefined
subsets, and filters the information available in the four Navigation Tabs, just like the
predefined subsets do.

Quick Tips
Now that you know how to navigate MSDN, there are a handful of tips and tricks that you
can use to make MSDN as effective as it can be.

Use. the Locate button to get your bearings. Perhaps it's human nature to need to
know where you are in the grand scheme of things, but regardless, it can be bothersome
to have a reference page displayed in the right pane (perhaps jumped to from a search),
without the Contents tab in the left pane being synchronized in terms of the reference
page's location in the info~mation tree. Even if you know the general technology in which
your reference page resides, it's nice to find out where it is in the content structure.

Chapter 3 Using Microsoft Reference Resources 19

This is easy to fix. Simply click the Locate button in the navigation toolbar and all will be
synchronized.

Figure 3-4: The Define Subsets window.

Use the Back button just like a browser. The Back button in the navigation toolbar
functions just like a browser's Back button; if you need information on a reference page
you viewed previously, you can use the Back button to get there, rather than going
through the process of doing another search.

Define your own subsets, and use them. Like I said at the beginning of this chapter,
the volume of information available these days can sometimes make it difficult to get our
work done. By defining subsets of MSDN that are tailored to the work you do, you can
become more efficient.

Use an underscore at the beginning of your named subsets. Subsets in the Active
Subset drop-down box are arranged in alphabetical order, and the drop-down box shows
only a few subsets at a time (making it difficult to get a grip on available subsets, I think).
Underscores come before letters in alphabetical order, so if you use an underscore on all
of your defined subsets, you get them placed at the front of the Active Subset listing of
available subsets. Also, by using an underscore, you can immediately see which subsets
you've defined, and which ones come with MSDN-it saves a few seconds at most, but
those seconds can add up.

20 Volume 3 RPC and WNet

Using MSDN Online
MSDN underwent a redesign in December of 1999, aimed at streamlining the
information provided, jazzing things up with more color, highlighting hot new
technologies, and various other improvements. Despite its visual overhaul, MSDN Online
still shares a lot of content and information delivery similarities with MSDN, and those
similarities are by design; when you can go from one developer resource to another and
immediately work with its content, your job is made easier. However, MSDN Online is
different enough that it merits explaining in its own right-it's a different delivery medium,
and can take advantage of the Internet in ways that MSDN simply cannot.

If you've used MSN's home page before (www.msn.com). you're familiar with the fact
that you can customize the page to your liking; choose from an assortment of available
national news, computer news, local news, local weather, stock quotes, and other
collections of information or news that suit your tastes or interests. You can even insert a
few Web links and have them readily accessible when you visit the site. The MSDN
Online home page can be customized in a similar way, but its collection of headlines,
information, and news sources are all about development. The information you choose
specifies the information you see when you go to the MSDN Online home page, just like
the MSN home page.

There are a couple of ways to get to the customization page; you can go to the MSDN
Online home page (msdn.microsoft.com) and click the Personalize This Site button near
the top of the page, or you can go there directly by pointing your browser to
msdn.microsoft.comlmsdn-onlinelstart/custom. However you get there, the page you'll
see is shown in Figure 3-5.

As you can see from Figure 3-5, there are lots of technologies to choose from (many
more options can be found when you scroll down through available technologies). If
you're interested in Web development, you can select the checkbox at the left of the
page next to Standard Web Development, and a predefined subset of Web-centered
technologies is selected. For technologies centered more on Network Services, you can
go through and choose the appropriate technologies. If you want to choose all the
technologies in a given technology group more quickly, click the Select All button in the
technology's shaded title area.

You can also choose which tab is selected by default in the home page that MSDN
Online presents to you, which is convenient for dropping you into the category of MSDN
Online information that interests you most. All five of the tabs available on MSDN
Online's home page are available for selection; those tabs are the following:

• Features

• News

• Columns

• Technical Articles

• Training & Events

Select or clear the check boxes
below to choose a pre-set
template of information for that
technology

[J Database
Development/Administration

C Database Web Development

C OfficeNBA Developer

C Standard Web Development

D Windows Development

Chapter 3 Using Microsoft Reference Resources 21

Personalize the information that appears on your MSDN Dnline home page.

Select your preferences from the sections below 1 then return here and choose Save. (Yes! we
know it's a lot of choices, There's a lot of information on this site.) You can update your choices
at any time by visiting this Personalization page,

Figure 3-5: The MSDN Online Personalize Page.

Once you've defined your profile-that is, customized the MSDN Online content you
want to see-MSDN Online shows you the most recent information pertinent to your
profile when you go to MSDN Online's home page, with the default tab you've chosen
displayed upon loading of the MSDN Online home page.

Finally, if you want your profile to be available to you regardless of which computer
you're using, you can direct MSDN Online to store your profile. Storing a profile for
MSDN Online results in your profile being stored on MSDN Online's server, much like
roaming profiles in Windows 2000, and thereby makes your profile available to you
regardless of the computer you're using. The option of storing your profile is available
when you customize your MSDN Online home page (and can be done any time
thereafter). The storing of a profile, however, requires that you become a registered
member of MSDN Online. More information about becoming a registered MSDN Online
user is provided in the section titled MSDN Online Registered Users.

22 Volume 3 RPC and WNet

Navigating MSDN Online
Once you're done customizing the MSDN Online home page to get the information
you're most interested in, navigating through MSDN Online is easy. A banner that sits
just below the MSDN Online logo functions as a navigation bar, with drop-down menus
that can take you to the available areas on MSDN Online, as Figure 3-6 illustrates.

ttl MSDN Training
ttl Products
ttl Partnering
ttl International
ttl My Links

• IT Professionals

~ MSDN Flash
(e-newsletter)

I1t Send Us
Your Feedback

WI Site Guide

What's New in XML for Microsoft

Learn about the new features, bug fixes} and other
improvements to the Microsoft XML parser coming in
Windows 2000) in this column by Charlie Heinemann af
the Microsoft XML team. Charlie also explains why the
new version of the parser is better equipped for server

Tune in to the MSDN sho.,

Xl'll

Visual Studio

DlL Help
Database

Learn about new technologies coming out of Microsoft in MSDN Online's

first streaming media show, This show's topics include XML and BizTalk.

ID

Figure 3-6: The MSDN Online Navigation Bar with Its Drop-Down Menus.

Following is a list of available menu categories, which groups the available sites and
features within MSDN Online:

Home

Magazines

Libraries

Developer Centers

Resources

Downloads

Search MSDN

The navigation bar is available regardless of where you are in MSDN Online, so the
capability to navigate the site from this familiar menu is always available, leaving you a
click away from any area on MSDN Online. These menu categories create a functional
and logical grouping of MSDN Online's feature offerings.

Chapter 3 Using Microsoft Reference Resources 23

MSDN Online Features
Each of MSDN Online's seven feature categories contains various sites that comprise
the features available to developers visiting MSDN Online.

Home is already familiar; clicking on Home in the navigation bar takes you to the MSDN
Online home page that you've (perhaps) customized, showing you all the latest
information about technologies that you've indicated you're interested in reading about.

Magazines is a collection of columns and articles that comprise MSDN Online's
magazine section, as well as online versions of Microsoft's magazines such as MSJ,
MIND, and the MSDN Show (a Webcast feature introduced with the December 1999
remodeling of MSDN Online). The Magazines feature of MSDN Online can be linked to
directly at msdn.microsoft.comlresourceslmagazines.asp. The Magazines home page is
shown in Figure 3-7.

Voices •

MSJ •

MIND '"

MSDN Newspaper •

MSDN Sho't., •

Magazines
Print and online publications for cu'rrent information on all types of development,

MSJ is the magazine that brings developers monthly features on the most important tools and
techr.ologies such as XML} Windows 2000, ATL, MFC, Windows eE, DirectX, C++, as well as monthly
columns on visual programming! Win 32, COM, debugging! security! and more,

Microsoft Internet Developer (MIND)

MIND is the monthly magazine for Internet and intranet developers that covers tools and technologies
including XML) Visual Basic, scripting, ADO, SQL Server, lIS, and anything else a developer might need
to build an interactive or e-commerce site.

MSDN News

The MSDN News is a printed newspaper, published bi-monthly for the developer audience. The
newspaper features new technical articles and ongoing columns, including the popular "Ask Dr. GUI/' as
well as a regular series of posters. Subscriptions are free to MSDN subscribers.

The ~ISDN Show

This regular Webcast brings you inside Microsoft to talk with developers and planners about our hottest
new technologies. The segments range from broad overviews to down-and-dirty coding, with some

Figure 3-7: The Magazines Home Page.

For those of you familiar with the Voices feature section that formerly found its home on
the MSDN Online navigation banner, don't worry; all content formerly in the Voices
section is included the Magazines section as a subsite (or menu item, if you prefer) of
the Magazines site. For those of you who aren't familiar with the Voices subsite, you'll

24 Volume 3 RPC and WNet

find a bunch of different articles or "voices" there, each of which adds its own particular
twist on the issues that face developers. Both application and Web developers can get
their fill of magazine-like articles from the sizable list of different articles available (and
frequently refreshed) in the Voices subsite. With the combination of columns and online
developer magazines offered in the Magazines section, you're sure to find plenty of
interesting insights.

Libraries is where the reference material available on MSDN Online lives. The Libraries
site is divided into two sections: Library and Web Workshop. This distinction divides the
reference material between Windows application development and Web development.
Choosing Library from the Libraries menu takes you to a page through which you can
navigate in traditional MSDN fashion, and gain access to traditional MSDN reference
material. The Library home page can be linked to directly at msdn.microsoft.com//ibrary.
Choosing Web Workshop takes you to a site that enables you to navigate the Web
Workshop in a slightly different way, starting with a bulleted list of start pOints, as shown
in Figure 3-8. The Web Workshop home page can be linked to directly at
msdn.microsoft.com/workshop.

ESSENTIALS.

Component Development .

Content 8e Component Delivery ..

Data Acc.ess 8< Dat.abases ..

Design ..

DHTML, HTML 8< CSS ..

Langu.ages & Development Tools: ..

Messaging Be Collaboration 4-

Networking, Protocols ..
& Data Format.:!::

Reusing Bro ser Technology",

Securit';} & Cryptography ..

Server Technologies 4>

Streaming & Interactive Media.

Web Content Management ..

XML (Extensible Markup language) ..

This section contains
information you'll need to
create components for your
Web pages) using either
ActiveX or DHTML scriptlet
technology) as well as related
information about COM)
ActiveX Scripting) Active
Documents) and offline
browsing,

Welcome

The MSDN Online Web
Workshop provides the latest
information about Internet
technologies! including
reference material and in
depth articles on all aspects
of Web ,ite de,ign and
development. Choose the
categories on the left to
navigate via content listings.
Use the index to look up
keywords! and the search
page for specific queries.
Check our What's New page
for update"

The MSDN Online team

© 1999 Microsoft CQrporation. All rights reserved. Terms of use,

Figure 3-8: The Web Workshop Home Page.

Chapter 3 Using Microsoft Reference Resources 25

Developer Centers is a hub from which developers who are interested in a particular
area of development-such as Windows 2000, SQL Server, or XML-can go to find
focused Web site centers within MSDN Online. Each developer center is dedicated to
providing all sorts of information associated with its area of focus. For example, the
Windows 2000 developer center has information about what's new with Windows 2000,
including newsgroups, specifications, chats, knowledge base articles, and news, among
others. At publication time, MSDN Online had the following developer centers:

• Microsoft Windows 2000

• Microsoft Exchange

• Microsoft SQL Server

• Microsoft Windows Media

• XML
In addition to these developer centers is a promise that new centers would be added to
the site in the future. To get to the Developer Centers home page directly, link to
msdn. microsoft. comlresourcesldevcenters. asp. Figure 3-9 shows the Developer Centers
home page.

Microsoft Windows •
2000

Microsoft Exo:hange .,

Microsoft SQL Server ..

Microsoft Windows ,;.
Media

XML- ,;.

MSDN Developer Centers
MSDN Developer Centers provide access to all the developer resources MSDN has to offer for specific
products and technologies, From the Developer Centers you can also find the latest links to all the best
new technical articles! downloads! samples, product news, and more, While we'll be adding more
Developer Centers to the site in the futures you can visit the following Developer Centers today;

• Microsoft Exchange

• Microsoft SQl Server

• ~~icrosoft Windows f~ledia

• XML

Figure 3-9: The Developer Centers Home Page.

26 Volume 3 RPC and WNet

Resources is a place where developers can go to take advantage of the online forum of
Windows and Web developers, in which ideas or techniques can be shared, advice can
be found or given (through MHM, or Members Helping Members), and the MSDN User
Group Program can be joined or perused to find a forum to voice their opinions or chat
with other developers. The Resources site is full of all sorts of useful stuff, including
featured books, a DLL help database, online chats, case studies, and more. The
Resources home page can be linked to directly at msdn. microsoft. com/resources. Figure
3-10 provides a look at the Resources home page.

DLL Help Database. Additional MSDN Online Resources
MSDN Online Support •

Ne s:groups ..

Peer Journal •

Members Helping •
Me;mbers

MSDN User Group >&

Program

MSDN Online Chats ..

MSDN Training ..

Events ..

Developer Books ..

MSDN Online is about more than just technical articles and documentation. Check out the wide variety
of resources we offer to help you get your job done,

The Dll Help Database

Microsoft's DLL Help database provides a searchable database of information about file versions that
ship with a selected set of Microsoft products,

MSDN Online Support

MSDN Online Support offers a large variety of technical resources) including the Microsoft Knowledge
Base; service packs, hotfixes! and tools; and Support Web Casts, live presentations by Support
professionals,

Newsgroulls

MSDN Online provides access to selected developer-focused public newsgroups through our browser
based newsreader, Microsoft's public newsgroups allow you to interact with the Microsoft developer
community and MVPs (Most Valuable Professionals), Public newsgroups are a great way to solve
technical problems) learn more about a specific product or technology! or keep up with the latest buzz
in the developer community, Microsoft employees do not monitor Microsoft's public newsgroups,

Peer Journal

Microsoft's collection of code, tips! and articles written by your developer peers,

Figure 3-10: The Resources Home Page.

The Downloads site is where developers can find all sorts of useable items fit to be
downloaded, such as tools, samples, images, and sounds. The Downloads site is also
where MSDN subscribers go to get their subscription content updated over the Internet
to the latest and greatest releases, as described previously in this chapter in the Using
MSDN section. The Downloads home page can be linked to directly at
msdn.microsoft.com/downloads. The Downloads home page is shown in Figure 3-11.

Service Packs ..

Samples.

Toots •

Beta and Pre.wiew •
RGleais:es

Images •

Sounds •

De'JeJopment ..
Kit. (SDKo)

MSDN Subscriber •
Do nloads

Chapter 3 Using Microsoft Reference Resources 27

Welcome to the MSDN Online Downloads Area

Service Packs
Service Packs and product updates provide bug fixes and address other issues that customers have
discovered since a productls release.

Samples
In this .ection, you will find a great variety of samples that demonstrate ways to use the latest and
greatest Microsoft technolCigies to make your applications the best they can be, All samples have code
that can be downloaded, most ban be browsed onlinei and many hav~ live dem.onstratiqn pages.
Choos. from the Table of Contents to find .samples focused on a particular product or technology,
Entries prefixed with i are for users registered with Visual Studio only. To get access to these, register
your product today.

Tools
Want to, tryout some great new products? Check out our tools area, where us_ers can download more
than 40 trial, beta, and full versions ofthe latest developer products,

Visit the Visu~1 studio Solution. Center for sample solutions designed to help you learn and understand
end-to-end application architecture. and design,

Beta and Preview Releases

Figure 3-11: The Downloads Home Page.

The Search MSDN site on MSDN Online has been improved over previous versions,
and includes the capability to restrict searches to either library (Library or Web
Workshop), as well as other fine-tune search capabilities. The Search MSDN home page
can be linked to directly at msdn.microsoft.com/search. The Search MSDN home page is
shown in Figure 3-12.

There are two other destinations within MSDN Online of specific interest, neither of
which is immediately reachable through the MSDN navigation bar. The first is the MSDN
Online Member Community home page, and the other is the Site Guide.

28 Volume 3 RPC and WNet

Figure 3-12: The Search MSDN Home Page.

The MSDN Online Member Community home page can be directly reached at
msdn. microsoft. com/community. Many of the features found in the Resources
navigation menu are actually subsites of the Community page. Of course, becoming a
member of the MSDN Online member community requires that you register (see the next
section for more details on joining), but doing so enables you to get access to Online
Special Interest Groups (OSIGs) and other features reserved for registered members.
The Community page is shown in Figure 3-13.

Another destination of interest on MSDN Online that isn't displayed on the navigation
banner is the Site Guide. The Site Guide is just what its name suggests-a guide to the
MSDN Online site that aims at helping developers find items of interest, and includes
links to other pages on MSDN Online such as a recently posted files listing, site maps,
glossaries, and other useful links. The Site Guide home page can be linked to directly at
msdn. microsoft. com/siteguide.

Your Membership ~

OSIGs ..

Peer Journ.al '"

Case Sb.Jdies ...

Downloads ...

Members: Helping '"
Members

Offers ..

Tr.aining •

MSDN Stores ..

Chapter 3 Using Microsoft Reference Resources 29

Welcome to the MSDN Online Member Community
Updated October 14, 1999

With an MSDN Online membership! developers can easily access technical
information, tools, and a community of developers ready to help solve the
toughest challenges. and take advantage of member benefits,

Online Special-Interest Groups

Access the information you need, when you need it, with Online
(OSIGs), Web-based access to relevant newsgroupsJ sorted by product,

make it easy for you to get information you need to do your job. Take advantage
of special offers! find useful links! and stay up to date with the latest product and
technology news.

Members Helping Members

Hel;:'l!ng (MHM) is a networking and support tool that helps
developers get connected, solve problems, and gain recognition within the
developer community. Get answers quickly by searching the MHM database for
people who can answer your technical questions. Or) register as a volunteer and
help other developers when they need it. up

Roaming Profiles

Figure 3-13: The MSDN Online Member Community Home Page.

MSDN Online Registered Users
You may have noticed that some features of MSDN Online-such as the capability to
create a store profile of the entry ticket to some community features-require you to
become a registered user. Unlike MSDN subscriptions, becoming a registered user of
MSDN Online won't cost you anything more bU,t a few minutes of registration time.

Some features of MSDN Online require registration before you can take advantage of
their offerings. For example, becoming a member of an OSIG requires registration. That
feature alone is enough to register; rather than attempting to call your developer buddy
for an answer to a question (only to find out that she's on vacation for two days, and your
deadline is in a few hours), you can go to MSDN Online's Community site and ferret
through your OSIG to find the answer in a handful of clicks. Who knows; maybe your
developer buddy will begin calling you with questions-you don't have to tell her where
you're getting all your answers.

30 Volume 3 APe and WNet

There are a number of advantages to being a registered user, such as the choice to
receive newsletters right in your inbox if you want to. You can also get all sorts of other
timely information, such as chat reminders that let you know when experts on a given
subject will be chatting in the MSDN Online Community site. You can also sign up to get
newsletters based on your membership in various OSIGs-again, only if you want to. It's
easy for me to suggest that you become a registered user for MSDN Online-I'm a
registered user, and it's a great resource.

The Windows Programming Reference Series
The WPRS provides developers with timely, concise, and focused material on a given
topic, enabling developers to get their work done as efficiently as possible. In addition to
providing reference material for Microsoft technologies, each Library in the WPRS also
includes material that helps developers get the most out of its technologies, and
provides inSights that might otherwise be difficult to find.

The WPRS currently includes the following libraries:

• Microsoft Win32 Developer'S Reference Library

• Active Directory Developer's Reference Library

• Networking Services Developer's Reference Library

In the near future (subject, of course, to technology release schedules, demand, and
other forces that can impact publication decisions), you can look for these prospective
WPRS Libraries that cover the following material:

• Web Technologies Library

• Web Reference Library

• MFC Developer's Reference Library

• Com Developer's Reference Library

What else might you find in the future? Planned topics such as a Security Library,
Programming Languages Reference Library, BackOffice Developer's Reference Library,
or other pertinent topics that developers using Microsoft products need in order to get
the most out of their development efforts, are prime subjects for future membership in
the WPRS. If you have feedback you want to provide on such libraries, or on the WPRS
in general, you can send email towinprs@microsoft.com.

If you're sending mail about a particular library, make sure you put the name of the
library in the subject line. For example, e-mail about the Networking Services
Developer's Reference Librarywould have a subject line that reads "Networking
Services Developer's Reference Library." There aren't any guarantees that you'll get a
reply, but I'll read all of the mail and do what I can to ensure your comments, concerns,
or (especially) compliments get to the right place.

CHAPTER 4

Finding the Developer Resources
You Need

Networking is complex, and its resource information vast. With all the resources
available for developers of network-enabled applications, and the answers they can
provide to questions or problems that developers face every day, finding the developer
information you need can be a challenge. To address that problem, this chapter is
designed to be your one-stop resource to find the developer resources you need,
making the job of actually developing your application just a little easier.

31

Microsoft provides plenty of resource material through MSDN and MSDN Online, and the
WPRS provides a great filtered version of focused reference material and development
knowledge. However, there is a lot more information to be had. Some of that information
comes from Microsoft, some of it from the general development community, and yet
more information comes from companies that specialize in such development services.
Regardless of which resource you choose, in this chapter you can find out what your
development resource options are, and be more informed about the resources that are
available to you.

Microsoft provides developer resources through a number of different media, channels,
and approaches. The extensiveness of Microsoft's resource offerings mirrors the fact
that many are appropriate under various circumstances. For example, you wouldn't go to
a conference to find the answer to a specific development problem in your programming
project; instead, you might use one of the other Microsoft resources. .

Developer Support
Microsoft's support sites cover a wide variety of support issues and approaches,
including all of Microsoft's products, but most of those sites are not pertinent to
developers. Some sites, however, are designed for developer support; the Product
Services Support page for developers is a good central place to find the support
information you need. Figure 4-1 shows the Product Services Support page for
developers, which can be reached at www.microsoft.comlsupport/customerldeve/op.htm.

Note that there are a number of options for support from Microsoft, including everything
from simple online searches of known bugs in the Knowledge Base to hands-on
consulting support from Microsoft Consulting Services, and everything in between.
The Web page displayed in Figure 4-1 is a good starting point from which you can
find out more information about Microsoft's support services.

32 Volume 3 RPC and WNet

Whether you are a Software or web Developer, developing or porting
commercial applications to run on Microsoft platforms requires a unique
level of support to ensure those applications optimize both current and
emerging technologies. Microsoft provides access to a wide range of
product and application development expertise to help developers
accelerate the development cycle and produce successful applications,
This includes the Microsoft Developer Network (MSDN™) - a specially
dedicated Web site packed with news) resources and technical services.

Go to Support Phone Numbers Click here

PREMIER SUPPORT FOR DEYELDPERS
For large organizations developing products using Microsoft technologies
who require a direct! proactive and managed support relationship with
Microsoft! Premier Support offers comprehensive and flexible high-end
support,

Click here for details

PROFESSIONAL SUPPORT FOR DEYELOPERS
Professional Support for Developers provides information services and
incident-ba~ed support to help create and enhance your software

Figure 4-1: The Product Services Support page for developers.

Premier Support from Microsoft provides extensive support for developers, and
includes different packages geared toward specific Microsoft customer needs. The
packages of Premier Support that Microsoft provides are:

• Premier Support for Enterprises

• Premier Support for Developers

• Premier Support for Microsoft Certified Solution Providers

• Premier Support for OEMs

If you're a developer, you could fall into any of these categories. To find out more
information about Microsoft's Premier Support, contact them at (800) 936-2000.

Priority Annual Support from Microsoft is geared toward developers or organizations
that have more than an occasional need to call Microsoft with support questions and
need priority handling of their support questions or issues. There are three packages
of Priority Annual Support offered by Microsoft.

Chapter 4 Finding the Developer Resources You Need 33

• Priority Comprehensive Support

• Priority Developer Support

• Priority Desktop Support

The best support option for you as a developer is the Priority Developer support. To
obtain more information about Priority Developer Support, call Microsoft at
(800) 936-3500.

Microsoft also offers a Pay-Per-Incident Support option so you can get help if there's just
one question that you must have answered. With Pay-Per-Incident Support, you call a toll
free number and provide your Visa, MasterCard, or American Express account number,
after which you receive support for your incident. In loose terms, an incident is a problem
or issue that can't be broken down into subissues or subproblems (that is, it can't be
broken down into smaller pieces). The number to call for Pay-Per-Incident Support
is (800) 936-5800.

Note that Microsoft provides two priority technical support incidents as part of the MSDN
Professional subscription, and provides four priority technical support incidents as part
of the MSDN Universal subscription.

You can also submit questions to Microsoft engineers through Microsoft's support Web
site, but if you're on a time line you might want to rethink this approach and consider
going to MSDN Online and looking into the Community site for help with your
development question. To submit a question to Microsoft engineers online,
go to support. microsoft. comlsupportlwebresponse. asp.

Online Resources
Microsoft also provides extensive developer support through its community of
developers found on MSDN Online. At MSDN Online's Community site, you will find
OSIGs that cover all sorts of issues in an online, ongoing fashion. To get to MSDN
Online's Community site, simply go to msdn.microsoft.com/community.

Microsoft's MSDN Online also provides its Knowledge Base online, which is part ofthe
Personal Support Center on Microsoft's corporate site. You can search the Knowledge
Base online at support.microsoft.comlsupportlsearch.

Microsoft provides a number of newsgroups that developers can use to view
information on newsgroup-specific topics, providing yet another developer resource for
information about creating Windows applications. To find out which newsgroups are
available and how to get to them, go to support.microsoft.comlsupportlnews.

The following newsgroups will probably be of particular interest to readers of the
Microsoft Active Directory Developer's Reference Library.

• microsoft. public. win2000. *

• microsoft. public. msdn. general

• microsoft.public.platformsdk.active.directory

• microsoft.public.platformsdk.adsi

34 Volume 3 RPe and WNet

• microsoft.public.platformsdk.disLsvcs

• microsoft. public. vb. *

• microsoft.public. vc. *

• microsoft.public. vstudio. *microsoft.public.cert. *

• microsoft.public.certification. *

Of course, Microsoft isn't the only newsgroup provider on which newsgroups pertaining
to developing on Windows are hosted. Usenet has all sorts of newsgroups-too many to
list-that host ongoing discussions pertaining to developing applications on the Windows
platform. You can access newsgroups on Windows development just as you access any
other newsgroup; generally, you'll need to contact your ISP to find out the name of the
mail server and then use a newsreader application to visit, read, or post to the
Usenet groups.

For network developers with a taste for Winsock (and OOS) programming, another site
of interest is www.stardust.com. which is chock full of up-to-date information about
Winsock development and other network-related information. There's other information
about network programming on the site, so it's worth a look.

Internet Standards
Many of the network protocols and services implemented in Windows platforms conform
to one or more Internet standards recommendations that have gone through a process
of review and comments. One especially useful source of information about such
standards, recommendations, and ongoing comment periods is the Internet Engineering
Task Force, or IETF. Rather than go into some long-winded (page-eating) explanation
of what the IETF is, does, and stands for, let me simply say that this is the place where
networking protocols and other various Internet-related services are often born,
scrutinized, recast, commented upon, and although not standardized or implemented,
recommended in a final form called a request for comment, or RFC, even though it's
essentially a standard by the time it gets to RFC stage.

If you want to get a clear technical picture of a given technology or protocol, or if you're
inclined to comment on the creation and subsequent scrutiny of such things, the place
you should go is www.ietf.org.This site can tell you all you want to know about the
goings on of the IETF, their (non-profit) mission, their Working Groups, and all the
information you might ever want about almost anything that has to do with networking
recommendations.

If you're curious about a given protocol or networking technology, and want to find an
unadulterated (albeit technical) version of its explanation, this is a great place to go.
It's a virtual hangout for the brightest people in networking, and it's worth a look or two,
even just for the sake of satisfying curiosity.

Chapter 4 Finding the Developer Resources You Need 35

Learning Products
Microsoft provides a number of products that enable developers to get versed in
the particular tasks or tools that they need to achieve their goals (or to finish their tasks).
One product line that is geared toward developers is called the Mastering series, and its
products provide comprehensive, well-structured interactive teaching tools for a wide
variety of development topics.

The Mastering Series from Microsoft contains interactive tools that group books and CDs
together so that you can master the topiC in question, and there are products available
based on the type of application you're developing. To obtain more information about the
Mastering series of products, or to find out what kind of offerings the Mastering series
has, check out msdn.microsoft.com/mastering.

Other learning products are available from other vendors as well, such as other
publishers, other application providers that create tutorial-type content and applications,
and companies that issue videos (both taped and broadcast over the Internet)
on specific technologies. For one example of a company that issues technology-based
instructional or overview videos, take a look at www.compchannel.com.

Another way of learning about development in a particular language (such as C++,
FoxPro, or Microsoft Visual Basic), for a particular operating system, or for a particular
product (such as Microsoft SOL Server or Microsoft Commerce Server) is to read the
preparation materials available for certification as a Microsoft Certified Solutions
Developer (MCSD). Before you get defensive about not having enough time to get
certified, or not having any interest in getting your certification (maybe you do-there are
benefits, you know), let me just state that the point of the journey is not necessarily to
arrive. In other words, you don't have to get your certification for the preparation
materials to be useful; in fact, the materials might teach you things that you thought you
knew well but actually didn't know as well as you thought you did. The fact of the matter
is that the coursework and the requirements to get through the certification process are
rigorous, difficult, and quite detail-oriented. If you have what it takes to get your
certification, you have an extremely strong grasp of the fundamentals (and then some) of
application progra.mming and the developer-centric information about Windows
platforms.

You are required to pass a set of core exams to get an MCSD certification, and then
you must choose one topic from many available electives exams to complete your
certification requirements. Core exams are chosen from among a group of available
exams; you must pass a total of three exams to complete the core requirements. There
are "tracks" that candidates generally choose which pOint their certification in a given
direction, such as C++ development or Visual Basic development. The core exams and
their exam numbers(at the time of publication) are as follows.

36 Volume 3 RPC and WNet

Desktop Applications Development (one required):

• Designing and Implementing Desktop Applications with Visual C++ 6.0 (70-016)

• Designing and Implementing Desktop Applications with Visual FoxPro 6.0 (70-156)

• Designing and Implementing Desktop Applications with Visual Basic 6.0 (70-176)

Distributed Applications Development (one required):

• Designing and Implementing Distributed Applications with Visual C++ 6.0 (70-015)

• Designing and Implementing Distributed Applications with Visual FoxPro 6.0 (70-155)

• Designing and Implementing Distributed Applications with Visual Basic 6.0 (70-175)

Solutions Architecture:

• Analyzing Requirements and Defining Solution Architectures (70-100)

Elective exams enable candidates to choose from a number of additional exams
to complete their MCSD exam requirements. The following MCSD elective exams are
available:

• Any Desktop or Distributed exam not used as a core requirement

• Designing and Implementing Data Warehouses with Microsoft SOL Server 7.0
(70-019)

• Developing Applications with C++ Using the Microsoft Foundation Class Library
(70-024)

• Implementing OLE in Microsoft Foundation Class Applications (70-025)

• Implementing a Database Design on Microsoft SOL Server 6.5 (70-027)

• Designing and Implementing Databases with Microsoft SOL Server 7.0 (70-029)

• Designing and Implementing Web Sites with Microsoft FrontPage 98 (70-055)

• Designing and Implementing Commerce Solutions with
Microsoft Site Server 3.0, Commerce Edition (70-057)

• Application Development with Microsoft Access for Windows 95 and the
Microsoft Access Developer's Toolkit (70-069)

• Designing and Implementing Solutions with Microsoft Office 2000 and
Microsoft Visual Basic for Applications (70-091)

• Designing and Implementing Database Applications with Microsoft Access 2000
(70-097)

• Designing and Implementing Collaborative Solutions with Microsoft Outlook 2000 and
Microsoft Exchange Server 5.5 (70-105)

• Designing and Implementing Web Solutions with Microsoft Visual InterDev 6.0
(70-152)

• Developing Applications with Microsoft Visual Basic 5.0 (70-165)

Chapter 4 Finding the Developer Resources You Need 37

The good news is that because there are exams you must pass to become certified,
there are books and other material out there to teach you how to meet the knowledge
level necessary to pass the exams. That means those resources are available to you
regardless of whether you care about becoming an MCSD.

The way to leverage this information is to get study materials for one or more of these
exams and go through the exam preparation material (don't be fooled by believing that if
the book is bigger, it must be better, because that certainly isn't always the case.) Exam
preparation material is available from such publishers as Microsoft Press, IDG, Sybex, and
others. Most exam preparation texts also have practice exams that let you assess your
grasp on the material. You might be surprised how much you learn, even though you may
have been in the field working on complex projects for some time.

Exam requirements, as well as the exams themselves, can change over time; more
electives become available, exams based on previous versions of software are retired,
and so on. You should check the status of individual exams (such as whether one of the
exams listed has been retired) before moving forward with your certification plans. For
more information about the certification process, or for more information about the
exams, check out Microsoft's certification web site at www.microsoft.comltrain_cert/dev.

Conferences
Like any industry, Microsoft and the development industry as a whole sponsor
conferences on various topics throughout the year and around the world. There are
probably more conferences available than anyone human could possibly attend and still
maintain his or her sanity, but often a given conference is geared toward a focused topic,
so choosing to focus on a particular development topic enables developers to winnow
the number of conferences that apply to their efforts and interests.

MSDN itself hosts or sponsors almost one hundred conferences a year (some of them
are regional, and duplicated in different locations, so these could be considered one
conference that happens multiple times). Other conferences are held in one central
location, such as the big one-the Professional Developers Conference (PDC).
Regardless of which conference you're looking for, Microsoft has provided a central site
for event information, enabling users to search the site for conferences, based on many
different criteria. To find out what conferences or other events are going on in your area
of interest of development, go to events.microsoft.com.

Other Resources
Other resources are available for developers of Windows applications, some of which
might be mainstays for one developer and unheard of for another. The list of developer
resources in this chapter has been geared toward getting you more than started with
finding the developer resources you need; it's geared toward getting you 100 percent of
the way, but there are always exceptions.

38 Volume 3 RPe and WNet

Perhaps you're just getting started and you want more hands-on instruction than MSDN
Online or MeSD preparation materials provide. Where can you go? One option is to
check out your local college for instructor-led courses. Most community colleges offer
night classes, and increasingly, community colleges are outfitted with pretty nice
computer labs that enable you to get hands-on development instruction and experience
without having to work on a 386/20.

There are undoubtedly other resources that some people know about that have been
useful, or maybe invaluable. If you know of a resource that should be shared, send me
e-mail atwinprs@microsoft.com. and who knows-maybe someone else will benefit
from your knowledge.

If you're sending mail about a particularly useful resource, simply put "Resources" in the
subject line. There aren't any guarantees that you'll get a reply, but I'll read all of the mail
and do what I can to ensure that your resource idea gets considered.

CHAPTER 5

Avoiding Common RPC
Programming Errors

This chapter presents a series of simple but common RPC programming errors that
developers of Microsoft Windows applications should. look out for during the
development process.

39

If you own the Microsoft Win32 Developer's Reference Library, some of this information
might look familiar, since common RPC programming pitfalls are also included in that
library. However, I thought this information was pertinent to this Networking Services
Developer's Reference Library and especially to this volume, so I've included it here for
your reading and pitfall-avoiding pleasure.

The chapter begins with the Solution Summary, which presents you with the short
version solutions to each of the numbered,underlined common coding errors you should
look out for. The chapter then moves into common RPC programming errors, which
provides further detail on the problems and pitfalls you should take special care to avoid
when using RPC.

Solution Summary
This section provides short answerHstings for each of the problems explained in the rest
of the chapter. For more information about any of these issues, read the corresponding
explanation provided later in this chapter.

1. pointer_default(unique) and embedded pOinters: Check unique pOinters for NULL
before dereferencing. ~ .

2. A valid switch_is value in an RPC-cl'ipabJe structure doesn't ensure a non-NULL
pointer: When using a switch_is construct that has a default clause:

• Verify that the value switching on is within expected range .

• Verify that pointers within the switched object are not null before dereferencing
them. .

3. A NULL DACL affords no protection: Don't use NULLDACLs"-they don't protect
anything.

4. Call RpclmpersonateClient().before any security relevant operation: Impersonate
before acting on behalf of the caller and check the result:

5. Starting and stopping impersonation: Stop impersonating when finished acting on
behalf of the caller and .thel1. check the result.

40 Volume 3 RPe and WNet

6. Strings are only zero-terminated when declared with string in the .idl: Don't expect
strings to be zero-terminated unless string is specified in the .idl file.

7. Don't copy arbitrary length data into independently sized buffers: This one's self
answering!

8. size_is may result in a zero-length structure; it is not safe to dereference this without
first checking its length: Check the length of size_is-specified data before
dereferencing corresponding pointers.

9. Calculations in a size_is or length_is specification are susceptible to overflow: Be
aware that calculations in MIDL definitions using size_is and length_is can overflow
and that it may be impossible for the server to detect this.

10. Strict context handles: Use strict context handles.

Common RPC Programming Errors
The following sections explain common RPC programming errors in detail, and provide
you with pointers (pardon the pun) on how to avoid them.

Pointer_default(unique) and embedded pointers
When an RPC structure contains pointers, its pOinters default to the default pointer type
(typically set by pointer_default(unique»). Under such circumstances, unique pOinters
can be NULL and must be verified to be non-NULL before being dereferenced.

Example

Chapter 5 Avoiding Common RPC Programming Errors 41

A valid switchjs value in an RPC-capable structure doesn't
ensure a non-NULL pointer
A valid value for the switch field does not change the default of embedded pointers from
unique. Thus, even when it is valid, the pointer must still be verified to be non-NULL
before being dereferenced.

Example

A NULL DACL affords no protection
A NULL DACL grants access to everyone and protects nothing; it doesn't even protect
an object from having its DACL changed to deny access to everyone. In general, an
untrusted user should not be granted access to change a security-descriptor's Owner or
DACL fields (unless they own the object, in which case no one else should be granted
such access).

Example

(continued)

42 Volume 3 RPe and WNet

(continued)

Remarks
This example exposes this error for RPC, but the error's scope goes beyond RPC .. If you
create a publicly accessible securable object and do not secure it against unauthorized
users' changing of the DACL, anyone can lock the object such that no one can access it.

Allowing "all" access-for example, applying a DACL granting EVENT _ALL_ACCESS to
everyone who accesses an event object-is an equally bad idea, because "all" access
typically grants WRITE_DAC and WRITE_OWNER permissions. Granting either of these
permissions explicitly enables objects to be locked up. Use (GENERIC_READ I
GENERIC_WRITE I GENERIC_EXECUTE) when it's necessary to grant broad access
to an object to any non-administrative-Ievel user.

Call RpclmpersonateClient() before any security-relevant operation
The purpose of many RPC servers is to act on behalf of a client, but they must protect
system integrity while doing so. Many RPC servers run in the system context;
impersonating the caller enables the server to use the user's credentials to access some
objects, while otherwise being a part of the secure side of the system.

Example

Remarks
Opening a process by pid without first impersonating can provide a caller with access to
the process that it normally would not have. The server now has a handle to a process
LSASS for example-allowing it to scribble in the address of a process the user would
not have been allowed on its own. .

Chapter 5 Avoiding Common RPC Programming Errors 43

Starting and stopping impersonation
There are a handful of issues that programmers should be on the lookout for when
starting and/or stopping impersonation.

Always check the result of RpclmpersonateClient() before a security relevant
operation.
The RpclmpersonateClient() function returns an indication of success or failure; skip
the check and you may as well have skipped the call (which, as we saw previously in this
chapter, can be dangerous).

Call RpcRevertToSelf() after security relevant operations
Once a server has acted on behalf of the user by impersonating, it should revert to its
own security context by calling RpcRevertToSelfO. Although the consequences of
failing to undo impersonation are typically not as drastic as failing to impersonate, it can
result in failure to function correctly, and cause spurious behavior such as extra audits.

Example

(continued)

44 Volume 3 RPC and WNet

(continued)

Remarks
This example shows how to avoid this programming error in RPC, the scope of this error
extends beyond RPC. Impersonation is possible over LPC, Named Pipes, and when
using Tokens. In all cases, a decision must be made as to whose context (typically
System versus untrusted user) should be used for various operations, and impersonation
used where appropriate.

Strings are only zero-terminated when declared with string
in the .idl
Variably sized RPC buffers can be tricky to deal with. For the most part, variably sized
RPC buffers consist of either character strings (which should contain NULL termination
defining the size) or amorphous buffers for which there is a corresponding size value
passed to the function. The examples that follow document some of the common errors
involved in dealing with such buffers.

A buffer that hasn't been explicitly declared as a string type cannot be assumed to
contain a NULL terminator, and thus must not be passed to C runtime string functions
prior to verification of zero termination. This cannot be done by touching a byte outside
the valid length of your buffer.

Example

Remarks
The NameSize parameter should be checked and used to bound any operations, either
by explicitly attaching a NULL terminator (on the server side), or by using bounded string
operations with the size of the buffer specified.

Chapter 5 Avoiding Common RPC Programming Errors 45

Don't copy arbitrary length data into independently sized buffers
Data buffers should not be assumed to be bound by an arbitrary size limit. An explicit
check of the size of the indicated data must be made prior to copying to local fixed-size
buffers.

Example

Remarks
stri ng guarantees that the pwszName parameter is zero terminated, not that its length is
less than MAX_PATH.

sizejs may result in a zero-length structure
A size_is specifier can result in a zero-length buffer but a non-NULL buffer pointer (as
reference pOinters, such as passed parameters, cannot be NULL). A unique pointer can
always be NULL. The best practice is to verify both the pointer as non-NULL and the
buffer size as non-zero to avoid problems.

Example 1

Remarks
There is no guarantee in this example that the StructureSize parameter is sufficient to
cover the NameLength member, and in fact, the Structure pOinter may be non-NULL,
while StructureSize, and thus the allocated buffer, indicate a zero length.)

46 Volume 3 RPC and WNet

. Example 2

Remarks
This example presents a similar problem. In this case, the Structure Size parameter could
be non-zero, but Structure-being defined as un; que-could contain a NULL.)

Calculations in a sizejs or lengthjs specification are susceptible
to overflow
Calculations in the MIDL definition for a size_is or length_is specification are subject to
overflow problems. If you perform a calculation in a size_is or length_is specification,
consider what difficulties overflow (or rounding) might cause.

Strict context handles
Context handles enable RPC servers to associate information with calls. RPC looks up
context handles in a linked list associated with each binding handle. If you have more
than one interface accessible from a single binding handle, then the code must be
prepared to reject invalid handles or use strict context handles. Interfaces end up being
accessible from a single binding handle if they share things like the same named pipe.
Using the [stricCcontexChandle] on the interface definition in the .act file causes RPC to
only allow context handles to be used against interfaces that created them.

Part 2 47

CHAPTER 6

Microsoft RPC Model

Microsoft® Remote Procedure Call (RPC) for the C and C++ programming languages
is designed to help meet the needs of developers working on the next generation of
software for the Microsoft® family of operating systems: MS-DOS ®, Windows ®,
Windows 95, and Windows NT®IWindows 2000.

Microsoft RPC represents the convergence of three powerful programming models:

• The familiar model of developing C applications by writing procedures and libraries

• The model that uses powerful computers as network servers to perform specific tasks
for their clients

• The client-server model, in which the client usually manages the user interface while
the server handles data storage, queries, and manipulation

This section explains the convergence of these three models in distributed computing,
which delivers the ability to share computational power among the computers on a
network. It also describes the industry standard for RPC and provides an overview of
Microsoft RPC components and their operation.

The Programming Model
In the early days of computing, each program was written as a large monolithic chunk,
filled with goto statements. Each program had to manage its own input and output to
different hardware devices. As the programming discipline matured, this monolithic code
was organized into procedures, with the commonly used procedures packed in libraries
for sharing and reuse. Today, RPC takes the next step in the development of procedure
libraries. Now, procedure libraries can run on other remote computers. (See Figure 6-1.)

The C programming language supports procedure-oriented programming. In C, the
main procedure relates to all other procedures as black boxes. For example, the main
procedure cannot find out how procedures A, B, and X do their work. The main
procedure only calls another procedure; it has no information about how that procedure
is implemented. (See Figure 6-2.)

Procedure-oriented programming languages provide simple mechanisms for specifying
and writing procedures. For example, the ANSI-standard C-function prototype is a
construct used to specify the name of a procedure, the type of the result it returns (if any)
and the number, sequence, and type of its parameters. Using the function prototype is a
formal way to specify an interface between procedures.

48 Volume 3 RPe and WNet

In this topic, the term procedure is synonymous with the terms subroutine and
subprocedure and refers to any sequence of computer instructions that accomplishes
a functional purpose. In this topic, the term function refers to a procedure that returns
a value.

Main

D D F

Computer 1 Computer 2
R emote Procedure

Figure 6-1: Procedure Libraries Running on Remote Computers.

Related procedures are often grouped in libraries. For example, a procedure library
can include a set of procedures that performs tasks common to a single domain such
as floating-point math operations, formatted input and output, and network functions.

Main

Figure 6-2: Main Procedure Calling Another Procedure.

Chapter 6 Microsoft RPC Model 49

The procedure library is another level of packaging that makes it easy to develop
applications. Procedure libraries can be shared among many applications. Libraries
developed in C are usually accompanied by header files. Each program that uses the
library is compiled with the header files that formally define the interface to the library's
procedures.

The Microsoft RPC tools represent a general approach in which procedure libraries
written in C can run on other computers. In fact, an application can link with libraries
implemented using RPC without indicating to the user that the application is using RPC.

The Client-Server Model
Client-server architecture is an effective and popular design for distributed applications.
In the client-server model, an application is split into two parts: a front-end client that
presents information to the user, and a back-end server that stores, retrieves, and
manipulates data, and generally handles the bulk of the computing tasks for the client.
In this model, the server is usually a more powerful computer than the client and works
as a central data store for many client computers, thus making the system easy to
administer.

Typical examples of client-server applications include shared databases, remote file
servers, and remote printer servers. Figure 6-3 illustrates the client-server model.

Client

Figure 6-3: The Client-Server Model.

50 Volume 3 RPe and WNet

Network systems support the development of client-server applications through
an Interprocess Communication (IPC) facility in which the client and server can
communicate and coordinate their work. You can use NetBIOS NCBs (Network
Control Blocks), mailslots, or named pipes to transfer information between two or
more computers.

For example, the client can use an IPC mechanism to send an opcode and data to the
server requesting that a particular procedure be called. The server receives and decodes
the request and calls the appropriate procedure. The server then performs all the
computations needed to satisfy the request and returns the result to the client. Client
server applications are usually designed to minimize the amount of data transmitted over
the network.

Using NetBIOS, mailslots, or named pipes to implement interprocess communication
means learning specific details relating to network commLinication. Each application
must manage the network-specific conditions. To write this network-specific level of
code, you must:

• Learn details relating to network communications and how to handle error conditions.

• Translate data to different internal formats, when the network includes different kinds
of computers.

• Support communications using multiple transport interfaces.

In addition to all the possible errors that can occur on a single computer, the network has
its own error conditions. For example, a connection can be lost, a server can disappear
from the network, the network security service can deny access to system resources, or
users can compete for and tie up system resources. Because the state of the network is
always changing, an application can fail in new and interesting ways that are difficult to
reproduce. For these reasons, each application must rigorously handle all possible error
conditions.

When you write a client-server application, you must provide the layer of code that
manages network communication. The advantage of using Microsoft RPC is that the
RPC tools provide this layer for you. RPC virtually eliminates the need to write network
specific code, thus making it easier to develop distributed applications.

Using the remote procedure call model, RPC tools manage many of the details relating
to network protocols and communication. This allows you to focus on the details of the
application rather than the details of the network. .

Chapter 6 Microsoft RPC Model 51

The Compute-Server Model
Networking software for personal computers has been built on the model of a powerful
computer-the server-that provides specialized services to workstations, or client
computers. In this model, servers are designated as file servers, print servers, or
communications (modem) servers, depending on whether they are assigned to file
sharing or are connected to printers or modems.

RPC represents an eVolutionary step in this model. In addition to its traditional roles, a
server using RPC can be designated as a computational server or a compute server. In
this role, the server shares its own computational power with other computers on the
network. A workstation can ask the compute server to perform computations and return
the results. The client not only uses files and printers, it also uses the central processing
units of other computers.

How RPC Works
The RPC tools make it appear to users as though a client directly calls a procedure
located in a remote server program. The client and server each have their own address
spaces; that is, each has its own memory resource allocated to data used by the
procedure. Figure 6-4 illustrates the RPC architecture.

Client Server

Figure 6-4: RPe Architecture.

52 Volume 3 RPC and WNet

As the illustration shows, the client application calls a local stub procedure instead of the
actual code implementing the procedure. Stubs are compiled and linked with the client
application. Instead of containing the actual code that implements the remote procedure,
the client stub code:

• Retrieves the required parameters from the client address space.

• Translates the parameters as needed into a standard network data representation
(NDR) format for transmission over the network ..

• Calls functions in the RPC client run-time library to send the request and its
parameters to the server.

The server performs the following steps to call the remote procedure.

1. The server RPC run-time library functions accept the request and call the server stub
procedure.

2. The server stub retrieves the parameters from the network buffer and converts them
from the network transmission format to the format the server needs.

3. The server stub calls the actual procedure on the server.

The remote procedure then runs, possibly generating output parameters and a return
value. When the remote procedure is complete, a similar sequence of steps returns the
data to the client.

1. The remote procedure returns its data to the server stub.

2. The server stub converts output parameters to the format required for transmission
over the network and returns them to the RPC run-time library functions.

3. The server RPC run-time library functions transmit the data on the network to the
client computer.

The client completes the process by accepting the data over the network and returning it
to the calling function.

1. The client RPC run-time library receives the remote-procedure return values and
returns them to the client stub.

2. The client stub converts the data from its network data representation to the format
used by the client computer. The stub writes data into the client memory and returns
the result to the calling program on the client.

3. The calling procedure continues as if the procedure had been called on the same
computer.

Chapter 6 Microsoft RPC Model 53

For Microsoft® Windows® 3.x, Windows 95, and Windows NT®IWindows 2000, the
run-time libraries are provided in two parts: an import library, which is linked with the
application and the RPC run-time library, which is implemented as a Dynamic-Link
Library (DLL).

The server application contains calls to the server run-time library functions which
register the server's interface and allow the server to accept remote procedure calls.
The server application also contains the application-specific remote procedures that
are called by the client applications.

OSF Standards for RPC
The design and technology behind Microsoft® RPC is just one part of a complete
environment for distributed computing defined by the Open Software Foundation (OSF),
a consortium of companies formed to define that environment. The OSF requests
proposals for standards, accepts comments on the proposals, votes on whether to
accept the standards, and then promulgates them. The components of the OSF
Distributed Computing Environment (DCE) are shown in Figure 6-5.

Applications

~. II ~t,her Distributed
n ervlce (Future)

Security
Distributed File Services

Management

Other Core
Time Naming Services

(Future)

R emote Procedure Call
and Presentation Services

Threads

Operating System and Transport Services

Figure 6-5: Components of the OSF Distributed Computing Environment.

In selecting the RPC standard, the OSF cited the following rationale:

• The three most important properties of a remote procedure call are simplicity,
transparency, and performance.

• The selected RPC model adheres to the local procedure model as closely as
possible. This requirement minimizes the amount of time developers spend learning
the new environment.

54 Volume 3 RPC and WNet

• The selected RPC model permits interoperability; its core protocol is well defined and
cannot be modified by the user.

• The selected RPC model allows applications to remain independent of the transport
and protocol on which they run, while supporting a variety of other transports and
protocols.

• The selected RPC model can be easily integrated with other components of the DCE.

The OSF-DCE remote procedure call standards define not only the overall approach, but
the language and the specific protocols to use for communications between computers
as well, down to the format of data as it is transmitted over the network.

The Microsoft implementation of RPC is compatible with the OSF standard with some
minor exceptions. Client or server applications written using Microsoft RPC will
interoperate with any DCE RPC client or server whose run-time libraries run over a
supported protocol. For a list of supported protocols, see Building RPC Applications.

Microsoft RPC Components
The Microsoft® RPC product includes the following major components:

• MIDL compiler

• Run-time libraries and header files

• Transport interface modules

• Name service provider

• Endpoint supply service

In the RPC model, you can formally specify an interface to the remote procedures using
a language designed for this purpose. This language is called the Interface Definition
Language, or IDL. The Microsoft implementation of this language is called the Microsoft
Interface Definition Language, or MIDL.

After you create an interface, you must pass it through the MIDL compiler. This compiler
generates the stubs that translate local procedure calls into remote procedure calls.
Stubs are placeholder functions that make the calls to the run-time library functions,
which manage the remote procedure call. The advantage of this approach is that the
network becomes almost completely transparent to your distributed application. Your
client program calls what appear to be local procedures; the work of turning them into
remote calls is done for you automatically. All the code that translates data, accesses the
network, and retrieves results is generated for you by the MIDL compiler and is invisible
to your application.

Chapter 6 Microsoft RPC Model 55

RPC Extends Client-Server Computing
Microsoft® RPC is an evolution of the procedural programming model familiar to all
developers. It also represents a new category of specialized server and extends the
model of client-server computing. Developers can use Microsoft RPC as a tool to
leverage the power of the single personal computer by expanding its computational
capacity far beyond its own resources. With RPC, you can harness all of the CPU
horsepower available on the network.

Microsoft RPC allows a process running in one address space to make a procedure call
that is executed in another address space. The call looks like a standard local procedure
call but is actually made to a stub that interacts with the run-time library and performs all
the steps necessary to execute the call in the remote address space.

As a tool for creating distributed applications, Microsoft RPC provides the following
benefits:

• The RPC programming model is already familiar. You can easily turn functions into
remote procedures that simplify development and test cycles.

• RPC hides many details of the network interface from the developer. You do not have
to understand specific network functions or low-level network protocols to implement
powerful distributed applications.

• RPC solves the data-translation problems that crop up in heterogeneous networks.
Individual applications can ignore this problem.

• The RPC approach is scalable. As a network grows, applications can be distributed to
more than one computer on the network.

• The RPC model is an industry standard. The Microsoft implementation is compatible
with both client and server.

CHAPTER 7

Installing the RPC Programming
Environment

57

You develop RPC distributed applications, for all supported platforms, on the 32-bit
Microsoft® Windows NT®IWindows® 2000 platform. This section describes the process
of installing the RPC application development environment in the following topics:

• Developing 32-bit Windows Applications

• Developing Macintosh Client Applications

Note See Building RPe Applications for information about various build environments.

Developing 32-Bit Windows Applications
When the Platform SDK is installed, the RPC development environment and the run-time
libraries are automatically installed. For 32-bit Windows platforms, no additional
installation is required. The Microsoft Platform SDK contains the Microsoft®
Windows NT®IWindows® 2000 and Windows 95 APls. When you install the Platform
SDK, you install the following RPC tools and files:

• C/C++ languageheader (.H) files for the RPC run-time libraries and run-time
library (.Iib and .dll) files for 32-bit Windows platforms

• 32-bit sample programs

• RPC reference Help files

• The uuidgen utility

When you install Windows NTlWindows 2000 or Windows 95, you install the following:

• RPC Run-time DLLs

• Microsoft Locator (Windows NTlWindows 2000 only) and RPC Endpoint-mapping
services

58 Volume 3 RPC and WNet

The following RPC import libraries are included for Microsoft 32-bit Windows clients and
servers.

Import library

Rpcndr.lib

Rpcns4.lib

Rpcrt4.lib

Description

Helper functions

Name-service functions

32-bit Windows run-time
functions

Platform

Windows 95/98, Windows NT
version 4 and earlier.

Windows 95/98, Windows NT
version 4 and earlier, Windows 2000.

Windows 95/98, Windows NT
version 4 and earlier, Windows 2000.

The following RPC libraries are included for Microsoft 32-bit Windows clients and
servers:

Dynamic-link
library Description Platform

Rpcltc1.dll Client named-pipe Windows 95/98, Windows NT
transport version 4 and earlier.

Rpclts1.dll Server named-pipe Windows 95/98, Windows NT
transport version 4 and earlier.

Rpcltc3.dll Client TCP/IP transport Windows 95/98, Windows NT
version 4 and earlier.

Rpclts3.dll Server TCP/IP transport Windows 95/98, Windows NT
version 4 and earlier.

Rpcltc5.dll Client NetBIOS transport Windows 95/98, Windows NT
version 4 and earlier.

Rpclts5.dll Server NetBIOS transport Windows 95/98, Windows NT
version 4 and earlier.

Rpcltc6.dll Client SPX transport Windows 95/98, Windows NT
version 4 and earlier.

Rpclts6.dll Server SPX transport Windows 95/98, Windows NT
version 4 and earlier.

Rpcdgc6.dll Client IPX transport Windows 95/98, Windows NT
(Windows NT/ version 4 and earlier.
Windows 2000 only)

Rpcdgs6.dll Server IPX transport Windows 95/98, Windows NT
(Windows NT/ version 4 and earlier.
Windows 2000 only)

Dynamic-link
library

Rpcdgc3.dll

Rpcdgs3.dll

Rpcns4.dll

Rpcrt4.dll

Chapter 7 Installing the RPC Programming Environment 59

Description

Client UDP transport
(Windows NT I
Windows 2000 only)

Server UDP transport
(Windows NTI
Windows 2000 only)

Name service

32-bit Windows run-time
library

Platform

Windows 95/98, Windows NT
version 4 and earlier.

Windows 95/98, Windows NT
version 4 and earlier.

Windows 95/98, Windows NT
version 4 and earlier, Windows 2000.

Windows 95/98, Windows NT
version 4 and earlier, Windows 2000.

You will also need the Microsoft Interface Definition Language (MIDL) compiler. For
more information, see Using The MIDL Compiler.

Developing Macintosh Client Applications
To develop client-side applications for the Macintosh, you must have the following:

• The Microsoft® Visual C++® development system for the Macintosh. The RPC
runtime has been compiled using Visual C++ cross-development tools. In order to use
Rpc.lib, you must link against the C run-time and swapper library (Swap.lib) provided
with Visual C++, version 2.0 or later.

• The Macintosh RPC SDK, which is contained in a disk image in the Platform SDK
directory \rpc_sdk. Run SETUP.EXE from Disk 1 to install the Macintosh header and
library files. Note that the current Rpc.lib is native 68K. We currently do not provide a
native Power Mac library. RPC runs in emulation on Power Macs.

• The target computer must have a microprocessor of 68020 or later, and it must be
running System 7.0 or later.

~ To connect to the Windows NTIWindows 2000 or Windows 95 server
• Current Windows NTlWindows 2000-supported protocols for the Macintosh are ADSP

and TCP/IP. In order to use ADSP, the Windows NTlWindows 2000 server must have
both the AppleTalk protocol and Services for Macintosh. Windows 95 supports only
the TCP/IP protocol for the Macintosh.

60 Volume 3 RPe and WNet

~ To write an RPC client
1. If you use atexit to perform cleanup during shutdown, do not call any RPC APls in

your exit processing function.

2. If a yielding function is not registered, an RPC will not yield on the Macintosh.
Register a yielding function by calling RpcMacSetYieldlnfo.

3. Most client-side APls that are supported by Windows 3.x are also supported by the
Macintosh. The Macintosh does not support the following APls:

• RpcNs* APls

• RpcMgmt* APls

• RpcWinSetYieldlnfo (replaced by RpcMacSetYieldlnfo)

The only authentication service currently supported for the Macintosh is
RPC_C_AUTHN_WINNT.

The following protocol sequences are supported:

• ADSP:ncacn_aCdsp

• TCP:ncacn_ip_tcp

61

CHAPTER 8

Building RPC Applications

The exact procedure for building a distributed Remote Procedure Call (RPC) application
varies slightly, depending on:

• the operating-system platform you are developing on

• the target platform

• the version of the MIDL and C or C++ compiler you use

• the API libraries you use

For details, see Environment, Compiler, and API Set Choices. This section discusses the
process of building client/server applications with Microsoft® Remote Procedure Call.

General Build Procedure
The process for creating a client/server application using Microsoft® RPC is:

• Develop the interface.

• Develop the server that implements the interface.

• Develop the client that uses the interface.

Figure 8-1 illustrates these steps.

Develop the Interface

Develop the Client Develop the Server

Figure 8-1: Creating a Client/Server Application Using RPC.

Note that it is not only feasible to develop the client and server applications concurrently,
it is likely that you will do so. However, since both the client and server programs are
dependent on the interface, the interface between them must be developed before the
client and server are developed, as shown in the preceding diagram.

This section discusses the steps required for building a client/server application
with RPC.

62 Volume 3 RPC and WNet

Developing the Interface
An RPC interface describes the remote functions that the server program implements.
The interface ensures that the client and server programs communicate using the same
rules when the client invokes a remote procedure that the server offers. An interface
consists of an interface name, some attributes, optional type or constant definitions, and
a set of procedure declarations. Each procedure declaration must contain a procedure
name, return type, and parameter list.

Interfaces are defined in the Microsoft® Interface Definition Language (MIDL). If you are
familiar with C or C++, MIDL interface definitions will seem fairly straightforward. MIDL
resembles C and C++ in many ways.

When developing an RPC application, you use a text editor to define the interface and
store it in a text file with an .idl extension. For more information, see The IDL and ACF
Files. You use the MIDL compiler to generate a header file that your program includes in
the client and server source files. The MIDL compiler also generates two C source files.
You compile and link one of these to your client program, and the other to your server
program. These two C source files are the client and server stubs. For an overview of
the client and server stubs, see How RPC Works. For an overview on the MIDL
compiler, see Compiling a MIDL File.

Figure 8-2 shows the process of creating an interface.

Client Stub Server Stub

Figure 8-2: Creating an Interface.

It is possible that you will also need to specify an application configuration file (ACF) for
input to the MIDL compiler as well. For more information on application configuration
files, see The IDL and ACF Files.

Chapter 8 Building RPC Applications 63

In addition to the MIDL compiler, you will typically need to use the Uuidgen utility to
generate a Universal Unique Identifier (UUID). This section presents information on both
of these tools, divided into the following topics:

• Generating Interface UUIDs

• Using MIDL

Generating Interface UUIDs
This section presents information on Universal Unique Identifiers (UUIDs) and the
Uuidgen utility in the following topics:

• What is a UUID?

• Using Uuidgen

What is a UUID?
All interfaces must be uniquely identified on a network so that clients can find them. On
small networks, the interface's name alone may be sufficient to identify it. However, that
is usually not feasible on large networks. Therefore, developers typically assign a
Universal Unique Identifier (UUID) to each interface. A UUID is a string that contains a
set of hexadecimal digits. Each interface has a different UUID. For details, see String
UUID.

The textual representation of a UUID is a string consisting of 8 hexadecimal digits
followed by a hyphen, followed by three hyphen-separated groups of 4 hexadecimal
digits, followed by a hyphen, followed by 12 hexadecimal digits. The following example is
a valid UUID string:

Empty UUIDs are referred to as nil UUIDs rather than NULL UUIDs. The term nil
indicates anything that is zero, blank, empty, or uninitialized. An empty string, an empty
database record, or an un initialized UUID are all examples of nil values.

Note The value NULL is the specific value zero. It is often used in C and C++
programming in conjunction with pointers. Nil is a more general term than NULL.
Uninitialized object interface UUIDs should always be referred to as nil UUIDs rather
than NULL UUIDs.

Using Uuidgen
Microsoft provides a utility program called Uuidgen, that you can use to generate your
UUIDs. The Uuidgen program is a command-line utility that creates unique identifiers in
the required format using both a time identifier and a computer identifier. It guarantees
that any two UUIDs produced on the same computers are unique because they are
produced at different times, and that any two UUIDs produced at the same time are
unique because they are produced on different machines. The Uuidgen utility generates
the UUID in IDL file format or C-Ianguage format.

64 Volume 3 RPC and WNet

When you run the Uuidgen utility from the command line, you can use the following
command switches.

Uuidgen switch

/I
Is

10< filename>

In <number>

Iv
Ih or?

Description

Outputs UUID to an IDL interface template.

Outputs UUID as an initialized C structure.

Redirects output to a file; specified immediately after
the 10 switch.

Specifies the number of UUIDs to generate.

Displays version information about Uuidgen.

Displays command-option summary.

Typically, you will use the Uuidgen utility as shown in the following example:

This command generates a UUID and stores it in a MIDL file that you can use as a
template. When the preceding command is executed, the contents of MyApp.idl are
similar to the following:

The next step would be to replace the placeholder name, INTERFACENAME, with the
actual name of your interface.

Using MIDL
All interfaces for programs using RPC must be defined in Microsoft Interface Definition
Language (MIDL) and compiled with the MIDL compiler. The following topics present a
brief overview of creating and compiling a MIDL interface:

• Defining an Interface with MIDL

• Compiling a MIDL File

For a detailed discussion of these topics, see The IDL and ACF Files.

Defining an Interface with MIDL
MIDL files are text files that you can create and edit with a text editor. If you generate a
UUID for your interface, you will typically store the output in a template MIDL file. For
more information on UUIDs, see Generating Interface UUIDs.

Chapter 8 Building RPC Applications 65

All interfaces in MIDL follow the same format. They begin with a header that contains a
list of interface attributes and the interface name. The attributes are enclosed in square
brackets. The interface header is followed by its body, which is enclosed in curly
brackets. A simple interface is shown in the following example:

Some of the attributes that typically appear in a MIDL interface definition are the UUID
and the interface version number. The body of the interface definition must contain the
procedure declarations of all of the remote procedures in the interface. It can also
contain the declarations of data types and constants that the interface requires.

All parameters in the remote procedure declarations must be declared as [in], [out], or
[in,out]. These declarations specify that the client program passes data into a remote
procedure, getsdata out of a remote procedure, or both. For more detailed information
about interface parameter declarations, see The JOL Interface Body.

Compiling a MIDL File
The MIDL compiler is a command-line tool that is automatically installed with the
Platform SDK. Invoke it in an MS-DOS® window by typing the command midi, followed
by the name of a MIDL file, at the command line. Make sure that the directory containing
the MIDL compiler is in your path. The following example illustrates its use:

Note that you do not have to include the extension if the file name has the .idl extension.
You can also use the MIDL compiler command-line switches by inserting them between
the midi command and the file name. This is demonstrated in the following example:

In this example, the MIDL compiler is executed using the file MyApp.idl as the input file.
The command line switch facf instructs the compiler to use an application configuration
file (ACF) for input as well. Application configuration files are discussed more thoroughly
in The IDL and ACF Files.

66 Volume 3 RPe and WNet

For more detailed information on using the MIDL compiler, see the MIDL Programmer's
Guide and Reference on MSDN, which contains information on the following topics:

• C-Preprocessor Requirements and Options

• C-Compiler Requirements and Options

• Files Generated for an RPC Interface

• MIDL Command-line Reference

• MIDL Language Reference

• MIDL Compiler Errors and Warnings

Developing the Server
When you create a server program for a distributed application, you must use the header
file and server stub that the MIDL compiler generates. For details, see Developing the
Interface. Include the header file in your server C program file. Compile the server stub
with the C source files that compose your application. Link the resulting object files
together with the RPC run-time library. This process is illustrated in Figure 8-3.

MySrvr,c RProcs,c

Server Stub

Figure 8-3: Creating a Server Program for a Distributed Application.

Chapter 8 Building RPC Applications 67

As you can see from the example in the illustration, a MIDL file called MyApp.idl was
used to define the interface. The MIDL compiler used MyApp.idl to produce MyApp_s.c
and MyApp.h. It also produces a C source file for the client stub, but that is not relevant
to this particular discussion. The C source file for the server program (in this case,
Mysrvr.c) must include the file MyApp.h. It will also need to include the files RPC.h and
RPCNDR.h.

The server application was developed in two files, MySrvr.c and RProcs.c. The file
MySrvr.c contains the functions necessary for getting the server program up and
running. The remote procedures that the server program offers are contained in the file
RProcs.c.

The files MySrvr.c and RProcs.c were compiled together with MyApp_s.c to produce
object files. The object files were then linked with the RPC run-time library, and any other
libraries that they might need. The result is an executable server program named
MySrvr.exe.

If you do not compile your IDL file in Open Software Foundation (OSF) compatibility
mode (/osf) , your server program must provide a function for allocating memory and a
function for deallocating it. For details, see How Memory Is Allocated and Deallocated,
and Pointers and Memory Allocation.

Developing the Client
Developing an RPC client program is similar to developing the server program. For
information on developing an RPC server program, see Developing the Server.

As in server development, your client program must include the header file that the MIDL
compiler generates from your .idl file. The MIDL compiler also generates a C source file
containing the client stub. You must compile this C source file and link it to your client
program. (In addition, the MIDL compiler generates a C source file containing the server
stub, but that is not relevant to this discussion.)

In addition to compiling and linking the server stub with your program files, you must link
the RPC run-time library (and any other libraries your client program needs) to your
client program. The process of creating an RPC client program is illustrated in
Figure 8-4.

The example in the preceding illustration demonstrates the creation of an RPC client
program called MyClnt.exe. The first step is to define the interface in the file MyApp.idl.
The MIDL compiler uses MyApp.idl to generate the file MyApp_c.c, which contains the
client stub. It also generates the file MyApp.h, which the client program must include.
The client program will also need to include the files RPC.h and RPCNDR.h.

The client program itself is created in the file MyClnt.c. In a real project, the client
program would typically be composed of several C source files. All of them would need
to be compiled and linked together. However, this example uses only one file for
simplicity.

68 Volume 3 RPC and WNet

Client Stub

Figure 8-4: Creating an RPC Client Program.

The files MyClnt.c and MyApp_c.c are compiled and linked together with the RPC run
time library, and any other libraries that the client program needs. The result is an
executable client program named MyClnt.exe.

If you do not compile your IDL file in OSF compatibility mode (lost), your client program
must provide a function for allocating memory and a function for deallocating it. For
details, see How Memory Is Allocated and Deallocated, and Pointers and Memory
Allocation.

Environment, Compiler, and API Set Choices
\

You can develop RPC applications for different target environments: Microsoft®
MS-DOS®, Microsoft® Windows® 3.x, Windows 95/98, and Microsoft®
Windows NT®IWindows® 2000. You can also develop the executable applications for
these target environments using different build environments. Accordingly, you can
choose among several development environments, MIDL and C compilers, and API sets.

Available tools and libraries are described in the following table.

Development tool

MIDL 3.0 for 32-bit
environment

C and MSVC for 16-bit
environment

C and MSVC for 32-bit
environment (Platform SDK)

Microsoft® Win32® API

Windows 3.x API

Exception Handling

Chapter 8 Bliilding RPC Applications 69

Description

Produces C source code for 16-bit or 32-bit
environments.

Produces 16-bit object files only.

Produces 32-bit object files only.

Provided for 32-bit environment only (RPC functions
are provided as 32-bit DLLs).

Provided for 16-bit environment only (RPC functions
are provided as 16-bit Windows DLLs).

RPC uses the same approach to exception handling as the Microsoft® Win32® API.

With Microsoft® Windows® 95 and Windows NT®IWindows 2000, the RpcTryFinally /
RpcFinally / RpcEndFinally structure is equivalent to the Win32 try-finally statement.
The RPC exception construct RpcTryExcept / RpcExcept / RpcEndExcept is
equivalent to the Win32 try-except statement.

The exception-handler structures in RPC are provided so they can also be supported on
computers with the Microsoft® MS-DOS® and Windows 3.x operating systems. When
you use the RPC exception handlers, your client-side source code is portable to
Windows NTIWindows 2000, Windows 95/98, Windows 3.x, and MS-DOS. The different
RPC header files provided for each platform resolve the RpcTry and RpcExcept
structures for each platform. In the Win32 environment, these macros map directly to the
Win32 try-finally and try-except statements. In other environments, these macros map
to other platform-specific implementations of exception handlers.

Potential exceptions raised by these structures include the set of error codes returned by
the RPC functions with the prefixes RPC_S_ and RPC_X and the set of exceptions
returned by Win32. For details, see RPe Return Values.

Exceptions that occur in the server application, server stub, and server run-time library
(above the transport layer) are propagated to the client. This propagation feature
includes multiple layers of callbacks. No exceptions are propagated from the server
transport level. Figure 8-5 shows how exceptions are returned from the server to the
client.

70 Volume 3 RPC and WNet

Client
Stub

Client
Run-Time
Transport

Server
Run-Time
Transport

Figure 8-5: Returning Exceptions from Server to Client.

The RPC exception handlers differ slightly from the Open Software Foundation
Distributed Computing Environment (OSF-DCE) exception-handling macros TRY,
FINALLY, and CATCH_ Various vendors provide include files that map the OSF-DCE
RPC functions to the Microsoft RPC functions, including TRY, CATCH, CATCH_ALL,
and ENDTRY. These header files also map the RPC_S_* error codes onto the OSF
DCE exception counterparts, rpc_s_*, and map RPC_X_* error codes to rpc_x_*. For
OSF-DCE portability, use these include files.

For more information about the RPC exception handlers, see RpcExcept and
RpcFina/ly. For more information about the Win32 exception handlers, see the
Platform SDK documentation.

CHAPTER 9

Connecting the Client and
the Server

To communicate, client and server programs must establish a communication session
across the network or networks that connect them. Once they establish the connection,
the client can call remote procedures in the server program as if they were local to the
client program.

71

This section provides a conceptual overview of how to establish a connection between
clients and servers for remote procedure calls. It does not provide an in-depth discussion
of this topic. All of the concepts in this section are presented in detail in later chapters
and in the RPC Function Reference section.

Note that the discussion assumes automatic binding handles for the sake of simplicity.
However, if your application uses implicit or explicit binding handles, you must take some
extra steps in addition to what is presented in this section. For details, see Binding and
Handles.

Essential RPC Binding Terminology
To better aid in a discussion of the clienVserver connection process, it is helpful to know
the following terms.

Protocol Sequence
When network operating systems communicate with each other, they must listen and
speak the same language. These languages are called protocol sequences. Client
and server programs must use protocol sequences that the network connecting them
supports. Microsoft® RPC supports a variety of protocol sequences. For details, see
Selecting a Protocol Sequence, Specifying Protocol Sequences, and endpoint.

Server Host Computer or Server Host System
The server program runs on the server host computer. However, much literature on
clienVserver computing refers to both the server program and the server host
computer as the "server." The result is that it is not always clear which is being
discussed.

Endpoint
Server programs listen to a port or a group of ports on the server host computer for
client requests. Server host systems maintain a database of these ports, which are
called endpOints in RPC. The database is called the endpoint map.

72 Volume 3 RPC and WNet

Binding
Client and server programs create a binding to each other to establish a
communication session. A binding contains all of the information the client and server
applications need to create the session.

Name Service
A name service is a distributed database containing server program identification
information.

How the Server Prepares for a Connection
When a server program begins execution, it must first register the interface or interfaces
it contains with the RPe run-time library. It then creates the necessary binding
information, and advertises its presence in a name-service database. The server
program must also register the endpoint or endpoints it listens to. It can then begin
listening for client calls. This process is illustrated in Figure 9-1.

1. Register the
interface.

2. Create Binding
Information.

3. Advertise the }
server program.

4. Register the
endpoints.

5. Listen for client
calls.

}

Figure 9-1: A Server Preparing for a Connection.

Name Service
Database

Chapter 9 Connecting the Client and the Server 73

This section presents information on the steps that a server process must take to
prepare for a connection.

Registering the Interface
Registering the interface that a server program supports enables client programs to find
out on which server host computer the. server program runs. Server programs call
RpcServerRegisterlf to register their interfaces. The following code fragment
demonstrates its use:

The first parameter to the RpcServerRegisterlf function is a structure the MIDL compiler
generates from the IDL file that defines the interface (or interfaces) for the server. The
second and third parameters are a UUID and an entry-point vector, respectively. They
are set to NULL in this example. In many instances, your server program will set these
parameter values to NULL. Server programs use the second and third parameters when
they provide multiple implementations of the same procedures in an interface. For more
information, see Entry-Point Vectors.

Server programs can also use RpcServerRegisterlfEx to register an interface. One
advantage of using this function is that it provides your application with the ability to set a
security-callback function. Using security-callback functions is more secure than using
entry-point vectors.

Creating Binding Information
To register an endpoint and advertise itself in a name-service database, a server
program must create binding information. However, before creating the binding
information, your server application must select one or more protocol sequences. Most
server programs, use all of the protocol sequences that are available on the network. To
do this, they invoke the RpcServerUseAIiProtseqs function, as shown in the following
code fragment

The first parameter to the RpcServerUseAIiProtseqs function is the maximum number
of remote procedure calls that the server program will accept at one time. As shown in
the code fragment, most server programs set this parameter to
RPC_C_PROTSEQ_MAX_REQS_DEFAUL T. This sets the RPC library to use the
default maximum value. The second parameter is a security descriptor for secure RPC
bindings. See Security for details.

74 Volume 3 RPe and WNet

If you want your application to use just one protocol sequence, call
RpcServerUseProtseq, RpcServerUseProtseqEx, RpcServerUseProtseqEp, or
RpcServerUseProtseqEpEx.

After it selects at least one protocol sequence, a server application must create binding
information for each protocol sequence that it uses. It stores the binding information in a
binding handle. For details, see Binding and Handles. If the server program uses more
than one protocol sequence, it must create more than one binding handle. A set of
binding handles is called a binding vector.

Use the RpcServerlnqBindings function to obtain a binding vector for the server
application as shown in the following code fragment:

The only parameter to the RpcServerlnqBindings function is a pOinter to a pointer to an
RPC_BINDING_ VECTOR structure. The RPC run-time library will dynamically allocate
an array of binding vectors and store the address of the array in the parameter variable
(in this case, rpcBindingVectoi). Before it terminates, your server application must call
the RpcBindingVectorFree function to free the memory that the
RpcServerlnqBindings function allocates.

Advertising the Server Program
After a server registers all interfaces it supports and creates the binding information, it
can advertise its presence in a name-service database. Use the RpcNsBindingExport
function to accomplish this, as shown in the following code fragment:

The first parameter to the RpcNsBindingExport function specifies the syntax of the
second parameter, EntryName. Microsoft® RPC currently supports only one name
service syntax. Therefore, applications should set the first parameter of
RpcNsBindingExport to the value RPC_C_NS_SYNTAX_DEFAUL T.

Chapter 9 Connecting the Client and the Server 75

Microsoft RPC does not force an entry name format on the application. However, the
client and server programs must use the same format. Set the If Spec parameter to a
structure that specifies the interface to export to the name-service database. The MIDL
compiler generates this data structure. You will find it in the header file that the MIDL
compiler produces from your MIDL file.

The fourth parameter is a pOinter to the binding vector that your server program obtained
from the RpcServerlnqBindings function.

In addition to exporting binding handles to the name-service database, your program can
export object UUIDs. In this example, only binding handles are exported. Therefore, the
last parameter to RpcNsBindingExport is set to NULL.

Registering Endpoints
Registering the server program in the endpoint map of the server host computer enables
client programs to determine which endpoint (usually a TCP/IP port or a named pipe) the
server program is listening to. To register itself in the server host system's endpOint map,
a server program calls the RpcEpRegister function as shown in the following code
fragment:

The first parameter to RpcEpRegister is the structure that represents the interface. You
can find it in the header file that the MIDL compiler generated from your MIDL file for this
distributed application. See Developing the Interface. Next, RpcEpRegister needs your
application to pass a set of binding handles that are stored in a binding vector.

In addition to registering interface names, your server application can also register object
UUIDs in the endpoint map. In this example, there are no object UUIDs to register, so
the third parameter to RpcEpRegister is set to NULL.

The last parameter is a comment string. The RPC run-time library does not use this
string. Your client programs read this string from the endpoint map and, if you set it up to
do so, display it to users.

Listening for Client Calls
After your server application has registered its interfaces, created the necessary binding
information, advertised its interfaces in the name-service database, and registered its
endpoints, it is ready to begin listening for remote procedure calls from client programs.

76 Volume 3 RPC and WNet

To listen for remote procedure calls, your server program must call RpcServerListen, as
shown in the following code fragment:

The RpcServerListen function can create multiple threads to listen for concurrent
remote procedure calls. The first parameter to RpcServerListen is the minimum number
of threads to create.

The second parameter to RpcServerListen is the maximum number of concurrent
remote procedure calls to handle. If you want your application to use the default
maximum value, pass RPC_C_LlSTEN_MAX_CALLS_DEFAUL T as the value for this
parameter.

The DCE specification calls for RpcServerListen to keep running until it receives a
signal to stop. One Microsoft extension to this function is to enable it to begin listening
and return immediately. If you want your application to use the default DCE behavior, set
the third parameter to zero. See RpcServerListen, RpcMgmtStopServerListening,
and RpcMgmtWaitServerListen for details.

How the Client Establishes a Connection
To establish a client/server communication session with a server program, client
applications with automatic binding handles can simply call remote procedures. When
they do, the RPC run-time library finds the computer that hosts the server program. It
then finds the endpoint that the server program is listening to and creates a binding
handle. Once the client has a binding handle to the server program, it can execute any
remote procedures that the server program offers. Figure 9-2 illustrates this process.

Name Service
Database

Chapter 9 Connecting the Client and the Server 77

1. Make remote procedure call. }

2. Find server host}
computer. -----,

RPC Run-time Library

3. Find server process.

4. Create binding to
server process.

Figure 9-2: Establishing a Communication Session with a Server Program.

78 Volume 3 RPC and WNet

This section presents information about how the client connects to the server program
and executes remote procedures that it offers.

Making a Remote Procedure Call
The client program of distributed applications that use automatic binding handles can
simply execute remote procedures as if they were procedures local to the client program.

Microsoft® RPC also offers implicit and explicit binding handles. These binding handles
offer your client and server programs more control over the process of executing remote
procedures. However, with increased flexibility and control also comes increased
complexity. Implicit and explicit binding handles require that your application manage all
or part of the binding process. You must decide what features and levels of control are
appropriate for your application. For an in-depth discussion of the different handle types
and the flexibility they offer, see Binding and Handles.

Finding the Server Host Computer
When a client program invokes a remote procedure, it is actually calling a procedure in
the client stub that you compiled and linked to it. For more information on the client stub,
see How RPC Works.

Clients must be able to find server programs. Most networks are large enough to require
the use of a name-service database. Server programs register their interfaces in the
name server database. See Registering the Interface. The client stub uses the name
service database to find the computer that currently hosts the interface.

It is possible for multiple computers to host the same interface. With automatic binding
handles, your client program has no control over which server host computer it connects
to, as long as the server host computer offers the interface the client requires. Other
types of binding handles offer your client programs the ability to connect to specific
server programs. Your server applications can also selectively refuse to allow clients to
connect. This lets you specify which servers clients can and can't connect to when
requesting services. For more information, see Binding and Handles.

Chapter 9 Connecting the Client and the Server 79

Finding the Server Program
After the client stub uses the name-service database to find a server host system that
offers the interface it is looking for, the client RPC run-time library finds the server
process. To do this, it queries the endpoint map on the server host system. The endpoint
map contains information about which endpoint the server is listening to.

Creating a Binding
When the RPC client run-time library finds a server host system that provides the
interface the client program needs and the endpoint that the server application is
listening to, it creates a binding handle.

A binding handle is a structure that contains the information that client and server
programs need to establish a communication session between the client and the server.
After they have created the binding handles they need, client and server program do not
need to continue to query the name-service database or endpoint map to maintain the
communication session.

Client and server programs must not try to access the contents of the binding handle
structure. The RPC run-time library functions use and manage the information in binding
handles. The most that client and server applications need to do is pass the binding
handle to RPC library calls and remote procedures. This is only the case if the
application does not use automatic binding handles. See Binding and Handles for
details.

CHAPTER 10

An RPC Tutorial

This chapter's tutorial takes you through the steps required to create a simple, single
client, single-server distributed application from an existing stand-alone application.
These steps are:

• Create interface definition and application configuration files.

• Use the MIDL compiler to generate C-Ianguage client and server stubs and headers
from those files.

• Write a client application that manages its connection to the server.

• Write a server application that contains the actual remote procedures.

• Compile and link these files to the RPC run-time library to produce the distributed
application.

81

The client application passes a character string to the server in a remote procedure call,
and the server prints the string "Hello, World" to its standard output.

The complete source files for this example application, with additional code to handle
command-line input and to output various status messages to the user, are in the
Platform SDK directory \mstools\samples\rpc\hello and in the Code Samples, RPC
section of the Platform SDK documentation.

The Stand-Alone Application
This stand-alone application, which consists of a call to a single function, forms the basis
of our distributed application. The function, HelioProc, is defined in its own source file so
that.it can be compiled and linked with either a stand-alone application or a distributed
application.

(continued)

82 Volume 3 RPe WNet

(continued)

Defining the Interface
An interface definition is a formal specification for how a client application and a server
application communicate with each other. The interface defines how the client and
server "recognize" each other, the remote procedures that the client application can call,
and the data types for those procedures' parameters and return values. It also specifies
how the data is transmitted between client and server.

You define this interface in the Microsoft® Interface Definition Language (MIDL) which
consists of C-Ianguage definitions augmented with keywords, called attributes, which
describe how the data is transmitted over the network.

The interface definition (.IDL) file contains type definitions, attributes and function
prototypes that describe how data is transmitted on the network. The application
configuration (.ACF) file contains attributes that configure your application for a particular
operating environment without affecting its network characteristics.

Generating the UUID
The first step in defining the interface is to use the uuidgen utility to generate a
universally unique identifier (UUID). A UUID enables the client and server applications
identify each other. The uuidgen utility (UUIDGEN.EXE) is automatically installed when
you install the Platform SDK. The following command generates a UUID and creates a
template file called hello.idl:

Your hello.idl template will look like this (with a different UUID, of course):

Chapter 10 An RPC Tutorial 83

The IDL File
The IDL file consists of one or more interface definitions, each of which has a header
and a body. The header contains information that applies to the entire interface, such as
the UUID. This information is enclosed in square brackets and is followed by the
keyword interface and the interface name. The body contains C-style data type
definitions and function prototypes, augmented with attributes that describe how the data
is transmitted over the network.

In this example, the interface header contains only the UUID and the version number.
The version number ensures that when there are multiple versions of an RPC interface,
only compatible versions of the client and server will be connected.

The·interface body contains the function prototype for HelioProc. In this prototype, the
function parameter pszString has the attributes [in] and [string]. The [in] attribute tells
the run-time library that the parameter is passed only from the client to the server. The
[string] attribute specifies that the stub should treat the parameter as a C-style character
string.

The client application should be able to shut down the server application, so the
interface contains a prototype for another remote function, Shutdown, that will be
implemented later in this tutorial.

The ACF File
The ACF file enables you to customize your client and/or server applications' RPC
interface without affecting the network characteristics of the interface. For example, if
your client application contains a complex data structure that only has meaning on the
local machine, you can specify in the ACF file how the data in that structure can be
represented in a machine-independent form for remote procedure calls.

This tutorial demonstrates another use of the ACF file-specifying the type of binding
handle that represents the connection between client and server. The [impliciChandle]
attribute in the ACF header allows the client application to select a server for its remote
procedure call. TheACF defines the handle to be of the type handle_t (a MIDL primitive
data type). The MIDL compiler will put the binding handle name that the ACF specified,
hello_If Handle into the header file it generates. Notice that this particular ACF file has an
empty body.

84 Volume 3 RPC WNet

The MIDL compiler has an option, lapp_config, that lets you include certain ACF
attributes, such as impliciChandle, in the IDL file, rather than creating a separate ACF
file. Consider using this option if your application doesn't require a lot of special
configuration and if strict OSF compatibility is not an issue. For more information, see
OSF Standards for RPC.

Generating the Stub Files
After defining the client/server interface, you usually develop your client and server
source files. Next use a single makefile to generate the stub and header files. Compile
and link the client and server applications. However, if this is your first exposure to the
distributed computing environment, you may want to invoke the MIDL compiler now to
see what MIDL generates before you continue. The MIDL compiler (MIDL.EXE) is
automatically installed when you install the Platform SDK.

When you compile these files, make sure that hello.idl and hello.acf are in the same
directory. The following command will generate the header file hello.h, and the client and
server stubs, hello_c.c and hello_s.c:

Notice that hello.h contains function prototypes for HelioProc and Shutdown, as well as
forward declarations for two memory management functions,midLusecaliocate and
midl_usecfree. You will provide these two memory management functions in the server
application. If data were being transmitted from the server to the client (by means of an
[out] parameter) you would also need to provide these two memory management
functions in the client application.

Note the definitions for the global handle variable, hello_If Handle, and the client and
server interface handle names, hello_vCO_c_ifspec and hello_vCO_s_ifspec. The client
and server applications will use the interface handle names in run-time calls.

At this point, you don't need to do anything with the stub files hello_c.c and hello_s.c.

Chapter 10 An RPC Tutorial 85

86 Volume 3 RPC WNet

The Client Application
The helloc.c source file contains a directive to include the MIDL-generated header file,
hello.h. Within hello.h are directives to include rpc.h and rpcndr.h, which contain the
definitions for the RPC run-time routines and data types that the client and server
applications use.

Because the client is managing its connection to the server, the client application calls
run-time functions to establish a handle to the server and to release this handle after the
remote procedure calls are complete. The function RpcStringBindingCompose
combines the components of the binding handle into a string representation of that
handle and allocates memory for the string binding. The function
RpcBindingFromStringBinding creates a server binding handle, hello_If Handle, for the
client application from that string representation.

In the. call to RpcStringBindingCompose, the parameters do not specify the UUID
because this tutorial assumes there is just one implementation of the interface "hello." In
addition, the call does not specify a network address because the application will use the
default, which is the local host machine. The protocol sequence is a character string that
represents the underlying network transport. The endpoint is a name which is specific to
the protocol sequence. This example uses named pipes (a native Microsoft®
Windows NT®IWindows® 2000 protocol) for its network transport, so the protocol
sequence is "ncacn_np". The endpoint name is ''\pipe\hello''.

The actual remote procedure calls, HelioProc and Shutdown, take place within the
RPC exception handler-a set of macros that let you control exceptions that occur
outside the application code. If the RPC run-time module reports an exception, control
passes to the RpcExcept block. This is where you would insert code to do any needed
cleanup and then exit gracefully. This example program simply informs the user that an
exception ocurred. If you do not want to use exceptions, you can use the ACF attributres
comm_status and faulCstatus to report errors.

After the remote procedure calls are completed, the client first calls RpcStringFree to
free the memory that was allocated for the string binding. Note that once the binding .
handle has been created, a client program can free a string binding at any time. The
client next calls RpcBindingFree to release the handle.

Chapter 10 An RPC Tutorial 87

(continued)

88 Volume 3 RPe WNet

(continued)

The Server Application
The server side of the distributed application informs the system that its services are
available. It then waits for client requests.

Depending on the size of your application and your coding preferences, you can choose
to implement remote procedures in one or more separate files. In this tutorial program,
the source file hellos.c contains the main server routine. The file hellop.c contains the
remote procedure.

The benefit of organizing the remote procedures in separate files is that the procedures
can be linked with a stand-alone program to debug the code before it is converted to a
distributed application. After the procedures work in the stand-alone program, you can
compile and link the the source files containing the remote procedures with the server
application. As with the client-application source file, the server-application source file
must include the hello.h header file.

The server calls the RPC run-time functions RpeServerUseProtseqEp and
RpeServerRegisterlf to make binding information available to the client. This example
program passes the interface handle name to RpeServerRegisterlf. The other
parameters are set to NULL. The server then calls the RpeServerListen function to
indicate that it is waiting for client requests.

The server application must also include the two memory management functions that the
server stub calls:midl_usecalloeate and midl_usecfree. These functions allocate and
free memory on the server when a remote procedure passes parameters to the server.
In this example program, midLuser_alloeate and midl_user_free are simply wrappers
for the C-library functions malloe and free. (Note that, in the MIDL compiler- generated
forward declarations, "midi" is uppercase. The header file rpcndr.h defines
midl_usecfree and midl_user_allocate to be MIDL_user_free and MIDL_usecaliocate,
respectively) .

Chapter 10 An RPC Tutorial 89

(continued)

90 Volume 3 RPC WNet

(continued)

Stopping the Server Application
A robust server application should stop listening for clients and clean up after itself
before shutting down. The two core server functions that accomplish this are
RpcMgmtStopServerListening and RpcServerUnregisterlf.

The server function RpcServerListen doesn't return to the calling program until an
exception occurs or until a call to RpcMgmtStopServerListening occurs. By default,
only another server thread is allowed to halt the RPC server by using
RpcMgmtStopServerListening. Clients who try to halt the server will receive the error
RPC_S_ACCESS_DENIED. However, it is possible to configure RPC to allow some or
all clients to stop the server. See RpcMgmtStopServerListening for details.

You can also have the client application make a remote procedure call to a shutdown
routine on the server. The shutdown routine calls RpcMgmtStopServerListening and
RpcServerUnregisterlf. This tutorial's example program application uses this approach
by adding a new remote function, Shutdown, to the file hellop.c.

In the Shutdown function, the single NULL parameter to
RpcMgmtStopServerListening indicates that the local application should stop listening
for remote procedure calls. The two NULL parameters to RpcServerUnregisterlf are
wildcards, indicating that all interfaces should be unregistered. The FALSE parameter
indicates that the interface should be removed from the registry immediately, rather than
waiting for pending calls to complete.

Chapter 10 An RPC Tutorial 91

Compiling and Linking
The following makefile shows the dependencies among the files needed to compile the
client and server applications and link them to the RPC run-time library and the standard
C run-time library.

This makefile can be used to build client and server applications from the source code in
this tutorial. The stubs and headers shown here were generated with MIDL version 2.0.
The compiler and linker commands and arguments may be different for your computer
configuration. See your compiler documentation for more information.

(continued)

92 Volume 3 RPC WNet

(continued)

Running the Application
To run the application on a single computer with Microsoft®
Windows NT®IWindows® 2000, open two console windows. In the first window, type:

and in the second window, type:

Because the distributed application uses named pipes as the transport protocol, the
server-side application will not run on Windows 95. To experiment with different protocol
sequences, endpoints, and other options, build the sample hello application from the
source files in \mstools\samples\rpc\hello on the Platform SDK CD.

CHAPTER 11

The IDL and ACF Files

The syntax of the Microsoft® Interface Definition Language (MIDL) is based on the
syntax of the C programming language. When a language concept in this description
of MIDL is not fully defined, the C-Ianguage definition of that term is implied.

93

The MIDL design specifies two distinct files: the Interface Definition Language (IDL) file
and the Application Configuration File (ACF). These files contain attributes that direct the
generation of the C-Ianguage stub files that manage the remote procedure call (RPC).
The IDL file contains a description of the interface between the client and the server
programs. RPC applications use the ACF file to describe the characteristics of the
interface that are specific to the hardware and operating system that make up a
particular operating environment. The purpose of dividing this information into two files is
to keep the software interface separate from characteristics that affect only the operating
environment.

The IDL file specifies a network contract between the client and server-that is, the IDL
file specifies what is transmitted between the client and the server. Keeping this
information distinct from the information about the operating environment makes the IDL
file portable to other environments. The IDL file consists of two parts: an interface header
and an interface body.

The ACFspecifies attributes that affect only local performance rather than the network
contract. Microsoft RPC allows you to combine the ACF and IDL attributes in a single
IDL file. You can also combine multiple interfaces in a single IDL file (and its ACF).

This section summarizes the attributes that are specified in the IDL and ACF files. It is
intended to only provide an overview. For more detailed information, see the MIDL
Language Reference, and the MIDL Command-Line Reference. The discussion in this
section is presented in the following topics:

• The Interface Definition Language (IDL) File

• The Application Configuration File (ACF)

• MIDL Compiler Output

The Interface Definition Language {IDL} File
An IDL file contains one or more interface definitions. Each interface definition is
composed of an interface header and an interface body. The interface header is
demarcated by square brackets. The interface body is contained in curly brackets.
This is illustrated in the example interface on the following page.

94 Volume 3 RPC and WNet

This section gives an overview of the components of an interface. It is organized into the
following topics:

• The IDL Interface Header

• The IDL Interface Body

I DL Attributes

The IDL Interface Header
The IDL interface header specifies information about the interface as a whole. Unlike
the ACF, the interface header contains attributes that are platform-independent.

Attributes in the interface header are global to the entire interface. That is, they apply to
the interface and all of its parts. These attributes are enclosed in square brackets at the
beginning of the interface definition. An example is shown in the following interface
definition:

Notice that the interface header contains the [uuid] and [version] attributes. Since these
represent the UUID and version number of the interface respectively, they are attributes
of the entire interface.

The interface body can also contain attributes. However, they are not applicable to the
entire interface. They refer to specific items in the interface such as remote procedure
parameters.

For a complete discussion of the IDL header attributes, see the MIDL Language
Reference.

Chapter 11 The IDL and ACF Files 95

The IDL Interface Body
The IDL interface body contains data types used in remote procedure calls and the
function prototypes for the remote procedures. The interface body can also contain
imports, pragmas, constant declarations, and type declarations. In Microsoft-extensions
mode, the MIDL compiler also allows implicit declarations in the form of variable
defi n itions.

The following example shows an IDL file containing the definition of an interface. The
body of the interface definition, which occurs between the curly brackets, contains the
definition of a constant (BUFSIZE), a type (PCONTEXT _HANDLE_TYPE), and some
remote procedures (RemoteOpen, RemoteRead, RemoteClose, and Shutdown).

For more information see the MIDL Language Reference.

96 Volume 3 RPC and WNet

The Application Configuration File (ACF)
The Application Configuration File (ACF) has two parts: an interface header, similar to
the interface header in the IDL file, and a body, which contains configuration attributes
that apply to types and functions defined in the interface body of the IDL file.

The ACF Header
The ACF header contains platform-specific attributes that apply to the interface as a
whole. Attributes applied to individual types and functions in the ACF body override
the attributes in the ACF header. No attributes are required in the ACF header.

The ACF header can include one of the following attributes: [auto_handle],
[impliciLhandle], or [expliciLhandle]. These handle attributes specify the type
of handle used for implicit binding when a remote function does not have an explicit
binding-handle parameter. When the ACF is not present or does not specify an
automatic, implicit, or explicit binding handle, MIDL uses [auto_handle] for implicit
binding.

Either [code] or [nocode] can appear in the interface header, but the one you choose
can appear only once. When neither attribute is present, the compiler uses [code] as a
default.

For more information, see ACF Attributes.

The ACF Body
The ACF body contains configuration attributes that apply to types and functions defined
in the interface body of the IDL file. The body of the ACF can be empty or it can contain
ACF include, typedet, function, and parameter attributes. All of these items are
optional. Attributes applied to individual types and functions in the ACF body override
attributes in the ACF header.

The ACF specifies behavior on the local computer and does not affect the data
transmitted over the network. It is used to specify details of a stub to be generated.
In DCE-compatibility mode (lost), the ACF does not affect interaction between stubs,
but between the stub and application code.

A parameter specified in the ACF must be one of the parameters specified in the IDL file.
The order of specification of the parameter in the ACF is not significant because the
matching is by name, not by position. The parameter list in the ACF can be empty, even
when the parameter list in the corresponding IDL signature is not (but this is not
recommended). Abstract declarators (unnamed parameters) in the IDL file cause the
MIDL compiler to report errors while processing the ACF because the parameter is not
found.

Chapter 11 The IDL and ACF Files 97

The ACF include directive specifies the header files to appear in the generated header
as part of a standard C-preprocessor #include statement. The ACF keyword include
differs from an #include directive. The ACF keyword include causes the line "#include
filename" to appear in the generated header file, while the C-Ianguage directive
"#include filename" causes the contents of that file to be placed in the ACF.

The ACF typedef statement lets you apply ACF type attributes to types previously
defined in the IDL file. The ACF typedef syntax differs from the C typedef syntax.

The ACF function attributes let you specify attributes that apply to the function as a
whole. For more information, see [code), [optimize), and 0

The ACF parameter attributes let you specify attributes that apply to individual
parameters of the function. For more information, see [byte_count).

lapp_config,/osf, [auto_handle], [code], [expliciChandle], The Interface Definition
Language (IDL) File, [impliciChandle], include, midi, [no code] , [optimize],
[represenCas], typedef

MIDL Compiler Output
With thelDL and ACF files as input, the MIDL compiler generates up to five C-Ianguage
source files. By default, the MIDL compiler uses the base file name of the IDL file as part
of the generated stub files. When more than six characters are present in the base file
name, some file systems may not accept the full stub name. The following table shows
conventions used for file names.

Default portion
File of base file name Example

IDL file Abcdefgh.idl

Header .h Abcdef.h

Client stub - c.c AbcdeCc.c

Server stub - s.c AbcdeCs.c

99

CHAPTER 12

Data and Language Features

The Microsoft® Interface Definition Language (MIDL) provides the set of features that
extend the C programming language to support remote procedure calls. MIDL is not a
variation of C; it is a strongly typed formal language through which you can control the
data transmitted over a network. MIDL is designed so that developers familiar with C can
learn it quickly.

Strong Typing
C is a weakly typed language, that is, the compiler allows operations such as
assignment and comparison among variables of different types. For example, C allows
the value of a variable to be cast to another type. The ability to use variables of different
types in the same expression promotes flexibility as well as efficiency.

A strongly typed language imposes restrictions on operations among variables of
different types. In those cases, the compiler issues an error prohibiting the operation.
These strict guidelines regarding data types are designed to avoid potential errors.

The difficulty with using a weakly typed language such as C for remote procedure calls is
that distributed applications can run on several different computers with different C
compilers and different architectures. When an application runs on only one computer,
you don't have to be concerned with the internal data format because the data is
handled in a consistent manner. However, in a distributed computing environment,
different computers can use different definitions for their base data types. For example,
some computers define the int type, so its internal representation is 16 bits, while other
computers use 32 bits. One computer architecture, known as "little endian," assigns the
least significant byte of data to the lowest memory address and the most significant byte
to the highest address. Another architecture, known as "big endian," assigns the least
significant byte to the highest memory address associated with that data.

Remote procedure calls require strict control over parameter types. To handle data
transmission and conversion overthe network, MIDL strictly enforces type restrictions for
data transferred over the network. For this reason, MIDL includes a set of well-defined
base types. MIDL enforces strong typing by mandating the use of keywords that
unambiguously define the size and type of data. The most visible effect of strong typing
is that MIDL does not allow variables of the type void *.

In the following topics, this section discusses the MIDL language features that enforce
strong data typing.

100 Volume 3 RPC and WNet

• Base Types • Arrays

• Signed and Unsigned Types • Function Attributes

• Wide-Character Types • Field Attributes

• Structures • Three Pointer Types

• Unions • Type Attributes

• Enumerated Types

Base Types
To prevent the problems that implementation-dependent data types can cause on
different computer architectures, MIDL defines its own base data types.

Base type Description

boolean

byte

char

double

float

handle_t

hyper

int

long

short

small

A data item that can have the value TRUE or FALSE.

An 8-bit data item guaranteed to be transmitted without any change.

An 8-bit unsigned character data item.

A 64-bit floating-point number.

A 32-bit floating-point number.

A primitive handle that can be used for RPC binding or data serializing.

A 64-bit integer that can be declared as either signed or unsigned Can
also be referred to as _int64.

A 32-bit integer that can be declared as either signed or unsigned.

A modifier for int that indicates a 64-bit integer. Can be declared as
either signed or unSigned.

A 16-bit integer that can be declared as either signed or unsigned.

A modifier for int that indicates an 8-bit integer. Can be declared as
either signed or unsigned.

Wide-character type that is supported as a Microsoft® extension to IDL.
Therefore, this type is not available if you compile using the losf switch.

The header file Rpcndr.h provides definitions for most of these base data types. The
keyword int is recognized and is transmittable on 32-bit platforms. On 16-bit platforms,
the int data type requires a modifier, such as short or long, to specify its length.

Although void * is recognized as a generic pOinter type by the ANSI C standard, MIDL
restricts its usage. Each pointer used in a remote or serializing operation must point to
either base types or types constructed from base types. (There is an exception: context
handles are defined as void * types. For more information see Context Handles.)

Chapter 12 Data and Language Features 101

Signed and Unsigned Types
Compilers that use different defaults for signed and unsigned types can cause software
errors in your distributed application. You can avoid these problems by explicitly
declaring your character types as signed or unsigned.

MIDL defines the small type to take the same default sign as the char type in the target
C compiler. If the compiler assumes that char is unsigned, small will also be defined as
unsigned. Many C compilers let you change the default as a command-line option. For
example, the Microsoft C compiler IJ command-line option changes the default sign of
char from signed to unsigned.

You can also control the sign of variables of type char and small with the MIDL compiler
command-line switch Ichar. This switch allows you to specify the default sign used by
your compiler. The MIDL compiler explicitly declares the sign of all char types that do
not match your C-compiler default type in the generated header file.

Wide-Character Types
Microsoft RPC supports the wide-character type wchact. The wide-character type uses
2 bytes for each character. The ANSI C-Ianguage definition allows you to initialize long
characters and long strings as:

Structures
Normal C semantics apply to the fields of base types. Fields of more complex types,
such as pointers, arrays, and other constructed types, can be modified by type or
field_attributes. For more information, see struct.

Unions
Some features of the C language, such as unions, require special MIDL keywords to
support their use in remote procedure calls. A union in the C language is a variable that
holds objects of different types and sizes. The developer usually creates a variable to
keep track of the types stored in the union. To operate correctly in a distributed
environment, the variable that indicates the type of the union, or the discriminant, must
also be available to the remote computer. MIDL provides the [switch_type] and
[switch_is] keywords to identify the discriminant type and name.

MIDL requires that the discriminant be transmitted with the union in one of two ways:

• The union and the discriminant must be provided as parameters .

• The union and the discriminant must be packaged in a structure.

102 Volume 3 RPC and WNet

Two fundamental types of discriminated unions are provided by MIDL:
nonencapsulated_union and encapsulated_union. The discriminant of a
nonencapsulated union is another parameter if the union is a parameter. It is another
field if the union is a field of a structure. The definition of an encapsulated union is turned
into a structure definition whose first field is the discriminant and whose second and last
fields are the union. The following example demonstrates how to provide the union and
discriminant as parameters:

The union in the preceding example can contain a single value: either short, float, or
char. The type definition for the union includes the MIDL switch_type attribute that
specifies the type of the discriminant. Here, [switch_type(short)] specifies that the
discriminant is of type short. The switch must be an integer type.

If the union is a member of a structure, then the discriminant must be a member of the
same structure. If the union is a parameter, then the discriminant must be another
parameter. The prototype for the function UnionParamProc in the preceding example
shows the discriminant sUtype as the last parameter of the call. (The discriminant can
appear in any position in the call.) The type of the parameter specified in the [switch_is]
attribute must match the type specified in the [switch_type] attribute.

The following example demonstrates the use of a single structure that packages the
discriminant with the union:

Chapter 12 Data and Language Features 103

The Microsoft RPC MIDL compiler allows union declarations outside of typedef
constructs. This feature is an extension to DCE IDL. For more information, see union.

Enumerated Types
The enum declaration is not translated into #define statements as it is by some DCE

. compilers, but is reproduced as a C-Ianguage enum declaration in the generated header
file.

Arrays
For information on arrays, see MIDL Arrays.

Function Attributes
The [callback] and [local] attributes can be applied as function attributes.

A callback is a remote call from server to client that executes as part of a conceptual
single-execution thread. A callback is always issued in the context of a remote call (or
callback) and is executed by the thread that issued the original remote call (or callback).

It is often desirable to place a local procedure declaration in the IDL file, since this is the
logical place to describe interfaces to a package. The [local] attribute indicates that a
procedure declaration is not actually a remote function, but a local procedure. The MIDL
compiler does not generate any stubs for functions with the [local] attribute.

Field Attributes
Field attributes are the attributes that can be applied to fields of an array, structure,
union, or character array:

• [ignore], [size_is]

• [max_is]

• [length_is]

• [firsCis]

• [lasCis]
• [switch_is]

• [string]
• pointer attributes

For example, field attributes are used in conjunction with array declarations to specify
either the size of the array or the portion of the array that contains valid data. This is
done by associating another parameter, structure field, or a constant expression with the
array.

104 Volume 3 RPC and WNet

The [ignore] attribute designates pOinter fields to be ignored during the marshaling
process. Such an ignored field is set to NULL on the receiver side.

MIDL provides conformant, varying, and open arrays. An array is called conformant if its
bounds are determined at run time. The [size_is] attribute designates the upper bound
on the allocation size of the array and the [max_is] attribute designates the upper bound
on the value of a valid array index. For more information, see [arrays).

An array is called varying if its bounds are determined at compile time, but the range of
transmitted elements is determined at run time. An open array (also called a conformant
varying array) is an array whose upper bound and range of transmitted elements are
determined at run time. To determine the range of transmitted elements of an array, the
array declaration must include a [length_is], [firsUs], or [lasCis] attribute.

The [length_is] attribute designates the number of array elements to be transmitted and
the [firsCis] attribute designates the index of the first array element to be transmitted.
The [lasCis] attribute designates the index of the last array element to be transmitted.

The [switch_is] field attribute designates a union discriminator. When the union is a
procedure parameter, the union discriminator must be another parameter of the same
procedure. When the union is a field of a structure, the discriminator must be another
field of the structure at the same level as the union field. The discriminator must be a
Boolean, char, int, or enum type, or atype that resolves to one of these types. For
more information, see Nonencapsulated Unions and [switch_is).

The [string] field attribute designates that a one-dimensional character or byte array, or
a pointer to a zero-terminated character or byte stream, is to be treated as a string. The
string attribute applies only to one-dimensional arrays and pointers. The element type is
limited to char, byte, wchar_t, or a named type that resolves to one of these types.

For information about the context in which field attributes appear, see MIDL, MIDL
Structures, and MIDL Unions.

Three Pointer Types
MIDL supports three types of pOinters to accommodate a wide range of applications. The
three different levels are called reference, unique, and full pointers, and are indicated by
the attributes [ref], [unique], and [ptr], respectively. The pointer classes described by
these attributes are mutually exclusive. Pointer attributes can be applied to pointers in
type definitions, function return types, function parameters, members of structures or
unions, or array elements.

Embedded pointers are pointers that are members of structures or unions. They can also
be elements of arrays. In the [in] direction, embedded [ref] pointers are assumed to be
pointing to valid storage and must not be null. This situation is recursively applicable to
any [ref] pointers they are pointing to. In the [in] direction, embedded [unique] and full
pointers (pointers with the [ptr] attribute) mayor may not be null.

Chapter 12 Data and Language Features '105

Any pointer attribute placed on a parameter in the syntax of a function declaration affects
only the rightmost painter declarator for that parameter. To affect other pointer
declarators, intermediate named types must be used.

Functions that return a pointer can have a painter attribute as a function attribute. The
(unique] and [ptr] attributes must be applied to function return types. Member
declarations that are painters can specify a pointer attribute as a field attribute. A pointer
attribute can also be applied as a type attribute in typedef constructs.

When no pointer attribute is specified as a field or type attribute, pointer attributes are
applied according to the rules for an unattributed painter declaration as follows.

In DeE-compatibility mode, painter attributes are determined in the defining IDL file. If
there is a [pointecdefault]attribute specified in the defining interface, that attribute is
used. If no [pointer_default] attribute is present, all unattributed painters are full
painters.

In Microsoft-extensions mode, pointer attributes can be determined by importing IDL files
and are applied in the following order:

1. An explicit painter attribute applied at the use site.

2. The [ref] attribute, when the unattributed pointer is a top-level pOinter parameter.

3. A [pointer_default] attribute specified in the defining interface.

4. A [pointecdefault] attribute specified in the base interface.

5. The [unique] attribute.

The [pointer_default] interface attribute specifies the default pointer attributes to be
applied to a painter declarator in a type, parameter, or return type declaration when that
declaration does not have an explicit pointer attribute applied to it. The [pOinter_default]
interface attribute does not apply to an unattributed top-level pointer of a parameter,
which is assumed to be [ref].

Type Attributes
Type attributes are the MIDL attributes that can be applied to type declarations:

• [handle]

• [context_handle]

• [switch_type]

• pointer type attributes

The [switch_type] attribute designates the type of a union discriminator. This attribute
applies only to a non encapsulated union.

106 Volume 3 RPC and WNet

A context handle is a pOinter with a [context_handle] attribute. The [contexChandle]
attribute allows you to write procedures that maintain state information between remote
procedure calls. A context handle with a non-null value represents saved context and
serves two purposes:

• On the client side, it contains the information needed by the RPC run-time library to
direct the call to the server.

• On the server side, it serves as a handle on active context.

The [handle] attribute specifies that a type can occur as a user-defined (generic) handle.
This feature permits the design of handles that are meaningful to the application. The
user must provide binding and unbinding routines to convert between the user-defined
handle type and the RPC primitive handle type, handle_t. A primitive handle contains
destination information meaningful to the RPC run-time libraries. A user-defined handle
can only be defined in a type declaration, not in a function declaration. A parameter with
the [handle] attribute has a double purpose. It is used to determine the binding for the
call, and it is transmitted to the called procedure as a normal data parameter.

Directional (Parameter) Attributes
Directional attributes describe whether the data is transmitted from client to server,
server to client, or both. All parameters in the function prototype must be associated with
directional attributes. The three possible combinations of directional attributes are: 1)
[in], 2) [out], and 3) [in, out]. These describe the way parameters are passed between
calling and called procedures. When you compile in the default (Microsoft-extended
mode) and you omit a directional attribute for a parameter, the MIDL compiler assumes a
default value of [in].

An [out] parameter must be a pointer. In fact, the [out] attribute is not meaningful when
applied to parameters that do not act as pointers because C function parameters are
passed by value. In C, the called function receives a private copy of the parameter value;
it cannot change the calling function's value for that parameter. If the parameter acts as
a pOinter, however, it can be used to access and modify memory. The [out] attribute
indicates that the server function should return the value to the client's calling function,
and that memory associated with the pOinter should be returned in accordance with "the
attributes assigned to the pOinter.

The following interface demonstrates the three possible combinations of directional
attributes that can be applied to a parameter. The function InOutProc is defined in the
IDL file as:

Chapter 12 Data and Language Features 107

The first parameter, 51, is [in] only. Its value is transmitted to the remote computer, but
is not returned to the calling procedure. Although the server application can change its
value for 51, the value of 51 on the client is the same before and after the call. (See
Figure 12-1.)

Client

Figure 12-1: In Parameter.

The second parameter, ps2, is defined in the function prototype as a pointer with both
[in] and [out] attributes. The [in] attribute indicates that the value of the parameter is
passed from the client to the server. The [out] attribute indicates that the value pointed
to by ps2 is returned to the client.

parameters

Figure 12-2: Parameter with In and Out Attributes.

108 Volume 3 RPC and WNet

The third parameter is [out] only. Space is allocated for the parameter on the server, but
the value is undefined on entry. As mentioned above, all [out] parameters must be
pointers.

Figure 12-3: Out Parameter.

The remote procedure changes the value of all three parameters, but only the new
values of the [out] and [in, out] parameters are available to the client.

On return from the call to InOutProc, the second and third parameters are modified. The
first parameter, which is [in] only, is unchanged.

Data Representation
Computing environments can differ significantly, as can network architectures. To
accommodate these differences, MIDL enables you to modify the way you represent
data. You can sometimes simplify development by converting data into a format that
your application can more easily handle. You can alter your application's data format so
that it can be more efficiently transmitted over the network.

The [transmiCas] and [represenCas] attributes instruct the compiler to associate a
transmissible type that the stub passes between client and server, with a user type that
the client and server applications use. You must supply the routines that carry out the

Chapter 12 Data and Language Features 109

conversion between the user type and the transmissible type, and the routines to release
the memory that was used to hold the converted data. Using the [transmiCas] IDL
attribute or the [represenCas] ACF attribute instructs the stub to call these conversion
routines before and after transmission. The [transmiCas] attribute lets you convert one
data type to another data type for transmission over the network. The [represenCas]
attribute lets you control the way data from the network is presented to the application.

The [wire_marshal] and [user_marshal] attributes are Microsoft extensions to the
OSF-DCE IDL. Their syntax and functionality are similar to that of the DCE-specified
[transmiCas] and [represenCas] attributes, respectively. The difference is that, instead
of converting the data from one type to another, you marshal the data directly. To do
this, you must supply the external routines for sizing the data buffer on the client and
server sides, marshaling and unmarshaling the data on the client and server sides, and
freeing the data on the server side. The MIDL compiler generates format codes that
instruct the NDR engine to call these external routines when needed.

The [wire_marshal] and [user_marshal] attributes make it possible to marshal data
types that otherwise could not be transmitted across process boundaries. Also, because
there is less overhead associated with the type conversion, [wire_marshal] and
[user_marshal] provide improved performance at run time, when compared to
[transmiCas] and [represenCas]. The [wire_marshal] and [user_marshal] attributes
are mutually exclusive with respect to each other and with respect to the [transmiCas]
and [represenCas] attributes for a given type.

The transmit_as and represent_as Attributes
This section discusses the implementation of programmer data type conversion using
the MIDL [transmiCas] and [represenCas] attributes.

The transmit_as Attribute
The [transmiCas] attribute offers a way to control data marshaling without worrying
about marshaling data at a low level-that is, without worrying about data sizes or byte
swapping in a heterogeneous environment. By letting you reduce the amount of data
transmitted over the network, the [transmiCas] attribute can make your application
more efficient.

You use the [transmiCas] attribute to specify a data type that the RPC stubs will
transmit over the network instead of using the data type provided by the application. You
supply routines that convert the data type to and from the type that is used for
transmission. You must also supply routines to free the memory used for the data type
and the transmitted type. For example, the following defines xmiCtype as the data type
transmitted for all application data specified as being of type type_spec:

The following table describes the four programmer-supplied routine names. Type is the
data type known to the application, and xmiCtype is the data type used for
transmission.

110 Volume 3 RPC and WNet

Routine Description

Allocates an object of the transmitted type and converts
from application type to type transmitted over the network
(caller and object called).

Converts from transmitted type to application type (caller
and object called).

Frees resources used by the application type (object
called only).

Frees storage returned by the type_to_xmit routine (caller
and object called).

Other than by these four programmer-supplied functions, the transmitted type is not
manipulated by the application. The transmitted type is defined only to move data over
the network. After the data is converted to the type used by the application, the memory
used by the transmitted type is freed.

These programmer-supplied routines are provided by either the client or the server
application based on the directional attributes. If the parameter is [in] only, the client
transmits to the server. The client needs the type_to_xmit and type_free_xmit
functions. The server needs the type_from_xmit and type_free_inst functions. For an
[out]-only parameter, the server transmits to the client. The server application must
implement the type_to_xmit and type_free_xmit functions, while the client program
must supply the type_from_xmit function. For the temporary xmiCtype objects, the
stub will call type_free_xmit to free any memory allocated by a call to type_to_xmit.

Certain guidelines apply to the application type instance. If the application type is a
pOinter or contains a pointer, then the type_from_xmit routine must allocate memory for
the data that the pointers point to (the application type object itself is manipulated by the
stub in the usual way).

For [out] and [in, out] parameters, or one of their components, of a type that contains
the [transmiCas] attribute, the type_free_inst routine is automatically called for the
data objects that have the attribute. For in parameters, the type_free_inst routine is
called only if the [transmiCas] attribute has been applied to the parameter. If the
attribute has been applied to the components of the parameter, the type_free_inst
routine is not called. There are no freeing calls for the embedded data and at-most-one
call (related to the top-level attribute) for an in only parameter.

Effective with MIDL 2.0, both client and server must supply all four functions. For
example, a linked list can be transmitted as a sized array. The type_to_xmit routine
walks the linked list and copies the ordered data into an array. The array elements are
ordered so that the many pointers associated with the list structure do not have to be
transmitted. The type_from_xmit routine reads the array and puts its elements into a
linked-list structure.

Chapter 12 Data and Language Features 111

The double-linked list (DOUBLE_LlNK_LlST) includes data and pOinters to the previous
and next list elements:

Rather than shipping the complex structure, the [trans miCas] attribute can be used to
send it over the network as an array. The sequence of items in the array retains the
ordering of the elements in the list at a lower cost:

The [transmiCas] attribute appears in the IDL file:

In the following example, ModifyListProc defines the parameter of type
DOUBLE_LlNK_ TYPE as an [in, out] parameter:

The four programmer-defined functions use the name of the type in the function names,
and use the presented and transmitted types as parameter types, as required:

The type_to_xmit Function
The stubs call the type_to_xmit function to convert the type that is presented by the
application into the transmitted type. The function is defined as:

112 Volume 3 RPC and WNet

The first parameter is a pointer to the application data. The second parameter is set by
the function to pOint to the transmitted data. The function must allocate memory for the
transmitted type.

In the following example, the client calls the remote procedure that has an [in, out]
parameter of type DOUBLE_LlNK_ TYPE. The client stub calls the type_to_xmit
function, here named DOUBLE_LlNK_ TYPE_to_xmit, to convert double-linked list data
into a sized array.

The function determines the number of elements in the list, allocates an array large
enough to hold those elements, then copies the list elements into the array. Before the
function returns, the second parameter, ppArray, is set to point to the newly allocated
data structure.

The type_from_xmit Function
The stubs call the type_from_xmit function to convert data from its transmitted type to
the type that is presented to the application. The function is defined as:

Chapter 12 Data and Language Features 113

The first parameter is a pointer to the transmitted data. The function sets the second
parameter to pOint to the presented data.

The type_from_xmit function must manage memory for the presented type. The
function must allocate memory for the entire data structure that starts at the address
indicated by the second parameter, except for the parameter itself (the stub allocates
memory for the root node and passes it to the function). The value of the second
parameter cannot change during the call. The function can change the contents at that
address.

In this example, the function DOUBLE_LINK_ TYPE_from_xmit converts the sized array
to a double-linked list. The function retains the valid pOinter to the beginning of the list,
frees memory associated with the rest of the list, then creates a new list that starts at the
same pointer. The function uses a utility function, InsertNewNode, to append a list node
to the end of the list and to assign the pNext and pPrev;ous pointers to appropriate
values.

114 Volume 3 RPC and WNet

The type_free_xmit Function
The stubs call the type_free_xmit function to free memory associated with the
transmitted data. After the type_from_xmit function converts the transmitted data to its
presented type, the memory is no longer needed. The function is defined as:

The parameter is a pointer to the memory that contains the transmitted type.

In this example, the memory contains an array that is in a single structure. The function
DOUBLE_LlNK_ TYPE_free_xmit uses the user-supplied function midLusecfree to
free the memory:

The type_freejnst Function
The stubs call the type_free_inst function to free memory associated with the presented
type. The function is defined as:

The parameter pOints to the presented type instance. This object should not be freed.
For a discussion on when to call the function, see The transmiCas Attribute.

In the following example, the double-linked list is freed by walking the list to its end, then
backing up and freeing each element of the list.

Chapter 12 Data and Language Features 115

The represenCas Attribute
The [represenCas] attribute lets you specify how a particular transmittable data type is
represented to the application. This is done by specifying the name of the represented
type for a known transmittable type and supplying the conversion routines. You must
also supply the routines to free the memory used by the data type objects.

Use the [represenCas] attribute to present an application with a different, possibly
untransmittable, data type rather than the type that is actually transmitted between the
client and server. It is also possible that the type the application manipulates can be
unknown at the time of MIDL compilation. When you choose a well-defined transmittable
type, you need not be concerned about data representation in the heterogeneous
environment. The [represenCas] attribute can make your application more efficient by
reducing the amount of data transmitted over the network.

The [represenCas] attribute is similar to the [transmiCas] attribute. However, while
[transmiCas] lets you specify a data type that will be used for transmission,
[represenCas] lets you specify how a data type is represented for the application. The
represented type need not be defined in the MIDL processed files; it can be defined at
the time the stubs are compiled with the C compiler. To do this, use the include directive
in the application configuration file (ACF) to compile the appropriate header file. For
example, the following ACF defines a type local to the application, repr_type, for the
transmittable type named_type:

The following table describes the four programmer-supplied routines.

Routine

named_type_to_local

named_type_free_local

Description

Allocates an instance of the network type and converts
from the local type to the network type.

Converts from the network type to the local type.

Frees memory allocated by a call to the
named_type_to_local routine, but not the type itself.

Frees storage for the network type (both sides).

Other than by these four programmer-supplied routines,·the named type is not
manipulated by the application. The only type visible to the application is the represented
type. The application uses the represented type name instead of the transmitted type
name in the prototypes and stubs generated by thecompiler. You must supply the set of
routines for both sides.

For temporary named_type objects, the stub will call named_type_free_inst to free any
memory allocated by a call to named_type_from_local.

116 Volume 3 RPe and WNet

If the represented type is a pOinter or contains a pOinter, the named_type_to_local
routine must allocate memory for the data to which the pointers point (the represented
type object itself is manipulated by the stub in the usual way). For [out] and [in, out]
parameters of a type that contain [represencas or one of its components, the
named_type_free_local routine is automatically called for the data objects that contain
the attribute. For [in] parameters, the named_type_free_local routine is called only if
the [represenCas] attribute has been applied to the parameter. If the attribute has been
applied to the components of the parameter, the *_free_local routine is not called.
Freeing routines are not called for the embedded data and at-most-once call (related to
the top-level attribute) for an [in] only parameter.

Note It is possible to apply both the [transmiCas] and [represenCas] attributes to the
same type. When marshaling data, the [represenCas] type conversion is applied first
and then the [transmiCas] conversion is applied. The order is reversed when
unmarshaling data. Thus, when marshaling, * _from_local allocates an instance of a
named type and translates it from a local type object to the temporary named type
object. This object is the presented type object used for the * _to_xmit routine. The
* _to_xmit routine then allocates a transmitted type object and translates it from the
presented (named) object to the transmitted object.

An array of long integers can be used to represent a linked list. In this way, the
application manipulates the list, and the transmission uses an array of long integers
when a list of this type is transmitted. You can begin with an array, but using a construct
with an open array of long integers is more convenient. The following example shows
how to do this.

Chapter 12 Data and Language Features 117

Note that the prototypes of the routines that use the LONGARR type are actually
displayed in the Stub.h files as PLOC_BOX in place of the LONGARR type. The same is
true of the appropriate stubs in the Stub_c.c file.

You must supply the following four functions:

The routines shown above do the following:

• The LONGARR_from_local routine counts the nodes of the list, allocates a
LONGARR object with the size sizeof(LONGARR) + Count*sizeof(long), sets the
Size field to Count, and copies the data to the DataArrfield.

• The LONGARR_to_local routine creates a list with Size nodes and transfers the
array to the appropriate nodes.

• The LONGARR_free_inst routine frees nothing in this case.

• The LONGARR_free_local routine frees all the nodes of the list.

118 Volume 3 RPC and WNet

The named_type_fromJocal Function
The stubs call the named_type_from_local function. It converts the type that the
application uses into the type the stubs transmit across the network. The function is
defined as:

The first parameter is a pOinter to the application data. The second parameter is a
pointer to a pOinter. The function points it to the transmitted data. The function must
allocate memory for the transmitted type.

The named_type_toJocal Function
The stubs call the named_type_to_local function to convert data from a transmitted
type to the type that they present to the application. The function is defined as:

The first parameter points to the transmitted data. The function sets the second
parameter to point to the presented data.

The named_type_to_local function must manage memory for the presented type. The
function must allocate memory for the entire data structure that starts at the address
indicated by the second parameter, except for the parameter itself (the stub allocates
memory for the root node and passes it to the function). The value of the second
parameter cannot change during the call. The function can change the contents at that
address.

The named_type_freeJocal Function
The stubs call the type_free_local function to free the memory allocated by a call to the
named_type_to_local routine. It does not free the memory allocated by the stub. The
function prototype is defined as:

The parameter is a pointer to the memory allocated by named_type_to_local.

The named_type_freeJnst Function
The stubs call the named_type_free_inst function to free memory associated with the
transmitted type. The function is defined as:

The parameter pOints to the instance of the transmitted type. This object should not be
freed. For a discussion on when to call the function, see The represenLas Attribute.

Chapter 12 Data and language Features 119

The wire_marshal and user_marshal Attributes
This section discusses the implementation of programmer data type conversion using
the MIDL [wire_marshal] and [user_marshal] attributes.

The wire_marshal Attribute
The [wire_marshal] attribute is an IDL-type attribute similar in syntax to [transmiCas],
but providing a more efficient way to marshal data across a network.

You use the [wire_marshal] attribute to specify a data type that will be transmitted in
place of the application-specific data type. Each application-specific type has a
corresponding transmittable type that defines the wire representation (the representation
used on the network).The application-specific type need not be transmittable, but it must
be a type that MIDL recognizes. To marshal a type unknown to MIDL, use the ACF
attribute [usecmarshal].

Your application-specific type can be a simple, composite, or pointer type. The main
restriction is that the type instance must have a fixed, well-defined memory size. If the
size of your type instance needs to change, use a pOinter field rather than a conformant
array. Alternatively, you can define a pOinter to the changeable type.

You must supply the routines for sizing, marshaling, and unmarshaling the data as well
as freeing the associated memory. The following table describes the four user-supplied
routine names. The <type> is the userm-type specified in the [wire_marshal] type
definition.

Routine

<type> _UserSlze

<type> _UserMarshal

<type> _UserUnmarshal

<type> _UserFree

Description

Sizes the RPC data buffer before marshaling on
the client or server side.

Marshals the data on the client Or server side.

Unmarshals the data on the client or server side.

Frees the data on the server side.

These programmer-supplied routines are provided by either the client or the server
application based on the directional attributes.

If the parameter is [In] only, the client transmits to the server. The client needs the
<type> _UserSlze and <type> _UserMarshal functions. The server needs the
<type> _UserUnmarshal, and <type> _UserFree functions.

For an [outl-only parameter, the server transmits to the client. The server needs the
<type> _UserSlze and <type> _UserMarshal functions, while the client needs the
<type> _UserMarshal function.

120 Volume 3 RPe and WNet

The user_marshal Attribute, Marshaling Rules for user_marshal and wire_marshal,
wire_marshal, usecmarshal, NdrGetUserMarshalinfo

The usecmarshal Attribute
The [user_marshal] attribute is an ACF-type attribute similar in syntax to
[represenCas]. As with the IDL attribute, [wire_marshal], it offers a more efficient way
to marshal data across a network. As an ACF attribute, [user_marshal] lets you marshal
custom data types that are unknown to MIDL. Each application-specific type has a
corresponding transmittable type that defines the wire representation.

Your application-specific type can be a simple, composite, or pointer type. The main
restriction is that the type instance must have a fixed, well-defined memory size. If the
size of your type instance needs to change, use a pOinter field rather than a conformant
array. Alternatively, you can define a pOinter to the changeable type.

As with the [wire_marshal] attribute, you supply routines for the sizing, marshaling,
unmarshaling, and freeing passes. The following table describes the four user-supplied
routine names. The <type> is the userm-type specified in the [user_marshal] type
definition.

Routine

<type> _UserSize

<type> _UserMarshal

<type> _UserUnmarshal

<type> _UserFree

Description

Sizes the RPC data buffer before marshaling on
the client or server side.

Marshals the data on the client or server side.

Unmarshals the data on the client or server side.

Frees the data on the server side.

These user-supplied routines are provided by either the client or the server application,
based on the directional attributes.

If the parameter is [in] only, the client transmits to the server. The client needs the
<type> _UserSize and <type> _UserMarshal functions. The server needs the
<type> _UserUnmarshal and <type> _UserFree functions.

For an [out]-only parameter, the server transmits to the client. The server needs the
<type>~UserSize and <type> _UserMarshal functions, while the client needs the
<type> _UserMarshal function.

The wire_marshal Attribute, Marshaling Rules for user marshal and wire_marshal,
[usecmarshal], [wire_marshal], NdrGetUserMarshalinfo

Chapter 12 Data and Language Features 121

The type_UserSize Function
The <type> _UserSize function is a helper function for the [wire_marshal] and
[usecmarshal] attributes. The stubs call this function to size the RPC data buffer for the
user data object before the data is marshaled on the client or server side. The function is
defined as:

The <type> in the function name means the userm-type, as specified in the
[wire_marshal] or [usecmarshal] type definition. This type may be untransmittable or
even-when used with the [usecmarshal] attribut~ unknown to the MIDL compiler.
The wire type name (the name of the type transmitted across the network) is not used in
the function prototype. Note, however, that the wire type defines the layout for the data
as specified by OSF DCE. All data must be converted to Network Data Representation
(NDR) format.

The pFlags argument is a pointer to an unsigned long flag field. The upper word of the
flag contains NDR format flags as defined by OSF DCE for floating point, byte order, and
character representations. The lower word contains a marshaling context flag as defined
by the COM channel. The exact layout of the flags within the field is shown in the
following table.

Bits Flag Value

31-24

23-20

19-16

15-0

Floating-point representation

Integer and floating-point byte
order

Character representation

Marshaling context flag

0= IEEE
1 = VAX
2 = Cray
3=IBM

o = Big-endian
1 = Little-endian

0= ASCII
1 = EBCDIC

o = MSHCTX_LOCAL
1 = MSHCTX_NOSHAREDMEM
2 = MSHCTX_DIFFERENTMSCHINE
3 = MSHCTX_INPROC

The marshaling context flag makes it possible to alter the behavior of your routine
depending on the context for the RPC call. For example, if you have a handle (long) to a
block of data, you could send the handle for an in-process call, but you would send the
actual data for a call to a different machine. The marshaling context flag and its valueS
are defined in the Wtypes.h and Wtypes.idl files in the Platform SDK.

122 Volume 3 RPC and WNet

Note When the wire type is properly defined, you do not have to use the NOR format
flags, as the NOR engine performs the necessary conversions.

The StartingSize argument is the current buffer offset. The starting size indicates the
buffer offset for the user object, and it mayor may not be aligned properly. Your routine
should account for whatever padding is necessary.

The pMyObj argument is a pointer to a user type object.

The return value is the new offset or buffer position. The function should return the
cumulative size, which is the starting size plus possible padding plus the data size.

The <type> _UserSize function can return an overestimate of the size needed. The
actual size of the sent buffer is defined by the data size, not by the buffer allocation size.

The <type> _UserSize function is not called if the wire size can be computed at compile
time. Note that for most unions, even if there are no pOinters, the actual size of the wire
representation can be determined only at run time.

Marshaling rules for user_marshal and wire_marshal, [usecmarshal],
[wire_marshal]

The type_UserMarshal Function
The <type> _UserMarshal function is a helper function for the [wire_marshal] and
[user_marshal] attributes. The stubs call this function to marshal data on the client or
server side. The function is defined as:

The <type> in the function name means the userm-type specified in the [wire_marshal]
or [usecmarshal] type definition. This type may be untransmittable or even-when
used with the (usecmarshal] attribute-a type unknown to the MIDL compiler. The wire
type name (the name of transmissible type) is not used in the function prototype. Note,
however, that the wire type defines the wire layout for the data as specified by
OSF DCE.

The pFlags argument is a pointer to an unsigned long flag field. The upper word of the
flag contains NOR data representation flags as defined by OSF DCE for floating point,
byte order, and character representations. The lower word conta.ins a marshaling context
flag as defined by the COM channel. The exact layout of the flags within the field is
described in The type_UserSize Function. .

Chapter 12 Data and Language Features 123

The pBuffer argument is the current buffer pointer. This pointer mayor may not be
aligned on entry. Your <type>_UserMarshal function should align the buffer pointer
appropriately, marshal the data, and return the new buffer position, which is the address
of the first byte after the marshaled object. Keep in mind that the wire type speCification
determines the actual layout of the data in the buffer.

The pMyObj argument is a pointer to a user type object.

The return value is the new buffer position, which is the address of the first byte after the
un marshaled object.

Buffer overflow can occur when you incorrectly calculate the size of the data and attempt
to marshal more data than expected. You should be careful to avoid this situation. You
can check against it by using the pointer that <type> _UserMarshal returns. Otherwise,
you risk having the NDR engine raise a buffer-overflow exception later.

Marshaling Rules for usecmarshal and wire_marshal, [wire_marshal],
[usecmarshal]

The type_UserUnmarshal Function
The <type> _UserUnmarshal function is a helper function for the [wire_marshal] and
[usecmarshal] attributes. The stubs call this function to unmarshal data on the client or
server side. The function is defined as:

The <type> in the function name means the userm-type specified in the [wire_marshal]
or [user_marshal] type definition. This type may beuntransmittable or even-when
used with the [user_marshall attribute-unknown to the MIDL compiler. The wire type
name (the name of transmissible type) is not used in the function prototype. Note,
however, that the wire type defines the wire layout for the data as specified by
OSF DCE.

The pFlags argument is a pointer to an unsigned long flag field. The upper word of the
flag containsNDR data representation flags as defined by OSFDCE for floating pOint,
byte order, and character representations. The lower word contains a marshaling context
flag as defined by the COM channel. The exact layout of the flags within the field is
described in The type_UserSize Function.

The pBuffer argument is the current buffer pOinter. This pointer mayor may not be
aligned on entry. Your <type> _UserUnmarshal function should align the buffer pointer
appropriately, unmarshal the data, and return the new buffer position, which is the
address of the first byte after the unmarshaled object.

124 Volume 3 RPC and WNet

The pMyObj argument is a pointer to a user-defined type object.

In a heterogeneous environment, the NOR engine performs any data conversion
necessary before calling the <type> _UserUnmarshal function. Note that the NOR
engine carries out this data conversion according to the wire-type definition supplied for
this user data type. The flag indicates the data representation of the sender.

Marshaling Rules for usecmarshal and wire_marshal, [wire_marshal],
[user_marshal]

The type_UserFree Function
The <type> _UserFree function is a helper function for the [wire_marshal] and
[usecmarshal] attributes. The stubs call this function to free the data on the server
side. The function is defined as:

The <type> in the function name means the userm-type specified in the [wire_marshal]
or [user_marshal] type definition.

The pFlags argument is a pOinter to an unsigned long flag field. The upper word of the
flag contains NOR data representation flags as defined by OSF OCE for floating pOint,
byte order, and character representations. The lower word contains a marshaling context
flag as defined by the COM channel. The exact layout of the flags within the field is
described in The type_UserSize Function.

The pMyObj argument is a pOinter to a user type object. The NOR engine frees the top
level object. You are responsible for freeing any objects to which the top-level object
may point.

Marshaling Rules for usecmarshal and wire_marshal, [wire_marshal],
[user_marshal]

Marshaling Rules for user_marshal and wire_marshal
The OSF-OCE specification for marshaling embedded pOinter types requires that you
observe the following restrictions when implementing the <type> _UserSize,
<type> _UserMarshal, and <type> _UserUnMarshal functions. (The rules and examples
given here are for marshaling. However, your sizing and unmarshaling routines must
follow the same restrictions):

Chapter 12 Data and Language Features 125

• If the wire-type is a flat type with no pOinters, your marshaling routine for the
corresponding userm-type should simply marshal the data according to the layout of
the. wire-type. For example:

Note that the wire type, long, is a flat type. Your HANDLE_HANDLE_UserMarshal
function marshals a long whenever a HANDLE_HANDLE object is passed to it.

• If the wire-type is a pOinter to another type, your marshaling routine for the
corresponding userm-type should marshal the data according to the layout for the
type that the wire-type points to. The NDR engine takes care of the pointer. For
example:

Note that the wire type, WIRE_TYPE, is a pOinter type. Your
HANDLE_DATA_UserMarshal function marshals the data related to the handle, using
the HDATA layout, rather than the HDATA * layout.

• A wire-type must be either a flat data type or a pOinter type. If your transmissible type
must be something else (a structure with pointers, for example), use a painter to your
desired type as the wire-type.

The effect of these restrictions is that the types defined with the [wire_marshal] or
[user_marshal] attributes can be freely embedded in other types.

[wire_marshal], [user_marshal], The type_UserSize Function, The
type_UserMarshal Function, The type_UserUnMarshal Function, The
type_UserFree Function

127

CHAPTER 13

Arrays and Pointers

Remote Procedure Call (RPC) is designed to be mostly transparent to developers. To
achieve this transparency, the client stub transmits to the server both the pOinter and the
data object to which it points. If the remote procedure changes the data, the server must
transmit the new data back to the client so that the client can copy the new data over the
original data.

In general, a remote procedure call behaves just like a local procedure call. That is,
when a pointer is a parameter, the remote procedure can access the data object the
pOinter refers to in the same way that a local procedure can.

Since client and server programs run in different address spaces, developers must use
Microsoft Interface Definition Language (MIDL) attributes to describe how array and
pOinter data is transmitted between the client and the server. This chapter presents an
overview of how to use arrays and pOinters in distributed applications.

Arrays and RPC
The C and C++ programming languages provide essentially two types of arrays: single
dimensional and multidimensional. RPC enables developers to specify additional array
types using MIDL attributes to describe the characteristics of arrays in distributed
applications.

This section describes the types of arrays available under RPC. It also discusses the
MIDL attributes that developers can use to describe single-dimensional and
multidimensional arrays.

Kinds of Arrays
MIDL provides the ability to specify the following types of arrays in your RPC application:

• Fixed Arrays

• Varying Arrays

• Conform ant Arrays

All three array types can be used as [in], [out], or [in,out] parameters.

Fixed Arrays
If your interface specifies an array with a specific number of elements as a parameter, it
is using a fixed array. When using MIDL, you define fixed arrays in the same way you
define them in C. You specify the array's type, name, and size.

128 Volume 3 RPe and WNet

The following example demonstrates how to define a fixed array.

When a client program passes a fixed array to a server program, the client stub sends
the entire array to the server stub. The server stub allocates memory for the array and
stores the array data it receives across the network into the allocated memory. It then
passes the array to the remote procedure on the server. The server may modify the data
in the array.

When the remote procedure terminates, the server stub sends the contents of the array
back to the client. The client stub copies the data it received from the server stub into the
original array. The client program can then use the data as it would if it received the data
from a local procedure call.

Varying Arrays
In MIDL, varying arrays are fixed in size. They allow clients to pass different portions of
arrays from clients to servers. The size of the array portion can vary from invocation to
invocation. However, the size of the overall array is fixed.

For instance, the following example shows the definition of a remote procedure in an
interface in a MIDL file. The size of the array that the client passes to the server is fixed
by the constant ARRAY_SIZE. The interface specifies the portion of the array that the
client passes to the server in the parameters firstElement and chunkSize.

Chapter 13 Arrays and Pointers 129

The interface definition uses the MIDL attribute [firsCis] to specify the index number of
the first element in the portion of the array that the client passes to the server. The
[length_is] attribute specifies the total number of array elements that the client passes.
For more information on these MIDL attributes, see Array Attributes.

The following code fragment illustrates how a client might invoke the remote procedure
defined in the preceding MIDL file.

This fragment calls the remote procedure MyRemoteProc twice. On the first invocation it
passes the array elements numbered 20 through 119, as indicated by the values in the
variables firstArrayElementNumber and totalElementsPassed. On the second call, the
client passes the array elements numbered 120 through 319.

Conformant Arrays
The size of a conformant array can vary or conform each time the client passes it to a
remote procedure on the server. The interface definition in the application's MIDL file
enables the client to specify the size of the array each time it invokes the remote
procedure. Use empty square brackets ([]) or an asterisk in the square brackets ([*])
in the array definition to indicate a conformant array.

The following sample contains the definition of a remote procedure in an interface in a
MIDL file. The client specifies the size of the array that it passes to the server by the
parameter arraySize.

130 Volume 3 RPC and WNet

The interface definition uses the MIDL attribute [size_is] to specify the size of the array
that the client passes to the server. If you would rather indicate the maximum value of
the array's index numbers, use the [max_is] attribute instead. For more information on
these MIDL attributes, see Array Attributes.

The following code fragment illustrates how a client might invoke the remote procedure
defined in the preceding MIDL file.

This fragment calls the remote procedure MyRemoteProc twice. On the first invocation it
passes an array of 20 elements. On the second call, the client passes an array of 200
elements.

Array Attributes
There is a close relationship between arrays and pointers in the C language. When
passed as a parameter to a function, an array name is treated as a pointer to the first
element of the array, as shown in the following example:

Chapter 13 Arrays and Pointers 131

In a local call, you can use the pointer parameter to march through memory and examine
the contents of other addresses:

When a client passes a pointer to a remote procedure, the client stub transmits both the
pOinter and the data it points to. Unless the pointer is restricted to its corresponding data,
all the client's memory must be transmitted with every remote call. By enforcing strong
typing in the interface definition, MIDL limits client-stub processing to the data that
corresponds to the specified pOinter.

The size of the array and the range of array elements transmitted to the remote
computer can be constant or variable. When these values are variable, and thus
determined at run time, you must use attributes in the IDL file to specify how many array
elements to transmit. The following MIDL attributes support array bounds.

Attribute

[firsUs]

[lasUs]

[length_is]

[max_is]

[min_is]

[size_is]

Description'

Index of the first array element transmitted.

Index of the last array element transmitted.

Total number of array elements transmitted.

Highest valid array index value.

Lowest valid array index value.

Total number of array elements allocated for
the array.

Default

o

o

Note The min_is attribute is not implemented in RPC. The minimum array index is
always treated as zero.

132 Volume 3 RPe and WNet

MIDL Array Attributes Used in RPe
This section discusses the MIDL array attributes in the following topics:

• The [size_is] Attribute

• The [length_is] Attribute

• The [firsUs] and [lasUs] Attributes

• The [max_is] Attribute

• Combining Array Attributes

• The [string] Attribute in Arrays

The [sizeJs] Attribute
The [size_is] attribute is associated with an integer constant, expression, or variable that
specifies the allocation size of the array. Consider a character array whose length is
determined by user input:

Note The asterisk (*) that marks the placeholder for the variable-array dimension is
optional.

The server stub must allocate memory on the server that corresponds to the memory on
the client for that parameter. The variable that specifies the size must always be at least
an [in] parameter. The [in] directional attribute is required so that the size value is
defined on entry to the server stub. This size value provides information that the server
stub requires to allocate the memory.

The size parameter can also be [in, out]. This is useful if, for instance, the array the
client sends is not large enough for the data that the server needs to store in it. You can
use an [in, out] size parameter to send the required size back to the client program.

Multiple Levels of Pointers

Chapter 13 Arrays and Pointers 133

The [lengthJs] Attribute
The [size_is] attribute lets you specify the maximum size of the array. When this is the
only attribute, all elements of the array are transmitted. Instead of sending all elements
of the array, you can specify the transmitted elements using the [length_is] attribute, as
follows:

Size describes allocation while length describes transmission. The number of elements
transmitted must always be less than or equal to the number of elements allocated. The
value associated with length_is is always less than or equal to size_is.

The [firstJs] and [lastJs] Attributes
You can determine the number of transmitted elements by specifying the first and last
elements. Use the [firsCis] and [lasUs] attributes as shown:

134 Volume 3 RPC and WNet

The [maxJs] Attribute
You can specify the valid bounds of the index numbers of an array using the [max_is]
attribute.

Combining Array Attributes
Field attributes can be supplied in various combinations as long as the stub can use the
information to determine the size of the array and the number of bytes to transmit to the
server. The relationships between the attributes are defined using the following formulas:

The values associated with the attributes must obey several common-sense rules based
on those formulas. These rules are:

• Do not specify a [firsCis] index value smaller than zero or a [lasCis] value greater
than [max_is].

• Do not specify a negative size for an array. Define the first and last elements so that
they result in a length value of zero or greater. Define the [max_is] value so that the
size is zero or greater. If MIDL was invoked with the ferror bounds_check option,
then the stub raises an exception when the size is less than zero, or the transmitted
length is less than zero.

• Do not use the [length_is] and [last_is] attributes at the same time, nor the [size_is]
and [max_is] attributes at the same time.

Because of the close relationship in C between arrays and pointers, MIDL also lets you
declare arrays in parameter lists using pointer notation. MIDL treats a parameter that is a
pointer to a type as an array of that type if the parameter has any of the attributes
commonly associated with arrays.

Chapter 13 Arrays and Pointers 135

In the preceding example, the array and pointer parameters in the functions fArray6 and
fArray7 are equivalent.

The [string] Attribute in Arrays
You can use the [string] attribute for one-dimensional character arrays, wide-character
arrays, and byte arrays that represent text strings. If you use the [string] attribute, the
client stub uses the C-library functions strlen or wstrlento count the number of
characters in the string. To avoid possible inconsistencies, MIOL does not let you use
the [string] attribute at the same time as the [firsCis], [last_is], and [size_is]
attributes.

With null-terminated strings in C, you must allow space for the null character at the end
of the string. For example, when declaring a string that will hold up to 80 characters,
allocate 81 characters. The following sample IOL file demonstrates how to declare arrays
with the [string] attribute.

Multidimensional Arrays
Array attributes can also be used with multidimensional arrays. However, be careful to
ensure that every dimension of the array has a corresponding attribute. For example:

136 Volume 3 RPe and WNet

(continued)

The preceding array is a conformant array (of size d1size) of 30 element arrays (with
d21en elements shipped for each). The comma in the parentheses of the [size_is]
attribute specifies that value in d1size is applied to the first dimension of the array.
Likewise, the command in the parentheses of the [length_is] attribute indicates that the
value in d21en is applied to the second dimension of the array.

The MIDL 2.0 compiler provides two methods for marshaling parameters: mixed-mode
(lOs) and fully-interpreted (/Oif or 10icf). By defaut, the MIDL compiler compiles
interfaces in mixed mode. You do not need to explicitly specify the lOs switch to get
mixed-mode marshaling.

The fully-interpreted method marshals data completely offline. This reduces the size of
the stub code conSiderably, but it also results in decreased performance. In mixed-mode
marshaling, the stubs marshals some parameters online. While this results in a larger
stub size, it also offers increased performance.

Tip Caution needs to be exercised when compiling IDL files in this mode. Using
multidimenstional arrays in mixed mode can result in parameters that are not marshaled
correctly. The 10icf command line switch is recommended when your interface defines
parameters that are multidimensional arrays.

The [string] attribute can also be used with multidimensional arrays. The attribute
applies to the least significant dimension, such as a conformant array of strings. You can
also use multidimensional pointer attributes. For example:

In the preceding example, the variable ptr2d is a pointer to a d1len-sized block of
pointers, each of which points to d21en pointers to long.

Chapter 13 Arrays and Pointers 137

Multidimensional arrays are not equivalent to arrays of pointers. A multidimensional
array is a single, large block of data in memory. An array of pointers only contains a
block of pointers in the array. The data that the pointers point to can be anywhere in
memory. Also, ANSI C syntax allows only the most significant (leftmost) array dimension
to be unspecified in a multidimensional array. Therefore, the following is a valid
statement:

Compare this to the following invalid statement:

Pointers and RPe
It is very efficient to use pointers as C-function parameters. The pointer costs only a few
bytes and can be used to access a large amount of memory. However, in a distributed
application, the client and server procedures reside in different address spaces-they
can be on different computers. Therefore, the client and the server usually do not have
access to the same memory space.

When one of the remote procedure's parameters isa pOinter to an object, the client must
transmit a copy of that object and its pointer to the server. If the remote procedure
modifies the object through its pointer, the server returns the pointer and its
modified copy.

MIDL offers pointer attributes to minimize the amount of required overhead and the size
of your application. This section discusses the purpose and uses of MIDL pOinter
attributes. It also presents information on pointer handling in RPC applications.

Kinds of Pointers
MIDL enables RPC applications to define the following pOinter types:

• Reference Pointers

• Unique Pointers

• Full Pointers

Reference Pointers
Reference pointers are the simplest pOinters and require the least amount of processing
by the client stUb. When a client program passes a reference pOinter to a remote
procedure, the reference pOinter always contains the address of a valid block of memory.
It will still be pointing to the same memory block when the remote procedure completes.
These pointers are mainly used to implement reference semantics, and to allow for [out]
parameters in C.

138 Volume 3 RPC and WNet

In Figure 13-1, the value of the pOinter does not change during the call, although the
contents of the data at the address indicated by the pointer can change.

1::1 etore the call:

100

110 I T he board of directors met on F rida'y to ...

After the call:

100 r
11 0 I The group elected its principal shareholder to preside ...

Figure 13-1: Reference Pointer Before and After a Call.

A reference pOinter has the following characteristics:

• It always pOints to valid storage and never has the value NULL.

• It never changes during a call and always points to the same storage before and after
the call.

• Data returned from the remote procedure is written into the existing storage.

• The storage pOinted to by a reference pOinter cannot be accessed by any other
pointer or any other name in the function.

Use the [ref] attribute to specify reference pointers in interface definitions, as shown in
the following example:

This example defines the parameter pChar as a pOinter toa single character, not an
array of characters. It is an [out] parameter and a reference pointer that points to
memory that the server routine RemoteFn will fill with data.

Chapter 13 Arrays and Pointers 139

Unique Pointers
In e programs, more than one pOinter can contain the address of data. The pOinters are
said to create an alias for the data. Aliases are also created when pOinters point at
declared variables. The following code fragment illustrates both of these methods of
aliasing:

In a typical e program, you might specify a binary tree using the following definition:

More than one pointer can access the contents of a tree node. This is generally fine for
nondistributed appliGations. However, this style of programming generates more
complicated RPe support code. The client and server stubs require the additional code
to manage the data and the pointers. The underlying stub code must resolve the various
pOinters to the addresses and determine which copy of the data represents the most
recent version. .

The amount of processing can be reduced if you guarantee that your pOinter is the only
way the application can access that area of memory. The pOinter can stHl have many of
the features of a e pointer. For example, it can change between null and non-null values
or stay the same. The following example illustrates this. The pOinter is null before the call
and points to a valid string after the call, as shown in Figure 13-2.

By default, the MIDL compiler applies the [unique] pointer attribute to all pOinters that
are not parameters. This default setting can be Changed with the [pointecdefault]
attribute.

140 Volume 3 RPC and WNet

J efore the call:

100 Null

~fter the call:

100

110 Accounts receivable e:-:ceeded accounts payable by ...

Figure 13-2: Null and Non-Null Values Before and After a Call.

A unique pOinter has the following characteristics:

• It can have the value null.

• It can change from null to non-null during the call. When the value changes to non
null, new memory is allocated on return.

• It can change from non-null to null during the call. When the value changes to NULL,
the application is responsible for freeing the memory.

• The value can change from one non-null value to another.

• The storage that a unique pOinter pOints to cannot be accessed by any other pointer
or name in the operation.

• Return data is written into existing storage if the pointer does not have the value null.

The following example demonstrates how to define a unique pointer:

Full Pointers
Unlike unique pOinters, full pointers support aliasing. This means that multiple pointers
can refer to the same data, as shown in Figure 13-3.

Chapter 13 Arrays and Pointers 141

fetore the call:

100 Null

\fter the call:

100

110 Accounts receivable e:-:ceeded accounts payable by ...

Figure 13-3: Multiple Pointers Referring to the Same Data.

A full pointer has the following characteristics:

• It can have the value null.

• It can change from null to non-null during the call. When the value changes to non
null, the client stub allocates new memory allocated on return. The client program
should free this memory before it terminates.

• It can change from non-null to null during the call. When the value changes to null, the
application is responsible for freeing the memory.

• The value can change from one non-null value to another.

• The storage that a unique pointer pOints to may be accessed by another pointer or
name in the operation.

• Return data is written into existing storage if the pointer does not have the value null.

Use the [ptr] attribute to specify a full pointer, as shown in the following example:

Pointers and Memory Allocation
The ability to change memory through pointers often requires that the server and the
client allocate enough memory for the elements in the array.

142 Volume 3 RPC and WNet

When a stub must allocate or free memory, it calls run-time library functions that in turn
call the functions midLuser_allocate and midl_usecfree. These functions are not
included as part of the run-time library. You need to write your own versions of these
functions and link them with your application. In this way, you can decide how to manage
memory. When compiling your IDL file in OSF-compatibility (/osf) mode, you do not
need to implement these functions. You must write these functions to the following
prototypes:

For example, the versions of these functions for an application can simply call standard
library functions:

Default Pointer Types
For a variety of reasons, pOinters in interface definitions may not have an attribute
specification. When they don't, the MIDL compiler must use a default pointer attribute.
MIDL allows you to specify which pointer attribute you want as the default by using the
[pointecdefault] attribute. The following example illustrates its use:

This example sets the default so that the MIDL compiler will treat all unattributed pOinters
as reference pOinters.

Chapter 13 Arrays and Pointers 143

The MIDL compiler offers three different default cases for unattributed painters. Note that
these cases use the terms top-level pointer and embedded pointer. A top-level pointer is
a parameter that is a pointer. An embedded pointer is a pointer in a structure or union.
The default cases for unattributed painters are:

• Function parameters that are top-level painters default to [ref] painters.

• Pointers embedded in structures and pointers to other pointers default to the type
specified by the [pointer_default] attribute.

• When no [pointecdefault] attribute is supplied, pointers to painters default to the
[unique] attribute if the MIDL compiler is in Microsoft-extensions mode. If the
compiler is set to DeE-compatible mode the default is [ptr].

Remote procedures always return a [unique] or a full pointer. The MIDL compiler
reports an error if a function return value is, either explicitly or by default, a reference
pointer.

Functions that return a painter value can specify a painter attribute as a function
attribute. They cannot, however, specify a reference pointer. If a pointer attribute is not
present, the function return pointer uses the value that the [pointecdefault] attribute
specifies.

Note To ensure unambiguous pointer-attribute behavior, always use explicit pointer
attributes when defining a pointer.

Pointer-Attribute Type Inheritance
According to the DeE specification, each IDL file must define attributes for its painters. If
an explicit attribute is not assigned to a painter, the painter uses the value specified by
the [pointecdefault] keyword. Some DeE implementations do not allow unattributed
painters. If a painter does not have an explicit attribute, the IDL file must have a
[pointecdefault] specification so that the pointer attribute can be set.

In default (Microsoft-extensions) mode, you can specify a painter's attribute in the IDL
file that imports the defining IDL file. Pointers defined in one IDL file can inherit attributes
that are specified in other IDL files. Also, in default mode, IDL files can include
unattributed pointers. If neither the base nor the imported IDL files specify a painter
attribute or [pointer_default], unattributed painters are interpreted as unique painters.

The MIDL compiler assigns painter attributes to pointers using the following priority rules
(1 is highest).

144 Volume 3 RPe and WNet

Priority Description

Explicit pointer attributes are applied to the pointer at the definition or
use site.

2 The default is the [pointecdefault] attribute in the IDL file that defines
the type.

3 The default is the [pointecdefault] attribute in the IDL file that imports
the type.

4 The default is [ptr] in DCE-compatibility mode, or [unique] in
Microsoft-extensions mode.

Using Arrays, Strings, and Pointers
The Doctor program (see \samples\rpc\doctor in the Platform SDK) is a good example of
an application that demonstrates the design trade-ofts involved with array and string
attributes. The Doctor program is a small sample version of a better-known program,
Eliza, developed by artificial intelligence researcher Joseph Weizenbaum at MIT in the
1960s. The program mimics a therapist by using simple pattern-matching to respond to
natural language input.

The Eliza program recorded the following session:

User Eliza

Men are all alike.

They're always bugging us about
something or other.

Well, my boyfriend made me come here.

He says I'm depressed much of the time.

It's true, I am unhappy.

I need some help; that much seems
certain.

Perhaps I could learn to get along with
my mother.

My mother takes care of me.

My father.

You are like my father in some ways.

In what way?

Can you think of a specific example?

Your boyfriend made you come here.

I am sorry to hear that you are depressed.

Do you think coming here will help you not
to be unhappy?

What would it mean to you if you got
some help?

Tell me more about your family.

Who else in your family takes care of you?

Your father.

What resemblance do you see?

Chapter 13 Arrays and Pointers 145

The Doctor program can be split into client-side and server-side applications. The client
side prompts the patient for input and displays the doctor's response. The server side
processes the patient input and generates the doctor's response. This is a classic
example of a client-server application: the client is responsible for user interaction while
the server handles the extensive computational load. Not much data is passed to and
returned by the function but, because the data can require a significant amount of
processing, the server processes it.

The Doctor program uses a character array for input and returns another character array
as output. The table below lists four ways to pass character arrays between the client
and server, and the attributes and functions needed to implement each approach.

Approach

Counted character arrays

Stub-managed strings

Stub-managed strings

Function that returns a string

Attributes or functions

[size_is], [length_is], [ref]

[string], [ref], midl_user_allocate on server

[string], [unique], midl_user_allocate on client and
server

[unique]

Within the constraints associated with these combinations of attributes, there are
alternative ways of sending one character array from client to server and of returning
another character array from server to client.

Counted Character Arrays
The [size_is] attribute indicates the upper bound of the array while the [length_is]
attribute indicates the number of array elements to transmit. In addition to the array, the
remote procedure prototype must include any variables representing length or size that
determine the transmitted array elements (they can be separate parameters or bundled
with the string in a structure). These attributes can be used with wide-character or single
byte character arrays just as they would be with arrays of other types.

The information in this section describes remote procedure parameter prototypes for
character arrays. It is divided into the following topics:

• [in, out, size_is] Prototype

• [in, size_is and out, size_is] Prototype

[in, out, sizejs] Prototype
The following function prototype uses a single-counted character array that is passed
both ways: from client to server and from server to client.

146 Volume 3 RPe and WNet

As an [in] parameter, achlnOut must point to valid storage on the client side. The
developer allocates memory associated with the array on the client side before making
the remote procedure call.

The stubs use the [size_is] parameter strsize to allocate memory on the server and then
use the [length_is] parameter pcbSize to transmit the array elements into this memory.
The developer must make sure the client code sets the [length_is] variable before
calling the remote procedure:

In the previous example, the character array achlnOut is also used as an [out]
parameter. In C, the name of the array is equivalent to the use of a pointer. By default,
all pointers are reference pointers-they do not change in value and they point to the
same area of memory on the client before and after the call. All memory that the remote
procedure accesses must fit the size that the client specifies before the call, or the stubs
will generate an exception.

Before returning, the Analyze function on the server must reset the pcbSize parameter
to indicate the number of elements that the server will transmit to the client as shown:

Instead of using a single string for both input and output, you may find it more efficient
and flexible to use separate parameters.

[in, sizejs and out, sizejs] Prototype
The following function prototype uses two counted strings. The developer must write
code on both client and server to keep track of the character array lengths and pass
parameters that tell the stubs how many array elements to transmit.

Chapter 13 Arrays and Pointers 147

Note the parameters that describe the array length are transmitted in the same direction
as the arrays: cbln and achln are [in] parameters while pcbOut and achOut are [out]
parameters. As an [out] parameter, the parameter pcbOut must follow C convention and
be declared as a pOinter.

The client code counts the number of characters in the string, including the trailing zero,
before calling the remote procedure as shown:

The remote procedure on the server supplies the length of the return buffer in cbOut as
shown:

Knowing that the parameter is a string allows us to use the [string] attribute. This
attribute directs the stub to calculate the string size, thus eliminating the overhead
associated with the [size_is] parameters.

Strings
The [string] attribute indicates the parameter is a pointer to an array of type char, byte,
or w_char. As with a conformant array, the size of a [string] parameter is determined at
run time. Unlike a conformant array, the developer does not have to provide the length
associated with the array-the [string] attribute tells the stub to determine the array size
by calling strlen. A [string] attribute cannot be used at the same time as the [length_is]
or [lasUs] attributes.

148 Volume 3 RPC and WNet

The [in, string] attribute combination directs the stub to pass the string from client to
server only. The amount of memory allocated on the server is the same as the
transmitted string size plus one.

The [out, string] attributes direct the stub to pass the string from server to client only.
The call-by-value design of the C language insists that all [out] parameters must be
pOinters.

The [out] parameter must be a pointer and, by default, all pointer parameters are
reference pOinters. The reference pointer does not change during the call-it pOints to
the same memory as before the call. For string pointers, the additional constraint of the
reference pOinter means the client must allocate sufficient valid memory before making
the remote procedure call. The stubs transmit the string that the [out, string] attributes
indicate into the memory already allocated on the client side.

The following topics describe the remote procedure parameter prototypes for strings:

• [in, out, string] Prototype

• [in, string] and [out, string] Prototype

[in, out, string] Prototype
The following function prototype uses a single [in, out, string] parameter for both the
input and output strings. The string first contains patient input and is then overwritten
with the doctor response as shown:

This example is similar to the one that employed a single-counted string for both input
and output. As with that example, the [size_is] attribute determines the number of
elements allocated on the server. The [string] attribute directs the stub to call strlen to
determine the number of transmitted elements.

The client allocates all memory before the call as:

Note that the Analyze function no longer must calculate the length of the return string as
it did in the counted-string example where the [string] attribute was not used. Now the
stubs calculate the length as shown:

Chapter 13 Arrays and Pointers 149

[in, string] and [out, string] Prototype
The following function prototype uses two parameters: an [in, string] parameter and an
[out, string] parameter:

The first parameter is [in] only. This input string is only transmitted from the client to the
server. The server uses it as the basis for further processing. The string is not modified
and is not required again by the client, so it does not have to be returned to the client.

The second parameter, representing the doctor's response, is [out] only. This response
string is only transmitted from the server to the client. The allocation size is provided so
that the server stubs can allocate memory for it. Since pszOutput is a [ref] pointer, the
client must have sufficient memory allocated for the string before the call. The response
string is written into this area of memory when the remote procedure returns.

Multiple Levels of Pointers
You can use multiple pOinters such as a [ref] pointer to another [ref] pointer that points
to the character array as shown:

When there are multiple levels of pOinters, the attributes are associated with the pointer
closest to the variable name. The client is still responsible for allocating any memory
associated with the response.

The following example allows the stub to call the server without knowing in advance how
much data will be returned:

(continued)

150 Volume 3 RPC and WNet

(continued)

In this example, the stub passes the server a unique pointer, which the server initializes
to NULL. The server then allocates a block of BARs, sets the pointer, sets the size
argument and returns. Note that in order for the server to have an effect on the caller you
must pass a [ref] pointer to a [unique] painter to your data. Also note the comma in
[size_is(, *pSize)], which indicates that the top-level pointer is not a sized pointer, but
that the lower-level painter is.

On the client side, the stub allocates the block, assigns the address to the ppBar
argument and unmarshals BAR objects. The size argument indicates the size of the
block (and the number of unmarshaled BARs).

151

CHAPTER 14

Pipes

The pipe type constructor is a highly efficient mechanism for passing large amounts
of data, or any quantity of data that is not all available in memory at one time. By using
a pipe, RPC run time handles the actual data transfer, eliminating the overhead
associated with repeated remote procedure calls.

After a client invokes a remote procedure that has a pipe parameter, the client and
server enter loops to transfer data. The data can be produced on the client or the server.
Either way, the amount of data (in bytes) does not have to be known in advance.
The data can be produced or consumed incrementally. While in the data-transfer loop,
the server calls stub routines that load or unload a buffer of data. The client calls
programmer-defined procedures to allocate buffers, load data into and unload data
from the buffers.

For more information on pipe syntax and restrictions, see pipe in the MIDL Language
Reference. The PIPES sample program in the Platform SDK samples\rpc directory
demonstrates how to use [in,out] pipes to transfer data between a client and a server.

Essential Pipe Terminology
Like other types of parameters to remote procedure calls, pipes can be [in] or [out]
parameters; Since the server controls the transfer of data through a pipe, pipes with the
[in] attribute are said to pull data to the server. Similarly, output pipes push data from the
server to the client. The procedures that do the data transfer are called the pull
procedure and the push procedure, respectively.

The MIDL compiler generates the push and pull procedures for the server. In addition,
it manages the allocation of data buffers in memory. However, the client must provide
its own push and pull procedures. It must also provide a procedure for allocating the
memory buffers used by the pipe. These are automatically called at the appropriate time
by the client stub. The allocation procedure is often called the alloc procedure or the
alloc function.

152 Volume 3 RPC and WNet

The Pipe State
On the server, the MIDL compiler creates a state variable that coordinates push, pull,
and alloc procedures. On the client side, the developer must create the state variable.
Therefore, the state variable is local to both sides-that is, the client and server each
maintain their own pipe state. The server stub code maintains the state variable on the
server. You should not attempt to modify its contents directly. The client must initialize
the fields in the pipe control structure and maintain its state variable. It uses the state
variable to identify where to locate or place data.

The client state variable can be as simple as a file handle, if you are transferring data
from one file to another. It can also be an integer that points to an element in an array.
Or you can define a fairly complex state structure to perform additional tasks, such
as coordinating the push and pull routines on an [in, out] parameter.

Defining Pipes in IDL Files
When a pipe is defined in an IDL file, the MIDL compiler generates a pipe control
structure whose members are pointers to push, pull, and alloc procedures as well as
a state variable that coordinates these procedures. The client application initializes the
fields in the pipe control structure, maintains its state variable, and manages the data
transfer with its own push, pull, and alloc functions. The client stub code calls these
application functions in loops during data transfer. For an input pipe, the client stub
marshals the transfer data and transmits it to the server stub. For an output pipe, the
client stub unmarshals the data into a buffer and passes a pointer to that buffer back
to the client application.

The server stub code initializes the fields of the pipe control structure to a state variable,
as well as pointers to push and pull routines. The server stub maintains the state and
manages its private storage for the transfer data. The server application calls the pull
and push routines in loops during the remote procedure call as it receives and
unmarshals data from the client stub, or marshals and transmits data to the client stub.

The following example IDL file defines a pipe type LONG_PIPE, whose element size
is defined as long. It also declares function prototypes for the remote procedure calls
InPipe and OutPipe, to send and receive data, respectively. When the MIDL compiler
processes the IDL file, it generates the header file shown in the example:

Example

Chapter 14 Pipes 153

Client-Side Pipe Implementation
The client application must implement the following procedures, which the client stub will
call during data transfer:

• A pull procedure (for an input pipe)

• A push procedure (for an output pipe)

• An alloc procedure to allocate a buffer for the transfer data

All of these procedures must use the arguments specified by the MIDL-generated
header file. In addition, the client application must have a state variable to identify where
to locate or place data.

The alloe procedure can also be as simple or as complex as needed. For example, it can
return a pointer to the same buffer every time the stub calls the function, or it can
allocate a different amount of memory each time. If your data is already in the proper
form (an array of pipe elements, for example) you can coordinate the alloc procedure
with the pull procedure to allocate a buffer that already contains the data. In that case,
your pull procedure could be an empty routine.

154 Volume 3 RPC and WNet

The buffer allocation must be in bytes. The push and pull procedures, on the other hand,
manipulate elements, whose size in bytes depends on how they were defined.

Implementing Input Pipes on the Client
When using an input pipe to transfer data from the client to the server, you must
implement a pull procedure. The pull procedure must find the data to be transferred,
read the data into the buffer, and set the number of elements to send. Not all of the data
has to be in the buffer when the server begins to pull data to itself. The pull procedure
can fill the buffer incrementally.

When there is no more data to send, the procedure sets its last argument to zero. When
all the data is sent, the pull procedure should do any needed cleanup before returning.
For a parameter that is an [in, out] pipe, the pull procedure must reset the client's state
variable after all the data has been transmitted, so that the push procedure can use it to
receive data.

The following example is extracted from the Pipedemo program included with the
Platform SDK.

Chapter 14 Pipes 155

(continued)

156 Volume 3 RPC and WNet

(continued)

This example includes the header file generated by the MIDL compiler. For details see
Defining Pipes in IDL Files. It also declares a variable it uses as the data source called
globalPipeData. The variable globalBuffer is a buffer that the pull procedure uses
to send the blocks of data it obtains from globalPipeData.

The Send Longs function declares the input pipe, and allocates memory for the data
source variable globalPipeData. In your client/server program, the data source can be
a file or structure that the client creates. You can also have your client program obtain
data from the server, process it, and return it to the server using an input pipe. In this
simple example, the data source is a dynamically allocated buffer of long integers.

Before the transfer can begin, the client must set pOinters to the state variable, the pull
procedure, and the alloc procedure. These pointers are kept in the pipe variable the
client declares. In this case, Send Longs declares inPipe. You can use any appropriate
data type for your state variable.

Clients initiate data transfers across a pipe by invoking a remote procedure on the
server. Calling the remote procedure tells the server program that the client is ready
to transmit. The server can then pull the data to itself. This example invokes a remote
procedure called InPipe. After the data is transferred to the server, the Send Longs
function frees the dynamically allocated buffer.

Rather than allocate memory each time a buffer is needed. the alloc procedure in this
example simply sets a pOinter to the variable global Buffer. The pull procedure reuses
this buffer each time it transfers data. More complex client programs may need
to allocate a new buffer each time the server pulls data from the client.

The client stub calls the pull procedure. The pull procedure in this example uses the
state variable to track the next position in the global data source buffer to read from.
It reads data from the source buffer into the pipe buffer. The client stub transmits the
data to the server. When all the data has been sent, the pull procedure sets the buffer
size to zero. This tells the server to stop pulling data.

Chapter 14 Pipes 157

Implementing Output Pipes on the Client
When using an output pipe to transfer data from the server to the client, you must
implement a push procedure in your client. The push procedure takes a pOinter to
a buffer and an element count from the client stub and, if the element count is greater
than 0, processes the data. For example, it could copy the data from the stub's buffer
to its own memory. Alternately, it could process the data in the stub's buffer and save
it to a file. When the element count equals zero, the push procedure completes any
needed cleanup tasks before returning.

In the following example, the client function ReceiveLongs allocates a pipe structure
and a global memory buffer. It initializes the structure, makes the remote procedure call,
and then frees the memory.

Example

(continued)

158 Volume 3 RPC and WNet

(continued)

This example includes the header file generated by the MIDL compiler. For details see
Defining Pipes in IDL File. It also declares a variable, globalPipeData, that it uses as the _
data sink. The variable globalBuffer is a buffer that the push procedure uses to receive
blocks of data it stores in globalPipeData.

Chapter 14 Pipes 159

The ReceiveLongs function declares a pipe and allocates memory space for the global
data sink variable. In your client/server program, the data sink can be a file or data
structure the client creates. In this simple example, the data source is a dynamically
allocated buffer of long integers.

Before the data transfer can begin, your client program must initialize the output pipe
structure. It must set pointers to the state variable, the push procedure, and the alloc
procedure. In this example, the output pipe variable is called outputPipe.

Clients signal servers that they are ready to receive data by invoking a remote procedure
on the server. In this example, the remote procedure is called OutPipe. When the client
calls the remote procedure, the server begins the data transfer. Each time data arrives,
the client stub calls the client's alloc and push procedures as needed.

Rather than allocate memory each time a buffer is needed, the alloc procedure in this
example simply sets a pointer to the variable globalBuffer. The pull procedure then
reuses this buffer each time it transfers data. More complex client programs may need
to allocate a new buffer each time the server pulls data from the client.

The push procedure in this example uses the state variable to track the next position
where it will store data in the global data sink buffer. It writes data from the pipe buffer
into sink buffer. The client stub then receives the next block of data from the server and
stores it in the pipe buffer. When all the data has been sent, the server transmits a zero
sized buffer. This cues the push procedure to stop receiving data.

Server-Side Pipe Implementation
Server programs for distributed applications that use pipes need not implement any
push, pull, or alloc functions. They do need to contain procedures that clients can invoke
remotely to initiate data transfers.

Implementing Input Pipes on the Server
To begin sending data to a server, a client calls one of the server's remote procedures.
This procedure must repeatedly call the pull procedure in the server's stub. The MIDL
compiler uses the application's IDL file to automatically generate the server's pull
procedure.

Each time the server program invokes the pull procedure in its stub, the pull procedure
receives blocks of data from the client. It unmarshals the data into the server's buffer.
The server's remote procedure can then process this data in any way required. The loop
continues until the server receives a buffer of zero length.

The following example is from the Pipedemo program contained in the samples that
come with the Platform SDK. It illustrates a remote server procedure that uses a pipe to
pull data from the client to the server.

160 Volume 3 RPe and WNet

Implementing Output Pipes on the Server
To begin receiving data from a server, a client calls one of the server's remote
procedures. This procedure must repeatedly call the push procedure in the server's stub.
The MIDL compiler uses the application's IDL file to automatically generate the server's
push procedure.

The remote server routine must fill the output pipe's buffer with data before it calls the
push procedure. Each time the server program invokes the push procedure in its stub,
the push procedure marshals the data and transmits it to the client. The loop continues
until the server sends a buffer of zero length.

The following example is from the Pipedemo program contained in the samples that
come with the Platform SDK. It illustrates a remote server procedure that uses a pipe
to push data from the server to the client.

Chapter 14 Pipes 161

Rules for Multiple Pipes
You can combine [in], [out], and [in, out] pipe parameters in any combination
in a single call, but you must process the pipes in a specific order, as shown in
the following pseudocode example:

• Get the data from every input pipe, starting with the first (leftmost) [in] parameter, and
continuing in order, draining each pipe before beginning to process the next.

• After every input pipe has been completely processed, send the data for the output
pipes, again starting with the first [out] parameter, and continuing in order, filling each
pipe before beginning to process the next.

(continued)

162 Volume 3 RPC and WNet

(continued)

Combining Pipe and Nonpipe Parameters
When you combine pipe types and other types in a remote procedure call, the data is
transmitted according to the direction of the parameter:

• In the [in] direction, the data for all nonpipe arguments is transmitted first, followed by
pipe data.

• In the [out] direction, the server sends the pipe data first. After the manager routine
returns, the server transmits the non pipe data.

• When there are [in,out] pipe arguments combined with [in,out] non-pipe arguments,
first the input data is transmitted in its entirety, as previously described. Then, the
output data is transmitted as previously described.

The following restriction applies to this (MIDL 3.0) implementation of pipes: When you
combine pipe types and other types in a single remote procedure call, the nonpipe
parameters must have a well-defined size in order to allow the MIDL compiler to
calculate the buffer size needed. For example, you cannot combine pipe parameters with
a [unique] pOinter or a conformant structure, since their sizes cannot be determined at
compile time.

CHAPTER 15

Binding and Handles

This chapter explains creating and using bindings and binding handles between client
and server programs. It also discusses clienVserver contexts and context handles.

163

Note In addition to binding and context handles, Microsoft® RPC also supports
serialization handles used to encode or decode data. These are used for serialization on
a local computer and do not involve remote binding. For additional information on
serialization handles, see Serialization Services.

Binding Handles
Binding is the process of creating a logical connection between a client program and a
server program. The information that composes the binding between client and server is
represented by a structure called a binding handle.

A binding handle is analogous to a file handle that the fopen C run-time library function
returns, or a window handle that the function CreateWindow returns. As with these
handles, your application cannot directly access and manipulate the information in the
binding handle. The information in a binding handle data structure is available only to the
RPC run-time libraries. You provide the handle, the run-time libraries access and
manipulate the appropriate data.

Types of Binding Handles
Binding handles can be automatic, implicit, or explicit. The difference between these
binding handle types is in how much control you want your application to have over the
binding process. As the name suggests, automatic. binding handles automate binding.
The client and server applications do not need code to handle the binding process.

Implicit binding handles allow client programs to configure the binding handle before the
binding takes place. After the client establishes a binding, the RPC run-time library
handles the rest.

Explicit binding handles move complete control over the binding process into the source
code of the client and the server programs. With this control comes increased
complexity. Your application must call RPC functions to manage the binding. It does not
happen automatically.

Figure 15-1 illustrates the differences between automatic, implicit, and explicit binding
handles.

164 Volume 3 RPC and WNet

Client Application
Source Code

RPC Run-time
Library

Server Application
Source Code

Automatic

Invoke Remote
Procedure

Respond to
Remote

Procedure
Call

Implicit

Set Binding
Information
and Create

Binding Handle

Respond to
Remote

Procedure
Call

Code that manages the binding handle

Figure 15-1: Differences Between Binding Handles.

Explicit

Set Binding
Information,

Create Binding
Handle and Pass
to RPC Run-time

Library

Respond to
Remote

Procedure
Call

In addition, every binding handle is either primitive or custom. Each of these types of
binding handles are discussed in the following topics:

• Automatic Binding Handles

• Implicit Binding Handles

• Explicit Binding Handles

• Primitive and Custom Binding Handles

Automatic Binding Handles
Automatic binding handles are useful when the application does not require a specific
server and when it does not need to maintain any state information between the client
and server. When you use an automatic binding handle, you do not have to write any
client application code to deal with binding and handles-you simply specify the use of
the automatic binding handle in the Application Configuration File (ACF). The stub then
defines the handle and manages the binding.

For example, a time-stamp operation can be implemented using an auto handle. It
makes no difference to the client application which server provides it with the time stamp
because it can accept the time from any available server.

Chapter 15 Binding and Handles 165

Note Auto handles are not supported for the Macintosh platform.

You specify the use of auto handles by including the [auto_handle] attribute in the ACF.
The time-stamp example uses the following ACF:

When the ACF does not include any other handle attribute, and when the remote
procedures do not use explicit handles, the MIDL compiler uses automatic handles by
default. It also uses automatic handles as the default when the ACF is not present.

The remote procedures are specified in the IDL file. The auto handle must not appear as
an argument to the remote procedure. For example:

The benefit of the auto handle is that the developer does not have to write any code to
manage the handle; the stubs manage the binding automatically. This is significantly
different from the Hello, World example, where the client manages the implicit primitive
handle defined in the ACF and must call several run-time functions to establish the
binding handle.

Implicit Binding Handles
Implicit binding handles allow your application to select a specific server to execute its
remote procedure calls. For details, see C/ient~Side Binding. They also enable your
client/server program to use authenticated bindings. That is, the client can specify
authentication information in an implicit binding handle. The RPC run-time library uses
the authentication information to establish an authenticated RPC session between the
client and the server. For more information, see Security.

166 Volume 3 RPC and WNet

When your application uses implicit bindings, the client must set the binding information
so that it can create the binding. After the client creates an implicit binding, it does not
need to pass any binding handles to remote procedures. The RPC library handles the
rest of the mechanics of the communication session.

The client stores the binding information for an implicit handle in a global variable. When
the MIDL compiler generates the client stub and header file from the interface
specification in your MIDL file, it also generates code for a global binding handle
variable. Your client program initializes the handle and then does not refer to it again
until it destroys the binding.

You create an implicit handle by specifying the [impliciChandle] attribute in the ACF for
an interface as follows:

The handle_t type, which is used in the preceding example, is a MIDL data type used
for defining binding handles.

After creating the implicit handle, the application needs to use it as a parameter to the
RPC run-time library functions. Do not use the implicit handle as a parameter to remote
procedure calls. The following code sample demonstrates the use of implicit binding
handles.

In the preceding example, the RPC run-time library functions
RpcBindingFromStringBinding and RpcBindingFree both required the implicit
binding handle to be passed in their parameter lists. However, the remote procedure
MyRemoteProcedure did not, since it is not an RPC run-time library function.

Chapter 15 Binding and Handles 167

Explicit Binding Handles
For maximum control over the binding process, clienVserver applications may use
explicit binding handles. Like implicit handles, explicit binding handles enable your client
application to select a server to execute its calls. In addition, explicit binding handles
enable your clienVserver application to create an authenticated RPC communication
session. With explicit handles, your client can connect to more than one server and
execute remote procedures on multiple servers. Multithreaded and asynchronous client
applications can even connect to multiple servers and execute multiple remote
procedures at the same time.

Your client application must pass the explicit handle as a parameter to each remote
procedure call. To conform to the OSF standard, the handle should be specified as the
first parameter on each remote procedure. However, the Microsoft extensions to RPC
enable you to specify the binding handle in other positions. For details, see Microsoft
RPC Binding-Handle Extensions.

To create an explicit handle, declare the handle as a parameter to the remote operations
in the IDL file. The Hello, World example can be redefined to use an explicit handle as
shown:

You can combine explicit and implicit handles in a single interface. If a function has an
explicit handle in its parameter list, that handle will be used. If a function in an interface
using implicit handles does not specify an explicit handle, then the default implicit handle
will be used.

Primitive and Custom Binding Handles
All handles declared with the handle_t or RPC_BINDING_HANDLE types are primitive
binding handles. You can extend the handle_t or RPC_BINDING_HANDLE types to
include more or different information than the primitive handle type contains. When you
do, you create a custom binding handle.

To make a custom binding handle for your distributed application, you will need to create
your own data type and specify the [handle) attribute on a type definition in your IDL file.
Ultimately, the stub files map custom binding handles to primitive handles.

168 Volume 3 RPC and WNet

If you do create your own binding handle type, you must also supply bind and unbind
routines that the client stub uses to map a custom handle to a primitive handle. The stub
calls your bind and unbind routines at the beginning and end of each remote procedure
call. The bind and unbind routines must conform to the following function prototypes.

Function prototype

handle_t type_bind(type)

void type_unbind(type, handle_t)

Description

Binding routine

Unbinding routine

The following example shows how a custom binding handle can be defined in the IDL
file:

The programmer-defined bind and unbind routines appear in the client application. In the
following example, the bind routine calls RpcBindingFromStringBinding to convert the
string-binding information to a binding handle. The unbind routine calls RpcBindingFree
to free the binding handle.

The name of the programmer-defined binding handle, DATA_HANDLE_ TYPE, appears
as part of the name of the functions. It is also used as the parameter type in the function
parameters.

Chapter 15 Binding and Handles 169

170 Volume 3 RPC and WNet

Both implicit and explicit binding handles can either be primitive or custom handles. That
is, a handle may be:

• Primitive and implicit

• Custom and implicit

• Primitive and explicit

• Custom and explicit

Client-Side Binding
Binding handles are composed of a protocol sequence, the name or address of a server
program host computer, and a server program endpoint. Therefore, your client program
must obtain or provide this information to create a binding.

If your client program uses automatic binding handles, you do not need to write any
special source code in it to create or manage the binding. The client stub calls the RPC
functions that are required to establish and maintain the binding. All you have to do is
specify that your client uses automatic binding handles in the Application Configuration
File (ACF), and design the interface accordingly. For details, see Automatic Binding
Handles.

Suppose, for example, that you were developing a client program that called remote
time-stamping functions. Here, the stubs do all the work and the client only needs to
include the generated header file Auto.h to obtain the function prototypes for the remote
procedures. The client application calls to the remote procedures appear just as if they
were calls to local procedures, as shown in the following example:

Chapter 15 Binding and Handles 171

As you can see in the preceding example, the client application does not have to make
any explicit calls to the RPC run-time library functions. The client stub manages them.

If your application uses implicit or explicit binding handles, the client must obtain the
binding information and call the RPC functions to create the handles. Where the client
obtains the binding information from depends on the requirements of your application.
The setup program that installs your client application can store binding information in
environment variables that it creates. It can also save binding information in an
application-specific configuration file. Since binding information in environment variables
or configuration files is usually stored as strings, your cli.ent application will need to
convert the string to a binding. For more information, see Using String Bindings.

Most networks have a name service. Server programs can advertise themselves in the
name-service database. When a client begins execution, it can obtain its binding
information from the name-service database. For details, see Importing from Name
Service Databases.

The steps required for binding with implicit and explicit handles are discussed in the
following topics:

• Selecting a Protocol Sequence

• Finding Server Host Systems

• Finding Endpoints

For a brief overview of these topics, see Connecting the Client and the Server.

Selecting a Protocol Sequence
A protocol sequence is the language that a network operating system uses to talk over
the network to other computers. In more specific terms, RPC applications must specify a
string that represents a combination of an RPC protocol, a transport protocol, and a
network protocol.

Microsoft RPC supports three RPC protocols:

• Network Computing Architecture connection-oriented protocol (NCACN)

• Network Computing Architecture datagram protocol (NCADG)

• Network Computing Architecture local remote procedure call (NCALRPC)

RPC applications can use the NCALRPC protocol to invoke procedures offered by
server programs running on the same computer that the client program runs on.
Developers often use this capability for debugging.

172 Volume 3 RPe and WNet

The transport and network protocols that your application uses depend on what
protocols the network supports. Many networks today, including the Internet, support
TCP/IP. Other common transport and network protocols are IPXlSPX, NetBIOS, and
AppleTalk DSP. Microsoft RPC supports these and other transport and network
protocols. For a complete list, see PROTSEQ.

When your application uses automatic binding handles, it does not need to specify the
protocol sequence. If it uses implicit or explicit handles, it must obtain or specify the
protocol sequence. The preferred method is for the server program to advertise its host
address and protocol sequence in a name-service database. The client can then query
the name service to set up a binding handle. For details, see Importing from Name
SeNiee Databases.

Clients can also specify protocol sequence information that they obtain from environment
variables created and initialized by the setup program, from application-specific
configuration files, or from literal strings in the program source code.

In addition, your client program can invoke RpcNetworklnqProtseqs to query the RPC
run-time library for all of the protocol sequences that it and the network both support.
After your client obtains the list of possible protocol sequences, it can call
RpcNetworklsProtseqValid to see which protocol sequence it can use to connect to the
server.

After your client program has a valid protocol sequence string, it can pass that
information to the RpcStringBindingCompose and RpcBindingFromStringBinding
functions to create the binding handle.

Finding Server Host Systems
A server host system is the computer that executes the distributed application's server
program. There may be one or many server host systems on a network. How your client
program finds a server to connect to depends on the needs of your program.

There are two methods of finding server host systems. The first is to query a name
service database for the location of a server program. The second is to use information
stored in strings in the client source code, environment variables, or application-specific
configuration files. Your client application can use the data in the string to compose a
binding between the client and the server.

This section presents information on both of these techniques in the following topics:

• Importing from Name Service Databases

• Using String Bindings

Importing from Name Service Databases
The preferred method of finding server host systems on a network is to query a name
service database. This gives both the distributed application and the network
administrator greater flexibility. If it queries the name-service database, the distributed
application can be more easily ported from network to network. Network administrators
can more easily move server programs from host to host, as needed.

Chapter 15 Binding and Handles 173

Name-service databases store, among other things, binding handles and UUIDs. Your
client application can search for either or both of these when it needs to bind to the
server. For a discussion of the information that a name service stores, and the storage
format, see The RPC Name-Service Database.

The RPC library provides two sets of functions that your client program can use to
search the name-service database. The names of one set begin with
RpcNsBindinglmport. The names of the other set begin with RpcNsBindingLookup.
The difference between the two groups of functions is that the RpcNsBindinglmport
functions return a single binding handle per call and the RpcNsBindingLookup
functions return groups of handles per call.

To begin a search with the RpcNsBindinglmport functions, first call
RpcNsBindinglmportBegin, as shown in the following code fragment.

When the RPC functions search the name-service database, they need a place to begin
the search. In RPC terminology, this is called the entry name. Your client program
passes the entry name as the second parameter to RpcNsBindinglmportBegin. This
parameter can be NULL if you want to search the entire name-service database.
Alternatively, you can search the server entry by passing a server-entry name or search
the group entry by passing a group-entry name. Passing an entry name restricts the
search to the contents of that entry.

In the preceding example, the value RPC_C_NS_SYNTAX_DEFAULT is passed as the
first parameter to RpcNsBindinglmportBegin. This selects the default entry name
syntax. Currently, this is the only entry-name syntax that Windows NTlWindows 2000
supports.

Your client application can search the name-service database for an interface name, a
UUID, or both. If you want to have it search for an interface by name, pass the global
interface variable that the MIDL compiler generates from your IDL file as the third
parameter to RpcNsBindinglmportBegin. You'll find its declaration in the header file
that the MIDL compiler generated when it generated the client stub. If you want your
client program to search by UUID only, set the third parameter to NULL.

When searching the name-service database for a UUID, set the fourth parameter of
RpcNsBindinglmportBegin to the UUID that you want to search for. If you are not
searching for a UUID, set this parameter to NULL.

174 Volume 3 RPC and WNet

The RpcNsBindinglmportBegin function passes the address of a name service-search
context handle through its fifth parameter. You pass this parameter to other
RpcNsBindinglmport functions.

In particular, the next function your client application would call is
RpcNsBindinglmportNext. Client programs use this function to retrieve compatible
binding handles from the name-service database. The following code fragment
demonstrates how this function might be called:

Once it has called the RpcNsBindinglmportNext function to obtain a binding handle,
your client application can determine if the handle it received is acceptable. If not, your
client program can execute a loop and call RpcNsBindinglmportNext again to see if
the name service contains a more appropriate handle. For each call to
RpcNsBindinglmportNext, there must be a corresponding call to RpcNsBindingFree.
When your search is complete, call the RpcNsBindinglmportDone function to free the
lookup context.

After your client application has an acceptable binding handle, it should check to ensure
that the server application is running. There are two methods your client can use to
perform this verification. The first is to call a function in the client interface. If the server
program is running, the call will complete. If not, the call will fail. A better way to verify
that the server is running is to invoke RpcEpResolveBinding, followed by a call to
RpcMgmtlsServerListening. For more information on the name-service database, see
The RPC Name-Service Database.

Using String Bindings
Applications can create bindings from information stored in strings. Your client
application composes this information as a string, then calls the
RpcBindingFromStringBinding function. The client must supply the following
information to identify the server:

• The interface name, the Globally Unique Identifier (GUID) of the object, or UUID of
the object. For more information, see Generating Interface UUlDs and String UUID.

• The transport type to communicate over, such as named pipes or TCP/IP. For details,
see Essential RPCBinding Terminology and Selecting a Protocol Sequence.

• The network address or the name of the server host computer.

• The endpoint of the server program on the server host computer. For more
information, see Finding Endpoints, and Specifying Endpoints.

(The object UUID and the endpoint information are optional.)

Chapter 15 Binding and Handles 175

In the following examples, the pszNetworkAddress parameter and other parameters
include embedded backslashes. The backslash is an escape character in the C
programming language. Two backslashes are needed to represent each single literal
backslash character. The string-binding structure must contain four backslash characters
to represent the two literal backslash characters that precede the server name.

The following example shows that the server name must be preceded by eight
backslashes so that four literal backslash characters will appear in the string-binding
data structure after the sprintf function processes the string.

In the following example, the string binding appears as:

The client then calls RpcBindingFromStringBinding to obtain the binding handle:

A convenience function, RpcStringBindingComposeassembles the object UUID,
protocol sequence, network address, and endpoint in the correct syntax for the call to
RpcBindingFromStringBinding. You do not have to worry about putting the
ampersand, colon, and the various components for each protocol sequence in the right
place; you just supply the strings as parameters to the function. The run-time library
even allocates the memory needed for the string binding.

(continued)

176 Volume 3 RPC and WNet

(continued)

Another convenience function, RpcBindingToStringBinding, takes a binding handle as
input and produces the corresponding string binding.

Finding Endpoints
Server programs listen to endpoints for client requests. The syntax of the endpoint string
depends on the protocol sequence you use. For example, the endpoint for TCP/IP is a
port number, and the endpoint syntax for named pipes is a valid pipe name.

There are two types of endpoints: well-known and dynamic. Your choice of which type of
endpoint your program uses determines whether the distributed application or the run
time library specifies the endpoint.

This section discusses endpoints and presents information on how to find them. It is
organized into the following topics:

• Using Well-Known Endpoints

• Using Dynamic Endpoints

Note that it is possible for your client application to use the endpoint map to determine
whether or not a server program is currently running. Your client can call
RpcMgmtlnqlflds, RpcMgmtEpEltlnqBegin, and RpcMgmtEpEltlnqOone to see if the
server has registered the particular interface it requires in the endpoint map.

Using Well-Known Endpoints
Well-known endpoints are pre-assigned endpoints that the server program uses every
time it runs. Because the server always listens to that particular endpoint, the client
always attempts to connect to it. Well-known endpoints are usually assigned by the
authority responsible for the transport protocol. Because server host computers have a
finite number of available endpoints, well-known endpoints are not recommended for
most applications.

A distributed application can specify a well-known endpoint in a string and pass that
string as a parameter to the function RpcServerUseProtseqEp. Alternatively, the
endpoint string can appear in the IDL file interface header as part of the [endpoint]
interface attribute.

Chapter 15 Binding and Handles 177

You can use two approaches to implement the well-known endpoint:

• Specify all information in a string binding

• Store the well-known endpoint in the name-service database

You can write all of the information needed to establish a binding into a distributed
application when you develop it. The client can specify the well-known endpoint directly
in a string, call RpcStringBindingCompose to create a string that contains all the
binding information, and supply this string to the function
RpcBindingFromStringBinding to obtain a handle. The client and server can be hard
coded to use a well-known endpoint, or written so that the endpoint information comes
from the command line, a data file, a configClration file, or the IDL file.

Your client application can also query a name-service database for well-known endpoint
information.

Using Dynamic Endpoints
The number of communication ports for a particular server are usually limited. For
example, when you use the ncacn_nb_nb protocol sequence, indicating that RPC
network communication occurs using NetBlOS over NetBEUI, only 234 ports are
available. The RPC run-time libraries allow you to assign endpoints dynamically, as
needed.

By default, the RPC run-time library functions search for endpoint information when they
query a name-service database. If the endpoint is dynamic, the name-service database
will not contain endpoint information. However, the query will give your client program
the name of a server. It can then search the server's endpoint map.

The client can instruct the RPC library to search the endpoint map and resolve a binding
by invoking the RpcEpResolveBinding function. If you need more specific control over
endpoint selection, you can make your client search the endpoint map one entry at a
time by calling the RpcMgmtEpEltlnqBegin, RpcMgmtEpEltlnqNext, and
RpcMgmtEpEltlnqDone functions.

Server-Side Binding
This section presents a discussion of a server program's role in providing binding
information to its clients.

Registering Interfaces
This section presents a detailed discussion of the process of registering an RPC
interface. For an overview of registering server interfaces, see Registering the Interface.

Interface Registration Functions
Servers register their interfaces by calling the RpcServerRegisterlf function. Complex
server programs often support more than one interface. Server applications must call
this function once for each interface they support.

178 Volume 3 RPC and WNet

Also, servers can support multiple versions of the same interface, each with its own
implementation of the interface's functions. If your server program does this, it must
provide a set of entry points. An entry point is a manager routine that dispatches calls for
a version of an interface. There must be one entry point for each version of the interface.
The group of entry points is called an entry point vector. For details, see Entry-Point
Vectors.

In addition to the standard function RpcServerRegisterlf, Microsoft RPC also supports
other interface registration functions. The RpcServerRegisterlf2 function extends the
capabilities of RpcServerRegisterlf by enabling you to specify a set of registration flags
(see Interface Registration Flags), the maximum number of concurrent remote procedure
call requests the server can accept, and the maximum size in bytes of incoming data
blocks.

The Microsoft RPC library also contains a function called RpcServerRegisterlfEx. Like
the RpcServerRegisterlf function, this function registers an interface. Your server
program can also use this function to specify a set of registration flags (see Interface
Registration Flags), the maximum number of concurrent remote procedure call requests
the server can accept, and a security callback function.

The RpcServerRegisterlf, RpcServerRegisterlfEx, and RpcServerRegisterlf2
functions set values in the internal interface registry table. This table is used to map the
interface UUID and object UUIDs to a manager EPV. The manager EPV is an array of
function pointers that contains exactly one function pointer for each function prototype in
the interface specified in the IDL file.

For information on supplying multiple EPVs to provide multiple implementations of the
interface, see Multiple Interface Implementations.

The run-time library uses the interface registry table (set by calls to the function
RpcServerRegisterlf, RpcServerRegisterlfEx, or RpcServerRegisterlf2) and the
object registry table (set by calls to the function RpcObjectSetType) to map interface
and object UUIDs to the function pointer.

When you want your server program to remove an interface from the RPC run-time
library registry, call the RpcServerUnregisterlf function. After the interface is removed
from the registry, the RPC run-time library will no longer accept new calls for that
interface.

Entry-Point Vectors
The manager Entry-Point Vector (EPV) is an array of function pOinters that point to
implementations of the functions specified in the IDL file. The number of elements in the
array corresponds to the number of functions specified in the IDL file. Microsoft RPC
supports multiple entry-point vectors representing multiple implementations of the
functions specified in the interface.

The MIDL compiler automatically generates a manager EPV data type for use in
constructing manager EPVs. The data type is named if-name_SERVER~EPV, where
if-name specifies the interface identifier in the IDL file.

Chapter 15 Binding and Handles 179

The MIDL compiler automatically creates and initializes a default manager EPV on the
assumption that a manager routine of the same name exists for each procedure in the
interface and is specified in the IDL file.

When a server offers multiple implementations of the same interface, the server must
create one additional manager EPV for each implementation. Each EPV must contain
exactly one entry point (address of a function) for each procedure defined in the IDL file.
The server application declares and initializes one manager EPV variable of type
if-name_SERVER_EPV for each additional implementation of the interface. To register
the EPVs it calls RpcServerRegisterlf, RpcServerRegisterlfEx, or
RpcServerRegisterlf2 once for each object type it supports.

When the client makes a remote procedure call to the server, the EPV containing the
function pointer is selected based on the interface UUID and the object type. The object
type is derived from the object UUID by the object-inquiry function or the table-driven
mapping controlled by RpcObjectSetType.

Manager EPVs
By default, theMIDL compiler uses the procedure names from an interface's IDL file to
generate a manager EPV, which the compiler places directly into the server stub. This
default EPV is statically initialized using the procedure names declared in the interface
definition.

To register a manager using the default EPV, specify NULL as the value of the MgrEpv
argument (anull EPV).lf the routine names used by a manager correspond to those of
the interface definition, you can register this manager using the default EPV of the
interface generated by the MIDL compiler. You can also register a manager using an
EPV that the server application supplies.

A server can (and sometimes must) create and register a non-null manager EPV for an
interface. To select a server application-supplied EPV, pass the address of an EPV
whose value has been declared by the server as the value of the MgrEpvargument.
A non-null value for the MgrEpvargument always overrides a default EPV in the server
stub. I

The MIDL compiler automatically generates a manager EPV data type
(RPC_MGR_EPV) for a server application to use in constructing manager EPVs.
A manager EPV must contain exactly one entry point (function address) for each
procedure defined in the IDL file.

A server must supply a non-null EPV in the following cases:

• When the names of manager routines differ from the procedure names declared in the
interface definition

• When the server uses the default EPV for registering another implementation of the
interface

A server declares a manager EPV by initializing a variable of type
if-name_SERVER_EPV for each implementation of the interface.

180 Volume 3 RPC and WNet

Registering a Single Implementation of an Interface
When a server offers only one implementation of an interface, the server calls
RpcServerRegisterlf, RpcServerRegisterlfEx, or RpcServerRegisterlf2 only once. In
the simplest case, the server uses the default manager EPV. (The exception is when the
manager uses routine names that differ from those declared in the interface.)

For the simple case, you supply the following values for calls to RpcServerRegisterlf,
RpcServerRegisterlfEx, or RpcServerRegisterlf2:

• Manager EPVs

To use the default EPV, specify a null value for the MgrEpvargument.

• Manager type UUID

When using the default EPV, register the interface with anil manager type UUID by
supplying either a null value or a nil UUID for the MgrTypeUuid argument. In this
case, all remote procedure calls, regardless of the object UUID in their binding
handle, are dispatched to the default EPV, assuming no RpcObjectSetType calls
have been made.

You can also provide a non-nil manager type UUID. In this case, you must also call
the RpcObjectSetType routine.

Registering Multiple Implementations of an Interface
You can supply more than one implementation of the remote procedure(s) specified in
the IDL file. The server application calls RpcObjectSetType to map object UUIDs to
type UUIDs and calls RpcServerRegisterlf, RpcServerRegisterlfEx, or
RpcServerRegisterlf2 to associate manager EPVs with a type UUID. When a remote
procedure call arrives with its object UUID, the RPC server run-time library maps the
object UUID to a type UUID. The server application then uses the type UUID and the
interface UUID to select the manager EPV.

You can also specify your own function to resolve the mapping from object UUID to
manager type UUID. You specify the mapping function when you call
RpcObjectSetlnqFn.

To offer multipl~ implementations of an interface, a server must register each
implementation by calling RpcServerRegisterlf, RpcServerRegisterlfEx or
RpcServerRegisterlf2 separately. For each implementation a server registers, it
supplies the same If Spec argument, but a different pair of MgrTypeUuid and MgrEpv
arguments.

In the case of multiple managers, use RpcServerRegisterlf, RpcServerRegisterlfEx or
RpcServerRegisterlf2 as follows:

• Manager EPVs

To offer multiple implementations of an interface, a server must:

• Create a non-null manager EPV for each additional implementation.

• Specify a non-null value for the MgrEpvargument in RpcServerRegisterlf,
RpcServerRegisterlfEx, or RpcServerRegisterlf2.

Chapter 15 Binding and Handles 181

Please note that the server can also register with the default manager EPV.

• Manager type UUID

Provide a manager type UUID for each EPV of the interface. The nil type UUID
(or null value) for the MgrTypeUuid argument can be specified for one of the manager
EPVs. Each type UUID must be different.

Rules for Invoking Manager Routines
The RPC run-time library dispatches an incoming remote procedure call to a manager
that offers the requested RPC interface. When multiple managers are registered for an
interface, the RPC run-time library must select one of them. To select a manager, the
RPC run-time library uses the object UUID specified by the call's binding handle.

The run-time library applies the following rules when interpreting the object UUID of a
remote procedure call:

• Nil object UUIDs

A nil object UUID is automatically assigned the nil type UUID (it is illegal to specify a
nil object UUID in the RpcObjectSetType routine). Therefore, a remote procedure
call whose binding handle contains a nil object UUID is automatically dispatched to
the manager registered with the nil type UUID, if any.

• Non-nil object UUIDs

In principle, a remote procedure call whose binding handle contains a non-nil object
UUID should be processed by a manager whose type UUID matches the type of the
object UUID. However, identifying the correct manager requires that the server has
specified the type of that object UUID by calling the RpcObjectSetType routine.

If a server fails to call the RpcObjectSetType routine for a non-nil object UUID, a
remote procedure call for that object UUID goes to the manager EPV that services
remote procedure calls with a nil object UUID (that is, the nil type UUID).

Remote procedure calls with a non-nil object UUID in the binding handle cannot be
executed if the server assigned that non-nil object UUID a type UUID by calling the
RpcObjectSetType routine, but did not also register a manager EPV for that type
UUID by calling RpcServerRegisterlf, RpcServerRegisterlfEx or
RpcServerRegisterlf2.

The following table summarizes the actions that the run-time library uses to select the
manager routine.

Server set
Object UUID type for object

Server
registered
EPVtype? of call UUID?

Nil

Nil

Not applicable

Not applicable

Yes

No

Dispatching action

Uses the manager with the nil type UUID.

Error (RPC_S_UNSUPPORTED_ TYPE);
rejects the remote procedure call.

(continued)

182 Volume 3 RPC and WNet

(continued)

Object UUID
of call

Server set
type for object
UUID?

Server
registered
EPVtype? Dispatching action

Non-nil

Non-nil

Non-nil

Yes Yes

No Ignored

Yes No

Uses the manager with the same type
UUID.

Uses the manager with the nil type UUID. If
no manager with the nil type UUID, error
(RPC_S_UNSUPPORTEDTYPE); rejects
the remote procedure call.

Error (RPC_S_UNSUPPORTEDTYPE);
rejects the remote procedure call.

The object UUID of the call is the object UUID found in a binding handle for a remote
procedure call.

The server sets the type of the object UUID by calling RpcObjectSetType to specify the
type UUID for an object.

The server registers the type for the manager EPV by calling RpcServerRegisterlf,
RpcServerRegisterlfEx or RpcServerRegisterlf2 using the same type UUID.

Note The nil object UUID is always automatically assigned the nil type UUID. It is illegal
to specify a nil object UUID in the RpcObjectSetType routine.

Dispatching a Remote Procedure Call to a Server-Manager Routine
The following tables show the steps that the RPC run-time library takes to dispatch a
remote procedure call to a server-manager routine.

A simple case where the server registers the default manager EPV, is described in the
following tables.

Interface Registry Table

Interface UUID

uuid1

Object Registry,Table

Object UUID

Nil

(Any other object UUID)

Manager type UUID Entry-point vector

Nil Default EPV

Object type

Nil

Nil

Chapter 15 Binding and Handles 183

Mapping the Binding Handle to an Entry·Point Vector (EPV)

Object type
Interface UUID Object UUID (from (from object Manager EPV
(from client client binding registry (from interface registry
binding handle) handle) table) table)

uuid1 Nil Nil Default EPV

Same as above uuidA Nil Default EPV

The following steps describe the actions that the RPC server's run-time library take, as
shown in the preceding tables, when a client with interface UUID uuid1 calls it.

1. The server calls RpcServerRegisterlf, RpcServerRegisterlfEx, or
RpcServerRegisterlf2 to associate an interface it offers with the nil manager type
UUID and with the MIDL-generated default manager EPV. This call adds an entry in
the interface registry table. The interface UUIDis contained in the If Spec argument.

2. By default, the object registry table associates all object UUIDs with the nil type UUID.
In this example, the server does not call RpcObjectSetType.

3. The server run-time library receives a remote procedure code containing the interface
UUID that the call belongs to and the object UUID from the call's binding handle.

See the following function reference entries for discussions of how an object UUID is
set into a binding handle:

• RpcNsBindinglmportBegin

• RpcNsBindingLookupBegin

• RpcBindingFromStringBinding

• RpcBindingSetObject

4. Using the interface UUID from the remote procedure call, the server's run-time library
locates that interface UUID in the interface registry table.

If the server did not register the interface using RpcServerRegisterlf,
RpcServerRegisterlfEx, or RpcServerRegisterlf2, then the remote procedure call
returns to the caller with an RPC_S_UNKNOWN_IF status code.

5. Using the object UUID from the binding handle, the server's run-time library locates
that object UUID in the object registry table, In this example, all object UUIDs map to
the nil object type.

6. The server's run-time library locates the nil manager type in the interface registry
table.

7. Combining the interface UUID and nil type in the interface registry table resolves to
the default EPV, which contains the server-manager routines to be executed for the
interface UUID found in the remote procedure call.

Assume that the server offers multiple interfaces and multiple implementations of each
interface, as described in the following tables.

184 Volume 3 RPC and WNet

Interface Registry Table

Interface UUID Manager-type UUID Entry-point vector

uuid1

uuid1

uuid2

uuid2

Object Registry Table

Object UUID

uuidA

uuidB

uuidC

uuidD

uuidE

uuidF

Nil

(Any other UUID)

Nil

uuid3

uuid4

uuid7

Object type

uuid3

uuid7

uuid7

uuid3

uuid3

uuid8

Nil

Nil

epv1

epv4

epv2

epv3

Mapping the Binding Handle to an Entry-Paint Vector

Interface UUID Object UUID Object type
(from client (from client (from object .
binding handle) binding handle) registry table)

uuid1 Nil Nil

uuid1 uuidA uuid3

uuid1 uuidD uuid3

uuid1 uuidE uuid3

uuid2 uuidB uuid7

uuid2 uuidC uuid7

Manager EPV (from
interface registry table)

epv1

epv4

epv4

epv4

epv3

epv3

The following steps describe the actions that the server's run-time library take, as shown
in the preceding tables when a client with interface UUID uuid2 and object UUID uuidC

. calls it.

1. The server calls RpcServerRegisterlf, RpcServerRegisterlfEx, or
RpcServerRegisterlf2 to associate the interfaces it offers with the different manager
EPVs. The entries in the interface registry table reflect four calls of
RpcServerRegisterlf, RpcServerRegisterlfEx, or RpcServerRegisterlf2 to offer
two interfaces, with two implementations (EPVs) for each interface.

Chapter 15 Binding and Handles 185

2. The server calls RpcObjectSetType to establish the type of each object it offers. In
addition to the default association of the nil object to a nil type, all other object UUIDs
not explicitly found in the object registry table also map to the nil type UUID.

In this example, the server calls the RpcObjectSetType routine six times.

3. The server run-time library receives a remote procedure call containing the interface
UUID that the call belongs to and an object UUID from the call's binding handle.

4. Using the interface UUID from the remote procedure call, the server's run-time library
locates the interface UUID in the interface registry table.

5. Using the uuidC object UUID from the binding handle, the server's run-time library
locates the object UUID in the object registry table and finds that it maps to
type uuid7.

6. To locate the manager type, the server's run-time library combines the interface
UUID, uuid2, and type uuid7in the interface registry table. This resolves to epv3,
which contains the server manager routine to be executed for the remote
procedure call.

The routines in epv2 will never be executed because the server has not called the
RpcObjectSetType routine to add any objects with a type UUID of uuid4 to the object
registry table.

A remote procedure call with interface UUID uuid2 and object UUID uuidF returns to the
caller with an RPC_S_UNKNOWN_MGR_ TYPE status code because the server did not
call RpcServerRegisterlf, RpcServerRegisterlfEx, or RpcServerRegisterlf2 to
register the interface with a manager type of uuidB.

Return Values
This function returns one of the following values.

Value

RPC_S_OK

RPC_S_TYPE_ALREADY_REGISTERED

Meaning

Success

Type UUID already registered

RpcBindingFromStringBinding, RpcBindingSetObject, RpcNsBindingExport,
RpcNsBindinglmportBegin, RpcNsBindingLookupBegin, RpcObjectSetType,
RpcServerRegisterlf, RpcServerRegisterlfEx, RpcServerRegisterlf2,
RpcServerUnregisterlf

Supplying Your Own Object-Inquiry Function
Consider a server that manages thousands of objects of many different types. Whenever
the server started, the server application would have to call the function
RpcObjectSetType for everyone of the objects, even though clients might refer to only

186 Volume 3 RPC and WNet

a few of them (or take a long time to refer to them). These thousands of objects are likely
to be on disk, so retrieving their types would be time consuming. Also, the internal table
that is mapping the object UUID to the manager type UUID would essentially duplicate
the mapping maintained with the objects themselves.

For convenience, the RPC function set includes the function RpcObjectSetlnqFn. With
this function, you provide your own object-inquiry function.

As an example, you can supply your own object-inquiry function when you map objects
100-199 to type number 1, 200-299 to type number 2, and so on. The object inquiry
function can also be extended to a distributed file system, where the server application
does not have a list of all the files (object UUIDs) available, or when object UUIDs name
files in the file system and you do not want to preload all of the mappings between object
UUIDs and type UUIDs.

Specifying Protocol Sequences
Server applications must select one or more protocol sequences to use when
communicating with the client over the network. The choice of protocol sequences is
network-dependent. See Creating Binding Information and Selecting a Protocol
Sequence.

Your server program should typically allow clients to connect using any protocol
sequence that the network supports. To do this, invoke RpcServerUseAIiProtseqs and
pass RPC_C_PROTSEQ_MAX_REQS_DEFAUL T as the first parameter.

If you want your client to restrict port allocation for dynamic endpoints to a specific port
range, call RpcServerUseAIiProtseqsEx instead. This function is specific to Microsoft
RPC, and is extremely useful for remote procedure calls that pass through a firewall. It
uses an extra parameter to pass port allocation control flags to the function. See
Configuring the Windows NT and Windows 2000 Registry for Port Allocations and
Selective Binding.

You can specify protocol sequences and endpoint information in your MIDL file when
you develop the server's interfaces. If you do, your server should use
RpcServerUseAIiProtseqslf to register all the protocol sequences and associated
endpoint information provided in the IDL file. In addition, there is a corresponding
RpcServerUseAIiProtseqslfEx function that also allows the server to pass port
allocation-control flags.

If you want to restrict your client and server programs to communicating with a specified
protocol sequence, the server application should call RpcServerUseProtseq. This may
be particularly appropriate during debugging. For instance, you can force your
application to use the ncacn_ip_tcp protocol to avoid the time-out problems that are
introduced with other protocols when your debugger program stops your application at a
breakpoint. For a complete list of Microsoft RPC protocol sequences, see PRO TSEQ.

Microsoft RPC also provides RpcServerUseProtseqEx to enable applications to select
specific protocol sequences and control dynamic port allocation.

Chapter 15 Binding and Handles 187

In addition to connection-oriented protocols, Microsoft RPC supports datagram
(connection less) protocols as well. Some of the features available when using datagram
protocols are:

• Datagrams support the UDP and IPX connectionless transport protocols.

• Because it is not necessary to establish and maintain a connection, the datagram
RPC protocol requires less resource overhead.

• Datagrams enable faster binding.

• As with connection-oriented RPC, datagram RPC calls are by default nonidempotent.
This means the call is guaranteed not to be executed more than once. However, a
function can be marked as idempotent in the IDL file tellingRPC that it is harmless to
execute the function more than once in response to a single, client request. This
allows the run time to maintain less state on the server. Note that an idempotent call
would be re-executed only in rare circumstances on an unstable network.

• Datagram RPC supports the broadcast IDL attribute. Broadcast enables a client to
issue messages to multiple servers at the same time. This lets the client locate one of
several available servers on the network, or control multiple servers simultaneously.
Broadcast calls are implicitly idempotent. If the call contains [out] parameters, only
the first server response is returned. Once a server responds, all future RPCs over
that binding handle will be sent to that server only, including calls with the broadcast
attribute. To send another broadcast, create a new binding handle or call
RpcBindingReset on the existing handle.

• Datagram RPC supports the maybe IDL attribute. This lets the client send a call to
the server without waiting for a response or confirmation. The call cannot contain [out]
parameters. Calls using the [maybe] calls are implicitly idempotent.

Specifying Endpoints
An endpoint is a hardware port or named pipe that the server application listens to for
client remote procedure calls. ClienVserver applications can use either well-known or
dynamic applications. This section presents the techniques that server programs use to
specify well-known and dynamic endpoints. The information is discussed in the following
topics:

• Specifying Well-Known Endpoints

• Specifying Dynamic Endpoints

Specifying Well-Known Endpoints
When your server uses a well-known endpoint, it can include the endpoint data as part
of its name-service database entry. If it does, the client's binding handle contains a
complete server address that includes the well-known endpoint when the client imports
the binding handle from the server entry.

188 Volume 3 RPe and WNet

Your server program can also specify well-known endpoints at the same time it specifies
protocol sequences. Invoke either the RpcServerUseProtseqEp or
RpcServerUseProtseqEpEx function. The difference between the two is that the latter
function has an extra parameter your server can use to control dynamic port allocation.

If your server program specifies its endpoint information in this way, it should also call
the RpcEpRegister function to register the endpoint in the endpoint map. Even though
the endpoint is always the same, the client may use the endpoint map to find the server.

Like protocol sequences, an application can specify endpoint information in its IDL file.
When it does, it should register both the protocol sequences and endpoints at the same
time by invoking the RpcServerUseAIiProtseqslf or RpcServerUseAIiProtseqslfEx
function. In this case, the client has access to the endpoint information through the
interface specification in the IDL file. Therefore, it is not necessary to call the
RpcEpRegister function.

Specifying Dynamic Endpoints
A dynamic endpoint is an endpoint that the server host computer assigns when the
server begins execution. Most server applications use dynamic endpoints to avoid
conflict with other programs over the limited number of ports that are available on the
server host computer system. However, programs using named pipes or the ncalrpc
protocol sequence have a very large endpoint name space. They benefit less from
dynamic endpoints than programs using other transports.

Server programs register dynamic endpoints in an endpoint map database. If you want
the server to use any available endpoint, call RpcServerUseAIiProtSeqs. This sets the
RPC run-time library to use all valid protocol sequences with dynamic endpoints. The
server should then call RpcServerlnqBindings to obtain a set of valid binding handles.
The server passes the set of binding handles, or binding vector, to the function
RpcEpRegister to register all suitable endpoints in the endpoint map. For each call your
server makes to RpcEpRegister, there should be a corresponding call to
RpcBindingVectorFree to release the memory that the binding vector uses.

Note that server programs can use the RpcEpRegisterNoReplace function rather than
RpcEpRegister. Programs typically use RpcEpRegisterNoReplace when multiple
copies of a server program must run on a server host system.

Both the RpcEpRegister and RpcEpRegisterNoReplace functions add the server's
interfaces and binding handles to the endpoint mapper database. When the client makes
a remote procedure call using a partially bound handle, the client's run-time library asks
the server machine's endpoint mapper for the endpoint of a compatible server instance.
The client library supplies the interface UUID, protocol sequence, and, if present, the
object UUID in the client binding handle. The endpoint mapper looks for a database
entry that matches the client's information. The clienVserver interface UUID, the interface
major version, and protocol sequence must all match exactly. In addition, the server's
interface minor version must be greater than or equal to the client's minor version.

Chapter 15 Binding and Handles 189

If all tests are successful, the endpoint mapper returns the valid endpoint and the client
run-time library updates the endpoint in the binding handle.

Dynamic endpoints expire when the server instance stops running. To remove the
endpoint from the endpoint mapper database before the server program exits, call
RpcEpUnregister.

Advertising Server Interfaces
The server side of an application that uses automatic handles must call the function
RpcNsBindingExport to make binding information about the server available to clients.
Automatic binding handles require a name service running on a server that is accessible
to the client. The Microsoft implementation of the name service, Microsoft Locator,
manages automatic handles. Server applications that use implicit and explicit binding
handles can also advertise their presence in the name-service database.

Typically, the server calls the following run-time functions:

The calls to the first two functions in this code fragment are similar to the Hello, World
example. These functions make information about the binding available to the client. The
calls to RpcServerlnqBindings and RpcNsBindingExport put the information in the
name-service database. The call to RpcServerlnqBindings fills the binding vector with
valid binding handles before the handles are exported to the name service. After the
server program exports the handles to the database, the client (or client stubs) can call
RpcNsBindinglmportBegin and RpcNsBindinglmportNext to obtain this information.
For details, see Finding Server Host Systems.

The calls to RpcServerlnqBindings and RpcNsBindingExport and their associated
data structures look similar to the following:

(continued)

190 Volume 3 RPe and WNet

(continued)

Note that the RpcServerlnqBindings parameter &pBindingVector is a pOinter to a
pOinter to RPC_BINDING_VECTOR. Also remember that each call to
RpcNsBindingExport must be followed by a call to RpcBindingVectorFree.

To remove the exported interface from the name-service database, the server calls
RpcNsBindingUnexport as shown:

The RpcNsBindingUnexport function should be used only when the service is being
permanently removed. It should not be used when the service is temporarily disabled,
such as when the server is shut down for maintenance. A server program can register
itself with the name-service database, yet be unavailable because the server is
temporarily offline. The client application should contain exception-handling code for
such a condition.

For more information on the content and format of the name-service database, see
The RPC Name-Service Database.

Applications can utilize the Active Directory service if both the client and server programs
are running under Windows 2000. The computers running the client and server
programs must both be members of a Windows 2000 domain.

To advertise its presence using the Active Directory service, the server program should
run in the security context of a domain administrator. If it is running in the context of
domain users, a domain administrator must modify the Access Control List (ACL) on the
RPC Services container. For more details, see the Active Directory documentation.

Listening for Remote Procedure Calls
After a server program registers its binding information and advertises its presence in a
name-service database, it can begin listening to the endpoint for remote procedure calls.
Server programs call the RpcServerListen function to monitor endpoints for client
invocations of remote procedures.

Chapter 15 Binding and Handles 191

The DCE specification of RpcServerListen indicates that it should not return until a
function in the server program calls RpcMgmtStopServerListening. The Microsoft RPC
implementation of RpcServerListen uses two parameters that do not appear in the DCE
specification: DontWait and MinimumCallThreads. Your server program can pass a
nonzero value for the DontWait parameter. If it does, the RpcServerListen function will
return immediately. Use the RpcMgmtWaitServerListen routine to perform the wait
operation usually associated with RpcServerListen.

Fully and Partially Bound Handles
When you Use dynamic endpoints, the run-time libraries obtain endpoint information as
they need it. The run-time libraries make the distinction between a fully bound handle
(one that includes endpoint information) and a partially bound handle (one that does not
include endpoint information).

The client run-time library must convert the partially bound handle to a fully bound
handle before the client can bind to the server. The client run-time library tries to convert
the partially bound handle for the client application by obtaining the endpoint information
as shown:

• From the client's interface specification

• From an endpoint-mapping service running on the server

If the client tries to use a partially bound handle when the endpoint information is not
available in the interface specification and the server's endpoint-mapper does not have
information about the server endpoint, the client will not have enough information to
make its remote procedure call and that call will fail. To prevent this, you must register
the endpoint in the endpoint mapper when your distributed application uses partially
bound handles. For more information about the endpoint mapper, see Specifying
Dynamic Endpoints.

When a remote procedure call fails, the client application can call RpcBindingReset to
remove out-of-date endpoint information. When the client tries to call the remote
procedure, the client run-time library again tries to convert the fully bound handle to a
partially bound handle. This is useful when the server has been stopped and restarted
using a different dynamic endpoint.

Interpreting Binding Information
Microsoft RPC enables your client and server programs access to and interpret the
information in a binding handle. This does not mean that you can or should try to access
the contents of a binding handle directly. Microsoft RPC provides functions that set and
retrieve the information in binding handles.

To get the information in a binding handle, pass the handle to
RpcBindingToStringBinding. It returns the binding information as a string. For every
call to RpcBindingToStringBinding, you must have a corresponding call to the function
RpcStringFree.

192 Volume 3 RPC and WNet

You can call the function RpcStringBindingParse to parse the string you obtain from
RpcBindingToStringBinding. This function allocates strings to contain the information
it parses. If you do not want it to parse a particular piece of binding information, pass a
NULL as the value of that parameter. Be sure to call RpcStringFree for each of the
strings it allocates.

The following code fragment illustrates how an application might call these functions.

The preceding sample code calls the functions RpcBindingToStringBinding and
RpcStringBindingParse to get and parse the information in a valid binding handle. Note
that the value NULL was passed as the second parameter to RpcStringBindingParse.

Chapter 15 Binding and Handles 193

This causes that function to skip parsing the object UUID. Since it doesn't parse the
UUID, RpcStringBindingParse will not allocate a string for it. This technique enables
your application to only allocate memory for the information you are interested in parsing
and analyzing.

Microsoft RPe Binding-Handle Extensions
The Microsoft extensions to the IDL language support multiple handle parameters that
appear in positions other than the first, leftmost, parameter.

The following table describes the sequence of steps that the MIDL compiler goes
through to resolve the binding-handle parameter in DCE-compatibility mode (losf) and in
default (Microsoft-extended) mode.

1.

2.

3.

DeE-compatibility mode

Binding handle that appears in
first parameter position.

Leftmost [in, contexChandle]
parameter.

Implicit binding handle specified
by [impliciChandle] or
[auto_handle].

4. If no ACF present, default to
use of [auto_handle].

Default mode

1. Leftmost explicit binding handle.

2. Implicit binding handle specified by
[impliciChandle] or [auto_handle].

3. If no ACF present, default to use of
[auto_handle].

DCE IDL compilers look for an explicit binding handle as the first parameter. When the
first parameter is not a binding handle and one or more context handles are specified,
the leftmost context handle is used as the binding handle. When the first parameter is
not a handle and there are no context handles, the procedure uses implicit binding using
the ACF attribute [impliciChandle] or [auto_handle].

The Microsoft extensions to the IDL allow the binding handle to be in a position other
than the first parameter. The leftmost [in] explicit-handle parameter-whether it is a
primitive, programmer-defined, or context handle-is the binding handle. When there are
no handle parameters, the procedure uses implicit binding using the ACF attribute
[impliciChandle] or [auto_handle].

The following rules apply to both DCE-compatibility (/osf) mode and default mode:

• Auto-handle binding is used when no ACF is present.

• Explicit [in] or [in, out] handles for an individual function pre-empt any implicit binding
specified for the interface.

• Multiple [in] or [in, out] primitive handles are not supported.

• Multiple [in] or [in, out] explicit context handles are allowed.

• All programmer-defined handle parameters except the binding-handle parameter are
treated as transmissible data.

194 Volume 3 RPC and WNet

The following table contains examples and describes how binding handles are assigned
in each compiler mode.

Example

Binding-Handle Functions

Description

No explicit handle is specified. The implicit
binding handle, specified by
[impliciChandle] or [auto_handle], is used.
When no ACF is present, an auto handle is
used.

An explicit handle of type handle_t is
specified. The parameter H is the binding
handle for the procedure.

The first parameter is not a handle.
In default mode, the leftmost handle
parameter, H, is the binding handle. In losf
mode, implicit binding is used. An error is
reported because the second parameter is
expected to be transmissible, and handle_t
cannot be transmitted.

The first parameter is not a handle. In default
mode, the leftmost handle parameter, H, is
the binding handle. The stubs call the user
supplied routines MY _HDL_bind and
MY _HDL_unbind. In/osf mode, implicit
binding is used. The programmer-defined
handle parameter H is treated as
transmissible data.

The first parameter is a binding handle. The
parameter H is the binding-handle parameter.
The second programmer-defined handle
parameter is treated as transmissible data.

The binding handle is a context handle. The
parameter H is the binding handle.

The following table contains the list of RPC run-time routines that operate on binding
handles and specifies the type of binding handle allowed.

Chapter 15 Binding and Handles 195

Routine Input argument Output argument

RpcBindingCopy Server Server

RpcBindingFree Server None

RpcBindingFromStringBinding None Server

RpcBindinglnqAuthClient Client None

RpcBindinglnqAuthlnfo Server None

RpcBindinglnqObject Server or client None

RpcBindingReset Server None

RpcBindingSetAuthlnfo Server None

RpcBindingSetObject Server None

RpcBindingToStringBinding Server or client None

RpcBindingVectorFree Server None

RpcNsBindingExport Server None

RpcNsBindinglmportNext None Server

RpcNsBindingLookupNext None Server

RpcNsBindingSelect Server Server

RpcServerlnqBindings None Server

The RPe Name-Service Database
A name service is a service that maps names to objects, and usually maintains the
(name, object) pairs in a database. Generally, the name is a logical name that is easy for
users to remember and use. For example, a name service would allow a user to use the
logical name "Iaserprinter." The name service maps this name to the network-specific
name used by the print server.

To use a simplified explanation, the RPC name service maps a name to a binding
handle and maintains the (name, binding handle) mappings in the RPC name-service
database. The RPC name service allows client applications to use a logical name
instead of a specific protocol sequence and network address. The use of the logical
name makes it easier for network administrators to install and configure your distributed
application. .

An RPC name-service database entry has one of the following attributes: server, group,
or profile. In the Microsoft implementation, entries can have only one attribute, so these
entries are also known as server entries, group entries, and profile entries.

The server entry consists of interface UUIDs, object UUIDs (needed when the server
implements multiple-entry points), network address, protocol sequence, and any
endpoint information associated with well-known endpoints. When a dynamic endpoint is
used, the endpoint information is kept in the endpOint-map database rather than the
name-service database, and the endpoint is resolved like any other dynamic endpoint.
Server entries are managed by functions that start with the prefix RpcNSBinding.

196 Volume 3 RPC and WNet

The group entry can contain server entries or other group entries. Group entries are
managed by functions that start with the prefix RpcNsGroup.

The profile entry can contain profile, group, or server entries. Profile entries are
managed by the functions that start with the prefix RpcNsProfile.

This section presents an overview of the name-service database in the following topics:

• Name-Service Application Guidelines

• An Overview of the Name Service Entry

• Criteria for Name Service Entries

• Name Service Entry Cleanup

• What Happens During a Query

• Using Microsoft Locator

• Using the Cell Directory Service (CDS)

• Name Syntax

Name-Service Application Guidelines
When you develop your distributed application, you need to provide the application users
with a method for specifying the name under which they can register the application in
the name-service database. This method can consist of a data file, command-line input,
or dialog box.

Although the RPC name-service architecture supports various methods for organizing an
application's server entries, it is optimized for lookups. As a result, frequent updates can
hinder the performance of both the name service and the application. To avoid exporting
information unnecessarily, choose a design that lets the server determine whether its
information is in the name-service database, In addition, each server instance should
export to its own entry name. Otherwise, it will be difficult for an instance to change its
supported object UUIDs or protocol sequences without disturbing another instance's
information.

The following method avoids these pitfalls and provides good performance, no matter
what name service your network uses.

To begin with, design your application so that the first time a given server instance starts,
it picks a unique server-entry name and saves this name in an .ini file along with the
application's other configuration information. Then, have it export its binding handles and
object UUIDs, if any, to its name-service entry.

Subsequent invocations of the server instance should check that the name-service entry
is present and contains the correct set of object UUIDs and binding handles. A missing
entry may mean that an administrator removed it, or that a power outage caused the
name-service information to be lost. It is important to verify that the binding handles in
the entry are correct; if an administrator adds TCP/IP support to a computer, for
example, RPC servers will listen on that protocol sequence when they call
RpcServerUseAIiProtseqs. However, if the server does not update the name-service
entry, clients will not be informed that TCP is supported.

Chapter 15 Binding and Handles 197

When the client imports, it should specify NULL as the entry name. Specifying NULL
causes the Microsoft RPe library functions to search for the interface in all name-service
entries in the client machine's domain or workgroup, thus finding the information for
every instance.

If you use object UUIDs to represent well-known objects such as printers, you can use a
variation of this method. Instead of exporting bindings to one entry, design your
application so that each instance creates an entry fot each supported object, such as
"1.:/printers/Laser1" and "1.:/printers/Laser2." Then, have the server export its binding
handles to each server entry, along with the object UUID relevant to that entry.

In this case, a client can look up a resource by name by importing from the relevant
server entry; it does not require the object UUID of the resource. If it has the resource
UUID but not the name, it can import from the null entry.

An Overview of the Name Service Entry
The name-service entry consists of three distinct sections. The first section is for
interfaces (UUID + version), the second section contains the object UUIDs, and the third
section is for binding handles. You provide a name for the entry that will serve as a way
to identify it.

When calling RpcNsBindingExport, the server specifies the name of the entry in which
to place the exported information. This newly exported interface is then added to the
interface section of the name-service entry. Any interfaces that are already present in the
name-service entry remain as well. This same process is followed for object UUIDs and
binding handles.

The client calls RpcNsBindingLookupBegin (or RpcNsBindinglmportBegin) to
search for an appropriate binding handle. The entry name, interface handle, and an
object UUID are extracted. These restrict the entries from which binding handles are
returned. If an entry matches the search criteria, all the binding handles in that entry are
returned from RpcNsBindinglmportNext.

Criteria for Name Service Entries
The following criteria are used when processing name-service entries:

• If you provide a non-NULL entry name for RpcNsBindingLookupBegin, that entry
will be the only entry searched for binding handles. If you pass NULL, all entries in
your logon domain will be searched. Note that this does not include trusted domains.

• If you provide an interface handle, binding handles are returned from an entry only if
the interface section of the entry contains a compatible version of that interface UUID.
That is, the major version number must be the same as your interface UUID, while the
minor version number must be equal to or greater than yours.

• If you provide an object UUID, binding handles are returned from an entry only if the
object UUID section of the entry contains that particular object UUID.

198 Volume 3 RPe and WNet

If a name-service entry survives the criteria described above, all the binding handles
from those entries are gathered. Handles with a protocol 'sequence that is unsupported
by the client are discarded and the remaining handles are returned to you as the output
from RpcNsBindingLookupNext.

Name Service Entry Cleanup
A name-service entry should contain information that does not change frequently. For
this reason, do not include dynamic endpoints in your exported binding handles because
they will change at each invocation of the server and will clutter up your name-service
entry. To remove these binding handles, use RpcBindingReset. For example, a
reasonable sequence of server operations would be:

For more than one transport:

To place bindings in the endpoint mapper:

To remove endpoints from bindings:

To add bindings to the name service:

What Happens During a Query
This section describes how the network handles the query when a 32-bit client searches
for a name in its own domain.

When your client application calls RpcNsBindinglinportBegin, the locator residing on
your client computer will try to satisfy this request. If there is nothing in the cache, it will
forward the request by RPC to a master locator. If the master locator finds nothing in its
cache, it sends the request to all the computers in the domain using a mail-slot
broadcast. If there is a match, the locator on each computer will respond by a directed
mail slot. (For example, if a process on that computer has exported the interface.) The
responses are collated and the RPC is completed from the client's process locator,
which will reply to the client process itself.

Chapter 15 Binding and Handles 199

In a domain, the client locator searches for a master locator in the following places:

• On the primary domain controller

• On each backup domain controller

If a match is not found, the client locator declares itself to be the master locator. As such,
it will broadcast queries if they cannot be satisfied locally.

In a workgroup, the client locator maintains a cache of the computers whose locators
have broadcast. It uses the one that has been running the longest as the master locator.
If that computer is unavailable, the next, longest~broadcasting computer is used, and so
on. If the client needs a master locator and the cache is empty, it replenishes the cache
by sending a special mail-slot broadcast that requests master locators to respond. If
there are no responses, the client locator declares itself to be the master locator and will
broadcast queries if they cannot be satisfied locally.

This changes if your client application is a Microsoft® Windows® 3.x or MS-OOS®
program. In this case, there is no locator running on the client computer, and Rpcns1.dll
or Rpcnslm.rpc contains the code to find a master locator. All requests are forwarded
directly to the master locator.

These guidelines are valid for names in the client's domain, such as names for
"1.:/entryname". If the client requests a name from another domain through the use of
"1 .. .I00MAIN/entryname;" the client locator forwards the request to the specified domain
which will broadcast it if it does not have the answer. If the domain is down or is actually
a workgroup, the request will fail.

Note Remember the following when working with entries in the name service:

• A client cannot use the "1 .. .I00MAIN/entryname" syntax to find an entry in its own
domain. Use the syntax "1.:/entryname". However, you can use
"1 .. .I00MAIN/entryname" to find an entry in another domain.

• The domain name in "1 .. .I00MAIN/entryname" must be uppercase. When looking for
a match, the locator is case-sensitive.

• Locator entry names are also case-sensitive, but need not be uppercase.

• When the client uses the "1.:/entryname" syntax, the locator will not search for entries
in other domains, even if they have a trust relationship with the logon domain.

• Broadcastsdo not cross LAN segments (for example, sUbnets). Thus, the usefulness
of the locator is limited in an organization with multiple subnets.

USing Microsoft Locator
Microsoft Locator is the default name service that ships with Microsoft®
Windows NT®lWindows 2000. The RPC run-time library uses it to find server programs
on server host systems. '

200 Volume 3 RPe and WNet

Prior to Windows 2000, Microsoft Locator did not provide persistent name-service
entries. All entries in the name service were stored in a memory cache on the server
program's host computer. The locator used a broadcast mechanism to discover the
location of servers as requested by clients. Whenever the host system shut down, all
name-service entries were lost.

Beginning with the release of Windows 2000, Microsoft Locator now supports persistent
name-service entries. To accomplish this, Windows 2000 employs a distributed directory
service to store name-service entries. This mechanism has several advantages:

• Persistence. Server programs are no longer required to export their binding
information to the name service each time they start up. The name service now stores
the information until the server program on the network administrator explicitly
removes it.

• Efficiency. By eliminating the majority of broadcasting for, name-service entries, the
locator reduces network traffic. It also finds name-service entries more rapidly.

• Cross-Domain Interopability. Clients are now able to make name-service requests
across multiple domains.

Current versions of Microsoft Locator are backward compatible. For instance, a server
host system running the locator that ships with Windows 2000 can operate correctly on a
network that contains server host systems running the locator that ships with
Windows NT 4.0.

In addition, the current version of Microsoft Locator supports the use of Access Control
Lists in name-service entries. This ability enhances the security of the network.

Plug and Play support is now included in Microsoft Locator. Therefore, it can
transparently handle Plug and Play events such as domain changes. For more
information, see RpcNsBindingExportPnP and RpcNsBindingUnexportPnP.

Using the Cell Directory Service (CDS)
If you have CDS, you can use it instead of Microsoft Locator. Change the registry entries
as shown:

Chapter 15 Binding and Handles 201

Changing these entries will pOint to a gateway computer that is running the NSID. This
will be used as the master locator. In the event of a crash, there will be no search for a
replacement.

Name Syntax
Microsoft RPC accepts names that conform to the following syntax:

Parameters
name

Specifies an identifier that can contain any character except the delimiting slash (I)
character.

domainname
Specifies the name of the Windows NTlWindows 2000 domain.

A parameter that selects the name-syntax type and the string that specifies the name are
supplied to many of the name-service interface (NSI) RPC functions.

Only one name-syntax type is supported by Microsoft RPC, as specified by the constant
RPC_C_NS_SYNTAX_DCE. This constant is defined in the header file RPCNSI.H.

The name syntax specified by RPC_C_NS_SYNTAX_DCE is an extension of the
OSF _DCE Cell Directory Service (CDS) name syntax. The ability to specify a domain
name represents an extension to that syntax. There is no absolute limit on the number of
names that can be separated by slash characters as long as the overall string is less
than 256 characters.

The slashes allow you to specify a logical structure to the name, but they do not
correspond to a logical structure in the objects themselves.

Context Handles
It is sometimes the case that distributed applications require the server program to
maintain status information between client calls. Server programs that service more than
one client at a time must keep the status information for each client. Because the client
and the server use different address spaces on different computers, common
approaches to data sharing often don't work. For instance, the client and server are
unable to maintain status information on their remote session in global variables
because they don't share the same global address space. It is difficult to keep the
information in a shared file because they run on different computers.

Microsoft® RPC provides a mechanism called context handles for keeping status
information on a server. The status information is called the server's context. Clients can
obtain a context handle to identify the server's context for their individual RPC sessions.

202 Volume 3 RPC and WNet

As an example, each client in a distributed application can have the server program
create and update a data file for their RPC session. The server can use its file handle for
each client's data file as the context handle. Each time a client requests operations on
the data file that the server creates for it, the client passes the context handle to the
server. Since the context handle is really a file handle, the context handle only makes
sense in the server's address space. However, the client program can use the context
handle to tell the server on which file to perform updates.

Other data can also be context handles. For instance, a client and server can use a
record number of a database record as a file handle. If the client needed to perform a
number of updates on a particular record, it could obtain the record number as a context
handle. It would pass the record number to the server each time it invoked a remote
procedure to update the database record.

Interface Development Using Context Handles
Typically, you create a context handle by specifying the [contexChandle] attribute on a
type definition in the IDL file. The type definition also implicitly specifies a context
rundown routine, which you must provide. If communication between the client and
server breaks down, the server run time invokes this routine to perform any needed
cleanup. For more information on context rundown routines, see Server Context
Rundown Routine.

An interface that uses a context handle must have a binding handle for the initial binding,
which has to take place before the server can return a context handle. You can use an
automatic, implicit, or explicit binding handle to create the binding and establish the
context.

A context handle must be of the void * type, or a type that resolves to void *. The server
program casts it to the required type.

The following fragment of a sample interface definition shows how a distributed
application can use a context handle to have a server open and update a data file for
each client.

The interface must contain a remote procedure call to initialize the handle and set it to a
non-null value. In this example, the RemoteOpen function performs this operation. It
specifies the context handle with an [out] directional attribute. Alternatively, you could
return the context handle as the procedure's return value. However in this example, we'll
pass the context handle out through the parameter list.

In this example, the context information is a file handle. It keeps track of the current
location in the file. The interface packages the file handle as a context handle and

. passes it as a parameter to remote procedure calls. A structure contains the file name
and the file handle.

Chapter 15 Binding and Handles 203

The RemoteOpen function creates a valid, non-null context handle. It passes the
context handle to the client. Subsequent remote procedure calls, such as RemoteRead,
use the context handle as an in pointer:

In addition to the remote procedure that initializes the context handle, the interface must
contain a procedure that frees the server context and sets context handle to NULL. In
the preceding example, the RemoteClose function performs this operation.

Server Development Using Context Handles
From the perspective of server program development, a context handle is an untyped
pOinter. Server programs initialize context handles by pointing them at data in memory or
on some otherform of storage (such as files on disks).

For instance, suppose that a client uses a context handle to request a series of updates
to a record in a database. The client calls a remote procedure on the server and passes
it a search key. The server program searches the database for the search key and
obtains the integer record number of the matching record. The server can then point a
pointer to void at a memory location containing the record number. When it returns, the
remote procedure would need to return the pointer as a context handle through its return
value or its parameter list. The client would need to pass the pOinter to the server each
time it called remote procedures to update the record. During each of these update
operations, the server would cast the void pOinter to be a pointer to an integer.

After the server program points the context handle at context data, the handle is
considered active. Handles containing a NULL value are inactive. The server maintains
an active context handle until the client calls a remote procedure that frees it. If the client
terminates while the handle is active, the server can free the handle. In addition, the
server will free the handle when communication between the client 'and the server
breaks down.

204 Volume 3 RPC and WNet

The following code fragment demonstrates how a server might implement a context
handle. I,n this example, the server maintains a data file that the client writes to using
remote procedures. The context information is a file handle that keeps track of the
current location in the file where the server will write data. The file handle is packaged as
a context handle in the parameter list to remote procedure calls. A structure contains the
file name and the file handle.'Theinterface definition for this example is shown in
Interface Development Using Context Handles.

The function RemoteOpen opens a file on the server:

The function RemoteRead reads a file on the server.

Chapter 15 Binding and Handles 205

The function RemoteClose closes a file on the server. Note that the server application
has to assign NULL to the context handle as part of the close function. This
communicates to the server stub and the RPC run-time library that the context handle
has been deleted. Otherwise, the connection will be kept open and eventually a context
rundown will occur.

Client Development Using Context Handles
The only use a client program has for a context handle is to pass it to the server each
time the client makes a remote procedure call. The client application does not need to
access the contents of the handle. It should not try to change the context handle data in
any way. The remote procedures that the client invokes perform all necessary operations
on the server's context.

206 Volume 3 RPC and WNet

Prior to requesting a context handle from a server program, clients must establish a
binding with the server. The client may use an automatic, implicit, or explicit binding
handle. With a valid binding handle, the client can call a remote procedure on the server
that either returns an active (non-NULL) context handle or passes one through an [out]
parameter in the remote procedure's parameter list.

Clients may use active context handles in any way they require. They should, however,
invalidate the handle when they no longer need it. To do this, the client should invoke a
remote procedure offered by the server program that frees the context and sets the
context handle as inactive (NULL).

The following code fragment presents an example of how a client might use a context
handle. To view the definition of the interface that this example uses, see Interface
Development Using Context Handles. For the server implementation, see Server
Development Using Context Handles.

In this example, the client calls RemoteOpen to obtain a context handle that contains
valid data. The client can then use the context handle in remote procedure calls.
Because it no longer needs the binding handle, the client can free the explicit handle it
used to create the context handle:

The client application in this example uses a procedure called RemoteRead to read a
data file on the server until it encounters an end of file. It then closes the file by calling
RemoteClose. The context handle appears as a parameter in the RemoteRead and
RemoteClose functions as:

Chapter 15 Binding and Handles 207

Server Context Rundown Routine
If communication breaks down while the server is maintaining context on behalf of the
client, a cleanup routine may be needed to reset the context information. This cleanup
routine is called a context rundown routine. When a connection breaks, the server stub
and the run-time library will call this routine on every context handle opened by the client.

The context rundown routine is required, and is implicitly declared and named, when you
apply the [contexLhandle] attribute to a type definition. The server will not call the
context rundown routine if the [contexLhandle] attribute was applied directly to a
parameter.

The context rundown routine syntax is:

Note that the type name determines the name of the context rundown routine.

The code fragment that follows presents a sample context rundown routine. that calls the
RemoteClose procedure used in the example in Interface Development Using Context
Handles, Server Development Using Context Handles, and Client Development Using
Context Handles. This procedure closes the file handle, frees the memory associated
with the file, and assigns NULL to the context handle. The NULL value indicates to the
run-time library that the context handle is inactive so that the rundown routine will not be
called when the connection is removed. Your context rundown routine could perform
other tasks, such as logging an event when a connection fails.,

208 Volume 3 RPC and WNet

Client Context Reset
When the server becomes unavailable, the client application can free its context data by
calling the RPC function RpcSsDestroyClientContext.

Multi-Threaded Clients and Context Handles
When you have a multi-threaded client where multiple threads are using the same
context handle, the calls will be serialized at the server. This saves the server manager
from having to guard against another thread from the same client changing the context
or from the context running down while a call is dispatched. However, in certain cases
serialization may create deadlock. For example, consider the following sequence:

Thread 1: Gets a context handle and makes a call. This call blocks on some
synchronization event sitting on the server.

Thread 2: Makes a call to the same server, using the same context handle. This call is
intended to trigger the event that thread 1 is blocking on. Because the calls are
serialized, the event is never triggered.

If you have a situation like this you can use the RpcSsDontSerializeContext function to
allow multiple calls to be dispatched on a single context handle. Calling this function
does not disable serialization entirely. When a context rundown occurs, your context
rundown routine will not run until all outstanding client requests have completed. Be
aware that a call to RpcScDontSerializeContext affects the entire process and is not
revertible.

CHAPTER 16

Memory Management

This chapter discusses how RPC programs allocate and deallocate memory for data
passed between client and server programs.

Introduction to RPe Memory Management
In the context of RPC, memory management involves:

• Allocating and deallocating the memory needed to simulate a single conceptual
address space between the client and the server in the different address spaces
of the client and server's threads.

• Determining which software component is responsible for managing memory-the
application or the MIDL-generated stub.

• Selecting MIDL attributes that affect memory management: directional attributes,
pointer attributes, array attributes, and the ACF attributes [byte_count], [allocate],
and [enable_allocate].

When a program calls a function or procedure in its address space, memory
management is more straightforward than in a distributed application. To illustrate,
Figure 16-1 depicts a binary tree. To pass this data structure to a procedure in its
address space, a program simply passes a pOinter to the root of the tree.

Data

/I~

.///// ~'-"'-~
Data Data

/ I "
• I

" / ~ ~
Data Data Data

• I • • I • • I

Figure 16-1: Binary Tree.

•

209

210 Volume 3 RPC and WNet

Client/server RPC applications share data across two different memory spaces. These
memory spaces mayor may not be on the same computer. Either way, the client and
server have no direct access to each other's memory space. RPC depends on the ability
to simulate the client program's address space in the server program's address space.
It must also return data, including new and changed data, from the server to the
client memory.

In cases such as the binary tree depicted in the preceding diagram, it is not sufficient
to pass a pointer to the root node to a remote procedure. Either the program or the
stubs must pass the entire tree to the server's address space for the remote procedure
to operate on it.

How Memory Is Allocated and Deallocated
By default, stub code generated by the MIDL compiler calls user-supplied functions
to allocate and free memory. These functions, named midl_user_allocate and
midLusecfree, must be supplied by the developer and linked with the application.

All applications must supply implementations of midl_user_allocate and
midLuser_free, even though the names of these functions may not appear explicitly
in the stubs. The only exception is when you are compiling in OSF-compatibility (lost)
mode. These user-supplied functions must match a specific, defined function prototype
but otherwise, can be implemented in any way that is convenient or useful for the
application. Alternatively, applications can use the RpcSs Memory Management
Package. The Microsoft® RPC run-time library supplies this group of functions.

The midi_user _allocate Function
The midl_user_allocate function is a procedure that must be supplied by developers
of RPC applications. It allocates memory for the RPC stubs and library routines.
Your midl_user_allocate function must match the following prototype:

The cBytes parameter specifies the number of bytes to allocate. Both client applications
and server applications must implement the midl_usecallocate function unless you are
compiling in OSF-compatibility (/ost) mode. Applications and generated stubs call
midl_usecallocate directly or indirectly to manage allocated objects. For example:

• The client and server applications call midLusecaliocate to allocate memory for the
application, such as when creating a new node in a tree or linked list.

• The server stub calls midl_user_allocate when unmarshaling data into the server
address space.

Chapter 16 Memory Management 211

• The client stub calls midl_user_allocate when unmarshaling data from the server
that is referenced by an [out] pOinter. Note that for [in, out, unique] pOinters, the
client stub calls midl_user_allocate only if the [unique] pOinter value was null on
input and changes to a non-null value during the call. If the [unique] pointer was non
null on input, the client stub writes the associated data into existing memory.

If midLuser_allocate fails to allocate memory, it should return a null pointer or raise
a user-defined exception.

The midLuser_allocate function should return a pOinter such that:

• For Microsoft® Windows NT®IWindows® 2000 running on Intel platforms, the pointer
is 4 bytes aligned.

• For Windows NTlWindows 2000 running on MIPS and Alpha platforms, the pointer
is 8 bytes aligned.

• For Microsoft Windows 95, the pointer is 4 bytes aligned.

• For Windows 3.x and MS-DOS® platforms, the pointer is 2 bytes aligned.

For example, the sample programs provided with the Platform SDK implement
midl_user_allocate in terms of the C function malloc:

Note If the RpcSs package is enabled (for example, as the result of using the
[enable_allocate] attribute), use RpcSmAliocate to allocate memory on the server
side. For additional information on [enable_allocate], see MIDL Reference.

The midl_user_free Function
The midl_user_free function must be supplied by RPC developers. It allocates memory
for the RPC stubs and library routines. Your midl_usecfree function must match the
following prototype:

The pBuffer parameter specifies a pointer to the memory that is to be freed. Both client
application and server application must implement the midl_user_free function unless
you are compiling in OSF-compatibility (/ost) mode. The midl_usecfree function must
be able to free all storage allocated by midLuser_a"ocate.

Applications and stubs call midLuser_free when dealing with allocated objects:

212 Volume 3 RPe and WNet

• The server application should call midl_user_free to free memory allocated by the
application, such as when deleting a dynamically allocated node of data .

• The server stub calls midLusecfree to release memory on the server after
marshaling all [out] arguments, [in,out] arguments, and the function return value.

For example, the RPC Win32 sample program that displays "Hello, world" implements
midl_user_free in terms of the C function free:

Note If the RpcSs package is enabled (for example, as the result of using the
[enable_allocate] attribute), your server program should use RpcSmFree to free
memory. For more information, see RpcSs Memory Management Package.

RpcSs Memory Management Package
The default allocator/deallocator pair used by the stubs and run time when allocating
memory on behalf of the application is midl_user_allocate/midLusecfree. However,
you can choose the RpcSs package instead of the default by using the ACF attribute
[enable_allocate). The RpcSs package consists of RPC functions that begin with the
prefix RpcSs or RpcSm. It is the recommended memory management model and
provides the best overall stub performance for memory management.

In losf mode, the RpcSs package is enabled for MIDL-generated stubs automatically
when full pOinters are used, when the arguments require memory allocation, or as a
result of using the [enable_allocate] attribute. In the default (Microsoft extended) mode,
the RpcSs package is enabled only when the [enable_allocate] attribute is used. The
[enable_allocate] attribute enables the RpcSs environment by the server-side stubs.
The client side becomes alerted to the possibility that the RpcSs package may be
enabled. In losf mode, the client side is not affected.

When the RpcSs package is enabled, allocation of memory on the server side is
accomplished with the private RpcSs memory management allocator and deallocator
pair. You can allocate memory using the same mechanism by calling RpcSmAliocate
(or RpcSsAliocate). Upon return from the server stub, all the memory allocated by the
RpcSs package is automatically freed. The following example shows how to enable the
RpcSs package:

Chapter 16 Memory Management 213

Your application can explicitly free memory by invoking the RpcSsFree or RpcSmFree
function. Note that these functions do not actually free memory. They mark it for deletion.
The RPC library releases the memory when your program calls RpcSsDisableAliocate
or RpcSsDisableAliocate.

You can also enable the memory management environment for your application by
calling the RpcSmEnableAliocate routine (and you can disable it by calling the
RpcSmDisableAllocate routine). Once enabled, application code can allocate and
deallocate memory by calling functions from the RpcSs package.

Memory-Management Models
As a developer, you have several choices for how memory is allocated and freed.
Consider a complex data structure that consists of nodes connected with pointers, such
as a linked list or a tree. You can apply attributes that select one of the following models:

• Node-by-node allocation and deallocation.

• A single linear buffer allocated by the stub for the entire tree.

• A single linear buffer allocated by the client application for the entire tree.

• Persistent storage on the server.

Node-by-Node Allocation and Deallocation
Node-by-node allocation and deallocation of data structures by the stubs is the default
method of memory management for all parameters on both the client and the server. On
the client side, the stub allocates each node with a separate call to midl_usecallocate.
On the server side, rather than calling midLusecaliocate, private memory is used
whenever possible. If midl_usecallocate is called, the server stubs will call
midLuser_free to free the data. In most cases, using node-by-node allocation and
deallocation instead of using [allocate (aILnodes)] will result in increased performance
of the server side stubs.

214 Volume 3 RPC and WNet

Stub-Allocated Buffers
Rather than forcing a distinct call for each node of the tree or graph, you can direct the
stubs to compute the size of the data and to allocate and free memory by making a
single call to midLusecaliocate or midl_usecfree. The ACF attribute
[allocate(all_nodes)) directs the stubs to allocate or free all nodes in a single call to the
user supplied-memory management functions.

For example, an RPC application might use the following binary tree data structure:

The ACF attribute [allocate(all_nodes)] applied to this data type appears in the typedef
declaration in the ACF as:

The [allocate] attribute can onlybe applied to pointer types. The [allocate] ACF
attribute is a Microsoft extension to DCE IDL and, as such, is not available if you compile
with the MIDL /osf switch. When [aliocate(aILnodes)] is applied to a pointer type, the
stubs generated by the MIDL compiler traverse the specified data structure to determine
the allocation size. The stubs then make a single call to allocate the entire amount of
memory needed by the graph or tree. A client application can free memory much more
efficiently by making a single call to midLuser_free. However, server-stub performance
is generally increased when using node-by-node memory allocation because the server
stubs can often use private memory that requires no allocations.

For additional information, see Node-by-Node Allocation and Deallocation.

Application-Allocated Buffer
The ACF attribute [byte_count] directs the stubs to use a preallocated buffer that is not
allocated or freed by the client support routines. The [byte_count] attribute is applied to
a pointer or array parameter that points to the buffer. It requires a parameter that
specifies the buffer size in bytes.

The client-allocated memory area can contain complex data structures with multiple
pointers. Because the memory area is contiguous, the application does not have to
make several calls to free each pointer and structure individually. As when using the

Chapter 16 Memory Management 215

[allocate(all_nodes}] attribute, the memory area can be allocated or freed with one call
to the memory-allocation routine or the free routine. However, unlike using the
[allocate(all_nodes}] attribute, the buffer parameter is not managed by the client stub
but by the client application.

The buffer must be an [out]-only parameter and the buffer length in bytes must be an in
only parameter. The [byte_count] attribute can only be applied to pointer types. The
[byte_count] ACF attribute is a Microsoft extension to DCE IDL and, as such, is not
available if you compile using the MIDL losf switch.

In the following example, the parameter pRoot uses byte count:

The [byte_count] attribute appears in the ACF as:

The client stub generated from these IDL and ACF files does not allocate or free the
memory for this buffer. The server stub allocates and freesthe buffer in a single call
using the provided size parameter. If the data is too large for the specified buffer size, an
exception is raised.

Persistent Storage on the Server
You can optimize your application so the server stub does not free memory on the server
at the conclusion of a remote procedure call. For example, when a context handle will be
manipulated by several remote procedures, you can use the ACF attribute
[aliocate(donCfree}] to retain the allocated memory on the server.

The [aliocate(donCfree)] attribute is added to the ACF typedef declaration in the ACF.
For example:

When the [alJocate(donCfree}] attribute is specified, the tree data structure is allocated,
but not freed, by the server stub. When you make the pointers to such persistent data
areas available to other routines-for example, by copying the pointers to global
variables-the retained data is accessible to other server functions. The
[aliocate(donCfree}] attribute is particularly useful for maintaining perSistent pointer
structures as part of the server state information associated with a context-handle type.

216 Volume 3 RPC and WNet

Who Manages Memory?
Generally, the stubs are responsible for packaging and unpackaging data, allocating and
freeing memory, and transferring the data to and from memory. In some cases, however,
the application is responsible for allocating and freeing memory.

Top-Level and Embedded Pointers
To understand how pOinters and their associated data elements are allocated in
Microsoft RPC, you have to differentiate between top-level pointers and embedded
pOinters. It is also useful to refer to the set of all pointers that are not top-level pOinters.

Top-level pointers are those that are specified as the names of parameters in function
prototypes. Top-level pOinters and their referents are always allocated on the server.

Embedded pOinters are pointers that are embedded in data structures such as arrays,
structures, and unions. When embedded pointers are [out]-only and null on input, the
server application can change their values to non-null. In this case, the client stubs
allocate new memory for this data.

If the embedded pOinter is not null on the client before the call, the stubs do not allocate
memory on the client on return. Instead, the stubs attempt to write the memory
associated with the embedded pointer into the existing memory on the client associated
with that pointer, overwriting the data already there.

Embedded [out]-only pointers are discussed in Combining Pointer and Directional
Attributes.

The term non top-level pOinters refers to all pOinters that are not specified as parameter
names in the function prototype, including both embedded pointers and multiple levels of
nested pointers.

Directional Attributes Applied to the Parameter
The directional attributes [in] and [out] determine how the client and server allocate and
free memory. The following table summarizes the effect of directional attributes on
memory allocation.

Chapter 16 Memory Management 217

Directional
attribute Memory on client Memory on server

[in] Client application must
allocate before the call.

Server stub allocates.

[out] Client stub allocates on
return.

Server stub allocates top-level pointer only; the server
application must allocate all embedded pOinters. The
server also allocates new data as needed.

[in, out] Client application must
allocate initial data
transmitted to server;
client stub allocates

Server stub allocates initial data transmitted from
client; the server application allocates new data as
needed.

additional data.

In all of these cases the client stub does not free memory. The client application must
free the memory before it terminates. The server stub frees memory when the remote
procedure call returns (subject to the [allocate] ACF attribute).

Length, Size, and Directional Attributes
In passing arrays between the client and the server, the size-related attributes [max_is]
and [size_is] determine how many array elements the server stub allocates. The length
related attributes [length_is], [firsCis], and [lasCis] determine how many elements are
transmitted to both the server and the client.

Different directional attributes can be applied to parameters. However, some
combinations of directional attributes can cause errors. As an example, suppose you are
writing an interface that specifies a procedure with two parameters, an array, and the
transmitted length of the array. The italicized term dieattr refers to the directional
attribute applied to the parameter as:

The MIDL compiler behavior for each combination of directional attributes is described
in the following table.

Length Stub actions during call Stub actions on return
Array parameter from client to server from server to client .

[in] [in]

[in] [out]

Transmit the length and the
number of elements indicated by
the parameter.

Not legal; MtDL compiler error.

No data transmitted.

Not legal; MIDL compiler error.

(continued)

218

Array

[in]

[out]

[out]

[out]

[in, out]

[in, out]

[in, out]

Volume 3 RPCandWNet

(continued)

Length Stub actions during"call Stub actions on return
parameter from client to server from server to client

[in, out] Transmit the length and the Transmit the length only.
number of elements indicated by
the length parameter.

[in] Transmit the length. Transmit the number of elements

If array size is fixed, allocate the indicated by the length.

array size on the server, but Note that the length can be changed
transmit no elements. and can have a different value from

If array size is not bound, not the value on the client. Do not

legal: MIDL compiler error. transmit the length.

[out] Allocate space for the length Transmit the length and the number
parameter on the server but do of elements indicated by the length
not transmit the parameter. as set by the server application.

If the array size is fixed, allocate
the array size on the server, but
transmit no elements.

If array size is not fixed, not
legal: MIDL compiler error.

[in, out] Transmit the length parameter. Transmit the length.

If the array size is bound, Transmit the number of array
allocate the array size on the elements indicated by the length.
server, but transmit no elements.

If array size is not bound, not
legal: MIDL compiler error.

[in] Transmit the length and the Do not transmit the length.
number of elements indicated by Transmit the number of elements
the parameter. indicated by the length.

" Note that the length can be changed
and can have a different value from
the original value on the client.

[out] Not legal; MIDL compiler error. Not legal; MIDL compiler error.

[in, out] Transmit the length and the Transmit the length and the number
number of elements indicated by of elements indicated by the
the parameter. parameter.

In general, you should not modify the length or size parameters on the server side. If you
change the length parameter, you can orphan memory. For more information, see
Memory Orphaning.

Chapter 16 Memory Management 219

Pointer Attributes Applied to the Parameter
Each pointer attribute ([ref], [unique], and [ptr]) has characteristics that affect memory
allocation. The following table summarizes these characteristics.

Pointer attribute Client Server

Reference ([ref]) Client application must allocate.

Unique ([unique]) If a parameter, the client application
must allocate; if embedded, can be null.

Changing from null to non-null causes
the client stub to allocate; changing from
non-null to null can cause orphaning.

Full ([ptr)) If a parameter, the client application
must allocate; if embedded, can be null.

Changing from null to non-null causes
the client stub to allocate; changing from
non-null to null can cause orphaning.

Special handling needed for
[out]-only nontop-Ievel pointers.

The [ref] attribute indicates that the pointer points to valid memory. By definition, the
client application must allocate all the memory that the reference pOinters require.

The unique pOinter can change from null to non-null. If the unique pointer changes from
null to non-null, new memory is allocated on the client. If the unique painter changes
from non-null to null, orphaning can result. For more information, see Memory
Orphaning.

Combining Pointer and Directional Attributes
A few caveats apply to certain combinations of directional attributes and painter
attributes. These are discussed in the following sections.

Embedded Out-Only Reference Pointers
When you use [out]-only reference painters in Microsoft RPC, the generated server
stubs allocate only the first level of pointers accessible from the reference pointer.
Pointers at deeper levels are not allocated by the stubs, but must be allocated by the
server application layer. For example, suppose an interface specifies an [out]-only array
of reference pointers: •

220 Volume 3 RPe and WNet

In this example, the server stub allocates memory for 10 pointers and sets the value of
each pOinter to null. The server application must allocate the memory for the 10 short
integers referenced by the pointers and then set the 10 pointers to point to the integers.

When the [out]-only data structure includes nested reference pointers, the server stubs
allocate only the first pOinter accessible from the reference pOinter. For example:

In the preceding example, the server stubs allocate the pOinter psTop and the structure
STRUCT_TOP _TYPE. The reference pOinter pst in STRUCT_TOP _TYPE is set to null.
The server stub does not allocate every level of the data structure, nor does it allocate
the STRUCT1~TYPE or its embedded pointer, psValue.

Out-Only Unique or Full Pointer Parameters Not Accepted
Unique or full pointers that are [out]-only are not accepted by the MIDL compiler. Such
specifications cause the MIDL compiler to generate an error message.

The automatically generated server stub has to allocate memory for the pointer referent
so that the server application can store data in that memory area. According to the
definition of an [out]-only parameter, no information about the parameter is transmitted
from client to server. In the case of a unique pointer, which can take the value null, the
server stub does not have enough information to correctly duplicate the unique pointer in
the server's address space, nor does the stub have any information about whether the
pointer should point to a valid address or whether it should be set to null. Therefore, this
combination is not allowed.

Rather than [out, unique] or [out, ptr] pointers, use [in, out, unique] or [in, out, ptr]
pOinters, or use another level of indirection such as a reference pointer that points to the
valid unique or full pointer.

Function Return Values
Function return values are similar to [out]-only parameters because their data is not
provided by the client application. However they are managed differently. Unlike [out]
only parameters, they are not required to be pOinters. The remote procedure can return
any valid data type except reference pOinters and nonencapsulated unions.

Chapter 16 Memory Management 221

Function return values that are pOinter types are allocated by the client stub with a call to
midl_user_allocate. Accordingly, only the unique or full pOinter attribute can be applied
to a pointer function-return type.

Memory Orphaning
If your distributed application uses an [in, out, unique] or [in, out, ptr] pointer
parameter, the server side of the application can change the value of the pOinter
parameter to null. When the server subsequently returns the null value to the client,
memory referenced by the pointer before the remote procedure call is still present on the
client side, but is no longer accessible from that pointer (except in the case of an aliased
full pointer). This memory is said to be orphaned. This is also termed a memory leak.
Repeated orphaning of memory on the client causes the client to run out of available
memory resources.

Memory can also be orphaned whenever the server changes an embedded pOinter to a
null value. For example, if the parameter points to a complex data structure such as a
tree, the server side of the application can delete nodes of the tree and set pointers
inside the tree to null.

Another situation that can lead to a memory leak involves conformant, varying, and open
arrays containing pOinters. When the server application modifies the parameter that
specifies the array size or transmitted range so that it represents a smaller value, the
stubs use the smaller value(s) to free memory. The array elements with indices larger
than the size parameter are orphaned. Your application must free elements outside the
transmitted range.

Summary of Memory Allocation Rules
The following table summarizes key rules regarding memory allocation.

MIDL element

Top-level [ref] pointers

Function return value

[unique, out] or [ptr, out] pOinter

Non-top-Ievel [unique, in, out] or
[ptr, in, out] pointer that changes
from null to non-null

Non-top-Ievel [unique, in, out]
pointer that changes from non-null to
null

Non-top-Ievel [ptr, in, out] pOinter
that changes from non-null to null

Description

Must be non-null pointers.

New memory is always allocated for pOinter return values.

Not allowed by MIDL.

Client stubs allocate new memory on client on return.

Memory is orphaned on client; client application is
responsible for freeing memory and preventing leaks.

Memory will be orphaned on client if not aliased; client
application is responsible for freeing and preventing
memory leaks in this case.

(continued)

222 Volume 3 RPC and WNet

(continued)

MIDL element

[ref] pOinters

Non-null [in, out] pOinter

Description

Client-application layer usually allocates.

Stubs attempt to write into existing storage 01) client. If
[string] and size increases beyond size allocated on the
client, it will cause a GP-fault on return.

The following table summarizes the effects of key IDL and ACF attributes on memory
management.

MIDL feature

[allocate(single_node)],
[allocate(all_nodes)]

[allocate(free)] or
[aliocate(donCfree))

array attributes [max_is]
and [size_is]

[byte_count]

[enable_allocate]

[in]attribute

[out] attribute

[ref] attribute

[unique] attribute

[ptr] attribute

Client issues

Determines whether one
or many calls are made to
the memory functions.

(None; affects server.)

(None; affects server.)

Client must allocate
buffer; not allocated or
freed by client stubs.

Usually, none. However,
the client may be using a
different memory
management
environment.

Client application
responsible for allocating
memory for data.

Allocated on client by
stubs.

Memory referenced by
pOinter must be allocated
by client application.

Non-null to null can result
in orphaned memory; null
to non-null causes client
stub to call
midi_user _allocate.

(See [unique].)

Server issues

Same as client, except private memory
can often be used for allocate
(single_node) [in] and [in,out] data.

Determines whether memory on the
server is freed after each remote
procedure call.

Determines size of memory to be
allocated.

ACF parameter attribute determines size
of buffer allocated on server.

Server uses a different memory
management environment.
RpcSmAliocate should be used for
allocations.

Allocated on server by stubs.

[out]-only pointer must be [ref] pointer;
allocated on server by stubs.

Top-level and first-level reference
pointers managed by stubs.

(Affects client.)

(See [unique].)

223

CHAPTER 17

Serialization Services

Microsoft® RPC supports two methods for encoding and decoding data, collectively
called serializing data. Serialization means that the data is marshaled to and
unmarshaled from buffers that you control. This differs from the traditional usage of RPC,
in which the stubs and the RPC run-time library have full control of the marshaling
buffers, and the process is transparent. You can use the buffer for storage on permanent
media, encryption, and so on. When you encode data, the RPC stubs marshal the data
to a buffer and pass the buffer to you. When you decode data, you supply a marshaling
buffer with data in it, and the data is un marshaled from the buffer to memory. You can
serialize on a procedure or type basis.

Note The term pickling is commonly used among developers to describe serialization.
In fact, the Platform SDK samples contains a directory called pickle that preserves the
RPC serialization sample programs.

Serialization leverages the RPC mechanisms for marshaling and unmarshaling data for
other purposes. For example, instead of using several I/O operations to serialize a group
of objects to a stream, an application can optimize performance by serializing several
objects of different types into a buffer and then writing the entire buffer in a single
operation. The functions that manipulate serialization handles are independent of the
type of serialization you are using.

As another example, if you need to use a network transport mechanism besides RPC,
such as Microsoft® Windows® Sockets (Winsock). With RPC serialization, your program
can make calls to functions that marshal your data into buffers and then transmit this
data using Winsock. When your application receives data, it can use the RPC
serialization mechanism to unmarshal data from buffers filled by the Winsock routines.
This provides you with many of the advantages of RPC-style applications, and at the
same time, it enables you to use non-RPC transport mechanisms.

You can also use serialization for purposes unrelated to network communications. For
example, once you use the RPC encoding functions to marshal data to a buffer, you can
store it in a file for use by another application. You can also encrypt it. You can even use
it to store a hardware- and operating system-independent representation of data in a
database.

224 Volume 3 RPC and WNet

Using Serialization Services
MIDL generates a serialization stub for the procedure with the attributes [encode] and
[decode]. When you call this routine, you execute a serialization call instead of a remote
call. The procedure arguments are marshaled to or unmarshaled from a buffer in the
usual way. You then have complete control of the buffers.

In contrast, when your program performs type serialization (a type is labeled with
serialization attributes), MIDL generates routines to size, encode, and decode objects of
that type. To serialize data, you must call these routines in the appropriate way. Type
serialization is a Microsoft extension and, as such, is not available when you compile in
DCE-compatibility (/ost) mode. By using the [encode] and [decode] attributes as
interface attributes, RPC applies encoding to all the types and routines defined in the
IDL file.

You must supply adequately aligned buffers when using serialization services. The
beginning of the buffer must be aligned at an address that is a multiple of a, or a-byte
aligned. For procedure serialization, each procedure call must marshal into or unmarshal
from a buffer position that is a-byte aligned. For type serialization, sizing, encoding, and
decoding must start at a position that is a-byte aligned.

One way for your application to ensure that its buffers are aligned is to write the
midl_usecallocate function such that it creates aligned buffers. The following code
sample demonstrates how this can be done.

The following example shows the corresponding mid'-user_tree function.

Chapter 17 Serialization Services 225

Procedure Serialization
When you use procedure serialization, a procedure is labeled with the [encode] or
[decode] attribute. Instead of generating the usual remote stub, the compiler generates
a serialization stub for the routine.

Just as a remote procedure must use a binding handle to make a remote call, a
serialization procedure must use a serialization handle to use serialization services. If a
serialization handle is not specified, a default implicit handle is used to direct the call. On
the other hand, if the serialization handle is specified, either as an explicit handle_t
argument of the routine or by using the [expliciLhandle] attribute, you must pass a
valid handle as an argument of the call. For additional information on how to create a
valid serialization handle, see Serialization Handles, Examples of Fixed Buffer Encoding,
and Examples of Incremental Encoding.

Note Microsoft® RPC allows remote and serialization procedures to be mixed in one
interface. However, use caution when doing so.

For remote procedures with implicit binding handles, the MIDL compiler generates a
global handle variable of type handle_t. Procedures and types with implicit serialization
handles use this same global handle variable.

For impliCit handles, the global implicit handle must be set to a valid binding handle
before a remote call. The implicit handle must be set to a valid serialization handle
before a serialization call. Therefore, a procedure cannot be both remote and serialized.
It must be one or the other.

Type Serialization
The MIDL compiler generates up to three functions for each type to which the [encode]
or [decode] attribute is applied. For example, for a user-defined type named MyType,
the compiler generates code for the MyType_Encode, MyType_Decode, and
MyType_AlignSize functions. For these functions, the compiler writes prototypes to
Stub.h and source code to Stub_c.c. Generally, you can encode a MyType object with
MyType_Encode and decode an object from the buffer using MyType_Decode.
MyType_AlignSize is used if you need to know the size of the marshaling buffer before
allocating it.

226 Volume 3 RPC and WNet

The following encoding function is generated by the MIDL compiler. This function
serializes the data for the object painted to by pObject, and the buffer is obtained
according to the method specified in the handle. After writing the serialized data to the
buffer, you control the buffer. Note that the handle inherits the status from the previous
calls, and the buffers must be aligned at 8.

For an implicit handle:

For an explicit handle:

The following function deserializes the data from the application's storage into the object
pointed to by pObject. You supply a marshaled buffer according to the method specified
in the handle. Note that the handle can inherit the status from the previous calls and the
buffers must be aligned at 8.

For an implicit handle:

For an explicit handle:

The following function returns a size, in bytes, that includes the type instance plus any
padding bytes needed to align the data. This enables serializing a set of instances of the
same or different types into a buffer while ensuring that the data for each object is
appropriately aligned. MyType_AlignSize assumes that the instance pointed to by
pObject will be marshaled into a buffer beginning at the offset aligned at 8.

For an implicit handle:

For an explicit handle:

Note that both remote procedures with implicit binding handles and serialized types with
implicit serialization handles use the same global handle variable. Therefore, it is
advisable not to mix type serialization and remote procedures in an interface with implicit
handles. For details, see Implicit Versus Explicit Handles.

Serialization Handles
An application uses the serializing procedures or the serializing support routines
generated by the MIDL compiler in conjunction with a set of library functions to
manipulate a serialization handle. Together, these functions provide a mechanism for
customizing the wayan application serializes data.

Chapter 17 Serialization Services 227

A serializing handle is required for any serializing operation, and all serializing handles
must be managed explicitly by you. To do this, you first create a valid handle by calling
one of the following routines:

• MesDecodeBufferHandleCreate

• MesDecodelncrementalHandleCreate

• MesEncodeDynBufferHandleCreate

• MesEncodeFixedBufferHandleCreate

• MesEncodelncrementalHandleCreate

You release the handle with a call to MesHandleFree. Once the handle has been
created or reinitialized, it represents a valid serialization context and can be used to
encode or decode, depending on the type of the handle.·

Implicit Versus Explicit Handles
To declare a serialization handle, use the primitive handle type handle_t. Serialization
handles can be explicit or implicit. Specify implicit handles in your application's ACF by
using the [impliciChandle] attribute. The MIDL compiler will generate a global
serialization handle variable. Serialization procedures with an implicit handle use this
global variable in order to access a valid serializing context.

When using type encoding, the generated routines supporting serialization of a particular
type use the global implicit handle to access the serialization context. Note that remote
routines may need to use the implicit handle as a binding handle. Be sure that the
implicit handle is set to a valid serializing handle prior to making a serializing call.

An explicit handle is specified as a parameter of the serialization procedure prototype in
the IDL file, or it can also be specified by using the [expliciChandle] attribute in the
ACF. The explicit handle parameter is used to establish the proper serialization context
for the procedure. To establish the correct context in the case of type serialization, the
compiler generates the supporting routines that use explicit handle_t parameter as the
serialization handle. You must supply a valid serializing handle when calling a
serialization procedure or serialization type support routine.

Serialization Styles
There are three styles you can use to manipulate serialization handles. These are:

• Fixed Buffer Serialization

• Dynamic Buffer Serialization

• Incremental Serialization

228 Volume 3 RPC and WNet

Regardless of the style you use, you must create a serialization handle, serialize the
data, and then free the handle. The style is set when your program creates the handle
and defines the way a buffer is manipulated. The handle maintains the appropriate
context associated with each of the three serialization styles.

Fixed Buffer Serialization
When using the fixed buffer style, specify a buffer that is large enough to accommodate
the encoding (marshalling) operations performed with the handle. When unmarshaling,
you provide the buffer that contains all of the data to decode.

The fixed buffer style of serialization uses the following routines:

• MesEncodeFixedBufferHandleCreate

• MesDecodeBufferHandleCreate

• MesBufferHandleReset

• MesHandleFree

The MesEncodeFixedBufferHandleCreate function allocates the memory needed for
the encoding handle, and then initializes it. The application can call
MesBufferHandleReset to reinitialize the handle, or it can call MesHandleFree to free
the handle's memory. To create a decoding handle corresponding to the fixed style
encoding handle, you must use MesDecodeBufferHandleCreate.

The application calls MesHandleFree to free the encoding or decoding buffer handle.

Examples of Fixed Buffer Encoding
The following section provides an example of how to use a fixed buffer style-serializing
handle for procedure encoding.

Chapter 17 Serialization Services 229

The following excerpt represents a part of an application.

The following section provides an example of how to use a fixed buffer style-serializing
handle for type encoding.

(continued)

230 Volume 3 RPe and WNet

(continued)

The following excerpt represents the relevant application fragments.

Dynamic Buffer Serialization
When using the dynamic buffer style of serialization, the marshalling buffer is allocated
by the stub, and the data is encoded into this buffer and passed back to you. When
unmarshaling, you supply the buffer that contains the data.

The dynamic buffer style of serialization uses the following routines:

• MesEneodeDynBufferHandleCreate

• MesDeeodeBufferHandleCreate

• MesBufferHandleReset

• MesHandleFree

The MesEneodeDynBufferHandleCreate function allocates the memory needed for the
encoding handle and then initializes it. The application can call MesBufferHandleReset
to reinitialize the handle. It calls MesHandleFree to free the handle's memory. To create
a decoding handle corresponding to the dynamic buffer encoding handle, use
MesDeeodeBufferHandleCreate.

Incremental Serialization
When using the incremental style serialization, you supply three routines to manipulate
the buffer. These routines are: Alloe, Read, and Write. The Alloe routine allocates a
buffer of the required size. The Write routine writes the data into the buffer, and the
Read routine retrieves a buffer that contains marshaled data. A single serialization call
can make several calls to these routines.

Chapter 17 Serialization Services 231

The incremental style of serialization uses the following routines:

• MesEncodelncrementalHandleCreate

• MesDecodelncrementalHandleCreate

• MeslncrementalHandleReset

• MesHandleFree

The prototypes for the Alloc, Read, and Write functions that you must provide are
shown below:

The State input argument for all three functions is the application-defined painter that
was associated with the encoding services handle. The application can use this painter
to access the structure containing application-specific information, such as a file handle
or stream pointer. Note that the stubs do not modify the State pointer other than to pass
it to the Alloc, Read, and Write functions. During encoding, Alloc is called to obtain a
buffer into which the data is serialized. Then, Write is called to enable the application to
control when and where the serialized data is stored. During decoding, Read is called to
return the requested number of bytes of serialized data from where the application
stored it.

An important feature of the incremental style is that the handle keeps the state pointer
for you. This pointer maintains the state and is never touched by the RPC functions,
except when passing the pointer to Alloc, Write, or Read function. The handle also
maintains an internal state that makes it possible to encode and decode several type
instances to the same buffer by adding padding as needed for alignment. The
MeslncrementalHandleReset function resets a handle to its initial state to enable
reading or writing from the beginning of the buffer.

232 Volume 3 RPC and WNet

The Alloe and Write functions, along with an application-defined pOinter, are associated
with an encoding-services handle by a call to the
MesEneodelneremental HandleCreate function.
MesEneodelnerementalHandleCreate allocates the memory needed for the handle
and then initializes it.

The application can call MesDeeodelnerementalHandleCreate to create a decoding
handle, MeslnerementalHandleReset to reinitialize the handle, or MesHandleFree to
free the handle's memory. The Read function, along with an application-defined
parameter, is associated with a decoding handle by a call to the
MesDeeodelnerementalHandleCreate routine. The function creates the handle and
initializes it.

The UserState, AI/oc, Write, and Read parameters of MeslnerementalHandleReset can
be NULL to indicate no change.

Examples of Incremental Encoding
The following section provides an example of how to use the incremental style serializing
handle for type encoding.

The following excerpt represents the relevant application fragments.

Chapter 17 Serialization Services 233

Obtaining an Encoding Identity
An application that is decoding encoded data can obtain the identity of the routine used
to encode the data, prior to calling a routine to decode it. The MeslnqProcEncodingld
routine provides this identity.

Each procedure in an interface is assigned an integer identification number, called a
procedure ID or a proc 10, by the MIOL compiler. Numbering begins with zero. The RPC
run-time libraries are not involved in translating the procedure 10 into an actual
procedure call. Given a proc 10, your application must provide a means of calling the
correct procedure. Typically, application developers use a series of if statements, or
(when using C/C++) a switch statement for this purpose.

235

C HA PTE R 1 8

Security

With the increased use of distributed applications, the need for secure communications
between the client and server portions of applications is of paramount importance. The
Remote Procedure Call (RPC) run-time library provides a standardized interface to
authentication services for both clients and servers. The authentication services on the
server host system provide RPC authentication. Applications use authenticated remote
procedure calls to ensure that all calls come from authorized clients. They can also help
ensure that all server replies come from authenticated servers ..

RPe Security Essentials
To complete any remote procedure call, all distributed applications must create a binding
between the client and the server. For more information on bindings, see Binding and
Handles. After the client obtains a binding to the server, both the client and server
portions of the distributed application use the RPC authorization functions to create an
authenticated binding. The binding is predicated upon the rights contained in the user's
security credentials.

This section explains the essential concepts and information required to use the RPC
functions to create a client and server for an authenticated distributed application.

Principal Names
In order for a client to create an authenticated session with a server program, it must
provide the server's expected principal name. A principal is an entity that the security
system recognizes. This includes human users as well as autonomous processes. All
principal names take the same form for a given security support provider (SSP). An SSP
is a software module that performs security validation. For more information, see SSPI
Architectural Overview. Strictly speaking, the SSP cannot tell the difference between
users who are logged on and processes running on the computer. It sees both as
principals with principal names. Therefore, principal names take the same form as user
names.

The server registers its principal name for the security provider. The SSP dictates the
format of the principal name. For example, the Kerberos protocol SSP requires that the
principal name be in the form servername or domain\servername, where servername
is the server program's account name.

236 Volume 3 RPC and WNet

The SCHANNEL SSP takes principal namesin either of two forms. The first is the msstd
form. Names in msstd form generally follow the pattern
msstd:servername@serverdomain.com. This is referred to as an email name
property. If the certificate contains an email name property, and it contains an at sign
(@), the principal name is msstd:email name. Otherwise it must contain the common
name property. If neither exists, SCHANNEL SSP returns the message
ERROR_INVALlD_PARAMETER. Internal backslashes are doubled, just as in string
bindings.

The second SCHANNEL principal name form is (ul/sic form. This is a series of
RFC1779-compliant names bounded by angle brackets and separated by backslashes.
It typically follows the pattern fullsic:\<\Authority\SubAuthority\ \Person> or
fullsic:\<\Authority\SubAuthority\ \ServerProgram>.

Server programs invoke the RpcServerRegisterAuthlnfo function to register their
principal names. Pass the server's principal name as the first parameter.

To query for the server's principal name, applications can call
RpcMgmtlnqServerPrincName. This allocates a nUll-terminated string to hold the
principal name. Before it terminates, your application must invoke RpcStringFree to
release the memory this string occupies

Querying for the server name in this manner is not the most secure method of
connecting to a server. For server authentication, the client program should "know" the
name of the secure server by some method that does not involve transmitting the
server's name over the network.

Authentication Levels
Microsoft® RPC provides multiple levels of authentication. Authentication can take place
each time the client establishes a connection with the server, each time the client
executes a remote procedure call, or each time the client and the server exchange a
packet of data.

In addition, the RPC run-time library can validate that the packet came from the client
program. This does not mean, however, that the packet was not modified or corrupted
en route, only that it came from the authenticated client. For greater security, distributed
applications can set the RPC run-time library to verify that none of the data exchanged
between the client and server is modified. The RPC library can also encrypt the contents
of every packet before sending it.

Be aware that higlJer levels of authentication require higher computational overhead.
You, as the developer, must decide which is more important for your application speed
or security. Most developers find that with some performance testing, they can achieve
acceptable performance levels while maintaining adequate security.

The client and the server portions of the distributed application must use the same
authentication level. For a list of RPC authentication levels, see
Authentication-Level Constants.

Chapter 18 Security 237

Authentication Services
The Security Support Provider Interface (SSPI) provides the underlying authentication
services for RPC. Therefore, when your application specifies an authentication service, it
selects an SSP. For a list of the SSPs that SPPI currently supports, see
Authentication-Service Constants. For more information on the SSPI, see Security
Support Provider Interface (SSPI).

Client Authentication Credentials
Every authenticated client must provide authentication credentials to the server. Under
RPC, the client stores its authentication credentials in the binding between the client and
the server. To do this, it calls RpcBindingSetAuthlnfo or RpcBindingSetAuthlnfoEx.
The fifth parameter of these two functions is of type RPC_AUTH_IDENTITY _HANDLE.
This is a flexible type that is a pOinter to a data structure. What the data structure
actually contains can differ with each authentication service. Currently, the SSPs that
RPC supports require that your application set RPC_AUTH_IDENTITY _HANDLE to
point to a SEC_WINNT_AUTH_IDENTITY structure. The
SEC_WINNT_AUTH_IDENTITY structure contains fields for a user name, domain, and
password.

Authorization Services
An authorization service is the method that the SSP uses to authorize access to a
remote procedure. SSPs can provide more than one authorization service. However,
they usually select one as a default.

Your application can use the default authorization method for the current SSP, or it can
specify one. At present, Microsoft RPC supports two methods of authorization. One is for
the server to provide authorization based on the name of the client program. The other is
for the server to compare the client's authentication credentials against the server's
access control list (ACL).

For a list of authorization services, see Authorization-Service Constants.

Quality of Service
Client programs can use the RpcBindingSetAuthlnfoEx function rather than the
RpcBindingSetAuthlnfo function to create an authenticated binding. If they do, they
pass a pOinter to an RPC_SECURITY _OOS structure as the final parameter of
RpcBindingSetAuthlnfoEx. This structure contains information about the quality of
service. Specifically, the information in this structure allows client programs to set the
security services provided to the distributed application. Client programs can also specify
the identity tracking and select the impersonation type. In addition, client programs can
use it to validate the RPC version number.

238 Volume 3 RPC and WNet

Use the Capabilities member of the RPC_SECURITY _OOS structure to set which
portions of your client/server application are authenticated. If you select
RPC_C_OOS_CAPABILITIES_DEFAUL T, the RPC run-time library will authenticate the
client or server according to the default for the SSP. By default, the Kerberos protocol
SSP authenticates both the client and the server. The default for all other SSPs that
Microsoft provides is to authenticate the client to the server, but not to authenticate the
server to the client.

If you always want the client and the server to authenticate themselves to each other, set
the Capabilities member of the RPC_SECURITY _OOS structure to
RPC_C_OOS_C.A:PABILITIES_MUTUAL_AUTH. If you are using the SCHANNEL SSP,
you can also set the Capabilities member to
RPC_C_OOS_CAPABILITIES_ANY _AUTHORITY. This constant specifies that the SSP
will validate the remote procedure call even if the certificate authority that issued the
client's authentication certificate is not in the SSP's root certificate store. The default is to
reject the certificate if the SSP does not recognize the certificate authority. The certificate
authority is an independent company or organization, such as Verisign, that issues
authentication certificates.

Your application can also set the identity tracking that the RPC run-time library uses.
Typically, programs use static identity tracking, which is the fastest. With static tracking,
the client's credentials are set when it calls RpcBindingSetAuthlnfo. The RPC run-time
library then uses those credentials for all RPC calls on the binding. In addition,
applications can select dynamic identity tracking. Dynamic identity tracking means that
the RPC run-time library will use the credentials of the calling thread, rather than the
binding handle, for authentication each time the client calls a remote procedure. It is
typically only used if the client impersonates different users, or if the server calls the
RpclmpersonateClient function. Static identity tracking is faster.

As part of the OOS specification, the client program can also set the type of
impersonation that a server program can perform on its behalf. For more information on
impersonation, see Client Impersonation.

The version number field of the RPC_SECURITY _OOS structure should always be set
to RPC_C_SECURITY _OOS_ VERSION.

Authorization Functions
Each time a server program receives a client request for access to a remote procedure,
the RPC run-time library invokes a default authorization function. This function uses the
SSP to check the client's credentials and authorize or reject the request.

Your server program can override the authorization function that the SSP provides.
Invoke the function RpcMgmtSetAuthorizationFn and pass it the address of your
authorization function. Once the server program sets the authorization function, the RPC
run-time library will call it every time the server program receives a client request. For
related information, see RpcMgmtlsServerListening, RpcMgmtStopServerListening,
RpcMgmtlnqlflds, RpcMgmtlnqServerPrincName, and RpcMgmtlnqStats.

Chapter 18 Security 239

Key Acquisition Functions
By default, the SSP supplies encryption keys to the server programs that request them.
Each SSP implements its own system of generating keys. The. format of the keys the
SSP generates are specific to the SSP.

RPe provides you with the ability to override the default method of generating encryption
keys. Your application can call the RpcServerRegisterAuthlnfo function and pass it a
pointer to a key acquisition function. You can write the key acquisition function so that it
generates keys using any method you choose. However, the key it passes to the server
program must match the format that the SSP requires.

Client Impersonation
Impersonation is useful in a distributed computing environment when servers must pass
client requests to other server processes or to the operating system. In Figure 18-1, a
server impersonates the client's security context. Other server processes can then
handle the request as if the original client made it.
------------------- ---

RPC Client
Program

Request for Service

RPC Server
Program A

Request Fulfilled

Server Impersonates Client
and Sends the Request Fulfilled

Requ est for Services to B

RPC Server
Program B

.. - -----_._-----

Figure 18-1: Server Impersonating the Client's Security Context.

For example, a client makes a request to Server A. If Server A must query Server B to
complete the request, Server A impersonates the client security context and makes the
request to Server B on behalf of the client. Server B uses the original client's security
context, instead of the security identity for Server A, to determine whether to complete
the task.

The server calls RpclmpersonateClient to overwrite the security for the server thread
with the client security context. After the task is completed, the server calls
RpcRevertToSelf or RpcRevertToSelfEx to restore the security context defined for the
server thread.

240 Volume 3 RPC and WNet

When binding, the client can specify quality-of-service information about security which
specifies how the server can impersonate the client. For example, one of the settings
lets the client specify that the server is not allowed to impersonate it. For more
information, see Quality of Service.

Security Methods
Microsoft® RPC supports two different methods for adding security to your distributed
application. The first method is to use the Security Support Provider Interface (SSPI),
which can be accessed using the RPC functions. In general, it is best to use this method.
The SSPI provides the most flexible and network-independent authentication features.

The second method is to use the security features built into the Microsoft®
Windows NT® and Windows® 2000 operating system transport protocols. The transport
level security method is not the preferred method. Using the SSPI is recommended
because it works on all transports, across platforms, and provides high levels of security,
including privacy. The following sections provide overviews of both SSPI and transport
level security.

Security Support Provider Interface (SSPI)
In conjunction with its operating systems, Microsoft offers the Security Support Provider
Interface (SSPI). The SSPI provides a universal, industry-standard interface for secure
distributed applications. SSPI is supported by Microsoft RPC for Windows NT,
Windows 2000, Windows 95/98, MS-DOS®, Windows 3.1 , and Macintosh.

SSPI Architectural Overview
SSPI is a software interface. Distributed programming libraries such as RPC can use it
for authenticated communications. One or more software modules provide the actual
authentication capabilities. Each module, called a security support provider (SSP), is
implemented as a dynamic link library (DLL). An SSP provides one or more security
packages.

A variety of SSPs and packages are available. For instance, Windows NT and
Windows 2000 ship with the NTLM security package. Beginning with Windows 2000,
Microsoft also provides the Microsoft Kerberos protocol security package. In addition,
you may choose to install the Secure Socket Layer (SSL) security package. These
security packages are implemented by the Microsoft® Win32® SSP, which is
implemented in Secur32.dll. You may also choose to install any other
SSPI-compatible SSP.

Using SSP I ensures that no matter which SSP you select, your application accesses the
authentication features in a uniform manner. This capability provides your application
greater independence from the implementation of the network than was available in the
past.

The architecture of SSPI is illustrated in Figure 18-2.

Chapter 18 Security 241

Distributed Applicati.ons

Figure 18-2: SSP I Architecture.

The preceding illustration shows that distributed applications communicate through the
RPC interface. The RPC software in turn, accesses the authentication features of an
SSP through the SSPI.

,-
For more information, see Security Support Provider Interface.

Security Support Providers (SSPs)
Beginning with Windows 2000, RPC supports a variety of security providers and
packages. These include:

• Kerberos Protocol Security Package. Kerberos v5 protocol is an industry-standard
security package. It uses fullsic principal names.

• SCHANNEl SSP. This SSP implements the Microsoft Unified Protocol Provider
security package, which unifies SSL, Private Communication Technology (PCT), and
Transport Level Security (TLS) into one security package. It recognizes msstd and
fullsic principal names.

• Distributed Password Authentication (DPA) Security Package. Written primarily
for authentication over the Internet, the DPA security package provides the
capabilities for a user database that scales to millions of users. It uses the same
principal name form as the NTLM security package.

242 Volume 3 RPC and WNet

• MSN Security Package. MSNTM, the network of Internet services, currently uses this
security package. It uses the same principal name form as the NTLM security
package.

• NTLM Security Package. This was the primary security package for NTLM networks
prior to Windows 2000.

• Distributed Computing Environment (DCE) Security Package. The DCE security
package is an industry-standard security protocol that provides private and key
authentication.

In addition, Microsoft RPC provides a pseudo-SSP that enables applications to negotiate
between the use of real SSPs. This pseudo-SSP, called the Simple GSS-API
Negotiation Mechanism (Snego) SSP, does not provide any actual authentication
features. Its only use is to help applications select a real SSP. Currently, client and
server programs can use the Snego SSP to negotiate between the use of the NTLM
security package and Kerberos protocol security package.

For more information on selecting SSPs, see Authentication-Service Constants.

All of the SSPs that Microsoft Corporation provides recognize authentication credentials
in the form provided by the SEC_WINNT_AUTH_IDENTITY structure. For details, see
Client Authentication Credentials. For information on how to use specific SSPs, see
SSPI Functions and Using the Schannel Security Provider in the Security documentation
of the Platforms SDK.

Writing an Authenticated SSPI Client
All RPC client/server sessions require a binding between the client and the server. To
add security to client/server applications, the programs must use an authenticated
binding. This section describes the process of creating an authenticated binding
between the client and the server. It also presents special platform-specific
considerations that are imposed on developers of client programs.

• Creating Client-side Binding Handles

• MS-DOS Considerations

• Windows 95/98 Considerations

• Providing Client Credentials to the Server

For related information, see Procedures Used with Most Security Packages and
Protocols in the Platform SDK.

Creating Client-side Binding Handles
To create an authenticated session with a server program, client applications must
provide authentication information with their binding handle. To set up an authenticated
binding handle, clients invoke the RpcBindingSetAuthlnfo or
RpcBindingSetAuthlnfoEx function. These two functions are nearly identical. The only

Chapter 18 Security 243

difference between them is that the client can specify the quality of service with the
RpcBindingSetAuthlnfoEx function. The following code fragment shows how a call to
RpcBindingSetAuthlnfo might look.

After the client successfully calls the RpcBindingSetAuthlnfo or
RpcBindingSetAuthlnfoEx functions, the RPC run-time libra.ry automatically
authenticates all RPC calls on the binding. The level of security and authentication that
the client selects applies only to that binding handle. Context handles derived from the
binding handle will use the same security information, but subsequent modifications to
the binding handle will not be reflected in the context handles. For more information on
context handles, see Context Handles.

The authentication level stays in effect until the client chooses another level, or until the
process terminates. Most applications will not require a change in the security level.

The client can query any binding handle to obtain its authorization information. Invoke
the function RpcBindinglnqAuthClient and pass it the binding handle.

MS-DOS Considerations
When developing applications for MS-DOS, you must manually feed the password and
credential information into RpcBindingSetAuthlnfo. This is optional for a 16-bit or 32-bit
Windows platform because the default is to use the credentials of the current user. If a
computer running Windows 95/98, Windows for Workgroups, or Windows 3.x is not part
of a domain, the user will be prompted for the password.

To manually pass credentials to RpcBindingSetAuthlnfo, create a pointer to the
SEC_WINNT_AUTH_IDENTITV structure. Pass in the credential information using the
Authldentity parameter. Note that this structure must remain valid for the lifetime of the
binding handle.

244 Volume 3 RPC and WNet

Windows 95/98 Considerations
For systems configured for Novell NetWare clients on a Windows 95/98 network, the
server side of the application must obtain the server principal name, and then pass this
value to RpcServerRegisterAuthlnfo. Use the RpcServerlnqDefaultPrincName
routine to obtain the server principal name. In this situation, the client calls
RpcBindingSetAuthlnfo in the usual manner, but specifies a value of NULL for
PrincipalName. Behind the scenes, the Windows 95/98 run-time library queries the
server to obtain the value of the PrincipalName parameter specified to
RpcServerRegisterAuthlnfo. This is the name that is actually used. The binding handle
will be authenticated on the NetWare server.

For Windows 95/98, if RpcBindingSetAuthlnfo is called with a NULL server principal
name (as described above), the binding handle must be fully bound. For more
information on fully-bound handles, see Binding and Handles. If it is a dynamic endpoint
in which the server registers the endpoint with the endpoint mapper and, therefore, is not
known by the client, you must use RpcEpResolveBinding to bind the handle. This is
because in order to obtain the principal name from the server, the Windows 95/98 run
time library implicitly calls RpcMgmtlnqServerPrincName. Calls to management
interfaces cannot be made to unbound handles. All RPC server processes have the
same management interface. Registering the handle with the endpoint mapper is not
sufficient to uniquely identify a server. For more information on endpoints and the
endpoint mapper, see endpoint.

Note The Windows 95/98 run-time library ignores the ncacn_np and ncalrpc security
descriptors, because Windows 95/98 does not support the Windows NTlWindows 2000
security model.

Providing Client Credentials to the Server
Servers use the client's binding information to enforce security. Clients always pass a
binding handle as the first parameter of a remote procedure call. However, servers
cannot use the handle unless it is declared as the first parameter to remote procedures
in either the IDL file or in the server's Application Configuration File (ACF). You can
choose to list the binding handle in the IDL file, but this forces all clients to declare and
manipulate the binding handle rather than using automatic or implicit binding. For further
information, see The IDL and ACF Files.

Another method is to leave the binding handles out of the IDL file and to place the
expliciChandle attribute into the server's ACF. In this way, the client can use whatever
type of binding is best suited to the application, while the server uses the binding handle
as though it were declared explicitly.

The process of extracting the client credentials from the binding handle is as follows:

• RPC clients call RpcBindingSetAuthlnfo and include their authentication information
as part of the binding information passed to the server.

Chapter 18 Security 245

• Usually, the server calls RpclmpersonateClient in order to behave as though it were
the client. If the binding handle is not authenticated, the call fails with
RPC_S_NO_CONTEXT_AVAILABLE. To obtain the client's user name, call
GetUserName while impersonating.

• The server will normally use the Windows NT or Windows 2000 call
CreatePrivateObjectSecurity to create objects with ACLs. After this is accomplished,
later security checks become automatic.

Writing an Authenticated SSPI Server
Before authenticated communication can take place between the client and server
programs, the server must register its authentication information. In particular, the server
must register its principal name and specify the authentication service it uses. For more
information on principal names, see Principal Names. For details about authentication
services, see Authentication Services.

To register its authentication information, servers call the RpcServerRegisterAuthlnfo
function. Pass a pointer to the principal name as the value of the first parameter. Set the
second parameter to a constant indicating the authentication service that the application
will use. For a description of authentication services, see Authentication-Service
Constants.

The server may also pass the address of a key acquisition function as the value of the
third parameter. See Key Acquisition Functions. To use the default key acquisition
function for the selected authentication service, set the third parameter to NULL. The last
parameter to the RpcServerRegisterAuthlnfo function is a pOinter data to pass to the
key acquisition function, if you provide a key acquisition function. A call to
RpcServerRegisterAuthlnfo is shown in the following code fragment.

In addition, the server may provide the RPC run-time library with an authorization
function. This callback function allows server programs to implement custom
authentication methods. For details, see Authorization Functions. Every time a client
request arrives, the RPC run-time library calls the authorization function. Your
authorization function can then examine the query and authorize or deny the completion
of the remote procedure call. To set an authorization function, call the
RpcMgmtSetAuthorizationFn function.

The server portion of a distributed application can call the function
RpcBindinglnqAuthlnfo to query a binding handle for authentication information.

246 Volume 3 RPC and WNet

If your server registers with a security support provider, client calls with invalid
credentials will not be dispatched. However, calls with no credentials will be dispatched.
There are three ways to keep this from happening:

• Register the interface using RpcServerRegisterlfEx, with a security callback
function; this will cause the RPC run-time library to automatically reject
unauthenticated calls to that interface.

• Call RpcBindinglnqAuthClient to determine the security level that the client is using.
Your stub can then return an error if the client is unauthenticated.

• Only allow calls using the RPC_C_AUTHN_PACKET_PRIVACY level. Then, all
server replies will be encrypted during transmission.

Note If you are using the NTLM security package (with the authentication-service
constant RPC_C_AUTHN_WINNT), you should be aware that a client whose credentials
specify an unknown user name will be given guest access permission, If you do not want
this behavior, remove the guest account from your server.

The NTLM security package also lets your server impersonate the client. To do this, call
the RpclmpersonateClient function. For more information on the Windows NT security
model, see Access Control Model.

If you need additional information on how to write a secure server, check with the
manufacturer of your security support provider.

Windows NT and Windows 2000 Transport Security
Although this is not the preferred method, you can use the security settings that the
Windows NT and Windows 2000 named pipe transport offers to add security features to
your distributed application. These security settings are used with the Microsoft RPC
functions that start with the prefixes RpcServerUseProtseq and
RpcServerUseAUProtseqs, and the functions RpclmpersonateClient and
RpcRevertToSelf. Microsoft Windows 95/98 does not support transport security in
named pipes or local procedure calls.

Note If you are running an application that is a service and you are using NTLM for
security, you must add an explicit service dependency for your application. The
Secur32.dll will call the Service Controller (SC) to begin the NTLM security package
service. However,an RPC application that is a service and is running as a system, must
also contact the SC unless it is connecting to another service on the same computer.

Chapter 18 Security 247

Using Transport-Level Security on the Server
This section presents discussions of transport-level security, divided into the following
topics:

• Using Transport-Level Security on the Server

• Using Transport-Level Security on the Client

When you use ncacn_np or ncalrpc as the protocol sequence, the server specifies a
security descriptor for the endpoint at the time it selects the protocol sequence. For more
information on protocol sequences, see Specifying Protocol Sequences. Your
application provides the security descriptor as an additional parameter (an extension to
the standard OSF-OCE parameters) on all functions that start with the prefixes
"RpcServerUseProtseq" and "RpcServerUseAIiProtseqs". The security descriptor
controls whether a client can connect to the endpoint.

Each Windows NT and Windows 2000 process and thread is associated with a security
token. This token includes a default security descriptor that is used for any objects that
the process creates, such as the endpoint. If your application does not specify a security
descriptor when calling a function with the prefixes "RpcServerUseProtseq" and
"RpcServerUseAIiProtseqs", the RPe run-time library applies the default security
descriptor from the process security token to the endpoint.

• To guarantee that the server application is accessible to all clients, the administrator
should .start the server application on a process that has a default security descriptor that
all clients can use. On Windows NTand Windows 2000, generally only system
processes have a default security descriptor.

For more information about these functions and the functions RpclmpersonateClient
and RpcRevertToSelf.

Using Transport-Level Security on the Client
The client specifies how the server impersonates the client when the client establishes
the string binding. This quality-of-service information is provided as an endpoint option in
the string binding. The client can specify the level of impersonation,dynamic or static
tracking, and the effective-only flag.

.. To supply quality-ot-service information for the server
1. The client imports a handle from the name-service database.

The client specifies the name of the name.-service database entry and obtains a
binding handle.

2. The client calls RpcBindingToStringBinding to obtain the protocofseqoence,
network. address, and endpoint. .

3. The clie'1t calls RpcStringBindingParse to split the string binding into its component
substrings.

248 Volume 3 RPC and WNet

4. The client verifies that the protocol sequence is equal to ncacn_np or ncalrpc.

Client quality-of-service information is supported only on named pipes and LRPC in
Microsoft RPC.

5. The Client adds the security information to the endpoint string as an option.

For more information about the syntax, see String Binding.

6. The client calls RpcStringBindingCompose to reassemble the component strings,
including the new endpoint options, in the correct string-binding syntax.

7. The client calls RpcBindingFromStringBinding to obtain a new binding handle and
to apply the quality-of-serv\ce information for the client.

8. The client makes remote procedure calls using the handle.

Microsoft RPC supports Windows NT and Windows 2000 security features only on
ncacn_np and ncalrpc. Windows NT and Windows 2000 security options for other
transports are ignored.

Note Because it does not support the Windows NT and Windows 2000 security
models, the Windows 95 run-time library ignores the security descriptors ncalrpc and
ncacn_np.

The client can associate the following security parameters to the binding for the named
pipe transport ncacn_np or ncalrpc:

• Identification, Impersonation, or Anonymous. Specifies the type of security used.

• Dynamic or Static. Determines whether security information associated with a thread
is a copy of the security information created at the time the remote procedure call is
made (static) or a,pointer to the security information (dynamic).

Static security information does not change. The dynamic setting re11ects the current
security settings, including changes made after the remote procedure call is made.

• TRUE or FALSE. Specifies the value of the effective-only flag. A value of TRUE
indicates that only security settings set to on at the time of the call are effective. A
value of FALSE indicates that all security settings are available and that the
application can modify them.

Any combination of these settings can be assigned to the binding, as shown in the
following example:

Default security-parameter settings vary according to the transport protocol.

For more information about the security features of Windows NT and Windows 2000,
see your Windows NT and Windows 2000 documentation. For additional information
about the syntax of the endpoint options, see endpoint.

CHAPTER 19

Installing and Configuring
RPC Applications

249

When the Microsoft® Windows NT®, Microsoft Windows® 2000, or Windows 95
operating system is installed on a server or client, setup automatically installs the RPC
run-time files. No further RPC installation is required. You must ensure, however, that
the version of Windows you install supports all the features used in your distributed
application.

When you use an RPC application on a Windows 3.x or Microsoft® MS-DOS® operating
system, you must copy the RPC run-time executable files to the Windows 3.x or
MS-DOS computers that will be using the application. The directory \mstools\rpc_rt16 on
the Platform SDK CD contains a disk image of these files along with a setup program to
install the files. Use this disk image to create an install disk for distribution with your RPC
application. You can also use 16-bit client applications targeted toward MS-DOS or
Windows on a 32-bit Windows operating system. However, your application's installation
program must install the executable files contained in this disk image.

When you build an RPC application for a Macintosh client, you must link the necessary
files to the application at build time. No additional RPC installation is needed.

For more details about redistributable files and licensing agreements, see
\LlCENSE\Redist.txt and \LlCENSE\License.txt on the Platform SDK CD.

This chapter contains information about setting up RPC applications on a variety of
hardware and software platforms.

Configuring the Name Service Provider
If your distributed application registers its interface with a name service, both the client
and server must be using the same name service. Microsoft® RPC interoperates with
Microsoft Locator and any name service provider (NSP) that adheres to the Microsoft
RPC name service interface (NSI)-for example, the DCE Cell Directory Service
accessed through Digital Equipment Corporation's name service daemon (NSID).
Microsoft Locator, which is designed for use in Microsoft Windows® environments, is the
default name service provider.

250 Volume 3 RPC and WNet

Configuring the Name Service for Windows 95
Microsoft Windows 95 does not use Microsoft Locator. In order to use a name service in
a Windows 95 application, the computer with Windows 95 must either:

• Be part of a workgroup or domain that includes a computer running Microsoft®
Windows NT® or Windows 2000 to serve as a proxy name service provider.

• Be connected to a host computer running the NSI daemon (nsid), which serves as a
gateway to the Digital Equipment Corporation DCE Cell Directory Service.

Editing the Windows 95 Registry
You can use REGEDIT to edit the Windows 95 registry to deSignate an NSP.

~ To designate a Microsoft Locator name service provider for Windows 95
1. Select HKEY _LOCALMACHINE\SOFTWARE\Microsoft\Rpc.

2. Create a new key called NameService.

3. With the NameService key selected, create the new StringValue names and modify
them to contain data as shown in the following table.

Name Data

4DefauitSyntax

Protocol

Endpoint

NetworkAddress

ServerNetworkAddress

3
ncacn_np

\pipe\locator

"myserver" (where myserver is the name of the
Windows NTcomputer)

myserver

You can use REG EDIT to edit the Windows 95 registry to deSignate a DCE CDS NSP.

~ To designate a DCE CDS name service provider for Windows 95
• Edit the Windows 95 registry as described in the preceding, using the data shown in

the following table.

Name

DefaultSyntax

Protocol

Endpoint

NetworkAddress

ServerNetworkAddress

Data

3

ncacn_ip_tcp

" " (an empty string)

myserver (the name of the host computer running nsid)

myserver (the name of the host computer running nsid)

Chapter 19 Installing and Configuring RPC Applications 251

Note You must have the Digital Equipment Corporation DCE Cell Directory Service
product to configure the DCE CDS as your name service provider. See the
documentation provided by Digital Equipment Corporation for information about
DCE CDS.

Configuring the Name Service for Windows NT or Windows 2000
When you install the Platform SDK on Windows NT or Windows 2000, the setup
program automatically selects Microsoft Locator as the name service provider. You can
change the name service provider through Control Panel.

~ To reconfigure the name service provider for Windows NT and Windows 2000
1. In Control Panel, click the Network icon.

The Network dialog box appears.

2. In the Network dialog box, click Configure.

3. In the NetworkSoftware list, select RPC Configuration.

The RPC Name Service Provider Configuration dialog box appears.

4. In the RPC Name Service Provider Configuration dialog box, select a name service
provider from the list.

a. When you select Microsoft Locator, click OK. The configuration process is then
complete.

b. When you select the DCE Cell Directory Service, in the Network Address box,
type the name of the host computer that runs the NSI daemon (nsid), and then
click OK.

The host computer that runs the nsid acts as a gateway to the DCE Cell Directory
Service, paSSing NSI function calls between computers that run Microsoft operating
systems and DCE computers. A network address can be up to 80 characters-for
example, 11.1.9.169 is a valid address.

Note You must have the Digital Equipment Corporation DCE CDS product to configure
the DCE CDS as your name service provider. See the documentation provided by Digital
Equipment Corporation for information about DCE CDS.

252 Volume 3 RPe and WNet

Configuring the Name Service for Windows 3.x or MS-DOS
When you run Setup.exe to install the 16-bit RPC run-time library, it prompts you to
select a name service provider:

• If you choose Install Default Name Service Provider, the default NSP, Microsoft
Locator, is installed. Microsoft Locator works in Windows NT and Windows 2000
domains.

• If you choose Install Custom Name Service Provider, complete the Define
Network Address dialog box to install the DCE Cell Directory Service as your NSP.
The DCE Cell Directory Service is the NSP used with DCE servers.

The network address is the name of the host computer that runs the NSI daemon (nsid).
This computer acts as a gateway to the DCE Cell Directory Service, passing NSI
function calls between computers that run Microsoft operating systems and DCE
computers. The network address can be 80 characters or less-for example, 11.1.9.169
is a valid address.

Configuring the Microsoft Locator Name Service Provider
You can change the name service provider you specified by editing the Rpcreg.dat
configuration file, which contains the NSP parameters and RPC protocol settings. Use a
text editor to change NSP entries.

~ To reconfigure the Microsoft Locator name service provider
1. Open the Rpcreg.dat file using a text editor.

Rpcreg.dat is in the root directory unless you specified a different path during setup.

2. Set the following values for the registry entries.

Registry entry

Software\Microsoft\RPC
\NameService\Protocol

Software\Microsoft\RPC\
NameService\NetworkAddress

Software\Microsoft\RPC\
NameService\Endpoint

3. Save and close the file.

Value

The protocol sequence for the protocol you
are using. The default is ncacn_np.

The name of the computer running Locator
that is used by clients during name service
lookup operations. The default is the primary
domain controller.

The name of the endpoint used by the name
service. The default is \pipe\locator.

Configuring the DCE CDS Name-Service Provider
You must have the Digital Equipment Corporation DCE Cell Directory Service product to
configure the DCE CDS as your name service provider. See the documentation provided
by Digital Equipment Corporation for information about DCE CDS.

Chapter 19 Installing and Configuring RPC Applications 253

Starting and Stopping Microsoft Locator
On Windows NT and Windows 2000 platforms, the RPC run-time libraries automatically
start Microsoft Locator when necessary. You can manually stop and start the Locator if,
for example, you need to clear the database while debugging a distributed application.

~ To stop and start Microsoft Locator
1. From Control Panel, click the Services icon.

The Services dialog box appears.

2. In the Service dialog box, select Microsoft Locator and then click Start or Stop.

You can also start and stop Microsoft Locator from the command line by typing:

Note Only an administrator can start Microsoft Locator once it is stopped. If stopped, it
will be restarted as necessary by the RPC run-time libraries.

Registry Information
This section contains a discussion of the registry entries that are relevant to RPC.

Using RPC Registry Entries
The setup programs for Microsoft® Windows NT® and Microsoft Windows® 2000,
Windows 95/98, Windows 3.x, and Microsoft MS-DOS® store the RPC protocol
information you specify in the registry file. For 32-bit versions of Windows, setup
automatically configures the registry entries. No further configuration is necessary. With
MS-DOS and Windows 3.x, however, use a text editor to change entries in the
Rpcreg.dat file as shown in the following table.

Registry entry

SOFTW ARE\M icrosoft\Rpc\
NameService\DefaultSyntax

SOFTW ARE\Microsoft\Rpc\
NameService\NetworkAddress

Description

Specifies the default syntax that the RPC functions
RpcNsBindinglmportBegin and
RpcNsBindingExport use. This registry entry
corresponds to the DCE environment variable
RPC_DEFAULT_ENTRY_SYNTAX.

Specifies the address of the computer running the
Locator that clients use during name service lookup
operations. The default settin~ is the primary domain
controller.

(continued)

254 Volume 3 RPC and WNet

(continued)

Registry entry

SOFTWARE\Microsoft\Rpc\
NameService\ServerNetworkAddress

SOFTWARE\Microsoft\Rpc\
NameService\Endpoint

SOFTWARE\Microsoft\Rpc\
NameService\Protocol

SOFTWARE\Microsoft\Rpc\
ClientProtocols\ncacn_np

SOFTWARE\Microsoft\Rpc\
ClientProtocols\ncacn_ip_tcp

SOFTWARE\Microsoft\Rpc\
ClientProtocols\ncacn_nb_nb

SOFTWARE\Microsoft\Rpc\
CI ientProtocols\ncalrpc

SOFTWARE\Microsoft\Rpc\
ServerProtocols\ncacn_np

SOFTWARE\Microsoft\Rpc\
, ServerProtocols\ncacn_ip_tcp

SOFTWARE\Microsoft\Rpc\
ServerProtocols\ncacn_nb_nb

SOFTWARE\Microsoft\Rpc\
ServerProtocols\ncalrpc

SOFTWARE\Microsoft\Rpc\NetBios

Description

Specifies the address of the computer running the
Locator that servers use during name service export
operations. The default is PDC
(Windows NTlWindows 2000 only).

Specifies the endpoint that the name service uses.

Specifies the protocol that the name service uses.

Specifies the name of the RPC client transport DLL
for named pipes.

Specifies the name of the RPC client transport DLL
for TCP/IP.

Specifies the name of the RPC client transport DLL
for NetBEUI over NetBIOS.

Specifies the name of the RPC client transport DLL
for local RPC (Windows NTlWindows 2000 only).

Specifies the name of the RPC server transport DLL
for named pipes.

Specifies the name of the RPC server transport DLL
for TCP/IP.

Specifies the name of the RPC server transport DLL
for NetBEUI.

Specifies the name of the RPC server transport DLL
for local RPC (Windows NTlWindows 2000 only).

Consists of mapping strings that map protocols to
NetBIOS lana numbers.

Microsoft RPC setup automatically maps protocol strings to NetBlOS lana numbers and
writes these settings in the registry. These mappings work as long as you have only one
network card and one network protocol. If you have more than one network card and
network protocol, or if you change your network configuration after installing
Microsoft RPC, you must update the registry to indicate the new correspondences
between protocol strings and NetBIOS lana numbers.

For 32-bit Windows platforms, the mapping string appears in the registry tree under

\SOFTWARE\Microsoft\Rpc\NetBios.

For MS-DOS and Windows 3.x, the mapping string appears in the registry file
Rpcreg.dat.

Chapter 19 Installing and Configuring RPC Applications 255

The mapping string uses the following syntax:

Parameters
protocol

Specifies the protocol type. Valid protocol values are as shown in the following table.

Protocol Protocol type

nb

tcp

digit

NetBEUI

TCP/IP

Specifies a unique number associated with each instance of a protocol. Begin
numbering with 0 for the first instance of a protocol, and use the next consecutive
number for each additional instance of that protocol. For example, assign the value
ncacn_nb_nbO to the first NetBEUI entry; assign the value ncacn_nb_nb1 to the
second NetBEUI entry.

lana_number
Specifies the NetBIOS lana number.

A unique lana number is associated with each network adapter present in the
computer. For LAN Manager networks, the lana numbers for each network card are
available in the configuration files Lanman.ini and Protocol.ini. For more information
about the lana number, see your network documentation.

For example, the following mapping string describes a configuration that uses the
NetBEUI protocol over an adapter card that is assigned lana number 0:

When you install a second card that supports both XNS and NetBEUI protocols, the
mapping strings appear as follows:

Configuring the Windows NT and Windows 2000 Registry for Port
Allocations and Selective Binding

The following registry keys specify the system defaults for dynamic port allocation and
for binding to NICs on multihomed computers. You must first create these keys and then
specify the appropriate settings. If a key is missing or if it contains an invalid value, the
entire configuration is marked as invalid, and all RpcServerUseProtseq* calls over
ncacn_ip_tcp or ncadQ_ip_udp will fail.

Note Ports allocated to a process remain allocated until that process dies. If all
available ports are in use, then the API will return RPC_S_OUT_OF _RESOURCES.

256 Volume 3 RPe and WNet

Port key

HKEY _LOCAL_MACHINE\
Software\Microsoft\Rpc\
Internet\Ports

HKEY _LOCAL_MACHINE\
Software\Microsoft\Rpc\
Internet\PortslnternetAvailable

HKEY _LOCAL_MACHINE\
Software\Microsoft\Rpc\
Internet\UselnternetPorts

HKEY _LOCAL_MACHINE\
System\CurrentControISet\
Services\Rpc\Linkage\Bind

Data type Description

REG_MULTI_SZ Specifies a set of IP port ranges
consisting of either all the ports
available from the Internet or all the
ports not available from the Internet.
Each string represents a single port or
an inclusive set of ports (for
example,1 000-1 050, 1984). If any
entries are outside the range 0 to
65535, or if any string cannot be
interpreted, the RPC run time will treat
the entire configuration as invalid.

REG_SZ Y or N (not case-sensitive). If Y, the
ports listed in the Ports key are all the
Internet-available ports on that
computer. If N, the ports listed in the
Ports key are all those ports that are
not Internet-available.

REG_SZ Y or N (not case-sensitive). Specifies
the system default policy. If Y, the
processes using the default will be
assigned ports from the set of Internet
available ports, as defined above. If N,
processes using the default will be
assigned ports from the set of intranet
only ports.

REG_MUL TI_SZ Lists the device names of all the NICs
on which to bind by default (for
example, \Device\AMDPCN1). If the
key does not exist, the server will bind
to all NICs. If the key does exist, the
server will bind to the NICs specified in
the key, unless the NICFlags field is
set to RPC_C_BIND_ TO_ALL_NICS. If
the key has a null ("") value, the
configuration will be marked as invalid
and all calls to
RpcServerUseProtseq* over
ncacn_ip_tcp or ncadg_ip_udp
will fail.

Chapter 19 Installing and Configuring RPC Applications 257

RPC_POLlCY, RpcServerUseAIiProtseqsEx, RpcServerUseAIiProtseqslfEx,
RpcServerUseProtseqEx, RpcServerUseProtseqEpEx, RpcServerUseProtseqlfEx,
ncacn_ip_tcp, ncadg_ip_udp

Using RPe with Winsock Proxy
Note The information in this topic is specific to Microsoft® Windows NT®, version 4.0
Service Pack 3 or later.

The release of Microsoft® Internet Access Server included Winsock Proxy, an enhanced
version of Windows Sockets API version 1.1. Winsock Proxy lets a Windows Sockets
application, running on a private network client, behave as if it were directly connected to
a remote Internet server application. The Microsoft Proxy Server acts as the host for this
connection. This means that all application-level communications are channeled through
a single secured computer-the gateway computer running Microsoft Proxy Server.

Ordinarily, for datagram-packet transfers, the RPC transport DLL bypasses the sendto()
and recvfrom() functions provided in Wsock32.dll, and communicates directly with the
underlying device driver. This improves the speed of packet transfers but makes
Winsock Proxy features unavailable to the application.

On Microsoft® Windows NT® version 4.0 with SP2, the RPC transport checks the
registry to see whether to use the function calls provided in Wsock32.dll, or to interact
directly with the device driver. To use RPC with Winsock Proxy, edit the system registry
on each computer to add the following entry:

HKEY _LOCAL_MACHINE
Software

Microsoft
Rpc

UseWinsockForlP : REG_DWORD "1"

Microsoft Windows® 2000 enables each network protocol provider to have an
associated GUID. The RPC run-time library compares the UDP and IPX GUIDs to the
well known Microsoft identifiers. If they don't match, RPC automatically uses Winsock.

Another feature of Winsock Proxy is its ability to emulate the TCP transport protocol over
the Novell SPX transport when the SPX client computer does not have TCP installed. To
use this feature with RPC applications, edit the system registry on each client computer
to add this entry.

258 Volume 3 RPC and WNet

HKEY _LOCAL_MACHINE
Software

Microsoft
Rpc

ClientProtocols
ncacn_ip_tcp: REG_SZ "rpcltccm.dll"
ncadg_ip_udp: REG_SZ "rpcltccm.dll"

Edit the registry on each server computer to add this entry:

HKEY _LOCAL_MACHINE
Software

Microsoft
Rpc

Server Protocols
ncacn_ip_tcp: REG_SZ "rpcltscm.dll"
ncadg_ip_udp: REG_SZ "rpcltscm.dll"

For more information about RPC transport protocols see Specifying Protocol Sequences.
For more information about Win sock Proxy, see the product documentation for Microsoft
Internet Access Server.

Windows 2000 does not implement the ClientProtocols and ServerProtocols registry
entries. Microsoft provides all well known transports as part of the run-time library.
Therefore, these entries are not necessary.

SPXlIPX Installation
Applications can utilize Microsoft® RPC on networks that use the ncacn_spx and
ncadQ_ipx transports.

Configuring RPC for SPXlIPX
When using the ncacn_spx and ncadQ_ipx transports, the server name is exactly the
same as the Microsoft® Windows NT®, Windows® 2000, or Windows 95 server name.
However, since the names are distributed using Novell protocols, they must conform to
the Novell naming conventions. If a server name is not a valid Novell name, servers will
not be able to create endpoints with the ncacn_spx or ncadQ_ipx transports.

A valid Novell server name contains only the characters between Ox20 and Ox7f.
Lowercase characters are changed to uppercase. The following characters cannot be
used:

"*,.I:;<=>?[]\I]

Chapter 19 Installing and Configuring RPC Applications 259

To maintain compatibility with the first version of Windows NT, ncacn_spx and
ncadg_ipx also enable you to use a special format of the server name known as the
tilde name. The tilde name consists of a tilde (-), followed by the server's eight-digit
network number, and then followed by its 12-digit Ethernet address. Tilde names have
an advantage in that they do not require any name service capabilities. Thus, if you are
connected to a server, the tilde name will work.

The following tables contain two sample configurations that illustrate the points
previously described.

Component Configured as

Windows NTlWindows 2000 or Windows 95 Server

Windows NTlWindows 2000 or Windows 95 Client

Windows 3.xlMS-DOS Client

NWCS

NWCS

NetWare Redirector

The configuration in the previous table requires that you have NetWare file servers or
routers on your network. It will produce the best performance because the server names
are stored in the NetWare Bindery.

Component

Windows NTIW·indows 2000 or Windows 95 Server

Windows NTlWindows 2000 or Windows 95 Client

Windows 3.xlMS-DOS Client

Configured as

SAP Agent

IPXlSPX

IPXlSPX

The second configuration works in an environment that does not contain NetWare file
servers or routers (for example, a network of two computers: a Windows 2000 server
and an MS-DOS® Client). Name resolution, which is accomplished during the first call
over a binding handle, will be slightly slower than in the first configuration. In addition,
the second configuration results in more traffic generated over the network.

To implement name resolution, when an RPC server uses an SPX or IPX endpoint, the
server name and endpoint are registered as a Service Advertising Protocol (SAP) server
of type 640 (hexadecimal). To resolve a server name, the RPC client sends a SAP
request for all services of the same type, and then scans the list of responses for the
name of the server. This process occurs during the first RPC call over each binding
handle. For additional information on the SAP protocol for Novell, see your NetWare
documentation.

Note The i6-bit Windows client applications that use the ncacn_spx or ncadg_ipx
transports require that the file NWipxspx.dll be installed in order to run under the
Windows NT and Windows 2000 Win16-on-Win32 (WOW) subsystem. Contact Novell to
obtain this file.

260 Volume 3 RPe and WNet

Configuring SAP and RPC
Novell Netware network servers use the Service Advertising Protocol (SAP) to broadcast
information about available services on the network to other networked devices. A server
may send out an SAP broadcast every 60 seconds to inform other network devices
about the services it offers. Workstations use SAPs to find services they need on the
network.

Microsoft Windows NT and Windows 2000 include a SAP Agent service to enable
Windows-based servers to interact with Netware servers. The SAP Agent service will
listen for network clients' SAP requests for IPX-based services that are installed and
running on the server.

Software that is designed to be advertised as a service over the network by means of a
SAP broadcast will issue the SAP announcements every 60 seconds, without having the
SAP Agent installed. However, in order for network clients to quickly locate an IPX
network service, a server that maintains a service database must be available on the
network, to respond to the service location request. This service database is usually
maintained by a Novell NetWare or by a NetWare compatible server. Microsoft File and
Print Services for NetWare will also maintain an IPX network service database.

On a computer running Windows NT Server, if Gateway Services for NetWare (GSNW)
is installed, a SAP Type 640 will broadcast every 60 seconds by the Remote Procedure
Call (RPC) service. This SAP broadcast will continue even if the user disables the
GSNW and the SAP Agent Service.

On a computer running Windows NT Workstation or Windows 2000 Professional, the
RPC service will do the SAP broadcast if the Client Services for NetWare (CSNW) and
the SAP Agent service are installed. This SAP broadcast will continue even if the user
disables the SAP agent.

By default, the RPC service will check for the presence of Gateway Services for
NetWare and the SAP Agent service on the computer running Windows NT Server.
Installing File and Print services for Netware installs a SAP Agent.

On the computer running Windows NT Workstation with CSNW, the RPC service checks
for the SAP Agent service. If the services are present, RPC will start its own thread that
will do the SAP broadcast Type 640 every minute.

Note If you do not want SAP broadcasts on the network every 60 seconds, you must
have or obtain Windows 2000 or Windows NT Server Service Pack 4 or later. If one of
these is installed, you can disable SAP broadcasts using the Registry Editor. Be warned
that using Registry Editor incorrectly can cause serious problems that may require you to
reinstall your operating system. Microsoft cannot guarantee that problems resulting from
the incorrect use of Registry Editor can be solved. Use Registry Editor at your own risk.
You should back up the registry before you edit it. If you are running Windows NT, you
should also update your Emergency Repair Disk (ERD).

Chapter 19 Installing and Configuring RPC Applications 261

~ To configure for SAP
1. Run Registry Editor (Regedt32.exe) and go to the following key in the registry:

HKEV _LOCAL_MACHINE\Software\Microsoft\RPC

2. On the Edit menu, click Add Value, and use the following entry:

a. Value Name: AdvertiseRpcService

b. Data Type: REG_SZ

c. String: No

3. Using No for the string turns RPC SAP broadcasting off. Using Yes for the string turns
RPC SAP broadcasting on.

4. Restart the computer for the registry change to take effect.

Note If the SAP broadcasts continue after following these steps, you may want to try a
troubleshooting step. Delete the Ncacn_spx string value in following registry key:

HKEV _LOCAL_MACHINE\Software\Microsoft\Rpc\ServerProtocols\

This should be used only as a troubleshooting step. Deleting this string value completely
disables SAP broadcasts which some programs may need in order to function properly.

Configuring the Security Server
The following procedure details configuring the security server for Microsoft® RPC.

~ To configure the security server for RPC
1. Start Microsoft® Windows NT® or Windows® 2000 and click the Control Panel icon.

2. In Control Panel, click the Networks icon.

The Network Settings dialog box appears.

3. In the Installed Network Software list, select RPC Configuration.

The RPC Configuration dialog box appears.

4. In the Security Service Provider list, select from one or more security providers.

5. Click OK.

263

CHAPTER 20

Asynchronous RPC

Asynchronous Remote Procedure Call (RPC) is a Microsoft® extension that addresses
several limitations of the traditional RPC model as defined by the Open Software
Foundation-Distributed Computing Environment(OSF-DCE). Asynchronous RPC
separates a remote procedure call from its return value, which resolves the following
limitations of traditional, synchronous RPC:

• Multiple outstanding calls from a single-threaded client. In the traditional RPC
model, a client is blocked in a remote procedure call until the call returns. This
prevents a client from having multiple outstanding calls, while stili having its thread
available to do other work.

• Slow or delayed clients. A client that is slow to produce data may want to make a
remote procedure call with initial data and then supply additional data as it is
produced. This is not possible with conventional (synchronous) RPC.

• Slow or delayed servers. A remote procedure call that takes a long time to complete
will tie up the dispatch thread for the duration of the task. With asynchronous RPC,
the server can start a separate (asynchronous) operation to process the request and
send back the reply when iUs available. The server can also send the reply
incrementally as results become available without having to tie up a dispatch thread
for the duration of the remote call. By making the client application asynchronous, you
can prevent a slow server from unnecessarily tying up a client application.

• Transfer of large amounts of data. Transferring large amounts of data between the
client and server, especially over slow links, ties up both the client thread and the
server manager thread for the duration of the transfer. With asynchronous RPC and
pipes, data transfer can take place incrementally, and without blocking the client or
server from performing other tasks.

You take advantage of asynchronous RPC mechanisms by declaring functions with the
[async] attribute. Because you make this declaration in an attribute configuration file
(ACF), you do not have to make any changes to the Interface Definition Language (IDL)
file; asynchronous RPC has no effect on the wire protocol (hOW the data is transmitted
between client and server). This means that both synchronous and asynchronous clients
can communicate with an asynchronous server application.

Asynchronous RPC is supported on the Microsoft® Windows NT®IWindows® 2000
operating system.

This chapter presents an overview of how to develop distributed applications using
asynchronous RPC.

264 Volume 3 RPC and WNet

Declaring Asynchronous Functions
To declare an RPC function as asynchronous, first declare the function as part of an
interface definition in an Interface Definition Language (IDL) file. The use of
asynchronous RPC functions does not require you to make any special alterations to
your IDL file. The following example shows an IDL file for an application that uses one
asynchronous function.

For all asynchronous RPC functions that your application uses, you will need to modify
the declaration of the asynchronous functions within your application's ACF file. Apply
the [async] attribute to each asynchronous function natTie, as shown in the following
example:

When you apply the [async] attribute in the ACF file, the MIDL compiler automatically
generates an additional asynchronous handle parameter in the stub code.

Client-Side Asynchronous RPC
Client-side asynchronous function handling consists of three primary tasks discussed in
the following sections.

Chapter 20 Asynchronous RPC 265

Making the Asynchronous Call
Before it can make an asynchronous remote call, the client must initialize the
asynchronous handle. Client and server programs use pOinters to the
RPC_ASYNC_STATE structure for asynchronous handles.

Every outstanding call must have its own unique asynchronous handle. The client
creates the handle and passes it to the RpcAsynclnitializeHandle function. For the call
to complete correctly, the client must ensure that the memory for the handle is not
released until it receives the server's asynchronous reply. Also, before making another
call on an existing asynchronous handle, the client must reinitialize the handle. Failure to
do this can cause the client stub to raise an exception during the call. The client must
also ensure that the buffers it supplies for [out] parameters and [in, out] parameters to
an asynchronous remote procedure remain allocated until it has received the reply from
the server.

When it invokes an asynchronous remote procedure, the client must select the method
that the RPC run-time library will use to notify it of the call's completion. The client can
receive this notification in anyone of the following ways:

• Event. The client can specify an event to be fired when the call has completed. For
details, see Event Objects.

• Polling. The client can repeatedly call RpcAsyncGetCallStatus. If the return value is
anything other than RPC_S_ASYNC_CALL_PENDING, the call is complete. This
method uses more CPU time than the other methods described here.

• APC. The client can specify an asynchronous procedure call (APC) that gets called
when the call completes. For the prototype of the APC function, see
RPCNOTIFICATION_ROUTINE. The APC is called with its Event parameter set to
RpcCaliComplete. For APCs to get dispatched, the client thread must be in an
alertable wait state.

If the hThreadfield in the asynchronous handle is set to 0, the APCs are queued on
the thread that made the asynchronous call. If it is nonzero, the APCs are queued on
the thread specified by hThread.

• IOC. The 1/0 completion port is notified with the parameters specified in the
asynchronous handle. For more information, see CreateloCompletionPort.

• Windows handle. A message is posted to the specified window handle (HWND).

The following code fragment shows the essential steps required for initializing an
asynchronous handle and using it to make an asynchronous remote procedure call.

266 Volume 3 RPC and WNet

(continued)

Chapter 20 Asynchronous RPC 267

As this example demonstrates, your client program can execute synchronous remote
procedure calls while an asynchronous procedure call is still pending. This client creates
an event object for the RPC run-time library to use to notify it when the asynchronous
call completes.

Waiting for the Asynchronous Reply
What the client does while it waits to be notified of a reply from the server depends on
the notification mechanism it selects.

If the client uses an event for notification, it will typically call the WaitForSingleObject
function or the WaitForSingleObjectEx function. The client enters a blocked state when
it calls either of these functions. This is efficient because the client does not consume
CPU run cycles while it is blocked.

When it uses polling to wait for its results, the client program enters a loop that
repeatedly calls the function RpcAsyncGetCallStatus. This is an efficient method of
waiting if your client program does other processing in the polling loop. For instance, it
can prepare data in small chunks for a subsequent asynchronous remote procedure call.
After each chunk is finished, your client can poll the outstanding asynchronous remote
procedure call to see if it is complete.

Your client program can provide an asynchronous procedure call (APC), which is a type
of callback function that the RPC run-time library will invoke when the asynchronous
remote procedure call completes. Your client program must be in an alertable wait state.
This typically means that the client callsa·Microsoft® Win32® API function to put itself in
a blocked state. For more information,see Asynchronous Procedure Calls

If your client program uses an 1/0 completion port to receive completion notification, it
must call the GetQueuedCompletionStatus function. When it does, it can either wait
indefinitely for a response or continue to do other processing. If it does other processing
while it waits for a reply, it must poll the completion port with the
GetQueuedCompletionStatus function. In this case, it typically needs to set the
dwMilliseconds to zero. This causes GetQueuedCompletionStatus to return
immediately, even if the asynchronous call has not completed.

Client programs can also receive completion notification through their message queues.
In this situation, they simply process the completion message as they would any
Microsoft® Windows® message.

The client can, at any time, call RpcAsyncCancelCall to request cancellation of an
outstanding call. Note that in a multithreaded application, the thread that originated the
call is the only thread that can cancel it.

The following code fragment illustrates how a client program can use an event to wait for
an asynchronous reply.

268 Volume 3 RPC and WNet

Client programs that use an APC to receive notification of an asynchronous reply
typically put themselves into a blocked state. The following code fragment shows this.

In this case, the client program goes to sleep, consuming no CPU cycles, until the RPC
run-time library calls the APC (not shown).

The next example demonstrates a client that uses an I/O completion port to wait for an
asynchronous reply.

In the preceding example, the call to GetQueuedCompletionStatus waits indefinitely
until the asynchronous remote procedure call completes.

One potential pitfall occurs when writing multithreaded applications. If a thread invokes a
remote procedure call and then terminates before it receives notification that the send
completed, the remote procedure call will be canceled. The client stub will also close the
connection to the server. Therefore, all threads that call a remote procedure should wait
for completion notification or cancel the call before they terminate.

Receiving the Asynchronous Reply
After it is notified that the server has sent a reply, the client calls
RpcAsyncCompleteCall with the asynchronous handle so that it can receive the reply.
When RpcAsyncCompleteCall has completed successfully, the Reply parameter pOints
to a buffer that contains the return value of the remote function. Any buffers supplied by

Chapter 20 Asynchronous RPC 269

the client program as [out] or [in, out] parameters to the asynchronous remote function
contain valid data. If the client calls RpcAsyncCompleteCall before the server has sent
the reply, that call will fail and return a value of RPC_S_ASYNC_CALL_PENDING.

If your client program uses I/O completion ports or events for notification, it must call
CloseHandle to release the port or handle when it no longer needs them.

Server-Side Asynchronous RPe
To receive and dispatch asynchronous remote procedure calls, the server application
essential tasks are:

• Handling Asynchronous Calls

• Receiving Cancellations

• Sending the Asynchronous Reply

• Asynchronous I/O and Asynchronous RPC

Handling Asynchronous Calls
The manager routine of an asynchronous function always receives the asynchronous
handle as the first parameter. The server must keep track of this handle and use it to
send the reply when the asynchronous remote procedure call finishes.

If the server needs to abort an asynchronous RPC, it calls RpcAsyncAbortCal1. This
function performs the same server-side cleanup as RpcAsyncCompleteCall and
propagates an exception code (provided by the server application) back to the client.

For an example of an asynchronous procedure, see Sending the Asynchronous Reply.

Receiving Cancellations
The server application can call RpcServerTestCancel with the binding handle of the
thread in question to find out if the client has requested cancellation of an outstanding
asynchronous call. It will return RPC_S_OK if the client canceled the call.

Sending the Asynchronous Reply
When the asynchronous call is complete, the server sends a reply to the client by calling
the RpcAsyncCompleteCall function and passing it the asynchronous handle. This call
is necessary even if the asynchronous call has a void return value and no [out]
parameters. If the function has a return value, it is passed by reference to
RpcAsyncCompleteCall.

When the server calis RpcAsyncCompleteCall or RpcAsyncAbortCall, or a call
completes because an exception was raised in the server-manager routine, the RPC
run-time library automatically destroys the server's asynchronous handle.

270 Volume 3 RPC and WNet

Note The server must finish updating the [in, out] and [out] parameters before calling
RpcAsyncCompleteCali. No changes can be made to those parameters or to the
asynchronous handle after calling RpcAsyncCompleteCal1.

The following example demonstrates a simple asynchronous procedure call.

Chapter 20 Asynchronous RPC 271

For the sake of simplicity, this asynchronous server routine does not process actual
data. It simply puts itself to sleep for awhile.

RPC_ASYNC_ST ATE, RpcAsyncCompleteCall, RpcAsyncAbortCall,
RpcServerTestCancel

Asynchronous 1/0 and Asynchronous RPC
Asynchronous 1/0 is an efficient means for a single thread to manage multiple 1/0
requests simultaneously. Asynchronous RPC em the server accomplishes a similar
purpose for RPC requests. Designers using asynchronous RPC may be tempted to post
asynchronous 1/0 requests from the server procedures. However, this technique should
be avoided.

An asynchronous remote procedure call may complete before the asynchronous 1/0
request completes. When the asynchronous call completes, its thread terminates.
Microsoft® Windows® NT and Windows 2000 bind all 1/0 requests to the thread that
initiates them. If the thread terminates, any 1/0 requests pending on that thread are
aborted. Pending 1/0 requests cannot be moved to another thread,

Therefore application designers can either use synchronous 110 in server procedures, or
they can forward aU requests that involve asynchronous 1/0 to procedures executing on
a thread pool that the application manages. The Windows NTIWindows 2000 API
provides functions for thread-pool management. See Process and Thread Functions.

272 Volume 3 RPC and WNet

Causal Ordering of Asynchronous Calls
In an asynchronous RPC application, it is possible for a client thread to make a second
asynchronous call on a binding handle before an earlier call made on that handle has
completed. The RPC run-time library handles this situation as follows:

• The asynchronous RPC mechanism in Microsoft® Windows® 2000 guarantees that
asynchronous calls made on the same binding handle, at the same security level, are
dispatched in the order they were made. Actual execution of the calls may occur out
of order.

• Calls made to a server application running on Microsoft® Windows NT® 3.51,
Windows NT 4.0, or on Windows 95 are dispatched and executed in the order in
which they were made. The run-time automatically detects these platforms and
serializes the calls on the client.

• As with synchronous calls, asynchronous remote procedure calls from different client
threads execute simultaneously.

• If an asynchronous call from a client application is followed by one or more
synchronous calls, the asynchron<?us call can execute while the synchronous calls are
executing. Regardless of the status of the asynchronous call, the synchronous calls
are executed in the order in which they are received by the server.

• If a client application selects noncausal ordering for a particular binding handle, it
disables serialization for that handle. Applications enable noncausal ordering by
calling RpcBindingSetOption with the Option parameter set to
RPC_C_OPT _BINDING_NONCAUSAL and the OptionVa/ue parameter set to TRUE.
For details, see Binding Option Constants.

Error Handling
In synchronous RPC, a client makes a remote call that returns with either a success or
failure code. Asynchronous RPC provides more opportunities for a call to fail, and these
failures are handled differently, depending on where and when they occur. The following
table describes the ways in which a call can fail, and how it is handled.

Source of failure How handled

Client call to remote function fails.

Client call to remote function fails
because of a failure in the
asynchronous mechanism.

Client issues cancel (either abortive
or nonabortive).

The call raises an exception. Neither the client
nor the server needs to call
RpcAsyncCompleteCall.

Client receives a "call complete" notification.
The RpcAsyncCompleteCallfunction return
value is the failure code.

Server learns of the cancel when it calls
RpcServerTestCancel. Server must still call
RpcAsyncCompleteCall or
RpcAsyncAbortCall to complete the call.

Source of failure

Client issues an abortive cancel.

Call fails before server dispatches it.

The synchronous portion of the
manager routine raises an exception.

Call fails after server calls
RpcAsyncCompleteCall.

Chapter 20 Asynchronous RPC 273

How handled

Client receives "call complete" notification.
When the client calls RpcAsyncCompleteCall,
it returns RPC_S_CALLED_CANCELLED,
unless the call failed or completed before it was
canceled.

Run time, client, and server stubs handle the
failure.

Run time catches the exception and propagates
it to the client.

Run time handles it; the server is not notified.

Special Error Handling Cases for Pipes
Source of failure

Client calls push and the call fails.

Client calls RpcAsyncCompleteCall
before the in pipes are drained.

Client calls pull and the call fails.

Either client or server calls push or
pull in the wrong order.

Server calls push and the call fails.

Server calls
RpcAsyncCompleteCall before the
pipes have been drained.

After the dispatch, a receive
operation fails.

How handled

The push function returns a failure code. Client
must call RpcAsyncCompleteCali.

Call fails with the appropriate pipe-filling error
code.

Pull returns a failure code. Client must call
RpcAsyncCompleteCali.

Run-time returns pipe-filling error status.

Push returns a failure code. Server must call
RpcAsyncCompleteCall.

The pipe call returns a pipe filling error status.

The next time the server calls pull to receive
pipe data, an error is returned.

Asynchronous RPe Over the Named-Pipe Protocol
If you use named pipes (ncacn_np) as your transport protocol, you should avoid
allowing a large number of idle pending calls on the server. With named pipes, each
client waiting for a reply will have a pending named pipe read on the server, each of
which requires a certain amount of kernel memory.

For example, you would not want to use a notification call for new e-mail with the named
pipe transport, because such a call would remain pending even when clients are idle,
and kernel memory could be depleted. Note that this is not a problem with the other
connection-oriented protocols, such as ncacn_ip_tcp.

274 Volume 3 RPC and WNet

Since named pipes are a transport protocol, your application can use them by specifying
ncacn_np as the protocol in a string binding. For more information on named pipes, see
Named Pipes. For details on creating string bindings, see Using String Bindings.

Using Asynchronous RPC with DCE Pipes
Microsoft RPC supports the use of DCE pipes. Although they share a similar name, DCE
pipes are unrelated to named pipes. Named pipes are a transport protocol. DCE pipes
are a protocol-independent method of clienVserver communication.

Asynchronous Pipes
Using pipe parameters with asynchronous RPC allows you to transmit data
incrementally, as it becomes available, without tying up the client and server. This is
particularly useful when you have a large amount of data to transfer, combined with a
slow client, a slow server, or a slow network. If you use a pipe in an asynchronous
function call, it is, by definition, an asynchronous pipe. Synchronous pipes are not
supported in conjunction with asynchronous functions.

Unlike conventional (synchronous) pipes where the server handles all the details of
sending and receiving pipe data, asynchronous pipes are symmetrical. That is, both the
client and the server can push and pull data through the pipe.

Note Pipe parameters can only be passed by reference. Even if the IDL file shows pipe
parameters being passed by value, the generated stubs will accept pipe parameters by
reference only.

In the following discussion of asynchronous pipes, familiarity with the pipe type
constructor is assumed. For more information on the pipe procedures described in these
topics, see Pipes.

Declaring Asynchronous Pipes
The following example IDL file defines a typical pipe structure, and an asynchronous
RPC function with pipes.

Example

Chapter 20 Asynchronous RPC 275

The following code fragment shows a typical pipe structure definition. It contains pointers
to push and pull procedures, a buffer to hold the pipe data, and a state variable to
coordinate the procedures:

Client-Side Asynchronous Pipe Handling
Before making an asynchronous remote call, the client must first initialize the
asynchronous handle. As with nonpipe procedures, the client calls an asynchronous
function with the asynchronous handle as the first parameter and uses the asynchronous
handle to send and receive pipe data, query the status of the call, and receive the reply.

276 Volume 3 RPC and WNet

The client makes the asynchronous remote procedure call with the asynchronous handle
as the first parameter. The client can use this handle to query the status of the call and
to receive the reply. The asynchronous pipe model is symmetric. Both client and server
applications send and receive pipe data actively (as opposed to synchronous RPC,
where the pipe data is sent and received passively).

The client sends asynchronous pipe data by calling the push function on the appropriate
asynchronous pipe, with the pipe's state variable as the first parameter. When the push
function returns, the client can modify or free the send buffer.

If the RPC_ASYNC_NOTIFY _ON_SEND_COMPLETE flag is set in the asynchronous
handle, and if APCs are used as the notification mechanism, an APC is queued when
the pipe send is actually complete. You can take advantage of this mechanism to
implement flow control. Note, however, that if the client pushes another buffer before the
previous push is complete, the client may, depending on the speed of the transfer
operation, receive only one send-complete notification, rather than one notification for
each buffer or each push operation. When the client has sent all of the pipe data, it
makes one final push call with the number of elements set to O.

The client program receives asynchronous pipe data by calling the pull function on the
appropriate asynchronous pipe, with the pipe's state variable as the first parameter. If no
pipe data is available, the pull function returns RPC_S_ASYNC_CALL_PENDING.

If the notification mechanism is APC, and the server returned
RPC_S_ASYNC_CALL_PENDING, the client must wait until it receives the
RpcReceiveComplete APC from run-time before calling pull again.

Server-Side Asynchronous Pipe Handling
The manager routine of an asynchronous function always receives the asynchronous
handle as the first parameter. The server uses this handle to send the reply and to send
the out pipe data as it becomes available. The handle remains valid until
RpcAsyncCompleteCall is called on it, the call is aborted by RpcAsyncAbortCall, or
an exception occurs in the manager routine. The application must keep track of all top
level pointers for the [out] and [in, out] parameters, in order to update them before
completing the call. The application must also keep track of the [in] and [out] pipes.

The server sends asynchronous pipe data in the same manner as the client. See Client
Side Asynchronous Pipe Handling.

The server receives asynchronous pipe data in the same manner as the client. If the
receive mechanism is asynchronous procedure calls (APCs), the server must specify a
thread handle (in pAsync->u.APC.hThread) and register the asynchronous handle with
the run-time library.

Example
In this example, the server manager routine, MyAsyncPipeFunc, handles t~e remote
procedure call from the client.

Chapter 20 Asynchronous RPC 277

(continued)

278 Volume 3 RPC and WNet

(continued)

Chapter 20 Asynchronous RPC 279

(continued)

280 Volume 3 RPC and WNet

(continued)

Pipes, async, Server-Side Asynchronous RPe

Asynchronous DeOM
To take advantage of asynchronous RPC transparently, COM programmers can use the
IAsync* interfaces described in Asynchronous DCOM in the COM Programmer's Guide
and the MIDL attribute async_uuid

281

CHAPTER 21

RPe Message Queuing

Message Queuing Services (MSMQ) lets users communicate across networks and
systems regardless of the current state of the communicating applications and systems.
Applications send and receive messages through message queues that MSMQ
maintains. The message queues continue to function even when the client or server
application isn't running. Message queuing provides:

• Asynchronous messaging. With MSMQ asynchronous messaging, a client
application can send a message to a server and return immediately, even if the
target computer or server program is not responding.

• Guaranteed message delivery. When an application sends a message through
MSMQ, the message will reach its destination even if the destination application is
not running at the same time or the networks and systems are offline.

• Routing and dynamic configuration. MSMQ provides flexible routing over
heterogeneous networks. The configuration of such networks can be changed
dynamically without any major changes to systems and networks themselves.

• Connection less messaging. Applications using MSMQ do not need to set up direct
sessions with target applications.

• Security. MSMQ provides secure communication based on Microsoft®
Windows NT®IWindowS® 2000 security and the Cryptographic API (CryptoAPI) for
encryption and digital signatures.

• Prioritized Messaging. MSMQ transfers messages across networks based on
priority, allowing faster communication for critical applications.

Microsoft RPC extends the Open Software Foundation-Data Communications
Equipment (OSF-DCE) model for remote procedure calls by allowing distributed
applications to use MSMQ as a transport and to control many of its features. This
functionality is available both to conventional RPC applications and, through the
IRPCOptions interface, to DCOM applications.

Overview of Message Queuing Services Architecture
Message Queuing Services (MSMQ) uses a site/enterprise model. Typically, a site is
a physical location, such as a building. An enterprise consists of one or more sites and
represents an organization.

Figure 21-1 illustrates the architecture of the MSMQ Service.

282 Volume 3 RPC and WNet

Figure 21-1: MSMQ Service Architecture.

At the heart of MSMQ is the Message Queue Information Service (MQIS) database,
which runs on top of SQl Server. An enterprise has a single master MQIS, called the
Primary Enterprise Controller. Each site has its own MQIS, called a primary site
controller and zero or more backup site controllers.· Finally, there are the individual client
computers, each of which has its own queue manager, implemented as a service. The
Primary Enterprise Controller can also be a Primary Site Controller, and any controller
can also be a client.

Message queues can be either public or private. Public queues are registered in Active
Directory and are accessible across the network. Messages in a public queue are routed
throughout the enterprise, under the control of MSMQ. Client application messages
move from the client's queue manager to the destination queue by traveling between the
queue managers of the site controllers.

Private queues are maintained by the local queue manager and are not registered in
Active Directory. The scope of private queue messages is limited to the computer on
which they reside.

Chapter 21 RPC Message Queuing 283

Message and Message Queue Properties
A message has properties, which specify a label, a message body, and a number of
options. Message property options can include quality of service, priority, journaling,
privacy and authentication levels, and the lifetime of the message. In conventional (non
RPC) message-queuing applications, you specify these properties by calling the MSMQ
API functions or COM object methods, which are described in the MSMQ SDK
documentation. RPC client applications can set certain properties for remote procedure
calls by calling RpcBindingSetOption and RpcBindingSetAuthlnfo. Once set, the
properties remain in effect for each message until the client application resets them.

A message queue has its own set of properties, apart from those of the messages.
These properties uniquely identify a queue and define the class of service that the queue
provides, the privacy and authentication levels required for messages in this queue, and
whether the messages are to be part of a distributed transaction. As with message
properties, you specify the properties of a message queue by calling the MSMQ API
functions or COM object methods, which are described in the MSMQ documentation.
However, an RPC server application can specify properties of its own receive queue
when it calls RpcServerUseProtseqEpEx to establish the binding.

Using MSMQ as an RPe Transport
The RPC subsystem supports using MSMQ as a transport in synchronous and
asynchronous modes.

Synchronous mode uses conventional remote procedure calls. These calls use well
known endpOints and the message queue transport, ncadg_mq, as the transport
protocol. In synchronous mode, your remote procedures can have [in] and [out]
parameters and can use the standard RPC security services. The RPC subsystem
creates a reply queue for remote calls containing [out] parameters. The synchronous
mode is useful for applications where the client needs to receive data from the server.
The main limitation of this mode is that, as with conventional remote procedure calls,
both the client and server must be running and remain running for the duration of the
call.

Asynchronous mode lets client applications make calls to the server and return
immediately, regardless of the state of the server application or the server computer. It
also makes a subset of MSMQ features available for managing message queues and
information flow. The RpcBindingSetOption function lets you control quality of service,
call priority, journaling, security, and the lifetime of the server process queue. The
RpcServerUseProtseqEpEx function lets you specify attributes of the server process
queue, such as queue persistence, authentication, and encryption.

You implement asynchronous MSMQ as you would synchronous MSMQ. You must use
well-known endpOints, and define the transport protocol to be ncadg_mq. In your IDL
file, apply the message attribute to the functions that use asynchronous message
queuing. Note that message functions can have [in] parameters only.

284 Volume 3 RPC and WNet

System Requirements for RPC-MQ Applications
To use the message-queuing transport in an RPC client/server application, the server
and client computers must have the appropriate operating system platform and
Message Queuing software installed.

Requirements for server computers are:

• Microsoft® Windows 95 with the second release of DCOM 95, Windows 98,
Windows NT Server version 4.0 with Service Pack 3 or later, including Windows 2000
Professional.

• SQl Server version 6.5 or later.

• Message Queuing Primary Enterprise Controller or Primary Site Controller.

• RPC server-side transport Dll (RpcMqSvr.dll).

Requirements for client computers are:

• Windows 98 or Windows NTlWindows 2000. Support for Windows 95 is available
with the second release of DCOM 95.

• Microsoft Message Queuing Client.

• RPC client-side transport Dll (RpcMqCl.dll).

When the MSMQ components are installed on the client and server computers, the
system registries are automatically configured to include the ncadg_mq message
queuing transport protocol for remote procedure calls. For detailed information on
installing the MSMQ components see the Windows NT or Windows 2000 online help.

To build your RPC-MQ application you need the following:

• Windows NTIWindows 2000. Windows NT 4.0 Service Pack 3 contains new
RPC runtime Dlls, new RPC header files, and a new Rpcss.exe.

• MIDl version 3.1.76 or later.

Developing RPC-MQ Applications
Very little effort is necessary to take advantage of the MSMQ transport in your RPC
application. For synchronous messaging you need only specify the message queue
transport (ncadg_mq) as the protocol sequence. The ncadg_mq protocol supports all
of the standard datagram features except broadcasting calls. Also, note that currently
the message-queue transport does not support dynamic endpOints.

Chapter 21 RPC Message Queuing 285

By applying the [message] attribute to remote procedure declarations in the IDL file, you
automatically implement asynchronous-mode message queuing for those calls. This
makes it possible for the client and server applications to control many of the properties
associated with messages and message queues, including:

• Quality of service

• Acknowledgment of receipt

• Journaling

• Call priority

• Persistence of Server Process Queue

Quality of service is the effort that the transport will make to deliver the call to the server
process. An express delivery will be queued in memory, so it is fairly fast, but the call will
be lost if a computer or network connection goes down at the wrong time. A recoverable
delivery will be posted to a disk file until it is delivered, so the call will not be lost, even in
the face of a computer crash. This gives guaranteed delivery, but at a cost in
performance as each call is written to disk.

You can also tell the MSMQ transport to wait for acknowledgment that the call reached
the destination (server) queue before returning. ChOOSing this option blocks the client
until the server acknowledges the call, otherwise control returns to the client immediately
upon making the call.

By using journaling, calls can be logged to disk. If journaling is turned on, each call is
logged to disk as it is transmitted to the next hop on its way to the server process.

Call priority can be used in conjunction with the RPC [message] function attribute to
allow calls with higher priority to take precedence over calls with lower priority, even if
the high priority calls arrive later. Call priority will also work in a limited fashion with
synchronous RPC, but synchronous RPC calls cannot stack up in the same manner as
asynchronous calls.

The client process controls all of the above properties by calling RpcBindingSetOption.
Once set, these properties remain in effect until they are changed in another call to
RpcBindingSetOption.

The RPC server process can control the lifetime of its receive queue. By default the
queue is deleted when the server process exits. However, the server process can use
RpcServerUseProtseqEpEx when setting up its endpoint to tell the transport to allow
the queue to continue to exist and to accept call requests even when the server process
is not running. In this case, the calls are queued up and executed later, when the server
process comes back online.

286 Volume 3 RPC and WNet

Note If you are using asynchronous [message] calls in an interface, you must register
the interface by calling RpcServerRegisterlf or RpcServerRegisterlfEx before calling
RpcServerUseProtseqEpEx(ncadg_mq). Once you turn on the protocol sequence, any
calls already waiting on the queue for the server will begin to be read off the queue. If
the corresponding RPC interface has not been registered, the calls will fail. This situation
can happen if you have a setup a permanent endpoint for your remote procedure calls,
the server has been shutdown, and clients have continued to send calls to the server.
These calls will be stacked up in the queue, waiting to be read once the server comes
back online.

RpcBindingSetOption, RpcServerUseProtseqEpEx, message, ncadg_mq

MSMQ Security Services
Synchronous RPC messages can use any of the security features available from the
RPC run time. See Security for more details.

Asynchronous [message] calls cannot use RPC security because there is no handshake
between client and server. In fact, the server may not even be running at the time of the
call. To access the security services provided by Message Queuing Services (MSMQ),
the client application should call RpcBindingSetAuthlnfo to control the level of
authentication and privacy for its calls to the server.

The server application can call RpcBindinglnqAuthClient from within a remote
procedure call to determine the security level for that call. The mapping between RPC
security constants and MSMQ security is shown in the following table.

RPC security level Description

RPC_AUTHN_LEVEL_NONE

RPC_AUTHN_LEVEL_PKT _INTEGRITY

The call is not authenticated or encrypted.

The call is authenticated using MSMQ
security.

The call is authenticated and encrypted as it
travels between the client and server queue.

The server can also force call authentication and encryption by calling
RpcServerUseProtseqEpEx and setting the RPC_C_MQ_AUTHN_LEVEL_NONE,
RPC_C_MQ_AUTHN_LEVEL_PKT _INTEGRITY and
RPC_C_MQ_AUTHN_LEVEL_PKT _PRIVACY flags in the RPC_POLICY structure.

CHAPTER 22

Remote Procedure Calls
Using HTTP

287

Internet browser programs commonly employ the Hypertext Transport Protocol (HTTP)
as the primary means of browsing the World Wide Web. HTTP, therefore, sees
extensive usage on most computers today. Microsoft® Corporation has extended the
capabilities of its Internet Information Server (liS) to provide remote procedure call
services using HTTP.

Microsoft HTTP RPC provides RPC clients with the ability to securely connect across the
Internet to RPC server programs and execute remote procedure calls. If the client can
make an HTTP connection to a computer on a remote network running an liS, it can
(subject to access restrictions) connect to any available server on the remote network
and execute remote procedure calls. The RPC client and server programs can connect
across the Internet-even if both are behind firewalls on different networks.

Using HTTP as an RPe Transport
RPC over HTTP supports synchronous remote procedure calls. It enables client
programs to use the Internet to execute procedures provided by server programs on
distant networks. HTTP RPC. tunnels its calls through an established HTTP port.
Thus, its calls can cross network firewalls on both the client and server networks.

HTTP RPC routes its calls to an Internet Information Server (liS) located on the RPC
server's network. The liS server establishes and maintains a connection to the RPC
server. It serves as a proxy, dispatching remote procedure calls to the RPC server and
sending the server's replies back across the Internet to the client application. This
process is illustrated in Figure 22-1.

The diagram shows a firewall on the client application's network. This is not required for
HTTP RPC to operate. However, if the client network does have a firewall, it will also
need a proxy server program such as Microsoft Proxy Server.

288 Volume 3 RPe and WNet

The client's
network
proxy/firewaU
sends the
RPC server
program's
reply to the
RPC client
application.

The client's
network
proxy/tirewall
receives the
reply

4 ..
• The dient's

network
proxylfirewall
sends the remote
procedure call
over the Internet
totheRPC
server's network.

The RPC dient
executes a
remote procedure
call. It routes the
call to its network
proxylfirewall.

The RPC
server's network
firewall forwards
the reply across
the Intemet.

..
The RPC server's
netvvork firewall
receives the
remote procedure
call.

The network
firewall sends
the call to the
liS server.

The liS selVer
sends the remote
procedure call to
the RPC server.

Figure 22-1: A Firewall on the Client Applications' Network.

The liS server forwards
the reply to the network
firewall.

The RPC server
executes the call
and sends its reply
to the liS server.

When the client program issues a remote procedure call using HTTP as the transport,
the RPC run-time library on the client contacts the liS. It typically uses port 80. The client
stub must negotiate a TCP/IP connection to the RPC server program on the remote
network. To facilitate this, the liS acts as a proxy. It contacts the RPC server program
and establishes a TCP/IP connection. The client and the liS maintain their HTTP
connection across the Internet and use it as a pure TCP/IP connection. The client's
HTTP connection to the liS can pass through a firewall (subject to appropriate access
permissions) if one is present. The server can then execute the remote procedure call
and use the connection through the liS to reply to the client.

If either the client or the server disconnects for any reason, the liS will detect it and end
the RPC session. As long as the session continues, the liS will maintain its connections
to the client and the server. It will forward remote procedure calls from the client to the
server, and send replies from the server to the client.

Your RPC client program can tunnel its RPC calls through the Internet by creating a
string binding of the form:

Chapter 22 Remote Procedure Calls Using HTTP 289

Where:

• objecLuuid specifies an RPC object UUID. For details see Generating Interface
UUIDs and String UUID.

• ncacn_http selects the protocol sequence specification for HTTP RPC. See
PROTSEQ and String Binding.

• rpc_server is the network address of the computer that is executing the RPC server
process.

• endpoint specifies the TCP/IP port that the RPC server process listens to for remote
procedure calls. See Finding Endpoints.

• HttpProxy optionally specifies an HTTP proxy server on the RPC client's network,
such as Microsoft Proxy Server. If a proxy server is selected, no port number is
specified, the RPC stub uses port 80 by default.

• RpcProxy specifies the address and port number of the liS computer that acts as a
proxy to the RPC server. You only need to specify this if the RPC server process
resides on a different computer than the liS RPC proxy. If you do not specify a port
number, the RPC client stub uses port 80 by default.

For more information on creating string bindings, see Binding and Handles.

Note If Microsoft® Internet Explorer is installed on the client program's computer and
your client does not specify an HttpProxy in its string binding, the RPC client stub will
search the registry on the client computer for an HttpProxy entry. If it finds one, it will
use the proxy specified in the registry entry.

Suppose, for instance, your client program needs to connect across the Internet to an
RPC server on a computer called Major7.somewhere.com. Further, suppose that the
RPC server program and the liS both run on Major7.somewhere.com. The RPC Server
program listens to port 2225. Your client would use the string binding:

If, however, the liS runs on a computer called WebSvr1.somewhere.com and the RPC
server program uses dynamic endpoints, your client would use the following string
binding:

The RPC client stub will contact the liS on WebSvr1.somewhere.com and use it as a
proxy to connect to the RPC server program on Major7.somewhere.com.

If the client network uses a firewall and an Internet proxy server program called myproxy,
you would need to modify the client's string binding to:

290 Volume 3 RPe and WNet

This directs the client to connect to the RPe server program on Major7.somewhere.com.
To do this, the client will first use port 80 to connect the program myproxy. This will give
the client program access to the Internet. Using the Internet, the client program next
connects to the liS on WebSvr1.somewhere.com. The liS RPe proxy will establish a
connection to the RPe server program running on Major7.somewhere.com.

HTTP RPe Security
HTTP RPe utilizes two types of security:

• It restricts access to remote server procedures based on the normal RPe security
mechanisms. For a detailed presentation, see Security.

• It provides security through the liS.

Note Since the liS serves as a proxy to connect the RPe client and server programs
across the Internet, it also can restrict unauthorized access to servers.

The liS security configuration is based on allowed computer and port ranges. The ability
to use HTTP RPe is controlled through two registry entries on the computer running the
liS. The first entry is a flag that turns the RPe Proxy on or off. The second is an optional
list of computers to which the proxy can forward RPe calls.

By default, a client that contacts an liS to tunnel RPe calls over HTTP cannot access
any RPe server processes anywhere. If the ENABLED flag is not defined and set to a
nonzero value, the liS will disable the HTTP RPe proxy. If the ENABLED flag is defined
and set to a nonzero value, a client can connect to RPe servers on the computer
running liS. To enable the client to tunnel to an RPe server process on another
computer, you must add a registry entry to the liS computer's list of RPe servers.

The following example demonstrates how to configure the registry to allow clients to
connect to servers across the Internet:

The Valid Ports entry is a REG_SZ entry containing a list of computers to which the liS
RPC proxy is allowed to forward RPe calls, and the ports it should use to connect to the
RPC servers. The REG_SZ entry takes the form shown in the following example:

Chapter 22 Remote Procedure Calls Using HTIP 291

In this example, the liS can forward HTTP RPC calls to the server Rosco on ports 593
and 2000 through 8000. It can also send them to any server whose name begins with
"Data". It will connect on ports 4000 through 8000.

The liS reads the Enabled and Valid Ports registry entries when it starts up. If you
change one or both of these entries, you will need to stop and restart the WEB service
using the Internet Service Manager for the new values to take effect.

System Requirements for HTTP RPC
Microsoft® RPC supports HTTP RPC as shown in the following table.

Platform Supports Comments

Windows® 2000 Clients and HTTP RPC server program and the liS can be
servers running on different computers.

Windows NT® 4.0 Clients and HTTP RPC server program must be running on the
with SP4 servers same computer as the liS.

Windows 95/98 Clients Does not support HTTP RPC servers. Windows 95
clients must have DCOM 95 v1 .20r later installed.

MS-DOS® NIA Does not support HTTP RPC clients or servers.

Macintosh NIA Does not support HTTP RPC clients or servers.

In addition, the following requirements apply:

• Windows NT 4.0 with Service Pack 4 requires the use of liS 4.0 or later.

• The liS HTTP RPC proxy runs on Windows NT Server or Windows 2000 Server. It
does not run on Windows NT Workstation or Windows 2000 Professional. Nor does it
run on Personal Web Server for Windows 95IWindows 98.

• If the liS is running on Windows 2000 Server, the HTTP RPC server program can run
on any computer that the liS has permissions to access. Therefore, it can run on the
same computer as the liS, or a different computer.

Configuring Computers for HTTP RPC
To use HTTP as a transport protocol for RPC, you or your network administrator must
configure the Internet Information Server (liS) on the server program's network. The liS
has to be set so that it accepts HTTP commands to establish a connection to an RPC
server program.

Also, you may need to enable COM Internet Services (CIS) on your Microsoft®
Windows® 2000 liS server system.

292 Volume 3 RPe and WNet

~ To enable CIS
1. Click Settings from the Windows 2000 Start menu in the Taskbar.

2. Select Control Panel, and click Add/Remove Programs.

3. From the Add/Remove Programs dialog box, select Add/Remove Windows
Components.

This will start the Windows Component Wizard.

4. Click Next.

5. Select Networking Services and click Details.

6. Select COM Internet Services Proxy, then click OK.

This will install CIS.

7. After installation is complete, either reboot the system, or restart liS.

In addition, you (or the network administrator of the client's network) may also need to
configure the proxy server program on the network on which the RPC client program
runs. This allows the RPC client program to send HTTP commands through the client
network's firewall. For more information on configuring the client network's proxy server,
see the documentation provided by the manufacturer of the proxy server program.

CHAPTER 23

RPC Samples

The Platform SDK includes sample programs that demonstrate a variety of Remote
Procedure Call (RPC) concepts, as follows:

• ASYNCRPC illustrates the structure of an RPC application that uses asynchronous
remote procedure calls. It also demonstrates various methods of notification of the
call's completion.

• CALLBACK demonstrates use of the [callback] attribute.

293

• CLUUID demonstrates use of the client-object UUID to enable a client to select from
multiple implementations of a remote procedure.

• DATA directory contains four programs: DUN ION illustrates discriminated
(nonencapsulated) unions; INOUT demonstrates [in, out] parameters; REPAS
demonstrates the [represenCas] attribute; XMIT demonstrates the [transmiCas]
attribute.

• DICT is a remote splay tree-based dictionary program that uses the
[impliciChandle], [context_handle], [in] attribute, and [out] attribute.

• DOCTOR is an RPC psychotherapy application that demonstrates arrays, strings, and
the [size_is] attribute.

• DYNEPT demonstrates a client application managing its connection to the server
through dynamic endpoints.

• DYNOUT demonstrates how to allocate memory at a server for an n-byte object and
pass it back to the client as an [out]-only parameter. The client then frees the
memory. This technique allows the stub to call the server without knowing in advance
how much data will be returned.

• HANDLES directory contains three programs, AUTO, CXHNDL, USRDEF, which
demonstrate [auto_handle], [context_handle], and generic (user-defined) handles,
respectively.

• HELLO is a client/server implementation of "Hello, world."

• INTEROP demonstrates portability between Open Software Foundation-Distributed
Computing Environment (OSF-DCE) and Microsoft® RPC.

• MANDEL is a distributed fractal drawing program. It uses [ref] pointers, the
[impliciChandle] attribute, and handle_t primitive types.

• NS directory contains the NHELLO program, which demonstrates name service
usage. The CDS directory contains the files that describe the gateway protocol to the
DCE Cell Directory Service (CDS).

294 Volume 3 RPe and WNet

• OBJECT directory contains two programs that demonstrate OLE custom interfaces.
CALLAS uses the [call_as] attribute to transmit a nonremotable interface. OHELLO
demonstrates correct reference counting and shutdown behavior for a multiple-use
local server. OHELLO also demonstrates how to use the Win32 registry functions to
install a local server and a proxy DLL in the registry.

• PICKLE directory contains two programs: PICKLP demonstrates data procedure
serialization; PICKL T demonstrates data type serialization; both programs use the
[encode] and [decode] attributes.

• PIPES demonstrates the use of the pipe type constructor.

• RPCSSM demonstrates the RPCSS memory management model.

• RPCSVC demonstrates the implementation of a Windows NT®lWindows® 2000™
service with RPC.

• STROUT demonstrates how to allocate memory at a server for a two-dimensional
object (an array of pointers) and pass it back to the client as an [out]-only parameter.
The client then frees the memory. This technique allows the stub to call the server
without knowing in advance how much data will be returned.

This program also allows the user to compile either for UNICODE or ANSI.

You can browse through most of these files in Reference/Code Samples/NETDS/RPC in
the Platform SDK. All of the source files and makefiles for these programs are located in
the SDK at mstools\samples\rpc.

295

CHAPTER 24

RPC Data Types, Structures,
and Constants

This chapter describes the structures, data types, and constants that Microsoft RPC
uses.

RPe Structures

GUID

This section explains the structures defined and used by Microsoft RPC.

• GUID • RPC_POLICY

• NDR_USER_MARSHAL_INFO • RPC_PROTSEO_VECTOR

• RPC_ASYNC_STATE • RPC_SECURITY _OOS

• RPC_BINDING_ VECTOR • RPC_STATS_VECTOR

• RPC_CLlENT _INTERFACE • SEC_WINNT _AUTH_IDENTITY

• RPC_DISPATCH_TABLE • UUID
• RPC_IF_ID • UUID_ VECTOR

• RPC_IF _10_ VECTOR

GUIDs identify objects such as interfaces, manager entry-point vectors (EPVs), and
class objects. A GUID is a 128-bit value consisting of one group of 8 hexadecimal digits,
followed by three groups of 4 hexadecimal digits each, followed by one group of 12
hexadecimal digits. The following example shows the. grolJpings of hexadecimal digits in
aGUID ..

The GUID structure stores a GUID.

296 Volume 3 RPe and WNet

Members
Data1

Specifies the first 8 hexadecimal digits of the GUID.

Data2
Specifies the first group of 4 hexadecimal digits.

Data3
Specifies the second group of 4 hexadecimal digits.

Data4
Specifies an array of 8 bytes. The first 2 bytes contain the third group of 4
hexadecimal digits. The remaining 6 bytes contain the final 12 hexadecimal digits.

Remarks
GUIDs are the Microsoft implementation of the distributed computing environment (DCE)
universally unique identifier (UUID).

The RPC run-time libraries use UUIDs to check for compatibility between clients and
servers and to select among multiple implementations of an interface.

The Win32 access-control functions use GUIDs to identify the type of object that an
object-specific ACE in an access-control list (ACL) protects.

Version: Requires MAPI 1.0 or later.
Header: Declared in Mapiguid.h.

The NDR_USER_MARSHAL_INFO structure holds information about the state of an
RPC call that can be passed to wire_marshal and usecmarshal helper functions.

Members
Information Level

Chapter 24 RPC Data Types, Structures, and Constants 297

The information level of the returned data. Currently only a value of 1 is defined.

Level1 Members
Buffer

Points to the beginning of the marshaling buffer tht is available for use by the helper
function. If no buffer is available this field is NULL.

BufferSize
The size, in bytes, of the marshaling buffer thatis available for use by the helper
function. If no buffer is available, BufferSize is zero.

pfnAllocate
The function that RPC uses to allocate memory for the application. An example of the
use of this function is to create a node.

pfnFree
The function that RPC uses to free memory for the application. An example of the use
of this function is to free a node.

pRpcChannelBuffer
If the current call is for a De OM interface, this member is a pOinter to the channel
buffer that RPC uses for the call. Otherwise, this member is NULL.

Reserved
Reserved for future use.

Remarks
The function NdrGetUserMarshallnfo fills this structure with supplemental information
for the usecmarshal and wire_marshal helper functions <type> _UserSize,
<type> _UserMarshal, <type> _UserUnmarshal, and <type> _UserFree. This
information supplements the pFlags parameter that is passed to these helper functions.
Not all of these fields will contain valid information in all contexts.
Level1.pRpcChannelBuffer is only vali<;l for DCOM interfaces, and the buffer fields are
only valid when NdrGetUserMarshallnfo is called from <type> _UserMarshal or
<type> _UserUnmarshal.

298 Volume 3 RPC and WNet

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rpcndr.h.
Library: Use Rpct4.lib.

RPC_ASYNC_STATE
The RPC_ASYNC_STATE structure holds the state of an asynchronous remote
procedure call. PRPC_ASYNC_STATE is a handle to this structure, used to wait for,
query, reply to, or cancel asynchronous calls.

Members
Size

Chapter 24 RPC Data Types, Structures, and Constants 299

The size, in bytes, of this structure. The environment sets this member when
RpcAsynclnitializeHandle is called. Do not modify this member.

Signature
The run-time environment sets this member when RpcAsynclnitializeHandle is
called. Do not modify this member.

Flags
The flags member can be set to the following values.

Constant Description

RPC_C_NOTIFY _ON_SEND_COMPLETE Posts a notification message when
the asynchronous operation is
complete.

RPC_C_INFINITE_ TIMEOUT Does not return from the
asynchronous operation until it is
complete.

These flags are used with DCEpipes, which allow applications to send or receive
data in multiple blocks. Programs can either send a continuous stream of data or wait
for each block to be transmitted before it sends the next block. If it does not wait, the
RPC run-time library will buffer the output until it can be sent. When the data
transmission is complete, the RPC library sends the application a notification. If an
application specifies the RPC_C_NOTIFY _ON_SEND_COMPLETE flag, the RPC
library sends it a member of the RPC_NOTIFICATION_TYPES enumeration after it
completes each send operation.

Lock
The run-time environment sets this member when RpcAsynclnitializeHandle is
called. Do not modify this member.

Stublnfo
Reserved for use by the stubs. Do not use this member.

Userlnfo
Use this member for any application-specific information that you want to keep track
of in this structure.

Runtimelnfo
Reserved for use by the RPC run-time environment. Do not use this member.

Event
Specifies the type of event that occurred. The RPC run-time environment sets this
field to a member of the RPC_ASYNC_EVENT enumeration.

300 Volume 3 RPC and WNet

NotificationType
Specifies the kind of notification in use. The notification type may be any of the values
defined in RPC_NOTIFICATION_TYPES.

APe
Structure used for Windows asynchronous procedure call (APC) notifications.

NotificationRoutine
Calls the user-defined APC notification routine.

hThread

IOC

The handle to the thread making the asynchronous call. A value of zero indicates
the current thread.

Structure used for notification by the I/O completion port.

hlOPort
Handle to the I/O completion port.

dwNumberOfBytesTransferred
Set by the calling application (either client or server).

dwCompletionKey
Set by the calling application (either client or server).

IpOverlapped
The address of the OVERLAPPED structure containing state information needed
for I/O completion.

HWND
Structure used for notification by a Windows message. The IParam parameter points
to the asynchronous handle for the call. Not implemented in Windows 2000.

hWnd
Identifies the window to which the message should be posted.

Msg
The message to be posted.

hEvent
Handle used for notification by an event.

NotificationRoutine
DCOM uses this internally for direct callbacks. Do not use this member.

Reserved [4]
Reserved for compatibility with future versions, if any. Do not use this member.

Remarks
The client allocates space for the RPC_ASYNC_STATE structure and an associated
handle, and calls RpcAsynclnitializeHandle to initialize the structure. After the run-time
environment has successfully initialized the structure, the client initializes the
NotificationType, NotificationRoutine, hThread, and Userlnfo fields.

Chapter 24 RPC Data Types, Structures, and Constants 301

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rpcasync.h.

Asynchronous RPC, RpcAsyncAbortCall, RpcAsyncCancelCall,
RpcAsyncCompleteCall, RpcAsyncGetCallHandle, RpcAsyncGetCallStatus,
RpcAsynclnitializeHandle, RpcAsyncRegisterlnfo, RpcServerTestCancel

RPC_BINDING_ VECTOR
The RPC_BINDING_ VECTOR structure contains a list of binding handles over which a
server application can receive remote procedure calls.

Members
Count

Specifies the number of binding handles present in the binding-handle array
BindingH.

BindingH
Specifies an array of binding handles that contains Count elements.

Remarks
The binding vector contains a count member (Count), followed by an array of binding
handle (BindingH) elements.

The RPC run-time library creates binding handles when a server application registers
protocol sequences. To obtain a binding vector, a server application calls
RpcServerlnqBindings.

A client application obtains a binding vector of compatible servers from the name-service
database by calling RpcNsBindingLookupNext.

In both routines, the RPC run-time library allocates memory for the binding vector. An
application calls RpcBindingVectorFree to free the binding vector.

302 Volume 3 RPC and WNet

To remove an individual binding handle from the vector, the application must set the
value in the vector to NULL. When setting a vector element to NULL, the application
must:

• Free the individual binding.

• Not change the value of Count.

Calling RpcBindingFree allows an application to both free the unwanted binding handle
and set the vector entry to a NULL value.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace,
RpcEpUnregister, RpcNsBindingExport, RpcNsBindingLookupNext,
RpcNsBindingSelect, RpcServerlnqBindings

RPC_CLIENT _INTERFACE

Remarks
The RPC_CLlENT _INTERFACE structure is part of the private interface between the
run-time libraries and the stubs. Most distributed applications that use Microsoft RPC do
not need this structure.

The data structure is defined in the header file Rpcdcep.h.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdcep.h.

Remarks
The RPC_DISPATCH_TABLE structure is part of the private interface between the run
time libraries and the stubs. Most distributed applications that use Microsoft RPC do not
need this structure.

Chapter 24 RPC Data Types, Structures, and Constants 303

The structure is defined in the header file Rpcdcep.h.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdcep.h.

The RPC_IF _10 structure contains the interface UUID and major and minor version
numbers of an interface.

Members
Uuid

Specifies the interface UUID.

VersMajor
Specifies the major version number, an integer from 0 to 65535, inclusive.

VersMinor
Specifies the minor version number, an integer from 0 to 65535, inclusive.

Remarks
An interface identification is a subset of the data contained in the interface-specification
structure. Routines that require an interface identification structure show a data type of
RPC_IF _10. In those routines, the application is responsible for providing memory for the
structure.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

Rpclflnqld

304 Volume 3 RPC and WNet

The RPC_IF _10_ VECTOR structure contains a list of interfaces offered by a server.

Members
Count

Specifies the number of interface-identification structures present in the array IfHandl.

IfHandl
Specifies an array of pOinters to interface-identification structures that contains Count
elements.

Remarks
The interface identification vector contains a count member (Count), followed by an
array of pointers to interface identifiers (RPC_IF _10).

The interface identification vector is a read-only vector. To obtain a vector of the
interface identifiers registered by a server with the run-time library, an application calls
RpcMgmtlnqlflds. To obtain a vector of the interface identifiers exported by a server, an
application calls RpcNsMgmtEntrylnqlflds.

The RPC run-time library allocates memory for the interface identification vector. The
application calls RpclfldVectorFree to free the interface identification vector.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

RpclfldVectorFree, RpcMgmtlnqlflds, RpcNsMgmtEntrylnqlflds

The RPC_POLICY structure contains flags that determine port allocation and binding to
multi homed computers, using the ncacn_ip_tcp and ncadg_ip_udp protocols, and
message queue properties, over the ncadg_mq protocol.

Chapter 24 RPC Data Types, Structures, and Constants 305

Members
Length

The size, in bytes, of the RPC_POLICY structure. The Length member allows
compatibility with future versions of this structure, which may contain additional fields.
Always set the Length equal to sizeof(RPC_POLlCY) when you initialize the
RPC_POLICY structure in your code.

EndpointFlags
A set of flags that determine the attributes of the port or ports where the server
receives remote procedure calls. You can specify more than one flag (by using the
bitwise OR operator) from the set of values for a given protocol sequence. The
following table lists the possible values for the EndpointFlags member.

Value Description

o
RPC_C_USE_INTERNET _PORT

Specifies the system default.

Allocates the endpoint from one of the ports
defined in the registry as "Internet Available."
Valid only with ncacn_ip_tcp and
ncadg_ip_udp protocol sequences.

Allocates the endpoint from one of the ports
defined in the registry as "Intranet Available."
Valid only with ncacn_ip_tcp and
ncadg_ip_udp protocol sequences.

The server process-receive queue will be
deleted automatically when the RPC server
exits. Any outstanding calls still in the queue
will be lost. This is the default. Valid only with
the ncadg_mq protocol sequence.

Specifies that the server process-receive
queue persists after the server process exits.
The default is that the queue is deleted when
the server process terminates. Valid only with
ncadg_mq protocol sequence.

If the receive queue already exists because it
was opened previously as a permanent queue,
then clear any outstanding calls waiting in the
queue. Valid only with the ncadg_mq protocol
sequence only.

(continued)

306 Volume 3 RPC and WNet

(continued)

Value

RPC_C_MQ_USE_EXISTING
SECURITY

RPC_C_MQ_AUTHN_LEVEL_
NONE

RPC_C_MQ_AUTHN_LEVEL_
PKT _INTEGRITY

RPC_C_MQ_AUTHN_LEVEL_
PKT _PRIVACY

Description

If the receive queue already exists, then don't
modify its existing settings for authentication or
encryption. Valid only with the ncadg_mq
protocol sequence.

The server process-receive queue accepts
only authenticated calls from clients. The
default is that both authenticated and
unauthenticated calls are accepted. Valid only
with ncadg_mq protocol sequence.

Calls to server are encrypted. The default is
that both encrypted and unencrypted calls are
accepted. Valid only with ncadg_mq protocol
sequence.

The server's receive queue accepts all calls
from clients. This is the default authentication
level. Valid only with the ncadg_mq protocol.

Sets the server's receive queue to only accept
client calls that have authentication level
RPC_C_AUTHN_LEVEL_PKT _INTEGRITY or
RPC_C_AUTHN_LEVEL_PKT _PRIVACY.
Valid only with the ncadg_mq protocol
sequence.

Sets the server's receive queue to only accept
client calls that have authentication level
RPC_C_AUTHN_LEVEL_PKT _PRIVACY.
Calls with a lower authentication level are
ignored. Valid only with the ncadg_mq protocol
sequence.

Note If the registry does not contain any of the keys that specify the default policies,
then the EndpointFlags member will have no effect at run time. If a key is missing or
contains an invalid value, then the entire configuration for that protocol
(ncacn_ip_tcp, ncadg_ip_udp or ncadg_mq) is marked as invalid and all calls to
RpcServerUseProtseq* functions over that protocol will fail.

NICFlags
The NICFlags member specifies the policy for binding to Network Interface Cards
(NICs). The following table lists the possible values for the NICFlags member.

Value

o

Remarks

Chapter 24 RPC Data Types, Structures, and Constants 307

Description

Binds to NICs on the basis of the registry settings.
Always use this value when you are using the
RPC_POLICY structure to define message-queue
properties.

Overrides the registry settings and binds to all
NICs. If the Bind key is missing from the registry,
then the NICFlags member will have no effect at
run time. If the key contains an invalid value, then
the entire configuration is marked as invalid and
all calls to RpcServerUseProtseq* will fail.

You can use the RPC_Policy structure to set policies for remote procedure calls at run
time. These policies include:

• Message queuing: Allows the server to specify message-queuing properties, such as
security, quality of delivery, and the lifetime of the server-process queue. This policy is
only effective for remote calls over the messagecqueuing transport (ncadg_mq).

• Port allocation for dynamic ports: You can select the endpoint from the ports or sets of
ports that are defined in the system registry as being Internet-available or intranet
available.

• Selective binding: Allows multihomed machines to bind selectively to NICs.

Note Port allocation and selective binding policies are effective only for remote calls
over TCP (ncacn_ip_tcp) and UDP (ncadg_ip_udp) connections. For more
information, see Configuring the Windows NT and Windows 2000 Registry for Port
Allocations and Selective Binding.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

RPC Message Queuing, Configuring the Windows NT and Windows 2000 Registry for
Port Allocations and Selective Binding, RpcServerUseAIiProtseqsEx,
RpcServerUseAIIProtseqslfEx, RpcServerUseProtseqEx,
RpcServerUseProtseqEpEx, RpcServerUseProtseqlfEx

308 Volume 3 RPC and WNet

The RPC_PROTSEQ_ VECTOR structure contains a list of protocol sequences the RPC
run-time library uses to send and receive remote procedure calls.

Members
Count

Specifies the number of protocol-sequence strings present in the array Protseq.

Protseq
Specifies an array of pointers to protocol-sequence strings. The number of pointers
present is specified by the Count member.

Remarks
The protocol-sequence vector contains a count member (Count), followed by an array of
pointers to protocol-sequence strings (Protseq).

The protocol-sequence vector is a read-only vector. To obtain a protocol-sequence
vector, a server application calls RpcNetworklnqProtseqs. The RPC run-time library
allocates memory for the protocol-sequence vector. The server application calls
RpcProtseqVectorFree to free the protocol-sequence vector.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

RpcNetworklnqProtseqs, RpcProtseqVectorFree

The RPC_SECURITY _QOS structure defines security quality-of-service settings on a
binding handle.

Windows NT® 4.0: Limited functionality.
Windows 2000: Full functionality.
Windows® 95/98: Clients.

Chapter 24 RPC Data Types, Structures, and Constants 309

Members
Version

Ensures compatibility with future extensions to the RPC security functions that
reference this structure. Always assign the constant
RPC_C_SECURITY _QOS_ VERSION to this member.

Capabilities
The security services being provided to the application.

Value Description

RPC_C_QOS_CAPABILITIES_
DEFAULT

RPC_C_QOS_CAPABILITIES_
MUTUAL_AUTH

RPC_C_QOS_CAPABILITIES_
MAKE_FULLSIC

RPC_C_QOS_CAPABILITIES_
ANY_AUTHORITY

IdentityTracking

Uses when no provider-specific
capabilities are needed.

Not supported on Windows NT 4.0.

Not currently implemented.

Accepts the client's credentials even if
the certificate authority (CA) is not in the
server's list of trusted CAs. This constant
is used only by the SCHANNEL SSP.

Sets the context tracking mode. Should be set to one of the following values:

Value

Impersonation Type

Description

Security context is created only once
and is never revised during the entire
communication, even if the client side
changes it.

Context is revised whenever the
Logonld in the client's token is changed

The level at which the server process can impersonate the client.

310 Volume 3 RPC and WNet

Value

RPC_C_IMP _LEVEL_DEFAULT

RPC_C_IMP _LEVEL_ANONYMOUS

Remarks

Description

Uses the default impersonation level.

Client does not provide identification
information to the server.

Server can obtain information about
client security identifiers and privileges,
but cannot impersonate the client.

Server can impersonate the client's
security context on its local system, but
not on remote systems.

Not supported on Windows NT 4.0. See
Remarks.

The client-side security functions RpcBindinglnqAuthlnfoEx and
RpcBindingSetAuthlnfo use the RPC_SECURITY_QOS structure to inquire about, or
to set, the security quality of service for a binding handle.

Note Windows NT and Windows 2000 do not support the delegation-impersonation
level natively, but the security package may have the ability to provide it. In the current
implementation, RPC always requests delegation level-security context from the security
package for unauthenticated transports. It maps the requested level to the native level
for authenticated transports (named pipes and LRPC).

The Windows NT LAN Manager (NTLM) security package, the default security package
in Windows NT 4.0, does not currently support delegation and ignores the caller's
request.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

RpcBindinglnqAuthlnfoEx, RpcBindingSetAuthlnfoEx

The RPC_STATS_VECTOR structure contains statistics from the RPC run-time library
on a per-server basis.

Members
Count

Chapter 24 RPC Data Types, Structures, and Constants 311

Specifies the number of statistics values present in the array Stats.

Stats
Specifies an array of unsigned long integers representing server statistics that
contains Count elements. Each array element contains an unsigned long value from
the following list.

Constant Statistics

RPC_C_STATS_CALLS_IN The number of remote procedure calls received by
the server.

RPC_C_STATS_CALLS_OUT The number of remote procedure calls initiated by
the server.

RPC_C_STATS_PKTS_IN The number of network packets received by the
server.

Remarks

The number of network packets sent by the
server.

The statistics vector contains a count member (Count), followed by an array of statistics.

To obtain run-time statistics, an application calls RpcMgmtlnqStats. The RPC run-time
library allocates memory for the statistics vector. The application calls
RpcMgmtStatsVectorFree to free the statistics vector.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

RpcMgmtlnqStats, RpcMgmtStatsVectorFree

312 Volume 3 RPC and WNet

The SEC_WINNT_AUTH_IDENTITY structure allows you to pass a particular user name
and password to the run-time library for the purpose of authentication.

For Windows 3.x and MS-DOS:

For Windows NT, Windows 2000, Windows 95, and Apple Macintosh:

Members
User

String containing the user name.

Domain
String containing the domain name or the workgroup name.

Password
String containing the user's password in the domain or workgroup.

Flags
The following values are valid flags for this member of the
SEC_ WINNT _AUTH_IDENTITY structure.

Value

Remarks

Description

The strings in this structure are in
ANSI format.

The strings in this structure are in
Unicode format.

Note that this structure must remain valid for the lifetime of the binding handle.

UUID

Chapter 24 RPC Data Types, Structures, and Constants 313

For Windows 95, Windows 3.x, and MS-DOS, the strings are ANSI; for
Windows NTlWindows 2000, the strings may be ANSI or Unicode, depending on the
value you assign to the Flags member. For Windows NT, Windows 2000, Windows 95,
and Macintosh, the values for UserLength; OomainLength, and Password Length are
the length of the corresponding string in characters, without the terminating null
character.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

The UUID structure defines Universally Unique Identifiers (UUIDs). UUIDs provide
unique designations of objects such as interfaces, manager entry-point vectors, and
client objects.

Members
Data 1

Specifies the first 8 hexadecimal digits of the UUID.

Data2
Specifies the first group of 4 hexadecimal digits of the UUID.

Data3
Specifies the second group of 4 hexadecimal digits of the UUID.

Data4
Specifies an array of eight elements. The first two elements contain the third group of
4 hexadecimal digits of the UUID. The remaining six elements contain the final 12
hexadecimal digits of the UUID.

Remarks
The RPC run-time libraries use UUIDs to check for compatibility between clients and
servers and to select among multiple implementations of an interface.

314 Volume 3 RPC and WNet

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

GUID, UUID_ VECTOR

UUID_VECTOR
The UUID_VECTOR structure contains a list of UUIDs.

Members
Count

Specifies the number of UUIDs present in the array Uuid.

Uuid
Specifies an array of pointers to UUIDs that contains Count elements.

Remarks
The UUID vector contains a count member containing the total number of UUIDs in the
vector, followed by an array of pOinters to UUIDs.

An application constructs a UUID vector to contain object UUIDs to be exported or
unexported from the name service.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

RpcEpRegister, RpcEpRegisterNoReplace, RpcEpUnregister,
RpcNsBindingExport, ApcNsBindingUnexport

Chapter 24 RPC Data Types, Structures, and Constants 315

RPe Enumerated Types
This section details the enumerated types that are part of the RPC run-time library:

• RPC_ASYNC_EVENT

• RPC_NOTIFICATION_ TYPES

The RPC_ASYNC_EVENT enumerated type describes the asynchronous notification
events that an RPC application can receive.

Members
RpcCaliComplete

The remote procedure call has completely executed.

RpcSendComplete
The RPC run-time library finished transmitting data. Only applications using DCE
pipes will receive this notification.

RpcReceiveComplete
The RPC run-time library finished receiving data. Only applications using DCE pipes
will receive this notification.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcasync.h.

The RPC_NOTIFICATION_TYPES enumerated type contains values that specify the
method of asynchronous notification that a client program will use.

316 Volume 3 RPC and WNet

(continued)

Members
RpcNotificationTypeNone

The client does not require notification of the completion of an asynchronous remote
procedure call.

RpcNotificationTypeEvent
Notify the client program by triggering an event object. See Event Objects.

RpcNotificationTypeApc
Use an asynchronous procedure call to notify the client that the remote procedure call
is complete.

RpcNotificationTypeloc
Send the asynchronous RPC notification to the client through an I/O completion port.

RpcNotificationTypeHwnd
Post a notification message to the specified window handle.

RpcNotificationTypeCallback
Invoke a callback function provided by the client program.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcasync.h.

Making the Asynchronous Call

Other RPe Types
This section contains information about the following RPC types that are neither
structures nor enumerated types.

Chapter 24 RPC Data Types, Structures, and Constants 317

• PROTSEO • RPC_MGR_EPV

• RPC_AUTH IDENTITY_HANDLE • RPC_NS_HANDLE

• RPC_AUTHZ_HANDLE • RPC_STATUS

• RPC_BINDING_HANDLE • String Binding

• RPC_EP _INO_HANDLE • String UUID

• RPC_IF _HANDLE

PROTSEQ
The PROTSEO protocol sequence string is a character string that represents a valid
combination of an RPC protocol (such as ncacn), a transport protocol (such as TCP),
and a network protocol (such as IP).

Members
Protseq

Points to a character string identifying the network protocol used to communicate
between client and server. For a list of protocols that Microsoft RPC supports, see
Protocol Sequence Constants.

Remarks
A server application can use a particular protocol sequence only when the RPC run-time
library and operating system support that protocol. A server chooses to accept remote
procedure calls over some or all of the supported protocol sequences.

Several server routines allow server applications to register protocol sequences with the
run-time library. Microsoft RPC functions that require a protbcol-sequence parameter
use the data type UNSIGNED CHAR.

A client can use the protocol-sequence strings to construct a string binding by calling
RpcStringBindingCompose.

Note The ncalrpc protocol sequence is supported only for 32-bit Windows-based
applications.

The ncacn_dneCnsp protocol sequence is supported only for MS-DOS, and 16-bit
Windows-based client applications. This release of Microsoft RPC does not include
support for the ncacn_dneCnsp protocol sequence with 32-bit client or server
appl ications.

16-bit Windows client applications that use the ncacn_spx or ncadg_ipx protocol
sequences require that the file Nwipxspx.dll be installed in order to run under the
Windows NTlWindows 2000 Windows16 on Windows32 (WOW) subsystem. Contact
Novell to obtain this file.

318 Volume 3 RPe and WNet

The ncadg_mq protocol sequence requires that the Microsoft Message Queue Server
be installed on a computer visible to both client and server. For more information see the
documentation Procedures Used with Most Security Packages and Protocols and
Procedures Used with Schannel.

The ncacn_http protocol sequence requires that the Microsoft Internet Information
Server be installed on a computer visible to both client and server. See the
documentation for Internet Information Server in the Platform SDK for more information.

The ncacn_vns_spp protocol sequence requires that Banyan's Enterprise Client For
Windows NT be installed. Contact Banyan for more information.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcasync.h.

RpcServerUseAIIProtseqs, RpcServerUseAIIProtseqslf, RpcServerUseProtseq,
RpcServerUseProtseqEp, RpcServerUseProtseqlf, RpcStringBindingCompose

The RPC_AUTH_IDENTITY _HANDLE data type declares a handle that points to a
structure containing the client's authentication and authorization credentials specified for
remote procedure calls.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

RpcBindinglnqAuthlnfo, RpcBindingSetAuthlnfo

Chapter 24 RPC Data Types, Structures, and Constants 319

The RPC_AUTHZ_HANDLE data type declares an authorization handle. This handle
pOints to the privileges information for the client application that made the remote
procedure calt.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

RpcBindinglnqAuthClient

The RPC_BINDING HANDLE data type declares a binding handle containing
information that the RPC run-time library uses to access binding information.

Remarks
The run-time library uses binding information to establish a client-server relationship that
allows the execution of remote procedure calls. Based on the context in which a binding
handle is created, it is considered a server-binding handle or a client-binding handle.

A server-binding handle contains the information necessary for a client to establish a
relationship with a specific server. Any number of RPC API run-time routines return a
server-binding handle that can be used for making a remote procedure call.

A client-binding handle cannot be used to make a remote procedure call. The RPC run
time library creates and provides a client-binding handle to a called-server procedure
(also called a server-manager routine) as the RPC_BINDING_HANDLE parameter. The
client-binding handle contains information about the calling client.

The RpcBinding* and RpcNsBinding* functions return the status code
RPC_S_WRONG_KIND_OF _BINDING when an application provides the incorrect
binding-handle type.

An application can share a single binding handle across multiple threads of execution.
The RPC run"time library manages concurrent remote procedure calls that use a single
binding handle. However, the application is responsible for binding handle-concurrency
control for operations that modify a binding handle. These operations include the
following routines.

320 Volume 3 RPC and WNet

• RpcBindingFree

• RpcBindingReset

• RpcBindingSetAuthlnfo

• RpcBindingSetObject

For example, if an application shares a binding handle across two threads of execution
and resets the binding-handle endpoint in one of the threads by calling
RpcBindingReset, the binding handle in the other thread is also reset. Similarly, freeing
the binding handle in one thread by calling RpcBindingFree frees the binding handle in
the other thread.

If you don't want concurrency, you can design an application to create a copy of a
binding handle by calling RpcBindingCopy. In this case, an operation to the first binding
handle has no effect on the second binding handle.

Note In 16-bit Windows applications, a task may only have a single RPC call
outstanding at a time. Binding handles are allocated on a per-task basis and cannot be
shared between tasks.

Routines requiring a binding handle as a parameter show a data type of
RPC_BINDlNG_HANDLE. Binding-handle parameters are passed by value.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

The RPC_EP _INQ_HANDLE data type declares a handle for an inquiry context. RPC
applications use it to view server address information stored in the endpoint map.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcasync.h.

RpcMgmtEpEltlnqBegin, RpcMgmtEpEltlnqNext, RpcMgmtEpEltlnqDone

Chapter 24 RPC Data Types, Structures, and Constants 321

The RPC_IF _HANDLE data type declares an interface handle.

Remarks
The RPC run-time library uses interface handles to access the interface-specification
data structure. The MIDL compiler automatically creates an interface-specification data
structure from each IDL file and creates a global variable of type RPC_IF _HANDLE for
the interface specification.

The MIDL compiler includes an interface handle in each header file generated for the
interface. Functions requiring the interface specification as a parameter show a data type
of RPC_IF _HANDLE.The form of each interface handle name is as follows:

• if-name_ClientlfHandle (for the client)

• if-name_ServerlfHandle (for the server)

if-name
Specifies the interface identifier in the IDL file.

For example:

Note The maximum length of the interface handle name is 31 characters.

Because the _ClientlfHandle and _ServerlfHandle parts of the names require
15 characters, the if-name element can be no more than 16 characters long.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

The data type RPC_MGR_EPV defines a manager entry-point vector.

322 Volume 3 RPe and WNet

Members
if-name

Specifies the name of the interface indicated in the IDL file.

return-type
Specifies the type returned by the function Functionname indicated in the IDL file.

Functionname
Specifies the name of the function indicated in the IDL file.

param-list
Specifies the arguments indicated for the function Functionname in the IDL file.

Remarks
The manager entry-point vector (EPV) is an array of function pointers. The array
contains pOinters to the implementations of the functions specified in the IDL file. The
number of elements in the array is set to the number of functions specified in the IDL file.
An application can also have multiple EPVs, representing multiple implementations of
the functions specified in the interface.

The MIDL compiler generates a default EPV data type named if-name_SERVER_EPV,
where if-name specifies the interface identifier in the IDL file. The MIDL compiler
initializes this default EPV to contain function pOinters for each of the procedures
specified in the IDL file.

When the server offers multiple implementations of the same interface, the server
application must declare and initialize one variable of type if-name_SERVER_EPV for
each implementation of the interface. Each EPV must contain one entry point (function
pointer) for each procedure defined in the IDL file.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

RpcServerRegisterlfEx

The data type RPC_NS_HANDLE defines a name-service handle.

Chapter 24 RPC Data Types, Structures, and Constants 323

Remarks
A name-service handle is an opaque variable containing information the RPC run-time
library uses to return the following RPC data from the name-service database:

• Server-binding handles

• UUIDs of resources offered by server profile members

• Group members

The scope of a name-service handle is from a Begin routine through the corresponding
Done routine.

Applications are responsible for concurrency control of name-service handles across
threads.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcnsi.h.

RpcNsBindinglmportBegin, RpcNsBindinglmportDone, RpcNsBindinglmportNext,
RpcNsBindinglookupBegin, RpcNsBindinglookupDone,
RpcNsBindinglookupNext

The data type RPC_STATUS represents a platform-specific status code type.

Remarks
The RPC_STATUS type is returned by most RPC functions and is part of the
RPC_OBJECT _INQ_FN function type definition.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

324 Volume 3 RPe and WNet

String Binding
The string binding is an unsigned character string composed of strings that represent the
binding object UUID, the RPC protocol sequence, the network address, and the endpoint
and endpoint options.

Members
ObjectUUlD

Specifies the UUID of the object operated on by the remote procedure call. At the
server, the RPC run-time library maps the object type to a manager entry-point vector
(an array of function pointers) to invoke the correct manager routine. For a discussion
of how to map object UUIDs to manager EPVs, see RpcServerRegisterlfEx.

Protocol Sequence
Specifies a character string that represents a valid combination of an RPC protocol
(such as ncacn), a transport protocol (such as TCP), and a network protocol
(such as IP). Microsoft RPC supports the following protocols specified in Protocol
Sequence Constants.

NetworkAddress
Specifies the network address of the system to receive remote procedure calls. The
format and content of the network address depend on the specified protocol sequence
as follows.

Protocol sequence Network address

ncacn_nb_tcp Windows NTlWindows 2000
computer name

ncacn_nb_ipx Windows NTlWindows 2000
computer name

ncacn_nb_nb Windows NTlWindows 2000
or Windows 95
computer name

Four-octet internet address,
or host name

Windows NTlWindows 2000
server name (leading double
backslashes are optional)

IPX internet address, or
Windows NTlWindows 2000
server name

Area and node syntax

Examples

myserver

myserver

myserver

12B.10.2.30
anynode. microsoft.com

myserver \\myotherserver

-000000010B002B30612C
myserver

4.120

Chapter 24 RPC Data Types, Structures, and Constants 325

Protocol sequence Network address

ncacn_aCdsp Windows NTlWindows 2000
computer name, optionally
followed by @ and the
AppleTalk zone name.
Defaults to @*, the client's
zone, if no zone provided

ncacn_vns_spp StreetTalk server name of
the form
item@group@organization

ncadg_mq Windows NTlWindows 2000
server name

ncalrpc

Internet address (either four
octet or friendly name, or
local Windows
NTlWindows 2000
server name

Four-octet internet address,
or host name

IPX internet address, or
Windows NTlWindows 2000
server name

Machine name

Examples

servername @ zonename
servername

printserver@sdkdocs@
microsoft

myserver

128.10.2.30
somesvr@anywhere.com

mylocalsvr

128.10.2.30
anynode.microsoft.com

-0000000108002B30612C
myserver

thismachine

The network-address field is optional. When you do not specify a network address,
the string binding refers to your local host. It is possible to specify the name of the
local computer when you use the ncalrpc protocol sequence, however doing so is
completely unnecessary.

Endpoint
Specifies the endpoint, or address, of the process to receive remote procedure calls.
An endpoint can be preceded by the keyword endpoint= specifying the endpoint is
optional if the server has registered its bindings with the endpoint mapper.
See RpcEpRegister.

The format and content of an endpoint depend on the specified protocol sequence as
shown in the following Endpoint/Option Table.

Option
Specifies protocol-specific options. The option field is not required. Each option is
specified by a {name, value} pair that uses the syntax option name=option value.
Options are defined for each protocol sequence as shown in the following
Endpoint/Option table.

326 Volume 3 RPC and WNet

Protocol sequence Endpoint Examples Option name

ncacn_nb_tcp Integer between 1 and 100 None
254. Many values
between 0 and 32 are
reserved by Microsoft.

ncacn_nb_ipx (as above) (as above) None

ncacn_nb_nb (as above) (as above) None

ncacn_ip_tcp Internet port number. 1025 None

ncacn_np Windows NTlWindows \\pipe\\pipena Security
2000 named pipe. me (NT only)
Name must start with
''\\pipe''.

ncacn_spx Integer between 1 and 5000 None
65535.

ncacn_dneCnsp DECnet phase IV object mailserver None
number (must be #17
preceded by the #
character), or object
name.

ncacn_aCdsp A character string, up to myservicesen None
22 bytes long. dpoint

ncacn_vns_spp Vines SPP port number 500 None
between 250 and 511 .

ncad9_mQ Integer between 1 and 5000 None
65535.

ncacn_http Internet port number. 2215 HTTPand RPC
proxy server
names

ncad9_ip_udp Internet port number. 1025 Security
(32-bit only)

ncad9_ipx Integer between 1 and 5000 Security
65535. (32-bit only)

ncalrpc String specifying my_printer Security
application or service (NT only)
name. The string
cannot include any
backs I ash characters.

The Security option name, supported for the ncalrpc, ncacn_NP, NCADG_IP _UDP,
and NCADG_IPX protocol sequences, takes the following option values.

Option name

Security

Chapter 24 RPC Data Types, Structures, and Constants 327

Option value

{identification I anonymous I impersonation} {dynamic I static}
{true I false}

If the security option name is specified, one entry from each of the sets of security
option values must also be supplied. The option values must be separated by a
single-space character. For example, the following Option fields are valid.

The security option values have the following meanings.

Security option
value Description

Anonymous

Dynamic

False

Identification

Impersonation

Static

True

The client is anonymous to the server.

A pointer to the security token is maintained. Security settings
represent current settings and include changes made after the
endpoint was created.

Effective = FALSE; all Windows NTlWindows 2000 security
settings, including those set to OFF, are included in the token.

The server has information about the client but cannot
impersonate.

The server is the client on the client's behalf.

Security settings associated with the endpoint represent a
copy of the security information at the time the endpoint was
created. The settings do not change.

Effective = TRUE; only Windows NTlWindows 2000 security
settings set to ON are included in the token.

For more information about Microsoft Windows NT and Windows 2000 security
options, see Security.

Remarks
White space is not allowed in string bindings except where required by the Option
syntax. Default settings for the NetworkAddress, Endpoint, and Option fields vary
according to the value of the ProtocolSequence member.

For all string-binding fields, a single backslash character (\) is interpreted as an escape
character. To specify a single literal backslash character, you must supply two backslash
characters (\\).

A string binding contains the character representation of a binding handle and
occassionally portions of a binding handle. String bindings are convenient for
representing portions of a binding handle, but they can't be used for making remote
procedure calls. They must first be converted to a binding handle by calling
RpcBindingFromStringBinding.

328 Volume 3 RPe and WNet

Additionally, a string binding does not contain all of the information from a binding
handle. For example, the authentication information, if any, associated with a binding
handle is not translated into the string binding returned by calling the
RpcBindingToStringBinding.

During the development of a distributed application, servers can communicate their
binding information to clients using string bindings to establish a client-server
relationship without using the endpoint-map database or name-service database. To
establish such a relationship, use the function RpcBindingToStringBinding to convert
one or more binding handles from a binding-handle vector to a string binding, and
provide the string binding to the client.

Examples
The following are examples of valid string bindings. In these examples, obj-uuid is used
for convenience to represent a valid UUID in string form. Instead of showing the UUID
308FB580-1 EB2-11 CA-923B-08002B1 075A7, the examples show obj-uuid.

Chapter 24 RPC Data Types, Structures, and Constants 329

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcasync.h.

RpcBlndingFromStringBinding, RpcBindingToStringBinding, RpcEpRegister

String UUID
A string UUID contains the character-array representation of a UUID. A string UUID is
composed of multiple fields of hexadecimal characters. Each member has a fixed length,
and fields are separated by the hyphen character. For example:

When providing a string UUID as an input parameter to an RPC run-time function, enter
the alphabetic hexadecimal characters as either uppercase or lowercase characters.
However, when a run-time function returns a string UUID, the hexadecimal characters
are always lowercase.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcasync.h.

UUID

RPC Constants
This section describes the following constants used by Microsoft RPC:

• Authentication-Level Constants

• Authentication-Service Constants

• Authorization-Service Constants

• Binding Time-out Constants

• Binding Option Constants

330 Volume 3 RPe and WNet

• DCE_C_ERROR_STRING_LEN

• I nterface Registration Flags

• Protection Level Constants

Authentication-Level Constants
The authentication-level constants represent the authentication levels passed to the
RpcBindinglnqAuthlnfo and RpcBindingSetAuthlnfo run-time functions through their
AuthnLevel parameters.

These levels are listed in order of increasing authentication. Each new level adds to the
authentication provided by the previous level. If the RPC run-time library does not
support the specified level, it automatically upgrades to the next higher supported level.

Constant Description

RPC_C_AUTHN_LEVEL_DEFAUL T Uses the default authentication level for
the specified authentication service.

RPC_C_AUTHN_LEVEL_NONE Performs no authentication.

RPC_C_AUTHN_LEVEL_CONNECT Authenticates only when the client
establishes a relationship with a server.

RPC_C_AUTHN_LEVEL_CALL Authenticates only at the beginning of
each remote procedure call when the
server receives the request. Does not
apply to remote procedure calls made
using the connection-based protocol
sequences (those that start with the
prefix "ncacn"). If the protocol sequence
in a binding handle is a connection
based protocol sequence and you

. specify this level, this routine instead
uses the RPC_C_AUTHN_LEVEL_PKT
constant.

RPC_C_AUTHN_LEVEL_PKT Authenticates only that all data received
is from the expected client. Does not
validate the data itself.

RPC_C_AUTHN_LEVEL_PKT _INTEGRITY Authenticates and verifies that none of
the data transferred between client and
server has been modified.

RPC_C_AUTHN_LEVEL_PKT_PRIVACY Auth.enticates all previous leve.ls and
encrypts the argument value of each
remote procedure call.

Chapter 24 RPC Data Types, Structures, and Constants 331

Note RPC_C_AUTHN_LEVEL_CALL, RPC_C_AUTHN_LEVEL_PKT,
RPC_C_AUTHN_LEVEL_PKT _INTEGRITY, and
RPC_C_AUTHN_LEVEL_PKT _PRIVACY are only supported for clients communicating
with a Windows NTlWindows 2000 server. A Windows 95 server can only accept
incoming calls at the RPC_C_AUTHN_LEVEL...;..CONNECT level.

RpcBindinglnqAuthlnfo, RpcBindingSetAuthlnfo

Authentication-Service Constants
The authentication service constants represent the authentication services passed to the
RpcBindinglnqAuthlnfo and RpcBindingSetAuthlnfo run-time functions through their
AuthnSvc parameters.

The following constants are valid values for the AuthnSvc parameter.

Constant Value Service

RPC_C_AUTHN_DEFAUL T Oxffffffff

RPC_C_AUTHN_DPA 18

RPC_C_AUTHN_GSS_KERBEROS 16

RPC_C_AUTHN_GSS_NEGOTIATE 9

Distributed Computing
Environment (DCE) private key
authentication.

DCE public key authentication
(reserved for future use).

DEC public key authentication
(reserved for future use).

Default authentication service.

Distributed Password
Authentication.

Uses the Kerberos protocol SSP.

Negotiate between the use of the
NTLM and Kerberos protocol SSP.

Use the SCHANNEL SSP. This
SSP supports SSL, private
communication technology (PCT),
and transport level security (TLS).

This SSP provides an SSPI
compatible wrapper for the
Microsoft Message Queue
(MSMQ) transport-level protocol.

(continued)

332 Volume 3 RPC and WNet

(continued)

Constant

RPC_C_AUTHN_NONE

RPC_C_AUTHN_WINNT

Remarks

Value

17

o
10

Service

Authentication protocol SSP used
for the Microsoft Network (MSN).

No authentication.

NT LAN Manager Security
Support Provider (NTLM SSP).

Specify RPC_C_AUTHN_NONE to turn off authentication for remote procedure calls
made over a binding handle.

When you specify RPC_C_AUTHN_DEFAUL T, the RPC run-time library uses the
RPC_C_AUTHN_DCE_PRIVATE authentication service for remote procedure calls
made using the binding handle.

RpcBindinglnqAuthlnfo, RpcBindingSetAuthlnfo

Authorization-Service Constants
The authorization service constants represent the authorization services passed to the
RpcBindinglnqAuthlnfo and RpcBindingSetAuthlnfo run-time functions through their
AuthzSvc parameters.

The following constants are valid values for the AuthzSvc parameter.

Constant Value Service

RPC_C_AUTHZ_NONE

RPC_C_AUTHZ_NAME

o Server performs no authorization.

Server performs authorization based on the
client's principal name.

Server performs authorization checking
using the client's DCE privilege attribute
certificate (PAC) information, which is sent to
the server with each remote procedure call
made using the binding handle. Generally,
access is checked against DCE access
control lists (ACLs).

Server uses the default authorization service
for the current SSP.

Chapter 24 RPC Data Types, Structures, and Constants 333

RpcBindinglnqAuthlnfo, RpcBindingSetAuthlnfo

Binding Time-out Constants
The RPC library uses the binding time-out constants to specify the relative amount of
time that should be spent to establish a binding to the server before giving up. The
following list contains the valid time-out values.

Constant Value Description

10

o

Keeps trying to establish
communications forever.

Tries the minimum amount of time
for the network protocol being
used. This value favors response
time over correctness in
determining whether the server is
running.

Tries an average amount of time
for the network protocol being
used. This value gives
correctness in determining
whether a server is running and
gives response time equal weight.
This is the default value.

Tries the longest amount of time
for the network protocol being
used. This value favors
correctness in determining
whether a server is running over
response time.

Note The values in the preceding table are not in seconds. These values represent a
relative amount of time on a scale of zero to 10.

Binding Option Constants
Applications set the binding option constants to control how the RPC run-time library
processes remote procedure calls. The following table lists each binding property, and
the relevant constant values for the binding properties.

334 Volume 3 RPC and WNet

Option Option value Description

RPC_C_OPT _MQ_DELIVERY RPC_C_MQ_EXPRESS Remote calls to the
(The default value.) server remain in active

memory as they pass
through the network.

RPC_C_MQ_ Remote calls to the
RECOVERABLE server are stored on disk

until they are delivered
and executed. This
guarantees delivery even
if the server goes down.

RPC_C_OPT _MQ_ 0-7 (The default is 3.) Calls with a higher
PRIORITY priority number have

precedence over calls
with a lower priority
number.

RPC_C_OPT_MQ_JOURNAL RPC_C_MQ_JOURNAL_ Calls are never logged.
NONE (The default value.)

RPC_C_MQ_JOURNAL_ Calls are logged only
DEADLETTER when the message

cannot be delivered. This
can occur when the time
specified in
RPC_C_MQ_ TIME_ TO_
REACH_QUEUE or
RPC_C_MQ_ TIME_ TO_
BE_RECEIVED expires
before the message is
delivered to the server,
or the target queue
(of the server) no longer
exists.

RPC_MQ_JOURNAL_ Calls are always logged
ALWAYS at the originating

computer.

RPC_C_OPT _MQ - FALSE Control returns to the
ACKNOWLEDGE (The default value.) client process

immediately after the
MSMQ transport
receives the call.

Chapter 24 RPC Data Types, Structures, and Constants 335

Option Option value Description

TRUE The remote call does not
return control to the client
until it receives an
acknowledgment that the
call has reached the
server's receive queue.

RPC_C_OPT _MQ_ TIME_ Time in seconds. The The amount of time
TO_REACH_QUEUE default value is INFINITE. allowed for a call to

reach the Queue
Manager on the target
system. If the call times
out before reaching the
target system, it is
discarded.

RPC_C_OPT _MQ_ TIME_ TO_ Time in seconds. The The amount of time
BE_RECEIVED default value is INFINITE. allowed for a call to

reach the server
process-receive queue
on the target system.
If the call times out
before the RPC server
application receives it,
it is discarded.

RPC_C_OPT _MQ - N/A For RPC internal usage
AUTHN_SERVICE only. Do not use.

RPC_C_OPT _MQ_ N/A For RPe internal usage
AUTHN_LEVEL only. Do not use.

RPC_C_OPT _BINDING - FALSE Default. Causal call
NONCAUSAL ordering. RPC calls are

executed in strict order of
submission. See
Remarks.

TRUE Noncausal call ordering.
RPC calls are executed
independently. See
Remarks.

RPC_C_OPT _MAX_ Number of array items. Not needed for
OPTIONS application programs.

Used internally by
Microsoft.

(continued)

336 Volume 3 RPC and WNet

(continued)

Option

Remarks

Option value

FALSE

TRUE

Description

Not needed for
application programs.
Used internally by
Microsoft.

Not needed for
application programs.
Used internally by
Microsoft.

By default, the RPC run-time library executes the calls on a given binding handle from
each thread of an application in strict order of submission. This does not guarantee that
calls from different threads on the same binding handle are serialized. Multithreaded
applications must serialize their RPC calls. If this behavior is too restrictive, you can
enable noncausal ordering. When you do, the RPC run-time library executes calls
independently. It imposes no ordering on their submission.

One example of an application that might find noncausal ordering useful is a
multithreaded program whose threads make calls on the same binding handle. Similarly,
a program that uses multiple asynchronous calls on a binding handle will find noncausal
ordering a convenient option. Another example might be an Internet proxy program that
uses a single thread to handle requests for several clients. In each of these cases, it
would be extremely restrictive to try to serialize the remote procedure calls.

RpcBindingSetOption, RpcBindinglnqOption

The constant DCE_C_ERROR_STRING_LEN defines the maximum number of
characters that an error message string contains.

Interface Registration Flags
The following constants are used in the Flags parameter of the RpcServerRegisterlf2
and RpcServerRegisterlfEx functions.

Chapter 24 RPC Data Types, Structures, and Constants 337

Value

o
RPC_IF _AUTOLISTEN

Protection Level Constants

Meaning

Standard interface semantics.

This is an auto-listen interface. The
run time begins listening for calls as
soon as the interface is registered,
and stops listening when the interface
is unregistered.

Reserved for OLE. Do not use
this flag.

Accepts certificates from top-level
authorities that are not in the server's
list of trusted Certificate Authorities.

Limits connections to clients that use
an authorization level higher than
RPC_C_AUTHN_LEVEL_NONE

The OSF/DCE RPC specification has renamed the authentication-level constants. They
are now called protection-level constants. Microsoft RPC supports both the old and the
new names; these are shown in the following table.

Constant Value Description

RPC_C_PROTECT_
LEVEL_DEFAULT

RPC_C_PROTECT_
LEVEL_NONE

RPC_C_PROTECT_
LEVEL_CONNEC

RPC_C_AUTHN
LEVEL_DEFAULT

RPC_C_AUTHN_
LEVEL_NONE

RPC_C_AUTHN_
LEVEL_CONNECT

Uses the default authentication level
for the specified authentication
service.

Performs no authentication.

Authenticates only when the client
establishes a relationship with a
server.

(continued)

338 Volume 3 RPe and WNet

(continued)

Constant

RPC_C_PROTECT_
LEVEL_CALL

RPC_C_PROTECT_
LEVEL_PKT

Value

RPC_C_AUTHN
LEVEL_CALL

RPC_C_AUTHN_
LEVEL_PKT

RPC_C_PROTECT_ RPC_C_AUTHN
LEVEL_PKT _INTEGRITY LEVEL_PKT_

INTEGRITY

RPC_C_PROTECT_ RPC_C_AUTHN_
LEVEL_PKT _PRIVACY LEVEL_PKT _

PRIVACY

Authentication-Level Constants

Protocol Sequence Constants

Description

Authenticates only at the beginning of
each remote procedure call when the
server receives the request. Does not
apply to remote procedure calls made
using the connection-based protocol
sequences (those that start with the
prefix "ncacn"). If the protocol
sequence in a binding handle is a
connection-based protocol sequence
and you specify this level, this routine
instead uses the
RPC_C_AUTHN_LEVEL_PKT
constant.

Authenticates only that all data
received is from the expected client.
Does not validate the data itself.

Authenticates and verifies that none of
the data transferred between client
and server has been modified.

Authenticates all previous levels and
encrypts the argument value of each
remote procedure call.

Microsoft RPC supports the following protocol sequences.

Protocol
sequence Description

Connection-oriented
NetBIOS over
Transmission Control
Protocol (TCP)

Connection-oriented
NetBIOS over Internet
Packet Exchange (I PX)

Supporting platforms

Client only: MS-DOS®, Windows® 3.x
client and Server: Windows® NT

Client only: MS-DOS, Windows 3.x
Client and Server:
Windows NT /Windows 2000

Protocol
sequence

Chapter 24 RPC Data Types, Structures, and Constants 339

Description

Connection-oriented
NetBIOS Enhanced
User Interface
(NetBEUI)

Connection-oriented
Transmission Control
Protocol/Internet
Protocol (TCP/IP)

Connection-oriented
named pipes

Connection-oriented
Sequenced Packet
Exchange (SPX)

Connection-oriented
DECnet transport

Connection-oriented
AppleTalk DSP

Connection-oriented
Vines scalable parallel
processing (SPP)
transport

Datagram
(connection less) User
Datagram
Protocol/Internet
Protocol (UDP/IP)

Datagram
(connection less) IPX

Datagram
(connectionless) over
the Microsoft®
Message Queue Server
(MSMQ)

Supporting platforms

Client only: MS-DOS, Windows 3.x
Client and Server:
Windows NTlWindows 2000,
Windows®95

Client only: MS-DOS, Windows 3.x,
and Apple Macintosh
Client and Server: Windows 95 and
Windows NTlWindows 2000

Client only: MS-DOS, Windows 3.x,
Windows 95
Client and Server:
Windows NTlWindows 2000

Client only: MS-DOS, Windows 3.x
Client and Server:
Windows NTlWindows 2000,
Windows 95

Client only: MS-DOS, Windows 3.x

Client: Apple Macintosh
Server: Windows NTlWindows 2000

Client only: MS-DOS, Windows 3.x
Client and Server:
Windows NTlWindows 2000

Client only: MS-DOS, Windows 3.x
Client and Server:
Windows NTlWindows 2000

Client only: MS-DOS, Windows 3.x
Client and Server: Windows
NTlWindows 2000

Client only: Windows 95
(DCOM version)
Client and Server: Windows NT 4.0,
with Service Pack 3, and later; and
Windows 2000

(continued)

340 Volume 3 RPe and WNet

(continued)

Protocol
sequence

ncalrpc

Description

Connection-oriented
TCP/IP using Microsoft
Internet Information
Server as HTTP proxy

Local procedure call

Supporting platforms

Client only: Windows 95
(DCOM version)
Client and Server: Windows NT 5.0
and later; and Windows 2000

Client and Server:
Windows NTlWindows 2000 and
Windows 95

Note The ncalrpc transport supports RPC_C_AUTHN_WINNT authentication only. For
more information, see Security and Authentication-Service Constants.

Microsoft RPC supports RpcBindingCopy only in client applications, not in server
applications.

RPe Return Values
When functions return RPC error-status values, the errors cannot be combined. This
table lists the values that can be returned by all RPC functions. See the individual
method descriptions for lists of the values each can return.

Manifest

EPT_S_CANT_PERFORM_OP

EPT_S_INVALlD_ENTRY

EPT _S_NOT _REGISTERED

RPC_S_ALREADY _LISTENING

RPC_S_ALREADY_REGISTERED

Description

The endpoint-map database cannot
be created.

The operation cannot be performed.

The entry is invalid.

There are no more endpoints
available from the endpoint-map
database.

The user does not have sufficient
privilege to complete the operation.

An addressing error has occurred on
the server.

The server is already listening.

The object UUID has already been
registered.

The asynchronous remote procedure
call has not yet completed.

Chapter 24 RPC Data Types, Structures, and Constants 341

Manifest

RPC_S_BINDING_INCOMPLETE

RPC_S_CALL_FAILED

RPC_S_CALL_FAILED_DNE

RPC_S_CANT _CREATE_ENDPOINT

RPC_S_COMM_FAILURE

RPC_S_DU PLICATE_ENDPOINT

RPC_S_ENTRY_ALREADY_EXISTS

RPC_S_ENTRY_NOT_FOUND

RPC_S_FP _DIV _ZERO

RPC_S_INCOMPLETE_NAME

RPC_S_INTERFACE_NOT _FOUND

RPC_S_INTERNAL_ERROR

RPC_S_I NVALI D_ARG

RPC_S_INVALlD_AUTH_IDENTITY

Description

The binding does not contain any
authentication information.

The binding handle is a required
parameter.

The buffer used to transmit data is too
small.

The remote procedure call exceeded
the cancel time out and was
cancelled.

The remote procedure call failed.

The remote procedure call failed and
did not execute.

A remote procedure call is already in
progress for this thread
(Windows 3.x only).

The requested operation is not
supported.

The endpoint cannot be created.

Unable to communicate with the
server.

The endpoint is a duplicate.

The entry already exists.

The entry is not found.

A floating-point operation at the server
has caused a divide by zero.

A floating-point overflow has occurred
at the server.

A floating-point underflow has
occurred at the server.

The group member has not been
found.

The entry name is incomplete.

The interface has not been found.

An internal error has occurred in a
remote procedure call.

The specified argument is not valid.

The security context is invalid.

(continued)

342 Volume 3 RPC and WNet

(continued)

Manifest

RPC_S_INVALlD_BINDING

RPC_S_INVALlD_BOUND

RPC_S_INVALI D_ENDPOINT _FORMAT

RPC_S_INVALlD_LEVEL

RPC_S_I NVALI D_NAF _ID

RPC_S_INVALlD_NAME_SYNTAX

RPC_S_INVALlD_NET _ADDR

RPC_S_INVALlD_NETWORK_OPTIONS

RPC_S_INVALlD_OBJECT

RPC_S_INVALlD_RPC_PROTSEQ

RPC_S_INVALlD_SECURITY _DESC

RPC_S_INVALlD_STRING_BINDING

RPC_S_INVALlD_STRING_UUID

RPC_S_I NVALI D_ TAG

RPC_S_INVALlD_ TIMEOUT

RPC_S_I NVALI D_ VERS_OPTION

RPC_S_MAX_CALLS_ TOO_SMALL

RPC_S_NAME_SERVICE_UNAVAILABLE

RPC_S_NO_BINDINGS

RPC_S_NO _CALL_ACTIVE

RPC_S_NO_ENDPOINT _FOUND

RPC_S_NO_ENTRY_NAME

RPC_S_NO_ENV_SETUP

RPC_S_NO_INTERFACES

RPC_S_NO_INTERFACES_EXPORTED

RPC_S_NO_MORE_BINDINGS

RPC_S_NO_MORE_ELEMENTS

Description

The binding handle is invalid.

The array bounds are invalid.

The endpoint format is invalid.

The level parameter is invalid.

The network-address family is invalid.

The name syntax is invalid.

The network address is invalid.

The network options are invalid.

The object is invalid.

The RPC protocol sequence is invalid.

The security descriptor is not in the
valid format.

The string binding is invalid.

The string UUID is invalid.

The discriminant value does not
match any of the case values. There
is no default case.

The time-out value is invalid.

The version option is invalid.

The maximum number of calls is too
small.

The name service is unavailable.

There are no bindings.

There is no remote procedure call
active in this thread.

No security context is available to
allow impersonation.

No endpoint has been found.

The binding does not contain an entry
name.

No environment variable is set up.

No interfaces are registered.

No interfaces have been exported.

There are no more bindings.

There are no more elements.

Chapter 24 RPC Data Types, Structures, and Constants 343

Manifest

RPC_S_NO_MORE_MEMBERS

RPC_S_NO_NS_PRIVILEGE

RPC_S_NO_PRINC_NAME

RPC_S_NO_PROTSEQS

RPC_S_NO~PROTSEQS_REGISTERED

RPC_S_NOT _ALL_OBJS_UNEXPORTED

RPC_S_NOT_CANCELLED

RPC_S_NOT _LISTENING

RPC_S_NOT_RPC_ERROR

RPC_S_NOTHING_ TO_EXPORT

RPC_S_OBJECT~NOT_FOUND

RPC_S_OK

RPC_S_OUT_OF_MEMORY

RPC_S_OUT _OF_RESOURCES

RPC_S_PROTOCOL_ERROR

RPC_S_PROTSEQ_NOT_FOUND

RPC.:c.S_SERVER_UNAVAILABLE

Description

There are no more members.

There is no privilege for a name
service operation.

No principal name is registered.

There are no protocol sequences.

No protocol sequences have been
registered.

Not all objects are unexported.

The thread is not cancelled.

The server is not listening.

The status code requested is not
valid.

There is nothing to export.

The object UUID has not been found.

The call has completed successfully.

The needed memory is not available.

Not enough resources are available to
complete this operation.

The RPC run-time library was not able
to create another thread.

The procedure number is out of
range.

An RPC protocol error has occurred.

The RPC protocol sequence has not
been found.

The RPC protocol sequence is not
supported.

There is an error with the security
package.

The server is not listening for remote
procedure calls.

The server has insufficient memory to
complete this operation.

The server is too busy to complete
this operation~

The server is unavailable.

(continued)

344 Volume 3 RPC and WNet

(continued)

Manifest

RPC_S_STRING_ TOO_LONG

RPC_S_TYPE_ALREADY_REGISTERED

RPC_S_UNKNOWN_AUTHN_LEVEL

RPC_S_UNKNOWN_AUTHN_SERVICE

RPC_S_UNKNOWN_AUTHN_ TYPE

RPC_S_UNKNOWN_AUTHZ_SERVICE

RPC_S_UNKNOWN_IF

RPC_S_UNKNOWN_MGR_ TYPE

RPC_S_UNSUPPORTED_AUTHN_LEVEL

RPC_S_UNKNOWN_PRINCIPAL

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_UNSUPPORTED_TRANS_SYN

RPC_S_UNSUPPORTED_TYPE

RPC_S_UUID_LOCAL_ONL Y

RPC_X_BAD_STUB_DATA

RPC_X_BYTE_COUNT_TOO_SMAL

RPC_X_ENUM_VALWE_OUT_OF_RANGE

Description

The string is too long.

The type UUID has already been
registered.

The authentication level is unknown.

The authentication service is
unknown.

The authentication type is unknown.

The authorization service is unknown.

The interface is unknown.

The manager type is unknown.

The authentication level is not
supported.

The principal name is not recognized.

The name syntax is not supported.

The transfer syntax is not supported
by the server.

The type UUID is not supported.

The UUID that is only valid for this
computer has been allocated.

No network address is available for
constructing a UUID.

The binding handle is not the
correct type.

The server has attempted an integer
divide by zero.

The stub has received bad data.

The byte count is too small.

The enumeration value is out of
range.

The enumeration constant must be
less than 65535.

The specified bounds of an array are
inconsistent.

The pOinter does not contain the
address of a valid data buffer.

Chapter 24 RPC Data Types, Structures, and Constants 345

Manifest

RPC_X_NO_MEMORY

RPC_X_NO_MORE_ENTRIES

RPC_X_SS_ WRONG_ES_ VERSION

RPC_X_SS_ WRONG_STUB_ VERSION

Description

The requested pipe operation is not
supported.

The discriminant value does not
match any of the case values. There
is no default case.

Insufficient memory is available.

The list of servers available for the
[auto_handle] binding has been
exhausted.

A null reference pointer has been
passed to the stub.

Insufficient memory is available for
pipe data.

The operation for the serializing
handle is not valid.

The stub is unable to get the call
handle.

The file designated by
DCERPCCHARTRANS cannot be
opened.

The file containing the character
translation table has fewer than 512
bytes.

The context handle changed during a
call. Only raised on the client side.

The context handle does not match
any known context handles.

The binding handles passed to a
remote procedure call do not match.

A null context handle is passed in an
in parameter pOSition.

The buffer is not valid for the
operation.

The software version is incorrect.

The stub version is incorrect.

347

CHAPTER 25

RPe Function Reference

This chapter documents the Remote Procedure Call (RPC) run-time functions supported
in Microsoft RPC. This chapter describes each function's purpose, syntax, input
parameters, and return values. It also provides additional information to help you use
RPC functions in an application.

All pointers passed to RPC functions must include the __ RPC_FAR attribute. For
example, the pointer RPC_BINDING_HANDLE * becomes RPC_BINDING_HANDLE

RPC_FAR * and char * * Ptr becomes char __ RPC_FAR * RPC_FAR * Ptr.

RPC Functions
Microsoft RPC currently supports the following functions:

• DceErrorlnqText • RpcBindinglnqAuthClientEx

• MesBufferHandleReset • RpcBindinglnqAuthlnfo
• MesDecodeBufferHandleCreate • RpcBindinglnqAuthlnfoEx

• MesDecodelncrementalHandleCreate • RpcBindinglnqObject

• MesEncodeDynBufferHandleCreate • RpcBindinglnqOption

• MesEncodeFixedBufferHandleCreate • RpcBindingReset

• MesEncodelncrementalHandleCreate • RpcBindingServerFromClient

• MesHandleFree • RpcBindingSetAuthlnfo

• MeslncrementalHandleReset • RpcBindingSetAuthlnfoEx

• MeslnqProcEncodingld • RpcBindingSetObject

• RpcAbnormalTermination • RpcBindingSetOption

• RpcAsyncAbortCall • RpcBindingToStringBinding

• RpcAsyncCancelCal1 • RpcBindingVectorFree

• RpcAsyncCompleteCall • RpcCancelThread
• RpcAsyncGetCaliStatus • RpcCancelThreadEx

• RpcAsynclnitializeHandle • RpcCertGeneratePrincipalName

• RpcAsyncRegisterlnfo • RpcEpRegister

• RpcBindingCopy • RpcEpRegisterNoReplace

• RpcBindingFree • RpcEpResolveBinding

• RpcBindingFromStringBinding • RpcEpUnregister

• RpcBindinglnqAuthClient • RpcExceptionCode

348 Volume 3 RPe and WNet

• RpclfldVectorFree • RpcNsBindingUnexportPnP

• Rpclflnqld • RpcNsEntryExpandName

• RpclmpersonateClient • RpcNsEntryObjectlnqBegin

• RpcMacSetYieldlnfo • RpcNsEntryObjectlnqDone

• RpcMgmtEnableldleCleanup • RpcNsEntryObjectlnqNext

• RpcMgmtEpEltlnqBegin • RpcNsGroupDelete

• RpcMgmtEpEltlnqDone • RpcNsGroupMbrAdd

• RpcMgmtEpEltlnqNext • RpcNsGroupMbrlnqBegin

• RpcMgmtEpUnregister • RpcNsGroupMbrlnqDone

• RpcMgmtlnqComTimeout • RpcNsGroupMbrlnqNext
• RpcMgmtlnqDefaultProtectLevel • RpcNsGroupMbrRemove
• RpcMgmtlnqlflds • RpcNsMgmtBindingUnexport

• RpcMgmtlnqServerPrincName • RpcNsMgmtEntryCreate

• RpcMgmtlnqStats • RpcNsMgmtEntryDelete
• RpcMgmtlsServerListening • RpcNsMgmtEntrylnqlflds

• RpcMgmtSetAuthorizationFn • RpcNsMgmtHandleSetExpAge

• RpcMgmtSetCancelTimeout • RpcNsMgmtlnqExpAge

• RpcMgmtSetComTimeout • RpcNsMgmtSetExpAge

• RpcMgmtSetServerStackSize • RpcNsProfileDelete

• RpcMgmtStatsVectorFree • RpcNsProfileEltAdd

• RpcMgmtStopServerListening • RpcNsProfileEltlnqBegin

• RpcMgmtWaitServerListen • RpcNsProfileEltlnqDone

• RpcNetworklnqProtseqs • RpcNsProfileEltlnqNext

• RpcNetworklsProtseqValid • RpcNsProfileEltRemove

• RpcNsBindingExport • RpcObjectlnqType
• RpcNsBindingExportPnP • RpcObjectSetlnqFn

• RpcNsBindinglmportBegin • RpcObjectSetType

• RpcNsBindinglmportDone • RpcProtseqVectorFree

• RpcNsBindinglmportNext • RpcRaiseException
• RpcNsBindinglnqEntryName • RpcRevertToSelf

• RpcNsBindingLookupBegin • RpcRevertToSelfEx

• RpcNsBindingLookupDone • RpcServerlnqBindings

• RpcNsBindingLookupNext • RpcServerlnqDefaultPrincName

• RpcNsBindingSelect • RpcServerlnqlf

• RpcNsBindingUnexport • RpcServerListen

Chapter 25 RPC Function Reference 349

• RpcServerRegisterAuthlnfo • RpcSsAliocate

• RpcServerRegisterlf • RpcSsDestroyClientContext

• RpcServerRegisterlf2 • RpcSsDisableAliocate

• RpcServerRegisterlfEx • RpcSsDontSerializeContext

• RpcServerTestCancel • RpcSsEnableAliocate

• RpcServerUnregisterlf • RpcSsFree
• RpcServerUseAIiProtseqs • RpcSsGetThreadHandle

• RpcServerUseAIiProtseqsEx • RpcSsSetClientAllocFree

• RpcServerUseAIiProtseqslf • RpcSsSetThreadHandle

• RpcServerUseAIiProtseqslfEx • RpcSsSwapClientAllocFree

• RpcServerUseProtseq • RpcStringBindingCompose

• RpcServerUseProtseqEx • RpcStringBindingParse

• RpcServerUseProtseqEp • RpcStringFree

• RpcServerUseProtseqEpEx • RpcTestCancel

• RpcServerUseProtseqlf • RpcWinSetYieldlnfo

• RpcServerUseProtseqlfEx • RpcWinSetYieldTimeout

• RpcSmAliocate • UuidCompare

• RpcSmClientFree • UuidCreate

• RpcSmDestroyClientContext • UuidCreateSequential

• RpcSmDisableAliocate • UuidCreateNii

• RpcSmEnableAliocate • UuidEqual

• RpcSmFree • UuidFromString

• RpcSmGetThreadHandle • UuidHash
• RpcSmSetClientAllocFree • UuidlsNii

• RpcSmSetThreadHandle • UuidToString

• RpcSmSwapClientAllocFree

DceErrorlnqText
The DceErrorlnqText function returns the message text for a status code.

This function is supported on all 32-bit Windows platforms, except Windows® CEo
Note that it is supported in ANSI only on Microsoft® Windows®95.

350 Volume 3 RPe and WNet

Parameters
Status ToConvert

The status code to convert to a text string.

ErrorText
Returns the text corresponding to the error code.

Value Meaning

RPC_S_OK

RPC_S_I NVALI D_ARG

Return Values

Call successful.

Unknown error code.

This function returns RPC_S_OK if it is successful, or an error code if not. For a list
of valid error codes, see RPC Return Values.

Remarks
The DceErrorlnqText routine fills the string pOinted to by the ErrorText parameter with
a null-terminated character string message for a particular status code.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

MesBufferHandleReset
The MesBufferHandleReset function re-initializes the handle for buffer serialization.

Parameters
Handle

The handle to be initialized.

Chapter 25 RPC Function Reference 351

HandleStyle
Specifies the style of handle. Valid styles are MES_FIXED_BUFFER_HANDLE
or MES_DYNAMIC_BUFFER_HANDLE.

OpCode
Specifies the operation. Valid codes are MES_ENCODE or MES_DECODE.

ppBuffer
For MES_DECODE, points to a pointer to the buffer containing the data
to be decoded.

For MES_ENCODE, points to a pointer to the buffer for fixed buffer style, and pOints
to a painter to return the buffer address for dynamic buffer style of serialization.

BufferSize
The number of bytes of data to be decoded in the buffer. Note that this is used only
for the fixed buffer style of serialization.

pEncodedSize
Pointer to the size of the completed encoding. Note that this is used only when the
operation is MES_ENCODE.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_ARG

Remarks

Meaning

Call successful.

Invalid argument.

The MesBufferHandleReset routine is used by applications to re-initialize a buffer style
handle and save memory allocations.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Midles.h.
Library: Use Rpcrt4.lib.

MesEncodeFixedBufferHandleCreate, MesHandleFree,
MesEncodeDynBufferHandleCreate

MesDecodeBufferHandleCreate
The MesDecodeBufferHandleCreate function creates a decoding handle and initializes
it for a (fixed) buffer style of serialization.

352 Volume 3 RPe and WNet

Parameters
Buffer

Pointer to the buffer containing the data to decode.

BufferSize
The number of bytes of data to decode in the buffer.

pHandle
Pointer to the address to which the handle will be written.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_ARG

RPC_S_OUT _OF _MEMORY

RPC_X_INVALlD_BUFFER

Remarks

Meaning

Call successful.

Invalid argument.

Out of memory.

Invalid buffer.

The MesDecodeBufferHandleCreate routine is used by applications to create
a serialization handle and initialize the handle for the (fixed) buffer style of decoding.
When using the fixed buffer style of decoding, the user supplies a single buffer
containing all the encoded data. This buffer must have an address which is aligned
at 8, and must be a multiple of 8 bytes in size. Further, it must be large enough to hold
all of the data to decode.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Midles.h.
Library: Use Rpcrt4.lib.

MesEncodeFixedBufferHandleCreate, MesHandleFree

Chapter 25 RPC Function Reference 353

MesDecodelncrementalHandleCreate
The MesDeeodelnerementalHandleCreate function creates a decoding handle for the
incremental style of serialization.

Parameters
UserState

Pointer to the user-supplied state object that coordinates the user-supplied Alloe,
Write, and Read functions.

ReadFn
Pointer to the Read function.

pHandle
Pointer to the newly created handle.

Return Values
Value

RPC_S_OK

RPC_S_I NVALI D_ARG

RPC_S_OUT _OF_MEMORY

Remarks

Meaning

Call successful.

Invalid argument.

Out of memory.

The MesDeeodelnerementalHandleCreate function is used by applications to create
the handle and initialize it for the incremental style of decoding. When using the
incremental style of decoding, the user supplies a Read function to provide a buffer
containing the next part of the data to be decoded. The buffer must be aligned at 8, and
the size of the buffer must be a multiple of 8. For additional information on the user
supplied Alloe, Write, and Read functions, see Serialization Services.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Midles.h.
Library: Use Rpcrt4.lib.

MeslnerementalHandleReset, MesHandleFree

354 Volume 3 RPC and WNet

MesEncodeDynBufferHandleCreate
The MesEncodeDynBufferHandleCreate function creates an encoding handle and
then initializes it for a dynamic buffer style of serialization.

Parameters
ppBuffer

Pointer to a pointer to the stub-supplied buffer containing the encoding after
serialization is complete.

pEncodedSize
A pOinter to the size of the completed encoding. The size will be written
to the memory location pointed to by pEncodedSize by the subsequent
encoding operation(s).

pHandle
Pointer to the address to which the handle will be written.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_ARG

RPC_S_OUT_OF_MEMORY

Remarks

Meaning

Call successful.

Invalid argument.

Out of memory.

The MesEncodeDynBufferHandleCreate routine is used by applications to allocate the
memory and initialize the handle for the dynamic buffer style of encoding. When using
the dynamic buffer style of encoding, the buffer into which all the encoded data will be
placed is supplied by the stub. This buffer will be allocated by the current client
memory-management mechanism.

There can be performance implications when using this style for multiple encodings with
the same handle. A single buffer is returned from an encoding and data is copied from
intermediate buffers. The buffers are released when necessary.

Chapter 25 RPC Function Reference 355

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Midles.h.
Library: Use Rpcrt4.lib.

MesBufferHandleReset, MesHandleFree

MesEncodeFixedBufferHandleCreate
The MesEncodeFixedBufferHandleCreate function creates an encoding handle
and then initializes it for a fixed buffer style of serialization.

Parameters
Buffer

Pointer to the user-supplied buffer.

BufferSize
The size of the user-supplied buffer.

pEncodedSize
A pOinter to the size of the completed encoding. The size will be written to the pointer
by the subsequent encoding operation(s).

pHandle
Pointer to the newly created handle.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_ARG

RPC_S_OUT _OF _MEMORY

Meaning

Call successful.

Invalid argument.

Out of memory.

356 Volume 3 RPC and WNet

Remarks
The MesEncodeFixedBufferHandleCreate routine is used by applications to create
and initialize the handle for the fixed buffer style of encoding. When using the fixed
buffer style of encoding, the user supplies a single buffer into which all the encoded data
is placed. This buffer must have an address which is aligned at 8, and must be a multiple
of 8 bytes in size. Further, it must be large enough to hold an encoding of all the data,
along with an encoding header for each routine being encoded.

When the handle is used for multiple encoding operations, the encoded size
is cumulative.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Midles.h.
Library: Use Rpcrt4.lib.

MesDecodeBufferHandleCreate, MesHandleFree

MesEncodelncrementalHandleCreate
The MesEncodelncrementalHandleCreate function creates an encoding and then
initializes it for the incremental style of serialization.

Parameters
UserState

Pointer to the user-supplied state object that coordinates the user-supplied Alloc,
Write, and Read functions.

AllocFn
Pointer to the user-supplied Alloc function.

WriteFn
Pointer to the user-supplied Write function.

pHandle
Pointer to the newly created handle.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_ARG

RPC_S_OUT_OF_MEMORY

Remarks

Chapter 25 RPC Function Reference 357

Meaning

Call successful.

Invalid argument.

Out of memory.

The MesEncodelncrementalHandleCreate function is used by applications to create
and initialize the handle for the incremental style of encoding or decoding. When using
the incremental style of encoding, the user supplies an Alloc function to provide an
empty buffer into which the encoded data is placed, and a Write function to call when
the buffer is full or the encoding is complete. For additional information on the user
supplied Alloc, Write, and Read functions, see Serialization Services.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Midles.h.
Library: Use Rpcrt4.lib.

MeslncrementalHandleReset, MesHandleFree

MesHandleFree
The MesHandleFree function frees the memory allocated by the serialization handle.

Parameters
Handle

The handle to be freed.

Return Values
Value Meaning

Call successful.

358 Volume 3 RPC and WNet

Remarks
The MesHandleFree routine is used by applications to free the resources of the handle
after encoding or decoding data.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Midles.h.
Library: Use Rpcrt4.lib.

MesEneodeFixedBufferHandleCreate, MesDeeodeBufferHandleCreate,
MesEneodeDynBufferHandleCreate, MesEneodelnerementalHandleCreate

MeslncrementalHandleReset
The MeslnerementalHandleReset function re-initializes the handle for incremental
serialization.

Parameters
Handle

The handle to be re-initialized.

UserState
Depending on the function, pOints to the user-supplied block that coordinates
successive calls to the user-supplied Alloe, Write, and Read functions.

AllocFn
Pointer to the user-supplied Alloe function. This argument can be NULL if the
operation does not require it, or if the handle was previously initiated with the pointer.

WriteFn
Pointer to the user-supplied Write function. This argument can be NULL if the
operation does not require it, or if the handle was previously initiated with the pointer.

Chapter 25 RPe Function Reference 359

ReadFn
Pointer to the user-supplied Read function. This argument can be NULL if the
operation does not require it, or if the handle was previously initiated with the pOinter.

OpCode
Specifies the operation. Valid operations are MES_ENCODE or MES_DECODE.

Return Values
Value

RPC_S_OK

RPC_S_I NVALI D_ARG

RPC_S_OUT_OF_MEMORY

Remarks

Meaning

Call successful.

Invalid argument.

Out of memory.

The MeslncrementalHandleReset routine is used by applications to re-initialize the
handle for the incremental style of encoding or decoding. For additional information
on the user-supplied Alloc, Write, and Read functions, see Serialization Services.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Midles.h.
Library: Use Rpcrt4.1ib.

MesEncodelncrementalHandleCreate, MesHandleFree

MeslnqProcEncodingld
The MeslnqProcEncodingld function provides the identity of an encoding.

Parameters
Handle

An encoding or decoding handle.

360 Volume 3 RPC and WNet

plnterfaceld
Pointer to the address in which the identity of the interface used to encode the data
will be written. The plnterfaceld consists of the interface universally unique identifier
UUID and the version number.

pProcNum
The number of the function used to encode the data.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_ARG

RPC_S_OUT _OF_MEMORY

RPC_S_UNKNOWN_IF

RPC_S_UNSUPPORTED_TRANS_SYN

RPC_X_INVALlD_ES_ACTION

RPC_X_ WRONG_ES_ VERSION

Remarks·

Meaning

Call successful.

Invalid argument.

Out of memory.

Unknown interface.

Transfer syntax not supported by server.

Invalid operation for a given handle.

Incompatible version of the serializing
package;

Invalid buffer.

The MeslnqProcEncodingld function is used by applications to obtain the identity of the
function used to encode the data before calling a function to decode it. When called with
an encoding handle, it returns the identity of the last encoding operation. When called
with a decoding handle, it returns the identity of the next decoding operation by
pre-reading the buffer.

This function can only be used to check the identity of, a procedure encoding; it cannot
be used to check the identity for a type encoding.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Midles.h.
Library: Use Rpcrt4.1ib.

NdrGetUserMarshallnfo
The NdrGetUserMarshallnfo function provides additional information to wire_marshal
and usecmarshal helper functions.

Parameters
pFlags

Chapter 25 RPC Function Reference 361

The pOinter by the same name that RPC passed to the helper function.

Information Level
Indicates the desired level of detail to be received. Different levels imply different sets
of information fields. Only level 1 is currently defined.

pMarshaflnfo
The address of a memory buffer, supplied by the application, that is to receive the
requested information. The buffer must be at least as large as the information
structure indicated by InformationLevel.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_ARG

RPC_X_INVALlD_BUFFER

Remarks

Meaning

Call was successful.

At least one of the arguments was invalid.

Current marshaling buffer is invalid.

The NdrGetUserMarshalinfo function is called by the wire_marshal or usecmarshal
helper functions (provided by the application) <type> _UserSize, <type> _UserMarshal,
<type> _UserUnmarshal, and <type> _UserFree to receive extra information about the
state of the call. A common use for this function is to obtain the size of the marshaling
buffer for the purpose of checking for end of buffer conditions. Sending incorrectly sized
data is a commonly used method of breaching system security.

For a full listing of the information returned by NdrGetUserMarshalinfo, see
NDR_USER_MARSHAL_INFO.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rpcndr.h.
Library: Use Rpct4.lib.

362 Volume 3 RPC and WNet

RpcAbnormalTermination
The RpcAbnormalTermination function indicates whether the try block
of a RpcTryFinally statement terminated normally.

Parameters
This function has no parameters.

Return Values
Value

Zero

Nonzero

Remarks

Meaning

Try block terminated normally.

Try block terminated abnormally, either because an exception was raised,
or because of a return, continue, or break statement.

The RpcAbnormalTermination function can only be called from within the
termination-statements section of an RpcFinally termination handler.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpc.h.
Library: Use Rpcrt4.lib.

RpcFinally

RpcAsyncAbortCall
The server calls RpcAsyncAbortCall to abort an asynchronous call.

Parameters
pAsync

Pointer to the RPC_ASYNC_STATE structure that contains asynchronous call
information.

Chapter 25 RPC Function Reference 363

ExceptionCode
An application-specific exception code. See RPC Return Values.

Return Values
Value

RPC_S_OK

RPC_S_I NVALI D_ASYNC_HANDLE

Remarks

Meaning

Call cancellation successful.

Asynchronous handle is invalid.

The server calls RpcAsyncAb,ortCall when circumstances require it to abort
an asynchronous call before completion. For example, the caller may not have the
necessary permissions to make the request, or the server may be too busy to process
the call. Use the ExceptionCode parameter to specify the reason for the abort.
The run-time environment propagates the exception code to the client as a fault.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rpcasync.h.
Library: Use Rpcrt4.lib.

Asynchronous RPC, RPC_ASYNC_STATE, RpcAsyncCancelCall,
RpcAsyncCompleteCall, RpcAsyncGetCallHandle, RpcAsyncGetCallStatus,
RpcAsynclnitializeHandle, RpcAsyncRegisterlnfo,RpcServerTestCancel

RpcAsyncCancelCal1
The client calls the RpcAsyncCancelCall function to cancel an asynchronous call.

Parameters
pAsync

Pointer to the RPC_ASYNC_STATE structure that contains asynchronous call
information.

364 Volume 3 RPC and WNet

fAbortCall
If TRUE, the call is cancelled immediately. If FALSE, wait for the server to complete
the call.

Return Values
Value

RPC_S_OK

RPC_S_INVALI D_ASYNC_HANDLE

Remarks

Meaning

Cancellation request was processed.

Asynchronous handle is invalid.

There are two ways for a client to request cancellation of an asynchronous call-abortive
and nonabortive. In an abortive cancel (fAbortCall is TRUE), the RpcAsyncCancelCall
function sends a cancel notification to the server and client side and the asynchronous
call is canceled immediately, without waiting for a response from the server. Note that in
a multithreaded application, the thread that originated the call is the only thread that can
cancel it.

The server checks for cancel requests from the client by calling RpcServerTestCancel.
Depending on the state of the call at the time the cancel request was issued and how
often the server checks for cancels, the call mayor may not complete normally. The
client application can call RpcAsyncCompleteCall and the return value will indicate
whether the call completed, failed, or was canceled. However, the client must still wait
for the original call to complete before calling RPCAsyncCompleteCal1.

In a nonabortive cancel (fAbortCall is FALSE) the RpcAsyncCancelCall function notifies
the server of the cancel and the client waits for the server to complete the call. There is
no built-in time-out mechanism. If you want the call to time out, the client should first
issue a nonabortive cancel using its own time-out mechanism. If the call times out, then
the client can issue an abortive cancel.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rpcasync.h.
Library: Use Rpcrt4.lib.

Asynchronous RPC, RPC_ASYNC_STATE, RpcAsyncAbortCall,
RpcAsyncCompleteCall, RpcAsyncGetCallHandle, RpcAsyncGetCallStatus,
RpcAsyn~lnitializeHandle, RpcAsyncRegisterlnfo, RpcServerTestCancel

Chapter 25 RPC Function Reference 365

RpcAsyncCompleteCal1
The client and the server call the RpcAsyncCompleteCall function to complete
an asynchronous remote procedure call.

Parameters
pAsync

Pointer to the RPC_ASYNC_STATE structure that contains asynchronous call
information.

Reply
Pointer to a buffer containing the return value of the remote procedure call.

Return Values
In addition to the following values, RpcAsyncCompleteCall can also return any general
RPC or application-specific error.

Value

RPC_S_OK

RPC_S_INVALlD_ASYNC_HANDLE

RPC_S_ASYNC_CALL_PENDING

RPC_S_CALLED_CANCELLED

Remarks

Meaning

The call was completed successfully.

The asynchronous call handle is not valid.

The call has not yet completed.

The call was cancelled.

Completes the asynchronous RPC call. Both client and server call this function.

Client: Reply points to a buffer that will receive the reply. If the client calls this function
before the reply has arrived, the call returns RPC_S_ASYNC_CALL_PENDING. The
buffer must be valid and it must be big enough to receive the return value. If this call is
successful, the [out] and the [in, out] parameters are valid.

Server: Reply pOints to a buffer that contains the return value that needs to be sent to
the client. The buffer must be valid. Before a call to RpcAsyncCompleteCall is made,
the [out] and [in, out] parameters must be updated. These parameters, and the
asynchronous handle, should not be touched after the call to RpcAsyncCompleteCall
returns.

Any [out] parameters, including [comm_status] and [fauICstatus] parameters,
are only valid if the return value of RpcAsyncCompleteCall is RPC_S_OK.

366 Volume 3 RPC and WNet

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rpcasync.h.
Library: Use Rpcrt4.lib.

Asynchronous RPC, Error Handling, RPC_ASYNC_STATE, RpcAsyncAbortCall,
RpcAsyncCancelCall, RpcAsyncGetCallHandle, RpcAsyncGetCaliStatus,
RpcAsynclnitializeHandle, RpcAsyncRegisterlnfo, RpcServerTestCancel

RpcAsyncGetCaliStatus
The client calls the RpcAsyncGetCaliStatus function to determine the current status
of an asynchronous remote call.

Parameters
pAsync

Pointer to the RPC_ASYNC_STATE structure that contains asynchronous call
information.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_ASYNC_HANDLE

RPC_S_ASYNC_CALL_PENDING

Other error codes

Remarks

Meaning

The call was completed successfully.

The asynchronous call handle is not valid.

The call has not yet completed.

The call failed. The client application must
call RpcAsyncCompleteCall to receive the
application-specific error code.

This client-side function returns the current status of the asynchronous call. Note that
if the return value is anything other than RPC_S_ASYNC_CALL_PENDING the call
is complete.

Chapter 25 RPC Function Reference 367

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rpcasync.h.
Library: Use Rpcrt4.lib.

Asynchronous RPC, RPC_ASYNC_STATE, RpcAsyncAborlCall,
RpcAsyncCancelCall, RpcAsyncCompleteCall, RpcAsyncGetCaliHandle,
RpcAsynclnitializeHandle, RpcAsyncRegisterlnfo, RpcServerTestCancel

RpcAsyncl n itial izeHand Ie
The client calls the RpcAsynclnitializeHandle function to initialize the
RPC_ASYNC_STATE structure so that it can be used to make an asynchronous call.

Parameters
pAsync

Pointer to the RPC_ASYNC_STATE structure that contains asynchronous call
information.

Size
The size of the RPC_ASYNC_STATE structure.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_ARG

RPC_S_INVALlD_ASYNC_HANDLE

Remarks

Meaning

The call succeeded.

The size is either too small or too large.

pAsync pOints to invalid memory.

The client creates a new RPC_ASYNC_STATE structure and a pointer to that structure
and calls RpcAsynclnitializeHandle with the pointer as an input parameter. The
RpcAsynclnitializeHandle function initializes the fields that it uses to maintain the state
of an asynchronous remote call. When the call to RpcAsynclnitializeHandle returns

368 Volume 3 RPC and WNet

successfully, the client can set the notification type and any fields related to that
notification type in the RPC_ASYNC_STATE structure. The client application uses
a pointer to this structure to make an asynchronous call.

The client should not attempt to alter the Size, Signature, Lock, and Stublnfo members
of the RPC_ASYNC_STATE structure; doing so will invalidate the handle.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rpcasync.h.
Library: Use Rpcrt4.lib.

Asynchronous RPC, RPC_ASYNC_STATE, RpcAsyncAbortCall,
RpcAsyncCancelCall, RpcAsyncCompleteCall, RpcAsyncGetCaliHandle,
RpcAsyncGetCallStatus, RpcAsyncRegisterlnfo, RpcServerTestCancel

RpcAsyncRegisterlnfo
The server calls the RpcAsyncRegisterHandle function to register an updated handle
with the run-time environment.

Parameters
pAsync

Pointer to the RPC_ASYNC_STATE structure that contains asynchronous call
information.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_ASYNC_HANDLE

Remarks

Meaning

Call successful.

The asynchronous handle is invalid.

After the server manager function finishes updating asynchronous information, it calls
RpcAsyncRegisterlnfo to register the updated handle with the run-time environment.

Chapter 25 RPC Function Reference 369

Once registered, a server handle for an asynchronous call remains valid until the server
calls the completion function RpcAsyncCompleteCal1.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rpcasync.h.
Library: Use Rpcrt4.lib.

Asynchronous RPC, RPC_ASYNC_STATE, RpcAsyncAbortCall,
RpcAsyncCancelCall, RpcAsyncCompleteCall, RpcAsyncGetCaliHandle,
RpcAsyncGetCallStatus, RpcAsynclnitializeHandle, RpcServerTestCancel

RpcBindingCopy
The RpcBindingCopy function copies binding information and creates a new binding
handle.

Parameters
SourceBinding

Server binding handle whose referenced binding information is copied.

DestinationBinding
Returns a pointer to the server binding handle that refers to the copied binding
information.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

Remarks

Meaning

Call successful.

Invalid binding handle.

Wrong kind of binding for operation.

The RpcBindingCopy function copies the server-binding information referenced by the
SourceBinding argument. RpcBindingCopy uses the DestinationBinding argument to
return a new server binding handle for the copied binding information. RpcBindingCopy

370 Volume 3 RPe and WNet

also copies the authentication information from the SourceBinding argument to the
DestinationBinding argument.

An application uses RpcBindingCopy when it wants to prevent a change being made
to binding information by one thread from affecting the binding information used by other
threads.

Once an application calls RpcBindingCopy, operations performed on the
SourceBinding binding handle do not affect the binding information referenced
by the DestinationBinding binding handle. Similarly, operations performed on the
DestinationBinding binding handle do not affect the binding information referenced
by the SourceBinding binding handle.

If an application wants one thread's changes to binding information to affect the binding
information used by other threads, the application should share a single binding handle
across the threads. In this case, the application is responsible for binding-handle
concurrency control.

When an application is finished using the binding handle specified by the
DestinationBinding argument, the application should call the RpcBindingFree function
to release the memory used by the DestinationBinding binding handle and its referenced
binding information.

Note Microsoft RPe supports RpcBindingCopy only in client applications, not
in server applications.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.1ib.

RpcBindingFree

RpcBindingFree
The RpcBindingFree function releases binding-handle resources.

Parameters
Binding

Pointer to the server binding to be freed.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

Remarks

Chapter 25 RPC Function Reference 371

Meaning

Call successful.

Invalid binding handle.

Wrong kind of binding for operation.

The RpcBindingFree function releases memory used by a server binding handle.
Referenced binding information that was dynamically created during program execution
is released as well. An application calls the RpcBindingFree function when it is finished
using the binding handle.

Binding handles are dynamically created by calling the following functions:

• RpcBindingCopy

• RpcBindingFromStringBinding

• RpcBindingServerFromClient

• RpcServerlnqBindings

• RpcNsBindinglmportNext

• RpcNsBindingSelect

If the operation successfully frees the binding, the Binding argument returns a
value of NULL.

Note Microsoft RPC supports RpcBindingFree only in client applications, not in server
applications.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcBindingCopy, RpcBindingFromStringBinding, RpcBindingVectorFree,
RpcNsBindinglmportNext, RpcNsBindingLookupNext, RpcNsBindingSelect,
RpcServerlnqBindings

372 Volume 3 RPC and WNet

RpcBindingFromStringBinding
The RpcBindingFromStringBinding function returns a binding handle from a string
representation of a binding handle.

Parameters
StringBinding

Pointer to a string representation of a binding handle.

Binding
Returns a pOinter to the server binding handle.

Return Values
Value

RPC_S_OK

RPC_S_'NVALlD_STRING_BINDING

RPC_S_PROTSEQ_NOT_SUPPORTED

RPC_S_' NVALI D_RPC_PROTSEQ

RPC_S_' NVALlD_ENDPOI NT_FORMAT

RPC_S_STRING_ TOO_LONG

RPC_S_'NVALlD_NET _ADDR

RPC_S_' NVALI D_ARG

RPC_S_' NVALI D_NAF _'D

Remarks

Meaning

Call successful.

Invalid string binding.

Protocol sequence not supported on
this host.

Invalid protocol sequence.

Invalid endpoint format.

String too long.

Invalid network address.

Invalid argument.

Invalid network address-family identifier.

The RpcBindingFromStringBinding function creates a server binding handle from
a string representation of a binding handle. The StringBinding argument does not have
to contain an object UUID. In this case, the returned binding contains a nil UUID. If the
provided StringBinding argument does not contain an endpoint field, the returned
Binding argument is a partially-bound binding handle. If the provided StringBinding
argument contains an endpoint field, the endpoint is considered to be a well-known
endpoint. If the provided StringBinding argument does not contain a host address field,
the returned Binding argument references the local host.

An application creates a string binding by calling the RpcStringBindingCompose
function or by providing a character-string constant.

Chapter 25 RPC Function Reference 373

When an application is finished using the Binding argument, the application should
call the RpcBindingFree function to release the memory used by the binding handle.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcBindingCopy, RpcBindingFree, RpcBindingToStringBinding,
RpcStringBindingCompose

RpcBindinglnqAuthClient
A server application calls the RpcBindinglnqAuthClient function to obtain the principal
name or privilege attributes of the authenticated client that made the remote
procedure call.

Parameters
ClientBinding

The client binding handle of the client that made the remote procedure call. This value
can be zero. See Remarks.

Privs
Returns a pOinter to a handle to the privileged information for the client application
that made the remote procedure call on the ClientBinding binding handle.

The server application must cast the ClientBinding binding handle to the data type
specified by the AuthzSvG argument. The data referenced by this argument is read
only and should not be modified by the server application. If the server wants to
preserve any of the returned data, the server must copy the data into server-allocated
memory.

374 Volume 3 RPC and WNet

The data that the Privs parameter pOints to comes directly from the SSP Therefore,
the format of the data is specific to the SSP. For more information on SSPs, see
Security Support Providers (SSPs).

ServerPrincName
Returns a pOinter to a pOinter to the server principal name specified by the client
application that made the remote procedure call on the ClientBinding binding handle.
The content of the returned name and its syntax are defined by the authentication
service in use. For the SCHANNEL SSP, the principal name is in Microsoft-standard
(msstd) format. For further information on msstd format, see Principal Names.

Specify a null value to prevent RpcBindinglnqAuthClient from returning the
ServerPrincName argument. In this case, the application does not call the
RpcStringFree function.

AuthnLevel
Returns a pointer to the level of authentication requested by the client application that
made the remote procedure call on the ClientBinding binding handle.

Specify a null value to prevent RpcBindinglnqAuthClient from returning the
AuthnLevel argument.

AuthnSvc
Returns a pOinter to the authentication service requested by the client application that
made the remote procedure call on the ClientBinding binding handle. For a list of the
RPC-supported authentication levels, see Authentication-Level Constants.

Specify a null value to prevent RpcBindinglnqAuthClient from returning the
AuthnSvc argument.

AuthzSvc
Returns a pointer to the authorization service requested by the client application that
made the remote procedure call on the Binding binding handle. For a list of possible
returns, see RpcMgmtlnqDefaultProtectLevel.

Specify a null value to prevent RpcBindinglnqAuthClient from returning the
AuthzSvc argument. This parameter is not used by the RPC_C_AUTHN_WINNT
authentication service. The returned value will always be RPC_S_AUTHZ_NONE.

Remarks
A server application calls the RpcBindinglnqAuthClient function to obtain the principal
name or privilege attributes of the authenticated client that made the remote procedure
call. In addition, RpcBindinglnqAuthClient returns the authentication service,
authentication level, and server principal name specified by the client. The server can
use the returned data for authorization purposes.

The RPC run-time library allocates memory for the returned ServerPrincName argument.
The application is responsible for calling the RpcStringFree function for the returned
argument string.

Chapter 25 RPC Function Reference 375

For clients using the MIDL auto_handle or impliciChandle attributes, the server
application should use zero as the value for the ClientBinding parameter. Using zero
retrieves the authentication and authorization information from the currently executing
remote procedure call.

Return Values
value

RPC_S_OK

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

RPC_S_BINDING_HAS_NO_AUTH

Meaning

Call successful.

Invalid binding handle.

Wrong kind of binding for operation.

Binding has no authentication information.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcBindingSetAuthlnfo, RpcStringFree

RpcBindinglnqAuthClientEx
A server application calls the RpcBindinglnqAuthClientEx function to obtain extended
information about the client program that made the remote procedure call.

Parameters
ClientBinding

The client binding handle of the client that made the remote procedure call. This value
can be zero. See Remarks.

376 Volume 3 RPC and WNet

Privs
Returns a pointer to a handle to the privileged information for the client application
that made the remote procedure call on the ClientBinding binding handle.

The server application must cast the ClientBinding binding handle to the data type
specified by the AuthzSvc argument. The data referenced by this argument is read
only and should not be modified by the server application. If the server wants
to preserve any of the returned data, the server must copy the data into
server-allocated memory.

The data that the Privs parameter points to comes directly from the SSP; therefore,
the format of the data is specific to the SSP. For more information on SSPs, see
Security Support Providers (SSPs).

ServerPrincName
Returns a pointer to a pOinter to the server principal name specified by the client
application that made the remote procedure call on the ClientBinding binding handle.
The content of the returned name and its syntax are defined by the authentication
service in use. For the SCHANNEL SSP, the principal name is in msstd format.
For further information on msstd format, see Principal Names.

Specify a null value to prevent RpcBindinglnqAuthClient from returning the
ServerPrincName argument. In this case, the application does not call the
RpcStringFree function.

AuthnLevel
Returns a pOinter to the level of authentication requested by the client application that
made the remote procedure call on the ClientBinding binding handle.

Specify a null value to prevent RpcBindinglnqAuthClient from returning the
AuthnLevel argument.

AuthnSvc
Returns a pointer to the authentication service requested by the client application that
made the remote procedure call on the ClientBinding binding handle. For a list of the
RPC-supported authentication levels, see Authentication-Level Constants.

Specify a null value to prevent RpcBindinglnqAuthClient from returning the
AuthnSvc argument.

AuthzSvc
Returns a pointer to the authorization service requested by the client application that
made the remote procedure call on the Binding binding handle. For a list of possible
returns, see RpcMgmtlnqDefaultProtectLevel.

Specify a null value to prevent RpcBindinglnqAuthClient from returning the
AuthzSvc argument. This parameter is not used by the RPC_C_AUTHN_WINNT
authentication service. The returned value will always be RPC_S_AUTHZ_NONE.

flags
Controls the format of the principal name. This parameter can be set to the
following value.

Value

Return Values

Chapter 25 RPC Function Reference 377

Meaning

Passes back the principal name in
fullsic format.

Value Meaning

RPC_S_OK Call successful.

RPC_S_INVALlD_BINDING Invalid binding handle.

RPC_S_WRONG_KIND_OF _BINDING Wrong kind of binding for operation.

RPC_S_BINDING_HAS_NO_AUTH Binding has no authentication information.

Remarks
A server application calls the RpcBindinglnqAuthClient function to obtain the principal
name or privilege attributes of the authenticated client that made the remote procedure
call. In addition, RpcBindinglnqAuthClient returns the authentication service,
authentication level, and server principal name specified by the client. The server can
use the returned data for authorization purposes.

The RPC run-time library allocates memory for the returned ServerPrincName argument.
The application is responsible for calling the RpcStringFree function for the returned
argument string.

For clients using the MIDL [auto_handle] or [impliciChandle] attributes, the server
application should use zero as the value for the ClientBinding parameter. Using zero
retrieves the authentication and authorization information from the currently executing
remote procedure call.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcBindinglnqAuthClient, RpcBindingSetAuthlnfo, RpcStringFree

RpcBindinglnqAuthlnfo
The RpcBindinglnqAuthlnfo function returns authentication and authorization
information from a binding handle.

378 VolUme 3 RPC and WNet

Parameters
Binding

The server binding handle from which authentication and authorization information
is returned.

SeNerPrincName
Returns a pointer to a pointer to the expected principal name of the server referenced
in Binding. The content of the returned name and its syntax are defined by the
authentication service in use.

Specify a null value to prevent RpcBindinglnqAuthlnfo from returning the
SeNerPrincName argument. In this case, the application does not call the
RpcStringFree function.

AuthnLevel
Returns a pointer to the level of authentication used for remote procedure calls made
using Binding. See Note.

Specify a null value to prevent the function from returning the AuthnLevel argument.

The level returned in the AuthnLevel argument may be different from the level
specified when the client called the RpcBindingSetAuthlnfo function. This
discrepancy occurs when the RPC run-time library does not support the
authentication level specified by the client and automatically upgrades to the next
higher authentication level.

AuthnSvc
Returns a pOinter to the authentication service specified for remote procedure calls
made using Binding. See Note.

Specify a null value to prevent RpcBindinglnqAuthlnfo from returning the AuthnSvc
argument.

Authldentity
Returns a pOinter to a handle to the data structure that contains the client's
authentication and authorization credentials specified for remote procedure calls
made using Binding.

Specify a null value to prevent RpcBindinglnqAuthlnfo from returning the
Authldentityargument.

AuthzSvc
Returns a pointer to the authorization service requested by the client application that
made the remote procedure call on Binding See Note.

Chapter 25 RPC Function Reference 379

Specify a null value to prevent RpcBindinglnqAuthlnfo from returning the AuthzSvc
argument.

Note For a list of the RPC-supported authentication services, see
Authentication-Service Constants.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

RPC_BINDING_HAS_NO_AUTH

Remarks

Meaning

Call successful.

Invalid binding handle.

Wrong kind of binding for operation.

Binding has no authentication information.

A client application calls the RpcBindinglnqAuthlnfo function to view the authentication
and authorization information associated with a server binding handle. A similar function,
RpcBindinglnqAuthlnfoEx additionally provides security quality-of-service information
on the binding handle.

The RPC run-time library allocates memory for the returned ServerPrincName argument.
The application is responsible for calling the RpcStringFree function for that returned
argument string.

When a client application does not know a server's prinCipal name, calling
RpcBindinglnqAuthlnfo after making a remote procedure call provides the server's
prinCipal name. For example, clients that import from a group or profile may not know
a server's principal name when calling the RpcBindingSetAuthlnfo function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcBindinglnqAuthClient, RpcBindinglnqAuthlnfoEx, RpcBindingSetAuthlnfo,
RpcBindinglnqOption, RpcStringFree

380 Volume 3 RPe and WNet

RpcBindinglnqAuthlnfoEx
The RpcBindinglnqAuthlnfoEx function returns authentication, authorization, and
security quality-of-service information from a binding handle. The function is supported
with limited functionality (no security quality-of-service information) on Windows® NT 4.0
and with full functionality on Windows 2000, and Windows® 95.

Parameters
Binding

The server binding handle from which authentication and authorization information
is returned.

ServerPrincName
Returns a pOinter to a pOinter to the expected principal name of the server referenced
in Binding. The content of the returned name and its syntax are defined by the
authentication service in use.

Specify a null value to prevent RpcBindinglnqAuthlnfoEx from returning the
ServerPrincName argument. In this case, the application does not call the
RpcStringFree function.

AuthnLevel
Returns a pointer to the level of authentication used for remote procedure calls made
using Binding. For a list of the RPe-supported authentication levels, see
Authentication-Level Constants. Specify a null value to prevent the function from
returning the AuthnLevel argument.

The level returned in the AuthnLevel argument may be different from the level
specified when the client called the RpcBindingSetAuthlnfoEx function.
This discrepancy happens when the RPe run-time library does not support the
authentication level specified by the client and automatically upgrades to the next
higher authentication level.

AuthnSvc
Returns a pOinter to the authentication service specified for remote procedure calls
made using Binding. For a list of the RPe-supported authentication services, see
Authentication-Service Constants.

Chapter 25 RPC Function Reference 381

Specify a null value to prevent RpcBindinglnqAuthlnfoEx from returning the
AuthnSvc argument.

Authldentity
Returns a pointer to a handle to the data structure that contains the client's
authentication and authorization credentials specified forremote procedure calls
made using Binding.

Specify a null value to prevent RpcBindinglnqAuthlnfoEx from returning the
Authldentityargument.

AuthzSvc
Returns a pointer to the authorization seNice requested by the client application that
made the remote procedure call on Binding. For a list of the RPC-supported
authentication seNices, see Authentication-Service Constants.

Specify a null value to prevent RpcBindinglnqAuthlnfoEx from returning the
AuthzSvc argument.

RpcQos Version
Passes value of current version (needed for forward compatibility if extensions
are made to this function). Always set this parameter
to RPC_C_SECURITY _QOS_VERSION.

SecurityQos
Returns pOinter to the RPC_SECURITY _QOS structure, which defines
quality-of-seNice settings. Not supported in Windows NT 4.0.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

RPC_BINDING_HAS_NO_AUTH

Remarks

Meaning

Call successful.

Invalid binding handle.

Wrong kind of binding for operation.

Binding has no authentication information.

A client application calls the RpcBindinglnqAuthlnfoEx function to view the
authentication and authorization information associated with a seNer binding handle.
This function provides the ability to inquire about the security quality of seNice on the
binding handle. It is otherwise identical to RpcBindinglnqAuthlnfo.

The RPC run-time library allocates memory for the returned ServerPrincName argument.
The application is responsible for calling the RpcStringFree function for that returned
argument string.

When a client application does not know a seNer's principal name, calling
RpcBindinglnqAuthlnfoEx after making a remote procedure call provides the seNer's
prinCipal name. For example, clients that import from a group or profile may not know
a seNer's principal name when calling the RpcBindingSetAuthlnfoEx function.

382 Volume 3 RPe andWNet

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RPC_SECURITY _QOS, RpcBindingSetAuthlnfoEx, RpcStringFree

RpcBindinglnqObject
The RpcBindinglnqObject function returns the object UUID from a binding handle.

Parameters
Binding

A client or server binding handle.

ObjectUuid
Returns a pointer to the object UUID found in the Binding argument. ObjectUuid
is a unique identifier of an object to which a remote procedure call can be made.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

Remarks

Meaning

Call successful.

Invalid binding handle

An application calls the RpcBindinglnqObject function to see the object UUID
associated with a client or server binding handle.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.1ib.

Chapter 25 RPC Function Reference 383

RpcBindingSetObject

RpcBindinglnqOption
RPC client processes use RpcBindinglnqOption to determine current values of the
binding options that are specific to the ncadg_mq message-queuing transport.

Parameters
hBinding

The server binding about which to determine binding-option values.

Option
The binding handle property to inquire about.

pOption Value
The memory location to place the value for the specified Option

Note For a list of binding options and their possible values, see Binding Option
Constants.

Return Values
Value Meaning

RPC_S_OK Call successful.

RPC_S_CANNOT _SUPPORT The function is not supported for either the operating
system or the transport. Note that calling
RpcBindinglnqOption on binding handles that use
any protocol sequence other than ncadg_mq will fail
and return this value.

Remarks
When you use the Microsoft Message Queue Server (MSMQ) as the transport
mechanism for your RPC application, and you use asynchronous message calls, the
client process can control certain binding-specific options that affect queue operation.

384 Volume 3 RPC and WNet

Client processes call RpcBindinglnqOption to determine the current settings of the
message options. To inquire about authentication settings, the client must call
RpcBindinglnqAuthClient.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcBindingSetOption, RpcBindinglnqOption, RpcBindingSetAuthlnfo,
RpcBindinglnqAuthClient, message, RPC Message Queuing

RpcBindingReset
The RpcBindingReset function resets a binding handle so that the host is specified but
the server on that host is unspecified.

Parameters
Binding

The server binding handle to reset.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

Remarks

Meaning

Call successful.

Invalid binding handle.

Wrong kind of binding for operation.

A client calls the RpcBindingReset function to disassociate a particular server instance
from the server binding handle specified in the Binding argument.
The RpcBindingReset function dissociates a server instance by removing the endpoint
portion of the server address in the binding handle. The host remains unchanged in the
binding handle. The result is a partially-bound server binding handle.

RpcBindingReset does not affect the Binding argument's authentication information,
if there is any.

Chapter 25 RPC Function Reference 385

If a client is willing to be serviced by any compatible server instance on the host
specified in the binding handle, the client calls the RpcBindingReset function before
making a remote procedure call using the Binding binding handle.

When the client makes the next remote procedure call using the reset (partially-bound)
binding, the client's RPC run-time library uses a well-known endpoint from the client's
interface specification, if any. Otherwise, the client's run-time library automatically
communicates with the endpoint-mapping service on the specified remote host to obtain
the endpOint of a compatible server from the endpoint-map database. If a compatible
server is located, the RPC run-time library updates the binding with a new endpoint.
If a compatible server is not found, the remote procedure call fails. For calls using
a connection protocol (ncacn), the RPC_S_NO_ENDPOINT _FOUND status code
is returned to the client. For calls using a datagram protocol (ncadg),
the RPC_S_COMM_FAILURE status code is returned to the client.

Server applications should register all binding handles by calling RpcEpRegister and
RpcEpRegisterNoReplace if the server wants to be available to clients that make
a remote procedure call on a reset binding handle.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcEpRegister, RpcEpRegisterNoReplace

RpcBindingServerFromClient
An application calls RpcBindingServerFromClient to convert a client binding handle
into a partially-bound server binding handle.

Parameters
ClientBinding

Client binding handle to convert to a server binding handle.

ServerBinding
Returns a server binding handle.

386 Volume 3 RPC and WNet

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

RPC_S_CANNOT_SUPPORT

Remarks

Meaning

Call successful.

Invalid binding handle.

Wrong kind of binding for operation.

Cannot determine the client's host
(not TCP or SPX).

The following protocol sequences support RpcBindingServerFromClient:

• ncadg_ip_udp

• ncadg_ipx

• ncacn_ip_tcp

• ncacn_spx.

• ncacn_np (effective with Windows 2000)

An application gets a client binding handle from the RPC run-time. When the remote
procedure call arrives at a server, the run-time creates a client binding handle that
contains information about the calling client. The run-time passes this handle to the
server manager function as the first argument.

Calling RpcBindingServerFromClient converts this client handle to a server handle
that has these properties:

• The server handle is a partially-bound handle. It contains a network address for the
calling client, but lacks an endpoint.

• The server handle contains the same object UUID used by the calling client. This can
be the nil UUID. For more information on how a client specifies an object UUID
for a call, see RpcBindingsetObject, RpcNsBindinglmportBegin,
RpcNsBindingLookupBegin, and RpcBindingFromStringBinding.

• The server handle contains no authentication information.

The client application must call RpcBindingFree to free the resources used by the
server binding handle once it is no longer needed.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.1ib.

Chapter 25 RPC Function Reference 387

RpcBindingFree, RpcBindingSetObject, RpcEpRegister,
RpcEpRegisterNoReplace, RpcNsBindinglmportBegin,
RpcNsBindingLookupBegin, RpcBindingFromStringBinding

RpcBindingSetAuthlnfo
The RpcBindingSetAuthlnfo function sets a binding handle's authentication and
authorization information.

Parameters
Binding

Server binding handle to which authentication and authorization information
is to be applied.

ServerPrincName
Pointer to the expected principal name of the server referenced by hBinding.
The content of the name and its syntax are defined by the authentication service
in use. Set this parameter to NULL when accessing the Microsoft Message
Queue Server (MSMQ) security.

AuthnLevel
Level of authentication to be performed on remote procedure calls made using
hBinding. For a list of the RPC-supported authentication levels, see the list of
Authentication-Level Constants.

Under MSMQ security this can be RPC_C_AUTHN_LEVEL_NONE,
RPC_C_AUTHN_LEVEL_PKT _INTEGRITY, or
RPC_C_AUTHN_LEVEL_PKT _PRIVACY. If you specify any other level it will be
converted silently to the next higher supported level.

AuthnSvc
Authentication service to use. See Note.

Specify RPC_C_AUTHN_NONE to turn off authentication for remote procedure calls
made using hBinding .

If RPC_C_AUTHN_DEFAULT is specified, the RPC run-time library uses the
RPC_C~AUTHN_WINNTauthentication service for remote procedure calls made
using hBinding .

388 Volume 3 RPC and WNet

The only authentication services allowed for MSMQ security are
RPC_C_AUTHN_NONE and RPC_C_AUTHN_MQ. If you use
RPC_C_AUTHN_WINNT or one of the other security providers your [message] calls
will not be authenticated or encrypted.

Authldentity
A handle for the structure that contains the client's authentication and authorization
credentials appropriate for the selected authentication and authorization service.
When using the RPC_C_AUTHN_WINNT authentication service Authldentityshould
be a pointer to a SEC_WINNT_AUTH_IDENTITY structure (defined in Rpcdce.h).

When you select the RPC_C_AUTHN_GSS_SCHANNEL authentication service the
Authldentity parameter should be a pointer to a SCHANNEL_CRED structure
(defined in Schannel.h). Specify a null value to use the security login context for the
current address space. Pass the value RPC_C_NO_CREDENTIALS to use
an anonymous log-in context.

AuthzService
The authorization service implemented by the server for the interface of interest.
See Note

The validity and trustworthiness of authorization data, like any application data,
depends on the authentication service and authentication level selected. This
parameter is ignored when using the RPC_C_AUTHN_WINNT authentication service.

Note For more information see Authentication-Service Constants.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

RPC_S_UNKNOWN_AUTHN_SERVICE

Remarks

Meaning

Call successful.

Invalid binding handle.

Wrong kind of binding for operation.

Unknown authentication service.

A client application calls the RpcBindingSetAuthlnfo function to set up a server binding
handle for making authenticated remote procedure calls. A client is not required to call
this function.

Unless a client calls RpcBindingSetAuthlnfo, no remote procedure calls on the
hBinding binding handle are authenticated. A server can call RpcBindinglnqAuthClient
from within a remote procedure call to determine if that call has been authenticated.

For information on platform-specific issues related to the RpcBindingSetAuthlnfo
function, see MS DOS Considerations and Windows 95/98 Considerations.

Chapter 25 RPC Function Reference 389

All versions of Microsoft RPC for Windows 9x and Windows NT (4.x and earlier) maintain
a pointer to the Authldentity parameter for as long as the binding handle exists.
Therefore, your program should ensure it is not on the stack and is not freed until the
binding handle is freed. If the binding handle is copied, or if a context handle is created
from the binding handle, then the Authldentity pointer will also be copied.

The RpcBindingSetAuthlnfo function in Microsoft RPC for Windows 2000 takes
a snapshot of the credentials. Therefore, the memory dedicated to the Authldentity
parameter can be freed before the binding handle. The exception to this is when your
application uses RpcBindingSetAuthlnfo with RPC_C_QOS_IDENTITY _DYNAMIC
and also specifies a non-NULL value for Authldentity.

Because of the varying requirements of different versions of Microsoft RPC, Microsoft
recommends that your application maintains a pointer to the Authldentity parameter for
as long as the binding handle exists. Doing so increases the applications portability.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

MSMQ Security Services, RpcBindingSetOption, RpcBindinglnqAuthlnfo,
RpcServerRegisterAuthlnfo

RpcBindingSetAuthlnfoEx
The RpcBindingSetAuthlnfoEx function sets a binding handle's authentication,
authorization, and security quality-of-service information.

390 Volume 3 RPe and WNet

Parameters
Binding

Server binding handle into which authentication and authorization information is set.

ServerPrincName
Pointer to the expected principal name of the server referenced by Binding. The
content of the name and its syntax are defined by the authentication service in use.

AuthnLevel
Level of authentication to be performed on remote procedure calls made using
Binding. For a list of the RPC-supported authentication levels, see Authentication
Level Constants.

AuthnSvc
Authentication service to use. See Note.

Specify RPC_C_AUTHN_NONE to turn off authentication for remote procedure calls
made using Binding.

If RPC_C_AUTHN_DEFAUL T is specified, the RPC run-time library uses the
RPC_C_AUTHN_WINNT authentication service for remote procedure calls made
using Binding.

Authldentity
Handle for the structure that contains the client's authentication and authorization
credentials appropriate for the selected authentication and authorization service.

When using the RPC_C_AUTHN.WINNT authentication service Authldentityshould
be a pointer to a SEC_WINNT_AUTH_IDENTITY structure (defined in Rpcdce.h).

Specify a null value to use the security login context for the current address space.
Pass the value RPC_C_NO_CREDENTIALS to use an anonymous log-in context.

AuthzSvc
Authorization service implemented by the server for the interface of interest. The
validity and trustworthiness of authorization data, like any application data, depends
on the authentication service and authentication level selected. This parameter is
ignored when using the RPC_C_AUTHN_WINNT authentication service. See Note.

SecurityQOS
Pointer to the RPC_SECURITY _QOS structure, which defines the security
quality-of-service.

Note For a list of the RPC-supported authentication services, see Authentication
Service Constants.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

Meaning

Call successful.

Invalid binding handle.

Value

RPC_S_WRONG_KIND_OF _BINDING

RPC_S_UNKNOWN_AUTHN_SERVICE

Remarks

Chapter 25 RPC Function Reference 391

Meaning

Wrong kind ot binding tor operation.

Unknown authentication service.

A client application calls the RpcBindingSetAuthlnfoEx function to set up a server
binding handle for making authenticated remote procedure calls. This function provides
the capability to set security quality-ot-service information on the binding handle. It is
otherwise identical to RpcBindingSetAuthlnfo.

Unless a client calls RpcBindingSetAuthlnfoEx, all remote procedure calls on Binding
are unauthenticated. A client is not required to call this function.

All versions of Microsoft RPC for Windows 9x and Windows NT (4.x and earlier) maintain
a pOinter to the Authldentity parameter for as long as the binding handle exists.
Therefore, your program should ensure it is not on the stack and is not freed until the
binding handle is freed. If the binding handle is copied, or if a context handle is created
from the binding handle, then the Authldentity pOinter will also be copied.

The RpcBindingSetAuthlnfoExfunction in Microsoft RPC for Windows 2000 takes
a "snapshot" of the credentials. Therefore, the memory dedicated to the Authldentity
parameter can be freed before the binding handle. The exception to this is when your
application uses RpcBindingSetAuthlnfoEx with RPC_C_QOS_IDENTITY _DYNAMIC
and also specifies a non-NULL value for Authldentity.

Because of the varying requirements of different versions of Microsoft RPC, Microsoft
recommends that your application maintains a pOinter to the Authldentity parameter for
as long as the binding handle exists. Doing so increases the applications portability.

Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RPC_SECURITY _QOS, RpcBindinglnqAuthlnfoEx, RpcServerRegisterAuthlnfo

RpcBindingSetObject
The RpcBindingSetObject function sets the object UUID value in a binding handle.

392 Volume 3 RPe and WNet

Parameters
Binding

Server binding into which the ObjecfUuid is set.

ObjecfUuid
Pointer to the UUID of the object serviced by the server specified in the Binding
argument. ObjecfUuid is a unique identifier of an object to which a remote procedure
call can be made.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

Remarks

Meaning

Call successful.

Invalid binding handle.

Wrong kind of binding for operation.

An application calls the RpcBindingSetObject function to associate an object UUID with
a server binding handle. The set-object operation replaces the previously associated
object UUID with the UUID in the ObjecfUuid argument.

To set the object UUID to the nil UUID, specify a null value or the nil UUID for the
ObjecfUuid argument.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcBindingFromStringBinding, RpcBindinglnqObject

RpcBindingSetOption
The RpcBindingSetOption function enables client applications to specify
message-queuing options on a binding handle. This function is supported on
Windows NT, Windows 2000. Windows 95, with the second release of DCOM 95, and
Windows 98 also support this function.

Parameters
hBinding

Server binding to modify.

Option

Chapter 25 RPC Function Reference 393

Binding property to modify. See Note.

Option Value
The new value for the binding property. See Note.

Note For a list of binding options and their possible values, see
Binding Option Constants.

Return Values
Value

RPC_S_OK

RPC_S_CANNOT_SUPPORT

Remarks

Meaning

Call successful.

The function is not supported for either the
operating system or the transport. Note that calling
RpcBindingSetOption on binding handles that
use any protocol sequence other than ncadg_mq
will fail and return this value.

RPC client processes use RpcBindingSetOption to control the delivery
quality-of-service, call logging, and cali lifetimes. Changing the binding-handle
properties will affect all remote calis until the properties are changed by another call
to RpcBindingSetOption. You can also call RpcBindingSetAuthlnfo to set security
options for the binding handle.

Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

394 Volume 3 RPC and WNet

message, RPC Message Queuing, RpcBindinglnqOption, RpcBindingSetAuthlnfo,
RpcBindinglnqAuthClient

RpcBindingToStringBinding
The RpcBindingToStringBinding function returns a string representation of a binding
handle.

Parameters
Binding

Client or server binding handle to convert to a string representation of a binding
handle.

StringBinding
Returns a pOinter to a pOinter to the string representation of the binding handle
specified in the Binding argument.

Specify a null value to prevent RpcBindingToStringBinding from returning the
StringBinding argument. In this case, the application does not call the RpcStringFree
function.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

Remarks

Meaning

Call successful.

Invalid binding handle.

The RpcBindingToStringBinding function converts a client or server binding handle
to its string representation.

The RPC run-time library allocates memory for the string returned in the StringBinding
argument. The application is responsible for calling the RpcStringFree function
to deallocate that memory.

If the binding handle in the Binding argument contained a nil object UUID, the object
UUID field is not included in the returned string.

To parse the returned StringBinding argument, call the RpcStringBindingParse
function.

Chapter 25 RPC Function Reference 395

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcBindingFromStringBinding, RpcStringBindingParse, RpcStringFree

RpcBindingVectorFree
The RpcBindingVectorFree function frees the binding handles contained in the vector
and the vector itself.

Parameters
Binding Vector

Pointer to a pointer to a vector of server binding handles. On return, the pointer is set
to NULL.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_ARG

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

Remarks

Meaning

Call successful.

Invalid argument.

Invalid binding handle.

Wrong kind of binding for operation.

An application calls the RpcBindingVectorFree function to release the memory used to
store avector of server binding handl~s. The function frees both the binding handles and
the vector itself.

A server obtains a vector of binding handles by calling the RpcServerlnqBindings
function. A client obtains a vector of binding handles by calling the
RpcNsBindingLookupNext function.

396 Volume 3 RPC and WNet

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcNsBindingLookupNext, RpcServerlnqBindings

RpcCancelThread
The RpcCancelThread function cancels a thread.

Parameters
ThreadHandle

The handle of the thread to cancel.

Return Values
Value

RPC_S_OK

RPC_S_ACCESS_DENIED

RPC_S_CANNOT_SUPPORT

Remarks

Meaning

Call successful.

Thread handle does not have privilege.

Called by an MS-DOS or Windows 3.x client.

The RpcCancelThread function allows one client thread to cancel an RPC in progress
on another client thread. When the function is called, the server run-time is informed of
the cancel operation. The server stub can determine if the call has been canceled by
calling RpcTestCancel. If the call has been canceled, the server stub should clean up
and return control to the client.

By default, the client waits forever for the server to return control after a cancel.
To reduce this time, call RpcMgmtSetCancelTimeout, specifying the number
of seconds to wait for a response. If the server does not return within this interval,
the call fails at the client with an RPC_S_CALL_FAILED exception. The server stub
continues to execute.

If you are using the named pipes protocol, ncacn_np, you must specify a finite time-out.

Chapter 25 RPC Function Reference 397

Note You can use RpcCancelThread with any of the connection-oriented protocols
(ncacn_ *) except ncacn_http, and with any of the datagram protocols except
ncadg_mq and ncalrpc.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcCancelThreadEx
The RpcCancelThread function stops the execution of a thread.

Parameters
ThreadHandle

The handle of the thread to cancel.

Timeout
Number of seconds to wait for the thread to be canceled before this function returns.
To specify that a client waits an indefinite amount of time, pass the value
RPC_C_CANCEL_INFINITE_TIMEOUT.

Return Values
Value

RPC_S_OK

RPC_S_ACCESS_DENIED

RPC_S_CANNOT_SUPPORT

Remarks

Meaning

Call successful.

Thread handle does not have privilege.

Called by an MS-DOS or Windows 3.x client.

The RpcCancelThread function allows one client thread to cancel an RPC in progress
on another client thread. When the function is called, the server run-time is informed of
the cancel operation. The server stub can determine if the call has been canceled by
calling RpcTestCancel. If the call has been canceled, the server stub should clean up
and return control to the client.

398 Volume 3 RPC and WNet

Using the Timeout parameter, your application can specify the number of seconds to
wait for a response. If the server does not return within this interval, the call fails at the
client with an RPC_S_CALL_FAILED exception. The server stub continues to execute.

If you are using the named pipes protocol, ncacn_np, you must specify a finite time-out.

Note You can use RpcCancelThread with any of the connection-oriented protocols
(ncacn_ *) except ncacn_http, arid with any of the datagram protocols except
ncad9_mQ and ncalrpc.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcCertGeneratePri ncipal Name
Server programs use the RpcCertGeneratePrincipalName function to generate
principal names for security certificates.

Parameters
Context

Pointer to the security-certificate context.

Flags
Currently, the only valid flag for this parameter is RPC_C_FULL_CERT _CHAIN.
Using this flag causes the principal name to be generated in fullsic format.

pBuffer
Pointer to a pOinter. The RpcCertGeneratePrincipalName function sets this to point
at a null-terminated string that contains the principal name.

Remarks
By default, the principal name that the RpcCertGeneratePrincipalName function
passes back is in msstd format. To generate a name in fullsic format, pass
RPC_C_FULL_CERT _CHAIN as the value for the Flags parameter.

Chapter 25 RPC Function Reference 399

Your application must call RpcStringFree to release the memory for the string which
contains the principal name.

Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in Rpcssl.h.
Library: Use Rpcrt4.1ib.

Principal Names

RpcEpRegister
The RpcEpRegister function adds to or replaces server address information in the local
endpoint-map database. This function is supported on all 32-bit Windows platforms,
except Windows CEo

Parameters
If Spec

Specifies an interface to register with the local endpoint-map database.

Binding Vector
Pointer to a vector of binding handles over which the server can receive remote
procedure calls.

UuidVector
Pointer to a vector of object UUIDs offered by the server. The server application
constructs this vector. A null argument value indicates there are no object UUIDs
to register.

Annotation
Pointer to the character-string comment applied to each cross-product element added
to the local endpoint-map database. The string can be up to 64 characters long,
including the null terminating character. Specify a null value or a nUll-terminated string
("\0") if there is no annotation string.

400 Volume 3 RPC and WNet

The annotation string is used by applications for information only. RPC does not use
this string to determine which server instance a client communicates with or for
enumerating elements in the endpoint-map database.

Return Values
Value

RPC_S_OK

RPC_S_NO_BINDINGS

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

Remarks

Meaning

Call successful.

No bindings.

Invalid binding handle.

Wrong kind of binding for operation.

The RpcEpRegister function adds or replaces entries in the local host's endpoint-map
database. For an existing database entry that matches the provided interface
specification, binding handle, and object UUID, this function replaces the entry's
endpoint with the endpoint in the provided binding handle.

A server uses RpcEpRegister rather than RpcEpRegisterNoReplace when only
a single instance of the server will run on the server's host. In other words, use this
function when no more than one server instance will offer the same interface UUID,
object UUID, and protocol sequence at anyone time.

When entries are not replaced, stale data accumulates each time a server instance
stops running without calling RpcEpUnregister. Stale entries increase the likelihood that
a client will receive endpoints to nonexistent servers. The client will spend time trying
to communicate with a nonexistent server before obtaining another endpoint.

Using RpcEpRegister to replace existing endpoint-map database entries reduces the
likelihood that a client will be given the endpoint of a nonexistent server instance.
A server application calls this function to register endpoints specified by calling any
of the following functions:

• RpcServerUseAIiProtseqs

• RpcServerUseProtseq

• RpcServerUseProtseqEp

A server that calls only RpcServerUseAIiProtseqslf or RpcServerUseProtseqlf does
not need to call RpcEpRegister. In this case, the client's run-time library uses an
endpoint from the client's interface specification to fill in a partially-bound binding handle.

If the server also exports to the name-service database, the server calls RpcEpRegister
with the same If Spec, Binding Vector, and UuidVectorthat the server uses when calling
the RpcNsBindingExport function.

Chapter 25 RPC Function Reference 401

For automatically started servers running over a connection-oriented protocol, the RPC
run-time library automatically generates a dynamic endpoint. In this case, the server can
call RpcServerlnqBindings followed by RpcEpRegister to make itself available
to multiple clients. Otherwise, the automatically started server is known only to the client
for which the server was started. Each element added to the endpoint-map database
logically contains the following:

• Interface UUID

• Interface version (major and minor)

• Binding handle

• Object UUID (optional)

• Annotation (optional)

RpcEpRegister creates a cross-product from the If Spec, Binding Vector, and UuidVector
arguments and adds each element in the cross-product as a separate registration in the
endpoint-map database.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcBindingFromStringBinding, RpcEpRegisterNoReplace, RpcEpUnregister,
RpcNsBindingExport, RpcServerlnqBindings, RpcServerUseAIIProtseqs,
RpcServerUseAIiProtseqslf, RpcServerUseProtseq, RpcServerUseProtseqEp,
RpcServerUseProtseqlf

RpcEpRegisterNoReplace
The RpcEpRegisterNoReplace function adds server-address information to the local
endpoint-map database.

402 Volume 3 RPC and WNet

Parameters
If Spec

Specifies an interface to register with the local endpoint-map database.

Binding Vector
Pointer to a vector of binding handles over which the server can receive remote
procedure calls.

UuidVector
Pointer to a vector of object UUIDs offered by the server. The server application
constructs this vector.

A null argument value indicates there are no object UUIDs to register.

Annotation
Pointer to the character-string comment applied to each cross-product element added
to the local endpoint-map database. The string can be up to 64 characters long,
including the null-terminating character. Specify a null value or a null-terminated string
("\0") if there is no annotation string.

The annotation string is used by applications for information only. RPC does not use
this string to determine which server instance a client communicates with
or to enumerate elements in the endpoint-map database.

Return Values
Value

RPC_S_OK

RPC_S_NO_BINDINGS

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

Remarks

Meaning

Call successful.

No bindings.

Invalid binding handle.

Wrong kind of binding for operation.

The RpcEpRegisterNoReplace function adds entries to the local host's endpoint-map
database. This function does not replace existing database entries.

A server uses RpcEpRegisterNoReplace rather than RpcEpRegister when multiple
instances of the server will run on the same host. In other words, use this function when
more than one server instance will offer the same interface UUID, object UUID, and
protocol sequence at anyone time.

Because entries are not replaced when calling RpcEpRegisterNoReplace, servers
must unregister themselves before they stop running. Otherwise, stale data accumulates
each time a server instance stops running without calling RpcEpUnregister. Stale
entries increase the likelihood that a client will receive endpoints to nonexistent servers.
The client will spend time trying to communicate with a nonexistent server before
obtaining another endpoint.

Chapter 25 RPC Function Reference 403

A server application calls RpcEpRegisterNoReplace to register endpoints specified
by calling any of the following functions:

• RpcServerUseAIiProtseqs

• RpcServerUseProtseq

• RpcServerUseProtseqEp

A server that calls only RpcServerUseAIiProtseqslf or RpcServerUseProtseqlf is not
required to call RpcEpRegisterNoReplace. In this case, the client's run-time library
uses an endpoint from the client's interface specification to fill in a partially-bound
binding handle.

If the server also exports to the name-service database, the server calls
RpcEpRegisterNoReplace with the same If Spec, Binding Vector, and UuidVector
arguments that the server uses when calling the RpcNsBindingExport function.

For automatically started servers running over a connection-oriented protocol, the RPC
run-time library automatically generates a dynamic endpoint. In this case, the server can
call RpcServerlnqBindings followed by RpcEpRegisterNoReplace to make itself
available to multiple clients. Otherwise, the automatically started server is known only
to the client for which the server was started.

Each element added to the endpoint-map database logically contains the following:

• Interface UUID

• Interface version (major and minor)

• Binding handle

• Object UUID (optional)

• Annotation (optional)

RpcEpRegisterNoReplace creates a cross-product from the If Spec, Binding Vector, and
UuidVector arguments and adds each element in the cross-product as a separate
registration in the endpoint-map database.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

404 Volume 3 RPC and WNet

RpcBindingFromStringBinding, RpcEpRegister, RpcEpUnregister,
RpcNsBindingExport, RpcServerlnqBindings, RpcServerUseAIIProtseqs,
RpcServerUseAIIProtseqslf, RpcServerUseProtseq, RpcServerUseProtseqEp,
RpcServerUseProtseqlf

RpcEpResolveBinding
The RpcEpResolveBinding function resolves a partially-bound server binding handle
into a fully-bound server binding handle.

Parameters
Binding

Partially-bound server binding handle to resolve to a fully-bound server binding
handle.

If Spec
Stub-generated structure specifying the interface of interest.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

Remarks

Meaning

Call successful.

Invalid binding handle.

Wrong kind of binding for operation.

An application calls the RpcEpResolveBinding function to resolve a partially-bound
server binding handle into a fully-bound binding handle.

Resolving binding handles requires an interface UUID and an object UUID (which may
be nil). The RPC run-time library asks the endpoint-mapping service on the host
specified by the Binding argument to look up an endpoint for a compatible server
instance. To find the endpoint, the endpoint-mapping service looks in the endpoint-map
database for the interface UUID in the If Spec argument and the object UUID in the
Binding argument, if any.

How the resolve-binding operation functions depends on whether the specified binding
handle is partially- or fully-bound. When the client specifies a partially-bound handle, the
resolve-binding operation has the possible outcomes on the following page.

Chapter 25 RPC Function Reference 405

• If no compatible server instances are registered in the endpoint-map database, the
resolve-binding operation returns the EPT _S_NOT _REGISTERED status code.

• If a compatible server instance is registered in the endpoint-map database, the
resolve-binding operation returns a fully-bound binding and the RPC_S_OK
status code.

When the client specifies a fully-bound binding handle, the resolve-binding operation
returns the specified binding handle and the RPC_S_OK status code. The resolve
binding operation does not contact the endpoint-mapping service.

In neither the partially- nor the fully-bound binding case does the resolve-binding
operation contact a compatible server instance.

For information on platform-specific issues related to the RpcEpResolveBinding
function, see MS DOS Considerations and Windows 95/98 Considerations.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcBindingFromStringBinding, RpcBindingReset, RpcEpRegister,
RpcEpRegisterNoReplace, RpcNsBindinglmportBegin, RpcNsBindinglmportDone,
RpcNsBindinglmportNext

RpcEpUnregister
The RpcEpUnregister function removes server-address information from the local
endpoint-map database. This function is supported on all 32-bit Windows platforms,
except Windows CEo

Parameters
I(Spec

Specifies an interface to unregister from the local endpoint-map database.

Binding Vector
Pointer to a vector of binding handles to unregister.

406 Volume 3 RPC and WNet

UuidVector
Pointer to an optional vector of object UUIDs to unregister. The server application
constructs this vector. RpcEpUnregister unregisters all endpoint-map database
elements that match the specified If Spec and Binding Vector arguments and the
object UUID(s).

A null argument value indicates there are no object UUIDs to unregister.

Return Values
Value

RPC_S_OK

RPC_S_NO_BINDINGS

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

Remarks

Meaning

Call successful.

No bindings.

Invalid binding handle.

Wrong kind of binding for operation.

The RpcEpUnregister function removes elements from the local host's endpoint-map
database. A server application calls this function only when the server has previously
registered endpoints and the server wants to remove that address information from the
endpoint-map database.

Specifically, RpcEpUnregister allows a server application to remove its own
endpoint-map database elements (server-address information) based on the interface
specification or on both the interface specification and the object UUID(s) of the
resource(s) offered.

The server calls the RpcServerlnqBindings function to obtain the required
Binding Vector argument. To unregister selected endpoints, the server can prune
the binding vector prior to calling this function.

RpcEpUnregister creates a cross-product from the If Spec, Binding Vector, and
UuidVector arguments and removes each element in the cross-product from the
endpoint-map database. Use RpcEpUnregister cautiously: removing elements from the
endpoint-map database may make servers unavailable to client applications that have
not previously communicated with the server.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

Chapter 25 RPC Function Reference 407

RpcEpRegister, RpcEpRegisterNoReplace, RpcNsBindingUnexport,
RpcServerlnqBindings

RpcExceptionCode
The RpcExceptionCode function retrieves a code that identifies the type of exception
that occurred.

Parameters
This function has no parameters.

Return Values
Possible return values include the set of error codes returned by the RPC functions with
the prefixes "RPC_S-" and "RPC_X" and the set of exceptions returned by the Windows
operating system. For a partial listing of these codes, see RPC Return Values.

Remarks
The RpcExceptionCode function can only be called from within the expression and
exception statements of an RpcTryExcept exception handler;

Windows,NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpc.h.
Library: Use Rpcrt4.1ib.

Exception Handling, RpcExcept, RpcFina"y

, RpclfldVectorFree
The'RpclfldVectorFree function frees the, vector and the interface.,identification
structures contained in the vector. This function IS supported on all 32~bit Windows

, platforms, except Windows CEo

408 Volume 3 RPe and WNet

Parameters
IfIdVec

The address of a pOinter to a vector of interface information. On re,turn, the pointer
is set to NULL.

Return Values
Value

RPC_S_OK

RPC_S_I NVALI D_ARG

Remarks

Meaning

Call successful.

Invalid argument.

An application calls the RpclfldVectorFree function to release the memory used to store
a vector of interface identifications. RpclfldVectorFree frees memory containing the
interface identifications and the vector itself. On return, this function sets the IfIdVec
argument to NULL.

An application obtains a vector of interface identifications by calling the
RpcNsMgmtEntrylnqlflds and RpcMgmtlnqlflds functions.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

Rpclflnqld, RpcMgmtlnqlflds, RpcNsMgmtEntrylnqlflds

Rpclflnqld
The Rpclflnqld function returns the interface-identification part of an interface
specification.

Parameters
RpclfHandle

Stub-generated structure specifying the interface to query.

Chapter 25 RPC Function Reference 409

Rpclfld
Returns a pointer to the interface identification. The application provides memory
for the returned data.

Return Values
Value

Remarks

Meaning

Call successful.

An application calls the Rpclflnqld function to obtain a copy of the interface identification
from the provided interface specification.

The returned interface identification consists of the interface UUID and interface version
numbers (major and minor) specified in the If Spec argument from the IDL file.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcServerlnqlf, RpcServerRegisterlf

RpclmpersonateClient
A server thread that is processing client remote procedure calls can call the
RpclmpersonateClient function to impersonate the active client.

Parameters
BindingHandle

Binding handle on the server that represents a binding to a client. The server
impersonates the client indicated by this handle. If a value Of zero is specified, the
server impersonates the client that is being served by this server thread.

410 Volume 3 RPe and WNet

Return Values
Value

RPC_S_OK

RPC_S_NO_CALL_ACTIVE

RPC_S_CANNOT_SUPPORT

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

RPC_S_NO_CONTEXT _AVAILABLE

Remarks

Meaning

Call successful.

No client is active on this server thread.

The function is not supported for either the
operating system, the transport, or this
security subsystem.

Invalid binding handle.

Wrong kind of binding for operation.

The server does not have permission to
impersonate the client.

In a multithreaded application, if the call to RpclmpersonateClient is with a handle to
another client thread, you must call RpcRevertToSelfEx with the handle to that thread
to end impersonation.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in Rpc.h.
Library: Use Rpcrt4.lib.

Client Impersonation, RpcRevertToSelf

RpcMacSetVieldlnfo
The RpcMacSetYieldlnfo function configures Macintosh client applications to yield
to other applications during remote procedure calls.

Parameters
pfnCallback

Pointer to a callback function.

Return Values
Value

Remarks

Chapter 25 RPC Function Reference 411

Meaning

The information was set successfully.

Register a yielding function by calling RpcMacSetYieldlnfo with a pOinter to the callback
(yielding) function. If a yielding function is not registered, an RPC will not yield on
the Mac.

The yielding function must yield until *pStatus is not equal to 1. For example:

Note that Rpc.h must be included before Winerror.h (or any files that include it, such
as Winbase.h, Windows.h, and so on).

Windows NT/2000: Unsupported.
Windows 95/98: Unsupported.
Version: Requires Macintosh client.
Header: Declared in Rpc.h.
Library: Use Rpcrt4.lib.

RpcMgmtEnableldleCleanup
The RpcMgmtEnableldleCleanup function closes idle resources, such as network
connections, on the client. This function is supported on all 32-bit and 16-bit Windows
platforms. It is not supported on MS-DOS.

Parameters
This function has no parameters.

412 Volume 3 RPe and WNet

Return Values
Value

RPC_S_OK

RPC_S_OUT_OF_THREADS

RPC_S_OUT_OF_RESOURCES

RPC_S_OUT _OF _MEMORY

Remarks

Meaning

Call successful.

Out of threads.

Out of resources.

Out of memory.

Connection-oriented protocols set five seconds as the default waiting period
to determine whether a resource is idle.

Note RpcMgmtEnableldleCleanup is a Microsoft extension to the OSF-DCE RPC
specification.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcServerUnregisterlf

RpcMgmtEpEltlnq8egin
The RpcMgmtEpEltlnqBegin function creates an inquiry context for viewing the
elements in an endpoint map. This function is supported on all 32-bit Windows platforms,
except Windows CEo

Parameters
EpBinding

Chapter 25 RPC Function Reference 413

Host whose endpoint-map elements will be viewed. Specify NULL to view elements
from the local host.

InquiryType
Integer value that indicates the type of inquiry to perform on the endpoint map.
The following are valid inquiry types:

Value Description

IfId

RPC_C_EP _ALL_EL TS Returns every element from the endpoint map.
The IfId, VersOption, and ObjectUuid
parameters are ignored.

RPC_C_EP _MATCH_BY _IF Searches the endpoint map for elements that
contain the interface identifier specified by the
IfId and VersOption values.

RPC_C_EP _MATCH_BY _OBJ Searches the endpoint map for elements that
contain the object UUID specified by
ObjectUuid.

RPC_C_EP _MATCH_BY _BOTH Searches the endpoint map for elements that
contain the interface identifier and object UUID
specified by IfId, VersOption, and ObjectUuid.

Interface identifier of the endpoint-map elements to be returned by
RpcMgmtEpEltlnqNext. This parameter is only used when InquiryType is either
RPC_C_EP _MATCH_BY _IF or RPC_C_EP _MATCH_BY _BOTH. Otherwise,
it is ignored.

VersOption
Specifies how RpcMgmtEpEltlnqNext uses the IfId parameter. This parameter
is only used when InquiryType is either RPC_C_EP _MATCH_BY _IF
or RPC_C_EP _MATCH_BY _BOTH. Otherwise, it is ignored. The following are
valid values for this parameter:

Value Description

Returns endpoint-map elements that offer the
specified interface UUID, regardless of the
version numbers.

Returns endpoint-map elements that offer the
same major version of the specified interface
UUID and a minor version greater than or equal
to the minor version of the specified
interface UUID.

(continued)

414 Volume 3 RPe and WNet

(continued)

Value

ObjectUuid

Description

Returns endpoint-map elements that offer the
specified version of the specified
interface UUID.

Returns endpoint-map elements that offer the
same major version of the specified interface
UUID and ignores the minor version.

Returns endpoint-map elements that offer a
version of the specified interface UUID less than
or equal to the specified major and
minor version.

The object UUID that RpcMgmtEpEltlnqNext looks for in endpoint-map elements.
This parameter is used only when InquiryType is either
RPC_C_EP_MATCH_BY_OBJor RPC_C_EP_MATCH_BY_BOTH.

InquiryContext
Returns an inquiry context for use with RpcMgmtEpEltlnqNext and
RpcMgmtEpEltlnqDone. See RPC_EP _'NQ_HANDLE.

Return Values
Value

Remarks

Meaning

Call successful.

The RpcMgmtEpEltlnqBegin function creates an inquiry context for viewing server
address information stored in the endpoint map. Using InquiryType and VersOption,
an application specifies which of the following endpoint-map elements are to be returned
from calls to RpcMgmtEpEltlnqNext:

• All elements

• Those elements with the specified interface identifier

• Those elements with the specified object UUID

• Those elements with both the specified interface identifier and object UUID

Before calling RpcMgmtEpEltlnqNext, the application must first call this function to
create an inquiry context. After viewing the endpoint-map elements, the application calls
RpcMgmtEpEltlnqDone to delete the inquiry context.

Chapter 25 RPC Function Reference 415

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcEpRegister

RpcMgmtEpEltlnqDone
The RpcMgmtEpEltlnqDone function deletes the inquiry context for viewing the
elements in an endpoint map. This function is supported on all 32-bit Windows platforms,
except Windows CE.

Parameters
InquiryContext

Inquiry context to delete and returns the value NULL.

Return Values
Value

Remarks

Meaning

Call successful.

The RpcMgmtEpEltlnqDone function deletes an inquiry context created by
RpcMgmtEpEltlnqBegin. An application calls this function after viewing local
endpoint-map elements using RpcMgmtEpEltlnqNext.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcEpRegister

416 Volume 3 RPe and WNet

RpcMgmtEpEltlnqNext
The RpcMgmtEpEltlnqNext function returns one element from an endpoint map.
This function is supported on all 32-bit Windows platforms, except Windows CE.

Parameters
InquiryContext

Specifies an inquiry context. The inquiry context is returned from
RpcMgmtEpEltlnqBegin.

IfId
Returns the interface identifier of the endpoint-map element.

Binding
Optional. Returns the binding handle from the endpoint-map element.

ObjectUuid
Optional. Returns the object UUID from the endpoint-map element.

Annotation
Optional. Returns the annotation string for the endpoint-map element. When there
is no annotation string in the endpoint-map element, the empty string ("") is returned.

Return Values
Value

Remarks

Meaning

Call successful.

The RpcMgmtEpEltlnqNext function returns one element from the endpoint map.
Elements selected depend on the inquiry context. The selection criteria are determined
by InquiryType of the RpcMgmtEpEltlnqBegin function that returned InquiryContext.

An application can view all the selected endpoint-map elements by repeatedly calling
RpcMgmtEpEltlnqNext. When all the elements have been viewed, this function returns
an RPC_X_NO_MORE_ENTRIES status. The returned elements are unordered.

When the respective arguments are non-NULL, the RPC run-time function library
allocates memory for Binding and Annotation on each call to this function. The
application is responsible for calling RpcBindingFree for each returned Binding and
RpcStringFree for each returned Annotation.

Chapter 25 RPC Function Reference 417

After viewing the endpoint-map elements, the application must call
RpcMgmtEpEltlnqDone to delete the inquiry context.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcEpRegister

RpcMgmtEpUnregister
The RpcMgmtEpUnregister function removes server address information from
an endpoint map. This function is supported on all 32-bit Windows platforms, except
Windows CEo

Parameters
EpBinding

Host whose endpoint-map elements are to be unregistered. To remove elements from
the same host as the calling application, the application specifies a value of NULL.
To remove elements from another host, the application specifies a server binding
handle for any server residing on that host. Note that the application can specify the
same binding handle it is using to make other remote procedure calls.

IfId
Interface identifier to remove from the endpoint map.

Binding
Binding handle to remove.

ObjectUuid
Optional object UUID to remove. The value NULL indicates there is no object UUID to
remove.

418 Volume 3 RPe and WNet

Return Values
Value

RPC_S_OK

RPC_S_CANT_PERFORM_OP

Remarks

Meaning

Call successful.

Cannot perform the requested operation.

The RpcMgmtEpUnregister function unregisters an element from the endpoint map.
A management program calls this function to remove addresses of servers that are no
longer available, or to remove addresses of servers that support objects that are no
longer offered.

The EpBinding parameter must be a full binding. The object UUID associated with the
EpBinding parameter must be a nil UUID. Specifying a non-nil UUID causes the function
to fail with the status code EPT _S_CANT _PERFORM_OP. Other than the host
information and object UUID, all information in this argument is ignored.

An application calls RpcMgmtEpEltlnqNext to view local endpoint-map elements.
The application can then remove the elements using RpcMgmtEpUnregister.

Note Use this function with caution. Removing elements from the local endpoint map
may make servers unavailable to client applications that do not already have a
fully-bound binding handle to the server.

Windows NT/2000: Requires Windows NT 3.1 or later. Not supported on
Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcEpRegister, RpcEpUnregister

RpcMgmtlnqComTimeout
The RpcMgmtlnqComTimeout function returns the binding-communications time-out
value in a binding handle.

Parameters
Binding

Specifies a binding.

Timeout

Chapter 25 RPC Function Reference 419

Returns a pointer to the time-out value from the Binding argument.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

Remarks

Meaning

Call successful.

Invalid binding handle.

Wrong kind of binding for operation.

A client application calls RpcMgmtlnqComTimeout to view the time-out value in
a server binding handle. The time-out value specifies the relative amount of time that
should be spent to establish a binding to the server before giving up. For a table of the
time-out values, see Binding Time-out Constants.

A client also calls RpcMgmtSetComTimeout to change the time-out value.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcMgmtlnqStats, RpcMgmtSetComTimeout, Binding Time-out Constants

RpcMgmtlnqDefaultProtectLevel
The RpcMgmtlnqDefaultProtectLevel function returns the default authentication level
for an authentication service.

420 Volume 3 RPC and WNet

Parameters
AuthnSvc

Authentication service for which to return the default authentication level.
Possible values are as follows.

Value

RPC_C_AUTHN_NONE

RPC_C_AUTHN_WINNT

AuthnLevel

Description

No authentication.

32-bit Windows authentication service.

Returns the default authentication level for the specified authentication service. The
authentication level determines the degree to which authenticated communications
between the client and server are protected. Possible values are as follows:

Value Description

RPC_C_AUTHN_LEVEL_DEFAULT Uses the default authentication level for the

RPC_C_AUTHN_LEVEL_NONE

RPC_C_AUTHN_LEVEL_
CONNECT

RPC_C_AUTHN_LEVEL_PKT_
INTEGRITY

RPC_C_AUTHN_LEVEL_PKT_
PRIVACY

specified authentication service.

Performs no authentication.

Authenticates only when the client
establishes a relationship with a server.

Authenticates only at the beginning of each
remote procedure call when the server
receives the request. Does not apply to
remote procedure calls made using the
connection-based protocol sequences that
start with the prefix "ncacn". If the protocol
sequence in a binding is a connection-based
protocol sequence and you specify this level,
this function instead uses the
RPC_C_AUTHN_LEVEL_PKT constant.

Authenticates that all data received is from
the expected client.

Authenticates and verifies that none of the
data transferred between client and server
has been modified.

Authenticates all previous levels and
encrypts the argument value of each remote
procedure call.

Chapter 25 RPC Function Reference 421

Note RPC_C_AUTHN_LEVEL_CALL, RPC_C_AUTHN_LEVEL_PKT,
RPC..:...C_AUTHN_LEVEL_PKT _INTEGRITY, and
RPC_C_AUTHN_LEVEL_PKT _PRIVACY are only supported for clients
communicating with a Windows NT and Windows 2000 server. A Windows 95 server
can only accept incoming calls at the RPC_C_AUTHN_LEVEL_CONNECT level.

Return Values
Value Meaning

RPC_S_OK Call successful.

RPC_S_UNKNOWN_AUTH_SERVICE Unknown authentication service.

Remarks
An application calls the RpcMgmtlnqDefaultProtectLevel function to obtain the default
authentication level for a specified authentication service.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcMgmtlnqlflds
The RpcMgmtlnqlflds function returns a vector containing the identifiers of the
interfaces offered by the server. This function is supported on all 32-bit Windows
platforms, except Windows CEo

Parameters
Binding

To receive interface identifiers about a remote application, specify a server binding
handle for that application. To receive interface information about your own
application, specify a value of NULL.

IfIdVector
Returns the address of an interface identifier vector.

422 Volume 3 RPC and WNet

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

Remarks

Meaning

Call successful.

Invalid binding handle.

Wrong kind of binding for operation.

An application calls the RpcMgmtlnqlflds function to obtain a vector of interface
identifiers about the specified server from the RPC run-time library.

The RPC run-time library allocates memory for the interface identifier vector.
The application is responsible for calling the RpclfldVectorFree function to release
the memory used by this vector.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcMgmtlnqServerPrincName
The RpcMgmtlnqServerPrincName function returns a server's principal name.
This function is supported on all 32-bit Windows platforms, except Windows CEo

Parameters
Binding

To receive the principal name for a server, specify a server binding handle for that
server. To receive the principal name for your own (local) application, specify a value
of NULL.

AuthnSvG
Authentication service for which a principal name is returned. Possible values are
as follow:

Value

RPC_C_AUTHN_NONE

RPC_C_AUTHN_WINNT

ServerPrincName

Chapter 25 RPC Function Reference 423

Description

No authentication.

Windows NT /Windows 2000 authentication
service.

Returns a principal name that is registered for the authentication service in AuthnSvc
by the server referenced in Binding. If multiple names are registered, only one name
is returned.

Return Values
Value Meaning

RPC_S_OK Call successful.

RPC_S_INVALlD_BINDING Invalid binding handle.

RPC_S_WRONG_KIND_OF _BINDING Wrong kind of binding for operation.

Remarks
An application calls the RpcMgmtlnqServerPrincName function to obtain the principal
name of a server that is registered for a specified authentication service.

The RPC run-time library allocates memory for the string returned in ServerPrincName.
The application is responsible for calling the RpcStringFree function to release the
memory used by this function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcMgmtlnqStats
The RpcMgmtlnqStats function returns RPCrun-time statistics. This function
is supported on all 32-bit Windows platforms, except Windows CEo

424 Volume 3 RPC and WNet

Parameters
Binding

To receive statistics about a remote application, specify a server binding handle for
that application. To receive statistics about your own (local) application, specify
a value of NULL.

Statistics
Returns a pointer to a pointer to the statistics about the server specified by the
Binding argument. Each statistic is an unsigned long value.

Return Values
Value Meaning

RPC_S_OK Call successful.

RPC_S_INVALlD_BINDING Invalid binding handle.

RPC_S_WRONG_KIND_OF _BINDING Wrong kind of binding for operation.

Remarks
An application calls the RpcMgmtlnqStats function to obtain statistics about the
specified server from the RPC run-time library.

Each array element in the returned statistics vector contains an unsigned long value.
The following table describes the statistics indexed by the specified constant.

Statistic Description

Number of remote procedure calls received
by the server.

Number of remote procedure calls initiated by
the server.

Number of network packets received by the
server.

Number of network packets sent by the
server.

The RPC run-time library allocates memory for the statistics vector. The application is
responsible for calling the RpcMgmtStatsVectorFree function to release the memory
used by the statistics vector.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

Chapter 25 RPC Function Reference 425

RpcEpResolveBinding, RpcMgmtStatsVectorFree

RpcMgmtlsServerListening
The RpcMgmtlsServerListening function tells whether a server is listening for remote
procedure calls. This function is supported on all 32-bit Windows platforms, except
Windows CEo

Parameters
Binding

To determine whether a remote application is listening for remote procedure calls,
specify a server binding handle for that application. To determine whether your own
(local) application is listening for remote procedure calls, specify a value of NULL.

Return Values
Value

RPC_S_OK

RPC_S_SERVER_NOT _LISTENING

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

Remarks

Meaning

Server listening for remote procedure calls.

Server not listening for remote
procedure calls.

Invalid binding handle.

Wrong kind of binding for operation.

An application calls the RpcMgmtlsServerListening function to determine whether the
server specified in the Binding argument is listening for remote procedure calls.

The RpcMgmtlsServerListening function returns a value of TRUE if the server has
called RpcServerListen.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

426 Volume 3 RPe and WNet

RpcEpResolveBinding, RpcServerListen

RpcMgmtSetAuthorizationFn
The RpcMgmtSetAuthorizationFn function establishes an authorization function
for processing remote calls to a server's management functions.

Parameters
AuthorizationFn

Specifies an authorization function. The RPC server run-time library automatically
calls this function whenever the server run-time receives a client request to execute
one of the remote management functions. The server must implement this function.
Applications specify a value of NULL to unregister a previously registered
authorization function. After such a call, default authorizations are used.

Return Values
Value

Remarks

Meaning

Call successful.

Server applications call the RpcMgmtSetAuthorizationFn function to establish an
authorization function that controls access to the server's remote management functions.
When a server has not called RpcMgmtSetAuthorizationFn, or calls with a null value
for AuthorizationFn, the server run-time library uses the following default authorizations.

Remote function

RpcMgmtlnqlflds

RpcMgmtlnqServerPrincName

RpcMgmtlnqStats

RpcMgmtlsServerListening

RpcMgmtStopServerListening

Default authorization

Enabled

Enabled

Enabled

Enabled

Disabled

In the preceding table, "Enabled" indicates that all clients can execute the remote
function, and "Disabled" indicates that all clients are prevented from executing the
remote function.

Chapter 25 RPC Function Reference 427

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcMgmtlnqStats, RpcMgmtlsServerListening, RpcMgmtStopServerListening,
RpcMgmtWaitServerListen, RPC_MGMT _AUTHORIZATION_FN

RpcMgmtSetCancelTimeout
The RpcMgmtSetCancelTimeout function sets the lower bound on the time to wait
before timing out after forwarding a cancel:

Parameters
Seconds

An integer specifying the number of seconds to wait for a server to acknowledge a
cancel command. To specify that a client waits an indefinite amount of time, supply
the value RPC_C_CANCEL_INFINITE_ TIMEOUT.

Return Values
Value

RPC_S_OK

RPC_S_CANNOT_SUPPORT

Remarks

Meaning

Call successful.

Called from an MS-DOS or Windows 3.x client.

An application calls the RpcMgmtSetCancelTimeout function to reset the amount of
time the run-time library waits for a server to acknowledge a cancel. The application
specifies either to wait forever orto wait a specified length of time in seconds. If the
value of Seconds is a (zero), the call is immediately abandoned upon a cancel command
and control returns to the client application. The default value is
RPC_C_CANCEL_INFINITE_ TIMEOUT, which specifies waiting indefinitely for the call
to complete.

The value for the cancel command time-out applies to all remote procedure calls made
in the current thread. To change the time-out value, a multithreaded client must call this
function in each thread of execution.

428 Volume 3 RPC and WNet

Note This function is only supported for Windows NT and Windows 2000 clients.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcMgmtSetComTimeout
The RpcMgmtSetComTimeout function sets the binding-communications time-out
value in a binding handle.

Parameters
Binding

The server binding handle whose time-out value is set.

Timeout
The communications time-out value.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

RPC_S_I NVALI D_ TIMEOUT

RPC_S_WRONG_KIND_OF _BINDING

Remarks

Meaning

Call successful.

Invalid binding handle.

Invalid time-out value.

Wrong kind of binding for operation.

A client application calls RpcMgmtSetComTimeout to change the communications
time-out value for a server binding handle. The time-out value specifies the relative
amount of time that should be spent to establish a relationship to the server before
giving up. Depending on the protocol sequence for the specified binding handle, the
time-out value acts only as a hint to the RPC run-time library.

Chapter 25 RPC Function Reference 429

After the initial relationship is established, subsequent communications for the binding
handle revert to not less than the default time-out for the protocol service. This means
that after setting a short initial time-out establishing a connection, calls in progress will
not be timed out any more aggressively than the default.

The time-out value can be any integer value from 0 to 10. For convenience, constants
are provided for certain values in the time-out range. For a list of the RPC-defined values
that an application can use for the time-out argument, see Binding Time-out Constants.

Note The values passed through the Timeout parameter are not in seconds. These
values represent a relative amount of time on a scale of zero to 10.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcMgmtlnqComTimeout

RpcMgmtSetServerStackSize
The RpcMgmtSetServerStackSize function specifies the stack size for each server
thread. This function is supported on all 32-bit Windows platforms, except Windows CE.

Parameters
ThreadStackSize

The stack size in bytes allocated for each thread created by RpcServerListen. This
value is applied to all threads created for the server. Select this value based on the
stack requirements of the remote procedures offered by the server.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_ARG

Meaning

Call successful.

Invalid argument.

430 Volume 3 RPC and WNet

Remarks
A server application calls the RpcMgmtSetServerStackSize function to specify the
thread stack size to use when the RPC run-time library creates call threads for executing
remote procedure calls. The MaxCal/s argument in the RpcServerListen function
specifies the number of call threads created.

Servers that know the stack requirements of all the manager functions in the interfaces it
offers can call the RpcMgmtSetServerStackSize function to ensure that each call
thread has the necessary stack size.

Calling RpcMgmtSetServerStackSize is optional. However, when used, it must be
called before the server calls RpcServerListen. If a server does not call
RpcMgmtSetServerStackSize, the default per thread stack size from the underlying
threads package is used.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcServerListen

RpcMgmtStatsVectorFree
The RpcMgmtStatsVectorFree function frees a statistics vector. This function is
supported on all 32-bit Windows platforms, except Windows CEo

Parameters
StatsVector

Pointer to a pointer to a statistics vector. On return, the pOinter is set to NULL.

Return Values
Value Meaning

Call successful.

Chapter 25 RPC Function Reference 431

Remarks
An application calls the RpcMgmtStatsVectorFree function to release the memory used
to store statistics.

An application obtains a vector of statistics by calling the RpcMgmtlnqStats function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcMgmtlnqStats

RpcMgmtStopServerListen i ng
The RpcMgmtStopServerListening function tells a server to stop listening for remote
procedure calls. This function will not affect auto-listen interfaces. See
RpcServerRegisterlfEx for more details. This server-side function is supported on all
32-bit Windows platforms, except Windows CEo

Parameters
Binding

To direct a remote application to stop listening for remote procedure calis, specify a
server binding handle for that application. To direct your own (local) application to
stop listening for remote procedure calls, specify a value of NULL.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

Meaning

Call successful.

Invalid binding handle.

Wrong kind of binding for operation.

432 Volume 3 RPC and WNet

Remarks
An application calls the RpcMgmtStopServerListening function to direct a server to
stop listening for remote procedure calls. If DontWaitwas TRUE, the application should
call RpcMgmtWaitServerListen to wait for all calls to complete.

When it receives a stop-listening request, the RPC run-time library stops accepting new
remote procedure calls for all registered interfaces. Executing calls are allowed to
complete, including callbacks. After all calls complete, the RpcServerListen function
returns to the caller. If DontWait is TRUE, the application calls
RpcMgmtWaitServerListen for all calls to complete.

Note From the client-side, RpcMgmtStopServerListening is disabled by default. To
enable this function, create an authorization function in your server application that
returns TRUE (to allow a remote shutdown) whenever RpcMgmtStopServerListening
is called. Use RpcMgmtSetAuthorizationFn to give the client access to the
management function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcEpResolveBinding, RpcMgmtWaitServerListen, RpcServerListen,
RpcServerRegisterlfEx

RpcMgmtWaitServerListen
The RpcMgmtWaitServerListen function performs the wait operation usually
associated with RpcServerListen. This function is supported on all 32-bit Windows
platforms, except Windows CE.

Parameters
This function has no parameters.

Return Values
Value

RPC_S_OK

RPC_S_ALREADY _LISTENING

Remarks

Chapter 25 RPC Function Reference 433

Meaning

All remote procedure calls are complete.

Another thread has called
RpcMgmtWaitServerListen and has not yet
returned.

The server application must call RpcServerListen
before calling RpcMgmtWaitServerListen.

When the RpcServerListen flag parameter DontWait has a nonzero value, the
RpcServerListen function returns to the server application without performing the wait
operation. In this case, the wait can be performed by RpcMgmtWaitServerListen.

Applications must call RpcServerListen with a nonzero value for the DontWait
parameter before calling RpcMgmtWaitServerListen. The RpcMgmtWaitServerListen
function returns after the server application calls RpcMgmtStopServerListening and all
active remote procedure calls complete, or after a fatal error occurs in the RPC run-time
library.

Note RpcMgmtWaitServerListen is a Microsoft extension to the DCE API set.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcMgmtStopServerListening, RpcServerListen

RpcNetworklnqProtseqs
The RpcNetworklnqProtseqs function returns all protocol sequences supported by both
the RPC run-time library and the operating system. This function is supported, for
servers, on all 32-bit Windows platforms, except Windows CEo Client applications should
use RpcNetworklsProtseqValid For a list of Microsoft RPC's supported protocol
sequences, see String Binding.

434 Volume 3 RPC and WNet

Parameters
ProtSeq Vector

Returns a pointer to a pointer to a protocol sequence vector.

Return Values
Value

RPC_S_OK

RPC_S_NO_PROTSEQS

Remarks

Meaning

Call successful.

No supported protocol sequences.

A server application calls the RpcNetworklnqProtseqs function to obtain a vector
containing the protocol sequences supported by both the RPC run-time library and the
operating system. If there are no supported protocol sequences, this function returns the
RPC_S_NO_PROTSEQS status code and a ProtSeqVectorargument value of NULL.

The server is responsible for calling the RpcProtseqVectorFree function to release the
memory used by the vector.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcNetworklsProtseqValid
The RpcNetworklsProtseqValid function tells whether the specified protocol sequence
is supported by both the RPC run-time library and the operating system. The function is
supported, for clients, on all 32-bit Windows platforms, except Windows CE. Server
applications should use RpcNetworklnqProtseqs.

Parameters
Protseq

Chapter 25 RPC Function Reference 435

Pointer to a string identifier of the protocol sequence to be checked.

If the Protseq argument is not a valid protocol sequence string,
RpcNetworklsProtseqValid returns RPC_S_INVALlD_RPC_PROTSEQ.

Return Values
Value Meaning

RPC_S_OK Call successful.; protocol sequence
supported

RPC_S_PROTSEQ_NOT _SUPPORTED Protocol sequence not supported on this
host.

RPC_S_I NVALI D_RPC_PROTSEQ Invalid protocol sequence.

Remarks
An application calls the RpcNetworklsProtseqValid function to determine whether an
individual protocol sequence is available for making remote procedure calls.

A protocol sequence is valid if both the RPC wn-time library and the operating system
support the specified protocols. For a list of Microsoft RPC's supported protocol
sequences, see String Binding. An application calls RpcNetworklnqProtseqs to see all
of the supported protocol sequences.

Note RpcNetworklsProtseqValid is available for client applications, not for server
applications.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcNetworklnqProtseqs

RpcNsBindingExport
The RpcNsBindingExport function establishes a name service-database entry with
multiple binding handles and multiple objects for a server.

436 Volume 3 RPe and WNet

Parameters
EntryNameSyntax

Indicates the syntax of the EntryName argument.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Pointer to the entry name to which binding handles and object UUIDs are exported.
You cannot provide a null or empty string. The client and the server must both use the
same entry name.

If Spec
Specifies a stub-generated data structure specifying the interface to export. A null
value indicates there are no binding handles to export (only object UUIDs are to be
exported) and BindingVee is ignored.

Binding Vee
Pointer to server bindings to export. A null value indicates there are no binding
handles to export (only object UUIDs are to be exported).

ObjectUuidVec
Pointer to a vector of object UUIDs offered by the server. The server application
constructs this vector. A null value indicates there are no object UUIDs to export (only
binding handles are to be exported).

Return Values
Value

RPC_S_OK

RPC_S_NOTHING_ TO_EXPORT

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

RPC_S_INVALI D_NAME_SYNT AX

RPC_S_UNSUPPORTED~NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

Meaning

Call successful.

Nothing to export.

Invalid binding handle.

Wrong kind of binding for operation.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

Value

Remarks

Chapter 25 RPC Function Reference 437

Meaning

No privilege for name-service
operation.

Name service unavailable.

The RpcNsBindingExport function allows aserver application to publicly offer an
interface in the name-service database for use by any client application.

Effective with Windows 2000, the RPC run-time environment uses the Active Directory
as its name-service database. This means that authorized exported entries persist in the
name service, and are visible even after rebooting. Unauthorized exports do not persist.
See Access Control in the Security section of the Microsoft Platform SDK for more
information on authorization and Access Control Lists.

To export an interface, the server application calls the RpcNsBindingExport routine
with an interface and the server binding handles a client can use to access the server.
A server application also calls the RpcNsBindingExport function to publicly offer the
object UUID(s) of resource(s) it offers, if any, in the name-service database.

A server can export interfaces and objects in a single call to RpcNsBindingExport, or it
can export them separately. If the name-service database entry specified by EntryName
does not exist, RpcNsBindingExport tries to create it. In this case, the server
application must have the privilege to create the entry. In addition to calling
RpcNsBindingExport, a server that called the RpcServerUseAIiProtseqs or
RpcServerUseProtseq function must also register with the local endpoint-map
database by calling either RpcEpRegister or RpcEpRegisterNoReplace.

A server is not required to export any of its interfaces to the name-service database.
When a server does not export, only clients that privately know that server's binding
information can access its interfaces. For example, a client that has the information
needed to construct a string binding can call the RpcBindingFromStringBinding to
create a binding handle for making remote procedure calls to a server. .

Before calling RpcNsBindingExport, a server must do the following:

• Register one or more protocol sequences with the local RPC run-time library by
calling one of the following functions:

• RpcServerUseAIIProtseqs, RpcServerUseAIIProtseqsEx

• RpcServerUseProtseq, RpcServerUseProtseqEx

• RpcServerUseAIIProtseqslf, RpcServerUseAIIProtseqslfEx

• RpcServerUseProtseqlf, RpcServerUseProtseqlf

• RpcServerUseProtseqEp, RpcServerUseProtseqEp

• Obtain a list of server bindings by calling the RpcServerlnqBindings function.

438 Volume 3 RPC and WNet

The vector returned from the RpcServerlnqBindings function becomes the Binding
argument for RpcNsBindingExport. To prevent a binding from being exported, set the
selected vector element to a null value.

If a server exports to the same name-service database entry multiple times, the second
and subsequent calls to RpcNsBindingExport add the binding information and object
UUIDs when that data is different from the binding information already in the server
entry. Existing data is not removed from the entry.

To remove binding handles and object UUIDs from the name-service database, a server
application calls the RpcNsBindingUnexport function.

A server entry must have at least one binding handle to exist. As a result, exporting only
UUIDs to a non-existing entry has no effect, and unexporting all binding handles deletes
the entry.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcnsi.h.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcBindingFromStringBinding, RpcEpRegister, RpcEpRegisterNoReplace,
RpcNsBindingUnexport, RpcServerlnqBindings, RpcServerUseAIiProtseqs,
RpcServerUseAIIProtseqslf, RpcServerUseProtseq, RpcServerUseProtseqEp,
RpcServerUseProtseqlf

. RpcNsBindingExportPnP
The RpcNsBindingExportPnP function establishes a name-service database entry with
multiple binding handles and multiple objects for a server that supports Plug and Play.

Parameters
EntryNameSyntax

Chapter 25 RPC Function Reference 439

Indicates the syntax of the EntryName argument.

To use the syntax specified in the registry value entry
HKEV _lOCAl_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Pointer to the entry name to which binding handles and object UUIDs are exported.
You cannot provide a null or empty string.

To use the entry name specified in the registry value entry
HKEV _lOCAl_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultEntry, provide a null pointer or an empty string. In this case, the
EntryNameSyntax parameter is ignored and the run-time library uses the
default syntax.

If Spec
Specifies a stub-generated data structure specifying the interface to export. A null
value indicates there are no binding handles to export (only object UUIDs are to be
exported) and BindingVec is ignored.

ObjectUuidVec
Pointer to a vector of object UUIDs offered by the server. The server application
constructs this vector. A null value indicates there are no object UUIDs to export (only
binding handles are to be exported).

Return Values
Value

RPC_S_OK

RPC_S_NOTHING_ TO_EXPORT

RPC_S_INVALlD_BINDING·

RPC_S_WRONG_KIND_OF _BINDING

RPC_S_INVALlD_NAME_SYNTAX

RPC_S_UNSUPPORTED_NAME_SYNT AX

RPC_S_INCOMPLETE_NAME

RPC_S_NO_NS_PRIVILEGE

RPC_S_NAME_SERVICE_UNAVAILABLE

Remarks

Meaning

Call successful.

Nothing to export.

Invalid binding handle.

Wrong kind of binding for operation.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

No privilege for name-service operation.

Name service unavailable.

The RpcNsBindingExportPnP function allows a server application to publicly offer an
interface in the name-service database that supports Plug and Play bindings for use by
any client application.

440 Volume 3 RPe and WNet

Note that the server application should not explicitly supply the binding vector when
exporting Plug and Play bindings. The bindings are automatically updated when there is
a change in the bindings due to a Plug and Play event.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in Rpcnsi.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on all platforms.

RpcNsBindingExport, RpcNsBindingUnexportPnP

RpcNsBindinglmportBegin
The RpcNsBindinglmportBegin function creates an import context for importing client
compatible binding handles for servers that offer the specified interface and object.

Parameters
EntryNameSyntax

Indicates the syntax of the next argument, EntryName.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, specify RPC_C_NS_SYNTAX_DEFAUL T.

EntryName
Pointer to an entry name at which the search for compatible binding handles begins.

To use the entry name specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultEntry, provide a null pointer or an empty string. In this case, the
EntryNameSyntax parameter is ignored and the run-time library uses the
default syntax.

Chapter 25 RPC Function Reference 441

If Spec
Specifies a stub-generated data structure indicating the interface to import. If the
interface specification has not been exported or is of no concern to the caller, specify
a null value for this argument. In this case, the bindings returned are only guaranteed
to be of a compatible and supported protocol sequence and to contain the specified
object UUID. The contacted server might not support the desired interface.

ObjUuid
Pointer to an optional object UUID.

For a nonzero UUID, compatible binding handles are returned from an entry only if the
server has exported the specified object UUID.

When ObjUuid has a null pOinter value or a nil UUID, the returned binding handles
contain one of the object UUIDs exported by the compatible server. If the server did
not export any object UUIDs, the returned compatible binding handles contain a nil
object UUID.

ImportContext
Specifies a returned name-service handle for use with the RpcNsBindinglmportNext
and RpcNsBindinglmportDone functions.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_NAME_SYNT AX

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

RPC_S_ENTRY_NOT_FOUND

RPC_S_NAME_SERVICE_UNAVAILABLE

RPC_S_INVALlD_OBJECT

Remarks

Meaning

Call successful.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

Name-service entry not found.

Name service unavailable.

Invalid object.

Before calling the RpcNsBindinglmportNext function, the client application must first
call RpcNsBindinglmportBegin to create an import context. The arguments to this
function control the operation of the RpcNsBindinglmportNext function.

When finished importing binding handles, the client application calls the
RpcNsBindinglmportDone function to delete the import context.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

442 Volume 3 RPC and WNet

RpcNsBindinglmportDone, RpcNsBindinglmportNext

RpcNsBindinglmportDone
The RpcNsBindinglmportDone function signals that a client has finished looking for a
compatible server and deletes the import context.

Parameters
ImportContext

Pointer to a name-service handle to free. The name-service handle ImportContext
pOints to is created by calling the RpcNsBindinglmportBegin function.

An argument value of NULL is returned.

Return Values
Value

Remarks

Meaning

Call successful.

Typically, a client application calls RpcNsBindinglmportDone after completing remote
procedure calls to a server using a binding handle returned from the
RpcNsBindinglmportNext function. However, a client application is responsible for
calling RpcNsBindinglmportDone for each import context that was created by calling
the RpcNsBindinglmportBegin, regardless of the status returned from
RpcNsBindinglmportNext orthe success in making remote procedure calls.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.

RpcNsBindinglmportBegin, RpcNsBindinglmportNext

Chapter 25 RPC Function Reference 443

RpcNsBindinglmportNext
The RpcNsBindinglmportNext function looks up an interface (and optionally an object
from a name-service database) and returns a binding handle of a compatible server,
if found.

Parameters
ImportContext

Specifies a name-service handle returned from the RpcNsBindinglmportBegin
function.

Binding
Returns a pOinter to a client-compatible server binding handle for a server.

Return Values
Value

RPC_S_OK

RPC_S_NO_MORE_BINDINGS

RPC_S_NAME_SERVICE_UNAVAILABLE

Remarks

Meaning

Call successful.

No more bindings.

Name service unavailable.

The RpcNsBindinglmportNext function returns one client-compatible server binding
handle for a server that offers the interface and object UUID specified by the If Spec and
ObjUuid arguments in the RpcNsBindinglmportBegin function. The function
communicates only with the name-service database, not directly with servers.

Effective with Windows 2000, the RPC environment uses the Active Directory as its
name-service database and the order in which the run-time environment performs the
search is as follows:

• Search in the local cache. If there is no entry,

• Search in the Active Directory. If there is no entry,

• Send broadcast requests to all other directory services in the domain.

Note that if the entry exists in the Active Directory, but there is no information
associated with the entry, the run-time environment does not issue this broadcast
request.

444 Volume 3 RPC and WNet

The compatible binding handle that is returned a/ways contains an object UUID, the
value of which depends on the ObjUuid argument in the RpcNsBindinglmportBegin
function. If a non-null object UUID was specified, the returned binding handle contains
that object UUID. If, however, a null object UUID or null value was specified, the object
UUID that is returned is a result of the following possibilities:

• If the server did not export any object UUIDs, the returned binding handle contains a
nil object UUID.

• If the server exported one object UUID, the returned binding handle contains that
object UUID.

• If the server exported multiple object UUIDs, the returned binding handle contains one
of the object UUIDs. The import-next operation selects the returned object UUID in a
non-deterministic fashion. As a result, a different object UUID can be returned for
each compatible binding handle from a single server entry.

The RpcNsBindinglmportNext function selects and returns one server binding handle
from the compatible binding handles found. The client application can use that binding
handle to attempt a remote procedure call to the server. If the client fails to establish a
relationship with the server, it can call RpcNsBindinglmportNext again.

Each time the client calls RpcNsBindinglmportNext, the function returns another server
binding handle. The returned binding handles are unordered. A client application calls
the RpcNsBindinglnqEntryName function to obtain the name-service database in the
entry name from which the binding handle came. When the search reaches the end of
the name-service database, RpcNsBindinglnqEntryName returns a status of
RPC_S_NO_MORE_BINDINGS and returns a binding argument value of NULL.

The RpcNsBindinglmportNext function allocates storage for the data referenced by the
returned Binding argument. When a client application finishes with the binding handle, it
must call RpcBindingFree to deallocate the storage. Each call to
RpcNsBindinglmportNext requires a corresponding call to RpcBindingFree.

The client is responsible for calling the RpcNsBindinglmportDone function, which
deletes the import context. The client also calls RpcNsBindinglmportDone before
calling RpcNsBindinglmportBegin to start a new search for compatible servers.
Because the order of binding handles returned is different for each new search, the
order in which binding handles are returned to an application can be different each time
the application is run.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.

Chapter 25 RPC Function Reference 445

RpcBindingFree, RpcNsBindinglmportBegin, RpcNsBindinglmportDone,
RpcNsBindinglnqEntryName, RpcNsBindingLookupBegin,
RpcNsBindingLookupDone, RpcNsBindingLookupNext, RpcNsBindingSelect

RpcNsBindinglnqEntryName
The RpcNsBindinglnqEntryName function returns the entry name from which the
binding handle came.

Parameters
Binding

Specifies the binding handle whose name-service database entry name is returned.

EntryNameSyntax
Indicates the syntax used in the EntryName argument.

To use the syntax specified in the registry value entry

HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Returns the address of a pointer to the name of the name-service database entry in
which Binding was found.

Specify a null value to prevent RpcNsBindinglnqEntryName from returning the
EntryName argument. In this case, the application does not call the RpcStringFree
function.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_BINDING

RPC_S_NO_ENTRY_NAME

RPC_S_I NVALI D_NAME_SYNTAX

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

Meaning

Call successful.

Invalid binding handle.

No entry name for binding.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

446 Volume 3 RPC and WNet

Remarks
The RpcNsBindinglnqEntryName function returns the name of the name service
database entry name from which a client compatible-binding handle came.

The RPC run-time library allocates memory for the string returned in the EntryName
argument. The application is responsible for calling the RpcStringFree function to
deallocate that memory.

An entry name is associated only with binding handles returned from the
RpcNsBindinglmportNext, RpcNsBindingLookupNext, and RpcNsBindingSelect
functions .

. If the binding handle specified in the Binding argument was not returned from a name
service database entry (for example, if the binding handle was created by calling
RpcBindingFromStringBinding), RpcNsBindinglnqEntryName returns an empty
string (''\0'') and an RPC_S_NO_ENTRY _NAME status code.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcBindingFromStringBinding, RpcNsBindinglmportNext,
RpcNsBindingLookupNext, RpcNsBindingSelect, RpcStringFree

RpcNsBindingLookupBegin
The RpcNsBindingLookupBegin function creates a lookup context for an interface and
an object.

Chapter 25 RPC Function Reference 447

Parameters
EntryNameSyntax

Indicates the syntax of the EntryName argument.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Pointer to an entry name at which the search for compatible bindings begins.

To use the entry name specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultEntry, provide a null pOinter or an empty string. In this case, the
EntryNameSyntax parameter is ignored and the run-time library uses the default
syntax.

If Spec
Specifies a stub-generated structure indicating the interface to look up. If the interface
specification has not been exported or is of no concern to the caller, specify a null
value for this argument. In this case, the bindings returned are only guaranteed to be
of a compatible and supported protocol sequence and to contain the specified object
UUID. The desired interface might not be supported by the contacted server.

ObjUuid
Pointer to an optional object UUID.

For a nonzero UUID, compatible binding handles are returned from an entry only if the
server has exported the specified object UUID.

For a null pointer value or a nil UUID for this argument, the returned binding handles
contain one of the object UUIDs exported by the compatible server. If the server did
not export any object UUIDs, the returned compatible binding handles contain a nil
object UUID.

BindingMaxCount
Specifies the maximum number of bindings to return in the BindingVec argument from
the RpcNsBindingLookupNext function.

Specify a value of zero to use the default count of
RPC_C_BINDING_MAX_COUNT _DEFAULT.

LookupContext
Returns a pOinter to a name-service handle for use with the
RpcNsBindingLookupNext and RpcNsBindingLookupDone functions.

Return Values
Value

RPC_S_OK

RPC_S_I NVAU D_NAME_SYNTAX

Meaning

Call successful.

Invalid name syntax.

(continued)

448 Volume 3 RPe and WNet

(continued)

Value

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

RPC_S_ENTRY_NOT_FOUND

RPC_S_NAME_SERVICE_UNAVAILABLE

RPC_S_INVALlD_OBJECT

Remarks

Meaning

Unsupported name syntax.

Incomplete name.

Name-service entry not found.

Name service unavailable.

Invalid object.

The RpcNsBindingLookupBegin function creates a lookup context for locating client
compatible binding handles to servers that offer the specified interface and object.

Before calling RpcNsBindingLookupNext, the client application must first call
RpcNsBindingLookupBegin to create a lookup context. The arguments to this function
control the operation of the RpcNsBindingLookupNext function.

Effective with Windows 2000, the RPC environment uses the Active Directory as its
name-service database and the order in which the run-time environment performs the
search is as follows:

• Search in the local cache.

• If entry not found in local cache, search that machine's Active Directory.

• If entry not found on local machine, send broadcast requests to all other Active
Directory services in the domain.

Note that if the entry exists in the Active Directory, but there is no information
associated with the entry, the n.m-time environment will not issue this broadcast
request.

When finished locating binding handles, the client application calls the
RpcNsBindingLookupDone function to delete the lookup context.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcNsBindingLookupDone, RpcNsBindingLookupNext

Chapter 25 RPC Function Reference 449

RpcNsBindingLookupDone
The RpcNsBindingLookupDone function signifies that a client has finished looking for
compatible servers and deletes the lookup context.

Parameters
LookupContext

Pointer to the name-service handle to free. The name-service handle LookupContext
points to is created by calling the RpcNsBindingLookupBegin function.

An argument value of NULL is returned.

Return Values
Value

Remarks

Meaning

< Call successful.

The RpcNsBindingLookupDone function frees a lookup context created by calling the
RpcNsBindingLookupBegin function.

Typically, a client application calls RpcNsBindingLookupDone after completing remote
procedure calls to a server using a binding handle returned from the
RpcNsBindingLookupNext function. However, a client application is responsible for
calling RpcNsBindingLookupDone for each created lookup context, regardless of the
status returned from the RpcNsBindingLookupNext function or the success in making
remote procedure calls.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.

RpcNsBindingLookupBegin, RpcNsBindingLookupNext

450 Volume 3 RPC and WNet

RpcNsBindingLookupNext
The RpcNsBindingLookupNext function returns a list of compatible binding handles for
a specified interface and optionally an object.

Parameters
LookupContext

Specifies the name-service handle returned from the RpcNsBindingLookupBegin
function.

BindingVec
Returns the address of a pOinter to a vector of client-compatible server binding
handles.

Return Values
Value

RPC_S_OK

RPC_S_NO_MORE_BINDINGS

RPC_S_NAME_SERVICE_UNAVAILABLE

Remarks

Meaning

Call successful.

No more bindings.

Name-service unavailable.

The RpcNsBindingLookupNext function returns a vector of client-compatible server
binding handles for a server offering the interface and object UUID specified by the
If Spec and ObjUuid parameters in the RpcNsBindingLookupBegin function. (Compare
this to RpcNsBindinglmportNext, which returns a single compatible server binding
handle.)

The RpcNsBindingLookupNext function communicates only with the name-service
database, not directly with servers.

Effective with Windows 2000, the RPC environment uses Active Directory as its name
service database and the order in which the run-time environment performs the search is
as follows:

• Search the local cache.

• If entry not found in local cache, search that machine's Active Directory.

• If entry not found on local machine, send broadcast requests to all other Active
Directory services in the domain.

Note that if the entry exists in the Active Directory, but there is no information
associated with the entry, the run-time environment will not issue this broadcast
request.

Chapter 25 RPC Function Reference 451

On successive calls, the RpcNsBindingLookupNext function traverses name-service
database entries, collecting client-compatible server binding handles from each entry.

When the Microsoft® Active Directory is the name-service database,
RpcNsBindingLookupNext traverses the database only if the given entry name is null
and the default entry (in the registry) is undefined or empty. Also, since mixed entries are
not permitted in the Active Directory, the function searches for server entry names only,
not group or profile names.

When the DCE Cell DirectoryService (CDS) is the name-service database, and the
entry at which the search begins contains binding handles in addition to group or profile
names, RpcNsBindingLookupNext returns the binding handles from EntryName before
searching the group or profile. This means that the function can return a partially full
vector before processing the members of the group or profile.

The compatible binding handle that is returned a/ways contains an object UUID, the
value of which depends on the ObjUuid argument in the RpcNsBindinglmportBegin
function. If a non-null object UUID was specified, the returned binding handle contains
that object UUID. If, however, a null object UUID or null value was specified, the object
UUID that is returned is a result of the following possibilities:

• If the server did not export any object UUIDs, the returned binding handle contains a
nil object UUID.

• If the server exported one object UUID, the returned binding handle contains that
object UUID.

• If the server exported multiple object UUIDs, the returned binding handle contains one
of the object UUIDs. The import-next operation selects the returned object UUID in a
non-deterministic fashion. As a result, a different object UUID can be returned for
each compatible binding handle from a single server entry.

From the returned vector of server binding handles, the client application can employ its
own criteria for selecting individual binding handles, or the application can call the
RpcNsBindingSelect function to select a binding handle. The
RpcBindingToStringBinding and RpcStringBindingParse functions will be helpful to
a client creating its own selection criteria.

The client application can use the selected binding handle to attempt to make a remote
procedure call to the server. If the client fails to establish a relationship with the server, it
can select another binding handle from the vector. When all of the binding handles in the
vector have been used, the client application calls RpcNsBindingLookupNext again.

Each time the client calls RpcNsBindingLookupNext, the function returns another
vector of binding handles. The binding handles returned in each vector are unordered.
The vectors returned from multiple calls to this function are also unordered.

A client calls the RpcNsBindinglnqEntryName function to obtain the name-service
database server entry name that the binding came from.

452 Volume 3 RPC and WNet

When the search reaches the end of the name-service database,
RpcNsBindingLookupNext returns a status of RPC_S_NO_MORE_BINDINGS and
returns a Binding Vee value of NULL.

The RpcNsBindingLookupNext function allocates storage for the data referenced by
the returned BindingVee argument. When a client application finishes with the vector, it
must call the RpcBindingVectorFree function to deallocate the storage. Each call to
RpcNsBindingLookupNext requires a corresponding call to RpcBindingVectorFree.

The client is responsible for calling the RpcNsBindingLookupDone function to delete
the lookup context, or if you want the application to start a new search for compatible
servers.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcnsi.h.
Library: Use Rpcns4.lib.

RpcBindingToStringBinding, RpcBindingVectorFree,
RpcNsBindinglnqEntryName, RpcNsBindingLookupBegin,
RpcNsBindingLookupDone, RpcStringBindingParse

RpcNsBindingSelect
The RpcNsBindingSelect function returns a binding handle from a list of compatible
binding handles.

Parameters
Binding Vee

Pointer to the vector of client-compatible server binding handles from which a binding
handle is selected. The returned binding vector no longer references the selected
binding handle, which is returned separately in the Binding argument.

Binding
Pointer to a selected binding handle.

Return Values
Value

RPC_S_OK

RPC_S_NO_MORE_BINDINGS

Remarks

Chapter 25 RPC Function Reference 453

Meaning

Call successful.

No more bindings.

Each time the client calls the RpcNsBindingSelect function, the function operation
returns another binding handle from the vector.

When all of the binding handles have been returned from the vector, the function returns
a status of RPC_S_NO_MORE_BINDINGS and returns a Binding value of NULL.

The select operation allocates storage for the data referenced by the returned Binding
parameter. When a client finishes with the binding handle, it should call the
RpcBindingFree function to deallocate the storage. Each call to RpcNsBindingSelect
requires a corresponding call to the RpcBindingFree function.

Clients can create their own select routines implementing application-specific selection
criteria. In this case, RpcStringBindingParse provides access to the fields of a binding.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.

RpcBindingFree, RpcNsBindingLookupNext, RpcStringBindingParse

RpcNsBindingUnexport
The RpcNsBindingUnexport function removes the binding handles for an interface and
objects from an entry in the name-service database.

454 Volume 3 RPe and WNet

Parameters
EntryNameSyntax

Indicates the syntax of the next argument, EntryName.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAUL T.

EntryName
Pointer to the entry name from which to remove binding handles and object UUIDs.

If Spec
An interface specification for the binding handles to be removed from the name
service database. A null argument value indicates not to unexport any binding
handles (only object UUIDs are to be unexported).

ObjectUuidVec
Pointer to a vector of object UUIDs that the server no longer wants to offer. The
application constructs this vector. A null value indicates there are no object UUIDs to
unexport (only binding handles are to be unexported).

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_VERS_OPTION

RPC_S_INVALlD_NAME_SYNTAX

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

RPC_S_ENTRY_NOT_FOUND

RPC_S_NAME_SERVICE_UNAVAILABLE

RPC_S_INTERFACE_NOT _FOUND

RPC_S_NOT _ALL_OBJS_UNEXPORTED

Remarks

Meaning

Call successful.

Invalid version option.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

Name-service entry not found.

Name service unavailable.

Interface not found.

Not all objects unexported.

The RpcNsBindingUnexport function allows a server application to remove the binding
handles and object UUIDs of resources from a name service database entry. A server
application can unexport the specified interface and objects in a single call to
RpcNsBindingUnexport, or it can unexport them separately. Only the binding handles
that match the interface UUID and the major and minor interface version numbers found
in the If Spec argument are unexported. Use the RpcNsMgmtBindingUnexport function
to remove multiple versions of an interface.

Effective with Windows 2000, the RPC run-time environment uses the Active Directory
as its name-service database. This means that an authorized unexported entries will be
removed both from the local cache and from the Active Directory.

Chapter 25 RPC Function Reference 455

Unauthorized unexports will only be removed from the local cache. See Access Control
in the Security section of the Platform SDK documentation for more information on
authorization and Access Control Lists.

If RpcNsBindingUnexport does not find any binding handles for the specified interface,
the function returns an RPC_S_INTERFACE_NOT _FOUND status code and does not
unexport the object UUIDs, if any were specified.

If one or more binding handles for the specified interface are found and unexported
without error, RpcNsBindingUnexport unexports the specified object UUIDs, if any.

If any of the specified object UUIDs were not found, RpcNsBindingUnexport returns
the RPC_S_NOT _ALL_OBJS_UNEXPORTED status code.

In addition to calling RpcNsBindingUnexport, a server should also call the
RpcEpUnregister function to unregister the endpoints the server previously registered
with the local endpoint-map database.

Once created, a server entry persists, even when all of the binding handles and UUIDs
are removed. A server entry must have at least one binding handle to exist. As a result,
exporting only UUIDs to a nonexisting entry has no effect, and unexporting all binding
handles deletes the entry.

Use RpcNsBindingUnexport judiciously. To keep an automatically activated server
available, you must leave its binding handles in the name-service database between the
times when server processes are activated. However, with dynamic bindings, if you do
not unexport binding handles, the Active Directory can become so large as to be
unmanageable.

Therefore, before you call this function, keep in mind how long you expect the server to
be unavailable, and the type of binding in use. If you are using static bindings, reserve
this function for when you expect a server to be unavailable for an extended time-for
example, when it is being permanently removed from service.

Note Name-service databases are designed to be relatively stable. In replicated name
service databases, frequent use of the RpcNsBindingExport and
RpcNsBindingUnexport functions causes the name-service database to repeatedly
remove and replace the same entry and can cause performance problems.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

456 Volume 3 RPC and WNet

RpcEpUnregister, RpcNsBindingExport

RpcNsBindingUnexportPnP
The RpcNsBindingUnexportPnP function removes the binding handles for Plug and
Play interfaces and objects from an entry in the name-service database.

Parameters
EntryNameSyntax

Indicates the syntax of the next argument, EntryName.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Pointer to the entry name from which to remove binding handles and object UUIDs.

If Spec
An interface specification for the binding handles to be removed from the name
service database. A null argument value indicates not to unexport any binding
handles (only object UUIDs are to be unexported).

ObjectUuidVec
Pointer to a vector of object UUIDs that the server no longer wants to offer. The
application constructs this vector. A null value indicates there are no object UUIDs to
unexport (only binding handles are to be unexported).

Return Values
Value

RPC_S_OK

RPC_S_I NVALI D_ VERS_OPTION

RPC_S_INVALID _NAME_SYNTAX

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

RPC_S_ENTRY_NOT_FOUND

Meaning

Call successful.

Invalid version option.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

Name-service entry not found.

Value

RPC_S_NAME_SERVICE_UNAVAILABLE

RPC_S_INTERFACE_NOT _FOUND

RPC_S_NOT _ALL_OBJS_UNEXPORTED

Remarks

Chapter 25 RPC Function Reference 457

Meaning

Name service unavailable.

Interface not found.

Not all objects unexported.

The RpcNsBindingUnexportPnP function allows a server application to remove the
binding handles and object UUIDs of Plug and Play-compatible resources from a name
service database entry. A server application can unexport the specified interface and
objects in a single call to RpcNsBindingUnexportPnP, or it can unexport them
separately. Only the binding handles that match the interface UUID and the major and
minor interface version numbers found in the If Spec argument are unexported.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in RpcnsLh.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on all platforms.

RpcNsBindingUnexport, RpcNsBindingExportPnP

RpcNsEntryExpandName
The RpcNsEntryExpandName function expands a name-service entry name. This
function is supported by the DCE Cell Directory Service and the Active Directory in
Windows 2000, and Windows 98.

Parameters
EntryNameSyntax

Indicates the syntax of the EntryName parameter.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

458 Volume 3 RPC and WNet

EntryName
Pointer to the entry name to expand.

ExpandedName
Returns a pointer to a pOinter to the expanded version of EntryName.

Return Values
Value

RPC_S_OK

RPC_S_INCOMPLETE_NAME

Remarks

Meaning

Call successful.

Incomplete name.

An application calls the RpcNsEntryExpandName function to obtain a fully expanded
entry name.

The RPC run-time library allocates memory for the returned ExpandedName parameter.
The application is responsible for calling the RpcStringFree function for that
returned string.

The returned expanded entry name accounts for local name translations and for
differences in locally defined naming schema.

Note The Windows 2000 Active Directory supports this function. Earlier versions of
Windows NT support the use of this function with Cell Directory Service (CDS) only.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcStringFree

RpcNsEntryObjectlnqBegin
The RpcNsEntryObjectlnqBegin function creates an inquiry context for the objects of a
name-service database entry.

Parameters
EntryNameSyntax

Chapter 25 RPC Function Reference 459

Indicates the syntax to use in the EntryName parameter.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefauItSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Pointer to the name-service database entry name for which object UUIDs are to be
viewed.

InquiryContext
Returns a pointer to a name-service handle for use with the
RpcNsEntryObjectlnqNext and RpcNsEntryObjectlnqDone functions.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_NAME_SYNTAX

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

RPC_S_ENTRY_NOT_FOUND

RPC_S_NAME_SERVICE_UNAVAILABLE

Remarks

Meaning

Call successful.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

Name-service entry not found.

Name service unavailable.

The RpcNsEntryObjectlnqBegin function creates an inquiry context for viewing the
object UUIDs exported to EntryName.

Before calling the RpcNsEntryObjectlnqNext function, the application must first call
RpcNsEntryObjectlnqBegin to create an inquiry context.

When finished viewing the object UUIDs, the application calls the
RpcNsEntryObjectlnqDone function to delete the inquiry context.

460 Volume 3 RPC and WNet

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcnsi.h.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcNsBindingExport, RpcNsEntryObjectlnqDone, RpcNsEntryObjectlnqNext

RpcNsEntryObjectlnqDone
The RpcNsEntryObjectlnqDone function deletes the inquiry context for a name-service
database entry's objects.

Parameters
InquiryContext

Pointer to a name-service handle specifying the object UUIDs exported to the
EntryName parameter specified in the RpcNsEntryObjectlnqBegin function.

An argument value of NULL is returned.

Return Values
Value

Remarks

Meaning

Call successful.

The RpcNsEntryObjectlnqDone function frees an inquiry context created by calling the
RpcNsEntryObjectlnqBegin function.

An application calls RpcNsEntryObjectlnqDone after viewing exported object UUIDs
using the RpcNsEntryObjectlnqNext function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcnsi.h.
Library: Use Rpcns4.lib.

Chapter 25 RPC Function Reference 461

RpcNsEntryObjectlnqBegin, RpcNsEntryObjectlnqNext

RpcNsEntryObjectlnqNext
The RpcNsEntryObjectlnqNext function returns one object at a time from a name
service database entry.

Parameters
InquiryContext

Specifies a name-service handle that indicates the object UUIDs for a name-service
database entry.

ObjUuid
Returns a pOinter to an exported object UUID.

Return Values
Value

RPC_S_OK

RPC_S_NO_MORE_MEMBERS

RPC_S_INCOMPLETE_NAME

RPC_S_ENTRY_NOT_FOUND

RPC_S_NAME_SERVICE_UNAVAI LABLE

Remarks

Meaning

Call successful.

No more members.

Incomplete name.

Name-service entry not found.

Name-service unavailable.

The RpcNsEntryObjectlnqNext function returns one of the object UUIDs exported to
the name-service database entry specified by the EntryName parameter in the
RpcNsEntryObjectlnqBegin function.

An application can view all of the exported object UUIDs by repeatedly calling
RpcNsEntryObjectlnqNext. When all the object UUIDs have been viewed, this function
returns an RPC_S_NO_MORE_MEMBERS status code. The returned object UUIDs are
unordered.

The application supplies the memory for the object UUID returned in the ObjUuid
parameter.

After viewing the object UUIDs, the application must call the
RpcNsEntryObjectlnqDone function to release the inquiry context.

462 Volume 3 RPC and WNet

The order in which object UUIDs are returned can be different for each viewing of an
entry. This means that the order in which object UUIDs are returned to an application
can be different each time the application is run.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.

RpcNsBindingExport, RpcNsEntryObjectlnqBegin, RpcNsEntryObjectlnqDone

RpcNsGroupDelete
The RpcNsGroupDelete function deletes a group attribute.

Parameters
GroupNameSyntax

Specifies an integer value that indicates the syntax of the next parameter,
GroupName. This parameter can be set to one of the following values:

Value Meaning

GroupName

Use the syntax specified in the registry
value HKEY _LOCAL_MACHINE\
Software\Microsoft\Rpc\NameService\
DefaultSyntax

Use DeE syntax.

Pointer to the name of the name-service group to delete.

Return Values
This function returns one of the following values.

Value

RPC_S_OK

RPC_S_I NVALI D_NAME_SYNTAX

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

RPC_S_ENTRY_NOT_FOUND

RPC_S_NAME_SERVICE_UNAVAILABLE

Remarks

Chapter 25 RPC Function Reference 463

Meaning

Call successful.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

Name-service entry not found.

Name service unavailable.

The RpcNsGroupDelete function deletes the group attribute from the specified name
service-database entry.

Neither the specified name service-database entry nor the group members are deleted.

Note This DCE function is not supported by Microsoft Locator. Windows NT and
Windows 2000 support the use of this function with Cell Directory Service (CDS) only.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows95 or later.
Header: Declared in Rpcnsi.h.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcNsGroupMbrAdd, RpcNsGroupMbrRemove

RpcNsGroupMbrAdd
The RpcNsGroupMbrAdd function adds an entry name to a group. If necessary, it
creates the entry.

464 Volume 3 RPC and WNet

Parameters
GroupNameSyntax

Indicates the syntax of the GroupName parameter.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAUL T.

GroupName
Pointer to the name of the RPC group to receive a new member.

MemberNameSyntax
Indicates the syntax to use in the MemberName parameter.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

MemberName
Pointer to the name of the new RPC group member.

Return Values
Value

RPC_S_OK

RPC_S_I NVALI D_NAME_SYNTAX

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

RPC_S_NAME_SERVICE_UNAVAI LABLE

Remarks

Meaning

Call successful.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

Name service unavailable.

The RpcNsGroupMbrAdd adds a name service-database entry name as a member to
the RPC group attribute.

If the GroupName entry does not exist, RpcNsGroupMbrAdd tries to create the entry
with a group attribute and adds the group member specified by MemberName. In this
case, the application must have the privilege to create the entry. Otherwise, a
management application with the necessary privilege should create the entry by calling
RpcNsMgmtEntryCreate before the application is run.

Note Windows 2000 Active Directory supports this function. Earlier versions of
Windows NT support the use of this function with Cell Directory Service (CDS) only.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Rpcnsi.h.
Library: Use Rpcns4.lib.

Chapter 25 RPC Function Reference 465

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcNsGroupMbrRemove, RpcNsMgmtEntryCreate

RpcNsGroupMbrlnqBegin
The RpcNsGroupMbrlnqBegin function creates an inquiry context for viewing group
members.

Parameters
GroupNameSyntax

Indicates the syntax of the GroupName parameter.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

GroupName
Pointer to the name of the RPC group to view.

MemberNameSyntax
Indicates the syntax of the return argument, MemberName, in the
RpcNsGroupMbrlnqNext function.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

InquiryContext
Returns a pointer to a name-service handle for use with the
RpcNsGroupMbrlnqNext and RpcNsGroupMbrlnqDone functions.

466 Volume 3 RPC and WNet

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_NAME_SYNTAX

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

RPC_S_ENTRY_NOT_FOUND

RPC_S_NAME_SERVICE_UNAVAILABLE

Remarks

Meaning

Call successful.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

Name-service entry not found.

Name service unavailable.

The RpcNsGroupMbrlnqBegin function creates an inquiry context for viewing the
members of an RPC group. Before calling RpcNsGroupMbrlnqNext, the application
must first call RpcNsGroupMbrlnqBegin to create an inquiry context. When finished
viewing the RPC group members, the application calls RpcNsGroupMbrlnqDone to
delete the inquiry context.

Note Windows 2000 Active Directory supports this function. Earlier versions of
Windows NT support the use of this function with Cell Directory Service (CDS) only.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcNsGroupMbrAdd, RpcNsGroupMbrlnqDone, RpcNsGroupMbrlnqNext

RpcNsGroupMbrlnqDone
The RpcNsGroupMbrlnqDone function deletes the inquiry context for a group.

Parameters
InquiryContext

Pointer to a name-service handle to free. A value of NULL is returned.

Return Values
Value

RPC_S_OK

RPC_S_I NVALI D_NS_HANDLE

Remarks

Chapter 25 RPC Function Reference 467

Meaning

Call successful.

Invalid name-service handle.

The RpcNsGroupMbrlnqDone function frees an inquiry context created by calling the
RpcNsGroupMbrlnqBegin function. An application calls RpcNsGroupMbrlnqDone
after viewing RPC group members using the RpcNsGroupMbrlnqNext function.

Note Windows 2000 Active Directory supports this function. Earlier versions of
Windows NT support the use of this function with Cell Directory Service (CDS) only.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.

RpcNsGroupMbrlnqBegin, RpcNsGroupMbrlnqNext

RpcNsGroupMbrlnqNext
The RpcNsGroupMbrlnqNext function returns one entry name from a group at a time.

Parameters
InquiryContext

Specifies a name-service handle.

MemberName
Returns the address of a pointer to an RPC group member name. The syntax of the
returned name was specified by the MemberNameSyntax parameter in the
RpcNsGroupMbrlnqBegin function.

Specify a null value to prevent RpcNsGroupMbrlnqNext from returning the
MemberName parameter. In this case, the application does not call the
RpcStringFree function.

468 Volume 3 RPC and WNet

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_NS_HANDLE

RPC_S_NO_MORE_MEMBERS

RPC_S_NAME_SERVICE_UNAVAILABLE

Remarks

Meaning

Call successful.

Invalid name-service handle.

No more members.

Name service unavailable.

The RpcNsGroupMbrlnqNext function returns one member of the RPC group specified
by the GroupName parameter in RpcNsGroupMbrlnqBegin. An application can view all
the members of an RPC group set by repeatedly calling RpcNsGroupMbrlnqNext.
When all the group members have been viewed, this function returns an
RPC_S_NO_MORE_MEMBERS status code. The returned group members are
unordered.

On each call to RpcNsGroupMbrlnqNext that returns a member name, the RPC run
time library allocates memory for the returned MemberName. The application is
responsible for calling RpcStringFree for each returned MemberName string. After
viewing the RPC group's members, the application must call RpcNsGroupMbrlnqDone
to release the inquiry context.

The order in which group members are returned can be different for each viewing of a
group. This means that the order in which group members are returned to an application
can be different each time the application is run.

Note Windows 2000 Active Directory supports this function. Earlier versions of
Windows NT support the use of this function with Cell Directory Service (CDS) only.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcNsGroupMbrlnqBegin, RpcNsGroupMbrlnqDone, RpcStringFree

RpcNsGroupMbrRemove
The RpcNsGroupMbrRemove function removes an entry name from a group.

Parameters
GroupNameSyntax

Chapter 25 RPC Function Reference 469

Indicates the syntax of the GroupName parameter.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAUL T.

GroupName
Pointer to the name of the R~C group from which to remove the member name.

MemberNameSyntax
Indicates the syntax to use in the MemberName parameter.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

MemberName
Pointer to the name of the member to remove from the RPC group attribute in the
entry GroupName.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_NAME_SYNTAX

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

RPC_S_ENTRY_NOT_FOUND

RPC_S_NAME_SERVICE_UNAVAILABLE

RPC_S_GROUP_MEMBER_NOT_FOUND

Remarks

Meaning

Call successful.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

Name-service entry not found.

Name service unavailable.

Group member not found.

The RpcNsGroupMbrRemove function removes a member from the RPC group
attribute in the GroupName argument.

Note Windows 2000 Active Directory supports this function. Earlier versions of
Windows NT support the use of this function with Cell Directory Service (CDS) only.

470 Volume 3 RPC and WNet

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcNsGroupMbrAdd

RpcNsMgmtBindingUnexport
The RpcNsMgmtBindingUnexport function removes multiple binding handles and
objects from an entry in the name-service database.

Parameters
EntryNameSyntax

Indicates the syntax of the EntryName parameter.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Pointer to the name of the entry from which to remove binding handles and
object UUIDs.

IfId
Pointer to an interface identification. A null argument value indicates that binding
handles are not to be unexported-only object UUIDs are to be unexported.

VersOption
Specifies how the RpcNsMgmtBindingUnexport function uses the VersMajor and
VersMinor members of the structure pointed to by the IfId parameter.

Chapter 25 RPC Function Reference 471

The following table describes valid values for the VersOption parameter.

VersOption values

ObjectUuidVec

Description

Unexports all bindings for the interface
UUID in IfId, regardless of the version
numbers. For this value, specify 0 for
both the major and minor versions in IfId.

Unexports the bindings for the
compatible interface UUID in IfIdwith the
same major version and with a minor
version greater than or equal to the minor
version in IfId.

Unexports the bindings for the interface
UUID in IfIdwith the same major and
minor versions as in IfId.

Unexports the bindings for the interface
UUID in IfIdwith the same major version
as in IfId (ignores the minor verSion). For
this value, specify 0 for the minor
version in IfId.

Unexports the bindings that offer a
version of the specified interface UUID
less than or equal to the specified major
and minor version. (For example, if the
IfId contained V2.0 and the name
service-database entry contained
binding handles with the versions 1.3,
2.0, and 2.1, the
RpcNsMgmtBindingUnexport function
would unexport the binding handles with
versions 1.3 and 2.0.)

Pointer to a vector of object UUIDs that the server no longer wants to offer. The
application constructs this vector. A null value indicates there are no object UUIDs to
unexport-only binding handles are to be unexported.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_ VERS~OPTION

RPC_S_INVALlD_NAME_SYNTAX

Meaning

Call successful.

Invalid version option.

Invalid name syntax.

(continued)

472 Volume 3 RPe and WNet

(continued)

Value

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

RPC_S_ENTRY_NOT_FOUND

RPC_S_NAME_SERVICE_UNAVAILABLE

RPC_S_INTERFACE_NOT _FOUND

RPC_S_NOT_ALL_OBJS_UNEXPORTED

Remarks

Meaning

Unsupported name syntax.

Incomplete name.

Name-service entry not found.

Name service unavailable.

Interface not found.

Not all objects unexported.

The RpcNsMgmtBindingUnexport function allows a management application to
remove one of the following from a name service-database entry:

• All the binding handles for a specified interface UUID, qualified by the interface
version numbers (major and minor)

• One or more object UUIDs of resources

• Both binding handles and object UUIDs of resources

A management application can unexport interfaces and objects in a single call to
RpcNsMgmtBindingUnexport, or it can unexport them separately. If
RpcNsMgmtBindingUnexport does not find any binding handles for the specified
interface, the function returns an RPC_S_INTERFACE_NOT _FOUND status code and
does not unexport the object UUIDs, if any were specified.

If one or more binding handles for the specified interface are found and unexported
without error, RpcNsMgmtBindingUnexport unexports any specified object UUIDs. If
any of the specified object UUIDs were not found, RpcNsMgmtBindingUnexport
returns RPC_S_NOT _ALL_OBJS_UNEXPORTED.

In addition to calling RpcNsMgmtBindingUnexport, a management application should
also call the RpcMgmtEpUnregister function to unregister the servers that have
registered with the endpoint-map database.

Note Name-service databases are designed to be relatively stable. In replicated name
services, frequent use of the RpcNsBindingExport and RpcNsBindingUnexport
functions causes the name service to repeatedly remove and replace the same entry,
which can cause performance problems.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Chapter 25 RPC Function Reference 473

RpcMgmtEpUnregister, RpcNsBindingExport, RpcNsBindingUnexport

RpcNsMgmtEntryCreate
The RpcNsMgmtEntryCreate function creates a name service-database entry.

Parameters
EntryNameSyntax

Indicates the syntax of the next argument, EntryName.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAUL T.

EntryName
Pointer to the name of the entry to create.

Return Values
Value

RPC_S_OK

RPC_S_I NVALI D_NAME_SYNT AX

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

RPC_S_ENTRY_ALREADY_EXISTS

RPC_S_NAME_SERVICE_UNAVAILABLE

Remarks

Meaning

Call successful.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

Name-service entry already exists.

Name service unavailable.

The RpcNsMgmtEntryCreate function creates an entry in the name-service database.
A management application can call RpcNsMgmtEntryCreate to create a name service
database entry for use by another application that does not itself have the necessary
name service-database privileges to create an entry.

Note Windows 2000 Active Directory supports this function. Earlier versions of
Windows NT support the use of this function with Cell Directory Service (CDS) only.

474 Volume 3 RPC and WNet

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcNsMgmtEntryDelete

RpcNsMgmtEntryDelete
The RpcNsMgmtEntryDelete function deletes a name service-database entry.

Parameters
EntryNameSyntax

Indicates the syntax of the EntryName parameter.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAUL T.

EntryName
Pointer to the name of the entry to delete.

Return Values
Value

RPC_S_OK

RPC_S_I NVALI D--.:NAME_SYNTAX

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE~NAME

RPC_S_ENTRY _NOT_FOUND

RPC_S_NAME_SERVICE_UNAVAILABLE

RPC_S_NOT_RPC_ENTRY

Meaning

Call successful.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

Name~service entry not found.

Name service unavailable.

Not an RPC entry.

Chapter 25 RPC Function Reference 475

Remarks
Management applications use the RpcNsMgmtEntryDelete function only when an entry
is no longer needed-for example, when a server is being permanently removed from
service.

Because name-service databases are designed to be relatively stable, frequent use of
RpcNsMgmtEntryDelete in client or server applications can result in performance
problems. Creating and deleting entries in client or server applications causes the name
service database to repeatedly remove and replace the same entry. This can lead to
performance problems in replicated name-service databases.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcNsMgmtEntryCreate

RpcNsMgmtEntrylnqlflds
The RpcNsMgmtEntrylnqlflds function returns the list of interfaces exported to a name
service-database entry. It also returns an interface-identification vector containing the
interfaces of binding handles exported by a server to EntryName. This function uses an
expiration age of 0, causing an immediate update of the local copy of name-service data.

Parameters
EntryNameSyntax

Indicates the syntax of the EntryName parameter.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAUL T.

EntryName
Pointer to the name service-database entry name for which an interface-identification
vector is returned.

476 Volume 3 RPe and WNet

IfIdVec
Returns an address of a pOinter to the interface-identification vector.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_NAME_SYNTAX

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

RPC_S_ENTRY_NOT_FOUND

RPC_S_NAME_SERVICE_UNAVAI LABLE

Remarks

Meaning

Call successful.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

Name-service entry not found.

Name service unavailable.

The RpcNsMgmtEntrylnqlflds function returns an interface-identification vector
containing the interfaces of binding handles exported by a server to EntryName. This
function uses an expiration age of 0, causing an immediate update of the local copy of
name-service data. The calling application is responsible for calling the
RpclfldVectorFree function to release memory used by the vector.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows ~5/98: Requires Windows 95 or later.
Header: Declared in Rpcnsi.h.
Library: Use Rpcns4.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpclfldVectorFree, Rpclflnqld, RpcNsBindingExport

RpcNsMgmtHandleSetExpAge
The RpcNsMgmtHandleSetExpAge function sets the expiration age of a name-service
handle for local copies of name-service data.

Parameters
NsHandle

Chapter 25 RPC Function Reference 477

Specifies a name-service handle for which an expiration age is set. A name-service
handle is returned from a name service begin operation.

ExpirationAge
Integer value in seconds that sets the expiration age of local name-service data read
by all next routines using the specified NsHandle parameter.

An expiration age of 0 causes an immediate update of the local name-service data.

Return Values
Value

RPC_S_OK

RPC_S_NAME_SERVICE_UNAVAILABLE

Remarks

Meaning

Call successful.

Name service unavailable.

The RpcNsMgmtHandleSetExpAge function sets a handle-expiration age for a
specified name-service handle (NsHandle). The expiration age is the amount of time
that a local copy of data from a name-service attribute can exist before a request from
the application for the attribute requires updating the local copy. When an application
begins running, the RPC run-time library specifies a default expiration age of two hours.
The default is global to the application. A handle-expiration age applies only to a specific
name-service handle and temporarily overrides the current global expiration age.

A handle-expiration age is used exclusively by Pointer next operations (which read data
from name-service attributes). A next operation typically starts by looking for a local
copy of the attribute data being requested by an application. In the absence of a local
copy, the next operation creates one with fresh attribute data from the name-service
database. If a local copy already exists, the operation compares its actual age to the
expiration age being used by the application (which, in this case, is the expiration age
set for the name-service handle). If the actual age exceeds the handle-expiration age,
the operation automatically tries to update the local copy with fresh attribute data. If
updating is impossible, the old local data remains in place and the next operation fails,
returning the RPC_S_NAME_SERVICE_UNAVAILABLE status code.

The scope of a handle-expiration age is a single series of next operations. The
RpcNsMgmtHandleSetExpAge function operates within the following context:

• A begin operation creates a name-service handle.

• A call to the RpcNsMgmtHandleSetExpAge function creates an expiration age for
the handle.

• A series of next operations for the name-service handle uses the handle
expiration age.

• A done operation for the name-service handle deletes both the handle and its
expiration age.

478 Volume 3 RPe and WNet

Tip Typically, you should avoid using RpcNsMgmtHandleSetExpAge. Instead, you
should rely on the application's global expiration age. Setting the handle-expiration age
to a small value causes the name service next operations to frequently update local data
for any name-service attribute requested by your application. For example, setting the
expiration age to 0 forces the next operation to update local data for the name-service
attribute requested by your application. Therefore, setting a small handle-expiration age
can create performance problems for your application. Furthermore, if your application is
using a remote name-service server, a small expiration age can adversely affect network
performance for all applications.

Limit use of RpcNsMgmtHandleSetExpAge to the following situations:

• When you must always get accurate name-service data.

For example, during management operations to update a profile, you may need to
always see the profile's current contents. In this case, before beginning to inquire
about a profile, your application should call the RpcNsMgmtHandleSetExpAge
function and specify 0 for the ExpirationAge argument.

• When a request using the default expiration age has failed, and your application
needs to retry the operation.

For example, a client application using name service import operations should first try
to obtain bindings using the application's default expiration age. However, sometimes
the import-next operation returns either no binding handles or an insufficient number
of them. In this case, the client could retry the import operation and, after the
RpcNsBindinglmportBegin call, include an RpcNsMgmtHandleSetExpAge call
and specify 0 for the ExpirationAge argument. When the client calls the import-next
function again, the small handle-expiration age causes the import-next operation to
update the local attribute data.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.

RpcNsBindinglmportBegin, RpcNsMgmtlnqExpAge, RpcNsMgmtSetExpAge

RpcNsMgmtlnqExpAge
The RpcNsMgmtlnqExpAge function returns the global expiration age for local copies
of name-service data.

Parameters
ExpirationAge

Chapter 25 RPC Function Reference 479

Pointer to the default expiration age, in seconds. This value is used by all name
service next operations.

Return Values
Value

Remarks

Meaning

Call successful.

The RpcNsMgmtlnqExpAge function returns the expiration age that the application is
using. The expiration age is the amount of time in seconds that a local copy of data from
a name-service attribute can exist before a request from the application for the attribute
requires updating the local copy. When an application begins running, the RPC run-time
library specifies a default expiration age of two hours. The default is global to the
application.

An expiration age is used by Pointer next operations (which read data from name
service attributes). A next operation typically starts by looking fora local copy of the
attribute data being requested by an application. In the absence of a local copy, the next
operation creates one with fresh attribute data from the name-service database. If a local
copy already exists, the operation compares its actual age to the expiration age being
used by the application. If the actual age exceeds the expiration age, the operation
automatically tries to update the local copy with fresh attribute data. If updating is
impossible, the old local data remains in place and the next operation fails.

Applications typically should use only the default expiration age. For special cases,
however, an application can substitute a user-supplied global expiration age for the
default by calling RpcNsMgmtSetExpAge. The RpcNsMgmtlnqExpAge function
returns the current global expiration age, whether a default or a user-supplied value. An
application can also override the global expiration age temporarily by calling the
RpcNsMgmtHandleSetExpAge function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcnsi.h.
Library: Use Rpcns4.1ib.

480 Volume 3 RPC and WNet

RpcNsMgmtHandleSetExpAge, RpcNsMgmtSetExpAge

RpcNsMgmtSetExpAge
The RpcNsMgmtSetExpAge function modifies the application's global expiration age for
local copies of name-service data.

Parameters
ExpirationAge

Pointer to the default expiration age, in seconds. This value is used by all name
service-next operations. An expiration age of a causes an immediate update of the
local name-service data.

To reset the expiration age to an RPC-assigned default value of two hours, specify a
value of RPC_C_NS_DEFAUL T _EXP _AGE.

Return Values
Value

RPC_S_OK

RPC_S_NAME_SERVICE_UNAVAILABLE

Remarks

Meaning

Call successful.

Name service unavailable.

The RpcNsMgmtSetExpAge function modifies the global expiration age of an
application. The expiration age is the amount of time that a local copy of data from a
name-service attribute can exist before a request from the application for the attribute
requires updating the local copy. When an application begins running, the RPC run-time
library specifies a default expiration age of two hours. The default is global to the
application. Typically, you should avoid using RpcNsMgmtSetExpAge. Instead, you
should rely on the default expiration age.

An expiration age is used by Pointer next operations (which read data from name
service attributes). A next operation typically starts by looking for a local copy of the
attribute data being requested by an application. In the absence of a local copy, the next
operation creates one with fresh attribute data from the name-service database. If a local
copy already exists, the operation compares its actual age to the expiration age being
used by the application. If the actual age exceeds the expiration age, the operation
automatically tries to update the local copy with fresh attribute data. If updating is
impossible, the old local data remains in place and the next operation fails, returning the
RPC_S_NAME_SERVICE_UNAVAILABLE status code.

Chapter 25 RPC Function Reference 481

Setting the expiration age to a small value causes the Pointer next operations to
frequently update local data for any name-seNice attribute requested by your
application. For example, setting the expiration age to 0 forces all next operations to
update local data for the name-seNice attribute requested by your application.
Therefore, setting small expiration ages can create performance problems for your
application and increase network traffic. Furthermore, if your application is using a
remote name-seNice seNer, a small expiration age can adversely affect network
performance for all applications.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcnsi.h.
Library: Use Rpcns4.lib.

RpcNsMgmtHandleSetExpAge

RpcNsProfileDelete
The RpcNsProfileDelete function deletes a profile attribute:

Parameters
ProfileNameSyntax

Specifies an integer value that indicates the syntax of the next argument,
ProfileName.

To use the syntax specified in the registry value
HKEV _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

ProfileName
Pointer to the name of the profile to delete.

Return Values
Value

RPC_S_OK

RPC_S_I NVALI D_NAME_SYNTAX

Meaning

Call successful.

Invalid name syntax.

(continued)

482 Volume 3 RPC and WNet

(continued)

Value

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

RPC_S_ENTRY_NOT_FOUND

RPC_S_NAME_SERVICE_UNAVAILABLE

Remarks

Meaning

Unsupported name syntax.

Incomplete name.

Name-service entry not found.

Name service unavailable.

The RpcNsProfileDelete function deletes the profile attribute from the specified name
service entry (ProfileName). Neither ProfileName nor the entry names included as
members in each profile element are deleted.

Tip Use RpcNsProfileDelete cautiously; deleting a profile can have the unwanted
effect of breaking a hierarchy of profiles.

Note This DCE function is not supported by Microsoft Locator. Windows NT and
Windows 2000 support the use of this function with Cell Directory Service (CDS) only.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcnsi.h.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcNsProfileEltAdd, RpcNsProfileEltRemove

RpcNsProfi leEltAdd
The RpcNsProfileEltAdd function adds an element to a profile. If necessary, it creates
the entry.

Chapter 25 RPC Function Reference 483

Parameters
Profile Name Syntax

Indicates the syntax of the ProfileName parameter.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

Profile Name
Pointer to the name of the profile to receive a new element.

IfId
Pointer to the interface identification of the new profile element. To add or replace the
default profile element, specify a null value.

MemberNameSyntax
Indicates the syntax of the MemberName parameter.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

MemberName
Pofnter to a name service-entry name to include in the new profile element.

Priority
Integer value (0 through 7) that indicates the relative priority for using the new profile
element during the import and lookup operations. A value of 0 is the highest priority;
a value of 7 is the lowest priority. When adding a default profile member, use a
value of O.

Annotation
Pointer to an annotation string stored as part of the new profile element. Specify a null
value or a null-terminated string if there is no annotation string.

The string is used by applications for informational purposes only. For example, an
application can use this string to store the interface-name string specified in the IDL
file. RPC does not use the annotation string during lookup or import operations or for
enumerating profile elements.

Return Values
Value

RPC_S_OK

RPC_S_INVALID _NAME_SYNTAX

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC-,-S_INCOMPLETE_NAME

RPC--"S_NAME_SERVICE_UNAVAILABLE

Meaning

Call successful.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

Name service unavailable.

484 Volume 3 RPe and WNet

Remarks
The RpcNsProfileEltAdd function adds an element to the profile attribute of the name
service entry specified by ProfileName. If the ProfileName entry does not exist,
RpcNsProfileEltAdd tries to create the entry with a profile attribute and adds the profile
element specified by the IfId, MemberName, Priority, and Annotation parameters. In this
case, the application must have the privilege to create the entry. Otherwise, a
management application with the necessary privileges should create the entry by calling
the RpcNsMgmtEntryCreate function before the application is run.

If an element with the specified member name and interface identification is already in
the profile, RpcNsProfileEltAdd updates the element's priority and annotation string
using the values provided in the Priority and Annotation parameters.

Note The Windows 2000 Active Directory supports this function. Earlier versions of
Windows NT support the use of this function with Cell Directory Service (CDS) only.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Rpcnsi.h.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Rpclflnqld, RpcNsMgmtEntryCreate, RpcNsProfileEltRemove

RpcNsProfileEltlnqBegin
The RpcNsProfileEltlnqBegin function creates an inquiry context for viewing the
elements in a profile.

Parameters
ProfileNameSyntax

Chapter 25 RPC Function Reference 485

Indicates the syntax of the ProfileName parameter.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

ProfileName
Pointer to the name of the profile to view.

InquiryType
Indicates the type of inquiry to perform on the profile. The following table lists valid
inquiry types.

Inquiry type Description

IfId

Searches the profile for the default
profile element, if any. The IfId,
VersOption, and MemberName
parameters are ignored.

Returns every element from the profile.
The IfId, VersOption, and
MemberName parameters are ignored.

Searches the profile for elements that
contain the interface identification
specified by.lfld and VersOption. The
MemberName parameter is ignored.

Searches the profile for elements that
contain MemberName. The IfId and
VersOption parameters are ignored.

Searches the profile for elements that
contain the interface identification and
member identified by the IfId,
VersOption, and MemberName
parameters.

Pointer to the interface identification of the profile elements to be returned by the
RpcNsProfileEltlnqNext function.

The IfId parameter is used only when specifying a value of
RPC_C_PROFILE_MATCH_BY _IF or RPC_C_PROFILE_MATCH_BY _BOTH for the
InquiryType parameter. Otherwise, IfId is ignored and a null value can be specified.

VersOption
Specifies how the RpcNsProfileEltlnqNext function uses the IfId parameter. This
parameter is used only when specifying a value of RPC_C_PROFILE_MATCH_BY _IF
or RPC_C_PROFILE_MATCH_BY.....:BOTH for InquiryType. Otherwise, this parameter
is ignored and a 0 value can be specified.

486 Volume 3 RPC and WNet

The following table describes valid values for VersOption.

Values

MemberNameSyntax

Description

Returns profile elements that offer the
specified interface UUID, regardless of the
version numbers. For this value, specify 0 for
both the major and minor versions in IfId.

Returns profile elements that offer the same
major version of the specified interface UUID
and a minor version greater than or equal to
the minor version of the specified
interface UUID.

Returns profile elements that offer the
specified version of the specified
interface UUID.

Returns profile elements that offer the same
major version of the specified interface UUID
(ignores the minor version). For this value,
specify 0 for the minor version in IfId.

Returns profile elements that offer a version of
the specified interface UUID less than or
equal to the specified major and minor
version. (For example, if the IfId contained
V2.0 and the profile contained elements with
V1.3, V2.0, and V2.1, the
RpcNsProfileEltlnqNext function returns
elements with V1.3 and V2.0.)

, Indicates the syntax of the MemberName parameter, and of the return parameter
MemberName in the RpcNsProfileEltlnqNext function.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

MemberName
Pointer to the member name that the RpcNsProfileEltlnqNext function looks for in
profile elements. The MemberName parameter is used only when specifying a value
of RPC_C_PROFILE_MATCH_BY _MBR or RPC_C_PROFILE_MATCH_BY _BOTH
for InquiryType. Otherwise, MemberName is ignored and a null value can be
specified.

InquiryContext
Returns a pOinter to a name-service handle for use with the RpcNsProfileEltlnqNext
and RpcNsProfileEltlnqDone functions.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_ VERS_OPTION

RPC_S_INVALID _NAME_SYNTAX

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

RPC_S_ENTRY_NOT_FOUND

RPC_S_NAME_SERVICE_UNAVAILABLE

Remarks

Chapter 25 RPC Function Reference 487

Meaning

Call successful.

Invalid version option.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

Name-service entry not found.

Name service unavailable.

The RpcNsProfileEltlnqBegin function creates an inquiry context for viewing the
elements in a profile.

Using the InquiryType parameter, an application specifies which of the following profile
elements are to be returned from calls to RpcNsProfileEltlnqNext:

• The default element

• All elements

• Elements with the specified interface identification

• Elements with the specified member name

• Elements with both the specified interface identification and member name

Before calling RpcNsProfileEltlnqNext, the application must first call
RpcNsProfileEltlnqBegln to creede an inquiry context.

When finished viewing the profile elements, the application calls the
RpcNsProfileEltlnqDone function to delete the inquiry context.

Note Windows 2000 Active Directory supports this function. Earlierversions of
Windows NT support the use of this function with Cell Directory Service (CDS) only.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Rpcnsi.h.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Rpclflnqld, RpcNsProfileEltlnqDone, RpcNsProfileEltlnqNext

488 Volume 3 RPC and WNet

RpcNsProfileEltlnqDone
The RpcNsProfileEltlnqDone function deletes the inquiry context for viewing the
elements in a profile.

Parameters
InquiryContext

Pointer to a name-service handle to free. The name-service handle that
InquiryCbntext points to is created by calling the RpcNsProfileEltlnqBegin function.

An argument value of NULL is returned.

Return Values
Value

Remarks

Meaning

Call successful.

The RpcNsProfileEltlnqDone function frees an inquiry context created by calling
RpcNsProfileEltlnqBegin.

An application calls RpcNsProfileEltlnqDone after viewing profile elements using the
RpcNsProfileEltlnqNext function.

Note Windows 2000 Active Directory supports this function. Earlier versions of
Windows NT support the use of this function with Cell Directory Service (CDS) only.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in RpcrisLh.
Library: Use Rpcns4.lib.

RpcNsProfileEltlnqBegin, RpcNsProfileEltlnqNext

RpcNsProfileEltlnqNext
The RpcNsProfileEltlnqNext function returns one element at a time from a profile.

Parameters
InquiryContext

Chapter 25 RPC Function Reference 489

Specifies a name-service handle returned from the RpcNsProfileEltlnqBegin
function.

IfId
Returns a pointer to the interface identification of the profile element.

MemberName
Returns a pOinter to a pointer to the profile element's member name. The syntax of
the returned name was specified by the MemberNameSyntax parameter in the
RpcNsProfileEltlnqBegin function.

Specify a null value to prevent RpcNsProfileEltlnqNext from returning the
MemberName argument. In this case, the application does not call the
RpcStringFree function.

Priority
Returns a pointer to the profile-element priority.

Annotation
Returns a pOinter to a pointer to the annotation string for the profile element. If there is
no annotation string in the profile element, the string \0 is returned.

Specify a null value to prevent RpcNsProfileEltlnqNext from returning the Annotation
parameter. In this case, the application does not need to call the RpcStringFree
function.

Return Values
Value

RPC_S_OK

RPC_S_INCOMPLETE_NAME

RPC_S_NAME_SERVICE_UNAVAILABLE

RPC_S_NO_MORE_ELEMENTS

Meaning

Call successful.

Incomplete name.

Name service unavailable.

No more elements.

490 Volume 3 RPC and WNet

Remarks
The RpcNsProfileEltlnqNext function returns one element from the profile specified by
the ProfileName parameter in RpcNsProfileEltlnqBegin. Regardless of the value of
InquiryType in RpcNsProfileEltlnqBegin, RpcNsProfileEltlnqNext returns all the
components (interface identification, member name, priority, annotation string) of a
profile element.

An application can view all the selected profile entries by repeatedly calling the
RpcNsProfileEltlnqNext function. When all the elements have been viewed, this
function returns a RPC_S_NO_MORE_ELEMENTS status code. The returned elements
are unordered .

. On each call to RpcNsProfileEltlnqNext that returns a profile element, the RPC run
time library allocates memory for the returned member name and annotation string. The
application is responsible. for calling the RpcStringFree function for each returned
member name and annotation string. After viewing the profile's elements, the application
must call RpcNsProfileEltlnqDone to release the inquiry context.

Note Windows 2000 Active Directory supports this function. Earlier versions of
Windows NT support the use of this function with Cell Directory Service (CDS) only.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in RpcnsLh.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcNsProfileEltlnqBegin, RpcNsProfileEltlnqDone, RpcStringFree

RpcNsProfileEltRemove
The RpcNsProfileEltRemove function removes an element from a profile.

Parameters
ProfileNameSyntax

Chapter 25 RPC Function Reference 491

Indicates the syntax of the ProfileName parameter.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

ProfileName
Pointer to the name of the profile from which to remove an element.

IfId
Pointer to the interface identification of the profile element to be removed.

Specify a null value to remove the default profile member.

MemberNameSyntax
Indicates the syntax of the MemberName parameter.

To use the syntax specified in the registry value entry
HKEY _LOCAL_MACHINE\Software\Microsoft\Rpc\NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

MemberName
Pointerto the name service-entry name in the profile element to remove.

Return Values
Value

RPC_S_OK

RPC_S_I NVALI D_NAME_SYNTAX

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_INCOMPLETE_NAME

RPC_S_ENTRY _NOT ~FOUND

RPC_S_NAME_SERVICE_UNAVAILABLE

Remarks

Meaning

Cail successful.

Invalid name syntax.

Unsupported name syntax.

Incomplete name.

Name-service entry not found.

Name service unavailable.

The RpcNsProfileEltRemove function removes a profile element from the profile
attribute in the ProfileName entry. This function requires an exact match of the
MemberName and IfId parameters to remove a profile element. The entry
(MemberName) , included as a member in the profile element, is not deleted.

Tip Use RpcNsProfileEltRemove cautiously: removing elements from a profile can·
have the unwanted effect of breaking a hierarchy of profiles.

Note Windows 2000 Active Directory supports this function. Earlier versions of
Windows NT support the use of this function with Cell Directory Service (CDS) only.

492 Volume 3 RPC and WNet

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Rpcnsi.h.
Library: Use Rpcns4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcNsProfileDelete, RpcNsProfileEltAdd

RpcObjectlnqType
The RpcObjectlnqType function returns the type of an object. This function is supported
on all 32-bit Windows platforms, except Windows CEo

Parameters
ObjUuid

Pointer to the object UUID whose associated type UUID is returned.

TypeUuid
Returns a pointer to the type UUID of the ObjUuid argument.

Specify an argument value of NULL to prevent the return of a type UUID. In this way,
an application can determine (from the returned status) whether ObjUuid is registered
without specifying an output type UUID variable.

Return Values
Value

RPC_S_OK

RPC_S_OBJECT_NOT_FOUND

Remarks

Meaning

Call successful.

Object not found

A server application calls RpcObjectlnqType to obtain the type UUID of an object. If
the object was registered with the RPC run-time library using the RpcObjectSetType
function, the registered type is returned.

Chapter 25 RPC Function Reference 493

Optionally, an application can privately maintain an object/type registration.
In this case, if the application has provided an object inquiry function
(see under RpcObjectSetlnqFn). The RPe run-time library uses that function
to determine an object's type.

The RpcObjectlnqType function obtains the type UUID as described in the
following table.

Object UUID
registered

Yes
(RpcObjectSetType)

No

No

Inquiry function
registered

Ignored

Yes.
(RpcObjectSetlnqFn)

No

Return
value

The object's registered type UUID

The type UUID returned from the
inquiry function

The nil UUID

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library:· Use Rpcrt4.lib.

RpcObjectSetlnqFn, RpcObjectSetType

RpcObjectSetlnqFn
The RpcObjectSetlnqFn function registers an object-inquiry function. A null value turns
off a previously registered object-inquiry function. This function is supported on all 32-bit
Windows platforms, except Windows CEo

Parameters
InquiryFn

Specifies an object-type inquiry function. See RPC_OBJECT_INQ_FN. When an
application calls RpcObjectlnqType and the RPC run-time library finds that the
specified object is not registered, the run-time library automatically calls
RpcObjectSetlnqFn to determine the object's type.

494 Volume 3 RPC and WNet

Return Values
This function returns the following value.

Value Meaning

Call successful.

. Remarks
A ~erver application calls RpcObjectSetlnqFn to override the default mapping function
that maps object UUIDs to type UUIDs, which determine an object's type. If an
application privately maintains an objecVtype registration, the specified inquiry function
returns the type UUID of an object.

The RPC run-time library automatically calls the inquiry function when the application
calls RpcObjectlnqType and the object of interest was not previously registered with
RpcObjectSetType. The TypeUuidand Status values of the RPC_OBJECT_INQ_FN
function are returned as the output from RpcObjectlnqType.

Windows NT/2000: Requires Windows NT 3.1 or later:
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h. '
Library: Use Rpcrt4.lib.

RpcObjectlnqType, RpcObjectSetType

RpcObjectSetType
The RpcObjectSetType function assigns the type of an object. This function is
supported on all 32-bit Windows platforms, except Windows CEo

Parameters
ObjUuid

Pointer to an object UUID to associate with the type UUID in the TypeUuid argument.

TypeUuid
Pointer to the type UUID of the ObjUuid argument.

Specify an argument value of NULL or a nil UUID to reset the object type to the
default association of object UUID/nil-type UUID.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_OBJECT

RPC_S_ALREADY_REGISTERED

Remarks

Chapter 25 RPC Function Reference 495

Meaning

Call successful.

Invalid object.

Object already registered.

A server application calls RpcObjectSetType to assign a type UUID to an object UUID.
By default, the RPC run-time library automatically assigns all object UUIDs with the nil
type UUID. A server application that contains one implementation of an interface (one
manager Entry-Point Vector [EPV]) does not need to call RpcObjectSetType provided
that the server registered the interface with the nil-type UUID
(see under RpcServerRegisterlf).

A server application that contains multiple implementations of an interface (multiple
manager EPVs-that is, multiple type UUIDs) calls RpcObjectSetType once for each
different object UUID/non-nil type UUID association the server supports. Associating
each object with a type UUID tells the RPC run-time library which manager EPV
(interface implementation) to use when the server receives a remote procedure call for a
non-nil object UUID.

The RPC run-time library allows an application to set the type for an unlimited number of
objects. To remove the association between an object UUID and its type UUID
(established by calling RpcObjectSetType), a server calls RpcObjectSetType again,
specifying a null value or a nil UUID for the TypeUuid argument. This resets the object
UUID/type UUID association to the default association of object UUID/nil-type UUID. A
server cannot assign a type to the nil object UUID. The RPC run-time library
automatically assigns the nil object UUID a nil-type UUID.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcServerRegisterlf

496 Volume 3 RPC and WNet

RpcProtseqVectorFree
The RpcProtseqVectorFree function frees the protocol sequences contained in the
vector and the vector itself. This function is supported on all 32-bit Windows platforms,
except Windows CE.

Parameters
ProtSeqVector

Pointer to a pOinter to a vector of protocol sequences. On return, the pointer is set to
NULL.

Return Values
Value

Remarks

Meaning

Call successful.

A server calls RpcProtseqVectorFree to release the memory used to store a vector of
protocol sequences and the individual protocol sequences. RpcProtseqVectorFree sets
the ProtSeqVector argument to a null value.

For a list of Microsoft RPC supported protocol sequences, see String Binding.

A server obtains a vector of protocol sequences by calling RpcNetworklnqProtseqs.

Note RpcProtseqVectorFree is available for server applications, not client
applications, using Microsoft RPC.

WindowsNT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcNetworklnqProtseqs

Chapter 25 RPC Function Reference 497

RpcRaiseException
Use the RpcRaiseException function to raise an exception. The function does not
return to the caller.

Parameters
Exception

Specifies the exception code for the exception. The following exception codes are
defined.

Exception code

RPC_S_ACCESS_DENIED

RPC_S_ADDRESS_ERROR

RPC_S_ALREADY _LISTENING

RPC_S_ALREADY _REGISTERED

RPC_S_BINDING_HAS_NO_AUTH

RPC_S_BINDING_INCOMPLETE

RPC_S_BUFFER_TOO_SMALL

RPC_S_CALL_CANCELLED

RPC_S_CALL_FAILED

RPC_S_CALL_FAILED_DNE

RPC_S_CALL_IN_PROGRESS

RPC_S_CANNOT_SUPPORT

RPC_S_CANT_CREATE_ENDPOINT

RPC_S_COMM_FAILURE

RPC_S_DUPLICATE_ENDPOINT

RPC_S_ENTRY _ALREADY_EXISTS

RPC_S_ENTRY_NOT_FOUND

RPC_S_FP _DIV _ZERO

Description

Access denied.

An addressing error occurred in the RPC server.

Server already listening.

Object already registered.

Binding has no authentication.

The binding handle is a required parameter.

Insufficient buffer.

The remote procedure call exceeded the cancel
time-out and was canceled.

Call failed.

Call failed and did not execute.·

Call already in progress for this thread.

Operation is not supported.

Cannot create endpoint.

Unable to communicate with the server.

Endpoint already exists.

Name-service entry already exists.

Name-service entry not found.

A floating-point operation in the server caused a
division by zero.

Floating-point overflow has occurred in the RPC
server.

Floating-point underflow has occurred in the
server.

Group member not found.

(continued)

498 Volume 3 RPC and WNet

(continued)

Exception code

RPC_S_INCOMPLETE_NAME

RPC_S_INTERFACE_NOT _FOUND

RPC_S_INTERNAL_ERROR

RPC_S_INVALlD_ARG

RPC_S_INVALlD_AUTH_IDENTITY

RPC_S_INVALlD_BINDING

RPC_S_INVALlD_BOUND

RPC_S_INVALlD_ENDPOINT_FORMAT

RPC_S_INVALlD_INQUIRY _CONTEXT

RPC_S_INVALlD_INQUIRY _TYPE

RPC_S_I NVALI D_LEVEL

RPC_S_I NVALI D_NAF _IF

RPC_S_INVALlD_NAME_SYNTAX

RPC_S_INVALlD_NET _ADDR

RPC_S_INVALlD_NETWORK_OPTIONS

RPC_S_INVALlD_OBJECT

RPC_S_I NVALI D_RPC_PROTSEQ

RPC_S_INVALlD_SECURIT _DESC

RPC_S_INVALlD_STRING_BINDING

RPC_S_INVALlD_STRING_UUID

RPC_S_INVALlD_ TAG

RPC_S_I NVALI D_ TIMEOUT

RPC_S_INVALlD_VERS_OPTION

RPC_S_MAX_CALLS_ TOO_SMALL

RPC_S_NAME...,.SERVICE_UNAVAILABLE

RPC_S_NO_BINDINGS

RPC_S_NO_CALL_ACTIVE

RPC_S_NO_CONTEXT _AVAILABLE

RPC_S_NO_ENDPOINT _FOUND

RPC_S_NO_ENTRY_NAME

RPC_S_NO_ENV_SETUP

RPC_S_NO_INTERFACES

RPC_S_NO_INTERFACES_EXPORTED

Description

Incomplete name.

Interface not found.

Internal error.

Invalid argument.

Invalid authentication.

Invalid binding handle.

Invalid bound.

Invalid endpoint format.

Invalid inquiry context.

Invalid inquiry type.

Invalid parameter.

Invalid network-address family identifier.

Invalid name syntax.

Invalid network address.

Invalid network options.

Invalid object.

Invalid protocol sequence.

Invalid security descriptor.

Invalid string binding.

Invalid string UUID.

Invalid tag.

Invalid time-out value.

Invalid version option.

Maximum-calls value too small.

Name service unavailable.

No bindings.

No remote procedure active in this thread.

No security context available to perform
impersonation.

No endpoint found.

No entry name for binding.

No environment variable set up.

No interfaces registered.

No interfaces have been exported.

Exception code

RPC_S_NO_MORE_BINDINGS

RPC_NO_MORE_ELEMENTS

RPC~S_NO_MORE_MEMBERS

RPC_S_NO_NS_PRIVILEGE

RPC_S_NO_PRINC_NAME

RPC_S_NO_PROTSEQS

RPC_S_NO_PROTSEQS_REGISTERED

RPC_S_NOT _ALL_OBJS_UNEXPORTED

RPC_S_NOT_CANCELLED

RPC_S_NOT _LISTENING

RPC_S_NOT_RPC_ERROR

RPC_S_NOTHING_ TO_EXPORT

RPC_S_OBJECT_NOT_FOUND

RPC_S_OK

RPC_S_OUT _OF_MEMORY

RPC_S_OUT _OF _RESOURCES

RPC_S_OUT_OF_THREADS

RPC_S_PROCNUM_OUT_OF_RANGE

RPC_S_PROTOCOL_ERROR

RPC_S_PROTSEQ_NOT_FOUND

RPC_S_PROTSEQ_NOT_SUPPORTED

RPC_S_SERVER_OUT_OF_MEMORY

RPC_S_SERVER_TOO_BUSY

RPC_S_SERVER_UNAVAILABLE

RPC_S_STRING_ TOO_LONG

RPC_S_TYPE_ALREADY_REGISTERED

RPC_S_UNKNOWN_AUTHN_LEVEL

RPC_S_UNKNOWN_AUTHN_SERVICE

RPC_S_UNKNOWN_AUTHN_ TYPE

RPC_S_UNKNOWN_IF

RPC_S_UNKNOWN_MGR_ TYPE

RPC_S_UNSUPPORTED-TRANS_SYN

RPC_S_UNSUPPORTED_NAME_SYNTAX

RPC_S_UNSUPPORTED_TYPE

Chapter 25 RPC Function Reference 499

Description

NO more bindings.

No more elements.

No more members.

No privilege for name-service operation.

No principal name registered.

No supported protocol sequences.

No protocol sequences registered.

Not all objects unexported.

Thread not canceled.

Server not listening.

Requested status code not valid.

Nothing to export.

Object not found.

Call succeeded.

Out of memory.

Out of resources.

Out of threads.

Procedure number out of range.

An RPC protocol error occurred.

Protocol sequence not found.

Protocol sequence not supported.

Server out of memory.

Server too busy.

Server unavailable.

String too long.

Type UUID already registered.

Unknown authentication level.

Unknown authentication service.

Unknown authentication type.

Unknown interface.

Unknown manager type.

Transfer syntax not supported by the server.

Unsupported name syntax.

Unsupported UUID type.

(continued)

500 Volume 3 RPC and WNet

(continued)

Exception code

RPC_S_WRONG_KIND_OF _BINDING

RPC_S_ZERO_DIVIDE

RPC_X_BAD_STUB_DATA

RPC_X_BYTE_COUNT_TOO_SMALL

RPC_X_ENUM_ VALUE_OUT _OF RANGE

RPC_X_ENUM_VALUE_TOO_LARGE

RPC_X_INVALlD_BOUND

RPC_X_INVALID _TAG

RPC_X_NULL_REF _POINTER

RPC_X_SS_BAD_ES_ VERSION

RPC_X_SS_CANNOT_GET_CALL_HANDLE

RPC_X_SS_IN_NULL_CONTEXT

RPC_X_SS_INVALlD_BUFFER

RPC_X_SS_ WRONG_ES_ VERSION

RPC_X_SS_ WRONG_STUB_ VERSION

Description

The UUID valid for this computer has been
allocated.

No network address available to use to construct
aUUID.

Wrong kind of binding for operation.

Attempt to divide an integer by zero.

Stub received bad data.

Byte count too small.

The enumeration value out of range.

The enumeration value out of range.

Specified bounds of an array inconsistent.

Discriminant value does not match any case
values; no default case.

Insufficient memory available to set up necessary
data structures.

List of servers available for AutoHandle binding
has been exhausted.

A null reference pOinter passed to the stub.

Operation for the serializing handle not valid.

Stub unable to get the remote procedure call
handle.

File designated by DCERPCCHARTRANS
cannot be opened.

File containing character-translation table has
fewer than 512 bytes.

Only raised on caller side; UUID in, out context
handle changed during call.

Only raised in the invoked function; UUID in
handle does not correspond to any known
context.

Binding handles passed to a remote procedure
call don't match.

Null context handle passed in parameter position.

Buffer not valid for operation.

Software version incorrect.

Stub version incorrect.

Chapter 25 RPC Function Reference 501

Return Values
This function does not return a value.

Remarks
RpcRaiseException raises an exception. The exception handler can then handle the
exception.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcAbnormalTermination, RpcExcept, RpcFinally

RpcRevertToSelf
After calling RpclmpersonateClient and completing any tasks that require client
impersonation, the server calls RpcRevertToSelf to end impersonation and to
reestablish its own security identity.

Return Values
Value

RPC_S_OK

RPC_S_NO_CALL_ACTIVE

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

RPC_S_CANNOT_SUPPORT

Remarks

Meaning

Call successful.

Server does not have a client to impersonate.

Invalid binding handle.

Wrong kind of binding for operation.

Not supported for this operating system, this
transport, or this security subsystem.

In a multithreaded application, if the call to RpclmpersonateClient is with a handle to
another client thread, you must call RpcRevertToSelfEx with the handle to that thread
to end impersonation.

502 Volume 3 RPC and WNet

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

Client Impersonation, RpclmpersonateClient

RpcRevertToSelfEx
The RpcRevertToSelfEx function allows a server to impersonate a client and then
revert in a multithreaded operation where the call to impersonate a client can come from
a thread other than the thread originally dispatched from the RPC.

Parameters
BindingHandle

Specifies a binding handle on the server that represents a binding to the client that the
server impersonated. A value of zero specifies the client handle of the current thread;
in this case, the functionality of RpcRevertToSelfEx is identical to that of the
RpcRevertToSelf function.

Return Values
Value

RPC_S_OK

RPC_S_NO_CALL~CTIVE

RPC_S_INVALlD_BINDING

RPC_S_WRONG_KIND_OF _BINDING

RPC_S_CANNOT_SUPPORT

Remarks

Meaning

Call successful.

Server does not have a client to
impersonate.

Invalid binding handle.

Wrong kind of binding for operation.

Not supported for this operating system, this
transport, or this security subsystem.

After calling RpclmpersonateClient and completing any tasks that require client
impersonation, the server calls RpcRevertToSelfEx to end impersonation and to
reestablish its own security identity. For example, consider a primary thread, called
thread1, which is dispatched from a remote client and wakes up a worker thread,

Chapter 25 RPC Function Reference 503

called thread2. If thread2 requires that the server impersonate the client, the server calls
RpclmpersonateClient(THREAD1_CALL_HANDLE), performs the required task, calls
RpcRevertToSelfEx(THREAD1_CALL_HANDLE) to end the impersonation, and then
wakes up thread1.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

Client Impersonation, RpclmpersonateClient, RpcRevertToSelf

RpcServerlnqBindings
The RpcServerlnqBindings function returns the binding handles over which remote
procedure calls can be received. This function is supported on all 32-bit Windows
platforms, except Windows CE.

Parameters
Binding Vector

Returns a pointer to a pointer to a vector of server binding handles.

Return Values
Value

RPC_S_OK

RPC_S_NO_BINDINGS

Remarks

Meaning

Call successful.

No bindings.

A server application calls RpcServerlnqBindings to obtain a vector of server binding
handles. The RPC run-time library creates binding handles when a server application
calls the following functions to register protocol sequences:

• RpcServerUseAIiProtseqs

• RpcServerUseProtseq

• RpcServerUseAIIProtseqslf

504 Volume 3 RPe and WNet

.• RpcServerUseProtseqlf

• RpcServerUseProtseqEp

The returned binding vector can contain binding handles with dynamic endpoints or
binding handles with well-known endpoints, depending on which of the above functions
the server application called.

A server uses the vector of binding handles for exporting to the name service, for
registering with the local endpoint-map database, or for conversion to string bindings. If
there are no binding handles (no registered protocol sequences), this routine returns the
RPC_S_NO_BINDINGS status code and a Binding Vector argument value of NULL. The
server is responsible for calling the RpcBindingVectorFree function to release the
memory used by the vector.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace,
RpcNsBindingExport, RpcServerUseAIIProtseqs, RpcServerUseAIIProtseqslf,
RpcServerUseProtseq, RpcServerUseProtseqEp, RpcServerUseProtseqlf

RpcServerlnqDefaultPrincName
The RpcServerlnqDefaultPrincName function obtains the default principal name from
the server.

Parameters
AuthnSvc

Specifies an authentication service to use when the server receives a request for a
remote procedure call.

PrincName
Pointer to the principal name to use for the server when authenticating remote
procedure calls using the service specified by the AuthnSvc argument. The
authentication service that is in use defines the content of the name and its syntax.

Return Values
Value

RPC_S_OK

RPC_S_OUT_OF_MEMORY

Remarks

Chapter 25 RPC Function Reference 505

Meaning

Call successful.

Insufficient memory to complete the operation.

In an environment that only uses NetWare, the server application calls the
RpcServerlnqDefaultPrincName function to obtain the name of the NetWare server,
when authenticated RPC is required. The value obtained from this function is then
passed to RpcServerRegisterAuthlnfo.

Windows NT/2000: Unsupported.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcBindingSetAuthlnfo, RpcServerRegisterAuthlnfo

RpcServerlnq If
The RpcServerlnqlf function returns the manager entry-point vector (EPV) registered for
an interface. This function is supported on all 32-bit Windows platforms, except
Windows CEo

Parameters
If Spec

Specifies the interface whose manager EPV is returned.

MgrTypeUuid
Pointer to the manager type UUID whose manager EPV is returned.

Specifying an argument value of NULL (or a nil UUID) signifies to return the manager
EPV registered with If Spec and the nil manager type UUID.

MgrEpv
Returns a pointer to the manager EPV for the requested interface.

506 Volume 3 RPe and WNet

Return Values
Value

RPC_S_OK

RPC_S_UNKNOWN_IF

RPC_S_UNKNOWN_MGR_ TYPE

Remarks

Meaning

Call successful.

Unknown interface.

Unknown manager type.

A server application calls the RpcServerlnqlf function to determine the manager EPV
for a registered interface and manager type UUID.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcServerRegisterlf

RpcServerListen
The RpcServerListen function signals the RPC run-time library to listen for remote
procedure calls. This function will not affect auto-listen interfaces; use the
RpcServerRegisterlfEx function if you need that functionality. This function is supported
on all 32-bit Windows platforms, except Windows CEo

Parameters
MinimumCal/Threads

Specifies the minimum number of call threads.

MaxCal/s
Specifies the recommended maximum number of concurrent remote procedure calls
the server can execute. To allow efficient performance, the RPC run-time libraries
interpret the MaxCal/s parameter as a suggested limit rather than as an absolute
upper bound.

Use RPC_C_LlSTEN_MAX_CALLS_DEFAUL T to specify the default value.

Chapter 25 RPC Function Reference 507

DontWait
Specifies a flag controlling the return from RpcServerListen. A value of nonzero
indicates that RpcServerListen should return immediately after completing function
processing. A value of zero indicates that RpcServerListen should not return until the
RpcMgmtStopServerListening function has been called and all remote calls have
completed.

Return Values
Value

RPC_S_OK

RPC_S_ALREADY _LISTENING

RPC_S_NO_PROTSEQS_REGISTERED

RPC_S_MAX_CALLS_ TOO_SMALL

Remarks

Meaning

Call successful.

Server already listening

No protocol sequences registered.

Maximum calls value too small.

A server calls RpcServerListen when the server is ready to process remote procedure
calls. RPC allows a server to simultaneously process multiple calls. The MaxCalls
argument recommends the maximum number of concurrent remote procedure calls the
server should execute.

The MaxCalls value should be equal to or greater than the largest MaxCalls value
specified to the functions RpcServerUseProtseq, RpcServerUseProtseqEp,
RpcServerUseProtseqlf, RpcServerUseAIi Protseqs, and
RpcServerUseAIi Protseqslf.

A server application is responsible for concurrency control between the server manager
routines because each routine executes in a separate thread.

When the DontWait parameter has a value of zero, the RPC run-time library continues
listening for remote procedure calls (that is, the routine does not return to the server
application) until one of the following events occurs:

• One of the server application's manager routines calls
RpcMgmtStopServerListening.

• A client calls a remote procedure provided by the server that directs the server to call
RpcMgmtStopServerListening.

• A client calls RpcMgmtStopServerListening with a binding handle to the server.

After it receives a stop-listening request, the RPC run-time library stops accepting new
remote procedure calls for all registered interfaces. Executing calls are allowed to
complete, including callbacks. After all calls complete, RpcServerListen returns to the
caller.

When the DontWait parameter has a nonzero value, RpcServerListen returns to the
server immediately after processing all the instructions associated with the function.

508 Volume 3 RPe and WNet

You can use the RpcMgmtWaitServerListen function to perform the wait operation
usually associated with RpcServerListen.

Note The Microsoft RPC implementation of RpcServerListen includes two additional
parameters that do not appear in the DCE specification: DontWait and
MinimumCallThreads.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcMgmtStopServerListening, RpcMgmtWaitServerListen, RpcServerRegisterlf,
RpcServerRegisterlfEx, RpcServerUseAIIProtseqs, RpcServerUseAIIProtseqslf,
RpcServerUseProtseq, RpcServerUseProtseqEp, RpcServerUseProtseqlf

RpcServerRegisterAuthlnfo
The RpcServerRegisterAuthlnfo function registers authentication information with the
RPC run-time library. This function is supported on all 32-bit Windows platforms, except
Windows CE.

Parameters
ServerPrincName

Pointer to the principal name to use for the server when authenticating remote
procedure calls using the service specified by the AuthnSvc argument. The content of
the name and its syntax are defined by the authentication service in use. For more
information, see Principal Names.

AuthnSvc
Specifies an authentication service to use when the server receives a request for a
remote procedure call.

Chapter 25 RPC Function Reference 509

GetKeyFn
Specifies the address of a server-application-provided routine that returns encryption
keys. See RPC_AUTH_KEY_RETRIEVAL_FN.

Specify a NULL argument value to use the default method of encryption-key
acquisition. In this case, the authentication service specifies the default behavior. Set
this parameter to NULL when using the RPC_C_AUTHN_WINNT authentication
service.

Authentication service GetKeyFn Arg Run-time behavior

RPC_C_AUTHN_DPA Ignored Ignored Does not support.

RPC_C_AUTHN_GSS - Ignored Ignored Does not support.
KERBEROS

RPC_C_AUTHN_GSS_ Ignored Ignored Does not support.
NEGOTIATE

RPC_C_AUTHN_GSS - Ignored Ignored Does not support.
SCHANNEL

RPC_C_AUTHN_MQ Ignored Ignored Does not support.

RPC_C_AUTHN_MSN Ignored Ignored Does not support.

RPC_C_AUTHN_WINNT Ignored Ignored Does not support.

RPC_C_AUTHN_DCE NULL Non-null Uses default method of
PRIVATE encryption-key acquisition from

specified key table; specified
argument is passed to default
acquisition function.

RPC_C_AUTHN_DCE - Non-null NULL Uses specified encryption-key
PRIVATE acquisition function to obtain

keys from default key table.

RPC_C_AUTHN_DCE - Non-null Non-null Uses specified encryption-key
PRIVATE acquisition function to obtain

keys from specified key table;
specified argument is passed to
acquisition function.

RPC_C_AUTHN_DEC - Ignored Ignored Reserved for future use.
PUBLIC

The RPC run-time library passes the ServerPrincNameargument value from
RpcServerRegisterAuthlnfo as the ServerPrincName argument value to the
GetKeyFn acquisition function. The RPC run-time library automatically provides a
value for the key version (KeyVery argument. For a KeyVer argument value of zero,
the acquisition function must return the most recent key available. The retrieval
function returns the authentication key in the Key argument.

510 Volume 3 RPC and WNet

If the acquisition function called from RpcServerRegisterAuthlnfo returns a status
other than RPC_S_OK, then this function fails and returns an error code to the server
application. If the acquisition function called by the RPC run-time library while
authenticating a client's remote procedure call request returns a status other than
RPC_S_OK, the request fails and the RPC run-time library returns an error code to
the client application.

Arg
Pointer to an argument to pass to the GetKeyFn routine, if specified. This parameter
can also be used to pass a pointer to an SCHANNEL_CRED structure to specify
explicit credentials if the authentication service is set to SCHANNEL.

If the Arg parameter is set to NULL, this function will use the default certificate or
credential if it has been set up in the directory service.

Return Values
Value

RPC_S_OK

RPC_S_UNKNOWN_AUTHN_SERVICE

Remarks

Meaning

Call successful.

Unknown authentication service.

A server application calls RpcServerRegisterAuthlnfo to register an authentication
service to use for authenticating remote procedure calls. A server calls this routine once
for each authentication service and/or prinCipal name the server wants to register.

The authentication service that a client application specifies (using
RpcBindingSetAuthlnfo or RpcServerRegisterAuthlnfo) must be one of the
authentication services specified by the server application. Otherwise, the client's remote
procedure call fails and an RPC_S_UNKNOWN_AUTHN_SERVICE status code is
returned.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcBindingSetAuthlnfo

Chapter 25 RPC Function Reference 511

RpcServerRegisterlf
The RpcServerRegisterlf function registers an interface with the RPC run-time
library. This function is supported on all 32-bit Windows platforms, except Windows
CE.

Parameters
If Spec

Specifies a MIDL-generated structure indicating the interface to register.

MgrTypeUuid
Pointer to a type UUID to associate with the MgrEpvargument. Specifying a null
argument value (or a nil UUID) registers If Spec with a nil-type UUID.

MgrEpv
Specifies the manager routines' entry-point vector (EPV). To use the MIDL-generated
default EPV, specify a null value.

Remarks
A server can register an unlimited number of interfaces with the RPC run-time library.
Registration makes an interface available to clients using a binding handle to the server.
To register an interface, the server application code calls RpcServerRegisterlf. For
each implementation of an interface that a server offers, it must register a separate
manager EPV.

When calling RpcServerRegisterlf, the server provides the following information:

• Interface specification

The interface specification is a data structure that the MIDL compiler generates. The
server specifies the interface using the If Spec argument.

• Manager type UUID and manager EPV

The manager type UUID and the manager EPV determine which manager routine
executes when a server receives a remote procedure call request from a client.

The server specifies the manager type UUID and EPV using the MgrTypeUuid and
MgrEpvarguments. Note that when specifying a non-nil manager-type UUID, the
server must also call the RpcObjectSetType function to register objects of this
non-nil type.

If your server application needs to register an auto-listen interface or use a callback
function for authentication purposes, use RpcServerRegisterlfEx.

512 Volume 3 RPe and WNet

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

Registering the Interface, RpcBindingFromStringBinding, RpcBindingSetObject,
RpcNsBindingExport, RpcNsBindinglmportBegin, RpcNsBindingLookupBegin,
RpcObjectSetType, RpcServerUnregisterlf, RpcServerRegisterlf2,
RpcServerRegisterlfEx

RpcServerRegisterlf2
The RpcServerRegisterlf2 function registers an interface with the RPC run-time library.

Parameters
If Spec

Specifies a MIDL-generated structure indicating the interface to register.

MgrTypeUuid
Pointer to a type UUID to associate with the MgrEpvargument. Specifying a null
argument value (or a nil UUID) registers If Spec with a nil-type UUID.

MgrEpv
Specifies the manager routines' entry-point vector (EPV). To use the MIDL-generated
default EPV, specify a null value.

Flags
For a list of flag values, see Interface Registration Flags.

MaxCalls
Specifies the maximum number of concurrent remote procedure call requests the
server can accept. The RPC run-time library guarantees that the server can accept at
least this number of concurrent call requests. The actual number can be greater and
can vary for each protocol sequence.

Chapter 25 RPC Function Reference 513

Use RPC_C_PROTSEQ_MAX_REQS_DEFAUL T to specify the default value. A call
on an auto-listen interface uses the value of MaxCalls specified for that interface.
Calls on other interfaces are governed by the value of the process-wide MaxCalls
specified in RpcServerListen.

MaxRpcSize
Specifies the maximum size, in bytes, of incoming data blocks. This parameter may
be used to help prevent malicious denial-of-service attacks. If the data block of a
remote procedure call is larger than MaxRpcSize, the RPC run-time library rejects the
call and sends an RPC_S_ACCESS_DENIED error to the client. Specifying a value of
(unsigned int)-1 for this parameter removes the limit on the size of incoming data
blocks.

IfCallbackFn
Specifies a security-callback function, or NULL for no callback. Each registered
interface can have a different callback function. See Remarks.

Remarks
The parameters and effects of the RpcServerRegisterlf2 function extend those of the
RpcServerRegisterlf function. The difference is the ability to register an auto-listen
interface and to specify a security-callback function.

The server application code calls RpcServerRegisterlf2 to register an interface.
To register an interface, the server provides the following information:

• Interface specification.

The interface specification is a data structure that the MIDL compiler generates .

• Manager type UUID and manager EPV

The manager type UUID and the manager EPV determine which manager routine
executes when a server receives a remote procedure call request from a client. For
each implementation of an interface offered by a server, it must register a separate
manager EPV.

Note that when specifying a non-nil, manager type UUID, the server must also call
RpcObjectSetType to register objects of this non-nil type.

Specifying the RPC_IF _AUTOLISTEN flags marks the interface as an auto-listen
interface. The run time begins listening for calls as soon as the interface is registered,
and stops listening when the interface is unregistered. A call to RpcServerUnregisterlf
for this interface will wait for the completion of all pending calls on this interface. Calls to
the RpcServerListen and the RpcMgmtStopServerListening functions will not affect
the interface, nor will a call to the RpcServerUnregisterlf function with If Spec set to the
value NULL. This allows a DLL to register RPC interfaces or remove them from the
registry without changing the main application's RPC state.

Specifying a security-callback function allows the server application to restrict access to
its interfaces on a per-client basis. Remember that, by default, security is optional; the
server run-time will dispatch unsecured calls even if the server has called the

514 Volume 3 RPe and WNet

RpcServerRegisterAuthlnfo function. If the server wants to accept only authenticated
clients, each server stub must call RpcBindinglnqAuthClient function to retrieve the
security level, or attempt to impersonate the client with the RpclmpersonateClient
function.

When a server application specifies a security-callback function for its interface(s), the
RPC run time automatically rejects unauthenticated calls to that interface. In addition, the
run time records the interfaces that each client has used. When a client makes an RPC
to an interface that it has not used during the current communication session, the RPC
run-time library will call the interface's security-callback function.

For the signature for the callback function, see RPC_IF_CALLBACK_FN.

The callback function should return RPC_S_OK, if the client is allowed to call methods in
this interface. Any other return code will cause the client to receive the exception
RPC_S_ACCESS_DENIED.

In some cases, the RPC run time may call the security-callback function more than once
per client per interface. Be sure your callback function can handle this possibility.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on all platforms.

RpcServerRegisterlf, RpcServerRegisterlfEx

RpcServerRegisterlfEx
The RpcServerRegisterlfEx function registers an interface with the RPC run-time
library. This function is supported on all 32-bit Windows platforms, except Windows CE.

Parameters
If Spec

Chapter 25 RPC Function Reference 515

Specifies a MIDL-generated structure indicating the interface to register.

MgrTypeUuid
Pointer to a type UUID to associate with the MgrEpvargument. Specifying a null
argument value (or a nil UUID) registers If Spec with a nil-type UUID.

MgrEpv
Specifies the manager routines' Entry-Point Vector (EPV). To use the MIDL
generated default EPV, specify a null value.

Flags
For a list of flag values, see Interface Registration Flags.

MaxCalls
Specifies the maximum number of concurrent remote procedure call requests the
server can accept. The RPC run-time library guarantees that the server can accept at
least this number of concurrent call requests. The actual number can be greater and
can vary for each protocol sequence. Use
RPC_C_PROTSEQ_MAX_REQS_DEFAUL T to specify the default value. A call on an
auto-listen interface uses the value of MaxCalis specified for that interface. Calls on
other interfaces are governed by the value of the process-wide MaxCalis specified in
RpcServerListen.

If Callback
Specifies a security-callback function, or NULL for no callback. Each registered
interface can have a different callback function. See Remarks for more details.

Remarks
The parameters and effects of RpcServerRegisterlfEx subsume those of
RpcServerRegisterlf. The difference is the ability to register an auto-listen interface and
to specify a security-callback function.

The server application code calls RpcServerRegisterlfEx to register an interface.
To register an interface, the server provides the following information:

• Interface specification.

The interface specification is a data structure that the MIDL compiler generates .

• Manager type UUID and manager EPV

The manager type UUID and the manager EPV determine which manager routine
executes when a server receives a remote procedure call request from a client. For
each implementation of an interface offered by a server, it must register a separate
manager EPV.

Note that when specifying a non-nil, manager type UUID, the server must also call
RpcObjectSetType to register objects of this non-nil type.

516 Volume 3 RPe and WNet

Specifying the RPC_IF _AUTOLISTEN flags marks the interface as an auto-listen
interface. The run time begins listening for calls as soon as the interface is registered,
and stops listening when the interface is unregistered. A call to RpcServerUnregisterlf
for this interface will wait for the completion of all pending calls on this interface. Calls to
RpcServerListen and RpcMgmtStopServerListening will not affect the interface, nor
will a call to RpcServerUnregisterlf with If Spec == NULL. This allows a DLL to register
RPC interfaces or remove them from the registry without changing the main application's
RPC state.

Specifying a security-callback function allows the server application to restrict access to
its interfaces on a per-client basis. Remember that, by default, security is optional; the
server run time will dispatch unsecured calls even if the server has called
RpcServerRegisterAuthlnfo. If the server wants to accept only authenticated clients,
each server stub must call RpcBindinglnqAuthClient to retrieve the security level, or
attempt to impersonate the client with RpclmpersonateClient.

When a server application specifies a security-callback function for its interface(s), the
RPC run time automatically rejects unauthenticated calls to that interface. In addition, the
run-time records the interfaces that each client has used. When a client makes an RPC
to an interface that it has not used during the current communication session, the RPC
run-time library will call the interface's security-callback function.

For the signature for the callback function, see RPC_'F_CALLBACK_FN.

The callback function should return RPC_S_OK if the client is allowed to call methods in
this interface. Any other return code will cause the client to receive the exception
RPC_S_ACCESS_DENIED.

In some cases, the RPC run time may call the security-callback function more than once
per client-per interface. Be sure your callback function can handle this possibility.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

Registering the Interface, RpcBindingFromStringBinding, RpcBindingSetObject,
RpcNsBindingExport, RpcNsBindinglmportBegin, RpcNsBindingLookupBegin,
RpcObjectSetType, RpcServerRegisterlf, RpcServerUnregisterlf

RpcServerTestCancel
The server calls RpcServerTestCancel to test for client cancel requests.

Parameters
BindingHandle

Chapter 25 RPC Function Reference 517

Specifies the thread on which to test for cancel commands.

Return Values
Value

RPC_S_OK

RPC_S_NO_CALL_ACTIVE

RPC_S_CALL_IN_PROGRESS

RPC_S_INVALlD_BINDING

Remarks

Meaning

The call was canceled.

There is no active call on the current thread.

The call was not canceled.

The handle is not valid.

The server calls RpcServerTestCancel to find out if the client has requested
cancellation of an outstanding call. The Binding Handle parameter specifies the call on
which to test. If the parameter has a value of zero, the call on the current thread is
tested. The server can call the
RpcServerTestCancel(RpcAsyncGetCaIiHandle(pAsync» function to test for cancel
message using the asynchronous handle to obtain the binding handle.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header:· Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

Asynchronous RPC, RPC_ASYNC_STATE, RpcAsyncAbortCall,
RpcAsyncCancelCall, RpcAsyncCompleteCall, RpcAsyncGetCaliHandle,
RpcAsyncGetCallStatus, RpcAsynclnitializeHandle, RpcAsyncRegisterlnfo

RpcServerUnregisterlf
The RpcServerUnregisterlf function removes an interface from the RPC run-time library
registry. This function is supported on all 32-bit Windows platforms, except Windows CE.

518 Volume 3 RPC and WNet

Parameters
If Spec

Specifies the interface to remove from the registry.

Specify a null value to remove all interfaces previously registered with the type UUID
value specified in the MgrTypeUuid argument.

MgrTypeUuid
Pointer to the type UUID of the manager entry-pOint vector (EPV) to remove from the
registry. The value of MgrTypeUuid should be the same value as was provided in a
call to the RpcServerRegisterlf function or the RpcServerRegisterlfEx function.

Specify a null value to remove the interface specified in the If Spec argument for all
previously registered type UUIDs from the registry.

Specify a nil UUID to remove the MIDL-generated default manager EPV from the
registry. In this case, all manager EPVs registered with a non-nil type UUID remain
registered.

WaitForCalls ToComplete
Specifies a flag that indicates whether to remove the interface from the registry
immediately or to wait until all current calls are complete.

Specify a value of zero to disregard calls in progress and remove the interface from
the registry immediately. Specify any nonzero value to wait until all active calls
complete.

Return Values
Value

RPC_S_OK

RPC_S_UNKNOWN_MGR_ TYPE

RPC_S_UNKNOWN_IF

Remarks

Meaning

Call successful.

Unknown manager type

Unknown interface

A server calls RpcServerUnregisterlf to remove the association between an interface
and a manager EPV. To specify the manager EPV to remove in the MgrTypeUuid
argument, provide the type UUID value that was specified in a call to
RpcServerRegisterlf. After it is removed from the registry, an interface is no longer
available to client applications.

Chapter 25 RPC Function Reference 519

When an interface is removed from the registry, the RPC run-time library stops accepting
new calls for that interface. Calls that are currently executing on the interface are allowed
to complete, including callbacks.

The following table summarizes the behavior of RpcserverUnregisterlf.

If Spec MgrTypeUuid Behavior

Non-null Non-null

Non-null NULL

NULL Non-null

NULL NULL

Removes from the registry the manager EPV associated
with the specified arguments.

Removes all manager EPVs associated with the If Spec
argument.

Removes all manager EPVs associated with the
MgrTypeUuid argument.

Removes all manager EPVs. This call has the effect of
preventing the server from receiving any new remote
procedure calls because all the manager EPVs for all
interfaces have been unregistered.

Note If the value of If Spec is NULL, this function will leave auto-listen interfaces
registered. Auto-listen interfaces must be removed from the registry individually. See
RpcServerRegisterlfEx for more details.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcserverRegisterlf, RpcserverRegisterlfEx

RpcServerUseAllProtseqs
The RpcserverUseAIiProtseqs function tells the RPC run-time library to use all
supported protocol sequences for receiving remote procedure calls. This function is
supported on all 32-bit Windows platforms, except Windows CE.

520 Volume 3 RPe and WNet

Parameters
MaxCal/s

Specifies the maximum number of concurrent remote procedure call requests the
server can accept.

The RPC run-time library guarantees that the server can accept at least this number
of concurrent call requests. The actual number can be greater and can vary for each
protocol sequence. Use RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the
default value.

SecurityDescriptor
Pointer to an optional parameter provided for the Windows NT and Windows 2000
security subsystem. Note that this parameter does not appear in the DCE
specification for this API.

Return Values
Value

RPC_S_OK

RPC_S_NO_PROTSEQS

RPC_S_OUT_OF_MEMORY

RPC_S_INVALlD_SECURITY _DESC

Remarks

Meaning

Call successful.

No supported protocol sequences.

Insufficient memory available.

Security descriptor invalid.

A server application calls RpcServerUseAIiProtseqs to register all supported protocol
sequences with the RPC run-time library. To receive remote procedure calls, a server
must register at least one protocol sequence with the RPC run-time library. For a list of
Microsoft RPC supported protocol sequences, see the reference topic String Binding.

For each protocol sequence registered by a server, the RPC run-time library creates one
or more binding handles through which the server receives remote procedure call
requests. The RPC run-time library creates different binding handles for each protocol
sequence. Each binding handle contains an endpoint dynamically generated by the RPC
run-time library or the operating system.

The MaxCal/s argument allows the server to specify the maximum number of concurrent
remote procedure call requests the server wants to be able to handle. See Server-Side
Binding for a description of the functions that a server will typically call after registering
protocol sequences. To selectively register protocol sequences, a server calls
RpcServerUseProtseq, RpcServerUseProtseqlf, or RpcServerUseProtseqEp.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

Chapter 25 RPC Function Reference 521

RpcBindingToStringBinding, RpcBindingVectorFree, RpcEpRegister,
RpcEpRegisterNoReplace, RpcNsBindingExport, RpcServerlnqBindings,
RpcServerListen, RpcServerRegisterlf, RpcServerUseAIi Protseqslf,
RpcServerUseProtseq, RpcServerUseProtseqEp, RpcServerUseProtseqlf

RpcServerUseAllProtseqsEx
The RpcServerUseAIiProtseqsEx function tells the RPC run-time library to use all
supported protocol sequences for receiving remote procedure calls.

Parameters
MaxCalls

Specifies the maximum number of concurrent remote procedure call requests the
server can accept.

The RPC run-time library guarantees that the server can accept at least this number
of concurrent call requests. The actual number can be greater and can vary for each
protocol sequence. Use RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the
default value.

SecurityDescriptor
Pointer to an optional parameter provided for the Windows NT and Windows 2000
security subsystem.

Policy
Pointer to the RPC_POLICY structure, which allows you to override the default
policies for dynamic port allocation and binding to Network Interface Cards (NICs) on
multihomed computers (computers with multiple network cards).

Return Values
Value

RPC_S_OK

RPC_S_NO_PROTSEQS

RPC_S_OUT_OF_MEMORY

RPC_S_INVALlD_SECURITY _DESC

Meaning

Call successful.

No supported protocol sequences.

Insufficient memory available.

Security descriptor is invalid.

522 Volume 3 RPC and WNet

Remarks
The parameters and effects of RpcServerUseAIiProtseqsEx subsume those of
RpcServerUseAIiProtseqs. The difference is the Policy parameter, which allows you to
restrict port allocation for dynamic ports and allows multi homed machines to selectively
bind to specified NICs.

Setting the NlCFlags field of the RPC_POLICY structure to zero makes this extended
API functionally equivalent to the original RpcServerUseAIiProtseqs, and the server will
bind to NICs based on the settings in the system registry. For information on how the
registry settings define the available Internet and intranet ports, see Configuring the
Windows NT and Windows 2000 Registry for Port Allocations and Selective Binding.

Note The flag settings in the Policy field are effective only when the ncacn_ip_tcp or
ncad9_ip_udp protocol sequence is in use. For all other protocol sequences, the RPC
run-time ignores these values.

A server application calls RpcServerUseAIiProtseqsEx to register all supported
protocol sequences with the RPC run-time library. To receive remote procedure calls, a
server must register at least one protocol sequence with the RPC run-time library.

For each protocol sequence registered by a server, the RPC run-time library creates one
or more binding handles through which the server receives remote procedure call
requests. The RPC run-time library creates different binding handles for each protocol
sequence. Each binding handle contains an endpoint dynamically generated by the RPC
run-time library or the operating system.

The MaxCalls argument allows the server to specify the maximum number of concurrent
remote procedure call requests the server wants to handle. To selectively register
protocol sequences, a server calls RpcServerUseProtseqEx,
RpcServerUseProtseqlfEx, or RpcServerUseProtseqEpEx. See Server-Side Binding
for a description of the routines that a server will typically call after registering protocol
sequences.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

Configuring the Windows NT and Windows 2000 Registry for Port Allocations and
Selective Binding, RpcServerUseAIiProtseqslfEx, RpcServerUseProtseqEx,
RpcServerUseProtseqEpEx, RpcServerUseProtseqlfEx

Chapter 25 RPC Function Reference 523

RpcServerUseAl1 Protseqslf
The RpcServerUseAIIProtseqslf function tells the RPC run-time library to use all
specified protocol sequences and endpoints in the interface specification for receiving
remote procedure calls. This function is supported on all 32-bit Windows platforms,
except Windows CEo

Parameters
MaxCal/s

Specifies the maximum number of concurrent remote procedure call requests the
server can accept.

The RPC run-time library guarantees that the server can accept at least this number
of concurrent call requests. The actual number can be greater and can vary for each
protocol sequence.

Use RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

If Spec
Specifies the interface containing the protocol sequences and corresponding endpoint
information to use in creating binding handles.

SecurityDescriptor
Pointer to an optional parameter provided for the Microsoft Windows NT and
Windows 2000 security subsystem. Note that this parameter does not appear in the
DCE specification for this API.

Return Values
Value

RPC_S_OK

RPC_S_NO_PROTSEQS

RPC_S_I NVALI D_ENDPOINT_FORMAT

RPC_S_OUT _OF _MEMORY

RPC_S_DUPLICATE_ENDPOINT

RPC_S_INVALlD_SECURITY _DESC

RPC_S_INVALID _RPC_PROTSEQ

Meaning

Call successful.

No supported protocol sequences.

Invalid endpoint format.

Out of memory.

Endpoint is duplicate.

Security descriptor invalid.

RPC protocol sequence invalid.

524 Volume 3 RPC and WNet

Remarks
A server application calls RpcServerUseAIIProtseqslf to register with the RPC run-time
library all protocol sequences and associated endpoint address information provided in
the IDL file. For a list of RPC-supported protocol sequences, see String Binding.

To receive remote procedure call requests, a server must register at least one protocol
sequence with the RPC run-time library. For each protocol sequence registered by a
server, the RPC run-time library creates one or more binding handles through which the
server receives remote procedure call requests. The RPC run-time library creates
different binding handles for each protocol sequence.

The MaxCalls argument allows the server to specify the maximum number of concurrent
remote p~ocedure call requests the server wants to handle. See Server-Side Binding for
a description of the functions that a server will typically call after registering protocol
sequences. To register selected protocol sequences specified in the IDL file, a server
calls RpcServerUseProtseqlf.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace,
RpcNsBindingExport, RpcServerlnqBindings, RpcServerListen,
RpcServerRegisterlfEx, RpcServerRegisterlf, RpcServerUseAIIProtseqs,
RpcServerUseProtseq, RpcServerUseProtseqEp, RpcServerUseProtseqlf

RpcServerUseAl1 ProtseqslfEx
The RpcServerUseAIIProtseqslfEx function tells the RPC run-time library to use all the
specified protocol sequences and endpoints in the interface specification for receiving
remote procedure calls.

Parameters
MaxCalls

Chapter 25 RPC Function Reference 525

Specifies the maximum number of concurrent remote procedure call requests the
server can accept. The RPC run-time library guarantees that the server can accept at
least this number of concurrent call requests. The actual number can be greater and
can vary for each protocol sequence .

. Use RPC_C_PROTSEQ_MAX_REQS_DEFAUL T to specify the default value.

If Spec
Specifies the interface containing the protocol sequences and corresponding endpoint
information to use in creating binding handles.

SecurityDescriptor
Pointer to an optional parameter provided for the Windows NT and Windows 2000
security subsystem.

Policy
Pointer to the RPC_POLICY structure, which contains flags to restrict port allocation
for dynamic ports and allow multi homed computers to selectively bind to network
interface cards.

Return Values
Value

RPC_S_OK

RPC_S_NO_PROTSEQS

RPC_S_INVALlD_ENDPOINT_FORMAT

RPC_S_OUT _OF_MEMORY

RPC_S_DUPLICATE_ENDPOINT

RPC_S_INVALlD_SECURITY _DESC

RPC_S_INVALlD_RPC_PROTSEQ

Remarks

Meaning

Call successful.

No supported protocol sequences.

Invalid endpoint format.

Out of memory.

Endpoint is a duplicate.

Security descriptor is invalid.

RPC protocol sequence is invalid.

The parameters and effects of RpcServerUseAIiProtseqslfEx subsume those of
RpcServerUseAIiProtseqslf. The difference is the Policyfield, which allows you to
restrict port allocation for dynamic ports and allows multi homed machines to selectively
bind to network interface cards.

Setting the NICFlags field of the RPC_POLICY structure to zero makes this extended
function functionally equivalent to the original RpcServerUseAIiProtseqslf, and the
server will bind to NICs based on the settings in the system registry. For information on
how the registry settings define the available Internet and intranet ports, see Configuring
the Windows NTlWindows 2000 Registry for Port Allocations and Selective Binding.

526 Volume 3 RPe and WNet

Note The flag settings in the Policy field are effective only when the ncacn_ip_tcp or
ncad9_ip_udp protocol sequence is in use. For all other protocol sequences, the RPC
run time ignores.these values.

A server application calls RpcServerUseAIiProtseqslfEx to register with the RPC run
time library all protocol sequences and associated endpoint address information
provided in the IDL file.

To receive remote procedure call requests, a server must register at least one protocol
sequence with the RPC run-time library. For each protocol sequence registered by a
server, the RPC run-time library creates one or more binding handles through which the
server receives remote procedure call requests. The RPC run-time library creates
different binding handles for each protocol sequence.

The MaxCal/s argument allows the server to specify the maximum number of concurrent
remote procedure call requests the server wants to handle. To register selected protocol
sequences specified in the IDL file, a server calls RpcServerUseProtseqlfEx. See
Server-Side Binding for a description of the routines that a server will typically call after
registering protocol sequences.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

Configuring the Windows NT and Windows 2000 Registry for Port Allocations and
Selective Binding, RpcServerUseAIiProtseqsEx, RpcServerUseProtseqEx,
RpcServerUseProtseqEpEx, RpcServerUseProtseqlfEx

RpcServeruseProtseq
The RpcServerUseProtseq function tells the RPC run-time library to use the specified
protocol sequence for receiving remote procedure calls. This function is supported on all
32-bit Windows platforms, except Windows CEo

Parameters
ProtSeq

Chapter 25 RPC Function Reference 527

Pointer to a string identifier of the protocol sequence to register with the RPC run-time
library.

MaxCal/s
Specifies the maximum number of concurrent remote procedure call requests the
server wants to handle.

The RPC run-time library guarantees that the server can accept at least this number
of concurrent call requests. The actual number can be greater, depending on the
selected protocol sequence.

Use RPC_C_PROTSEQ_MAX_REQS_DEFAUL T to specify the default value.

SecurityDescriptor
Pointer to an optional parameter provided for the Windows NT and Windows 2000
security subsystem. Note that this parameter does not appear in the DCE
specification for this API.

Return Values
Value Meaning

RPC_S_OK Call successful.

RPC_S_PROTSEQ_NOT _SUPPORTED Protocol sequence not supported on this
host.

RPC_S_INVALlD""RPC_PROTSEQ Invalid protocol sequence.

RPC_S_OUT _OF _MEMORY Out of memory.

RPC_S_I NVALI D_SECURITY _DESC Security descriptor invalid.

Remarks
A server application calls RpcServerUseProtseq to register one protocol sequence with
the APC run-time library. To receive remote procedure call requests, a server must
register at least one protocol sequence with the RPC run-time library. A server
application can call RpcServerUseProtseq multiple times to register additional protocol
sequences. For more information, see String Binding and Server-Side Binding.

For each protocol sequence registered by a server, the RPC run-time library creates one
or more binding handles through which the server receives remote procedure call
requests. The RPC run-time library creates different binding handles for each protocol
sequence. Each binding handle contains an endpoint dynamically generated by the RPC
run-time library. .

The MaxCa/ls argument allows the server to specify the maximum number of concurrent
remote procedure call requests the server wants to handle. See Server-Side Binding for
a description of the functions that a server will typically call after registering protocol
sequences. To register all protocol sequences, a server calls
RpcServerUseAIIProtseqs.

528 Volume 3 RPC and WNet

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace,
RpcNetworklsProtseqValid, RpcNsBindingExport, RpcServerlnqBindings,
RpcServerListen, RpcServerRegisterlfEx, RpcServerRegisterlf,
RpcServerUseAIIProtseqs, RpcServerUseAIIProtseqslf, RpcServerUseProtseqEp,
RpcServerUseProtseqlf

RpcSe~verUseProtseqEx
The RpcServerUseProtseqEx function tells the RPC run-time library to use the
specified protocol sequence for receiving remote procedure calls.

Parameters
ProtSeq

Pointer to a string identifier of the protocol sequence to register with the RPC run-time
library.

MaxCalls
Specifies the maximum number of concurrent remote procedure call requests the
server wants to handle. The RPC run-time library guarantees that the server can
accept at least this number of concurrent call requests. The actual number can be
greater, depending on the selected protocol sequence.

Use RPC_C_PROTSEQ_MAX_REQS_DEFAUL T to specify the default value.

SecurityDescriptor
Pointer to an optional parameter provided for the Windows NT and Windows 2000.
security subsystem.

Chapter 25 RPC Function Reference 529

Policy
Pointer to the RPC_POLICY structure, which contains flags to restrict port allocation
for dynamic ports and allow multi homed computers to selectively bind to network
interface cards.

Return Values
Value

RPC_S_OK

RPC_S_PROTSEQ_NOT_SUPPORTED

RPC_S_INVALlD_RPC_PROTSEQ

RPC_S_OUT _OF_MEMORY

RPC_S_INVALlD_SECURITY _DESC

Remarks

Meaning

Call successful.

Protocol sequence is not supported on
this host.

Invalid protocol sequence.

Out of memory.

Security descriptor is invalid.

The parameters and effects of RpcServerUseProtseqEx subsume those of
RpcServerUseProtseq. The difference is the Policy field, which allows you to restrict
port allocation for dynamic ports and allows multihomed machines to selectively bind to
network interface cards.

Setting the NICFlags field of the RPC_POLICY structure to zero makes this extended
function functionally equivalent to the original RpcServerUseProtseq, and the server
will bind to NICs based on the settings in the system registry. For information, see
Configuring the Windows NT and Windows 2000 Registry for Port Allocations and
Selective Binding.

Note The flag settings in the Policy field are effective only when the ncacn_ip_tcp or
ncadg_ip_udp protocol sequence is in use. For all other protocol sequences, the RPC
run time ignores these values.

A server application calls RpcServerUseProtseqExto register one protocol sequence
with the RPC run-time library. To receive remote procedure call requests, a server must
register at least one protocol sequence with the RPC run-time library. A server
application can call RpcServerUseProtseqEx multiple times to register additional
protocol sequences.

For each protocol sequence registered by a server, the RPC run-time library creates one
or more binding handles through which the server receives remote procedure call
requests. The RPC run-time library creates different binding handles for each protocol
sequence. Each binding handle contains an endpoint dynamically generated by the RPC
run-time library.

530 Volume 3 RPC and WNet

The MaxCalls argument allows the server to specify the maximum number of concurrent
remote procedure call requests the server wants to handle. To register all protocol
sequences, a server calls RpcServerUseAIiProtseqsEx routine.

See Server-Side Binding.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Configuring the Windows NT and Windows 2000 Registry for Port Allocations and
Selective Binding, RpcServerUseAIiProtseqsEx, RpcServerUseAIiProtseqslfEx,
RpcServerUseProtseqEpEx, RpcServerUseProtseqlfEx

RpcServeruseProtseqEp
The RpcServerUseProtseqEp function tells the RPC run-time library to use the
specified protocol sequence combined with the specified endpoint for receiving remote
procedure calls. This function is supported on all 32-bit Windows platforms, except
Windows CEo

Parameters
Protseq

Pointer to a string identifier of the protocol sequence to register with the RPC run-time
library.

MaxCalls
Specifies the maximum number of concurrent remote procedure call requests the
server wants to handle. The RPC run-time library guarantees that the server can
accept at least this number of concurrent call requests. The actual number can be
greater, depending on the selected protocol sequence.

Use RPC_C_PROTSEQ_MAX_REQS_DEFAUL T to specify the default value.

Chapter 25 RPC Function Reference 531

Endpoint
Pointer to the endpoint-address information to use in creating a binding for the
protocol sequence specified in the Protseq argument.

SecurityDescriptor
Pointer to an optional parameter provided for the Windows NT and Windows 2000
security subsystem. Note that this parameter does not appear in the DCE
specification for this API.

Return Values
Value

RPC_S_dK

RPC_S_PROTSEQ_NOT_SUPPORTED

RPC_S_INVALlD_RPC_PROTSEQ

RPC_S_INVALlD_ENDPOINT _FORMAT

RPC_S_OUT _OF_MEMORY

RPC_S_DUPLICATE_ENDPOINT

RPC_S_INVALlD_SECURITY _DESC

Remarks

Meaning

Call successful.

Protocol sequence not supported on
this host.

Invalid protocol sequence.

Invalid endpoint format.

Out of memory.

Endpoint is duplicate.

Security descriptor invalid.

A server application calls RpcServerUseProtseqEp to register one protocol sequence
with the RPC run-time library. With each protocol sequence registration,
RpcServerUseProtseqEp includes the specified endpoint-address information.

To receiveremote procedure call requests, a server must register at least one protocol
sequence with the RPC run-time library. A server application can call this routine multiple
times to register additional protocol sequences and endpoints. For each protocol
sequence registered by a server, the RPC run-time library creates one or more binding
handles through which the server receives remote procedure call requests.

The MaxCa/ls argument allows the server to specify the maximum number of concurrent
remote procedure call requests the server needs to be able to handle. See Server-Side
Binding and String Binding.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

532 Volume 3 RPC and WNet

RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace,
RpcNsBindingExport, RpcServerlnqBindings, RpcServerListen,
RpcServerRegisterlf, RpcServerUseAIIProtseqs, RpcServerUseAIIProtseqslf,
RpcServerUseProtseq, RpcServerUseProtseqlf

RpcServerUseProtseq EpEx
The RpcServerUseProtseqEpEx function tells the RPC run-time library to use the
specified protocol sequence combined with the specified endpoint for receiving remote
procedure calls.

Parameters
Protseq

Pointer to a string identifier of the protocol sequence to register with the RPC run-time
library.

MaxCalls
The maximum number of concurrent remote procedure call requests the server can
handle.

The RPC run-time library guarantees that the server can accept at least this number
of concurrent call requests. The actual number can be greater, depending on the
selected protocol sequence. Use RPC_C_PROTSEQ_MAX_REQS_DEFAUL T to
specify the default value.

Endpoint
Pointer to the endpoint-address information to use in creating a binding for the
protocol sequence specified by Protseq.

SecurityDescriptor
Pointer to an optional parameter provided for the Microsoft Windows NT and
Windows 2000 security subsystem.

Policy
Pointer to the RPC_POLICY structure, which contains flags that set transport-specific
attributes. In the case of the ncadg_mq transport, these flags specify the properties
of the server process-receive queue. In the case of the ncacn_ip_tcp or
ncadg_ip_udp transports, these flags restrict port allocation for dynamic ports and
allow multihomed computers to selectively bind to network interface cards.

Chapter 25 RPC Function Reference 533

The flag settings in the Policy field are effective only when the ncacn_ip_tcp,
ncadg_ip_udp, or ncadg_mq protocol sequences are in use. For all other protocol
sequences, the RPC run time ignores these values.

Return Values
Value

RPC_S_OK

RPC_S_PROTSEQ_NOT_SUPPORTED

RPC_S_INVALlD_RPC_PROTSEQ

RPC_S_INVALlD_ENDPOINT _FORMAT

RPC_S_OUT_OF_MEMORY

RPC_S_DUPLICATE_ENDPOI NT

RPC_S_INVALlD_SECURITY _DESC

Remarks

Meaning

Call successful.

Protocol sequence is not supported on
this host.

Invalid protocol sequence.

Invalid endpoint format.

Out of memory.

Endpoint is a duplicate.

Security descriptor is invalid.

The parameters and effects of RpcServerUseProtseqEpEx subsume those of
RpcServerUseProtseqEp. The difference is the Policy argument, which allows you to
set specific policies at the endpoints. Setting the NlCFlags field of the RPC_POLICY
structure to zero makes this extended function equivalent to the original
RpcServerUseProtseqEp when used with the ncacn_ip_tcp or ncadg_ip_udp
transports.

A server application calls RpcServerUseProtseqEpEx to register one protocol
sequence with the RPC run-time library. With each protocol sequence registration,
RpcServerUseProtseqEpEx includes the specified endpoint-address information.

To receive remote procedure call requests, a server must register at least one protocol
sequence with the RPC run-time library. A server application can call this routine many
times to register additional protocol sequences and endpoints. For each protocol
sequence registered by a server, the RPC run-time library creates one or more binding
handles through which the server receives remote procedure call requests.

The MaxCalls argument allows the server to specify the maximum number of concurrent
remote procedure call requests the server can handle. See Server-Side Binding, String
Binding, Configuring the Windows NT and Windows 2000 Registry for Port Allocations
and Selective Binding, and RPC Message Queuing and the MIDL reference pages
message and ncadg_mq.

534 Volume 3 RPC and WNet

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RPC_POLlCY, RpcServerUseAIIProtseqsEx, RpcServerUseAIIProtseqslfEx,
RpcServerUseProtseqEx, RpcServerUseProtseqlfEx

RpcServerUseProtseqlf
The RpcServerUseProtseqlf function tells the RPC run-time library to use the specified
protocol sequence combined with the endpoints in the interface specification for
receiving remote procedure calls. This function is supported on all 32-bit Windows
platforms, except Windows CEo

Parameters
Protseq

Pointer to a string identifier of the protocol sequence to register with the RPC run-time
library.

MaxCalls
Specifies the maximum number of concurrent remote procedure call requests the
server needs to be able to handle.

The RPC run-time library guarantees that the server can accept at least this number
of concurrent call requests. The actual number can be greater, depending on the
selected protocol sequence.

Use RPC_C_PROTSEO_MAX_REOS_DEFAUL T to specify the default value.

If Spec
Specifies the interface containing endpoint information to use in creating a binding for
the protocol sequence specified in the Protseq argument.

SecurityDescriptor
Pointer to an optional parameter provided for the Microsoft Windows NT and
Windows 2000 security subsystem.

Return Values
Value

RPC_S_OK

RPC_S_PROTSEQ_NOT_FOUND

RPC_S_INVALlD_RPC_PROTSEQ

RPC_S_INVALlD_ENDPOINT_FORMAT

RPC_S_OUT _OF_MEMORY

RPC_S_INVALlD_SECURITY _DESC

Remarks

Chapter 25 RPC Function Reference 535

Meaning

Call successful.

The endpoint for this protocol sequence
not specified in the IDL file.

Protocol sequence not supported on
this host.

Invalid protocol sequence.

Invalid endpoint format.

Out of memory.

Security descriptor invalid.

A server application calls RpcServerUseProtseqlf to register one protocol sequence
with the RPC run-time library. With each protocol-sequence registration, the routine
includes the endpoint-address information provided in the IDL file.

To receive remote procedure call requests, a server must register at least one protocol
sequence with the RPC run-time library. A server application can call this function
multiple times to register additional protocol sequences.

For each protocol sequence registered by a server, the RPC run-time library creates one
or more binding handles through which the server receives remote procedure call
requests.

The MaxCal/s argument allows the server to specify the maximum number of concurrent
remote procedure call requests the server needs to be able to handle. See Server-Side
Binding for a description of the routines that a server will typically call after registering
protocol sequences. For a list of Microsoft RPC supported protocol sequences, see
String Binding. To register all protocol sequences from the IDL file, a server calls
RpcServerUseAl1 Protseqslf.

Note The Microsoft RPC implementation of RpcServerUseProtseqlf includes a new,
additional parameter, SecurityDescriptor, that does not appear in the DCE specification.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

536 Volume 3 RPe and WNet

RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace,
RpcNsBindingExport, RpcServerlnqBindings, RpcServerListen,
RpcServerRegisterlf, RpcServerUseAl1 Protseqs, RpcServerUseAIIProtseqslf,
RpcServerUseProtseq, RpcServerUseProtseqEp

RpcServerUseProtseqlfEx
The RpcServerUseProtseqlfEx function tells the RPC run-time library to use the
specified protocol sequence combined with the endpoints in the interface specification
for receiving remote procedure calls.

Parameters
Protseq

Pointer to a string identifier of the protocol sequence to register with the RPC run-time
library.

MaxCalls
Specifies the maximum number of concurrent remote procedure call requests the
server wants to handle.

The RPC run-time library guarantees that the server can accept at least this number
of concurrent call requests. The actual number can be greater, depending on the
selected protocol sequence.

Use RPC_C_PROTSEQ_MAX_REQS_DEFAUL T to specify the default value.

If Spec
Specifies the interface containing endpoint information to use in creating a binding for
the protocol sequence specified in the Protseq argument.

SecurityDescriptor
Pointer to an optional parameter provided for the Microsoft Windows NT and
Windows 2000 security subsystem.

Policy
Pointer to the RPC_POLICY structure, which contains flags to restrict port allocation
for dynamic ports and that allow multihomed computers to selectively bind to network
interface cards.

Return Values
Value

RPC_S_OK

RPC_S_PROTSEQ_NOT_FOUND

RPC_S_INVALlD_RPC_PROTSEQ

RPC_S_INVALlD_ENDPOINT _FORMAT

RPC_S_OUT_OF_MEMORY

RPC_S_INVALlD_SECURITY _DESC

Remarks

Chapter 25 RPC Function Reference 537

Meaning

Call successful.

The endpoint for this protocol sequence
is not specified in the IDL file.

Protocol sequence is not supported on
this host.

Invalid protocol sequence.

Invalid endpoint format.

Out of memory.

Security descriptor is invalid.

The parameters and effects of RpcServerUseProtseqlfEx extend those of
RpcServerUseProtseqlf. The difference is the Policy parameter, which allows you to
restrict port allocation for dynamic ports and allows multi homed computers to selectively
bind to network interface cards.

Setting the NlCFlags field of the RPC_POLICY structure to 0 makes this extended API
functionally equivalent to the original RpcServerUseProtseqlf, and the server will bind
to NICs based on the settings in the system registry. For information on how the registry
settings define the available Internet and intranet ports, see Configuring the Windows NT
and Windows 2000 Registry for Port Allocations and Selective Binding.

Note The flag settings in the Policy field are effective only when the ncacn_ip_tcp or
ncadg_ip_udp protocol sequence is in use; for all other protocol sequences, the RPC
run time ignores these values.

A server application calls RpcServerUseProtseqlfEx to register one protocol sequence
with the RPC run-time library. With each protocol-sequence registration, the routine
includes the endpoint-address information provided in the IDL file.

To receive remote procedure call requests, a server must register at least one protocol
sequence with the RPC run-time library. A server application can call this routine multiple
times to register additional protocol sequences.

For each protocol sequence registered by a server, the RPC run-time library creates one
or more binding handles through which the server receives remote procedure call
requests.

The MaxCalls argument allows the server to specify the maximum number of concurrent
remote procedure call requests the server needs to handle. To register all protocol
sequences from the IDL file, a server calls RpcServerUseAIiProtseqslfEx.

538 Volume 3 RPe and WNet

See Server-Side Binding for a description of the routines that a server will typically' call
after registering protocol sequences. For a list of Microsoft RPC supported protocol
sequences, see String Binding.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Configuring the Windows NT and Windows 2000 Registry for Port Allocations and
Selective Binding, RpcServerUseAIiProtseqsEx, RpcServerUseAIiProtseqslfEx,
RpcServerUseProtseqEx, RpcServerUseProtseqEpEx

RpcSmAliocate
The RpcSmAliocate function allocates memory within the RPC stub memory
management function and returns a pointer to the allocated memory or NULL.

Parameters
Size

Specifies the size of memory to allocate (in bytes).

pStatus
Specifies a pOinter to the returned status.

Return Values
Value

RPC_S_OK

RPC_S_OUT _OF_MEMORY

Remarks

Meaning

Call successful.

Out of Memory.

The RpcSmAliocate routine allows an application to allocate memory within the RPC
stub memory-management environment. Prior to calling RpcSmAliocate, the memory
management environment must already be established. For memory management

Chapter 25 RPC Function Reference 539

called within the stub, the server stub itself may establish the necessary environment.
See RpcSmEnableAllocate for more information. When using RpcSmAliocate to
allocate memory not called from the stub, the application must call
RpcSmEnableAliocate to establish the required memory-management environment.

The RpcSmAliocate routine returns a pOinter to the allocated memory if the call is
successful. Otherwise, a NULL is returned.

When the stub establishes the memory management, it frees any memory allocated by
RpcSmAliocate. The application can free such memory before returning to the calling
stub by calling RpcSmFree.

By contrast, when the application establishes the memory management, it must free any
memory allocated. It does so by calling either RpcSmFree or RpcSmDisableAliocate.

To manage the same memory within the stub memory-management environment,
multiple threads can call RpcSmAliocate and RpcSmFree. In this case, the threads
must share the same stub memory management thread handle. Applications pass
thread handles from thread to thread by calling RpcSmGetThreadHandle and
RpcSmSetThreadHandle.

See Memory Management or a complete discussion of the various memory
management conditions supported by HPC.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

RpcSmEnableAliocate, RpcSmDisableAliocate, RpcSmFree,
RpcSmGetThreadHandle, RpcSmSetThreadHandle

RpcSmClientFree
The RpcSmClientFree function frees memory returned from a client stub.

Parameters
Node ToFree

Specifies a pOinter to memory returned from a client stub.

540 Volume 3 RPe and WNet

Return Values
Value

Remarks

Meaning

Call successful.

The RpcSmClientFree function releases memory allocated and returned from a client
stub. The memory management handle of the thread calling this function must match the
handle of the thread that made the RPC call. Use RpcSmGetThreadHandle and
RpcSmSetThreadHandle to pass handles from thread to thread.

Note that using RpcSmClientFree allows a function to free dynamically-allocated
memory returned by an RPC call without knowing the memory-management
environment from which it was called.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

RpcSmFree, RpcSmGetThreadHandle, RpcSmSetClientAllocFree,
RpcSmSetThreadHandle, RpcSmSwapClientAllocFree

RpcSmDestroyClientContext
The RpcSmDestroyClientContext function reclaims the client memory resources for a
context handle and makes the context handle NULL.

Parameters
ContextHandle

Specifies the context handle that can no longer be used.

Return Values
Value

RPC_S_OK

RPC_X_SS_CONTEXT_MISMATCH

Meaning

Call successful.

Invalid handle.

Chapter 25 RPC Function Reference 541

Remarks
Client applications use RpcSmDestroyClientContext to reclaim resources from an
inactive context handle. Applications can call RpcSmDestroyClientContext after a
communications error makes the context handle unusable.

Note that when this function reclaims the memory resources, it also makes the context
handle NULL.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

RpcSmFree, RpcSmGetThreadHandle, RpcSmSetClientAllocFree,
RpcSmSetThreadHandle, RpcSmSwapClientAllocFree

RpcSmDisableAliocate
The RpcSmDisableAliocate function frees resources and memory within the stub
memory-management environment.

Return Values
Value

RPC_S_OK

Remarks

Meaning

Call successful.

The RpcSmDisableAliocate function frees all the resources used by a call to
RpcSmEnableAliocate. It also releases memory allocated by a call to RpcSmAliocate
after the call to RpcSmEnableAliocate and marked for deletion by the RpcSmFree
function.

Note that RpcSmEnableAliocate and RpcSmDisableAliocate must be used together
as matching pairs.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

542 Volume 3 RPC and WNet

RpcSmAliocate, RpcSmEnableAliocate

RpcSmEnableAllocate
The RpcSmEnableAliocate function establishes the stub memory-management
environment.

Return Values
Value

RPC_S~OK

RPC_S_OUT _OF_MEMORY

Remarks

Meaning

Call successful.

Out of memory.

In cases where the stub memory management is not enabled by the server stub itself,
applications call RpcSmEnableAliocate to establish the stub memory-management
environment. This environment must be established prior to making a call to
RpcSmAliocate. In OSF-compatibility (/osf) mode, for server manager code called from
the stub, the memory-management environment may be established by the server stub
itself by using pointer manipulation or the enable_allocate attribute. In default
(Microsoft-extended) mode, the environment is established only upon request by using
the enable_allocate attribute. Otherwise, call RpcSmEriableAliocate before calling
RpcSmAliocate. See Memory Management, for a complete discussion of the memory
management conditions used by RPC.

RpcSmGetThreadHandle and RpcSmSetThreadHandle

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

RpcSmAliocate, RpcSmDisableAliocate

Chapter 25 RPC Function Reference 543

RpcSmFree
The RpcSmFreefunction releases memory allocated by RpcSmAliocate.

Parameters
Node ToFree

Specifies a pOinter to memory allocated by RpcSmAliocate or RpcSsAliocate.

Return Values
The function RpcSmFree returns the following value.

Value Meaning

Call successful.

Remarks
Applications use RpcSmFree to free memory allocated by RpcSmAliocate. In cases
where the stub allocates the memory for the application, RpcSmFree can also be used
to release memory. See Memory Management for a complete discussion of memory
management conditions supported by RPC.

To improve performance, the RpcSmFree function only marks memory for release.
Memory is not actually released until your application calls the RpcSmDisableAliocate
function. To release memory immediately, invoke the midLuser_free function.

Note that the handle of the thread calling RpcSmFree must match the handle of the
thread that allocated thememory by calling RpcSmAliocate .. Use
RpcSmGetThreadHandle and RpcSmSetThreadHandle to pass handles from thread
to thread.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

RpcSmAliocate, RpcSmGetThreadHandle, RpcSmSetThreadHandle,
midl_usecallocate

544 Volume 3 RPe and WNet

RpcSmGetThreadHandle
The RpcSmGetThreadHandle function returns a thread handle, or NULL, for the stub
memory-management environment.

Parameters
pStatus

Specifies a pointer to the returned status.

Return Values
Value

Remarks

Meaning

Call successful.

Applications call RpcSmGetThreadHandle to obtain a thread handle for the stub
memory-management environment. A thread used to manage memory for the stub
memory-management environment uses RpcSmGetThreadHandle to receive a handle
for its memory environment. In this way, another thread that calls
RpcSmSetThreadHandle by using this handle can then use the same memory
management environment.

The same memory management thread handle must be used by multiple threads calling
RpcSmAliocate and RpcSmFree in order to manage the same memory. Before
spawning new threads to manage the same memory, the thread that established the
memory-management environment (parent thread) calls RpcSmGetThreadHandle to
obtain a thread handle for this environment. Then, the spawned threads call
RpcSmSetThreadHandle with the new manager handle provided by the parent thread.

Typically a server manager procedure calls RpcSmGetThreadHandle before additional
threads are spawned. The stub sets up the memory-management environment for the
manager procedure, and the manager calls RpcSmGetThreadHandle to make this
environment available to the other threads.

A thread can also call RpcSmGetThreadHandle and RpcSmSetThreadHandle to save
and restore its memory-management environment.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

Chapter 25 RPC Function Reference 545

RpcSmAliocate, RpcSmFree, RpcSmSetThreadHandle

RpcSmSetClientAllocFree
The RpcSmSetClientAllocFree function enables the memory allocation and release
mechanisms used by the client stubs.

Parameters
pfnAllocate

The function used to allocate memory.

pfnFree
The function used to release memory and used with the function specified by
pfnAllocate.

Return Values
Value

RPC_S_OK

RPC_S_OUT _OF _MEMORY

Remarks

Meaning

Call successful.

Out of memory.

By overriding the default routines used by the client stub to manage memory,
RpcSmSetClientAllocFree establishes the memory allocation and memory-freeing
mechanisms. Note that the default routines are free and malloc, unless the remote call
occurs within manager code. In this case, the default memory-management functions
are RpcSmFree and RpcSmAliocate.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

RpcSmAliocate, RpcSmFree

546 Volume 3 RPC and WNet

RpcSmSetThreadHandle
The RpcSmSetThreadHandle function sets a thread handle for the stub memory
management environment.

Parameters
Handle

Specifies a thread handle returned by a call to RpcSmGetThreadHandle.

Return Values
Value

Remarks

Meaning

Call successful.

An application calls RpcSmSetThreadHandle to set a thread handle for the stub
memory-management environment. A thread used to manage memory for the stub
memory-management environment calls RpcSmGetThreadHandle to obtain a handle
for its memory environment. In this way, another thread that calls
RpcSmSetThreadHandle by using this handle can then use the same memory
management environment.

The same memory management-thread handle must be used by multiple threads calling
RpcSmAliocate and RpcSmFree to manage the same memory. Before spawning new
threads to manage the same memory, the thread that established the memory
management environment (parent thread) calls RpcSmGetThreadHandle to obtain a
thread handle for this environment. Then, the spawned threads call
RpcSmSetThreadHandle with the new manager handle provided by the parent thread.

Note that RpcSmSetThreadHandle is usually called by a thread spawned by a server
manager procedure. The stub sets up the memory-management environment for the
manager procedure, and the manager calls RpcSmGetThreadHandle to obtain a thread
handle. Then, each spawned thread calls RpcSmGetThreadHandle to get access to the
manager's memory-management environment.

A thread can also call RpcSmGetThreadHandle and RpcSmSetThreadHandle to save
and restore its memory-management environment.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

Chapter 25 RPC Function Reference 547

RpcSmAliocate, RpcSmGetThreadHandle, RpcSmFree

RpcSmSwapClientAllocFree
The RpcSmSwapClientAllocFree function exchanges the client stub's memory
allocation and memory-freeing mechanisms with those supplied by the client.

Parameters
pfnAl/ocate

Specifies a new memory-allocation function.

pfnFree
Specifies a new memory-releasing function.

pfnOldAl/ocate
Returns the previous memory-allocation function before the call to this function.

pfnOldFree
Returns the previous memory-releasing function before the call to this function.

Return Values
Value

RPC_S_OK

RPC_S_I NVALI D_ARG

Meaning

Call successful.

Invalid argument(s).

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpchdr.h.
Library: Use Rpcrt4.lib.

RpcSmAliocate, RpcSmFree, RpcSmSetClientAllocFree

548 Volume 3 RPC and WNet

RpcSsAliocate
The RpcSsAliocate function allocates memory within the RPC stub memory
management function, and returns a pOinter to the allocated memory or NULL.

Parameters
Size

Specifies the size of memory to allocate (in bytes).

Return Values
Value

Remarks

Meaning

Out of memory.

The RpcSsAliocate function allows an application to allocate memory within the RPC
stub memory-management function. Prior to calling RpcSsAliocate, the memory
management environment must already be established. For memory management called
within the stub, the stub itself usually establishes the necessary environment. See
Memory Management for a complete discussion of the various memory management
models supported by RPC. When using RpcSsAliocate to allocate memorY not called
from the stub, the application must call RpcSsEnableAliocate to establish the required
memory-management environment.

The RpcSsAliocate routine returns a pointer to the allocated memory, if the call was
successful. Otherwise, it raises an exception.

When the stub establishes the memory management, it frees any memory allocated by
RpcSsAliocate. The application can free such memory before returning to the calling
stub by calling RpcSsFree.

By contrast, when the application establishes the memory management, it must free any
allocated memory. It does so by calling either RpcSsFree or RpcSsDisableAliocate.

To manage the same memory within the stub memory-management environment,
multiple threads can call RpcSsAliocate and RpcSsFree. In this case, the threads must
share the same stub memory management-thread handle. Applications pass thread
handles from thread-to-thread by calling RpcSsGetThreadHandle and
RPCSsSetThreadHandle.

Note The RpcSsAliocate routine raises exceptions, unlike RpcSmAliocate, which
returns the error code.

Chapter 25 RPC Function Reference 549

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

RpcSmAliocate, RpcSsDisableAliocate, RpcSsEnableAliocate, RpcSsFree,
RpcSsGetThreadHandle, RpcSsSetThreadHandle

RpcSsDestroyClientContext
The RpcSsDestroyClientContext function destroys, without contacting the server, a
context handle no longer needed by the client.

Parameters
ContextHandle

Specifies the context handle to be destroyed. The handle is set to NULL before
RpcSsDestroyClientContext returns.

Return Values
Value

RPC_S_OK

RPC_X_SS_CONTEXT _MISMATCH

Remarks

Meaning

Call successful.

. Invalid context handle.

RpcSsDestroyClientContext is used by the client application to reclaim the memory
resources used to maintain a context handle on the client. This function is used when
ContextHandle is no longer valid, such as when a communication failure has occurred
and the server is no longer available. The context handle is set to NULL.

Do not use RpcSsDestroyClientContext to replace a server function that closes the
context handle.

550 Volume 3 RPe and WNet

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

RpcBindingReset

RpcSsDisableAliocate
The RpcSsDisableAliocate function frees resources and memory within the stub
memory-management environment.

Remarks
RpcSsDisableAliocate frees all the resources used by a call to RpcSsEnableAliocate.
It also releases memory that was allocated by a call to RpcSsAliocate after the call to
RpcSsEnableAllocate.

RpcSsEnableAliocate and RpcSsDisableAliocate must be used together as matching
pairs.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

RpcSmDisableAliocate, RpcSsAliocate, RpcSsEnableAliocate

RpcSsDontSerializeContext
The RpcSsDontSerializeContext function disables run-time serialization of multiple
calls dispatched to server-manager routines on the same context handle.

Chapter 25 RPC Function Reference 551

Remarks
The RpcSsDontSerializeContext function prevents the run time from performing this
serialization service, allowing multiple calls to be dispatched on a given context handle.
Calling this function does not disable serialization entirely-when a context run down
occurs, your context run-down routine will not run until all outstanding client requests
have completed. Changes to the context handle state, including freeing the context
handle typically,must continue to be serialized.

It is recommended that, if your distributed application invokes the
RpcSsDontSerializeContext function, the call should be made before the server
program begins handling remote procedure calls.

Tip Typically, the RPC run-time serializes calls on the same context handle dispatched
to server manager routines. Context handles are maintained on a per-client basis and
typically represent the server-side state. This means that your server manager does not
have to guard against another thread from the same client changing the context or
against the context running down while a call is dispatched.

Note After it is called, the RpcSsDontSerializeContext function is not revertible for the
life of the process.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

Server Context Rundown Routine, Multi-threaded Clients and Context Handles

RpcSsEnableAliocate
The RpcSsEnableAliocate function establishes the stub memory-management
environment.

Return Values
Value Meaning

Out of memory.

552 Volume 3 RPC and WNet

Remarks
In cases where the stub memory management is not enabled by the stub itself, an
application calls RpcSsEnableAliocate to establish the stub memory-management
environment. This environment must be established prior to making a call to
RpcSsAliocate. For server manager code called from the stub, the memory
management environment is usually established by the stub itself. Otherwise, call
RpcSsEnableAliocate before calling RpcSsAliocate. See Memory Management for a
complete discussion of the memory-management conditions used by RPC. To learn how
spawned threads use a stub memory-management environment, see
Rpc$sGetThreadHandle and Rpc$s$etThreadHandle later in this section.

Note The RpcSsEnableAliocate function raises exceptions, while the
RpcSmEnableAliocate function returns the error code.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

RpcSmEnableAliocate, RpcSsAliocate, RpcSsDisableAliocate

RpcSsFree
The RpcSsFree function releases memory allocated by RpcSsAliocate.

Parameters
Node ToFree

Specifies a pOinter to memory allocated by RpcSsAliocate or RpcSmAliocate.

Remarks
An application uses RpcSsFree to free memory that was allocated with RpcSsAliocate.
In cases where the stub allocates the memory for the environment, RpcSsFree can also
be used to release memory. See Memory Management for a complete discussion of
memory-management conditions supported by RPC.

Chapter 25 RPC Function Reference 553

Note that the handle of the thread calling RpcSsFree must match the handle of the
thread that allocated the memory by calling RpcSsAliocate. Use
RpcSsGetThreadHandle and RpcSsSetThreadHandle to pass handles from thread to
thread.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

RpcSmFree, RpcSsAliocate, RpcSsGetThreadHandle, RpcSsSetThreadHandle

RpcSsGetThreadHandle
The RpcSsGetThreadHandle function returns a thread handle for the stub memory
management environment.

Return Values
Value

Remarks

Meaning

Call successful.

An application calls RpcSsGetThreadHandle to obtain a thread handle for the stub
memory-management environment. A thread used to manage memory for the stub
memory-management environment uses RpcSsGetThreadHandle to receive a handle
for its memory environment. In this way, another thread that calls
RpcSsSetThreadHandle by using this handle can then use the same memory
management environment.

The same thread handle must be used by multiple threads calling RpcSsAliocate and
RpcSsFree to manage the same memory. Before spawning new threads to manage the
same memory, the thread that established the memory-management environment
(parent thread) calls RpcSsGetThreadHandle to obtain a thread handle for this
environment. Then, the spawned threads call RpcSsSetThreadHandle with the handle
provided by the parent thread.

Typically, a server manager procedure calls RpcSsGetThreadHandle before additional
threads are spawned. The stub sets up the memory-management environment for the
manager procedure, and the manager calls RpcSsGetThreadHandle to make this
environment available to the other threads.

554 Volume 3 RPe and WNet

A thread can also call RpcSsGetThreadHandle and RpcSsSetThreadHandle to save
and restore its memory-management environment.

Note RpcSsGetThreadHandle raises exceptions, while RpcSmGetThreadHandle
returns the error code.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

RpcSmGetThreadHandle, RpcSsAllocate, RpcSsFree, RpcSsSetThreadHandle

RpcSsSetClientAllocFree
The RpcSsSetClientAllocFree function enables the memory allocation and release
mechanisms used by the client stubs.

Parameters
pfnAllocate

Specifies the memory-allocation function.

pfnFree
Specifies the memory-releasing function used with the memory-allocation function
specified by pfnAllocate.

Return Values
Value Meaning

Out of memory.

Chapter 25 RPC Function Reference 555

Remarks
By overriding the default routines used by the client stub to manage memory,
RpcSsSetClientAllocFree establishes the memory allocation and memory freeing
mechanisms. Note that the default routines are free and malloc, unless the remote call
occurs within manager code. In this case, the default memory-management routines are
RpcSsFree and RpcSsAliocate.

Note that when RpcSsSetClientAllocFree reclaims the memory resources, it also
makes the context handle NULL.

Note RpcSsSetClientAllocFree raises exceptions, unlike RpcSmSetClientAllocFree,
which returns the error code.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

RpcSmSetClientAllocFree, RpcSsAliocate, RpcSsFree

RpcSsSetThreadHandle
The RpcSsSetThreadHandle function sets a thread handle for the stub memory
management environment.

Parameters
Handle

Specifies a thread handle returned by a call to RpcSsGetThreadHandle.

556 Volume 3 RPC and WNet

Remarks
An application calls RpcSsSetThreadHandle to set a thread handle for the stub
memory-management environment. A thread used to manage memory for the stub
memory-management environment calls RpcSsGetThreadHandle to obtain a handle
for its memory environment. In this way, another thread that calls
RpcSsSetThreadHandle by using this handle can then use the same memory
management environment.

The same thread handle must be used by multiple threads calling RpcSsAliocate and
RpcSsFree in order to manage the same memory. Before spawning new threads to
manage the same memory, the thread that established the memory-management
environment (parent thread) calls RpcSsGetThreadHandle to obtain a thread handle for
this environment. Then, the spawned threads call RpcSsSetThreadHandle with the
handle provided by the parent thread.

Typically, a thread spawned by a server manager procedure calls
RpcSsSetThreadHandle. The stub sets up the memory-management environment for
the manager procedure, and the manager calls RpcSsGetThreadHandle to obtain a
thread handle. Then, each spawned thread calls RpcSsGetThreadHandle to get access
to the manager's memory-management environment.

A thread can also call RpcSsGetThreadHandle and RpcSsSetThreadHandle to save
and restore its memory-management environment.

Note The RpcSsSetThreadHandle routine raises exceptions, while the
RpcSmSetThreadHandle routine returns the error code.

Windows NT12000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

RpcSmSetThreadHandle, RpcSsAliocate, RpcSsFree, RpcSsGetThreadHandle

RpcSsSwapClientAllocFree
The RpcSsSwapClientAllocFree function exchanges the memory allocation and
release mechanisms used by the client stubs with those supplied by the client.

Parameters
pfnAllocate

Chapter 25 RPC Function Reference 557

Specifies a new function to allocate memory.

pfnFree
Specifies a new function to release memory.

pfnOldAllocate
Returns the previous memory-allocation function.

pfnOldFree
Returns the previous memory-freeing function.

Return Values
Value

RPC_S_OK

RPC_S_OUT _OF _MEMORY

Remarks

Meaning

Call successful.

Out of memory.

RpcSsSwapClientAllocFree exchanges the current memory allocation and memory
freeing mechanisms with those supplied by the client.

Note RpcSsSwapClientAllocFree raises exceptions, unlike
RpcSmSwapClientAllocFree, which returns the error code.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.
Library: Use Rpcrt4.lib.

RpcSmSwapClientAllocFree, RpcSsAliocate, RpcSsFree, RpcSsSetClientAllocFree

558 Volume 3 RPe and WNet

RpcStringBindingCompose
The RpcStringBindingCompose function creates a String binding handle.

Parameters
ObjUuid

Pointer to a null-terminated string representation of an object UUID. For example, the
string 6B29FC40-CA47-1067-B31D-OODD010662DA represents a valid UUID.

ProtSeq
Pointer to a null-terminated string representation of a protocol sequence. See Note.

NetworkAddr
Pointer to a null-terminated string representation 6f a network address. The network
address format is associated with the protocol sequence. See Note.

EndPoint
Pointer to a null-terminated string representation of an endpoint. The endpoint format
and content are associated with the protocol sequence. For example, the endpoint
associated with the protocol sequence ncacn_np is a pipe name in the format
\pipe\pipename. See Note.

Options
Pointer to a null-terminated string representation of network options. The option string
is associated with the protocol sequence. See Note.

StringBinding
Returns a pOinter to a pointer to a null-terminated string representation of a binding
handle.

Specify a NULL value to prevent RpcStringBindingCompose from returning the
StringBinding argument. In this case, the application does not call RpcStringFree.
See Note.

Note For more information, se.e String Binding.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_STRING_UUID

Remarks

Chapter 25 RPC Function Reference 559

Meaning

Call successful.

String representation of the UUID not valid.

An application calls RpcStringBindingCompose routine to combine an object UUID,
a protocol sequence, a network address, an endpoint and other network options into
a string representation of a binding handle.

The RPC run-time library allocates memory for the string returned in the StringBinding
argument. The application is responsible for calling RpcStringFree to deallocate that
memory.

Specify a null parameter value or provide an empty string (\0) for each input string that
has no data.

Literal backslash characters within C-Ianguage strings must be quoted. The actual C
string for the server name appears as \I\Iservername, and the actual C string for a pipe
name appears as \\pipe\\pipename.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcBindingFromStringBinding, ·RpcBindingToStringBinding,
RpcStringBindingParse, RpcStringFree

RpcStringBindingParse
The RpcStringBindingParse function returns the object UUID part and the address
parts of a string binding as separate strings. An a.pplication calls
RpcStringBindingParse to parse a string representation of a binding handle into its
component fields. The RpcStringBindingParse function returns the object UUID part
and the address parts of a string binding as separate strings.

560 Volume 3 RPC and WNet

Parameters
StringBinding

Pointer to a nUll-terminated string representation of a binding.

ObjectUuid
Returns a pOinter to a point~r to a null-terminated string representation of an object
UUID.

Specify a NULL value to prevent RpcStringBindingParse from returning the
ObjectUuid parameter. In this case, the application does not call RpcStringFree.

ProtSeq
Returns a pOinter to a pOinter to a null-terminated string representation of a protocol
sequence. For a list of Microsoft RPC supported protocol sequences, see String
Binding.

Specify a NULL value to prevent RpcStringBindingParse from returning the ProtSeq
parameter. In this case, the application does not call RpcStringFree.

NetworkAddr
Returns a pointer to a pointer to a nUll-terminated string representation of a network
address. Specify a NULL value to prevent RpcStringBindingParse from returning
the NetworkAddr parameter. In this case, the application does not call
RpcStringFree.

EndPoint
Returns a pOinter to a pOinter to a null-terminated string representation of an endpoint.
Specify a NULL value to prevent RpcStringBindingParse from returning the
EndPoint parameter. In this case, the application does not call RpcStringFree.

NetworkOptions
Returns a pOinter to a pOinter to a null.terminated string representation of network
options.

Specify a NULL value to prevent RpcStringBindingParse from returning the
NetworkOptions parameter. In this case, the application does not call RpcStringFree.

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_STRING_BINDING

Meaning

Call successful.

Invalid string binding.

Chapter 25 RPC Function Reference 561

Remarks
An application calls RpcStringBindingParse routine to parse a string representation of
a binding handle into its component fields.

The RPC run-time library allocates memory for each component string returned. The
application is responsible for calling RpcStringFree once for each returned string to
deallocate the memory for that string.

If any field of the SfringBinding argument is empty, RpcStringBindingParse returns an
empty string (\0) in the corresponding output parameter.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcBindingFromStringBinding, RpcBindingToStringBinding,
RpcStringBindingCompose, RpcStringFree

RpcStringFree
The RpcStringFree function frees a character string allocated by the RPC run-time
library.

Parameters
String

Pointer to a pOinter to the character string to free.

Return Values
Value

Remarks

Meaning

Call successful.

An application is responsible for calling RpcStringFree once for each character string
allocated and returned by calls to other RPC run-time library routines.

562 Volume 3 RPe and WNet

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcBindingToStringBinding, RpcNsBindinglnqEntryName,
RpcStringBindingParse

RpcTestCancel
The RpcTestCancel function checks for a cancel indication.

Return Values
Value

RPC_S_OK

Other values

Meaning

Call has been canceled.

Call has not been canceled.

It is not unusual for the RpcTestCancel function to return the value
ERROR_ACCESS_DENIED. This indicates that the remote procedure call has not been
canceled.

Remarks
An application server stub calls RpcTestCancel to determine whether a call has been
canceled. If the call has been canceled, RPC_S_OK is returned; otherwise, another
value is returned.

This function should be called periodically by the server stub so that it can respond to
cancels io a timely fashion. If the function returns RPC_S_OK, the stub should clean up
its data structures and return to the client.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

Chapter 25 RPC Function Reference 563

RpcWinSetYieldlnfo
The RpcWinSetYieldlnfo function configures Microsoft Windows 3.x client applications
to yield to other applications during remote procedure calls.

Parameters
hWnd

Identifies the application window that receives messages relating to yielding.

Applications should usually specify the parent window of the dialog box. Standard
yield applications receive messages for both the start and end of the yield period.
Custom yield applications receive messages that indicate when the RPC operation
has completed.

fCustom Yield
Specifies the yielding method. The following values are defined:

Value Yield method

TRUE

FALSE

wMsg

Custom yield.

Standard yield.

Specifies the message that is posted by the RPC run-time library to notify the
application of RPC events. The message value should be in the range beginning with
WM....:USER. If a zero value is specified, no message is posted.

For standard-yield applications, the message indicates the beginning or end of the
yield period. This allows the application to refrain from performing operations that are
illegal during an RPC operation. Standard-yield applications use the following values
of wParam and IParam with this message.

Parameter Value Description

wParam 1 Yield period beginning.

wParam 0 Yield period ending.

IParam Unused.

For a custom-yield application, the wMsg message notifies the application that the
RPC operation is complete. When the application receives this message, it should
immediately return control to the RPC run-time library by having the callback function
return. The values of wParam and IParam are set to zero and are not used.

564 Volume 3 RPC and WNet

dwOtherlnfo
Specifies additional information about the yielding behavior.

For standard-yield applications, dwOtherlnfo contains an optional HANDLE to an
application-supplied dialog-box resource. This handle is passed as the second
parameter to the DialogBoxlndirect function. If the handle specified by dwOtherlnfo
is zero, the default dialog box supplied by the RPC run-time library is used.

For custom-yield applications, dwOtherlnfo contains the procedure-instance address
of the application supplied-callback function.

Return Values
Value

RPC_S_OK

RPC_S_OUT_OF_MEMORY

Remarks

Meaning

Information was set successfully.

Memory could not be allocated to store the
information for this task.

The RpcWinSetYieldlnfo function supports two yielding methods:

• Standard yield method. The RPC run-time library provides a standard modal dialog
box that includes a single push-button control with an IDCANCEL identifier. The
dialog box prevents direct user input, such as mouse and keyboard events, from
being sent to the application. The application continues to receive messages while the
dialog box is present. The IDCANCEL message indicates that the application user
wants to end the remote procedure.

• Custom yield method. The application provides a callback function that the RPC run
time library calls while a remote operation is in progress. The callback function must
retrieve messages from the message queue (including mouse and keyboard
messages) and must process messages (both queued and nonqueued). The RPC
run-time library posts a message to the application's queue when the RPC operation
is complete. The callback function returns a boolean value to the RPC run-time
library.

When a conventional RPC client application makes a remote procedure call, the MIDL
generated stub calls the RPC run-time library and the library calls the appropriate
transport. These calls are synchronous and block until the server side sends back a
response. In the cooperatively multitasked Windows 3.x environment, an active, blocked
application prevents Windows and other Windows applications from running. The
RpcWinSetYieldlnfo function allows you to direct the application to yield to Windows
and other Windows applications while waiting for an RPC operation to finish.

Windows RPC client applications can be organized into three classes that correspond to
levels of yielding support: no yielding, standard yielding, and custom yielding.

Chapter 25 RPC Function Reference 565

• Some applications do not yield. RPC calls block until completion.

• Standard-yield applications are RPC-aware applications that yield but do not need to
perform special handling.

• Custom-yield applications are those that are RPC aware and want to perform special
handling while an RPC operation is in progress.

You can replace the provided dialog-box resource with an application-specified dialog
box resource. The resource must use the same style as the default and must contain a
single push-button control with an IDCANCEL ID. The dialog-box function is part of the
RPC run-time library and cannot be replaced.

To yield in a well-behaved manner from within the context of a pending RPC operation,
applications must observe the following rules:

• Do not make another RPC call. If the RPC run-time library detects that a new call is
being made during the yielding period, it returns an error to the caller. This is
particularly important if the application makes RPC calls in response to common
messages, such as WM_PAINT.

• Do not exit the application. Do not close the window specified by the hWnd handle
parameter. Your application can process WM_CLOSE messages in the window
procedure and not call DefWindowProc during the yielding period.

• Return FALSE in response to WM_QUERYENDSESSION messages. Alternatively, a
custom-yield application can use this message as a signal to cause
YieldFunctionName to return FALSE to the RPC run-time library and end the yielding
period.

There is no guarantee that any code that supports yielding will be invoked. Whether or
not an application yields depends on the specific call, the current state of the underlying
system, and the implementation of the underlying RPC transport. Applications should not
rely on this code to do anything other than manage yielding.

The RpcWinSetYieldlnfo function can be called more than once by an application. Each
call simply replaces the information stored in the previous calls.

Note This function is only available for 16-bit Windows client applications. A 32-bit
application should take advantage of the preemptive multitasking and multithreading
support that the 32-bit Windows operating systems provide.

Windows NT/2000: Unsupported.
Windows 95/98: Unsupported.
Version: Requires 16-bit client only.
Header: Declared in Rpc.h.
Library: Use Rpcrt4.lib.

566 Volume 3 RPC and WNet

DefWindowProc, DialogBoxlndirect, MakeProclnstance, YieldFunctionName

RpcWinSetVieldTimeout
The RpcWinSetYieldTimeout function configures the amount of time an RPC call will
wait for the server to respond before invoking the application's RPC yielding mechanism.
This function is only available for Windows 3.x applications.

Parameters
Timeout

Specifies the time-out value in milliseconds. If this function is not called, the default is
500 milliseconds.

Return Values
Value

RPC_S_OK

RPC_S_CAN NOT_SU PPORT

Remarks

Meaning

Call successful.

RpcWinSetYieldlnfo must be called prior to
RpcWinSetYieldTimeout.

Depending on the type of yielding specified in RpcWinSetYieldlnfo, this can either
produce a dialog box or signal the application.

If the Timeoutvalue is small, the yielding mechanism can be invoked too often. This
results in loss of performance. Conversely, if the value specified for Timeout is too large,
the application and system will be frozen for the time-out period. To avoid this, use time
outs in the range of 500 to 2000 milliseconds.

The RpcWinSetYieldTimeout function can be called more than once by an application.
Each call simply replaces the information stored in the previous calls.

Windows NT/2000: Unsupported.
Windows 95/98: Unsupported.
Version: Requires 16-bit client only.
Header: Declared in Rpc.h.
Library: Use Rpcrt4.lib.

Chapter 25 RPC Function Reference 567

RpcWinSetYieldlnfo

UuidCompare
An application calls UuidCompare routine to compare two UUIDs and determine their
order. The returned value gives the order.

Parameters
Uuid1

Specifies a pOinter to a UUID. This UUID is compared with the UUID specified in the
Uuid2 argument.

Uuid2
Specifies a pOinter to a UUID. This UUID is compared with the UUID specified in the
Uuid1 argument.

Status
Returns any errors that may occur, and will typically be set by the function to
RPC_S_OK upon return.

Return Values
Values

-1

o

Meaning

The Uuid1 argument is less than the Uuid2argument.

The Uuid1 argument is equal to the Uuid2 argument.

The Uuidl argument is greater than the Uuid2 argument.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

UuidCreate

568 Volume 3 RPC and WNet

UuidCreate
The UuidCreate function creates a new UUID.

Parameters
Uuid

Returns a pointer to the created UUID.

Return Values
Value

RPC_S_OK

RPC_S_UUID_LOCAL_ONL Y

Remarks

Meaning

Call successful.

The UUID is guaranteed to be unique to this
computer only.

Cannot get Ethernet or token-ring hardware
address for this computer.

For security reasons, it is often desirable to keep ethernet/token ring addresses on
networks from becoming available outside a company or organization. The UuidCreate
function generates a UUID that cannot be traced to the ethernet/token ring address of
the computer on which it was generated. It also cannot be associated with other UUIDs
created on the same computer. If you do not need this level of security, your application
can use the UuidCreateSequential function.

In Windows NT 4.0, Windows 2000, Windows 95, DCOM release, and Windows 98,
UuidCreate returns RPC_S_UUI D_LOCAL_ONL Y when the originating computer does
not have an ethernet/token ring (IEEE 802.x) address. In this case, the generated UUID
is a valid identifier, and is guaranteed to be unique among all UUIDs generated on the
computer. However, the possibility exists that another computer without an
ethernet/token ring address generated the identical UUID. Therefore you should never
use this UUID to identify an object that is not strictly local to your computer. Computers
with ethernet/token ring addresses generate UUIDs that are guaranteed to be globally
unique.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: !.Jnsupported.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

Chapter 25 RPC Function Reference 569

UuidFromString, UuidToString

U u idCreateSeq uential
The UuidCreateSequential function creates a new UUID.

Parameters
Uuid

Returns a pOinter to the created UUID.

Return Values
Value

RPC_S_OK

RPC_S_UUID_LOCAL_ONL Y

Remarks

Meaning

Call successful.

The UUID is guaranteed to be unique to this
computer only.

Cannot get Ethernet or token-ring hardware address
for this computer.

In Windows NT 4.0, Windows 2000, Windows 95, DCOM release, and Windows 98,
UuidCreateSequential returns RPC_S_UUID_LOCAL_ONL Y when the originating
computer does not have an ethernet/token ring (IEEE 802.x) address. In this case, the
generated UUID is a valid identifier, and is guaranteed to be unique among all UUIDs
generated on the computer. However, the possibility exists that another computer
without an ethernet/token ring address generated the identical UUID. Therefore you
should never use this UUID to identify an object that is not strictly local to your computer.
Computers with ethernet/token ring addresses generate UUIDs that are guaranteed to
be globally unique.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in Rpcdce.h.
Library: Use Rpct4.lib.

570 Volume 3 RPe and WNet

UuidFromString, UuidToString

UuidCreateNii
The UuidCreateNii function creates a nil-valued UUID.

Parameters
NiLUuid

Returns a nil-valued UUID.

Return Values
Returns any errors that may occur. The parameter is typically set by the function to
RPC_S_OK upon return.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

UuidEqual
An application calls UuidEqual function to compare two UUIDs and determine whether
they are equal.

Parameters
Uuid1

Specifies a pointer to a UUID. This UUID is compared with the UUID specified in the
Uuid2 argument.

Chapter 25 RPC Function Reference 571

Uuid2
Specifies a pOinter to a UUID. This Ul:JID is compared with the UUID specified in the
Uuid1 argument.

status
Returns any errors that may occur, and will usually be set by the function to
RPC_S_OK upon return.

Return Values
Value

TRUE

FALSE

Meaning

The Uuid1 argument is equal to the Uuid2 argument.

The Uuid1 argument is not equal to the Uuid2 argument.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

UuidCreate

UuidFromString
The UuidFromString function converts a string to a UUID.

Parameters
StringUuid

Pointer to. a string representation of a UUID.

Uuid
Returns a pointer to a UUID in binary form.

Remarks
An application calls UuidFromString function to convert a string UUID to a binary UUID.

572 Volume 3 RPe and WNet

Return Values
Value

RPC_S_OK

RPC_S_INVALlD_STRING_UUID

Meaning

Call successful.

The string UUID is invalid.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

UuidToString

UuidHash
An application calls the UuidHash function to generate a hash value for a specified
UUID.

Parameters
Uuid

Specifies the UUID for which a hash value is created.

Status
Returns any errors that may occur, and will usually be set by the function to
RPC_S_OK upon return.

Remarks
An application calls UuidHash to generate a hash value for a specified UUID. The hash
value returned is implementation dependent and may vary from implementation to
implementation.

Chapter 25 RPC Function Reference 573

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

UuidCreate

UuidlsNii
An application calls UuidlsNii function to determine whether the specified UUID is a nil
valued UUID.

Parameters
Uuid

Specifies a UUID to test for nil value.

Status
Returns any errors that may occur, and will typically be set by the function to
RPC_S_OK upon return.

Remarks
This function acts as though the application called UuidCreateNiI, and then called the
UuidEqual to compare the returned nil-value UUID to the UUID specified in the Uuid
argument.

Upon completion, one of the following values is returned.

Returned Value Meaning

TRUE

FALSE

The Uuid argument is a nil-valued UUID.

The Uuid argument is not a nil-valued UUID.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.

574 Volume 3 RPe and WNet

UuidCreate

UuidToString
The UuidToString function converts a UUID to a string.

Parameters
Uuid

Pointer to a binary UUID.

StringUuid
Returns a pOinter to a pOinter to the string representation of the UUID specified in the
Uuid argument.

Specify a NULL value to prevent UuidToString from returning the StringUuid
parameter. In this case, the application does not call RpcStringFree.

Return Values
Value

RPC_S_OK

RPC_S_OUT _OF_MEMORY

Remarks

Meaning

Call successful.

No memory.

An application calls UuidToString to convert a binary UUID to a string UUID. The RPC
run-time library allocates memory for the string returned in the StringUuid argument. The
application is responsible for calling RpcStringFree to deallocate that memory.

Windows NT/2000.: Requires Windows NT 3.1 or later.
Windows 95198: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.
Library: Use Rpcrt4.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

RpcStringFree, UuidFromString

CHAPTER 26

RPC Callback and
Notification Functions

MACYIELDCALLBACK
The MACYIELDCALLBACK function is required on the Mac for cooperative
multitasking.

Parameters
pYeildStatus

575

A pOinter to a short integer containing the current yield status. The application should
yield control when this parameter equals 1 .

Return Values
This function does not return a value.

Remarks
Register a yielding function by calling RpcMacSetYieldlnfo with a pointer to the callback
(yielding) function. If a yielding function is not registered, an RPe will not yield on
the Mac.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in Rpc.h.

RpcMacSetYieldlnfo

576 Volume 3 RPC and WNet

Parameters
Arg

Pointer to a user-defined argument to the user-supplied encryption key acquisition
function. The RPC run-time library uses the Arg argument supplied to
RpcServerRegisterAuthlnfo.

SeNerPrincName
Pointer to the principal name to use for the server when authenticating remote
procedure calls. The RPC run-time library uses the SeNerPrincName parameter
supplied to RpcServerRegisterAuthlnfo.

KeyVer
Specifies the value that the RPC run-time library automatically provides for the key
version parameter. When the value is zero, the acquisition function must return the
most recent key available.

Key
Pointer to a pointer to the authentication key returned by the user-supplied function.

Status
Pointer to the status returned by the acquisition function when it is called by the RPC
run-time library to authenticate the client RPC request. If the status is other than
RPC_S_OK, the request fails and the run-time library returns the error status to the
client application.

Remarks
An authorization key-retrieval function specifies the address of a server-application
provided routine returning encryption keys.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

RpcServerRegisterAuthlnfo

Chapter 26 RPC Callback and Notification Functions 577

The RPC_IF _CALLBACK_FN is a prototype for a security-callback function that your
application supplies. Your program can provide a callback function for each interface it
defines.

Parameters
Interface

Contains the UUID and version of the interface in question.

Context
A server binding handle representing the client. The callback function may pass this
handle to RpclmpersonateClient or RpcBindingServerFromClient to gain
information about the client.

Return Values
The callback function should return RPC_S_OK if the client is allowed to call methods
in this interface. Any other return code will cause the client to receive the exception
RPC_S_ACCESS_DENIED.

Remarks
In some cases, the RPC run time may call the security-callback function more than once
per client per interface. Be sure your callback function can handle this possibility.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

RpcServerRegisterlfEx

The RPC_MGMT_AUTHORIZATION_FN enables server programs to implement custom
RPC authorization techniques.

578 Volume 3 RPC and WNet

Parameters
ClientBinding

The client/server binding handle.

RequestedMgmtOperation
The value for RequestedMgmtOperation depends on the remote function requested,
as shown in the following table.

Called remote function

RpcMgmtlnqlflds

RpcMgmtlnqServerPrincName

RpcMgmtlnqStats

RpcMgmtlsServerListening

RpcMgmtStopServerListening

RequestedMgmtOperation value

RPC_C_MGMT_INO_IF _IDS

RPC_C_MGMT _INO_PRINC_NAME

RPC_C_MGMT_INO_STATS

RPC_C_MGMT _IS_SERVER_L1STEN

RPC_C_MGMT _STOP _SERVER_LISTEN

The authorization function must handle all of these values.

Status
If Status is either 0 (zero) or RPC_S_OK, the Status value
RPC_S_ACCESS_DENIED is returned to the client by the remote management
function. If the authorization function returns any other value for Status, that Status
value is returned to the client by the remote management function.

Return Values
Returns TRUE if the calling client is allowed access to the requested management
function. If the authorization function returns FALSE, the management function cannot
execute. In this case; the function returns a Status value to the client:

Remarks
When a client requests one of the server's remote management functions, the server
run-time library calls the authorization function with ClientBinding and
RequestedMgmtOperation. The authorization function uses these parameters to
determine whether the calling client can execute the requested management function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

Chapter 26 RPC Callback and Notification Functions 579

Authorization Functions, RpcMgmtSetAuthorizationFn

Parameters
ObjectUuid

Pointer to the variable that specifies the object UUID that is to be mapped to a type
UUID.

TypeUuid
Pointer to the address of the variable that is to contain the type UUID derived from the
object UUID. The type UUID is returned by the function.

Status
Pointer to a return value for the function.

Remarks
You can replace the default mapping function that maps object UUIDs to type UUIDs by
calling RpcObjectSetlnqFn and supplying a pointer to a function of type
RPC_OBJECT _INQ_FN. The supplied function must match the function prototype
specified by the type definition: a function with three parameters and the function return
value of void.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce,h,

RpcObjectSetlnqFn

RPCNOTIFICATION_ROUTINE
The RPCNOTIFICATION_ROUTINE function provides programs that utilize
asynchronous RPC with the ability to customize responses to asynchronous events,

580 Volume 3 RPe and WNet

Parameters
pAsync

Pointer to a structure that contains the current state of the asynchronous RPC run
time library. For details, see RPC_ASYNC_STATE.

Context
Reserved for future use. Windows 2000 currently sets this parameter to NULL.

Event
A value from the RPC_ASYNC_EVENTenumerated type that identifies the current
asynchronous event.

Remarks
For each asynchronous remote procedure call that a client program executes, it can
specify an asynchronous procedure call {APC}. The RPC run-time library will invoke the
APC when the asynchronous remote procedure call completes. The APC function must
match the prototype specified by RPCNOTIFICATION_ROUTINE.

Return Values
This function does not return a value.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcdce.h.

Asynchronous RPC, RPC_ASYNC_STATE

VieldFunctionName
The YieldFunctionName function is a placeholder name for the application-supplied
function name provided as a parameter to the RpcWinSetYieldlnfo routine.

Chapter 26 RPC Callback and Notification Functions 581

Remarks
The callback function must retrieve messages from the message queue (including
mouse and keyboard messages) and must process messages, both queued and
nonqueued.

The YieldFunctionName function should return TRUE when the application is notified
that the RPC operation has completed (by receiving the wMsg message). It is an error
for YieldFunctionName to return TRUE if it has not been notified that the RPC
operation has completed.

The YieldFunctionName function should return FALSE if the user wants to cancel the
RPC operation in progress. The RPC run-time library then attempts to abort the current
operation, which is likely to result in the RPC call returning an error to the application.
Note that due to race conditions, the operation can complete successfully even if
YieldFunctionName returns FALSE.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpcndr.h.

RpcWinSetYieldlnfo

583

CHAPTER 27

RPe Macros

This chapter details the macros that are used with the RPC run-time library.

• Portability Macros

• RpcAsyncGetCallHandle

• RpcEndExcept

• RpcEndFinally

• RpcExcept

• RpcFinally

• RpcTryExcept

• RpcTryFinally

Portability Macros
The RPC tools achieve model, calling, and naming-convention independence by
associating data types and function-return types in the generated stub files and header
files with definitions that are specific to each platform. These macro definitions ensure
that any data types and functions that require the designation of __ far are specified as
far objects.

RPC macros are defined as follows.

Definition Description

Applied to calls made by the stub to the user application. Both
functions are in the same executable program.

Applied to the standard macro definition for pointers. This
macro definition should appear as part of the signature of all
user-supplied functions.

Applied to calls made from the run-time library to the stub.
These calls can be considered private.

Applied to calls made by the run-time library to the user
application. These cross the boundary between a DLL and an
application.

Applied to calls made by the application or stub to the run-time
library. This macro definition is applied to all RPt run-time
functions.

584 Volume 3 RPC and WNet

Figure 27-1 shows the macro definitions that the MIDL compiler applies to function calls
between RPC components:

Applin1ion

Stub RPC_ENTRY

-+
RPC_STUB

RPC_ENTRY

Run-Time Library

Figure 27-1: Macro Definitions Applied by the MIDL Compiler.

To link correctly with the Microsoft RPC run-time libraries, stubs, and support routines,
some user-supplied functions must also include these macros in the function definition.
Use the macro __ RPC_API when you define the functions associated with memory
management, user-defined binding handles, and the transmiCasattribute, and use the
macro __ RPC_USER when you define the context run-down routine associated with the
context handle. Specify the functions as:

__ RPC_USER midLuser_allocate(...)
__ RPC_USER midl_user_free(...)
_~RPC_USER handletype_bind(•.•)
__ RPC_USER handJetype_unbind(..•)
__ RPC_USER type_to_local
__ RPC_USER type_from_local
__ RPC_USER type_to_xmit(...)
__ RPC_USER type_from_xmit(...)
__ RPC_USER type_free_local
__ RPC_USER type_free_inst(..•)
__ RPC_USER type_free_xmit(•..)
__ RPC_USER context_rundown(...)

Chapter 27 RPC Macros 585

Note All pointer parameters in these functions must be specified using the macro
__ RPC_FAR. .

These are the two approaches that can be used to select an application's memory
model:

1. To use a single memory model for all files, compile all source files using the same
memory-model compiler switches. For example, to develop a small-model application,
compile both the application and the stub source code using the C-compiler switch
lAS, as in the following:

2. To use different memory models for the application source files and the support
source files (stubs files), use the RPC macros when you define function prototypes in
the IDL file. Compile the distributed-application source files using one compiler
memory-model setting and compile the support files using another compiler memory
model setting. Use the same memory model for all of the files generated by the
compiler.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpc.h.

RpcAsyncGetCallHandle
The RpcAsyncGetCaliHandle macro returns the binding handle on an asynchronous
remote procedure call. This macro is supported in Windows 2000, Windows 95 with the
second DCOM OSR, and Windows 98.

Parameters
pAsync

Pointer to the RPC_ASYNC_STATE structure that contains asynchronous call
information.

586 Volume 3 RPC and WNet

Remarks
Given an asynchronous handle, it returns the corresponding binding handle. For
example, the RpcServerTestCancel function uses RpcAsyncGetCaIiHandle(pAsync)
as a parameter to test for cancel requests.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rpcasync.h.
Library: Use Rpcrt4.lib.

Asynchronous RPC, RPC_ASYNC_STATE, RpcAsyncAbortCall,
RpcAsyncCancelCall, RpcAsyncCompleteCall, RpcAsyncGetCaliStatus,
RpcAsynclnitializeHandle, RpcAsyncRegisterlnfo, RpcServerTestCancel

RpcEndExcept
Use the RpcEndExcept statement to terminate all RpcTryExcept statements.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpc.h.
Library: Use Rpcrt4.lib.

RpcTryExcept, RpcExcept

RpcEndFinally
Use the RpcEndFinally statement to terminate all RpcTryFinally statements.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpc.h.
Library: Use Rpcrt4.1ib.

Chapter 27 RPC Macros 587

RpcTryFinally, RpcFinally

RpcExcept
The RpcExcept statement provides structured exception handling for RPC applications.

Parameters
guarded statements

Specifies program statements that are guarded or monitored for exceptions during
execution.

expression
An expression that is evaluated when an exception occurs. If expressionevaluates to
a nonzero value, the exception statements are executed. If expression evaluates to a
zero value, unwinding continues to the next RpcTryExcept or RpcTryFinally
function.

exception statements
Statements that are executed when the expression evaluates to a nonzero value.

Remarks
If an exception does not occur, the expression and exception statements are skipped
and execution continues at the statement following the RpcEndExcept statement.

The compound statement after the RpcTryExcept clause is the body or guarded
section. The compound statement after the RpcExcept clause is the exception handler.
The handler specifies a set of actions to be taken if an exception is raised during
execution of the body of the guarded section. Execution proceeds as follows:

1. The guarded section is executed.

2. If no exception occurs during execution of the guarded section, execution continues at
the statement after the _except clause.

588 Volume 3 RPC and WNet

3. If an exception occurs during execution of the guarded section or in any routine the
guarded section calls, the _except expression is evaluated and the value determines
how the exception is handled. There are three values:

• EXCEPTION_CONTINUE_EXECUTION (-1) Exception is dismissed. Continue
execution at the point where the exception occurred.

• EXCEPTION_CONTINUE_SEARCH (0) Exception is not recognized. Continue to
search up the stack for a handler, first for containing try-except statements, then for
handlers with the next highest precedence.

• Exception is recognized. Transfer control to the exception handler by executing the
_except compound statement, then continue execution after the _except block.

Because the RpcExcept expression is evaluated as a C expression, it is limited to a
single value, the conditional-expression operator, or the comma operator. If more
extensive processing is required, the expression can call a routine that returns one of the
three values listed above.

RpcExceptionCode can be used in both expression and exception statements to
determine which exception occurred.

The following restrictions apply:

• Jumping (through a goto) into guarded statements is not allowed.

• Jumping (through a goto) into exception statements is not allowed.

• Returning or jumping (through a goto) from guarded statements is not allowed.

• Returning or jumping (through a goto) from exception statements is not allowed.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpc.h.
Library: Use Rpcrt4.lib.

RpcExceptionCode, RpcFinally, RpcRaiseException

RpcFinally
The RpcFinally statement provides developers with the ability to create termination
handlers.

Parameters
guarded statements

Chapter 27 RPC Macros 589

Specifies statements that are executed while exceptions are being monitored. If an
exception occurs during the execution of these statements, termination statements
will be executed. Unwinding then continues to the next RpcTryExcept or
RpcTryFinally statements.

termination statements
Specifies statements that are executed when an exception occurs. After the
termination statements are complete, the exception is raised again.

Remarks
Use the RpcFinally statement to build termination handlers. All termination handlers
created with RpcFinally execute whether or not an exception occurs. Your program can
call the RpcAbnormalTermination function in termination statements to determine
whether termination statements is being executed because an exception occurred. A
nonzero return from RpcAbnormalTermination indicates that an exception occurred. A
value of zero indicates that no exception occurred.

The following restrictions apply:

• Jumping (through a goto) into guarded statements is not allowed:

• Jumping (through a goto) into termination statements is not allowed.

• Returning or jumping (through a goto) from guarded statements is not allowed.

• Returning or jumping (through a goto) from termination statements is not allowed.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpc.h.
Library: Use Rpcrt4.lib.

RpcAbnormalTermination

590 Volume 3 RPC and WNet

RpcTryExcept
The RpcTryExcept statement provides structured exception handling for RPC
applications. If any of the program statements in the RpcTryExcept cause an exception,
the statements in the RpcExcept code block are executed. All RpcTryExcept
statements must be terminated by the RpcEndExcept statement.

For more information, see RpcExcept.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpc.h.

RpcExcept, RpcTryFinally

RpcTryFinally
The RpcTryFinally statement provides structured termination handling. It an exception
occurs during the execution statements of the code block associated with the
RpcTryFinally statement, the statements in the code block associated with the
RpcFinally statement are exectured. All RpcTryFinally statements must be terminated
by an RpcEndFinally statement.

For more information, see RpcFinally.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Rpc.h.

RpcFinally, RpcEndFinally

CHAPTER 28

Windows Networking (WNet)

The Win32® API provides the Windows networking (WNet) functions so that you can
implement networking capabilities in your application without making allowances for a
particular network provider or physical network implementation. This is because the
WNet functions are network independent.

About Windows Networking

591

Applications can use the WNet functions to add and cancel network connections and to
retrieve information about the current configuration of the network.

Figure 28-1 shows the structure of a typical network.

Network
provider tt1

Sharepoint tt1

Sharepoint tt2

Figure 28-1: Typical Network Structure.

592 Volume 3 RPC and WNet

In the preceding figure, the hierarchy for Microsoft® Windows NT®
Server/windows® 2000 Server resources is given in detail as Network provider #1 .
Network resources from other providers have different hierarchical systems. An
application does not need information about the hierarchy before it begins to work with a
network. It can proceed from the network root (that is, the topmost container resource)
and retrieve information about the network's resources as the information is required.

Network resources that contain other resources are called containers. Container
resources are in boxes in the preceding figure.

Resources that do not contain other resources are called objects. In the preceding
figure, Sharepoint #1 and Sharepoint #2 are objects. A sharepoint is an object that is
accessible across the network. Examples of share points include printers and shared
directories.

WNet Functions
The Windows Networking functions can be grouped as follows:

• Connection functions

• Enumeration functions

• Information functions

• User functions

Connection Functions
Call the following WNet connection functions to connect a local device to a network
resource, and to cancel network connections.

Function

MultinetGetConnectionPerformance

WNetAddConnection

WNetAddConnection2

WNetAddConnection3

Description

Returns information about the expected
performance of a connection to a network
resource.

Connects a local device to a network
resource. (Provided for compatibility with
16-bit versions of Windows.)

Connects a local device to a network
resource.

Connects a local device to a network
resource. This function includes one more
parameter than the WNetAddConnection2
function, a handle to a window that the
network provider can use as an owner
window for dialog boxes.

Function

WNetCancelConnection

WNetCanceiConnection2

WNetConnectionDialog

WNetConnectionDialog1

WNetDisconnectDialog

WNetDisconnectDialog1

WNetGetConnection

WNetGetUniversalName

WNetUseConnection

Chapter 28 Windows Networking (WNet) 593

Description

Cancels a network connection. (Provided
for compatibility with 16-bit versions of
Windows.)
Cancels a network connection, providing
the ability to update the user profile with
information about persistent connections.
Starts a general browsing dialog box for
connecting to network resources.
Starts a general browsing dialog box for
connecting to network resources, using a
CONNECTDLGSTRUCT structure.
Starts a general browsing dialog box for
disconnecting from network resources.

Starts a general browsing dialog box for
disconnecting from network resources,
using a DISCDLGSTRUCT structure.
Retrieves the name of the network resource
associated with a local device.
When given a drive-based path for a .
network resource, returns a more universal
form of the name.
Connects a local device to a network
resource; automatically selects an unused
local device to redirect to the network
resource.

Note The WNetAddConnection and WNetCancelConnection functions are
supported for compatibility with Windows for Workgroups. However, new applications
should use WNetAddConnection2 or WNetAddConnection3, and
WNetCancelConnection2.

Enumeration Functions
Call the following WNet functions to enumerate network resources.

Function

WNetCloseEnum
WNetEnumResource

WNetOpenEnum

Description

Ends a network resource enumeration.
Continues an enumeration of network
resources started by the WNetOpenEnum
function.
Starts an enumeration of network
resources.

594 Volume 3 RPe and WNet

Information Functions
Call the following WNet informational and utility functions to retrieve network provider
and other information.

Function

WNetGetLastError

WNetGetNetworklnformation

WNetGetProviderName

WNetGetResourcelnformation

WNetGetResourceParent

User Functions

Description

Returns the most recent error code set by a
WNet function, the one reported by a
network provider.

Returns extended information about a
specific network provider.

Returns the provider name for a specific
type of network.

Returns the network provider that owns a
resource, and obtains information about the
resource type.

Returns the parent of a network resource.

Call the following WNet function to retrieve the name of the user associated with a local
device.

Function

WNetGetUser

Description

Returns the current default user name, or
the user name that established the
connection.

Many of the WNet functions use a NETRESOURCE structure to store information about
a network resource.

Windows Networking Operations
An application can use the WNet functions to browse, add, or cancel network
connections anywhere in the network hierarchy.

A persistent connection is a network connection that the system automatically restores
when the user logs on. You can call the WNetAddConnection2 (or
WNetAddConnection3) and WNetCanceiConnection2 functions to control whether a
network connection is persistent from one session to the next.

To find the default user name or the user name used to establish a network connection,
call the WNetGetUser function.

In addition to calling the WNet functions, a process can also use mailslots and named
pipes to communicate with another process. For more information, see Mails/ots and
Pipes.

Chapter 28 Windows Networking (WNet) 595

Using Windows Networking
The WNet functions enable your application to query and control network connections
directly, or to give direct control of the network connections to the user.

Using the Connections Dialog Box
Windows NTlWindows 2000

The WNetConnectionDialog function creates a dialog box that allows the user to
browse and connect to network resources. You can also call the
WNetConnectionDialog1 function to create a connections dialog box.
WNetConnectionDialog1 requires a CONNECTDLGSTRUCT structure.

The WNetDisconnectDialog function creates a dialog box that allows the user to
disconnect from network resources.

The following code sample demonstrates how to call the WNetConnectionDialog
function to create a dialog box that displays disk resources. If the call fails, the sample
calls an application-defined error handler.

For more information about using an application-defined error handler, see Retrieving
Network Errors.

Enumerating Network Resources
Windows NTlWindows 2000

To begin the enumeration of a network container resource, your application should
perform the following steps:

1. Pass the address of a NETRESOURCE structure that represents the resource to the
WNetOpenEnum function.

596 Volume 3 RPe and WNet

2. Allocate a buffer large enough to hold the array of NETRESOURCE structures that
the WNetEnumResource function returns, plus the strings to which their members
point.

3. Pass the resource handle returned by WNetOpenEnum to the WNetEnumResource
function.

4. Close the resource handle when it is no longer needed by calling the
WNetCloseEnum function.

You can continue enumerating a container resource described in the array of
NETRESOURCE structures retrieved by WNetEnumResource. If the dwUsage
member of the NETRESOURCE structure is equal to
RESOURCEUSAGE_CONTAINER, pass the address of the structure to the
WNetOpenEnum function to open the container and continue the enumeration. If
dwUsage is equal to RESOURCEUSAGE_CONNECTABLE, the application can pass
the structure's address to the WNetAddConnection2 function or the
WNetAddConnection3 function to connect to the resource.

The following example illustrates an application-defined function (EnumerateFunc) that
enumerates all the resources on a network. The sample specifies NULL for the pointer to
the NETRESOURCE structure because when WNetOpenEnum receives a NULL
pointer, it retrieves a handle to the root of the network.

First the sample calls the WNetOpenEnum function to begin the enumeration. The
sample calls the GlobalAlioc function to allocate the required buffer, and the
ZeroMemory function to initialize the buffer with zeroes. Then the sample calls the
WNetEnumResource function to continue the enumeration. Whenever the dwUsage
member of a NETRESOURCE structure retrieved by WNetEnumResource is equal to
RESOURCEUSAGE_CONTAINER, the EnumerateFunc function calls itself recursively
and uses a pointer to that structure in its call to WNetOpenEnum. Finally, the sample
calls the GlobalFree function to free the allocated memory, and the WNetCloseEnum to
end the enumeration. EnumerateFunc calls an application-defined error handler to
process errors, and the TextOut function for printing.

Chapter 28 Windows Networking (WNet) 597

598 Volume 3 RPC and WNet

(continued)

Chapter 28 Windows Networking (WNet) 599

For more information about using an application-defined error handler, see Retrieving
Network Errors.

Adding a Network Connection
Windows NTIWindows 2000

To make a connection to a network resource described by a NETRESOURCE structure,
an application can call the WNetAddConnection2, the WNetAddConnection3, or the
WNetUseConnection function. The following example demonstrates use of the
WNetAddConnection2 function.

The code sample calls the WNetAddConnection2 function, specifying that the system
should update the user's profile with the information, creating a "remembered" or
persistent connection. The sample calls an application-defined error handler to process
errors, and the TextOut function for printing.

(continued)

600 Volume 3 RPC and WNet

(continued)

The WNetAddConnection function is supported for compatibility with earlier versions of
Windows for Workgroups. New applications should call the WNetAddConnection2
function or the WNetAddConnection3 function.

For more information about using an application-defined error handler, see Retrieving
Network Errors.

Assigning a Drive to a Share
Windows NTIWindows 2000

The following example demonstrates how to connect a drive letter to a remote server
share with a call to the WNetAddConnection2 function. The sample informs the user
whether or not the call was successful.

To test the following code sample, perform the following steps:

1. Change the following lines to valid strings:

2. Add the file to a console application called AddConn2.

3. Link the library MPR.LlB to the compiler list of libraries.

4. Compile and run the program AddConn2.EXE:

Determining the Location of a Share
Windows NTlWindows 2000

Chapter 28 Windows Networking (WNet) 601

The following example demonstrates how to call the WNetGetUniversalName function
to determine the location of a share on a redirected drive.

First the code sample calls the WNetGetUniversalName function, specifying the
UNIVERSAL_NAME_INFO information level to retrieve a pOinter to a Universal Naming
Convention (UNC) name string for the resource. Then the sample calls
WNetGetUniversalName a second time, specifying the REMOTE_NAME_INFO
information level to retrieve two additional network connection information strings. If the
calls are successful, the sample prints the location of the share.

To test the following code sample, perform the following steps:

1. Name the code sample GetUni.cpp.

2. Add the sample to a console application called GetUni.

602 Volume 3 RPC and WNet

3. Link the libraries SheIl32.lib, Mpr.lib, and NetApi32.lib to the compiler list of libraries.

4. From the command prompt, change to the GetUni directory.

5. Compile GetUnLcpp.

6. Run the file GetUnLexe followed by a drive letter and colon, like this:

Retrieving the Connection Name
Windows NTlWindows 20.0.0.

Chapter28 Windows Networking (WNet) 603

To retrieve the name of the network resource associated with a local device, an
application can call the WNetGetConnection function, as shown in the following
example. The sample calls an application-defined error handler to process errors, and
the TextOut function for printing.

604 Volume 3 RPC and WNet

(continued)

For more information about using an applicatiol1-defined error handler, see Retrieving
Network Errors. .

Retrieving the User Name
Windows NTIWindows 2000
To retrieve the name of the user associated either with a local device connected to a
network resource or with the name of a network, an application can call the
WNetGetUser function. The following example uses the device name to retrieve the
name of the user. The sample calls an application-defined error handler to process
errors, and the TextOut function for printing.

Chapter 28 Windows Networking (WNet) 605

For more information about using an application-defined error handler, see Retrieving
Network Errors.

Canceling a Network Connection
Windows NTlWindows 2000
To cancel a connection to a network resource, an application can call the
WNetCanceiConnection2 function, as shown in the following example. The call to
WNetCanceiConnection2 specifies that a network connection should no longer be
persistent. The sample calls an application-defined error handler to process errors, and
the TextOut function for printing.

(continued)

606 Volume 3 RPC and WNet

(continued)

The WNetCancelConnection function is supported for compatibility with earlier versions
of Windows for Workgroups. For new applications, use WNetCancelConnection2.

For more information about using an application-defined error handler, see Retrieving
Network Errors.

Retrieving Network Errors
Windows NTlWindows 2000
The WNet functions return error codes for compatibility with Windows for Workgroups.
For compatibility with the Win32 API, the function also sets the error code value returned
by GetLastError.

When one of the WNet functions returns ERROR_EXTENDED_ERROR, an application
can call the WNetGetLastError function to retrieve additional information about the
error. This information is usually specific to the network provider.

The following example illustrates an application-defined error-handling function
(NetErrorHandler). The function takes three arguments: a window handle, the error code
returned by one of the WNet functions, and the name of the function that produced the
error. If the error code is ERROR_EXTENDED_ERROR, NetErrorHandler calls
WNetGetLastError to get extended error information and prints the information. The
sample calls the MessageBox function to process messages.

Chapter 28 Windows Networking (WNet) 607

(continued)

608 Volume 3 RPC and WNet

(continued)

Windows Networking Reference
The following elements are used in Windows networking:

• Windows Networking Functions

• Windows Networking Structures

Windows Networking Functions
The following functions are used in Windows networking:

MultinetGetConnectionPerformance WNetGetConnection
WNetAddConnection2 WNetGetLastError
WNetAddConnection3 WNetGetNetworklnformation
WNetCancelConnection WNetGetProviderName
WNetCanceiConnection2 WNetGetResourcelnformation
WNetCloseEnum WNetGetResourceParent
WNetConnectionDialog WNetGetUniversalName
WNetConnectionDialog1 WNetGetUser
WNetDisconnectDialog WNetOpenEnum
WNetDisconnectDialog1 WNetUseConnection
WNetEnumResource

Obsolete Functions
The following function is provided only for compatibility with 16-bit versions of Windows:

WNetAddConnection

Chapter 28 Windows Networking (WNet) 609

MultinetGetConnectionPerformance
The MultinetGetConnectionPerformance function returns information about the
expected performance of a connection used to access a network resource. The function
returns the information in a NETCONNECTINFOSTRUCT structure.

Note that the MultinetGetConnectionPerformance function can be used only to
request information for a local device that is redirected to a network resource, or for a
network resource to which there is currently a connection:

Parameters
IpNetResource

[in] Pointer to a NETRESOURCE structure that specifies the network resource. The
following members have specific meanings in this context.

Member Meaning

IpLocalName

IpRemoteName

IpProvider

IpNetConnectlnfoStruct

Pointer to a buffer that specifies a local device, such as "F:" or
"LPT1 ", that is redirected to a network resource to be queried.

If this member is NULL or an empty string, the network
resource is specified in the IpRemoteName member. If this
flag specifies a local device, IpRemoteName is ignored.

Pointer to a network resource to query. The resource must
currently have an established connection. For example, if the
resource is a file on a file server, then having the file open will
ensure the connection.

Usually set to NULL, but can be a pointer to the owner
(provider) of the resource if the network on which the resource
resides is known.

If the IpProvider member is not NULL, the system attempts to
return information only about the named network.

[out] Pointer to the NETCONNECTINFOSTRUCT structure that receives the data.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one or more of the following error values.

610 Volume 3 RPC and WNet

Value Meaning

ERROR_NOT _SUPPORTED The network resource does not supply this
information.

ERROR_NOT _CONNECTED The IpLocalName member does not specify a
redirected device, or the IpRemoteName
member does not specify the name of a resource
that is currently connected.

ERROR_NO_NET_OR_BAD_PATH The operation could not be completed, either
because a network component is not started, or
because the specified resource name is not
recognized.

ERROR_BAD_DEVICE The local device specified by the IpLocalName
member is invalid.

ERROR_BAD_NET _NAME The resource specified by the IpRemoteName
member was not recognized by any network.

ERROR_INVALI D_PARAMETER Either the IpNetConnectinfoStruct parameter
does not point to a
NETCONNECTINFOSTRUCT structure in which
the cbStructure member is filled with the
structure size, or both the IpLocalName and
IpRemoteName members are not specified.

ERROR_NO_NETWORK The network is unavailable.

ERROR_EXTENDED_ERROR A network-specific error occurred. To obtain a
description of the error, call WNetGetLastError.

Remarks
The information returned by the MultinetGetConnectionPerformance function is an
estimate only. Network traffic and routing can affect the accuracy of the results returned.

A typical way to use this function would be to open a file on a network server (which
would ensure that there is a connection to the file), call this function, and use the results
to make decisions about how to manage file I/O. For example, you can decide whether
to read the entire file into a temporary file on the client or directly access the file on the
server.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Chapter 28 Windows N~tworking (WNet) 611

Windows Networking (WNet) Overview, Windows Networking Functions,
NETCONNECTINFOSTRUCT, NETRESOURCE

WNetAddConnection
The WNetAddConnection function enables the calling application to connect a local
device to a network resource. A successful connection is persistent, meaning that the
system automatically restores the connection during subsequent logon operations.

Note This function is provided only for compatibility with 16-bit versions of Windows.
Win32-based applications should call the WNetAddConnection2 or the
WNetAddConnection3 function.

Parameters
IpRemoteName

[in] Pointer to a constant null-terminated string that specifies the network resource to
connect to.

IpPassword
[in] Pointer to a constant null-terminated string that specifies the password to be used
to make a connection. This parameter is usually the password associated with the
current user.

If this parameter is NULL, the default password is used. If the string is empty, no
password is used.

Windows 95/98: This parameter must be NULL or an empty string.

IpLocalName
[in] Pointer to a constant null-terminated string that specifies the name of a local
device to be redirected, such as "F:" or "LPT1". The string is treated in a case
insensitive manner. If the string is NULL, a connection to the network resource is
made without redirecting the local device.

Return Values
If the function succeeds, the return value is NO:..,.ERROR.

612 Volume 3 RPC and WNet

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED

ERROR_ALREADY _ASSIGNED

ERROR~BAD_PROFILE

ERROR_CANNOT _OPEN_PROFILE

ERROR_DEVICE_ALREADY _
REMEMBERED

ERROR_INVALlD_PASSWORD

ERROR_NO_NET_OR_BAD_PATH

Access is denied.

The device specified in the IpLocalName
parameter is already connected.

The device type and the resource type do not
match.

The value specified in the IpLocalName
parameter is invalid.

The value specified in the IpRemoteName
parameter is not valid or cannot be located.

The user profile is in an incorrect format.

The system is unable to open the user profile to
process persistent connections.

An entry for the device specified in the
IpLocalName parameter is already in the user
profile.

A network-specific error occurred. To obtain a
description of the error, call the
WNetGetLastError function.

The specified password is invalid.

The operation cannot be performed because a
network component is not started or because a
specified name cannot be used.

The network is unavailable.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Windows Networking (WNet) Overview, Windows Networking Functions,
WNetAddConnection2, WNetAddConnection3, WNetCancelConnection,
WNetCancelConnection2, WNetGetConnection

Chapter 28 Windows Networking (WNet) 613

WNetAddConnection2
The WNetAddConnection2 function makes a connection to a network resource. The
function can redirect a local device to the network resource.

The WNetAddConnection2 function supersedes the WNetAddConnection function. If
you can pass a handle to a window that the provider of network resources can use as an
owner window for dialog boxes, call the WNetAddConnection3 function instead.

Parameters
IpNetResource

[in] Pointer to a NETRESOURCEstructure that specifies details of the proposed
connection, such as information about the network resource, the local device, and the
network resource provider.

You must specify the following members of the NETRESOURCE structure.

Member

dwType

IpLocalName

IpRemoteName

Description

Specifies the type of network resource to connect to.

If the IpLocalName member points to a nonempty string, this
member can be equal to RESOURCETYPE_DISK or
RESOURCETYPE_PRINT.

If IpLocalName is NULL, or if it pOints to an empty string,
dwType can be equal to RESOURCETYPE_DISK,
RESOURCETYPE_PRINT, or RESOURCETYPE_ANY.

Points to a null-terminated string that specifies the name of a
local device to redirect, such as "F:" or "LPT1". The string is
treated in a case-insensitive manner.

If the string is empty, or if IpLocalName is NULL, the function
makes a connection to the network resource without
redirecting a local device.

Points to a null-terminated string that specifies the network
resource to connect to. The string can be up to MAX_PATH
characters in length, and must follow the network provider's
naming conventions.

(continued)

614 Volume 3 RPe and WNet

(continued)

Member

IpProvider

Description

Points to a null-terminated string that specifies the network
provider to connect to.

If IpProvider is NULL, or if it pOints to an empty string, the
operating system attempts to determine the correct provider by
parsing the string pOinted to by the IpRemoteName member.

If this member is not NULL, the operating system attempts to
make a connection only to the named network provider.

You should set this member only if you know the network
provider you want to use. Otherwise, let the operating system
determine which provider the network name maps to.

The WNetAddConnection2 function ignores the other members of the
NETRESOURCE structure.

IpPassword
[in] Pointer to a constant null-terminated string that specifies a password to be used in
making the network connection.

If IpPassword is NULL, the function uses the current default password associated with
the user specified by the IpUserName parameter.

If IpPassword points to an empty string, the function does not use a password.

Windows 95/98: This parameter must be NULL or an empty string.

IpUsername
[in] Pointer to a constant null-terminated string that specifies a user name for making
the connection. .

If IpUserName is NULL, the function uses the default user name. (The user context for
the process provides the default user name.)

The IpUserName parameter is specified when users want to connect to a network
resource for which they have been assigned a user name or account other than the
default user name or account.

The user-name string represents a security context. It may be specific to a network
provider.

Windows 95/98: This parameter must be NULL or an empty string.

dwFlags
[in] Specifies a DWORD value that describes connection options. The following value
is currently defined. .

Value

Return Values

Chapter 28 Windows Networking (WNet) 615

Meaning

The network resource connection should be
remembered.

If this bit flag is set, the operating system
automatically attempts to restore the connection
when the user logs on.

The operating system remembers only
successful connections that redirect local
devices. It does not remember connections that
are unsuccessful or deviceless connections. (A
deviceless connection occurs when the
IpLocalName member is NULL or pOints to an
empty string.)

If this bit flag is clear, the operating system does
not automatically restore the connection at
logon.

If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED

ERROR_ALREADY _ASSIGNED

ERROR_BAD _DEVICE

ERROR_BAD_NET_NAME

ERROR_BAD_PROFILE

ERROR_BAD _PROVI DER

Access to the network resource was denied.

The local device specified by the IpLocalName
member is already connected to a network
resource.

The type of local device and the type of
network resource do not match.

The value specified by IpLocalName is invalid.

The value specified by the IpRemoteName
member is not acceptable to any network
resource provider, either because the resource
name is invalid, or because the named
resource cannot be located.

The user profile is in an incorrect format.

The value specified by the IpProvider member
does not match any provider.

The router or provider is busy, possibly
initializing. The caller should retry.

(continued)

616 Volume 3 RPC and WNet

(continued)

Value

ERROR_CANCELLED

ERROR_DEVICE_ALREADY _
REMEMBERED

ERROR_EXTENDED_ERROR

ERROR_INVALlD_PASSWORD

ERROR_NO_NET_OR_BAD_PATH

Remarks

Meaning

The attempt to make the connection was
cancelled by the user through a dialog box from
one of the network resource providers, or by a
called resource.
The system is unable to open the user profile to
process persistent connections.

An entry for the device specified by
IpLocalName is already in the user profile.

A network-specific error occurred. Call the
WNetGetLastError function to obtain a
description of the error.

The specified password is invalid.

The operation cannot be performed because a
network component is not started or because a
specified name cannot be used.

The network is unavailable.

For a code sample that illustrates how to make a connection to a network resource using
the WNetAddConnection2 function, see Adding a Network Connection. For an example
that demonstrates how to use the Error! Bookmark not defined. function to connect a
drive letter to a remote share on a server, see Assigning a Drive to a Share.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Windows Networking (WNet) Overview, Windows Networking Functions,
WNetAddConnection3, WNetCancelConnection2, WNetGetConnection,
NETRESOURCE

WNetAddConnection3
The WNetAddConnection3 function makes a connection to a network resource.The
function can redirect a local device to the network resource.

Chapter 28 Windows Networking (WNet) 617

The WNetAddConnection3 function is similar to the WNetAddConnection2 function.
The main difference is that WNetAddConnection3 has an additional parameter, a
handle to a window that the provider of network resources can use as an owner window
for dialog boxes. The WNetAddConnection2 function and the WNetAddConnection3
function supersede the WNetAddConnection function.

Parameters
hwndOwner

[in] Specifies the handle to a window that the provider of network resources can use
as an owner window for dialog boxes.

The hwndOwner parameter can be NULL. If it is, a call to WNetAddConnection3 is
equivalent to calling the WNetAddConnection2 function.

IpNetResource
[in] Pointer to a NETRESOURCE structure that specifies details of the proposed
connection, such as information about the network resource, the local device, and the
network resource provider.

You must specify the following members of the NETRESOURCE structure.

Member

dwType

IpLocalName

Description

Specifies the type of network resource to connect to.

If the IpLocalName member points to a nonempty string, this
member can be equal to RESOURCETYPE_DISK or
RESOURCETYPE_PRINT.

If IpLocalName is NULL, or if it pOints to an empty string,
dwType can be equal to RESOURCETYPE_DISK,
RESOURCETYPE_PRINT, or RESOURCETYPE_ANY.

Points to a null-terminated string that specifies the name of a
local device to redirect, such as "F:" or "LPT1". The string is
treated in a case-insensitive manner.

If the string is empty or if IpLocalName is NULL, the function
makes a connection to the network resource without redirecting a
local device.

(continued)

618 Volume 3 RPC and WNet

(continued)

Member Description

IpRemoteName Points to a null-terminated string that specifies the network
resource to connect to. The string can be up to MAX_PATH
characters in length, and must follow the network provider's
naming conventions.

IpProvider Points to a null-terminated string that specifies the network
provider to connect to.

If IpProvider is NULL, or if it points to an empty string, the
operating system attempts to determine the correct provider by
parsing the string pointed to by the IpRemoteName member.

If this member is not NULL, the operating system attempts to
make a connection only to the named network provider.

You should set this member only if you know which network
provider you want to use. Otherwise, let the operating system
determine which network provider the network name maps to.

The WNetAddConnection3 function ignores the other members of the
NETRESOURCE structure.

IpPassword
[in] Pointer to a null-terminated string that specifies a password to be used in making
the network connection.

If IpPassword is NULL, the function uses the current default password associated with
the user specified by the IpUserName parameter.

If IpPassword points to an empty string, the function does not use a password.

Windows 95/98: This parameter must be NULL or an empty string.

IpUserName
[in] Pointer to a null-terminated string that specifies a user name for making the
connection.

If IpUserName is NULL, the function uses the default user name. (The user context for
the process provides the default user name.)

The IpUserName parameter is specified when users want to connect to a network
resource for which they have been assigned a user name or account other than the
default user name or account.

The user-name string represents a security context. It may be specific to a network
provider.

Windows 95/98: This parameter must be NULL or an empty string.

dwFlags
[in] Specifies a DWORD value that describes connection options. The following value
is currently defined.

Chapter 28 Windows Networking (WNet) 619

Value Meaning

CONNECT_UPDATE_PROFILE The network resource connection should be
remembered.

Return Values

If this bit flag is set, the operating system
automatically attempts to restore the connection
when the user logs on.

The operating system remembers only successful
connections that redirect local devices. It does not
remember connections that are unsuccessful or
device less connections. (A deviceless connection
occurs when the IpLocalName member is NULL
or when it points to an empty string.)

If this bit flag is clear, the operating system does
not automatically restore the connection at logon.

If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED

ERROR_ALREADY:...ASSIGNED

ERROR_BAD_DEVICE

ERROR_BAD_NET _NAME

ERROR_BAD_PROFILE

ERROR_BAD_PROVIDEH

ERROR_CANCELLED

Access to the network resource was denied.

The local device specified by the IpLocalName
member is already connected to a network
resource.

The type of local device and the type of network
resource do not match.

The value specified by IpLocalName is invalid.

The value specified by the IpRemoteName
member is not acceptable to any network
resource provider, either because the resource
name is invalid, or because the named
resource cannot be located.

The user profile is in an incorrect format.

The value specified by the IpProvider member
does not match any provider.

The router or provider is busy, possibly
initializing. The caller should retry.

The attempt to make the connection was
cancelled by the user through a dialog box from
one of the network resource providers, or by a
called resource.

(continued)

620 Volume 3 RPC and WNet

(continued)

Value

ERROR_DEVICE_ALREADY _
REMEMBERED

ERROR_INVALID _PASSWORD

ERROR_NO_NET_OR_BAD_PATH

Meaning

The system is unable to open the user profile to
process persistent connections.

An entry for the device specified by the
IpLocalName member is already in the user
profile.

A network-specific error occurred. Call the
WNetGetLastError function to obtain a
description of the error.

The specified password is invalid.

The operation cannot be performed because a
network component is not started or because a
specified name cannot be used.

The network is unavailable.

The WNetUseConnection function is similar to the WNetAddConnection3 function.
The main difference is that WNetUseConnection can automatically select an unused
local device to redirect to the network resource.·

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Windows Networking (WNet) Overview, Windows Networking Functions,
NETRESOURCE, WNetAddConnection2, WNetCancelConnection2,
WNetUseConnection, WNetGetConnection

WNetCancelConnection
The WNetCancelConnection function cancels an existing network connection.

The WNetCancelConnection function is provided for compatibility with 16-bit versions
of Windows. Win32-based applications should call the WNetCanceiConnection2
function.

Parameters
IpName

Chapter 28 Windows Networking (WNet) 621

[in] Pointer to a constant null-terminated string that specifies the name of either the
redirected local device or the remote network resource to disconnect from.

When this parameter specifies a redirected local device, the function cancels only the
specified device redirection. If the parameter specifies a remote network resource,
only the connections to remote networks without devices are canceled.

fForce
[in] Specifies whether or not the disconnection should occur if there are open files or
jobs on the connection. If this parameter is FALSE, the function fails if there are open
files or jobs.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_BAD_PROFILE

ERROR_CANNOT_OPEN
PROFILE

The user profile is in an incorrect format.

The system is unable to open the user
profile to process persistent
connections.

The device is in use by an active
process and cannot be disconnected.

A network-specific error occurred. To
obtain a description of the error, call the
WNetGetLastError function.

The name specified by the IpName
parameter is not a redirected device, or
the system is not currently connected to
the device specified by the parameter.

There are open files, and the fForce
parameter is FALSE.

622 Volume 3 RPC and WNet

Windows NT/2000: Requires Windows NT 3,1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk,h,
Library: Use Mpr.lib,
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000,

Windows Networking (WNet) Overview, Windows Networking Functions,
WNetAddConnection, WNetAddConnection2, WNetCancelConnection2,
WNetGetConnection

WNetCanceiConnection2
The WNetCanceiConnection2 function cancels an existing network connection, You
can also call the function to remove remembered network connections that are not
currently connected,

The WNetCanceiConnection2 function supersedes the WNetCancelConnection
function,

Parameters
IpName

[in] Pointer to a constant null-terminated string that specifies the name of either the
redirected local device or the remote network resource to disconnect from,

If this parameter specifies a redirected local resource, the function cancels only the
specified redirection; otherwise, the function cancels all connections to the remote
network resource,

dwFlags
[in] Specifies a DWORD value that describes the connection type, The following
values are defined:

Value

o

CONNECT_UPDATE_
PROFILE

fForce

Chapter 28 Windows Networking (WNet) 623

Meaning

The system does not update information about the
connection.

If the connection was marked as persistent in the registry,
the system continues to restore the connection at the next
logon. If the connection was not marked as persistent, the
function ignores the setting of the
CONNECT_UPDATE_PROFILE flag.

The system updates the user profile with the information
that the connection is no longer a persistent one.

The system will not restore this connection during
subsequent logon operations. (Disconnecting resources
using remote names has no effect on persistent
connections.)

[in] Specifies a Boolean value that indicates whether the disconnection should occur if
there are open files or jobs on the connection. If this parameter is FALSE, the function
fails if there are open files or jobs.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_BAD_PROFILE The user profile is in an incorrect format.

ERROR_CANNOT _OPEN_PROFILE The system is unable to open the user profile to
process perSistent connections.

ERROR_DEVICE_IN_USE The device is in use by an active process and
cannot be disconnected.

ERROR_EXTENDED_ERROR A network-specific error occurred. To obtain a
description of the error, call the
WNetGetLastError function.

ERROR_NOT _CONNECTED The name specified by the IpName parameter
is not a redirected device, or the system is not
currently connected to the device specified by
the parameter.

ERROR_OPEN_FILES There are open files, and the fForce parameter
is FALSE.

624 Volume 3 RPC and WNet

Remarks
For a code sample that illustrates how to cancel a connection to a network resource with
a call to the WNetCanceiConnection2 function, see Canceling a Network Connection.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Windows Networking (WNet) Overview, Windows Networking Functions,
WNetAddConnection2, WNetAddConnection3, WNetGetConnection

WNetCloseEnum
The WNetCloseEnum function ends a network resource enumeration started by a call to
the WNetOpenEnum function.

Parameters
hEnum

[in] Specifies a handle that identifies an enumeration instance. This handle must be
returned by the WNetOpenEnum function.

Return Values
If the function succeeds, the return value is NO ERROR.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_NO_NETWORK The network is unavailable. (This condition is tested
before the handle specified in the hEnum parameter is
tested for validity.)

ERROR_INVALlD_HANDLE The hEnum parameter does not specifiy a valid
handle.

ERROR_EXTENDED_ERROR A network-specific error occurred. To obtain a
description of the error, call the WNetGetLastError
function.

Chapter 28 Windows Networking (WNet) 625

Remarks
For a code sample that illustrates an application-defined function that enumerates all the
resources on a network, see Enumerating Network Resources.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.

Windows Networking (WNet) Overview, Windows Networking Functions,
WNetEnumResource, WNetOpenEnum

WNetConnectionDialog
The WNetConnectionDialog function starts a general browsing dialog box for
connecting to network resources. The function requires a handle to the owner window for
the dialog box.

Parameters
hwnd

[in] Specifies a handle to the owner window for the dialog box.

dwType
[in] Specifies the resource type to allow connections to. This parameter can be the
following value.

Value Meaning

RESOURCETYPE_DISK Connections to disk resources.

Return Values
If the function succeeds, the return value is NO_ERROR. If the user cancels the dialog
box, the function returns -1 .

If the function fails, the return value can be one of the following error codes:

626 Volume 3 RPC and WNet

Value Meaning

ERROR_EXTENDED_ERROR A network-specific error occurred. To obtain a
description of the error, call the
WNetGetLastError function.

ERROR_INVALlD_PASSWORD The specified password is invalid.

ERROR_NO_NETWORK The network is unavailable.

ERROR_NOT _ENOUGH_MEMORY There is insufficient memory to start the
dialog box.

Remarks
If the user clicks OK in the dialog box, the requested network connection will have been
made when the WNetConnectionDialog function returns.

If the function attempts to make a connection and the network provider returns the
message ERROR_INVALlD_PASSWORD, the system prompts the user to enter a
password. The system uses the new password in another attempt to make the
connection.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.

Windows Networking (WNet) Overview, Windows Networking Functions,
WNetAddConnection3, WNetCancelConnection2, WNetDisconnectDialog

WNetConnection Dialog1
The WNetConnectionDialog1 function brings up a general browsing dialog for
connecting to network resources. The function requires a CONNECTDLGSTRUCT to
establish the dialog box parameters.

Parameters
IpConnDlgStruct

[in/out] Pointer to a CONNECTDLGSTRUCT structure. The structure establishes the
browsing dialog parameters.

Chapter 28 Windows Networking (WNet) 627

Return Values
If the user cancels the dialog box, the function returns -1. If the function is successful, it
returns NO_ERROR. Also, if the call is successful, the dwDevNum member of the
CONNECTDLGSTRUCT structure contains the number of the connected device.

Typically this dialog returns an error only if the user cannot enter a dialog session. This
is because errors that occur after a dialog session are reported to the user directly. If the
function fails, the return value can be one of the following error codes.

Value

ERROR_NO_NETWORK

ERROR_NOT_ENOUGH_MEMORY

Meaning

Both the CONNDLG_RO_PATH and the
CONNDLG_USE_MRU dialog box options are
set. (Dialog box options are specified by the
dwFlags member of the
CONNECTDLGSTRUCT structure.)

-or-

Both the CONNDLG_PERSIST and the
CONNDLG_NOT _PERSIST dialog box options
are set.

-or-

The CONNDLG_RO_PATH dialog box option is
set and the IpRemoteName member of the
NETRESOURCE structure does not point to a
remote network. (The CONNECTDLGSTRUCT
structure pOints to a NETRESOURCE structure.)

The dwType member of the NETRESOURCE
structure is not set to RESOURCETYPE_DISK.

The network provider is busy (possibly
initializing). The caller should retry.

The network is unavailable.

There is insufficient memory to display the
dialog box.

A network-specific error occurred. Call
WNetGetLastError to obtain a description of
the error.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NTf2000.

628 Volume 3 RPC and WNet

Windows Networking (WNet) Overview, Windows Networking Functions,
CONNECTDLGSTRUCT, NETRESOURCE, WNetConnectionDialog',
WNetDisconnectDialog

WNetDisconnectDialog
The WNetDisconnectDialog function starts a general browsing dialog box for
disconnecting from network resources. The function requires a handle to the owner
window for the dialog box.

Parameters
hwnd

[in] Specifies a handle to the owner window for the dialog box.

dwType
[in] Specifies the resource ,type to disconnect from. This parameter can have the
following value.

Value Meaning

RESOURCETYPE_DISK Disconnects from disk resources.

Return Values
If the function succeeds, the return value' is NO_ERROR. If the user cancels the dialog
box, the return value is -1 .

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_NO_NEnNORK

ERROR_NOT _ENOUGH_
MEMORY

Remarks

A network-specific error occurred. To obtain a
description of the error, call the
WNetGetLastError function.

The network is unavailable.

There is insufficient memory to start the dialog
box.

If the user chooses OK in the dialog box, the requested network disconnection will have
been made when the WNetDisconnectDialog function returns.

Chapter 28 Windows Networking (WNet) 629

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.

Windows Networking (WNet) Overview, Windows Networking Functions,
WNetAddConnection2, WNetCancelConnection2, WNetConnectionDialog,
WNetConnectionDialog1

WNetDisconnectDialog1
The WNetDisconnectDialog1 function attempts to disconnect a network resource. If the
underlying network returns ERROR_OPEN_FILES, the function prompts the user for
confirmation. If there is any error, the function informs the user. The function requires a
DISCDLGSTRUCT to specify the parameters for the disconnect attempt.

Parameters
IpConnDlgStruct

[in] Pointer to a DISCDLGSTRUCT structure. The structure specifies the behavior for
the disconnect attempt.

Return Values
If the function succeeds, the return value is NO_ERROR. If the user cancels the dialog
box, the return value is -1.

If the function fails, the return value can be one of the following error codes.

Value Meaning ,

ERROR_CANCELLED When the system prompted the user for a
decision about disconnecting, the user elected
not to disconnect.

Unable to disconnect because the user is
actively using the connection.

The network provider is busy (possibly
initializing). The caller should retry.

(continued)

630 Volume 3 RPC and WNet

(continued)

Value Meaning

ERROR_NO_NETWORK The network is unavailable.

ERROR_NOT _ENOUGH_MEMORY There is insufficient memory to start the
dialog box.

ERROR_EXTENDED_ERROR A network-specific error occurred. Call the
WNetGetLastError function to obtain a
description of the error.

Windows NT12000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Windows Networking (WNet) Overview, Windows Networking Functions,
WNetConriectionDialog, WNetConnectionDialog1, DISCDLGSTRUCT,
WNetDisconnectDialog

WNetEnumResource
The WNetEnumResource function continues an enumeration of network resources that
was started by a call to the WNetOpenEnum function.

Parameters
hEnum

[in] Specifies a handle that identifies an enumeration instance. This handle must be
returned by the WNetOpenEnum function.

IpcCount
[in/out] Pointer to a variable specifying the number of entries requested. If tlie number
requested is -1, the function returns as many entries as possible.

If the function succeeds, on return the variable pointed to by this parameter contains
the number of entries actually read.

Chapter 28 Windows Networking (WNet) 631

IpBuffer
[out] Pointer to the buffer that receives the enumeration results. The results are
returned as an array of NETRESOURCE structures. Note that the buffer you allocate
must be large enough to hold the structures, plus the strings to which their members
point. For more information, see the following Remarks section.

The buffer is valid until the next call using the handle specified by the hEnum
parameter. The order of NETRESOURCE structures in the array is not predictable.

IpBufferSize
[in/out] Pointer to a variable that specifies the size, in bytes, of the IpBuffer parameter.
If the buffer is too small to receive even one entry, this parameter receives the
required size of the buffer.

Return Values
If the function succeeds, the return value is one of the following values.

Value Meaning

The enumeration succeeded, and the buffer contains
the requested data. The calling application can
continue to call WNetEnumResource to complete
the enumeration.

There are no more entries. The buffer contents are
undefined.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_MORE_DAT A More entries are available with subsequent calls.

ERROR_INVALlD_HANDLE The handle specified by the hEnum parameter is not
valid.

ERROR_NO_NETWORK The network is unavailable. (This condition is tested
. before hEnum is tested for validity.)

ERROR_EXTENDED_ERROR A network-specific error occurred. To obtain a
description of the error, call the WNetGetLastError
function.

Remarks
The WNetEnumResource function does not enumerate users connected to a share;
you can call the NetConnectionEnum function to accomplish this task. To enumerate
hidden shares, call the NetShareEnum function.

632 Volume 3 RPe and WNet

An application cannot set the IpBuffer parameter to NULL and retrieve the required
buffer size from the IpBufferSize parameter. Instead, the application should allocate a
buffer of a reasonable size-16 kilobytes (K) is typical-and use the value of IpBufferSize
for error detection.

For a code sample that illustrates an application-defined function that enumerates all the
resources on a network, see Enumerating Network Resources.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Windows Networking (WNet) Overview, Windows Networking Functions,
NETRESOURCE, WNetCloseEnum, WNetOpenEnum

WNetGetConnection
The WNetGetConnection function retrieves the name of the network resource
associated with a local device.

Parameters
IpLocalName

[in] Pointer to a constant null-terminated string that specifies the name of the local
device to get the network name for.

IpRemoteName
[out] Pointer to a buffer that receives the null-terminated remote name used to make
the connection.

IpnLength
[in/out] Pointer to a variable that specifies the size, in characters, of the buffer pointed
to by the IpRemoteName parameter. If the function fails because the buffer is not
large enough, this parameter returns the required buffer size.

Chapter 28 Windows Networking (WNet) 633

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_SAD_DEVICE The string pointed to by the IpLocalName
parameter is invalid.

ERROR_NOT _CONNECTED The device specified by IpLocalName is not a
redirected device. For more information, see the
following Remarks section.

ERROR_MORE_DAT A The buffer is too small. The IpnLength parameter
points to a variable that contains the required
buffer size. More entries are available with
subsequent calls.

ERROR_CONNECTION_UNAVAIL The device is not currently connected, but it is a
persistent connection. For more information, see
the following Remarks section.

ERROR_NO_NETWORK The network is unavailable.

ERROR_EXTENDED_ERROR A network-specific error occurred. To obtain a
description of the error, call the
WNetGetLastError function.

ERROR_NO_NET _OR_SAD_PATH None of the providers recognize the local name
as having a connection. However, the network is
not available for at least one provider to whom
the connection may belong.

Remarks
Windows NTIWindows 2000: If the network connection was made using the Microsoft
LAN Manager network, and the calling application is running in a different logon session
than the application that made the connection, a call to the WNetGetConnection
function for the associated local device will fail. The function fails with
ERROR_NOT_CONNECTED or ERROR_CONNECTION_UNAVAIL. This is because a
connection made using Microsoft LAN Manager is visible only to applications running in
the same logon session as the application that made the connection. (To prevent the call
to WNetGetConnection from failing it is not sufficient for the application to be running in
the user account that created the connection.)

For a code sample that illustrates how to use the WNetGetConnection function to
retrieve the name of the network resource associated with a local device, see Retrieving
the Connection Name.

634 Volume 3 RPC and WNet

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Windows Networking (WNet) Overview, Windows Networking Functions,
WNetAddConnection2, WNetAddConnection3, WNetGetUser

WNetGetLastError
The WNetGetLastError function retrieves the most recent extended error code set by a
WNet function. The network provider reported this error code; it will not generally be one
of the errors included in the SDK header file WinError.h.

Parameters
IpError

[out] Pointer to the variable that receives the error code reported by the network
provider. The error code is specific to the network provider.

IpErrorBuf
[out] Pointer to the buffer that receives the null-terminated string describing the error.

nErrorBufSize
[in] Specifies the size, in characters, of the buffer pointed to by the IpErrorBuf
parameter. If the buffer is too small for the error string, the string is truncated but still
nUll-terminated. A buffer of at least 256 characters is recommended.

IpNameBuf
[out] Pointer to the buffer that receives the nUll-terminated string identifying the
network provider that raised the error.

nNameBufSize
[in] Specifies the size, in characters, of the buffer pointed to by the IpNameBuf
parameter. If the buffer is too small for the error string, the string is truncated but still
null-terminated.

Chapter 28 Windows Networking (WNet) 635

Return Values
If the function succeeds, and it obtains the last error that the network provider reported,
the return value is NO_ERROR.

If the caller supplies an invalid buffer, the return value is ERROR_INVALlD_ADDRESS.

Remarks
The WNetGetLastError function retrieves errors that are specific to a network provider.
You can call WNetGetLastError when a WNet function returns
ERROR_EXTENDED_ERROR.

Like the GetLastError function, WNetGetLastError returns extended error information,
which is maintained on a per-thread basis. Unlike GetLastError, the WNetGetLastError
function can return a string for reporting errors that are not described by any existing
error code in WinError.h.

For more information about using an application-defined error handler that calls the
WNetGetLastError function, see Retrieving Network Errors.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Windows Networking (WNet) Overview, Windows Networking Functions

WNetGetNetworklnformation
The WNetGetNetworklnformation function returns extended information about a
specific network provider whose name was returned by a previous network enumeration.

Parameters
IpProvider

[in] Pointer to a constant null-terminated string that contains the name of the network
provider for which information is required.

636 Volume 3 RPe and WNet

IpNetinfoStruct
[out] Pointer to a NETINFOSTRUCT structure. The structure describes characteristics
of the network.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_BAD_PROVIDER The IpProviderparameter does not match any running
network provider.

ERROR_BAD_ VALUE The cbStructure member of the NETINFOSTRUCT
structure does not contain a valid structure size.

Remarks
For a code sample that illustrates an application-defined function that enumerates all the
resources on a network, see Enumerating Network Resources.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Windows Networking (WNet) Overview, Windows Networking Functions,
WNetGetProviderName, NETINFOSTRUCT, NETRESOURCE, WNetOpenEnum,
WNetEnumResource

WNetGetProviderName
The WNetGetProviderName function obtains the provider name for a specific type of
network.

Parameters
dwNetType

Chapter 28 Windows Networking (WNet) 637

[in] Specifies the network type that is unique to the network. If two networks claim the
same type, the function returns the name of the provider loaded first. Only the high
word of the network type is used. If a network reports a subtype in the low word, it is
ignored.

You can find a complete list of network types in the header file WinNetwk.h.

IpProviderName
[out] Pointer to a buffer in which to return the network provider name.

IpBufferSize
[in/out] Specifies the size, in characters, of the buffer passed to the function. If the
return value is ERROR_MORE_DATA, IpBufferSize returns the buffer size required
(in characters) to hold the provider name.

Windows 95/98: The size of the buffer is in bytes, not characters. Also, the buffer
must be at least 1 byte long.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_NO_NETWORK

ERROR_INVALlD_ADDRESS

The buffer is too small to hold the network provider
name.

The network is unavailable.

The IpProviderName parameter or the IpBufferSize
parameter is invalid.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Windows Networking (WNet) Overview, Windows Networking Functions,
WNetGetResourcelnformation, WNetGetNetworklnformation,
WNetGetUniversalName

638 Volume 3 RPe and WNet

WNetGetResourcelnformation
When provided with a remote path to a network resource, the
WNetGetResourcelnformation function identifies the network provider that owns the
resource and obtains information about the type of the resource. The function is typically
used in conjunction with the WNetGetResourceParent function to parse and interpret a
network path typed in by a user.

Parameters
IpNetResource

[in] Pointer to a NETRESOURCE structure that specifies the network resource for
which information is required.

The IpRemoteName member of the structure should specify the remote path name of
the resource, typically one typed in by a user. The IpProvider and dwType members
should also be filled in if known, because this operation can be memory intensive,
especially if you do not specify the dwType member. If you do not know the values for
these members, you should set them to NULL. All other members of the
NETRESOURCE structure are ignored.

IpBuffer
[out] Pointer to the buffer to receive the result. On successful return, the first portion of
the buffer is a NETRESOURCE structure representing that portion of the input
resource path that is accessed through the WNet functions, rather than through
system functions specific to the input resource type.

For example, if the input remote resource path is \\server\share\dir1\dir2, then the
output NETRESOURCE structure contains information about the resource
\\server\share. The \dir1\dir2 portion of the path is accessed through the file I/O
functions. The IpRemoteName, IpProvider, dwType, dwDisplayType, and
dwUsage members of NETRESOURCE are returned, with all other members set to
NULL.

The IpRemoteName member is returned in the same syntax as the one returned from
an enumeration by the WNetEnumResource function. This allows the caller to
perform a string comparison to determine whether the resource passed to
WNetGetResourcelnformation is the same as the resource returned by a separate
call to WNetEnumResource.

Chapter 28 Windows Networking (WNet) 639

IpcbBuffer
[in/out] Pointer to a location that, on entry, specifies the size, in bytes, of the buffer
pointed to by IpBuffer. The buffer you allocate must be large enough to hold the
NETRESOURCE structure, plus the strings to which its members point. If the buffer is
too small for the result, this location receives the required buffer size, and the function
returns ERROR_MORE_DAT A.

IplpSystem
[out] If the function returns successfully, this parameter points to a string in the output
buffer that specifies the part of the resource that is accessed through system
functions. (This applies only to functions specific to the resource type rather than the
WNet functions.)

For example, if the input remote resource name is \\server\share\dir1\dir2, the
IpRemoteName member of the output NETRESOURCE structure pOints to
\\server\share. Also, the IplpSystem parameter points to \dir1\dir2. Both strings are
stored in the buffer pointed to by the IpBuffer parameter.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

The input IpRemoteName member is not an existing
network resource for any network.

The input dwType member does not match the type
of resource specified by the IpRemoteName
member.

A network-specific error occurred. Call
WNetGetLastError to obtain a description of the
error.

The buffer pointed to by the IpBuffer parameter is too
small.

The network is unavailable.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

640 Volume 3 RPC and WNet

Windows Networking (WNet) Overview, Windows Networking Functions,
WNetGetResourceParent, WNetGetProviderName, WNetGetNetworklnformation
WNetGetUniversalName

WNetGetResourceParent
The WNetGetResourceParent function returns the parent of a network resource in the
network browse hierarchy. Browsing begins at the location of the specified network
resource.

Call the WNetGetResourcelnformation and WNetGetResourceParent functions to
move up the network hierarchy. Call the WNetOpenEnum function to move down the
hierarchy.

Parameters
IpNetResource

[in] Pointer to a NETRESOURCE structure that specifies the network resource for
which the parent name is required.

Specify the members of the input NETRESOURCE structure as follows. The caller
typically knows the values to provide for the IpProvider and dwType members after
previous calls to WNetGetResourcelnformation or WNetGetResourceParent.

Member Description

dwType

IpRemoteName

IpProvider

This member should be filled in if known; otherwise, it should
be set to NULL.

This member should specify the remote name of the network
resource whose parent is required.

This member should specify the network provider that owns the
resource. This member is required; otherwise, the function
could produce incorrect results.

All other members of the NETRESOURCE structure are ignored.

IpBuffer
[out] Pointer to a buffer to receive a single NETRESOURCE structure that represents
the parent resource. The function returns the IpRemoteName, IpProvider, dwType,
dwDisplayType, and dwUsage members of the structure; all other members are set
to NULL.

Chapter 28 Windows Networking (WNet) 641

The IpRemoteName member pOints to the remote name for the parent resource. This
name uses the same syntax as the one returned from an enumeration by the
WNetEnumResource function. The caller can perform a string comparison to
determine whether the WNetGetResourceParent resource is the same as that
returned by WNetEnumResource. If the input resource has no parent on any of the
networks, the IpRemoteName member is returned as NULL. .

The presence of the RESOURCEUSAGE_CONNECTASLE bit in the dwUsage
member indicates that you can connect to the parent resource, but only when it is
available on the network.

IpcbBuffer
[in/outj Pointer to a location that, on entry, specifies the size, in bytes, of the buffer
pointed to by the IpBuffer parameter. If the buffer is too small to hold the result, this
location receives the required buffer size, and the function returns
ERROR_MORE_DAT A.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user is authenticated to the network, but does
not have sufficient permissions (access rights) to
perform the operation.

ERROR_SAD_NET _NAME The input IpRemoteName member is not an
existing network resource for any network.

ERROR_SAD_PROVIDER The input IpProvider member does not match any
installed network provider.

ERROR_MORE_DAT A The buffer pointed to by the IpBuffer parameter is
too small.

ERROR_NOT_AUTHENTICATED The caller does not have the necessary
permissions to obtain the name of the parent.

Remarks
The WNetGetResourceParent function is typically used in conjunction wit,h the
WNetGetResourcelnformation function to parse and interpret a network path typed in
by a user.

Unlike the WNetGetResourcelnformation function, if the resource includes a parent in
its syntax, the WNetGetResourceParent function returns the parent, whether or not the
resource actually exists. WNetGetResourceParent should typically be used only by
applications that display network resources to the user in a hierarchical fashion.

642 Volume 3 RPe and WNet

The Windows Explorer and the File Open dialog box are two well-known examples of
this type of application. Note that no assumptions should be made about the type of
resource that will be returned.

You can call the WNetEnumResource, WNetGetResourcelnformation, .or
WNetGetResourceParent function to return information from the NETRESOURCE
structure. You can also construct network resource information using the members of the
NETRESOURCE structure.

An example of an inappropriate use of WNetGetResourceParent is to determine the
name of the domain to which a specified server belongs. The function may happen to
return the correct domain name for some networks in which domains appear directly
above servers in the browse hierarchy.The function will return incorrect results for other
networks.

Windows NT/2000: Requires Windows NT4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Windows Networking (WNet) Overview, Windows Networking Functions,
WNetGetResourcelnformation, WNetGetProviderName,
WNetGetNetworkinformation, WNetGetUniversalName

WNetGetUniversalName
The WNetGetUniversalName function takes a drive-based path for a network resource
and returns an information structure that contains a more universal form of the name.

Parameters
IpLocalPath

[in] Pointer to a constant null-terminated string that is a drive-based path for a network
resource.

Chapter 28 Windows Networking (WNet) 643

For example, if drive H has been mapped to a network drive share, and the network
resource of interest is a file named SAMPLE.DOC in the directory
\WIN32\EXAMPLES on that share, the drive-based path is
H:\WIN32\EXAMPLES\SAMPLE.DOC.

dwlnfoLevel
[in] Specifies the type of structure that the function stores in the buffer pointed to by
the IpBuffer parameter. This parameter can be one of the following values.

Value

UNIVERSAL_NAME_INFO_
LEVEL

REMOTE_NAME_INFO _
LEVEL

Meaning

The function stores a UNIVERSAL_NAME_INFO
structure in the buffer.

The function stores a REMOTE_NAME_INFO
structure in the buffer.

The UNIVERSAL_NAME_INFO structure paints to a Universal Naming Convention
(UNC) name string.

The REMOTE_NAME_INFO structure points to a UNC name string and two additional
connection information strings. For more information, see the following Remarks
section.

IpBuffer
[out] Pointer to a buffer that receives the structure specified by the dwlnfoLevel
parameter.

IpBufferSize
[in/out] Pointer to a variable that specifies the size, in bytes, of the buffer pointed to by
the IpBuffer parameter.

If the function succeeds, it sets the variable pointed to by IpBufferSize to the number
of bytes stored in the buffer. If the function fails because the buffer is too small, this
location receives the required buffer size, and the function returns
ERROR_MORE_DATA.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_BAD_DEVICE The string pointed to by the IpLocalPath
parameter is invalid.

ERROR_CONNECTION_UNAVAIL There is no current connection to the remote
device, but there is a remembered (persistent)
connection to it.

(continued)

644 Volume 3 RPC and WNet

(continued)

Value

ERROR_NO_NEnNORK

ERROR_NOT_CONNECTED

Remarks

Meaning

A network-specific error occurred. Use the
WNetGetLastError function to obtain a
description of the error.

The buffer pointed toby the IpBufferparameter is
too small. The function sets the variable pOinted
to by the IpBufferSize parameter to the required
buffer size. More entries are available with
subsequent calls.

The dwlnfoLevel parameter is set to
UNIVERSAL_NAME_INFO_LEVEL, but the
network provider does not support UNC names.
(None of the network providers support this
function.)

None of the network providers recognize the
local name as having a connection. However, the
network is not available for at least one provider
to whom the connection may belong.

The network is unavailable.

The device specified by the IpLocalPath
parameter is not redirected.

A universal form of a local drive-based path identifies a network resource in an
unambiguous, computer-independent manner. The name can then be passed to
processes on other computers, allowing those processes to obtain access to the
resource.

The WNetGetUniversalName function currently supports one universal name form:
universal naming convention (UNC) names, which look like the following:

Using the example from the preceding description of the IpLocalPathparameter, if the.
shared network drive is on a server named COOLSERVER, and the share name is
HOTSHARE, the UNC name for the network resource whose drive-based name is
H:\WIN32\EXAMPLES\SAMPLE.DOC would be

The UNIVERSAL_NAME_INFO structure contains a pointer to a UNC name string. The
REMOTE_NAME_INFO structure also contains a pointer to a UNC name string as well
as pointers to two other useful strings. For example, a process can pass the
REMOTE_NAME_INFO structure's IpszConnectionlnfo member to the
WNetAddConnection2 function to connect a local device to the network resource.

Chapter 28 Windows Networking (WNet) 645

Then the process can append the string pointed to by the IpszRemainingPath member
to the local device string. The resulting string can be passed to Win32 functions that
require a drive-based path.

For an example that demonstrates how to use the WNetGetUniversalName function to
determine the location of a share on a redirected drive, see Determining the Location of
a Share.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Windows Networking (WNet) Overview, Windows Networking Functions,
REMOTE_NAME_INFO, UNIVERSAL_NAME_INFO, WNetAddConnection2

WNetGetUser
The WNetGetUser function retrieves the current default user name, or the user name
used to establish a network connection.

Parameters
IpName

[in] Pointer to a constant null-terminated string that specifies either the name of a local
device that has been redirected to a network resource, or the remote name of a
network resource to which a connection has been made without redirecting a local
device.

If this parameter is NULL, the system returns the name of the current user for the
process.

IpUserName
[out] Pointer to a buffer that receives the null-terminated user name.

646 Volume 3 RPC and WNet

IpnLength
[in/out] Pointer to a variable that specifies the size, in characters, of the buffer pOinted
to by the IpUserName parameter. If the call fails because the buffer is not large
enough, this variable contains the required buffer size.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_NOT _CONNECTED The device specified by the IpName parameter is
not a redirected device or a connected network
name.

ERROR_MORE_DAT A More entries are available with subsequent calls.

ERROR_NO_NETWORK The network is unavailable.

ERROR_EXTENDED_ERROR A network-specific error occurred. To obtain a
description of the error, call the
WNetGetLastError function.

ERROR_NO_NET _OR_SAD_PATH None of the providers recognize the local name
as having a connection. However, the network is
not available for at least one provider to whom
the connection may belong.

Remarks
For a code sample that illustrates how to use the WNetGetUser function to retrieve the
name of the user associated with a local device, see Retrieving the User Name.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Windows Networking (WNet) Overview, Windows Networking Functions,
WNetGetConnection

Chapter 28 Windows Networking (WNet) 647

WNetOpenEnum
The WNetOpenEnum function starts an enumeration of network resources or existing
connections. You can continue the enumeration by calling the WNetEnumResource
function:

Parameters
dwScope

[in] Specifies the scope of the enumeration. This parameter can be one of the
following values.

Value Meaning

RESOURCE_CONNECTED

RESOURCE_CONTEXT

RESOURCE_GLOBALNET

RESOURCE_REMEMBERED

dwType

Enumerate all currently connected resources.
The function ignores the dwUsage parameter.
For more information, see the following
Remarks section.

Enumerate only resources in the network
context of the caller. Specify this value for a
Network Neighborhood view. The function
ignores the dwUsage parameter.

Enumerate all resources on the network.

Enumerate all remembered (persistent)
connections. The function ignores the
dwUsage parameter.

[in] Specifies the resource types to enumerate. This parameter can be a combination
of the following values.

Value Meaning

RESOURCETYPE_ANY

RESOU RCETYPE_DISK

RESOURCETYPE_PRINT

All resources. This value cannot be combined
with RESOURCETYPE_DISK or
RESOURCETYPE_PRINT.

All disk resources.

All print resources.

If a network provider cannot distinguish between print and disk resources, it can
enumerate all resources.

648 Volume 3 RPC and WNet

dwUsage
[in] Specifies the resource usage type to enumerate. This parameter can be a
combination of the following values.

Value Meaning

o
RESOURCEUSAGE_
CONNECTABLE

RESOURCEUSAGE_CONTAINER

RESOURCEUSAGE_ATTACHED

RESOURCEUSAGE_ALL

All resources.

All connectable resources.

All container resources.

Setting this value forces WNetOpenEnum to
fail if the user is not authenticated. The
function fails even if the network allows
enumeration without authentication.

Setting this value is equivalent to setting
RESOURCEUSAGE_CONNECTABLE,
RESOURCEUSAGE_CONTAINER, and
RESOURCEUSAGE_ATT ACHED.

This parameter is ignored unless the dwScope parameter is equal to
RESOURCE_GLOBALNET. For more information, see the following Remarks section.

IpNetResource
[in] Pointer to a NETRESOURCE structure that specifies the container to enumerate.
If the dwScope parameter is not RESOURCE_GLOBALNET, this parameter must be
NULL.

If this parameter is NULL, the root of the network is assumed. (The system organizes
a network as a hierarchy; the root is the topmost container in the network.)

If this parameter is not NULL, it must point to a NETRESOURCE structure. This
structure can be filled in by the application or it can be returned by a call to the
WNetEnumResource function. The NETRESOURCE structure must specify a
container resource; that is, the RESOURCEUSAGE_CONTAINER value must be
specified in the dwUsage parameter.

To enumerate all network resources, an application can begin the enumeration by
calling WNetOpenEnum with the IpNetResource parameter set to NULL, and then
use the returned handle to call WNetEnumResource to enumerate resources. If one
ofthe resources in the NETRESOURCE array returned by the WNetEnumResource
function is a container resource, you can call WNetOpenEnum to open the resource
for further enumeration.

IphEnum
[out] Pointer to an enumeration handle that can be used in a subsequent call to
WNetEnumResource.

Return Values
If the function succeeds, the return value is NO_ERROR.

Chapter 28 Windows Networking (WNet) 649

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_NOT_CONTAINER The IpNetResource parameter does not point to a
container.

ERROR_INVALID_PARAMETER Either the dwScope or the dwType parameter is
invalid, or there is an invalid combination of
parameters.

ERROR_NO_NETWORK The network is unavailable.

ERROR_EXTENDED_ERROR A network-specific error occurred. To obtain a
description of the error, call the WNetGetLastError
function.

Remarks
Windows NTlWindows 2000: If the dwScope parameter is equal to
RESOURCE_CONNECTED, a network connection made using the Microsoft LAN
Manager network is omitted from the enumeration if the connection was made by an
application running in a different logon session than the application calling the
WNetOpenEnum function. This is because connections made using Microsoft LAN
Manager are visible only to applications running in the same logon session as the
application that made the connection. (To include the connection in the enumeration, it is
not sufficient for the application to be running in the user account that created the
connection.)

The exact interpretation of RESOURCE_CONTEXT in the dwScope parameter depends
on the networks installed on the machine.

The WNetOpenEnum function is used to begin enumeration of the resources in a single
container. The following examples show the hierarchical structure of a Microsoft LAN
Manager network and a Novell Netware network and identify the containers:

For a code sample that illustrates an application-defined function that enumerates all the
resources on a network, see Enumerating Network Resources.

650 Volume 3 RPC and WNet

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Windows Networking (WNet) Overview, Windows Networking Functions,
NETRESOURCE, WNetCloseEnum, WNetEnumResource

WNetUseConnection
The WNetUseConnection function makes a connection to a network resource. The
function can redirect a local device to a network resource.

The WNetUseConnection function is similar to the WNetAddConnection3 function.
The main difference is that WNetUseConnection can automatically select an unused
local device to redirect to the network resource.

Windows NT/2000: The parameter order is as follows.

Windows 95/98: The IpUser/O and IpPassword parameters are in reverse order from
the order used on Windows NTlWindows 2000. Therefore, the parameter order is as
follows.

Parameters
hwndOwner

Chapter 28 Windows Networking (WNet) 651

[in] Specifies the handle to a window that the provider of network resources can use
as an owner window for dialog boxes. Use this parameter if you set the
CONNECT_INTERACTIVE value in the dwFlags parameter.

IpNetResource
[in] Pointer to a NETRESOURCE structure that specifies details of the proposed
connection. The structure contains information about the network resource, the local
device, and the network resource provider.

You must specify the following members of the NETRESOURCE structure.

Member

dwType

IpLocalName

IpRemoteName

Description

Specifies the type of resource to connect to.

It is most efficient to specify a resource type in this member,
such as RESOURCETYPE_DISK or RESOURCETYPE_PRINT.
However, if the IpLocalName member is NULL, or if it points to
an empty string and CONNECT_REDIRECT is not set, dwType
can be RESOURCETYPE_ANY.

This method works only if the function does not automatically
choose a device to redirect to the network resource.

Pointer to a null-terminated string that specifies the name of a
local device to be redirected, such as "F:" or "LPT1". The string
is treated in a case-insensitive manner.

If the string is empty, or if IpLocalName is NULL, a connection
to the network occurs without redirection.

If the CONNECT_REDIRECT value is set in the dwFlags
parameter, or if the network requires a redirected local device,
the function chooses a local device to redirect and returns the
name of the device in the IpAccessName parameter.

Pointerto a null-terminated string that specifies the network
resource to connect to. The string can be up to MAX_PATH
characters in length, and it must follow the network provider's
naming conventions~

(continued)

652 Volume 3 RPC and WNet

(continued)

Member

IpProvider

Description

Pointer to a null-terminated string that specifies the network
provider to connect to. If IpProvider is NULL, or if it points to an
empty string, the operating system attempts to determine the
correct provider by parsing the string pOinted to by the
IpRemoteName member.

If this member is not NULL, the operating system attempts to
make a connection only to the named network provider.

You should set this member only if you know the network
provider you want to use. Otherwise, let the operating system
determine which provider the network name maps to.

The WNetUseConnection function ignores the other members of the
NETRESOURCE structure. For more information, see the descriptions following for
the dwFlags parameter.

IpUserlD
[in] Pointer to a constant null-terminated string that specifies a user name for making
the connection.

If IpUserlD is NULL, the function uses the default user name. (The user context for the
process provides the default user name.)

The IpUserlD parameter is specified when users want to connect to a network
resource for which they have been assigned a user name or account other than the
default user name or account.

The user-name string represents a security context. It may be specific to a network
provider.

IpPassword
[in] Pointer to a constant null-terminated string that specifies a password to be used in
making the network connection.

If IpPassword is NULL, the function uses the current default password associated with
the user specified by IpUserlD.

If IpPassword points to an empty string, the function does not use a password.

If the connection fails because of an invalid password and the
CONNECT_INTERACTIVE value is set in the dwFlags parameter, the function
displays a dialog box asking the user to type the password.

dwFlags
[in] Specifies a DWORD value that contains a set of bit flags describing the
connection. This parameter can be any combination of the following values.

Value

CONNECT_INTERACTIVE

CONNECT_REDIRECT

Chapter 28 Windows Networking (WNet) 653

Meaning

If this flag is set, the operating system may
interact with the user for authentication
purposes.

This flag instructs the system not to use any
default settings for user names or passwords
without offering the user the opportunity to
supply an alternative. This flag is ignored unless
CONNECT_INTERACTIVE is also set.

This flag forces the redirection of a local device
when making the connection.

If the IpLocalName member of
NETRESOURCE specifies a local device to
redirect, this flag has no effect, because the
operating system still attempts to redirect the
specified device. When the operating system
automatically chooses a local device,the
IpAccessName parameter must point to a return
buffer and the dwType member must not be
equal to RESOURCETYPE_ANY.

If this flag is not set, a local device is
automatically chosen for redirection only if the
network requires a local device to be redirected.

This flag instructs the operating system to store
the network resource connection.

If this bit flag is set, the operating system
automatically attempts to restore the connection
when the user logs on. The system remembers
only successful connections that redirect local
devices. It does not remember connections that
are unsuccessful or deviceless connections. (A
deviceless connection occurs when
IpLocalName is NULL or when it pOints to an
empty string.)

If this bit flag is clear, the operating system does
not automatically restore the connection at
logon.

654 Volume 3 RPC and WNet

IpAccessName
[out] Pointer to a buffer that receives system requests on the connection.

If the IpLocalName member of the NETRESOURCE structure specifies a local
device, this buffer is optional, and will have the local device name copied into it. If
IpLocalName does not specify a device and the network requires a local device
redirection, or if the CONNECT_REDIRECT value is set, this buffer is required and
the name of the redirected local device is returned here.

O,herwise, the name copied into the buffer is that of a remote resource. If specified,
this buffer must be at least as large as the string pointed to by the IpRemoteName
member.

IpBufferSize
[in/out] Pointer to a variable that specifies the size, in characters, of the
IpAccessName buffer. If the call fails because the buffer is not large enough, the
function returns the required buffer size in this location.

IpResult
[out] Pointer to a variable that receives additional information about the connection.
This parameter can be the fallowing value.

Value Meaning

CONNECT _LOCALDRIVE

Return Values

If this flag is set, the connection was made using
a local device redirection. If the IpAccessName
parameter pOints to a buffer, the local device
name is copied to the buffer.

If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED

ERROR_ALREADY _ASSIGNED

ERROR_BAD_DEVICE

ERROR_BAD_NET_NAME

Access to the network resource was denied.

The local device specified by the IpLocalName
member is already connected to a network
resource.

The value specified by IpLocalName is invalid.

The value specified by the IpRemoteName
member is not acceptable to any netWork
resource provider because the resource name is
invalid, or because the named resource cannot
be located.

The value specified by the IpProvider member
does not match any provider.

Value

ERROR_CANCELLED

ERROR_INVALID_ADDRESS

Chapter 28 Windows Networking (WNet) 655

Meaning

The attempt to make the connection was
canceled by the user through a dialog box from
one of the network resource providers, or by a
called resource.

A network-specific error occurred. To obtain a
description of the error, call the
WNetGetLastError function.

The caller passed in a pOinter to a buffer that
could not be accessed.

This error is a result of one of the following
conditions:

1. The IpRemoteName member is NULL. In
addition, IpAccessName is not NULL, but
IpBufferSize is either NULL or pOints to zero.

2. The dwType member is neither
RESOURCETYPE_DISK nor
RESOURCETYPE_PRINT. In addition, either
CONNECT_REDIRECT is set in dwFlags and
IpLocalName is NULL, or the connection is
to a network that requires the redirecting of a
local device.

ERROR_INVALID_PASSWORD The specified password is invalid and the
CONNECT_INTERACTIVE flag is not set.

ERROR_MORE_DATA The IpAccessName buffer is too small.

If a.local device is redirected, the buffer needs to
be large enough to contain the local device
name. Otherwise, the buffer needs to be large
enough to contain either the string pointed to by
IpRemoteName, or the name of the
connectable resource whose alias is pointed to
by IpRemoteName. If this error is returned, then
no connection has been made.

ERROR_NO_MORE_ITEMS The operating system cannot automatically
choose·a local redirection because all the valid
local devices are in use.

ERROR_NO_NET_OR_BAD_PATH The operation could not be completed, either
because a network component is not started, or
because the specified resource name is not
recognized.

ERROR_NO_NETWORK The network is unavailable.

656 Volume 3 RPC and WNet

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Library: Use Mpr.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Windows Networking (WNet) Overview, Windows Networking Functions,
WNetAddConnection2, WNetAddConnection3, WnetCancelConnection,
WNetGetConnection

Windows Networking Structures
The following structures are used in Windows networking:

CONNECTDLGSTRUCT
DISCDLGSTRUCT
NETCONNECTINFOSTRUCT
NETINFOSTRUCT
NETRESOURCE
REMOTE_NAME_INFO
UNIVERSAL_NAME_INFO

CONNECTDLGSTRUCT
The CONNECTDLGSTRUCT structure is used by the WNetConnectionDialog1
function to establish browsing dialog box parameters.

Members
cbStructure

Specifies, in bytes, the size of the CONNECTDLGSTRUCT structure. The caller must
supply this value.

hwndOwner
Specifies a handle to the owner window for the dialog box.

Chapter 28 Windows Networking (WNet) 657

IpConnRes
Pointer to a NETRESOURCE structure.

If the IpRemoteName member of NETRESOURCE is specified, it will be entered into
the path field of the dialog box. With the exception of the dwType member, all other
members of the NETRESOURCE structure must be set to NULL. The dwType
member must be equal to RESOURCETYPE~DISK.
Windows NT/2000: The system does not support the RESOURCETYPE_PRINT flag
for browsing and connecting to print resources.

dwFlags
Specifies a DWORD value that contains a set of bit flags describing variations in the
dialog box display. This member can be a combination of the following values.

Value Meaning

SidTypeUser

CONNDLG_RO_PATH

The account is a user account.

Display a read-only path instead of allowing the user
to type in a path.

This flag should be set only if the IpRemoteName
member of the NETRESOURCE structure pointed to
by IpConnRes is not NULL (or an empty string), and
the CONNDLG_USE_MRU flag is not set.

CONNDLG_CONN_POINT Internal flag. Do not use.

CONNDLG_USE_MRU Enter the most recently used paths into the
combination box. Set this value to simulate the
WNetConnectionDialog function.

CONNDLG_HIDE_BOX Show the check box allowing the user to restore the
connection at logon.

CONNDLG_PERSIST Restore the connection at logon.

CONNDLG_NOT _PERSIST Do not restore the connection at logon.

For more information, see the following Remarks section.

dwDevNum
If the call to the WNetConnectionDialog1 function is successful, this member returns
the number of the connected device. The value is 1 for A:, 2 for B:, 3 for C:, and so
on. If the user made a device less connection, the value is -1.

Remarks
If neither the CONNDLG_RO_PATH nor the CONNDLG_USE_MRU flag is set, and the
IpRemoteName member of the NETRESOURCE structure does not specify a remote
path, the request defaults to the CONNDLG_RO_PATH dialog display type.

The CONNDLG_PERSIST and CONNDLG_NOT _PERSIST values cannot both be set.
If neither is set, the dialog box defaults to the last option that was selected in this dialog
box for the particular type of device connection.

658 Volume 3 RPC and WNet

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Unicode: Declared as Unicode and ANSI structures.

Windows Networking (WNet) Overview, Windows Networking Structures,
NETRESOURCE, WNetConnectionDialog1

DISCDLGSTRUCT
The DISCDLGSTRUCT structure is used in the WNetDisconnectDialog1 function. The
structure contains required information for the disconnect attempt.

Members
cbStructure

Specifies the size, in bytes, of the DISCDLGSTRUCT structure. The caller must
supply this value.

hwndOwner
Specifies a handle to the owner window of the dialog box.

IpLocalName
Pointer to a null-terminated character string that specifies the local device name that
is redirected to the network resource, such as "F:" or "LPT1".

IpRemoteName
Pointer to a null-terminated character string that specifies the name of the network
resource to disconnect. This member can be NULL if the IpLocalName member is
specified. When IpLocalName is specified, the connection to the network resource
redirected from IpLocalName is disconnected.

Chapter 28 Windows Networking (WNet) 659

dwFlags
Specifies a DWORD value that contains a set of bit flags describing the connection.
This member can be a combination of the following values.

Value Meaning

DISC_UPDATE_PROFILE If this value is set, the specified connection is no
longer a persistent one (automatically restored every
time the user logs on). This flag is valid only if the
IpLocalName member specifies a local device.

DISC_NO_FORCE If this value is not set, the system applies force when
attempting to disconnect from the network resource.

This situation typically occurs when the user has files
open over the connection. This value means that the
user will be informed if there are open files on the
connection, and asked if he or she still wants to
disconnect. If the user wants to proceed, the
disconnect procedure re-attempts with additional
force.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.
Unicode: Declared as Unicode and ANSI structures.

Windows Networking (WNet) Overview, Windows Networking Structures,
WNetDisconnectDialog1

NETCONNECTINFOSTRUCT
The NETCONNECTINFOSTRUCT structure contains information about the expected
performance of a connection used to access a network resource. The structure is used
in the MultinetGetConnectionPerformance function.

660 Volume 3 RPC and WNet

Members
cbStructure

Specifies the size, in bytes, of the NETCONNECTINFOSTRUCT structure. The caller
must supply this value.

dwFlags
Specifies a DWORD value that contains a set of bit flags describing the connection.
This member can be one or more of the following values.

Value Meaning

WNCON_FORNETCARD In the absence of information about the actual
connection, the information returned applies to the
performance of the network card.

WNCON_NOTROUTED

WNCON_SLOWLINK

WNCON_DYNAMIC

dwSpeed

If this flag is notset, information is being returned for the
current connection with the resource, with any routing
degradation taken into consideration.

The connection is not being routed.

If this flag is not set, the connection may be going
through routers that limit performance. Consequently, if
WNCON_FORNETCARD is set, actual performance
may be much less than the information returned.

The connection is over a medium that is typically slow
(for example, over a modem using a normal quality
phone line). You should not set the
WNCON_SLOWLINK bit if the dwSpeed member is set
to a nonzero value.

Some of the information returned is calculated
dynamically, so reissuing this request may return
different (and more current) information.

Specifies a DWORD value that contains the speed of the media to the network
resource in units of 100 bits per secpnd (bps).

For example, a 1200 baud point-to-point link returns 12. A value of zero indicates that
no information is available. A value of one indicates that the actual vallie is greater
than the maximum that can be represented by the member.

dwDelay
Specifies a DWORD value that contains the one-way delay time, in milliseconds, that
the network introduces when sending information. (The delay is the time between
when ttle network begins sending data and the time that the data starts being
received.) This delay is in addition to any latency incorporated in the calculation of the
dwSpeed member; therefore the value of this member is zero for most resources.

A value of zero indicates that no information is available. A value of one indicates that
the actual value is greater than the maximum that can be represented by the member.

Chapter 28 Windows Networking (WNet) 661

dwOptDataSize
Specifies a DWORD value that contains a recommendation for the size of data, in
bytes, that an application should use when making a single request to the network
resource.

For example, for a disk network resource, this value might be 2048 or 512 when
writing a block of data. A value of zero indicates that no information is available.

Windows NT/2000: Requires Windows NT 3.51 or later.
Header: Declared in NpapLh.

Windows Networking (WNet) OveNiew, Windows Networking Structures,
MultinetGetConnectionPerformance

NETINFOSTRUCT
The NETINFOSTRUCT structure is used in the WNetGetNetworklnformation function.
The structure contains information describing the network, such as the version of the
network provider software and the network's current status.

Members
cbStructure

Specifies the size, in bytes, of the NETINFOSTRUCT structure. The caller must
supply this value to indicate the size of the structure passed in. Upon return, it has the
size of the structure filled in.

dwProviderVersion
Specifies a DWORO value that contains the version number of the network provider
software.

662 Volume 3 RPC and WNet

dwStatus
Specifies a DWORD value that contains the current status of the network provider
software. This member can be one of the following values.

Value Meaning

NO_ERROR The network is running.

ERROR_NO_NETWORK The network is unavailable.

ERROR_BUSY The network is not currently able to service requests,
but it should become available shortly. (This value
typically indicates that the network is starting up.)

dwCharacteristics
Specifies a DWORD value that contains characteristics of the network provider
software.

Windows NT/2000: This value is always set to zero.

Windows 95/98: This member can be one or more of the following values.

Value Meaning

NETINFO_DLL 16 The network provider is running as a 16-bit Windows
network. driver.

NETINFO_DISKRED The network provider requires a redirected local disk
drive device to access server file systems.

NETINFO_PRINTERRED The network provider requires a redirected local printer
port to access server file systems.

dwHandle
Specifies an instance handle for the network provider or for the 16-bit Windows
network driver.

wNetType
Specifies a network type unique to the running network. This value associates
resources with a specific network when the resources are persistent or stored in links.
You can find a complete list of network types in the header file WinNetwk.h.

dwPrinters
Specifies a DWORD value that contains a set of bit flags indicating the valid print
numbers for redirectir:1g local printer devices, with the low-order bit corresponding to
LPT1.

Windows 95/98: This value is always set to -1 .

dwDrives
Specifies a DWORD value that contains a set of bit flags indicating the valid local disk
devices for redirecting disk drives, with the low-order bit corresponding to A: .

Windows 95/98: This value is always set to -1.

Chapter 28 Windows Networking (WNet) 663

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnetwk.h.

Windows Networking (WNet) Overview, Windows Networking Structures,
WNetGetNetworklnformation

NETRESOURCE
The NETRESOURCE structure contains information about a network resource. The
structure is returned during enumeration of network resources. NETRESOURCE is also
specified when making or querying a network connection with calls to various Windows
Networking functions.

Members
dwScope

Specifies a DWORD value that contains the scope of the enumeration. This member
can be one of the following values.

Value Meaning

RESOURCE_CONNECTED

RESOURCE_GLOBALNET

Enumerate currently connected resources. The
dwUsage member cannot be specified.

Enumerate all resources on the network. The
dwUsage member isspecified.

RESOURCE_REMEMBERED Enumerate remembered (persistent) connections.
The dwUsage member cannot be specified.

dwType
Specifies a DWORD value that contains a set of bit flags identifying the type of
resource. This member can be one of the following values.

664 Volume 3 RPC and WNet

Value

RESOURCETYPE_ANY

RESOURCETYPE_DISK

RESOURCETYPE_PRINT

Meaning

All resources

Disk resources

Print resources

The WNetEnumResource function can also return the value
RESOURCETYPE_UNKNOWN if a resource is neither a disk nor a print resource.

dwDisplayType
Specifies a DWORD value that indicates how the network object should be displayed
in a network browsing user interface. This member can be one of the following values.

Value Meaning

RESOURCEDISPLA YTYPE_
DOMAIN

RESOURCEDISPLA YTYPE_
SERVER

RESOURCEDISPLAYTYPE_
SHARE

RESOURCEDISPLAYTYPE_
GENERIC

dwUsage

The object should be displayed as a domain.

The object should be displayed as a server.

The object should be displayed as a share.

The method used to display the object does not
matter.

Specifies a DWORD value that contains a set of bit flags describing how the resource
can be used.

Note that this member can be specified only if the dwScope member is equal to
RESOURCE_GLOBALNET. This member can be one of the following values.

Value

RESOURCEUSAGE_
CONNECTABLE

RESOURCEUSAGE_
CONTAINER

IpLocalName

Meaning

The resource is a. connectable resource; the name
pOinted to by the IpRemoteName member can be
passed to the WNetAddConnection function to
make a network connection.

The resource is a container resource; the name
pOinted to by the IpRemoteName member can be
passed to the WNetOpenEnum function to
enumerate the resources in the container.

If the dwScope member is equal to RESOURCE_CONNECTED or
RESOURCE_REMEMBERED, this member is a pointer to a nUll-terminated character
string that specifies the name of a local device. This member is NULL if the
connection does not use a device.

Chapter 28 Windows Networking (WNet) 665

IpRemoteName
If the entry is a network resource, this member is a pointer to a null-terminated
character string that specifies the remote network name.

If the entry is a current or persistent connection, IpRemoteName pOints to the
network name associated with the name pointed to by the IpLocalName member.

The string can be MAX_PATH characters in length, and it must follow the network
provider's naming conventions.

IpComment
Pointer to a null-terminated character string that contains a comment supplied by the
network provider.

IpProvider
Pointer to a null-terminated character string that contains the name of the provider
that owns the resource. This member can be NULL if the provider name is unknown.
To retrieve the provider name, you can call the WNetGetProviderName function.

Remarks
For more information about setting the values of the dwType, IpLocalName,
IpRemoteName, and IpProvider members, see MultinetGetConnectionPeriormance,
WNetAddConnection2, WNetAddConnection3, WNetGetResourcelnformation,
WNetGetResourceParent, and WNetUseConnection.

Windows NT/2000: Requires Windows NT 3.51 or later.
Header: Declared in NpapLh.

Windows Networking (WNet) Overview, Windows Networking Structures,
MultinetGetConnectionPerformance, WNetAddConnection2,
WNetAddConnection3, WNetUseConnection, WNetCloseEnum,
WNetEnumResource, WNetGetProviderName, WNetGetResourcelnformation,
WNetGetResourceParent, WNetOpenEnum

The REMOTE_NAME_INFO structure contains path and name information for a network
resource. The structure contains a member that points to a Universal Naming
Convention (UNC) name string for the resource, and two members that point to
additional network connection information strings.

666 Volume 3 RPC and WNet

Members
IpUniversalName

Pointer to the null-terminated UNC name string that identifies a network resource.

IpConnectionName
Pointer to a nUll-terminated string that is the name of a network connection. For more
information, see the following Remarks section.

IpRemainingPath
Pointer to a nUll-terminated name string. For more information, see the following
Remarks section.

Remarks
The REMOTE_NAME_INFO structure contains a pOinter to a Universal Naming
Convention (UNC) name string. A UNC path identifies a network resource in an
unambiguous, computer-independent manner. You can pass the path to processes on
other computers, allowing those processes to obtain access to the network resource.

UNC names look like this:

In addition, if you pass the value of the IpConnectionName member to the
WNetAddConnection2 function, it enables you to connect a local device to a network
resource. You can do this by passing the value of IpConnectionName in the
IpRemoteName member of the NETRESOURCE structure pointed to by the function's
/pNetResource parameter.

If you append the string pOinted to by the IpRemainingPath member of
REMOTE_NAME_INFO to the local device string, you can pass the resulting string to
Win32 functions that require a drive-based path.

Windows NT/2000: Requires Windows NT 3.51 or later.
Header: Declared in NpapLh.

Windows Networking (WNet) Overview, Windows Networking Structures,
WNetAddConnection2, NETRESOURCE, UNIVERSAL_NAME_INFO

Chapter 28 Windows Networking (WNet) 667

The UNIVERSAL_NAME_INFO structure contains a pointer to a Universal Naming
Convention (UNC) name string for a network resource. '

Members
IpUniversalName

Pointer to the null-terminated UNC name string that identifies a network resource.

Remarks
A UNC path identifies a network resource in an unambiguous, computer-independent
manner. You can pass the path to processes on other computers, allowing those
processes to obtain access to the network resource.

Universal Naming Convention (UNC) names look like this:

Windows NT/2000: Requires Windows NT 3.51 or later.
Header: Declared in Npapi.h.

Windows Networking (WNet) Overview, Windows Networking Structures,
WNetGetUniversalName, REMOTE_NAME_INFO

\
I
I
I
I

\
I
I
I

\
I

\
I
I
I
I

\
I
I
I
I
I
I

\
I
I
I
I

\
I
I
I
I

\
I
I
I

\
\
I
I
I
I

\
I
I
I

\
I

\
I
I
I
I

\
I

\
I
I
I

\
I
I
I
I

\
I
I
I
I

\
I
I
I
I

\
\
I
I
I
I

\
I
I
I
I
I
I

\
I

Part 3

Glossary

This final part of Volume 3 of the Networking Services Library includes a glossary of RPC terms
and a comprehensive programming element index, both of which have been designed to make
your network programming life easier.

669

Rather than cluttering the TOCs of each individual volume in this library with the names of
programming elements, I've relegated such per-element information to a central location: the back
of each volume. This index pOints you to the volume that has the information you need, and
organizes the information in a way that lends itself to easy use.

Also, to keep you as informed and up-to-date as possible about Microsoft technologies, I've
created (and maintain) a live Web-based document that maps Microsoft technologies to the
locations where you can get more information about them. The following link gets you to the live
index of technologies:

www.iseminger.comlwinprs/technologies

The format of this index is in a constant state of improvement. I've designed it to be as useful as
possible, but the real test comes when you put it to use. If you can think of ways to make
improvements, send me feedback at winprs@microsoft.com. While I can't guarantee a reply, I'll
read the input, and if others can benefit, I will incorporate the idea into future libraries.

A
ADSP See AppleTalk Data Stream Protocol.

aliasing In RPC, having two or more pointers
to the same data object.

AppleTalk Data Stream Protocol (ADSP)
A network protocol for interprocess
communication between Apple Macintosh
computers and other platforms.

attribute Any keyword of the Interface
Definition Language that describes a property of
a data type or remote procedure call.

8
bind In RPC, the process through which a
logical connection is established between a
client and a server to direct a remote procedure
call to that server.

binding A relationship between a client and a
server established over a specific protocol
sequence to a specific host system and
endpoint. Also used as a short form of binding
handle.

binding handle A data structure that
represents the logical connection between a
client and a server.

binding vector An RPC data structure that
contains a list of binding handles over which a
server application can receive remote
procedure calls.

C
CDS See Cell Directory Service.

Cell Directory Service (CDS) The name
service provider for the Open Software
Foundation's Distributed Computing
Environment.

670 Volume 3 RPe and WNet

client stub MIDL-generated C-Ianguage
source code. It contains all the functions
necessary for the client application to make
remote procedure calls using the model of a
traditional function call in a standalone
application. The client stub il) responsible for
marshaling input parameters and unmarshaling
output parameters. See also server stub, proxy
stub.

conformant array In RPC, an array whose
size is determined at run time by another
parameter, structure field, or expression.

connection-oriented Describes a
communications protocol or transport that
provides a virtual circuit through which data
packets are received in the same order as they
were transmitted. If the connection between
computers fails, the application is notified. TCP
and SPX are examples of connection-oriented
protocols. See also datagram.

connectionless See datagram.

context rundown A server notification that
results from an unexpected termination of the
binding between client and server applications.

o
datagram Describes a communications
protocol or transport in which data packets are
routed independently. They may follow different
routes and arrive in a different order from which
they were sent. UDP and IPX are examples of
transport layer-datagram protocols. See also
connection-oriented.

DCE See Distributed Computing
Environment.

discriminant A variable that specifies the
data types that can be stored in a union.

discriminated union (or variant record)
A union that includes a discriminator as part of
the data structure so that the currently valid
data type is transmitted along with the union.
See also encapsulated union, nonencapsulated
union.

Distributed Computing Environment (DCE)
The Open Software Foundation's specification
for a set of integrated services, including remote
procedure calls, distributed file systems, and
security services. The OSF-DCE RPC standard
is the basis for Microsoft RPC.

dynamic endpoint An endpoint (network
specific-server address) that is requested and
assigned at run time. See also well-known
endpoint.

dynamic identity tracking Dynamic identity
tracking specifies that the RPC run-time library
will use the credentials of the calling thread,
rather than the binding handle, for
authentication each time the client calls a
remote procedure. See also static identity
tracking.

E
embedded pOinter A pOinter embedded in a
parameter that is a data structure such as an
array, structure, or union. See also top-level
pointer.

encoding services MIDL-generated stub
routines that provide support for data encoding
and decoding (also known as pickling or
serialization). Allow programmers to control
buffers containing data to be marshaled and
unmarshaled. See also type serialization,
procedure serialization.

endpoint A network-specific address of a
server process for remote procedure calls. The
actual name of the endpoint depends on the
protocol sequence being used. See also
dynamic endpoint and well-known endpoint.

endpoint mapper Also, endpoint-mapping
service. Part of the RPC subsystem (RPCSS)
that allows the run-time library to dynamically
assign and resolve endpoints. See also
endpoint.

encapsulated union A MIDL construct that
allows unions to be passed as part of a remote
procedure call by embedding the union in a
structure in which the discriminant is the first
field of the structure, and the union is the .
second (and final) field of the structure. The IDL
keyword switch specifies that a union is
encapsulated. See also nonencapsulated union.

entry point vector (EPV) An array of pointers
to functions that implement the operations
specified in the interface. Each element in the
array corresponds to a function defined in the
IDL file. Entry-point vectors allow distributed
applications to support more than one
implementation of the functions defined in the
IDL file.

EPV See entry point vector.

F
firewall A control system that prevents
unauthorized users from gaining access to a
local network that is connected to the Internet.

full pointer In RPC, a pointer that has all the
capabilities normally associated with pOinters in
C/C++. Specifically, a full pOinter can be null
and can be aUased to another pOinter
parameter. The [ptr] attribute deSignates a full
pOinter. See also unique pointer and reference
pOinter.

fullsic A prinCipal name in Full Subject Issuer
Chain format as defined in RFC1779.

fully bound handle A binding handle that
includes endpoint information. See also partially
bound handle.

Glossary 671

idempotent In RPC, describes a remote
procedure call that does not change a state and
returns the same information each time it is
called with the same input parameters.

IDL See Interface Definition Language.

input parameter In a remote procedure call,
a parameter containing data that the client
application is transmitting to the server
application. The in attribute designates an input
parameter.

Interface Definition Language (IOL) The
OSF-DCE standard language for specifying the
interface for remote procedure calls. See also
MIDL.

Internet Protocol (IP) A connection less
network-layer commUnications protocol. See
also datagram.

Internetwork Packet Exchange (IPX)
A Novell NetWare communication protocol that
uses datagram sockets to route information
packets over local area networks and wide area
networks.

intranet A private network that uses Internet
products and technologies (for example, web
servers), but is not available to external Internet
users.

IP See Internet Protocol.

IPX See Internetwork Packet Exchange

L
local remote procedure .call (LRPe) In RPC,
describes a remote procedure call to another
process on the same computer as the calling
process.

672 Volume 3 RPC and WNet

locator The Microsoft Windows NT/
Windows 2000 name-service provider. See also
name service.

lRPC See local remote procedure call.

M
major version number See version number.

manager In RPC, a set of server routines that
implements the interface operations.

marshaling The process through which
operation parameters are packaged into NDR
format so that they may be transmitted across
process boundaries.

memory leak Allocated memory that is no
longer in use, but that has not been freed.

Message Queue Information Service (MQIS)
A Microsoft SQl Server database that stores
information for Microsoft Message Queuing.
See also Microsoft Message Queuing (MSMQ).

Microsoft Interface Definition language
(MIDl) The Microsoft implementation and
extension of OSF-DCE Interface Definition
Language.

Microsoft Message Queuing (MSMQ)
A group of Microsoft services that allow users to
communicate across networks and systems
regardless of the current state of the
communicating applications and systems.

MIDl See Microsoft Interface Definition
Language.

minor version number See version number.

MSMQ See Microsoft Message Queuing.

MQIS See Message Queue Information
Service.

msstd A principal name in Microsoft-standard
form.

N
name service A service that maps names to
objects and stores the name/object pairs in a
database. For example, the RPC name service
maps a logical name to a binding handle so
client applications can refer to that logical
name, rather than a protocol sequence and
network address. See also name service
interface daemon (NSID), Client Directory
Service (CDS), Locator.

NCA See Network Computing Architecture.

NetBEUI See NetBIOS Extended User
Interface.

NetBIOS See Network Basic Input/Output
System.

Network Computing Architecture (NCA)
A collection of guidelines for distributed
computing. The RPC communication protocols
follow these guidelines.
Name Service Independent (NSI)
A standard for API functions that allows a
distributed application to access RPC name
service database elements through various
name-service providers; such as OSF-DCE Cell
Directory Service or Microsoft Locator. See a/so
name service-interface daemon (NSID).

name service-interface daemon (NSID)
A service that provides an interface between
Microsoft Locator and the OSF-DCE Cell
Directory Service name service databases for
RPC name-service functions.

named pipe A connection-oriented protocol,
based on Server Message Blocks (SMBs) and
NetBIOS, used for communication between a
server process and one or more client
processes.

NDR See Network Data Representation.

NetBIOS Extended User Interface (NetBEUI)
The LAN Manager native transport protocol and
network device driver. See also NetBIOS.

Network Basic Input/Output System
(NetBIOS) A software interface between the
Microsoft MS-DOS operating system, the 1/0
bus, and a local area network.

Network Data Representation (NOR)
A standard format used during network
transmission that is independent of the data
type format on any particular computer
architecture. Transmitted data includes
information that specifies its NDR format.

network address An address that identifies a
server on a network.

nonencapsulated union A discriminated
union that is less restrictive than an
encapsulated union in that the discriminant and
the union are not tightly bound. If the union is a
parameter, the discriminant is another
parameter; if the union is a structure field, the
discriminant is another structure field. The IDL
keywords [switch_is] and [switch_type]
identify the discriminant and its type. See a/so
encapsulated union.

non idempotent In RPC, indicates that a
remote procedure call cannot be executed more
than once because it will return a different value
or change a state.

NSI See Name Service Independent.

o
Object Description Language (OOL)
A subset of MIDL attributes, keywords,
statements, and directives used to define type
libraries for OLE Automation applications.

OOL See Object Description Language.

Glossary 673

open array In RPC, an array that is both
conformant and varying; that is, both its size
and range of transmitted elements are
determined at run time by other parameters,
structures, or expressions.

Open Software Foundation (OSF)
A consortium of companies, formed to define
the distributed computing environment (DCE).

orphaned memory Memory on a client
previously refererred to by a pOinter parameter
that has been reset to null by the server.

OSF See Open Software Foundation.

output parameter In a remote procedure call,
a parameter containing data that the server
application is transmitting to the client
application. The [out] attribute designates an
output parameter.

p
partially bound handle A binding handle that
does not include endpoint information. See also
fully bound handle.

pickling See serialization.

pipe An IDL-type constructor that supports
transmission of an open-ended stream of data
between client and server applications.

primary enterprise controller The master
Message Queue Information Service (MQIS)
database for a network. See also Message
Queue Information Service (MQIS).

primary site controller A Message Queue
Information Service (MQIS) database for a
particular site within an enterprise. See also
Message Queue Information Service (MQIS).

674 Volume 3 RPe and WNet

procedure serialization Data,serialization
that uses a MIDL-generated serialization stub to
accomplish the encoding and decoding of one
or more types with a single procedure call.
Procedure serialization is accomplished by
applying the [encode] and [decode] attributes
to a function prototype in the ACF file. See also
type serialization.

protocol sequence A character string that
represents a valid combination of an RPC
protocol, a network layer protocol, and a
transport layer protocol. For example, the
protocol sequence NCACN_IP _ TCP describes
an NCA connection over an Internet Protocol
(IP) with a Transmission Control Protocol (TCP)
as transport.

proxy stub MIDL-generated C or C++
language-source code that contains all the
functions necessary for a custom OLE interface.

Q
queue An ordered list of tasks to be

. performed or messages to be transmitted.

queue manager In Microsoft Message
Queuing (MSMQ), a service running on a client
computer that manages messages for that
client.

R
. RPC object Server instances or other
resources, such as devices, databases, and
queues, that are operated on and managed by
RPC-server applications. Each object is
uniquely identified by one or more object
UUIDs. .

RPC Subsystem (RPCSS) A Windows NT/
Windows 2000 subsystem that includes a
variety of RPC and OLE services, including the
endpoint mapper, OLE Service Control
Manager (SCM), and the DCOM Object
Resolver. Do not confuse this with the RPC
specific memory allocator package, RpcSs.

reference pOinter In RPC, the simplest
pOinter type. A reference pointer always points
to valid storage and that storage does not
change (although the contents may change).
A reference pOinter cannot be aliased. The [ref]
attribute deSignates a reference pOinter. See
also unique pOinter and full pOinter.

RPCSS See RPC Subsystem.

S
Sequenced Packet Protocol (SPP) Banyan
Vines connection-oriented communication
protocol for routing information packets over
local area networks.
Sequenced Packet Exchange (SPX)
A Novell NetWare connection-oriented
communication protocol for routing information
packets over local area networks and wide area
networks.

serialization In RPC, the process of
marshaling data to (encoding) and
un marshaling data from (decoding) buffers that
you control. This is in contrast to traditional
RPC usage, where the stubs and the RPC run
time control the marshaling buffers. Also called
pickling. See also procedure serialization, type
serialization.

server stub MIDL-generated C~language
source code that contains all the functions
necessary for the server application to handle
remote requests using local procedure calls.
See also client stub.

session In RPC, an established relationship
between a client application and a server

. application. See also bind, binding handle.

SPP See Sequenced Packet Protocol.

SPX See Sequenced Packet Exchange.

static callback function A remote procedure
that is part of the client side of a distributed
application, that a server can call to obtain
information from the client. The [callback]
attribute designates a static callback function.

static identity tracking Static identity
tracking specifies that the RPC run-time uses
the security credentials in the client's binding
handle for all RPC calls. See also dynamic
identity tracking.

string binding A character string that
consists of the object UUID, protocol sequence,
network address, endpoint, and endpoint
options, all of which can be used to create a
binding handle to the specified server.

strong typing Compiler enforcement of strict
control over data types. In MIDL and RPC,
strong typing is used to ensure that data is
interpreted consistently by different computers
in a distributed environment.

T
TCP See Transmission Control Protocol.

top-level pointer A pOinter that is specified
as the name of a parameter in a function
prototype. See also embedded pointer.

Transmission Control Protocol (TCP)
A connection-oriented network transport layered
on top of the Internet Protocol (IP).

tunneling A TCP/IP protocol for transmitting
data from a content-server application to a
broadcast router.

Glossary 675

type serialization Data serialization that uses
MIDL-generated routines to size, encode, and
decode objects of a specified type. The client
application calls these routines to serialize the
data. Type serialization is accomplished by
applying the [encode] and [decode] attributes
to a single data type, or to an interface, in the
ACF file. See also procedure serialization.

U
UDP See User Datagram Protocol.

unbind In RPC, to terminate the logical
connection between a client and server.

unique pointer In RPC, a pOinter that can be
null or point to existing data, and whose value
can change during a remote procedure call.
A unique pointer cannot be aliased. The
[unique] attribute designates a unique pointer.
See also full pointer, reference pOinter.

Universal Unique Identifier (UUID) Also,
Global Unique Identifier (GUID). A 128-bit value
used in cross-process communication to identify
entities such as client and server interfaces,
manager entry-point vectors, and RPC objects.
See also uuidgen.

un marshaling The process of unpackaging
parameters that have been sent across process
boundaries.

User Datagram Protocol (UDP) A network
transport that uses connection less datagram
sockets and is layered on top of the Internet
Protocol (IP).

UUID See Universal Unique Identifer.

uuidgen A utility program, provided with the
Win32 SDK, that uses a time value and your
machine's network card ID to generate UUIDs
that are guaranteed to be unique.

676 Volume 3 RPe and WNet

v w
varying array In RPC, an array whose range
of transmitted elements is determined at run
time by another parameter, structure, or
expression. See also conformant array and
open array.

version number In RPC, two numbers,
separated by a decimal point, that identify the
version of an interface. To be compatible, the
major version number (the number to the left of
the decimal point) must be the same for both
client and server, and the minor version number
of the server must be greater than or equal to
the minor version number of the client.

well-known endpoint An endpoint that does
not change. Well-known endpoint information is
stored as part of the binding handle, or within
the name service-database server entry. See
also dynamic endpoint.

677

IN D E X

Networking Services Programming Elements
Alphabetical Listing

Locators are arranged by Volume Number followed by Page Number.

A CreateProxyArpEntry Vol. 2, 242
CreateServiceEnumerationHandle ... Vol. 5, 319

accept ... Vol. 1, 133 CreateStaticService Vol. 5, 320
AcceptEx .. Vol. 1, 135 CSADDR_INFO Vol. 1, 378
ACTION_HEADER Vol. 2, 147
ADAPTER_STATUS Vol. 2,148
Addlnterface Vol. 5, 266 D
AddlPAddress Vol. 2, 239 DCE_C_ERROR_STRING_LEN Vol. 3, 336
ADDRESS_LIST _DESCRiPTOR Vol. 1, 835 DceErrorlnqText... Vol. 3, 349
AFPROTOCOLS Vol. 1, 377 Deletelnterfacevol. 5, 269
AsnAny ... Vol. 2, 336 DeleteIPAddress Vol. 2, 243
AsnCounter64 Vol. 2, 338 DeletelpForwardEntry Vol. 2, 244
AsnObjectldentifier Vol. 2, 339 DeletelpNetEntry Vol. 2, 245
AsnOctetString Vol. 2, 339 DeleteProxyArpEntry Vol. 2, 245
Authentication-Level Constants Vol. 3, 330 DeleteStaticService Vol. 5, 321
Authentication-Service Constants Vol. 3, 331 DemandDiaIRequest... Vol. 5, 306
Authorization-Service Constants Vol. 3, 332 DhcpCApiCleanup Vol. 2, 74

DhcpCApilnitialize Vol. 2, 74

B DhcpDeRegisterParamChange Vol. 2, 80
DhcpRegisterParamChange Vol. 2, 78

bind ... Vol. 1, 139 DhcpRequestParams Vol. 2, 75
Binding Option Constants Vol. 3, 333 DhcpUndoRequestParams Vol. 2, 77
Binding Time-out Constants Vol. 3, 333 DISCDLGSTRUCT Vol. 3, 658
BLOB .. Vol. 1, 378 DisconnectClient... Vol. 5, 270
BlockConvertServicesToStatic Vol. 5, 316
BlockDeleteStaticServices Vol. 5, 317

DnsAcquireContextHandle Vol. 2, 49
DnsExtractRecordsFromMessage Vol. 2, 50

. DnsFreeRecordList... Vol. 2, 51

c
cbpAdmitRsvpMsg Vol. 1, 860
cbpGetRsvpObjects Vol. 1, 861
Change Notification Flags Vol. 5, 505
CIAddFlowComplete Vol. 1, 830
CIDeleteFlowComplete Vol. 1, 831
CIModifyFlowComplete Vol. 1, 831
CINotifyHandler Vol. 1, 832
CloseServiceEnumerationHandle Vol. 5, 318
closesocket... Vol. 1, 142
connect ... Vol. 1, 145
ConnectClient Vol. 5, 268
CONNECTDLGSTRUCT Vol. 3, 656
CreatelpForwardEntry Vol. 2, 240
CreatelpNetEntry Vol. 2, 242

DnsModifyRecordslnSet Vol. 2, 51
DnsNameCompare Vol. 2,53
DnsQuery .. Vol. 2, 61
DnsQueryConfig Vol. 2, 63
DnsRecordCompare Vol. 2, 55
DnsRecordCopyEx Vol. 2, 55
DnsRecordSetCompare Vol. 2, 56
DnsRecordSetCopyEx Vol. 2, 57
DnsRecordSetDetach Vol. 2, 58
DnsReleaseContextHandle Vol. 2, 54
DnsReplaceRecordSet Vol. 2, 59
DnsValidateName Vol. 2, 64
DnsWriteQuestionToBuffer. Vol. 2, 67
DoUpdateRoutes Vol. 5, 271
DoUpdateServices Vol. 5, 271

678 Volume 3 RPC and WNet

E GetService .. Vol. 1, 171
GetServiceCount Vol. 5, 325

EnumerateGetNextService Vol. 5, 322 getsockname Vol. 1,175
Enumeration Flags Vol. 5, 505 getsockopt... Vol. 1, 176
ENUMERATION_BUFFER Vol. 1,835 GetTcpStatistics Vol. 2, 263
EnumProtocols Vol. 1, 149 GetTcpTable Vol. 2, 263

GetTypeByName Vol. 1, 185

F GetUdpStatistics Vol. 2, 264
GetUdpTable Vol. 2, 265

fd_set .. Vol. 1, 380
FIND_NAME_BUFFER Vol. 2, 151
FIND_NAME_HEADER Vol. 2, 152
FIXED_INFO Vol. 2, 277
FLOWSPEC Vol. 1, 380

GetUniDirectionaIAdapterlnfo Vol. 2, 266
GLOBAL_FILTER Vol. 5, 262
GUARANTEE. VoI.1, 413
GUID ... Vol. 1,848
GUID ... Vol. 3, 295

FLOWSPEC Vol. 1, 791
FlushlpNetTable Vol. 2, 246 H

G hostent .. Vol. 1,381
htonl .. Vol. 1, 186

GetAcceptExSockaddrs Vol. 1, 153 htons ... Vol. 1, 187

GetAdapterlndex Vol. 2, 247
GetAdapterslnfo Vol. 2, 248
GetAddressByName Vol. 1, 154
GetBestlnterface Vol. 2, 249 IEAPProviderConfig Vol. 4, 426
GetBestRoute Vol. 2, 250 IEAPProviderConfig::
GetEventMessage Vol. 5, 272 RouterlnvokeConfigUI Vol. 4, 430
GetFirstOrderedService Vol. 5, 323 I EAPProviderConfig::
GetFriendlylflndex Vol. 2, 251 RouterlnvokeCredentialsUI. Vol. 4, 432
GetGlobalinfo Vol. 5, 274 IEAPProviderConfig::
gethostbyaddr Vol. 1, 159 ServerlnvokeConfigUI. Vol. 4, 429
gethostbyname•.......................... Vol. 1, 160 IEAPProviderConfig::lnitialize Vol. 4, 426
gethostname Vol. 1, 162 IEAPProviderConfig::Uninitialize Vol. 4, 428
GetlcmpStatistics Vol. 2, 252 in_addr .. Vol. 1,381
GetlfEntry ... Vol. 2, 252 ineCaddr ... Vol. 1, 187
GetlfTable ... Vol. 2, 253 ineCntoa ... Vol.1, 189
Getlnterfacelnfo · Vol. 2, 254 Interface Registration Flags Vol. 3, 336
Getlnterfacelnfo Vol. 5, 275 InterfaceStatus Vol. 5, 280
GetlpAddrTable Vol. 2, 255 ioctisocket ... Vol. 1, 190
GetlpForwardTable Vol. 2, 256 IP Info Types for Router
GetlpNetTable Vol. 2, 257 Information Blocks Vol. 5, 183
GetipStatistics Vol. 2, 258 IP _ADAPTER_BINDING_INFO Vol. 5,149
GetMfeStatus Vol. 5, 277 IP _ADAPTER_INDEX_MAP Vol. 2, 278
GetNameByType Vol. 1, 163 IP _ADAPTER_INFO Vol. 2, 279
GetNeighbors Vol. 5, 278 IP _INTERFACE_INFO Vol. 2, 280
GetNetworkParams Vol. 2, 258 IP _LOCAL_BINDING Vol. 5, 150
GetNextOrderedService Vol. 5, 324 IP _NETWORK Vol. 5, 352
GetNumberOflnterfaces Vol. 2, 260 IP _NEXT_HOP _ADDRESS Vol. 5, 352
getpeername Vol. 1, 164 IP _PATTERN Vol. 1,842
GetPerAdapterlnfo Vol. 2, 260 IP _PER_ADAPTER_INFO Vol. 2, 281
getprotobyname Vol. 1, 165 IP _SPECIFIC_DATA Vol. 5, 353
getprotobynumber Vol. 1, 167 IP _UNIDIRECTIONAL_ADAPTER_
GetRTTAndHopCount... Vol. 2, 262 ADDRESS Vol. 2, 282
getservbyname Vol. 1, 168 IPNG_ADDRESS Vol. 2, 88
getservbyport Vol. 1, 169 IpReleaseAddress Vol. 2, 267

Index Networking Services Programming Elements - Alphabetical Listing 679

IpRenewAddress Vol. 2, 268
IPX Info Types for Router

Information Blocks Vol. 5, 184
IPX_ADAPTER_BINDING_INFO Vol. 5,151
IPX_ADDRESS_DATA Vol. 1,670
IPX_IF _INFO Vol. 5,181
IPX_NETNUM_DATA Vol. 1,672
IPX_NETWORK Vol. 5, 355
IPX_NEXT _HOP _ADDRESS Vol. 5, 355
IPX_SERVER_ENTRY Vol. 5, 327
IPX_SERVICE Vol. 5, 328
IPX_SPECIFIC_DATA Vol. 5, 356
IPX_SPXCONNSTATUS_DATA Vol. 1,673
IPX_STATIC_SERVICE_INFO Vol. 5,181
IPXWAN_IF _INFO Vol. 5, 182
ISensLogon Vol. 2, 212
ISensLogon::DisplayLock Vol. 2, 216
ISensLogon::DisplayUnLock Vol. 2, 217
ISensLogon::Logoff Vol. 2, 214
ISensLogon::Logon Vol. 2, 213
ISensLogon::StartScreenSaver Vol. 2, 218
ISensLogon::StartShell Vol. 2, 215
ISensLogon::StopScreenSaver Vol. 2, 219
ISensNetwork Vol. 2, 220
ISensNetwork::

ConnectionMadeNoQOClnfo Vol. 2, 222
ISensNetwork::

DestinationReachable Vol. 2, 225
ISensNetwork::

DestinationReachable
NoQOClnfo Vol. 2, 226

ISensNetwork::ConnectionLost.. Vol. 2, 223
ISensNetwork::ConnectionMade Vol. 2, 221
ISensOnNow Vol. 2, 228
ISensOnNow::BatteryLow Vol. 2, 231
ISensOnNow::OnACPower Vol. 2, 229
ISensOnNow::OnBatteryPower Vol. 2, 230
IsService ... Vol. 5, 326
ISyncMgrEnumltems Vol. 2,166
ISyncMgrRegister Vol. 2, 193
ISyncMgrRegister: :

GetHandlerRegistrationlnfo Vol. 2, 195
ISyncMgrRegister::

RegisterSyncMgrHandler Vol. 2, 194
ISyncMgrRegister::

UnregisterSyncMgrHandler Vol. 2, 194
ISyncMgrSynchronize Vol. 2, 168
ISyncMgrSynchronize::

EnumSyncMgrltems Vol. 2, 171
ISyncMg rSynchronize::

GetHandlerlnfo Vol. 2, 170
ISyncMgrSynchron ize::

GetltemObject Vol. 2, 172
ISyncMgrSynchronize::

PrepareForSync Vol. 2, 175

ISyncMgrSynchronize::
SetltemStatus Vol. 2, 178

ISyncMgrSynchronize: :
SetProgressCaliback Vol. 2, 174

ISyncMgrSynchronize: :
ShowProperties Vol. 2,173

ISyncMgrSynchronize::
Synchronize Vol. 2, 176

ISyncMgrSynchronize::lnitialize Vol. 2, 169
ISyncMgrSynchronize::ShowError Vol. 2, 179
ISyncMgrSynchronizeCaliback Vol. 2,180
ISyncMgrSynchronizeCallback::

DeleteLogError Vol. 2, 189
ISyncMgrSynchronizeCaliback: :

EnableModeless Vol. 2,186
ISyncMgrSynchronizeCaliback: :

EstablishConnection Vol. 2, 190
ISyncMgrSynchronizeCallback::

LogError ... Vol. 2, 187
ISyncMgrSynchronizeCaliback: :

PrepareForSyncCompleted Vol. 2, 184
ISyncMgrSynchronizeCaliback: :

Progress ... Vol. 2, 182
ISyncMgrSynchronizeCaliback: :

ShowErrorCompleted Vol. 2,188
ISyncMgrSynchron izeCaliback::

ShowPropertiesCompleted Vol. 2, 183
ISyncMgrSynchronizeCaliback: :

SynchronizeCompleted Vol. 2,185
ISyncMgrSynchronizelnvoke Vol. 2, 191
ISyncMgrSynchronizelnvoke::

UpdateAIi Vol. 2,192
ISyncMgrSynchronizelnvoke::

Updateltems Vol. 2,191

L
LANA_ENUM Vol. 2,152
linger ... Vol. 1,382
Iisten .. Vol. 1, 192
LPM_AdmitRsvpMsg Vol. 1, 863
LPM_CommitResv Vol. 1,866
LPM_Deinitialize Vol. 1,867
LPM_DeleteState Vol. 1,868
LPM_GetRsvpObjects Vol. 1,870
LPM_lnitialize Vol. 1,872
Lpm_lpAddressTable Vol. 1,874
LPMIPTABLE Vol. 1,875

M
MACYIELDCALLBACK Vol. 3, 575
MCAST_CLlENT_UID Vol. 2, 89
MCAST _LEASE_REQUEST Vol. 2, 90

680 Volume 3 RPC and WNet

MCAST _LEASE_RESPONSE Vol. 2, 92 MIB_IPMCAST_GLOBAL Vol. 5, 212
MCAST _SCOPE_CTX Vol. 2, 89 MIB_IPMCAST_IF_ENTRY Vol. 5, 213
MCAST _SCOPE_ENTRy Vol. 2, 90 MIB_IPMCAST_IF_TABLE Vol. 5, 214
McastApiCleanup Vol. 2, 82 MIB_IPMCAST_MFE Vol. 5, 214
McastApiStartup Vol. 2, 82 MIB_IPMCAST _MFE_STATS Vol. 5, 216
McastEnumerateScopes Vol. 2, 83 MIB_IPMCAST_OIF Vol. 5, 218
McastGenUID Vol. 2, 85 MIB_IPMCAST_OIF _STATS Vol. 5, 219
McastReleaseAddress Vol. 2, 87 MIB_IPNETROW Vol. 5, 220
McastRenewAddress Vol. 2, 86 MIB_IPNETTABLE Vol. 5, 221
McastRequestAddress Vol. 2, 85 MIB_IPSTATSvol. 5, 222
MesBufferHandleReset Vol. 3, 350 MIB_MFE_STATS_TABLE Vol. 5, 224
MesDecodeBufferHandleCreate Vol. 3, 351 MIB_MFE_TABLE Vol. 5, 224
MesDecodelncrementalHandle MIB_OPAQUE_INFO Vol. 5, 225

Create .. Vol. 3, 353 MIB_OPAQUE_QUERY Vol. 5, 225
MesEncodeDynBufferHandle MIB_PROXYARP Vol. 5, 226

Create .. Vol. 3, 354 MIB_TCPROW Vol. 5, 227
MesEncodeFixedBufferHandle MIB_TCPSTATS Vol. 5, 228

Create .. Vol. 3, 355 MIB_TCPTABLE Vol. 5, 230
MesEncodelncrementalHandle MIB_UDPROW Vol. 5, 230

Create .. Vol. 3, 356 MIB_UDPSTATS Vol. 5, 231
MesHandleFree Vol. 3, 357 MIB_UDPTABLE Vol. 5, 232
MeslncrementaIHandleReset.. Vol. 3, 358 MibCreate ... Vol. 5, 281
MeslnqProcEncodingld Vol. 3, 359 MibDelete .. Vol. 5, 282
MESSAGE .. Vol. 5, 297 MibEntryCreate Vol. 5, 307
MGM_ENUM_ TYPES Vol. 5, 564 MibEntryDelete Vol. 5, 308
MGM_IF _ENTRy Vol. 5, 561 MibEntryGet Vol. 5, 309
MgmAddGroupMembershipEntry Vol. 5, 524 MibEntryGetFirst.. Vol. 5, 311
MgmDeleteGroupMembership MibEntryGetNext Vol. 5, 312

Entry .. Vol. 5, 526 MibEntrySet Vol. 5, 313
MgmDeRegisterMProtocol Vol. 5, 527 MibGet .. Vol. 5, 283
MgmGetFirstMfe Vol. 5, 528 MibGetFirst Vol. 5, 284
MgmGetFirstMfeStats Vol. 5, 530 MibGetNext.. Vol. 5, 285
MgmGetMfe Vol. 5, 531 MibGetTraplnfo Vol. 5, 286
MgmGetMfeStats Vol. 5, 533 MIBICMPINFO Vol. 5, 232
MgmGetNextMfe Vol. 5, 534 MIBICMPSTATS Vol. 5, 233
MgmGetNextMfeStats Vol. 5, 536 MibSet.. .. .vol. 5, 287
MgmGetProtocolOnlnterface Vol. 5, 537 MibSetTraplnfo Vol. 5, 288
MgmGroupEnumerationEnd Vol. 5, 539 MPR_CREDENTIALSEX_O Vol. 5,152
MgmGroupEnumerationGetNext.. Vol. 5, 539 " MPR_IFTRANSPORT_O Vol. 5, 152
MgmGroupEnumerationStart , Vol. 5, 541 MPR_INTERFACE_O Vol. 5, 153
MgmRegisterMProtocol Vol. 5, 542 MPR_INTERFACE_1 Vol. 5, 154
MgmReleaselnterfaceOwnership Vol. 5, 543 MPR_INTERFACE_2 Vol. 5, 156
MgmSetMfe Vol. 5, 545 MPR_ROUTING_
MgmTakelnterfaceOwnership Vol. 5, 545 CHARACTERISTICS Vol. 5, 297
MIB_BEST _IF Vol. 5, 202 MPR_SERVER_O Vol. 5,166
MIB_ICMP .. Vol. 5, 203 MPR_SERVICE_
MIB_IFNUMBER Vol. 5, 203 CHARACTERISTICS Vol. 5, 301
MIB_IFROW Vol. 5, 204 MPR_TRANSPORT_O Vol. 5, 167
MIB_IFSTATUS Vol. 5, 206 MprAdminAcceptNewConnection Vol. 4, 341
MIB_IFTABLE Vol. 5, 207 MprAdminAcceptNewConnection2 ... Vol. 4, 342
MIB_IPADDRROW Vol. 5, 207 MprAdminAcceptNewLink Vol. 4, 343
MIB_IPADDRTABLE Vol. 5, 208 MprAdminBufferFree Vol. 5, 70
MIB_IPFORWARDNUMBER Vol. 5, 209 MprAdminConnectionClearStats Vol. 4, 329
MIB_IPFORWARDROW Vol. 5, 210 MprAdminConnectionEnum Vol. 4, 330
MIB_IPFORWARDTABLE Vol. 5, 212 MprAdminConnectionGetinfo VOI. 4, 332

Index Networking Services Programming Elements - Alphabetical Listing 681

MprAdminConnectionHangup MprAdminReleaselpAddress Vol. 4, 348
Notification Vol. 4, 344 MprAdminSendUserMessage Vol. 4, 351

MprAdminConnectionHangup MprAdminServerConnect Vol. 5,102
Notification2 Vol. 4, 345 MprAdminServerDisconnect.. Vol. 5, 102

MprAdminDeregisterConnection MprAdminServerGetinfo Vol. 5, 103
Notification Vol. 5, 71 MprAdminTransportCreate Vol. 5, 104

MprAdminGetErrorString Vol. 5, 72
MprAdminGetlpAddressForUser Vol. 4, 346
MprAdminGetPDCServer Vol. 4, 349
MprAdminlnterfaceConnect Vol. 5, 73
MprAdminlnterfaceCreate Vol. 5, 75
MprAdminlnterfaceDelete Vol. 5, 76
MprAdminlnterfaceDisconnect Vol. 5, 77
MprAdminlnterfaceEnum Vol. 5, 78
MprAdminlnterfaceGetCredentials Vol. 5, 80
MprAdminlnterfaceGetCredentials

Ex .. Vol. 5, 82
MprAdminlnterfaceGetHandle Vol. 5, 83
MprAdminlnterfaceGetlnfo Vol. 5, 84
MprAdminlnterfaceQueryUpdate

Result .. Vol. 5, 86
MprAdminlnterfaceSetCredentials Vol. 5, 87
MprAdminlnterfaceSetCredentials

Ex .. Vol. 5, 89
MprAdminlnterfaceSetlnfo Vol. 5, 90
MprAdminlnterfaceTransport

Getlnfo ... Vol. 5, 93
MprAdminlnterfaceTransport

Remove ... Vol. 5, 94

MprAdminTransportGetinfo Vol. 5, 106
MprAdminTransportSetlnfo Vol. 5, 108
MprAdminUserGetlnfo Vol. 4, 352
MprAdminUserSetinfo Vol. 4, 353
MprConfigBufferFree Vol. 5, 110
MprConfigGetFriendlyName Vol. 5, 110
MprConfigGetGuidName Vol. 5,112
MprConfiglnterfaceCreate Vol. 5,114
MprConfiglnterfaceDelete Vol. 5,115
MprConfiglnterfaceEnum Vol. 5,116
MprConfiglnterfaceGetHandle Vol. 5, 118
MprConfiglnterfaceGetlnfo Vol. 5, 119
MprConfiglnterfaceSetlnfo ~.Vol. 5,121
MprConfiglnterfaceTransport

Enum .. Vol. 5, 124
MprConfigl nterface Transport

GetHandlevol. 5,126
MprConfiglnterfaceTransport

Getlnfo ... Vol. 5, 128
MprConfiglnterfaceTransport

Remove .. Vol. 5, 130
MprConfiglnterfaceTransport

MprAdminlnterfaceTransport Setlnfo .. Vol. 5, 131
Setlnfo ... Vol. 5, 95 MprConfiglnterfaceTransportAdd Vol. 5,122

MprAdminlnterfaceTransportAdd Vol. 5, 91 MprConfigServerBackup Vol. 5, 133
MprAdminlnterfaceUpdate MprConfigServerConnect.. Vol. 5, 134

Phonebooklnfo Vol. 5, 97 MprConfigServerDisconnect..vol. 5, 135
MprAdminlnterfaceUpdateRoutes Vol. 5, 98 MprConfigServerGetlnfo Vol. 5, 136
MprAdminlsServiceRunning Vol. 5, 100 MprConfigServerlnstalivol. 5, 113
MprAdminLinkHangupNotification Vol. 4, 347 MprConfigServerRestore Vol. 5,137
MprAdminMIBBufferFree Vol. 5, 188 MprConfigTransportCreate Vol. 5, 138
MprAdminMIBEntryCreate Vol. 5, 188
MprAdminMIBEntryDelete Vol. 5,190

MprConfigTransportDelete Vol. 5, 140
MprConfigTransportEnum Vol. 5,141

MprAdminMIBEntryGet Vol. 5, 191
MprAdminMIBEntryGetFirst Vol. 5,193
MprAdminMIBEntryGetNext Vol. 5, 195
MprAdminMIBEntrySet.. Vol. 5,196
MprAdminMIBGetTraplnfo Vol. 5,198
MprAdminMIBServerConnect Vol. 5, 199
MprAdminMIBServerDisconnect.. Vol. 5, 200
MprAdminMIBSetTraplnfo Vol. 5,200
MprAdminPortClearStats Vol. 4, 334
MprAdminPortDisconnect.. Vol. 4, 335
MprAdminPortEnum Vol. 4, 336
MprAdminPortGetlnfo Vol. 4, 338
MprAdminPortReset. Vol. 4, 339
MprAdminRegisterConnection

Notification Vol. 5,100

MprConfigTransportGetHandle Vol. 5, 143
MprConfigTransportGetinfo Vol. 5, 144
MprConfigTransportSetinfo Vol. 5, 147
MprlnfoBlockAdd Vol. 5,170
MprlnfoBlockFind Vol. 5,172
MprlnfoBlockQuerySize Vol. 5, 173
MprlnfoBlockRemove Vol. 5,174
MprlnfoBlockSet...vol. 5, 175
Mp'rlnfoCreatevol. 5, 176
MprlnfoDelete Vol. 5, 177
MprlnfoDuplicate Vol. 5,178
MprlnfoRemoveAIi Vol. 5, 179
MultinetGetConnection

Performance Vol. 3, 609

682 Volume 3 RPe and WNet

N PfRemoveGlobalFilterFrom
nterface .. Vol. 5, 252

NAME_BUFFER Vol. 2, 153 PfSetLogBuffer. Vol. 5, 252
NCB .. VoI. 2,154 PfTestPacket... Vol. 5, 253
NDR_USER_MARSHAUNFO Vol. 3, 296 PfUnBindlnterface Vol. 5, 255
NdrGetUserMarshalinfo Vol. 3, 360 PMGM_CREATION_ALERT _
Netbios ... Vol. 2, 145 CALLBACK Vol. 5, 547
NETCONNECTINFOSTRUCT Vol. 3, 659 PMGM_DISABLE_IGMP _
NETINFOSTRUCT Vol. 3, 661 CALLBACK Vol. 5, 549
NETRESOURCE Vol. 3, 663 PMGM_ENABLE_IGMP _
Next Hop Flags Vol. 5, 503 CALLBACK Vol. 5, 549
NotifyAddrChange Vol. 2, 268 PMGM_JOIN_ALERT _
NotifyRouteChange Vol. 2, 269 CALLBACK Vol. 5, 550
NS_SERVICE_INFO Vol. 1, 383 PMGM_LOCAL_JOIN_
NSPCleanup Vol. 1, 497 CALLBACK Vol. 5, 552
NSPGetServiceClasslnfo Vol. 1, 498 PMGM_LOCAL_LEAVE_
NSPlnstaIiServiceClass Vol. 1, 499 CALLBACK Vol. 5, 554
NSPLookupServiceBegin Vol. 1, 500 PMGM_PRUNE_ALERT _
NSPLookupServiceEnd Vol. 1, 504 CALLBACK Vol. 5, 555
NSPLookupServiceNext Vol. 1, 505 PMGM_RPF _CALLBACK. Vol. 5, 558
NSPRemoveServiceClass Vol. 1, 509 PMGM_WRONG_IF _CALLBACK Vol. 5, 560
NSPSetService Vol. 1,510 Portability Macros Vol. 3, 583
NSPStartup Vol. 1,513 PPP _ATCP _INFOvol. 4, 355
ntohl .. V01.1,194 PPP _CCP _INFO Vol. 4, 356
ntohs ... Vol. 1, 195 PPP _EAP _ACTION Vol. 4, 414

PPP _EAP _INFO : Vol. 4, 403

o PPP _EAP _INPUT Vol. 4, 404
PPP _EAP _OUTPUT.. Vol. 4, 409

ORASADFunc Vol. 4, 103 PPP _EAP _PACKET Vol. 4, 412
PPP _INFO .. Vol. 4, 358

p
PPP _INFO_2vol. 4, 358
PPP _IPCP _INFO Vol. 4, 359

PALLOCMEM Vol. 1, 876
PF _FILTER_DESCRiPTOR Vol. 5, 256
PF _FILTER_STATS Vol. 5, 257
PF _INTERFACE_STATS Vol. 5, 258
PF _LATEBIND_INFO Vol. 5, 260
PfAddFiltersTolnterface Vol. 5, 239
PfAddGlobalFilterTolnterface Vol. 5, 241
PFADDRESSTYPE Vol. 5, 262
PfBindlnterfaceTolndex Vol. 5, 241
PfBindlnterfaceToIPAddress Vol. 5, 242
PfCreatelnterface Vol. 5, 243
PfDeletelnterface Vol. 5, 245
PfDeleteLog Vol. 5, 246
PFFORWARD_ACTION Vol. 5, 263
PFFRAMETYPE Vol. 5, 264
PfGetlnterfaceStatistics Vol. 5, 246
PFLOGFRAME Vol. 5, 260

PPP _IPCP _INF02 Vol. 4, 360
PPP _IPXCP _INFO Vol. 4, 361
PPP _LCP _INFO Vol. 4, 362
PPP _NBFCP _INFO Vol. 4, 364
Protection Level Constants Vol. 3, 337
Protocol Identifiers Vol. 5, 235
Protocol Sequence Constants Vol. 3, 338
PROTOCOUNFO Vol. 1, 384
PROTOCOL_SPECIFIC_DATA Vol. 5, 357
protoent ... VoI. 1,387
PROTSEQ .. Vol. 3, 317
PS_ADAPTER_STATS Vol. 1, 851
PS_COMPONENT_STATS Vol. 1, 850
PS_CONFORMER_STATS Vol. 1, 853
PS_DRRSEQ_STATS Vol. 1, 854
PS_FLOW_STATS Vol. 1, 852
PS_SHAPER_STATS Vol. 1, 853

PfMakeLog .. Vol. 5, 248
PtRebindFilters Vol. 5, 249 Q
PFREEMEM Vol. 1, 876
PfRemoveFilterHandles Vol. 5, 250
PfRemoveFiltersFromlnterface Vol. 5, 250

QOCINFO ... Vol. 2, 209
QOS .. V01.1,388
QOS .. Vol. 1,797

Index Networking Services Programming Elements - Alphabetical Listing 683

QOS_DIFFSERV _RULE Vol. 1, 844
QOS_OBJECT _DESTADDR Vol. 1,800
QOS_OBJECT _DIFFSERV Vol. 1, 858
QOS_OBJECT _DS_CLASS Vol. 1, 857
QOS_OBJECT _HDR Vol. 1, 799
QOS_OBJECT _SD_MODE Vol. 1, 801
QOS_OBJECT _SHAPING_RATE ... Vol. 1,802
QOS_OBJECT _TRAFFIC_CLASS .. Vol. 1, 856
QueryPower Vol. 5, 289

R
RADIUS_ACTION Vol. 2, 112
RADIUS_ATTRIBUTE Vol. 2, 110
RADIUS_ATTRIBUTE_TYPE Vol. 2,112
RADIUS_AUTHENTICATION_

PROVIDER.•......... Vol. 2,120
RADIUS_DATA_TYPE Vol. 2,121
RadiusExtensionlnit. Vol. 2, 107
RadiusExtensionProcess Vol. 2, 108
RadiusExtensionProcessEx Vol. 2, 109
RadiusExtensionTerm Vol. 2, 107
RAS_AUTH_A TTRIBUTE Vol. 4, 413
RAS_AUTH_A TTRIBUTE_ TYPE. Vol. 4, 415
RAS_CONNECTION_O Vol. 4, 365
RAS_CONNECTION_1 Vol. 4, 367
RAS_CONNECTION_2 Vol. 4, 368
RAS_HARDWARE_CONDITION Vol. 4, 375
RAS_PARAMETERS Vol. 4, 293
RAS_PARAMS_FORMAT Vol. 4, 314
RAS_PARAMS_VALUE Vol. 4, 312
RAS_PORT_O ,. Vol. 4, 294
RAS_PORT _0 Vol. 4, 369
RAS_PORT _1 Vol. 4, 297
RAS_PORT _1 Vol. 4, 370
RAS_PORT _CONDITION Vol. 4, 376
RAS~PORT_STATISTICS Vol. 4, 298
RAS_PPP _ATCP _RESULT ..•.......... Vol. 4, 302
RAS_PPP _'PCP _RESULT Vol. 4, 303
RAS_PPP ...:IPXCP _RESULT Vol. 4, 303
RAS_PPP _NBFCP _RESULT Vol. 4, 304
RAS_PPP,---PROJECTION_

RESULT , Vol. 4, 305
RAS_SECURITY _'NFO Vol. 4, 306
RAS_SERVER_O Vol. 4, 307
RAS_STATS Vol. 4, 308
RAS_USER_O•..................... Vol. 4, 310
RAS_USER_O Vol. 4, 372
RAS_USER_1 Vol. 4, 373
RASADFunc•....................... Vol. 4, 105
RasAdminAcceptNewConnection Vol. 4, 277
RasAdminConnectionHangup

Notification Vol. 4, 279
RasAdminFreeBuffer Vol. 4, 265
RasAdminGetErrorString•.......... Vol. 4, 266

RasAdminGetlpAddressForUser Vol. 4, 281
RasAdminGetUserAccountServer Vol. 4, 267
RasAdminPortClearStatistics Vol. 4, 269
RasAdminPortDisconnect Vol. 4, 270
RasAdminPortEnum Vol. 4, 271
RasAdminPortGetlnfo Vol. 4, 272
RasAdminReleaselpAddress Vol. 4, 282
RasAdminServerGetlnfo Vol. 4, 274
RasAdminUserGetlnfo Vol. 4, 275
RasAdminUserSetlnfo Vol. 4, 276
RASADPARAMS Vol. 4, 205
RASAMB ... Vol. 4, 206
RASAUTODIALENTRY Vol. 4, 207
RasClearConnectionStatistics Vol. 4,107
RasClearLinkStatistics Vol. 4, 107
RASCONN•.................................. Vol. 4,208
RasConnectionNotification Vol. 4,109
RASCONNSTATE Vol. 4, 258
RASCONNSTATUS Vol. 4, 210
RasCreatePhonebookEntry Vol. 4, 110
RASCREDENTIALS Vol. 4, 211
RASCTRYINFO Vol. 4, 212
RasCustomDeleteEntryNotify Vol. 4, 111
RasCustomDial Vol. 4, 112
RasCustomDialDfg Vol. 4,114
RasCustomEntryDlg Vol. 4, 116
RasCustomHangUp Vol. 4, 118
RasCustomScriptExecute Vol. 4, 197
RasDeleteEntry Vol. 4,119
RASDEVINFO Vol. 4, 214
RasDial , VoI. 4,120
RasDiaIDlg .. Vol. 4,123
RASDIALDLG , Vol. 4, 215
RASDIALEXTENSIONS Vol. 4, 217
RasDialFunc Vol. 4,125
RasDiaiFunc1 Vol. 4,127
RasDiaiFunc2 Vol. 4,129
RASDIALPARAMS Vol. 4, 219
RasEapBegin Vol. 4, 389
RasEapEnd Vol. 4, 391
RasEapFreeMemory Vol. 4, 391
RasEapGetidentity Vol. 4, 392
RasEapGetlnfo ... , Vol. 4, 395
RASEAPINFO Vol. 4, 222
RasEaplnitialize Vol. 4, 396
RasEaplnvokeConfigUI Vol. 4, 397
RasEaplnvokelnteractiveUI Vol. 4, 399
RasEapMakeMessage Vol. 4, 401
RASEAPUSERIDENTITY Vol. 4, 222
RasEditPhonebookEntry Vol. 4, 131
RASENTRY : VOL 4, 223
RasEntryDlg Vol. 4,133
RASENTRYDLG., Vol. 4, 236
RASENTRYNAME Vol. 4, 238
RasEnumAutodialAddresses Vol. 4, 135

684 Volume 3 RPC and WNet

RasEnumConnections Vol. 4, 136 RasSetEntryProperties Vol. 4,191
RasEnumDevices Vol. 4,137 RasSetSubEntryProperties Vol. 4,193
RasEnumEntries•........ Vol. 4, 139 RASSLlP ... Vol. 4, 253
RasFreeBuffer Vol. 4,199 RASSUBENTRY Vol. 4, 254
RasFreeEapUserldentity Vol. 4, 142 RasValidateEntryName Vol. 4,195
RasGetAutodialAddress Vol. 4, 143 recv ... Vol. 1, 196
RasGetAutodialEnable Vol. 4, 144 recvfrom .. Vol. 1, 199
RasGetAutodiaIParam Vol. 4,145 RegisterProtocol•........ Vol. 5, 290
RasGetBuffer Vol. 4,198 REMOTE_NAME_INFO Vol. 3, 665
RasGetConnectionStatistics Vol. 4,147 Route Flags Vol. 5, 501
RasGetConnectStatus Vol. 4, 148 ROUTER_CONNECTION_STATE ... Vol. 5,167
RasGetCountrylnfo Vol. 4,149 ROUTER_INTERFACE_TYPE Vol. 5, 168
RasGetCredentials Vol. 4,151 Routing Table Query Flags ,.Vol. 5, 504
RasGetCustomAuthData Vol. 4, 153 ROUTING_PROTOCOL_CONFIG ... Vol. 5, 562
RasGetEapUserData Vol. 4, 155 RPC_ASYNC_EVENT Vol. 3, 315
RasGetEapUserldentity Vol. 4, 156 RPC_ASYNC_STATE Vol. 3, 298
RasGetEntryDialParams Vol. 4,158 RPC.:..AUTH_IDENTITY_HANDLE ... Vol. 3, 318
RasGetEntryProperties Vol. 4, 160 RPC_AUTH_KEY _RETRIEVAL_
RasGetErrorString Vol. 4, 162 FN .. Vol. 3, 576
RasGetLinkStatistics Vol. 4, 164 RPC_AUTHZ_HANDLE Vol. 3, 319
RasGetProjectionlnfo Vol. 4, 165 RPC_BINDlNG_HANDLE Vol. 3, 319
RasGetSubEntryHandle Vol. 4, 167 RPC_BINDING_VECTOR Vol. 3, 301
RasGetSubEntryProperties Vol. 4,168 RPC_CLlENT_INTERFACE Vol. 3, 302
RasHangUp Vol. 4, 170 RPC_DISPATCH3ABLE Vol. 3, 302
RaslnvokeEapUI Vol. 4, 171 RPC_EP _INQ_HANDLE Vol. 3, 320
RASIPADDR Vol. 4, 239 RPC_IF _CALLBACK_FN Vol. 3, 577
RasMonitorDlg Vol. 4,173 RPC_IF _HANDLE Vol. 3, 321
RASMONITORDLG Vol. 4, 240 RPC_IF _ID .. Vol. 3, 303
RASNOUSER. Vol. 4, 241 RPC_IF _ID_VECTOR Vol. 3, 304
RASPBDLG Vol. 4, 243 RPC_MGMT j.UTHORIZATION_
RasPBDlgFunc Vol. 4,174 FN .. Vol. 3, 577
RasPhonebookDlg '" Vol. 4, 176 RPC_MGR_EPV Vol. 3, 321
RASPPPCCP Vol. 4, 245 RPC_NOTIFICATION_TYPES Vol. 3, 315
RASPPPIP Vol. 4, 247 RPC_NS_HANDLE Vol. 3, 322
RASPPPIPX Vol. 4, 251 RPC_OBJECT_INQ_FN Vol. 3, 579
RASPPPLCP Vol. 4, 248 RPC_POLICY Vol. 3, 304
RASPPPNBF Vol. 4, 252 RPC_PROTSEQ_VECTOR. Vol. 3, 308
RASPROJECTION Vol. 4, 263 RPC_SECURITY_QOS Vol. 3, 308
RasReceiveBuffer Vol. 4, 201 RPC_STATS_VECTOR. Vol. 3, 310
RasRenameEntry•........................ Vol. 4, 178 RPC_STATUS Vol. 3, 323
RasRetrieveBuffer Vol. 4, 203 RpcAbnormalTermination Vol. 3, 362
RasSecurityDialogBegin Vol. 4, 284 RpcAsyncAbortCall Vol. 3, 362
RasSecurityDialogComplete Vol. 4, 286 RpcAsyncCanceICall Vol. 3, 363
RasSecurityDialogEnd Vol. 4, 287 RpcAsyncCompleteCall Vol. 3, 365
RasSecurityDialogGetinfo Vol. 4, 288 RpcAsyncGetCaliHandle Vol. 3, 585
RasSecurityDialogReceive Vol. 4, 289 RpcAsyncGetCaliStatus Vol. 3, 366
RasSecurityDialogSend Vol. 4, 291 RpcAsynclnitializeHandle Vol. 3, 367
RasSendBuffer Vol. 4, 200 RpcAsyncRegisterlnfo , Vol. 3, 368
RasSetAutodialAddress Vol. 4, 179 RpcBindingCopy , Vol. 3, 369
RasSetAutodialEnable Vol. 4, 181 RpcBindingFree Vol. 3, 370
RasSetAutodialParam Vol. 4, 182 RpcBindingFromStringBinding Vol. 3, 372
RasSetCredentials Vol. 4, 184 RpcBindinglnqAuthClient Vol. 3, 373
RasSetCustomAuthData Vol. 4, 186 RpcBindinglnqAuthClientEx Vol. 3, 375
RasSetEapUserData Vol. 4, 187 RpcBindinglnqAuthlnfo Vol. 3, 377
RasSetEntryDiaIParams Vol. 4, 189 RpcBindinglnqAuthlnfoEx VoI.3, 380

Index Networking Services Programming Elements - Alphabetical Listing 685

RpcBindinglnqObject... Vol. 3, 382 RpcNsBindingLookupNext.. Vol. 3, 450
RpcBindinglnqOption Vol. 3, 383 RpcNsBindingSelect Vol. 3, 452
RpcBindingReset.. Vol. 3, 384 RpcNsBindingUnexport Vol. 3, 453
RpcBindingServerFromClient.. Vol. 3, 385 RpcNsBindingUnexportPnP Vol. 3, 456
RpcBindingSetAuthlnfo Vol. 3, 387 RpcNsEntryExpandName Vol. 3, 457
RpcBindingSetAuthlnfoEx Vol. 3, 389 RpcNsEntryObjectlnqBegin Vol. 3, 458
RpcBindingSetObject Vol. 3, 391 RpcNsEntryObjectlnqDone Vol. 3, 460
RpcBindingSetOption Vol. 3, 392 RpcNsEntryObjectlnqNexl.. Vol. 3, 461
RpcBindingToStringBinding Vol. 3, 394 RpcNsGroupDelete Vol. 3, 462
RpcBindingVectorFree Vol. 3, 395 RpcNsGroupMbrAdd Vol. 3, 463
RpcCancelThread Vol. 3, 396 RpcNsGroupMbrlnqBegin Vol. 3, 465
RpcCancelThreadEx Vol. 3, 397 RpcNsGroupMbrlnqDone Vol. 3, 466
RpcCertGeneratePrincipaIName Vol. 3, 398 RpcNsGroupMbrlnqNext Vol. 3, 467
RpcEndExcept.. Vol. 3, 586 RpcNsGroupMbrRemove Vol. 3, 468
RpcEndFinally Vol. 3, 586 RpcNsMgmtBindingUnexport Vol. 3, 470
RpcEpRegister Vol. 3, 399 RpcNsMgmtEntryCreate Vol. 3, 473
RpcEpRegisterNoReplace Vol. 3, 401 RpcNsMgmtEntryDelete Vol. 3, 474
RpcEpResolveBinding Vol. 3, 404 RpcNsMgmtEntrylnqlflds Vol. 3, 475
RpcEpUnregister Vol. 3, 405 RpcNsMgmtHandleSetExpAge Vol. 3, 476
RpcExcept .. Vol. 3, 587 RpcNsMgmtlnqExpAge Vol. 3, 478
RpcExceptionCode Vol. 3, 407 RpcNsMgmtSetExpAge Vol. 3, 480
RpcFinally ... Vol. 3, 588 RpcNsProfileDelete Vol. 3, 481
RpclfldVectorFree Vol. 3; 407 RpcNsProfileEltAdd , Vol. 3, 482
Rpclflnqld ... Vol. 3, 408 RpcNsProfileEltlnqBegin Vol. 3, 484
RpclmpersonateClient.. Vol. 3, 409 RpcNsProfileEltlnqDone Vol. 3, 488
RpcMacSetYieldlnfo Vol. 3, 410 RpcNsProfileEltlnqNext Vol. 3, 488
RpcMgmtEnableldleCleanup Vol. 3, 411 RpcNsProfileEltRemove Vol. 3, 490
RpcMgmtEpEltlnqBegin Vol. 3, 412 RpcObjectlnqType Vol. 3, 492
RpcMgmtEpEltlnqDone Vol. 3, 415 RpcObjectSetlnqFn Vol. 3, 493
RpcMgmtEpEltlnqNext.. Vol. 3, 416 RpcObjectSetType Vol. 3, 494
RpcMgmtEpUnregister Vol. 3, 417 RpcProtseqVectorFree Vol. 3, 496
RpcMgmtlnqComTimeout Vol. 3, 418 RpcRaiseException Vol. 3, 497
RpcMgmtlnqDefaultprotectLevel Vol. 3, 419 RpcRevertToSelf Vol. 3, 501
RpcMgmtlnqlflds Vol. 3, 421 RpcRevertToSelfEx Vol. 3, 502
RpcMgmtlnqServerPrincName Vol. 3, 422 RpcServerlnqBindings Vol. 3, 503
RpcMgmtlnqStats Vol. 3, 423 RpcServerlnqDefaultPrincName Vol. 3, 504
RpcMgmtisServerListening Vol. 3, 425 RpcServerlnqlf Vol. 3, 505
RpcMgmtSetAuthorizationFn Vol. 3, 426 RpcServerListen Vol. 3, 506
RpcMgmtSetCancelTimeout Vol. 3, 427 RpcServerRegisterAuthlnfo Vol. 3, 508
RpcMgmtSetComTimeout.. Vol. 3, 428 RpcServerRegisterlf Vol. 3, 511
RpcMgmtSetServerStackSize Vol. 3, 429 RpcServerRegisterlf2 Vol. 3, 512
RpcMgmtStatsVectorFree Vol. 3, 430 RpcServerRegisterlfEx Vol. 3, 514
RpcMgmtStopServerListening Vol. 3, 431 RpcServerTestCancel Vol. 3, 516
RpcMgmtWaitServerListen Vol. 3, 432 RpcServerUnregisterlf Vol. 3, 517
RpcNetworklnqProtseqs Vol. 3, 433 RpcServerUseAIiProtseqs Vol. 3, 519
RpcNetworklsProtseqValid Vol. 3, 434 RpcServerUseAIiProtseqsEx Vol. 3, 521
RPCNOTIFICATION_ROUTINE Vol. 3, 579 RpcServerUseAIiProtseqslf Vol. 3, 523
RpcNsBindingExport Vol. 3, 435 RpcServerUseAIiProtseqslfEx Vol. 3, 524
RpcNsBindingExportPnP Vol. 3, 438 RpcServerUseProtseq Vol. 3, 526
RpcNsBindinglmportBegin Vol. 3, 440 RpcServerUseProtseqEp Vol. 3, 530
RpcNsBindinglmportDone Vol. 3, 442 RpcServerUseProtseqEpEx Vol. 3, 532
RpcNsBindinglmportNext.. Vol. 3, 443 RpcServerUseProtseqEx Vol. 3, 528
RpcNsBindinglnqEntryName Vol. 3, 445 RpcServerUseProtseqlf Vol. 3, 534
RpcNsBindingLookupBegin Vol. 3, 446 RpcServerUseProtseqlfEx Vol. 3, 536
RpcNsBindingLookupDone Vol. 3, 449 RpcSmAliocate Vol. 3, 538

686 Volume 3 RPC and WNet

RpcSmClientFree Vol. 3, 539 RTM_IPX_ROUTE Vol. 5, 358
RpcSmDestroyClientContext Vol. 3, 540 RTM_NET_ADDRESS Vol. 5, 485
RpcSmDisableAliocate Vol. 3, 541 RTM_NEXTHOP _INFO Vol. 5, 486
RpcSmEnableAliocate Vol. 3, 542 RTM_NEXTHOP _LIST Vol. 5, 487
RpcSmFree Vol. 3, 543 RTM_PREF _INFO Vol. 5, 488
RpcSmGetThreadHandle Vol. 3, 544 RTM_REGN_PROFILE Vol. 5, 488
RpcSmSetClientAllocFree Vol. 3, 545 RTM_ROUTE_INFO Vol. 5, 489
RpcSmSetThreadHandle Vol. 3, 546 RTM_SIZE_OF _DEST_INFO Vol. 5, 499
RpcSmSwapClientAllocFree Vol. 3, 547 RTM_SIZE_OF _ROUTE_INFO Vol. 5, 500
RpcSsAliocate , Vol. 3, 548 RtmAddNextHop Vol. 5, 405
RpcSsDestroyClientContext... Vol. 3, 549 RtmAddRoute Vol. 5, 335
RpcSsDisableAliocate Vol. 3, 550 RtmAddRouteToDest.. Vol. 5, 406
RpcSsDontSerializeContext Vol. 3, 550 RtmBlockDeleteRoutes Vol. 5, 347
RpcSsEnableAliocate Vol. 3, 551 RtmBlockMethods Vol. 5, 409
RpcSsFree Vol. 3, 552 RtmCloseEnumerationHandle Vol. 5, 346
RpcSsGetThreadHandle Vol. 3, 553 RtmCreateDestEnum Vol. 5, 410
RpcSsSetClientAllocFree Vol. 3, 554 RtmCreateEnumerationHandle Vol. 5, 343
RpcSsSetThreadHandle Vol. 3, 555 RtmCreateNextHopEnum Vol. 5, 413
RpcSsSwapClientAllocFree Vol. 3, 556 RtmCreateRouteEnum Vol. 5, 414
RpcStringBindingCompose '" Vol. 3, 558 RtmCreateRouteList Vol. 5, 417
RpcStringBindingParse Vol. 3, 559 RtmCreateRouteListEnum Vol. 5, 418
RpcStringFree Vol. 3, 561 RtmDeleteEnumHandle Vol. 5, 419
RpcTestCancel Vol. 3, 562 RtmDeleteNextHop Vol. 5, 420
RpcTryExcept... Vol. 3, 590 RtmDeleteRoute Vol. 5, 338
RpcTryFinally Vol. 3, 590 RtmDeleteRouteList.. Vol. 5, 421
RpcWinSetYieldlnfo Vol. 3, 563 RtmDeleteRouteToDest.. Vol. 5, 422
RpcWinSetYieldTimeout Vol. 3, 566 Rtm Dequeue RouteChange
RSVP _ADSPEC Vol. 1, 802 Message .. Vol. 5, 333
RSVP _RESERVE_INFO Vol. 1, 803 RtmDeregisterClient Vol. 5, 332
RSVP _STATUS_INFO Vol. 1,805 RtmDeregisterEntity Vol. 5, 423
RTM_DEST _INFO Vol. 5, 480 RtmDeregisterFromChange
RTM_ENTITY _EXPORT_ Notification Vol. 5, 424

METHOD Vol. 5, 477 RtmEnumerateGetNextRoute Vol. 5, 345
RTM_ENTITY _EXPORT_ RtmFindNextHop Vol. 5, 425

METHODS Vol. 5, 481 RtmGetChangedDests Vol. 5, 426
RTM_ENTITY _10 Vol. 5, 482 RtmGetChangeStatus Vol. 5, 428
RTM_ENTITY _INFO Vol. 5, 483 RtmGetDestlnfo Vol. 5, 429
RTM_ENTITY _METHOD_ RtmGetEntitylnfo Vol. 5, 430

OUTPUT.. Vol. 5, 484 RtmGetEntityMethods Vol. 5, 431
RTM_ENTITY _METHOD_INPUT Vol. 5, 483 RtmGetEnumDests Vol. 5, 432
RTM_EVENT_CALLBACK Vol. 5, 478 RtmGetEnumNextHops Vol. 5, 434
RTM_EVENT _TYPE Vol. 5, 506 RtmGetEnumRoutes Vol. 5, 435
RTM_IP _ROUTE Vol. 5, 357 RtmGetExactMatchDestination Vol. 5, 436
RTM_IPV4_GET _ADDR_AND_ RtmGetExactMatchRoute Vol. 5, 438

LEN .. Vol. 5, 492 RtmGetFirstRoute Vol. 5, 348
RTM_IPV4_GET _ADDR_AND_ RtmGetLessSpecificDestination Vol. 5, 440

MASK .. Vol. 5, 493 RtmGetListEnumRoutes Vol. 5, 441
RTM_IPV4_LEN_FROM_MASK Vol. 5, 494 RtmGetMostSpecificDestination Vol. 5, 443
RTM_IPV4_MAKE_NET _ RtmGetNetworkCount.. Vol. 5, 341

ADDRESS Vol. 5, 495 RtmGetNextHoplnfo Vol. 5, 444
RTM_IPV4_MASK_FROM_LEN Vol. 5, 496 RtmGetNextHopPointer Vol. 5, 445
RTM_IPV4_SET _ADDR_AND_ RtmGetNextRoute Vol. 5, 350

LEN .. Vol. 5, 497 RtmGetOpaquelnformation
RTM_IPV 4_SET _ADDR_AND_ Pointer .. Vol. 5, 446

MASK .. Vol. 5, 498 RtmGetRegisteredEntities Vol. 5, 447

Index Networking Services Programming Elements - Alphabetical Listing 687

RtmGetRouteAge Vol. 5, 342 SetipStatistics Vol. 2, 274
RtmGetRoutelnfo Vol. 5, 449 SetipTTL .. .vol. 2, 275
RtmGetRoutePointer Vol. 5, 450 SetPower .. Vol. 5, 293
RtmHoldDestination Vol. 5, 451 SetService ... Vol. 1,212
RtmlgnoreChangedDests Vol. 5, 452 setsockopt... Vol. 1, 215
RtmlnsertlnRouteList... Vol. 5, 453 SetTcpEntry Vol. 2, 276
RtmlnvokeMethod Vol. 5, 454 shutdown ... Vol. 1,223
RtmlsSestRoute Vol. 5, 455 smiCNTR64 Vol. 2, 458
RtmlsMarkedForChange smiOCTETS Vol. 2, 459

Notification Vol. 5, 456 smiOIDvol. 2, 460
RtmlsRoute Vol. 5, 340 smiVALUE ... Vol. 2, 461
RtmLockDestination Vol. 5, 457 smiVENDORINFO Vol. 2, 464
RtmLockNextHop Vol. 5, 459 SNMPAPLCALLSACK Vol. 2, 375
RtmLockRoute Vol. 5, 460 SnmpCancelMsg Vol. 2, 376
RtmMarkDestForChange SnmpCleanup Vol. 2, 378

Notification Vol. 5, 461 SnmpClose Vol. 2, 379
RtmReferenceHandles Vol. 5, 463 SnmpContextToStr Vol. 2, 380
RtmRegisterClient Vol. 5, 331 SnmpCountVbl... Vol. 2, 382
RtmRegisterEntity Vol. 5, 464 SnmpCreatePdu Vol. 2, 383
RtmRegisterForChange SnmpCreateSession Vol. 2, 385

Notification Vol. 5, 466 SnmpCreateVbl Vol. 2, 388
RtmReleaseChangedDests Vol. 5, 467 SnmpDecodeMsg Vol. 2, 390
RtmReleaseDestinfo Vol. 5, 469 SnmpDeleteVb Vol. 2, 392
RtmReleaseDests Vol. 5, 469 SnmpDuplicatePdu Vol. 2, 394
RtmReleaseEntities Vol. 5,471 SnmpDuplicateVbl Vol. 2, 395
RtmReleaseEntitylnfo Vol. 5, 471 SnmpEncodeMsg , ... Vol. 2, 396
RtmReleaseNextHoplnfo Vol. 5, 472 SnmpEntityToStr Vol. 2, 398
RtmReleaseNextHops Vol. 5, 473 SnmpExtensionClose Vol. 2, 290
RtmReleaseRoutelnfo Vol. 5, 474 SnmpExtensionlnit.. Vol. 2, 291
RtmReleaseRoutes Vol. 5, 475 SnmpExtensionlnitEx Vol. 2, 293
RtmUpdateAndUnlockRoute Vol. 5, 476 SnmpExtensionMonitor Vol. 2, 294

SnmpExtensionQuery VoI.2, 295

s SnmpExtensionQueryEx Vol. 2, 298
SnmpExtensionTrap Vol. 2, 302

SEC_WINNT_AUTH_IDENTITY Vol. 3, 312
SECURITY_MESSAGE Vol. 4, 311
select .. Vol. 1,202
send .. Vol. 1,206
SendARP .. Vol. 2, 270
sendto , Vol. 1,209
SENS_QOCINFO Vol. 2, 227
servent.. .. Vol. 1,388
SERVICE_ADDRESS Vol. 1, 389
SERVICE_ADDRESSES Vol. 1, 390
SERVICE_INFO Vol. 1, 390
SERVICE_ TYPE_INFO_ASS Vol. 1, 393
SERVICE_ TYPE_ VALUE_ASS Vol. 1, 394
SESSION_SUFFER Vol. 2, 160
SESSION_HEADER , Vot. 2, 162
SetGloballnfo Vol. 5, 291
SetlfEntry ; Vol. 2, 271
Setlnterfacelnfo Vol. 5, 292
SetinterfaceReceiveType Vol. 5, 314
SetipForwardEntry Vol. 2, 272
SetipNetEntry ; Vol. 2, 273

SnmpFreeContext.. Vol. 2, 399
SnmpFreeDescriptor Vol. 2, 401
SnmpFreeEntity Vol. 2, 402
SnmpFreePdu Vol. 2, 403
SnmpFreeVbl Vol. 2, 404
SnmpGetLastError Vol. 2, 406
SnmpGetPduData Vol. 2, 407
SnmpGetRetransmitMode Vol. 2, 411
SnmpGetRetryvol. 2, 412
SnmpGetTimeout.. Vol. 2, 414
SnmpGetTranslateModevol. 2, 416
SnmpGetVb Vol. 2, 417
SnmpGetVendorlnfo Vol. 2, 420
SnmpListen Vol. 2, 421
SnmpMgrClose Vol. 2, 304
SnmpMgrGetTrap Vol. 2, 305
SnmpMgrOidToStr Vol. 2, 307
SnmpMgrOpen Vol. 2, 308
SnmpMgrRequest.. Vol. 2, 309
SnmpMgrStrToOid Vol. 2, 311
SnmpMgrTrapListen Vol. 2, 312

688 Volume 3 RPC and WNet

SnmpOidCompare Vol. 2, 423 StopProtocol Vol. 5, 295
SnmpOidCopy Vol. 2, 425 String Binding Vol. 3, 324
SnmpOidToStr. Vol. 2, 427 String UUID Vol. 3, 329
SnmpOpen Vol. 2, 428 SUPPORT_FUNCTIONS Vol. 5, 305
SnmpRecvMsg Vol. 2, 430 SYNCMGRFLAG Vol. 2,196
SnmpRegister Vol. 2, 433 SYNCMGRHANDLERFLAGS Vol. 2,197
SnmpSendMsg Vol. 2, 436 SYNCMGRHANDLERINFO Vol. 2, 201
SnmpSetPduData Vol. 2, 438 SYNCMGRINVOKEFLAGS Vol. 2, 200
SnmpSetPort Vol. 2, 440 SYNCMGRITEM Vol. 2, 203
SnmpSetRetransmitMode Vol. 2, 442 SYNCMGRITEMFLAGS Vol. 2,199
SnmpSetRetry Vol. 2, 444 SYNCMGRLOGERRORINFO Vol. 2, 202
SnmpSetTimeout... Vol. 2, 445 SYNCMGRLOGLEVEL. Vol. 2,199
SnmpSetTranslateMode Vol. 2, 446 SYNCMGRPROGRESSITEM Vol. 2, 201
SnmpSetVb Vol. 2, 448 SYNCMGRSTATUS Vol. 2,198
SnmpStartup Vol. 2, 450
SnmpStrToContext... Vol. 2, 453
SnmpStrToEntity Vol. 2, 455 T
SnmpStrToOid Vol. 2, 456
SnmpSvcGetUptime Vol. 2, 314
SnmpSvcSetLogLevel Vol. 2, 315
SnmpSvcSetLogType Vol. 2, 316
SnmpUtilAsnAnyCpy Vol. 2, 317
SnmpUtilAsnAnyFree Vol. 2, 317
SnmpUtiIDbgPrint Vol. 2, 318
SnmpUtilidsToA Vol. 2, 319
SnmpUtilMemAlioc Vol. 2, 321
SnmpUtilMemFree Vol. 2, 321
SnmpUtilMemReAlioc Vol. 2, 322
SnmpUtiIOctetsCmp Vol. 2, 323
SnmpUtilOctetsCpy Vol. 2, 324
SnmpUtilOctetsFree Vol. 2, 325
SnmpUtilOctetsNCmp Vol. 2, 325
SnmpUtiIOidAppend Vol. 2, 326
SnmpUtiIOidCmp Vol. 2, 327
SnmpUtilOidCpy Vol. 2, 328
SnmpUtiIOidFree Vol. 2, 329
SnmpUtilOidNCmp Vol. 2, 330
SnmpUtiIOidToA Vol. 2, 331
SnmpUtilPrintAsnAny Vol. 2, 331
SnmpUtiIPrintOid Vol. 2, 332
SnmpUtiIVarBindCpy Vol. 2, 333
SnmpUtiIVarBindFree Vol. 2, 335
SnmpUtilVarBindListCpy Vol. 2, 334
SnmpUtilVarBindListFree Vol. 2, 335
SnmpVarBind Vol. 2, 340
SnmpVarBindList... Vol. 2, 341
sockaddr ... Vol. 1,396
SOCKADDR_IRDA Vol. 1, 397
socket ... Vol. 1,225
SOCKET_ADDRESS Vol. 1, 397
SOURCE_GROUP _ENTRy Vol. 5, 563
StartComplete Vol. 5, 293
StartProtocol. Vol. 5, 294

TC_GEN_FILTER Vol. 1,845
TC_GEN_FLOW Vol. 1, 846
TC_IFC_DESCRIPTOR Vol. 1, 847
TcAddFilter .. Vol. 1, 807
TcAddFlow .. Vol. 1,809
TcCloselnterface ; Vol. 1,811
TcDeleteFilter Vol. 1,812
TcDeleteFlow Vol. 1,813
TcDeregisterClient Vol. 1, 814
TcEnumerateFlows Vol. 1,815
TcEnumeratelnterfaces Vol. 1,817
TcGetFlowName Vol. 1,819
TCLCLIENT _FUNC_LlST Vol. 1, 847
TcModifyFlow Vol. 1,820
TcOpenlnterface Vol. 1,822
TcQueryFlow Vol. 1,823
TcQuerylnterface Vol. 1,824
TcRegisterClient Vol. 1,826
TcSetFlow ... Vol. 1,827
TcSetinterface Vol. 1,828
The ProviderSpecific Buffer Vol. 1,799
timeval. .. V01. 1,398
TraceDeregister Vol. 4, 438
TraceDump Vol. 4, 438
TraceDumpEx Vol. 4, 440
TracePrintf .. Vol. 4, 441
TracePrintfEx Vol. 4, 442
TracePuts .. Vol. 4, 444
TracePutsEx Vol. 4, 445
TraceRegister Vol. 4, 446
TraceRegisterEx Vol. 4, 447
TraceVprintf Vol. 4, 449
TraceVprintfEx Vol. 4, 450
TRANSMIT _FILE_BUFFERS Vol. 1,399
TransmitFile Vol. 1,228
Transport Identifiers Vol. 5, 235

Index Networking Services Programming Elements - Alphabetical Listing 689

u WPUFDlsSet... Vol. 1,523
WPUGetProviderPath Vol. 1,524

Unbindlnterface Vol. 5, 296 WPUGetQOSTemplate Vol. 1,783
UNIVERSAL_NAME_INFO Vol. 3, 667 WPUModifylFSHandle Vol. 1, 525
UPDATE_COMPLETE_ WPUOpenCurrentThread Vol. 1,527

MESSAGE Vol. 5, 303 WPUPostMessage Vol. 1,528
UUID ... V01. 3, 313 WPUQueryBlockingCaliback Vol. 1,529
UUID VECTOR. Vol. 3, 314
UuidCompare Vol. 3, 567

WPUQuerySocketHandleContext... .. Vol. 1,530
WPUQueueApc Vol. 1, 53t

UuidCreate Vol. 3, 568 WPUResetEvent... Vol. 1,533
UuidCreateNiI Vol. 3, 570 WPUSetEvent... Vol. 1,534
UuidCreateSequential Vol. 3, 569 WSAAccept Vol. 1,231
UuidEqual ... Vol. 3, 570 WSAAddressToString Vol. 1,235
UuidFromString Vol. 3, 571 WSAAsyncGetHostByAddr Vol. 1,236
UuidHash .. Vol. 3, 572 WSAAsyncGetHostByName Vol. 1,239
UuidlsNil ... Vol. 3, 573 WSAAsyncGetProtoByName Vol. 1,242
UuidToString Vol. 3, 574 WSAAsyncGetProtoByNumber Vol. 1,245

WSAAsyncGetServByName Vol. 1,248

v WSAAsyncGetServByPort Vol. 1,251
WSAAsyncSelect... Vol. 1,254

ValidateRoute Vol. 5, 315
View Flags .. Vol. 5, 501

WSABUF ... Vol. 1,399
WSACancelAsyncRequest Vol. 1, 263
WSACanceIBlockingCall. Vol. 1,265

W
WSACleanup Vol. 1,265
WSACloseEvent Vol. 1,267

WM RASDIALEVENT Vol. 4, 257
WNetAddConnection Vol. 3, 611
WNetAddConnection2 Vol. 3, 613
WNetAddConnection3 Vol. 3, 616
WNetCancelConnection Vol. 3, 620
WNetCanceiConnection2 Vol. 3, 622
WNetCloseEnum Vol. 3, 624
WNetConnectionDialog Vol. 3, 625
WNetConnectionDialog1 Vol. 3, 626
WNetDisconnectDialog Vol. 3, 628
WNetDisconnectDialog1 Vol. 3, 629
WNetEnumRssource Vol. 3, 630
WNetGetConnection Vol. 3, 632
WNetGetLastError Vol. 3, 634
WNetGetNetworklnformation Vol. 3, 635
WNetGetProviderName Vol. 3, 636
WNetGetResourcelnformation Vol. 3, 638
WNetGetResourceParent... Vol. 3, 640
WNetGetUniversalName Vol. 3, 642
WNetGetUser Vol. 3, 645
WNetOpenEnum Vol. 3, 647
WNetUseConnection Vol. 3, 650
WPUCloseEvent... VoI.1,515
WPUCloseSocketHandle Vol. 1, 515
WPUCloseThread Vol. 1,516
WPUCompleteOverlapped

Request ... Vol. 1,517
WPUCreateEvent Vol. 1, 520
WPUCreateSocketHandle Vol. 1,521

WSAConnect Vol. 1,268
WSACreateEvent... Vol. 1, 272
WSADATA .. Vol. 1,400
WSADuplicateSocket... Vol. 1,273
WSAECOMPARATOR Vol. 1,413
WSA.EnumNameSpaceProviders Vol. 1, 276
WSAEnumNetworkEvents Vol. 1, 277
WSAEnumProtocols Vol. 1,279
WSAEventSelect... Vol. 1,281
WSAGetLastError Vol. 1,287
WSAGetOveriappedResult Vol: 1,288
WSAGetQOSByName Vol. 1,290
WSAGetQOSByName Vol. 1, 784
WSAGetServiceClasslnfo Vol. 1,292
WSAGetServiceClassNameBy

Classld ... Vol. 1,293
WSAHtonl ... Vol. 1,294
WSAHtons .. Vol. 1,295
WSAlnstaliServiceClass Vol. 1,296
WSAloctl ... Vol. 1,297
WSAlsBlocking Vol. 1,308
WSAJoinLeafvol. 1, 309
WSALookupServiceBegin Vol. 1, 313
WSALookupServiceEnd Vol. 1,317
WSALookupServiceNext Vol. 1,318
WSANAMESPACE_INFO Vol. 1,401
WSANETWORKEVENTS Vol. 1,402
WSANtohl ... Vol. 1, 322
WSANtohs .. Vol. 1, 323
WSAOVERLAPPED Vol. 1,403

690 Volume 3 RPe and WNet

WSAPROTOCOUNFO Vol. 1, 404 WSPAddressToString Vol. 1,549
WSAPROTOCOLCHAIN Vol. 1, 408 WSPAsyncSelect... Vol. 1,550
WSAProviderConfigChange Vol. 1, 324 WSPBind ... Vol. 1, 558
WSAQUERYSET Vol. 1, 409 WSPCanceIBlockingCall. Vol. 1,560
WSARecv ... Vol. 1, 326 WSPCleanup Vol. 1, 562
WSARecvDisconnect Vol. 1, 332 WSPCloseSocket Vol. 1,564
WSARecvEx Vol. 1,334 WSPConnect Vol. 1,566
WSARecvFrom Vol. 1, 337 WSPDuplicateSocket... Vol. 1,570
WSARemoveServiceClass Vol. 1,343 WSPEnumNetworkEvents Vol. 1,573
WSAResetEvent... Vol. 1, 344 WSPEventSelect Vol. 1, 576
WSASend ... Vol. 1, 345 WSPGetOverlappedResult... Vol. 1,581
WSASendDisconnect Vol. 1, 350 WSPGetPeerName Vol. 1,584
WSASendTo Vol. 1, 352 WSPGetQOSByName Vol. 1, 585
WSASERVICECLASSINFO Vol. 1, 411 WSPGetQOSByName Vol. 1,789
WSASetBlockingHook Vol. 1, 357 WSPGetSockName Vol. 1,586
WSASetEvent... Vol. 1, 358 WSPGetSockOpt Vol. 1,588
WSASetLastError Vol. 1, 359 WSPloctl ... Vol. 1,593
WSASetService Vol. 1, 360 WSPJoinLeaf Vol. 1, 604
WSASocket Vol. 1, 363 WSPListen .. Vol. 1, 608
WSAStartup Vol. 1,367 WSPRecv .. Vol. 1,610
WSAStringToAddress Vol. 1, 371 WSPRecvDisconnect... Vol. 1, 617
WSATHREADID Vol. 1,412 WSPRecvFrom VoI.1, 618
WSAUnhookBlockingHook Vol. 1, 372 WSPSelect... Vol. 1, 624
WSAWaitForMultipleEvents Vol. 1, 373 WSPSend ... Vol. 1,628
WSCDeinstaIiProvider. Vol. 1, 535 WSPSendDisconnect Vol. 1,633
WSCEnableNSProvider Vol. 1, 536 WSPSendTo VoI.1, 634
WSCEnumProtocols Vol. 1, 537 WSPSetSockOpt Vol. 1, 640
WSCGetProviderPath Vol. 1, 539 WSPShutdown Vol. 1,644
WSClnstaIiNameSpace Vol. 1,540 WSPSocket Vol. 1,645
WSClnstaliProvider Vol. 1, 541 WSPStartup Vol. 1, 649
WSClnstallQOSTemplate Vol. 1, 786 WSPStringToAddress Vol. 1, 654
WSCRemoveQOSTemplate Vol. 1, 788
WSCUnlnstaliNameSpace Vol. 1, 543
WSCWriteProviderOrder Vol. 1, 543 v
WSPAccept Vol. 1, 545 YieldFunctionName Vol. 3, 580

Part No. 097-0002785

RPCand
WindoWS' Networking
This essential reference book is part of the five-volume
NETWORKING SERVICES DEVELOPER'S REFERENCE LIBRARY.

In its printed form, this material is portable, easy to use,
and easy to browse-a highly condensed, completely
indexed, intelligently organized complement to the
information available on line and through the Microsoft
Developer Network (MSDW'). Each book includes an
overview of the five-volume library, an appendix of
programming elements, an index of referenced MicrosoW
technologies, and tips on how and where to find other
Microsoft developer reference resources you may need.

RPC and Windows Networking

This volume includes concise reference information about
remote procedure calls (RPC) and Windows Networking
features and functions. RPC is a powerful technology that
simplifies distributed client/server development by
managing most of the details of network protocols and
communication so you can focus on creating your
application instead of on the details of the network.
Windows Networking lets you implement networking
capabilities in your application without worrying about any
particular network provider or physical network
implementation.

6ficl'OSott

